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PREFACE 

This volume constitutes the proceedings of the Workshop on Integer Program- 
ming that was held in Bonn, September 8-12, 1975. The Workshop was organized 
by the Institute of Operations Research (Sonderforschungsbereich 21), University 
of Bonn and was generously sponsored by IBM Germany. In all, 71 participants 
frnm 13 different countries took part in the Workshop. 

Integer programming is one of the most fascinating and difficult areas of 
mathematical optimization. There are a great many real-world problems of large 
dimension that urgently need to be solved, but there is a large gap between the 
practical requirements and the theoretical development. Since combinatorial 
problems in general are among the most difficult in mathematics, a great deal of 
theoretical research is necessary before substantial advances in the practical 
solution of problems can be expected. Nevertheless the rapid progress of research 
in this field has produced mathematical results significant in their own right and has 
also borne substantial fruit for practical applications. We believe that this will be 
adequately demonstrated by the papers in this volume. 

The 37 papers appearing in this volume cover a wide spectrum of topics in integer 
programming. The volume includes works on the theoretical foundations of integer 
programming, on algorithmic aspects of discrete optimization, on specific types of 
integer programming problems, as well as on some related questions on polytopes 
and on graphs and networks. 

All the papers have been carefully referred. We express our sincere thanks to all 
authors for their cooperation, to the referees for their useful support, to numerous 
participants for stimulating discussions, and to the editors of the Annals of Discrete 
Mathematics for their willingness to include this volume in their new series. 

Bonn, 1976 The Program Committee 

P. Schweitzer 
IBM Germany 

P.L. Hammer 
E.L. Johnson 

B.H. Korte 
G.L. Nemhauser 

V 
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We consider the problem 
min c'x (t) 
s.t. Nx + B y  = b, 

X E N ,  y E Z "  

where N is an (m,  r ) ,  B an (m,  n )  integer matrix, and b E 2". In Section 2 we characterize all 
solutions x E 2' of (t) by an explicit formula and give as a corollary a minimal group 
representation of equality restricted integer programs, where some of the nonnegativity restric- 
tions are relaxed. In Section 3 we discuss decomposing integer programs over cones in case the 
matrix N has special structure. 

1. Introduction 

We consider the problem 

min c'x 

s.t. Nx + By = b 

x E N', y E Z" 

where N is an ( m ,  r )  and B an (m, n )  integer matrix. As B is an arbitrary (m, n )  
integer matrix, the convex hull of the feasible set of (1.1) is a generalized corner 
polyhedron, that is an equality restricted integer program, where the nonnegativity 
restriction of some of the variables are relaxed. To give a group representation of 
the problem, we reformulate (1.1) as a congruence problem, 

min c'x 

s.t. Nx = b modB 

x E N' 

1 



2 A. Bachem 

where we define Nx = b (mod B ) ,  iff there is a A E Z", such that Nx - b = BA 
holds. To set this definition in a more general framework we have to introduce the 
concepts of Smith and Hermite normal form. 

Definition. If B is an (m, n )  integer matrix, we denote by S(B)  and H(B) the Smith 
and Hermite normal form of B, S*(B) and H*(B) denotes the nonsingular part of 
S(B),  H(B) resp. The unimodulaz matrices which transform B into Smith normal 
form are denoted by U,, KB and the projection matrices, which eliminate the 
nonsingular part S*(B) of S(B)  are denoted by WE, VB. Thus we have S*(B)= 
WB UB B KB VB. 

Sometimes it is advantageous to look at congruences from an algebraic point of 
view, that is to look at the definition of a : =  x (  =moda) l  as an image of the 
function a : =  h,(x)  = x - a [ x / a ]  (where "[x]" denotes the integer part of x). For 
(m,  n )  matrices B with rank (B) E { m ,  n} the scalar a is replaced in the above 
formula and we get the generalized form as 

h E ( x ) : = x  - B  [Btx]  

where B denotes the Hermite form H(B)VB of B (the zero colums of H(B) are 
omitted) and where B denotes the Moore-Penrose inverse of B. In fact we have 

Proposition (1.3). Let G be an additive subgroup of Z". The map hB : G -+ he ( G )  is 
a homomorphism onto (he(G) ,@)  with kernel ( h B )  = {x E G I x = BA, A E Z " } ,  and. 
X @ Y : =  he(X + y ) .  

Remark (1.4). Obviously 

a = x (  = modB)  

- u - x = B A  forsome A E Z "  

a - x E kernel(hB) holds 

and so problem (1.1) is equivalent to 

min c ' x  

6 h e ( N ) . &  = he(b) ,  (1.5) 
n=1 

x, E N ,  

where N, denotes the ith column of the matrix N and " = " is the group equation in 
the group G(B) :=he(Z") .  

Proof of Proposition (1.3). Since B has maximal column range, B'B is regular, and 
we have 
1 '.-, .- means that the left side of the equation will be defined. 
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So we conclude 

hence h, is a homomorphism. Let x E kernel(h,), that means x = B[Btx]. If we 
denote b : =  [ B t x ]  E Z' and a : =  (b',Oh-,)' we conclude x = H ( B ) a  and x = Bc 
where c = Ka, here K denotes the unimodular right multiplicator of H(B) .  Let 
now x = Ba with a E Z", that means x = Bb, b E Z'. With Btx  = b we conclude 
h B ( x )  = x - B [ B t x ]  = Bb - Bb = 0 which completes the proof. 

Clearly problem (1.5) is a group problem over the group G(B),  which is not 
necessarily of finite order (it depends obviously on the rank of B).  If we follow the 
usual definition of equivalent matrices (cf. (5) ) ,  that is the (m,  n )  integer matrix A 
and the ( r , s )  integer matrix B are equivalent iff they have the same invariant 
factors (apart from units), we get a slight generalization of a well known fact: 

Remark (1.6). The groups G ( A )  and G ( B )  are isomorphic, iff the matrices A and 
B are equivalent and m-rank(A) = r-rank(B)holds. 

Using this result it is easy to give a formula for the number of different 
(nonisomorphic) groups G(B),  where the product of invariant factors of the (rn, n )  
matrices B is fixed. This number is well known for regular (m,  n )  integer matrices 
B. Here we are going to treat the general case. 

Definition. Let B be an (m,  n) integer matrix. We call the product of the invariant 
factors of B the invariant of B (inv (B)) which coincides with the determinant of B 
in case B is a square nonsingular matrix. 

If d = n;=, % P >  is a representation of d = inv(B) as a product of prime factors 
and p a function from NZ into N defined recursively as 

p ( O , m ) : = l , p ( n , O ) : = O ( n , m  E N ) ,  we define 

Proposition (1.7). The number of nonisomorphic groups G(B),  where B varies over 
all ( m ,  n )  integer matrices (m,  n E N) with maximal row rank and invariant d, 
equals the integer number K ( d ) .  
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The number of nonisomorphic groups G ( B ) ,  where A varies over all (m,  n )  integer 
matrices ( n  E N) with r a n k ( B ) E  { m ,  n }  and invariant d,  equals L ( d ,  m ) .  

Notice that K ( d )  is a finite number, though we consider all ( m , n )  integer 
matrices B with m, n E N. If we compute the numbers K ( d )  and L ( d ,  m )  for d's  
between 1 and lo5, we note that 0 S K ( d )  5 10 in 95% of the cases, that is the group 
G ( B )  is more or  less determined by d = inv(B). 

Proof of Proposition (1.7). Two groups are isomorphic iff the generating matrices 
are equivalent and the rank condition holds (cf. Remark (1.6)). Proving the first part 
of the proposition we have only to  deal with maximal row rank matrices and using 
Remark (1.4) we can restrict ourselves to square matrices, because h, (x )  is defined 
in terms of H*(B) and this an ( m ,  n )  integer matrix with detH*(B) = inv(B). 
Because of the divisibility property of the invariant factors of an ( m ,  m )  integer 
matrix it suffices now to  compute the number of different representations of the 
exponents of a prime factor presentation of the determinant d = det B as a sum of 
m nonnegative integers. In fact this number equals p ( q ,  m )  (cf. ( 2 ) )  and moreover 
H(d) is finite because 

k 

el<, : = max E~ 
J= I  

leads to 

To prove the second part of the proposition we first note that rank(B) m. Since 
two groups G(A) and G(B) with matrices having both less than m columns, 
cannot be isomorphic, the second statement follows obviously from the first one. 

2. Minimal group representation 

We have seen that (1.5) is a group problem, namely of the group G(B) .  In fact 
this is the group which will usually be considered in the asymptotic integer 
programming approach (cf. (3)), whereas the actual underlying group of (1.5) is the 
group 

G ( N / B ) : = { h , ( x ) / x  = N A , A  E Z'} 

which is a subgroup of G ( B )  generated by the columns of the matrix N. From a 
computational point of view the group G ( N / B )  is more difficult to handle than the 
group G ( B )  (though it has less elements), because there is n o  proper respresenta- 
tion of G ( N / B ) .  From this reason here we are going to find a 6 E N" which will be 
defined in terms of N and B, such that the group G ( N / B )  is isomorphic to 
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G (diag(6)). Clearly this is a minimal group representation of problem (1.5) and as 
a corollary we get the order of G ( N / B )  by 

First we want to give some results concerning congruences which will be used 
later, they seem to be of general interest, though. 

Theorem (2.1). Let B be an (m,  n )  integer matrix with rank ( B )  = m, N an (m, s) 
integer matrix, b E Z" and A : = (N ,  B ) .  The system of congruences 

Nx = N b  m o d B  

x integer 

has a solution iff S*(A)-' V, U, b is integer. In this case, all solutions are of the form 

x = b  m o d H  

x integer 

where H:=(K,V,WML, R ) .  Here we denote b y  L:=S*(A)- 'UaN,  M : =  
S*(A)-'U,B and R denotes the last s - k columns of KM, where k:=rank(N).  

Proof. Without loss of generality we set b = 0. It is easy to see that S*(M, L )  equals 
an (m, m )  identity matrix I"', so we conclude 

S(S(M) ,  u M L ) =  ( I m , O m , n ) .  

With diag(tl , .  .., t k ) :=S*(M) ,  tk+,:=O ( i  = 1 , .  . ., m - k )  and D:= UML we get 
immediately 

(t) gcd(t , ,d,)= 1, i = 1 ,..., m, 

where d , :=gcd(D, , / j  = 1,.  . ., n )  ( i  = 1 , .  . ., m ) .  
Obviously the system 

N x = O  m o d B  

x integer 

is equivalent to the system 

y integer, 

and using (t) it is also equivalent to  

(S*(M),  O m . s - k ) y  = 0 mod WMUML 

y integer. 
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Let y = ( y i ,  y:)' be a ( k ,  s - k )  partition of y ,  then we get 

S*(M)yl  = O  mod WMUML. 

y l ,  y z  integer 

Let Ki( i  = 1, .  . ., k )  be unimodular matrices, which transform the i th row of 
d:= W,U,L into ( d , , ~ ,  . . ., 0). Using 

Ei:= K, diag(1,. . ., 1, t;', 1,. . ., 1 ) K 1  

i = 1,. . ., m we define 
1 

E : =  n E,. 
i = k  

By induction on i one can easily show that 

diag(1,. . ., t i+ l , .  . ., t m ) y l  = fi fl Eiz 
1 

j = ,  

1 

y z ,  n E,Z integer 
j = i  

is equivalent (for all i = 1 , .  . ., m )  to  

(* 1 S*(M)yl  = 0 m o d B  

y l ,  Y Z  integer 

so that 

y l  = DEz 

y 2 ,  Ez integer 

is equivalent to  (*). 
Since E-' is an integer matrix and x = KMy, the equation 

x = (KMVMYlf Ryz) 

completes the proof. 

Theorem (2.2). With the notations of theorem (2.1) we get 
(i) S*(L) = S(A)-'UA U i ' S * ( B )  

(ii) s * ( H )  = i diag(t,,-,+,, . . ., t , )  
where S*(L)=:  diag(tl, .  . ., t m ) .  

Proof. Because of 

L = s*(A)- '  U A ~ , '  ~ B B ,  

(i) follows immediately from the equation 

S*(L)  = S*(L&)  = S*(LKBVB). 
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Let 

where Is-' denotes an ((s - k ) , ( s  - k)) identity matrix. Because of H = 
KM( W,U,L, P ) ,  we conclude S*(H)  = S,*( WMUML, P), that is 

where Q denotes the first k rows of U,. 
From the proof of theorem (2.1) we know that 

S*(L) = S*(H(U,L)) = diag(tl,. . ., t,,,), 

S*(QL) = diag(t,-r+l,. . ., t m )  
so 

which completes the proof. 

Now we are able to give an isomorphic representation of the subgroup G(N/B) .  

Theorem (2.3). Let B be an (m,  n )  and N a n  (m,  r )  integer matrix with rank(B) = 
m. Then we get 

G ( N / B )  = G(S*(E)) ,  

that means the group G ( N / B )  is isomorphic to the group G(S*(E)) ,  where E : =  
WM UML and L:=S*(N, B)-' U(N,B)N, M:=S*(N,B)- '  U(N,B)B. 

Corollary (2.4). 

0 : = UE S*(M)-'W,U, S*(N, B)-'U(fi,B) 

is an isomorphism from G ( N / B )  to G(S*(E) ) .  

Corollary (2.5). The order of G ( N / B )  equals 

inv (B) 
det (S*(N, B)) 

Proof of Theorem (2.3). Let K be a unimodular matrix, so that NK is up to 
permutations of rows in Hermite normal form. Let N be the matrix NK without the 
zero columns. Obviously we have G ( N / B )  = G ( N / B ) .  Let 

{ N ) : = { x ~ ~ m / x = N y  for a ~ E Z ' }  

be a subgroup of (Z"', + ). Because h, : {N}+ he ({R}) is a homomorphism (Propo- 
sition 1.3) G ( N / B )  is isomorphic to the factor group 
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{I?} / kern el (he ) 

where kernel(hB) = {x E {I?} 1 x = 0 mod B}. 
With Theorem (2.1) we conclude 

kernel(hB) = {x E Z" 1 x = Ny, y = 0 modKMWMUMLfor a y E Z'}. 

Let 

Then 
f:= S*(M)-'W,U,BL-'. 

f : (R}+Zk 
is an isomorphism and f (kernel(he)) = { z  E Z' I z = 0 mod WMUML}. Thus we get 

{I?}/kernel(h,) = Zk  /kernel(&) 

and because UE is also an isomorphism we get the isomorphism 

G ( N / B )  = G ( S * ( E ) ) .  

The corollaries follow immediately from Theorem (2.3) in conjunction with 
Theorem (2.2). 

3. Partitioning of integer programs over cones 

The computational effort to solve the problem 

min c 'x  
s.t. Nx + By = b 

x E N', y E Z" 

usually grows rapidly according to  the determinant of B. It is therefore sometimes 
advantageous to  decompose the problem into smaller subproblems and to link the 
optima of the subproblems to  a solution of the masterproblem. We give now two 
examples of decomposing problem (3.1) in case the matrix N is of the form 

N =  

or 

N =  

I 

= I N 1  0 . . 

A l , .  . . . . . . . . ,  A, 

N ,  

0 N, 

N, 

b =  (3.3) 
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To simplify notation let B = S*(B) ,  i.e. B is given as a diagonal matrix. (Otherwise 
we have to impose some special structure on UB.) 

Let us denote the set of feasible solutions of problem (3.1) by 

SG(N, b/B):={x E N ‘  1 Nx - b E kernel(h,)}. 

Let N be an (m, r )  integer matrix of form (3.2), let b,(x):=he(b - N,x),,, where I, 
corresponds to the row indices of the submatrix N, and let us denote by 

if bz(y)e G(N,  /B,,),  
z(b,(y)): = minc:x, 

the optimal value of the subproblems. 

Proposition (3.4). The programs 

[ x E SG(N,,  b,(y) /B,)  otherwise, 

min c’x 
x E SG(N, b/B),  (3.5) 

are equivalent. 

Proof. Let r, (y)  be the minimard corresponding to the optimal value z (b,  (y)). Let y 
be optimal in (3.6) and assume that there is an f E S G ( N ,  b/B),  
( i# x:=(y, r2(y), . . ., r,(y)) such that c ‘ f  < c’x. 

Let f:= ( f l ,  P 2 , .  . ., P,), where 9, are the components corresponding to N,. 
Because f, are feasible, we get 

c :  P, 3 min c,x, = c’X, i = 2 ,  ..., r 

X, E S G (Nn, b, (9‘ )/B,, ) 

and the contradiction 

c‘P 3 c l j l  + 2 c:P, a c’x = min ciy + 2 .z(b,(y))l y E N )  

proves one part of the proposition, however the reverse direction is trivial. 

z l (xz, .  . . ,x,):=minc,x, 
s.t. 

I =z I 1=2 

Let again N be an (m,r )  integer matrix which has form (3.3) and define 

z,(xi,. . . ,x,):=mincix, + zi-,(xi, . . . ,x,) 

x,ESG(Ni ,b i /B, , ) ,  i = 2  ,..., r, 

as the optimal value of the subproblems. 
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Proposition (3.5). The programs 

min c’x 

x E SG(N, b l B )  

and min c,x, + z,-](x,) 

X, E S G (Nr, br/Br, ) 

are equivalent. 

Proof. If we denote by 

c’X: = min c’x 

x E SG(N, b l B )  

we obviously get 

c , f l  = min clxl  

which yields in the same way 

€or all i > 1, because 

implies 

So we get the result 

c’X = min c,x, + Z , - ~ ( X , )  

x, E S G ( N , b , l B ) ,  

which completes the proof. 

The computational experience with algorithms canonically based on Propositions 
(3.4) and (3.5) is up to now limited to some of the Bradley-Wahi [l] test examples, 
which have determinants greater than 1,000,000. The results are very promising in 
the sense that it is possible to solve “cone problems” of such large order. The 
complete computational results together with comparisons of existing group 
algorithms will be the subject of a following paper. 
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SOME VALID INEQUALITIES FOR THE SET 
PARTITIONING PROBLEM* . 

Egon BALAS 
Carnegie-Mellon University 

We introduce a family of inequalities derived from the logical implications of set partitioning 
constraints and investigate their properties and potential uses. We start with a class of 
homogeneous canonical inequalities that we call elementary, and discuss conditions under which 
they are (a) valid, (b) cutting planes, (c) maximal, and (d) facets or improper faces of the set 
partitioning polytope. We give two procedures for strengthening nonmaximal valid elementary 
inequalities. Next we derive two nonhomogeneous equivalents of the elementary inequalities, 
which are of the set packing and set covering types respectively. Using the first of these 
equivalents, we introduce a “strong” intersection graph, a supergraph of the (common) 
intersection graph, whose facet generating subgraphs (cliques, odd holes, etc.) give rise to  valid 
inequalities for the set partitioning problem. These inequalities subsume or dominate the similar 
inequalities that one can derive for the associated set packing problem. One  subclass can be used 
to enhance orthogonality tests in implicit enumeration or column generating algorithms. Further, 
we introduce two types of composite inequalities, obtainable by combining elementary ine- 
qualities according to  specific rules, and some related inequalities obtainable directly from the set 
partitioning constraints. These inequalities provide convenient primal all-integer cutting planes 
that offer a greater flexibility and are usually stronger than the earlier cuts which d o  not use the 
special structure of the set partitioning problem. In the final section we discuss a primal algorithm 
which uses these cuts in conjunction with implicit enumeration. 

1. Introduction 

Set partitioning is one of those combinatorial optimization problems which have 
wide-ranging practical applications and for which n o  polynomially bounded 
algorithm is available. Though both implicit enumeration and cutting plane 
algorithms have been reasonably successful on  this problem, the practical impor- 
tance of solving larger set partitioning models than we can currently handle makes 
this a very lively research area (see [6] for a recent survey of theoretical results and 
algorithms, and a bibliography of applications). 

In this paper we introduce a family of valid inequalities derived from the logical 
implications of the set partitioning constraints, and investigate their properties and 
potential uses. We first define some basic concepts, then at the end of this section 
we outline the content of the  paper. 

The set partitioning problem can be stated as 

* This research was supported by the National Science Foundation under Grant # GP 37510x1 and 
by the U.S. Office of Naval Research under contract N00014-67-A-0314-007NR. 
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min{cx I AX = e, x, = 0 or 1,; E N }  

where A = (a , - )  is an m x n matrix of 0's and l's, e is an rn-vector of l's, 
N = (1,. . ., n } .  We will denote by a, the j th  column of A, and assume that A has no 
zero row and n o  zero column. Also, we will write M = (1,. . ., m}. 

The convex hull and the dimensions of a set S, and the vertex set of a polytope T, 
will be denoted by conv S,  dim S and vert T respectively. 

Denoting by "conv" the convex hull, we will call 

P = conv{x E R" 1 Ax = e, xi = 0 or 1, ; E N }  

the setpartitioning polytope, and denote the linear programming relaxation of P by 

L P = { x E R " I A x = e , x s O } .  

Clearly, vert P = P n (0, l}", 
We will also refer to 

p = conv{x E R" I Ax =s e, x, = 0 or l , j  E N } ,  

the sef packing polytope associated with P. 
Whenever P # 0, we have 

dim P =G dim LP = n - r(A ) 

where r(A) is the rank of A. 
An inequality 

7rx s r ro  (1) 

rrx = 570 (1') 

satisfied by all x E P is called valid for P. A valid inequality (1) such that 

for exactly k + 1 affinely independent points x E P, 0 k s dimP, defines a 
k-dimensional face of P and will itself be called a face (though since dim P < n, a 
given face can be defined by more than one inequality). If k <dimP,  the face is 
proper, otherwise it is improper. In the latter case, the hyperplane defined by (1') 
contains all of P, and is called singular. 

A valid inequality (1) is a cut, or cutting plane, if it is violated by some x E LP \ P. 
A face of P, whether proper or not, may or may not be a cutting plane. If 
dim P = dimLP, then the affine hull of P is the same as that of LP; hence any 
hyperplane which contains all of P, also contains all of LP, and therefore n o  
improper face of P is a cutting plane. If dim P < dim LP, then improper faces of P 
may also be cutting planes. 

Proper faces of maximal dimension are called facets. Evidently, P has faces 
(hence facets) if and only if dimP 2 1, which implies n > r(A). If dim P = dimLP, 
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then the facets of P are of dimension n - r(A) - 1, i.e., each facet contains exactly 
n - r (A)  affinely independent points of P. Since 0 P, these affinely independent 
points are linearly independent vectors. 

A valid inequality (1) is maximal if for any k E N and any T ; >  T k  there exists 
x E P such that 

T : x *  + 2 
j E N - { k )  

T j X ,  > T o .  

This notion is the same as that of a minimal inequality (see Gomory and Johnson 
[12]; and, more recently Jeroslow [13]), except that here we find it more convenient 
to consider inequalities of the form S rather than 3 ,  in order to have a 
nonnegative righthand side. 

The following is an outline of the content of this paper. 
We start (Section 2) with a class of homogeneous canonical inequalities that we 

call elementary, since all the subsequent inequalities can be built up from these first 
ones by various composition rules. The elementary inequalities, together with the 
0-1 condition and the constraints Ax S e, imply the constraints Ax 3 e ; but they 
also cut off fractional points satisfying Ax = e, x 3 0 .  We discuss the conditions 
under which a given elementary inequality is (a) a cutting plane, (b) maximal, (c) a 
facet or an improper face of P. 

When a given elementary inequality is not maximal, it can be strengthened. In 
Section 3 we discuss two systematic strengthening procedures for these inequalities. 

In Section 4 we show that each elementary inequality is equivalent on LP to a set 
packing inequality and to each of several set covering inequalities. The first one of 
these equivalences suggests a graph-theoretical interpretation. We introduce a 
“strong” intersection graph of the matrix A defining P, and show that a set packing 
inequality is valid for P if and only if it corresponds to a complete subgraph of the 
strong intersection graph of A ;  and it is maximal if and only if this complete 
subgraph is a clique. 

The next two sections deal with composite inequalities, obtained by certain rules 
from the elementary inequalities. These composite inequalities have the following 
property. Given an integer basic solution to the system Ax = e, x a 0 ,  and a set S of 
nonbasic variables, none of which can be pivoted into the basis with a value of 1 
without making the solution infeasible, there exists a composite inequality which 
can be used as a primal all-integer cut to pivot into the basis any of the variables in S 
without losing feasibility. 

Finally, in Section 7 we introduce a class of inequalities which are satisfied by 
every feasible integer solution better than a given one, and which can be 
strengthened to a desired degree by performing implicit enumeration on certain 
subproblems. We then discuss a hybrid primal cutting plane/implicit enumeration 
algorithm based on these results. 

Throughout the paper, the statements are illustrated on numerical examples. 
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2. Elementary inequalities 

We shall denote 

Mk = { i  E M 1 a,k = I}, Gk = M\ Mk, k E N, 

N, = { k  E N  I atk = l}, 

N,k = { j  E N, 1 a,ak = o), 

Is, = N ,  N,, 

i E G k ,  

i E M, 

k E N. 

N,, is the index set of those columns a, orthogonal to ak and such that a,, = 1. 
Since alk = 0 (as a result of i E Gk), x k  = I implies that at least one of the variables 
x,, j E N , k ,  must be one. 

Valid inequalities of the form 

where Q C N i k ,  for some i E G k ,  will be called elementary. They play a central role 
as building blocks for all the inequalities discussed in this paper. These elementary 
inequalities are canonical in the sense of [4] (i.e., they have coefficients equal to 0, 1 
or - l), hence each of them is parallel to a (n - 1 Q 1 - 1)-dimensional face of the 
unit cube. 

Remark 2.1. The slack of an elementary inequality is a 0-1 variable. 

Proof. 
cannot exceed 1. 

Since Q C Nik C Ni for some i E M, the sum of the variables indexed by Q 

Proposition 2.1. For every k E N and i E a,, the inequality 

is satisfied by all x E P. 

Proof. From the definition of Nik, for every x E vert P, XI,  = 1 implies x, = 1 for at 
least one j E Nik. But this is precisely the condition expressed by (2); thus (2) is 
satisfied by all x Evert  P, hence by all x E P. 0 

Remark 2.2. The number of distinct inequalities ( 2 )  is at most c k E N (  M k  I .  

Proof. 
of these inequalities may be identical. 

There is one inequality (2) for every zero entry of the matrix A, but some 

The converse of Proposition 2.1 is not true in general, i.e., a 0-1 point satisfying 
all inequalities (2) need not be in P, as one can easily see from the counterexample 
offered by R such that X, = 1, V j  E N. However, a weaker converse property holds. 
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Proposition 2.2. 
qualities (2), also satisfies Ax 3 e. 

Any  x E (0, l}", x #  0, which satisfies A x  s e and all the ine- 

Proof. Let X E (0, l}", X #  0, be such that AX s e, AX# e. Then there exists i E M 
such that X, = 0, V j  E N,. Further, since X# 0, there exists k E fit such that Xk = 1. 
Therefore X violates the inequality 

since Nik C Ni. 0 

Corollary 2.2.1. 
inequality (2) ;  and every inequality (2) cuts off some x E p \ P. 

Every nonzero vertex of P not contained in P is cut off by some 

Proof. Every x E p \ P violates A x  2 e ;  hence if it is a nonzero vertex of P, 
according to Proposition 2.2 it violates some inequality (2). On the other hand, 
every inequality (2) cuts off the point X € p  defined by ?k = 1, Xj =o ,  
V j E N \ { k } .  0 

Proposition 2.3. For k E N, i E Mk and Q Nik, the inequality 

is valid if and only if x E vert P and x k  = 1 implies xi = 0, vj E Nik \ Q. 

Proof. 
Remark 2.1, x, = 0, vj  E Q (since Q C Ngk) ,  and x violates (3). 

because (2) is valid. 0 

Necessity: if x E vert P and XI ,  = x, = 1 for some j E Nik \ Q, then from 

Sufficiency: if x E vert P and X k  = 1 implies x, = 0, vj  E Nik \ 0, then (3) is valid 

Next we illustrate the elementary inequalities on a numerical example. 

Example 2.1. 
polytope with coefficient matrix A (where the blanks are zeroes): 

Consider the numerical example of [5], i.e., the set partitioning 

1 2  3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1  1 1 1  

1 1 1  1 1  
1 1 1  1 

For k = 1 ,  MI = {3,4,5}; N,, = {3,12}, N4, = {3,4}, N51 = {3,4,5,12}, and the 
inequalities (2) are 
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XI  - x3 - x**  c 0 

x1- x3 - x4 =s 0 

X I  - x.1- x4- xs- x,* c 0, 

where the last inequality is dominated by each of the other two and hence is 
redundant. Further, x1 = 1 implies x4 = x l Z  = 0 for any feasible partition (this can be 
seen by inspection; systematic checking of such implications is discussed in Section 
3) and therefore each of the sets N31, N41 and N51 can be replaced by Q = {3}, and 
each of the above inequalities can be replaced by 

X I  - x3 =s 0. 

In the next section we discuss procedures for strengthening elementary ine- 
qualities of the type (3) (which subsumes (2)) by systematically reducing the size of 
the sets Q subject to the condition of Proposition 2.3. 

As mentioned in Section 1, a valid inequality may or  may not be a cut, i.e., may 
or may not be violated by some x E LP, P. 

Proposition 2.4. 
8 E R" satisfying 

The (valid) inequality (3)  is a cut i f  and only i f  there exists no 

- 1  j = k ,  
1 j E Q ,  
0 j E N ,  Q, 

8ai a (4) 

8e 3 0 .  ( 5 )  

Proof. According to a classical result (see, for  instance, [20, Theorem 1.4.4]), (3) is 
a consequence of the system Ax = e, x 3 0  if and only if there exists 8 E R" 
satisfying (4) and (5). If (3) is a consequence of Ax = e, x 3 0, it is clearly not a cut. 
Conversely, if (3) is not a cut, then it is satisfied by all x E LP, hence a consequence 
of Ax = e, x 3 0 .  0 

Next we address the question of when a given elementary inequality is 
undominated, i.e., maximal. First, if for some j E N, x E P implies x j  = 0, then 
clearly the coefficient of x j  can be made arbitrarily large without invalidating the 
given inequality. Therefore, without loss of generality, we can exclude this 
degenerate case from our statement. 

Proposition 2.5. Assume that the inequality (3), where Q C Ni, for some k E N,  
i E M,, is valid; and for every j E N there exists x E vert P such that xj  = 1. Then (3)  
is maximal i f  and only if  

(i) for every j E Q there exists x E vert P such that x j  = x k  = 1;  
(ii) for every j E # ... { k }  there exists x E vert P such that x, = 1 and x k  2 x h ,  

V h  E Q. 
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Proof. This is a specialization of the statement that a valid inequalityrx s ro for a 
0-1 polytope T C R" is maximal if and only if for every j E N there exists x E T 
such that xJ = 1 and r x  = ro. 0 

If a valid inequality is not maximal, then at least one of its coefficients can be 
increased without cutting off any x E P. In the case of an arbitrary polytope, this is 
all we know, and it is not true in general that more than one coefficient can be 
increased without invalidating the inequality. In the case of elementary inequalities 
for P, however, one can say more. 

Corollary 2.5.1. Assume that for every j E N there exists x E vert P such that 
xj = 1. Let (3) be a valid, but not maximal inequality, with Q C Nik for some k E N, 
i E M k ,  and let S1, S2 be the sets of those j E N for which conditions (i) and (ii), 
respectively, are violated. Then all x E P satisfy the inequality 

and the inequalities 

for every T 5 \ { k }  such that ahaJ # 0, Vh,  j E T. 

Proof. 
To prove the validity of (7), let x E vert P be such that XI, = 1. Then xi = 0, 

V j  E Sz n Ni \ {k} (hence V j  E Sz n T ) ,  since otherwise from the definition of Sz, 
x,, > XI, = 1 for some h E Q, which is impossible. Further, from (3), xi = 1 for some 
j E Q. Hence (7) holds for all x E P such that xk = 1. 

E 7'; and from 
the definition of S2,  xj = 1 for some j E Sz f l  T implies xk < xh for some h E 0, i.e., 
x h  = 1 for at least one h E Q. Hence (7) also holds for all x E P such that xk = 0. 0 

Clearly, if for some S ' C N  the nondegeneracy assumption of Proposition 2.5 
(and Corollary 2.5.1) is violated for all j E S', then the coefficient of each xi, j E S', 
can be made arbitrarily large, in addition to the changes in the coefficients of xi, 
j E S = S ,  U S2, justified by the Corollary. 

From the above Corollary, nonmaximal elementary inequalities can be 
strengthened, provided we know S. In the following sections we give several 
procedures for identifying subsets of S. 

Next we turn to  the question of when a maximal elementary inequality is a face of 
maximal dimension, i.e., a facet or an improper face of P. This question is of 
interest since P is the intersection of the halfspaces defining its facets and 
improper faces. The next proposition gives a sufficient condition for an elementary 
inequality to be a facet or an improper face of P. 

The validity of (6) follows from Proposition 2.3 and the definition of S , .  

Now let XI, = 0. From the definition of T, xj = 1 for at most one 
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Proposition 2.6. 
for some k E N, i E f ik .  Let N '  = N \ Q U {k}, and 

Suppose (3)  is a maximal (val id)  inequality for P, with Q C N,, 

P N . = P n { x E R " ) x ,  = O , V j E Q U { k } } .  

Then dimP 2 dimP,. + q, where q = 1 Q 1. 
If dimP = dimPN8+ 4, then ( 3 )  is an improper face of P. 
If dimP = dimP,. + q + 1, then (3)  is either a facet, or an improper face of P. 

Proof. Let d = dimP, d '  = dimPNs. Since (3) is maximal, for every j E Q there 
exists x' Evert P such that x :  = x i  = 1. Also, since Q C N,, xl, = 0, V h  E Q \ { j }  
for each of these q points x ' .  With each point x',  j = 1,. . ., q, we associate a row 
vector y' E R", obtained by permuting the components of x' so that x i  comes first, 
and the components indexed by Q come next. 

Further, let z E R"", j = 1,. . ., d ' +  1, be a maximal set of affinely independent 
vertices of PN,, and let yq" E R", j = 1,. . ., d ' +  1 be row vectors of the form 
y"' = (O,z' ) ,  where 0 has q components. Clearly, each yq+' is, modulo the 
permutation of components, a vertex of P. Then the matrix Y whose rows are the 
vectors y ' ,  i = 1, .. . , q  + d ' +  1, is of the form 

XI I x* 
x= [ ;+-] 

where X I  is the q x (q  + 1) matrix 

(tne blanks stand for zeroes), Z is the ( d ' +  1) x ( n  - q - 1) matrix whose rows are 
the vectors ti, j = 1,. . ., d ' +  1, 0 is the ( d ' +  1) x (q  + 1) zero matrix, and X ,  is a 
q x ( n  - q - 1) matrix of zeroes and ones. 

Since X and Z are of full row rank, so is Y ;  and since Y has q + d '  + 1 rows, it 
follows that P contains at least q + d ' +  1 affinely independent points; hence 
d 2 d '  + q. 

If d = d ' +  q, then the d ' +  q + 1 rows of Y define a maximum-cardinality set of 
affinely independent points of P; and since each of these points satisfies (3) with 
equality, the same is true of every other point of P. Hence in this case (3) is an 
improper face of P. 

+ 1, then there exists a point x ' E  P which, together with the 
d ' +  q + 1 points corresponding to the rows of Y, forms an affinely independent set. 
If x '  also satisfies ( 3 )  with equality, then (3) is an improper face of P; otherwise (3) is 
a facet of P. 

If d = d ' +  
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Example 2.2. 
inequalities 

In example 2.1, the inequalities (2) for k = 1 and i = 3,4, i.e., the 

XI  - x3 - X I 2  s 0, X I  - x3 - xq c 0 

are cutting planes, since each of them cuts off the fractional point 2 defined by 
XI = Xz = Xs = a, ffs = 1, Xj = 0 otherwise; but they are not maximal, since the 
conditions of Proposition 2.5 are violated for j = 9,12 in the case of the first 
inequality and j = 4 in the case of the second one. Therefore, x 1  - x3 S 0 and 
x I  - x 3  + x s  - x I 2  s 0 are both valid (Corollary 2.5.1). The inequality x 1  - x3 s 0 is 
maximal, since the assumption and conditions of Proposition 2.5 are satisfied. It is 
also a facet of P, since the dimensionality condition of Proposition 2.6 is satisfied 
and the point X defined by X, = XI4 = XIS = 1, Xj = 0 otherwise, does not lie on 
X I  - x3 = 0. 

On the other hand, if P’ is the set partitioning polytope obtained from P by 
removing the last column of A, then x1 - x 3  s 0 is an improper face of P’ since 
x E P’ implies x ,  - x 3  = 0. 

3. Strengthening procedures 

An inequality r r ‘x  s rro is called stronger than rrx G rro, if .rr: 3 rrj for all j ,  and 
r r ;  > T for at least one j .  

In this section we discuss two procedures for replacing a valid elementary 
inequality which is not maximal, with a stronger valid elementary inequality. The 
first procedure uses information from the other elementary inequalities in which xk  
has a positive coefficient; the second one uses information from the elementary 
inequalities in which x, has a positive coefficient for some j E Q. 

Proposition 3.1. 
the inequalities 

For some k E N, let the index sets Qi C Nik, i E Mk, be such that 

are satisfied by all x E P. For each j E Uhe,,& oh, define 

S.t . j  E dh 

and for i E Mk, let 

T, = { j  E Q, 1 Q G ) ~  Q~ for some /I E Mk}. 

Then the inequalities 
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are satisfied by all x E P. 

Proof. From the definition of the sets QU),  x E P with x j  = 1 implies 

for all j E Q,, i E GI,. Therefore, if j E T,, then x E P with x, = 1 implies 

for some h E f i e  ; which implies XI,  = 0, since (3‘) holds for z = h. 

satisfied by all x E P, then so is the system (8). 
Hence x E P and xe = 1 implies xi = 0, V j  E T,. Therefore, if the system (3’) is 

0 

Proposition 3.1 can be used to strengthen the inequalities (2) by replacing the sets 
N,, with Qi = Nik ., T,. It can then again be applied to  the strengthened inequalities, 
and so on, until no  further strengthening is possible on the basis of this proposition 
alone. 

Applying the proposition to an inequality of the system (3’) consists of identifying 
the set T .  This can be done by bit manipulation and the use of logical “and” and 
logical “or”. The number of operations required is bounded by 1 Qi I X lak I .  

Example 3.1. 
of Example 2.1, and let us use Theorem 3.1 to strengthen the inequality 

Consider again the set partitioning polytope defined by the matrix 

X I  - x3- x * 2 c  0 

associated with N31. For k = 1, a, = {3,4,5}, and N31 = (3,121, 
NS1 = {3,4,5,12}. Setting Qh = Nhl ,  h = 3,4,5, we have 

= {3,4} and 

Q(3) = {4,5,121, Q(l2) = {3,4,51, 

and we find that Q(12) 3 Q4. Hence T3 = {12}, and the above inequality can be 
replaced by 

x1- x3 5z 0. 

Since {3} is contained in each of N4] and NS1, the inequalities associated with 

A second application of Proposition 3.1 brings no  further improvement. 
For k = 2, a2 = {1,5}, N,, = {13,14}, Nsz = {5,13} and none of the two corre- 

For k = 5, a5 = {1,2,3,4}; Nls  = {1,6,8,9,14}, N 2 S  = {1,2,11,15}, N3s = {2,6,8}, 

these two sets can both be replaced by x 1  - x3 =s 0. 

sponding inequalities can be strengthened via Proposition 3.1. 

N4, = {2,8,9,11}. Using Proposition 3.1 to strengthen the inequality 
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associated with N,5,  we set Qh = Nh5, h = 1,2,3,4,  

Q(1) = {2,6,8,9,11,14,15}, Q(6) = {1,2,8,9,14), Q(8) = {1,2,6,9,11,14}, 

Q(9) = {1,2,6,8,11,14), Q(14) = {1,6,8,9), 

and we find that 

Q(1) II Q3, Q(9) 3 0 3 ,  

and hence TI = {1,9} and the inequality associated with N I 5  can be replaced b y  

xs - x(j- xs - x,4 s 0. 

When Proposition 3.1 is used to strengthen all rather than just one of the 
elementary inequalities in which a certain variable x k  has a positive coefficient, it is 
convenient to work with the set 

Qo= U Q, 
,€Mk 

and instead of forming the sets T, by looking at each j-E Q,, i E Mk, form directly 
the set 

T =  u T, 
i=G& 

= { j E  Qol Q(j)> Qh for some h € G k )  

by looking once at each j E Qo, and then use Qi \ T in place of Qi,  T, in (8). 
The number of operations required for applying Proposition 3.1 once to all 

elementary inequalities in which xk has a positive coefficient is then bounded by 

Next we discuss a second procedure for strengthening elementary inequalities. 
I a O I x l G k ( .  

Proposition 3.2. 
inequalities 

Let the index sets Qik C Nik, i E Gk., k E N, be such that the 

are satisfied by all x E P. 
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1 1  

2 1  

3 

4 

5 

Proof. Let k E N, i E M k ,  and 1 E u # k .  Then there exists h E 6% n Ml such that 
Qhk n Qbl = 0, and therefore adding the two elementary inequalities corresponding 
to Qhk and Qhf respectively yields 

1 1  

1 

1 1 1 1  

1 1 1  

1 1  1 1  

Since Qhk U Qhl C Nh, adding equation h of Ax = e to the kist inequality yields 

x k  f s 1. 
I E N h \ Q h k U Q h l  

But then xk = 1 implies x1 = 0 and therefore (3”) can be replaced by (9). 

If Proposition 3.2 is applied to several elementary inequalities, then repeated 
applications may yield additional improvements like in the case of Proposition 3.1. 

Applying Proposition 3.2 to an inequality (3”) consists of identifying the set Utk. 

Again, this can be done by bit manipulation and use of logical “and” and logical 
“or”. The number of operations required for each j E Q,k is bounded by n 
G, 1, hence the total number of operations is bounded by I Qa 1 X I Qk 1, like in the 
case of Proposition 3.1. 

0 

Example 3.2. Consider the set partitioning polytope defined by the matrix B 

1 2  3 4 5 6 7 8 9 10 

For k = 1, G, = {3,4,5,6,7}, and 

N ~ I  = {2,5,7}, N4i = {2,6,8}, NSI = {3,5,8}, 

N61 = {3,4,6}, N71 = {4,5,7}. 

An attempt to apply Proposition 3.1 fails to strengthen any of the inequalities 
associated with k = 1. On the other hand, Proposition 3.2 can be fruitfully applied 
to replace both N,, and N4, with smaller sets, after applying Proposition 3.1 to 
k = 2. We have A?f, = {1,2,5,6,7}, A?, f l  M2 = {5,6,7} and N5z = (3, lo}, Nh2 = {3,4}, 
N72 = (4). Applying Proposition 3.1 we find that Q(3) 3 N72; thus T5 = T6 = {3}, and 
the sets N5*, N6*, can be replaced by Ns2\ Ts = (10) and N6*\ Th = (4) respec- 
tively. 

Now writing Q,, = N, ,  and Q,Z = N,, \ T, for i = 5,6,7, we can apply Proposition 
3.2 since 
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Q ~ ,  n Q~~ = 0 

and thus U,, = U,, = (2). Hence N3, and N4, can be replaced by N31\ U 3 ,  = {5,7} 
and N4, \ U,, = {6,8} respectively. 

4. Nonhomogeneous equivalents of the elementary inequalities and a graph- 
theoretical interpretation 

In this section we introduce two classes of nonhomogeneous canonical ine- 
qualities, which are equivalent on LP to the elementary inequalities (3). One of 
these two classes of inequalities lends itself to an interesting graph-theoretical 
interpretation. 

Proposition 4.1. 
any one of the following inequalities i f  and only i f  it satisfies all of them: 

For some k E N and i E f i k ,  let C N k .  Then x E LP satisfies 

Proof. Since Q C Nik and ke Ni, (10) can be obtained by adding equation i of 
Ax = e to (3). Further, j E Nh implies a,ak# 0, and j E Q implies aiak = 0; 
therefore Q n Nh = 0.  From this and the fact that k E Nh, each inequality (11) can 
be obtained by multiplying (3) with - 1 and then adding to it equation h of Ax = e. 
Since any x E LP satisfies Ax = e, it follows that any x E LP that satisfies (3), also 
satisfies (10) and each of the inequalities (11). 

Further, (3) can be obtained from (lo), as well as from each of the inequalities 
( l l ) ,  by the reverse of the above operations, therefore any x E LP which satisfies 
(lo), or any of the inequalities ( l l ) ,  also satisfies (3); and, in view of the preceding 
paragraph, it also satisfies all the other inequalities of (lo), (11). 0 

Remark 4.1. Proposition 4.1 remains true if the condition ‘‘x E LP” is replaced 
by “x such that Ax = e ” .  

Note however, that the set packing inequality (10) and the set covering 
inequalities (11) are equivalent to (3) only with respect to points x E R” satisfying 
Ax = e. 

\ {k} # 0, V h  E k f k ,  and 
note that: 

(i) x defined by XI, = 1, x, = 0, j E N ,  { k } ,  satisfies (10) but violates (3) and (11); 

To illustrate this, we assume Q# 0, Ni \ Q #  0, Nh f l  
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(ii) x defined by x, = 1, V j  EN, satisfies (3) and ( l l ) ,  but violates (10); 
(iii) x = 0 satisfies (3) and (lo), but violates (11); 
(iv) x defined by x, = 1, V j  E N ( i ) ,  xi = 0,  V j  E N,, satisfies (10) and ( l l ) ,  but 

Though the inequalities (10) are of the set packing type, they are not in general 
associated with P. The next proposition states 

violates (3). 

valid for the set packing polytope 
when exactly they are not. 

Proposition 4.2. The inequality (10) cuts of some x E P \ P i f  and only i f  Q # Ntk. 

Proof. Necessity. If Q = Nak, then aka, # 0, V j  E N, \ Q. Also, aha, # 0, V h ,  j E 

N, \ Q. Hence the columns of A indexed by {k} U (N ,  \ Q) are pairwise nonor- 
thogonal, and therefore (10) is satisfied by all x E P. 

Sufficiency. If Q# N,*, then since aka, = 0, V j  E N,, ., Q, any point x such that 
XI, = xh = 1 for some h E N,k \ Q, x, = 0 otherwise, belongs to P, but violates 
(10). 

Example 4.1. The (strengthened) elementary inequality 

x1- x3 0 

derived in Example 3.1 is equivalent (with respect to points x E LP) to: 

X I  + X2-k X6-k x7+ xS+ x12s 1, for i = 3, 

X I +  X2-k x4+ xS+ x9+  XI1 1, for i = 4, 

x I + x 4 + x 5 + x 7 + x 1 0 + x 1 2 + x 1 3 ~ 1 ,  for i =5,  

X3 + x6 + X7 -k Xs f Xs + Xt3 + Xi4 2 1, for h = 1, 

XZ + x3 + XI0 + XI1 + x13 3 1, for h = 2 .  

The first one of the above set packing inequalities cuts off the point x E P \ P 
defined by x1 = x12 = 1, x, = 0, V j #  1,12; the second one cuts off x E P \ P defined 
by x1 = x4 = 1, x, = 0, j #  1,4; while the third set packing inequality cuts off both of 
the above points. Note that this third inequality strictly dominates the facet of r' 
defined by 

X I  + X I +  XlO+ XI3 == 1. 

From the practical standpoint of an implicit enumeration algorithm, every 
solution to the set packing problem defines a partial solution to the associated set 
partitioning problem. In this context the above result has to do with cutting off 
partial solutions to the set partitioning problem and has the following implication. 
We say that a set Q C N,, is minimal if n o  element of Q can be removed without 
invalidating the (valid) inequality (3). Also, a partial solution is said to be cut off if 
its zero completion is cut off. 
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Corollary 4.2.1. Let k E N .  If the sets Qi C Nk, i E M k  are minimal, then the 
inequalities (10) cut off all partial solutions of the form x k  = x h  = 1 with akah = 0, 
which have no feasible completion. 

Proof. Suppose the sets Q,, i E G k ,  are minimal, and let .Fk = t = 1, with &ah = 0, 
be a partial solution which has no feasible completion. Then x E vert P and Xk = 1 
implies x h  = 0,  and there exists i ,  E 6 i k  such that h E Ngek. Let (lo),. be the 
inequality (10) for i = i,. From Proposition 2.3, h E Nz.\  Q,.; for otherwise (lo),. 
remains valid when Qg. is replaced by Q,. { h } ,  contrary to the minimality of Q#.. 
But then the zero completion of . f k  = f h  = 1, (i.e., the point obtained by setting 
x =0 ,  j #  k , h ) ,  violates (lo),.. 0 

Corollary 4.2.1 suggests that the inequalities (10) can be used to enhance the 
orthogonality tests in implicit enumeration (see [9, 14, 191) or in an all-binary 
column-generating algorithm [3]. The latter possibility is currently being explored. 

The set packing inequalities (10) have a well-known graph-theoretical interpreta- 
tion in terms of the intersection graph of the matrix A. We first discuss this 
interpretation, then use it to derive a new interpretation on a different graph which 
incorporates more properties of the set partitioning polytope P. For background 
material, see [15, 16, 17, 211. 

The intersection graph GA of the 0-1 matrix A has a node j for each column a,, 
and an edge ( i ,  j )  for each pair of columns a,, a, such that a,a, # 0. An inequality of 
the form 

c X j S l  
j e V  

is valid for the set packing polytope defined on A, i.e., is satisfied by all x E P, if and 
only if V is the node set of a complete subgraph of GA ; and (12) is a facet of if and 
only if V is the node set of a clique, i.e., a maximal complete subgraph, of GA [8, 
171. Evidently, all those inequalities (10) such that {k} U (N, \ Q) is the node set of a 
complete subgraph of GA, are satisfied by all x E P; and from Proposition 4.2, these 
inequalities are precisely those for which Q = Ngk. The other inequalities (lo), for 
which Q #  N,, have n o  interpretation on GA. 

This suggests the following interpretation on a supergraph of GA. We define 
G(A) ,  the strong intersection graph of the matrix A, to  have a node for each j E N, 
and an edge for each pair i ,  j E N such that there exists n o  x E {0,1}" satisfying 
Ax = e, with x, = x, = 1. Clearly, GA is a subgraph of G(A) ,  since GA has an edge 
for each pair i ,  j E N such that there exists n o  x E {0,1}" satisfying Ax e, with 

An equivalent definition of G ( A )  is as follows. We shall say that an independent 
node set S C N of GA defines a feasible partition of N, if N can be partitioned into 
subsets N,, . . ., N,, such that each N,, i = 1,. . ., p ,  induces a complete subgraph on 
G, and contains exactly one node of S.  In these terms, ( i ,  j )  is an edge of G ( A )  if 

x, = x, = 1.  
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A =  

and only if there exists no independent node set S of GA containing both i and j ,  
which defines a feasible partition of N. 

The inequalities (10) can then be interpreted on the strong intersection graph 
G ( A )  as follows. 

r l  0 0 1 0  0 1 0  0 

1 0 0 0 1 0 1 0 0  

0 1 0 0 0 1 1 0 0  

0 1 0  0 0 1 0  1 0  

0 0 1 0 0 1 0 0 1  

0 0 1 0 1 0 0 0 1  

- 0  0 1 1  0 0 0 1 0  

Proposition 4.3. (i) The inequality 

is satisfied by all x E P if and only if V is the node set of a complete subgraph G‘ of 

(ii) Assume that for each j E V there exists x E P such that x, = 1, and that (12) is 
satisfied by all x E P. Then the inequality (12) is maximal if and only if V is the 
node set of a clique of G ( A ) .  

G ( A ) .  



Some valid inequalities 29 

Fig. 1 

If A ' =  (a',,) is the clique-node incidence matrix of G(A)  (with a:,= 1 if clique i 
contains node j ,  a:, = 0 otherwise), then the system A 'x e', where e' = (1,. . ., l), 
is satisfied by all x E P. Furthermore, each inequality of A'x < e' is maximal. If p' 
denotes the set packing polytope defined on  A', i.e., 

F' = conv {x E R" 1 A'x S e ' ,  x = 0 or 1, j E N } ,  

we have the following obvious consequence of Proposition 4.3: 

Corollary 4.3.1. 
inequalities for P. 

The facets of P' (which subsume or dominate those of p) are valid 

5. Composite inequalities of type 1 

In this section we give two composition rules which can be used to combine 
inequalities in a certain class (which contains as a subclass the elementary 
inequalities of Sections 2-3) into a new inequality belonging to the same class and 
stronger than the sum of the inequalities from which it was obtained. 

The class of inequalities to be considered, which we call composite of type 1, is 
that of all valid homogeneous inequalities with a single positive coefficient when 
stated in the form '' c O", and with zero coefficient in all columns j that are not 
orthogonal to the column k with the positive coefficient. In other words, we are 
referring to inequalities of the form 

x,, -c x, s o  (13) 
f E S  

where aka, = 0, V j  E S.  The subclass of elementary inequalities is distinguished 
by the additional property that s C Nk for some i E ak. 

The first composition rule. given in the next theorem, generates a new inequality 
(13) from a pair of inequalities of type (13), such that the positive coefficient of the 
first inequality corresponds to a zero coefficient of the second one, while the 
positive coefficient of the second inequality corresponds to a negative coefficient of 
the first one. 



30 E.  Balm 

For k E N, we will denote by L ( k )  the index set of those columns orthogonal to 
ak, and by L ( k )  its complement; i.e. 

L ( k )  = { j  E N I aiak = 0}, L ( k )  = N\ L ( k ) .  

Proposition 5.1. 
and the inequalities 

For k ,  h E N, let S, C L(r) ,  r = k ,  h, be such that h E s k ,  k E  s h ,  

are satisfied by all x E P. Then all x E P satisfy the inequality 

where 

s =(Sk\{h})U[Sh n L ( k ) ] .  

Furthermore, (15) is stronger than the sum of the two inequalities (14) i f  and only i f  

s h  n [ s k  U L ( k ) ]  # 0 .  

Proof. Adding the two inequalities (14) yields 

where 
s' = [ ( S k  \ { h } )  u s h ]  \ s k  n s h .  

Since xk = 1 implies xi = 0, V j  E L ( k ) ,  S'  can be replaced in (16) by S' n L ( k ) .  
Also, since xk s 1, all coefficients 2 in (16) can be replaced by 1 without cutting off 
any x E P. Thus (16) can be replaced by 

where 
s"= (s, n s h )  u [sin ~ ( k ) ]  

and from the definition of S and S', we have S"= S. Thus (16') is the same as 
(16). 0 

The composition rule given in Proposition 5.1 can be applied sequentially to any 
number of inequalities of the form (13), provided that at each step of this sequential 
process one can find a pair k ,  h of inequalities satisfying the requirement of the 
proposition. 

Example 5.1. 
N I S ,  NZ8 and Nz6 respectively, after strengthening via Proposition 3.1, are 

Consider again Example 2.1. The inequalities (3) corresponding to 
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Using Proposition 5.1 to  combine the first two inequalities, we have k = 5 ,  h = 8, 
Ss = {6,8,14}, Ss = {10,15}, S = ({6,8,14} \ (8)) U (15) [since {lo} @ L(5)] ,  and the 
resulting composite inequality is 

xs - xs- X14- XIS c 0. 

Since {lo}€ Ss n L(5)# 0, this inequality is stronger than the sum of the 
inequalities from which it was obtained. Combining the new inequality with the last 
one of the above three inequalities, we have (the new) k = 5, h = 6, Ss = {6,14,15}, 
Ss= {11,15}, S = {14,15, ll}, and the composite inequality is 

xs - XI1 - XI4 - XIS =s 0. 

Since (15) E Ss n Ss # 0, this inequality is again stronger than the sum of the 
inequalities from which it was obtained. 

Next we give a second composition rule, which can be used to obtain all valid 
inequalities (13) for a certain index k E N  from the set of elementary inequalities 
(3) corresponding to the same index k .  

Proposition 5.2. 
inequalities 

For some k E N, let the sefs Qi C Nik, i E 6 f k ,  be such that the 

are satisfied by all x E P, and let 

Q o =  U Q,. 
1 E .Wk 

Then the inequality 

where S c N \ { k } ,  is satisfied by all x E P, i f  and only if 

Proof. (i) Necessity. If S G N ,  { k }  does not satisfy (IS), then there exists some 
Q C Qo \ S such that X defined by XI = 1, j E { k }  U Q, XI = 0 otherwise, belongs to 
P. But X violates (13). 

(ii) Sufficiency. We first show that for all x E vert P, 
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X , = o ,  V j E N \ Q o U { k } .  (19) 

Since A has no zero column, h E L ( k )  implies that h E Nik for some i E g k .  

Also, Nik C L ( k ) ,  V i  E f i k .  Therefore 

From Proposition 2.3 and the validity of (3’), for all x Evert  P, XI, = 1 implies 
X ,  = 0, V] E Nik \ Q,, Vi E M k .  But 

u (N,k\Q,)> u Ntk\ u Q, 
,€M* Z€Mk t € M k  

= L ( k ) \  Qo, 

where the last equality follows from (20) and (17). Hence x k  = 1 implies x, = 0,  
V j  E L ( k ) \  Qo. Also, obviously x k  = 1 implies x, = 0, V] E N\ L ( k ) U { k } .  But 

[ L ( k ) \ Q o ] U [ N \ L ( k ) U { k } ] = N \ Q o U { k }  

which proves (19). 

(19), X, = 0, V j  E N ,  Qo U { k } .  Hence 
Now suppose X E vert P violates (13). Then f k  = 1 and 2, = 0, V j  E s. Also, from 

which contradicts the condition (18) on S. 0 

Evidently, a necessary condition for a valid inequality (13) to be maximal, is that 
the set S is minimal, i.e., (18) ceases to hold if S is replaced by any of its proper 
subsets. 

Example 5.2. 0 was obtained 
via the composition rule of Proposition 5.1. To obtain the same inequality via the 
rule of Proposition 5.2, let k = 5. Then M5 = {1,2,3,4}, Nls = {1,6,8,9,14}, N2s = 

{l, 2, 11,15}, N3s = {2,6, S}, and N45 = {2,8,9, ll}. Applying Proposition 5.2 with 
Q, = N,s,  i = 1,2,3,4,  we find that 

In Example 5.1, the inequality x s  - x , ~  - x I 4  - x l s  

Qo={1,2,6,8,9,11,14,15}, 

and condition (18) is satisfied, for instance, for S = (11, 14, 15). Hence the inequality 

x s - x I 1 - x 1 4 - x 1 5 ~ 0  

is satisfied by all x E P. 
In Proposition 5.2, the condition on S is stated in terms of a set Qo which is the  

union of the sets Q,, i E Mk associated with the elementary inequalities (3’). The 
sets Q,, and hence Qo, are not uniquely defined, in that any Qi C Nik, i E Mk, for 
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which the inequalities (3') are valid, can be used; and the smaller the set Qo, the 
easier it is to generate all subsets Q C Qo which satisfy (19) and hence yield valid 
cuts. However, from a different perspective, setting Qi = N,, for all i E a k  gives a 
particularly simple expression for the family of valid cuts of the form (13). 

Corollary 5.2.1. The inequality 

X t  - c x j  s o  
j € S  

where S c N \ { k } ,  is  satisfied by all x E P i f  and only i f  

Proof. 
Corollary follows. 

In Proposition 5.2, set Qi = N i k ,  V i  E 6 i k .  Then Qo= L ( k ) ,  and the 

Since the composite inequalities (13) do not have the property of elementary 
inequalities that S C N, for some i E a k ,  there need not exist for each inequality 
(13) a set packing inequality that is equivalent to it on LP. On the other hand, there 
exist several inequalities of the more general form TX S 7ro, 7rj 2 0 integer, j E N, 
T,, > 0 integer, which are equivalent to (13) on LP, and can be obtained by adding to 
(13) r0 equations of Ax = e. Also, whenever S C L ( k ) ,  there exist several set 
covering inequalities which are equivalent to (13) on LP, and which can be obtained 
by subtracting from (13) any equation of Ax = e in which x k  has a positive 
coefficient, and multiplying by - 1 the resulting inequality. 

Note also that the two strengthening procedures of Section 3 are in general not 
applicable to the composite inequalities (13), since both procedures are based on  
proofs which use the fact that for any elementary inequality Q, C N i k ,  for some 
k E N. 

Composite inequalities if type 1 can conveniently be used, along with the 
elementary inequalities, in a primal all-integer cutting plane algorithm for solving 
set partitioning problems. As we will show below, given any basic feasible integer 
solution, and any nonbasic variable x k  which cannot be pivoted into the basis with a 
value of 1 without losing feasibility, it is always possible to generate either an 
elementary or a composite inequality which can be used as a primal all-integer 
cutting plane to pivot x k  into the basis with a value of 0. These cuts are usually 
considerably stronger than the corresponding all-integer Gomory cuts [ 111 used by 
Young [22]  and Glover [lo] in their primal cutting plane algorithms, since they are 
derived from the special structure of the set partitioning problem. No direct 
comparison is available at this time with the fractional cuts proposed in [13] (see 
also [14]) which also use the set partitioning structure, but the cuts discussed here 
are obtainable directly from the matrix A, whereas those of [13] require at least 
partial knowledge of a fractional simplex tableau. 
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Finally, we note that the number of elementary inequalities is bounded by 
x k e N I G ( k ) l ,  while the number of composite inequalities of type 1 is bounded by 
CkeN2'L(k)'. The latter is of course a very weak bound for the number of 
nonredundant inequalities of type (13), since the number of minimal sets S C Qo 
satisfying (18) is much less than 2IL(*)'. 

To state the specific property mentioned above, let i be an integer solution to the 
system Ax = e, x 3 0, with associated basis B,  let I and J be the basic and nonbasic 
index sets respectively, and let Zj = B-'aj,  G o =  B-'e.  Suppose now that for some 
k E J ,  

i.e., X k  cannot be pivoted into the basis with value 1 without making the solution 
infeasible (i.e., negative in some component). 

Further, for i E G k ,  let Qi C & be such that the inequalities 

are valid. If there exists i E Mk such that Q, C J, then the corresponding inequality 
(3') can be appended to the simplex tableau and XI, can be pivoted into the basis in 
the row corresponding to (3') with a value of 0. Furthermore, if the reduced cost 
associate with column k was negative before the pivot, it will be positive after the 
pivot. Note also that if without the inequality (3'), x k  could have been pivoted into 
the basis with a fractional value, then (3') cuts off the fractional vertex of LP 
obtained in this way. 

When Q,G J, V i  E i i i k ,  i.e., when at least one of the variables x,, j E Q,, is basic 
for each of the inequalities (3'), this cannot be done in general. However, in that 
case one can use Proposition 5.2 to generate another primal all-integer cut as 
follows. 

Corollary 5.2.2. Given an integer solution to the system Ax = e, x 2 0 ,  and an 
associated basis B ,  let I and J be the index sets for the basic and nonbasic variables 
respectively, and let 5, = B-'aJ, j E J, Zo = B-'e. Suppose that for some k E J, 

and the inequalities (3') are valid. Then 

where Qo is defined by (17), is a valid inequality. 
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Proof. In view of (21), we have 
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C a,# e - ak, V Q  G I .  
j C Q  

On the other hand, denoting S = Qo r l  J = Qo \ I, condition (18) of Proposition 
5.2 becomes for this case 

C a,# e - a k ,  
j C Q  

Hence the condition of Proposition 5.2 is satisfied and (22) is a valid 
inequality. 0 

Thus, when no  inequality (3') is available as a primal cut, the inequality (22) can 
serve the same purpose. A pivot in the row corresponding to  (22) (and column k) 
has the same consequences discussed above for a pivot in the row corresponding to 
an inequality (3'). 

Example 5.3. 
Example 2.1 and whose cost vector is 

Consider again the example of [ 5 ] ,  whose constraint set was given in 

c =(5,4,3,2,2,2,3,1,2,2,1,1,1,0,0). 

Performing all-integer primal simplex pivots produces Table 1, in which n o  
variable with a negative reduced cost can be pivoted into the basis with a value of 1, 
without making the solution infeasible. 

1 - x ,  -x6 -x ,  -x3  -x9  -x,3 - X I ,  -x2 - X I 4  - X I S  

- 3  3 1 0 2 0 - 3  1 5 - 2  0 

1 1 0 0 0 0 0 1 1 0 1 

0 - 1  0 0 1 - 1  -1 0 1 - 1  ,o 
1 1 1 L 0 1 1 0 0 1 0 

0 -1  -1  -1  1 0 -1  1 1 -1  0 

0 1 1 2 -1  1 3 - 2  - 3  2 - 1  

Table 1 .  

To pivot xi3 into the basis, one could generate from the last row the primal 
all-integer Gomory cut 

1 1 3 -  XZ- x3- XI1 - XI5 0. 

However, the elementary inequality 

x l 3 - x z ~ o  

is considerably stronger. Appending it to the tableau and pivoting x13 into the basis 
produces Table 2, where s1 stands for the slack variable associated with the cut. 
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1 - x ,  - X f i  - x ,  - x ,  - x s  -s, - X I ,  - x 2  - x , 4  - X I S  

- 3  3 - 2  0 2 0 3 1 5 - 2  0 

1 1 0 0 0 0 0 1 1 0 1 

0 - 1  - 1  0 1 -1  1 0 1 - 1  0 
1 1 2 1 0 1 - 1  0 0 1 0 

0 -1  - 2  - 1  1 0 1 1 1 -1  0 

0 1 4 2 - 1  1 - 3  - 2  - 3  2 -1  
0 0 -1  0 0 0 1 0 0 0 0 

Table 2 

To pivot x6 into the basis, we generate the sets Ni6,  i = 2,4,5, and find that each 
of them contains at least one basic index: NZ6 = {10,11,15}, Nd6= (4, ll}, N56 = 

(4, 5 ,  lo}. Hence we form the set Qo fl J = (4, 5 ,  10, 11, 15}, and generate a 
composite inequality of type 1, with S = Q n J = (11, 15): 

x 6 -  X I 1  - X I S  0. 

Note that the corresponding Gomory cut is 

x6-x2-x3-x11-x15-s1 s o .  
Note also that the inequality X 6 - x l 1 - ~ ~ 5 ~ 0  happens to be an elementary 

inequality, since {11,15} C{10,11,15}, which can be obtained by applying the 
strengthening procedure of Proposition 3.1 to  the elementary inequality x6 - x l o  - 
X I ,  - X I S  s 0 .  

In the next section we discuss additional options for generating primal all-integer 
cuts which are often stronger than or otherwise preferable to, the inequalities used 
here. 

6. Composite inequalities of type 2 

The two composition rules of Section 5 combine homogeneous canonical 
inequalities with a single positive coefficient (when stated in the form G ) ,  and 
satisfying certain conditions, into a new inequality of the same form. In this section 
we give a composition rule which combines homogeneous canonical inequalities 
with (possibly) several positive coefficients into a new inequality of the same form. 

Proposition 6.1. 
V k ,  h E K ,  where 

Let Ki, i E T, be pairwise disjoint subsets of N ,  such that akah # 0, 

K =  U K , ;  
i E T  

and let S ( K i )  C N, i E T, be such that the inequalities 
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are satisfied by all x E P, and K n S ( K )  = B, where 

is 

Then the inequality 
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satisfied by all x E P. 
Furthermore, (24) is stronger than the sum of the inequalities (23) if and only if the 

sets S (Ki ) ,  i E T, are not all pairwise disjoint. 

Proof. Any x Ever t  P which violates (24) is of the form fk = 1 for some k E K, 
2, = 0 ,  V j  E (K\ {k}) U S ( K ) ,  Xi arbitrary otherwise; but then 2 violates the i th 
inequality (23), i being the index for which k E Ki. Hence (24) is satisfied by all 
x E P .  

Adding the inequalities (23) yields 

where Pj is the number of sets S ( K i )  containing j .  Clearly, (24) is stronger than (25) 
if and only if at least one j E S ( K )  is contained in more than one set S(Ki ) ,  i.e., if 
and only if the sets S ( K i )  are not all pairwise disjoint. 0 

Inequalities of the form (24) [or (23)] will be called composite of type 2. They 
subsume, as special cases, all the earlier inequalities discussed in this paper. 

A composite inequality of type 2 always has several nonhomogeneous equiva- 
lents (on LP) of the form T X  s no, rj 3 0 integer, j E N, T,, > 0 integer, which can 
be obtained by adding r0 equalities of Ax = e to (24). On the other hand, whenever 
K C N, for some i E M, subtracting equation i of A x  = e from (24) and multiplying 
by - 1 the resulting inequality produces a set covering inequality equivalent to  (24) 
on LP. 

Since the positive coefficients of a composite inequality of type 2 are all equal to 
1, and since they are computationally cheap, these inequalities can conveniently be 
used as primal all-integer cutting planes, along with (or instead of) and in the same 
way as, the elementary inequalities and the composite inequalities of type 1. 

Example 6.1. 
have produced Table 1, we generated the elementary inequality 

In Example 5.2, after a sequence of primal integer pivots which 

x , , - x z s 0  

to be used as a primal all-integer cut. Pivoting in the cut-row then produced Table 
2. However, the above inequality can be combined on the basis of Theorem 6.1 with 
two other valid elementary inequalities, 
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xu 

X I 0  

XI2 

X8 

x4 

x 3  

x13 

E. Balas 

- 3  3 4 0 2 0 3 - 2  2 1 - 3  

1 1 0 0 0 0 0 1 1 0 1 

0 1 - 1  1 -1  0 0 -1 0 - 1  1 
1 1 0 1 0 1 -1  1 1 0 1 

0 -1  0 -1  1 0 1 0 0 0 1 

0 1 - 2  2 -1  1 - 3  1 0 - 1  2 
0 0 1 0 0 0 1 - 1  - 1  1 - 1  

x6- XI1 - XIS c 0 
and 

XI4 - xz - XI1 - XIS c 0, 

into the composite inequality of type 2 

0, X6f  x n +  X14- Xz- XI1 - XI5 

since the vectors as, a13, aI4 are pairwise nonorthogonal and {6,13,14}n 
{2,11,15} = 0. 

This composite inequality has a stronger effect than the inequality xI3 - xz s 0, in 
that it leads to optimality without additional cuts. Indeed, adding the composite cut 
to Table 1 and pivoting X I 3  into the basis produces Table 3: 

Proposition 6.2. Let K C N be such that aiaj # 0, Vi,  j E K, and let 

L ( K )  = { j  E N, K I ajak = o for some k E K } .  

Then the inequality 

c xj - c xj c 0, 
j E K  j € S  

where S C N \ K,  is satisfied by all x E P if and only i f  

2 aj# e - ak, V k  E K, V Q  C L ( K ) \  S.  
j E Q  
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Proof. Necessity. Suppose (26) is violated for some k E K and Q C L(K)\ S. 
Then there exists X E P such that ?k = 1 and f j  = 0,  V j  E S, which implies that (25) 
is not valid. 

Sufficiency. Suppose i E vert P violates (25). Then f k  = 1 for some k E K and 
2, = 0, V j  E S. Further, X, = 0,  V j  E N ,  L ( K )  U {k}. Hence 

A? = ak + 2 ajfj = e 
j€L(K)\S 

and thus X violates (26). 

Clearly, a necessary condition for the inequality (25) to be maximal, is that K be 
maximal and S be minimal (in the obvious sense). 

Proposition 6.2 can be used to give a simple procedure for generating yet another 
primal all-integer cut, whenever none of several nonbasic variables can be pivoted 
into the basis (associated with some feasible integer solution) with a value of 1 
without losing feasibility. Furthermore, generating this cut does not require 
knowledge of the sets Q, or Nik. 

Corollary 6.2.1. Given an integer solution to the system A x  = e, x 3 0 ,  and an 
associated basis B, let I and J be the index sets for the basic and nonbasic variables 
respectively, and let 5, = B-'aj, j E J, Go = B-le. Suppose that for some h E M and 
K C Nh f l  J, we have 

min { 2 I aik > o }  < 1 , V k  € K. 
i € I  

Then 

is a valid inequality. 

Proof. In view of (27), 

C a,# e -a t ,  
j€Q 

we have 

Vk E K,  VQ I f l  L ( K )  = L ( K )  \ J fl L ( K ) .  (26') 

Setting S = J f l  L ( K )  and applying Proposition 6.2 produces an inequality which 
dominates (28), since J r l  L ( K )  C J fl N ,  N h .  0 

Example 6.2. In Example 5.3, consider again Table 1. Choose h E M such that Nh 
contains as many as possible of those j E J with a negative reduced cost; i.e., let 
h = 1. Then N ,  n J = {1,6,7,9,13,14}, and none of the variables x k ,  k E N1 f l  J, can 
be pivoted into the basis with a value of 1, since each of the columns indexed by 
N ,  n J  has a positive coefficient in a degenerate row (in the row of xs). Thus 
K = N ,  n J is a legitimate choice, and the corresponding inequality (28) is 

XI + X6-k x7+ X 9 - k  X I 3  + x14- x2- x3- XI1 - XI5  0. (28') 
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x,, 

X I 0  

x,2 

X" 

x4 

Xr 

XI3  

- 3 6 4 3 - 1  3 3 -2 2 1 - 3  

1 1 0 0 0 0 0 1 1 0 1 

0 0 1 1 0 0 1 - 1  0 0 - 1  
1 0 0 0 1 0 - 1  1 1 0 1 
0 0 0 0 0 1 1 0 0 0 - 1  

0 -2 -2 - 1  2 -2 - 3  1 0 - 1  2 

0 1 1 1 -1  1 1 - 1  - 1  1 -1  

7. A hybrid primal cutting plane/implicit enumeration algorithm 

In Section 1 we defined an inequality to be valid if it is satisfied by all x E P. 
However, in the context of solving set partitioning problems in the sense of finding 
an optimal solution (rather than all such solutions), it is useful to consider 
inequalities which are satisfied by all x E vert P better than some given X Evert  P. 
The next theorem gives necessary and sufficient conditions for an inequality of the 
form (25) to be valid in this latter sense. 

Proposition 7.1. Let X E vert P and let 

P+(x) = {x E vert P 1 cx < CX) 

Further, let K C N be such that 

c x , s L  
I E K  

L ( K )  = { j  E N, K 1 a,ar = 0 for some k E K } .  

Vx E vert P, 

and let 

Then the inequality 
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c xj - c XJ 0, 
j E K  j € S  

where S C N ,  K, is satisfied by all x E P'(X) if and only i f  there exists no x E P+(2) 
such that x k  = 1 for some k E K and 

Proof. 
and (30) holds for x = f. Then, denoting 

Necessity. Suppose there exists f E P'(2) such that f k  = 1 for some k E K, 

W = { k }  U{L(K)\ S } ,  

we have 

aji j  = e 
j € W  

and from f E P, 2, = 0, V j  E N\ W. Hence f k  = 1 and f, = 0, V j  E S, i.e. f violates 

Sufficiency. Suppose f E P'(X) violates (29). Then f k  = 1 for some, k E K and 
f, = 0, V j  E S. Further, from the definition of L ( K ) ,  f, = 0, V j  E N\ L ( K )  U {k}. 
Hence 

(29). 

Af = ak + a$, = e, 
IEL(K) \S  

and thus (30) holds for 2. 0 

Again, a necessary condition for the inequality (29) to be maximal, is that K be 
maximal and S be minimal (in the obvious sense). 

Proposition 7.1 can be used to generate a family of cutting planes which, in 
combination with implicit enumeration on a sequence of subproblems, yields a 
finitely converging primal algorithm for set partitioning. 

Let X be a basic feasible integer solution to the linear programming relaxation of 
the set partitioning problem, possibly amended with some cuts of the type to be 
described below, and let 

x, = 2," + c a,, ( -  t,), i E z u (0). 

J -  = { j  E J 1 a", < O } ,  

I E J  

Denote 

and assume that 0# J -  
negative reduced cost. Assume also that 

N and I C N, i.e. no slack variable is basic or has a 



42 E. Balas 

i.e., pivoting into the basis any single nonbasic variable with a negative reduced cost 
would make the solution fractional (if = 0). 

Let i ,  E I be such that J -  r l  N , .  # 0, where, as before, N r .  = { j  E N 1 a, ,  = l}, and 
let j ,  E J -  rl N g . .  Define 

> 0) or leave it unchanged (if 

f, = min(0, do, - doJJ,  j E J -  rl N z + ,  

gJ = min (0, do,), j E J rl N\ N, . ,  

h, = min (0, zioJ + do,.}, j E J n N \ Nt*, 

and let J n N\ N,. = G(l), . . ., j ( r ) }  be ordered so that 

hj(k) h j ( k + l ) ,  k = 1, . . ., r - 1. (32) 

Finally, define gic0) = 0, and let p E (0) U (1,. . ., r }  be any integer such that 

Such p always exists, since (33) holds for p = r. The left hand side of (33) is the 
sum of negative reduced costs after a pivot in column j *  and the row provided by 
the cut (37) below. 

Define 

Q ( P )  = (I \  Ni.) U {j(l), . . .) j ( p ) } .  (34) 

If there exists k E J -  rl Ni. and y E (0, 1}4, where q = 1 Q(p)J, satisfying 

C ajyi = e - a k,  
i e Q ( p )  

(35) 

then f E R" such that fi  = yJ,  j E Q ( p ) ,  fi  = 0,  j E N\ Q ( p ) ,  is obviously a feasible 
integer solution better than 2. 

On the other hand, if this is not the case, then from Proposition 7.1 we have the 
following. 

Corollary 7.1.1. 
(36), then the inequality 

If there exists no k E J -  rl N # .  and y E (0,1)9 satisfying (35) and 

l ( 1 )  

C t,- 2 t J S 0  (37) 
J E J - n N , .  I =,(&'+I) 

is satisfied by all x E P such that cx < c f ;  and pivoting in row (37) and column j ,  
produces a simple table with nonbasic index set j and reduced costs Cia, such that, 
denoting j -  = { j  E j 1 6, < 0},  
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(38) 

and doj  3 0, V j  E J ,  N, while the solution .f remains unchanged. 

Proof. 
denoting 

If there exists no  k E J -  f l  N , .  and y E {0,1}¶ satisfying (35) and (36), then, 

K = J -  fl Ni,and S = { j ( p  + l ) ,  . . ., j ( r ) } ,  (39) 

there exists no x E P'(.f) such that XI,  = 1 for some k E K and 

ajxj = e - ak. (40) 
j€L(K)\S 

To see this, note that 

Now assume that there exists x^ E P+(f)  satisfying (40) for some k E K. Then in 
view of (41), 9 E (0,1)4 defined by 9, = fi, i E L ( K )  \ S, j i  = 0 otherwise, satisfies 
( 3 9 ,  contrary to our assumption. 

Thus, applying Proposition 7.1 with K and S as defined in (39), we find that the 
inequality (37) is satisfied by all x E P'(2). 

Further, pivoting in the row defined by (39) and column j *  produces a simplex 
tableau with the reduced costs 

iioj - doi., j E J -  fl Ni.\{jJ, 

doj + doj., j = j(k), k = p + 1 , .  . ., r, 
i O j  = 

1 doj, otherwise, 

and since min (0, - dOjS  = min (0, d o j  - c S o j . )  = 0, the left hand side of (33) is the sum 
of negative reduced costs after the pivot. Thus, (33) is the same as (38). Also, 
do, 3 0 ,  V j  E J\ N, since the reduced costs of t,, j E J\ N, remain unchanged. 
Finally, since the right hand side of (37) is zero, .f also remains unchanged. 0 

The strength of the cut (37), as well as the computational effort involved in the 
search for a pair (k,y) satisfying ( 3 9 ,  (36) (which can be carried out by implicit 
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enumeration) depends on the size of the set Q ( p ) ,  viz. of the integer p .  The strength 
of the cut increases with the size of p ,  but so does the computational effort involved 
in the search. Let pmin be the smallest value of p for which (33) holds. Note that 
when pmin = 0, (35) cannot be satisfied for any k .  Therefore in this case (37) (with 
p = 0) is always a valid cut, and there is no need for implicit enumeration to 
establish this fact. 

Since implicit enumeration is highly efficient on small sets, but its efficiency tends 
to  decline rapidly with the increase of the set size, a reasonable choice for p is 

p = max { P O ,  P m i J  (42) 

where p o  is the largest integer sufficiently small to keep the cost of the implicit 
enumeration acceptably low. 

An algorithm based on Corollary 7.1.1 can be described as follows. Denote by J 
the index set of nonbasic variables, by J\ N the index set of nonbasic slacks 
associated with cuts. 

Step 0. Choose a value for p o .  Start with the linear programming relaxation of the 
set partitioning problem and go  to 1. 

Step 1. Perform simplex pivots which (a) leave the solution primal feasible and 
integer; (b) leave aoj 3 0, V E J\ N ;  and either (c) reduce the objective function 
value, or (4 leave the latter unchanged and reduce the absolute value of the sum of 
negative reduced costs. (Note that this does not exclude pivots on negative entries, 
or pivots which make the table fractional, provided they occur in degenerate rows. 
The algorithm remains valid, however, if such pivots are excluded.) When this 
cannot be continued, if aoj 2 0, V j  E J, stop: the current solution is optimal. 
Otherwise go to 2 .  

Step 2. Define i ,  and j *  by 

respectively, order the set J n N -, AJ,. according to (32), and choose p according to 
(42). Then use implicit enumeration (if necessary) to find k E J -  n Nt. and 
y E (0, 1}4 satisfying (359, (36) (case a ) ,  or  to establish that no such pair ( k ,  y )  exists 
(case p ) .  Then go to step 3 (case a )  or step 4 (case p ) .  

Step 3. Pivot into the basis with a value equal to 0 each nonbasic slack variable 
and remove from the simplex tableau the corresponding row. Then pivot into the 
basis each nonbasic variable t, such that yJ = 1, and go to 1. 

Step 4. Generate the cutting plane (37), add it to the smplex tableau, pivot in the 
new row and column j * ,  and go to 1.  

Corollary 7.1.2. The procedure consisting of Steps 1-4 is finite. 
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x o  

XlO 

XI2 

x s  

x4 

1 5  

S 

Proof. Each pivot of Step 1 either decreases the objective function value z (if 
nondegenerate), or leaves z unchanged and decreases the absolute value u of the 
sum of negative reduced costs (if degenerate). Each application of Step 2 is 
followed either by Step 3 or by Step 4. Step 3 consists of a sequence of pivots which 
decreases z.  Step 4 generates a cut and performs a pivot which decreases a, while 
leaving z unchanged. 

In conclusion, every iteration of the algorithm either decreases z ,  or leaves z 
unchanged and decreases u. Since u is bounded from below by 0, z can remain 
unchanged only for a finite sequence of iterations. Since z is also bounded from 
below, the procedure is finite. 

- 3  3 1 0 2 0 - 3  1 5 - 2  0 

1 1 0 0 0 0 0 1 1 0 1 
0 -1  0 0 1 -1 - 1  0 1 - 1  0 

1 1 1 1 0 1 1 0 0 1 0 

1 - 1  0 0 -1 - 1  - 1  1 0 - 1  1 

0 1 1 2 - 1  1 3 - 2  - 3  2 -1  
0 - 1  1 - 1  - 1  - 1  
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xn 

1 - X I  -x.5 - x ,  -x3 - x 9  -x *3  - X I 1  - x *  - - s  - X I 5  

- 3  3 1 0 0 0 - 1  - 1  3 2 0 
1 1 0 0 0 0 0 1 1 0 1 
0 -1 0 0 0 - 1  0 -1  0 1 0 

1 1 0 1 1 -1  0 1 1 1 1 

0 - 1  -1  -1  0 0 0 0 0 1 0 
0 1 1 2 1 1 1 0 -1 2 - 1  
0 -1  1 - 1  -1  1 

-2  5 2 2 1 1 1 1 3 4 0 

Table 6. 

Step 1. Pivoting xI1 into the basis in place of x l o ,  and then xI3 in place of xs, yields 
the optimal solution xi = 1, j = 11,12,14, xi = 0 otherwise, with the following 
reduced costs: 
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Backtracking algorithms are applied to  determine various reliability measures for networks. 
These algorithms are useful in analyzing the reliability of many data communication networks. 
We consider an undirected network where each node and each arc may be in one of two states: 
operative o r  inoperative. These states are independent random events. In addition to the more 
usual measure of network reliability, the probability that a specified pair of nodes can 
communicate, we consider more global measures such as the probability that all nodes can 
communicate and all operative nodes can communicate. 

1. Introduction 

Backtracking algorithms are very useful in solving a variety of network-related 
problems. They provide a framework for efficient manipulation of data with 
relatively small storage requirements. For example, Hopcroft [4] gives backtracking 
algorithms for partitioning a graph into connected components, biconnected 
components and simple paths; and Read [7] gives backtracking algorithms for 
listing cycles, paths and spanning trees of a graph. We have devised backtracking 
algorithms for determining certain reliability measures of a network. The al- 
gorithms are useful in analyzing the reliability of many data communications 
networks. For example, we have used them in the analysis of communications 
networks such as, ARPANET in which network nodes correspond to minicompu- 
ters and network arcs correspond to transmission lines. In addition, they can be 
used in the analysis of radio networks in which nodes correspond to broadcast 
stations and arcs connect stations within broadcast range of each other. 

The model we consider is an undirected network containing NN nodes and NA 
arcs. Each arc consists of an unordered pair of nodes. We do not allow self loops, 
that is, arcs of the form [ N ,  N ] .  In addition we do  not allow parallel arcs, that is, 
each arc is distinct. Each node and arc may be in either of two states: operative or 
inoperative. The state of a node or  an arc is a random event. The state of each node 
and arc is independent of the state of any other node or arc. Each arc, A, and node, 
N, takes on the inoperative state with known probability P A ( A )  and P N ( N )  
respectively and the operative state with probability 1 - P A  ( A )  and 1 - P N ( N )  

* This work was supported by the Advanced Research Projects Agency of the Department of 

** Now at Bell Telephone Laboratories, Murray Hill, NJ, U.S.A. 
Defense under Contract No. D A H C  15-73-CO135. 
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respectively. Communication can exist between a pair of nodes if they are operative 
and if there is a path consisting of operative nodes and arcs connecting them. 

The underlying model is not new. An early reference on it is [6]. In this paper and 
in the majority of the work done on this problem thus far nodes are assumed to be 
perfectly reliable. The reliability measure most often considered is the probability 
that a specified pair of nodes can communicate. The reliability problems associated 
with many physical systems can be stated in terms of finding the probability that a 
specified pair of nodes can communicate in a network with perfectly reliable nodes. 

We are interested in the reliability of data communications networks. For this 
problem we cannot assume that nodes are perfectly reliable and we require global 
measures of reliability. In addition to the probability that a specified pair of nodes 
can communicate we consider the probability that all nodes can communicate and 
the probability that all operative nodes can communicate. All algorithms can obtain 
exact answers; in addition, to  allow for the analysis of larger networks we give a 
truncation procedure with which approximate answers can be obtained in less time. 

There are basically two approaches to network reliability analysis: simulation 
and analytic. All known analytic methods for network reliability analysis have 
worst case computation time which grows exponentially in the size of the network 
considered. Our backtrack methods are analytic methods and are not exceptions to 
this trend. Hence, they are not recommended for large networks. However, results 
in [8] indicate that network reliability analysis is intrinsically very difficult. 
Simulation methods, for which computation time grows only slightly faster than 
linearly with network size, have been described in the literature. In our practical 
experience we have found that simulation techniques are suitable for large 
networks and are generally more flexible than analytic methods. However, they 
have the disadvantage that they only give approximate answers; and when a high 
degree of accuracy is necessary, the running time can grow quite large. 

Analytic methods use basic probabilistic laws to reduce or decompose the 
problem. Roughly speaking these methods use some combination of enumerative 
and reduction techniques. Enumerative methods enumerate a set of probabilistic 
events which are mutually exclusive and collectively exhaustive with respect to the 
measure in question. Our  algorithms are examples of enumerative algorithms. 
Reduction algorithms collapse two or  more network components into one network 
component. The simplest example of network reduction is collapsing two series arcs 
into one arc. 

Enumerative algorithms for finding the node pair disconnection probability with 
perfectly reliable nodes are given in [2,3,9]. Hansler, McAuliffe and Wilcox 
produce as output a polynomial in P, the constant arc failure probability. Using an 
APL implementation on  an IBM 360-91 computer, their algorithm ran on two 
9-node, 12-arc networks in a total of 18 seconds. Fratta and Montanari used a 
network reduction technique to reduce a 21-node, 26-arc network to an %node, 
12-arc network. They used a FORTRAN IV implementation on an IBM-360-67 
computer. Once the reduction was accomplished, they used their enumerative 
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algorithm on the 8-node, 12-arc network to produce the exact disconnection 
probability. The total time for the reduction and the enumerative algorithm was 112 
seconds. The reduction algorithm most probably took a small percentage of that 
time. Segal initially enumerates all paths in the network. He then uses the * 
operator (P:Pb = P, iff a = b )  to convert the probabilities that each path operates 
to the probability that the node pair can communicate. This technique is especially 
useful when the communication paths between the node pair are restricted. 

Reduction techniques have been most successful in finding the probability that a 
specified pair of nodes can communicate where parallel and series arcs can be 
collapsed into single arcs. Rosenthal [8] gives more sophisticated reduction 
techniques for finding other reliability measures. Rosenthal gives no computational 
experience; however, it appears that his techniques may be valuable for analyzing 
sparse networks. Generally, networks can only be reduced so far, so reduction 
techniques must be used in conjunction with other methods. The one exception is in 
the case of tree networks. 

In [5] a recursive reduction algorithm is given for determining a variety of 
reliability measures, including all of those mentioned in this paper, on tree 
networks. A 500-node tree was run in If seconds on a PDP-10 computer. 
Algorithms for general networks cannot come close to solving problems of this size. 

Simulation methods have been given in [ l l ,  121. They provide a great deal of 
flexibility in the measures that can be investigated. In addition, they contain 
powerful sensitivity analysis capabilities. For a given number of samples, the 
running times increase almost linearly in the number of nodes and arcs. A 9-node, 
12-arc network was run using the simulation algorithm with a FORTRAN IV 
implementation. The simulation algorithm produced the expected fraction of node 
pairs communicating and the probability that all operative nodes can communicate 
in 54 seconds on a PDP-10 computer. 

We have implemented our algorithms using FORTRAN IV on a PDP-10 
computer. The results indicate reduction in running time over the analytic 
algorithms listed below. In addition, our algorithms produce global reliability 
measures of more interest to network designers, whereas, most of the previous 
work was concentrated on the specified node pair problem. Our algorithms also 
appear to be much quicker than simulation algorithms for networks with fewer than 
20 arcs. A complete summary of computational experience is given in a later 
section. 

2. Probabilistic backtracking 

Suppose we wish to enumerate all subsets of a set with a desired property. We 
examine elements of the set in a prescribed order. When an element is examined we 
decide whether or not to include it in the subset under construction. When the 
subset has the desired property we list it. Afterwards, we change our decision about 
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the last element and begin adding new elements until the subset again has the 
desired property. If changing our decision on an element cannot produce a subset 
with the desired property we backup to the previous element. If this element has 
been considered both in and out, we backup again. If it has only been considered in 
one state, we change our decision on it and proceed as before. When the process 
terminates all subsets have been enumerated. Walker [13] has appropriately named 
this process “backtracking”. If the enumeration is represented by a tree it can be 
thought of as a method for exploring a tree. More recently, it has been generalized 
as a method for exploring any graph and in this context it is called “depth first 
search” [lo]. 

We have found this process very useful in determining the probability of a 
random event E. In the probabilistic context backtracking proceeds by adding 
probabilistic events to a stack. When the intersection of the events on  the stack 
implies the event E, the probability of the stack configuration is added into a 
cumulative sum. Afterwards, we complement the top event and begin adding new 
events to the stack until it again implies the random event E. If complementing, the 
top event implies that E cannot occur, we take the event off the stack and consider 
the new top event. If both the event and its complement have been considered, we 
take it  off the stack. If its complement has not been considered, we complement it 
and proceed as before. When this process terminates, the cumulative sum will 
contain the probability of the event E. This is so because the events whose 
probabilities were added into the sum form a partition of the event E. 

3. Node pair disconnection 

We will first consider finding the probability that a specified node pair cannot 
communicate. One minus this value will give us  the probability that the specified 
pair can communicate which is the reliability measure of interest. Henceforth, this 
node pair will be denoted as ( S ,  T) .  For the moment, we will assume that nodes are 
perfectly reliable. All algorithms presented use the  same basic approach. The 
approach is best illustrated through the specified node pair problem which is the 
simplest. Our algorithm embodies the general idea of [3] in a backtracking 
structure. Their algorithm and ours enumerate a set of “modified cut sets”. A 
modified cutset is the assignment of one of the states, operative, inoperative or  free 
to all arcs in t he  network in such a way that the inoperative arcs form a cutset with 
respect to the specified node pair. The probability of a modified cutset is the 
product of the failure probabilities of all inoperative arcs times the product of one 
minus the failure probabilities of all operative arcs. The modified cutsets we 
enumerate are mutually exclusive and collectively exhaustive with respect to the 
specified node pair being diconnected. Therefore, the sum of their probabilities is 
the probability that the specified node pair cannot communicate. 

We use probabilistic backtracking to enumerate the desired set of modified 
cutsets. The events added to the stack are of the form “ A  inoperative” or its 
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complement “A operative” where A is some arc. Inoperative events are added to 
the stack until the inoperative arcs include an S-T cut. At this point the arcs on the 
stack will form a modified cutset and its probability will be added into a cumulative 
sum. The stack configuration corresponds to a modified cutset in the following 
manner. Arcs not included in any events on  the stack are free. Other arcs are 
operative or inoperative depending on the type of event in which they appear. 
After updating the cumulative sum, the top event is changed from “A inoperative” 
to “A operative”. The algorithm continues to proceed in the backtracking manner 
by again adding inoperative arcs to the stack. Two procedures are necessary to  
implement the algorthm. The first is a method for choosing which arcs to mark 
inoperative and add to the stack to form a modified cutset. In addition, after an 
event has been changed from “A inoperative” to “A operative” we must be able 
to determine if a cutset can be formed by making free arcs inoperative and adding 
them to the stack. If one cannot be formed we do not make A operative but simply 
take A off the stack. This will be the case if, when A is made operative, the 
operative arcs on the stack would include an S-T path. 

Given this basic structure, a number of algorithms could be developed depending 
on how the arcs to be made inoperative are chosen. Any such algorithm will fit into 
the following general form: 

Step 0: (Initialization). Mark all arcs free; create a stack which is initially empty 

Step 1: (Generate modified cutset) 

cut. 
(a) Find a set of free arcs that together with all inoperative arcs will form an S-T 

(b) Mark all the arcs found in l(a) inoperative and add them to the stack. 
(c) The stack now represents a modified custset; add its probability into a 

cumulative sum. 

Step 2: (Backtrack) 
(a) If the stack is empty, we are done. 
(b) Take an arc off the top of the stack. 
(c) If the arc is inoperative and if when made operative, a path consisting only of 

(d) If the arc is inoperative and the condition tested in 2(c) does not hold, then 

(e) If the arc is operative, then mark it free and go to 2(a). 

operative arcs would exist between S and T, then mark it free and go to 2(a). 

mark it operative, put it back on the stack and go to Step 1. 

Example. 
, 

s = 1, T = 4, 12 implies arc 12 is inoperative, 12 implies arc 12 is operative. 
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Examples of possible stack configurations: 

12,13 12, 13 are inoperative. All other arcs are free. This is a modified 
cutset since 12 and 13 form an S-T cut and they are inoperative. If 
this were the stack configuration at Step 2 13 would be marked 
operative. 

1 2 , E ,  24,34 12, 24, 34 are inoperative; 13 is operative. All other arcs are free. 
This is a modified cutset since 24 and 34 form an S-T cut and they 
are inoperative. If this were the stack configuration at Step 2, 34 
would be taken off the stack, since if it were marked operative, 13 
and 34 would form an operative S-T path. 

12, 23 are inoperative; 34 is operative. All other arcs are free. This i 
not a modified cutset. If this were the stack configuration at Step 2 
34 would be removed from the stack since it is operative. 

12,23,% 
- 

The two non-trivial operations contained in this algorithm are Step l(a) and Step 
2(c). In Step l(a), we choose which arcs to make inoperative and put on the stack 
and in Step 2(c), we decide whether an inoperative arc should be complemented or 
whether it should be taken off the stack. Of course, the procedure used in one of 
these steps is closely related to the procedure used in the other. 

We have devised two algorithms based on this general algorithm. Algorithm 1 
enumerates a set of modified cutsets similar to the set enumerated by Hansler, 
McAuliffe and Wilcox. Algorithm 2 enumerates a set of minimum cardinality 
modified cutsets with the use of a min-cut algorithm. 

In Algorithm 1 operative arcs form a tree rooted at node S. Inoperative arcs are 
adjacent to nodes in the tree. Initially, the tree consists only of node S. Node 7' will 
never be in the tree. Step l(a) chooses all free arcs adjacent to both a node in the 
tree and a node not in the tree. These arcs clearly will disconnect the tree from the 
rest of the network and consequently, will disconnect S and T. The fact that an 
inoperative arc, when added to the stack, is adjacent to a node in the tree and a 
node not in the tree insures that, when it is marked operative, the operative arcs 
will continue to form a tree. In Step 2(c), an inoperative arc is taken off the stack if 
it is adjacent to node T. 

S = l ,  T = 4 .  
The sequence of modified cutsets generated by Algorithm 1 is: 
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12,13; 
12,E, 32,34; 
- 12,13,32,24,34; 
12,23,24,13; 
12,23,24,E, 34. 

_ _  

- 

This algorithm has a very simple structure and all subprocedures take a small 
amount of time. The only subprocedure that cannot be done in constant time is 
choosing the free arcs to add to the stack, (Step l(a)). We propose that nodes in the 
tree be kept on a linked list. Step l(a) is implemented by searching the set of arcs 
incident to nodes on this list. This operation requires n o  more than O ( N A )  time. 

Theorem. If NM = the number of modified cutsets enumer'ated and NA = the number 
of arcs then Algorithm 1 is O(NA * N M ) .  

Proof. Any time an arc is made operative, a modified cutset is generated. As was 
shown earlier, in  the worst case, this operation is O(N, ) .  All operations 
performed in Step 2 can be done in constant time. Each operation either results in 
an arc being made operative and thus, a new cut being generated, or an arc being 
deleted from the stack. 0 

In Algorithm 2, operative arcs form a forest. Node S and node T are contained 
in different components of the forest. Step l(a) chooses the set of free arcs of 
minimum cardinality that together with the inoperative arcs forms an S-T cut. This 
minimum set of arcs is found by finding the minimum S - T cut in the network with 
free arcs having capacity 1, inoperative arcs deleted and operative arcs having 
infinite capacity. The first set of free arcs added to the stack is a minimum 
cardinality S-T cut. To implement Step 2(c), nodes in the operative tree containing 
S are given the label L, where L is the length of the path in the tree from the node 
to S.  Nodes in the operative tree containing T are given the label -L where L is the 
length of the path in the tree from the node to T. All other nodes have L = 0. In 
Step 2(c), an inoperative arc is taken off the stack if it is adjacent to nodes whose 
labels have opposite signs. 

Example. 

The sequence of modified cutsets generated by Algorithm 2 is 
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12,13; 
12 ,E ,  32,34; 
12,13,32,24,34; 
12,24,34; 
12,24,%, 13,23. 

_ _  
-. 

- 

Note that 1 less cutset was generated than in Algorithm 1. 
Algorithm 2 enumerates an entirely different partition of the probability space 

than Algorithm 1. The number of events in this partition is smaller than in 
Algorithm 1. Algorithm 2 pays for this by the necessity of performing much more 
work per modified cutset generated. Again, every time an arc is made operative, 
the algorithm produces a modified cutset. 

To find this cutset a min-cut algorithm must be performed. [1] gives a max-flow 
algorithm for networks with unit arc capacities that runs in O(N?) time. This could 
easily be converted to a min-cut algorithm suitable for our problem with the same 
time bound. The only other time consuming operation is the maintenance of the 
labels on the trees rooted at S and T. Between the generation of two modified 
cutsets at most one operative arc is added to  the stack but as many as NN - 2 may 
be taken off. When an operative arc is added to  the stack, if it is adjacent to a node 
with a non-zero label, we must relabel all nodes added to the tree rooted at S or T. 
This requires searching the tree that has just been joined to the tree rooted at S or 
T. This operation requires at most O(NA) time. When an operative arc, A, is 
changed to free, if the nodes adjacent to it have non-zero labels, we must set the 
labels of the nodes that this operation disconnects from S or T to  0. We first find 
the node, B, adjacent to A that has the label of higher absolute value. With arc A 
changed to free node B will be the root of a tree not containing S or T whose nodes 
have non-zero labels. We search this tree and change all node labels to 0. This 
operation requires at most time proportional to  the number of arcs adjacent to  
nodes whose labels were changed. Changing any set of arcs to free can change the 
label of each node at  most once. Consequently, label changing operations between 
the generation of modified cutsets require at most O(NA) time. 

Theorem. If NM = the number of modified cutsets enumerated and N A  = the number 
of arcs, then Algorithm 2 is O(NY*N,). 

Proof. The proof follows the logic in the equivalent proof for Algorithm 1 using the 
facts that the max-flow algorithm is O(N?) and updating the labels is O(NA) for 
each modified cutset. 0 

The results concerning the computational complexity of Algorithm 2 led us to 
believe that it would have a higher running time than Algorithm 1. Consequently, 
we did not code Algorithm 2 and all extensions in this paper refer to Algorithm 1. 
Algorithm 2 does have many interesting properties which we hope to  explore later. 
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4. Network disconnection 

A measure of the reliability of the entire network is the probability that all nodes 
can communicate. We chose to compute the probability that the network is 
disconnected which is one minus this value. Algorithm 1 extends to this case quite 
easily. Each modified cutset will disconnect the graph rather than only the specified 
node pair. (Clearly, any modified cutset which disconnects a specified node pair 
would also disconnect the graph.) Rather than stopping the growth of the tree when 
the specified node pair becomes connected, we stop it when it becomes a spanning 
tree. Spanning trees can easily be recognized by a count on the number of operative 
arcs. 

In Step 2(e), we take an inoperative arc off the stack if the number of operative 
arcs equals "-2. 

Example. 

s = 1. 

disconnection alteration is: 
The sequence of modified cutsets generated by Algorithm 1 with the network 

12,13; 
1 2 , E ,  32,34; 
12,3,32,34,42; 
12,13,32,24,34; 
12,23,24,13; 

-- 
- 

, . . ,  - 
- 12,23,24,E, 34; 
12.23.z.43.13; , , , ,  -- 
12,23,24,34. 

5. Truncation 

Assuming arcs have constant failure probability, P, each configuration with 
exactly K arcs inoperative has probability Pk(l - P)N~-k. An approximation to the 
node pair disconnection probability can be obtained by ignoring all network 
configurations with more than LIMIT arcs inoperative. If LIMIT is the smallest L 
such that 
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L C CA (NA, k )  Pk (1 - P)N~-k  3 1 - TOL, 
k = l  

where CA(NA, k )  = NA things taken k at a time, then the approximation will be 
within TOL of the true value. 

Given LIMIT, we implement this truncation procedure in our backtracking 
algorithm by keeping a count on the number of inoperative arcs. Whenever the 
addition of an arc to the stack in Step l(6) would make the count exceed limit, the 
algorithm immediately backtracks (goes to  Step 2). 

6. Node failures 

While computations are simpler when only arcs can fail, in reality nodes are also 
unreliable. When considering the possibility of node failures a question arises as to 
the definition of network disconnection. The most obvious definition would be, 
“the network is disconnected any time at least one node cannot communicate with 
some other node” (ND1). By this definition, a network would be disconnected any 
time at least one node failed. An alternative definition which is much more useful 
for the network designer who has n o  control over node failure rates is, “the 
network is disconnected any time an operative node cannot communicate with 
another operative node” (ND2). Thus, if a given node is inoperative its ability to 
communicate with the rest of the graph is irrelevant. 

(A) Probubility {NDl}. We will consider NDl first simply because it is easier to 

Let : 
handle. In fact, it reduces to the problem with perfectly reliable nodes. 

A N 0  = {all nodes operative}, 
NANO = {not all nodes operative}. 

Then since {ANO} and {NANO} are mutually exclusive, collectively exhaustive 

P{NDl} = P{NDlI ANO}*P{ANO}+ P{NDl I NANO}*P{NANO}. 

events the law of total probability gives us: 

P{NDl( ANO} can be found using Algorithm 1 with the network disconnection 
option. 

” 
P{ANO} = n (1  - PN(N)) 

N= 1 

P(ND11 NANO} = 1 

P{NANO} = 1 - P{ANO}. 

Thus, with one extra straight forward calculation the graph disconnection problem 
with node failures reduces to  the graph disconnection problem with perfectly 
reliable nodes. 
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(B) Probability { S ,  T cannot communicate}. The definition of ND2 presents a 
much more difficult problem for which major modifications to the algorithm are 
required. First, we will again consider the node pair disconnection problem. 

Let: 

S - T imply S can communicate with T, 

S #  T imply S cannot communicate with T. 

Then 

P{S# T }  = P{S& TI S inop}*P{S inop} 

+ P{S + T I s op, T inop}*P{S op, T inopj 

+PIS  + T 1 S op, T op}*P{S op, T op}, 

P{S P T 1 s inop} = P{S 4 T I  s op, T inop} = 1, 

P{S inop} = PN(S), 

P{S op, T inop} = (1 - P,(S))*PN(T), 

P{S Op, T O ~ } = ( ~ - P N ( S ) ) * ( I - P N ( T ) ) .  

The new version of the algorithm will compute P{S P T 1 S op, T op}; i.e., we 
assume S and T are perfectly reliable and then find the probability that they cannot 
communicate. 

The problem now has been reduced to enumerating a mutually exclusive, 
collectively exhaustive set of modified cutsets between S and T where nodes other 
than S and T can also “take part” in cuts. The most straightforward modification to 
Algorithm 1 that would compute the desired probability would be to put nodes as 
well as arcs on  the stack. Nodes are now marked either operative, inoperative, or 
free. Every time an arc is made operative, the new node added to the tree is placed 
on the stack and marked inoperative. To disconnect this tree from the rest of the 
network, all free arcs between operative nodes in the tree and free nodes are added 
to the stack and marked inoperative. When an inoperative node is encountered in a 
backtrack, it is switched to  operative and a new modified cutset is found in the same 
manner. 

Consider the following example: 

S = 1, T = 4. The sequence of modified cutsets generated by the suggested 
algorithm for the 1 ,4  node pair disconnection probability is: 
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12,13; 
1 2 , E ,  3; 
12,13,3,32,34; 
12,13,3,32,2,34; 
12,13,3,32,2,24,34; 
12,2,13; 

12,2,13,3,34; 
12,2,23,24,13; 
12,2,23,24,3,3;  
12,2,23,24,13,3,34; 

12,2,23,3,24,34; 

- _  

- 
- 
12,2,13,3; - - _  
- _  
- _  
- _  - _  
12,i ,23,3,24; 

where 1 implies node 1 is inoperative and i implies node 1 is operative. 

the following two events: 
A large saving can be realized by taking advantage of the equivalence between 

El = node N inoperative 

Ez = node N operative; all arcs between node N and free nodes inopera- 
tive. 

Notice that in the example the modified cutsets 

{12,2,13;12,2,3,3;12,2,13,3,34} 
- _  

are the same as 
- _  - _  - _  

{12,2,23,24,13; 12,2,23,24,3,3;  12,2,23,24,13,3,34) 

except that 2 in the first set is replaced by 2, 23, 24 in the second set. 
El and El are equivalent in the following sense. Given the current stack 

configuration the subsequent enumeration with El on the stack is exactly the same 
as the enumeration would be with the events in Ez on the stack. Stated probabilisti- 
cally this relation is: 

P{S# T I El n events on stack} = P{S& T I E z  f l  events on stack} 

It we let C1 be  the value of the cumulative sum when E l  is placed on the stack and 
C :  be  the value of the cumulative sum when El is changed t o  operative we have: 

P{S# T 1 El fl events on stack} = ( C :  - CI)/P{E1 fl events on stack}. 

This relation also applies to  Ez.  Thus, when we change El to  operative we may 
update the cumulative sum to C2 t o  account for all the enumeration that would 
have proceeded with the events in Ez on the stack where: 

Cz= ( C ; -  C1)*P{E,}/P{E1}+ C : .  
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After this update, we mark the arcs in EZ inoperative, add them to the stack and 
immediately backtrack. 

Example. 

S = 1, T = 4. The sequence of modified cutsets generated for the 1 , 4  disconnection 
probability with node failures treated implicitly is: 

12,13; 
12,13, 3 ;  

cum. sum updated for 12,13,3,32,34,. . . ; 
12.13.5.32.2.34: 

I , I  . ,  . 

- cum. sum updated for 12,13,3,32,2,24,. . . ; 
12,2,13; 

cum. sum updated for E,2,13,3,34, .  . . ; 
cum. sum updated for 12,2,23,24,. . . ; 
12,2,23,3,24; 
cum. sum updated for 12,2,23,3,34,. . . . 

- 
12,2,13,3; 

- _  

It is instructive to compare this sequence of cuts with those generated in the 
example for Algorithm 1. 

(C) Probability ND2. We apply this method for treating node failures to find the 
probability that at least one pair of operative nodes cannot communicate (ND2). 
Let us first see what happens when the simple change that was made to Algorithm 
1, to get the network disconnection probability, is applied to the  node pair 
disconnect algorithm with node failures. That is, rather than changing an arc from 
inoperative to free, if it were incident to node T, we change it to free, if, when made 
operative it would complete a spanning tree of operative arcs. With this alteration, 
each event enumerated would disconnect node S from at least one other node in 
the graph. We are interested in the probability that operative nodes cannot 
communicate. Therefore, the probability of each event enumerated will be 
multiplied by the probability that at least one node not in the tree is operative. The 
algorithm will then produce the probability that node S does not communicate with 
some other operative node. In other words, the algorithm will find the probability 
that at least one operative node pair cannot communicate given that node S is 
operative. If are mutually exclusive and collectively exhaustive, 



62 M .  Ball, R.M. Van Slyke  

” 

r = i  
P(ND2) = C P(ND2 I Hr}*P(Hr}. 

Let: {S,, S2, .  . ., SN,) be a permutation of the nodes 

H, = {node S, operative; nodes Sr-1,. . ., SI inoperative) 

Clearly (HI}[=  ,”, are mutually exclusive and collectively exhaustive. 

P(H1) = (1 - PN(SI)) fi P N ( S J ) .  
J = l  

P(ND2 1 H,) is simply the output of the backtracking algorithm described in the 
preceding paragraph. P(ND2 I Hr)r>l is the output of that same algorithm per- 
formed on the network with nodes S,, . . ., Sr-1 deleted. 

Thus, the complete algorithm for computing P(ND2) would compute P(ND2 I HI} 
using S, as the root node. S ,  would then be deleted from the network and the 
algorithm would compute P(ND2 1 Hz)  using Sz as a root node. Sz would then be 
deleted and S, used as the root node. The algorithm would continue in this manner 
until all nodes had been used as root nodes. At  each iteration the backtracking 
algorithm would be applied to a network with one less node. The formulas given 
above would be used to combine the output from each application of the 
backtracking algorithm to get P(ND2). 

It might appear that the running time of this algorithm would increase dramati- 
cally. This is not the case. Since the running time of the backtracking subprocedure 
grows exponentially, the running time on a graph with one or  two nodes deleted is 
much less than the running time of the algorithm on the original graph. Due to this 
fact the running time to find P(ND2) is generally less than twice the running time to 
find P(ND1). 

The choice of the ordering of the nodes is arbitrary. One good method is to pick 
the node with the highest degree, since on the next iteration, the maximum number 
of arcs will be deleted. Looking toward a possible truncation, a procedure which 
could be used, is to pick the node with lowest failure probability. In particular, if 
some node has 0 failure probability it should be chosen as S , .  In this case exactly 
one call to the backtracking procedure would be necessary since all probabilities 
subsequently enumerated must be multiplied by P,(S,). 

7. Computational experience and comparison with other algorithms 

We have implemented the algorithms presented in this paper to compute the 
probability that a specified pair of nodes can communicate and the probability that 
all operative nodes can communicate. The implementations consider both node and 
arc failures. The algorithms were coded in FORTRAN IV on a PDP-10 computer. 

(A) Probability (ND2). A series of runs was made on networks with between 10 
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and 19 arcs. Table 1 is for the computation of P(ND2) with both non-zero but 
constant node and arc failure probabilities (PA (A) = 0.02 for all A ; PN(N) = 0.001 
for all N ) .  

Table 1 (CPU times in seconds) 

8 10 4.06 
9 12 6.45 

10 15 15.49 
13 17 26.21 
15 19 55.01 

The times include the time to read in the data. 

(B) Specified node pair. A series of runs was made on networks with between 12 
and 28 arcs. Table 2 is for the computation of the probability that a specified node 
pair cannot communicate. Node failures were zero and arc failures were constant 
(PN(N)=O for all N ;  PA(A)=0.02  for all A) .  The networks were run with 
tolerances of 0.00, 0.0001 and 0.001. The true error was usually much smaller than 
the tolerance. 

Table 2 (CPU times in seconds) 

NN NA 0.000 = TOL 0.0001 = TOL 0.001 = TOL 

9 12 4.36 4.20 4.34" 
10 15 7.36 4.71 3.94 
13 17 8.77 6.66 5.97 
15 19 17.22 9.34 6.87 
19 23 71.64 16.69 17.16" 
24 28 not run not run 45.36 

" I n  these cases there was no reduction in time between 0.0001 
tolerance and 0.001 tolerance. This occurs when LIMIT has the 
same value for TOL = 0.0001 or TOL = 0.001. 

A 10-node, 19-arc network with 0.00 tolerance ran in 26.82 seconds. Comparing 
this time with the time for the 15-node, 19-arc network (17.22 seconds) seems to 
indicate that denser networks require higher running times per number of arcs. 

(C)  Comparison with other algorithms. To compare our algorithm with the 
results given in [3] we added the capability of producing a failure probability 
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polynomial in P, the constant arc failure probability. Our algorithm produced the 
node pair disconnection probability for the two Hansler, McAuliffe and Wilcox test 
networks in 11.20 seconds. As was stated in the introduction, their algorithm 
required 18 seconds. However, it should be noted that different computers and 
languages were used. 

To compare our algorithm with simulation results, we computed the probability 
that all operative nodes can communicate on the same 9-node 12-arc network run 
using the simulation algorithm. The running time was 6.45 seconds. This is a 
marked improvement over the simulation time of 54 seconds; however, the 
simulation algorithm also computed the expected fraction of node pairs com- 
municating. 
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A theorem of Baranyai reduces the problem of finding the chromatic index of certain 
hypergraphs to a cutting stock integer programming problem. Baranyai used this result to  
establish the chromatic index for the complete h-uniform hypergraphs. We use a linear 
programming technique of Gomory and Gilmore to extend his result to two other cases: the 
hereditary closure of the complete h-uniform hypergraphs K ! ,  for h s4; and of the complete 
h-partite hypergraphs. 

1. Introduction 

A hypergraph is defined by a set X (the oertices) and a family 8 = {Ei 1 i E Z} of 
non-empty subsets of X (the edges). A k-coloring of the edges is a partition 

% =  % 2 +  * . '  + 8 k  

of the edge-set 8 into k classes such that all the edges in the same class are pairwise 
disjoint . 

Let H = (X, %)be  a hypergraph. As in a graph, the degree d ( x )  of a vertex x E X 
is the number of edges containing x .  The maximum degree in H is denoted by 

A (H) = max d ( x ) .  
X E X  

As in a graph, the chromatic index q ( H )  is the least k for which H possesses a 
k-coloring of its edges. Clearly, 

4 ( H )  3 A ( H I .  

We say that H has the edge-coloring property if q ( H )  = A (H). When every vertex x 
of H has the same degree, then H has the edge-coloring property if and only if the 
index set Z of the edges can be partitioned into sets 

z=z1+12+  . ' . + z k  

such that for each A = 1,. . ., k, {a ( i  E I,} is a partition of the nodes X. 
It is not difficult to see that the determination of whether or not a given 
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hypergraph can be k-colored, for a given k, can be expressed as determining 
whether or not a certain system of linear inequalities has an integer solution. The 
usual formulation involves a large system which is not very useful. In this paper, a 
theorem of Baranyai [l] will be used to relate the edge coloring problem for certain 
hypergraphs to the cutting stock problem, which is well-known in Operations 
Research (see Gilmore-Gomory [4]). The proof of Baranyai’s theorem uses 
network flow theory and is interesting in itself. The theorem immediately gives the 
chromatic index of the complete h -uniform hypergraph Kh,, which generalizes the 
complete graph K ,  on n vertices. For other cases, it provides a much more useful 
linear program in order to determine q ( H ) .  

In Section 3, we derive the chromatic index for the hereditary closure of the 
complete h-uniform hypergraph Kh, for k 4. The linear programming technique 
of Gilmore-Gomory [4] is used. 

In Section 4, we investigate the edge-coloring property for the complete h -partite 
hypergraph k ;;,.,,,....., which generalizes the complete bipartite graph Kp.q. 

2. The theorem of Baranyai and complete h -uniform hypergraphs 

The complete h-uniform hypergraph Kh, is defined by a set X of n vertices. Then, 
a set E X is an edge if and only if it has cardinality h. In [5], E. Lucas showed that 
if n is even, then the complete graph K,, (or K:)  has the edge-coloring property, 
i.e., q(K,)  = A ( K n ) .  This result is now very well-known in Graph Theory and 
Statistics. Lucas also conjectured that if n is a multiple of 3, then the complete 
3-uniform hypergraph K: has the edge-coloring property. This result was proven 
for n = 9 by Walecki (see Lucas [5]) and for all n = 3k by R. Peltesohn [6]. Her 
proof was long and exhaustive. Finally, Baranyai established the chromatic index 
for all Kh, [l]. 

In a different area, P. Gilmore and R. Gomory divised a linear programming 
approach to the cutting-stock problem [4]. In that problem, one assumes that a 
supply of rolls of paper, each roll of stock length n, is maintained. From these rolls 
are to be cut k, pieces of length r,, for i = 1,. . ., q. In order to minimize the wastage, 
we want to determine the least number 

( ( n ;  k, x r,, kz  x r 2 , .  . ., k, x rq )  

of rolls that is needed. Necessarily, 

r , s n ,  i = 1 , 2  ,..., q. 

Clearly, we have 

( ( n ,  k x r )  = P / 1 .  / r J  1 , 
where LA]  is the largest integer smaller than or equal to A and [ A ]  is the smallest 
integer larger than or equal to A. 
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In discussing this problem, we will refer to the stock lengths as being sticks of 
length n rather than rolls; only the length n is important, and we prefer to think of 
it as a linear form. 

Baranyai’s Theorem. Consider the hypergraph K ?  + K :  + * * * + K k  on a set X of n 
vertices, whose edges are all the rl-subsets, all the r,-subsets, , . ., all the r, subsets of X .  
(If two ri’s are equal, this hypergraph has multiple edges). Then the chromatic index 
q ( K ?  + - . *  + K?) is equal to 

In other words, it is possible to  color the 

, = I  f: (9 
edges of this hypergraph with q colors if and only if it is possible to cut, from a stock 
of q sticks of length n, (:,) pieces of length r l ,  (:J pieces of length rz, . . ., (?J pieces of 
length r,. Each stick corresponds to a color. It is obvious that from a coloring, one 
can cut the sticks as required. The importance of the theorem is the other direction, 
in which the result says that one need not actually determine the particular edges to 
be colored a given color, but instead one need only determine the coloring 
“pattern” corresponding to each stick. 

Denote by h,J the number of pieces of length r, that we cut from the j th  stick. 
Then the cutting stock problem is feasible if and only if (n ;  rl, . . ., r p )  and the p X q 
matrix (h, , )  satisfy: 

(1) 

(2) 

r, integer, 0 s r, 

h,, integer and h,, 3 0, i = 1 , .  . ., p and j = 1,. . ., q ;  

n, i = 1, . . ., p ;  

(3 )  i h i j = ( ” ) ,  i = 1 ,  . . . , p  ; 
j = l  ri 
P 

r,h,J < n, j = 1, . . ., q .  
1=q 

(4) 

We now turn to the proof of Baranyai’s theorem. There is no essential difference 
between the proof here and that in [l] ;  we give it in full for three reasons: it is an 
interesting use of network flow theory; [l] may not be readily available to the 
reader; and the proof here is a little simpler. 

Proof of the theorem. We shall show the following: if ( n ;  r l , .  . ., rp)  and (h,)  satisfy 
(l), (2), (3), and (4), then there exist subsets 

E:, k = 1,2, .  . ., h,j 

such that: 
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(A) 

(B) 

{Ef; 1 j = 1,. . ., q and k = 1,. . ., h,,} is isomorphic to  K;, for i = 1,. . ., p ;  

{ E t  I i = 1,. . ., p and k = 1,. . ., hzJ}  is a family of pairwise disjoint edges, 
corresponding to  color j ,  for j = 1,. . ., q. 

The proof is by induction on n. Clearly, the result is true for n = i and n = 2. 
To prepare for the induction, we first remove every r, = 0 and r, = n and remove 

from (hJ) the corresponding rows. It is clear that if the result is true for a given n 
without such r,, then it is true with such r,. 

We next show that there exist integers E,! for i = 1,. . . ,p  and j = 1,. . ., q such 
that 

(5)  1haJrz / n j E,  [hyrl  / n 1 , 

This demonstration uses the fact that if a network has integer bounds on each arc 
flow and has a feasible flow, than it has a feasible integer flow. Specifically, 
construct a transportation network with source s, sink t, and two sets P = 

{1,2, .  . . , p }  and Q = {1,2,. . ., q} of vertices; the arcs are all the pairs (s, i )  with 
i E P, (i, j )  with i E P and j E Q, and (j, r )  with j E Q. The constraints on the flow 4 
are 

for every source arc (s, i ) ,  i E P, 

Lhi j r i /n j  < + ( i , j ) = =  [ h i j r i / n l  

for every intermediate arc (i, j ) ,  i E P, j E Q, 

for every sink arc (j, t ) ,  j E Q. 
Clearly, 4(s, i) = X, h,Jr, / n, 4(i, j )  = h,r, / n, and 40, t )  = c, h,,r, 1 n is a feasible 

flow. Hence, there exists an integer feasible flow $. Letting E,, = Q(i, j ) ,  i E P, 
j E Q, gives (5) ,  (6), and (7). 

Now, consider the vector ( n  - 1; r,  - 1, r2-  1,. . ., r, - 1, r l ,  r 2 , .  . ., r,) and the 
(2p) x q matrix ( h  {,), where 

for i = 1 ,..., p and j = l , . .  . , q ;  
h:,= [> g-p,J - F,-,,, for i = p + 1, . . ., 2, and j = 1, . . ., q. 

We next show that this new vector and new matrix satisfy the conditions (l), (2), (3), 
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and (4), corresponding to them. Condition (1) is true by having removed ri = 0 and 
ri = n beforehand. Condition ( 2 )  is true by E~~ integer and 

where the last inequality is by r, < n and h,, integer. To show (3), note that by (3) for 
the old vector and matrix, 

n - 1  
n n 

Hence, (3) now follows from (6) for i = 1 , .  . ., p. For i = p + 1,. . ., 2p, (3) follows 
from 

4 4 4 

2 (hij - E i j )  = c hij - c Eij = 
j = 1  j - l  j = 1  

by the binomial formula. 
Condition (4) for the new vector and matrix is equivalent to 

From (4) for the old vector and matrix and from (7), 
P 

2 E , ~  = o or 1, 
i = l  

P P 

Hence, the required inequality is satisfied. 

F $  of Y for k = 1,. . ., h $ j  such that: 
Let Y be a set of n - 1 vertices. By the induction hypothesis, there exist subsets 

(C) {Fblj = 1,. . ., q and zij = 1) is isomorphic to K::;  for i = 1,. . . , p ;  

(D) {F;I j = 1,. , ., q and k = 1,. . ., h,-p , , -  E # - , ~ }  is isomorphic to K:?, for 
i = p + l , . : . , 2 p ;  

(E) { F :  1 i = 1, . . ., 2 p  and k = 1, . . ., h i j }  is a family of pairwise disjoint edges for 
j = l ,  ...,q. 

We have already seen that 

3 Eij  = o or 1, 
i = I  

so that the family of disjoint edges 

{Ftl  i = 1,. . ., 2 p  and k = 1,. . ., h:,} 
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has at most one edge of cardinality r, - 1; all others being of cardinality r,. Let X be 
an n-set obtained from Y by adjoining one new vertex a, and let (for k = 1,.  . ., h,f) 

Ff :U{a} 

k--Et, 

if k = E , ~  = 1 ,  

otherwise, { F,+,f 
Efj= 

for each i = 1, .  . . , p  and j = 1, .  . ., q. This new family Efj satisfies (A) and (B), 
completing the induction. 

From this result follows: 

Corollary 1. The chromatic index of the complete r-uniform hypergraph on n vertices 
is 

Corollary 2. The hypergraph KL has the edge-coloring property if and only if n is a 
multiple of r. 

Proof of Corollary 2. When n is a multiple of r, 

n - 1  
q(K' , )=  [:(:)1= ( r - 1  ) = A(KL). 

When n is not a multiple of r, both of the rounding operations in determining q(K' , )  
increase it above A (K',), and at least one increases the expression strictly. 

3. The hereditary closure of the h-uniform hypergraph 

For hypergraph H on X with edges {Ei  1 i E I}. The hereditary closure cl(H) is 
the hypergraph on X where S is an edge if and only if 

+# S c E i  for some i E I. 

We define cl(Kh,) to be the hereditary closure of the complete h-uniform 
hypergraph Kh,. Thus, E is an edge of cl(K!) if and only if 

+ # E C X ,  and 

I E l c h .  

From Baranyai's theorem, we show 

Corollary 3. Let A '  = (a,. 1 i = 1,2, . . ., g)  be vectors satisfying : 
h 

iaij s n, and 
i = l  

(8) 
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(9) a,, 2 0  and a,, integer. 

Suppose, further, that every distinct solution to (8)  and ( 9 )  is represented as a column 
of A. Then 

(10) q(cl(Ki)) = min 2 x, 
i 

s.t.Ax = b, and x 3 0  and integer, 

where b, = (r), i = 1 ,  . . ., h. Further, cl(Kh,) has the edge coloring property if and only if 
there is a solution to (10) such that for every x, 2 1,  the column A ’  satisfies (8)  with 
equality. 

Proof. Use 

cl(Kh,) = K!, + K: + . . * + K !  

and Baranyai’s theorem, where the matrix H has x, copies of column A’ of A. 
4. The result for h = 3 

was given by Bermond [3]. 
We now establish the chromatic index of cl(Ki)  for h 

Theorem 2. The hereditary closure cl(Kh,), h S4, has the edge coloring property 
except for the following cases: 

h = 3 ,  n = l ( m o d 3 ) ,  n 3 7 ,  then 

q(cl(Kh,))= A(cl(K!))+ [$(n - 4)1 ; 

h = 4, n = l (mod4),  n 3 9,  then 

q(cl(Ki))= A(cl(KI:))+ ra(n -5)1 ; 

h = 4, n = 2(mod4), n z= 10, then 

Proof. The case h = 1 is trivial. For h = 2 and n even, the edge coloring property 
for cl(Kh,) follows from the same property for K: and K:. For h = 2 and n odd, we 
need only give the “pattern”; in this case, each color is one singleton and ( n  - 1)/2 
2-edges, and there are n colors. The corresponding column of A is 

1 
[icn - 1 J  

and satisfies (8) with equality. By Corollary 3, cl(KZ,) has the edge coloring property. 
For h = 3 and n = O(mod3), the result follows from cl(K3.) = K3,+ cl(K:) and 

Corollary 2 applied to K:, while cl(K?) has the edge coloring property for all n. 
For h = 3 and n = 2(mod3), the required solution to (10) has columns A’ given 

by 
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1 0 

a(n -3) 0 
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0 

i n  and 

0 0 
0 

- ; I >  
with corresponding values of x, = ( Z n )  and x, = 1. 

Before treating the case h = 3 and n = 1 (mod3), we show the edge coloring 
property for h = 4 and n = O(mod4) or n = 3 (mod4). For n = 3 (mod 4), the 
required solution to (10) has columns 

- -  
0 - 0 -  - 1  - 0  

n 0 0 
7 and or 

0 4 0 0 

0 0 n n - 12 

- - n - 1  

- 
- 4 -  - 4 -  - - - - 

- -  
n 

0 

0 

0 

and 

- -  

depending on whether n is odd or  even. The corresponding values of xi are (Y) and 
n, or n - 1 and 1. 

For n = 0 (mod 4), the solution to  (lo), provided n 2 12, has columns 

depending on whether n is odd or  even. The corresponding values of x, are 

and n, or  n - 1 and 1. n ( n  - l ) (n  -2)  
8 

For n = 4 and n = 8, the edge coloring property can be verified directly. 
Three cases remain: h = 3, n = 1 (mod3); h = 4, n = 1 (mod4); and h = 4, 

n 3 2 (mod4). In each of these three cases, we will first exhibit the optimum linear 
programming solution associated with (10). In a minimization problem in integers, 
such as (lo), the rounded up linear programming objective value is a clear lower 
bound on the integer programming objective. In each of the three cases, we shall 
show that an integer solution to (10) achieves that bound, thus establishing the 
optimal integer objective value and, thereby, q(cl(K)k). 

We first treat h = 3, n = 1 (mod 3). In this case, an optimum linear programming 
basis is 

0 0 
2 

n - 1  n - 4  n - 1  
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To prove optimality, we give the primal and dual solutions corresponding to this 
basis and show that the dual is feasible to T ~ A  C 1. Optimality is then assured by the 
complimentary slackness theorem or, alternatively, can be verified by showing 
equality of the two objective values. 

The primal solution is 

n(n - 1) n(n - 4) 
4 ’  4 n, 

and the dual solution is 

Clearly, the primal is non-negative for n 3 4, although it may fail to be integer. To 
show that the dual is feasible requires showing 

a3=S 1 3 3 
2 (n  - 1) a 2 + z  

whenever 2a2+ 3 a 3 s  n, and a2, a3 3 0  and integer. This fact can be easily 
demonstrated. 

The objective value is 

n(n - 1) I n(n - 4) = n(2n  - 1) 
4 4 4 ’  

n +  

and since 
A ( c l ( K ) 3 = l + ( n r 1 ) + (  n - 1  ) -  - n z - n + 2  , 

the objective value is 

n - 4  
A (cl(K)’,) + 7. 

It remains to show that rounding this objective value up to the nearest integer is the 
objective value for some integer solution to (10). 

In preparation, observe that the objective of (10) is not changed if Ax = b is 
changed to the seemingly, weaker Ax 3 b, because for any column of A, every 
non-negative integer column less than that column is also a column of A. For 
Ax 5 b, one can obtain an integer solution by rounding up the linear programming 
answer, which here is 

n(n - 1) n(n - 4) 
4 ’  4 .  

Since n is always integer, let us write 

n. 

!n(n - 1)= I 2 + f i , O S f 2 <  1 ,  

! n ( n - 4 ) =  1 3 + f 3 ,  0 S f 3 < 1 ,  
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so that the objective value is 

n +  I z+I ,+ f z+f , .  

If either fz  o r  f3  (or both) is zero, then rounding the variables up gives an objective 
value, corresponding to  an integer solution, of 

n + Iz  + 1, + [f21 + [f31 = [ n  f IZ + 1, + fz + f31 
which says that there is an integer solution whose objective is equal to the rounded 
up linear programming objective. Hence, assume that fz  > 0 and f3 > 0. If f z  + f3 > 
1, then the same result holds. It is not possible that fz  + f3 = 1 because then the 
objective value 

A (cl(K)”,> + a(n - 4) 

is integer. Then, so is 

i n ( n - 4 ) = 1 , + f 3  

an integer, contradicting f, > 0. 
The remaining case is fz + f, < 1. Now fz  must be 1/2 since 

:n (n- l )=&=Iz+fz ,  I n  

so f, must be one-fourth. Consider the integer solution to (10): 

n [  ] + I ~ , [  J.’,[ ] I +  [ 1 = 

f ( n  - I) f ( n  - 4) { ( n  - 1) ! ( n  - 4) 

n 
212+ 1 =I f ( n  - 1) + i&(n  - 4) + f I , (n  - 4) + { ( n  - 4), 

The objective value is 

n + I2 + I ,  + 1 = In + Z2 + I ,  + f2 + f31 
and the solution satisfies Ax 3 b provided 

2 L  + 1 2 2(Iz  + fz) and 

n - 1  n - 4  n - 1  n - 4  n - 1  n - 4  n - 1  +- 3 n T  + (I2 + f Z ) T  + ( I ,  + f3)3. 3 
+ I , -  + 1 2 -  n- 

3 3 3 

The first is clear by fz = 1/2. The second is equivalent to 

n - 4  n - 4  n - 1  l n - 4  l n - 1  - 23 fzT + f 3 3 - 2  - 3 +--  4 3 > 3 
or 



Coloring the edges of a hypergraph 

+ (d 

l n - 4  I n - 1  
2 3  4 3 '  
-->-- 

- - - - - - 
0 0 0 0 

1 + z3 0 +I4 0 + 0 

1 3 0 1 

,$(a - 5 )  - -$ (n  - 9)- &$(r l - l ) -  - :(a - 5 )  - 

1 5  

n 

or n 5 7. Since n = 4 can be treated specifically, the result follows. 
Having developed the ideas, the remaining two cases will be treated more briefly. 

For h = 4 and n = 1 (mod 4), an optimal linear programming basis is, for n 2 9, 

- 
1 

0 

0 

- $ ( n  - 

0 : I  1 $(n-1)  $ ( n - 5 )  $(n -9 )  $ (a -1 )  

1 0 0 
0 1 0 
0 1 3 

with primal solution 

which is clearly non-negative for n 2 5 .  The dual solution is 

2 4  4 
3 ( n  - 1)' 
-- 1 4  

3 ( n  - 1)' 0, -- 
( a  - 1)' 

which can be shown to satisfy ?TA d 1. The objective value is 

A (cI(K)",) + 4 II ( n  - 5 ) .  

As before, only two variables have non-integer values and can be written as 

t . f n ( n - l ) ( n - 5 ) = 1 3 + f 3 ,  

$ n ' ( n - 5 ) =  Z4+f4. 

If only one of f 3 ,  f4 is positive, the result follows as before. If f3 + f4 > 1, then the 
result also follows as before. Also, f3 + f4 = 1 is impossible because then the 
objective value, and hence 

$n(n - 5 ) ,  

would be integer so that f4 = 0 follows. The remaining case is f3 + f3 < 1 and f3, 

f4 > 0. But f3 must be 4 or 3 because one of n, n - 1, n - 5 is divisible by three. 
Consider first 

(i) f3 = i .  
Then the solution 
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n 

satisfies Ax 2 b provided 

f ( n - 5 ) 5 f . ! ( n - 9 ) + f 4 ! ( n - 1 ) .  

Since f3  + f4 = 4 + f4 < 1, f4 < f. But f4 is an integer over 9 SO f4 s $. Hence, Ax 3 b 
provided 

$ ( n  -5)>4.:(n - 9 ) + $ . a ( n  - I), 

or n 5 13. 
The cases n = 5 and n = 9 can be directly checked. 
(ii) f 3  = 3. 
Then f4 S $, and the solution 

r - 
1 0 

3 

i(n - 9) - - 

o + (;) 
0 1 

! (n  - 1) !(n - 5) 

- 
2 0 0 0 -  

0 1 0 0 

0 0 2 0 
- !(n - 2 )  ! ( n  - 2) a(n - 6) $ ( n  - 2 )  - 

satisfies Ax 3 b provided 

i ( n  -9)33.!(n - 9 ) + $ . $ ( n  - I ) ,  

or n 32.5. 

proof for n = 1 (mod4) is completed. 
The values n = 13, 17, 21 can be checked to see that they do not give f3 = 3.  The 

The case n = 2 (mod 4) has an optimum linear programming basis 

with primal solution 

and dual solution 

If n 3 10, the primal solution is non-negative. The case n = 6 can be shown to have 
the edge coloring property. Also, because n is even the primal solution has at most 
one fractional value so the result follows easily in this case. 

The objective is 
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A (cI(K)",) + 9. 

4. The complete h -partite hypergraph 

Kk is a generalization of the complete graph K,, ; now we can also generalize the 
complete bipartite graph K,,,,,,. The complete h-partite hypergraph Kh,,.,,, ,nh is 
defined by h disjoint sets X I ,  X 2  ,..., Xh, with 

) X , I = n ,  ( l ~ i ~ h )  

0 n, < nz < * . . < n,, . 

The vertex-set is the union U X , ,  and E 5 UX, is an edge if and only if 

J E  nx, I = 1 (1 c i ~ h ) .  

Lemma. The complete h -partite hypergraph has the edge coloring property. 

This was proved by Berge [ 2 ] .  

Theorem 2. The hereditary closure of the complete h -partite hypergraph has the edge 
coloring property. 

Proof. Let H' C cl(Kft,,,,, .,J be the hereditary closure of the complete h-partite 
hypergraph on X 1 ,  Xz ,  . . . ,&.  Consider h points a l ,  a r , .  . ., ah which are not in 
U X,, and put X', = X,  U{a,}. We shall construct a complete h-partite hypergraph 
H' on X i ,  X: ,  . . ., Xl, as follows: For each edge E of H there is an edge E' of H'  
defined by: 

E ' = E U { a , / E n X ,  =@}. 

Hence, H = K:,+l.na+l, . n , , + l ,  and there is a bijection between the edges of H and the 
edges of H'.  By the lemma, the complete h-partite hypergraph has the edge 
coloring property; hence: 

q(H')=A(H')=(nz+l)(n3+1)...(nk +l) .  

Consider a coloring of the edges of H' into q ( H ' )  colors; if we color each edge of 
H with the same color as the corresponding edge of H' ,  two intersecting edges of H 
will have different colors; hence 

q ( H ) s  q(H') .  

A vertex xo E X I  is of minimum degree in H' and its degree in H' is the same as its 
degree in H ;  hence 

A ( H ' )  A ( H )  . 
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Thus, we have 

q ( H )  q (H’)  = A (H’ )  A ( H )  q ( H )  . 

Hence A (H) = q ( H ) ,  and therefore H has the edge coloring property. 
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A conceptually straightforward method for generating sharp lower bounds constitutes the basic 
element in a family of efficient branch and bound algorithms for solving simple (uncapacitated) 
plant location problems and special versions hereof including set covering and set partitioning. 

After an introductory discussion of the problem formulation, a theorem on lower bounds is 
established and exploited in a heuristic procedure for maximizing lower bounds. For cases where 
an optimal solution cannot be derived directly from the final tableau upon determination of the 
first lower bound, a branch and bound algorithm is presented together with a report on 
computational experience. 

The lower bound generation procedure was originally developed by the authors in 1967. In the 
period 1967-69 experiments were performed with various algorithms for solving both plant 
location and set covering problems. All results appeared in a series of research reports in Danish 
and attracted accordingly limited attention outside Scandinavia. However, due to their simplicity 
and high standard of performance, the algorithms are still competitive with more recent 
approaches. Furthermore, they have appeared to  be quite powerful for solving problems of 
moderate size by hand. 

1. Introduction 

Initially, we formulate and discuss the close relationship among three problems, 
the simple plant locution problem (PLP), the set covering problem (SCP), and the set 
Partitioning problem (SPP). Since SCP and SPP can be viewed upon as special cases 
of PLP, the remaining part of the paper is devoted entirely to  PLP. Section 3 deals 
with a theorem on lower bounds followed by a heuristic procedure for solving the 
lower bound maximization problem. The bounding procedure is briefly discussed in 
terms of Lagrangian relaxation in Section 4 before we proceed with a few remarks 
as to how PLP’s may be solved by hand in Section 5.  More expedient techniques 
are, for obvious reasons, required for larger problems. A branch and bound 
algorithm is presented in Section 6 together with a report on computational results 
in the concluding Section 7. 

The last decade had witnessed a significant research into these problems, not in 
the least due to their wide applicability to real-world problems. An excellent 
entrance to the relevant literature is an extensive bibliography, compiled and 
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commented by Francis and Goldstein [ll]. Their list comprises 226 papers on 
normative approaches to location problems published in the period 1963-73. 

The more significant works on PLP include, in chronological and alphabetical 
order, Balinski [4], Bergendahl [6], Efroymson and Ray [lo], and Spielberg [IS]. 
Besides, the important paper by Khumawala [16] should be included in the list as 
being a representative of the current state of art in solving PLP’s. Useful references 
to SCP and SPP are the joint works by Garfinkel and Nemhauser [12, 131 and the 
series of papers by Balas and Padberg [ l ,  2,3]. Readers concerned with real-world 
problems will find a comprehensive bibliography of applications of SCP and SPP 
(with emphasis on the latter) in an appendix to [3]; 44 references are cited. 

Our personal contributions to PLP, SCP and SPP have manifested themselves in 
[6,7,17] plus various lecture notes, unfortunately for most readers, with several of 
the more important sections in Danish. The present paper, now in a language 
accessible to wider circles, is basically an extract of those earlier works except for 
the references above to more recent conquests and the inclusion of Section 4 on  
Lagrangian relaxation. It is our sincere belief that the computational efficiency and 
the simplicity of our approach (which makes it suited for hand computation as well) 
will justify this apparent reboiling of old bones. 

In addition, some of the “open” questions raised in our earlier contributions 
have given rise to a 1975-paper [8] where PLP’s with certain structures are studied. 
The main results comprise a polynomially bounded algorithm and the establish- 
ment of a connection to linear programming such that post-optimal analysis of LP is 
directly applicable for a class of structured PLP’s. Since the basic principles 
underlying this new step ahead still are those from 1967-69, it is conceivable that 
other researchers also may find some inspiration for future work. Anyway, the 
PLP-SCP-SPP-family still offers lots of challenges!. 

2. Plant location, set covering and set partitioning 

The so-called simple plant location problem deals with the supply of a single 
commodity from a subset of plants (sources) to a set of customers (sinks) with a 
prescribed demand for the commodity. Irrespective of its realism in practice, we 
assume unlimited capacity of each plant, i.e. any plant can satisfy all demands.’ 
Given the cost structure, we seek a minimum cost transportation plan which 
satisfies the demand at each customer. 

The constituents of a PLP are: 
m :  the number ot potential plants indexed by i ,  i E I = {1,2,. . ., m } ;  
n : the number of customers indexed by j ,  j E J = (1,. . ., n } ;  
k , :  fixed cost associated with plant i ;  

’ The adjective simple has been coined by Spielberg [IS] to express the assumption of unlimited 
capacities. In this context, simple has now become commonly accepted as synonymous with uncapaci- 
tared. 
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b,: demand (number of units) at customer j ;  
t i j :  unit transportation cost from plant i to customer j .  

We shall frequently use the adjectives “open” and “closed” for designating the 
state of a plant. The cost of sending no units from a plant is zero (i.e., the plant is 
“closed”) while any positive shipment from the i’th plant incurs a fixed cost k, (the 
plant is “open”) independent of the quantity shipped, plus a cost t,] proportional to 
the number of units transported to the j’th customer. 

We may adopt the mixed-integer mode formulation due to Balinski [4] but an 
immediate observation (also mentioned by Efroymson and Ray [lo]) leads directly 
to an all-integer formulation in 0-1 variables: 

Let y, = 1 if plant i is open; otherwise y, = 0. For any set of y’s, the optimal 
transportation plan can be determined directly by assigning each customer to the 
“nearest” open plant, provided that at least one plant is open. 

This implies that we may restrict ourselves to considering solutions where every 
customer is supplied only by a single plant. Accordingly, let x,~ = 1 if customer j is 
supplied by plant i ;  otherwise, x,! = 0. Furthermore, let c , ~  = t$, denote the total 
transportation cost incurred by x,  = 1. Individual production costs (if any) at each 
plant can easily be incorporated; if p# is the unit production cost associated with 
plant i, we may replace f$, by (p ,  + t,/)b, in the expression for calculating the c ,~  ’s. 

We observe finally, that possible negative fixed costs do not present anything 
new. Without loss of generality, we shall therefore assume all fixed costs to be 
nonnegative. We shall also assume nonnegative c,, ’s .  

The simple plunr locution problem can now be stated (PLP): 

2 xij 2 1, all j 
i = l  

all i, j 
yi - xij 3 0, 

xij = 0, l ;  yi = 0 , l  

Like the Classical Transportation Problem, the underlying network for PLP is 
K,,,,, the complete bipartite network with in sources, n sinks and m x n edges. Of 
more significance are the deviations between these two problems: the unlimited 
supply at each source and, in particular, the nonnegative fixed costs. The presence 
of the latter yields a concave cost function (with a discontinuity at zero for every 
source); hence, local optima different from the global may occur. Therefore, we 
cannot advocate the use of techniques based on extensions of Linear Programming 
(e.g. separable programming); on the contrary, experiments have shown that the 
results obtained may be quite misleading. Examples (or warnings against local 
optima) can be found in Bergendahl [5 ] .  Rather, studies of PLP’s can be claimed to 
be a topic of combinatorial programming. 
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Before proceeding with PLP, let us introduce two more problems belonging to 

Let I = (1,. . ., m} and J = (1,. . ., n} denote two finite sets and let A = {a i j }  be a 

A subset fc I defines a cover of J if 

the same family. 

m X n-matrix of zeros and ones. 

C_ aij 3 1 ,  ail j .  
i E I  

f is called a partition of I if 

Let yi = 1 if i E f and 0 otherwise and let ki be the cost associated with the i’th row 
of A. The set couering problem is to find a cover of minimum cost (SCP): 

yi = 0,1, all i. 

Accordingly, the set partitioning problem reads (SPP): 

y8 = 0, 1 all i. 

Any SPP having a feasible solution can be converted into a SCP by changing the 
cost vector. Independent verifications of this postulate can be found in Bilde [6] and 
the perhaps more accessible book by Garfinkel and Nemhauser [13, p. 3001. 

Now consider a particular PLP with all cil’s equal to zero or infinity and define a 
SCP with the same ki’s  and with 

1, if cij = 0, 
0, if cij = 00, 

all i, j .  

Conversely, for any SCP, define a PLP with the same ki’s and 

if aij = 1, 
‘1 [:, if aij = 0, c.. = all i, j .  (7) 

The existence of a finite solution to PLP implies the existence of a feasible solution 
to SCP and vice versa. For any such pair of solutions, both objective functions will 
assume the same value. 



Sharp lower bounds and efficient ulgoriihms 83 

Thus, SCP (and SPP) can be considered as special cases of the more general PLP. 
The following sections-dealing entirely with PLP - will therefore apply for SCP 
and SPP as well. 

A word about the computational complexity of PLP's: Karp's Main Theorem 
[ 151 states that 21 computational problems - virtually comprising all combinatorial 
optimization problems - are NP-complete. Verbally, it means that either each of 
them is solvable by a polynomial-bounded algorithm (i.e. an algorithm which 
terminates within a number of steps bounded by a polynomial in the length of the 
input) or none of them is. SCP is on that list too, and due to the relationship 
between PLP and SCP, we can conclude that PLP is NP-complete as well. 

3. Lower bounds for PLP 

Consider the PLP-formulation (1) where the objective is to minimize total cost. 
A direct way of generating a lower bound on zoprp = min{z,,,} could be to  relax the 
integrality constaints by replacing 

by x,j, yi 2 0 ,  x , ,  yt = 091 all i, i 

and to solve the resulting LP-problem. 
However, due to reasons to be discussed later, we shall desist from use of an 

LP-technique; instead a less sophisticated but highly effective heuristic method for 
the lower bound maximization problem is suggested. The exposition follows the 
lines given in Bilde and Krarup [7].  

Let A = { A , J }  be a ( m  x n)-matrix of reals. A is said to be feasible if the following 
two conditions are met 

A ,  s k,, all i, 
j = 1  

A ,  3 0 ,  all i, j .  

By introduction A in the PLP-formulation (1) by adding and subtracting the same 
expression in the objective function, we arrive at an equivalent formulation: 

i = l  

The optimal solution to (1) or (9) is denoted by ( x o ,  yo)  with min{zpLp} = zoPLp. 

function, we have 
For the individual terms in the left hand part of the transformed objective 
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for any feasible A, and for any (x, y )  representing a feasible solution to (9). 
For any fixed set of feasible Aij's, designate the LP-problem (LBPLP) 

m n  c 2 (Cij Aij)Xgj = ZLBPLP(min) 
i = l  j = 1  

all j 
i = l  

xi; 3 0, all i, j 

with min{zLBpLp} = z EBPLP. 
For ( x , y ) =  ( x o , y o ) ,  we obtain by means of (9a) 

No  sophistication is required for solving LBPLP. By inspection of (lo), we realize 
that 

i.e. ztBPLP is simply the sum of the column minima of the (C + A)- matrix. 
This explains the prefixed letters LB (Lower Bound) in LBPLP and proves the 
following 

Theorem I. 

2 min { c ,  + dij } s ;Lp 
j = 1  i 

where A,J is any set of nonnegative numbers satisfying 

2 A, k , ,  all i. 
j=L 

Verbally, Theorem 1 asserts that a lower bound on zoPLp can be achieved as the 
summed column minima of the (C + A)-matrix for any set of feasible A,,'s. Such a 
lower bound is, of course, strongly dependent on the way in which A is determined. 

According to Theorem 1, the sharpest lower bound w",PLP is found as the 
optimal solution to 
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2 A, c ki, all i, 
, = I  

A,, 3 0, all i, j .  

Actually (13) could be slightly reformulated and solved by means of some 
LP-technique. But since lower bounds normally have to be generated repeatedly 
throughout the computations in a branch and bound algorithm, we seek a bounding 
procedure which -rather than striving after an optimal solution to the bounding 
problem -combines sharp bounds with limited computational effort. 

The following heuristic procedure which possesses both properties is initiated 
with the given C-matrix and a A -matrix consisting entirely of zeros. By introducing 
a set r, of auxiliary variables, defined by the differences 

r, = k, - A,,, all i ,  (14) 
,=1  

r, must equal k, initially and the n + 1 numbers (r#,  A,,, . . ., A,,,) can throughout the 
computations be viewed upon as a partitioning of the corresponding k,. 

The idea of the procedure is to find partitionings of the fixed costs so as to 
maximize the summed column minima of the resulting ( C  + A)-matrix. While all 
c,,’s preserve their original values, the elements of A are increased iteratively such 
that any augmentation of some A,, is followed by a reduction of the corresponding r, 
by the same amount. 

The procedure operates on the columns in the (C + A)-matrix, one at a time. In 
each step we select a column and attempt to alter a subset of its elements by 
increasing the respective A,,% in a way which, so to speak, gives maximum effect on 
the corresponding column minimum with a minimum “consumption” of the r,’s 
involved. 

A few observations: To increase an element which is not a column-minimum in 
the actual (C + A)-matrix will not influence that column minimum. Furthermore, if 
two or more elements in a column are equal to the column-minimum, no effect on 
the lower bound will be obtained unless they are all increased. Finally, we shall see 
that a column-minimum cannot be further increased if any of the auxiliary variables 
involved have been reduced to zero. 

In order to guide the search for the column to be the next candidate for further 
augmentation, we associate a so-called level-number, A,, with the j’th column in 
C + A which is equal to the number of occurrences of the smallest element in that 
column. At any stage of computation, the next candidate for selection j *  is the 
column with the smallest level number. In case of a tie, that column with the 
smallest index is chosen. So, the selection rule reads: 

j *  = min j I Ai = min{A,} (15) 
s E J  
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Instead of proceeding with the formal exposition of the heuristic approach which 
will require additional symbols, we shall illustrate the method by means of a 
numerical example. 

A PLP (m = 5 ,  n = 4) is given in Table 1; also the initial values of the level 
numbers are shown. 

Table 1 

Plant Fixed costs Customer 
no. k, 1 2 3 4  

7 1 0  7 5 

6 
6 
7 
3 
5 1 9 1 5  4 

Level numbers, A, 1 2 1 2  

Initial tableau: A,, = 0, all i, j ;  r, = k,, all i. 

Step 1: minSEJ{A,} = 1 = A, = A,; j *  = min{l,3} = 1. 
csl = 1 is the smallest element in the first column and cl1 = 2 is the second smallest. 
We intend to choose A51 so as to increase cSl+ Asl as much as possible without 
exceeding cI1, i.e. by an amount /3 = cll  - c51= 2 - 1 = 1. rs shall remain nonnega- 
tive upon reduction by the same amount which, in this case does not affect the value 
of /3, i.e. 

/3 = min{(c,, - csl), rs} = min{l,5} = 1. 

Finally, to complete the updating of the tableau after the first step increase A1 by 1 
resulting in Table 2 .  

Table 2 

I 1, 1 2 3 4 

1 6 2 10 9 

7 9 ! }  C + A  
2 6 8 

p = 1  3 7 9 7 6 
4 3 7 10 7 5 
5 4 2 9 15 4 

2 2 1 2 
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In general, all elements which have been changed from one step to the next are 
shown underlined in the corresponding tableau. 

Step 2: j *  = 3 .  Increase A,,, and reduce r3 by p = min{(c34+A34) 
- (c,, + A,,), r3}  = min{l,7} = 1, and update A 3  producing Table 3. 

Table 3 

1 1, 1 2 3 4 

1 6 2 10 9 
2 6 8 7 

p = l  3 6 9 7 7 
4 3 I 10 7 5 
5 4 2 9 15 4 

9 :} C + A  

2 2 2 2 

Step 3:  j *  = 1. Increase A l l  and A,, and reduce rl and r5 by p = 
min((c4, + Ad])- (cI1 + All), r l ,  is} = min{5,6,4} = 4. 

Note that the effective upper bound on p is r5 ( = 4  before reduction). 
Accordingly, A,  remains unaltered and, what is more important, the smallest 
element in the first column can not be further increased since r5 = 0 after reduction. 
To emphasize this, we mark row 5 and column 1 in Table 4 with asterisks. 

Table 4 
* 

1 rI 1 2 3 4 

1 2 6 10 9 8 
2 6 8 7 9 

4 3 I 10 I 5 
* 5  I! 6 9 15 4 

4 2 2 2 2 

p = 4  3 6 9 7 I 

Step 4: A marked column is no longer a potential candidate for selection; hence 
j *  = 2. 
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Table 5.  
p = min((9 - 7), 6,6} = 2 

* I 

I r, 1 2 3 4 

1 2 6 10 9 
2 4 8 9 9 

p = 2  3 4 9 9 7 
4 3 7 10 7 5 

* 5  0 6 9 15 4 

C+A 

4 2 3 2 2 

One of the smallest elements of column 2 in Table 5 appears in a marked row and 
can accordingly never be further increased. Column 2 is therefore marked as well. 

Step 5: j * = 3; p = min{(9-7), 4,3} = 2 produces Table 6. 

Table 6 
* * 

I r. 1 2 3 4 

1 2 6 10 9 
2 4 8 9 9 

p = 2  3 2 9 9 9 
4 1 7 10 9 5 

* 5  0 6 9 15 4 

Step 6: j *  = 4; p = min{(4-2), 4,2) = 2 

Table 7 
* * * * 

I r, 1 2 3 4 

1 2 6 10 9 
2 2 8 9 9 

p = 2  3 0 9 9 9 '} C+A 
4 1 7 10 9 5 

* 5  0 6 9 15 4 
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r3 is reduced to zero; consequently, row 3 and column 4 are both marked in Table 7. 
Also the last column (column 3) can be marked since one of its smallest elements 
now appears in a marked row. 

All columns are marked and the process terminates with a lower bound equal to 
the sum of the smallest elements in each column: 

4 

min{c i j+A, ,}=6+9+9+4S  wFBpLp. 
j = 1  i 

4. The bounding procedure and Lagrangian relaxation 

For a general integer LP-problem (IP): 

cx = z,,(min), 

Ax 3 b, Bx a d, 

x a 0; xi integer, i E I, 
(17) 

the Lagrangian relaxation of IP relative to the constraint set Ax 3 b and a 
conformable nonnegative vector A is defined by IPR: 

cx + A ( b  - Ax) = zrpn(min), 

Bx 2 d, (18) 

x 2 0; x, integer, i E I. 

The idea of Lagrangian relaxation is to identify a set of “complicating 
constraints” (here Ax 2 b ) ,  weighting these by multipliers and inserting them 
in the objective function in order to obtain a problem IPR which, hopefully, is 
simpler to solve than the underlying problem IP. 

A general theory of Lagrangian relaxation, which has provided a unifying 
framework for several bounding procedures in discrete optimization, has been 
developed by Geoffrion [14] with particular emphasis on applications in the context 
of LP-based branch and bound. 

Let zYpR denote the minimum value of zrpR for given A. In a discussion of the 
potential usefulness of a Lagrangian relaxation, Geoffrion points out that the ideal 
choice would be to take A as an optimal solution to 

which is the formal Lagrangian dual of IP with respect to the constraints Ax 3 b. 
Now let us exemplify the situation sketched above by reconsidering our PLP with 

yi - xij 3 0  as the set of “complicating constraints” and with the Aij’s as the 
corresponding set of nonnegative multipliers. By (l), (17) and (18), the derived 
Lagrangian problem becomes (PLPR): 
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9 x ,  3 1, all j ,  
i = l  

xij = 0.1; yi = 0,1, all i, j .  

If we restrict ourselves to considering multipliers satisfying (8), the yi -variables 
may be removed from the Lagrangian problem because jl$Aij 2 ki for all i, and 
PLPR above coincides with (10) which is solvable by inspection. 

Due to (12), the minimum value of zpLpR is determined by 

ZLR = 9 min{cij + ~ ~ ~ 1 .  
j= l  i 

In terms of Lagrangian relaxation, our approach can be viewed upon as a 
parametrized relaxation where the bounding procedure is a rule for setting the 
A,, -parameters to obtain sharp lower bounds. 

In this context it is of interest to notice that the Lagrangian dual (19) and the 
lower bound maximization problem (13) are equivalent. 

As was mentioned in the concluding remarks of Section 2 on computational 
complexity: PLP is NP-complete. Since it is very unlikely that a polynomial- 
bounded algorithm can be devised for a NP-complete problem (e.g. a PLP), it is 
reasonable to advocate the use of heuristics for solving large-scale PLP’s. This is 
one of the main arguments for Cornuejols, Fisher and Nemhauser [9] for studying 
heuristics for solving a so-called account location problem which, as they point out, 
is mathematically equivalent to PLP. Their main results are on the quality of 
solutions obtained from heuristics and the quality of bounds obtained from LP and 
Lagrangian relaxation. It is interesting to realize the fact that the question on how 
the subset of “complicating constraints” should be selected does not necessarily 
have an obvious answer. While our Lagrangian relaxation is relative to y, - x,, 3 0, 
the complementary subset &x,, 3 1 is applied in [9]. However, to make a detailed 
comparison of our ideas to those in [9] and to compare the computational 
experience must be left over as an appropriate subject for future research. 

5. Solving PLP’s by hand 

Let ( r * ,  A *) denote the final values of (r, A) upon termination of the bounding 
procedure as was described in Section 3 and let w *  be the lower bound thus 
obtained: 

r: = ki - AT,, all i 
, = I  
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where a; = min{cij + A  f j } ,  all j .  
I 
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It may occur that equality holds, not only between w * and wtBPLp but also between 
the latter and zELP. To illustrate this, let 

and suppose a subset P C I of plants can be found which satisfies the following 
conditions: 

P C  (J 0, 

P n Di# 0, all j 

j = l  

A f j A  : j  = 0, all (i, s), i E P, s E P, i# s. 
i = l  

Define yi = 1 if i E P; otherwise, yi = 0. For each j ,  select an entry 

{ ( i , j ) l i € P n D j , A : j > O }  (27) 

or if no such entry exists, let ( i , j )  be any member of the nonempty subset 

{(i, j )  I i E P n oj, A f j  = 0) (28) 

and assign the value 1 to the corresponding xij while all remaining x , ~ ’ s ,  s# i are 
kept at zero level. 

Intuitively, (23)-(25) means that we seek a subset P of open plants for which the 
fixed costs have been totally absorbed during the process of constructing the A t i ’s .  
Furthermore, all x i j  = 1 selected by (27) or (28) corresponds to entries ( i , j )  with 
yi = 1 and cY + A T i  = ai, and (26) secures that A T i  > 0, A f i  > 0 cannot occur 
simultaneously for any pair (i, s) of open plants, i.e. 

A f j  = k ,  J’ = { j  I xij = l}, V i  E P. 
j € I ’  

Besides, the column minima of every column of C + A * must appear in at least one 
of the rows comprised by P. Thus, we have constructed not only a feasible solution 
(x,y) representing an upper bound on zOpLp but a solution for which the lower 
bound w *  coincides with the value of the objective function. Hence, ( x , y )  is 
optimal. 

Consider the final tableau obtained in Section 3, now with all elements of C + A * 
written explicitly as the sum of two terms displayed in Table 8. 
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Table 8 

i k ,  r': 1 2 3 4 

2 
2 

(3 

@ 
1 

2 + 4  1 0 + 0  9 + 0  8 + 0  
8 + 0  7 + 2  9 + 0  2 + 2  
9 + 0  1 7 + 2  b i 3  2 + 2 [  
/ + u  1 0 + 0  7 + 2  5 + 0  

'1 1 + 5  9 + 0  1 1 5 + 0  1- 
Ic+** 

Column minima, a, 6 9 9 4 

By means of (23): D ,  = { S } ,  D2 = {3,5}, D,  = {3}, D4 = {3,5}. Obviously, P = ( 3 , s )  
satisfies (24)-(26); hence y ,  = y s  = 1. The complete solution with w * = z",,, = 28 is 
achieved by (27) and (28); actually, (27) suffices for all columns in this particular 
case: x s l  = x3z = x , ~  = x34 = 1. 

Note, that we have not claimed the existence in general of a subset P satisfying 
(24)-(26). Although it occurs frequently in practice, some reflection will show that 
counter examples are easily constructed for any m 3 3, n a 3. 

However, searching for P by simple inspection of the final bounding tableau is 
not an overwhelming task for problems of moderate size. A series of real-world 
problems ranging up to rn = 29, n = 14 were optimally solved on a blackboard 
(including determination of the lower bound) within a few minutes. 

In cases where P cannot be derived directly from the tableau, a branch and 
bound technique almost suggests itself as the most natural way to proceed. For 
problems of a reasonable size, hand computation is still a possibility provided that 
the lower bounds are generated as described in Section 3. 

6. Branch and bound algorithms 

Several experiments with different selection rules for branching were performed 
by the authors in the period 1967-69. Some preliminary results are reported on in 
Krarup [17] but the methods were further improved later on by Bilde [6] from 
which the material in this section is extracted. 

At any node r in the branch and bound tree (representing a subproblem of the 
given PLP or the subset of feasible solutions to that subproblem) the set of plants is 
partitioned into three subsets 
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“Open” plants: 

“Closed” plants: 

“Free” plants: 

I :  = ( i  1 yi  = 1 at node t } ,  

1: = { i  1 yi = 0 at node t } ,  

I :  = { i  1 y i  is undefined at node t } .  

Any fixed yi at node t (i.e. i E 1: U I;) preserves its value when further branchings 
from node t are performed. 

For node t, define a subproblem of the original PLP by ignoring:  
all plants i E I ;  (computationally, we may delete the corresponding rows or  

replace k ,  i E I:, by very large numbers) 
all fixed costs associated with the subset of open plants ( k ,  i E I : ,  are replaced by 

zeros). 
Let wl, denote the lower bound obtained by the bounding procedure for this 

particular subproblem. Obviously, a lower bound w ‘ for the subset of solutions 
represented by node t can be achieved as 

w‘ = w f +  k , .  (29) 
i e r ;  

No further branching from node t is required in the following two cases: 
(1) If 1: = 0, an optimal solution determined by ( I : ,  I:) has been found for node t 

with zpLp = w‘. 
(2) If w ‘  2 zpLp, where zpLp represents the value of the best solution so far and 

where this solution is obtained from the bounding procedure by opening those 
plants (rows) which are marked and by serving all customers from the “nearest” 
opened plants. 

On the other hand, if 1: # 0 A w ’ < zpLp, two new subproblems corresponding to  
nodes ( t  + 1) and ( t  + 2) are generated by the branching rule involving the selection 
of a “free” plant i E 1:: 

Accordingly, 

I{+’ = I: ; I:,’ = I; u { i } ;  I:+’ = 1: - { i }  

= 1: u { i } ;  I;+2 = 1‘ . I:+’ - - 1: - { i } .  
2 ,  

What remains to discuss is the brunching rule itself: Determination of that node t 
from which to branch and selection of that free plant i E 1; on which the branching 
is to  be based. 

Two different rules are tested in [6]. Both apply ri and r t  as was introduced by 
(14) and (21) respectively. 
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Whenever a lower bound w‘  has been determined by (29)? the final bounding 
tableau contains actual values of r : .  For a forthcoming node t + 2 with some yi = 1, 
i E I:, the following relation must hold 

W f + 2 2  r ; +  w‘ 

Rules A and B can now be stated: 
Rule A :  Select from I :  a plant i for which ri = maxSEI: { i s } .  Perform the 

branching and proceed with node (t + 1). 
Rule B : Let i denote that row which was the first to be marked in the bounding 

procedure for calculating w ‘. Due to the definition of the subproblem represented 
by node t, i is certainly a member of the nonempty subset 1:. Select that i for the 
next branching and proceed with node ( t  + 2). 

Clearly, we attempt as soon as possible to exclude the “bad” plants by Rule A or 
to include the “good” plants by Rule B. 

7. Computational experience 

The two versions of the algorithm were tested in 1969 on an IBM 7094. The 
results presented below in Tables A and B appeared originally in [6]. 
Headings of the tables: 

rn: number of potential plants (rows), 
n: number of customers (columns), 
w :  the first generated lower bound, 
S: the number of distinct solutions obtained, 
ZFLp: the value of the first solution obtained, 
zoPLp: the value of the optimal (or best) solution, 
BF: number of branchings required for obtaining the first 

BO: number of branchings required for obtaining an optimal 

BT: total number of branchings, 
Time: computing time (IBM 7094) including input-output (sec.) 

solution, 

solution, 

Problem a1 is a set covering problem with a density (percentage of ones) equal to 

For all the remaining problems, the elements in the C-matrix have been drawn at 
random from a discrete uniform distribution over the interval (0,1000). 

Except for problem e l0  where all fixed costs are equal to 10,000, the fixed costs 
for problems in Table 9 are all chosen at random over the intervals (l,OOO, 10,000) 
for bl-b3 and (1,000, 2,000) for c l  and c2. 

The relative difference between zoPLp and w is 0 (al ,  b2) and a few percent (bl ,  b3) 
so that the first application of the bounding procedure almost suffices for solving 

15%. 
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Table 9 
Computational experience with Rule A. 

Prob- m n W s Z&;P Z",P BF BO BT Time 
lem (sec.) 

a1 29 14 31 1 31 31 23 23 23 < I  

bl 50 100 15230 1 15372 15372 43 43 46 3 
b2 50 100 14020 1 14020 14020 44 44 44 2 
b3 50 100 15110 2 16919 15530 44 47 50 8 

cl' 50 100 13954 7 17237 15180 44 571 (769) (> 250) 
c2" 50 100 14973 1 16684 16684 43 43 (850) ( > 250) 

e10" 50 100 41841 3 47868 47012 50 78 (374) (> 150) 

a Execution of the program interrupted before optimality was proved. 

Table 10. 
Computational experience with Rule B. 

Problem m n W s Z L  zR, BF BO BT Time 
(sec.) 

d l  
d2 
d3 
d4 
d5 
d6 
d7 
d8 
d9 
d10 

30 80 
30 80 
30 80 
30 80 
30 80 
30 80 
30 80 
30 80 
30 80 
30 80 

12248 
16989 
20950 
24040 
26532 
29399 
31887 
33970 
36075 
37922 

3 
3 
1 
2 
2 
2 
1 
1 
1 
1 

13805 
19917 
23821 
27559 
30559 
33559 
36122 
38122 
40122 
42122 

13416 
19778 
23821 
27512 
30512 
33512 
36122 
38122 
40122 
42122 

8 111 216 
6 24 218 
5 5  169 
4 14 141 
4 8  106 
4 27 101 
3 3  83 
3 3  55 
3 3  47 
3 3  43 

11 
24 
19 
17 
14 
15 
13 
11 
11 
11 

e l  
e2 
e3 
e4 
e5 
e6 
e7 
e8 
e9 
el0 

50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 
50 100 

13054 
18518 
22646 
26057 
29249 
32024 
34670 
37141 
39725 
41841 

2 
3 
4 
2 
2 
2 
2 
2 
1 
1 

14983 
2 1796 

a26730 
30350 
33712 
36712 
39712 
42712 
45012 
47012 

14983 
21593 
26111 
30111 
33573 
36573 
39573 
42573 
45012 
47012 

10 19 1271 202 
7 60 1112 172 
6 56 384 82 
5 39 258 65 
4 14 193 53 
4 9  136 43 
4 13 131 42 
4 7  143 48 
3 3  117 44 
3 3  79 37 
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these problems. However, a considerable growth of the relative difference is 
noticed for (cl, c2, e10) and Rule A is no longer able to provide optimality within a 
reasonable amount of time. 

With the idea of Rule A in mind, a plausible explanation is that problems 
(al ,  bl-b3) are characterized by very few good solutions while the converse is true 
for (cl, c2, e10). The conclusion is that the performance of Rule A is good in some 
situations but unsatisfactory for problems with a “flat” optimum. 

Having realized the drawbacks of Rule A, a natural alternative would be to 
“reverse” the philosophy underlying the selection of that plant on which the next 
branching is to be based. Accordingly, Rule B was implemented and tested on a 
series of examples, all believed to represent the most difficult cases: All fixed costs 
of the same magnitude. 

For the twenty problems, d, and e, in Table 10, all fixed costs are equal to 
1000 x q. For e l0  which appears in both tables, a substantial drop in computing time 
is recorded. In general, Rule B seems to be efficient for solving problems with a 
large number of near-optimal solutions. Note, that the first solution obtained is 
optimal in 35% of all examples and that the number of branchings required (the 
BF-column) is extremely low. 
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This paper investigates the use of general partial orderings in implicit enumeration algorithms. 
It is shown that if one chooses a partial order P such that x P y  implies cx less than or equal to cy 
then there exists an optimal solution which is “prime” in the sense that the solution, x,  is feasible 
and there exists no y P x  such that y is feasible. Enumeration algorithms search for prime 
solutions and two methods of performing this search are characterized. Finally the paper 
illustrates these concepts by the introduction of two partial orders that are stronger than vector 
partial ordering which is the basis of Balas type implicit enumeration algorithm. 

1. Introduction 

In this paper we investigate partial orderings as they apply to implicit enumera- 
tion techniques for binary linear integer programs. This programming problem 
consists of linear constraints which define the set of binary solutions which may be 
considered, and a linear decision criteria or objective function which is used to  find 
the optimal solution. Enumeration algorithms usually base their enumeration, at 
least implicitly, on some combination of objective function and feasibility consider- 
ations. The obje‘ct is to find rules which generate a solution with a better objective 
function value than has yet been found, or if this cannot be done, to terminate. 
Orderings have been used by several authors as direct means of enumeration. 
Lexicographic orderings have been used by Dragen [6] and Korte, Krelle and 
Oberhofer [lo]. Lawler and Bell [ll] have used a combination of lexicographic and 
vector partial orderings. Balas [l] has used vector partial ordering as a basis for his 
additive algorithm. 

We wish to investigate the explicit use of a partial ordering of binary solutions as 
a surrogate for the objective function. The motivation is that if one were provided a 
total order that corresponded to the ordering induced by the objective function, the 
programming problem is reduced to searching that linear ordering until a first 
feasible solution is found. It should be pointed out that the objective function does 
not totally order all solutions since several solutions may have the same objective 
value. In such cases we assume that these solutions of common value can be 
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ordered in an arbitrary manner. This implies that if there are alternative optima we 
have no preference between them and are only interested in one of these solutions. 

If we have a partial ordering that agrees with the objective function ordering, i.e., 
elements ordered in the partial order are ordered in the same direction in the 
objective order, then the partial order cannot contain as much information. In 
return for this loss, however, we may receive the following advantage: solutions 
that are potentially “better” may be easier to generate using the partial ordering 
rather than the objective function. This may be true especially if we choose a well 
structured partial order. For instance if c is the vector of costs and x and y are two 
binary solutions such that x s y ,  i.e., x ,  s y i  for all i, then c 2 0  implies cx cy. 
Thus if x is feasible, there is no need to evaluate y since it  cannot be optimal if  we 
are minimizing. Moreover we know that if w is an optimal solution then either 
w G x or w is unordered with x .  Thus we have implicitly enumerated all solutions y 
such that x G y .  This ordering is the one used by the Balas additive algorithm. 

In the next section we shall discuss properties of general partial orderings that 
agree with the objective function and how these properties can be used in 
theoretical enumeration algorithms. The third section discusses two partial order- 
ings and their particular properties. 

2. Partial orderings 

We shall consider the problem 

min cx, 

st. Ax 3 b, (1) 

x binary, 

where A is an m x n matrix and c, b and x are vectors of appropriate dimension. 
b a feasible solution. A n y  

feasible solution x such that cy < cx implies y is not feasible is called an optimal 
solution. 

Let P denote a partial ordering relationship on the solutions; that is for every two 
binary vectors x and y ,  x #  y only one of the following holds 

We shall call any binary vector x a solution and if Ax 

6)  X P Y ,  
(ii) y P x ,  

(iii) neither x P y  nor y P x ,  
and if x P y  and y P z ,  then X P Z .  One can think of P as a preference relationship; 
that is either x is preferred to y or y is preferred to x or neither of these. The 
vector partial ordering discussed in section 1 is generated by the relationship 
P = { c } ;  that is, P is the usual vector partial ordering relation. 

If condition (iii) holds x and y are unordered. If x P y  ( y  P x )  and there exists n o  z 

such that x P z P y  ( y P z P x )  we say that x and y are adjacent. A chain is a 
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sequence of adjacent elements ( X I ,  x z ,  . . . , x k )  with x ' P x i t l  and such that there 
exists n o  y or z with z Px '  and x k  P y .  A partial chain is a sequence of adjacent 
elements. ( X I , .  . . , x k )  with x i  Px'+' .  x 1  is called the origin of the partial chain. We 
say that P *  agrees with P ( P *  is contained in P )  if x P *  y implies x P y .  If for all x ,  y 
binary either (i) or (ii) holds, then P generates a complete or linear order. 

Throughout the remainder of this paper we shall consider only those partial 
order relationships such that P E C where 

C = { P  1 x P y  + cx s cy for all x ,  y binary}. 

C' will denote the set of linear orders in C, To simplify notation, the partial order 
generated by P will be called the partial order P. 

The following definition identifies the central property of solutions in a partial 
order that is of concern in enumeration techniques. 

Definition 1. A solution x is a prime solution with respect to a partial order P if 
(i) x is feasible, and 

(ii) if y P x  then y is infeasible. 

We know that if x is prime then all chains through x cannot contain a feasible 
solution with lower cost, since all solutions y ,  such that y P x ,  are infeasible by 
definition and all solutions y ,  such that x P y ,  have cx S cy since P E C. 

Lemma 1. At least one optimal solution is a prime solution. 

Proof. Let y be an optimal solution such that x P y  implies x is not optimal. Now 
x P y  implies cx i cy thus x P y  implies x infeasible since otherwise it is an 
alternative optima but y is feasible and x P y  implies x infeasible, thus y is prime. 

Thus we can restrict our search to the prime solutions. Of course, the set of prime 
solutions change with different partial orders and thus in searching for partial 
orders one would desire to find a well-structured partial order with few prime 
solutions. It is the function of enumeration schemes to find the prime solutions and 
to identify them either directly or indirectly. 

The distinction between direct and indirect enumeration techniques is not trivial. 
Each embodies a different enumeration technique that generates solutions in 
alternative ways. To contrast the differences we present a general algorithm for 
each. 

Rudimentary Direct Algorithm : 
Step 1 :  Choose a partial order P E C. 
Step 2: Generate a prime solution. 
Step 3: Establish criteria that eliminate all chains containing this prime solution. 

Because of the generality of this Algorithm, each of the steps is non-trivial. The 
Go to Step 2 .  
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selection of the partial order P in Step 1 must be chosen so that Step 2 can 
recognize when a prime solution is generated. Step 2 may contain a technique that 
always generates a prime solution or more practically may generate several 
solutions stopping when a prime solution is generated. Similarly Step 3 may be 
implemented in several ways. The direct implication is that chains are actually 
deleted from the partial order which is direct elimination of a set of solutions. A 
more practical way may be to impose additional constraints that make the present 
prime solution infeasible and that relies on multiple solution generation within Step 
2. A direct search algorithm for set-covering problems has been used by Bowman 
and Starr [3] for a partial ordering that will be described in the next section. 

The indirect algorithm is more familiar to students of implicit enumeration and is 
the search method used by Balas [l]. 

Rudimentary Indirect Algorithm : 
Step 1: Choose a partial order P E C and a solution x such that there is no 

Step 2: If x is feasible, go to Step 4. Otherwise go to Step 3. 
Step 3: Choose a partial chain originating at x that contains a feasible solution. 

Generate the adjacent solution to x, say y ,  on this chain. Let x = y and go to Step 2. 
If n o  such partial chain exists, go to Step 4. 

Step 4: (Backtracking) Delete all partial chains originating at x. Retrace the 
current chain to x until there is an element w that is the orign for at least two 
chains. Let y be an adjacent element to w with w P y  and such that y is not on the 
current chain. Let x = y and go to Step 2. If there exists no such y terminate. 

In the indirect algorithm, the choice of the partial order P is guided by the ease of 
finding adjacent elements (for Steps 3 and 4) and the ability to determine partial 
chains that contain a feasible solution. In actual practice Step 3 would probably be 
relaxed to the statement of finding a chain that has potential for a feasible solution; 
that is, it may not but we need to explore further. Step 4 implies the direct 
elimination of solutions as did Step 3 of the direct algorithm. Here again practical 
application would imply the addition of constraints that mark eliminated partial 
chains. 

In order to better understand the implications of this partial ordering material 
and the two algorithms, we illustrate them with vector partial ordering, the ordering 
used by Balas for his additive algorithm. As noted earlier, this ordering is generated 
by the relationship P = { s } ;  that is, x P y  if x, s y ,  for all i .  A graph of the partial 
order for n = 4 is shown in Figure 1. We have that P E C if c 3 0 and since we can 
always replace a variable with c, < 0 by its complement, i.e., x, = 1 - X,, we have 
c 3 0 for any problem (I). The smallest element in this chain is at the top of Figure 1 
and as one follows any chain from top to bottom the objective function is monotone 
non-decreasing. 

Let us investigate the Indirect Algorithm first as implemented by Balas [l]. We 
have chosen the partial order P and we now choose a starting solution x, = 0 for all 
j .  This completes Step 1. The criteria for adjacency is the setting of one variable 

solution y with y P x .  
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Fig. 1. Vector partial order, n = 4. 



104 V.J. Bowman, Jr., J.H. Starr 

x, = 0 to x, = 1 or of setting x, = 1 to x, = 0. At each iteration of a Balas type 
algorithm the indices of variables are divided into two disjoint sets S and F. S 
denotes indices of variables that are fixed at a particular value. These variables 
constitute a partial solution. The remaining variables, those in index set F, are called 
free. In the tests for feasibility or optimality, these variables are implicitly assigned a 
value of zero. Thus each iteration corresponds to a solution of the problem. The 
algorithm at a solution (or iteration) that is not feasible investigates by various 
criteria (see for example [l, 2,7, 8, 9, 12]), to see if setting a variable with index in F 
to one may lead to a feasible solution. If so the variable is set to one and its index 
added to S and deleted from F. If some variable with index in F cannot yield a 
feasible solution with value one it is fixed at zero, put in S and deleted from F and 
is marked so that setting it to one from this solution will not be attempted. This 
marking process corresponds to a partial chain elimination. It says that from this 
solution any chain containing the marked index has been eliminated with the 
variable at its other value. This corresponds to Step 3. The backtracking in Step 4 
implicitly says that any partial chain originating at the present solution cannot 
contain an optimal solution. The backtracking frees variables in S in the reverse 
order they were added and stops at the first unmarked index, say k.  Variable k is 
then set at its opposite value and marked indicating that all partial chains 
originating at its former value have been eliminated. This is Step 4. 

Consider the following example: 

Example 1. The problem is 

min xI + 2x2 + 3x, + 4x4, 

s.t. x, + 3x2 + x j  2 2, 

2x1 - xz + x3+ xq 2 1. 

A sequence of solutions that might be generated by an Indirect Algorithm is 
displayed in Table 1. 

It should be noted that several of the sequence numbers are generated by one 
step of the indirect algorithm. In practice one iteration of an algorithm would also 
generate several of these sequence numbers. They are explicitly stated here to 
emphasize the investigative properties of the Indirect Algorithm. Reference to 
Figure 1 may aid in understanding the sequence of exploration and the deletion of 
chains. 

As mentioned earlier the use of a Direct Algorithm has been limited to another 
partial ordering discussed by Bowman and Starr. It is therefore necessary to discuss 
an algorithm that will first find a prime solution and second indicate what solutions 
are not contained in the chains containing this prime solution for vector partial 
ordering. These are described below. 

Prime Solution Generation : 
Step 1: Set iteration counter t = 1 and j o  = n + 1, 6, = b. 



Partial orderings in implicit enumeration 

Table 1. 

105 

Sequence Solution Information 

0 Step 1 
1 Step 3 
2 Step 3 

Step 4 
4 
5 

Step 4 

7 
8 Step 4 
9 

10 Step 3 

Step 4 12 
13 
14 Step 4 
15 
16 
17 Step 4 

18 Step 4 

infeasible 
infeasible 
feasible 
eliminate all partial chains originating at (1100) 
non-optimal 
eliminate all partial chains originating at (1010) 
non-optimal 
eliminate all partial chains originating at (1001) 
eliminate all partial chains originating at (1000) 
infeasible 
non-optimal 
eliminate all partial chains originating at (0110) 
non-optimal 
eliminate all partial chains originating at (0101) 
eliminate all partial chains originating at (0100) 
non-optimal 
eliminate all partial chains originating at (0010) 
non-optimal 
eliminate all partial chains originating at (0001) 

Step 2: Find k such that 
k 

(as)+ 2 b ,  for all i, 
* = I  

... 
(as).+ < b ,  for some i, 

S = l  

where (a,,)+ = max(a,,,O). If k < j,+,, go to Step 3. Otherwise go to  Step 4. 

t = t + 1 go to Step 2. 

to Step 2. Otherwise go to Step 5. 

Step 3: Set j ,  = k, b,,,, = b,,, - a z k  for all i. If b,,, S O ,  stop. Otherwise let 

Step 4: Set It-, =it-, + 1 ,  k = j z - , ,  b,3, = b,,, - a , , k  + a,,,-, for all i. If j,-, # 11-2, go 

Step 5: Set t = t - 1. If t = 0, stop n o  prime solution. Otherwise go to Step 4. 
This algorithm is a systematic way of exploring the prime covers and a version of 

To obtain solutions that are unordered with a prime solution, say y, any other 
it is used by Bowman and Starr [3] for set covering problems. 

solution x must satisfy the following two constraints: 

where Q = { j  1 y, = 0) and R = { j  1 y, = 1). That is, a solution, x, is unordered with y 
if and only if a zero value in y becomes one and a one value in y becomes zero. We 
will combine these two by adding the constraints of (1) to the problem (I) after 
every prime solution is generated. 
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Example 2. Consider the problem of Example 1 and the algorithm described 
above. The sequence of solutions and constraints generated are as in Table 2. 

Table 2. 

Sequence Solution Constraints 

1 (1100) x l + x * s l  X 3 + X 4 3 1  

2 (1010) X , + X , ~ l  X Z f X 4 3 1  

3 (1001) x , + x q s 1  X Z + X , ~ l  

4 (0111) X 2 + X 3 + X 4 5 2  X , Z l  

In this case very few solutions are generated; however, the computation of the 
prime solutions is not trivial and comprises the bulk of computation. We know of 
no attempts to implement such an algorithm. The version presented here would 
most certainly perform poorly with respect to sophisticated versions of a Balas 
Indirect Algorithm and would require in-depth research to find efficient means of 
generating prime solutions. 

The approach to these two algorithms is completely different. The direct 
algorithm requires efficient means of generating prime solutions and means of 
eliminating all chains through a prime solution. The Indirect Algorithm needs 
efficient means of finding adjacent solutions, detecting infeasibility in partial chains 
and efficient means of eliminating partial chains. Since the requirements for these 
algorithms are different it may be the case that different partial orders would 
respond better to one algorithm than the other. However before such investigations 
can be undertaken it is important to generate other partial orders than the vector 
partial ordering. The next section discusses two such orderings and illustrates the 
reductions that take place in terms of the number of chains. 

3. Two specific partial orders 

The first partial ordering we wish to consider has been discussed by Bowman and 
Starr [3, 41 for the set covering problem, by Starr [15] for the 0-1 problem where 
A 3 0 ,  and by Gale [16] and Zimmerman [17] with respect to Matroids. In the 
Bowman and Starr papers the ordering relationship P was represented by { 6 }, and 
in the Zimmerman paper P was represented as Si.  In this paper we will use P 2  to 
denote this ordeing. The two comes from the relationship of the 6 -ordering to two 
comparability in switching functions. This relationship is discussed by Bowman and 
Starr in [S] and for reference to two-comparability the reader should refer to 
Muroga [13]. In the same manner we can refer to the vector partial ordering as P' 
since it corresponds to 1-comparability. This numbering is also significant in that P' 
agrees with P2, i.e., if x P '  y then x P 2 y .  
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The P 2  ordering is defined from the vector partial ordering of the index vectors of 
binary vectors. 

Definition 2. The index vector, s(x), of a binary solution x has the following 
properties, where xo is the number of zero components of x. 

(a) sl(x) = s2(x) = * . = s&) = 0, 
(b) SJX) < s,+i(~) < . * * < sn(x), 
(c) x,  = 1 if and only if there exists a j such that sj = i. 

The index vector lists the positive indices of a binary vector in increasing order. 

Definition 3. Let x and y be any two solutions with associated index vectors s ( x )  
and s(y ). If s ( x )  s sty), then x P 2  y. Here " S " denotes the usual vector partial 
ordering. 

The P z  ordering defined by the index vectors satisfies our requirement for 
decreasing desireability moving down a complete chain if the objective function is 
linear and the elements of the objective function form a monotone non-decreasing 
sequence. 

The following lemma is proven in [3]: 

Lemma 2. If O S C ~ S C ~ S ~ ~ ~ S C , , ~ ~ ~  xP2y ,  then c x ~ c y .  

Lemma 3, proven in [3], shows that the vector partial ordering, PI, usually used 
in programming algorithms, agrees with the P 2  ordering. 

Lemma 3. If x s y, then x P z  y .  

The vector partial ordering is used as the basis for implicit enumeration, which 
may be regarded as the enumeration of complete chains in the graph induced by 
this ordering. Since the vector partial brder agrees with the P 2  ordering, the P 2  
ordering must have fewer complete chains. 

Figure 2 shows the P z  ordering for n = 4. It is important to note that every 
implication in Figure 1 is contained in Figure 2; this is from Lemma 3. In addition, 
the number of prime solutions will be smaller in P 2  than in P' because of the 
existence of additional relationships. In particular, note for the problem in Example 
1 that three of the prime solutions under the PI ordering are not prime under the P 2  
ordering; that is, the solutions (lolo), (1001) and (0111) are all ordered with (1100) 
in the P 2  ordering. Bowman and Starr [3] provide a method for generating 
successive prime solutions on this ordering for the set covering problem. This 
generation is exploratory in nature in that several non-prime solutions may be 
generated to find a prime solution. However, the computation times presented have 
been quite small especially for those problems with distinct costs. 



108 V.J. Bowman, Jr., J.H. Starr 

0 1 1  1111 

Fig. 2 .  P*-order, n = 4. 

The following examples highlight the gains that can be made by using the P 2  
ordering. 

Example 3. Consider again the problem of example 1. If one uses a Direct 
Algorithm the sequence of solutions would be as in Table 3. 
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Table 3. 

Sequence Prime Solution Comments 

1 (1100) only (0010) and (0001) are unordered 
2 stop neither (0010) or (0001) is feasible 

Example 4. An Indirect Algorithm would generate the sequence in Table 4. 

Table 4. 

Sequence Solution Comments 

infeasible 
infeasible 
infeasible 
feasible 
eliminate all partial solutions originating at (1100) 
non-optimal 
eliminate all partial solutions originating at (0010) 
eliminate all partial solutions originating at (0100) 
eliminate all partial solutions originating at (1000) 

In both these examples n o  specific way is described of eliminating the partial 
chains or of finding prime solutions. In fact there does not exist at present an 
indirect algorithm for exploring this ordering outside of the very rudimentary one 
described above. However, it is important to note that this ordering has the 
significant effect of reducing the number of solutions that must be generated by 
either a direct or indirect algorithm. This is offset however by the need for more 
complicated algorithms to generate the successive solutions. In light of recent 
research by Piper [14], showing that logical tests in Balas type enumerations have 
strong influence on computation time, it might be suspected that efficient use of the 
P 2  ordering would be helpful in enumeration techniques. This has been supported 
by the success of the Bowman and Starr algorithm for set-covering. 

There exists a further refinement of the P z  ordering that has not been 
investigated by any authors. The P2 ordering required the knowledge of the 
ordering of the cost coefficients. This new ordering, which we denote P 3 ,  requires 
that the cost coefficients be positive and in non-decreasing order and that one also 
knows the ordering of the first differences of the cost coefficients. 

Let A,  = c, - c ~ - ~ ,  where co = 0. Then we have 

We now define the P 3  ordering by the difference vector d ( x )  of a binary vector x. 
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Definition 4. The differeke uector, d ( x ) ,  of a binary vector x has the following 
properties: 

(a) d ( x )  has n ( n  + 1)/2 components. 

(c) Let { j , , j z , .  . . , in}  be a permutation of {1,2,. . . , n } .  Then C:=,X, components 

The importance of the difference vector lies in the creation of the cost function in 

(b) 0 5 di ( x )  c dz(X) 6 * 
* d n ( n + i ) / z ( ~ ) .  

of d have value p if j, = k. 

terms of first differences. This transformation is: 

and follows directly from (2) and part (c) of the definition. 
The difference vector involves two index sets, the index set (1,. . . , n }  on the 

elements of x and a permutation of these, {jl, j z ,  . . . , in} associated with the.first 
differences of c. The following example shows the construction of a difference 
vector: 

Example 5 .  Assume n = 4, jl = 2, j 2  = 1, j 3  = 4, j4= 3 .  If x = (1010) then since 
Z:;1=4xt = 0, 0 components of d have value ~ 3 because j 3  = 4; since Cf=,x, = 1, 1 
component of d has value 4 because j4 = 3 ;  since Cf=, x ,  = 1, 1 component of d has 
value 1 because j ,  = 2; and since Cf=, x ,  = 2, 2 components of d have value 2 
because j 2  = 1. Thus d ( x )  = (O,O, O,O, O,O,  1,2,2,4). 

Furthermore, 

cx = A,, + A, + A, + A,4 

= A , +  A , +  A l  + A ,  

= (c2 - c,) + c1+ c1+ (c, - cz) 

= c3 + c1. 

Definition 5. Let x and y be any two solutions with associated difference vectors 
d ( x )  and d ( y ) .  If d ( x ) s  d ( y ) ,  then x P 3 y .  

The P 3  ordering satisfies our requirement for decreasing desirability if the 
objective function is linear, the elements of the objective form a monotone 
non-decreasing sequence and the first differences are monotone non-decreasing on  
the index set Gl, j 2 , .  . . , j n } .  

Proof. Assume the ordering relationships and x P 3  y .  We have 
" ( n  + 1y2 

cx = x A , , W  
t = l  
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Since x P 3  y, di (x )  G di(y ) and by the ordering on first differences A j d i ( x )  S A j d , ( y ) .  

Thus 
n(n+ 1)/2 

cx 2 A j d , ( y )  = cy. 
, = 1  

This proves the lemma. 

agrees with the P 3  ordering. 
Similar to the relationship of the P' and P 2  ordering we find that the P 2  ordering 

Lemma 5. If x P 2 y ,  then x P 3 y .  

Proof. If x P 2  y then s ( x )  s s ( y ) .  Recall these are index vectors. By Definition 4 we 
have 

In addition since s k  ( x )  S Sk ( y )  we have x?=sr(x) y ,  2 n - k + 1. Since the elements of 
d ( x )  and d ( y )  are monotone non-decreasing it immediately follows that d ( x )  s 
d(Y 1. 

In the same manner that P 2  contains more information than PI, this lemma 
shows that P' contains more information than P2.  However, this new information is 
at the cost of a more complicated ordering vector (compare the generation of s(x) 
to the generation of d ( x ) ) .  Moreover while for each n, P' and P 2  generate just one 
ordering, P 3  generates several orderings for a given n because of various 
relationships on the first differences. For the case with n = 4 there are 8 different 
partial orders. These are shown in Fig. 3a through 3h along with the orderings on 
the first differences that generate them. It is interesting to note that four of the 
orders are linear orders. This is important since either a Direct or Indirect 
Algorithm would terminate with the generation of the first feasible solution on 
these orders. 

Remark. There are n o  known algorithms for searching the P 3  ordering. In fact it is 
not clear that the representation of this order by the difference vector d ( x )  is the 
most efficient method. It does give a means for beginning research on the 
importance of this ordering in enumeration techniques. This is best exemplified by 
the problem of Example 1. In this problem Ai = 1 i = 1,2,3,4 and consequently we 
could choose any of the 4! orderings of the first differences. If we look at all the 
orderings we find that both a Direct and Indirect Algorithm will terminate with the 
generation of the first feasible solution for all orders except those shown in Fig. 3c 
and 3d. This is because all elements in the other orders are ordered with the 
solution (1100). For the orderings shown in Fig. 3c and 3d, the Direct Algorithm 
will generate one prime solution as in Example 3, while an indirect algorithm will 
backtrack and go forward only once, this latter being the examination of (1100) and 
(0001). 
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Fig. 3. 
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1001 

,110 

Fig. 3(cont.). 
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Fig. 3(cont.). 
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Summary 

This paper has been an exposition on partial orders in enumeration algorithms. 
The exploitation of partial orders gives rise to two types of algorithms, one which 
directly searches for prime solutions and one which indirectly searches for prime 
solutions. To-date most work in implicit enumeration has dealt with indirect 
algorithms applied to vector partial ordering. This paper has described a rudamen- 
tary direct algorithm for vector partial ordering. In addition it has described two 
other partial orderings that are successive incorporation of more cost information. 
Only a direct algorithm has been developed for the P z  ordering and has demon- 
strated some computational success for set-covering problems. This paper, how- 
ever, has not closed any doors on enumeration techniques. Instead it has raised 
many questions and many additional directions for further research in enumerative 
methos. 

Some of the questions raised are: 
(a) What type of partial orderings should be explored? 
(b) Do Indirect Algorithms always dominate Direct Algorithms or vice-versa? 
(c) Is there a computationally efficient Direct Algorithm for vector partial 

ordering? 
(d) Are there computationally efficient Direct and Indirect Algorithms for the P z  

and P 3  partial orders? 
It is obvious that these questions can be answered only by further research. It is also 
obvious that the natural nesting of the P’ ,  Pz and P 3  orderings can be expanded 
until a complete ordering is generated. Moreover, it is not clear that this sequence 
of partial orders is in any way the “best”. At a time when implicit enumeration has 
shown its worth and when most researchers are exploring refinements on vector 
partial orderings these ideas raise a whole new avenue to pursue in the area of 
enumeration. 
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A method is presented for solving pure integer programs by a subadditive method. This work 
extends to the integer linear problem a method for solving the group problem. It uses some 
elements of both enumeration and cutting plane theory in a unified setting. The method generates 
a subadditive function and solves the original integer linear program. 

1. Introduction 

In a previous paper [5],  we have developed an algorithm to solve the group 
problem derived from an integer linear program using an approach based on 
constructing a subadditive diamond gauge yielding a valid inequality. The group 
problem, however, represents a relaxation of the original integer linear program in 
that the optimal group solution need not be feasible with respect to all the initial 
linear programming constraints. We now present an extension of our subadditive 
method which will solve the original integer linear programming problem (ILP); the 
group structure on the one hand and all the constraints of the initial linear program 
on the other are both taken into account in the following developments. 

The approach here is fundamentally different from branch-and-bound. One 
difference is that we only keep one problem rather than dividing it up into 
subproblems. Nor is the method like existing cutting plane methods. It begins by 
adjoining an initial set of Gomory mixed integer cuts to the tableau, and solving the 
resulting augmented linear program. However, no more cuts are generated 
explicitly. Instead, a group enumerative phase is entered, and subsequently the 
method alternates between group enumeration and parameter adjustment via a 
linear programming (LP) problem. In the enumerative phase, we do not generate 
an enumeration tree. Instead, an LP column is generated for each enumerated 
point, and a better subadditive function is generated by parameter adjustment. 
Despite a surface similarity, the method does not resemble enumerative cuts [3] 
because the enumeration is not used to explicitly derive cuts which exclude part of 
the linear programming feasible region. In fact, our  enumerated points will often be 
outside of the linear programming feasible region and will still help give progress. 

117 
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The approach here resembles the duality methods of Fisher, Northup, and 
Shapiro [6] more than any other work. To illustrate this point, one could say that 
the “dual” problem here is based on the following program: 

max no, 

n o s  n ( x ) ,  

c, 5 n(8 ’ ) ,  s: = 

0 i # j  
, j =  1, ..., n, [ 1 i = ;  

for all x satisfying some integer programming restrictions (the specific form used 
here will be (2), (3), and (4) below); for a subadditive function r on R“ ; that is, 

n ( x I  + x*) s n ( x l )  + n ( x 2 ) .  

The difficulty with this “dual problem” is that evaluating n ( x )  for all x feasible to 
an integer program is as hard as solving the original integer program. The attempt 
here is to relax the restriction on x satisfying the integer programming restrictions 
while keeping the desirable properties of a dual: 

no is a lower bound on the objective function r ,  

max no = min z. 

Our dual problem will involve several components: 
(i) the enumerated set XE (Section 4); 

(ii) various types of relaxation of (2), (3), and (4) which will be realized by the 

(iii) parameters y+ ,  y- ,  a+, a-, which enter in the definition of n and A (Section 

The problem (29), (30), (31) in Section 7 is of this form. For a given XE, there may 
indeed exist a “duality gap”; that is, max no < min z, even for the best y’s and a’s. 
However, adequate enumeration will eventually cause this gap to disappear; 
typically, then, an integer feasible point x enters XE and the problem is solved. It 
can happen that when an integer feasible x enters XE, it may not be optimal, or it 
may be optimal but cannot be proven optimal. 

Finally, let us mention another interesting approach due to Bell [2]. He closes the 
duality gap by a “supergroup” approach, which embeds the original group problem 
in a larger group. 

choice of S (Section 2); 

3). 

1.1. The group problem 

The derivation of the group problem from a linear integer program is well-known 
[7].  The group problem can be stated as follows: 

minimizer = C c jx j ,  (1) 
j -1  
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j = 1  2 gijXj  gio (mod l), i = 1,. . ., ml, (2) 

x, 2 0  and integer, j = 1,. . ., n. (3) 

Denoting the columns of the matrix G = ( g i j )  by g’, (2) can be restated as 

Gx = 2 g’xj gO(mod 1). 
j = 1  

To clarify the various concepts introduced, we will illustrate them with the 
following small example. The initial integer program is: 

minimize 

subject to 

9 x 1  + 23xz + l o x , ,  

4x1 + l l x z  + 5x3 = 12, 

xi 2 0  and integer, 

The resulting group constraint is 

2xl + f x z  = 3 (mod l), 

xl, xz 2 0 and integer. 

1.2. The constrained group problem 

In formulating the group problem (1)-(3), the non-binding constraints at the 
linear programming optimum are dropped. Such constraints can all be expressed as 
linear inequality constraints on the current non-basic variables xl, . . ., x.. In order to 
restore the full set of original LP constraints, we shall consider here a general form 
of the problem where the constraints (2) and (3) are taken together with a set of 
linear inequalities (4): 

2 aijxj 3 aio, i = 1, . . ., m2, (4) 
j = 1  

or, with A = (aij),  

AX = 2 ajx, 2 a0.  
j = l  

Throughout, ui and g’ will denote the j th  columns of the matrices A = (ai j )  and 
G = ( g i j )  in (4) and (2) ,  respectively. 

The updated linear programming constraints will be used here as the inequality 
(4). In our example above, it can be written as 

- 4x1 - 11x2 3 - 12. 

The resulting constrained group problem is, thus, 
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minimize z = X I +  xZ, 

$x,++x,-$(modl), 

- 4x, - llxz 3 - 12, 

x,, xz 3 0 and integer, 

which is equivalent to the original integer program (with x3 = (12 - 4x1 - 11xz)/5). 
In general the system (4) will simply consist of those constraints of the original 

ILP which belong to the basic variables at the LP optimum (i.e. non-binding 
constraints); but one may also consider adjoining some new additional constraints. 
In any case, it should be apparent that this framework allows one to choose a 
system of LP constraints (4) so that any solution to (2), (3) and (4) satisfies all the 
constraints of the pure integer linear program. Naturally, when the group solution 
already satisfies all of the non-binding constraints, the restriction (4) will be satisfied 
by the optimum solution to (l), (2), (3) and need not be used at all. 

As for our previous method [5] for the group problem, the present approach does 
not require the explicit determination of the group structure (via the Smith normal 
form, for example), nor is it critically dependent upon the order of the group which 
may be very large in practice. In this method the group structure 9 is read directly 
from the system (2) which comes from the updated linear programming tableau; in 
fact, 9 is merely considered here as a subgroup of the group structure I"'] of infinite 
order [lo] implied by the integrality requirements (3). 

2. Valid inequalities 

Definition 1. The inequality 

i: rjx, 3 ?To 
j=1 

is called valid if it is satisfied by all xl,. . ., x, satisfying (2), (3), and (4). 

Definition 2. 
xl, .  . ., x, with xj L O  and integer: 

Given the constraints (2) ,  (3), (4), define the following sets for each 

S r ( x ) =  {y l y  3 x  and (2), (3) and (4) hold for y}, 

SG(x) = { y  1 y 3 x and (2) and (3) hold for y}, 

SL(x) = {y 1 y 2 x and (4) holds for y}. 

Note that the ILP, group, and LP feasible sets can be denoted by SI(0) ,  SG(0) ,  
and S,(O). 

In our example from Section 1.2, 
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W O )  = ((3, O N ,  

&(0)={(0,2)+ (5k1,5k2), (3,0)+ (5ki75kz)}, 

for all k , ,  k z 2 0  and integer, 

SL(0) = the LP feasible region 

For each of these S sets, we sometimes consider the points 

(u, 6 )  = (Gy, A y )  E R"1 X Rm*, y E S.  

Definition 3. Define the integer, group, and linear subpath sets as 

These sets are called subpath sets because for x E X,, for example, there exists 
y E S,(x), and if we think of y as generating a path using edges (G', A')  from the 
origin to a point 

(Gy, A y )  with Gy = g o ,  Ay 2 a', 

then x s y generates a subpath of that path 

Definition 4. For a given S R;, define the subclosure X of S to be 

x = {x 3 0, integer 1 x c y for some y E s).  
Z:, define Y to be subinclusive if the subclosure of Y is equal to Y. For Y 

With this definition, X ,  XG, XL are the subclosures of Sr(0), SG(0) ,  and SL(0),  
respectively. In the above definition of subclosure, S need not be contained in Z:, 
but the subclosure X is contained in Z:. In particular, S L ( 0 )  has non-integer points 
in it. 

We summarize with a property below. 

Property P1. (a) The sets X,, X,, XL are, respectively, the subclosures of S,(O), 
SG (O), SL (O); 

(b) each of the sets Xr, XG, X L  is subinclusive. 
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This property and the next one are illustrated by the preceding example. 

Proof. (a) If x E X,, then there exists y 2 x, y E S,(O), by definition of XI. Hence, 
x belongs to the subclosure of S,(O), and since X I  is defined to be precisely such x, 
the subclosure of Sr(0)  is Xr. The proof for I replaced by G or L is similar. 

(b) This property follows from the fact that the subclosure X of any set S is 
subinclusive. 

Property P2. (a) S,(x) C SG(x) and Sr(x) C SL(x); 
(b) X, C XG and XI C X,;  
(c) S,(O) C XI and SG(0) C XG. 

Proof. (a) Follows from the increasingly restrictive definitions of S,(X), SG(x), and 

(b) Follows from (a) and the property Pl(a) that X ,  XG, and X L  are the 

(c) Follows from the fact that S,(O) and SG(0)  (but not SL(0))  are subsets of Z:. 

Our valid inequalities will be constructed from functions T defined on X such 

S,(X), SL(X). 

subclosures of SI(0) ,  SG(0) ,  and SL(0). 

that Xr c X and X c Z:. For convenience, denote by 8’ the vector 

O i f  i f j  

l i f i = j  
, i = 1, ..., n. 

Theorem 1. Let T be a subadditive function on XI, that is, 

T ( X ’ +  x 2 ) s  + I ) +  T ( X 2 ) ,  (5)  

for all XI ,  x 2  E XI  such that (x’  + x2) E XI. Then the inequality 

i: T j X j  2 T o  
j = l  

is valid, where 

T, = T ( 8 J ) ,  (7) 

Tocmin{.rr(x)I x E ~ ~ ( 0 ) ) .  (8) 

Note 1. If 8’g X ,  or, equivalently, & ( a J )  = 8, then T, can be set arbitrarily small 
(-M). In this case, xJ can be eliminated from the problem by setting it to zero. 

Note 2. If 0 E X,, ~ ( 0 )  = 0 is required. 

Proof. If suffices to show that 

j - 1  
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since if y E Sr(0), then y E XI by property P2(c) and by (9) 

2 T J y J  T ( y ) >  T o  
, = I  

where the second inequality is by (8). Hence, we prove (9) for all x E XI. 
Using 6' gives 

x = ( X I , .  . .) x.) = xlal + . * . + X"6". 

x ' =  x : 6 ' +  * .  . + X L 6 "  

By x E X, and subinclusion, if x, > 0, then 6' E X,  and so does every 

for 0 s x: x,, x: integer. 
The proof can be done by induction on 

If O E  XI,  then for x = 0, (9) reduces to ~ ( 0 ) s O .  By subadditivity, T ( O ) ~ O ,  so 

For T = 1, (9) follows from vj = ~ ( 6 ' )  whenever 6' E XI. 
The induction step is exactly as appears in the proofs of theorem 1.5 of [8] or 

we must require ~ ( 0 )  = 0 in this case (see note 2). 

theorem 2.2 of [5 ] .  

Remark 1. The strongest inequality is given by taking no equal to the minimum 
value of Z .rr,x, in (6) over all integer programming feasible solutions x.  However, 
finding that minimum is as hard, in general, as the original ILP. A possible weaker 
inequality is given by taking T,, to be the minimum given in (8). Finding that 
minimum is also a constrained minimization problem of the same order of difficulty 
as the original ILP. In practice we use, for convenience, a superset S 2 S(0)  to yield 
a weaker, but valid, inequality. 

Remark 2. The direct application of Theorem 1 to construct valid inequalities can 
become cumbersome (even when T is known). The formal expressions used to 
define T can be complicated and their evaluations difficult. In [4], comparisons of 
cutting planes of this form are given. Here, the particular T used is motivated by a 
desire to be able to evaluate T ( X )  easily. 

3. Generalized gauge functions 

A function which is crucial to our development here is the generalized diamond 
gauge function. It allows considerable flexibility to  the subadditive functions A and 
T to be constructed from it while still being easy to evaluate. We first define this 
function and give some of its properties. 
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Definition 5. Given 2 m ,  + 2m2 real numbers 
+ -  + -  

77 , .  . .) y m , ,  71,. . .> Y;,, a ? , . .  .> a m z ,  ~ ~ 1 7 . .  .>a,, 

define the generalized diamond gauge function D on R" to R by 

D ( x )  = max { y G x  + aAxJ 
Y.0 

where the maximum is taken over all 2"1'"2 possible values: 

yz = y :  or  - y ; ,  

a, = a:  or - a ; .  

We require that 

y :  z= 0 and y ;  2 0, and 

a:+ a ,  2 0 .  

For our example, 

- 4 a ' X 1 - 1 l a ' X z  
+ 4 a - x , +  11a-x *  

5 y - X I  - f y - x ,  ] +ma,( 

y + u - a - 5  

- y - u  + a+( 

- y - u  - a-5 

= max 

where u = $xi + i x 2  and 5 = - 4x, - llx,. The y+ ,  y - ,  a+,  a -  are parameters of the 
function D. 

Properties of D 

Property P3. 
y + ,  y - ,  a+,  a -  satisfying 2 m 1 +  m 2  inequalities ( 1 1 )  and (12).  

The generalized diamond gauge D contains 2 m I  + 2m2 parameters 

Property P4. D is piecewise linear and continuous. 

Property P5. D is convex and positively homogeneous. 

Proof. Both convexity and positive homogeneity follow from the definition of D 
as the maximum of the 2"'lfm2 linear functions ( y G  + aA)x, each of which goes 
through the origin. By positively homogeneous is meant D ( A x )  = h D ( x )  for A 3 0. 

A function f which is non-negative, convex, and positively homogeneous is called 
a gauge by Rockafellar [12] .  Dropping non-negativity, we call f a generalized 
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gauge. A generalized gauge can be characterized by being the support function (see 
(121, section 13, particularly theorem 13.2) of a non-empty convex set (see [ l l ]  
also). 

Before continuing with D, we digress to give one result which is true of any 
generalized gauge f (see [ 1 2 ] ,  theorem 4.7). We include its proof here for 
completeness. 

Property P6. A generalized gauge f i s  subadditive. 

Proof. We need to show 

f ( X + Y ) G f ( X ) + f ( Y ) >  X ? Y  ER", 

f ( x  + y )  = f ( 1 2 x  + t 2 y )  s t f ( 2 x )  + t f ( 2 y ) .  

whenever f is convex and positively homogeneous. By convexity, 

By positive homogeneity, 

completing the proof. 

Property P7. Given x E R", let u = G x  and 5 = A x .  Then 

Proof. Using (lo), 

D ( x )  = max { y G x  + a A x )  
w 

since the maximization can be done separately for each i. 

Property PS. 
y and a given by 

Given x E R", let u = G x  and .$ = A x ,  Then D ( x )  = y G x  + a A x  for 

yz = ( ~ ( u , ,  y:, y ; )  and a, = u(5,, a:, a ; )  (14) 

where u is the sign transfer function, with arguments q, u+, u-, defined b y :  
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u+, q >o,  
0, 4 = o ,  

-6, q < o .  
u(q, u+, 6) = 

This sign transfer function is related t o  the fortran function SIGN by 

SIGN (x 1, x2) = u ( x 2 ,  x 1, x 1) 

and to  the usual absolute value function by 

I x I = u ( x ,  x, x). 

f(s> = 4 4 %  u+, u-1 
W e  remark that the function of one variable 

is convex if and only if u+ + u- 3 0. 

Proof of P8. The  proof is from P7 and substituting 

max { y : u,, - y ; u , )  = u,u(u,, y: ,  y ; ) ,  and 

max{a:t,, - a:t#I = tcc+(t,, a:, a;) ,  

which follows from a:  + a; 3 0 and y :  + y ;  3 0. 
We remark that only 7: + y ;  3 0 is needed, rather than the stronger (11). We 

require (11) because it will eventually be needed for other reasons. 
The  main reason for using this D is property P7 (or P8) which allows an overall 

maximum to be taken coordinate-wise. Thus a maximum over 2"1+"z linear 
functions can be  effected by taking rn, + rn2 pairwise maxima. For further general- 
izations of diamond gauges [3] see [4]. 

We now turn t o  a family of subadditive functions which can be defined from the 
generalized diamond gauge. The prototype here is the Gomory mixed integer cut 
for the case where rn, = 1 and rn2 = 0. To derive that cut, let the diamond gauge 
have y +  = l /g" and y -  = 1/(1- go). In this case, A z ( x )  or A 3 ( x ) ,  t o  be  defined below, 
only depend on the single parameter u = Gx = cg'x, and are  given by 

A (x) = 

go< G ( u ) <  1, 

where F ( u )  is the fractional part of u.  

Definition 6. 
diamond functions A,,  A], A2, and A ,  by 

For the generalized diamond gauge D, define the subadditive 
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A o ( x )  = mjn { D ( z )  I z satisfies: z 3 0, z integer, G z  2 Gx(mod l), Az 3 Ax},  

(15) 

A l ( x )  = min { y u  1 u = G z  for z 2 0, integer, and G z  = Gx(mod 1)) 

(16) 
+ min {a[ 1 6 = Az for z 2 0, integer, and Az 3 Ax}, 

A z ( x )  = mjn { y u  1 u = Gx} + min {a[ 16 = Az for z 3 0 and Az 3 Ax}, (17) 

d 3 ( x )  = mjn { y u  I u = GX} + min {at It 2 AX), (18) 
6 

where y and a in (16), (17), and (18) are given by (14) as functions of u and 6. 

Properties of A 

Property P9. A , ( x )  2 A , ( x )  2 A 2 ( x )  2 A , ( x ) .  

Proof. A , ( x )  is obtained from A , ( x )  by splitting the minimization of the sum 
yGy + a A y  into the sum of two minimization with each minimization taken over a 
larger set of y’s. Hence, A o ( x )  3 A , ( x ) .  

A , ( x )  is obtained from A , ( x )  by weakening the constraints of each minimization. 
A 3 ( x )  is obtained from A z ( x )  by further relaxing the second constraint set. 

m l  

Property P10. A 2 ( x )  = c min{y:F(u,), - y; (F(u i ) -  1)) 
* = I  

where u = Gx and F ( u i )  is the fractional part of  ui : F ( u i )  = ui(mod l), and 0 =s 
F ( u i )  < 1. 

Proof. The result 
mI 

m i n { y f ( f = ~ x } =  C min{-y:F(u,), - y ; ( ~ ( u , ) - ~ ) }  
, = I  

follows from y :  3 0, y ;  3 0; that is, from (11). Secondly, 

follows from property P8 and (14). This latter form of the minimization should 
make it clear that in 6 and y the problem is a linear program with a separable, 
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piece-wise linear, convex objective function. Convexity follows from convexity of 
tdt, a+,  4. 

Property P11. For y : a O  and y ; a O ,  define 

Proof. This property is proven by  showing 

min{y:F(u,), - y;(F(u,)- l ) I= ( ~ ( F ( u , ) - R ~ , y : F ( u , ) , y ; ( F ( u , ) - l ) ) .  

If y :  = y ;  = 0, then equality holds trivially. Hence, suppose y :  + y ;  > 0. Then the 
condition 

r:F(u,) 2 - y;(F(u,)  - 1) 

holds if, and  only if, 

F(u, ) (y :+ Y J ~  y ; ,  or 

F ( u , )  2 R,, by 7 :  + y ;  > 0, o r  

F ( u , )  - R, a 0. 

Hence, we can conclude: if, and  only if, 

m2 

+ C b,a(b,, a :, min{O, a ;I) 
z = 1  

where R, and u are as in Property P11 and where b = Ax, provided 

a : a 0 .  

Proof. 
second half follows from 

The  first half of the  expression for A , ( x )  is proven exactly as in P11. The  
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If b = A x  has bi S O ,  then by a: S O ,  

&(+(5#, a:, a ; ) 3  a:b,. 

If b, >0 ,  then 

Hence, in either case 

min{&c+(&, a:, a;)( 6, 3 b,} = b,a(b., a:,rnin{O,a;}). 

In order to use A. or A only y :  + y ;  3 0 and a: + a, 3 0 need be imposed; A z  
requires y :  3 0, y ;  3 0, and a: + a; 3 0; and A ,  requires even further that a: 3 0. 

In practice, either A z  or A ,  is used because their evaluations are not difficult. The 
strongest function for our purposes would be d o ,  but the evaluations A o ( x )  are, in 
general, as difficult as the original ILP. 

The next property is true for all four A's,  but will only be proven for A'. 

Property P13. A2 is subadditive. 

Proof. We refer back to the definition (17). We need to show 

Az(x ' )+ A 2 ( x 2 ) 3  A z ( x l  + x') = A2(x3) ,  

where x 3  = x '  + x'. But for some y ' ,  y', y 3  3 0 with 

A y ' ~ A x ' , A y ' 3 A x ' , A y ~ 3 A x ~ ,  

and f '  = G x ' ,  f ' =  Gx' ,  f 3 =  G x 3 ,  

A z ( x ' )  = y f i  + aAy', i = 1 ,2 ,3 .  

The minima in (17) are achieved because y T 3 0 ,  y ; 3 0  and a++ a;30 (see 
property P11). Hence, 

A2(x ') + A z ( x 2 )  = yf' + aAy ' + yf' + aAyZ 

= y(f '+ f ' ) + a A ( y ' + y ' )  

3 yf'+ aAy3 = Az(x3 ) ,  

because 

G(f' + f ' )  = Gx '  + Gx '=  G x 3 ,  

A ( y  ' + y *) 5 A x  ' + AX' = A x 3 .  
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The proof that A 3  is subadditive is even simpler. To prove do and A l  are 
subadditive, one needs to observe that when an infinite number of y's satisfy the 
constraints, the minima in (15) and (16) need not be achieved. However, for a given 
x ,  a y can be found so that, for example, D ( y ) -  E = A , ( x )  for any preassigned 
E > O .  Then, the proof is much as before. 

4. The generator set 

In the preceding sections we have formulated a functional framework to be used 
for the  construction of valid inequalities which take into account the integrality 
requirements (i.e. the group structure) and all LP constraints of the ILP. For 
practical reasons we have focused our attention on a particular class of subadditive 
functions called subadditive diamond functions built from generalized diamond 
gauges D. However, D is convex, a property which is not required by the 
subadditive theory for valid inequalities. In the present section, we use an ad hoc 
device (viz. the generator set X , )  to produce non-convex subadditive functions n ; as 
for the method [5] which solves the group problem, these n functions generate 
enumerative inequalities and combine the concepts of group structure, cutting 
plane and enumeration. 

Throughout this section we need only assume A to be subadditive, but it will 
become clear in Section 6 that the following developments would be meaningless 
(certainly of no  practical value) if a concrete example (i.e. diamond gauges) were 
not available with specifically useful additional properties. 

We now introduce the generator set XE, which is a finite set of non-negative 
integer vectors y E Z:. Initially, XE will only be required to  be subinclusive; that is, 
if y E X,, 0 y ' s  y ,  and y '  integer, then y ' E  XE. Subsequently, X ,  will be 
constructed sequentially as needed by the algorithm. 

Definition 7. 
set X,, and an arbitrary function d on X E  by 

Define n ( x ) ,  x E R", from a subadditive A on R", a finite generator 

~ ( x )  = min { d ( y )  + A ( x  - y ) }  (19) 
Y E I ( X )  

where I ( x )  5 XE for all x .  

and I ( x )  = X ,  n S ( x ) ,  where S ( x )  is the subclosure of x :  
Two particularly useful ways of defining Z ( x )  will be used: I ( x )  = XE for all x 

~ ( x )  = { y  integer 1 o G y c x ) .  

Whereas n is defined for all x E R", XE and, hence, Z(x) are always subsets of the 
integer points ZY CRY. When Z(x) = X ,  n S(x), then clearly n ( x )  = -to for all 
x$Z R;I, so n may as well be considered to be only defined on R:. 
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Theorem 2. If I ( x )  = X ,  for all x, and i f  

~ ( y ' +  y 2 ) s d ( y 1 ) +  d ( y 2 )  f o r a l l y ' , y 2 E X E ,  

then rr is subadditive. 

The proof is virtually the same as that of [5, Theorem 3.111 and is similar to the 
proof of Theorem 3 to follow. For those reasons, it is not given here. 

Before giving Theorem 3, a lemma is needed. 

Lemma 1. If I ( x ' )  c Z(x2), then ~ ( x ' )  + A (x2- x') 3 rr(x2) .  

Proof. 
y ' E  I ( x ' )  such that 

By (19) and finiteness of XE, and hence of I ( x ) C X E ,  there is some 

T ( x ' ) =  d ( y ' ) + A ( ~ ' - y ' ) .  

Hence, 

rr (X ') + A (X - x ') = d ( y ') + A (X ' - y ') + A (X - x ') 

3 d ( y  ') + A (x' - y '). 

NOW, by y ' E I ( x ' )  c I ( x 2 ) ,  y '  E I @ * )  and 

~ ( x ' )  s d ( y  I)  + A (x2 - y ') 

from (19). Therefore, 

T ( ~ ' ) + A ( x ~ - x ' ) ~ . ~ ~ ( X ~ ) .  

Theorem 3. If I ( x )  = X E  fl S(x), all x E R:, and if 

then .rr is subadditive. 

Proof. For XI ,  xz  E R:, we wish to show that 

T ( X 1  + x2) s T ( X 1 )  + T ( X 2 ) .  

Let y '  E I ( x ' )  and y z  E I ( x 2 )  give the minimum in (19) defining ~ ( x ' )  and .rr(x2). 
Then 

T ( x ' ) +  T ( x ' ) =  d ( y ' ) + d ( y 2 ) + A ( x ' -  y 1 ) + A ( x z - y 2 )  

3 T ( y  ' + y ') + A (X ' + x * - ( y  ' + y ')) 

using (20) and subadditivity of A. 

and therefore 
Now, y ' E I ( x ' ) ,  and thus y ' e x ' .  Similarly, y ' c x ' .  Hence, y ' + y ' S x 1 + x 2  
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I ( y ’ +  y ’ )~Z(x ’+x’ ) .  

Applying Lemma 1 gives 

T(Y’+ Y ~ ) + A ( ~ ’ + X ’ - ( ~ ’ + ~ ~ ) ) ~ T ( X ~ + X ~ ) .  

Therefore, 

T ( X 1 ) +  T ( X 2 ) 3  7r(x1+x2), 

completing the proof. 

In [5] ,  we showed that the condition (20) could be relaxed to a small subset of 
yl ,  y 2  E X,. Theorem 4.3 there can be extended to this problem for the case 
I ( x )  = X,. Here, we give the development for Z(x) = X ,  f l  S(x). The resulting 
Theorem 4 below holds true in either case. 

Henceforth, we specialize d(y)  to be 

d(Y) = c CIY,? 
, = I  

where c, is the cost coefficient of x, in (1). 

Lemma 2. For X ,  subinclusive, I ( x )  = XE n S(x), and d given by (21), the set 

xg = {y E X ,  1 d ( z )  + A (y - Z )  > d(y), all o c z < y) 

is also subinclusive. 

Proof. Let y EX:. Then, 

d(Z)+A(Y - z ) > d ( y )  

for all 0 s z < y. Hence, 

A(y - t )  > d(y)-  d ( t )  = d(y - Z )  

since d is linear. In other words, 

A(z )>d(z ) ,  a l l O < z s y .  (22) 

In order to prove that X :  is subinclusive, we need to show that for all z < y, we 
have 

d ( ~ ’ )  + A (Z - 2’) > d ( z ) ,  0 s z ’ < Z. 

Using the characterization (22) of X &  we need to show 

A (2”) > d(z ” ) ,  all 0 < 2’‘ z.  

However, condition (22) for y applies to z ”  since these z” are less than y as well as 
less than z. The proof is completed. 

Given a subinclusive set X,, define the candidate set XF by 
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X ,  = { x  E Z; 1 xfZ X E  and S ( x )  - {x} c X E } ,  

that is, if x E XF and y < x, then y E XE,  assuming x ,y  E Z:. The x E XF will 
clearly be pairwise incomparable. 

X1 
Fig. 1 

Conversely, given any set XF of incomparable elements, the generator set XE 
whose candidate set would be X F  can be characterized as follows: y E XE if and 
only if for every x E X F  either x > y or x and y are incomparable (see Fig. 1). 

Lemma 3. For a subinclusive X E  and its candidate set X,, let 

Z+(X,) = { z 1 z = 2 kix' ,  where x '  E X F  and ki 3 0,  integer 

Then 

z: = z + ( x F )  + XE. 

Proof. The lemma says that for any z E Z:, there is some x E Z+(XF)  and y E X ,  
such that z = x + y .  

Consider z and let z o  S t be any maximal element in Z + ( X F )  f l  S ( z ) ;  that is, 
z o s z ,  z o E Z + ( X F ) .  Then, for any x E X F ,  z o + x  is either greater than z or  
incomparable to z since z o +  x E Z+(XF) .  Therefore, for any x E XF, x is either 
greater than z - z o  or  incomparable to z - zo. Hence, z - z o E  X E ,  using the 
characterization of X E  given XF. 

Theorem 4. If I ( x )  = X E  fl S ( x ) ,  if d ( y )  = cy, and if 

. r r ( y ' + y Z ) ~ d ( Y ' ) + d ( Y 2 ) ,  y i , y z E X L ,  y 1 + y 2 E X k ,  (23) 

then T is subadditive. 

Proof. 
subinclusive. The X k  is the candidate set for XL. 

Here, X L  is given from X E  as in Lemma 2. By that lemma, X :  is 

By (23) and by linearity of d, for x E XL, 

~ ( x )  S d ( x ) .  

By definition (19) of .rr, for some y < x, 
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By the characterization (22) of X &  A ( x  - y )  > d ( x  - y )  whenever x - y < x. 
Hence, the only possible y is y = 0,  and, therefore, A (x) < d ( x )  follows whenever 
x E x ; .  

Consider now Z+(X;), as in Lemma 3. If x 1  and x’  E Xk ,  then 

A ( x  + x ’) S A ( x  I )  + A ( x  ’) c d (x ’) + d ( x  ’) = d ( x  + x ’). 

Continuing by induction, one has 

A ( x )  s d ( x ) ,  

all x E Z+(X;).  
By Lemma 3, for any z E Z:, 

z = x + y  

for some x E Z+(X;)  and y E XL. By (19), 

d z ) s  d ( Y ) + A ( X )  

G d ( y ) +  d ( x ) ,  

s d ( y  + x )  = d ( z ) .  

by x E Z+(Xk)  

Consider any y l ,  y 2 E  XA. Then for z = y ’ +  y 2 ,  .rr(y’+ y’)< d ( y ’ ) +  d(y’). B y  
Theorem 3 ,  rr is subadditive. 

Corollary 1. Given a subadditive A on  R: and a linear d on  R:, let 

Assume X E  isfinite. Then  rr given by (19), using I ( x )  = X E  f l  S ( x ) ,  is  subadditive. 

Proof. 
there. For this X,, XA= XE. Hence, we need only show 

The X E  given here is subinclusive by Lemma 2 and condition (22) for X A  

A ( x )  s d ( x ) ,  x E XF. 

For x EX, and y < x ,  y E X ,  so 

A ( y ) > d ( y ) ,  if Y > O .  

Hence, unless A (x) s d ( x ) ,  this x would also be in XE. 
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5. Bounds 
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Theorem 4, combined with Theorem 1, says that if 

A (x)  < d ( x )  

for every x E Xk, then 

is a valid inequality whenever (8) holds; that is, 

ToCmin{.rr(x)Ix E ~ ~ ( 0 ) ) .  

This no will be a lower bound on the optimum objective function value. To prove 
6 c, will hold because this result, recall that T’ = ~ ( 6 ’ ) .  Hence, the inequality 

either 
(i) 6’ E XL and then ~ ( 6 ’ )  = d ( 6 ’ )  = c,, or 

(ii) 6’$Z X g  and then 6’ E X b  so ~ ( 6 ’ )  = A (6’) d ( 6 ’ )  = c,. 
By r, < c,, T,, is a lower bound on the optimum objective value z in (1) because for 
every x E S,(O) 

We now consider the computations required by (8) for T constructed from do ,  
A ] ,  A 2 ,  and A, .  

5.1 For A ,  

= min d ( y ) +  min {min{D(z)l z 3 0 ,  integer, Gz 3 G ( x  - y ) ,  and 
X E S l ( 0 )  

Az > A ( x  - y ) } } } .  

Y e X E  I 
Substituting t in place of z + y gives 

or, finally, 



136 C.A. Burdet, E.L. Johnson 

To show that (24) is equivalent to  the expression just above it requires showing that 
the constraints on z :  

z < y, integer, Gz = G x ,  A t  3 A x ,  

for x E S,(O), are equivalent to the seemingly weaker restrictions: 

z 2 y, integer, Gz = go, Az 3 a'. 

In order to prove equivalence of these two sets of constraints, we must show that 
for a z satisfying the latter set, there is some x E S,(O) for which z satisfies the 
former set. However, this x can be taken to be t since z E S r ( y )  implies that 

We consider the bounds given for our example with each of d o ,  A , ,  and A*,  in 
z E S,(O). 

turn, using XE = { ( O , O ) }  and X ,  = {(1,0), (0,1)}. 
By (24) and x.5 = { ( O , O ) } ,  

7r = d ( O ) +  min {D(z)} 
x e s m  

= D(3,0), 

since S,(O) = ( (3 ,O)) .  Now, for u = $ x l  + 4x2 = $(3) + $ ( O )  = 2$ and 5 = 
- 4x1 - 11x2 = - 4(3)- l l(0) = - 12, 

1- y+2a+ a+( - 12), 

y+23-  a-( - 12), 

- y-(23) + a+( - 12), 
D(3,O) = max 

from Section 3. The constraints A o ( x )  d ( x ) ,  x E X,, are satisfied provided 

for a+ 3 0. For example, y +  = 2, y -  = :, a+ = a- = 0. Then, r0 = 3, which is the 
optimum objective value of the example. 

Evaluating T~ by (24) is as hard, in general, as solving the original ILP. Weaker 
versions of it will be  developed from A , ,  A 2 ,  and A, .  

5.2 For A ,  

d ( y ) +  min {min{yGz I z 3 0, integer, GZ = G ( x  - y)}  
x s w o )  

+ min {aAz I z 3 0, z integer, Az 5 A ( x  - Y )}I]. 
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Substituting z in place of z + y and simplifying gives 

no = min { d ( y ) +  min [ y ~ ( z  - y )  I z 2 y ,  integer, GZ = g o  
Y E X E  

+ rnin {min {aA  ( z  - y )  1 z 2 y ,  z integer, Az 2 A x } ] ] .  
x e S I ( 0 )  

If x E S,(O) is weakened to x E S where 

s = {x integer 1 x 3 0, AX 3 a'} 

then the expression simplifies to 

r o = m i n  { d ( y ) + m i n { y G ( z - y ) l z  E S , ( y ) }  
Y E X E  

+ min { a ~  ( z  - y )  I z 3 y ,  z integer, A Z  z a')}. 

Using the same values y+=$, y -  = 3, a+ = a- = 0,  (25) gives 

y + u , u 2 0  
- y-u ,  u < o  2.4 = $21 + :z*, z E So(0) r, = min 

This bound, not unexpectedly, is not as large as the bound from A,. 

5.3 

Turning to A*, we obtain 

d ( y  ) + min { yf I f = go - Gy } 

+ min {min{aA(z - y ) ( z  Z=y,Az 2 A x } } ] .  
X=S,(O) 

If x E S,(O) is now weakened to x E SL(0) ,  then 

z 2 y ,  Az 3 Ax, x E SL(0)  

is equivalent to the seemingly weaker 

z z y ,  Az2aO.  

Since if z satisfies the latter, then x = z E SL(0) can be used to give a solution to the 
former. Hence, 
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no = min { d (y ) + min { yf 1 f = go - Gy } + min {CYA (z - y ) 1 z E SL (y )I). (26) 
YExE 

For our example, with a +  = a -  = 0, 

5.4 

The case A,  is similar, but we arrive at 

+ m i n { a ( a  - A y ) l a  SAX S a o ,  for some x >y)}, (27) 

which can, in turn be weakened to  give 

r0= min { d ( y ) + m i n { y f ( f ~ g O - G y } + m i n { a ( a - A y ) ~ a  2~")). (28) 

Finally, we note that in (26), (27), and (28), the special property of diamond 

Y e X ,  

functions 
m, 

min{yf I f = go-  Gy)  = w(R, - 5, yT$,yT(l- t)), where f = F(go-  GY), 
, = I  

is required, in somewhat the same manner as in property P l l .  
In conclusion, the framework developed here is the construction of a subadditive 

function n-, based on the generator set X,, such that T, S ci for all j = 1, ~. ., n. The 
set X ,  expands, and this expansion is guided by the candidate set X,. In this 
section, several (successively weaker but easier to use) forms of n- to determine r0 
have been given beginning with an integer program (24), then a group minimization 
(25), and finally three linear programs (26), (27), and (28). 

6. The algorithmic scheme 

The algorithm proceeds in two stages: group enumeration and LP optimization 
of the parameters y and a. The more time one spends on parameter optimization, 
the more the algorithm resembles a cutting plane method, and the more time spent 
on enumeration, the more it resembles branch and bound, or enumeration. In 
either extreme, the method is new, and it utilizes the underlying group structure. 

The two steps, enumeration and optimization, alternate, but the enumeration 
step does not require completion of the optimization of the parameters y and a. On 
the other hand, completion of the optimization of the parameters must be followed 
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by some amount of enumeration in order to proceed. The enumeration is guided by 
the outcome of the parameter optimization. 

In this section we describe only the enumerative phase with fixed y and a (except 
for a norming factor ao). An integer program can be solved with this phase alone 
but to do  so may require an unnecessarily large amount of enumeration. Some 
optimization (presented in Section 7) should eliminate much enumeration by 
adjusting the parameters y and a. 

Initially, let the generator set X ,  be the origin XE ={O}. At this initial stage, 
X ,  = { y ’ }  where y :  = 0, j = 1,. . ., n, and d ( y ’ )  = 0. We also introduce the candidate 
set X,. Initially XF = {S’ 1 j = 1 , .  . ., n}. If any S’ is known not to belong to XI, where 
X, from definition 3 is those points x E Z: with S j ( x )  non-empty, then 8’ can be 
deleted from XF. More generally, any time an x E XF is known to have no  optimal 
solution z to the integer program with z x, then x can be deleted from X,. In this 
case, the point x never enters the set X,, and, in common integer programming 
terminology, one could say that x has been “fathomed”. No point larger than x 
need ever be put in XE. 

There are two readily available means of fathoming an x E XF. One is the 
obvious upper bound restrictions. These may be placed in the constraints (4) but 
can also be imposed here. The second method is by use of the lower bounds on the 
objective as discussed in Section 6 (or any other method of finding such bounds). 

The functions A and T will be left unspecified, but A 2  or A ,  would normally be 
used. Except for computational difficulties, any subadditive function A could be 
used. Because of our reliance on Theorem 4 and Corollary 1, we are taking 
I ( x )  = X ,  n S(x). Let the parameters y and a be fixed. 

Assume that 

min { ~ ( x ) }  > 0 
X E S  

for some S 2 S,(O). Then, scale T so that this minimum is equal to one. For A = A2,  
this assumption becomes 

1 = min {yf 1 f = g o )  + min { ~ A Z  1 z E sL (o)), 

using (26) with XE = (0). 
Let 

Then aoaO since cj SO. The initial subadditive function 7r is given by 7r(x)= 
a o A ( x )  and the initial bound on the objective is ao. 

The general step of the enumeration is to find x * E XF for which 
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Change a. to 

move x * from XF to X E  and adjoin to XF those points x > x *, x E Z:, such that 
every y < x, y E Z;, has y E XE. In addition, we can drop any such x from XF if it is 
known to not belong to XI.  For instance, x can be dropped if x e  XL 2 XI,  which is 
easily checked. Because of the norming factor ao, the bound ro is always given by 

r0 = min [ d ( y ) +  min a o A ( x  - y ) ]  
YeXE XES 

for any S 2 SI(0) .  If Az is used, then the bound is given by (26); that is, 

where f = F(go - G y )  and Ri is as in property P11. The minimum over aAz is a 
separable, convex linear programming problem of the form discussed in property 
P10. For each y E XE this minimization need only be solved once since only a. is 
being varied here. 

The computation A (x), x E XF, need only be done once for each such x since A 
is not changed in this enumerative phase of the algorithm with fixed y and a. 

We illustrate the algorithm using the example previously introduced. Beginning 
with y +  = y -  = !, a+ = a- = 0, the initial bound is ro = 4. Now, let X E  be enlarged 
to X E  = {(O,O), (1, O), (0,l)). Then, X F  = ((2, O), (1, I), (0,2)) and 

A z ( l ,  1) = min{i x 0} = 0, 

Az(O, 2 )  = min {! $1 = f . 
4x2 

Hence, a. can be raised to 4, since d ( x )  = 2 for each x E XF. The new ro is given 
by 

no = min{O+4 x f, 1 + 4~ ;X :, 1 + 4 x ;X f }  = 2. 

Both (2,O) and (0,2) should be put in XE. Then XF = { (3 ,0 ) , (0 ,3 ) , (1 ,1 ) }  and 

A2(3 ,0 )  = 4 x :x $ = 2 

A2(0 ,3 )  = 4 x ;X $ = 2. 

Thus, a,, can be increased to 6, since both ( 3 , O )  and (0,3) have d = 3.  However, 
ro remains at 2 because for y = (0,2)E XE, go- Gy = 0 and d ( y )  = 2. There are 
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two ways to proceed from here. One is to simply delete (0,2) from X ,  because any 
z 3 (0,2) must violate - 42, - l l z , =  - 12. The other is to adjust the parameters 
y+,  y - ,  a+, a- as discussed in the next section. We pick up the discussion of this 
example there. 

7. The parameters y and a 

For a fixed X,  and free parameters y and a!, the problem of finding the best 
bound ro becomes; 

max .rro (29) 

s.t. r o S d ( y ) + A ( x - y ) ,  Y E X , ,  x E S ,  (30) 

A (x) S d ( x ) ,  x E X,, (31) 

where S 2 S,(y)  and A could be any of the d o ,  A l ,  A*, A ,  functions. 
We first must remark on the use of X ,  or XL. In Theorem 4, d ( x )  S A ( x )  is 

required on XL. However, XLC(X,  U X F )  and so if x E XL, xfZ XF, then x E X,, 
and consequently every y < x has d ( y )  < A ( y ) .  Further d(x)  2 A (x). Hence, (31) is 
satisfied. If x E Xkand x E X,, then clearly (31) is satisfied. Of course the bound r0 
given by (30) would be improved if X A c  X ,  was used. However, it is more 
convenient to not insist on keeping X ,  as small as possible and to only contract it to 
XL occasionally if at all. 

Using A = A 2 ,  the constraint (31) becomes 
m l  

d ( x ) s x  a(Ri -6, ylfi, y;(l-f ,))+min{aAz ) Z  3 0 , A z  S A X } ,  x EXF, 
i = l  

where f = F(Gx),  and R, = y ; / ( y :+  y;). The minimization of a A z  can be 
simplified by taking z = x instead of the optimal z,  thereby weakening the bound. 
Then, (31) becomes 

m l  m2 

d ( x ) a C  a ( R ,  -fi,~:fi,y;(l-fi))+C hu(h,a:,aY), 
z = 1  , = 1  

where b = Ax. This constraint is linear in y and a! except for the R,  term, which is a 
rational function of y. If for each i we require y: ,  y ;  to satisfy either 

y:fi c y;(l- J ) ,  thus R, - J 2 0, 

yTJ 3 y;(l- J ) ,  thus R,  - fi c 0, 
or 

for all f = Gx, x E X,, then a certain region of y:,  y ;  will be allowed as shown in 
Fig. 2. These regions may be modified during the course of the algorithm to 
improve the bound ro. The constraints on y: ,  y ;  are linear once the choice of 
R, - J  3 0  or R, - f i  S O  is made for each f =  Gx, x EX,. 
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'1 I i---t- 

Fig. 2 

The constraints (30) can be written, for A = A z ,  using (26) as 

T O  

m ,  

d ( y ) +  c a(R -fi,  yTfi, yJ1- f ) ) +  min{aA(z - Y ) (  z E S L ( Y ) } ,  y E XE, 

where f = F(g"-  Gy). As is true for the constraints (31), this constraint may be 
reduced to a linear constraint by restricting y:, y; to an adequately specified region 
of Rz. 

The minimization over aAz is a linear program with separable, piecewise linear, 
convex objective, for a given a. By solving each such problem for y E X E  and then 
adjoining linear restrictions on a to assure that those solutions remain optimal, the 
parameter optimization can be kept as a linear problem. 

At this point, we proceed with the example using (28). Table 1 represents 
XE = { ( O , O ) ,  (l,O), (0, l), (2,0), (0,2)} and X, = {(3,0), (1, l), (0,3)}. If we solve the 
indicated linear program, we find y +  = 104, y -  = 7, a+ = &, a- = - &, and no = 3. 
In fact, the linear program picks out the optimum answer (3,O). 

, = 1  

Table 1 

0 3 - _  2 0 o =  0 y *  g 0 0 - ?  J 0 - -  l o  
y - 0 0 :  0 - 2  5 0 --: 0 - 5  a 5 0 o =  0 
a* 0 0 0  0 0 0 0 -10 0 0 - 1 - 1 =  0 
a- 12 15 33 -12 - 8  -1  - 4  0 0 0 - 1  o =  0 
7ro 0 0 0  1 1 1 1 1 0 0 0 0 = 1  
d 3 2 3  0 1 1 2 2 0 0 0 0  
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Given an m x n zero-one matrix A we ask whether there is a single linear inequality ax =z b 
whose zero-one solutions are precisely the zero-one solutions of Ax 6 e. We develop an 
algorithm for answering this question in O(mn2) steps and investigate other related problems. 
Our results may be interpreted in terms of graph theory and threshold logic. 

1. Introduction 

Given a set of linear equations 

2 aijxj = b, ( i  = 1,2 , .  . ., m), 
j = l  

one may ask whether there is a single linear equation 

2 a,xj = b 
J = I  

such that (1.1) and (1.2) have precisely the same set of zero-one solutions. As shown 
by Bradley [ 2 ] ,  the answer is always affirmative. (Actually, Bradley’s results are 
more general. Some of them have been generalized further by Rosenberg [12].) In 
this paper, we shall consider a related question: given a set of linear inequalities 

2 a,;x, c b, ( i  = 1,2, .  . ., m), 
;=l 

we shall ask whether there is a single linear inequality 

such that (1.3) and (1.4) have precisely the same set of zero-one solutions. In a 
sense, which we are about to outline, this problem has been solved long ago. 

First, a few definitions. A function 

* This research was partly carried out at the Centre de recherches mathbmatiques, Universitb de 
Montrbal; partial support of the NRC (Grant A 8552) is gratefully acknowledged. 
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f : {0,11" + {0,11 

is called a switchingfunction. If there are real numbers a t ,  az,  . . ., a, and b such that 

f(xl ,  xz, . . ., x,) = 0 C C ajxj b, 
j = l  

then f is called a threshold function. If there are (not necessarily distinct) zero-one 
vectors yl, yz, .  . ., y k  and Z i , Z z , .  . ., Z k  Such that 

f(yi)  = 0, f ( z i )  = 1, for all i = 1,2, .  . ., k,  

then, for each integer rn with rn 5 k, the function f is called rn-surnmable. If f is 
not rn-summable then f is called m-assumable. It is well-known [3, 81 that a 
switching function is threshold of and only if it is m-assumable for every rn. (The 
proof is quite easy: denote by S, the set of all the zero-one vectors x with f(x) = i .  
By definition, f is threshold if and only if there is a hyperplane separating So from 
S , .  Such a hyperplane exists if and only if the convex hulls of So and S ,  are disjoint. 
Clearly, these convex hulls are disjoint if and only i f f  is rn -assumable for every rn.) 

Coming back to our problem, we may associate with (1.3) a switching function f 
defined by 

f(x1, xZ, . . ., x.) = 0 C (1.3) holds. 
Then the desired inequality (1.4) exists if and only i f f  is rn-assumable for every rn. 
However, such an answer to  our question is unsatisfactory on several counts. 
Above all, it does not provide an efficient algorithm for  deciding whether (1.4) 
exists. We shall develop such an algorithm in the special case when all the 
coefficients a,, and b, in (1.3) are zeroes and ones. 

An rn x n zero-one matrix A = (a,)  will be called threshold if, and only if, there 
is a single linear inequality 

j = l  

whose zero-one solutions are precisely the zero-one solutions of the system 

Note that the zero-one solutions of (1.5) are completely determined by the set of 
those pairs of columns of A which have a positive dot product. This information is 
conveniently described by means of a graph; in order to make our paper 
self-contained, we shall now present a few elementary definitions from graph 
theory . 

A graph G is an ordered pair (V, E) such that V is a finite set and E is some set 
of two-element subsets of V. The elements of V are called the vertices of G, the 
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elements of E are called the edges of G. Two vertices u, u E V are called adjacent 
if {u,  v }  E E and nonadjacent otherwise. For simplicity, we shall denote each edge 
{u ,  v }  by uv. A subset S of V is called stable in G if no  two vertices from S are 
adjacent in G. 

With each m x n zero-one matrix A,  we shall associate its intersection graph 
G ( A  ) defined as follows. The vertices of G ( A  ) are in a one-to-one correspondence 
with the columns of A ;  two such vertices are adjacent if and only if the 
corresponding columns have a positive dot product. The motivation for introducing 
the concept is obvious: the zero-one solutions of (1.5) are precisely the characteris- 
tic vectors of stable sets in G ( A ) .  We shall call a graph G with vertices u l ,  uz, . . ., u, 
threshold if there are real numbers al,  az,. . ., a, and b such that the zero-one 
solutions of 

2 ujxj zs b 
j = 1  

are precisely the characteristic vectors of stable sets in G. Clearly, G ( A )  is 
threshold if and only if A is threshold; let us also note that G ( A )  can be constructed 
from A in O ( m n 2 )  steps. Thus the question “Is A threshold?” reduces into the 
question “Is G ( A  ) threshold?”. 

2. The main result 

In this section, we develop an algorithm for deciding, within O(n2) steps, whether 
a graph G on n vertices is threshold. We shall begin by showing that certain small 
graphs are not threshold. These graphs are called 2Kz, P4 and C4; they are shown in 
Fig. 1. 

L4 

FIG. 1 
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Fact 1. If G is 2K2, P, or C,, then G is not threshold. 

Proof. Assume that one of the above graphs G is threshold. Then there is a linear 
inequality 

alx l  + a2x2 + a,x, + a4x4 s b 

whose zero-one solutions are precisely the characteristic vectors of stable sets in G. 
In particular, we have 

a l + a 4 > b ,  a z + a s > b ,  a l + a , s b ,  a 2 + a 4 c b ;  

clearly, these four inequalities are inconsistent. 0 

In order to make our next observation about threshold graphs, we need the 
notion of an “induced subgraph”. Let G = (V, E )  be.a graph and let S be a subset 
of V. The subgraph of G induced by S is the graph H whose set of vertices is S ; two 
such vertices are adjacent in H if and only i f  they are adjacent in G. 

Fact 2. If G is a threshold graph, then every induced subgraph of G is threshold. 

Proof. Let the zero-one solutions of 

2 ajxj s b 
, = I  

be precisely the characteristic vectors of stable sets in G. Let H be a subgraph of G 
induced by S.  Denote by c* the summation over all the subscripts j with u, E S. 
Then the zero-one solutions of 

are precisely the characteristic vectors of stable sets in H. 
Now, we have an easy way of showing that certain graphs are not threshold 

(simply by pointing out an induced subgraph isomorphic to 2K2, P4 or C,). On the 
other hand, we are about to develop a way of showing that certain graphs are 
threshold. Let G be a graph with vertices u I ,  u 2 , .  . ., u,. G will be called strongly 
threshold if there are positive integers a l ,  a 2 , .  . ., a, and b such that the zero-one 
solutions of 

0 

2 ajxj s b 
, = I  

are precisely the characteristic vectors of stable sets in G. (It will turn out  later, and 
may be proved directly, that every threshold graph is strongly threshold.) We shall 
show that the property of being strongly threshold is preserved under two simple 
operations. Let G be a graph with vertices uI,uZ,...,un. By G + K l ,  we shall 
denote the graph obtained from G by adding a new vertex u,,+~ and all the edges 
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U,U,+~ with 1 s i s n. G U KI,  we shall denote the graph obtained from G by adding 
a new vertex unil and no edges at all. 

Fact 3. If G is strongly threshold then G + K ,  and G U K ,  are strongly threshold. 

Proof. 
of 

Let a, ,  a 2 , .  . ., a, and b be positive integers such that the zero-one solutions 

2 a,x, s b 
, = I  

are precisely the characteristic vectors of stable sets in G. Then the zero-one 
solutions of 

2 a+, + bx,,, s b 
j = 1  

are precisely the characteristic vectors of stable sets in G + K , .  Similarly, the 
zero-one solutions of 

are precisely the characteristic vectors of stable sets in G U K , .  0 
Now, we are ready for the theorem. 

Theorem 1. For every graph G, the following three conditions are equivalent: 
(i) G is threshold, 

(ii) G has no induced subgraph isomorphic to 2K2, P4 or C4, 
(iii) there is an  ordering v , ,  vz,  .. ., v, of the vertices of G and a partition of 

{ v z ,  v 3 , .  . ., v n }  into disjoint subsets P and Q such that 
every v, E P is adjacent to all the vertices ui with i < j ,  
every v, E Q is adjacent to none of the vertices vi with i < j .  

Proof. The implication (i) + (ii) follows from Fact 1 and Fact 2. The implica- 
tion (iii) =+ (i) may be deduced from Fact 3. Indeed, let G, denote the subgraph 
of G induced by {v,, v z , .  . ., v,} .  If a+, E P, then G,,, = G, + K , ;  if u , + ~  E Q, then 
G,+I = G, U K1. Hence, by induction on t, every G, is strongly threshold. 

It remains to be proved that (ii) =+ (iii). We shall accomplish this by means of 
an algorithm which finds, for every graph G, either one of the three forbidden 
induced subgraphs or  the ordering and partition described in (iii). If G has n 
vertices then the algorithm takes O ( n 2 )  steps. 

Before the description of the algorithm, a few preliminary remarks may be in 
order. It will be convenient to introduce the notion of the degree d G ( u )  of a vertex u 
in a graph G ;  this quantity is simply the number of vertices of G which are adjacent 
to u.  At each stage of the algorithm, we shall deal with some sequence S of k 
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vertices of G ;  the remaining vertices will already be enumerated as u k + l ,  V k + z , .  . ., u, 
and partitioned into sets P and Q. Furthermore, each w E S will be adjacent to all 
the vertices from P and to n o  vertices from Q ;  hence i t  will be adjacent to exactly 
dG ( w )  - 1 P 1 vertices from S .  

Step 0. For each vertex w of G, evaluate d G ( w ) ,  (This may take as many as O ( n 2 )  
steps.) Then arrange the vertices of G into a sequence w l ,  w 2 , .  . ., w, such that 

dG(w,) 2 dG(wz) 2 * . .a dG(w,); 

call this sequence S.  (This can be done in O ( n  log n )  steps; the rest of the algorithm 
takes only O ( n )  steps.) Set k = n and P = Q = 0.  

Step 1. If k = 1, then S has only one term; call that vertex u l ,  and stop. If k > 1 
then let u be the first term of S and let u be the last term of S ;  note that 

1 PI + k - 1 2 dG(U) 3 & ( w )  3 dG(U) 2 I P I 
forevery w E S . H  d G ( u ) = J P I + k - 1 , g o t o S t e p 2 . 1 f  d G ( u ) = J P I , g o t o S t e p 3 . 1 f  
I P ( < d , ( v ) ~ d , ( u ) < ( P ( + k - l ,  go to Step 4. 

Step 2. Set uk = u, delete u from S, replace P by P U { u k } ,  replace k by k - 1 and 
return to Step 1. 

Step 3. Let uk = u, delete u from S, replace Q by Q U {&}, replace k by k - 1 
and return to Step 1. 

Step 4. Let ul = u. Find a vertex u3 E S which is not adjacent to u l .  Find a vertex 
uz E S which is adjacent to  u3. Find a vertex u4 E S which is adjacent to u1 but not 
to u2. Then stop (the vertices ul,  u2, u3, u4 induce 2Kz or  P4 or  C ,  in G ) .  0 

Remark. In Step 4, we take the existence of u, for granted. However, the 
existence of such a vertex follows at once from the fact that d G ( u 1 ) 3  dG(u2) and 
from the fact that u3 is adjacent to uz but not to u l .  

In the rest of this section, we shall present several consequences of Theorem 1. 

Remark 1. 
by writing u < u if and only if 

For every graph G = (V,  E ) ,  we may define a binary relation < on V 

u w E E , w # u  ++ w u E E .  

By this definition, < is reflexive and transitive but not necessarily antisymmetric. 

From Theorem 1, we conclude the following. 

Corollary 1A. 
u, u of G, at least one of u < u and u < u holds. 

A graph G is threshold i f  and only i f  for every two distinct vertices 

Remark 2. For every graph G = (V, E )  and for every vertex u of G, we define 

N ( u )  = { u  E V : u is adjacent to u } .  
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From Theorem 1, we conclude the following. 

Corollary 1B. 
V into disjoint sets A,  B and an ordering ul ,  uz, . . ., Uk of A such that 

A graph G = (V, E )  is threshold if  and only if there is a partition of 

no two vertices in A are adjacent, 
every two vertices in B are adjacent, 
N ( u J  c N ( U 2 )  c . . * c N u , ) .  

Let us sketch the proof. If G has the structure described by Corollary IB then G 
cannot possibly have an induced subgraph isomorphic to 2Kz, P4 or C,; hence G is 
threshold. On the other hand, if G is threshold then G has the structure described 
by (iii) of Theorem 1. In that case, we may set A = Q, B = V - Q. Finally, we scan 
the list u l ,  u 2 , .  . ., un in the reuerse order (from un to u l )  and enumerate the vertices 
of B as u l ,  uz, .. ., uk. 

Remark 3. For every graph G, we define the complement G of G to be a graph 
with the same set of vertices as G ;  two distinct vertices are adjacent in G if and 
only if they are not adjacent in G. From the equivalence of (i) and (ii) in Theorem 1, 
we conclude the following. 

Corollary 1C. A graph is threshold i f  and only i f  its complement is threshold. 

Let us point out that this fact does not seem to follow directly from the definition. 

Remark 4. In order to decide whether a graph G (with vertices u l ,  uz, . . ., u, )  is 
threshold, it suffices to know only the degrees dG(u , ) ,  &(u2), . . ., d G ( u n )  of its 
vertices. Indeed, executing Steps 1, 2 and 3 of the algorithm, we manipulate only 
these quantities. On the other hand, if we are about to execute Step 4 then we 
already know that G is not threshold. 

Remark 5. Theorem 1 implies that threshold graphs are very rare. Indeed, from 
(iii) of Theorem 1, we conclude that the number of distinct threshold graphs with 
vertices u,, u 2 , .  . ., un does not exceed 

n !  2"-'. 

On the other hand, the number of all distinct graphs with the same set of vertices is 
2" (n ~ 1)/Z 

Hence a randomly chosen graph will almost certainly be not threshold. 

Remark 6. 
switching function 

With each graph G on vertices ul ,  u ~ , .  .., u., we may associate a 

f : {0,1)" + (0211 



152 V. Chvatal, P.L. Hammer 

by setting f ( x , ,  xz, . . ., x,,) = 0 if and only if (xl, xz, . . ., x,) is the characteristic vector 
of some stable set in G. A switching function arising in this way will be called 
graphic. 

From Theorem 1, we conclude the following. 

Corollary 1D. 
2-assumable. 

A graphic switching function is threshold i f  and only i f  it is 

Let us point out that for switching functions that are not graphic, the “if” part of 
Corollary 1D is no longer true. Indeed, for every m with m 2 2,  there are switching 
functions which are m -assumable but not ( m  + l)-assumable. Ingenious examples 
of such functions have been constructed by Winder [14]. 

Remark 7. 
following zero-one linear programming problem: 

When A = ( a i i )  is an m x n zero-one matrix, we shall consider the 

maximize C cfx, 

subject to u p j  S 1 (1 S i S m ) ,  

x j  = 0 , l  (1 S j n ) .  

, = I  

j = 1  

Defining c(u , )  = c, for every vertex uj of G(A),  we reduce (2.1) to the following 
problem: 

in G ( A ) ,  find a stable set S 

maximizing c(s)= C c ( u ) .  
U E S  

In general, (2.2) is hard; one may ask whether it becomes any easier when A is 
threshold. The  answer is affirmative. Indeed, if G(A) is threshold then we can find 
the ordering u l ,  uz, . . ., u, and the partition P U Q described in (iii), Theorem 1; this 
takes only O ( m n * )  steps. Then we define 

P, if c(ul)<O 

{ v , }  if c ( u l ) a O  
s1 = { 

and, for each t with 2 t n, 

St-1, if u, E Q and c ( u , ) < O ,  

if u, E Q and c ( v , )  a 0, 

if u, E P and c ( u , ) <  c(S,-l), 

if u, E P and c ( u , ) S  c ( L 1 ) .  

U { u,} ,  

S,-l, 

{utl, 
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Clearly, S,  is a solution of (2.2).  

Remark 8. G. Minty observed that it is quite easy to decide whether a threshold 
graph has a hamiltonian cycle. We reproduce his observation below with a slightly 
different proof. A graph G is called 1-tough if for every nonempty set S of its 
vertices, the graph G - S has at most I S  I components. 

Corollary 1E. 
equivalent: 

For every threshold graph G, the following three conditions are 

(i) G is hamiltonian, 
(ii) G is 1-rough, 

(iii) the degree sequence d ,  G d z  <.  . . 

d , ~ j < n / 2  + d n - 1 3 n - j .  

d ,  of G is such that 

Proof. (i) hold for arbitrary 
graphs (see [4, 5 ] ) ,  it suffices to prove that (ii) + (iii). For this purpose, we shall 
consider a threshold graph G violating (iii) and prove that G violates (ii). Thus we 
have d, G j and dn-, < n - j for some j < n / 2 .  Representing G as in Corollary lB ,  
we observe that di = d G ( u i )  for i = 1 , 2 , .  . ., k.  Let us distinguish two cases. 

Case 1: j s k.  Define S = N({ul, uz, . . ., u,}) and observe that I S 1 = dj s j < n / 2 .  
Note also that G - S contains j isolated vertices u l ,  uz,.  . ., uj and at least one 
additional component. Hence G is not 1-tough. 

Case 2: j > k .  This case simply cannot occur since d, 3 d t+ l  3 n - k - 1 3  n - j .  

Since the implications (i) += (ii) and (iii) 

3. Variations 

Let A = (a,,) be an m x n zero-one matrix. We shall denote by r ( A )  the smallest t 
for which there exists a system of linear inequalities 

cijxl < di 
j = 1  

such that (3.1) and 

(1 s i < t )  (3.1) 

have the same set of zero-one solutions. Theorem 1 characterizes matrices A with 
t ( A ) =  1; in this section, we shall discuss the problem of finding t ( A )  for every 
matrix A .  

Again, the language of graph theory will be useful. For every graph G = (V, E), 
we shall denote by t ( G )  the smallest t such that there are threshold graphs 
GI = (V, El), Gz = (V,  EZ), . . ., G, = (V, E,) with E ,  U E2 U * U E, = E. Our  next 
result may not sound too surprising. Note, however, that Theorem 1 is used in its 
proof. 
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Theorem 2. Let A be a zero -one matrix and let G be G ( A  ). Then t ( A  ) = t ( G ) .  

Proof. 
graphs G, = (V, Ei) with u E, = E and t = t (G) .  For each i ,  there is an inequality 

The inequality t ( A )  6 t ( G )  is fairly routine. Indeed, there are t threshold 

whose zero-one solutions are precisely the characteristic vectors of stable sets in G,. 
A subset of V is stable in G if and only if it is stable in every G,. Hence the zero-one 
solutions of the system 

2 c,,x, s d,  (1 s i 6 t )  (3.3) 
, = 1  

are precisely the characteristic vectors of stable sets in G. Since G = G ( A ) ,  the 
characteristic vectors of stable sets in G are precisely the zero-one solutions of 
(3.1). Hence t ( A ) s  t = t (G) .  

In order to prove the reversed inequality, we shall use Theorem 1. There is a 
system (3.2) with t = t ( A )  such that (3.1) and (3.2) have the same set of zero-one 
solutions. Set V = {ul, ur,. . ., u,} for each i ,  define 

E, = {u,u, : r#  s and c,, + c,, > d , }  

and G, = (V, E#) .  Since (3.1) and (3.2) have the same set of zero-one solutions, we 
have 

U Ei = {u,u, : ai, + a,  > 1 for some i = 1,2, .  . ., m } .  
,=I 

Hence G = (V, u Ei) is G ( A ) ;  it remains to be proved that each G, is threshold. 
Assume the contrary. Then., by part (ii) of Theorem 1, there are vertices u,, us, up, u, 
such that 

u,u, E E,, u,u, E E,, 

u,u,!Z E,, u,u,!Z E,. 

Hence by the definition of E,, we have 

c,, + c,, > d,, c,, + c,, > d,, 

c,, + c,, d,, c,, + c,, =s d,. 

Clearly, these four inequalities are inconsistent. 0 

Next, we shall establish an upper bound on t ( G ) .  In order to do that, we shall 
need a few more graph-theoretical concepts. A triangle is a graph consisting of 
three pairwise adjacent vertices; a star (centered at u )  is a graph all of whose edges 
contain the same vertex u. The stability number a ( G )  of a graph G is the size of the 
largest stable set in G. 
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Theorem 3.  
more, i f  G contains no triangle, then t ( G )  = n - a ( G ) .  

For every graph G on n vertices, we hnve t ( G ) s  n - a(G) .  Further- 

Proof. Write G = (V, E )  and k = n - a ( G ) .  Let S be a largest stable set in G ;  
enumerate the vertices in V - S as u l ,  u 2 , .  . ., uk. For each i with 1 c i c k ,  let E, 
consist of all the edges of G which contain u,. Then each G, = (V, E,)  is a star and 
therefore a threshold graph. Since S is stable, we have u E, = E. Hence t ( G )  S k .  

Secondly, let us assume that G contains no triangle. There are t threshold graphs 
G = (V, E , )  with 1 < i G t, t = t ( G )  and u E, = E. It follows easily from Theorem 
1 that each G,, being threshold and containing n o  triangle, must be a star. Hence 
there are vertices u17  uz, . . ., u, such that every edge of every G, contains u,. Since 
u E, = E. the set 

v - {UI, u27. . ., U J  

is stable in G. Hence cu(G)s n - t ( G ) .  0 

Let us note that we may have t ( G )  = n - a ( G )  even when G does contain a 
triangle. For example, see the graph in Fig. 2. 

FIG. 2. 

When a ( G )  is very large, the upper bound on t ( G )  given by Theorem 3 is much 
smaller than n. O n  the other hand, if a ( G )  is very small, then t ( G )  is often very 
small. (In particular, if a ( G )  = 1, then t ( G )  = 1.) Thus one might hope that, say, 
t ( G )  n / 2  for every graph on  n vertices. Our next result shows such hopes to be 
very much unjustified. 

Corollary 3A. 
t ( G )  > (1 - & ) n .  

For every positive E there is a graph G on n vertices such that 

Proof. Erdos [9] has proved that for every positive integer k there is a graph G on 
n vertices such that G contains no triangle, a ( G ) <  k and, for some positive 
constant c (independent of k ) ,  n > c(k/log k)’. Given a positive E ,  choose k large 
enough, so that Eck 3 (log k ) * ,  and consider the graph G with the above properties. 
We have 
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and so, by Theorem 3, t ( G )  = n - a ( G ) >  (1 - ~ ) n .  0 

Finally, we shall show that the problem of finding t ( G )  is very hard; more 
precisely, we shall show that it is “NP-hard”. Perhaps a brief sketch of the meaning 
of this term is called for. There is a certain wide class of problems; this class is called 
NP. It includes some very hard problems such as the problem of deciding whether 
the vertices of a graph are colorable in k colors. An algorithm for solving a problem 
is called good if it terminates within a number of steps not exceeding some (fixed) 
polynomial in the length of the input [7]. A few years ago, Cook [6] proved that the 
existence of a good algorithm for finding the stability number of a graph would 
imply the existence of a good algorithm for every problem in NP. Such a 
conclusion, if true, is very strong. (For example, it implies the existence of a good 
algorithm for the celebrated traveling salesman problem.) A problem X is called 
NP-hard if the existence of a good algorithm for X would imply the existence of a 
good algorithm for every problem in NP. (For more information on the subject, the 
reader is referred to [l] and [lo].) 

Corollary 3B. The problem of finding t ( G )  is NP-hard. 

Proof. Poljak [ll] proved that even for graphs G that contain n o  traingles, the 
problem of finding a ( G )  is NP-hard. For such graphs, however, we have a ( G )  = 

n - t ( G ) ;  hence the existence of a good algorithm for finding t ( G )  would imply the 
existence of a good algorithm for Poljak’s problem. Since Poljak’s problem is 
NP-hard, our problem is NP-hard. 

We shall close this section with two remarks on t ( G ) .  

Remark 1. First of all, we shall present a simple lower bound on t (G) .  For every 
graph G = (V, E ) ,  let us define a new graph G*  = (V*, E * )  as follows. The vertices 
of G * are the edges of G ;  that is, V* = E. Two vertices of G*, say {u ,  u }  E V* and 
{ w ,  z }  E V*, are adjacent in G*  if and only if the set {u, u, w ,  z }  induces 2Kz, P, or 
C, in G. Fig. 3 shows an example of G and G*. 

As usual, the chromatic number x ( H )  of a graph H = (V, E )  is the smallest k 
such that V can be partitioned into k stable sets. We claim that 

t ( G )  2 ,y(G *). (3.4) 

Indeed, there are threshold graphs G, = (V, E , )  with 1 i =s t, t = t ( G )  and 
u E, = E. By (ii) of Theorem 1 and by our definition of G *, each E, is a stable set 

of vertices in G *. Hence x (G *) 
Note that the problem of finding the chromatic number of a graph is NP-hard; 

hence for large graphs G, the right-hand side of (3.4) may be very difficult to 

t .  
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FIG. 3. 

evaluate. For small graphs, however, (3.4) is quite useful and  often precise. In fact, 
we know of n o  instance where it holds with the sharp inequality sign. 

Problem. Is there a graph G such that t ( G ) > x ( G * ) ?  

Remark 2. W e  shall outline a heuristic for finding a “small’ (although not 
necessarily the  smallest) number of threshold graphs Gi = (V, E,)  such that u E, = E, thereby providing an  upper bound on t(G). The  heuristic is based on a 
subroutine for finding a “large” threshold graph Go = (V, Eo)  with E o  C E. 

The  subroutine goes as follows. Given a graph G = (V, E ) ,  find a vertex u of the  
largest degree in G, let S be  the set of all the  vertices adjacent t o  u and  let 
H = (S, T )  be  the subgraph of G induced by S. Applying the subroutine recursively 
to H, find a “large” threshold graph H o  = ( S ,  To) with To G T. Then define 

E o = T ” U { w u : w E S }  

and Go  = (V, E”).  
The heuristic goes as follows. Given a graph G = (V, E ) ,  use the  subroutine to  

find a large threshold graph G o =  (V ,Eo)  with E’CE. Applying the  heuristic 
recursively to the  graph (V, E - Eo), find threshold graphs G, = (V, E , )  with 
u E, = E and, say, 1 S i S k. Then define G,,, = Go. 

Clearly, the running time for this heuristic is O(n3) .  

4. Pseudothreshold graphs 

A switching function f : {0,1}” +{O, 1) is called pseudothreshold [13] if there a re  
real numbers a,, a*, . . ., a,, b (not all of them zero), such that, for every zero-one 
vector (x I ,xz , .  . ., x,,), we have 
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5 a,x, < b =S f ( x l ,  x z ,  . . ., x n ) =  0, 
j = l  

By analogy, we shall call a graph pseudothreshold if there are real numbers a ( u ) ,  b 
( u  E V ) ,  not all of them zero, such that, for every subset S of V, we have 

a ( u ) <  b + S is stable, 

2 a ( u ) >  b =+ S is not stable. 

“ES 

u t s  

In this section, we shall investigate the pseudothreshold graphs. (We do  so at the 
suggestion of the referee of an earlier version of this paper.) In fact, we shall 
develop an algorithm for deciding whether a graph is pseudothreshold. When G 
has n vertices, the algorithm terminates within O ( n 4 )  steps; it is not unlikely that 
this bound may be improved. 

We shall begin by making our definition a little easier to work with. 

Fact 1. 
( u  E V )  such that b is positive and, for every subset S of V, we have (4.1). 

A graph is pseudothreshold i f  and only if  there are real numbers a ( u ) ,  b 

Proof. The “if” part is trivial; in order to prove the “only if”  part, we shall 
consider a pseudothreshold graph G = (V, E). We may assume E # 0 (otherwise 
a ( u )  = 0 and b = 1 does the job). Since the empty set is stable, (4.1) implies b 2 0. 
In order to prove b > 0, we shall assume b = 0 and derive a contradiction. First of 
all, since every one-point set is stable, we have a ( u )  0 for every u E V. Secondly, 
since not every a ( u )  is zero, there is a vertex w with a ( w )  < 0. Finally, since E #  0, 
there are adjacent vertices u and u. Setting S = { u ,  v, w }  we contradict (4.1). 0 

From now on, we shall assume b > 0. For every graph G = (V, E) we shall define 
two subsets Po, Qo of V. The set Po consists of all the vertices u for which there are 
three other vertices u l ,  uz, u3 such that 

The set Qo consists of all the vertices u for which there are three other vertices 
v l ,  uz ,  v, such that 

These definitions are illustrated in Fig. 4. 
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FIG. 4. 

Fact 2. Let G = (V, E )  be u pseudothreshold graph. Then 

u E P,, =+ u ( u ) s 2 b / 3  

u E Qo 3 a ( u ) s  b / 3 .  

First of all, if u E PO, then Proof. 

and so 3 u ( v ) <  b. 0 

Next, we shall define (by induction on t )  

P,+, = P, U { u  E V : uu E E for some u E Q,}, 

Qltl = Q, U { u  E V :  uulf E €or some u E PI} ,  

P * =  U PI, Q * =  U Q,. 

If G is a pseudothreshold graph, then P *  n Q * = 0. 

= cc 

t = O  t = O  

Fact 3. 
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Proof. It suffices to  prove that 

u E P *  + a ( u )  2 2b/3,  

v E Q *  =+ a ( v ) S  b /3 ,  

these implications follow easily (by induction on t )  from Fact 2. 0 

From the  definition of P* and Q*,  we readily conclude the  following. 

Fact 4. 
vertices in Q *  are adjacent. 

If P* n Q * = 0, then every two vertices in P* are adjacent and no two 
0 

O u r  next observation involves the  graph 3K2 shown in Fig. 5. 

Fact 5. 
3K2. 

No pseudothreshold graph contains an induced subgraph isomorphic to 

Proof. Assume the  contrary. Then 

a ( u , ) +  a ( u z ) +  a ( u , ) c  b, 

a ( v , ) +  a ( v 2 ) +  a ( v , ) S  b, 

a ( u , ) +  a ( v , ) a  b, 

a ( u 2 ) +  a ( v 2 ) a  b, 

a(u , )+  a ( v 3 ) a  b. 

Trivially, these inequalities a re  inconsistent with b > 0. 0 

Theorem 4. For every graph G = (V, E ) ,  the following three properties are 
equivalent : 

(i) G is pseudothreshold, 
(ii) P *  n Q *  = 0 and G has no induced subgraph isomorphic to 3K2, 

(iii) there is a partition of V into pairwise disjoint subsets P, Q and R such that:  
every vertex from P is adjacent to every vertex from P U R, 
no vertex from Q is adjacent to another vertex from Q U R, 
there are no three pairwise nonadjacent vertices in R. 
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Proof. The implication (i) + (ii) follows from Fact 3 and Fact 5 .  
To see that (iii) =+ (i), simply set b = 2 and 

0 if u E Q, 

2 if u E P. 

It remains to be proved that (ii) + (iii). We shall do  this by means of a very 
simple algorithm which terminates in O(n4) steps either by showing that (ii) does 
not hold or by constructing the partition described in (iii). The algorithm goes as 
follows. 

First of all, find P* and Q*. (This can certainly be done in O(n4) steps.) Then find 
out whether P* n Q *  =0. (If not, stop: (ii) does not hold.) Then set S = 

V -  (P* U a*); note that by the definition of P* and Q*, every vertex from S is 
.,adjacent to all the vertices from P* and to no vertex from Q*. Let So consist of all 
the vertices in S which are adjacent to no other vertex in S ;  define 

p = P * ,  Q = Q * U S , ,  R = S - S o .  

Find out whether there are three pairwise nonadjacent vertices in R.  If not, stop: P, 
Q and R have all the properties described in (iii). If, on the other hand, there are 
three pairwise nonadjacent vertices ul ,  u2, u3 E R, then each u, is adjacent to some 
u, E R.  Using the fact that R f l  (Po U 0,) = 0, the reader may now easily verify that 
the set { u l ,  u2, u3, u l ,  uz, u,} induces a 3K2 in G. (This may be done in the following 
order. Firstly, the u,’s are distinct. Secondly, each u, is adjacent to  exactly one u,. 

Finally, the u,’s are pairwise nonadjacent.) Hence (ii) does not hold. 0 

Remark. 
is pseudothreshold, then one can satisfy (4.1) with b = 2 and each a ( u )  E {0,1,2}. 

It may be worth pointing out the following corollary of Theorem 1 : If G 
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The problem of optimally locating bank accounts to maximize clearing times in discused. The 
importance of this problem depends in part on its mathematical relationship to the well-known 
uncapacitated plant location problem. A Lagrangian dual for obtaining an upper bound and 
heuristics for obtaining a lower bound on the value of an optimal solution are introduced. The 
main results are  analytical worst case analyses of these bounds. In particular it is shown that the 
relative error of the dual bound and a “greedy” heuristic never exceeds [ (K  - 1)/KIK < l /e for a 
problem in which at most K locations are to  be chosen. An interchange heuristic is shown to have 
a worst case relative error of ( K  - 1)/(2K - 1)  < 1/2. Examples are given showing that all these 
worst case bounds are  tight. The extreme points of an LP formulation equivalent to  the 
Lagrangian relaxation are also characterised. 

The number of days required to clear a check drawn on a bank in city j depends 
on the city i in which the check is cashed. Thus, to maximize its available funds, a 
company that pays bills to  numerous clients in various locations may find it 
advantageous to maintain accounts in several strategically located banks. It would 
then pay bills to clients in city i from a bank in city j ( i )  that had the largest clearing 
time. The economic significance to large corporations of locating accounts so that 
large clearing times can be achieved is discussed in a recent article in Business- 
week [1]. 

To formalize the problem of selecting an optimal set of account locations, let 
I = (1,. . ., m }  be the set of client locations, J = (1,. . . , n }  the set of potential 
account locations, d) the fixed cost of maintaining an account in city j ,  f the fraction 
of checks paid in city i, c#J~, the number of days (translated into monetary value) to  
clear a check issued in city j and cashed in city i, and K the maximum number of 
accounts that can be maintained. All of this information is assumed to be known 
and c,, = fib,! represents thevalue of paying clients in city i from an account in city j .  
To simplify the analysis we will also make the realistic assumption that d, 3 0 for all j .  

* This research was supported by NSF Grants ENG75-00568 and SOC-7402516, Sections 1-4 of this 
paper include a technical summary of some results given in [2]. Some proofs are omitted and may be 
obtained in [?I. 
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Let 

1 

0 otherwise, 

if an account is maintained in city j ,  
Y, = [ 

and x,,, 0 s x, c 1, be the fraction of customers in city i paid from an account in 
city j .  

The account location problem, which we call (P), can be stated as the integer 
linear program (IP) 

s.t. 2 x , ~  = 1, i E I, 
IEJ 

1 < 2 y , ~ K ,  ( 3 )  
J E J  

x,, s y,, i E I, j E J, (4) 

Y, E (0, I), j E J, (5) 

x#J O? i € I ,  i € J ,  (6) 

We denote by (LP) the linear program obtained from (IP) by replacing ( 5 )  by 
0 s y,  c 1, j E J. 

The essential variables in (P) are the y,'s since given binary-valued y,'s, say 
J o  = { j  I y, = l}, it is simple to determine an optimal set of x,,'s. Let 

k E 3 "  

Then, with respect to J o ,  an optimal set of x,,'s is given by x , ~  = 1 for some j E J o ( i )  
and x,, = 0 otherwise. 

There is a vast literature on problems that are mathematically related to problem 
(P). When I = J are the nodes of a graph, (5) is an equality contraint, and the 
objective function (1) is replaced by minC,E,C,,3c,Jx,,, the model is known as the 
K-median problem. When (1) is replaced by 

the model is known as the simple or uncapacitated plant or  warehouse location 
problem. [2, 3, S] contain bibliographies and survey material of applications and 
methods for this class of problems. 

Useful relaxations for a variety of combinatorial problems have been obtained by 
identifying a set of complicating constraints of the problem, weighting these 
constraints by multipliers and placing them in the objective function. This dual 
method is called Lagrangian relaxation. It was first shown to  be a very effective 
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computational tool for solving large combinatorial problems by Held and Karp 
[6,7] in their work on the traveling salesman problem. Geoffrion [4] has proposed a 
Lagrangian relaxation for (P) in which one dualizes (IP) with respect to the 
constraints ( 2 ) .  This partial dual is intimately related to the linear program (LP). 
For example, both problems have the same optimum objective values. 

Although most recent work on the class of problems represented generically by 
problem (P) has been on exact algorithms, there is still a need to study heuristics. 
Heuristics provide feasible solutions and lower bounds for exact algorithms. Most 
importantly, however, heuristics appear to be the only reasonable option for 
solving very large problems. The reason for this pessimistic remark is that problem 
(P) belongs to the class of problems known to  be NP-complete in the sense of Karp 
[9]. The result that (P) is NP-complete is easily established by reducing the 
NP-complete node covering problem to (P). 

This paper analyzes approximations for problem (P). Our main results are on the 
quality of solutions obtained from heuristics and upper bounds obtained from 
linear programming and Lagrangian relaxations. 

The paper is organized into five sections. In Section 1 we give a criterion for 
evaluating heuristics and relaxations. Section 2 describes Geoffrion's Lagrangian 
relaxation and defines a greedy heuristic. Section 3 contains the derivation of a tight 
upper bound on the worst performance of the greedy heuristic and the Lagrangian 
and (LP) relaxations. In Section 4 we formulate and analyze theoretically an 
interchange heuristic. Although this heuristic is computationally more expensive 
than the greedy heuristic, we will show that its worst possible performance is 
inferior to that of the greedy heuristic. Finally, Section 5 provides a characterization 
of the extreme points of (LP) and discusses implications for deriving cuts. 

1. A criterion for measuring the quality of bounds 

Let ?? be the family of problems generated from problem (P) by considering all 
positive integer values for rn, n, and K ,  all real rn X n matrices C = { G , }  and all real 
nonnegative n-vectors d = ( d l , .  . . , d") .  As before z denotes the optimal objective 
value of a particular P E  8. Now let 2 and 2 be upper and lower bounds 
respectively on z. These bounds may be obtained, for example, from the linear 
programming relaxation and greedy heuristic, respectively. 

When evaluating the quality of a bound - for definiteness say a lower bound - 
it is not in general meaningful to consider the absolute deviation z - _z, since this 
deviation is sensitive to scale changes in the data. Thus if there is a (P) that yields a 
positive absolute deviation, we can construct problems in ?? with arbitrarily large 
deviations. 

Relative diviations are more meaningful. However, defining an appropriate 
measure of relative deviation is subtle. For example, a popular measure of relative 
deviation for a heuristic in a maximization problem is 
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This measure is appropriate when z > 0 in which case 0 1. In a worst case 
analysis of a particular heuristic one seeks to show that F 6 E < 1 for all problems 
within some class. This is equivalent to showing that the ratio z / g  is bounded by 
the positive constant 1/(1- E ) .  Johnson [S] presents a survey of worst case analysis 
of heuristics for a variety of combinatorial problems in which a measure that is 
equivalent to (7) is used. 

The measure ( F )  is inadequate for our problem. We cannot require z > 0 since a 
minimization problem such as the simple plant location or K-median problem, 
when translated into a maximization problem, would generally have z < 0. More 
generally, for our problem, the measure F fails to have the following property that 
we believe is essential. A modification of the data that adds a constant to the 
objective value of every feasible solution but leaves the execution of the heuristic 
unchanged should also leave the error measure unchanged. For example, if a 
constant 6 is added to every element of a row of C in problem (P), then the 
objective value of each feasible solution is increased by 6, but the execution of the 
greedy heuristic (among others) is unchanged. The measure F is now equal to 
( z  - g ) / ( z  + 6)  and, provided z #  g, it can be made as large (or small) as we like by 
appropriate choice of 6. 

With these considerations in mind, to evaluate lower bounds obtained from a 
heuristic we use the measure 

F 

where zR  is a suitably chosen reference value for (P). Ideally, the reference zR 
should equal the minumum objective value of (P) but, in any event, zR should be a 
lower bound on this minimum value that is sensitive to significant data changes such 
as the addition of a constant to every element of a row of C. We may think of z - zR 

as the worst absolute deviation that could be achieved by a heuristic. Then G 
measures the deviation for a particular heuristic relative to the worst possible 
deviation. 

In problem (P) we define 

ZR = c - KD, (9) 
where c, = min,EJc,, c = ~ z E I ~ z  and D = maxJEJdJ. Thus if d = 0 and c = 0, G = F. 
Furthermore, if d = 0 and C 2 0, we can enforce G = F by adding a fictitious and 
useless location (n + l), such that c,."+, = 0 for all i. 

Our measure for evaluating upper bounds in maximization problems is similar to 
G. Using the same value for zR, we define an error measure of an upper bound to be 
H = ( 2  - z ) / ( Z  - z R ) .  Note that in H the actual error ( 2  - z )  is relative to the 
worst possible error 2 - zR.  

We will assume that 9' has been restricted to exclude all problems for which 
z - zR = 0 or 2 - zR = 0. The relations zR  c g c z 2 would make error bound 
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analysis rather pointless in these cases. We note that 0 
and only if z = z ,  and H = 0 if and only if ,7 = z.  

G 1,0 s H s 1, G = 0 if 

2. A Lagrangian relaxation and the greedy heuristic 

Let x be the matrix whose elements are x,, i E I, j E J, y = ( y l , .  . . , y " ) ,  

S = {x, y I x, y satisfies constraints (3), (4), (5) and (6)}, 

and u = (u,, . . . , u,) be multipliers for the constraints (2). A Lagrangian problem 
for (P) is given by 

and the corresponding Lagrangian dual by 

Z D  = min z ~ ( u ) .  

It is well-known that z,, 3 2. Furthermore, since the matrix defined by the 
constraints (2) and (3 )  is totally unimodular, it follows from a theorem of Geoffrion 
[4] that zD is equal to the optimum value of the linear programming relaxation 
(LP). 

Define 

p , ( u )  = 2 max(O,c,, - u,)- d,. 
, € I  

Observe that p , ( u )  is the potential contribution of location j to z D ( u ) ,  since in an 
optimal solution city i will be assigned to a selected location j if and only if 
c,, - u, ZO.  Thus to  determine t D ( u )  for fixed u we define J'(u) = { j  E J I p, (u )  > 
0) and set J ( u )  = J'(u) if 1 < IJ'(u)l K.  Otherwise let J ( u )  be an index set 
corresponding to the K largest p , ( u )  if lJ'(u)l> K or the single largest p J ( u )  if 
lJ ' (u) l= 0. We then have 

Proposition 1. A n  optimal solution to 

is given b y  

1 i f j  E J ( u ) ,  

0 otherwise; 
Yi = 
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1 if y ,  = 1 and c,, - u, > 0, 

0 otherwise. 
x,J = 

As a consequence of Proposition 1 we have that 

In studying the Lagrangian relaxation we observed that if J *  C J represents a set 
of selected locations and u, = maxJE,. c,,, then p,(u) ,  j E J * ,  represents the improve- 
ment in the objective function if we augment J* by j .  This observation leads quite 
naturally to the conception of the following "greedy" heuristic for (P). This 
heuristic is suggested by Spielberg [lo]. The greedy heuristic first chooses a location 
to solve (P) for K = 1 and then proceeds recursively. Suppose k < K locations have 
been selected. If there exists an unselected location that improves the value of the 
objective function, choose one that yields the maximum improvement; otherwise 
stop. 

The greedy heuristic 
Step 1: Let k = 1, J *  = 0 and u :  = minJEJc,,, i E I .  
Step 2: Let p, ( u  ') = c,,, max(0, c,, - u :) - d,, j E J * .  If p, ( u  ') s 0 for all j E J *  

Step 3: Find jk +Z J* such that p J k ( u k )  = maxJEJ.p,(uk). Set J* = J *  U { j k } .  If 

Step 4: Set k = k + 1. For i E I set 

and I J * )  3 1 set k = k - 1 and go to Step 5. Otherwise, go to Step 3. 

IJ*I = K go to Step 5, otherwise go to  Step 4. 

u f  = ma? c,, = u f - '  + max(0, c,,,-, - u f - l )  
J E J  

Go to Step 2. 

have 1 J *  1 = k and the value of the greedy solution is 
Step 5: Stop; the greedy solution is given by y ,  = 1, j E J * ,  y ,  = 0, otherwise. We 

The following example illustrates the greedy heuristic with d = 0, K = 2 and 

0 1 1 6 9  c = [ i  : 9 4 0  0" ;) . 
We initialize with J *  = 0 and u I = (0,0, 0,O). Then p l ( u  ') = 24, p2(u ') = 23, p 3 ( u 1 )  = 

18, p 4 ( u 1 )  = 14, j l  = 1 and J *  = (1). We set u z  = (0,7,7,10) and obtain p2(uz)  = 11, 
p 3 ( u z )  = 7 and p4(u2)  = 9. Thus j z  = 2, J *  = {1,2}, and z ,  = 35. We also note that 
zD(u ' )  = 35 + 1 + 0 = 36 so that 35 z S 36. 
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3. Analysis of the greedy heuristic and Lagrangian dual 

In this section we show that 

( z D  - z , ) / ( z D  - zR) < l / e  for all P E 8. (11) 

G, = (t - z,)/(z - zR) < I/e, 

HD = ( z D  - z ) / ( z D  - zR) < l/e. 

Since zR s z ,  s z s zD, (11)  implies that 

(12) 

(13) 

We will present examples to show that these are the best possible bounds; that is 
suppc9 G, = suppc9 HD = l/e. Furthermore, since zD = zLp, the optimal value 
of the linear programming relaxation (LP), we obtain the result that 
(zLp- z)/(zLp- z R )  < l/e. Let PK be the subfamily of 8 in which at most K 
locations may be selected. 

Lemma 1. For all P E PK 

(zD - z , ) / ( z D  - zR) S [ (K  - 1)/KIK < l /e.  

Proof. If K = 1 or p,,(u’)< 0, the theorem is clearly true since z ,  = z D ( u l ) .  
Otherwise let k be the number of locations selected by the greedy heuristic and E 
the number of times Step 2 of the greedy heuristic is executed. If k = K then E = k ; 
otherwise E = k + 1. In either case z22. Let (Y = ( K  - 1)/K and, for notational 
simplicity. pj = pz, (uJ) ,  j = 1 , .  . ., k - 1 and p~ = ptG(uE)  if E = k ,  p~ = 0 if k = k + 1. 
The statement of the lemma is equivalent to 

(14) 

- - 

(1 - a K ) Z D  f ( Y K Z R  s 2,. 

- 
For s = 1, . . . , k ,  x ,cI  u :  = c + c;:: (p, + d,) and Kp, is nonnegative and at least as 

J * .  Using these facts and D 2 d,, j ’ E J, we obtain large as the K largest p j ( u ” ) ,  j 
from (10) 

- r - 1  

Z D ~ C  + C p , + K p , + ( s - l ) D ,  ~ = 1 ,  ..., k .  
j = 1  

We will establish the lemma by showing that (14) holds when zD is replaced by the 
minimum of the bounds given in (15). 

c + a,, s = 1 , .  . . , E. 
Substituting in (14) zR = c - KD, z ,  = c + c:=, p,, and the bounds for zD, we must 
show that 

Let a, = xy:; pj + Kp, + (s - l)D so that (15) becomes z0 

or (cancelling terms in c )  
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We establish (16) by assuming 
k - 

( l - a K ) a , - K a K D  > C  p,, s = l ,  ..., k - 1  
J = 1  

and showing that (17) implies 
k 

(1 - ~ " ) U G  - KaKD S C p,. (18) 
J - 1  

Substituting for UE in (18) and simplifying yields 
E-1 k 

(1 - a") pj + (1 - a")Kpr - C pj S [(l- E)( l -  a")+ KaK]D. (19) 
j = l  j = 1  

Multiply inequality s of (17) by and sum for s = 1, .  . . , k - 1 to obtain 

(1 - a") 5 aE+s [X pj + (s - 1)D + Kp, - K(1- a"-')Ka"D > 
S = l  1 

k 

> K(1- C pj. 
j = 1  

where we have used the fact that Cfi: a'-'-'= (1 - a ' - ' ) / ( l -  a )  = K(1- a'-'). It 
can be shown that (20) can be simplified to 

f - 1  k 

(1 - a") c p, -(1- af-1) c p, > [ K  - k +  1 - a" + Ga" - Ka"-']D. (21) 
J - 1  J = 1  

We now consider two cases to show that (21) implies (19). 
Case (a). [ k  = K = k ] :  Here (19) reduces to 

"-1 

- a" 2 p, + ( K  - 1)(1- a"-l)pK S [(l- K)(1- a")+ KaK]D (22) 
J - 1  

and (21) reduces to 
"-1 

a " )  2 pj - (1 - a"-l)p" > [l-  a" + K(a"  - a"-')]D. 
,=1 

Multiplying (23) by - a "/(aK-' - a") = 1 - K < 0 implies (22), which completes 
the proof of case (a). 

Case (b). [k < K, k = k + 11: Here (19) reduces to 

- a" , = 1  p, + (1- CY")Kpk+i [ -  k(l-CtK)+ KaK]D (24) 

and (21) reduces to 
k 

(ak - a") c p, > [ K  - k + ka" - KakID. (25) 
j = 1  

Multiplying (25) by - aK/ (ak  - a")< 0 yields 
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- a K  2 pi < - a K [ K  - k + kaK - K a k ] D / ( a k  - aK) .  

Since, in this case, we have pr+l = 0 and D 3 0, (24) will be implied by the above 
inequality if 

- a K [ K - k  + ~ C Y ~ - K C I ~ ] / ( C I *  - a K ) S  - k ( l - a K ) + K a K .  (26) 

The inequality (26) simplifies to  

k s KaK-k.  (27) 

We prove (27) by induction. For k = K - 1 we have KaK-' = K - 1 so that (27) is 
an equality for all K. Now assume that (27) is true for k and consider k - 1. We 
have 

~ ~ K - k + 1  - - K ~ K - ~  - & K - k ( 1 -  a )  = KaK-k - a K - *  

3 KaK-k  - 1 3  k - 1, 

where the last inequality is implied by the induction hypothesis. 0 

As immediate consequences of Lemma 1 and the relations zR z ,  s z zD we 
have the following two theorems. 

Theorem 1. For all P E PK, G, s [ ( K  - 1)/KIK. 

Theorem 2. For all P E PK, HD [ (K  - 1)/KIK 

We now give two families of problems in PK, K = 2,3,. . . , which show that 
[ (K  - 1)/KIK is a tight bound for G, and HD respectively. (K = 1 is trivial). Either 
family also implies the tightness of the bound in Lemma 1. 

Theorem 3. Let P E PK, K = 2,3,. . . , be defined by m = K ( K  - l), n = 2K - 1, 
d = 0 and C K  where for j = 1, .  . . , K - 1 

( K  - 1)KK-2ai-'[a = ( K  - 1) /K] ,  i = (j - l ) K  + 1 , .  . . , jK, 

[ 0,  otherwise, 
Cf: = 

and for j = K, . . . ,2K - 1 

KK- ' ,  i = l + j + ( 1 - 2 ) K , l = l ,  ..., K - 1  I 0,  otherwise. 
Cf: = 

Then G, = [ (K  - 1)/KIK, K = 2,3,. . . . 

Proof. See [2]. 
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Theorem 4. Let P, E PK, t = 2 , 3 , .  . . , K = 2 , 3 , .  . . , be defined by d = 0, n = Kt, 
m = ( y )  and the 0-1 matrix CKt, where the rows of CK' consist of all 0-1 n-vectors 
with precisely t positive elements. Then 

and, for each K, as t approaches infinity HD approaches [ ( K  - 1)/KIK. 

Proof. See [ 2 ] .  

4. The interchange heuristic 

In this section we d o  a worst-case analysis of an interchange heuristic. It will be  
convenient throughout this section to  treat the subfamily of P with d = 0. Since in 
this subfamily (P) always has gn optimal solution that uses K locations, the 
interchange heuristic will take a particularly simple form. T h e  heuristic is initialized 
with an arbitrary set J o  C J of cardinality K. With respect to J o  optimal values for 
the x,, are chosen in the  obvious manner mentioned in the  introduction. W e  then 
determine if the  solution can be  improved by augmenting J o  by  a location not in J o  
and deleting from J o  one  of its present members. The  procedure continues in this 
way until n o  such interchange yields an improvement. In the  worst-case analysis it is 
not necessary to  specify details on how the  particular entering-leaving pair is 
selected such as first improvement vs. maximum improvement. 

Theorems 5 and  6 characterize the  relative error of this heuristic. For  problem (P) 
let z ,  be  the  value of the  solution produced by the interchange heuristic, 
GI = (z - z , ) / (z  - zR) ,  and Pk the subfamily of P in which d = 0 and at  most K 
locations a re  to be  selected. 

Theorem 5. For all P E PK, GI =s ( K  - 1)/(2K - 1). 

Proof. See [ 2 ] .  

Theorem 6. Let P E PK, K = 1 , 2 , .  . . , be defined by m = 2 K  - 1 ,  n = 2K and 

1 
1 

0 

1 
0 
0 

1 0  
. .  
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(The first 2K - 1 columns of C K  are unit vectors and the last column has K one’s.) 
Then Gr = ( K  - 1)/(2K - l), K = 1,2,. . . . 

Proof. The first K columns are an interchange solution since if any column j ,  
K + 1 s j s 2K, is interchanged for one of the first K columns, the increase in the 
objective function is 0. This gives zr = K. The  last K columns are an optimal set, so 
z = 2K - 1. Since zR = 0, G, = (2K - 1 - K)/(2K - 1) = ( K  - 1)/(2K - 1). 0 

Since the interchange heuristic can begin with an arbitrary set of locations of 
cardinality K, we might choose an initial solution by applying the greedy heuristic. 
We will call the method that begins with the greedy solution and then applies the 
interchange heuristic the “greedy-interchange’’ heuristic. Let zgr be the value of the 
solution produced by the greedy-interchange heuristic and Ggr = (2 - z , , ) / (z  - zR) .  
The family of worst-case problems used in Theorem 3 show that we can have 
zgr > 2,. However, there is a family of problems for which G, = [ (K - 1)/KIK and 
no improvements can be made by applying the interchange heuristic. In particular 
we have 

Theorem 7. Let P E PK, K = 2,3,. . . , be defined by m = K Z ,  n = 2K and the matrix 
C K ,  where for 1 s j K 

( K  - l)’-’KK-’, 

0, otherwise 

i = (j - l)K + 1,.  . , jK 

K K - ’ ,  i = l K + j ,  l = O  ,..., K - 1  

0, otherwise. 

C,: = 

c ? K + ,  = 

Then G, = G,, = [ ( K  - 1)/KIK, K = 2,3,. . . . 

Proof. See [2]. 

5. The extreme points of (LP) 

In Section 3 we studied the relationship between (P) and (LP) in terms of their 
objective values. These problems may also be compared by studying the extreme 
points of their underlying polyhedra. It is easy to  show that any solution t o  the (IP) 
formulation of (P) is also an extreme point of (LP). In this section we complete the 
description of the LP polyhedron by characterizing the fractional extreme points of 

For a given non-integer solution ( x ,  y )  of (LP) let J1 = { j  E J 10 < y, < 1) and 
(LP). 

Il = { i  E I I x,, = 0 or  y, for all j and x, non-integer for some j } .  



174 G. Cornuejots, M. Fisher, G.L. Nemhauser 

Let 
1 if x,, > 0, 

0 if x,, = 0, 
a,, = 

and denote by A the 1 I ,  1 X (J1 I matrix whose elements are a,, for i E II and j E J1 

Theorem 8. The non-integer solution (x, y )  of (LP) is an extreme point of the LP 
polyhedron if and only i f  

(i) y, = max,x, for all j E Jl, 
(ii) for each i E I,  there is at most one j with 0 < x, < y,, 
(iii) the rank of A equals I J ,  I. 

Proof. The proof will use the well-known fact that (x, y )  is extreme if and only if 
each pair of solutions (x', y ' )  and ( x 2 , y 2 )  to (LP) that satisfy x = f x l + S x z ,  
y = $ y 1 + f y 2  also satisfy X I  = x 2  and y ' =  y z .  

We first show that (x, y )  is not extreme if (i) or (ii) are violated. If (i) is violated 
there exists a k such that rnax,x,k < Yk < 1. Let E = m i n ( y k  - max, xtk, 1 - y k )  and set 

Y : = Y k + & ,  Y : = y k - & ,  Y , ! = y : = Y , ,  j # k ,  

x i, = x t  = x,,, for all i and j .  

Then since ( x ' , y ' )  and ( x ' , y ' )  are feasible in (LP) and satisfy x = fx1+;x2 ,  
y = t y  I + d Y Z  the fact that y ' # y 2  implies (x, y )  is not extreme. A similar argument 
may be used in the case where (ii) is violated if we let k ,  jl, and j z  denote indices 
satisfying 0 < < yI1, 0 < X k f i  < y,, and set 

We now represent general (XI, y ' )  and (x', y ' )  as xh = x, + 8,,, x',= x,, - 8,,, 
y :  = y, + 8,, and y :  = y, - 8, for i E I, j E J, where 8, and 8, are selected so that 
(XI, y ' )  and (xz, y ' )  are feasible in (LP). We will complete the proof by showing that 
when (i) and (ii) are satisfied, any such S,, and 8, satisfy 8,) = 8, = 0 if and only if the  
rank of A is 1 Jl 1 .  Let 

JZ = { j  E J 1 y, = 01, 

J 3  = { j  J 1 yJ = 

I2 = { i  E I I x,, integer for j E J }  and 

I ,  = {i E I I o < x, < y, for precisely one j E J ) .  

Note that J I ,  J z ,  J3 and I ] ,  12, I3 partition J and I.  
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It is immediate from the upper and lower limits on y, and x,, imposed by the 
constraints of (LP) that S, = 0, j E J z  U J,, S,, = 0, i E Z, j E Jz ,  and i E I*, j E J. 
Also, by the definition of ZI and J,, x,, = 0 and hence S,, = 0 for i E 11, j E J,. 

This leaves S,, j E J1 and S,,, i E I , ,  j E J ,  and i E Z3, j E J1 U J,  undetermined. 
For i E 11, j E J1, 6, = 0 if x,, = 0, and if x, > 0, then 

because x i  = x,, + a,, s y, + S, and x, = y,  implies 6, S S, while x; = x,] - S,, S 

y, - 6, and x,) = y, implies 6,) 3 S,. We may then use constraint (2) of (LP) to impose 

For i E I,, j E J1 U J,, let j ( i )  denote the unique index for which 0 < x,)(,) < y,(,). 
The feasibility requirements of (LP) imply 6,, = O  if j EJ1 and x,, = O  or 
j E J 3 -  { j ( i ) } ;  and if x,, > O  

6,, = 6,, i E Z3, j E jl - { J ( i ) } .  (30) 
Constraints (2) and (6) will be satisfied if 

Feasible values for those S, and 6, that are not immediately equal to zero are 
now completely determined by (28)-(32). If the rank of the coefficient matrix A of 
(29) is 1 J1 1 then 6, = 0 for j E J ,  is the unique solution of (29). Equations (28) and 
(30)-(31) then imply that the remaining S,, = 0 so that x, y is extreme. If the rank of 
A is less than JJll, then let 6, j 6 J1 denote a nonzero solution to (29). Since a& 
j E J1 satisfies (29) for any a, we may determine values for S,, using (28), (30), and 
(31) and select a sufficiently small that (32) is satisfied. This implies that x, y is not 
extreme. 0 

If the rank of A equals I J ,  I then A contains a 1 Jl I x 1 J1 I nonsingular submatrix. 
Let B denote such a submatrix and e a )J,I-component vector of ones. The 
fractional part of x, y may be completely determined from the unique solution to 
Bz = e by setting 

y, = z,, j E J1 

x,) = z,, x,, > 0 i E 11, j E J1 or i E L, j E J1 - { j ( i ) } .  

(33) 

(34) 
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Intuitively, B contains the "fractional information" of (x, y )  and should be useful 
in determining a cut which removes ( x , y ) .  An example of such a relationship is 
afforded by a class of extreme points that are generated from the solution to Bz = e 
when B is a generalized cycle matrix. Let C" = {c:} denote the k x k matrix whose 
rows are 0-1 vectors in which t contiguous ones are successively moved one 
position to the right. 

For example 

1 1 1 0  
C 4 j  0 1 1  1 ,  1 .  

1 0 1 1  
1 1 0 1  

Ck' is nonsingular if (and only if) t and k are relatively prime, in which case Ck' 
may be used to generate an extreme point of (LP) by selecting It C I and J l  C J 
with 1 II 1 = (Jl  1 = k and solving the system 

with coefficient matrix Ck'. An extreme point is obtained by using the unique 
solution z, = l / t ,  j E J1 of this system to determine fractional y ,  and x,, from 
(33)-(35) and selecting any feasible integer values for the remaining yJ and xtJ. It is 
interesting that a cut which removes this extreme point may also be determined 
from the matrix C". This cut is 

2 c;'xi ,  - yi s k - [ k / t ]  
, € I ,  , E J ,  JEJl 

where [ k l t ]  denotes the least integer greater than or equal to k / t .  This inequality is 
valid for any k and t and is acut ,  that is it removes part of the (LP) feasible region if 
k l t  is not integer. However, in the process of removing these fractional extreme 
points, it is certainly possible to create new ones. 
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SOME COLORING TECHNIQUES 
D. de W E R R A  
Dipartement de Mathtmatiques, Ecole Polytechnique Ftdtrale de Lausanne, Lausanne, Swirzer- 
land 

Two types of colorings for graphs and hypergraphs are considered here: good and equitable 
colorings. By using several techniques (namely partial colorings and node splitting) we study 
some classes of graphs (and hypergraphs) which have k-colorings of the above types for given 
values of k. Some new results on edge colorings are obtained by combining these coloring 
techniques. 

1. Introduction 

In this paper the terminology of Berge [2] will be used. By k-coloring of a 
hypergraph H = (X, 8) we simply mean a partition of its node set X into k subsets 
U1, .  . . , U,. For multigraphs G = (X, E) we will deal only with edge colorings; so a 
k-coloring of G will be a partition of its edge set E into k subsets U,,  . . . , Uk ; it is 
in fact a k-coloring of the dual hypergraph G* of G. 

A usual coloring of H is a coloring where not all nodes in the same edge E ’ have 
the same color (i.e. are in the same U , )  if I E’(  3 2; for a graph G a coloring of G is 
usual if n o  two adjacent edges are of the same color. 

Several extensions of usual colorings have been proposed; the most interesting so 
far seem to be the equitable colorings [7] and the good colorings [3]. 

For a k-coloring (Ul , .  . . , Uk)  of H we denote by u, (E’ )  the cardinality of 
U, rl E ’ ( E ’  E 8 is an edge of H); in the same way, if (U, ,  . . . , U,)  is a k-coloring of 
G, u , ( x )  will be the number of edges in U, which are adjacent to  node x. 

( U1,. . . , U,)  is an equitable k-coloring if 
e(E’)= max,,,==k[u,(E‘)- u,(E’)J S 1 for each edge E’ of H, or 
e (x )  = max,.,,,[u,(x)- u,(x)]  

k(E’)=I{iIu,(E’)~1}1=min(k,IEr() for each E’of H, or  
k (x )  = I{i 1 u , ( x ) 3  1}1 = min(k, d(x))  for each x in G. 
In this paper we first intend to  describe some classes of graphs which have 

k-colorings of the above types for all k 3 s where s is a fixed number. 
Besides if we are given a graph G and a positive integer k, G may not have a 

k-coloring of the above types; however it may have a deficient k-coloring (i.e. a 
k-coloring which is good o r  equitable except possibly for a certain subset S of 
nodes). We will also try to  characterize subsets S of this kind. 

1 for each node x of G. 
It is a good k-coloring if 
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In order to obtain the above mentioned results we shall apply two coloring 
techniques: partial coloring and node splitting. These methods are described in the 
next sections. 

2. Partial colorings 

In the remainder of the paper a generalized k-coloring will be an equitable or a 
good k-coloring. A partial coloring of a hypergraph H (resp. of a graph G) is a 
coloring of a sub-hypergraph of H (resp. of a partial graph of G). 

For some coloring theorems constructive proofs based on the idea of partial 
colorings (or more precisely recolorings) have been given. These theorems have the 
following form. Let S ( p )  be any sufficient condition for the existence of a 
generalized p-coloring. 

Theorem 2.1. Let H be a hypergraph such that any subhypergraph of H satisfies 
S ( p ) ;  then, for each k 2 p ,  H has a generalized k-coloring. 

A possible proof technique may be the following [3, 71: starting from any 
k-coloring ( U l , .  . . , U k )  of H one determines a subhypergraph H ’  generated by 
UP,, U ,  for which ( U l , .  . . , U p )  is not a generalized p-coloring. Since H ‘  satisfies 
S ( p ) ,  there exists a partial p-coloring (Ur, . . . , UL) of H’ which is a generalized 
p-coloring. One  verifies separately for good and for equitable colorings that 
( U ; ,  . . . , U;, Up+,, . . . , U,) is a k-coloring of H which is better than (U , ,  . . . , U k )  in 
the sense that for at least one edge some measure of quality of the coloring has 
increased and for no edge has this measure of quality decreased. By repeated use of 
this procedure, one finally gets a generalized k -coloring as required. 

Remark 2.1. Notice that this type of proof would not be applicable to other types 
of colorings such as r -bounded colorings for instance (i.e. colorings satisfying 

e ( E ’ )  = max [u , (E’) -  u,(E’)] s r where r 3 2 ) .  
hick 

Application 1 [7 ] .  A unimodular hypergraph has an equitable k-coloring for each 
k 2 2 .  

This follows from the characterization of totally unirnodular matrices given by A. 

The measure of quality for edge E‘ is here the number of pairs of colors i ,  j for 
Ghouila-Houri [6]. 

which u,(E’)-  uj(E’)  does not exceed a given value. 

Application 2 [3]. A balanced hypergraph has a good k -coloring for each k 3 2. 
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This is a direct consequence of the fact that any subhypergraph of a balanced 
hypergraph has a good bicoloring [2, p. 4521. In this case the measure of quality for 
edge E‘ is k (E’) i.e. the number of colors appearing in edge E’ .  When restricted to 
the case of graphs (or more generally of multigraphs) Theorem 2.1 becomes 

Theorem 2.1.A. Let G be a multigraph such that any partial multigraph satisfies 
S ( p ) ;  then, for each k a p ,  G has a generalized k-coloring. 

Application 1 [7]. A bipartite multigraph has an  equitable k-coloring (and hence a 
good k -coloring) for each k 3 2. 

Here S ( 2 )  is the property of containing no odd cylces. 
Now this conclusion may be generalized as follows: 

Application 2 [S]. Let G be a multigraph such that in each odd cycle C there exist two 
consecutive nodes which are not joined by an  odd chain in G - C to any node of C. 
Then G has an  equitable k-coloring for each k 3 3 .  

(This result is obtained by showing that the above property can be taken for 
S(3D 

Application 3 [9]. If in any partial multigraph of G the edges may be oriented in such 
a way that for each node x, either d’(x) = 0 (mod p )  or d - ( x )  0 (mod p ) ,  then G 
has an  equitable k-coloring for each k a p .  

Remark 2.2. Similar conditions S ( p )  could be given for the existence of good 
p-colorings in applications 2 and 3. 

Notice finally that application 2 could be formulated in another way. Given a 
multigraph G, we might say that an odd cycle C which does not have the above 
described property is a strong odd cycle. (Thus in a strong odd cycle C among any 
two consecutive nodes of C there is at least one which is joined by an odd chain in 
G - C to a node of C.) Then if k is given and if S is a subset of nodes which meet 
all strong odd cycles, G = (X ,  E )  has a k-coloring which is equitable for all nodes 
x E X - S (i.e. e ( x )  1) but for nodes x E S we may have e ( x )  =S 2. (The 
construction of k-colorings with e(x)==2 is always possible as shown in [7]). 

In the next section we shall try to describe other sets S where we may not have 
e ( x )  s 1 but possibly e ( x )  s 2. 

3. Node splitting 

If G is a simple graph, it is known that its chromatic index q ( G )  satisfies 
d =s q ( G )  s d + 1 where d is the maximum degree in G. This is Vizing’s theorem; 
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an elegant proof has been given by J.C. Fournier [ 5 ] .  Beineke and Wilson [l] as well 
as Fiorini and Wilson [4] say that a simple graph G is of class 1 if q(G)  = d and of 
class 2 otherwise. We will extend this definition to multigraphs. 

Before proceeding further we need to introduce the idea of node splitting. Given 
a multigraph G and a positive integer k, we may apply a k-splitting operation to the 
nodes of G ;  this will result in a multigraph Gk obtained as follows: for each node x 
with degree d ( x )  > k, the d ( x )  edges adjacent to x are numbered arbitrarily; x is 
split into ( d ( x ) / k )  nodes x’, x”, . . . , x ( ~ )  ( ( t )  denotes the smallest integer not less 
than t ) .  x ‘  is adjacent to the first k edges, x“ to the next k edges and so on (only 
the last node x C p )  may be adjacent to less than k edges). Clearly Gk will have 
maximum degree k. 

We will say that a property P of G is s-stable if any Gk obtained by a k-splitting 
of G with k a s also has property P. For instance if P is the property of having no 
odd cycles, then P is 2-stable. But if P is the property that no connected component 
of G is an odd cycle, then it is not 2-stable. 

Theorem 3.1. Let G be a multigraph and s 3 2 an integer; if for any k a s G as well 
as any Gk obtained by k-splitting are of class 1 ,  then G has an equitable k -coloring. 

Proof. Any usual k -coloring of Gk gives obviously an equitable k -coloring of G. 

At this point we might derive the same applications as in the previous section by 
choosing in each case a suitable property P. (We would have s = 2 in the first 
application and s = 3 in the second one.) We will however concentrate on other 
properties. 

Applying a coloring procedure which is not a partial recoloring in the sense 
defined above, J.C. Fournier has obtained the following result [5]:  

Let G be a simple graph with maximum degree d ;  if there is no cycle meeting only 
nodes of degree d, then G is of class 1.  

Using Fournier’s theorem we get 

Application 1. Let G be a simple graph and h 3 2 an integer such that each cycle 
contains at least one node with degree < h ; then, for each k 3 h, G has an equitable 
k -coloring. 

I f  h is the maximum degree d ,  this is just the result of Fournier; and if h < d any 
Gk is of class 1 from Fournier’s theorem (the property P of having in each cycle at 
least one node with degree < h is h-stable). 

This result may be extended to some classes of multigraphs since k-splitting 
operations may sometimes transform multigraphs into simple graphs. Here m (x, y ) 
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is the multiplicity of the pair x, y of nodes, i.e. the number of parallel edges joining 
nodes x and y.  

Application 2. Let G be a multigraph such that in each cycle there exists at least one 
node with degree < h. Let p be the largest integer such that m ( x ,  y ) c  
( d ( x ) / p ) ( d ( y ) / p )  for each pair of nodes x, y.  Then if p 3 h, G has an equitable 
k-coloring for each k with h s k s p. 

Proof. If k S p one may construct a G, which is a simple graph. Furthermore in 
each cycle of GI, there will be at least one node with degree < k (since k 3 h ) .  
Hence Fournier’s theorem may be applied. 

Illustation. The multigraph G consisting of 3 nodes a, b, c and 5 edges (a ,  b ) ,  (a ,  c ) ,  
(b, c ) ~ ,  (b, c ) ~ ,  (b, c ) ~  is such that p = 3 since 

m(b,  c )  = 3 S (4/3)(4/3) = ( d ( b ) / p ) ( d ( c ) / p ) .  

We may take h = 3. G3 obtained by the 3-splitting operation has nodes a, b, b’, c, c’ 
and edges (a,  b ) ,  (a ,  c ) ,  (b, c ) ,  (b’,  c )  and (b, c’). It is a simple graph of class 1 .  One 
sees that G neither has an equitable 2-coloring nor an equitable 4-coloring. 

Remark 3.1. Analogous results for good colorings could be derived by devising an 
adequate k -splitting operation: each node x with degree d (x) > k is split into one 
node x ’  of degree k and one or more other nodes of arbitrary degree not exceeding 
k. 

For hypergraphs node splitting operations would become edge splitting opera- 
tions. However this procedure cannot be used in the same way as for graphs: while 
any k-splitting applied to a bipartite multigraph still gives a bipartite multigraph, 
any edge k -splitting operation acting on a balanced hypergraph may not produce a 
balanced hypergraph. 

As a conclusion we may combine several coloring techniques such as partial 
coloring, node splitting and Fournier’s coloring procedure. This gives the following: 

Theorem 3.2. Let G be a simple graph and let h 3 2 be such that each cycle where all 
nodes have degrees at least h contains at least one node which does not belong to any 
strong odd cycle. Then G has an equitable k-coloring for each k 3 h. 

Proof. This result is obtained by first constructing Gk with k-splitting operations 
and then determining any k -coloring. Then the recoloring procedure described by 
Fournier [5] is applied until either the quality of the coloring is improved (i.e. as 
previously the measure of quality has been increased for at least one node) or a 
node x with degree k has been reached and x does not belong to any strong odd 
cycle. 
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In this case the partial coloring procedure (used for application 2 of theorem 
2.1.A [8 ] )  may be applied. This will also improve the quality of the coloring. By 
iterating this procedure one eventually gets an equitable k -coloring. 

Theorem 3.2 could also be formulated in an alternative way: 

Let G be a simple graph and h a positive integer ; let F be the family of all cycles which 
contain only nodes having degree at least h and belonging to some strong odd cycle. If 
S is a subset of nodes meeting all cycles in F, then for each k z= h G has a k -coloring 
satisfying e ( x ) <  1 for any node x E X -  S and e ( x ) s  2 for any x E S.  
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1. Introduction 

(1.0) We prove here a new combinatorial min-max equality which unifies and 
extends results including the matroid intersection theorem [4] and the theorem of 
Lucchesi and Younger on  the minimum number of edges which meet every directed 
cut in a graph [14]. Like matroid intersection theory and optimum matching theory 
[15], the subject is developed as statements on the existence of integer-valued 
optima to certain large combinatorially described linear programs. 

The method of proof used here generalizes the method used in [6] to prove the 
polymatroid intersection theorem and the method used in [13] to prove the 
Lucchesi-Younger Theorem including an idea which Lovlsz attributes to Neil 
Robertson. 

We are especially grateful to Ellis Johnson for his help on this work. 
The present section states the main theorem. Sections 2-6 discuss several cases of 

i t .  Sections 7, 8 and 9 prove it. The results in Sections 7 and 8 are also of interest in 
themselves. Special cases of Section 7 appear in a number of places. Section 8 
extends the idea of Robertson and a main idea of [ 2 ] .  Section 10 proves a 
consequence of the main theorem, and also places the theorem in a setting which 
we call “box total dual integrality”. 

(1.1) 
each e E E has tail t ( e )  E V and head h ( e )  E V. 

Let G = (V, E )  be a directed graph with node-set V and edge-set E, where 

(1.2) For S V, let 

6 ( S ) = { e  E E :  t ( e ) E  S , h ( e ) f Z  S } .  

For S c V, let 
for { v } .  

= V -  S. For u E V, let V = V - { u }  and let o be used sometimes 

(1.3) A family F of subsets of V is called a crossing family on V if 

* The research of each author is partially supported by a grant from the National Research Council of 
Canada. 
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S n T E F ,  S U T E F ,  

for any two sets S E F and T E F such that 

S f l T # 8 ,  S U T # V .  

(1.4) 
submodular on F if 

For any family F of subsets of V, a real-valued function f (S) ,  S E F, is called 

f ( S  fl T ) + f ( S  u T ) S f ( S ) + f ( T )  

for all S, T E F such that S n T, S U T E F. 
For any vector, x = (x, : e E E )  E RE, and any H C E, let 

x ( H )  = 2 (x. : e E H ) .  

For any given graph G = (V, E ) ,  crossing family F on V, submodular function f 
on F, and vectors a, d, c E (R  U { 2 w})", consider the linear program, 

(1.5) maximize cx, 

(1.6a) where d c x c a ,  

(1.6b) VS E F , x ( S ( S ) ) - X ( S ( S ) ) G  f (S) .  

(1.7) For y = (ys: S E F )  E R', let 

Yf = c (ysf(S): S E F ) ,  

F(y ,  e )  = c (ys : S E F, e E S ( S ) )  - c ( y s  : S E F, e E S(s)). 
The linear programming dual of (1.5) is 

(1.8) minimize yf + za - wd 

where y E RF, z E RE, and w E RE 

(1.9) satisfy y 2 0 ,  z 2 0 ,  w 3 0 ,  

V e  E E, 2, - w, + F(y ,  e )  = c,. 

The 1.p. duality theorem says that: 

(1.10) 
these optima exists. 

The maximum in (1.5) equals the minimum in (1.8), assuming either of 

(1.11) Theorem. If c is integer-valued, and linear program (1.8) has un optimum 
solution, then it has an integer-valued optimum solution. Hence, if c is integer- 
valued, (1.10) holds even when restricted to integer-valued solutions [y, z ,  w ]  of (1.9). 

(1.12) Theorem. If a, d, and f are integer-valued, and linear program (1.5) has an 
optimum solution, then it has an integer-valued optimum solution. Hence, if a, d ,  and 
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f a re  integer-valued, (1.10) holds even when restricted to integer-valued solutions x of 
(1.6). 

Using a simple fact of linear programming, Theorem (1.12) is immediately 
equivalent to: 

(1.13) If a, d, and f are integer-valued, then every non-empty face of the polyhedron 
P of the system (1.6) contains a n  integer point. In  particular, if P has a vertex, then 
every vertex of  P is a n  integer point. 

2. Network Flows 

(2.0) Let G = (V,  E )  be a graph; let d, a E ( R  U {  * w } ) ~ ,  and let r,q E 
(R U { * m})". A feasible flow in network G in the classical sense of [lo] is a vector 
x E R E  which satisfies 

(2.1) d S x < a, 

r, s x ( 6 ( v ) )  - x(6(a)) s q. for all v E V. 

Let F, = { { v } :  v E V }  and F2 = {a: v E V}.  Let F = F, U Fz.  Let f ( ( v } )  = q. and 

Clearly, F is a crossing family, f is submodular on F, and (1.6) for this case is 
f ( V - v ) =  -ru. 

(2.1). Theorems (1.11) and (1.12) for this case are well-known. 

3. Polymatroids 

(3.0) For a matroid M defined on the set E, the rank function of M is f ( S )  = IJI 
for any maximal J S such that J is independent in M. (For example, where E is 
the set of indices of the columns of a matrix A, and where J C E is independent in 
M when the set of columns indexed by J is linearly independent.) 

(3.1) The rank function f ( S ) ,  S C E, of a matroid on E is submodular; it is 
non-decreasing: A C B C E implies f ( A )  < f ( B ) ;  f (0 )  = 0;  and for each e E E, 
f ( { e } ) s  1 .  Such an f determines its matroid, say M, by the fact that J is 
independent in M iff IJI = f ( J ) .  

(3.2) 
The polyhedron, 

Let f be any submodular function of all subsets of E. Let a E (R  U { 1+ m})". 

P,, = {x E RE:  0 < x a ;  x(S) =S f ( S ) , V S  C E } ,  

known as a polymatroid, is much like the family of independent sets of a matroid. 
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(3.3) Furthermore, Theorems (1.1 1)-(1.13) hold where the linear programs 
(lSk(1.6) and (1.8)-(1.9) are replaced by 

(3.4) maximize {cx : x E Po} 

and the dual of (3.4). 

(3.5) This follows immediately from (1.11)-(1.13) by letting E of (3.2) be the 
edge-sef of a graph G = (V, E )  such that the heads and the tails of the members of 
E are all different; 

(3.6) letting the F of (1.5) be 

F = { { t ( e ) :  e E S } :  S 

and letting the f of (1.5) be 

E } ;  

f ( { t ( e ) :  e E S } )  = f(S), for S c E, as in (3.2). 

Theorem (3.3) is especially simple when 

(3.7) the vector a is all infinite, and when 

(3.8) f(S), S C E, is a non-negative, non-decreasing submodular function. 
The linear program (3.4) becomes 

(3.9) maximize cx = C (c,x, : e E E ) ,  

where Ve E E, x, 3 0, 

VS C E, c (x. : e E S )  S f(S). 

The dual 1.p. is 

(3.10) minimize yf = (f(S) . y ( S ) :  S c E ) ,  

where VS C E, y ( S )  3 0, 

Ve E E, 2 ( y ( ~ ) :  e E s c E )  2 c,. 

The so-called “Greedy Algorithm Theorem” says that: 

(3.11) In the case of (3.7)-(3.9), and where the vector c is arranged so that 

the following vectors x ”  = ( x t ( , ) :  i = 1,.  . ., 1 E 1) and y o =  ( y O ( S ) :  S C E )  are op- 
timum solutions, respectively, of (3.9) and (3.10). 
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(3.12) Let S, = {e( l ) ,  e ( 2 ) ,  . . ., e ( i ) } .  

(3.13) 
k + l , . . . , l E / .  

Let X ! V )  = f(Sl), x ! ( ~ )  = f(S,) - f(S,-,) for i = 2 , .  . ., k ; and x t c t ,  = 0 for i = 

(3.14) Let yo(S,) = ce ( , ) -  cec,- ,) ,  for i = 1, .  . ., k - 1; yo(&) = c,,,,; and yo(S) = 0 
for other S C E.  

That these are optimum solutions of (3.9) and (3.10) follows, using the weak 1.p. 
duality theorem, by showing that cx" = yof, that y o  is feasible for (3.10), and that x" 
is feasible for (3.9). 

It follows from the greedy algorithm theorem that: 

(3.15) 
form x " ,  as defined in (3.13). 

The vertices of PI = { x  3 0: x(S)  f(S), VS C E }  are the vectors of the 

(3.16) In particular, where f is the rank function of a matroid, the vectors x o  are 
the (incidence) vectors of the independent sets of M. That is, x :  = 1 for e E J and 
x: = 0 for e E E - J, where J C E is an independent set of M. 

(3.17) 
non-negative linear combination of the rank functions of various matroids on E. 

An interesting way to get a function f of the form (3.8) is to take a 

(3.18) Another way to get a very particular kind of f of the form (3.8) is to let 
f(S) = g(  1 S I), S C E, where g is a non-negative, non-decreasing, concave function. 
That is, for i = 0,1,2,. . ., 1 E 1, 

g ( i ) =  g ( O ) + h ( l ) + h ( 2 ) + - * . + h ( i ) ,  

(3.19) In particular, for the f of (3.18), where g(0) = 0, we have immediately from 
(3.15), that a vector is a vertex of P ,  iff its components are any arrangement of 
h(1 ) ,  h (2) ,  . . ., h ( k ) ,  and I E I - k zeroes for some k .  

(3.20) 
of the vectors which are the various permutations of the numbers h (l), . . ., h(l E I). 

Hence, the face P I  n { x :  x ( E )  = f ( E ) }  of the P ,  of (3.19) is the convex hull 

The greedy algorithm theorem, as presented here, and some other theory of 
polymatroids, first appeared in [6]. Further, and better, treatments are [9] and [12]. 

Balas [ I ]  recently presented a different derivation of a linear system defining the 
convex hull of the vectors of all permutations of the numbers 1 , 2 , .  . ., [El. We much 
appreciate the thoughtfulness which Chvital devoted to bringing togethtr Balas' 
work and ours. 
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4. Polymatroid intersection 

(4.0) 
a E (R U { * a})E. 

Let fl and fi be any two submodular functions of all subsets of E. Let 

(4.1) For i = 1,2, let 

P, = { x  E RE: 0 s x s a ;  x ( S )  s fi(S), VS C E } .  

As in the last section, each P, ,is a polymatroid. 

(4.2) The polyhedron P I  n P, is not generally a polymatroid. 

(4.3) 
(1.10)-(1.13) where linear programs (1.5) and (1.8) are replaced by 

Nevertheless we do have the “Polymatroid Intersection Theorem” which is 

(4.4) max {cx : x E P I  n P2} ,  

and its 1.p. dual. 

(4.5) Where we take the intersection of three polymatroids, P ,  fl Pz f l  Ps, in place 
of two, the (1.11)-(1.13) part of (4.3) is generally not true. Of course, the (1.10) part 
still holds, it being merely an instance of the 1.p. duality theorem. 

(4.6) We get (4.3) as a special case of (1.10)-(1.13) by letting the E of (4.0) be the 
edge-set of the same graph G = (V, E )  as in ( 3 3 ,  that is, such that each e E E and 
its end-nodes comprise a separate component of G ;  letting d = 0; 

- 
(4.7) letting F = { t ( S ) :  S C E }  U { h ( S ) :  S C E }  

where t ( S )  = { t ( e ) :  e E S }  and 
__ 
h ( S )  = V - { h ( e ) :  e E S }  = { t ( e ) :  e € E }  U { h ( e ) :  e$Z S } ;  

(4.8) letting f(t(S)) = min [ f , ( S ) ,  k ]  

f ( h  ( S ) )  = min [f2(S), k ]  

for S C E, 

for S C E, 
- 

where k = min [ f l ( E ) ,  f2 (E) ] .  

It is straightforward to verify that F is a crossing family of V, that f is a 
submodular function of F, and that for this F, f, and d, the system (1.6) is equivalent 
to the system 

(4.9) 0s x s a ;  

vs c E, x(S) fl(S), x(S) f2(S). 



Min-max relation for submodular functions on graphs 191 

(4.10) Where f l  and f 2  are the rank functions of any two matroids on E, say MI 
and Ma,  the polymatroid intersection theorem becomes the “matroid intersection 
theorem”: 

The (1.13) part immediately implies that: 

(4.11) Where P, is the polyhedron of matroid M, on set E,  i = 1,2,  the vertices of 
P ,  n P2 are precisely the vectors of subsets of E which are independent in both MI 
and M2, that is, they are precisely the points which are vertices of both PI and P,! 

Likewise the (1.12) aspect of the matroid intersection theorem (when a = 00) 

gives us that: 

(4.12) 
both matroids, MI and M,,  equals 

The maximum weight, 2 (c, : e E J ) ,  of a set J c E which is independent in 

(4.13) min 

where 

(fl(S) * y l ( S ) +  fi(S). yz(S) : s C E )  

vs c E, y , (S )  3 0, y 2 ( S )  3 0; 

Ve E E, (y l (S)  + y2(S): e E S E )  3 c,. 

And the (1.11) part gives us that: 

(4.14) 
restricted to integers. 

If c is integer-valued then the y , ( S ) ,  S C E, i = 1,2, of (4.13) may be 

For the case where c is all ones, equation (4.12)-(4.13) reduces to: 

(4.15) max{(JI :  J, independent in MI and M z )  

= min {f,(S) + f2 (E - S ) :  S c E}.  

(4.16) The polymatroid intersection theorem, where the f are non-decreasing and 
without the constraint x a, and the matroid instances of it, first appear in [6]. 
Algorithmic proofs of matroid instances were obtained and published earlier, [5 ,  
81. The theorem, with the constraint x a and without the restriction on 6, as well 
as the main generalization (l.lOk(1.13) being presented here, first appears in [12]. 

5. Directed cut k-packings 

Let G = (V, E )  be an acyclic graph and let 

(5.0) D ( G )  = { S  C V : 0 # S #  v, s(s) = 01. 
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(5.1) 
some S E D ( G )  is called a directed cut of G. 

Clearly, D ( G )  is a crossing family on V. A set of edges of the form 6(S) for 

(5.2) For a given integer-valued function f(S), S E D ( G ) ,  a set H C E such that 

VS E WG),  I f f  n W)l s f(S), 

is called a directed cut f-packing of G. The incidence vectors of the directed cut 
f-packing of G are precisely the integer solutions of the system 

(5.3) Ve E E, O s x ,  S 1, 

VS E D ( G ) ,  x(6(S)) S f(S).  

(5.4) 
system (5.3) is of the form (1.6) and so theorems (l.lOk(1.13) apply. 

theory . 

When f(S)  is submodular, in particular when f(S) is a constant integer k, 

For a constant k, directed cut k-packings are easily treated without the present 

The theorem of Dilworth on  the maximum number of incomparable elements in 
a partial order immediately implies that: 

(5.5) 
as few as k directed paths in G iff 1 TI =S k for any T C H such that 

A subset H of the edges of an acyclic graph G is contained in the edge-set of 

(5.6) n o  directed path of G contains more than one member of T. 

It can be shown that 

(5.7) a set T C_ H has property (5.6) iff T is contained in some member of D ( G ) .  

Hence, we have that 

(5.8) a set H 
only if H is contained in the edge-set of some k or fewer directed paths in G. 

E is a directed cut k-packing in G, for constant integer k, if and 

(5.9) Corollary. A set H C E is a directed cut k-packing in G, for constant integer 
k, if and only if H can be partitioned into some k or fewer 1-packings of the directed 
cuts in G. 

I t  follows directly from (5.8) that: 

(5.10) For a given acyclic graph G ‘ =  (V’, E’), a given integer k, and given 
edge-weighting c = (ce: e E E’), t he  maximum weight directed cut k-packings of 
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G' can be realized as the optimum integer flows of the optimum network flow 
problem described in Section 2, 

(5.11) where the G of Section 2 is the G' of (5.10), with the same edge-weighting, 
together with, for each e E E', k extra edges in parallel with e and each having 
weight of zero; also let G have a new node S,  k new zero-weighted edges going 
from S to each u E V', a new node t, and k new zero-weighted edges going from 
each u E V' to t. Let d be all zeroes, a be all ones, rs = qs = k, r, = q, = - k, and 
r, = 4. = 0 for u E V'. 

For the case k = 1, and c all ones, the subject of this section is treated by 
Vidyasankar and Younger [16]. 

6. Directed cut k -coverings 

Let G and D ( G )  be as in Section 5. 

(6.0) 
C 
g-covering of G. 

Where g(S) is a non-negative integer valued function of S E D ( G ) ,  a set 
E such that 1 C n S ( S ) l 5  g(S) for every S E D ( G )  is called a directed cut 

The incidence vectors of the directed cut g-coverings of G are precisely the 
integer solutions of the system 

(6.1) V e  E E, O S x ,  S 1, 

- x(S(S)) c f(S) = - g ( S )  

for every S E F = ( S  c V: E D(G)}.  

(6.2) A function g(S) is called supermodular when - g(S) is submodular. 

(6.3). When g(S) is supermodular, in particular a constant k, the system (6.1) is of 
the form (1.6) and so Theorems (l.lOb(1.13) apply. The integer min-max relation of 
(1.10)-(1.12) becomes: 

(6.4) Where g(S), S E D ( G ) ,  is any integer supermodular function such that 

O=zg(S)s16(S)I for every SED(G) ,  

where c,, e E E, are integers, and C is a direct-cut g-covering of G, we have 

(6.5) min (cp : e E C )  
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(6.6) = m a x z ( y , . g ( S ) : S E D ( G ) ) - x ( z e  : e  E E )  

(6.7) - m a x ( C ( y ,  . g ( S ) : S  € D ( G ) )  

- c (max [o, - c, + x (ys : e E f i ( ~ ) ) ]  : 

over integers y s  3 0  and ze 2 0  such that, 

tle E E, - ze + 2 (ys : e E 6(~)) s c,. 

In particular, where the c, are all ones, formula (6.5)-(6.7) becomes 

(6.8) Theorem. 
the maximum over all 

The minimum cardinality o f a  directed-cut g-covering of G equals 

(6.9) Y C D ( G )  of 

1 u ( 6 ( S ) :  s E Y)I + c (g(S) - I S(S)l: s E Y ) ,  

Where g(S)  is all ones, (6.8) implies the theorem of Lucchesi and Younger [I41 
that: 

(6.10) 
the maximum cardinality of a family of mutually disjoint directed cuts of G. 

The minimum cardinality of a 1-covering of the directed cuts of G equals 

(6.11) A graph G = (V, E )  is called strongly connected when, for every u, v E V, 
there is a directed path in G from u to v.  A connected graph G is strongly 
connected if and only if every e E E is contained in a directed polygon (directed 
cycle) in G. 

(6.12) It is easy to show that c C E is a 1-covering of the directed cuts of a 
connected graph G if and only if the graph obtained from G by “shrinking” the 
members of C is strongly connected - equivalently, if and only if the graph 
obtained from G by adjoining to G, for each e E C, an edge e’ such that 
h ( e ’ )  = t ( e )  and t ( e ’ )  = h ( e ) ,  is strongly connected. 

We hope t o  be able t o  prove the following conjecture: 

(6.13) For any constant integer k > 0, C C E is a k-covering of the directed cuts 
of G = (V, E )  if and only if C can be partitioned into k I-coverings of the directed 
cuts of G. 

(6.14) The function I S(S)l, S E D ( G ) ,  is modular - that is, it is both submodular 
and supermodular. Hence, though we derived directed-cut f-packings, for sub- 
modular f, and directed-cut g-coverings, for supermodular g, as different special 
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cases of a more general system, in fact the two are equivalent: H is an f-packing for 
G if and only if E - H is a g-covering for G, where 

7. Total dual integrality 

(7.0) We say that a system, A x  s b, of linear inequalities in x, with rational A and 
b, is totally dual integral when the dual of the linear program max{cx : 
Ax s b} has an integer-valued optimum solution for every integer-valued c such 
that it has an optimum solution. We say that a polyhedron is totally dual integral if 
it is the solution-set of a totally dual integral system. 

(7.1) Theorem. If a polyhedron P is the solution-set of a totally dual integral 
system which has integer right-hand sides, then every non-empty face of P contains 
an integer point - in particular, any vertex of P is an integer point. 

Or, stated another way: 

(7.1') Theorem. For any finite linear system, Ax S b, having rational coefficients, 
if min{yb: y 3 0 , y A  = c }  is an integer for any integer-valued c such that the 
minimum exists, then for any c such that max{cx: Ax s b }  exists there is an 
integer-valued optimum x. 

(7.2) Using Theorem (7.1) we can conclude (1.12) immediately from (1.11). 

To prove (7.1) we use the following lemma which we presume to be classical. 

(7.3) A finite system of linear equations, A o x  = bo, having rational coefficients, 
has no integer-valued solution x if and only if there is a vector T such that TAO is 
integer-valued, and r b 0  is not an integer. 

Proof of (7.1). Assume the hypothesis of (7.1) for the  system Ax 
P = {x: Ax S b}. By the 1.p. duality theorem we have immediately that 

b. Let 

(7.4) max{cx : x E P }  is an integer for any integer-valued c such that the 
maximum exists. 

A face of P is any subset of the form Po = {x E P :  A o x  = bo} where Aox =s bo is a 
subsystem of A x  s b. It is easy to show that 

(7.5) if P o  is a minimal non-empty face of P, then Po = {x: A Ox = b'}. By the 
complementary slackness theorem of linear programming, for any c such that 
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max { c x :  x E P }  exists, the maximum is achieved over all members of some 
non-empty face of P, and hence over all members of some minimal non-empty face 
of P. Thus it  suffices to show that every minimal non-empty face of P, say 
Po = { x :  A o x  = b"}, has an integer-valued member. Suppose not. Then, by (7.3), let 
rr be such that r A o  is an integer-valued vector and rb" is a non-integer. 

Any c = AA", for a vector A 3 0, is such that cx is maximized over P by any 
member of Po, since for x E Po we have cx = A A o x  = Ab", and for x E P we have 
c x  = AAx S Ab". 

Choose A 2 0 such that A + r 2 0 and such that co  = AAo is integer-valued. Then 
c ' =  (A + r ) A "  is integer-valued. By (7.4), for i = 0,1, d '  = max{c'x: x E P }  is an 
integer. By (7.5), for i = 0,1, we have c ' x  = d' for every x satisfying AOx = b". 
Hence, d '  - d" = c ' x  - c o x  = r A " x  = r b o  is an integer. Contradiction. 17 

8. Tree representation of cross-free families 

(8.0) Two sets S, T C  V are said to cross if S rl T #  0, S U T# V, S g  T, and 
TC S. A family F of subsets of V is called a cross-free family on V if n o  two 
members of F cross. 

(8.1) 
with a function 1 from a set V to V ( T ) ,  is called a V-labelled tree T.  

A tree T, with node-set V ( T ) ,  and with directed edge-set E ( T ) ,  together 

(8.2) For any V-labelled tree T, we have a family {S,: i E E ( T ) }  of subsets of V 
determined as follows: for each i E E ( T ) ,  there - is a unique T ( i )  C V(T) such that, 
with respect to graph T, 6 ( T ( i ) )  = { i } ,  6 ( T ( i ) )  = 0; T ( i )  is the set of nodes u 
(including the node u = t ( i ) )  such that the unique path in T from u to  t ( i )  does not 
contain i. We let 

S, = { u  E V: l ( u ) E  T(i)} .  

(8.3) Theorem. 

(8.4) 

A family F on set V is a cross-free family if and only i f  

there exists a V-labelled tree T such that 

F = {S ,  : i E E(T)} .  

Proof. It is easy to check that (8.4) implies F is cross-free 
If F consists of just one set S, then let T consist of a single e q e  i and, for each 

u E V, let l ( u ) =  t ( i )  if ZI E S, and l ( u ) =  h ( i )  if ZIE S. Clearly T and 1 are a 
V-labelled tree T satisfying (8.4). 

If F' is a cross-free family on V, such that I F'l 3 2 ,  choose some S E F' and let 
F = F ' -  {S}. Assume, by induction on 1 FI,  that we have a V-labelled tree T with 
labelling function 1, which satisfies (8.4). 
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(8.5) Let I (S )= {Z (u ) :  u E S } ,  let s = V -  S, let F ( i ) -  V(T)- T ( i ) ,  etc. 
Let TI and Tz be the unique minimal subtrees of T such that 

I (S )C  V(Ti) ,  I (S )C  V(Tz). 

If I V( TI) f l  V( Tz)  1 3 2 then there is an edge i E E (  TI) n E ( Tz). However, 
i E E ( T , )  implies T ( i )  n l ( S ) #  0 and T(i) n I ( S ) #  0, and i E E(T2)  implies 
T ( i )  f l  Z(S) # 0 and T ( i )  n I (s)  # 0. Hence, S, and S cross, which contradicts F‘ 
being cross-free. 

Therefore, we have I V(T1) n V(Tz)I s 1, and so we can extend TI and T2 
respectively to subtrees T :  and T: of T such that, for some node u E V ( T ) ,  we 
have 

 TI) n v(T:) = { u } ,  

Z(S) c V(Ti), 

v(T:) u v(T:) = v(T), 

I(S)  c V ( T ; ) .  

Let T‘ be the tree, and let I’ be the V-labelling of T’, defined as follows: 

V ( T ’ ) =  ( V ( T ) - { u } ) U { u l , u 2 }  where ul ,uz$Z V(T). 

E ( T ’ )  = E ( T ) U { e ’ }  where e’$Z E ( T ) .  

For each e E E(T’) ,  the head h ‘ ( e )  of e in T‘ is the same as the head h ( e )  of e in 
T, and the tail t ’ ( e )  of e in T‘ is the same as the tail t ( e )  of e in T, except 

t ’ (e’)  = u , ;  

t ’ ( e ) =  u, 

h ’ ( e )  = u, 

h ’ ( e ‘ )  = u2; 

if i E E ( T : )  and t ( e )  = u ;  

if e E E ( T : )  and h ( e )  = u ;  for i = 1,2.  

For each u E V, I ’ (v)  = I ( u )  if l ( u )  # u ;  

if I ( u )  = u and u E S ;  I ’ ( u )  = u I  

I ’ ( u )  = uz if I ( u )  = u and u E S. 

It is easy to verify that F’ and the V-labelled tree T’ satisfy (8.4). Thus, Theorem 
(8.3) is proved. 

9. Proof of (1.11) 

Let [y”,  z”,  w”] be a rational-valued optimum solution to (1.8) where c = 

(c, : e E E )  is integer-valued. 

(9.0) 
since F is a crossing family, T n U E F and T U U E F. For S E F, define ys“ by 

Starting with i = 0, suppose T, U E F, T and U cross and 0 < y >< y;. Then, 
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y $ + y ; ,  i f S E { T n U , T u U }  

y;+1 = y $ -  y ; ,  if S E{T, U }  ii;, otherwise. 

It is easy to check that F ( y ' + ' ,  e)  = F ( y ' ,  e )  for all e E E. Therefore [ y ' + l ,  zo,  wo] 
is a feasible solution to (1.8). Furthermore, 

Y ' + I f  = Y If + Y ;.tf(T fl U )  + f (T  u U )  - f(T) - f (  U)l  sz Y 'f, 
by the submodularity of f. Hence [ y ' + ' ,  zo, wo] must also be an optimum solution to 
(1.8). 

Let a be a common denominator of { y : :  S E F}. Let uo  = a y o  and for each vector 
y '+'  constructed according to (9.0) let u ' + I  = a y ' + ' .  Since y I+'  5 0, u '+ '>  0 and u ' + I  

is integer-valued. Since 1 - t"' = 1 . y ' ,  we have 1 u ' + l =  1 . u ' .  There can be only a 
finite number of non-negative integer-valued vectors u having the same sum 1 . u. 
Hence there can be only a finite number of distinct vectors in the sequence 
{ y o ,  y I , .  . ., y ' ,  y ' + ' ,  . . .}. Since 

2 (yh+'l S 1' : S E F )  = ( y i l  S I* : S E F )  + y ; J  T n U ('+ I T U U I* - I TI' - I U1' 

> c ( y b (  s 12: s E F, 

the sequence has only finitely many terms. 

(9.1) Therefore there is an optimum solution 

[ y f ,  z:, w:: S E F, e E El  

to (1.8) with the property that the family F* = {S E F: y f > 0) is a cross-free family 
on V. 

(9.2) The vector 

[ Y S ,  z,, w,: S E F, e E El, 

where y s  = 0 for S E F -  F * ,  is a feasible solution to (1.8) whenever 

(9.3) [ y s ,  z,, we : S E F*,  e E El 

is a feasible solution to the linear program: 

(9.4) 
RE such that y S O ,  w SO, z SO, and 

minimize c{ysf(S): S E F * }  + c{a ,z ,  - dew,: e E E }  by y E RF' and z, w E 

(9.5) Ve E E, z ,  - we + F * ( y ,  e) = c, ; 

F * ( y ,  e )  = 2 ( y s  : S E F * ,  e E 6(S)) - ( y s  : S E F*,  e E S(s)). 
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This is simply the 1.p. obtained from (1.8) by suppressing the variables y, for 
S E F -  F * .  

(9.6) By (9.1) and (9.2), the vector 

[y:, z!, w ! :  S E F, e E El 

is an optimum solution of (9.4), and hence 

(9.7) 
an optimum solution of (9.4). 

Denote the system (9.5) by 

the vector (9.2) is an optimum solution of (1.8) whenever the vector (9.3) is 

(9.8) z - w + yA = C ;  

V = [ a . . :  S E F * , e  E El 

where 

1 if e E6(S) ,  

as,e = - 1 if e E s ( S ) ,  I 0 otherwise. 

(9.9) 
represents, as described in Theorem (8.3)-(8.4), the cross-free family F* on V. 

Let tree T, and function 1 from V to  V ( T ) ,  be a V-labelled tree T which 

Let H be the graph such that 

(9.10) V ( H )  = V(T), E ( H )  = E ( T )  U E ;  

(9.11) T is a spanning tree of H; 

(9.12) for every e E E, the tail of e in H, t , (e),  is I ( t ( e ) )  where t ( e )  denotes the 
tail of e in G, and the head of e in H, h H ( e ) ,  is l ( h  ( e ) )  where h ( e )  denotes the head 
of e in G. 

By the manner in which T and 1 represent F * ,  for each S E F* we have 

(9.13) 6(S) U {i} = SH(T( i ) )  and 

8(s) = 6 H  (T( i ) ) ,  

where 6, ( ) denotes 6 ( )  with respect to  H, where 6 ( S )  and a(.!?) are with respect to 
G, where the other notation is as in (8.5), and where i is the edge of T such that 
S = S, as in (8.2). 

Hence, the matrix 

A ' = [a  :e: i E E(  T) ,  e E E(H)]  

where 
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is the same as the matrix [ J  1 A ]  

(9.14) 
indexed by [ S , :  i E E ( T ) ]  or  E ( T ) .  

where J is the identity matrix with columns indexed by E ( T )  and rows 

Let M denote the incidence matrix of the graph H. That is 

M = [mu, : u E V ( H ) ,  e E E ( H ) ]  

where 
1 if u = t H ( e ) ,  

if u = h H ( e ) ,  - 1 

0 otherwise. 

(9.15) 
which are indexed by nodes u E T(i). 

Clearly we can get row i E E ( T )  of A ’  by adding together the rows of M 

(9.16) Since A ’  contains the identity matrix J,  the rank of A’ is 1 V ( H ) (  - 1, and 
hence the rank of M is at least I V(H)I - 1. Since the sum of the rows of M is all 
zeroes, the rank of M is at most 1 V ( H ) (  - 1. 

(9.17) Hence, any row of M is a linear combination of rows of A ’ .  That is, 

M = DA = D[J  1 A ]  = [ D  I DA]  

where D consists of the columns of M which are indexed by E ( T ) .  
By (9.8) and (9.14), we may express the linear program (9.4) in the form: 

(9.18) minimize yf+ za - wd 

by 
satisfying 

y E RE(=), z E RE, w E RE 
z 2 0 ,  w 2 0 ,  y J  3 0 ,  and z - w + yA = c. 

The dual 1.p. of (9.18) is 

(9.19) max cx 
where 
satisfy 

x E RE, u E RE(T) 
d s x s a, u 3 0 ,  and 

(9.20) Ju + Ax = [ J 1 A ]  ( y )  = f. 

Multiplying equation (9.20) by D we get 

(9.21) M ( ; )  = Of. 
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The linear program (9.19) with (9.20) replaced by the equivalent (9.21) is a 
familiar optimum network flow problem, which we denote by ( R ) .  As we 
mentioned in Section 2, it is well-known that, for integer-valued c, the dual 1.p. of 
( R )  has an integer-valued optimum solution if it has an optimum solution. The dual 
1.p. of ( R )  is 

(9.22) minimize rrDf + za - wd 

by 
satisfying 

T E R E ( T ) ,  t E RE, w E RE 
z 2 0, w 3 0, rrDJ 2 0, z - w + ITDA = c. 

By (9.6), (9.8) has an optimum solution. Hence (9.19) and ( R )  have optimum 
solutions. Hence (9.22) has an integer-valued optimum solution, say [ r ' ,  zl, w ' ] .  

Clearly, since D is integer-valued, 

(9.23) 
(9.18), i.e., of (9.4). 

where y '  = rr'D, [y', z l ,  w']  is an integer-valued optimum solution of 

(9.24) Therefore, by (9.2), we have an integer-valued optimum solution to  (1.8). 0 

10. Everything above 

(10.0) For any polyhedron P C RE, the dominent of P is defined as P + Rf = 
{ w :  w 2 x for some x E P } .  One purpose now is to describe the dominent of the 
polyhedron P of any system of the form (1.6). 

(10.1) For example we have seen in (6.3) that one such P is the bounded 
polyhedron, say P ( G ,  k ) ,  whose set of vertices is the set of incidence vectors of 
directed-cut k -coverings of G. For a given graph G = (V, E )  and a given integer 
k 2 0 .  

(10.2) it follows immediately from (6.3) that where F1 = {S(R): R E D ( G ) }  is the 
family of directed cuts of graph G = ( V , E ) ,  f ( S ) -  k for  S E F,, F2 = 

{ { e } :  e E E }  - F,, f(S) = 0 for S E F2, F = Fl U F,, and a = (a,:  e E E )  is all ones, 
then P ( G ,  k )  is the P of (10.17) below. 

We will see that 

(10.3) P ( G ,  k )  + Rf is defined by the system in (10.18) below. 

(10.4) Another purpose now is to place the polyhedra P of (1.6) in a broader 
setting. We say that a polyhedron P C RE is box TDI if P intersected with any 
"box", {x E RE : d s x s a } ,  d and a E (R U { &to})", is totally dual integral. We say 
that a linear inequality system is box TDI if it together with any upper and lower 
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bounds on the individual variables is totally dual integral. Our main theorem (1.11) 
states that systems (1.6), and hence their polyhedra, including the above P(G, k), 
are box TDI. 

(10.5) For any polyhedron P = { x  E R E :  c (a,x,: j < E )  c b} ,  a, and b being 
appropriate vectors, and for any function, 4: E’+ E, from a finite set E’ into E,  we 
say that 

I P‘= x ERE”€’: c (a,x, : j E E ) +  c (a , , , ,~ ,  : j E E ’ ) c  b 

is obtained from P by duplicating, I { j ’  E E’: +(it)  = j } l  times, the variable x,, for all 
j E E. 

r 
(10.6) Clearly, every polyhedron P‘, obtained from a P of (1.6) by duplicating 
variables, is itself given by a system of the form (1.6), where the graph G’ which 
gives P‘ is obtained from the graph G which gives P simply by “duplicating” edges 
so that each edge j E E’ has the same head and tail as edge +(j) E E. Hence, every 
polyhedron P’, obtained from the polyhedron P of a system (1.6) by duplicating 
variables, is box TDI. 

In another paper on the box TDI property we prove the following: 

(10.7) Theorem. 
is a matrix such that every entry is 0 ,  1, or - 1. 

(10.8) Theorem. Any  polyhedron obtained from a box TDI polyhedron by 
duplicating variables is itself box TDI. 

Any  box TDI polyhedron i s  defined by a system A x  3 b where A 

Using (10.8), we now prove: 

(10.9) Theorem. Where P = { x  : A x  3 b }  # 0 is box TDI, the dominent of P is the 
set of points w such that TAW 3 r b  for every integer-valued r 3 0 such that rA is 
0,1 valued. 

Proof. A vector w is such that w 3 x for some x E P iff 

(10.10) 

By the 1.p. duality theorem, (10.10) holds iff 

(10.11) 

min{l .  x’: ~ ‘ 2 0 ,  - x 2 - w,Ax  + A x ’ >  b }  s 0. 

max{ - tw + r b :  t 3 0 , r  3 0, - : + rA = 0,  rA  6 1) =S 0. 

Since, by (10.8), the constraint system of (10.10) is TDI, and since the objective 
function has integer coefficients, the maximum in (10.11) is achieved by an 
integer-valued (t ,  r ) .  Hence, (10.11) holds iff 

(10.12) 
r A C 1 .  0 

tw 3 r b  for every integer-valued (t, r )  such that r 3 0  and 0 S t = 
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Of course, by (10.6), we have Theorem (10.9) for the case where Ax b is of the 
form (1.6) without using (10.8). 

(10.13) It is trivial to show that any face of a box TDI polyhedron is box TDI. 

(10.14) By (4.11), the convex hull, say P, of the vectors of largest common 
independent sets of two matroids M I  and Mz on set E is a face of PI P2 as defined 
by (4.1) and (4.10). Hence, P is box TDI, and so, by (10.9), 

(10.15) Theorem. P + Rf is the set of solutions x of the system 

VS 5 E, x ( S )  h ( S ) ,  
where 

h ( S )  = min { x  (S) : x E P }  

= min { 1 S n J I : J is a largest common independent set 

of MI and Mz}.  

Theorem (10.15), which has also been proved by W.H. Cunningham [3], answers 

The following result was suggested to us by our co-worker in polyhedral 
affirmatively a conjecture of Ray Fulkerson [ l l ] .  

combinatorics, Gilbert0 Calvillo. 

(10.16) Theorem. 
valued function of F. Let a = (ae:  a E E)E RE. 

Let F be any family of subsets of E. Let f(S), S E F, be any real 

(10.17) Let P = { x  E R E :  x < a ;  VS E F, x ( S ) S f ( S ) } #  0. 

(10.18) Then P + R f = { x  E R E :  T C S E F , x ( S -  T ) s f ( S ) - a ( T ) } ,  where 
a ( T )  = C (ue :  e E T ) .  

Proof. By a version of Farkas lemma, for any polyhedron P = { x  E R E  : 
Ax 3 b}  # 0 where A is rational, we have a finite set TT of rational vectors T 3 0, 
TTA 3 0 ,  such that 

P + R f =  { x  E R":VTT E U,( rA)x  3 r b } .  

Clearly, we may consider each TT E U to be integer-valued. 

say T T ~ ,  for the inequality 
Where Ax 3 b is the system defining P in (10.17), each TT E IZ has a component, 

x(S) 3 f(9, S E F, ( S )  

- x, 3 - a,, e E E. (el  

and has a component, say me, for the inequality 
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We prove the theorem by showing that each (rrA)x 2 rrb, is a non-negative 
combination of inequalities of the form 

x ( S  - T )  3 f (S ) - a ( T) ,  T c s E F. (S, T )  

Clearly, these inequalities where T = S are not needed since P# 0. 
Think of (rrA)x 2 rrb as obtained by adding together a family U nE of 

inequalities where nF consists of rrs copies of inequality (S), for each S E F, and nE 
consists of rr, copies of inequality ( e ) ,  for each e E E. Since the e component of rrA 
is 

- rre + 2 (rrs : e E S) 2 0, 

clearly there exists a mapping 4 of IIE to IIF such that, for each i EL',, +-'(i) 
contains at most one copy of each inequality (e), and, where i is a copy of inequality 
( S ) ,  we have T C S where T is the set of elements e such that 4-'(i) contains a 
copy of inequality (e). 

For each i E ZI,, by adding together inequality i and inequalities c#-'(i), we get 
an inequality, say i', of the form (S, T ) .  Adding together all of the inequalities i', for 
i E I&, we get TAX 3 rb .  0 
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HOW CAN SPECIALIZED DISCRETE AND CONVEX 
OPTIMIZATION METHODS BE MARRIED?* 

A.M. GEOFFRION 
Western Management Science Institute, Uniuersiry of California, Los Angela ,  CA, U.S.A. 

Numerous practical problems involve both logical design choices and continuous-valued 
decision variables which are predicated in some manner on the logical design. For instance: 
industrial scheduling problems usually involve both sequencing and the determination of how 
continuously divisible resources should be applied for the chosen sequence, and network 
synthesis problems involve both the logical design of the network and the programming of flows 
for the chosen design. Many such problems which are difficult to  solve directly as a whole have 
the tantalizing properties that (a) specialized algorithms (discrete or combinatorial) are  available 
for close relatives of the logical design aspect of the problem, and (b) for any particular logical 
design the resulting continuous optimization problem can be solved by an available convex 
programming method (usually by LP or a network flow technique). This raises the question of 
how the two specialized types of algorithms can be married to  provide an effective overall 
approach to the problem. Several possible kinds of marriages are surveyed and attractive 
opportunities for further research are pointed out. 

1. Introduction 

Some of the most difficult yet important potential applications of optimization 
are to decision and design problems which involve a mixture of both discrete and 
continuous-valued choices. It is unfortunate that the mathematical apparatus and 
algorithmic approaches applicable to the discrete aspect of such problems are 
usually entirely different from and incompatible with those applicable to the 
continuous aspect. The dissimilarities between discrete/combinatorial optimization 
and linear/nonlinear programming are many and profound. Consequently, the 
state-of-the-art for such hybrid problems is well behind that for problems which 
involve only discrete choices or only continuous-valued choices. With too few 
exceptions, the current practice is to adopt a discrete or  combinatorial approach 
with an approximation which essentially submerges the continuous choice aspect of 
the problem, or to do  the converse, or to adopt a heuristic approach which treats 
both aspects of the problem more evenhandedly. 

The purpose of this paper is to begin the systematic study of methods by which 
effective hybrid algorithms can be developed for hybrid problems. The prospects 
for success seem brightest for a broad class of problems dubbed “discrete/convex 

* This paper was partialiy supported by the National Science Foundation and by the Office of Naval 
Research, and was presented at the Workshop on Integer Programming near Bonn, Germany, 

’ September 8-12, 1975. 
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programs.” We define this class, survey its applications, describe four promising 
approaches to the development of applicable hybrid algorithms, and finally 
conclude with an indication of attractive opportunities for further research. 

1.1. Definition of discretelconvex programming 

By a discretelconvex program we mean an optimization problem of the  form 

Min cs + f , ( x )  
s,x 

s.t. 6 E A ,  x E Xs, 

where A is a finite set of possible discrete choices or logical designs 6, and X ,  is a 
convex set of possible continuous choices or activities x associated with any given 6. 
The objective function distinguishes the direct cost of 6, cs, from the cost f , ( x )  of 
the activities carried out under 6. The asymmetry of the notation in 6 and x reflects 
the fact that, in many of the applications we have in mind, the choice of x is 
predicated on the choice of 6 but not conversely; that is, the very domain of x may 
depend on 6 whereas the domain of 6 can always be described independently of x. 
More specifically, we presume that (DC) satisfies these two properties: 

Property 1. For any fixed 6 in A,  f,(. ) is convex on X,  and its minimum can be 
computed with reasonable efficiency by a known convex programming algorithm 
(e.g., by LP, NLP, a network flow method, etc.) 

Property 2 .  A reasonable efficient discrete or combinatorial optimization al- 
gorithm is known for some problem related to (and hopefully a reasonable 
approximation of) 

Min c, + v ( 6 ) ,  where v ( 6 )  Inf f , (x ) .  
, € A  X E X .  

Problem (D) obviously is equivalent to (DC): it is infeasible or has unbounded 
optimal value if and only if (DC) does; and if S o  is optimal (E1-optimal) in (D) and 
xo is optimal (&,-optimal) in the “inner” problem defining v(So) ,  then (6°,xo) is 
optimal (el  + &,-optimal) in (DC).’ Notice that Property 1 assures the relatively easy 
evaluation of v ( 6 ) .  Exactly what relative of (D) for which a discrete or combinator- 
ial algorithm is available is deliberately left unspecified in Property 2. Usually v (  a )  

must be approximated by a much simpler function in such an algorithm, and 
sometimes c, or even A must also be approximated. The intent of Property 2 is 
simply to focus on applications where the discrete aspect of the problem is tractable 
provided suitable approximations are made to submerge the continuous aspect. 

One further comment must be made about (DC): although X,  will necessarily be 
a subset of a finite-dimensional vector space, no such restriction need be imposed 
on A .  In some applications S will be a map of one finite set into another, or some 

’ See, e.g., [15, Theorem I ]  (where (D) would be called the “projection” of (DC) onto 6). 
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other combinatorial object, rather than a tuple of real numbers. It is not the 
structure of the space in which A dwells, but rather the logical structure of A itself 
(in addition to finiteness) which permits mathematical manipulations involving 6 to 
be carried out. Of course (DC) could always be reformulated so that 6 is replaced 
by integer-valued indicator variables. However, in most applications such an 
artifice serves only to obscure the natural structure of A and to  cause an excessive 
increase in representational complexity or size or both.’ It therefore seems wise not 
to insist that (DC) be stated as a conventional mathematical programming problem 
in real variables and equality or inequality constraints. 

2. Some applications 

Here we survey briefly some of the principal types of applications which fall 
within the domain of discrete/convex pi-ogramming as defined above. 

2.1. Production scheduling [21, 24, 28, 291 

Setup and sequence-dependent changeover costs, minimum batch sizes, prece- 
dence constraints, and crew integrity are some of the factors which remove many 
production scheduling problems from the realm of ordinary linear or  nonlinear 
programming. The logical design 6 typically determines which jobs are to be done 
in what order on which machines (or machine configurations), and possibly which 
crew will handle each setup. The activity vector x then determines, for a given 6, 
the timing and quantities of each run, the allocation of divisible resources to job 
activities, and so on. 

An algorithm in keeping with Property 1 is likely to be of LP type, possibly with 
some nonlinear costs, while combinatorial algorithms in keeping with Property 2 
abound (but with only limited success) in the literature on machine/job shop 
scheduling/sequencing [6, 71. Example 1 describes a case where a successful 
partnership was achieved between linear programming and a quadratic assignment 
algorithm (see Section 3.1). 

2.2. Network design [l, 2,  3, 4, 5, 12, 13, 321 

Many problems connected with the design or modification of communication 
networks and transportation networks can be posed as discrete/convex programs. 
The discrete design S may select nodes for the installation of facilities - 
multiplexers, concentrators, or interface message processors in computer communi- 
cation networks, junctions in pipeline networks, interchanges in highway networks, 

See Example 1 below, and think of the futility of attempting to express many realistic scheduling and 
sequencing problems as integer linear programs. 
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and so on. A design 6 may also select connecting links from a finite list of 
possibilities, both in terms of which nodes are to be connected and in terms of the 
capacity of the connection (there are standard transmission speeds for communica- 
tion lines, standard sizes for gas and oil pipelines, only a few choices for the number 
of lanes of a highway, etc.). The choice of discrete design requires that due 
consideration be given to its impact on the flows in the network. Differences in unit 
flow costs, delays due to congestion, and demand elasticity all tend to render flow 
prediction a nontrivial problem even when 6 is fixed (see [13] for a discussion of the 
influence of cost and congestion on the utilization of store-and-forward communi- 
cation networks, and 19, 331 for a discussion of equilibrium flows in transportation 
networks). The activity vector x represents, of course, the flows in a network. 

Network flow algorithms are obviously the most natural choice for the task posed 
by Property 1, particularly since their power has increased dramatically during the 
last few years. Convex cost functions occur when congestion delays are taken as the 
criterion [ 131. A variety of discrete optimization algorithms have potential for 
Property 2: minimum spanning trees [4] when the network must have a tree 
structure, set covering (341 for emergency service networks, generalized assignment 
[31] when peripheral facilities must be linked directly to fixed service facilities, and 
so on. Example 2 describes an application where a multicommodity flow algorithm 
can be combined with a knapsack algorithm (see Section 3.2). 

2.3. Physical distribution system planning [ 19, 20, 251 

In distribution system planning problems the discrete design 6 determines the 
geographic location of plants and/or warehouses, and possibly also the all-or- 
nothing assignment of customers to these facilities for each integral bundle of 
products. The activity vector x corresponds to product flows. This class of models is 
conceptually close to network design as discussed above, but has enough disting- 
uishing characteristics (such as the absence of link capacities and the presence of 
facility capacities and economies-of-scale) that separate treatment is warranted. 

2.4. Facilities layout [lo, 231 

Facilities layout problems occur on a hierarchy of scales. On a global scale, in 
which cities should the various facilities of a firm be located? Within a given city, 
which sub-facility should be located in each available building? Within a given 
building, which department or operating unit should be located on each floor and in 
each work area? Within a given work area, what should be the layout of the various 
pieces of equipment? The problem appears to be a combinatorial one, but flows 
and communications can be influenced by locational layout and often need to be 
considered jointly. Locational layout would be specified by 6 and x would specify 
flows and communications. 

Example 3 describes an application where linear programming for 
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flow/communications is combined with a quadratic assignment algorithm for the 
layout choices (see Section 3.3). 

2.5. Other applications 

There are many other applications which can be modeled as discrete/convex 
programs. One  interesting class is that of selecting and sequencing interdependent 
capital investment projects (for hydroelectricity, manufacturing capacity expansion, 
etc.). The logical design 6 would determine which projects are selected and their 
sequence of execution, while x would determine the details of project timing and 
how the system corresponding to a given 6 is operated over time. A particularly 
nice case is developed in [8], where a dynamic programming approach was derived 
for (D) itself that can be used for a variety of different “operating cost submodels” 
specified by Xs and f s ( x ) .  

Another important class of applications for discrete/convex programming is 
transport scheduling. The problem here is different from the transportation 
network design problems discussed earlier because the major emphasis is on how 
fleet vehicles (planes, ships, trains, pool trucks, etc.) should move over an 
established transportation network in response to demands for transport. The 
possible sequences of moves for each vehicle comprises the combinatorial aspect of 
the problem, while the exact timing of the moves and the determination of 
passenger/cargo patronage comprises the continuous aspect. It is usually essential 
to consider both aspects together since patronage adjusts to the frequency and 
timing of transport service. See, for instance, [30] for a treatment of the problem in 
the context of airline routing; the evaluation of v(6) is a linear programming 
problem which determines the maximum profit loading of available passengers to 
flights. 

3. Computational approaches 

We now describe four promising generic computational approaches to the 
development of hybrid algorithms for discrete/convex programming. They are: (i) 
combinatorial seeding with local convex enumeration, (ii) generalized branch-and- 
bound, (iii) cyclic marginal optimization over 6 and x, and (iv) improving 
approximations to (D). 

3.1. Combinatorial seeding with local convex enumeration 

By Property 2, a discrete optimization algorithm is available for some relative of 
(D). Let 6” be the resulting approximation to an optimal choice for 6. Now use 6’ as 
a “seed” to be improved, if possible, via “low order” changes evaluated by the 
convex programming algorithm postulated by Property 1. What constitutes a low 
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-Solve an approximation “Seed” 80 
4 Evaluate c a t  ~(6). to (D). 

order change depends on the structure of A ; for instance, if S were a binary n-tuple 
the order of change might be measured as the number of components whose values 
are altered. It is helpful but not necessary for A to be a subset of a metrizable space. 
Sometimes it is convenient to use the term “neighbor” for any modification of 6 
that qualifies as being of acceptably low order. The emphasis on low order changes 
is designed, of course, to restrict the magnitude of the local enumeration task. 
Generally one wants the allowable order of change to be sufficiently low that local 
enumeration is computationally practical, yet sufficiently high that an improved 
logical design will be found if one exists. 

This approach is pictured informally in Fig. 1. It is understood that the seed is not 
actually replaced as the incumbent until one of its neighbors proves to yield a 
superior feasible solution of (DC). Termination occurs when no neighbor of the  
current incumbent is superior; the higher the allowable order of change the 
stronger the degree of local optimality at termination. 

i 

Giscrete Problem Convex Problem 

Fig. 1 

A variant would be to generate several seeds from (D) rather than just one, as by 
solving several approximations to (D) or by finding several suboptimal solutions to 
a single approximation. 

This approach has familiar analogs in the literature on heuristic programming. 
See [14, Chapter 91 and [27]. See also [32] €or a highly successful application to gas 
pipeline network design that has since been adapted and used extensively for 
computer communication network design (e.g., [ 111). 

The author has had very satisfactory experience with this approach in the context 
of scheduling parallel chemical reactors with product-dependent changeover costs. 
This application is now briefly reviewed. 

Example 1. A changeover scheduling problem [21]. Several independent continu- 
ous process facilities or flow shop production lines are arranged in parallel. Each 
can make (process) some subset of products with production rates that may vary 
from line to line, but that are reasonably proportional from line to line (as would be 
the case when lines are similar except for their scale of implementation or their 
basic cycle time). Each line has a linear production cost for each product it can 
make, and a possibly different changeover cost between each pair of products. The 
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changeover cost matrices are reasonably proportional across lines. A number of 
independent production orders are given, each of which specifies a minimum and 
maximum production quantity, an earliest start date, and a due date. Violation of 
either date incurs a per diem cost penalty. Splitting production orders is allowed. It 
is desired to find a production schedule - which line produces how much of what 
and when -that fills the production orders at minimum total cost over a scheduling 
horizon of fixed (but somewhat flexible) length. 

In this application, 6 gives the sequence of production runs specified as to 
product and line but nor fully specified as to duration. Durations are given by x .  
Property 1 holds because, when 6 is fixed, the optimal choice of x may be 
determined by solving a linear program. The LP balances production costs 
(exclusive of changeover charges) against penalties associated with any violations of 
earliest start and due dates. Property 2 holds because (D) can be approximated 
quite well by a quadratic assignment problem of reasonable size. 

An LP code and quadratic assignment code were combined in the manner of 
Figure 1.  The definition used for “neighbor” was that any single production run 
may be moved to another position on the same or another line, and any two 
production runs may be interchanged. 

A real application was made to the monthly scheduling of a complex of six 
chemical reactors. A three month independent parallel test showed that the 
program was able to achieve considerably better solutions than (experienced) 
manual schedulers. The program has since been installed on the firm’s computer 
and is being used routinely [21]. 

3.2. Generalized branch -and - bound 

The essential concepts of branch-and-bound, currently the dominant approach to 
integer programming, require very little mathematical structure and are quite 
broad enough to encompass discrete/convex programming. The framework of [22] 
will serve nicely with only the obvious notational changes to phrase it in terms of 
(DC) rather than in terms of mixed integer linear programming. It is also advisable 
to generalize the notion of “relaxation,” whence nearly all bounds are obtained in 
branch-and-bound methods, to the following: a minimizing problem (PR) is said to 
be a relaxation of a minimizing problem (P) if the feasible region of (PR) contains 
that of (P) and if the objective function of (PR) is less than or equal to that of (P) 
everywhere on the latter’s feasible region. This generalized definition requires an 
obvious modification to property R3 and fathoming criterion FC3 in [22] in order to 
reflect the fact that an optimal solution of (PR) is not optimal in (P) unless it is 
feasible in (P) and yields the same objective function value for both problems 
(although an E-optimality statement can still be made if the very last condition 
fails). [22] will be sufficiently accessible to most readers that the algorithmic 
framework of Section I1 therein, as generalized to (DC), need not be given in detail 
here. 
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So far, no use whatever has been made of Properties 1 and 2. The principal way 
of doing so is to select a type of relaxation which permits advantage to be taken of 
one or the other or both of these properties when trying to fathom the candidate 
problems (alias node- or sub-problems). There are two major types of relaxations 
used in mixed integer linear programming, both of which can be generalized to 
apply to candidate problems derived from (DC) provided certain conditions hold: 
relaxations based on  direct convexification of the decision domain of the candidate 
problem (as by allowing integer variables to  take on continuous values), and 
Lagrangean relaxation of selected constraints [ 181. Suppose that candidate prob- 
lems are derived from (DC) by partially specifying certain components of 6 (we 
presume, as seems permissible for most potential applications, that the structure of 
A renders this prescription meaningful). An obvious difficulty with such candidate 
problems is that the very notion of convexification in the domain of 6 is not 
meaningful unless 6 inhabits a vector space, which definitely is not the case in many 
applications of interest (e.g., Example 1). Moreover, the mathematical operation of 
Lagrangean relaxation requires X,  to be expressible at least partially in terms of 
conventional real-valued equality or inequality constraints. The first difficulty can 
be skirted if necessary by convexifying not in the domain of S, but rather in the 
range spaces associated with S - the range of the real-valued function c ( )  and of 
the point-to-set map X ,  ). The second difficulty apparently cannot be skirted. 

There is a striking relationship between the two types of relaxation just 
discussed. It was shown in [18] that, for mixed integer linear programs, the best 
possible Lagrangean relaxation is equivalent in a natural sense to a corresponding 
convexification in the domain of the decision variables and also to a corresponding 
convexification in the range space of the objective function and Lagrangeanized 
constraints. The analysis can be generalized. Dropping the assumption that all 
functions are linear invalidates the equivalence to  convexification in domain space 
but does not invalidate the equivalence to convexification in range space. The latter 
equivalence even remains true when 6 is no longer taken to dwell in a finite vector 
space, and when the constraining conditions other than those being Lagrangeanized 
are no longer expressible as conventional real-valued constraints. This is a 
consequence of the fact that many basic results of Lagrangean duality theory 
require virtually no assumptions at all on the domains of the functions (e.g., [16, 
Lemmas 3, 4 and 51). A formal proof of the basic equivalence between the best 
Lagrangean relaxation and problem convexification in range space can be found in 
[26, Lemma 2.21. 

In particular applications one seeks to apply the convexification or Lagrangean 
relaxation devices just discussed or possibly some other device, in order to obtain 
candidate problem relaxations which Properties 1 and/or 2 render tractable. The 
following example illustrates a situation in which this can be done. 

Example 2. Network expansion with a budget constraint. This problem is a 
capacitated version of the one treated in [2]. A conventional multicommodity 
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network is given with capacitated links, a known flow requirements matrix, and 
linear flow costs. A number of possible new links have been proposed, each with a 
given flow capacity, linear flow cost, and fixed capital cost. What is the optimal 
subset of new links which reduces the total cost of the optimal flow as much as 
possible without exceeding a given maximum authorized capital expenditure? 

The problem can be stated mathematically as follows in an obvious notation 
where ij refers to the particular commodity which flows from the i th  to the j t h  
node, A is the set of existing links, B is the set of possible new links, and D is the 
capital budget. 

x z , 2 o 0 ,  

8 k f  = 0 or 1, 

for all ij and kl  E A U B, ( 5 )  

(6) for all kl E B. 

This is a mixed integer linear programming problem which, for reasonable 
numbers of potential new links (not much more than a hundred, say), should be 
tractable by branch-and-bound if the main candidate problem relaxation is chosen 
suitably. The usual LP relaxation, obtained by allowing the free binary variables to 
be fractional, is not a multicommodity flow problem; efficient specialized multicom- 
modity flow algorithms cannot be used and one must fall back to general linear 
programming algorithms. An attractive alternative to  the usual LP relaxation is to  
employ a “tandem” Lagrangean relaxation. This will be illustrated on the full 
problem (P) as stated above since the candidate problems are of the same 
mathematical form so long as conventional dichotomous branching is used. 

Let po > 0 be the analyst’s best guess concerning the marginal value to (P) of 
increasing the budget D by one dollar. Solve the relaxation of (P) which results 
when (4) is Lagrangeanized using p o  and (6) is convexified in the usual way. This is 
equivalent to an ordinary classical multicommodity flow problem because the 6 k f  
variables can be eliminated analytically (solve for from (3), which must hold with 
equality in an optimal solution): 
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Let xo  be an optimal solution, and let 5okl be the optimal multipliers corresponding 
to (3)'. It can be shown that 

h ' h P 5 : , + p o ( 2 )  foral l  k l € B  (7) 

is a set of optimal multipliers corresponding to (3) in the relaxed version of (P) prior 
to analytic reduction to (MF,.). Now solve a second relaxed version of (Pj in which 
(3)' is appended and h a  from (7) is used to Lagrangeanize (3): 

Evidently this problem can be solved independently for x and for 6. It is easy to 
show that xn  from (MF,.) is also optimal here, leaving just the binary knapsack 
problem 

Max c subject to (4) and (6) (KA(1) 
6 k l € B  

as the only work necessary to solve the second relaxation (PRAo). Methods are 
available which can solve (KAo) very efficiently even with several hundred binary 
variables. 

In summary, a tandem relaxation of (P) has been proposed which requires the 
solution of one ordinary multicommodity flow problem (cf. Property 1) and one 
binary knapsack problem over the possible new links (cf. Property 2). Both 
Properties 1 and 2 are exploited. An otherwise conventional branch-and-bound 
procedure can be built around this tandem relaxation. How well such a procedure 
would function depends on how good the resulting bounds are. This has not been 
tested experimentally, but it can be observed from the known theory of Lagrangean 
relaxation [18] that the lower bound produced by this tandem relaxation has the 
potential of being superior to that provided by the usual LP relaxation (in which (6) 
is convexified). I t  all depends on the choice of pn. If pn happens to have the same 
value as an optimal multiplier of (4) in the usual LP relaxation, then the bound 
produced by (MF,.) will coincide with that of the usual L P  relaxation and the 
second bound obtained with the help of (K,.) will usually be still better (it cannot be 
worse). 
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It may be worthwhile to iterate on the choice of po. There are at least two 
conspicuous ways to do this. One is to perform a one-dimensional (unimodal) 
search for the value of p which leads to the highest optimal value of (MF,). This is 
particularly easy to do if a parametric multicommodity flow algorithm is available 
which accommodates a single linear parameter in the objective function (the cost 
coefficients of the links in set B are cfcI+ p d k I / b k , ) .  This search is equivalent to 
solving the partial dual of the usual LP relaxation in which only the budget 
constraint (4) is dualized. The second way to find an improved p is to feed back the 
budget constraint multiplier from ( K h ~ )  with (6) convexified. 

3.3. Cyclic marginal optimization over 6 and x 

In some applications, Property 2 permits (DC) to be optimized with any fixed x. 
Then it is natural to think of seeking an optimum of (DC) by first optimizing over x 
with some fixed 6, then optimizing over 6 with the resulting x, th,en by optimizing 
over x again with the new resulting 6, and so on. A monotonely improving 
succession of feasible solutions will be found by such a cyclic marginal optimization 
approach until a “marginally optimal” solution is found after which the marginal 
solutions in x and 6 begin to repeat. Marginal optimality is an obvious necessary 
condition for global optimality, but whether i t  is sufficient depends upon the 
structure of the problem. 

This general approach is, of course, far from novel (e.g., [35, p. 1111). 
The following example illustrates a plausible application of this approach in 

which the discrete and convex marginal optimization problems are, respectively, a 
quadratic assignment problem and a linear program. 

Example 3. A facility assignment problem. A firm has a number of indivisible 
facilities and a number of distinct locations to which they could be assigned. The 
firm carries on a number of different activities, each of which imposes its own 
requirements for “traffic” between the facilities. These requirements are suffi- 
ciently dissimilar, and the traffic costs are sufficiently high, that the assignment of 
facilities to locations materially influences the most profitable mix of activities. It is 
therefore appropriate to optimize jointly the facility location assignments and 
activity mix. 

We adopt the following notations and assumptions: 
x k  

Ax s b the constraints specifying the set of possible activities, 
x z o  

P k  

41; 

cl, 

the level of the k th activity of the firm, 

(independent of the facility location assignments), 
the net profit per unit of activity k exclusive of traffic costs, 
the amount of traffic between facilities i and j incurred for each unit of 
activity k ,  
the cost per unit of traffic between locations 1 and m, 
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Select S1 cA. 
Set K = 1 .  

a,/ 

6 

Then the problem can be written: 

the cost associated with assigning facility i to location 1 (can be m to 
indicate an impossible assignment), 
a mapping of facilities into locations; 6 ( i ) =  1 means that 6 assigns 
facility i to location 1. 

Evaluate v( 8 '). Call 

the solution xK. 
- 4 

s.t. Ax b. 

Select S1 cA. 
Set K = 1 .  

x 2 0 ,  

6 a 1:l mapping. 

Evaluate v( 8 '). Call 

the solution xK. 
- 4 

It is evident that this is an ordinary quadratic assignment problem for fixed x and an 
ordinary linear program for fixed 6, and hence a plausible candidate for cyclic 
marginal optimization. This approach has not been tested computationally. 

3.4. Improving approximations to (D) 

The essential idea of this computational approach is to generate a sequence of 
approximations to  (D) which are improving in the sense that their solutions tend to 
converge to an optimal solution of (D) itself. Property 1 comes into play in the 
course of evaluating the performance v ( 6 " )  of the solution 6" of the K t h  
approximation (b)". Of course, the form of (e)" must be compatible with the 
scope of Property 2. A rule must be specified to prescribe how (8)" is to be 
generated based on knowledge of 6' and x k  obtained from previous (k = 

1,. . ., K - 1) evaluations of ~ ( 6 ~ )  and ( f i ) k .  See Fig. 2. 

Approximation Generator 

Generate an approximation (D) 
to (D) based on knowledge of . and xk for k 8 k  f 1, . . . , K. 

Discrete Problem 

Solve (61K+ '. Call the solution I aK+ 1' .  Increment K by 1 .  

sK 

Fig. 2 
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The principal varieties of this approach are determined by the type of rule used 
to construct (B)". The most widely known rule is probably the one specified by 
Benders decomposition for the case in which X8 can be written as 

Xs = { x  E X :  G,(x)<O}, (8) 

where X is a convex set independent of 6 and, for each 6, G6 is a vector of convex 
functions. Benders' rule specifies a global lower approximation to u (  - ) which, at 
the Kth step, is the upper envelope of all lower approximations to u (  0 )  generated 
at previous steps as a byproduct of evaluating ~ ( 6 ~ ) .  

Benders decomposition is well known in the context of mixed integer linear 
programming and need not be described in detail here [15,22]. The most 
appropriate version in the context of (DC) is a generalization worked out by the 
author elsewhere [17] which avoids having to assume: a) that f a ( .  ) and G, ( - ) in (8) 
are additively separable in x and 6 and linear in x, and b) that X is the nonnegative 
orthant. The generalization does, however, require a certain mathematical property 
to hold in order for the computational procedure to be practical (see [17, p. 2511). In 
any case, an examination of the essential arguments of [17] shows that the basic 
finite convergence theorem (Th. 2.4) holds whether of not A is a subset of a vector 
space. 

See [20] for a detailed description of a successful application of Benders 
decomposition to a multicommodity distribution system design problem. It com- 
bines a specialized pure 0-1 integer programming algorithm with an algorithm for 
the classical transportation problem. 

A completely different class of rules for constructing (B)" is obtained by 
introducing the notion of a policy function p (  . ) which associates a point in X,  with 
every S in A. The ideal policy function p * (  .) obviously is one which specifies the 
minimizing value of x for fs over X8 as a function of 6, in which case one has 

f S ( p * ( S ) )  = u ( 6 )  and p*(S)E X8 for all 6 E A.  (9) 
Situations where f 8  does not achieve its infimum over X8, or where X ,  is empty, 
could be accommodated by standard devices but will not be discussed here. The job 
of the Approximation Generator (See Fig. 2) at the Kth iteration is to specify the 
next approximation p"+'( .) to p * (  - )  which takes advantage of the previous 
information obtained via Property 1 and yet leads to a mathematical structure of 

Min cs + f 8  ( p K + l ( 6 ) )  (By+* 
8 E A  

which is tractable within the scope of Property 2. Within whatever latitude may be 
offered by Property 2, it seems desirable to require 

p K + ' ( S k ) = x k  f o r k  = l ,  ..., K (10) 

and that p " + ' ( .  ) otherwise be as simple a function as is consistent with any known 
properties of p *( . ), which in turn depend intimately on the structure of f8, x6, and 
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A .  Finite termination follows trivially from the finiteness of A if (10) can be 
enforced with exact equality for all K.  

Except for the trivial case where pK+’(. ) is taken as identically equal to x K ,  I am 
unable to cite an instance where the policy approximation approach has been used. 
This presents an attractive research opportunity. 

An interesting comparison can be drawn between the Benders decomposition 
approach and the policy approximation approach: the former approximates u ( .  ) 
from below by constructs in the range space of f ,  and G,, while the latter 
approximates u (  a )  from above by constructs in the domain space of fa. 

4. Conclusions and opportunities for research 

We have defined a category of optimization problems, herein dubbed 
discrete/convex programs, which has numerous practical applications and also 
lends itself to the development of hybrid algorithms that exploit the individual 
tractability of the discrete and convex aspects of the problem taken separately 
(so-called Properties 1 and 2 ) .  

Much work remains to be done before discrete/convex programming reaches 
maturity in its ability to synthesize practical hybrid algorithms from the separate 
algorithmic repertoires of discrete optimization and linear or convex programming. 
One important task is to accumulate a broader and more detailed inventory of 
applicable discrete/convex models along with specific statements of Properties 1 
and 2 for each. This is necessary in order to discern the practical scope of the field 
more clearly and to provide grist for the mill of hybrid algorithmic development. 

Another important undertaking is to study the computational approaches 
outlined here in more detail, both individually and with reference to similar hybrid 
algorithms already available in the literature. Among the interesting questions €or 
study in various applications contexts are the following: 

For the combinatorial seeding with local convex enumeration approach: 
How does the quality of the “seed” interact with the definition of the 
enumeration “neighborhood” to determine the total enumerative work and 
the degree of global optimality upon termination? 
Do some neighborhood definitions facilitate particularly efficient implicit 
enumeration techniques in the local convex enumeration phase? 

What useful kinds of relaxation or other bound-producing operations exist in 
addition to convexification and Lagrangean relaxation? 
What are the most effective ways to determine the best multipliers for 
generalized Lagrangean relaxation? 
To what extent do the accumulated auxiliary devices and conventional 
wisdom of integer linear programming carry over to the more general context 
of (DC)? 

For the generalized branch-and-bound approach: 
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For the cyclic marginal optimization approach: 

For the improving approximations approach to (D): 
Under what conditions does marginal optimality imply global optimality? 

Are there applications where (8) does not hold and yet approximation rules 
can be devised with properties similar to those of Benders decomposition? 
Are there applications where useful properties of p * ( * )  can be derived to 
guide the policy approximation approach? (Properties of optimal policies 
have been a traditional concern in dynamic programming and inventory 
theory, but have yet to receive serious attention in modern computationally 
oriented mathematical programming.) 
What other promising kinds of approximation generators for (D) are there 
besides the two types discussed herein? 

Finally, what other attractive approaches exist besides the four discussed in this 
paper for the development of hybrid algorithms for discrete/convex programming? 
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We construct in this paper new cutting plane algorithms for solving the Integer Fractional 
Programming (IFP) and the Mixed Integer Fractional Programming (MIFP) problems. 

By using Charnes and Cooper’s approach for solving continuous fractional programs we 
develop two types of cutting planes, which can be systematically generated and applied while 
solving (IFP) problems. Similar results are  obtained for the (MIFP) problem. 

By employing Martos’ approach for solving continuous fractional programs together with 
Young’s primal algorithm for solving Integer Programming problems, we are able to  construct a 
primal algorithm for solving (IFP) problems in finitely many iterations. 

1. Introduction 

The Integer Fractional Programming (IFP) problem can be formulated as: 

(IFP): max{(cTx + cO)/(dTx + do)} 

s.t. Ax b, x 3 0 ,  x integer. 

Problems with linear fractional objective function arise, e.g., in attrition games 
[13], Markovian replacement problems [5,14], the cutting stock problem [7], primal 
dual approaches to decomposition procedures [ 2 ,  151, and portfolio theory [19, 231. 
If the variables in the fractional model represent indivisible commodities, then 
restricting them to integer values results with the (IFP) formulation. For example, 
in [21] the Mining for Investment Return problem was formulated as an (IFP) 
problem. 

Robillard [18] has developed an algorithm for solving a special class of (0, 1) 
fractional programs. The algorithms developed by Florian and Robillard [6], 
Grunspan and Thomas [12] and Anzai [l] for solving (IFP) problems are based o n  
Isbell and Marlow’s results for continuous fractional programs [13]. Their al- 
gorithms reduce the problem of solving (IFP) to that of solving a finite sequence of 
linear integer programming problems. 

* This research was partly supported by NRC Grants Number A-4024, A-3998 and A-4181. 
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In this paper we construct new algorithms for solving (IFP) and Mixed Integer 
Fractional Programming (MIFP) problems. In contrast with the results in [ l ,  6, 121, 
which are based on Isbell and Marlow's approach to solve fractional programs, our 
algorithms are based on Charnes and Cooper's method [4] and on Martos' method 
[ 171 for solving continuous fractional programs. More specifically, applying Charnes 
and Cooper's transformation [4] on (IFP) results with an equivalent problem, 
denoted by (IFP1). By exploiting the relationship between (IFP) and (IFP1) we 
develop two types of cutting planes which can be systematically generated and 
applied while solving (IFP) problems. Similar results are obtained for the (MIFP) 
problem. Also, based on Martos' [17] and on Young [22], or Glover [8], a primal 
algorithm for solving the (IFP) problem in finitely many iterations is developed. 

2. Cut A for (IFP) 

Consider again the (IFP) problem: 

max{( c ' x  + co)/( d 'x + do)} (1) 

s.t. Ax s b (2) 

x 2.0, x integer (3) 

where A is an m x n matrix, cT, d T  and b' are given row vectors, co and do are 
scalars and x is an n x 1 column vector of unknown variables. 

Let us denote by 

S = { x ; A x s b , x 2 0 }  (4) 

and assume that 
Assumption 1: dTx  + do > 0 on S. 
Assumption 2: S is a non-empty and bounded set in R". 
The difficulty in solving (IFP) problems stems from the fact that the algorithms 

for solving continuous fractional programs, in which the objective function is 
maintained in its original form (l), require that primal feasibility will be satisfied in 
each iteration. Therefore, one cannot hope to solve an (IFP) problem by applying a 
dual cutting plane algorithm, e.g., that in [9],-directly on (l), (2), (3). In order to 
circumvent this difficulty we shall first apply Charnes and Cooper's transformation 
[4] on (IFP) to obtain an equivalent problem, denoted by (IFPl), of the form: 

max{t = c'y + cot }  (5) 

s.t. Ay - bt (6) 

d T y  + dot = 1 (7) 

y ,  t 2 0 ,  y / t  integer (8) 

where y = tx. Then, we shall construct cutting-planes which can be used for solving 
the equivalent (IFP1) problem. 
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Remark 1. Assumption 1 above is not restrictive in the sense that when not 
satisfied we may have to solve two or at most three problems of the form (IFP1). 
Assumption 2 implies that t > 0 in every feasible solution (y, t )  to (IFPl), see [4]. 

Theorem 1. I f d T x  * + do > 0 for x *, an optimal solution for (IFP), and i f  ( y  *, t *) is 
an optimal solution for (IFPl), then y * / t *  is an optimal solution for (IFP). 

Proof. Similar to that of [4, Theorem 11, hence omitted. 

From Theorem 1 we conclude that in order to solve (IFP) it is sufficient to solve 
the equivalent problem (IFP1). 

Let us solve the (LP) problem associated with (IFPl), after introducing slack 
variables to  convert inequalities in (6) to equalities. Then z and the basic variables 
in the optimal tableau can be expressed in terms of the non-basic variables as 
follows: 

where Ie, IN are the set of indices corresponding to the basic variables (excluding t )  
and the non-basic variables, respectively. 

Note that Assumption 2 implies that t is a basic variable at the optimal solution. 
Clearly, from the optimality criterion, do, 3 0, j E I N .  Now if aio/am+l,o is integer for 
all i E IB then an optimal solution x *  to (IFP) is given by (x? = aio/am+l,o i E I,, 
x T = 0 i E IN}. Otherwise, there exists at least one index, say k, for which ako/a,+l,o 
is not integer. 

Naturally, when striving to satisfy the integrality restriction, one is tempted to use 
the kth  basic constraint as a source row for generating a Gomory’s cut. However, 
this might be somewhat complicated due to the congruence relation, y / t  = O  
modulo 1, in (8). In order to overcome this difficulty we shall resort to the 
relationship between (IFP) and (IFPl), which was established for continuous 
fractional programs in [4, 201. 

Let us denote by B the optimal basis associated with the current optimal 
continuous solution to (IFP1). Since t is a basic variable, 6 can be partitioned into 

B = ( I B  -1) 
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where de contains the components of d corresponding to B. Further, it can be 
shown by matrix calculation, see also [20], that if &' is partitioned into 

8-' = (Z: Ell) 
where M I I  E R"'""', then 

M11 = B-' - B-'b(do dBB-'b)-'deB-', h f 2 1  = - (do dBB-'b)-'dBB-', 

Note that Assumption 1 implies that do + dEB-'b > 0.  
Using (2) and the relationship between (IFP) and (IFPl), the continuous 

fractional problem associated with (IFP) (after adding slack variables) can be 
equivalently written as: 

x 3 0 ,  x integer 

where G,, = (B-')#N, and N, is the column of A corresponding to the non-basic 
variable x,. 

By assumption, a k o / a m + l , o  is not integer and therefore the k t h  constraint in (14) 
can serve as a source row for generating a Gomory's cut, see [lo], of the form 

where 

0 &J = G k j  - [Gk j ]  < 1, 0 < f k 0  = a k O / & + l , O -  [ a k O / a r n + l , O ]  < 1 

and [ a ]  denotes the largest integer smaller than or equal to a. Inequality (15) should 
be satisfied by any feasible solution to (IFP). Multiplying (15) from both sides by 2, 

t > 0, substituting tx, = yJ, j E IN and using (11) to express t, in (15), in terms of the 
non-basic variable results with the constraint 

Clearly, (16) is not satisfied by the current continuous optimal boiution rep- 
resented by (lo), (11). Thus, whenever a constraint of the form (16) is appended to 
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the optimal tableau it cuts off the optimal continuous solution but not any integer 
feasible solution for (IFP). Cut of the for (16), to which we shall refer to as Cut A 
can be systematically generated and appended to (IFP1) whenever the continuous 
optimal solution does not satisfy the integrality requirements. 

We remark that other cuts which were offered to Integer Programs can be used, 
in a similar manner, to generate cuts for (IFP) problems, e.g., Martin’s “acceler- 
ated” cut [16]. 

3. Cut B for (IFP) 

By using similar arguments to those used by Gomory [9], we are able to construct 
another cutting plane which can be systematically generated and employed when 
solving (IFP) problems. In contrast with Cut A, the cut to be constructed in this 
section, to which we shall refer to as Cut B, is generated directly from (IFP1). 
However, while Cut A can Le applied whenever the optimal solution to the 
associated continuous problem does not satisfy the integrality requirement, Cut B 
can be applied only when an additional requirement, which can be easily verified at 
the outset, is met. 

Let us consider again the (IFP1) problem and let t be a lower bound for t in 
(IFP1). Such a value can always be secured by solving the (LP) problem 

max{dTx + do s.t. Ax s b, x * O } ,  (17) 

and taking t = l/(dTx * + do) where x * is an optimal solution for (17). Assumptions 
1, 2 guarantee that t > O .  

Let us assume again that a k o / a m + l , O  in (lo), (11) is not integer, and consider the 
following two equations taken from (lo), (11) 

r = am+i,o + C G m + t . j ( -  y j ) .  
J E I N  

From y .  G O  modulo t we have 

Further, since the value of f is always given by (19), we can add or subtract (19) 
from (20) as many times as necessary in order to obtain 



226 D. Granot, F. Granot 

Moreover, we can use the relations 

y, = 0 modulo r, j E IN 

to obtain 

2 fkfy, - f k o  modulo 
,€IN 

where 

0 fk j  = fkj  - [fk,] 

From (23) we conclude that either 

or 

However, fk, 3 o and y, 3 o ~j E I,,,, thus, if f k 0  < t only relation (24) is feasible and 
can then be replaced by the constraint 

(26) sl = - f k 0  + 2 f k j y j  *o, s, = 0 modulo r 
J E I N  

which should be satisfied by an optimal solution to (IFP1). Clearly, (26) is not 
satisfied by the current optimal solution to (IFP1). Therefore, whenever there exists 
y k  for which a k O / a m + l . O  is not integer and ~ k 0 - [ ~ k o / ~ m + l , o ] ~ ~ m + ~ , , ~ <  t ,  a cut of the 
form (26) can be appended to (lo), (11) which will cut off the non-integer optimal 
solution to (IFP1). 

- 

4. A primal algorithm for integer fractional programs 

In this section a primal all integer algorithm for solving (IFP) is presented. The 
algorithm proceeds to an optimal solution for (IFP) through a finite sequence of 
feasible solutions. It is applied directly to (IFP) in a format originally suggested by 
Martos [17] for continuous fractional programs, and is a direct and natural 
extension of the primal algorithm for linear integer programs, see e.g., [2,8,22], to 
(IFP) problems. 

Consider again the (IFP) problem in which inequality constraints were converted 
to equalities by introducing slack variables. Assume that all the given data in (IFP) 
is in integers and that a feasible integer solution to (IFP) is at hand. Thus, (IFP) can 
be equivalently written as: 

xB, xN 3 0 and integers, 
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where iio 3 0 and integer, A is a matrix of integer entries, xB and x N  are vectors of 
basic and non-basic components, respectively, and I N  is the set of indices 
corresponding to non-basic variables. 

Clearly, neither Cut A nor B can be employed in a primal algorithm for solving 
(IFP) problems, since adding any of these cuts to the constraints of (IFP) will 
destroy primal feasibility. The primal algorithm to be presented in this section is 
based on Martos’ [17] adjacent extreme point algorithm for solving continuous 
fractional programs. In Martos’ algorithm the original structure of the constraints is 
maintained, and the iterations are carried out in an augmented simplex tableau 
which includes m + 3 rows. The first m rows correspond to  the original constraints, 
the m + 1 and m + 2 rows correspond to the numerator and denominator of the 
fractional function, respectively, and the last row corresponds to the 6’s where 

< = c o d ,  - doc,, j E IN. (28) 
In every iteration of the algorithm the first m + 2  rows are modified through the 
ordinary pivot opertions, whereas the last row is modified via (28). 

0, j E IN, in (27), then (xB = Zo, xN = 0) is an optimal solution to 
(IFP). Otherwise, there exists an index k ,  k E IN, for which t k  > 0. Let 

Now, if 6 

A = min{ii,o/iia ; &k > 0). (29) 

Then any row u, for which [ & o / & k ]  S &, can serve as a source row for generating a 
Gomory’s cut of the form 

s + [ ~ q / & k ] x ~  = [ & O / & k ] ,  s *o. (30) 
lEIN 

This cut was first suggested by Gomory in [lo] for his all integer algorithm, and was 
used subsequently by Ben-Israel and Charnes [ 3 ]  to construct their all-integer 
primal algorithm for (IP). 

In order to solve (IFP), cut (30) can be added to (27) and serve as a pivot row, 
with the k t h  column as a pivot column. Since the value of the pivot in this case is 
[ i i , k / & ]  = 1, the new coefficients obtained after performing the ordinary pivot 
operations are all integers. Moreover, adding (30) to (27) does not exclude any 
feasible integer solution to (27). The slack variable s in (30) will be a new basic 
variable whose value in the new tableau will be [ i i , , / d , k ] .  

Whenever [&JZUk] = 0 a stationary cycle’ occurs, and the value of the constant 
vector is not changed. Since we assumed that S = { x  ; Ax 6 b, x 2 0) is bounded, a 
primal algorithm for (IFP) will converge in a finite number of iterations if we can 
guarantee that any sequence of stationary cycles is finite*. In the (IFP) problem, 

The problem of finiteness in the primal algorithm for (IP) is sometimes clarified by the distinction 
between stationary cycles and transition cycles. A stationary cycle is a degenerate cycle in which 
[aOa/auk J = 0, whereas in a transition cycle the objective function is strictly increased. 

* For a very thorough discussion of the problem of finiteness in the primal algorithm for (IP) via the 
distinction between stationary and transition cycles the reader is referred to [22]. 
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since the last row is modified via (28), we cannot establish strict lexicographical 
decrease of a certain column vector, the way it was done in [S] or  [22]. Thus, a 
finiteness proof of a primal algorithm for (IFP) problems, in which we systemati- 
cally generate cuts of the form (30), is not available at this stage. 

Let us superscript the elements obtained from (27), (30) after performing one 
pivot iteration by (A) .  Then, 

&<I = 50- [ a u O / a o k ] a k  (31) 
where 

z k  = ( a l k ,  CZk,. . . > a m k ) ' ,  

A 1  

= ?od, - do?, = ( c o -  ck[&o/a,k])(d, - &[&,/a,k]) 

-(do- zk[auO/auk])(c, - c k [ a o ,  /auk]) 

=(cod; -d;lc,)-[a,/a"k](COdk -dock)-[aoo/a&](ckd, -&el) 

= 6 - [ & , / a o k ] i k  -[auO/a"k](dd, -ak?,), 

where k is the pivot column and u is the source row in (30). 
In a stationary cycle [ i i ,o /&k]  = 0 and thus, for a stationary cycle 

. . -  
?, = t ,  - [a",/a"k] ' T k .  (32) 

Therefore, the modification of the last row via (32) in stationary cycles can simply 
be achieved through the ordinary pivot operations rather than by (28). Moreover, 
(32) indicates that in stationary cycles the linear fractional objective function can be 
replaced, for tableau modification sake, by a linear objective function whose 
relative cost coefficients are the c's .  

The above observation in conjunction with Young's ingenious reference row [22] 
(see also Glover [S]) can be used to  construct a primal algorithm, in which cut (30) is 
systematically generated whenever for some k E IN, > 0, which converges to an 
optimal solution t o  (IFP) in finitely many iterations. 

5. Mixed integer fractional programming (MIFP) 

The mixed integer fractional programming problem is an optimization problem 
of the form (MIFP): 

max{(cTx + c z y  + co)/(dfx + d : y  + do)},  

s.t. A ~ x  + A , y  S b, 

x, y 3 0 ,  x integer. 

Let us denote by 

S = { ( x ,  y ) ;  A ~ x  + A z y  b, X, y 3 O}, 

and assume 
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Proof. Clearly (6) is equivalent to (2) if rn = n. We have to prove that (6) implies 
( r  + 2)-connectedness. 

If there is a k with r < k < f ( n  + r )  such that dk-, S k ,  then by the arguments of 
the proof of Theorem 8, Section (1) (a) ( r  t 2)-connectedness is assured. 

If dk-,  > k for all r < k < 1 ( n  t r ) ,  we have d, 2 q + r, where q : = - 

dn- , - , .  
I n  2 

Furthermore 2q 3 n - r and q < n - r - 1 (as r < n - 3) ,  thus q t r < d, 
This implies 

q = 2q - q 3 n - ( r  + q ) >  n - ( q  + r ) -  1 3  n - d,-,-,- 1. 

Thus condition (1) of Proposition 1 is satisfied and G is ( r  + 2)-connected. 

Actually Berge proved a stronger theorem saying that Q only has to be a set of 
edges of cardinality r such that the connected components of Q are paths. 

Corollary 13 (Chvatal [4]). If the degree sequence d , ,  . . ., d, of a graph G, n 
satisfies 

3, 

dk < k < f n  dn-k a n - - ,  (7) 

then G contains a hamiltonian cycle. 

Proof. Take r = 0 in Corollary 12. 0 

Furthermore, Chvital showed that this theorem is best possible in the sense that 
if there is a degree sequence of a graph not satisfying (7) then there exists a 
non-hamiltonian graph having a degree sequence which majorizes the given one. 
This proves that Theorem 8 is also best possible in this special case. Moreover 
Chvital (see [4]) showed that most of the classical results on hamiltonian graphs are 
contained in his theorem, and therefore are also implied by Theorem 8. 

A trivial consequence of Corollary 13 which however is not too “workable” is 

Corollary 14. Let G‘ be an induced subgraph of a graph G having m n vertices. If 
the degree sequence d I,. . ., dA of G‘ satisfies (7)  then G contains a cycle of 
length m.  0 

4. Some examples 

(a) We first show that the number m implied by Theorem 8 giving the minimum 
length of a cycle containing a given path cannot be increased, i.e. we give an 
example of a graph G with a path Q of length r such that the longest cycle 
containing Q has length m. 

Consider a graph with two disjoint vertex sets A and B. A is a clique of q 
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where 

1; = { j  ; j E 6 k J  3 o}, 1;; = { j  ; j E IL, bkJ < o} ( i  = 1, 2).  

If 
that 

is a lower bound for t in (MIFP) then from assumptions l', 2' we conclude 
> 0. Further, since for every feasible t, t 2 i (37) implies 

Moreover, if f k o  - t < o then by multiplying (38) from both sides by f k O / c f k o  - t) < 
0 we obtain 

Combining now inequalities (36) and (39) results with 

Inequality (40) is not satisfied by the current optimal solution to  (MIFPl), and 
when added to  the bottom of the optimal tableau it cuts off the optimal continuous 
solution to (MIFP). Further, by using the fact that zj = 0 modulo t in (40) one can 
obtain the following stronger cut 

where 

- 
1 iiiis, if for some variable z L, ako/am+l,o is not integer, cut (41) can be applied 

while solving (MIFP), provided i (the lower bound for t )  satisfies 
- 

ak0 - [ a k O / a m + l , O ]  * ak0 < t .  (43) 

One can show that if I k =  0, i.e., all variables in (33), (34) are constrained to  be 
* fkj > fko} # 0 then cut (41) is stronger than congruent to  zero modulo t, and if { j ;  

Cut A which was derived in section 2 for the (IFP) problem. 



References 

[l] Y. Anzai, On integer fractional programming, J. Operations Res. SOC. Japan 17 (1974) 49-66. 
[2] E.J. Bell, Primal-dual decomposition programming, Ph.D. Thesis, Operations Research Center, 

[3] A. Ben-Israel and A. Charnes, On some problems of diophantine programming, Cahiers Centre 

[4] A. Charnes and W.W. Cooper, Programming with linear fractional functionals, Naval Res. Logist 

[5] C. Derman, On sequential decisions and Markov chains, Management Sci. 9 (1962) 16-24. 
[6] M. Florian and P. Robillard, Hyperbolic programming with bevalent variables, Department 

[7] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem - 

[8] F. Glover, A new foundation for a simplified primal integer programming algorithm, Oper. Res. 16 

[9] R.E. Gomory, An algorithm for integer solutions to linear programs, Princeton IBM Mathematics 
Research Report, (Nov. 1958), also in: R.L. Graves and P. Wolfe, eds., Recent Advances in 
Mathematical Programming (McGraw-Hill, New York, 1963) pp. 269-302. 

[ 101 R.E. Gomory, All-integer integer programming algorithm, IBM Res. Center Report RC-189, (Jan. 
1960); also in J.F. Muth and G.L. Thompson, eds., Industrial Scheduling (Prenctice-Hall, 
Englewood Cliffs, NJ, 1963) 193-206. 

University of California at Berkeley, Report ORC 65-92, (1965). 

Etudes Recherche Optr. 4 (1962) 215-280. 

Quart. 9 (1962) 181-186. 

d’informatique, Universitk de Montrkal, Publication #41, (August, 1970). 

Part 11, Oper. Res. 11 (1963) 853-888. 

(1968) 727-740. 

[Ill R.E. Gomory, An algorithm for the mixed integer problem, RAND, P. 1885, (Feb. 1960). 
[I21 M. Grunspan and M.E. Thomas, Hyperbolic integer programming, Naval Res. Logist. Quart. 20 

[13] J.R. Isbell and W.H. Marlow, Attrition games, Naval Res. Logist. Quart. 3 (1956) 71-93. 
[ 141 M. Klein, Inspection - maintenance - replacement schedules under markovian deterioration, 

Management Sci. 9 (1962) 25-32. 
[15] L.S. Lasdon, Optimization Theory for Large Systems; Chapters I1 and IV, (MacMillan London, 

1970). 
[I61 G.T. Martin, An accelerated Euclidian algorithm for integer programming, in R.L. Graves and P. 

Wolfe, eds., Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) pp. 
311-317. 

[I71 B. Martos, Hyperbolic programming, translated by A. and V. Whinston, Naval Res. Logisr. Quart. 

[I81 P. Robillard, (0, 1) hyperbolic programming problems, Naval Res. Logist. Quart. 18 (1971) 47-57. 
[I91 J. Tobin, Liquidity preference as behavior toward risk, Rev. Economic Studies 26 (1958) 65-86. 
[20] H.H. Wagner and John S.C. Yuan, Algorithmic equivalence in linear fractional programming, 

[21] H.P. Williams, Experiments in the formulation of integer programming problems, Math. Program - 

(1973) 341-356. 

11 (1964) 135-155. 

Management Sci. 14 (1968) 301-306. 

ming Study 2 (1974) 180-197. 
[22] R.D. Young, A simplified primal (all-integer) integer programming algorithm, Oper. Res. 16 (1968) 

750-782. 
[23] W.T. Ziemba, F.J. Brooks-Hill and C. Parkan, Calculating of investment portfolios with risk free 

borrowing and lending, Management Sci. 21 (1974) 209-222. 



This Page Intentionally Left Blank



Annals of Discrete Mathematics 1 (1977) 233-245 
@ North-Holland Publishing Company 

GRAPHS WITH CYCLES CONTAINING GIVEN PATHS 
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In this note we establish a sufficient condition for the following property of a graph: given any 
path of length r there is a cycle of length at least m 2 r + 3 containing this path. The theorem 
implies the well-known theorem of Chvatal[4] on hamiltonian graphs and the theorem of Pdsa 17) 
which gives sufficient conditions for a graph to contain cycles of a certain length. It is shown that 
the theorem is neither stronger nor weaker than the theorem of Bondy [3] and the still unsettled 
conjecture of Woodall [8]. 

1. Notation 

The graphs G = (V, E )  considered are undirected, loopless, and without multiple 
edges. The degree d ( u )  of a vertex u E V is the number of edges e E E containing 
u. A non-decreasing sequence d , ,  d 2 , .  . ., d ,  of nonnegative integers will be called a 
degree sequence if there is a graph G with n vertices v,,. . ., u. such that d ( u , )  = d,, 
i = 1,.  . ., n. A sequence t , , .  . ., t ,  majorizes a sequence d , ,  . . ., d ,  if t, 2 d,, i = 

1,. . ., n. A sequence P = (ti,,. . ., u p )  of distinct vertices of V is called a path if 
{u,, v,+ ,}E E for all i = 1,. . . , p  - 1. The length of the path is p - 1.  = 

(up,  u p - , , .  . . , u, )  is also a path and will be called the reverse of P. If furthermore 
{ u l ,  v,} E E, P is a cycle of length p and will be denoted by [ u , ,  . . ., u p ] .  Sometimes 
we will write [ u l , ,  . ., v,, v,] instead of [ u , , .  . ., up] for clarity. A path from u ,  to u,, 
q < p ,  along P will be denoted by ( u , ,  P, u,). If two paths P ' =  (v l ,  . . ., ub) and 
P " =  (v;, ..., vz) have exactly one vertex v:= ulsl in common then P = 

(vl, P',  v:, P", vz) is a well-defined path from u l  to uz. By N ( v )  we denote the set of 
neighbours of u, i.e. the set of vertices w E V such that {v, w }  E E. 1 M 1 is the 
cardinality of a set M. 1x1 is the greatest integer k with k x, [XI is the smallest 
integer k with k 2 x. 

2. Properties of h -connected graphs 

As a tool for further proofs we cite and prove some results concerning h -  
connected graphs, i.e. graphs which remain connected after the deletion of any 
h - 1 vertices. 

The first theorem is due to Bondy, see [l, p. 1731. 

233 
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Proposition 1 (Bondy). Let G be a graph with degree sequence d,, . . ., d, such that 
for some integer h < n the following holds: 

d, 3 k + h - 1 forall 1 s  k s n - dn-,,+,- 1. (1) 

Then G is h-connected. 0 

A well-known property of h-connected graphs is the following, cf. [ l ,  p. 1681: 

Proposition 2. If G is h -connected then the induced subgraph obtained by removing 
one vertex is ( h  - 1)-connected. 0 

The next two theorems can also be found in [1, p. 1691 

Proposition 3. Let G = (V, E )  be h-connected. Let W = { w l , .  . ., wh} be a set of 
vertices, 1 W 1 = h. If v E V - W, there exist h vertex-disjoint paths (v ,  . . ., wn), 
i = l , . .  ., h, joining v and W. 0 

Proposition 4. Let G be a h -connected graph, h 3 2. Then there is a cycle passing 
through an arbitrary set of two edges and h - 2  vertices. 0 

A frequently used theorem is the following, see 12, p. 1921: 

Proposition 5 (Menger-Dirac). Let P = (ao, a,, . . ., a,) be a path. If G is 2- 
connected then there exist two paths P' and P" with the following properties: 

(a) the endpoints of P' and P" are a. and up, 
(b) P' and P" have no other points in common, 
(c) if P' (or PI') contains vertices of P, then they appear in P' (or P")  in the same 

order as they do in P. 0 

We now give an extension of Proposition 3 which will be of interest later. 

Proposition 6. Let G be a 3-connected graph and P = (ao , .  . .,a,) be a path, let 
{as, a,,,} be an edge of this path. Then there exists a pair of paths P' ,  P" with the 
following properties : 

(a) The endpoints of P' and P" are a. and ap, 
(b) P' and P" have no other points in common, 
(c) if P' (or P") contains vertices of P, then they appear in P' (or P") in the same 

(d) P' contains {as, as+,}. 
order as they do in P, 

Proof. By induction. 

connected, there is another path P" from a. to  a l .  Take P' = P. 
(1) Let P = (ao ,a l ) ,  i.e. P is an edge. Then necessarily s = 0. As G is 2- 
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(2) P = (ao, al ,  az),  s = 1. By Proposition 3 there are two vertex-disjoint paths 
PI = ( a o , .  . ., al )  and Pz = (ao , .  . ., aZ). Define P' = (ao, P1, al, az) ,  P" = P2.  The case 
s = 0 is similar. 

(3) P = (ao, a ] ,  a2, a3), s = 1. By Proposition 3 there are three vertex-disjoint 
paths (G is 3-connected): PI = (ao, . . ., a ~ ) ,  PZ = (ao, . . ., &), p3 = (ao, .  . ., a3). Define 
P' = (ao,  PI, a ] ,  az,  a3) and P" = P3. All other cases are similar. 

Now suppose the theorem is true for paths of length k .  We prove that it is true for 
paths of length k + 1. 

Let P = (ao, a l ,  . . ., ~ k + ~ ) ,  PI = (ao, P, a) .  
We may assume that s < k - 1, otherwise we take the reverse p of P. By 

assumption there exist paths Pi and PY connecting a. and an having the desired 
properties with respect to P I .  From G we now remove the vertex ak and add the 
edge {ao, at+l} ,  if it does not already exist. By Proposition 2 the new graph G' is 
2-connected. By Proposition 4 there is a cycle in G'  containing the edges {as, as+]}  
and {ao,  a k + l } .  Thus there is a path Q = (ao,  a : ,  . . ., ah, a k + l )  in G connecting a. and 
a k + l ,  which contains the edge {as, as+l} and does not contain the vertex ak. 

Let x be the vertex of path Q which is as close as possible to  a k + l  and is contained 
in the union of the vertex sets P1, Pi, and P:. Clearly x lies between a,+l and on 
the path Q as a,+l is in Q and in Pi. If x is in Pi then x lies between a,+] and ak in 
P : .  We now have to investigate several cases. 

(i) x = a k + l  (a) x E Pi P' = (ao,  Pi, x), 
P" = (ao, PY, ak7 

P'' = (ao, ZJ:, x). 
P' = (ao, P: ,  x, Q, ak+]), 
P" = (ao, p:, aa, a*+1), 

P' = (ao, p: ,  Ua, U a + i ) ,  

P'' = ( ~ o ,  P',', X, Q, ~a+i). 

(b) X E P: P' = ( U o ,  P ; ,  Ua, &+I) ,  

(ii) x not in P (a) x E P :  

(b) X E P:' 

(iii) x in P but x #  @ + I ,  say x = a,, r 3 s + 1. Let p S r be the largest index such 
that a, is contained in the union of the vertex sets of Pi and Py. 

(a) a, E Pi 

(b) a, E P',' 

P' = (ao, P i ,  a,, P, a,, Q, 
P" = (ao, P'L a, a k + l ) ,  

P' = (ao,  Pi,  at, 
P" = (ao,  P;, a,, P, a,, Q, at+$ 

These are all the cases which have to be considered and hence we are done. 0 

Corollary 7 .  Let G be ( r  + 2)-connected and P = ( a o , .  . ., a p )  be a path, r =s p ,  let 
Q = (as, . . ., a,,,) be a path of length r contained in P. Then there exists a pair of paths 
P' ,  P" with the following properties: 

(a) the endpoints of P' and P'' are a. and a,, 
(b) P' and P" have no other points in common, 
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(c) if P' (or P")  contains vertices of P, then they appear in P' (P" )  in the same order 

(d) P' contains the path Q. 
as they do in P, 

Proof. r = 0:  Then by definition Q is an empty path and Corollary 7 reduces to 
Proposition 5 .  

r = 1 :  This is Proposition 6. 
r > 1 : Remove the r - 1 vertices a,+l, a,+z,. . ., a,,,. I and add the edge {as,  a+,}. 

The resulting graph G'  is 3-connected by Proposition 2. The path PI = 

(a", .  .., a,, as+,, . .., a,), contains the edge {a,, as+,}. Application of Proposition 6 
gives two paths Pi and P'i, and Pi contains {as,  as+,}. The path P ' =  
( a , ,  PI, a,, Q, a,,,, P: ,  a,) is well defined in G. Define P" = P',', then the pair P ' ,  P" 
has the desired properties. 0 

3. The theorem and its corollaries 

The following theorem establishes a sufficient condition -in terms of the degree 
sequence-for the following property of a graph: given any path of a specified 
length, there exists a cycle containing this path and having a certain minimum 
length. Formally the theorem is very like a theorem of Berge [l, p. 2041, which is an 
extension of a theorem of ChvAtal [4] on hamiltonian graphs. The proof of case (i) 
below is a slight variation of their proof which-in spirit -is due to Nash-Williams 
[6]. Case (ii) of the proof was motivated by P6sa's proof of his own theorem [7] 
which is also included in the following: 

Theorem 8. Let d , ,  . . ., d, be the degree sequence of a graph G = (V, E ) .  Let n 3 3, 
rn =G n, 0 r < m - 3, and let the following condition be satisfied: 

d k S k + r  d , . k - , s n - k  forall O < k < ; ( m - r ) .  (2) 

Furthermore, let G be ( r  + 2)-connected if f ( m  - r )  S n - dn..,-, - 1 holds and 
dk > k + r holds for all 0 < k < $(in - r ) .  Then for each path Q of length r there exists 
u cycle in G of length at least rn which contains Q. 

Proof. (1) We prove: G is ( r  + 2)-connected. Let h = r + 2 < n, then (2) is equiva- 
lent to 

d ,  < k + h - 2 + dn-h+2-k 2 n - k for all 0 < k < $ ( m  - h + 2) .  (2 ' )  

j + h - 2. 
Condition (2') implies dn-h+Z-,  3 n - j .  As d n - h + l  3 d "-,,+*-,, we obtain j > 
n - ( n  - j ) -  1 3  n - dn-,,+] - 1.  Thus i f  dk  < k + h - 1, then k > n - d n - h + l  - 1 .  
Therefore the conditions of Proposition 1 are satisfied and G is h-connected. 

(b) Suppose d,  3 k + h - 1 for all 0 < k < 4 (rn - h + 2) ,  then G is h-connected 

(a) Suppose there exists a j such that 0 < j < f (rn - h + 2 )  and d, 
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by Proposition 1 if f ( r n  - h + 2) > n - dn-,,+, - 1. Otherwise h-connectedness 
follows from the assumption. We note for the following that ( r  + 2)-connectedness 
implies d ,  3 r + 2. 

(2) It is an easy exercise to see that a graph G’ obtained from G by adding any 
new edge to G also satisfies (2) and the other conditions of the theorem. 

( 3 )  Suppose now that G is a graph satisfying the required conditions but which 
contains a path Q of length r such that Q is not contained in a cycle of length 3 rn. 

By adding new edges to G we construct a “maximal” graph (also called G )  which 
satisfies all the conditions of the theorem, contains a path Q of length r, has no 
cycle of length 3 rn containing Q, and has the property that the addition of any 
new edge to G creates a cycle of length 3 rn which contains Q. In the following we 
shall deal with this maximal graph G. 

(4) Let u, v E V be two nonadjacent vertices of G. The addition of the edge 
{u,  v }  will create a cycle with the desired properties. Thus there exists a path 

P :  = ( u  ,,..., u p ) , u ,  = u, up = v , p  3 rn 

of length 3 rn - 1 connecting u and v, and which contains 

Q :  = (us , .  . ., us+,), where s E (1,. . . , p  - r } .  

S : = { I  E {l,.  . . , p } :  {u,, u , + ~ }  E E }  n ((1,. . ., s - 1) u { S  + r, . . . , p } )  
Let 

T :={iE{l )  ...) p } : { u p , u , } E E } .  

(a) We prove: S n T = +. Suppose i E S fl T, then [ul,  u,+,, P, up, u,, p, u l ]  is a 

(b) J S l + J T J < j P J - l  b e c a u s e p t i f S U T .  
( 5 )  The degree sequence of G necessarily has exactly one of the following 

Case (i) there is a ko ,  0 < k o  < i ( r n  - r ) ,  such that db 
Case (ii) d, > k + r for all 0 < k < (m - r ) .  

These cases will be handled separately. 
Case (i). 
(6) As d ,  3 r + 2 and as the degree sequence d,, . . ., d, is increasing there is a 

j < k,  such that d, = j + r. (2) implies d n - , - r 3  n - j ,  i.e. there are j + r + 1 vertices 
of V having degree at least n - j .  The vertex having degree j + r cannot be adjacent 
to all of these. Thus there exist two nonadjacent vertices a, b E V such that 
d ( a )  + d ( b )  3 n + r. 

(7) Among all nonadjacent vertices of G choose u, v such that d ( u )  + d ( u )  is as 
large as possible. Define P, S, T, Q as in (4). We calculate d ( u ) +  d ( v ) .  Obviously 

cycle with the desired properties. Contradiction! 

properties: 
k o  + r, 

d ( u ) = I T I + a  where a s ( V - P J  

d ( u ) s J S I + r + P  where V - P I .  
and 
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Suppose there is a w E V -  P which is adjacent to both u and u. Then 
[ul, uz, . . ., up, w ]  would be a desired cycle. Therefore (Y + p S I V - P 1, which 
leads, using (4) (a) and (b), to 

d ( u ) + d ( v ) S )  TI+ a + 1 S 1 + r + p 

< j P ( - l + c Y + p + r  

s I P I + J V - P I + ~ - I  

< n + r - l .  

By (6) d ( u ) +  d ( v )  cannot be maximal. Contradiction! 
Case (ii). 
(8) Among all longest paths in G containing Q choose a path such that the sum 

of the degrees of the endpoints is as large as possible. As G is maximal, the length 
of this path is at least rn - 1, and the endpoints are not joined by an edge. Let this 
path be P = ( u l , .  . ., up)  and Q, T, S be defined as in (4). 

(9) We prove: d ( u J  >l(m + r ) ,  d ( u p )  ai(rn + r ) .  Suppose d ( u l )  < ! ( rn  + r ) .  A11 
neighbours of ul  and up are contained in P, otherwise P would not have maximal 
length. As dl Z- r + 2, we have d(u, )  > r + 1 and therefore 1 S 13 d ( u l ) -  r > 1. All 
vertices u,, i E S, have degree at most d ( u l ) ,  otherwise 
(u,, u , - ~ ,  . . ., u l ,  u # + ~ ,  . ., up)  would be a path of the same length as P and 
d ( u , ) +  d ( u p ) >  d ( u l ) +  d(up) ,  contradicting the maximality assumption on the 
endpoints of P. Let j o :  = d(ul), then there are I S 12 j o  - r vertices of degree at most 
jo. As we are in case (ii), dk > k + r holds for all 0 < k < i(m - r ) ,  which is 
equivalent to d,-, > j for all r < j < t ( r n  + r ) .  Therefore j o  3 ( rn  + r ) .  By similar 
arguments d ( u p )  3 ! ( rn  + r ) .  

(10) From (9) it follows that 

IS I +  r + I T l a d ( u l ) +  d ( u p ) a  m + r. 

T h u s ~ S ~ + ~ T ~ ~ r n m , a n d f r o m ( 4 ) ( b ) w e h a v e ( P ~ ~ m + l . T h e r e f o r e i f  rn = n  we 
have n = I P 1 > n which is a contradiction, and in this case we are done. 

(11) Let N : = N ( u J  U N ( u p )  U {us , .  . ., us+,} U {u , ,  up} .  We prove: 1 N 12 rn. As 
r 5 rn - 3,  1 {us , .  . ., us+,} n {ul, u p } /  s 1. 

(a) Suppose max{i E S }  < min{j E T'}, where T':  = T - {s, . . ., s + r } .  This 
means that the index of a neighbour of u 1  which is not among us,.  . ., us+, is less than 
or equal to the smallest of the indices of the neighbours of up not among us, . . ., us+,. 
Thus I(N(ul)n N ( u p ) ) - { u s , .  .., us+,}1s 1. Obviously 

1 N l s l N ( u 1 ) - { ~ ~ , .  .., U ~ + , } I +  l N ( u p ) - { u s ,  .. ., u s + , } (  

+ / { u s ,  ..., ZJ,+,)I+ I { u ~ ,  ~ , } l - l ( N ( u l ) n  N ( u p ) ) - { u s , .  . ., U , + ~ } I  
- i{uS,. . ., U,+J n {ul, up>i 

3 I S 1 - 1 + 1 T'I + ( r  + 1) + 2 - 1 - 1 

a1 S 1 + )  T I 3 r n  
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(b) Suppose max{i E S }  2 min{j E T’}. Let 

d :  = min{(i + 1)-j : i E S, j E T’ such that i S j } ,  

then we have d > 0. Now let io + 1 - j o  = d. 
(b,) io + 1 s. By definition j o  < s and no  vertex of the path P between u, and 

u*+~ is linked to  u1 or  up by an edge. Thus 

[Ul ,  %+I,  %+2, * .  ., u p ,  u,, % - I , .  . ., U l ]  

is a cycle containing the path Q, all vertices u,, i E S, with the possible 
exception of i = io, and all vertices u,, j E T’. It also contains u1 and u,. Thus 
the length of this cycle is at least: 

( r  + 2 ) + )  S 1 -  1 + 1 T’( 31 S 1 + 1 TI 2 rn 

which is impossible by assumption. 
(b2) r + s G I . .  Define the same cycle as in (b,) and by the same arguments we 

obtain a contradiction. 
(b,) j o  < s, io > r + s. Define 

jl : =min{j E T’} s j o ,  i l  : =max{i + 1 : i E S }  3 r + s + 1. 

The conditions of case (b3) imply the following: 

UI # us, up# US+“ 

none of the vertices u,, jl < i s s, can be linked to u 1  by an edge, none of the vertices 
u,, i l  < i S p ,  is a neighbour of u I ,  thus 

N(u1) c{u27 . . .> u J 1 }  u { u S + l , .  . .? u , ~ } 7  

none of the vertices u,, 1 6  i < j , ,  is a neighbour of up, none of the vertices u,, 
s + r < i < i l ,  is a neighbour of up, thus 

N(u,) c{u,,, . . ., us+,} u {u,,, . . ., up-,}. 

I N(u1) - {us, . . ., u,+,) I = I s I, 
IN(u,)-{u,  ,..., u s + , } [ = I T ’ l .  

Furthermore 

The only vertices which might be neighbours of both u1  and up are u,,, u,, and 
us+, ,  . . ., u,+,. This implies 

I ( N ( U J  n N ( u , ) )  - {us, . . ., us+,} I 2. 

Therefore 

I N I 3 I N ( u J  - {us, . . ., u,+,} 1 + I N ( u , )  - {us, . . ., us+,} 1 + ( r  + 1) + 2 - 2 - 1 

a I S ( + ( T ’ ( + r  

z= 1 S 1 + I TI m. 



240 M. Groischel 

These are all the cases which can occur, therefore I N 13 m is proved. 
(12) Among all pairs of paths satisfying Corollary 7 with respect to P and Q 

choose a pair P ' ,  P" such that the cycle K = [ u l ,  P' ,  up, P", ul] contains as many 
bertices of P as possible. 

(13) To show that K has length 3 rn, we will prove: K contains all vertices of N. 
Suppose there is a vertex of N which is not contained in K. Trivially the vertex is 
either in N ( u l )  - {us, .  . ., u,,,} or  in N(u,)-  {us , .  . ., u,+,}. Without loss of generality 
we assume that the vertex uk E N ( u l )  - {u,, . . ., us+,} is not contained in K. Let 

io= max{i 1 u, E Nn K, i < k } ,  ill= min{i 1 u, E N  n K, i > k } .  

(a) Suppose uq,, u,E P',  then 

p ;  = (u1, P ' ,  u,, P, u,<,, P ' ,  up),  

PI" = p",  

- 
is a pair of paths satisfying Corollary 7, and K ,  = [ u l ,  Pi ,  up, PY, ul] contains more 
vertices of P then K does. Contradiction! If u,, u,,, E P" the contradiction follows 
similarly. 

(b) Suppose u,E P',  u,E P". Let 

PI = (u1, P, u,, P' ,  up), 

p:' = (u1, uk, p, ua, P''? u p ) .  

If io s s, then Q is contained in (u,, P' ,  up) ,  otherwise Q is contained in (u , ,  P, u,). 
Therefore Pi and P: satisfy the conditions of Corollary 7, and K ,  contains more 
vertices of P then K does. Contradiction! 

(c) Suppose u,E P", u,E P ' .  
(cl) io =S s : this implies j o  6 s. 

Take 
pi = (u1, uk, p, ujo ,  u p )  

P:'= ( U l ,  P, ue7 P", u p ) .  

(cz) ill 3 r + s : 
Let 

P :  = (u , ,  P, u,, P", up)*  

p:  = (ul, uk, p7 uj07 p ' ,  u p ) *  

These pairs of paths satisfy Corollary 7. The contradiction follows as above. 
Thus in Case (ii) we have constructed a cycle K of length 5 m containing the 

path Q, which contradicts the assumption that G does not contain such a cycle, and 
we are done. 

Theorem 8 has some immediate Corollaries and also includes some of the 
classical theorems on graphs containing cycles of a certain minimum length. 
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Corollary 9. Let d , ,  . . ., d, be the degree sequence of a graph G = (V, E ) .  Let n 3 3, 
q 2 2 and let the following condition be satisfied: 

d k S k S q - l  d , - , , > n - k .  (3 )  

Furthermore, let G be 2-connected i f  q - 1 < n - dn-, - 1 holds and dk > k holds for 
all 1 c k s q - 1. Then G contains a cycle of length at least min{n, 2q) .  

Proof. Take r = 0 in Theorem 8. 0 

One of the well-known theorems implied by Theorem 8 is the following due to 
P6sa [7 ] ,  which generalizes results of Dirac [ 5 ] .  

Corollary 10 (PBsa [7 ] ) .  Let d , ,  . .., d, be the degree sequence of a 2-connected 
graph G. Let q 3 2, n 3 29. If 

dk > k for all k = 1 , .  . ., 4 - 1, (4)  

then G contains a cycle of length at least 2q. 

Proof. Immediate from Corollary 9. 0 

For bipartite graphs a simple trick yields: 

Corollary 11. Let G = (V, W, E )  be a bipartite graph with degree sequences 
d ( v , ) S - . . S d ( v , )  a n d d ( w , ) ~ . . . s d ( w , ) ,  n s m .  If 

d ( w , ) <  k < n - 1 + d ( v n - k ) a  m - k + 1, (5 )  

then G contains a cycle of length 2n. 

Proof. Construct G *  = ( V  U W, E *) by adding all edges to E which have both 
endpoints in V. Clearly G *  contains a cycle of length 2n if and only if G does. If G 
satisfies (5) then G*  satisfies (3). As (5) implies that d ( w 1 ) > 2  and V defines a 
clique in G*, G *  is 2-connected. 17 

Standard theorems giving sufficient conditions for a graph to be hamiltonian can 
also be derived from Theorem 8. 

Corollary 12 (Berge, [l, p. 2041). Let G = (V,  E )  be a graph with degree sequence 
d, ,  . . ., d,. Let r be an  integer, 0 < r S n - 3. If for every k with r < k < $ ( n  + r )  the 
following condition holds : 

dk- ,  S k d,-,, 3 n - k + r, (6) 

then for each subset Q of edges, I Q I = r, that forms a path there is a hamiltonian 
cycle in G that contains Q. 



242 M. Grotschel 

Proof. Clearly (6) is equivalent to (2) if rn = n. We have to prove that (6) implies 
( r  + 2)-connectedness. 

If there is a k with r < k < f ( n  + r )  such that dk-, S k ,  then by the arguments of 
the proof of Theorem 8, Section (1) (a) ( r  t 2)-connectedness is assured. 

If dk-,  > k for all r < k < 1 ( n  t r ) ,  we have d, 2 q + r, where q : = - 

dn- , - , .  
I n  2 

Furthermore 2q 3 n - r and q < n - r - 1 (as r < n - 3) ,  thus q t r < d, 
This implies 

q = 2q - q 3 n - ( r  + q ) >  n - ( q  + r ) -  1 3  n - d,-,-,- 1. 

Thus condition (1) of Proposition 1 is satisfied and G is ( r  + 2)-connected. 

Actually Berge proved a stronger theorem saying that Q only has to be a set of 
edges of cardinality r such that the connected components of Q are paths. 

Corollary 13 (Chvatal [4]). If the degree sequence d , ,  . . ., d, of a graph G, n 
satisfies 

3, 

dk < k < f n  dn-k a n - - ,  (7) 

then G contains a hamiltonian cycle. 

Proof. Take r = 0 in Corollary 12. 0 

Furthermore, Chvital showed that this theorem is best possible in the sense that 
if there is a degree sequence of a graph not satisfying (7) then there exists a 
non-hamiltonian graph having a degree sequence which majorizes the given one. 
This proves that Theorem 8 is also best possible in this special case. Moreover 
Chvital (see [4]) showed that most of the classical results on hamiltonian graphs are 
contained in his theorem, and therefore are also implied by Theorem 8. 

A trivial consequence of Corollary 13 which however is not too “workable” is 

Corollary 14. Let G‘ be an induced subgraph of a graph G having m n vertices. If 
the degree sequence d I,. . ., dA of G‘ satisfies (7)  then G contains a cycle of 
length m.  0 

4. Some examples 

(a) We first show that the number m implied by Theorem 8 giving the minimum 
length of a cycle containing a given path cannot be increased, i.e. we give an 
example of a graph G with a path Q of length r such that the longest cycle 
containing Q has length m. 

Consider a graph with two disjoint vertex sets A and B. A is a clique of q 
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vertices, and B consists of p isolated vertices. Each vertex of A is linked to each 
vertex of B by an edge. Suppose that 1 < q - r and p 3 q - r + 1. The degree 
sequence of G is 

q , q  )...) q, n-1 ,  ...) n - 1 .  -- 
p times q times 

Hence we have 

By Theorem 8 for each path Q of length r there is a cycle of length 2q - r 
containing Q. 

If we choose a path Q of length r such that all vertices of Q are contained in A it 
is obvious that no longer cycle containing Q exists. 

(b) We give an example showing that the assumption of ( r  + 2)-connectedness in 
Theorem 8 under the specified conditions is necessary. 

Consider the graph G consisting of three vertex sets A, B, C. A and B have k 
vertices and are complete, C has r + 1 vertices and is complete. Each vertex of C is 
joined to each vertex of A U B by an edge. Hence G is ( r  + 1)-connected but not 
( r  + 2)-connected. Take a path Q of length r in C. Clearly the maximal length of a 
cycle containing Q is k + r + 1. The degree sequence of this graph is 

k + r , . .  k + r ,  n - 1 ,  ..., n - 1  A'? 
2k times r + 1 times 

We have di > i + r for 0 < i 6 k - 1, therefore Theorem 8 would imply the 
existence of a cycle of length at least 2k  + r containing Q. 

(c) We give an example showing that Corollary 14 is not stronger than 
Corollary 9. 

Consider a graph consisting of two disjoint cliques A, B, each having m vertices. 
Link A and B by two disjoint edges. Obviously this graph is hamiltonian. The 
degree sequence is 

m - 1 ,  ......, m - l , m , m , m , m .  
P 

2m - 4  times 

Corollary 9 implies that there exists a cycle of length 3 2m - 2, but Corollary 14 
does not imply a cycle of length 3 2m - 2. 

(c,) Delete 2 vertices of A, both must necessarily be distinct from the two 
vertices linking A to B. The degree sequence is 
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m - 3  ,..., m - 3 , m - 2 , m  - 2 , m - 1 , . . . ,  m - l , m , m  - - 
m - 4  times m - 4  times 

which does not satisfy (7). 

(c2) Delete one vertex of A and one of B, again both must be distinct from the 
vertices linking A to B. The degree sequence is 

m - 2  ,......, m - 2 , m  - l , m  - l , m  - l , m  - 1  
2 ( m  -3)  times 

which also does not satisfy (7) 

It is clear that Corollary 9 does not imply Corollary 14. 
(d) Bondy proved (see [3]) the following 

Theorem (Bondy). Let G be a 2-connected graph with degree sequence d , ,  . . ., d,. If 

d, S j ,  dk S k (j# k )  + d, + d, 2 c ,  (8) 

then G has a cycle of length at least min (c,  n ) .  0 

Chvatal showed that in the case c = n his theorem (Corollary 13) implies Bondy’s 
theorem, thus in the hamiltonian case Corollary 9 is stronger than the theorem of 
Bondy. In general this is obviously not true, nor is the converse as the following 
example shows: The graph has three vertex sets A, B, C. A = { a l , a z , a 3 } ,  
B = {b , ,  bZ,  b,, b4}, I C 1 = m. The edges are the following: {a, ,  b J ,  {al, b J ,  {az, bl},  
{ a 2 ,  b3}, {a3 ,  b2}, {a3 ,  b3}, {a3,  b4}, and all edges having both endpoints in B U C. The 
degree sequence is 

2 ,2 ,3 ,  n - 4  , . . . , I t  -4,  n -3 ,  n - 2 , n  - 2 , n  - 2  
T 

m times 

d 2  < 2 and d3  < 3. By P6sa’s theorem there is a cycle of length 2 4, by Bondy’s 
theorem there exists a cycle of length 3 5 .  A s  d,-z* n - 2 and dn-3> n - 3 and 
d,  > i, 4 < i < $ n, G is hamiltonian by Corollary 9. 

(e) In [8] Woodall stated the following (to my knowledge unsettled) 

Conjecture. Let d ] ,  ..., dn be the degree sequence of a 2-connected graph G, 
m < n - 3, and let the following condition be satisfied: 

for 1 [ ?,:.,,>r k i f  k = 5 ( n  - m - 1). 

Then G contains a cycle of length at least n - m. 0 

k < $ ( n  - m - l), 
(9) 

Obviously Corollary 9 does not imply Woodall’s Conjecture, but surprisingly nor 
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does the Conjecture imply Corollary 9, although in most cases Woodall’s 
Conjecture - if true- would be “better” than Corollary 9. 

We give an example: Let n and rn be both odd (or even), j = ? ( n  - rn - 2 )  and 
j ’a f ( n  + r n )  (which is a solvable condition). 

Consider the following graph consisting of three vertex sets A, B, { u } .  B has j + 1 
elements and is complete, u is linked to all elements of B by an edge. A consists of 
j + rn isolated vertices, each element of A is linked to exactly j vertices of 
B such that each element of B is linked to at least m + 1 vertices of A. This is 
possible as ( j  + r n ) j  = jm + j z z  jm + f  ( n  + m ) =  j rn  + j + m + 1 = (m + 1)(j + 1). 
The degree sequence of this graph is 

j , .  . . . . ., j ,  j + 1, m l , .  . . . . ., 
-6 

I + m time5 j+lTtimes 
where m, 3 n - j for i = 1,. . ., j + 1. We have 

dk+ , , ,>k  for 1 S k S j - 1 ,  
d,+m = j and j < i ( n - r n - 1 )  

Thus Woodall’s Conjecture does not imply a cycle of length 3 n - m. On the other 
hand 

d k > k  for 1 S k S j - 1 ,  

d, = j and dn-, = rn, 2 n - j .  

Hence by Corollary 9 there exists a cycle of length 2 (j + 1) = n - rn. 
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The paper is concerned with a number of approaches to the important simple plant location 
problem. In addition to describing several decomposition approaches, the paper focuses on 
modified simplex methods which exploit triangular bases. 

1. Introduction 

Simple (Uncapacitated) Plant Location Problems (we shall abbreviate Simple 
Plant Location by SPL, and SPL problem by SPLP) are of great significance both 
practically and theoretically. There exist telecommunication network problems 
which could use algorithms handling problems with thousands of “plants” and 
“destinations”. These can only be tackled by heuristics at present. 

The SPLP is one of the simplest mixed integer problems which exhibit all the 
typical combinatorial difficulties of mixed (0, 1) programming and at the same time 
have a structure that invites the application of various specialized techniques. 

1.1 .  Brief survey 

The referee’s comments about the literature on SPL and related problems, for 
which we express our appreciation, indicate that a brief survey of some of the 
literature is necessary, incomplete as it must be for such a big subject. 

Exact formulations appear to go back to Balinski [4]. A first enumerative 
algorithm of the branch-bound type, based on the “aggregated” constraints 

x ( i , j ) s  m ( i ) .  y ( i ) ,  was developed by Efroymson, Ray in [13]. It was later 
refined by a number of authors. 

But the current state of the art must almost certainly rest squarely on the 
resolution of the SPLP with “disaggregated” constraints x ( i ,  j )  y ( i ) ,  because the 
“relaxed” problem with 0 y ( i )  =S 1 is very strong for the disaggregated and very 
weak for the aggregated form. This notion appears to have been observed and 
exploited independently by three groups of researchers. 

247 
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Bilde and Krarup, in a paper published in Danish (in 1967), and therefore 
unfortunately largely unread (available now in [7]), devised excellent heuristic 
techniques for producing strong lower bounds on  the objective function of the 
strong relaxed problem, exploited with good effect in a branch and bound 
algorithm. 

A class of enumerative algorithms by Spielberg [24, 251, based on widely 
distributed IBM reports of 1967 and 1968, exploited the disaggregated form in 
terms of dual variable analysis leading to strong Benders inequalities and “gain 
functions”. The work was extended to more general problems in Guignard, 
Spielberg [20]. A recent paper by Cornuejols, Fischer, Nemhauser [ 101 analyzes 
nicely a “greedy algorithm” which is based on one of the  algorithms of [25] and has 
the additional merit of establishing clearly (by way of Lagrangean Techniques, due 
to Held and Karp and extended and summarized by Geoffrion [15]) that the 
disaggregated form of the constraints is indeed fully exploited in this fashion. 

The third important approach (expressed in terms of the capacitated problem) is 
due to Davis, Ray [12], who solved the linear program by decomposition in 1967. 
This work established the practicability and desirability of solving the disaggre- 
gated LP directly. 

What lends special interest to the above is that there has been steadily increasing 
recognition of the importance of disaggregation for large scale problems in the 
entire class of location and distribution problems, an area whose practical 
importance can hardly be overstated. 

Without being in any sense complete, we can cite work on  the M-Median Plant 
Location Problem by Garfinkel, Neebe, Rao [18], a successful application of 
Benders’ algorithm to a large distribution problem by Geoffrion, Graves [16], and a 
general account of formulation techniques by Williams [26]. 

Finally we have recently seen the resolution of quite large distribution problems, 
with several thousand integer varables, by the general purpose code MPSX-MIP of 
IBM, after suitable introduction of disaggregated constraints (e.g., E.L. Johnson, 
private communication). 

1.2. Approach of current paper 

The following paper focuses first on decomposition and then on  new 
possibilities for exploitation of the fully disaggregated linear program. In the latter 
area one might also consult the work of Marsten [22] and Graves, McBride [19] on 
specialized Simplex Methods. 

Recent papers of Schrage [23] on implicit representation of generalized variable 
upper bounds, and Glover [ 171 on compact LP bases provide general techniques for 
problems which we called “weakly linked” in [5] and [20], a class of problems which 
encompasses location and more general fixed charge problems. 

Finally, it may be of interest that there is a link to the Russian literature via the 
two references Frieze [14] and Babayev [l]. 
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The first paper demonstrates a property for the gain functions of [24,25], and the 
second relates this property to a “method of successive calculation” of Cherenin 
[91. 

It is always enticing to start by decomposition techniques in order to get good 
bounds on the objective function. Equally interesting is the construction of 
specialized simplex algorithms which attempt to adhere to the great abundance of 
all-integer vertices as much as is at all possible. We have been able to solve a 
(20, 35) SPLP by a linear programming triangularization method, carefully bypas- 
sing all fractional vertices which would naturally lie in the path of an unmodified 
primal algorithm. 

Such attempts have been given new impetus by the results of Balas and Padberg, 
given in [ 2 ,  31, to the effect that there is always a path of integer vertices leading to 
the integer optimum of a SPLP. This is a nice result, but an algorithm such as 
suggested in [3] runs into formidable difficulties which appear to be very much of an 
enumerative nature. 

As opposed to the “usual” set-packing problem treated in [ 2 ,  31, the SPLP is 
unusual in the sense that as linear programming (LP) problem it is enormously large 
for problems which must be considered small in practice. 

To tackle the SPLP successfully, then, one must have highly specialized tools for 
treating everything within the LP problem implicitly. In Section 3 we discuss a 
certain special basis representation, which we believe must play a role (possibly in a 
yet somewhat more modified form) in any efficient direct linear programming 
treatment of the SPLP. 

Actually, we believe that Section 3 is important in several respects. The 
possibility of constructing triangular bases which lead to easily obtainable updated 
tableaux can be exploited for writing computationally efficient codes for problem 
sizes which would otherwise be intractable. What may be just as important, the 
latitude in constructing such bases can apparently be exploited to render them 
“good”, in the sense of minimizing the number of negative reduced costs (related to 
gain functions which have been found to be important elsewhere). 

Finally, these triangularization procedures are such that they can be applied to 
any integer feasible solution, no matter how it was found. This opens the way to a 
class of algorithms, dependent on the actual triangularization process adopted, 
consisting of steps such as: 

(1) Heuristics, enumeration, etc., to give a feasible integer solution. 
(2) Construction of a “good” triangular basis, and therefore a simply structured 

(3) Exploration of neighbor vertices. Pivot or block pivot to neighbor vertex. 
(4) Return to (1). 
I.e., depending on the actual basis choices, one has a class of true hybrid 

algorithms, which are LP intermittently, but then also permit jumps from one 
lattice point to completely different lattice points without loss in efficiency of LP 

(implicit) updated tableau. 
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computation (e.g., given a solution point (x, y) arrived at by a LP step, it is possible 
that x can be improved for given y by inspection, or the jump might correspond to 
one of the simple heuristics which are easily available for SPLP). Notice that 
tableaux are never updated, since bases and inverses are easily constructed from 
the solution. 

2. Decomposition and partitioning methods 

There are many possibilities of decomposition and partitioning. On balance they 
are by now quite well known. We believe that the “reverse partitioning” of 2.2.3 is 
new, somewhat unusual, and therefore interesting. 

What is most important, however, is the potential utilization of the  special 
problem characteristics. It is clear that the difference between success and failure 
lies here, and we have tried to present ideas which might form a start for a real 
algorithm (stand-alone or auxiliary algorithm within enumeration). 

y(i) 0 or 1, x ( i ,  j )  2 0. 

The indices i and j range from 1 to m, and 1 to n, respectively. We admit only 
f ( i ) z O  and c( i , j )aO.  Whether we consider (2.1) or its relaxed LP form (all y(i) 
between 0 and 1) will usually be clear from the context. 

2.1. Dantzig and Wolfe decomposition [ 111 

Consider the relaxed problem: 

min fy + cx ( = gt) 

s.t. x,, = 1 ( =  At) ,  

where g = (f,c), t = ( z ) .  Let t’, t2, .  . . , tk,. . . ,  be the extreme points of 3 = 

{t E R”’”” 1 Bt 3 0) (a compact set), and let K be the set of their indices. Then, for 
all I E 3, there exists A = ( A , ,  . . . , A k , .  . . )  such that 
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A 3 0 ,  

Then the decomposition algorithm will consider the following two problems: 
(A -PI 

S.t. c h t ( A , f k ) =  1, j =  1 , . . . ,  m, 
k E K '  

where K'  is the index set of currently known vertices of 3, with the dual 
(A -D) 

m 

i = max c U J  + u 
u.u 

and the problem 
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The  continuous objective function of SPLP is in the bracket: 

i + d s f s 2.  

It is well known [8] that the algorithm converges even when (B-P) is not optimized, 
but suboptimized, i.e. as long as the  solution t = ( y ,  x )  is chosen so as to render d 
negative and  to b e  an extreme point of 3. Also, as long as there a re  feasible integer 
solutions to  SPLP whose objective function values a re  between z and the  current 
best value z * = min z ,  every such solution is not yet  included in the set of 
generators of 3 and would yield an improvement over the  current 2 AJ‘, i.e. yield 
a negative value for d. If the  optimal solution is not integral, the integer optimum is 
among those feasible solutions that render the  last d negative. 

Also, if an improving (d < 0) feasible solution to  SLPL is the  only generator 
added at that iteration, it will be  the  optimum of the next (A-P) problem. Yet it 
might be  better t o  add both the  optimum and a feasible solution of SPLP 
simultaneously. 

Remark 1. Every time a (A-P) problem is solved, its solution yields a new feasible 
solution to  the  original LP. It is of the  form ( y , x ) .  Keeping in mind the original 
problem, one  may be  able to  find a better solution by taking y ’  defined by 

y ’ ( i )  = mSx x ( i , j ) ,  

the  new cost f .  y ’ +  c .  x being n o  larger than f .  y + c .  x .  This is important, since 
f .  y + c .  x (or f .  y ’ +  c .  x )  is an upper bound for the  optimal value of the original 
problem. If ( y ’ , x )  is an extreme point of 3, one  can add it t o  the  current set of 
generators. 

Remark 2. The  constraints of a (B-P) problem are  such that the problem is 
separable, as the  constraints which enforce the  presence of exactly one  x ( i , j ) =  1 
per column have disappeared from its formulation. Each (B-P) yields m subprob- 
lems of the  form 

min f i y ,  + C (c,, - u,)x, ,  - u / m ,  

s.t. 0 s x,, s y! s 1, 

1 

whose solution is obvious: if c ( i ,  j ) -  u(j)>O, set x ( i , j )  t o  0. Then, if there a re  
some c ( i ,  j )  - u ( j )  < 0, set x ( i , j )  equal to, say, a. Thus, y ( i )  must be  at least equal 
t o  a. The  objective function is then equal t o  ( f ( i ) +  xc,,<, , ,c(i ,  j ) -  u ( j ) ) .  a. If the 
coefficient of a is negative, set a = 1, otherwise set a = 0. O n e  can follow this by an 
attempt to find a suboptimal, feasible solution to  SPLP such that d ( 0 .  

Remark 3. An initial set of extreme points of 3 should be  carefully chosen to  
allow generation of meaningful points from the outset. For  instance, one  might 
choose: 
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r : ' =  0 all 1, t :  = 1 all I, t', . . . , t k + ' ,  . . . , t"" 

such that there is one 1 in column k of x, corresponding to  the smallest c ( i , j ) ,  the 
corresponding y ( i )  being set equal to 1, all others t o  0. 

Example. The  following data 

1 10 

10 1 

yield a continuous optimal solution 

Y =  
o t z  

and several integer optimal solutions among them: 

1 1 0  
y = [i], x =[; ; b], 2 - 5 .  

Choosing 

z ( ~ = ~ ,  z l=39 .  z z = 2 ,  z 3 = 2 ,  z 4 = 2 ,  

one solves four linear programs of type (A-P), arriving at a last (B-P) problem of 
the form: 

No solution yields d < O .  Hence the last solution of (A-P) is optimal: 

The  integer optimum satisfies: 
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Conclusion. Instead of solving a LP with 12 rows and 21 variables, one solves 4 LP's 
with 4 rows and between 5 and 9 columns, each of them being identical with the 
previous one with one new column added (so that relatively few pivot steps are 
required). A condition (C) has been found which the integer solution must satisfy, 
and a bracket for the optimal value has been obtained: 

4.5 c z < 5. 

2.2. Benders partitioning [6] 

2.2.1. The general scheme 
Consider the problem P: 

It can be rewritten as 

Let R be { u  Iu .  D + 6 2 0, u 2 0). R is independent of x. If R = 0, P has no 
solution. 

Otherwise, if for some x there exists u k ,  an extreme ray of R, such that 
u k . ( - p + C . x ) > O ,  D = m a x U E R u . ( - p + C . , y )  is unbounded and L =  
min,,o{ST )DT s p - C .  x, T 3 0) has n o  solution. 

P can therefore be solved as G: 

z I z 2 yx + max { - u ( p  - C .  x) I u either extreme point of R 
U E R  

or extreme ray of R satisfying u ( p  - C .  x )  2 011. 
An algorithm would proceed as follows: 

Step 0. Set k = O .  
Step 1. Replace k by k + 1. Form Q, the set of indices of known extreme points 

u '  and extreme rays u h  of R. For k = 1, choose any x ' E  S, go to 3. 
Step 2. Solve G' over Q. If Gk has n o  feasible solution, the same is true for P. In 

that case terminate. Otherwise, let x', z'  be an optimal solution of G'. 
Step 3. Solve L' and D' with x = x k .  Let f(h') be their optimal values. If f(x') 

is - x ,  terminate with no feasible solution. If f ( x k )  is + w, there is n o  feasible T 
associated with x'; let u' be the optimal extreme ray of D'. Go to 1. If f(x') is 
finite, let ( T ~ ,  u k )  be the optimal pair. It is a feasible solution for P. If 

z '  3 Y X k  + f ( x " ,  
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then ( x k ,  tk, z k )  is optimal for P; terminate. Otherwise go to  1 with a new extreme 
point u k  of R. 

We shall call the “normal” case, in which one identifies ,y with y. “direct 
partitioning”. By contrast we shall use the term “reverse partioning” for the 
identification ,y = x. (It is interesting that one can, at least for some problems, bring 
back the integrality conditions, which in the direct case are taken care of (formally) 
by ,y E S, in an indirect fashion.) 

2.2.2. Direct partioning 

alternatively the following two problems. Firstly Lk 
Starting with an arbitrary y (often y ’ =  ( 1 , 1 , .  . . , l) ,  all plants open), one solves 

I min C c ( i , j ) . x ( i , j ) l ~ ( i , j ) ~ y k ~ i ) ,  C x ( i , j ) = l ,  x ( i , j ) 2 0  I 

I 
and its dual Dk 

max 2 u(j1-c w ( i , , ) . y k ( i ) l w ( i , j ) + c ( i , j ) 2 u ~ ) ,  w ( i , j ) p o }  

with solutions x k ( ( i ,  j), u k u ) ,  w k ( ( i , j ) ;  and secondly Gk+’ 

YES  
[f(i)-x w h ( i , j ) ] . y ( i ) + c  u h ( j ) ,  h = 1 ,..., k 

I I 

and ( w h ,  o h )  extreme point of R ;  

c w h ( i , j ) . y ( i ) 3 x  u h ( j ) ,  h = 1 ,..., k 

and ( w h , v h )  extreme ray of R . 
i 

1 
Example. The 3 by 3 problem used before yields the following sequence of 
problems: 

L: z = 6, inequality for G: c y(i)  + 3 6 z ; 
G: z = 3, 3 s f 6,  y = (O,O, 0);  
L: infeasible, inequality for  G: c i y ( i ) a  1; 
G: z = 4, 4 f 6, y = (1,0,0); 
L: z = 13, inequality for G: (1, - 8, - 8)y + 12 s z ; 
G: z = 4, y = (0, 1,0), 4 6 z s 6; 
L: z = 13, inequality for G :  ( -  8,1, - 8)y + 12 G z ;  
G: z = 4, y = (O,O, l), 4 s  z < 6; 
L: z = 13, inequality for G: ( - 8, - 8, l )y  + 12 s z ; 
G :  z = 4.5, y = (S, .5, S); 
L: z = 4.5, optimal. 
We have run bigger problems and have experienced the normal difficulties 

towards the end, as the number of constraints in G increases. We have tried two 
versions of the algorithm, the one described above, and another one in which some 
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heuristics are used to render y integer if i t  turns out fractional. In the second case 
we noticed much faster convergence. E.g., a 20 by 35 problem shows the following 
behavior: after 20 iterations, the first algorithm gives the interval 209.0 c z c 344.8, 
whereas the second has arrived at 235.7 s z c 245. The optimal value is 243. 

2.2.3. Reverse partitioning 
One now has to solve, for S = {x 1 x ,x ( i , j )  = 1, all j } ,  

X E S  / o s x ( i , j ) c y ( i ) , v j } ) ,  

or 

t ( i , j ) .x ( i , j ) l  t(i,j)*o. I t ( i , j ) s f ( i ) ] ]  

i.e., Lk is min,f. y 

y ( i ) 2 x k ( i , j ) ,  Vi,j 

y ( i ) sO ,  V i  

whose solution is clearly y ( i )  = max,xk(i,j), all i. Dk is 

t(i, j )  2 0, Vi ,  j 

and Gk is 

min z l z z c . x + m a x  t . x I t = t l ,  . . . ,  t k ,  
X € S  I ‘ r  

t extreme point of the  set ( t * 0, C t ( i , j )  s f ( i ) } ] }  
i 

whose dual reads 

with c, = c + tP.  Let d( i , j )  = c p w p c p ( i ,  j ) -  v(j). Sum p from 1 to k .  Given w ,  one 
can determine u and d via 

v(j) = min 2 w p .  c,(i,j) and d( i , j )  = w p c p ( i ,  j ) -  v(’j)sO. 
Z P  P 

(1) The reduced cost of a d( i , j )  is -x( i , j ) ,  O s x ( i , j ) G  1, so that the only 
candidates to enter t h e  basis are the  w’s .  
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(2) If wpl comes in and wp2 goes out, the pivot row is cp w p  = 1. 
(3) If wpl comes in and d ( i , j )  goes out, the “pivot row” is 

.(j) - c W ” C , ( i , j ) +  d ( i , j )  = 0. 
P 

(4) Consider the constraint 

~(j) - 2 w p c p ( i , j ) +  d ( i , j ) =  0. 
P 

(a) Either u ( j ) <  c w p c p ( i , j ) ,  then d ( i , j ) > O  is basic and the constraint gives the 

(b) u ( j )  = w p c p ( i , j ) ,  then 
d ( i , j ) ,  or 

(i) either d( i ,  j )  = 0 nonbasic . . . row gives u or  basic w, 
(ii) o r  d ( i ,  j )  = 0 basic . . . row gives d ( i , j ) .  

For the 3 by 3 problem we obtain the continuous optimum after 10 iterations, i.e. 
10 LP’s with 10 rows and between 4 and 10 variables (exclusive of the slacks) of type 
GD. In fact one does not really need to use an LP code to solve GD, but rather one 
uses a specialized technique involving much less computation. 

The optimal value is immediately in the interval (3, 5), then at the 2nd iteration in 
(4,5), then (4th iteration) (4.167, 4.83), finally in (4.5, 4.83) at the 5th iteration. The 
next iterations leave the bracket unchanged, until the 10th iteration gives the 
optimum 4.5. 

3. Modified simplex methods 

3.1. Simple plant location and the simplex method 

The SPLP lends itself rather well to solution by LP techniques, in the sense that 
the LP solutions are often integral. There are many bases which are unimodular 
(vertices which are integral). A standard simplex algorithm, however, will en- 
counter fractional vertices. 

Also, the LP tableau of the SPLP is large. E.g., a 10 plant, 20 customer problem 
corresponds to a LP with 20 + 10.20 = 220 rows and 10.20.2 + 10 = 410 variables, 
including slacks. 

An efficient implementation of the simplex method, then, requires that: 
(i) The structure of the L P  be carried along implicitly, all relevant elements of 

the updated tableau being generated as needed, and 
(ii) efforts be made to avoid fractional vertices. 

3.2. A triangularization algorithm [21] 

We have implemented a simple “triangularization” algorithm, which tries to 
accomplish these objectives. In outline, it functions as follows. 



258 M. Guignard, K .  Spielberg 

(1) Consider (2.1) as an equality system with slacks s ( i ,  j ) ,  i.e. with the 
constraints: 

x ( i ,  j ) +  s(i ,  j )  = y ( i ) ,  all i, j .  

An initial triangular basis is easily found. To simplify matters, we always included 
(and maintained) the y ( i )  in the basis. (In retrospect, we believe that this may be 
too restrictive.) 

(2) A t  a typical iteration, given the triangularity of the basis, we can compute the 
dual variables by recursive scanning of the dual constraints and substitution. If the 
problem is not optimal (dually feasible) we select an incoming variable t(i *, j *), 
which represents either x ( i * , j * )  or s ( i * , j * ) .  

(3) We generate the pivot column by scanning the primal constraints and 
expressing the basic variables y (i) and x (i, j )  in terms of t ( i  *, j *). This is possible 
on  account of triangularity, and the scanning can be used to exhibit the sequence of 
variables which shows the triangularity of the basis explicitly. It is clear, that the 
basic s”(i ,  j )  can be generated afterwards from the constraints (2.1), so that only the 
x B ,  y 

(4) Given the constant column (the values of the basic variables) and the pivot 
column developed in (3), we can perform the standard ratio tests and decide on  
an outgoing variable. Let t B  = b + t * . p + * 1 (p.. . pivot column) represent the basic 
variable vector t B  in terms of its current value b and the incoming variable t*. The 
b ( i )  are either 0 or 1, but the pivot column may, in general, contain integer entries 
other than 0, 1, - 1 .  

In the ratio test one searches for an outgoing variable t ( i * * , j * * )  which 
corresponds to a maximal b ( i ) / p ( i ) ,  over p ( i )  < 0. When the maximal ratio is zero, 
the pivot step is degenerate (does not change the value of the solution; one remains 
at the same vertex of the polytope). It can be seen that one can then find an eligible 
i** for which the p ( i )  is - 1, so that the new basis remains unimodular. When the 
maximal ratio is - 1, we have a non-degenerate pivot step which leads to a new 
unimodular basis. When the maximal ratio is fractional, i.e., when the p ( i )  is 
negative other than - 1, we abandon the incoming variable t *  because the new 
basis would have to  be non-triangular. In effect, one abandons motion along one 
edge of the polytope from the current vertex to what would most likely (apparently 
there are exceptions) be a fractional neighbor. 

computations require iterative scanning. 

Comments. (i) In our code all array representations are kept in binary form. We do 
not generate p ( i )  which are other than 0, 1, - 1, but carry along a fourth type 
(represented by a code of two bits) which we designate as “polluted”. Linear 
combinations of polluted entries are also designated as polluted. We abandon 
incoming variables (candidate edges) which lead to  a polluted p ( i * * ) .  This means 
that our code is somewhat too restrictive (pessimistic). 

(ii) The code will fail in two cases: 
(a) There are n o  candidate edges leading to a unimodular new basis. 
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- 

- 

? 
? 

243 
343 

(b) A new unimodular basis has been found and is yet non-triangular. 
(iii) For very small problems (we have run a large number of problems with 

m = 4 and n = 6) we have not been able to get one of the two conditions mentioned 
above, no matter what data we tried. 

Failure (a) apparently is unlikely for “easy” fixed charges. It can be “induced” 
most readily by using uniformly large fixed charges (rendering the problem almost 
fully combinatorial). 

We have only one example for failure (b), for a fairly large problem of 20 plants 
and 35 customers. The unimodular basis which appears to be non-triangular is of 
size (735 by 735). 

(iv) The real flaw of the method, however, lies in two other circumstances. One is 
the well-known problem of degeneracy, which leads to large numbers of apparently 
useless pivot steps. The other is that a method which treats the x ( i , j )  and s ( i , j )  as 
the important variables is probably doomed to failure because of dimensionality. 
We are now convinced that a direct LP technique will have to concentrate on the 
y ( i ) ,  just as is done by enumerative methods. Our choice of taking all y ( i )  always 
basic and preventing them from leaving the basis was probably unwise, and the 
methods of the next section are probably more appropriate. 

Table 1 exhibits selected computational results for small problems. The code 
permits slight changes in initialization and selection of incoming variables. We do 
not attribute any significance to such changes and only use an asterisk to distinguish 
between two similar yet  different runs. 

- 

- 
80 

30058 
80 

30058 
2.52 
243 

Table 1 

37 
0 

43 
large 

moderate 

limensions 

4 x 6  

10 x 10 

20 x 35 

? 
80 

? 
243 
243 

completed 

no 
’eason fc 

failure 

d a  

d a  
J b  

Number of 
iterations 

11 
6 

1 6  
11  

6 
14 
34 
14 
3.5 
54 
84 

Number of Optimal Value at 
fractional value termination 
vertices 

discarded 

4 10026 

I 2.5 

I 

- I  - 

I 
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3.3. Some special triangular bases 

The SPLP can be (as was discussed among A. Hoffman, E.L. Johnson and M. 
Padberg, and suggested to us by A. Hoffman) reformulated as follows in terms of 
variables j j ( i )  = 1 - y ( i ) :  

min C f ( i ) .  (1 - j ( i ) )  + C c ( i ,  j ) .  x ( i ,  j ) ,  
1. I 

C x ( i ,  j ) =  1, vj, 

or 

x ( i , j )  + j j ( i )  + s ( i ,  j )  = 1, Vi ,  j ,  

1 3  x ( i ,  j ) ,  y ( i ) ,  s ( i , j ) > O ,  Vi ,  j ,  

Y ( i )  in (0, 11, 

(3.2) 

V i. 

(3.2) is a highly structured and generally very large set partitioning problem. 
Therefore, the interesting results of [2] and [3] apply, even though their practical 
applicability is uncertain in view of the large problem size. 

Note that: 
(1) a given x ( i ,  j )  appears in exactly two explicit equations, one of which 

(c,x(i, j )  = 1) we shall term the c j (sigma j )  equation, while the other ( x ( i ,  j )  + 
s ( i , j )  + jj(i) = 1) shall be referred to as * i j  (cross i j )  equation; 

(2) a given y ( i )  appears in n equations * i l ,  . . . , * in;  
(3) a slack s ( i , j )  appears only in one * i j  equation. These observations are 

important in pointing out how basic variables can be computed. One may establish 
a number of useful properties: 

Property 1. A basic s(i ,  j )  can be determined only from * ij ,  so that when the 
involved x ( i ,  j )  and y ( i )  have been determined, the basic s( i ,  j )  is known. I.e., once 
the basic x ( i ,  j )  and y ( i )  have been computed, the basic s(i ,  j )  can be determined in 
triangular fashion (one at a time). Therefore, one need only be concerned with the 
subbasis B".', the subbasis whose columns correspond to x and y. 

Property 2. Given j ,  there must be at least one x ( i ,  j )  basic expressed from cj. All 
other basic x ( i ,  j )  must come from * i j .  
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Property 3. Given i, a basic y( i )  must be determined from one of the *ij. 
Therefore, if all x ( i ,  j )  are basic, at least one of them must come from a xi, so that 
y ( i )  can be computed. 

Property 4.’The subbasis corresponding to basic Y ( i )  and x ( i , j )  equal to 1 can be 
rearranged so as to be triangular. 

The constraint matrix has only coefficients 0 and 1, the right hand side contains 
only 1’s; there must therefore be exactly one 1 per row in the submatrix. There is no  
zero column. Hence there must exist a permutation of the rows and columns which 
brings an identity matrix to the upper part of the submatrix. 

Property 5. It is always possible to complete the basis in a triangular fashion by 
choice of basis columns which correspond to variables at zero. 

Let A be the constraint matrix; let P be the set of indices of variables at 1 and let 
7r and ii be suitable index sets. Then the subbasis of Property 4 is 

At: 

(a subscript is used for row indexing, a superscript for column indexing). 
Consider A E. It also has exactly one 1 per row. Consider row i, i E 7r. It has one 1 

in column j ( i ) ,  which can correspond to an x, a y or an s. We shall give one possible 
way of completing the basis: 

(1) if the entry corresponds to an x, say x ( k ,  r ) ,  x ( k ,  r )  = 1 in the current solution, 
so that y ( k )  and s ( k ,  r )  are 0 and not yet in A P .  Since s ( k ,  r )  occurs only in one 
equation ( * k r ) ,  one can append column s ( k ,  r )  to A P .  

(2) if the entry corresponds to a y, say y ( k ) ,  y ( k )  = 1 means x ( k , j )  = 0 Vj ,  and 
s ( k , j )  = 0 Vj .  The columns x ( k , j )  contain two 1’s and one of these might be above 
the main diagonal, whereas the columns s ( k , j )  contain only one 1 and ( a  - 1) of 
them are adjoined to A with their 1’s on the diagonal. One  of the s ( k ,  r )  will be 
nonbasic (its choice is arbitrary). 

(3) the entry can not correspond to an s ( k ,  j )  at 1, since an s ( k ,  j )  column has 
only one 1 which is in A:. 
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Property 6. The basis thus constructed (which we shall call the s-canonical basis, 
since only s columns were added), has the anti-involutive property: 

ii 

B =  

IT 

P F - 
IT IT 

Property 7. The top rows ii of the updated tableau are unchanged, whereas the 
‘‘bottom” rows IT are equal to the original rows minus one of the top rows. 

Let T = B-’ .A,  then 

P 

T =  

F 

- 
IT IT B N 

... 1 I O I 1 

X 

B N 

AF:-AEAX 1 
and since A has only one nonzero element per row, one subtracts one row of the 
top from one row of the bottom. 
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More precisely, let us use the following notation: 
(a) in each column j ,  let i ( j )  be the route on which x is 1: 

x ( i ( j ) , j )  = 1. 

(b) if y ( i )  = 1, (n - 1) of the s ( i ,  j )  are basic. Let ijo be the index of the nonbasic s 
(notice that x ( i ,  j )  is a1sononbasic);we shall refer to ( x ( i ,  jo ) ,  s ( i ,  j o ) )  as the nonbasic 
pair associated with a y ( i )  at 1 (i.e., with a closed plant), then 

are the nonzero nonbasic entries of the updated tableau. 
In the s-canonical basis no F ( i )  or x ( i ,  j )  at 0 is basic. 

Property 8. The reduced costs of the nonbasic variables are: 
d" = c N  - c P A $  

in particular 

where 

1 if s ( i ,  j ) E  N, 

0 if s ( i ,  j )  E B. 
( s ( i ,  j ) E  N )  = 

Every nonbasic y ( k )  is therefore a candidate for entering the basis; a nonbasic 
x ( i , j )  is a candidate if its cost plus possibly the ith fixed charge is smaller than the 
cost of the route currently used in column j .  All these pivot steps are degenerate, 
since the bottom part of the right hand side consists of O's, and each candidate 
column has positive entries in the bottom part. Any move to a better neighbor 
integer vertex therefore involves a block pivot (see [2 ]  and [3]). 

Example. Take f and c as in 2.1. Consider the solution 

1 1 1  
y = [ k ] ,  x = [ ;  0" (I] 
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x 1  

3 

*22 
31 

11 
12 
13 

21 
23 

The cost is 13. One can construct the s-canonical basis displayed in Table 2, 
making s(2,2) and s(3,l) nonbasic on account of the  large associated costs of x. 

XI1  12 H y z  3 S I I  I *  I ,  21  23 12 7 ,  xz, 22 2, 3 ,  12 3, S2Z 3 ,  y ,  

1 1 1 
2 1  1 1 

- 

1 1 1 

1 1 
1 '  1 1 

1 1 - 1  - 1  1 
1 1 - 1  - 1  1 

1 1 - 1  - 1  1 

1 1 1 - 1  - 1  
1 - 1  1 - 1  

Table 2. s-canonical basis: ( B ,  TN) 

The negative entries in the nonbasic tableau belong to the upated tableau, the 
positive ones are the original entries which are preserved in the transformation to 
the updated tableau. x(2,3), x(3,3), y( l )  are candidates to enter the basis, but all 
yield degenerate steps if taken alone. 

Block pivot [3]. One looks for a set K of nonbasic columns to bring into the  basis at 
level 1, such that: 

(giving the Ith basic variable value 1 or 0), 

C T:=Oor  - 1  if l E p ,  
k E K  

(rendering the  lth basic variable 0 or 1). 
For instance, bringing in x(2,3) at level 1 saves 9, renders s(2,3) infeasible 

( =  - l), which has to be corrected by bringing in at 1 either x(2,2) (costs 
10 - 9 = 1) or s(2,2) (saves 9 - 1 = 8). Both changes render the problem feasible, 
therefore yield neighbor vertices. Choosing the improving vertex, we get x(2,3) = 

s(2,2) = 1 and 
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y = [ i ] ,  x = [ o  1 1 0  0 1 1 .  s = [ 1  0 0 1  l o ] ,  y=[;] 

0 0 0  0 0 0  

with a cost of 13 - 8 = 5. 

Property 9. Given the set P of variables at 1, one can also complete the basis by 
first adding columns corresponding to y ( i )  at zero, then only adding s columns as 
needed. 

We shall can this basis the y - s canonical basis. Essentially, the procedure is the 
following: bring the identitiy matrix to the top of the basis as before, which 
corresponds to placing first the rows El , .  . . , En, then for each y ( i )  at 1 ( y ( i )  = 0, 
x ( i ,  j )  = s(i,j) = 0 V j )  choose a nonbasic pair (i, jo(i)) (or ijo when not ambiguous) as 
before. Then, for each F ( i )  at 0 ( y ( i )  = 1, the plant is open) some x ( i ,  j )  must be 1 in 
a basic solution since not all s ( i , j )  can be simultaneously positive and thus basic, as 
y ( i )  also must come from one *ij. Choose one index j for which x ( i , j )  is 1 and 
render s ( i , j )  nonbasic. Then complete with columns corresponding to s ( i , j )  = 1 
(possible only with f ( i ) = O  basic and x ( i , j )  nonbasic). This is still a triangular 
procedure. Finally complete with s ( i ,  j )  = 0. 

Table 3: ( B , T N )  

Example (cont.). The starred entries in Table 3 belong to the updated tableau. 

d N = [ 9 1 1 1 8 - 1 9 0 - 1 ] .  

Two columns are candidates to enter the basis: x21 and x33 (in slightly simplified 
notation) at a saving of 1, but both pivot steps would be degenerate. 

If one brings in x21 at level 1, s12 becomes - 1, which can be corrected by 
bringing in at 1: 
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s 11 at no improvement, but this is a feasible neighbor vertex. 
x 2 2  at a cost of 9 - 1 = 8, which is also feasible, so that there is no  need to pursue 

this combination further. 
x 3 2  at a saving of 1 ,  but this renders s 3 2  infeasible, which can be corrected by 

setting x 3 1  or s 3 1  at 1 ,  with no improvement left. s 3 1  would yield a feasible point, 
x 3 1  would create an infeasibility which could not be corrected at a saving. 

If one brings x 3 3  in at 1,  s 3 3  becomes - 1, s 3 1  would completely correct it at n o  
saving, x 3 1  would cost 9-  1 = 8 and n o  further saving is possible. The solution is 
therefore optimal  in integer variables. 

Property 10. Given an integer feasible solution to SPLP, one can also define a 
triangular basis (so-called y - x - y - s canonical  b a s i s )  having the following 
columns: all y(i)’sat 1 ,  some x ( i , j ) ’ s  at 0 for closed plants, all x(i,j)’sat 1,  all y ( i ) ’ s  
at 0, all s ( i , j ) ’ s  at 1, some s ( i , j ) ’ s  at 0. 

We suggest that constructing such a basis as follows, one may achieve the goal of 
arriving at a relatively small number of negative reduced costs (i.e., to position 
oneself in a sense close to an optimal solution, in order to finish via relatively few 
and simple block pivots). 

(1) Place first the columns corresponding to y ( i )  = 1 ( x ( i , j )  = s ( i ,  j )  = 0 V j )  and 
associate with each i a row *(i, j o ) ,  where ( x ( i , j o ( i ) ,  s(i ,  j o ( i ) )  will be a nonbasic pair 
such that f(i)+ c(i , j)-f(i( j))-  c ( i ( j ) , j )  is maximal for j = jo(i). 

(2) For each i with y ( i ) =  1 ,  for each pair ( x ( i , j ) , s ( i , j ) ) ,  j =Io,  if c( i , j )” 
f ( i ( j ) )+  c ( i ( j ) ,  j )  make x ( i , j )  nonbasic, otherwise make s(i ,  j )  nonbasic and add 
row * i j  and column x ( i , j )  to the subbasis. 

( 3 )  add rows xj and columns x ( i ( j ) , j ) .  
(4) For y ( i )  = 0 ( y ( i )  = 1 ,  one x ( i ,  j )  at least is l ) ,  choose one j l ( i )  such that (a) 

x ( i ,  jl) = 1 and (b) the increase in cost for shipping from another plant is maximal 
over { j  l x ( i , j ) =  1 )  for j = jl. Note that for different i, we’ll get different jl(i) as 
there is only one x ( i , j )  at 1 per column. We can therefore talk of jT1(j) with the 
convention that f(j;’(j)) is f ( i )  if j = j l ( i )  and is 0 if there is no i such that j = j l ( i ) .  
Then add row * i j ( i )  and column y(i)  to the submatrix. 

(5) Complete with the slacks at 1 ,  and then some slacks at 0. Then, if we call 
Bo(i)  = { j  I x ( i ,  j )  is basic, x ( i ,  j )  = O}, we have the following properties: 

d (s,,~(,)) = fi (all other s ( i , j )  are basic). 
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N -  - 0  
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- 5  

10 

10 

-10 

Example. 

Y =  

1 I0 0 1 0 0  1 3 2 4 2 2 0  5 - 1 -  

0 ,  

1 

- 0 -  

L 1 3 L 1  L 

1 L l L 2  2 

0 0 0 0 0 0  

1 0 1 0 1 1  
, x =  9 , c =  

8 5  5 1  3 4 1  l o  0 0 0 0 0 1  

L stands for a very large number. Tables 4 and 5 display the original basis and 
updated nonbasis. 

Table 5. Updated nonbasis (asterisked entries introduced in inversion process). 

.22 .I, 12 44 

1 1  
1 1  

x22 

4, 

42 

44 

1 
1 

1 
1 

X31 

12 

33 

14 

35 

3 

I' 1. 
1' I* I' I' 

I* I* 
1 1 

- 1' 
I *  - 1' 

1 1  
1 

1 1 1  
1 1  

1 

1 1 1  

1 

I I  

Y3 

I *  1' 
1' 

1 

1 

I *  1' I *  I' 
I' I' 

I' 1' I '  1' 
1' 1' 

1' 1' 1' 1. 
I* I' I' I' 

I* - 1' 
-I' 

1' - 1 -  
- I' 

1. - 1 '  

- 1' - I' 

I I' 
1- 1' I 

1' 1. 
1- I 

1' 
I' 

1 
1 

1 

$14 

21 

23 

24 

26 

33 

35 

36 

43 

46 

__ 
d N  - 

1' -1. 1 

- 1' 
- 1' 
- I f  

6 3 2 1  - 8 L  L 3 2 4 L L 18 3 L 2 5 I l l  3 4 5 4  
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4. Enumeration 

The SPLP behaves relatively well under enumeration. Enumerative codes often 
start with all plants open, so that a “forward step” in the search consists of closing a 
plant. (E.g., see [24].) More generally, one starts at a point with some plants fixed 
open ( i  E E, y ( i )  = l), some fixed closed ( i  E C, y ( i )  = 0), some free but tentatively 
open ( i  E F1, y ( i )  = l), some free but tentatively closed (i E F2, y ( i )  = 0). 

4.1. State enumeration [20] 

By the “state” at node v, we mean a partitioning of the index set into 
E, C, F1, F2. With the state one associates a solution ( z  ”, y ”, x ”) by: 

y ” ( i )  = 1 for i E E + F1, 

y ” ( i ) = O  for i E C + F 2 ,  

X ( i W , j )  = 1, 

x ( i , j ) =  0 ,  i# i ( j ) ,  

io): c ( i ( j ) , j ) =  min{c(i,j)} over E + F1. 

Consider the problem SPLPD dual to (2.1): 

C ( i , j ) +  w ( i , j ) -  u O ’ ) 2 0 ,  

w ( i , j ) ,  uO’)>O, 

i o v e r E ”  a n d F l ” ,  j o v e r J = 1 , 2  ,..., n. 

In terms of z and z * (a known upper bound on z ) ,  one has the Benders inequality: 

c ( - f ( i >  + c w( i ,  i,) . y ( i )  + c (/(i) - c w( i ,  j ) )  . y ( i )  * - 2. (4.3) 
FI” FZ” 

In [20,24], the coefficients of the y ( i )  (multiplied by - 1) were called “global gain 
functions”, g(i), and play a central role in curtailing and guiding the search. 

4.2. Strengthening the gain functions 

It is important to have the g ( i )  as small as posible. E.g., g ( i ) c O  permits the 
fixing of y ( i ) .  

It is interesting that there is a great latitude in choosing the w ( i , j )  of (4.2), and 
with them the g ( i ) .  One good and not completely obvious choice of the dual 
variables is: Let 
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c( i ( j ) , j )  = min{c(i,j)) i E E ”  + F” - { i ( j ) } } ,  

I c ( i ( j ) ,  j )  otherwise, 
v “ ( j )  = 

w ” ( i , j ) =  max(0, v ( j ) -  c(i,j)}. 

c (to), j )  if c ( i ( j ) ,  j )  3 c ( i ( j ) ,  j )  

Then one has, correspondingly: 

g ( i )  = -f(i) + max(0, c(i(j),j)- c ( i , j ) } ,  i E F2. 
I 

(4.4) 

(4.5) 

As in [24], one can also define “local” gain functions to aid in both curtailment of 
search and strategy. 

Now, it is quite clear that the reduced costs of any LP tableau associated with the 
variables of a state problem at node v have the properties of gain functions. There 
is then substantial interest in generating the various bases of Section 3 for node v, 
and utilizing the reduced costs in the enumeration. 

More fundamentally, it is clear that the gain functions as used in the past only 
exploit a limited portion of the updated LP tableau. Having the entire updated 
tableau at one’s disposal, at a cost which is relatively modest given the nice 
properties of “canonical bases”, should permit substantial improvements. 

In a sense, it provides a grasp of the LP polytope, e.g. by defining the edges 
leading away from the state point. With some ingenuity, an improvement of 
enumerative procedures should be attainable. 
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Integer programs with small bound intervals can often be dealt with effectively, by a 
state-enumeration procedure with reduction methods. Our  approach features the consistent use 
of logical inequalities, derived during the computation, especially for influencing the choice of 
appropriate directions for the search effort. 

1. Introduction 

In spite of much good research and a host of proposed algorithms, the all-integer 
program P 

is far from being solved successfully even for small problems. 
Both branch-and-bound (BB) programming (see [4] for a recent survey) and 

enumerative programming meet success for some problems (usually those with 
which the analyst is familiar) and fail badly elsewhere. 

There is a need for a flexible integer programming system, possibly with user 
intervention on some kind of interactive level. In this paper we discuss an 
experimental enumerative system which is meant to incorporate a family of 
techniques which we have shown, or which we believe, to have substantial promise. 

Among the practical problems which may require such techniques, we cite large 
scale integer problems with substantial logical structure. Many of these are 
scheduling problems with time-dependent (0,l) decision variables, say y(i, t ) .  (E.g., 
y(i, t )  might be 1 (0) if a certain choice is made (not made) in time period t . )  

A production code of the BB type (such as MPSX/MIP of IBM) takes a good deal 

273 
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of time solving linear programs. A promising alternative, then, is to solve only one 
linear program (at level 0 of the search), or conceivably a linear program whenever 
the search returns to level 0, and to finish by state enumeration. 

MPSX/MIP 370 has a control language which would allow the writing of an 
enumeration program (using procedures of MPSX) in PL/I. Knowledge about 
special structure can probably be incorporated best in such an enumerative code. 

Another area of interest for the techniques of this paper is to  be found within a 
production mixed-integer code, especially for problems with a large number of 
continuous variables. The reduction and state enumeration procedures over 
Benders inequalities would be executed entirely in core storage and would consume 
negligible effort compared to the other I/O-bound solution procedures. 

2. State enumeration 

2.1 Scheme of search 

The search is organized as follows. It starts at “level I = 0” and “node v = l”, 
with all components “free”, i.e., with all components y ( i )  only constrained by the 
initial bounds Lo’)’ and UQ)’. 

At a general iteration, one is at level I which measures the number of explicit 
bound changes (“forward branches”) which have been imposed from the last time 
the search was at level 0. 

At level 1 (and node v ;  v is a running counter, increased by one at each 
iteration), one basically takes one of two actions: 

(i) A Forward Step from level 1 to level 1 + 1 (setting the bound of a branch 
variable to a new value). 

(ii) A Backward Step from level 1 to level I - 1 (with the search terminating 
when 1 - 1 is - 1). 
The explicit forward steps from level 0 to level 1 are recorded in two lists of 1 
numbers: 

List 1 consists of signed component indices, the sign of an index reserved for 
indicating whether the associated variable was constrained by a raising (lowering) 
of its lower (upper) bound. 

List 2 contains the value to which the upper (lower) bound of the related 
component from list 1 is to be lowered (raised) on return to a level. 

It is clear that such a scheme suffices to record the history of the search and to 
control the search on backward steps. Further details can be skipped. 

2.2 The state 

At node v (level 1) one easily computes a set of “Working Bounds”, 
(Lo’), UG))”, i.e., a set of bounds determined by the explicit branches of the search, 
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as well as by subsequent applications of the reduction procedures. (We shall usually 
drop the superscript v on the working bounds.) 

The State S ”  is essentially meant to be a conjectured value y”,  for which we 
permit (to keep the search simple) the choice of setting a given y ” ( j )  either to its 
lower bound L ( j )  or  to its upper bound U(j) .  

It is the state value y ” which is substituted as a trial solution. Forward branches 
are taken so as to lead away from the state, and are chosen among some index set J 
(see Section 4.2) so as to reduce total infeasibility. 

In the numerical experimentation we determined an initial state at node v = 1 
from the initial LP solution y ” :  

y ’ ( j )  = L ( j )  if y A ( j )  6 L ( j )  + r . ( U ( j )  - LO’)) (2.1) 
= U ( j )  if y ^ ( j ) > L ( j ) + r - ( U ( j ) - L ( j ) )  

( r  being an arbitrary rounding parameter). At  subsequenct levels the state is carried 
along, i.e. one uses the transformed state given by: 

y ” ( j ) = L ( j )  if y’(j)  was LO’)’ 

= U ( j )  if y’(j) was U(j)’ 

Alternatively, we also considered the options of setting y ”(j) always to the lower 
working bound (in the tables indicated by “ALWL”) or always to  the upper 
working bound (in the tables: “ALWU”). 

3. Techniques for integer state enumeration 

No one technique can be expected to solve all problems. A modular collection of 
techniques, possibly controlled in an interactive fashion, may eventually prove to 
be the best vehicle for studying and resolving general and special integer programs. 

In Section 3.1 below, we outline those techniques which will be stressed in this 
paper, and for which some numerical results will be given. In Section 3.2 we outline 
other methods which we have tried and for which results have been given 
elsewhere. Some of these methods need to be generalized from the 0-1 to the 
integer programming case. 

The results of this paper demonstrate (for small problems; but we believe that 
there is n o  reason to assume drastically different behavior for larger problems) the 
importance of state enumeration (good starting points for the enumeration) and of 
some form of reduction (i.e., systematic tightening of bounds). 

The generation of logical (“preferred”) inequalities does not yield, in these 
experiments, much additional improvement. We believe that this shows the 
necessity of combining such techniques with the use of penalties and propagation 
(see Section 3.2, items 7 and 8). 
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3.1 Techniques used in current experimentation 

(1) Solution of only one linearprogram at the start (possibly followed by judicious 
use of cutting planes to get optimal but non-integral tableaux with a relatively good 
value for 2, i.e. a large value for the objective function of the relaxed problem). 

(2) Retention of the top row (or the related Benders inequality, [ 2 ] )  for purposes of 
bound reduction or fixing of variables. For some purposes one may wish to retain 
the entire tableau. Suitably updated they are referred to as “current” top row or 
tableau. 

(3) Definition and use of a state, i.e., a suitable origin for the search (see [8] or 
[9]) (either permanenfly after solution of the initial LP, or dynamically according to 
some (heuristic) criterion at each level of the search). 

(4) “Reduction” of system ( 1 . 1 )  at every level of the search. 
(a) Reduction of the bound intervals for the y o )  and the slacks s ( i )  (as 

proposed by Zionts [17]). 
(b) Construction of logical relations (“minimal preferred inequalities”) which 

are to guide the  search so as to: (i) find feasible solutions, (ii) “minimize” 
the search effort. 

Each preferred inequality specifies d (degree) preferred or indicated bound 
changes. One indicated bound change, at least, must be implemented if the 
problem is to have a solution. 

The main emphasis is on “contraction”, i.e., on guiding the search into (locally) 
increasingly constrained directions [6, 14, 161. 

( 5 )  Local search of lattice points close to a given point y .  A simple procedure 
for looking at all points which differ from y in exactly ‘‘lev’’ (level: 1-level, 2-level 
search) components by exactly one unit .  The search is also used as a strategic 
device, to select branches for getting to new points with decreased overall 
infeasibility. As can be seen, there is some overlap and conflict between (4) and (5) 
(see also Section 5) .  

3.2 Techniques to be incorporated in a full system 

(6) Cutting plane techniques. Our experimental system includes the ability of 
adding cuts, followed by reoptimization (see [ S ,  10, 1 I]). The (0, 1) test problems of 
this paper can be solved by such cutting plane methods, with only little enumera- 
tion. More difficult problems (with larger gap between LP and IP objective 
€unction) may prove intractable. 

(7 )  Penalties and preferred variable inequalities. Preferred variable inequalities 
(as this paper shows in conjunction with [7, 15, 161) are best invoked together with 
penalties. One rules out certain branches of a suitable preferred inequality due to 
large associated penalties and pursues alternatives when they are favorable from a 
“contraction” point of view. 
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(8) Propagation. An “indicated branch (bound change)” of a minimal preferred 
inequality (see Section 4.2) may often be implemented by “propagation”, tan- 
tamount to fixing a variable (or altering a bound) at its current values, i.e. at 
insignificant computational cost. See [ 151 for some excellent computational results. 

(9) Mixed integer problems. For a mixed problem, one may work with Benders 
inequalities generated during the search. Techniques (1)-(8) can then be applied to 
a system of Benders inequalities in the integer variables, which in our experience 
lend themselves well to reduction. 

4. Reduction for integer variables 

4.1 Reduction of bound intervals [17] 

Consider the constraint set of problem (1.1) in equality form: 

A . t = b  (4-1) 

L ( j ) s  t(j)s U ( j ) ,  j = 1,2, .  . . , n + m 

with t a composite of the structural variables yo’) (j = 1,2, .  . . , n)  and the slacks 
s ( i )  ( i  = 1,2 ,..., m ) .  

From (4.1) a new set of bounds can be computed in accordance with the 
formulas: 

[ L  (j); U ( j )  + ( b  ( i ) / a  (i, j ) )  - (l/a (i, j))(AP U ( i )  + AML (i)) 
for i :  a(i , j)>O, Lo’)’ = max { U(j)+(b(i)/u(i,j))-(l/u(i,j))(APL(i)+ AMU(i)) 

U(j) ;  Lo’)+ (b ( i ) /u ( i , j ) ) -  (l/a(i,j))(APL(i)+AMU(i)) 

L o )  + ( b ( i ) / a ( i , j ) )  - (l /a(i ,  j))(APU(i) + AML(i)) 
for i :  a( i , j )>O,  

for i :  a( i , j )<O; 

UQ)’ = min 

j =  1,2 , . . . ,  n + m. ( 4 4  

APU(i)  = C a+( i , j ) .  U ( j )  

APL(i) = a ’ ( i , j ) - L ( j )  

A M U ( i ) =  C C ( i , j ) .  U ( j )  

AML(i) = a - ( i , j ) . L ( j ) .  

(4.3) 

Summation is from 1 to n + m, 
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a+( i , j )  = max(0, a( i , j ) ) ,  
u - ( i , j )  = min(0, u( i , j ) ) .  (4.4) 

These formulas are easily derived. They are slightly altered from some of the 
formulas found in [17]. 

At any node of the enumeration one applies (4.2) iteratively until there is no 
more alteration of bounds. It appears to us (after some experimentation) that this 
procedure is somewhat preferable to the  equivalent one of Section 4.2 below (which 
gives the same results by iterative application of minimal inequalities of degree 1). 

In the numerical experiments which we conducted, little use was made of the 
resulting bounds on the slacks. They could be exploited, for example, in Section 4.2. 

4.2. Logical inequalities for integer variables 

(i) The (0 , l )  case [l, 6, 14, 161. Let (1.1) be a system in zero-one variables. One 
can then associate with it a “minimal preferred variable” system 

Q ’ y s q  (4.5) 

of degree d. (The unusual case that (4.5) is empty, i.e. that (1.1) does not imply any 
logical relations for the y ( i ) ,  can be taken care of by simple default procedures. In 
the following it is always assumed that (4.5) is not empty.) 

Each row k of Q has d non-zero entries and row k of (4.5) represents one logical 
condition implied by the  system and the zero-one conditions. Let q ( k , j )  be the 
entries in row k of Q. 

q ( k , j )  = - 1 (+  1) implies that the possibility yo’) = 1 (respectively y ( j )  = 0) 
should be considered as a logical alternative (i.e., as preferred or indicated value) in 
an either-or partitioning. E.g., d = 3, and q ( k , j l )  = - 1, q ( k , j 2 )  = 1, q ( k , j 3 )  = 
- 1, q ( k )  = 0, represents the logical implication: 

either y(j1) = 1, or y ( j 2 )  = 0, or y ( j 3 )  = 1. 

(ii) The integer case 
(a) Reduction. Starting with (l.l), one multiplies the columns of C by the bound 

intervals U(j)-L(’j), and correspondingly subtracts c c ( i , j ) .  L ( j )  from b ( i ) ,  for 
each i. In  this fashion one effectively changes to a system with variables t ( j )  in the 
unit  hypercube, i.e. to 
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The procedures for generating all minimal preferred inequalities for zero-one 

When the t ( j )  are true zero-one variables, then an inequality such as 
variables [16] are then applied to (4.6) as if (4.6) were a system in (0,l)  variables. 

- 2 . t ( j 1 ) - 3 .  T ( j 2 ) S  - 1 

(with t(j) = 1 - t ( j ) )  is interpreted as 

t ( j l ) +  10'2)a  1, 

i.e., either t ( j 1 )  = 1 ,  or t ( j 2 )  = 0. 

y ( j 1 )  must be raised, or the upper bound of y ( j 2 )  must be lowered. 

for zero-one variables) are best written as: 

In the case of (4.6), however, all one can imply is that either the lower bound of 

The minimal preferred inequalities (obtained by exactly the same procedures as 

(4.7) 

The degree d is equal to lr l , the cardinality of the preferred set under 
consideration. 

It should be noted that a partitioning relation such as (4.7) is usually much 
stronger than conventional branch-bound dichotomies. In a branch-bound code, 
the partitioning of the above example, for instance, could be exploited by the 
successive solution of the two problems P[t(j l)  = 11 and P[t(j2) = 0 and t(j1) = 01. 
Clearly, analogous conjunctive conditions are imposed in integer branch-bound 
programming. See [15, revised] for some details. 

In enumerative programming, such conjunctive conditions are taken care of 
automatically by the book-keeping. 

One may summarize the situation more generally. Let 

Theorem 1. In order that y be an integer solution of (l . l) ,  i t  i s  necessary that 
f ( r )  # 0, i.e. that y ( r )  # u ( r ) .  

Corollary 1. y can be an integer solution of (1.1) only i f  Y ( . r r ) # O .  

Corollary 2. If r = 0, the condition is uacuous. If d = 1, one may reduce the bound 
interval of y ( r )  by 1 .  If d > 1, one may reduce one of the d bound intervals of y ( 7 )  
by 1. 
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When the reduction procedures of this section are preceded by those of Section 

All techniques based on contraction, penalties, propagation, etc., clearly remain 

(b) Implementation. In the experimentation for this paper we only implemented 

The entries of Q give information about the  effect of an enumeration branch 

4.1, however, one assures that d #  1. 

valid in some modified form. 

simple procedures based on contraction, as are described in what follows. 

from a node I, to its successor node v + 1. Let 

It is clear that: 
m 10) > 0 implies d ”+’ < d ”  if one branches with y o ’ )  = 0, 
m2U) > 0 implies d ”+’ < d ”  if one branches with y o ’ )  = 1. 
Such branches are called contracting branches, for they lead the search to a 

successor point in the integer lattice at which the problem is more constrained than 
before the branch. 

The most favorable case is that of double -contraction, which arises for branch j 
when: 

m l O ‘ ) > 0  and m20’)>0. 

The enumerative code described here isolates a set, J, of candidates for 
branching according to the priorities: 

(i) J = { j  1 m 10’) > 0 and rn 20’) > 0) . ~1 double contraction, 
(ii) J = { j  * I m 10’ *) or m 2 U * )  > 1 and equal to (max, ( m  lo’), m 20’))) (4.9) 

(iii) J = {all j : LO’) # U ( j ) }  . “free” variables. 
In all cases, a branch with variable j is chosen such that y ”“0’) = 1 (0) if y ”0 ’ )  = 0 

As explained in [16], this requirement may necessitate a replacement of (4.5) 
(which represents “free” reduction with no state imposed) by a reduction after 
imposition of a state on (l.l), if the original preferred inequality system has n o  row 
for which all indicated branches lead away from the state. 

Whether a procedure which ensures branching away from the state is indeed 
desirable, is not entirely clear. Some of our results in [lo] seem to go against such a 
conjecture. 

Our experimental system has been designed to admit the use of a truly “dynamic 
state”, i.e. a state which can be recomputed (most likely so as to satisfy as closely as 
possible, in some sense, a set of minimal preferred inequalities) at each iteration. 
Such a feature, however, has not yet been tested. 

(1). 
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5. Experiments 
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5.1 The experimental algorithm 

The experimental algorithm was that of Section 2 with the techniques of Sections 
3 and 4, stressed as follows: 
one linear program was resolved and retained as per Sections 3.1 and 3.2; 
the reduction procedures of Section 3.4 were used after any bound change, for 
whatever reason (possibly leading to some redundant work), in the order a and b ;  
states were determined as per Section 2.2 (see below for details); 
a local search was conducted at every iteration (see Section 3.5), except for 
LEV = 0 (see below); 
forward branches in that enumeration were chosen so as to lead to a successor with 
improved feasibility. Preferred inequalities were invoked for branching only if no 
improved feasibility was attained in the local search. 

5.2 Experimental results 

In Table 1 we describe a few test problems for which experimental results are 
described in Tables 2, 3, 4 and 5 .  The LP (Linear Programming) Objective 
Functions given are those obtained after an initial preprocessing reduction phase. 

Table 1. Description of test problems 

(m, n )  Source LP solutions Integer solutions 
in (0, 1) in (0,2) in (0, 1 )  in (0, 1,2) 

6.85 6.58 13 11 
- 6155.3 - 6623.5 - 6120 - 6570 
521.05 356.23 550 400 
56.68 56.68 73 - 
- 10672. - 10737. - 10620 
31.34 27.71 47 ~ 

- 

a Problem differs slightly from source problem. 
Seems to have originated as test problem in IBM Paris. 

The problems are small. They are from either [3] or [12] (with some coefficients 
possibly altered by transcription errors), and are for the most part easily resolved as 
(0,l)  problems. However, we solved some of them also as (0,1,2) problems. Our  
experimental work was on an APL system time-shared with some 100 users. Hence 
even small problems require substantial on-line time, and in a sense our environ- 
ment was not much different from that of a user with larger problems and greater 
computing power via a dedicated machine. 
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Table 2. Problem (6,12) 

BND STA LEV NR R1 Q1 Q2 

LP, .5 
LP, .5 
LP, .5 
LP, .s 
ALWL 
ALWL 
ALWL 
ALWL 
ALWU 
ALWU 
ALWU 
ALWU 

1 999 (155) 
2 13 (140) 
1 . . .  
L 

1 
L . . .  

. . .  1 
2 
1 
2 
1 
2 

. . .  

. . .  

. . .  

. . .  

. . .  

3 5  
2 3  

1s 21 

4 1  

8 13 

15 17 
11 15 
44 53 
41 51 

- 

- 

3 5  
2 3  

17 23 
4 11 
4 7  
4 7  
8 13 

12 13 
11 15 
38 49 
34 45 

- 

3 5  
2 3  

- 

38 49 
- 

- stands for “not run”. 
’ . . stands for “not run, believed to be a bad strategy”. 

Table 3. Problem (10,20) 

BND STA LEV NR R1 Q1 Q2 

LP, .5 
LP, .5 
LP, 1 
LP, 1 

ALWL 
ALWL 
ALWL 
ALWL 
ALWU 
ALWU 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

. . .  
-6100 (225) 

. . .  
-6.570 (125) 

. . .  

. . .  

. . .  
-6120 (75) 

57 57 
6 9  
1 21 
I 25 

4158 (60) 
. . .  
. . .  

9 1s 

51 51 1 11 
6 9  7 9  
1 19 
1 23 1 19 

- 

-3960 (62) . . .  
-3960 (140) . . .  

. . .  . . .  

9 15 -5880 (63) 

Table 4. Problem (28,35) 

BND STA LEV N R  R l  Q1 Q2 

(1) 1 LP, .5 1 - 1 9  1 9  1 11 
(2) 1 LP, .5 2 - 1 15 1 15 1 11 
(3) 2 LP, 1 1 - 47 67 6 23 675 (35) 

- (4) 2 LP, 1 2 - 5 25 5 23 
(5) 1 ALWL 1 
(9) I ALWU 1 

(11) 2 ALWU 1 

. . .  . . .  1075 (43) . . .  

. . .  . . .  1300 (57) . . .  
- - 30 45 - 
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Table 5. Diverse problems run with Ql 

Type Problem B N D  STA LEV Q1 
~~~ ~~ 

2. ( 1  2,441 1 LP, .5 2 1 357 

2. ( 2 0 3 )  1 LP, .s 2 47 (800) 
2 .  (5,391 1 LP, .s 2 -10618 (60) 

Tables 2, 3 and 4 are  devoted t o  one  sample problem each, run in a number of 
different ways. Table 5 gives a few results for somewhat more difficult problems. 
T h e  (20,28) problem, for example, requires on the  order of one  hundred LP 
programs, even when cutting plane techniques a re  used in branch-and-bound 
programming. 

The  columns headed BND and S T A  describe what bounds were used (on all 
variables) and what state was utilized. In all cases the  state was computed at  node 1 
and updated in the  obvious manner. The  entry (LP, r )  signifies that the state was 
obtained by rounding with the rounding parameter r. Column LEV refers to the 
search, which was used in practically all runs with a search level of 1 o r  2 .  Search 
level 0 would correspond to n o  search. 

The  last columns are  devoted to  comparisons among four possible methods: 
N R  - no reduction method used at all, 
R1 - reduction used as in Section 4.1, 
Q1 - full reduction, Sections 4.1 and 4.2, 
Q2 - full reduction; reduction (not search) used for strategy. 
Under each of these 4 column headings there a re  two entries, NS, NT: 
NS - iteration number v at which optimal solution found; 
N T  - iteration number at which optimality ascertained. 
However, when the second entry is in parentheses, this is meant t o  signify that 

the run did not terminate properly but was interrupted. In that case, (NT) is the 
iteration number at  interruption and NS is the best objective function value found 
during the run (with some default value such as 9999, when n o  solution found). 

The  difference between Q1 and Q2 needs to be explained a little further. Having 
several features in an enumerative system often makes comparisons of results quite 
difficult. Accumulated counts of the  successes of a particular technique depend 
strongly on the use of other techniques and on the  order in which these techniques 
were deployed. In this particular instance, the fact that a search was used in all runs 
makes the subsequent use of minimal preferred inequalities somewhat ineffective. 
Column Q2 refers t o  runs in which the use of the search (to indicate indices of 
variables which lead to  improved solutions o r  to points of reduced infeasibility) was 
suppressed. 

It is not difficult t o  interpret the results, even though it is a little disappointing 
that there is so little difference among R1, Q1, Q2: 

(i) The  state has a very great influence on  the enumeration, even if only used in a 
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simple manner, as here. (Dynamic state determination is clearly of interest.) This is 
not new (compare [13]), but often forgotten. W e  believe this to be  on account of the 
fact that standard branch and  bound methods work in the  neighborhood of L P  
solutions and  are  therefore often successful. This does not, however, negate the 
great importance of codes which permit the “imposition” of a state (not easily 
possible in BB programming) for full enumeration o r  for heuristic programming. 

(ii) Using a local search can, bu t  need not, make a big difference. Occasionally a 
I-level search misses a good solution which can be  found by a 2-level search, and 
then the  search procedure can meander uselessly for quite a while before leading 
back to a lattice area of interest. 

(iii) Search method NR, n o  reduction, was n o  good at all. To mitigate this result 
somewhat, we must consider, however, that NR was obtained by cutting out all 
reduction. Any decent enumerative code has some provision for making inferences 
about fixing variables or reducing bounds. NR is, therefore, not representative of a 
reasonable enumerative code, in spite of containing state and  search features. 

(iv) There appears t o  be  only a slight improvement due  to Q1 or Q2 over R1. 
O u r  conclusion is that using a local search feature for R1 renders somewhat 
ineffective the use of logical inequalities for strategic purposes. Other  evidence 
makes it fairly clear that penalties ought to b e  invoked in conjunction with logical 
inequalities. 

(v) It need hardly be emphasized that integer programming remains always 
unpredictable. Comparing row 1 and  row 10 of Table 3, for example, one  sees that 
in one case method Q2 is much better than Q1, in the other case much worse. This 
only confirms the  well-known impossibility of finding one suitable algorithm for all 
problems. 

Finally, one  might be able to  make a genuine case for the use of interactivity in 
integer programming. Watching the behaviour of the search, e.g. by printing out 
List 1 and  List 2 of Section 3.1, plus some selected data on obj. function, bounds 
and infeasibilities, ( s ( i )  < 0), does give a feeling as to  whether one  is doing well or 
not. 

For example, when one  follows the behaviour of a search carefully, one  will 
almost always notice that the “depth” of the overall search tree (namely the 
maximal 1 attained, before reduction procedures lead to backward steps) is a good 
indicator of whether things go  well o r  not. Large values of 1 should perhaps be  
taken as poor behaviour and  lead to  redefinition of state, local search level o r  other 
parameters of the  enumerative code. (In our  past experience this behaviour was 
most evident with large plant location problems [13], where the use of a good state 
led otherwise quite difficult problems with 100 plants t o  have a search tree with 
level practically always below three. Given the relatively small machine at  our 
disposal at  that time, we did not resolve the  problem but still believe that the search 
was “well behaved”.) 
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The chromatic number ,y(H) of a hypergraph H is studied in relation with the degrees of the 
vertices of H and of the section hypergraphs of H. The subdegree of a vertex xI of H is defined as 
the smallest integer k such that a sequential supression of the vertices of degree s k suppresses 
xI. Bounds on  the chromatic number ,y(H) and on the independence number a(H) of H are 
obtained in terms of subdegrees. An algorithm for coloring H in x ( H )  colors is proposed and 
computational experience is reported on. 

1. Upper bounds on the chromatic number of a hypergraph 

Chromatic numbers of graphs have been extensively studied both from the 
theoretical and from the computational points of view (see e.g. [l, 3, 17-19, 211). 
Only some of the  results obtained for graphs have been generalised to hypergraphs 
and very few algorithms have been proposed for determining the chromatic number 
of a hypergraph. Berge [l] ,  Tomescu [22, 231 and Chcatal [4] have given upper 
bounds on the chromatic number of a hypergraph, as defined by Erdos and Hajnal 
[5]. Lovasz [16] has shown that the theorem of Brooks holds for uniform 
hypergraphs, under some restrictions. Fournier and Las Vergnas [S, 9, 111, among 
others, have studied bichromatic hypergraphs. Extremal problems on uniform 
bichromatic or r-chromatic hypergraphs (k -graphs with property B or with 
property B,) have been extensively studied. Results and references are given in 
chapter 4 of the book of Erdos and Spencer [6] “Probabilistic Methods in 
Combinatorics” and in a recent paper of Johnson [7]. 

Nieminen [20] has shown how the chromatic number of a hypergraph could be 
determined with a linear program in 0-1 variables; as both the numbers of variables 
and of constraints of that program are large the approach is more theoretical than 
practical. A heuristic algorithm for obtaining an approximation of the strong 
chromatic number of a hypergraph has been given by Lauriere [12]. 

In part one of this paper the subdegrees of the vertices of a hypergraph are 
defined. This concept allows us to reformulate and extend to hypergraphs a result 
obtained for graphs independently by Matula [17] and by Szekeres and Wilf [21]. 
Then an upper bound on the chromatic number of a hypergraph due to Tomescu 
[22, 231 and a lower bound on the independence number of a hypergraph, due to 

287 
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Lorea [14, 151 are strengthened. The proofs of these last results are different and 
much shorter than the original proofs. In part two an exact algorithm for 
determining the chromatic number of a hypergraph H is proposed and computa- 
tional experience is reported on. Recall a hypergraph H = (X ,  E )  ([l, 21) is a couple 
where X = { x l ,  x 2 , .  . . , x n }  is a finite set of vertices and F ={El, EZ,. . ., Em} is a 
finite family of non-empty subsets of X ,  the union of which is X ,  called edges. An 
edge E, is incident to a vertex x, if and only if x, E E,. The partial hypergraph of 
H = (X ,  E )  generated by a family F C E is the hypergraph HF = (XF, F )  where 
X F  = U E , C F ~ l .  

The section hypergraph of H = (X ,  E )  generated by a set. A C X is the partial 
hypergraph H x A  = (A,  E L )  where E L  = {E,  1 E, E E ,  E, C A } .  

A subset S C X of vertices of H is independent if there is no E, with 1 E, 1 > 1 such 
that E, C S ;  the independence number a ( H )  of H is the maximum cardinality of an 
independent set of H. A coloration of H is a partition of X into independent sets; 
the chromatic number x(H) of H is the smallest number of independent sets in a 
coloration of H. The degree d w ( x , )  of a vertex x, of H is the maximum number of 
edges different from { x , }  forming a partial family (Ek, k E K )  with 

E, fl El = { x , }  ( k ,  I E K ;  k #  I ) .  

Let us call suppression of a vertex x, of H and of all edges incident to x, the 
replacement of H by its section hypergraph generated by X - x,. Let us define the 
subdegree d;I(x,)  of a vertex x, of H as the smallest integer k such that a sequential 
suppression of all vertices of degree c k and of all edges incident to those vertices 
in H (or in the section hypergraphs of H obtained after the first suppression) 
suppresses x,. Clearly d ; I ( x , ) c  d H ( x , )  for all j ;  hence the name subdegree. The 
subdegrees of a hypergraph can be computed by suppressing a vertex of minimum 
degree and the incident edges in H, then a vertex of minimum degree in the 
resulting hypergraph and so on. 

Note that the order of suppression of the vertices may not be unique but that the 
values of the subdegrees are unaffected by this order. Let us call subdegree order the 
reverse order of the order of suppression of the vertices of H when the subdegrees 
are computed. 

Theorem 1. Let h ’  denote the maximum subdegree of a hypergraph H = ( X ,  E ) ;  then 

X ( ~ )  G 1 + h’  = 1 + max min dHxa (x,) 
H r A  x , E A  

where H x A = (A,  E L )  is the section hypergraph of H generated by A C X and 
dHra (x , )  denotes the degree of x, in H X A.  

Proof. Consider a sequential coloration of the vertices of H in a subdegree order, 
each vertex being assigned the first color such that n o  edge has all of its vertices of 



Subdegrees and chromatic numbers 289 

the same color. Assume the vertices, x l , x z , .  . . , x , - ,  are colored; as the first 
uncolored vertex, x,, is incident to at most h’ edges colored in one color (except at 
x,) it can always be colored in one of 1 + h’ colors; by iteration the inequality part of 
( 1 )  is obtained. To prove the equality part note the right-hand side of (1) cannot be 
lower than 1 + h’ as there exists at least one section hypergraph H X B = (B, E L )  
such that minx,EB d H x B  (x,) = h’ by definition of h’ .  Assume there exists a section 
hypergraph H x C = (C, E L )  such that min,,,cdHxC(xf)> h ‘ .  

Let x k  be the last vertex in the subdegree order to belong to C, let D denote the 
set consisting of x k  and all preceding vertices in the subdegree order and let 
H x D = (D,  E A )  denote the section hypergraph generated by D. As C C D, 
E & C  E ;  and d H X c ( x k ) <  d H x D ( x k ) s  h‘,  a contradiction. 

Theorem 2. Let (S1,  S2, ..., S, )  denote a partition of the set X of vertices of 
H = (X ,  F )  in q independent sets and let 

Then 

x ( H )  s max min{k, dk+  1). 
k ==q 

(3) 

Proof. Let k *  denote the value of the right-hand side of (3) and S;= 
Sk n {x ,  I d A ( x , ) s  k * } ,  k = 1,2, .  . . , k * .  By coloring the vertices of S:, S : ,  . . . , S ; .  in 
the colors 1 ,2 , .  . . , k * respectively, all vertices such that d A ( x , )  3 k * are colored. 
The remaining vertices can then be colored sequentially in the subdegree order 
without introducing any new color. 

The subdegrees of the vertices of a hypergraph may be much smaller than their 
degrees. For instance, it is easily shown, by a similar argument as in the proof of the 
lemma of [lo], that the subdegrees of all the vertices of a hypergraph without cycles 
of length greater than two are equal to one; the degrees of the vertices of such a 
hypergraph may be arbitrarily large. 

Corollary 2.1. Let h’ denote the maximum subdegree of a hypergraph H = ( X ,  E )  

and n = 1x1; then 

(where [ a ] *  denotes the smallest integer greater than or equal to a ) .  

Proof. As H can be colored in x ( H )  s 1 + h’ colors, X can be partitioned in x ( H )  
independent sets and at least one of these sets contains at least [ n / ( h ’ + l ) ] *  
vertices. 
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2. An algorithm for the chromatic number of a hypergraph 

The constructive proofs of Theorems 1 and 2 may be viewed as heuristic 
algorithms for coloring a hypergraph H in x ( H )  or slightly more colors; these 
heuristic algorithms could be combined with branch-and-bound in order to obtain 
exact algorithms for the coloration of H in x ( H )  colors. Such a procedure would 
probably be computationally inefficient as the determination of the subdegrees 
d;l(x,) of the vertices of H involves the resolution of a large number of packing 
problems. We therefore propose the following simple branch-and-bound algorithm: 

(a) Initialisation. Set nopt, number of colors in the best known solution, equal to 
1 X 1 + 1. Consider all vertices of H as uncolored, with no forbidden colors, and no 
edges of H as eliminated. 

(b) Resolution test. If all edges have at least two vertices of different color, and 
have been eliminated, note the current coloration in Copt, update nopt and go to (g). 

(c) Direct optirnalify test. If for an uncolored vertex the number of forbidden 
colors is equal to nopt - 1, go to  (8). 

(d) Conditional opfimality test. If for an uncolored vertex x, the number of 
forbidden colors is equal to nopt - 2, go to (f). 

(e) Selection of a vertex to be colored. Select the uncolored verex x, for which the 
most colors are forbidden; in case of ties select among the tied vertices that one 
which belongs to the most non-eliminated edges, weighted by the inverse of their 
number of uncolored vertices. 

(f) Coloration of a vertex. Seek the first color q not forbidden to x, ; note if this 
color has already been used or not; assign color q to x,. Consider all non-eliminated 
edges containing x, : if an edge E, has a vertex x k  colored in a different color than q, 
eliminate it; if an edge E, has all its vertices but one colored in color q, seek the 
uncolored vertex xk belonging to E, and forbid color q to x k  (if it has not yet been 
done). Then go to (b). 

(g) Backtracking. If coming from (b) uncolor the vertices in the reverse order of 
their coloration until the last color used disappears. Uncolor the last vertex chosen 
at step (e) and forbid the color used to that vertex; uncolor all vertices colored after 
that one. 

Update the tables of forbidden colors and of eliminated edges. If at least one 
vertex remains colored, go to (b). Otherwise, an optimal coloration Copt of H in nopt 
colors has been found (any uncolored vertex may be assigned any of the colors 
used). 

The algorithm described above has been programmed in Fortran Extended and 
tested on a CDC 6500 computer. All information (i.e. forbidden colors, eliminated 
edges, etc.) is updated from iteration to iteration and not recomputed. 60 test 
problems have been solved; the hypergraphs have 20 to 40 vertices and 200 
randomly generated edges; in the series 1 (respectively 3) 100 edges have 2 vertices 
(resp. 3 vertices) and 100 edges have 3 vertices (resp. 4 vertices); in the series 2 and 
4 all edges have 3 and 4 vertices respectively. The results of these experiments are 
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summarized in Table 1. The algorithm appears to be efficient for coloring small 
h ypergraphs. 

Table 1 .  

Problem series Nv N' NVI NB T 
~~~ 

1 20 
30 
40 

2 20 
30 
40 

3 20 
30 
40 

4 20 
30 

6 40 

5.0 
4.2 
4.0 
3.2 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
2.0 

31.6 
72.6 
47.0 

178.0 
78.8 
74.0 
41.4 
73.8 

123.8 
126.0 
711.2 

1529.8 

2.4 0.764 
6.4 1.781 
1.6 1.679 

28.6 3.448 
6.8 2.095 
5.2 2.575 
4.6 1.024 
7.0 2.130 
9.6 3.806 

18.8 2.854 
81.6 15.780 

137.2 33.909 

Nv = number of vertices of H, Nc = number of colors in C,,,,, Nm = number of vertices in the solution 
tree, NB = number of backtracks, T = computation time in seconds CPU on CDC 6500, input and 
output times excluded; N,, N,, N,, T are averages for 5 problems. 
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CUTTING-PLANE THEORY: DISJUNCTIVE METHODS 
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This paper is a survey, with new results, of the disjunctive methods of cutting-plane theory, 
which were devised by Balas, Glover, Owen, Young, and other researchers, over the past half 
decade. The basic disjunctive cut piinciple is derived, its interrelations with the other cut- 
producing procedures are discussed, and applications of it are given. Many theorems from the 
literature are concisely proven, and a fairly complete bibliography is provided. In addition, 
several new results are presented, and finitely convergent disjunctive cutting-plane algorithms are  
given for a wide class of programs. 

0. Introduction 

This paper is a survey, with new results, of the disjunctive methods in 
cutting-plane theory that have been devised [ l ,  4, 15, 21, 24, 25, 32, 43, 501 and 
developed by several authors (e.g., [2, 5 ,  9, 10, 11, 12, 22, 26, 34, 35, 37, 511). 

The new results presented here include: a broad sufficient condition for the 
disjunctive cuts to provide all the valid cutting planes (Section 1.1.1, joint with C.E. 
Blair); a sufficient condition for distributivity in the co-propositions that are used to 
express the general cut-form of disjunctive cuts (Section 2.1.2); and proofs of finite 
convergence for a class of cutting-plane algorithms that use disjunctive cuts 
(Section 2.2). As we will show in a later paper, the distributivity result of Section 
2.1.2 provides a finitely-convergent cutting-plane algorithm for a class of problems 
that includes the linear complementarity problem. 

In terms of expository presentation, we begin in Section 1.1 with the basic 
principle of disjunctive constraints, as presented in the format of [3, 41. We then 
relate this principle to the earlier one of the intersection/convexity cuts and show 
that it is stronger (Section 1.2). We then discuss the connection between this 
principle and the “polyhedral annexation” method of [24]. Following this, the 
Lagrangean relaxations for integer programs are interpreted from the point of view 
of disjunctive cuts (Section 1.3), and in turn disjunctive cuts are interpreted as cuts 
obtained from sublinear and subadditive functions (Section 1.4). Next, three 
examples are given illustrating various uses‘of disjunctive cuts (Section 1 S). Finally, 
we give a compact presentation of the “co-propositions” of [37], which represent a 
systematic development of the disjunctive cut principle, and we mention general 
properties of the co-propositions, some for the first time (Section 2.1). 
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References to the literature are given in the discussions of the appropriate 
subsections following the statement of results. 

The background necessary for this paper is a knowledge of the Duality Theorem 
of Linear Programming, and polarity for polyhedra. Either [45] or [47] are good 
general references, though for polarity [49] still deserves reading (see also [13]). For 
Section 1.4 only, we assume some acquaintance with [36]. The paper is intended to 
be read consecutively. 

This paper is a revised version of Part 11 of [35]. A companion paper [36], which 
is Part I of [35], surveys the algebraic methods of cutting-plane theory, and gives 
new results. Some proofs are omitted; these are usually supplied in [35]. 

1. The basic disjunctive cut principle and its relationship to other principles and 
approaches 

The disjunctive methods consist of various ways that one can obtain cutting- 
planes from logical constraints on linear inequalities. They use, in various forms, a 
certain basic principle. This principle is equivalent, in some contexts, to a 
cutting-plane formulation of certain enumerations or partial enumerations. 

In what follows, the pointwise supremum SUPh€Hvh of a set of vectors { u h  I h E 
H } ,  v" = ( v ? ,  . . ., v 5 )  for h E H, denotes that vector v = ( v l , .  . ., v , )  such that 

v ,=sup v : ,  j = 1 ,  ..., r. ( 1 4  
h € H  

The writing of an expression sup v h  entails that each supremum in (l.A) is finite. 

1.1. The basic disjunctive cut principle 

Theorem. Suppose that at least one of the linear inequality systems 

A h x  z= bh ,  

x 2 0 ,  ( h E H )  

must hold. Then for any choice of non-negative vectors A h  a 0 the inequality 

(sup A h A h ) x  3 inf Ahbh 
h E H  h € H  

is valid. Furthermore, i f  every system ( s h )  is consistent, then for any valid inequality 

c T,Xj 2 T o  ( 1.1 .A) 

there are non-negative vectors A h  3 0, h E H ,  such that r0 =Z inf A hbh and, for 

,=1 
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j = 1, . . ., r, the jth component of sup A hA " does not exceed rj. In this principle, H 
may be infinite or finite. 

Proof. Toward the forward direction of the principle, note that, since at least one 
system ( s h )  holds for any x ,  at least one inequality ( A h A h ) x  5 Ahbh holds; but h 
may depend on x .  Taking the supremum and infimum in (DC) removes this 
dependency, and is still valid since x 2 0 .  

Toward the converse, assume that all systems ( s h )  are consistent. Since (1.l.A) is 
implied by any one of them, by the duality theorem for any h E H there exist 
A h  5 0 satisfying A"bh Z= r,, and (AhA")J s rJ, j = 1,. . ., r. Here, (A"A")J is the j th  
component of A "A '. Taking infima, we obtain ro =s inf A "bh. Taking suprema, we 
obtain (sup A "A h ) J  S rJ, j = 1,. . ., r. Q.E.D. 

In the applications, one deduces the systems &), at least one of which must hold, 
from the constraints of the integer program 

inf cx, 

subject to Ax = 6, 

x 3 0 ,  

x integer. 

A trivial application is to use as ( s h )  the constraints 

Ax = b 

x = h  

x 5 0  

where h = ( h , ,  . . ., h, )  is a non-negative integer vector, and all such vectors (or, at 
least all feasible ones, assuming (IP) consistent) are enumerated as h E H varies. In 
principle, then, all valid cuts for (IP) become available, as one uses disjunctive 
systems (DC) expanded further and further toward ( s h ) ' .  As we shall see below, 
there is more here than simply a similarity with branch-and-bound in the context of 

Note that, if some inequalities of ( s h )  are replaced by equalities, the correspond- 
ing multiplier is unrestricted in sign. 

The forward direction of the above principle, for the special case when A h  has a 
single row and H is finite, was stated by Owen [43]. Balas [3,4] stated the forward 
direction of the general principle; see [37] for the reverse direction. Balas [5 ,6 ]  also 
extended the  principle to the case that x 2 0  is not required to occur among the 
constraints of ( s h ) .  Another generalization is in [37], and related results are in [23, 
24, 25, 341 (more on Glover's alternate format for disjunctive cuts in Section 1.2.1 
below). 

6)'. 
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1.1.1. A result on the converse to the disjunctive cut principle 

A converse to the disjunctive cut principle is a statement that, under suitable 
hypotheses, the principle gives all the valid cuts. 

Not all the systems ( S h )  need be consistent for the disjunctive cut principle to give 
all valid cuts; in [9] a general result is given for the converse, which we repeat here. 
For a different converse, see [5 ,  Theorems 4.4 and 4.71. 

For h E H, define the recession cone c h  by 

ch = {X 1 A h X  3 0, X 3 O}. ( 1.1.1 .A) 

Theorem. The disjunctive cut principle (DC) gives all valid cuts for the logical 
condition that at least one (S,,) holds, i f  for every h E H such that (S,,) is inconsistent, 
we have 

C, C z{C, 1 p E H and (S,) consistent}, (1.1.1 .B) 

(with the summation interpreted as {O} i f  all (S,) are inconsistent). 

Proof. To prove the stated result, it clearly suffices, for ( S h )  inconsistent, to find 
A h  3 0  with A h A h  < n- ( r r  = (n-,,. . ., rr,)) and Ahbh 2 r0, for any cut (1.l .A) valid 
for all t he  consistent systems (S,): then the taking of maxima and a minimum as in 
the proof in 1 . 1  completes our proof. 

Note that, if (S,) is consistent and (1.l .A) is valid, we have rrx 20 for x E C,. 
This follows from the fact that A P A P  G n- for some A P  3 0 ,  and the fact that x 2 0 .  
But then if x E C,, with (S,,) inconsistent, writing 

1 { 
1 E H, (S,) consistent, 
and x ( ~ )  E C, 

x = c x ( P )  p 

for certain X ( ~ ) E  C, by (l . l . I .B),  we have 

n-x = c r r X ' P ' 2  0. ( 1 .  I . l .  C) 

Also, ( l . l . l .C)  is trivial if all (S,) are inconsistent. 
Therefore, T X  3 0 is implied by A h x  3 0, x 3 0, and by the Farkas Lemma, we 

obtain the multipliers B h  3 0  with B h A h  S rr. Finally, by the inconsistency of (S,,) 
there is p h  2 0 with p h A  Q 0, p h b h  > 0.  But then for r 3 0 suitably large, putting 
A h  = B h  + rph,  we have A h A  < n- + 0 = n-, Ahbh 3 n-(), as desired. This completes 
the proof. Q.E.D. 

As one application of this strenghened converse, if all the matrices A h  are 
identical and at least one system (S,) is consistent, the  converse will hold. For 
instance, in ( s h ) '  there is no need to delete inconsistent systems. 

For a second application, if at least one (S,,) is consistent and i f ,  for all h E H 
there is some d h  for which Ahx 2 d ', x > 0 is bounded and consistent, the converse 
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holds. Note that the consistency and boundedness of Ahx 3 d h ,  x 3 0 implies that 
all C,, = (0). 

1.1.2. Geometry of the disjunctive cut principle 

It is easy to see that the cuts (1.l.A) which hold if  any systems (S,,) holds, are 
precisely those valid for the closed convex span clconv(T) of the set 

T = { x  2 0 1  for at least one h E H , A h x  2 b h } .  (1.1.2.A) 

Indeed, (1.l.A) is valid on a closed convex set, hence valid for clconv ( T )  at least. 
But for any point x$Z clconv(T), there is a separating hyperplane (1.l.A) valid for 
clconv ( T )  2 T, which cuts off x. 

1.1.3. Earlier work on logical constraints for linear inequalities 

Since Dantzig’s work in the early 1950’s, it has been widely known that a primary 
use of integer variables in linear programs, is to express logical restrictions that are 
placed on linear inequalities. 

The disjunctive methods appear to be the first explicit use of this perspective 
toward constructing cutting-planes. However, a result concerning linear in- 
equalities constrained by logical requirements appears even earlier in [15, Appen- 
dix A], and we repeat it here. 

Theorem [15]. Suppose that every solution to 

Ax 3 0  

satisfies at least one of the homogeneous inequalities in the inequality system 

Bx 3 0.  

Then there are vectors of multipliers y 3 0, z 2 0,  with z # 0, for which we have 

y A  = zB. 

Note that if B has only one row, the theorem is the ordinary Farkas Lemma. 
Since the publication of [15], Duffin has generalized the above theorem to treat 

inhomogeneous inequalities (private communication). 

1.2. The disjunctive cut principle and the earlier intersectionlconvexity cut principle 

Just as the algebraic approach has been called the “subadditive” approach, due 
to the recent emphasis on subadditivity as opposed to purely algebraic features, the 
disjunctive approach has other synonyms: convexity, intersection, geometric. 

The new principle has evolved as a strengthening and generalization of an earlier 
principle, from which the other synonyms derive. 
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Theorem: Let the convex body 

c = { X  I a hx S bh, h E H }  (1.2. A) 

be defined by certain hyperplanes a hx S bh, h E H, a h  = ( a  !, . . ., a ;), and let S be an 
arbitrary subset of R“. 

Suppose that each bh >@, and that 

h;. = sup { A  1 a h  . (ejA ) S bh, h E H }  (1.2.B) 

is non-zero for j = 1, .  . ., r, where ej is the jth unit vector. Then i f  S n C = 0, every 
point x E S with x 5 0 satisfies the cut 

2 (1/&)Xj 2 1, 
, = 1  

where l / ~ = @ .  

Proof. 
validity of (DC) in Section 1.1). 

Omitted (but see e.g., [ l ]  for one proof, and below for a justification via the 
Q.E.D. 

The use of the intersection/convexity cut (IC) occurs where x of (1.2.A) are the 
non-basic variables of the Simplex Tableau, and the co-ordinate system has also 
been translated so that the current linear programming vertex is at x = 0. S is taken 
to be the integer points of the structural space. Then (1.2.B) represents the 
intercept of the j t h  tableau edge with the boundary of C. The hypotheses then state 
that no integer point is in the interior of C. The cut (IC) is then the hyperplane 
passing through the intersection points of the extended tableau edges with the 
boundary of C, and it is oriented to  “cut off” the current vertex x =@. 

The strength of an intersection cut depends on the shape and size of the convex 
set C. Based on this approach, several procedures were proposed for generating 
cuts from suitably chosen convex sets [2,22,26]. We will not review these cuts here, 
but will mention briefly that the outer polar cut of [2] was the first cutting-plane in 
the literature to incorporate information from the problem constraints that are 
slack at the point of the feasible set from which the cut is generated. 

The new principle of disjunctive cuts is a direct improvement upon the earlier 
one. To see the connection, note that the hypothesis of the theorem implies that at 
least one of the systems 

ahX 2 bh, 

x 20, 

holds for x E S (as S n C = 0). Therefore, setting A h  = l/bh in the disjunctive 
principle, we obtain as (DC) the cutting plane 
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and so the j th  coefficient of (IC) is 

sup {a:/bh I u; > 01, if at least one a ;  > 0; 

if all a ;  s 0. 
1/A; = 

(1.2.C) 

(1.2.E) 

Therefore, this coefficient is the same as sup a;/b,, from (DC)’ whenever a )  > 0 for 
at least one h E H. This is the case for all coefficients, whenever the convex set C is 
bounded. If, however, a ;  S 0 for all h E H, i.e., if C is unbounded and contains a 
whole edge, the j th  coefficient of the earlier cut is 0, whereas that of the new cut 
may be negative. For a detailed discussion of the connections between the two 
principles see [4]. 

The real advantage of the new principle, however, lies less in the fact that it is 
theoretically stronger than the old one, than in the fact that it has proven easier to 
use. Much of the ingenuity, needed to devise situations where the principle applies, 
has been greatly reduced. 

1.2.1. Glover’s format for disjunctive cuts 

An alternate procedure for obtaining disjunctive cuts is Glover’s polyhedral 
annexation technique [24, 251. 

This technique is to be repeatedly applied to a family of polyhedra P1,. . ., P,,. It is 
assumed that no point of a set S is in the interior of any A. The pk typically 
represent the integrality constraints (e.g., Pk is a translate of { x  10 =z x 1  S 1 ) )  or the 
reverse of an inequality constraint defining the feasible region). A single application 
of polyhedrai annexation involves only two of PI, .  . ., P,, (plus additional polyhedra 
added to the list) which are selected for the application. 

A single application is as follows. Assume that polyhedra Q and U are chosen 
with 

41 
0 = [ x 1 2 a,xj s aio, i = I , .  . ., 

i = 1  

(1.2.1 .A) 

(1.2.1.B) 

Then one selects an annexation index i * in ( 1 , .  . ., q }  and one adds the polyhedron 
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w = x I C a,,x, s aLo, i f  i * :  [ ,Il 
(1.2.1. C )  

C (oka,*,+ hkbkl)Xj 0ka ,*I)+ &bko] 
, = I  

to the list of polyhedra, in addition to P I ,  ..., P,, and those previously added. In 
(1.2.1.C), the parameters ok,hk 3 0  may be arbitrarily chosen. 

The interpretation of this single polyhedral annexation is as follows. Given 
inductively that Q and u have n o  points of s in their interior’, and all hk + 8, > 0, 
then neither does W. In particular, one may use W to obtain a valid cut, either by 
the earlier intersection cut principle, or by its strengthened version. 

Glover showed [25] that, in finitely many applications of polyhedral annexation, 
followed by the taking of an implied cut, any valid cut (1.l.A) for a bounded integer 
programming problem can be obtained. This result was announced in September 
1973. 

His proof reveals more, since a pivotal step is the following assertion. Putting 

(1.2.1 .D) 1 Pk = { x 19 at,$) s b:, i = 1 , .  . . , p k  
] = I  

i n  finitely many steps one obtains a polyhedron of the form 
r u  

P = { x 1 %  ( c ( ~ i a i ( k ~ x ~ )  2 8 i b i ( k ) ,  all u E Z) ( 1.2.1 .E) 

for any multipliers 0; 2 0, where (T denotes a function with domain (1,. . ., u }  such 
that ( ~ ( k )  is in (1, .  . . ,&}for k = 1,. . ., u, and Z denotes the set of all such functions 
(T. I.e., a ( k )  picks ou t  one of the constraints of Pk, so as (T varies over 2, the 12 1 
constraints of P represent all possible different ways of making selections of 
constraints, one from each Pk. 

The proof of this assertion is by induction on u all u 3 2  reducing to the case 
u = 2. This case u = 2 can also be done by induction on the number of constraints 
in the second polyhedron, say U of the pair Q, U above. The details are in [ 2 5 ] .  

Regarding this assertion, we note the following. The cut for P of (1.2.1.E), used 
by Glover to obtain cuts from the polyhedra developed in polyhedral annexation, is 
the disjunctive cut obtained from the assertion that at least one of the defining 
constraints of P goes the other way, i.e., that at least one of the inequalities 

k = l  h = l  

(1.2.1 .F) 

holds. Indeed, n o  feasible point is in the interior of P. 

are those obtained from t h e  assertion that at least one of the systems 

k = 1 , .  . ., U, 

However, the disjunctive cuts (DC) from (1.2.1.F), as the multipliers 0; 3 0 vary, 

2 U b ( k ) , I X J  2 bb(k), (1.2.1.G)- 
] = I  

’ Here a point is “interior” to an inequality system, if i t  satisfies each inequality strictly 



Cutting -plane theory 30 1 

holds. But if no feasible point is in the interior of any Pk of (1.2.1.D), then indeed at 
least one of the systems (1.2.1.G)- holds - let ~ ( k )  denote the constraint of Pk 
violated by a feasible x for (IP), k = 1, .  . ., u. 

In summary, the cuts showing the finiteness of the polyhedral annexation 
procedure. are the disjunctive constraint cuts that one obtains by converting the 
information regarding the Pk (i.e., that they have no interior feasible points) into 
the form ( s h ) .  Note that this conversion involves manipulating strings which may 
have exponential length, and hence is not a practical way of obtaining all cuts (DC) 
if 1 HI is small. 

The reverse reduction is also true. Specifically, given that at least one system ( s h )  

holds, letting u denote a function which chooses one constraint from each system 
(S,,), and writing A h  = (a",), b h  = (b!'), then there is no feasible integer point for 
(IP) in the interior of P, given by 

(1.2.2.H) 

Indeed, for some p E H (S,) holds, so in P, the constraint for h = p is satisfied onl!- 
in the direction ( 3 ), while ( < ) is needed for interior points. When I H 1 is finite, the 
polyhedra P, for all u can form the basis for a polyhedral annexation process which 
produces all cuts (DC), under suitable hypotheses analogous to those for the 
converse direction of the principle of 1.1 above. Note also that this reverse 
reduction also may involve string manipulations of exponential length, and hence is 
not a practical way of obtaining a polyhedral annexation cut that requires only a 
few annexation steps. 

We have seen that either Balas' principle of 1.1., for the format ( s h ) ,  or Glover's 
principle for the format of polyhedral annexation, yield the same family of valid 
cuts when / H I  is finite in 1.1 .  Each is advantageous when information is presented 
in (or easily converted to) its format. 

1.3. Lagrangean relaxations interpreted via disjunctive cuts 

There different ways of using the principle of 1.1, and in important instances they 
are of different mathematical strength, with relative dominances ascertainable. In 
providing one example here, which motivates our constructions in 2. below, we will 
also obtain a new perspective on the Lagrangean relaxations; a particdarly 
interesting discussion of these is in Geoffrion's paper [19], which also references 
work in that topic. 

Given a set of consistent constraints in integer variables x S O ,  it may be 
advantageous to partition these into two sets, the second of which has some special 
structure that one may be able to exploit: 

Dx a d  

Ex 3 e 

(This is the point of view of [19].) 

(1.3.A) 
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Now we know that all valid cutting planes are obtainable from the disjunctive 
systems 

D x a d ,  E x a e ,  x = h  (1.3 .B)h 

as h varies over all non-negative integer vectors h, provided only that the 
optimization problem 

min cx 

subject to Dx 3 d, Ex 3 e, (P) 

x 2 0 ,  and integer 

is consistent. One may try therefore to obtain the best possible cut (Le., to 
maximize no in (1.l.A)) from the systems (1.3.B)h with n 

But this may be difficult, while in contrast it may be easier to  optimize disjunctive 
cuts for the systems 

c. 

E x s e e ,  x = h  (1.3.C)h 

using the special structure. For if a special structure is advantageous for c, it ought 
to be so for any T. Then to combine a cut from (1.3.C),, with the remaining 
constraints Dx 3 d, one may simply take non-negative multiples, and in this way 
one would solve 

max Ad + no 

subject to AD + 7r G c (1.3.D) 

A 2 0  

(1.l.A) a disjunctive cut from (1.3.C)h. 
Indeed, Ad + no is the right-hand-side of the combination of the two cuts, so one 

wants it to be as large as possible, since under the constraints of (1.3.D) the 
inequality (AD + T ) X  3 Ad + no implies cx 3 Ad + no (recall that x 3 0). 

It is true that (1.3.D) is easier than optimizing with the full disjunctive system 
(1.3.B),,, but is it as good? Intuitively, there ought to be cases where it is not as 
good, because in (1.3.B),, one has the freedom of using a different multiplier A h  a 0 
on D in each (1.3.B),,, while in (1.3.D) only the one multiplier A 3 0 is available. 

This intuition turns out to be correct, and is one evident way of seeing why gaps 
can occur in Lagrangean duality. For it turns out that (1.3.D) is the Lagrangean dual 
problem, as we now show. 

Assuming that either E is rational or that 

T = { x  1 Ex 3 e,  x 2 0 and integer} 

is compact, clconv(T) will be a polyhedron, so that it has a definition by linear 
inequalities: 

clconv ( T )  = {X 3 o 1 QX a 4). (1.3 .E) 
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The disjunctive cuts (1.l.A) from the systems (1.3.C),, are precisely those valid for 
clconv(T) (see 1.1.2 above) hence those with 7r = eQ, 7roS eq for some 8 2 0 ,  so 
that (1.3.D) is the linear program 

max Ad+ eq, 

subject to AD + OQ S c, (1.3.F) 

A s o ,  e 30, 

which is dual to the primal problem 

min cx 

subject to Dx 3 d 

x E clconv{x 2 o 1 EX 2 e, x integer) 

of Geoffrion [19] (recall (1.3.E) and the definition of T). 
Next, since (P*) is 

min cx 

subject to Dx 3 d 

Qx s q  

x 3 0  

(1.3.G) 

by Lagrangean results for consistent linear programs, if (1.3.G) is bounded in value, 
it is equivalent to both 

max min {cx + A(d - D x ) +  e (q  - Ox)}, (1.3.H) 
h.Bz-0 x z - 0  

and 
max min {cx + A (d - Dx ) 1 Qx 3 q, x 3 0). (1.3.1) 

Furthermore, in optima to (1.3.H) the optimal 1, # (which exist) provide an optimal 
A = 1, T = 8Q to (1.3.D), since 1, 8 are optimal in the equivalent (1.3.F) to (1.3.D). 

A Z-0 

Finally, (113.1) is the Lagrangean dual, since 

min cx + A(d - Dx)  

subject to Ex 3 e 

x 3 0  and integer 

is equivalent to 

min cx + A(d - Dx) (1.3.5) 

subject to x E {y 3 0 I Qy 3 q )  = clconv {y 3 0 1 Ey 2 e, y integer} 



304 R.G. Jeroslow 

if one observes [ 191 that the infimum of a linear form on a set T is the infimum on 
clconv (T ) .  

Fisher and Shapiro [16] have utilized the group problem [27] in (P), by in effect 
taking Ex 3 e to be the convex span of the group points and taking Dx a d to be 
the linear programming constraints: specifically, the group constraints are imposed 
in place of Ex 3 e. As the above analysis shows, they obtain the bounds from the 
polyhedron defined by intersecting the linear programming relaxation with the 
group polyhedron. 

Here algebraic features, specifically the ease of enumerating irreducible elements 
of the group, allow one to bypass the explicit use of disjunctive constraints (1.3.C),, 
in favor of a direct enumeration. The algorithm used in [16] is certainly not 
disjunctive in nature! 

In this section, we saw that gaps occur in Lagrangian duality because the cuts of 
(1.3.B),, from 

(DX 2 d A EX 3 e A X = h ) V  ( D X  2 d A EX 2 e A X  = h ’ ) V  ‘ . .  

are generally more than those from the expression 

where “ A ” is “and” while “ v ” is “or”. This means that the gaps occur because a 
distributive law of boolean logic fails in its cut formulation. In 2.1.2 we will give 
hypotheses that insure that distribution holds. 

1.4. Disjunctive cuts interpreted via subadditive functions 

Recall from [34] that a subset M of R‘ is a monoid if 0 E M and u, w E M 
implies v + w E M (i.e., M is an additive subgroup of R‘). A function f : M + R U 

{ - % }  defined on a monoid M is subadditive if 

f ( x  + x ’ )  s f ( x )  + f ( x ’ )  for x, x ‘  E M. (SUB) 

The use of subadditive functions in cutting-plane theory originates in joint work of 
Gomory and Johnson and is continued and further developed in Johnson’s 
researches; we discuss these contributions in [35, 361. The subadditive functions 
used by Gomory and Johnson have the unit interval, modulo unity, as domain. 
They correspond to subadditive functions (SUB) with M = R“, which have unit 
periods in each co-ordinate direction (for details, see [34, Proposition 2.1 11). 

The basic principle of disjunctive cuts (1.1 above) can be cast in terms of 
subadditive functions. The first step is to determine the functions in terms of the 
space of the original variables x in which they are a certain subclass of the convex 
functions; then these are “transferred” to  functions acting on the space of the 
columns of A in (IP), where they are subadditive, but generally not convex. Some 
of what follows is in [34]. 
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A function f is called sublinear, if it is both subadditive and positively 
homogeneous: 

f ( A x )  = A f ( x )  for all A 3 0 

f ( x  + x ’ )  f ( x )  + f ( x ’ ) .  
(1.4 .A) 

We called these functions conical in [34, 371 but it is best to use standard 
terminology when it exists. The sublinear functions are convex [45,47], and include 
the gauge functions, for which one imposes f(x) 3 0 in addition to (1.4.A). 

For a subadditive function F, its directional derivative p ( u )  at zero in the 
direction u, is defined by 

F ( u )  = limsup{F(Su)/S L 0 +}. (DEW 

In (DER), it is assumed that {Su I S 3 0 }  is in the domain of F. One easily proves 
that F is sublinear (see [37, 401). 

We recall from [34,35,36] that the set of all valid cuts for the general constraints 

A x + B y E S  

x ,  y 2 0  ( x  = ( X I , .  . ., x r ) ,  y = ( Y l , .  . ., y s ) )  (GC) 

x integer, 

S a set, can be obtained via the general cut form 

where u t i )  is the j th  column of A and b(‘) is the k th  column of B, and F is a 
subadditive function with F(0)  = 0. 

To be precise, all cuts (CF) are valid for F subadditive with F(0)  = 0; and if 

is valid, then there is a subadditive function F “behind” the cut (VC), in the sense 
that F satisfies: 

(1) inf { F ( u )  1 0 E S} 2 no; 

(2) F ( u ” ) ) < 7 r j 7 j = l  , . . . , r ;  
(3) F ( b ( k ) )  c k ,  k = 1 , .  . ., S ;  

(4) F(O)= 0. 
For full details, see [34, 35 or  361. The pure-integer case of (CF), i.e., s = 0, is also 
given in [39]. 

Linear functions are of course sublinear, and one easily shows (e.g., [34, Prop. 
2.1.1) that, if f a  is a class of sublinear functions indexed by a nonempty set I (a  E I), 
and if f ( x )  = sup,f,(x) is everywhere finite on its domain, then f is sublinear. If 
I# 0 is finite and all f a  are linear, we call f (homogeneous) polyhedral [45, 471. 
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The functions behind the disjunctive cuts (DC) are sublinear and if H #  0 is finite, 
they are polyhedral. For put f h ( x )  = ( h h A  h)x, f ( x )  = SUPhfh ( x ) .  f ( x )  is sublinear, 
since it is the pointwise supremum of sublinear functions. Further, the j th  intercept 
in (DC), implies via (1.4.A) that f ( x )  is finite on x 3 0  (nofe 

f ( x )  = f (  7 v,) c c x , f ( e , )  for all x, 3 O), 

hence sublinear. We rewrite the cut (DC) as 

2 f ( e j )x j  3 n n .  
j = 1  

For any function f subadditive on the domain of all x z- 0, x 
defines a function F on the set of all non-negative integer 
columns of A in (IP): 

F ( u )  = inf { f ( x )  I u = A x ,  x 2 0 and integer}. 

(1.4.B) 

integer the following 
combinations of the 

(1.4.C) 

F is subadditive, for, if a resp. a’ are strict upper bounds on F ( u )  resp. F ( u ’ )  and x 
resp. x ’  are non-negative integer vectors with u = A x  resp. u ’ =  A x ’  and also 
f ( x )  < a resp. f ( x ’ )  < a’, then we have 

F ( v  + u ’ )  C f(x + x ’ )  

G f ( x )  + f b ’ )  (1.4.D) 

G(Y+(Y’  

(1.4.0) follows since u + u‘ = A ( x  + x’) with x + x ’ ?  0 integral, and since f is 
subadditive. By taking infima on the right in (1.4.D) on a and then a’, we obtain 
F ( v  + u‘ )  s F ( u )  + a‘ and then the desired F ( u  + u ’ )  S F ( u )  + F(u’ ) .  

Now i f f  is the function of (1.4.B), with the disjunctive systems (sh) derived from 
the constraints of (IP), whenever x is feasible in (IP) we have f ( x )  3 f,(x) 3 APbP 2 
inf A hbh = 7ro, where p E H is any system (S,) which holds for x .  Therefore, 
F ( b )  2 f ( e , ) ,  
j = 1, .  . ., r, and hence (1.4.B) is obtained from the non-negativities x 2 0 and 

by the definition (1.4.C). It is also clear from (1.4.C) that F(a”)  

F(a”’ )x j  3 F ( b ) .  (1.4.E) 
j = 1  

This cut (1.4.E) is the pure-integer case of (CF). 
If some variables are continuous, i.e., in the general case (GC), the same analysis 

holds true. Since f is sublinear, for a continuous column b(‘) and any 6 > 0 we have 
F(6b“)) G f (6e: )  = 6f(e;), hence by the definition (DER), F(b(k ) )  f(e& and the 
form (CF) is obtained. 

From (1.4.C) follows F ( A x ) G f ( x ) .  Functions G on the column space are 
transferred to the row-space of x by the formula 

g(x) = W A X )  (1.4.F) 
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and therefore, if (1.4.C) is followed by (1.4.F), one ends back in the row space with 

The reverse direction, that subadditive cuts (1.4.E) derive from disjunctive cuts 
(DC), is trivial: the subadditivity of F implies the validity of (1.4.E), hence there 
exist disjunctive multipliers A h  2 0  which yield a cut (DC) on which (1.4.E) is a 
weakening. 

The first interpretation of intersection/convexity cuts by subadditive functions is 
due to Burdet [lo]. Specifically, with the hypotheses of the earlier principle given in 
the theorem of 1.2., plus the assumption that (IC) is valid for the group polyhedron, 
in either the pure-integer (s = 0) or pure-continuous ( r  = 0) cases, the cut (IC) is 
shown in [lo] to be an instance of the general cut form (CF) with 

g ( x ) s f ( x ) .  

F ( v )  = inf {A > 0 I v / A  E C}. (1.4.G) 

Functions F of the form (1.4.G) are called gauge functions for the convex set C [45, 
471, and they are gauge in the sense described above. 

1.4.1. Abstract versus computational equivalence of cuts 

Despite the theoretical interrelations above, the algebraic and the disjunctive 
methods are not equivalent, since there are distinctions which are not touched by 
these interrelations. For instance, to obtain a subadditive F from a sublinear f, the 
interrelation provides only F of (1.4.C), whose definition is in terms of a family of 
programs. 

We ought to differentiate between: (1) Knowledge of properties of cuts and their 
interrelations; ( 2 )  Knowledge of which specific inequalities are valid cuts. 

The interrelations given above are of type (1). Typically, a result contains 
knowledge of both types, as with the characterization of cuts by the constraints of 
(FDP) of [35, 361. For type (l), we know that the valid cuts derive in a specific way 
from the constraints of (FDP). For type (2) ,  we may devise methods for computing 
certain solutions to these constraints, and from these find certain specific cuts. If the 
constraint system is small, we may calculate all extreme solutions; otherwise, we 
may never actually know all the extreme solutions which, in theory, do exist. 

The differentiation above, in terms of “knowledge,” is inexact. To make it 
rigorous, one might differentiate classes of cuts according to the amount of 
computation they require. Cuts requiring extensive computation would not be 
valued, unless they are expected to be particularly effective. Similarly, an equiva- 
lence is primarily theoretical, if the reduction of one cut family to another requires 
a prohibitive computation. 

1.4.2. A subadditive view of Lagrangean relaxations 

The Lagrangean relaxations (PR), can be easily cast in terms of subadditive 
functions. Here fix A 2 0 and take f(x) = ( c  - AD)x, and use (1.4.C) with A = E to 
get the function on to column space. 
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Letting el be the j th  column of E in (PR),, and (AD), the j th  element of AD, the 
inequalities for the value function F of (1.4.C) become 

F ( e ’ ) +  (AD), S c,, j = 1,.  . ., r. (1.4.2.A) 

Again, we have a sum of valid cuts, one €or clconv{x 3 0 1 Ex 3 e, x integer} (via 
F ) ,  one from Dx 3 d.  

1.4.3. Improving disjunctive cuts by subadditive methods 

Consider the constraints (GC) for a set S #  8. 
Suppose that a set M is known which is closed under addition and has 0 E M - 

i.e., a monoid - with the property that 

S + M C S .  (1.4.3.A) 

(This is clearly equivalent to S + M = S ,  since 0 E M.) In (1.4.3.A) we use the 
notation s + M = {s + m I s E S, m E M ) .  
Then for any rn O )  E M, with x ,  y 2 0 and x integer we see that (GC) implies 

and therefore, from (CF), 

(1.4.3.B) 

(1.4.3.C) 

Now in (1.4.3.C) the m O )  are arbitrary, so we conclude 

2 (inf {F(a‘”+ m )  1 m E M})x,  + 2 F(b‘k’)yk 3 inf { F ( u )  1 u E S } .  (1.4.3.D) 
, = I  k = l  

This improves (CF). 
The cut (1.4.3.D) appears in [7 ] ,  where a version for bivalent variables x, is also 

given. By setting G ( u )  = inf{F(u + m ) l  m E M } ,  one notes that (1.4.3.D) is 
implied by the general cut-form for G.  This provides an alternate proof of (1.4.3.D), 
but requires that one first prove the subadditivity of G:  we leave this to the  reader. 
In typical applications, Ax + By in (GC) is not the original constraints, but is the 

Simplex tableau, or part of it, perhaps filled out with unit rows: 

z - b = AX + By, (1.4.3.E) 

where z is certain of the variables, including some basic ones; x is the set of integer 
nonbasic variables; y is the continuous nonbasic variables; and b is the current 
solution of the linear programming relaxation. The variables z are picked, typically 
for the ability to exploit the constraints on  them, say by disjunctive methods, for 
these constraints may be z E T, with e.g. 

T = { Z  12, = O  or ~ , i  = I , .  . .,PI, z = (z,, . . ., zp) .  
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Then S is picked to be a suitable relaxation of these constraints, with 

S > { u  1 u = z - b for some z E T } .  (1.4.3 .F) 

The choosing of S is an art; S must be close enough to { u  I u = z - b for some 
z E T }  so that fairly good disjunctive cuts are produced, but also (1.4.3.A) must 
hold for a monoid M which will allow the resulting strengthening (1.4.3.D) to  be a 
good cut. 

Note that, in the context discussed, with the disjunctive cut obtained from the 
condition u E S,  the resulting function of these cuts is in the variables u - “local 
variables,” we say - and so the disjunctive function f(u) is already on the column 
space of (GC). Hence we set F = f in (1.4.3.D), and note that, since f is sublinear, 
F = f =  f. 

In typical situations also, S is determined by linear constraints, i.e., 

S = { u  1 u = z - b, A‘z  2 b‘, z integer} (1.4.3.G) 

with A ’ ,  b’ integral. Then the condition (1.4.3.B), with M a monoid, forces 

M c { z  1 A’Z 3 0, z integer) (1.4.3.H) 
so that, maximally, M contains the entire basis ((1.3.1.B) of [35, Part 11) of A’u 3 0 
- in practice, one may utilize any of the solutions to A ’ u  > 0, u integer, of which 
one is aware. 

In all situations, it does not actually matter how one determines a lower bound no 

with nos inf{F(u) I u E S } ;  all one needs is to know that this holds, so any 
reasoning implied by u E S may be used to “design” F. The infima in (1.4.3.D) may 
or may not be easily calculated, but since all x, 0, any quantity F(au’+ rn) for any 
m E M may be validly used as a cut coefficient. 

The next section gives details on the use of (1.4.3.D). 

1.4.3.1. Non-redundancy of the strengthened cut. This algebraic strengthening of 
the disjunctive constraints construction has a significant new property. Since (DC) 
is implied by at least one ( s h )  holding, any branching scheme which imposes one of 
these systems (S,,) will make (DC) redundant. However, the strengthening (1.4.3.D) 
is generally not redundant after branching. 

Because of this redundancy property of (DC), when used with an enumerative 
branching scheme one either chooses the systems ( s h )  to be a different alternative 
than is branched on - in this manner obtaining some of the fathoming power of 
having used both types of branching - or else, when the branching alternative is 
( s h ) ,  one uses (DC) only for penalty calculations. With the strengthening (1.4.3.D), 
these provisions can often be ignored. 

1.5. Some applications 

Here we provide a limited sampling of some of the situations to which the 
disjunctive methods have been applied. The papers [4, 61 demonstrate the 
versatility of these methods in several other contexts and supplement this section. 
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Due to space limitations, we are forced to omit applications to problems with 
complementarity constraints (see e.g., [43]), separable programming [51], and the 
disjunctive facet problem and related topics (see e.g., [26]). See the earlier version 
of this paper for these other applications [35]. 

1.5.1. The fractional and mixed-integer cuts of Gomory 

From (1.4.3.F), if r0 G inf { F ( v )  I v E S }  is implied simply by the condition that 
u = z - b for z integer - i.e., if A ’  = 0 in (1.4.3.G) - then by (1.4.3.H) we may use 
M = { z  I z integer} in the improved cut (1.4.3.D). 

For instance, let the constraints 

express the basic variables x k  in terms of non-basic variables f, of a Simplex 
Tableau whenever xk is fractional in the current tableau. With local variable 
u = XI, - ako we have the disjunctive constraints 

v s - f k O  or u ~ l - f k o ,  (1.5.1 .A) 

where fk, is the fractional part of ak,. 
From (1.5.1.A) we obtain the function f ( v )  = max{ - Alu, A z u }  of one variable, as 

the function of disjunctive constraints ( A , ,  AZ 2 0). Putting s = { u  1 v = xk - a k o  and 
XI, integer}, we find 

with the choice / \ I  = l / f k o ,  / \z = 1/(1 -fko). 
Then (CF) is (recall f =  f )  

(1.5.1.B) 

(1.5.1.C) 

Now letting JI resp. J 2  index the integral resp. the continuous non-basics, the 
strengthening (1.4.3.D) with M = Z is 

(1.5.1 .D) 

This result (1.5.1.D) is an easy computation, which we omit. It is Gomory’s 
mixed-integer cut [29]. If J z  = 0, (1.5.1.D) is a strengthening of Gomory’s fractional 
cut [28]. For an alternate derivation, see [4]. 

For some other cuts for the mixed-integer group problem, with essentially the 
same derivation, take p = 2 rows of the tableau. In local variables u1  = x1 - a,,,  
u2 = xZ - azO, the fact that (xl, xz) E 2’ implies that at least one of the disjunctive 
systems 



Cutting-plane theory 311 

UI 2 (1 - f,o), u2 * (1 - f20) 

U l  2 (1 - f l O ) ,  u2 =s - f20 

u1 - f l 0 ,  uz 3 (1 - f20) 

UI - f l o ,  u2 =s - f20 

or  

or 

or 

holds. Here the disjunctive constraints function is 

f ( v l ,  u z )  = max { h l u l  + A2vZ, S l v l  - S2u2, - ~~u~ + T ~ V ~ ,  - O1ul  - -,v2} (1.5. 

with all eight parameters non-negative, and the constant term r0 of the cut is 

(1.5.1 .F) 

which is strictly positive unless both of same pair of parameters are set to zero. 
For j E JI, clearly 

inf f(al, + m , ,  a2, + m2) 
m t M  

so the quantity on the right in (1.S.l.G) may be validly employed in place of the j th  
cut intercept (1.4.3.D). 

1.5.2. Set covering, set partitioning, and other logical constraints 

Suppose that a set-covering requirement 

x l + - . - + x , > l  (1.5.2.A) 

in bivalent variables x,, j = 1, .  . ., p, either occurs among the constraints of (MIP), or 
is inferred from those constraints. Let the tableau rows for these x k  be given as in 
(TB) where unit rows have perhaps been adjoined. 

Put u = ( u l , .  .., up),  and in (1.4.3.G) put 

s = { u  1 u = x - b, x1 + . . + x, 3 I ,  all x, integer} (1.S.2.B) 

where x = (x l , .  . .,x,), b = (alo,. . ., a,"). Hence we find 

M = {x 1 x1 + . . . + x, 3 0, all integer} (1.5.2 .C) 

in (1.4.3.H). 

conditions 
One function which produces valid cuts for u E S is based on the disjunctive 
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for some k = 1, .  . . , p ,  

uk 3 1 - a k 0  
( 1.5.2 .D) 

and is 

f ( u )  = max { A r U k }  (Ak 3 0). (1.5.2 .E) 

Since (1 S.2.A) is insured by linear programming, only the integrality conditions on 
the x,, might be violated. If all XI, < 1, all aka< 1, and we have 

inf{f(u) 1 u E S }  = min A k ( 1 -  aka) > 0. (1.5.2.F) 

The strengthened cut (1.4.1.D) is 

(1.5.2. G) 

This cut is one of those reported in [7], where an algorithm is stated for computing 
the coefficients of t,, j E Jl in no more than ( p  - 1) elementary iterations. The 
process involves addition of the monoid basis elements for M. 

Even when (1.5.2.A) is not a problem constraint, we may branch on it as a 
condition. On one branch one we impose the cut (1.5.2.G) implied by (1.5.2.A), and 
on the other we set xk  = 0 for ail k = 1, . . ., p .  This partitioning is due to Balas [ 3 ] .  

Another application of (1.5.2.G) occurs in what we call “cross-branching’’ for 
bivalent variables, in which two fractional bivalent variables xl, xz create a partition 
by the settings 

x1 = x, or x I =  1-x,. (1.5.2.H) 

The first condition x, = x, of (1.5.4.H) implies the two covering constraints 

X I  + x;==1, x : + x 2 3  1 ( 1.5.2.1) 

where x i  = 1 - xl, x; = 1 - x2. 

x1 = 1 - x2 implies two cuts. 
We can obtain one cut (1.5.2.G) from each condition of (1.5.2.1), and similarly 

For a set partitioning constraint 

x l + . * . + x p  = 1 (1.5.2. J) 

in bivalent variables, we have 

M = { x  ( x l + . * * + x p  = O }  

and using (1.5.2.5) and integrality of the xi, we can employ the disjunctive 
constraints in local variables: 
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for at least one pair (i, k ) ,  

21, 5 1 - aio, Uk - a k 0 .  

These constraints provide the function 

313 

(1.5.2.K) 

and the right-hand-side 

in an improved cut (1.4.3.D). 
If doing a project is represented in (MIP) by w = 1 for a bivalent variable w, then 

the fact that this project necessitates doing the projects represented by xl ,  . . ., x, is 
stated 

W sxk ,  k = 1, ...,?I, (1.5.2. N) 

which is put in the form (1.5.2.A) by using w ’ =  1 - w and writing (1.5.2.N) as 

ICXk+W’,  k = l ,  ..., p .  (1 5 2 . 0 )  

Similarly, conflicts between projects w and u become w ’ +  u ’ 5  1 with u’ = 1 - u ;  
the fact that w and u are alternatives becomes w ’ +  u ’  = 1; the fact that w forces at 
least one of x,, . . ., xk to be done becomes 1 w’ + x1  + . . . + xk. These comments 
are simply by way of noting the importance of cuts derived from (1.5.2.A), to 
provide additional fathoming power both before and after branching is initiated. 

1.5.3. “On-off switch” constraints 

Geoffrion [19] points out the importance of constraints such as 

(1.5.3. A) 

with x a zero-one variable and the yk’s continuous. Here all P k  2 0, p > 0, are 
integers. 

These constraints arise in facility-location problems, or, more generally, where 
the bivalent variable x represents doing (x = 1) or not doing (x = 0) a project, and 
y, ,  . . ., ys are among the variables of a linear program which represent the,activities 
of the project. The constraint (1.5.3.A) allows the doing of the project to “activate” 
all project variables, as well as serving as a means of expressing an economic 
restriction. These constraints supplement those (1.5.2.A) of the previous subsec- 
tion, which can be used to represent the “pure logic” of the  interrelations between 
projects. 

Let x be currently fractional, represented as 

x = a o + C  a,(-t,) (1 S.3.B) 
j € J  
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in the tableau, and let the y k ' s  be given by 

y k  = b k o +  c b k l ( -  t l ) .  (TB)' 
fEJ 

Setting u = x - ao, u k  = Y k  - bko with f, the fractional part of a,, we have the 
disjunctive constraints 

( U a l - f o  and O k a - b k o  f O r k = 1 ,  ..., S) ( 1.5.3 .C) 

Or ( U  c - f o  and U k  - b k o  for k = 1 , .  . ., S). 

From (1.5.3.C) we obtain the disjunctive constraints function 

f ( v ,  u1,. . ., u s )  = 

and the constant term 

Since the non-negativity of the tableau rows for the y k  was used in (1.5.3.D), 
(1.5.3.E), the cut is based upon the set 

( 1.5.3 .E) 

Its elements include 

any of which, in non-negative integer combinations, can be used to strengthen the 
basic disjunctive cut. 

2. Some theoretical aspects of the disjunctive approach 

The theory associated with the disjunctive methods is more recent, and conse- 
quently less extensive, than that associated with the algebraic methods. We discuss 
some topics which have been treated at this writing. 

We shall summarize several results obtained in [34, 371 and give some new ones. 
Our treatment is in terms of "co-propositions." We use the co-propositions to deal 
with logical conditions stated in arbitrary form, and as a setting in which to  discuss 
theoretical issues, such as exactness and distributivity, whose importance in the 
context of the disjunctive normal form ( S h )  has already been established. 
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Balas’ study in [ S ] ,  in terms of the disjunctive normal form (S,,), contains several 
important results for which we have not found any essentially simpler proofs. In 
particular, [5]  contains necessary and sufficient conditions for an inequality to be a 
facet of the convex hull of feasible points, based on polars and reverse polars of 
arbitrary sets, and [S ]  discusses ways of computing facets by linear programming. 
Another important result of [ S ] ,  regarding a distributivity relation, is cited in 
Section 2.1.2 below and generalized there. 

2.1. Construction of co-propositions 

To develop the systematic application [35, 371 of the ideas implicit in the 
principle of 1.1 above, we consider a propositional logic [18, 441 in atomic letters 
P, Q, R, . . . with propositions denoted A, B, C, . . . . The atomic propositions will 
always stand for a linear inequality assertion 

a,x ,  + * * .  + a,x, 2 a0 (2.1. A) 

and more complex propositions are constructed by putting ’v’ (for: “or”) or ‘ A ’  

(for: “and”) between two given propositions, where B v D allows for the possibility 
that both B and D are true. 

To every proposition A, we inductively assign a co-proposition CT(A), which is a 
polyhedral cone of cuts (1.l.A) that are valid if A is true (we change terminology 
from [37]). 

Ignore, for the moment, the ground step in the inductive assignment of the 
co-proposition CT(P) to the proposition P. (The ground step changes, depending 
on whether or not x 3 0.) Two inductive rules clearly are suggested by the concept 
of a co-proposition, as vaguely as it has been described above. 

The first rule is 

CT(B A D )  = CT(B) + CT(D). (2.1.B) 

Indeed if all cuts of CT(B) are valid when B holds, and all cuts of CT(D) are valid 
when D holds, then when B A D holds all cuts of CT(B) U CT(D) are valid, and 
valid cuts are closed under addition. 

The second rule is 

CT(B v D )  = CT(B) n CT(D). (2.1. C) 

Indeed if B v D is true, but we do not know which, all we are certain of is that those 
cuts which are valid on account of either are true: and (2.1.C) expresses this fact. 

Clearly, CT(A) will depend on the syntactic form of A, as well as the truth set of 
A, because in general 

# (CT(B) fl CT(DI)) + (CT(B) n CT(D,)) 

= CT((B v Dl) A ( B  A D2)).  
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The ground step of the induction is also easy. If P is atomic and asserts (2.1.A), 
then (1.l.A) is implied by (2.1.A) and x 3 0 precisely if there is a scalar A 3 0 with 

ha, S T,, j = 1, . . ., r 

A u ~  3 TO. (2.1.D) 

Now we will always take a valid cut (1.l.A) in the homogeneous form 

T O X O  + c ( -  7r , )XJ  =s 0 (2.1. E) 
J = 1  

and therefore a possible assignment of a cone CT(P) of valid cuts to P is: 

CT(P) = cone{(un, - u l , .  . ., - u,), ( -  1,0, .  . ., 0), 
(2.1.F) 

since this cone includes all (rTT0, - T,, . . ., - T,) for which some A 3 0 exists with 
(2.1.D). Here, cone ( S )  is the smallest closed convex cone containing S. Since 
CT(P) has a finite basis, it is polyhedral [45, 47, 491. 

The rules (2.1.B) and (2.1.C) do not depend on the ground step (2.1.F). Indeed, 
any cone of cuts valid for the inequality (2.1.A) with all xi integer could have been 
used: (2.1.F) is obtained without invoking the integrality of x. More generally, any 
valid cone of cuts CT(B) can be used in these inductive assignments with B 
occurring as a well-formed proposition that is part of the proposition A for which a 
CT(A) is desired. 

For any proposition B, all of whose linear inequalities are rational, the set of all 
of the valid implied cuts (1.l.A) for x 2 0  with x integer, is a polyhedral cone. 
Indeed, B can be expressed as a disjunctive system ( s h )  with H finite: one 
considers all the possible combinations of “true” or “false” for the atomic letters 
(2.1.A) occurring in B, and by listing all the combinations which make B true, and 
placing “or” between them, the systems ( s h )  are obtained. For each system ( s h ) ,  

since A h  and b h  are assumed rational, the set of all integral solutions is either 
empty or a slice, with convex span a polyhedron, so the set of all implied 
inequalities is a polyhedron r h .  Therefore the set of all inequalities validly implied 
by B itself is the polyhedron r = n h E H r h .  

In practice, for CT(P) one takes any polyhedral cone of valid cuts ( l . l .A) ,  usually 
a cone lying between that of (2.1.F) and r of the last paragraph. Then inductively 
by (2.1.B), CT(B A D )  is a polyhedral cone: given finite bases for each of CT(B) 
and CT(D), their union is a finite basis for CT(B A D ) .  Inductively by (2.1.C), 
CT(B v D )  is a polyhedral cone: it is defined by imposing all the  defining 
inequalities for both CT(B) and CT(D). Hence CT(A), for any proposition A, will 
be a polyhedral cone. 

The reader desiring a discussion of polyhedra, bases for polyhedra, and polarity 
for polyhedra, may wish to consult [45,47, Chapter 21 and the original paper [49]. 

(0, - 1,0, .  . .) O), . . .) (0 , .  . .) 0 ,  - 1)) 
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Theorem. 
h E H ( H  finite) hold in 1.1. That is, A states 

Suppose that the proposition A states that at least one of the systems ( s h  ), 

(A'x a b l ) v . - . v ( A ' x a  b ' )  (2.1.G) 

where H = (1,. . ., t }  and a matrix inequality Cx a f abbreviates the conjunction (i.e.,  
repeated use of ' A ' )  of the individual inequalities. Then CT(A) consists precisely of 
all cuts (DC) of Section 1.1., when (2.1.F) is used for atomic letters. 

Proof. In CT(A h~ 3 b h )  are all cuts (1.l.A) with T 3 A hA and ro  S A h b h  for any 
A h  3 0 ,  as one sees by repeated application of (2.1.B). Then deriving CT(A) by 
repeated intersection as in (2.1.C) amounts precisely to taking the maxima 
indicated in (DC). Q.E.D. 

Incidentally, the inductive clauses (2.1.B) and (2.1.C) also yield Balas' disjunctive 
constraint cut [5 ]  for x 3 0 deleted in ( s h ) ,  when the ground step of the induction is 
changed to 

(2.1. F) ' 

Since CT(A) represents valid cuts deduced from the fact that A is true, there is a 
natural problem relaxation cp(A) associated with A, which consists of all x E R' 
satisfying all cuts (1.l.A) of CT(A). That is, 

CT(P) = cone{(ao, - a , ,  . . ., - a") ,  ( -  1,0,. . ., 0)). 

(2.1 .H) 2 r i x j  2 r0 whenever 

(TO- T I , .  . ., - T,) E CT(A) 

The condition x 3 0 can be appended in cp(A) when (2.1.F) is used, or any cone of 
cuts which includes, along with a given cut, all the weakenings of that cut, as 
obtained by use of the unit vectors ( -  1,0,. . ., 0), (0, - 1,0,. . ., 0), . . ., (O,O, . . ., - 1) 
of (2.1.F). The unit vector ( -  1,0,. . ., 0) of (2.1.F) is always validly included even 
when the variables x are not non-negative. 

The following result is easily proven from the standard facts concerning polarity 
of polyhedra and we omit the proof (for a proof, see [35]). 

Lemma. If P is the atomic sentence (2.1.A) and the groundstep is (2.1.F), then 

With ground step (2.1.F)', 

cp(P) = { x 1 i: a,x, 2 ao . 
1 - 1  I 

(2.1. I) 

(2.1 .J) 

cp(A) does provide a problem relaxation, in the very definite sense of the next 
result. We use the notation A(x) to emphasize the dependence of A on x. 
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Theorem. Zf (2.1.F) is the ground step, 

cp(A) 2 clconv{x 0 1 A (x) is true}. 

For the ground step (2.1.F)', 

(2.1.K) 

c p ( ~ )  2 clconv {x I A (x) is true). (2.1 .L) 

Proof. 
inductive step is possible by (2.1.B), (2.1.C), and (2.1.H). 

Use (2.1.1) resp. (2.1.5) for the ground steps of an induction, and the 
Q.E.D. 

We remark that equality rarely holds in (2.1.K) or (2.1.L), with the possible 
exception that A is in disjunctive normal form or that A has some other special 
property (see, e.g., Section 2.1.2 below). 

Theorem. 
extreme rays of CT(A) except possibly for a ray (- 1,0,. . ., 0). 

If cp(A) is fully-dimensional, then the faces of  cp(A) are precisely the 

Proof. 
(or see [35] for a proof). 

Omitted, since it easily follows from a knowledge of polarity for polyhedra 

Whenever clconv{x I A (x) is true} is fully-dimensional, as occurs in a fully- 

Q.E.D. 

dimensional integer program, (2.1.K) shows that cp(A ) is fully-dimensional. 

2.1.1. Exactness for co -propositions 

From the nature of the reasoning behind (2.1.B), one expects 

C ~ ( B  A D = C ~ ( B  ) n CP(D ). (2.1.1 .A) 

(2.1.1.A) is in fact true and easy to prove (see, e.g., [35] or [37, p. 881). 
From the same intuitions, one expects also cp(B v D )  = clconv (cp(B) U cp(D)), 

a condition we call the exactness of B v D. Exactness may fail, basically for the 
same reason that consistency is needed in one of the converses of the disjunctive 
constraints principle of 1.1: an example of its failure is in [37]. But exactness does 
hold under so many broadly defined circumstances, that it rarely fails in connection 
with applications to (IP). 

To explore the issue of exactness, assume a general situation in which non- 
negativities are not necessarily tacitly added to all atomic inequalities (2.1.A) - 
i.e., assume a situation like (2.1.F)', as opposed to (2.1.F). Then let a polyhedral 
definition 

C T ( B h ) P = { X  ( Q h X - q h X o * O , X o ~ o }  

be given for CT(Bh )P, where S p  denotes the polar set to S R'", and where xo * 0 
can always be appended due to the ability to indefinitely decrease r0 in any valid 
cut (l.l.A). One easily shows that cp(Bh) = {x 1 Q h x  3 q " }  (see e.g., [35]). 
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Note that the definition (2.1.C) for CT(BI v . - v B,), modified in the obvious 
manner for t 3 3 ,  amounts to the following when (2.1.F)' is used. We have, by 
Farkas' Lemma and standard properties of polarity, 

Hence one has (1.l.A) as a cut in CT(B1v . . .  vB,) precisely if there is a vector 
A h a O  with r = A h Q h  and r r o 6 A h q h  for h = 1 ,  ..., t. 

Reviewing our reasoning of 1.1.1 above, regarding the general hypothesis 
( l . l . l .B) for the converse to the disjunctive cut principle, we see that it applies here 
as well. 

Theorem. 
have 

If some cp(Bp) # 0 and if, for every h with Q h x  3 q" inconsistent, we 

Q"X a o + x = C {x(p)I QPX 3 q p  consistent) (2.1.1.B) 

for certain x ( ~ )  with Q P ~ ( P ) 2  0, then CT(BI v . * v B,) includes all valid cuts for 
clconv(U;=,{x 1 Q"X aqh) ) .  AISO 

and CT(B1 v . . . v B1) is exact. 

Proof. Omitted; for more details see [35]. Q.E.D. 

A second, narrower, hypothesis insuring exactness is that all cp (B") = 0, i.e., all 

For two particular applications of the above theorem, we have the following 
the systems Q h~ z= q are inconsistent. We omit the proof (see [37] for a proof). 

result. 

Proposition. Exactness holds i f  either: 
(1) All Q = Q", independent of h = 1, .  . ., t (see [37]); 
(2) cp(B1 v * . . v B , )  is bounded. 

Proof. For (2), note that the general relation [36] 

cp(B, v - * v B,)> clconv (cp(B,) U.  . * U cp(B,)) (2.1.1 .C) 
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always holds. Clearly, (2.1.1.C) handles the case cp(B1 v . . . v Br) = 0. For 
cp (B1 v . * v B,) # 0, at least one cp (B,) # 0, i.e., Q P x  2 q p  is consistent. To obtain 
(2.1.1.B) it suffices, therefore, to show that 

If Q h x  2 q h  is inconsistent, then Q h x  2 0 implies x = 0. (2.1.1.D) 
Toward (2.1.1.D), let x " # O  be given with Q h x ' 2 0 ,  and let x *  be such that 

Q P x * 2 q P .  Now if (n,,,-rl ,..., - n , ) E C T ( B h ) ,  we have ~ ~ ' 3 0  with T =  

(TI , .  . ., T,): 

TX'= AhQhxo(since n = A h Q h )  

3 0 (since Q h x o  3 0, A 2 0). 

Therefore m " 2 0  if 

(no, - T )  E CT(B, v * * * v B,) = CT(B1) fl ' . . n CT(B,) C CT(&). 

Also, if (no, - T )  E CT(Bl v . . v B,) C CT(B,), then TX * 3 no. Therefore, for any 
A 2 0, T ( X  * + Ax') 3 T', showing that cp(Bl v * * . v B,) is unbounded. This con- 
tradiction gives (2.1.1.D), and the proof of (2) is complete. Q.E.D. 

This whole analysis can be repeated with the ground step (2.1.F) and with the 
same results obtained: one simply appends x 2 0 to the inequalities Q h~ - q h ~ o  2 0, 
X" 2 0.  

2.1.2. Distributivity for co -propositions 

The polyhedral sets of R', while they do have the lattice structure of a greatest 
lower bound for two sets (take intersection) and a least upper bound for two sets 
(take the closed, convex span of their union), do not form a distributive lattice: the 
distributive law 

rl n clconv (Tr u r3) = clconv ((r, n r2) u (rl n r3)) 
often fails, as we see in r = 1 taking rl = {l}, r2 = {0}, r3 = (2). However, the truth 
value of A A ( B  v D )  is that of ( A  A B) v (A A D ) ,  i.e., the A ,  v - subpart of 
propositional logic is a distributive lattice. This asymmetry in the two lattices causes 
the mapping A --+ cp(A) to depend on the syntactic form of A as much as the truth 
set of A. 

"Half" of the distributive laws do  hold in the relaxations cp(A): 

Cp(B A ( 0 1  A . * * A 0,)) 2 Cp((B A DI) V . . . V ( B  A 0,)) (2.1.2.A) 

Cp(B V ( 0 1  A ' '  ' A Dt))CCp((B V 0 1 )  A ' '  ' A ( B  V o r ) ) .  (2.1.2.B) 

These laws, and several others, are established in [37] .  
From the inductive definitions (2.1.B), (2.1.C) and the ground clause (2.1.F) 

which introduces a parameter A 3 0 (a different parameter for each occurrence of 
P), more parameters are required for CT((B A 0,) v . . . v ( B  A 0,)) than for 
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CT(B A (Dl v . . . v Or)), showing that the former may include better cuts (see 
(2.1.2.A)), but these generally require more computation than those of the latter. 
Indeed, there are several interrelations between cp(A) and the number of 
parameters needed for CT(A), e.g., 

C p ( ( h  = b )  A ( X I  = 0 V X I  = 1) A . . . A ( X ,  = 0 V X ,  = 1)) 

is usually much larger than cp(V,,,(Sh)’) with (sh)’ from 1.1. However, (2.1.2.B) 
shows that, in some cases, more parameters can be worse. 

In [5]  Balas found an hypothesis on polyhedra, in order for the distributive law 

h = l  h = l  

to be valid. The hypothesis is that r = { x  I ax a b }  where ax 
empty) of the bounded set c lconv(Ui=,  rh). 

From (2.1.2.C), the set of all valid cutting-planes for 

(2.1.2.C) 

2 b is a face (possibly 

the left-hand-side of 
(2.1.3.C) is the set of valid cutting-planes for the right-hand-side. However, without 
further analysis, the co-propositions corresponding to the  left-hand-side and the 
right-hand-side of (2.1.3.C) need not be equal, since the co-propositions are only 
some of the  valid inequalities for a given set, and which ones they are depend on 
how the set is described. 

Nevertheless, a co-propositional form of Balas’ result is valid, and we give it next. 

Theorem. If cp(B) n cp(D1 v . . . v DI) is a face of cp(DI v . . v D,), and 
cp(Dl v * v Or) is bounded, then 

Cp(B A (01 V ’ * . V D c ) )  = Cp((B A 01) V . . . V (B A 0,)) 
(2.1.2.D) 

= clconv ( h = l  U ( c p ( ~ )  n cp(Dh))). 

Proof. Part of (2.1.2.D) is easy, since the boundedness of 

cp(Dl v . . . v 0,) 1 cp(B A (0, v * .  . v D,)> cp(B A D 1 ) v  . . . v (B AD,)) 

shows the boundedness, hence the exactness, of cp((B A Dl) v . . . v (B A 0,)) from 
the proposition in 2.1.1 above: this is one equation of (2.1.2.D). 

For the remaining equation, note that any face of the  bounded set 

is the convex span of those points of the generating set uk=, cp(Dh) which lie in it 
- again, exactness here is implied by boundedness. 

Suppose that x E cp(B A (Dl v * * * v Dl)) = cp(B) n cp(D1 v * + .  v Or). By the last 
paragraph, since cp(B) n cp(0 ,  v . . . v Or) is a face of cp(Dl v . . v Dc) ,  there is a 
represen tation 
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A h  a 0 for h E H ;  A h  = 0 if cp(Dh) n cp(B) = 0; in which x(') is in cp(Dh) and in the 
face cp(B) n cp(D1 v . * * v 0'). Hence each x ( ~ ' E  cp(B) fl cp(Dh), yielding by 
(2.1.2. E) that 

x E clconv ( cj ( c p ( ~ )  n cp(Dh))) = c p ( ( ~  A D ~ )  v . . . v ( B  A D,)). 
h=1 

This shows that 

Cp(B A (01 V ' . ' V Dt)) c Cp((B A 0 1 )  V ' ' ' V ( B  A or)), 
and (2.1.2.A) supplies the reverse inclusion. Thus the remaining equality of 
(2.1.2.D) is proven. Q.E.D. 

2.1.3. Linear programs equivalent to disjunctive systems 

For the disjunctive systems (sh) with 1 HI finite, the disjunctive inequalities 
r x  3 no arise from the projection of the polyhedron 

A ~ A "  s r, 

A h b h  3 ro, (all h E H ) ,  

A h  3 0 ,  

(2.1.3. A) 

upon the ( r  + 1) co-ordinates of (r, ro). This is simply the principle in 1.1 of 
disjunctive cuts, and in 2.1 above we saw that this projection gives 
CT((A'x 3 b ' )  v . . . v (A'x 3 b')), H = (1,. . ., t } ,  under (2.1.F). Assume this co- 
proposition is exact. 

Therefore, from 2.1, if the disjunctive systems ( s h )  describe a fully-dimensional 
body, the facets of clconv ({x I for some h E H, A h x  3 bh and x 2 0)) arise as 
certain of the projections upon the co-ordinates (T ,  no), of the extreme rays of the 
polyhedral cone of all solutions ( { A h  1 h E H}, T,  ro) to (2.1.3.A) [ 5 ] .  

If one wishes to 

minimize cx 

subject to A h x  3 bh, x Z= 0 for some h E H, (2.1.3 .B) 

then one approach is to find the best disjunctive cut with rr = c. This gives 

max T" 

subject to A hA s c 

Ahbh 3 rro 

A h  30. 

(all h E H) 

(2.1.3.C) 
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The ordinary linear programming dual to (2.1.3.C) is 
I 

min 2 cxh 
h = l  

subject to A h ~ h  - b h X h  3 0, h E H  
(2.1.3.D) 

where, for each h E H, we have introduced an r-vector x h  and a scalar x h .  (2.1.3.D) 
provides a linear programming equivalent to the purely logical program (2.1.3.B), 
under the same circumstances that the disjunctive cuts provide all valid cuts for 
(2.1.3.B), e.g., when all the systems ( s h ) ,  h E H, are consistent (see [5]), or the 
associated co-proposition is exact. 

One can develop a linear programming formulation for every proposition A in v, 
A ,  such that the linear program describes optimization over cp(A) [37]. When 
specialized to (2.1.3.B), this program is (2.1.3.D). 

Clearly, one way to compute the optimum 2 of (2.1.3.D) is to separately find the 
values f h  = min {cx 1 Ahx 2 bh,  x 2 0) and put 2 = max f,,. This corresponds to 
putting xk = 1 in (2.1.3.D) for one index k with f = A, and x k  equal to the optimum 
solution yielding fk. This method corresponds to the obvious branch-and-bound 
procedure €or solving (2.1.3.B). In this way also, using systems like ( s h y  for ( s h ) ,  

one recovers ordinary branch-and-bound as one specific way of implementing 
(2.1.3.D). 

For a more detailed discussion of generalized branch-and-bound schemes and 
their relations to  disjunctive cuts that have the redundancy property cited in 1.4.3.1 
above, see [37, Section 51. 

2.1.4. For future research 

By leaving open the exact nature of CT(B) for propositions B “not further 
analysed,” so long as (2.1.B), (2.1.C) are used inductively to determine other 
co-propositions, we are of course allowing for an improvement by algebraic means, 
in the broad sense that “algebraic” is used in [35, 361. 

For if x E clconv{y 1 B ( y )  is true} implies Qx 2 q with Q, q rational, then any 
slice form (1.3.1.M) of [35, Part 11 gives rise to the polyhedral cone of all (T, TO), 
T = (T~, . . ., T,), with 

T U ( ~ ) ~  r0, i = 1,. . . , a ,  

m 0 ’ ) 3 O ,  j = 1 ,..., t. (2.1.4.A) 

As before, the practical use of (2.1.4.A) depends on designing Qx 3 q to allow 
efficient descriptions (2.1.4.A). 
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The current understanding, of how to properly devise “efficient relaxations” 
Qx 2 q of logical conditions B, is poor. On the one hand, we have the example of 
group relaxations, as for instance the group of [27]: here the irreducible group 
elements allow efficient enumeration of u ( ’ )  for cutting-plane purposes (in smaller 
groups), and the inequalities m(’) 3 0 become simple non-negativities. On the other 
hand, we have the principle of 1.4.3 above, in which the directions of infinity xo)  
give the monoid M that allows cut-strengthening. 

Clearly, we need more instances of “efficient relaxations” to understand the 
phenomenon better. Interestingly enough, those relaxations which have given us 
some very good cuts are unbounded, even though virtually all practical integer 
programs are bounded. As regards the set of v(’) of (2.1.4.A), one expects the 
presence of certain automorphisms of this set to yield an “efficient relaxation”, but 
the sense of this certainly needs clarification. 

2.2. Finitely -convergent disjunctive cutting -plane algorithms 

We apply the results of 2.1.1 to obtain finiteness proofs for a class of cutting- 
plane algorithms for problems involving both linear and logical constraints; these 
problems include bounded (IP). 

In principle, the use of systems ( s h ) ’  solves (IP) by cutting-planes in one 
application; however, the computation of the cutting-plane may be the work of a 
partial enumeration to  solve (IP). The individual cutting-planes added at each 
iteration must be much simpler than those from ( s h y  for the method to represent an 
alternative to those already known. 

The cutting-plane algorithms presented here are part of our theoretical develop- 
ment, and minimally these would have to be supplemented with good heuristic 
rules to be successful in practice. Furthermore, the “best” ways of using cutting- 
planes may be within an enumerative framework and with heuristically-found 
primal solutions (see our discussions in [35, 361). In this section we have a purely 
intellectual purpose, and that is to show that the disjunctive cuts do not  require the 
assistance of other devices in order to obtain finite convergence. While some of the 
algorithms below do  have promise and may prove successful when properly 
implemented, we will not address such practical issues in this section. 

First, for a simple case which provides a “subroutine” for the full construction to 
follow, suppose we wish to solve the following program in linear logical constraints: 

min cx 

subject to Ax 2 b (2.2.A) 

x 2 0  

and also Q x  2 q for at least one w E H = { I , .  . ., a } .  (2.2.B) 

We assume throughout that {x 1 Ax z= b, x 2 0) is  bounded and non-empty. 
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The constraints of (2.2.A), (2.2.B) are of the form of those for the exactness result 
in Proposition (1) of Section 2.1.1, if one uses 

A' = [ $1, (2.2.C) 

b" = [,"-I, w E H = (1,. . . , a } .  (2.2. D) 

Hence exactness holds, and all valid cutting-planes are obtained from 

C T ( ( A ' x Z b 1 ) v * . * v ( A ' ~  a b " ) ) .  

The following strategy suggests itself for (2.2.A), (2.2.B). We can solve (2.2.A) as 
a linear program without the disjunctive constraints (2.2.B). For all linear programs 
solved, we assume that an extreme point algorithm is used, i.e., one which provides 
a solution that is an extreme point whenever the program is consistent and 
bounded. The Simplex Algorithm is of this type; the subgradient algorithms are 
not. 

If the linear program is inconsistent, we halt: (2.2.A), (2.2.B) is inconsistent. 
Otherwise, by boundedness, we obtain an optimal extreme point solution x". If x"  
satisfies (2.2.B), we are done: it is optimal for (2.2.A), (2.2.B). In what follows, we 
assume that x"  does not solve (2.2.B). 

We claim that there is at least one facet or singular defining inequality of the set 

{x 1 A"x 2 d w , x  Z O } )  (2.2.E) 

which is not satisfied by x", i.e., which "cuts off" x".  Here A"x 3 d" includes the 
constraints appended to Ax 2 b to date, including any previous cuts. 

To see the claim, by the boundedness of 

{ x ( A x a b , x a O } >  U { x I A " x a d " , x a O } ,  
W E H  

the extreme points of the set T are in its generator set 

U { x  1 A"x d", x 3 0}, 
W E H  

and this set is, in turn, contained in the current linear programming relaxation 
A *x  a d * ,  x z 0. Therefore, if x " E  T, it would not be an extreme point of the 
relaxation. This shows x"$Z T. Therefore, if T is fully-dimensional (as occurs if the 
constraints (2.2.A), (2.2.B) define a fully dimensional set), there is a facet of T not 
satisfied by x ; for T not fully-dimensional, either a facet or a singular inequality of 
T is not satisfied by x .  

After the facet or singular inequality is added as a "cutting-plane,'' the resulting 
enlarged linear programming relaxation is reoptimized, and the procedure repeats. 

We now prove finite convergence of the procedure. Here it is important to note 
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that, after re-optimization, the new set T obtained is the same as the previous one 
in (2.2.E). This is because the cutting-plane added is satisfied by the set of (2.2.E), 
hence satisfied by each set {x 1 A”x 2 d ” ,  x 2 0} for w E H, and so when the matrix 
A”x 2 d “  is enlarged by the new inequality, these sets, and therefore their convex 
span, will not change. 

Finite convergence follows simply because the set T of (2.2.E) has only finitely 
many facets and singular inequalities. After all have been added- and a new one is 
added each time -certainly (2.2.B) will be satisfied, since an extreme point of T is 
in one of the sets { x  1 A”x 2 d”,  x 3 0}, and therefore satisfies at least one of the 
conditions of (2.2.B). 

The facets of T of (2.2.E) are to be obtained from the co-proposition 

CT((A”x 3 d ’ ) ~  . . . v (A”x 2 d ” ) ) .  

This involves finding a suitable face -for T fully dimensional, an extreme ray -of 
a system like (2.1.3.A), and projecting the (r, r0) co-ordinates. Not every projec- 
tion is a facet or singular inequality, but they are among these projections, and only 
finitely many facets of the desired type exist for (2.1.3.A). Therefore if, at each 
iteration, we simply add the (T, To)-projection of a face for (2.1.3.A), finite 
convergence is again guaranteed. 

In the case that T is fully-dimensional, one can set up (2.1.3.A) in terms of the 
current non-basic variables, turn the desired extreme rays into extreme points by 
adding r0 2 1 (since only facets or singular inequalities “cutting-away’’ xo  are 
desired), and determine any extreme point of the resulting system. 

Now consider a more complex logical linear program of the form 

min cx 

subject to Ax 2 b 

x 3 0  

(2.2.F) 

cx E 2‘ 
and also, for every p E P = (1,. . ., O},  we have 

Q‘,’X = qP.” (2.2. G) 

for at least one w E H, = (1,. . ., t ( p ) } .  In (2.2.F), we require that 3 is a finite set. 
For instance, (IP) is of this form when it is bounded and c = (c,, . . ., c,) is integral, 
by taking 3 as the integers, P = ( 1 , .  . ., r }  with Q‘,’x = 4”” as x, = w, w integer, 
where H, is sufficiently large so that all possible values of x, are included. To 
represent (IP) via (2.2.G) with disjunctive systems of n o  more than two elements, 
one may use a number of systems of the form (xi 

Of course, by converting the logical constraints (2.2.G) into disjuctive systems 
(S,,), we can reduce this problem to the one studied in (2.2.A), (2.2.B) above. But 
the procedure that we now describe uses much smaller disjunctive systems; for (IP), 
only systems with two conditions need be employed. 

w or x, 2 w + 1). 



Cutting -plane theory 327 

The procedure described above for (2.2.A), (2.2.B) will provide our basic step, SO 

again we are using linear optimization to repeatedly solve tighter and tighter linear 
relaxations. But we shall suppose that this linear optimization is lexicographic with 
respect to s(Q(')), . . ., s(Q(@)), in that order. Here s(Q',)) denotes the sum of the 
rows of Q ' p ) .  

By such a lexicographic method, we mean the following. Reduced cost rows are 
maintained for the linear forms s(Q',))x,p E P. First cx is optimized; then if 
s(Q(")x can be further decreased without changing the value of cx (i.e., if there are 
pivots in columns where the criterion function cx has zeroes), these pivots are 
employed until n o  more remain; then if s (QCL))x  can be further decreased without 
changing the value of cx or x(Q'")x, these pivots are employed until n o  more 
remain; etc. In this method, s ( Q ' , ) ) x  is given complete priority over S(Q(~+'))X, by 
only using pivots with entering columns that have zeroes in the rows for s(Q(")x, 
i s p .  

For an optimal solution xo to the current linear programming relaxation, call k 
the truncation index if: (1) For each p = 1,. . ., k there is w ( p )  E H, such that 
Q ( p ) ~ o  = qp."(p); (2) Q"+')x"# qk+l .w for all w E f f k + I .  I.e., (k + 1) is the index of the 
"first" set of violated constraints. We put k = 0 if all logical constraints are violated. 
If k = 8, we may terminate: xo  is optimal for (2.2.F), (2.2.G). Assume now that 
k < 8. 

Associated with the truncation index k of x o  is the vector (q'"''), . . ., qkVw(')) of 
clause (l), the truncation vector. By definition, the truncation vector is 0 if k = 0. 
Here it is important to make the observation that, if the truncation index for the 
next optimum xoo after re-optimization is k ' <  k, then this truncation vector will 
never occur again for the same criterion value z o  = cxo. Indeed, if z o  = cx, since 
there has occurred a lexicographic decrease in (cx, s(Q('))x,. . ., s(Q'"))x) with 
truncation index k ' <  k, for x in all subsequent solutions at least one of the 
quantities cx, s(Q'")x,. . ., s(Q"'))x will be less than the corresponding quantity for 
xo. But if Q@)x = qp3w(p)  holds, then the value of s(Q'"')x is the sum of elements of 
qP,'"@). Therefore, for some i = 1,. . ., k', q""") is not the ith component of any 
subsequent truncation vector. 

When c x o e  2, we add the cut 

cx =z L.CX 5, (2.2.H) 

where L u J  denotes the largest element of 2 that is S u, for u E R. (If n o  such 
element exists, the program is inconsistent.) (2.2.H) certainly causes pivoting to a 
new point. Otherwise, as in the algorithm for (2.2.A), (2.2.B) we add a facet or 
singular inequality for the set 

r(h) 
clconv ( U {x I A " x  3 d ' ,  x 3 0 ,  QCh)x = qh, '" } ) ,  h = k + 1, (2.2.1) 

w € H h  

by means of the corresponding exact co-proposition. In (2.2.1), A " x  2 d ' ,  x 2 0 is 
the current linear programming relaxation, and of course k is the truncation index. 
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The procedure just described is finite. By the boundedness of {x 1 Ax 2 b, x 2 0) 
in (2.2.F), (2.2.G), only finitely many cuts of the type (2.2.H) can be added, since Z 
is finite. Therefore, to prove finite convergence, it suffices to show that there will 
not be an infinite sequence of cuts of the type (2.2.1) added all with the same value 
of x ”  = cxo. Since truncation vectors do not repeat when there is a decrease in the 
truncation index, and since there are only finitely many truncation vectors, this case 
simplifies to showing that the truncation index must decrease after finitely many 
cuts are added. 

However, the argument for (2.2.A), (2.2.B) shows that the truncation index 
cannot remain the same in an infinite, consecutive sequence of cuts. If it decreases, 
we are done. If it increases, the same analysis repeats for the larger truncation 
index, and eventually the truncation index cannot increase, since it will reach the 
upper bound of 8. This completes the proof of finite convergence. 

Balas has provided finitely-convergent cutting-plane algorithms, also based on a 
lexicographic argument, for a class of linear logical programs called “facial” [5 ] .  
This class includes the important case of (IP) for bivalent variables. 
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A “PSEUDOPOLYNOMIAL” ALGORITHM FOR SEQUENCING 
JOBS TO MINIMIZE TOTAL TARDINESS* 

Eugene L. LAWLER 
Computer Science Division, University of California, Berkeley, C A  

Suppose n jobs are to be processed by a single machine. Associated with each job j are a fixed 
integer processing time p,, a due date d,, and a positive weight w,. The weighted tardiness of job j 
in a given sequence is w, max(0, C, - d,), where C, is the completion time of job j .  Assume that 
the weighting of jobs is “agreeable”, in the sense that pi  < p, implies w, z w,. Under these 
conditions, it is shown that a sequence minimizing total weighted tardiness can be found by a 
dynamic programming algorithm with worst-case running time of O(n4P) or O(nSp,) ,  where 
P = c p, and pmex = max {p , } .  The algorithm is “pseudopolynomial”, since a true polynomial- 
bounded algorithm should be polynomial in c log,p,. 

1. Introduction 

Suppose n jobs are to be processed by a single machine. Associated with each 
job j are a fixed integer processing time p,, a due date d,, and a positive weight w,. 
The tardiness of job j in a sequence is defined as T, = max(0, C, - d,}, where C, is 
the completion time of job j .  The problem is to find a sequence which minimizes 
total weighted tardiness, c w,T,, where the processing of the first job is to begin at 
time t = 0. 

Let us assume that the weighting of jobs is agreeable, in the sense that pa < p ,  
implies w, 3 w,. Under these conditions, it is shown in this paper that an optimal 
sequence can be found by a dynamic programming algorithm with worst-case 
running time of O ( n 4 P )  or O(n5pmax), where P = cp,, and p,, = max{p,}. 

The proposed algorithm is distinguished from previous algorithms [5,7,15] for this 
problem in that its running time is bounded by a function that is polynomial, rather 
than exponential, in n. However, the present algorithm does not qualify as a 
polynomial algorithm in the accepted sense of the term. This is because the running 
time is not bounded by a polynomial in the number of bits required to specify an 
instance of the problem in binary encoding. To be polynomial in this sense, the 
running time should be polynomial in clog2p,,,  rather than P or pmaX. 

Although the proposed algorithm is not polynomial with respect to binary 
encoding of data, it is polynomial with respect to an encoding in which the p, values 
are expressed in unary notation. For this reason, we say that the algorithm is 
pseudopolynomial. 

* Research supported by National Science Foundation Grant GJ-43227X. 
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If the weights of jobs are unrestricted (“disagreeable”), then the weighted 
tardiness problem is NP-complete, even if all data are encoded in unary notation. 
(See proof in appendix.) This means that the existence of a pseudopolynomial 
algorithm is very unlikely. O r  more precisely, such an algorithm exists i f  and only if 
there are similar algorithms for the traveling salesman problem, the three dimen- 
sional assignment problem, the chromatic number problem, and other well-known 
“hard” problems [6]. 

It should be mentioned that there is as yet no  proof that the agreeably weighted 
tardiness problem is NP-complete with respect to binary encoding. Hence one may 
still hope to find a polynomial algorithm. Some unsuccessful attempts are described 
in the final section of this paper. 

There are many closely related types of sequencing problems in which the 
distinctions between agreeable weighting and unrestricted weighting and between 
binary encoding and unary encoding are significant. For example, suppose all jobs 
have the same due date. Then the unrestricted weighted tardiness problem can be 
solved by a pseudopolynomial algorithm with O ( n 2 P )  complexity [lo], whereas the 
agreeably weighted case yields to an O ( n  log n )  procedure (SPTorder). O r  suppose 
we seek to minimize the weighted number of tardy jobs (with respect to arbitrary 
due dates). The unrestricted problem is NP-complete with respect to binary 
encoding, but can be solved in O ( n P )  time [lo]. The agreeably weighted case can 
be solved in O ( n  log n )  time [9,11]. 

2. Theoretical development 

Theorem 1. Let the jobs have arbitrary weights. Let T be any sequence which is 
optimal with respect to the given due dates d , ,  d z ,  . . ., d,, and let C, be the completion 
time of job j for this sequence. Let d ;  be chosen such that 

min (d,, C,) c di max (dl ,  C,). 
Then any sequence 7r’ which is optimal with respect to the due dates d ; ,  d : ,  . . ., dA 
is also optimal with respect to d , ,  d, ,  . . ., d,  (but not conversely). 

Proof. Let T denote total weighted tardiness with respect to d , ,  d Z ,  . . ., d,  and T’ 
denote total weighted tardiness with respect to d ; , d : , .  .., d : .  Let rr’ be any 
sequence which is optimal with respect to d i , d $ ,  ..., d ; ,  and let C :  be the 
completion time of job j for this sequence. We have 

T ( T )  = T’(T)  + A,, 
i 

T(rr‘) = T’(rr’) + Bl 
I 

where, if C, s d,, 
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A, = 0 

B, = - w, max (0, min (C;,  d,) - d;), 

and, if C, 2 d,, 

A, = w, (d ;  - d , )  

B, = w, max (0, min ( C ; ,  d ;) - d,). 

Clearly A, 2 B, and C,A, 2 C, B,. Moreover, T'(rr) 2 T'(rr'), because rr '  is 
assumed to minimize T'. Therefore the right hand side of (1.1) dominates the right 
hand side of (1.2). It follows that T(rr)* T(rr') and rr ' is optimal with respect to 
di, dz, . . ., d,. 0 

Theorem 2. Suppose the jobs are agreeably weighted. T h e n  there exists a n  optimal 
sequence rr in which job i precedes job j if d ,  c d, and  p, < p,, and  i n  which all on t ime 
jobs are in  nondecreasing deadline order. 

Proof. Let rr be an optimal sequence. Suppose i follows j in rr, where d,  d, and 
p, < p,. Then a simple interchange of i and j yields a sequence for which the total 
weighted tardiness is no  greater. (Cf. [13, proof of Theorem 11.) If i follows j ,  where 
d, G d, and i and j are both on time, then moving j to the position immediateIy 
following i yields a sequence for which the total weighted tardiness is no greater. 
Repeated applications of these two rules yields an optimal sequence satisfying the 
conditions of the theorem. 0 

In order to simplify exposition somewhat, let us assume for the purposes of the 
following theorem that all processing times are distinct. If processing times are not 
distinct, they may be perturbed infinitesimally without upsetting the assumption of 
agreeable weighting or otherwise changing the problem significantly. Hence there is 
no loss of generality. 

Theorem 3. Suppose the jobs are agreeably weighted and numbered in  nondecreas- 
ing due date order, i.e. d ,  c d ,  . . . c d,. Le t  job  k be such that pk = max, {p,}. T h e n  
there is some integer S,0 n - k ,  such that there exists a n  optimal sequence n- in  
which k is preceded by all jobs j such that j =s k + 6, and followed by all jobs j such 
that j > k + 6. 

S 

Proof. Let C :  be the latest possible completion time of job k in any sequence 
which is optimal with respect to due dates d,, d,, . . ., d,. Let n- be a sequence which 
is optimal with respect to the due dates d l ,  d Z ,  . . ., dk-1, d ;  = 

max (CA, d k ) ,  d,,,, . . ., d,, and which satisfies the conditions of Theorem 2 with 
respect to these due dates. Let Ck be the completion time of job k for r. By 
Theorem 1, n- is optimal with respect to the original due dates. Hence, by 
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assumption, c k  S d;. Job k cannot be preceded in T by any job j such that dJ > d ’ ,  
else job j would also be on time, in violation of the conditions of Theorem 2. And 
job k must be preceded by all jobs j such that d, C d ; .  Let 6 be chosen to be the 
largest integer such that d k + S  < d ;  and the theorem is proved. 

3. Dynamic programming solution 

Assume the jobs are agreeably weighted and numbered in nondecreasing 
deadline order. Suppose we wish to find an optimal sequence of jobs 1,2,  . . ., n, with 
processing of the first job to begin at time t. Let k be the job with largest processing 
time. It follows from Theorem 3 that, for some 6, 0 S 6 S n - k ,  there exists an 
optimal sequence in the form of: 

(i) jobs 1,2 , .  . ., k -1, k + 1 , .  . ., k + 6, in some sequence, starting at time t, 
followed by 

(ii) job k, with completion time ck(6) = t + CJGktBP,, followed by, 
(iii) jobs k + 6 + 1, k + 6 + 2,.  . ., n, in some sequence, starting at time Ck(6). 
By the well known principle of optimality it follows that the overall sequence is 

optimal only if the sequences for the subsets of jobs in (i) and (iii) are optimal, for 
starting times t and Ck (a), respectively. This observation suggests a dynamic 
programming method of solution. For any given subset S of jobs and starting time t, 
there is a well-defined sequencing problem. An optimal solution for problem S, t 
can be found recursively from optimal solutions to problems of the form S ’ , t ’ ,  
where S’ is a proper subset of S and t ‘ >  t. 

The subset S which enter into the recursion are of a very restricted type. Each 
subset consists of jobs in an interval i, i + 1 , .  . ., j ,  with processing times strictly less 
than some value pk. Accordingly, denote such a set by 

s (i, j ,  k = { j ’  1 i G j ’  s j ,  p,, < pk 1, 
and let 

T(S(i, j ,  k ) ,  t )  = the total weighted tardiness for an optimal sequence 
of the jobs in S(i, j ,  k ) ,  starting at time t .  

By the application of Theorem 3 and the principle of optimality, we have: 

T(S(i , j ,k) , t )=min { T ( S ( i , k  + 6 , k ‘ ) , t ) +  wk,max(0,Ck.(8)-dk.) 
6 

(3.1) 
i- T ( S ( k ’ +  6 + l , j ,  k ’ ) ,  Ck,(6)} 

where k’  is such that 

p k ,  = max {pi,  I j ’  E s ( i ,  j ,  k ) } ,  

and 
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c k ' ( 6 )  = + PJ', 

where the summation is taken over all jobs j '  E S ( i ,  k + 8, k ' ) .  
The initial conditions for the equations (3.1) are 

7x4, t )  = 0 

T({j} ,  t )  = w, max (0, t + p, - d, ) .  

It is easy to  establish an upper bound on the worst-case running time required to  
compute an optimal sequence for the complete set of n jobs. There are no more 
than O ( n 3 )  subsets S ( i , j , k ) .  (There are n o  more than n values for each of the 
indices, i ,  j ,  k.  Moreover, several distinct choices of the indices may specify the same 
subset of jobs.) There are surely no more than P = c p, np,,, possible values of t .  
Hence there are no more than O ( n 3 P )  or  O(n4P,, ,)  equations (3.1) to  be  solved. 
Each equation requires minimization over at most n alternatives and O ( n )  running 
time. Therefore the overall running time is bounded by O ( n 4 P )  or  O(n5p,, ,) .  

At this point we have accomplished the primary objective of this paper, which is 
to present an algorithm which is polynomial in n. The remaining sections are 
devoted to  a discussion of various computational refinements. 

4. Refinements of the algorithm 

There are several possible refinements of the basic algorithm that may serve to  
reduce the running time significantly. However, none of these refinements is 
sufficient to  reduce the theoretical worst-case complexity; some may actually 
worsen it. 

Representation of subsets 

It should be noted that S ( i ,  j ,  k )  may denote precisely the same subset of jobs as 
S ( i ' , j ' ,  k ' )  even though i #  i ' ,  j #  j ' ,  k #  k ' .  The  notation used in (3.1) is employed 
only for convenience in specifying subsets. Obviously, the computation should not 
be allowed to  be redundant. 

State generation 

Only a very small fraction of the possible subproblems S, t are of significance in a 
typical calculation. Any practical scheme for implementing the recursion should 
have two phases. In the first, subproblem generation phase, one starts with the 
problem S = {l, 2, .  . ., n } ,  t = 0 and successively breaks it down into only those 
subproblems S, t for which equations (3.1) need to  be solved. In the second, 
recursion phase, one solves each of the subproblems generated in the first phase, 
working in the order opposite to  that in which they were generated. 
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Restriction of 6 

It is often not necessary for 6 to range over all possible integer values in (3.1). 
The range of 6 can sometimes be considerably restricted by the technique 
described in the next section, thereby reducing the number of subproblems that 
need be generated and solved. 

Shortcut solutions 

There are some “shortcut” methods of solution for the sequencing problem. 
Whenever one of these shortcut methods is applicable to a subproblem S , t  
generated in the first phase of the algorithm, it is unnecessary to solve that problem 
by recursion of the form (3.1) and no further subproblems need be generated from 
it. A discussion of shortcut solution methods is given in Section 6. 

Branch -and-bound 

At least in the case of problems of moderate size, there appears to be relatively 
little duplication of the subproblems produced in the subproblem generation phase 
of the algorithm. In other words, the recursion tends to be carried out over a set of 
subproblems related by a tree structure, or something close to it. It follows that 
there may be some advantage to a branch-and-bound method, based on the 
structure of equations (3.1). Such a branch-and-bound method might have a very 
poor theoretical worst-case running time bound, depending on  the nature of the 
bounding calculation and other details of implementation. However, if a depth-first 
exploration of the search tree is implemented, storage requirements could be very 
drastically reduced. 

It is apparent that the form of recursion (3.1) furnishes a point of departure for 
the development of many variations of the basic computation. 

5. Restriction of 6 

The number of distinct values of 6 over which minimization must be carried out 
in equation (3.1) can sometimes be reduced by appropriately invoking Theorems 1 
and 2. If this is done in the state generation phase of the algorithm, there may be a 
considerable reduction in the number of subproblems which must be solved. 

Consider a subproblem S , t .  Let k be such that 

and assume that pk >pi, for all j E S - { k } .  We also assume that the jobs are 
numbered so that d ,  s dz c . . . 6 d,. The following algorithm determines distinct 
values &, i = 1,2, .  . . < n - k ,  over which it is sufficient to carry out minimization in 
equation (3,l). 
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(0) Set i = 1. 
(1) Set d ;  = t + cJ,,,pJ, where S ’  = { j  1 d, S d k , ]  E S}. 

Comment. If job k has due date dk, then by Theorem 2 there exists an optimal 
sequence in which the completion time of job k is at least as large as d; .  

(2) If d ;  > dk set dk = d ;  and return to Step 1. 

Comment. By Theorem 1, there exists a sequence which is optimal with respect to 
d ;  which is optimal with respect to d,. 

Let j be the largest index in S such that d, S d k .  Set 8, = j - k.  
Let S ” =  { j  I d, > d k , j  E S}. If S” is empty, stop. Otherwise, let j ’  be such that 

d,. = min {d,}, 
J E s” 

and set dk = 4.. Set i = i + 1 and return to Step 1. 

As an example of the application of the above procedure, consider the first test 
problem given in Appendix A of [l]. All w, = 1. The p, and dJ values are as follows: 

i 1  2 3 4 5 6 7 8 

pJ 121 79 147 83 130 102 96 88 

d, 260 266 269 336 337 400 683 719 

Note,that k = 3. Equation (3.1) yields: 

T({1,2,. . ., 8}, 0) = min 

T(S(1,3,3), 0) + 78 + T(S(4,8,3), 347), 

T(S(1,4,3), 0 )+  161 + T(S(5,8,3), 430), 

T(S(l,5, 3), 0) + 291 + T(S(6,8,3), 560), 

T(S(1,6,3),0)+ 393 + T(S(7,8,3), 662), 

T(S(1,7,3), 0) + 489 + T(S(8,8,3), 758), 

T(S(l,8, 3),  0) + 577 + T(4,846) 

Applying the procedure above, we obtain 8,  = 3, SZ = 5 and the simplified 
equation : 

T(S(1,6,3),0)+ 393 + T(S(7,8,3), 662, 

T(S(1,8,3), 0) + 577 + T(4, 846) 
T({1,2, . . ., 8}, 0) = min 

6. Shortcut solutions 

“Shortcut” solutions are sometimes provided by generalizations of two well- 
known theorems for the unweighted tardiness problem [3]. 
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Theorem 4. Let the jobs be given arbitrary weights. Let rr be a sequence in which 
jobs are ordered in nonincreasing order of the ratios witpi. If all jobs are tardy, then rr 
is optimal. 

Proof. Note that 

c W , T  = 2 W , c  + c W,  maX (0, dJ - c)- 2 WJdJ. 

It is well-known [14] that rr minimizes 
in the second summation is zero and that sum is also minimized. 

w,/p, -ratio order is equivalent to shortest processing time order. 

w,C,. If all jobs are tardy, then each term 

Note that if jobs are agreeably weighted and processing times are distinct, then 
0 

Theorem 5. Let the jobs be given arbitrary weights. Let rr be a sequence for which 

max { W I T }  
I 

is minimum, If at most one job is tardy, then rr is optimal. 

Proof. Obvious. 

Note that in the unweighted case, nondecreasing due date order minimizes 
maximum tardiness. In the case of arbitrary weightings, a minmax optimal order 
can be constructed by the O(n2)  algorithm given in [8]. 

The application of these two theorems can be strengthened considerably by 
applying them to an earlier or a later set of due dates induced by Theorems 1 and 2. 

For a problem S, t let the jobs in S be numbered so that p l  > p z  > . . . > pn.  New 
(earlier) deadlines d ;  for the application of Theorem 4 can be induced by the 
following algorithm. 

(0) Set k = n + 1.  
(1) If k = 1, stop. Otherwise, set k = k - 1. 

(3 )  Let s") = { j  I j E S, d, 3 d ; ,  p, > pk}. Set ck = t + XJES-S(*)pJ. 

Comment. 
Theorem 2. 

(4)  If c k  < d:, set d ;  = ck and return to Step 3 .  Otherwise, return to Step 1. 

(2) Set d ; =  dk. 

S(') contains all those jobs which can be assumed to follow k by 

New (later) due dates d can be induced by the following algorithm. 
(0) Set k = 1. 
(1) If k = n, stop. Otherwise, set k = k + 1. 
(2) Set d :  = d,. 

(4) If c k  > d ; ,  set d ; =  c k  and return to Step 3. Otherwise, return to Step 1.  
(3 )  Let S(')  = { j  I j E S,  d, c d k, p, < p k } .  Set ck = t + pk + ~ , E s ( ~ ) P ~ .  
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By Theorem 1, an optimal solution to the sequencing problem with respect to 
induced due dates di ,  j = 1,2, .  . ., n, is optimal with respect to the due dates dp 
Hence Theorems 4 and 5 can be applied with respect to the induced due dates. 

As an application of Theorems 4 and 5, let us solve equation (5.1). Consider first 
the application of Theorem 5 to S(1,8,3), t = 0. If the jobs in S(1,8,3) are 
sequenced in increasing d, -order, i.e. 1 ,2 ,4 ,5 ,6 ,  7,8, then jobs 5 and 6 are tardy so 
Theorem 5 does not apply. However, if induced due dates are computed, it is found 
that d :  = 515, with d ;  = d,, for j #  5. When the jobs are sequenced in increasing 
di-order, i.e. 1, 2, 4, 6, 5, 7, 8, no jobs are tardy with respect to di .  By Theorem 1, 
the sequence is optimal with respect to the original due dates and T(S(1,8,3), 0 )  = 
178. Also by Theorem 5, T(S(1,6,3),0)= 178. And by Theorem 4, 
T(S(7,8,3), 662) = 194. Hence (5.1) becomes: 

178 + 393 + 194, 
I78 + 577 + 0 

T({1,2, . . ., 8}, 0)  = min 

= 755, 

as indicated by Baker [l]. An optimal sequence is: 1, 2, 4, 6, 5, 7, 8, 3. Most of the 
test problems on the same list can be resolved with similar simplicity. 

It should be mentioned that even in the case that Theorems 4 and 5 do not yield 
shortcut solutions, it may be possible to reduce the size of a subproblem with the 
following observation. 

Theorem 6. Let k be such that dL = max { d i  I j E S } ,  where the di  are induced 
deadlines obtained as above. Let P be the sum of the processing times of jobs in S.  If 
P + t s d: ,  then 

Proof. Cf. [ 2 ] .  0 

7. Possibilities for a polynomial algorithm 

As we have commented, the status of the agreeably weighted tardiness problem 
is unclear. The proposed algorithm is only “pseudopolynomial”. However, no 
problem reduction has been devised to show that the problem is NP-complete, and 
one may still reasonably suppose that a polynomial algorithm does exist. 

There are some possibilities that do not seem rewarding in searching for a 
polynomial algorithm. For a given set S, T(S, t )  is a piecewise linear function of t. If 
T(S, t )  were also convex, and all wj = 1, then T(S, t )  could be characterized by at 
most n + 1 linear segments, with successive slopes 0,1,2, .  . .,n. The function T(S, t )  
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could then be computed in polynomial time, using equation (3.1). Unfortunately, 
T(S,  t )  is not convex, as can be shown by simple counterexamples. 

If the values of S for which the minimum is obtained in (3.1) were monotonically 
nondecreasing with t, then this would also suggest a polynomial bounded algorithm. 
Unfortunately, there are simple counterexamples for this property, as well. 

Appendix 

The following proof of the unary NP-completeness of the weighted tardiness 
problem was communicated to the author by M.R. Garey and D.S. Johnson. An 
alternative proof has been developed by J.K. Lenstra. [12]. 

The so-called 3-partition problem was shown to  be unary NP-complete in [4]. 
This problem is as follows. Given a set of 3n integers al,  az ,  . . ., a,, between 1 and 
B-1 such that 2 a, = nB, we wish to determine whether there is a partition of the 
at’s into n groups of 3 ,  each summing exactly to B. 

The corresponding scheduling problem: 

“X”-jobs: 

“A ”-jobs: 

Processing times: p ( X i )  = L = (16B2)-+ 1,1 < i < n, 

X,, 1 5  i < n. 

Ai, 1 6 i C 3n. 

n n + l  
2 

p(A,) = B + a,, 1 C i C 3n. 

Weights: w(X,)= W = ( L  +48)(4B) - + 1,1 C i s n, 

w(A,) = p(A.) = B + a,, 1 S i S 3n. 

Due dates: d ( X , )  = iL + ( i  - 1)4B, 1 i n, 

d(A,) = 0 , l  s i C 3n. 

Question: Is there a schedule n- with total weighted tardiness T ( T )  

that the groups are ( u ~ , - ~ ,  
the jobs: 

W - l? 
Suppose the desired partition exists. We may assume without loss of generality 

a3 j ) ,  1 < j < n. Consider the following ordering of 

T = (Xi, A , ,  A2, A3, X2, Ad, Ah, XS,. . .,Xu 

A3r-z ,A3, -1 ,A~l , . . . ,X11,  A?n-~,A?n-i,A?n). 

By assumption CP=-2p(A,j-,)= 4B for 1 s j s n. Thus X ,  will finish at time 
iL + ( i  - 1)4B = d ( X , ) ,  1 G i < n, and so none of the X-jobs are tardy. On the 
other hand, all the A jobs are tardy, with tardinesses equal to  their completion 
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times. For each j ,  1 s j s n, the three jobs A3j-2, A3,-l, and AS, all finish by 
j ( L  + 4B), and their total weight is 4B. Hence their collective weighted tardiness is 
at most j ( L  + 4B)4B. Hence 

" 
T(7T) s c j(4B)(L + 4B) = W ( 4 B ) ( L  + 4B) = w - 1, 

, = 1  

and 7~ is the desired schedule. 
W - 1. Clearly no X-job can be 

tardy, for even a tardiness of 1 would yield T ( 7 ~ ) s  W. Now define W, to  be the 
total weight of the A-jobs which follow i X-jobs, with Wn+l = 0 by convention. 
Then 

Conversely, suppose that m is such that T ( m )  

Since all X-jobs meet their due date, we must have W, 2 (n - i + 1)4B, 1 s i s n. 
Suppose some Wi 3 (n - i + 1)4B + 1. Then 

-(4B)+ 1. C W, 2 1 + 2 (n - i + 1 ) 4 ~  = 2 , = I  

This would imply that 

T(m)2=L(4B)( n(n + 1) )+16B 2 n ( n +  1 = w, 

a contradiction. 
Thus W, = (n - i + 1)4B, 1 S i s n. From this we conclude that the set of A -jobs 

between X, and X,,,  in m has total weight 4B, 1 S i 6 n - 1, and similarly for the 
set of A -jobs following X,. Since all A -jobs have B + 1 s w ( A )  S 2B - 1, each 
such set must contain exactly 3 jobs. These n groups of 3 jobs correspond to the 
desired partition. 0 
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We survey and extend the results on the complexity of machine scheduling problems. After a 
brief review of the central concept of NP-completeness we give a classification of scheduling 
problems on single, different and identical machines and study the influence of various 
parameters on their complexity. The problems for which a polynomial-bounded algorithm is 
available are listed and NP-completeness is established for a large number of other machine 
scheduling problems. We finally discuss some questions that remain unanswered. 

1. Introduction 

In this paper we study the complexity of machine scheduling problems. Section 2 
contains a brief review of recent relevant developments in the theory of computa- 
tional complexity, centering around the concept of NP-completeness. A classifica- 
tion of machine scheduling problems is given in Section 3. In Section 4 we present 
the results on the complexity of these problems: a large number of them turns out 
to be NP-complete. Quite often a minor change in some parameter transforms an 
NP-complete problem into one for which a polynomial-bounded algorithm is 
available. Thus, we have obtained a reasonable insight into the location of the 
borderline between “easy” and “hard” machine scheduling problems, although 
some questions remain open. They are briefly discussed in Section 5. 

2. Complexity theory 

Recent developments in the theory of computational complexity as applied to 
combinatorial problems have aroused the interest of many researchers. The main 
credit for this must go to S.A. Cook [7] and R.M. Karp [25], who first explored the 
relation between the classes 9 and N9 of (language recognition) problems 
solvable by deterministic and non-deterministic Turing machines respectively, in a 
number of steps bounded by a polynomial in the length of the input. With respect to 
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combinatorial optimization, we do not really require mathematically rigorous 
definitions of these concepts; for our purposes we may safely identify 9 with the 
class of problems for which a polynomial-bounded, good [8] or efficient algorithm 
exists, whereas all problems in N.9 can be solved by polynomial-depth backtrack 
sea rc h . 

In this context, all problems are stated in terms of recognition problems which 
require a yes/no answer. In order to deal with the complexity of a combinatorial 
minimization problem, we transform it into the problem of determining the 
existence of a solution with value at most equal to y ,  for some threshold y .  

It is clear that 9 C N.9, and the question arises if this inclusion is a proper one or 
if, on the  contrary, 9 = N.9. Although this is still an open problem, the equality of 
9’ and N.9 is considered to be very unlikely and most bets (e.g., in [28]) have been 
going in the other direction. To examine the consequences of an affirmative answer 
to the 9 = N.9 question, we introduce the following concepts. 

Problem P’ is reducible to problem P (notation: P’ TX P) if for any instance of P’ an 
instance of P can be constructed in polynomial-bounded time such that solving the 
instance of P will solve the instance of P’ as well. 

P‘ and P are equivalent if P‘  x P and P 
P is NP-complete [28] if P E N.9 and P’ x P for every P’E N.9. Informally, the 

reducibility of P’ to P implies that P’ can be considered as a special case of P; the 
NP-completeness of P indicates that P is, in a sense, the most difficult problem in 
NP. 

In a remarkable paper [7], NP-completeness was established with respect to the  
so-called Satisfiability problem. This problem can be formulated as follows. 

P‘. 

Given clauses C , ,  ..., Cu, each being a disjunction of literals from the set X = 

{x,, . . ., xo .f,, . . ., f r } ,  is the conjunction of the clauses satisfiable, i.e., does there exist a 
subset S C X such that S does not contain a complementary pair of literals (x,, X,), and 
S n C, # 0 for j = 1, . . ., u ? 

Cook proved this result by specifying a polynomial-bounded “master reduction” 
which, given P E N.9, constructs for any instance of P an equivalent boolean 
expression in conjunctive normal form. By means of this reduction, a polynomial- 
bounded algorithm for the  Satisfiability problem could be used to construct a 
polynomial-bounded algorithm for any problem in N.9. It follows that 

.9 = N.9 i f  and only i f  Satisfiability E 9. 

The same argument applies if we replace Satisfiability by any NP-complete 
problem. A large number of such problems has been identified by Karp [25; 261 and 
others (e.g., [17]); Theorem 1 mentions some of them. Since they are all notorious 
combinatorial problems for which typically no  good algorithms have been found so 
far, these results afford strong circumstantial evidence that .9 is a proper subset 
of N P .  
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Theorem 1. The following problems are NP-complete: 
(a) Clique. Given an  undirected graph G = (V,  E )  and a n  integer k ,  does G have 

a clique (i.e., a complete subgraph) on k vertices? 
(b) Linear arrangement. Given a n  undirected graph G = (V,  E )  and an  integer k ,  

does there exist a one-to-one function n- : V-{l,. . ., I V I }  such that & r , , ) E E I  n(i) - 
r r ( j ) l  c k ?  

(c) Directed hamiltonian circuit. Given a directed graph G = (V, A ) ,  does G 
have a hamiltonian circuit (i.e., a directed cycle passing through each vertex exactly 
once)? 

(d) Directed hamiltonian path. Given a directed graph G‘ = (V’, A’), does G’ 
have a hamiltonian path (i.e., a directed path passing through each vertex exactly 
once)? 

(e) Partition. Given positive in6egers a , ,  . . ., a,, does there exist a subset S C T = 

(1, .. ., t }  such that x , E s a ,  = C.,,,-sa,? 
(f) Knapsack. Given positive integers a , ,  . . ., a,, b, does there exist a subset 

S C T = (1,. . ., t }  such that x , E s a k  = b? 
(g) 3-Partition. Given positive integers a , ,  . . ., a,,, b, does there exist a partition 

(TI,. . . , T I )  of  T = (1,. . . ,3 t}  such that I T, 1 = 3 and CIE7,al = b for j = 1 , .  . ., t? 

Proof. (a) See [7;25]. 
(b) See [17]. 
(c, e, f) See [25]. 
(d) NP-completeness of this problem is implied by two observations: 

(A) Directed hamiltonian path E N.9;  
(B) P O( Directed hamiltonian path for some NP-complete problem P 

(A) is trivially true, and (B) is proved by the following reduction. 

Given G = (V, A ) ,  we choose v’ E V and construct G’ = (V’, A‘) with 
Directed hamiltonian circuit Directed hamiltonian path. 

V’ = v u {u”}, 

A’ = {(u,  w )  1 (v ,  w )  E A, w # v’} U {(v ,  v”) I ( v ,  u’)  E A}.  

G has a hamiltonian circuit if and only if G’ has a hamiltonian path. 
(g) See [12]. 0 

Karp’s work has led to a large amount of research on the location of the 
borderline separating the “easy” problems (in 9) from the “hard” (NP-complete) 
ones. It turns out that a minor change in a problem parameter (notably-for some 
as yet  mystical reason -an increase from two to three) often transforms an easy 
problem into a hard one. Not only does knowledge of the borderline lead to fresh 
insights as to what characteristics of a problem determine its complexity, but there 
are also important consequences with respect to the solution of these problems. 
Establishing NP-completeness of a problem can be interpreted as a formal 
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justification to use enumerative methods such as branch-and-bound, since n o  
substantially better method is likely to exist. Embarrassing incidents such as the 
presentation in a standard text-book of an enumerative approach to the undirected 
Chinese postman problem, for which a good algorithm had already been developed 
in [9], will then occur less readily. 

The class of machine scheduling problems seems an especially attractive object for 
this type of research, since their structure is relatively simple and there exist 
standard problem parameters that have demonstrated their usefulness in previous 
research. 

Before describing this class of problems, let us emphasize that membership of 9 
versus NP-completeness only yields a very coarse measure of complexity. On one 
hand, the question has been raised whether polynomial-bounded algorithms are 
really good [2]. On the other hand, there are significant differences in complexity 
within the class of NP-complete problems. 

One possible refinement of the complexity measure may be introduced at this 
stage. It is based on the way in which the problem data are encoded. Taking the 
Knapsack and 3-Partition problems as examples and defining a * = max,,.{a,}, we 
observe that the length of the input is O(t  log a *) in the standard binary encoding, 
and 0 ( t a , )  if a unary encoding is allowed. 3-Partition has been proved NP- 
complete even with respect to a unary encoding [12]. Knapsack is NP-complete 
with respect to a binary encoding [25], but solution by dynamic programming 
requires 0 ( t b )  steps and thus yields a polynomial-bounded algorithm with respect 
to a unary encoding; similar situations exist for several machine scheduling 
problems. Such “pseudopolynomial” algorithms [35] need not necessarily be 
“good” in the  practical sense of the word, but it may pay none the less to distinguish 
between complexity results with respect to unary and binary encodings (cf. [16]). 
Unary NP-completeness or binary membership of 9 would then be the strongest 
possible result, and it is quite feasible for a problem to be binary NP-complete and 
to allow a unary polynomial-bounded solution. The results in this paper hold with 
respect to the standard binary encoding; some consequences of using a unary 
encoding will be pointed out as well. 

3. Classification 

Machine scheduling problems can be verbally formulated as follows 16; 451: 
A job J, ( i  = 1,. . ., n )  consists of a sequence of operations, each of which 

corresponds to the uninterrupted processing of J, on  some machine Mk ( k  = 

1,. . ., m )  during a given period of time. Each machine can handle at most one job at 
a time. What is according to some overall criterion the optimal processing order o n  
each machine? 

The following data can be specified for each J , :  
a number of operations n, ; 
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a machine order v,, i.e. an ordered n,-tuple of machines; 
a processing time plk of its k th operation, k = 1,. . ., n, (if n, = 1 for all J,, we shall 

a weight w , ;  
a release date or ready time r,, i.e. its earliest possible starting time (unless stated 

a due date or deadline d , ;  
a cost function f : N + R ,  indicating the costs incurred as a nondecreasing 

We assume that all data (except v, and f i )  are nonnegative integers. Given a 

the starting time S, ; 
the completion time C, ; 
the lateness L, = C, - d, ; 
the tardiness T, = max(0, C, - d , } ;  
U, = i f  C, s d, then 0 else 1. 

usually write p, instead of p , , ) ;  

otherwise, we assume that r, = 0 for all J z ) ;  

function of the completion time of J,. 

processing order on each Mk, we can compute for each J,: 

Machine scheduling problems are traditionally classified by means of four param- 
eters n, m, 1, K.  The first two parameters are integer variables, denoting the 
numbers of jobs and machines respectively; the cases in which m is constant and 
equal to 1, 2, or 3 will be studied separately. If m > 1, the third parameter takes on 
one of the following values: 

1 = F in a pow-shop where n, = m and u, = (Ml,. . ., M,)  for each J , ;  
1 = P in a permutation pow-shop, i.e. a flow-shop where passing is not permitted 

1 = G in a (general) job-shop where n, and v, may vary per job; 
1 = I in a parallel-shop where each job has to be processed on just one of m 

identical machines, i.e. n, = 1 for all J, and the v, are not defined. 
Extensions to the more general situation where several groups of parallel (possibly 
non-identical) machines are available will not be considered. 

The fourth parameter indicates the optimality criterion. We will only deal with 
regular criteria, i.e., monotone functions K of the completion times C, ,  . . ., C, such 
that 

so that each machine has to process the jobs in the same order; 

C, s C :  for all i =+ K (Cl , .  . ., Cn)< K ( C i , .  . ., CL) 

These functions are usually of one of the following types: 
K = fma. = max, {f(C)l; 
K = xf = C : = , f ( c ) .  

The following specific criteria have frequently been chosen to be minimized: 
K = C,,, = max, {C,}; 

K = L,,, = max, { L , } ;  
K = x W , c ,  = E ~ = I  W , c ,  ; 

K = x W , x  = C:=l W , x  ; 
K = c W , u ,  = zY-1 W , u , .  
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We refer to [45] for relations between these and other objective functions. 
Some relevant problem variations are characterized by the presence of one or 

more elements from a parameter set A, such as 
prec (precedence constraints between the jobs, where “J, precedes J,” (notation: 

J, < J,) implies C, s S , ) ;  
free (precedence constraints between the jobs such that the  associated prece- 

dence graph can be given as a brunching, i.e. a set of directed trees with either 
indegree or outdegree at most one for all vertices); 

r, 3 0  (possibly non-equal release dates for the jobs); 
C, < d, (all jobs have to meet their deadlines; in this case we assume that 

no wait (no waiting time for the jobs between their starting and completion 

n, n ,  (a constant upper bound on the number of operations per job); 
p &  p , (a constant upper bound on the processing times); 
p &  = 1 (unit processing times); 
w, = 1 (equality of the weights; we indicate this case also by writing 

In view of the above discussion, we can use the notation n I m 11, A 1 K to indicate 
specific machine scheduling problems. 

K E {Cm, , ,  WLCL)) ;  

times; hence, C, = S, + xkp,k for each J , ) ;  

c c,, c T,, x Ut). 

4. Complexity of machine scheduling problems 

All machine scheduling problems of the type defined in Section 3 can be solved 
by polynomial-depth backtrack search and thus are members of N.9. The results on 
their complexity are summarized in Table 1. 

The problems which are marked by an asterisk (*) are solvable in polynomial- 
bounded time. In Table 2 we provide for most of these problems references where 
the algorithm in question can be found; we give also the order of the  number of 
steps in the currently best implementations. The problems marked by a note of 
exclamation (!) are NP-complete. The reductions to these problems are listed in 
Table 3. Question-marks (?) indicate open problems. We will return to them in 
Section 5 to motivate our typographical suggestion that these problems are likely to 
be NP-complete. 

Table 1 contains the “hardest” problems that are known to be in 9’ and the 
“easiest” ones that have been proved to be NP-complete. In this respect, Table 1 
indicates to the best of our knowledge the location of the borderline between easy 
and hard machine scheduling problems. 

Before proving the theorems mentioned in Table 3 ,  we will give a simple example 
of the interaction between tables and theorems by examining the status of the 
general job-shop problem, indicated by n I m I G I C,,,. 



Complexity of machine scheduling problems 349 

Table 1. Complexity of machine scheduling problems 

n jobs 1 machine 2 machines m machines 

Lax * prec, r, 3 0 * F  
* F, no waif 
! F, tree 
! F, r , 2 0  

! m = 3 : F  
? m = 3 : F, no wait 
! F, no wait 

* G, n, s 2 
! G, n, s 3 

* n = 2 : G  
! m = 3 : G , n , S 2  

* I, tree, pz = 1 
? m = 3 : I, prec, p ,  = 1 
! I ,  prec, p, = 1 

! I  
* 1, prec, r, 2 0, C, 
! I ,  prec, p, s 2 

d, ,  p ,  = 1 

c w , c ,  * tree ! F, w, = 1 ! F, no wait, w, = 1 
! prec, p, = 1 
! prec, w, = 1 
! r, 2 0 ,  w, = 1 ! I  
* C, s d,, w, = 1 
! C , s d ,  

? F, no wait, w, = 1 

* I,  r, 3 0 ,  p,  = 1 
* I, w, = 1 
! I, prec, p ,  = 1 ,  w, = 1 

* I, prec, p, = 1, w, = 1 
! I ,  prec, p, s 2 ,  w, = 1 

Lax * prec ! F  
* prec, r, 2 0, p, = 1 
! r , Z O  ! I  

c W , T .  * r, 2 0 ,  p, = 1 ! F, w, = 1 
'! w, = 1 
! ! I,  w, = 1 
! prec, p, = 1 ,  w. = 1 
! r, 3 0 ,  w, = 1 

c w , u ,  * r, 3 0 ,  pi = 1 ! F, w, = 1 
* w , = 1  
! ! I ,  w, = 1 
! prec, p, = 1 ,  w, = 1 
! r, 3 0 ,  w, = 1 

*: problem in 8 ;  see Table 2.  
?: open problem; see Section 5. 
! : NP-complete problem; see Table 3. 
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Table 2. References to polynomial-bounded algorithms 

Problem 

~~ ~ 

References Order 

a An O(n log n )  algorithm for the more general case of series parallel precedence 

b A n  O ( n  log n )  algorithm for the more general case of agreeable weights (i.e. 

O(n3) and O(nZ)  algorithms for the n 12 1 I, prec, p ,  = 1 I C,. problem are given 

Polynomial-bounded algorithms for the more general case of parallel non- 

constraints is given in [36]. 

p.  <p,  + wi 2 w,)  is given in [34]. 

in [lo] and [5] respectively; see also [13]. 

identical machines are given in [21; 41. 

In Table 1 ,  we see that the n 12 I G, n, G 2 1 C,,, problem is a member of 9 and 
that two minor extensions of this problem, n 12 1 G, n, c 3 I C,,, and n 13 1 G, 
n, G 2 1 C,,,,,, are NP-complete. By Theorem 2(c, h), these problems are special cases 
of the general job-shop problem, which is thus shown to be NP-complete by 
Theorem 2(b). Table 2 refers to an O(n  log n )  algorithm [23] for the n 121 G, 
n, S 2 1 C,,, problem. Table 3 tells us that reductions of Knapsack to both 
NP-complete problems are presented in Theorem 4(a, b); the NP-completeness of 
Knapsack has been mentioned in Theorem l(f). 

Theorem 2 gives some elementary results on reducibility among machine 
scheduling problems. It can be used to establish either membership of 9 or 
NP-completeness for problems that are, roughly speaking, either not harder than 
the polynomially solvable ones or not easier than the NP-complete ones in Table 1. 

Theorem 2. (a) If n ’ ~ m ’ ~ l ’ , A ’ ( K ’ ~ n ( m ~ l , A ( ~  and n l m l l ,  A 1 ~ 6 Z . 9 ,  then 
n ’ (  m‘l 1‘, A ’ /  K ’ E  9. 
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Table 3. Reductions to NP-complete machine scheduling problems 

Reduction References 

[36; 38; 401 
[36; 38; 401 
h.L, Theorem 5 
h.l., Theorem 4(j) 
h.L, Theorem 4(g) 
h.L, Theorem 4(i) 
[38; 401 
h.l., Theorem 2(j) 
[25]; h.l., Theorem 4(h) 
[ 13; 38; 401 
h.L, Theorem 2(j) 
h.l., Theorem 4(f) 
h.L, Theorem 4(d) 
h.l., Theorem 4(a) 
h.L, Theorem 3(a); cf. [4] 
[40]; cf. [49] 

h.L, Theorem 3(b); cf. [4] 
h.l., Theorem 2(1); cf. [40] 
h.L, Theorem 4(e) 
h.l., Theorem 2(i) 
h.l., Theorem 20‘) 
h.l., Theorem 2(j) 
h.L, Theorem 26) 
h.l., Theorem 2(j) 
h.l., Theorem 4(c) 
h.l., Theorem 6(a) 
h.L, Theorem 4(b) 
[40]; cf. [49] 
h.l., Theorem 6(b) 
h.L, Theorem 2(1); cf. [40] 

[I61 
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Proof. Let P’ and P denote the problems on the left-hand side and right-hand side 
respectively. 

(a, b) Clear from the definition of reducibility. 
(c) Trivial. 
(d, e) P’ has an optimal solution with the same processing order on each machine 

(f, g, h) In each case P’ obviously is a special case of P. 
(i) Given any instance of P’ and a threshold value y’, we construct a correspond- 

ing instance of P by defining d, = y ’  ( i  = 1,.  . ., n) .  P’ has a solution with value s y ’  
if and only if P has a solution with value G O .  

(j) Given any instance of P’ with due dates d :  ( i  = 1,. . ., n )  and a threshold value 
y’, we construct a corresponding instance of P by defining d, = d :  + y ’  ( i  = 1,.  . ., n) .  
P’ has a solution with value G y ’  if and only if P has a solution with value G 0. 

[6; 451. 

(k) Take d, = 0 ( i  = 1,. . ., n )  in P. 
(1) Given any instance of P’ and a y ’, 0 s y ’s n ’ p  *, we construct a corresponding 

instance of P by defining 

n” = (n’ -  1) y’,  
n = n’+ n”, 
y = ny’+tn”(n”+ I), 

and adding n” jobs J , + ,  (j = 1,. . ., n”) to P’ with 

p n  +,,I = 1, 

J, <J,,+, (i = 1 ,..., n ’ + j -  1). 

Now P‘ has a solution with value G y ‘ if and only if P has a solution with value S y : 

c,,, s y ‘  =+ X C, s n‘y‘+ Xf=l(yr  + j )  = y ;  

C,,,>y‘* c c , > y ‘ + c f : , ( y ‘ + l + ] ) = y .  0 

Remark. The proof of Theorem 2(c) involves processing times equal to 0, implying 
that the operations in question require an infinitesimally small amount of time. 
Whenever these reductions are applied, the processing times can be transformed 
into strictly positive integers by sufficiently (but polynomially) inflating the problem 
data. Examples of such constructions can be found in the proofs of Theorem 
4(c, d, e, f) .  

In Theorems 3 to 6 we present a large number of reductions of the form 
P 0~ n I rn 1 I, A 1 K by specifying n I m 1 I, A I K and some y such that P has a solution 
if and only if n 1 rn 11, A 1 K has a solution with value K < y. This equivalence is 
proved for some principal reductions; in other cases, it is trivial or clear from the 
analogy to a reduction given previously. The NP-completeness of n I m I 1, A I K then 
follows from the NP-completeness of P as established in Theorem 1. 
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First, we briefly deal with the problems on identical machines. Theorem 3 
presents two reductions which are simplified versions of the reductions given in [4]. 

Theorem 3. Partition is reducible to the following problems : 
(a) n 12 I 11 C,,,; 
(b) n 12 I I I wiCi. 

Proof. Define A = EIETa, .  
(a) Partition a n 12 1 I1 C,,,: 

n = t ;  
p, = a, ( i  E T ) ;  
y =!A. 

(b) Partition 

n = t ;  
p, = w, = a, ( i  E T ) ;  

n 12 1 I I 2 w,C,:  

y = 2 a , a , - t A Z  
I S l S j S ,  

Suppose that {J ,  I i E S} is assigned to MI and {J ,  1 i E T - S }  to M z ;  let c = 

ElESu, -;A. Since p8 = w, for all i, the value of c w,C, is not influenced by the 
ordering of the jobs on  the machines and only depends on  the choice of S [6]: 

2 W , c ,  = K ( S ) .  

It is easily seen (cf. Fig. 1) that 

and it follows that Partition has a solution if and only if this n 12 I I 1 c w,C, problem 
has a solution with value < y .  0 

S T - S  S 
L E I  MI 7 - 1  

T-S 

M2 - F”2 I 

value  K ( T )  value  K ( S )  
I 

Fig. 1 

Most of our results on different machines involve the Knapsack problem, as 
demonstrated by Theorem 4. 
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Proof. Define A = C,ETa, .  W e  may assume that O <  b < A.  
(a) Knapsack 0~ n 12 I G, n, S 3 I C,,,: 

n = t + l ;  
v, = (M1), ptl = a, ( i  E T ) ;  
vn = (Mz, M2)j p n 1  = b, p n z  = 1 ,  p n ?  = A - b ;  
y = A + l .  

If Knapsack has a solution, then there exists a schedule with value C,,, = y, as 
illustrated in Fig. 2. If Knapsack has n o  solution, then x I E S a ,  - b = c #  0 for each 
S C T, and we have for  a processing order ({X 1 i E S } ,  J,, {J ,  I i E T - S } )  on MI 
that 

c > O  =3 C m a x a C p t l + p n 2 + p n 3 = A  + c + l > y ;  
IES 

c < O  =3 C m a x 2 p n l + p , , 2 +  C p , l = A - c + l > y .  
r E T - S  

It follows that Knapsack has a solution if and  only if this n ( 2 1  G, n, s 3 1  C,,, 
problem has a solution with value s y .  

S n T-S 

t i  1 
b b t l  A t 1  
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If Knapsack has a solution, then there exists a schedule with value CmaX = y, as 
illustrated in Fig. 3. If Knapsack has no  solution, then CiEsu,  - b = c #  0 for each 
S C T, and we have for  a processing order ({X I i E S } ,  { J  1 i E T - S}) on M ,  
that 

C > 0 a C,,, 3 2 p i ,  + pn- l , l  + pn-l,z = 2A + c > y, 
i E S  

which completes the equivalence proof. 

S n- 1 T-S ................. ................. ....- 
n n- 1 

'$ ---- 

M2 
.................................................. .................................................................................................... 

S n T-S 
------T 

I I 
t 

2A 
t 

A t b  
1 t 

0 b 2 b  

Fig. 3 

(c) Knapsack 0: n 13 I F I C,,,,,: 

n = t + l ;  
pi1 = 1, pi2 = tui, pin = 1 ( i  E T ) ;  
p n l  = tb, pa2 = 1, pm3 = t ( A  - b ) ;  
y = t (A  + 1)+ 1. 

If Knapsack has a solution, then there exists a schedule with value CmaX = y, as 
illustrated in Fig. 4. If Knapsack has no solution, then xiEs  a, - b = c #  0 for each 
S C T, and we have for a processing order ({J 1 i E S } ,  J,, { X  I i E T - S}) that 

S n T-S 

S n T-S 
M1 - 
M2 ' I I I 

S n T-S 
I 

M3 f f  f f  t t  
0 I S 1  t b + l S I  t b t l S I + l  t A + I S I + l  t ( A + 1 ) + 1  

Fig. 4 
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(d) Knapsack c~ n 12 I F, r, 3 0 1 C,,,,,: 

n = t + l ;  
r, = 0, = fa,, p , z  = 1 ( i  E T ) ;  
r,, = tb, pnl = 1, p n 2  = t ( A  - b ) ;  
y = t ( A  + 1). 

Cf. reduction 4(c). 
(e) Knapsack 

n = t + l ;  
pti = 1 ,  pzz= ta,, d, = t (A + 1) ( i  E T ) ;  
pnl = tb, pn2 = 1, d, = t ( b  + 1); 
y = O .  

n 12 I F I L,,,: 

Cf. reduction 4(c). 

n = t + 2 ;  

(f) Knapsack 0~ n 12 1 F, tree I C,,,,,: 

p,i = ta,, pgz = 1 ( i  E T ) ;  
p.-ii=1, p n - i z = t b ;  
pni = 1 ,  pnz = t ( A  - b ) ;  
J n - i  < J , ;  
y = t ( A  + 1)+ 1. 

We have for a processing order ( { J ,  1 i E R } ,  Jn-l, {J,  I i E S } ,  J,, { J ,  I i E 

T -  S - R } )  on MI that 

R # 0 C,,, 3 t + p.-i i + ~ " - 1 . 2  + pni + p.2 = t (A + 1)  + 2 > y .  

The remainder of the equivalence proof is analogous to that of reduction 4(c). 
(8) Knapsack a n I 1 1 r, 3 0 1 L,,,,; 

n = t + l ;  
r, = 0, p ,  = a,, d, = A + 1 
r,, = b, p,, = 1, d, = b + 1; 
y = O .  

Cf. reduction 4(a) and Fig. 5. 

i E T ) ;  

I S n T - S  
i 1 
T f  
b b + l  

t 
At1 

Fig. 5 

(h) Knapsack zx n 1 1 ( 1  C w,Uz : 

n = t ;  

p ,  = w, = a,, d, = b ( i  E T ) ;  
y = A - b .  
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Cf. [25] and Fig. 6. 

S T-S 
1 1 
1 1 

' 0  b A i 
Fig. 6 

(i) Knapsack 0~ n I 111 2 w,T, : 

n = t + l ;  
p ,  = w,  = a,, d, = 0 ( i  E T ) ;  
p .  = 1, W, = 2, d, = b + 1; 

Cf. Fig. 5. We have for a processing order ( {J ,  I i E S } ,  J,,, {J ,  I i E T -  S } )  that 
CIESa, - b = L,. Since p ,  = w, and d, = 0 for all i E T, the value of c,,,w,T, is not 
influenced by the ordering of S and T - S (cf. the proof of Theorem 3(b)), and we 
have 

2 w,T = a,C, + 2T, 
I E T  

= C a,a, + C ai + 2max{0, L,} 
l L i E , < t  i E T - S  

= y + IL, 13 y .  

The equivalence follows immediately. 
(j) Knapsack 0~ n 11 I C, s d, I w,C, :  

n = t + l ;  
p,  = w, = a,, d, = A + 1 ( i  E T) ;  
p,, = 1, w, = 0, d,, = b + 1; 

Y = c a,al + A  - b. 
ISiSjS, 

Cf. reduction 4(i) and Fig. 5. 
This completes the proof of Theorem 4. 

Theorem 5 .  3-Partition is reducibfe to n I 1 I r, 2 0 I C,. 

Proof. A reduction 3-Partition 0~ n 11 1 r, 2 0 12 C, can be obtained by adapting 
(a) the transformation of Knapsack to n I 11 r,, 2 0 1 2 Ci, presented in [45]; 
(b) the reduction 3-Partition 0~ n 12 I F I 

Both procedures can be carried out in a straightforward way and lead to essentially 
the same construction. 0 

Ci, presented in [16]. 
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The NP-completeness proofs for the problems with a no wait assumption are based 
on the well-known relation between these problems and the travelling salesman 
problem (TSP) of finding a minimum weight hamiltonian circuit in the complete 
directed graph on the vertex set V with weights on the arcs. 

Given an n I m I F, no wait I K problem, we define cij to be the minimum length of 
the time interval between Si and Sj if Ji is scheduled directly after Ji. If we define 

I 

p h k  = p h l i  
1=1 

it is easily proved [43; 44; 50; 391 that 

Finding a schedule that minimizes C,,, is now equivalent to solving the TSP with 
V = (0,. . ., n }  and weights Cij defined by (2) and by Coh = 0, Cho = P h m  for h # 0. 

Theorem 6. Directed hamiltonian path is reducible to the following problems : 
(a) n 1 m 1 F, no wait I C,,,,,; 
(b) n I m 1 F, no wait 12 C,. 

Proof. 

we define 
(a) Directed hamiltonian path a n I m I F, no wait 1 CmaX. Given G’ = (V’, A’), 

n = 1 V’J,  
m = n(n - l ) + 2 .  

All jobs have the same machine order ( M I ,  M,, . . ., M,,,-,, M,,,). To each pair of jobs 
(A, 4 )  (i, j = 1 , .  . ., n, i# j )  there corresponds one machine M k  = M,ci,j) 
( k  = 2 , .  . ., m - I ) ,  such that for n o  Jh some M,(j.h) directly follows an k f , ( h , j ) .  Such 
an ordering of the pairs ( i , j )  can easily be constructed. Due to this property of the 
ordering, partial sums of the processing times can be defined unambiguously by 

k p  + A  if k = ~ ( h , j )  and ( h , j ) E  A’, 
k p + A + l  if k = K ( h , j ) a n d ( h , j ) E A ” ,  

if k + 1 = ~ ( i ,  h )  and (i, h ) €  A’, 
k p  - A - 1 if k + 1 = K (i, h )  and ( i ,  h )  !5! A’, 

otherwise, 

for k = 1,. . ., m, h = 1 , .  . . , I t ,  where 

A 3 1 ,  
p 2 2 A  +3 .  

The processing times are given by (cf. (1)) 
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Through the choice of p, these processing times are all strictly positive integers. 

immediate that P,k - c , k _ l  is maximal for k = ~ ( i , j ) .  Hence, 
We can now compute the c,, as defined by (2) .  Through the choice of A, it is 

if ( i , j ) € A ’ ,  
CXJ = {L 1:; + 2  if ( i , j ) g A ’ .  

Since P,, = m p  for all J,, it now follows that G has a hamiltonian path if and only if 
this n I m I F, no wait I C,,, problems has a solution with value 

C,,, s ( n  - l)(p + 2A) + mp. 

(b) Directed hamiltonian path = n I m I F, no wait I c Ci. 
G‘ has a hamiltonian path if and only if the n I m IF, no wait 1 c Ci problem, 
constructed as in (a), has a solution with value 

0 Ci S 4 n ( n  - 1)(p + 2 A ) +  nmp. 

Let us finally point out some consequences of the use of a unary encoding with 
respect to the binary NP-complete problems, appearing in Theorems 3 to 6. 

w,C, problems, dealt with in Theorem 3, can be 
solved in unary polynomial-bounded time by straightforward dynamic program- 
ming techniques. 

A similar situation exists for the n I 1)) c w,U, problem from Theorem 4(h), which 
can be solved by an O ( n C p , )  algorithm [37]. For most other problems discussed in 
Theorem 4, however, one can easily prove unary NP-completeness by converting 
the Knapsack reduction to a 3-Partition reduction. The following adaptation of 
reduction 4(i) might serve as a typical example (cf. the slightly different construction 
given in [35]). 

3-partition 

The n 12 I I I Cmax and n 12 1 I I 

n 1 111 C w , ~ ,  : 

n = 4t - 1; 
p, = w, = a,, d, = 0 ( i  E T ) ;  
p, = 1, w, = 2,  d, = (i - 3 t ) (b  + 1) ( i  = 3t + 1 , .  . .,4t - 1); 

y = 2 a,aj +4t(t  - 1)b. 
I S i S J S 3 f  

Furthermore, reductions of 3-Partition to n 12 I G I CmaX and n I 3 I F 1 C,,, can be 
found in [16]. 

With respect to Theorem 5, the situation is different. In the reductions of 
3-Partition to n 1 1 I r, 3 0 1 c C, and n 12 I F I c C,, the resulting numbers of jobs 
are polynomials in both t and b. The (unary) NP-completeness proofs therefore 
depend essentially on the unary NP-completeness of 3-Partition and n o  truly 
polynomial-bounded transformation of Knapsack to these problems is known. 
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The reductions presented in Theorem 6 clearly prove unary NP-completeness for 
both no wait problems. 

5. Concluding remaks 

The results presented in Section 4 offer a reasonable insight into the location of 
the borderline between “easy” and “hard” machine scheduling problems. Compu- 
tational experience with many problems proved to be NP-complete confirms the 
impression that a polynomial-bounded algorithm for one and thus for all of them is 
highly unlikely to exist. As indicated previously, NP-completeness thus functions as 
a formal justification to use enumerative methods of solution such as branch-and- 
bound. 

Most classical machine scheduling problems have now been shown to be 
efficiently solvable or NP-complete. Some notable exceptions are indicated by 
question-marks in Table 1. These open problem are briefly discussed below. 

The most notorious one is the n I 1 ) )  x T, problem. Extensive investigations have 
failed to uncover either a polynomial-bounded algorithm or a reduction proving its 
NP-completeness. The existence of an O(n42pp , )  algorithm [35] implies that the 
problem is definitely not unary NP-complete. However, we conjecture that it is 
binary NP-complete, which would indicate a major difference between the x T, 
and 2 U, problems, as demonstrated by Table 1. 

The complexity of the n 13 I F, no wait 1 C,,, and n 12 1 F, no wait I x C, problems 
is not clear; it is quite possible that both problems are in 9’. To stimulate research in 
this direction, we will award an authentic clog to the first scientist who finds a 
polynomial-bounded algorithm for any one of these problems. 

The question of the complexity of the n 13 1 I, prec, p ,  = 1 I C,,, problem has been 
raised already in [49]. 

Finally, let us stress again that the complexity measure provided by the NP- 
completeness concept does not capture certain intuitive variations in complexity 
within the class of NP-complete problems. Note, for example, that an n 11 I r, z= 
01 L,,, algorithm has figured successfully in a lower bound computation for the 
n I rn I G 1 C,,, problem [3; 311, although both problems are NP-complete and thus 
equivalent up to a polynomial-bounded transformation. One possible refinement of 
the complexity measure by means of differentiation between unary and binary 
encodings has already been discussed. Another indication of a problem’s complex- 
ity may be based on the analysis of approximation algorithms [15; 271. For relatively 
simple NP-complete problems, there often exist heuristics whose performance is 
arbitrarily close to optimal; on the other hand, there are situations in which even 
the problem of finding a feasible solution within any fixed percentage from the 
optimum has been proved NP-complete. Altogether, the development of a measure 
that allows further distinction within the class of NP-complete problems remains a 
major research challenge. 
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CERTAIN DUALITY PRINCIPLES IN 
INTEGER PROGRAMMING 

L. LOVASZ 
Bolyai Institute, J6zsef Attila University, Szeged, Hungary 

This paper surveys some results of the following type: “If a linear program and some derived 
programs have integral solutions, so does its dual.” Several well-known minimax theorems in 
combinatorics can be derived from such general principles. Similar principles can be proved if 
integrality is replaced by a condition of the least common denominator of the entries of a 
solution. An analogy between Tutte’s 1-factor-theorem and the Lucchesi-Younger Theorem on 
disjoint directed cuts is pointed out. 

Introduction 

The Duality Theorem of linear programming is an extremely useful tool in 
handling both practical and theoretical problems; here we shall focus on the latter. 
Whenever a problem can be formulated as a linear program, the Duality Theorem 
provides us with a re-formulation which often requires a mere computation to 
solve; and in all cases it gives a new insight into the problem. Those problems 
arising from combinatorics have in most cases, the additional constraint that the 
variables are restricted to integers. Many - and often the deepest - results in 
combinatorics assert that for certain classes of integer programs the Duality 
Theorem remains valid. These facts tempt one to try to develop general methods in 
integer programming which would enable us to handle different minimax results in 
combinatorics together. The Hoffman-Kruskal Theorem on unimodular matrices, 
Edmonds’ theory of matchings, Berge’s theory of balanced hypergraphs and 
Fulkerson’s theory of blocking and anti-blocking polyhedra represent results in this 
direction. 

The aim of this paper is to survey some results and applications in the 
above-mentioned direction. Most of the general theorems will be of the following 
form: if an integer program and certain derived programs have nice solutions (e.g. 
the same solutions as if they were considered as linear programs) then so do their 
duals. Very often it is useful to consider not only integral and real solutions but also 
those where the denominators of coordinates are restricted to divisors of an integer 
k. For k = 2, this links a variety of solved and unsolved graph-theoretical problems 
to our duality results. 

The whole area is not yet worked out very well. There are several minimax 
results in graph theory which almost fit into this pattern but their generalization to 

363 
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integer programming has not yet been found (at least not in the spirit of our paper). 
Also, there are several open problems, which will be formulated in the paper. Most 
of the theorems are formulated very similarly but their proofs are based on 
completely different ideas (this was also remarked by A.J. Hoffman at the 
International Congress of Mathematicians in Vancouver). This probably shows that 
our understanding of the matter is superficial. 

Only a few proofs will be given in detail; those which have not yet been published 
and seem to  be characteristic. 

Definitions and notations 

We will restrict ourselves to packing and covering programs; combinatorial 
problems transform almost always into such programs. We shall use the language of 
hypergraphs rather than of matrices. This is more difficult to compute with but 
makes things easier to visualize. 

A hypergraph H is a finite collection of non-empty finite sets; the same set may 
occur more than once. The elements of hypergraphs are called edges; the elements 
of edges are points (this way no isolated points are allowed). The set of vertices of 
the hypergraph H will be denoted by V(H). 

Removing an edge means that we remove this edge and all points which would 
become isolated by this. Removing a vertex x E V(H) means that we remove all 
edges adjacent to x. Multiplying a vertex x by k 3 0 means that we replace x by k 
points x,, . . ., x k  and replace each edge E containing x by k edges E - {x} U { x i } ,  
i = 1,.  . ., k. 

Given a hypergraph H, we are interested in the maximum number, v ( H ) ,  of 
disjoint edges of H and in the minimum number, T ( H ) ,  of points representing all 
edges of H. To study these numbers we will introduce some related numbers. 

A k-matching is a mapping rn : H +{O, 1,. . . }  such that 

m ( E ) s  k (x E V(H)). 
E 3 x  

A k-cover is a mapping t : V(H)-+ {0,1,. . . }  such that 

2 t ( x ) z  k ( E  E H ) .  
X E E  

A fractional matching is a mapping m : H-+{non-negative reals} such that 

and a fractional cover is a mapping t : V(H)-+{non-negative reals} such that 

t ( x ) z l  ( E E H ) .  
x E E  
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We shall denote by u k ( H )  and r k ( H )  the maximum of 

for all k-matchings and the minimum of 

for all k-covers, respectively. If m runs over all fractional matchings and r runs 
over all fractional covers we have 

max c m ( E )  = min c t ( x ) = d e f r * ( H ) ,  
E E H  x E V ( H )  

by the Duality Theorem. 
It is trivial that r ,  = r, v, = u, and also that 

for every k. There is an integer s such that 

Vks = kS7 *, T k s  = k S T  * 

for every k (since the linear programs defining T* have rational optimal solutions). 

Duality results 

The following two theorems were proved in [8]; they can be derived from the 
theory of blocking and anti-blocking polyhedra as well [3]: 

Theorem 1. 
removing points then v ( H )  = T ( H ) .  

If  v ( H ' )  = r* (H ' )  holds for every hypergraph H' obtained from H by 

Theorem 2. If r ( H ' )  = r*(G')  holds for every H ' c  H, then v ( H )  = r ( H ) .  

Berge (11 has observed the following sharpening of Theorem 2: 

Theorem 2'. If rZ(H' )  = 27(H' )  holds true for every H ' c  H, then v ( H )  = r ( H ) .  

In [9] it was shown that if we require the inheritence for a larger class of 
hypergraphs then the assumption in Theorem 1 can be  weakened analogously: 

Theorem 1'. 
multiplication of vertices, then v ( H )  = r (H) .  

If uZ(H') = 2v(H' )  holds for every hypergraph H' arising from H by 

We remark that in the case of graphs the following much simpler result holds: 



366 L. Lovasz 

Theorem 3. Let G be a graph. Then T ~ ( G )  = 27(G) implies v ( G )  = T(G) .  More 
generally, for any  graph we have T*(G) s T ( G )  + v(G).  

Let us remark that in the last three assertions replacing the index 2 by an 
arbitrary index k we could obtain similar results, which would be trivial conse- 
quences of those formulated above. 

Let us formulate two assertions: 
(*) If vk(H’) = kT*(H’) holds for each hypergraph H’ arising from H by 

multiplication of vertices then vk ( H )  = T~ ( H ) .  
(**) If Tk(H’)= k T * ( H ’ )  holds true for each ff’c H, then Q ( H ) =  Tk(H). 
These are true for k = 1 by Theorems 1’ and 2. In [lo] they were proved for 

k = 2. Since my proof completely failed to  work for k = 3, I ventured to  conjecture 
that they were false. However, recently I have found a proof of (**) for k = 3. As 
my proof is rather complicated and it does not generalize to k = 4, I only dare to set 
it as a question:-Are (*) and (**) valid for other, maybe for all, values of k ?  

Theorem 4. 
integer for all H’ C H. Then vk ( H )  = k T *(H).  

Let k = 1,2 or 3. Let H be a hypergraph such that k . T * ( H ’ )  is an 

This clearly implies (**). We remark that the analogous sharpening of (*) is also 
valid for k = 1,2. 

Proof of Theorem 4. 
fractional matching of H. Since 

Let H be a minimal counterexample and rn an optimal 

1 
T*(H - {E}) T * ( H )  - -. 

k 

Since rn’ = rn ( H - - ( B J  is a fractional matching of H - {E}, we must have 

1 
1) 171’11 = 1) m 1) - rn(E) T*(H - ( E } )  6 T*(H)  - k, 

whence 
1 m ( E ) s -  k ’  

For k = 1 this implies rn ( E )  = 1 hence that rn is a 1-matching, v l ( H )  = T*(H) .  So 
in this case the proof is finished. 
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Observe now that if x is any point with degree 3 k then 

can only be fulfilled if the degree of x is k and m (E) = l / k  for all edges incident to  
x. Also we may suppose each edge E contains a point of degree 3 2 as otherwise its 
removal would decrease both vk and kr* by exactly k ,  and H - {E} would be a 
smaller counterexample. Hence if k = 2 then m ( E )  = 1/2 for all edges and we are 
finished again. 

So suppose k = 3. We show H has a point of degree 3. Suppose not. The 
intersection graph L ( H )  of H cannot be bipartite, since then H would be balanced 
(see [ l ] )  and vk ( H )  = k 9 r * ( H )  would follow from the much stronger relation 
v ( H )  = r ( H ) .  Let ( E l , .  . ., Ez,+l) be any chordless odd circuit in L ( H ) .  Then 
H' = { E l , .  . ., EZp+,}  has 37*(H') = 3 p  + f, contradicting the assumption that this 
should be an integer. 

Thus H has a point xo of degree 3.  Let Eo be any edge adjacent to  xo. Then we 
know m (Eo) = 1/3. We need the following 

Lemma. Let H be any hypergraph and EoE H. Then H has a decomposition 
H = H ,  U H2 and H I  has an optimum fractional matching m l  with the following 
properties : 

(i) EoE H I :  
(ii) for any decomposition H I  = H :  U HY, H i ,  HY# 0 there is an 

I E V ( H i ) f l  V(HY) with 

2 m l ( E ) =  1 ;  
E 3 x  

(iii) for any optimum fractional matching m2 of H2,  ml U m2 is an (optimum) 
fractional matching of H.  

Supposing this Lemma is true, let Eo be an edge adjacent to  a point of degree 3 
and consider the decomposition H I  U H2 = H defined in the Lemma. The fractional 
matching ml of H I  takes values 1 / 3 ,  2/3 only. For let 

H :  = { E  : m l ( E )  = 1/3 or  2/3} 

H; '=  HI- H i .  

Then Eo E Hi and so, Hi # 0. If HY # 0 then by (ii), there is a point x E V ( H : )  n 
V(H7)  with 

Let El E H : ,  E2 E HY, x E El n E2. If x has degree 3 then, as noted above, 
ml(E2)  = 1/3.  If x has degree 2 then 
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rnl(E2) = 1 - ml(E1) = 1/3 or  2/3 

since E l  E Hi.  In both cases we get a contradiction with E ,  E H’i. 
So m l  takes values 1/3 and 2/3. By the minimality assumption on H, Hz  has an 

optimum fractional matching rn, whose values are 0, 1/2, 2/3 or  1. By (iii) of the 
Lemma, m ,  U m 2  is an optimum fractional matching with values 0, 1/2, 2/3 or  1. 
This proves v,(H) = 37*(H), a contradiction. 

Proof of the Lemma. Choose an HI C H and a maximum fractional matching mo of 
H such that with m l  = mol HI, (i) and (ii) are fulfilled. E.g. H ,  = {Eo} is such a 
partial hypergraph; but choose HI maximal among all subcollections of H for 
which an mo exists satisfying (i) and (ii). Let H, = N - HI. 

Then for every edge E E H,, and for each point x E E n V ( H , ) ,  

otherwise E could be added t o  H I .  Let m2 be any optimum fractional matching of 
H,, we claim m l  U m2 is a fractional matching. For let E be a sufficiently small 
positive number and 

mo(F) for F E HI, 

&m2(F) + (1 - &)mo(F)  for F E H,. 
m ‘ ( F )  = 

Then by (l), m’(F)  is a fractional matching if E is small enough. Hence 

But since mz is an optimum fractional matching of Hz,  we also have here the 
converse inequality. Hence 1) m ’1)  = (1 moll, i.e. m‘ is an optimum fractional matching. 

If m ’  is a fractional matching for E = 1, then m ,  U mz is a fractional matching as 
claimed. So suppose there is a largest En, O <  E ~ <  1 for which rn’ is a fractional 
matching. Then there must be a point x E V ( H 1 )  fl V ( H 2 )  such that 

m’(F)= 1. 
F 3 x  

Thus replacing m, by m’,  HI can be enlarged. This contradiction proves the 
assertion that m ,  U rn, is a fractional matching. Now the optimality of m l  U m2 is 
clear since 

IIm1 ” mzll = llm1ll + llmzll 3 llm I HIII + llm I HzII = IImoll. 

This finishes the proof of the Lemma. 
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Decompositions 

To guarantee that the conditions of the preceding theorems hold one has to show 
that for hypergraphs arising from given combinatorial structures, fractional covers 
with denominator k are not any better than fractional covers with denominator j ,  
for certain values of k and j .  (The derived hypergraphs arise usually in the same 
way, so they need not be considered extra.) This often depends on the fact that 
multiple covers decompose into the sum of other multiple covers. 

Suppose a k-cover (k-matching) is the sum of a kl-cover and a k2-cover 
(matching). If k l  + kZ = k, we call this decomposition exact. The following two 
theorems can be proved by a straightforward construction. 

Theorem 5. 
decomposed into a sum of 1-covers. 

Let G be a bipartite graph. Then each k-cover of G can be exactly 

Theorem 6. Let G be a graph. Then each k-cover of G can be (exactly) 
decomposed into the sum of a 2-cover and a ( k  - 2)-cover. 

A construction due to R.L. Graham [5] shows that no analogue of Theorem 6 is 
valid for 3-uniform hypergraphs: there may be exactly indecomposable k -covers 
for arbitrary large k. 

A n  r-partite hypergraph ( r  3 2 )  is defined as follows: V ( H )  has a partition 
Vl U.  * U V, such that each edge meets each V, in exactly 1 point. Not even 
k-covers of r-partite hypergraphs are always exactly decomposable for r 2 3; but 
for non-exact decompositions, we have the following results: 

Theorem 7. 
1- covers. 

Each k-cover of an r-partite hypergraph is a sum of 1 + [2(k - l ) / r ]  

Theorem 8. 
( k  - 2(r - 1))-cover. Also, each k-cover is the sum of a 2-cover and a (k - r)-cover. 

Each k-cover of an r-uniform hypergraph is sum of an  r-cover and a 

Proof. 
direct constructions. 

We only give the proof of Theorem 7; Theorem 8 can be verified by similar 

We need a 

Lemma. Let r 3 2, m 3 0. Then there exists an r x ( m  + 1 )  matrix (a i j )  such that 

for j = 1,2, .  . ., m + 1 ([XI* is the least integer z= x), 
(a) each row is a permutation of (0 ,1 , .  . ., m ) ;  
(b) x:=, a,, [ t r  m ] *  

Proof. If we have such a matrix then we can get one for r + 2 by adding two rows 

(0 1 m )  

( m  m - 1  0). 
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... 0 m + l  m + 3  
2 2 m - - ... 

- m  m - 2  . . .  1 m - 1  . . .  

So it suffices to deal with the cases r = 2,3. For r = 2, 

[I :-1 . . .  ... 0 “1 
is an appropriate matrix. If r = 3 and m is even then 

. . .  , ,+1 - * .  m O  l m  m 
-- 1 2 

1 m m - 2  0 m - 1  1 

if r = 3 and m is odd then 

m - 1  m 

m - 3  m - l  
2 2 
-- 

2 0 

is an appropriate matrix. 
Let, now, t be a k-cover of an r-partite hypergraph H and define 

1 if x E V1 and t(x) 2 a, + 1, 

[ 0 otherwise, 
t,(x) = 

where m = [2(k - l)/r], a,, is defined as in the Lemma and j = 0,.  . ., m. Then for 
x E V,, 

and thus, 

On the other hand, we claim each ti defines a 1-cover. For let (u , ,  . . ., u,) E H, 
u, E V,. Suppose for some j ,  

t , ( u z ) = O  for i = 1 ,..., r. 

This means 

t ( U i )  a, 
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and hence 
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mr * 9 t ( v , )  s 9 a,. s [ T ]  < k, 
i = l  i = l  

a contradiction. This proves the Theorem. 

The following are examples of decomposition results for certain special hyper- 
graphs of interest. 

Theorem 9. Let G be a graph and a, b two specified points. Consider the sets of 
edges of (a ,  b)-paths in G as edges of a hypergraph H. Then any k-cover of H can be 
exactly decomposed into 1-covers. 

Theorem 10. Let G be a graph, S C V ( G ) .  Call a path Pprincipal i f  its endpoints 
are in S but has no inner point in S. The sets of edges of principal paths form a 
hypergraph H. Then each k-cover of H can be (exactly) decomposed into a 2-cover 
and a ( k  -2)-cover. 

Theorem 11. Let G be a digraph, a a specified vertex (root) and consider the sets of 
edges of spanning arborescences rooted at a as edges of a hypergraph H. Then each 
k-cover of H can be exactly aecomposed into 1-covers. 

In all three cases, there is a direct construction proving them (direct not meaning 
simple). Theorems 9 and 11 are also consequences of results of Fulkerson [3,4]. 

Proof, As an example we give that of Theorem 10. Let t be a k -cover of H ;  define 

2 if t ( e ) > k ;  

1 if 0 < t ( e )  < k and e is the first edge with t(e)>O on one 
of the principal paths (starting from either endpoint); I 0 otherwise; 

t l (e )  = 

t,(e) = t ( e )  - tl(e). 

consider principal paths P such that 
It is immediate to see that tl is a 2-cover of H.  To show that tZ is a ( k  - 2)-cover 

is minimal and among these 

is minimal. We claim P contains at most two edges e with t l ( e )  = 1. For if there 
were three such edges, el,  ez,  e, say, in this order on the path P, then there would be 
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a path Q connecting a point of S to an endpoint of e ,  such that t ( f )  = 0 for f E Q. 
This path Q, together with one half of P, would form a principal path P‘ such that 

a contradiction. 
Now if t , ( f )  = 2 for some f E P, then 

otherwise 

c t , (e) = c t ( e ) -  c t , ( e ) >  k -2 .  
C E P  C E P  e E P  

This proves the Theorem. 

The relation T~ = k7 is clearly a consequence of, but not equivalent to, the fact 
that k-covers are exactly decomposible into 1-covers. An example showing that 
T~ = k7 does not imply the decomposability of 1-covers is yielded by the following. 

Theorem 12. Let C be a chain group mod 2 on a set S of atoms and let C‘ be a coset 
of C. Considering the non-zero elements of C’ as subsets of S,  the resulting 
hypergraph H satisfies T ~ ( H )  = 2 7 ( H ) .  

As an example of a hypergraph obtainable as in this theorem, consider the 
hypergraph whose edges are the sets of edges of odd circuits in a graph. Here t = 1 
represents a 2-cover (even a 3-cover) which is not the sum of two 1-covers if the 
chromatic number of the graph is larger than 4 [14]. 

The exact decompositions of matchings are, usually, more difficult to handle. The 
following results are true, but their proofs are not “direct”: they follow from 
well-known theorems of Konig and Petersen, respectively. 

Theorem 13. 
1- matchings. 

Let G be a bipartite graph. Then each k-matching of G is the sum of k 

Theorem 14. 
2- matchings. 

Let G be a graph. Then each (2k)-matching of G is the sum of k 

Often one can replace a k -matching by another k -matching of the same size and 
of simpler structure, which can be decomposed. E.g. if the edges are cuts of a graph 
or  digraph, one can replace crossing cuts by non-crossing (laminar) ones (see 
Lucchesi and Younger [ 121). The following two theorems can be proved this way: 
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Theorem 15. Let H consist of the directed cuts of a digraph. Then v 2 ( H )  = 2 v ( H ) .  

Theorem 16. 
cuts of G having an odd number of points of A on both sides. Then v z k  ( H )  = kv2(H) .  

Let G be a graph and A V(G), I A I even. Let H consist of those 

Similar manipulation with paths yields 

Theorem 17. 
all paths connecting a 1 to a 1‘ or a 2 to a 2’. Then v z (H)  = 2 v ( H ) .  

Let us mark each point of a graph G by 1, l’, 2 or 2’. Let H consist of 

Examples 

Putting results of the two previous sections together we obtain several minimax 
results in graph theory. Thus Theorems 2 and 5 yield Konig’s Theorem (this 
theorem could be deduced from any of theorems l’, 2, 3 easily). Similarly, 
Theorems 4 (with k = 2 )  and 6 imply the fact, observed by J .  Edmonds and 
probably others that each graph satisfies v2 = T ~ .  Theorems 1’ and 15 imply the 
result of Lucchesi and Younger (conjectured for several years by Robertson and 
Younger) that the minimum number of edges in a digraph whose contraction results 
in a strongly connected digraph equals the maximum number of edge-disjoint 
directed cuts. Theorems 1‘ and 17 imply a theorem of Kleitman, Martin-Lof, 
Rothschild and Whinston [6]. 

Putting Theorems 16 and (*) for k = 2  together we obtain a result which is 
probably new [ l o ] ;  and whose proof is given as a typical example of arguments 
here. 

Theorem 18. Let k denote the minimum number of edges of a graph G on 2n points 
such that the subgraph on V ( G )  formed by them has even components. Then the 
maximum number of cuts, separating G into two odd pieces and containing each edge 
at most twice, is 2k. 

Considering the case when k = n, Tutte’s Theorem on 1-factors can be deduced. 

Proof. Let H be the hypergraph whose edges are those cuts of G which have an 
odd number of points on both sides. It is easy to see that each hypergraph arising 
from H by multiplying vertices is of the type considered in Theorem 16, and so, it 
satisfies vz(H’) = 2T*(H’). Thus the conditions of (*) (for k = 2) are fulfilled and 
hence, v z ( H )  = T ~ ( H ) .  Moreover, H arises as the hypergraph in Theorem 12 (as a 
coset of the chaingroup of all cuts separating the graph into two even pieces), and 
so, Theorem 12 implies T ~ ( H )  = 2T(H).  Thus v z ( H )  = 27(H) .  Now a set of edges of 
G covers all edges of H iff the subgraph formed by them on V ( G )  has even 
components. So T ( H )  = k,  and v2(H)  = 2k, which is the assertion of the theorem. 

Finally we quote three theorems which can be compared with Theorems 9-11 
though no general result on hypergraphs would reduce them to  those. 
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Theorem 19 (Menger’s Theorem). The hypergraph in Theorem 9 satisfies v = T. 

Theorem 20 (J. Edmonds [2]). The hypergraph in Theorem 10 satisfies v = r. 

Theorem 21 [l l] .  The hypergraph in Theorem 11 satisfies vz = rZ. 

Problems. It is immediate to  ask for duality principles linking Theorems i and 
1 0 + i  for i=9 ,10 ,11 .  

It may be a very widely applicable direction of generalization of these problems 
to extend them to  situations where exact equalities are replaced by inequalities 
(going in the non-trivial direction, of course). 

There are very many results and problems in combinatorics asserting that for 
certain hypergraphs v and T* or T* and T are “close” to each other. Just to mention 
a few: The Edmonds-Tutte theorem on disjoint bases of a matroid; Vizing’s 
Theorem; Gallai’s conjecture that in the hypergraph in Theorem 10, T =s 2v, etc. 
Finding results for such “loose” situations would be very useful. 

A conjecture of Ryser could be formulated as follows: each r-partite hypergraph 
satisfies T c (r - 1)v. Our Theorem 7 implies T* < irv. Is there any duality principle 
which would allow us to deduce Ryser’s conjecture from this? 
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A family of integer programs is considered whose right-hand-sides lie on a given line segment 
L. This family is called a parametric integer program (PIP). Solving a (PIP) means finding an 
optimal solution for every program in the family. It is shown how a simple generalization of the 
conventional branch-and-bound approach to integer programming makes it possible to solve such 
a (PIP). The usual bounding test is extended from a comparison of two point values to a 
comparison of two functions defined on the line segment L. The method is illustrated on  a small 
example and computational results for some larger problems are reported. 
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The computer implementation of the algorithm reported here 

1. Introduction 

The purpose of this paper is to show how a simple generalization of the 
conventional branch-and-bound approach to integer programming makes it possi- 
ble to solve a parametric integer program. Following Nauss [6] we shall call the 
family of programs (P,) 

subject to a,xj s b, + ed, 1 S i s rn 
j = 1  

X j E { O , l }  1 s j s n  

for 0 G 6 G 1 a single parametric integer program (PIP). By “solving” (PIP) we shall 
mean obtaining an optimal solution of (P,) for every 0 s 8 1 for which (P,) is 
feasible. We assume that (P,) is feasible for at least one value of 8. 

Parametric integer programming has only recently emerged as a topic of 
research. The pioneering papers include Noltemeier [7], Roodman [lo, 111, Piper 
and Zoltners [S, 91, and Bowman [l]. Nauss [6] has reviewed this earlier work and 
contributed many new results for parameterizations of the objective function. The 
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present paper, which has grown out of the authors’ work on synthesizing dynamic 
programming with branch-and-bound [3, 4, 51, is devoted to the right-hand-side 
case. 

In parametric linear programming, the first step is to solve (Po), i.e. (P,) for 8 = 0. 
Then the direction vector d = (d,,  . . ., d,) is specified and the analysis is performed 
by driving 8 from 0 to 1. Critical values of 8 and new optimal solutions are 
identified one at a time as 8 increases. In the procedure for parametric integer 
programming to be presented here, the direction d must be specified in advance. 
The (PIP) is solved in one branch-and-bound search. The usual bounding test is 
modified so that a partial solution is eliminated only if none of its descendants is 
optimal for any (P,), 0 S 8 6 1. This means that some partial solutions must be 
retained that could otherwise be eliminated if only (Po) were of interest. The 
severity of the resulting computational burden depends on the magnitude of d. 

The organization of the paper is as follows. A prototype branch-and-bound 
algorithm for (Po) is presented in Section 2 .  
The lower bound and upper bound functions are developed in Sections 3 and 4, 
respectively. The modified branch-and-bound algorithm for (PIP) is given in 
Section 5 and applied to a sample problem in Section 6. Computational experience 
with the algorithm is reported in Section 7. 

2. A prototype branch-and-bound algorithm 

We shall draw upon the framework and terminology of Geoffrion and Marsten 
[ 2 ]  to describe a simple linear programming based branch-and-bound algorithm for 
(Po). Problem (Po) is separated, by fixing variables at zero and one, into smaller 
candidate problems (CP4). Each candidate problem has an associated set of fixed 
variables F4 C J = (1, . . ., n} and partial solution x q .  That is, (CPq) is defined by the 
conditions x, = x 4  for j E F4.  The current set of candidate problems is called the 
candidate list. If any feasible solutions of (Po) are known, the best of these is called 
the incumbent and its value denoted by LB. If we let J 4  = J - F4 be the set of 
“free” variables and 

where Ai is the j th  column of A, then a typical candidate problem may be written 
as (CP4) 

subject to u p ,  b, - p?, 1 i m, 
J E J ~  

x, E (0, l}, j E J 4 .  
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An upper bound on the value of (CPq) is obtained by solving its LP relaxation 
(CP;). It is also helpful to compute a lower bound on the value of (CP.). This can 
be done by using a heuristic to find a feasible solution of (CP.). This feasible 
solution, if it is better than the incumbent, becomes the new incumbent. A 
prototype branch-and-bound algorithm may now be described as follows. 

Step 1. Place (Po) in the candidate list and set LB = - 00. 

Step 2. If the candidate list is empty, stop. If there is an incumbent, it is optimal 

Step 3. Select a candidate problem and remove it from the candidate list. Call it 

Step 4. Solve the linear program (CP;). Let UBq denote its optimal value. 
Step 5. If UBq s LB, go to Step 2. 
Step 6. If the optimal solution of (CP:) is all integer, make this solution the new 

incumbent, set LB = UBq, and go to Step 2 .  
Step 7. Use a heuristic to find a feasible solution of (CP.). Let H 4  denote its 

value. If H q  > LB, then make this solution the new incumbent and set LB = Hq.  
Step 8. Separate (CP4) into two candidate problems (CPq') and (CP.") by 

choosing p E J 4  and setting F4' = Fq" = Fq U { p } ,  x;' = 0, x;" = 1. Place (CP.') and 
(CP.") in the candidate list and return to Step 2. 

A great many variations on this pattern are described in [ 2 ] ,  but this prototype 
will suffice for our purposes. Step 5 is the bounding test. If this test is satisfied, then 
no descendant of x q  is better than the incumbent. Notice that the bounding test 
includes the case where (CPZ), and hence (CP.), is infeasible since then UBq = 

- 00. If (CPq) does not have to be separated at Step 8, then we say that it has been 
fathomed. This occurs if (CPq) passes the bounding test or if (CP;) has an all 
integer solution. Step 7, the heuristic, is optional. Its purpose is to strengthen the 
bounding test by improving the incumbent and increasing LB. 

The modifications that must be made to this prototype algorithm to solve (PIP) 
are confined to Steps 5, 6 and 7. The notion of the incumbent must be generalized 
from a single value LB to a function LB(8) defined on 0 =s 8 =s 1. The upper bound 
must also be expressed as a function of 8: UB4(8). The bounding test then becomes 
a comparison of two functions on the interval 0 8 c 1 rather than just a point 
comparison for 8 = 0. 

for (Po). Otherwise (Po) is infeasible. 

(CP.). 

3. The optimal return and lower bound functions 

In  this section we shall investigate the behavior of the optimal value of an integer 
program as a function of its right-hand-side. Let the optimal return function 

f ( b ' )  = max rx 

subject to Ax s b' 

x E (071) 
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be defined for b‘ E R”’. It is apparent that f(b’) is nondecreasing in each component 
of b’. Let {x 1 k E K} be the set of all feasible solutions of (PIP), i.e. of all (P,) for 
0 S 8 S 1. For each k E K,  define the step function 

I ---do otherwise 

for all b’ E R”’. The optimal return function f(b’) is the pointwise maximum of this 
finite collection of nondecreasing step functions 

f (b’ )  = max {fk (b’) 1 k E K }  

and is therefore itself a nondecreasing step function. 
K. A lower 

approximation of f(b’) may be constructed from these known solutions, namely 
Now suppose that the solutions {x *  I k E z} are known, where 17 

f(b’)=max{f*(b’)( k €17). 

Clearly f ( b ’ )  is also a nondecreasing step function and is a lower bound function for 
f(b’), i.e. f (b ’ )  S f(b’) for all b’ E R”. The approximation can be improved as new 
feasible solutions are discovered. 

We are interested in a particular “slice” of f(b’) and f(b’):  the line segment 
{b + 8d 10 S 8 S 1) where b is the right-hand-side of (Po) and d is the given 
direction vector. Define g ( 8 )  = f(b + 8d)  and LB(8) = f ( b  + Bd) for 0 s 8 s 1. 
Then g(8) and LB(8) are both step functions and LB(8) s g ( 8 )  for all 0 s 8 s 1. If 
d 3 0,  then g ( 8 )  and LB(8) are both nondecreasing. (See Fin. 1). There is at least 
m e  optimal solution of (PIP) associated with each step of g(8 ) .  Solving (PIP) is 
equivalent to constructing g ( 8 )  by finding at least one x solution for each of its 
steps. 

0 8 I 

Fig. 1. Typical g(0) and LB(0) functions. 
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The procedure for constructing LB(8) from the known feasible solutions is as 
follows. For each k E define 

8:  = min { 8 1 2 A , x ;  c 6 + Bd] 
j = l  

8: = max { 8 I 2 A j x 7  s 6 + ( Id}  
j = 1  

where 8 :  = 8: = + 00 if the indicated set is empty. Then 

r jx:  if 8 : s  e c e:, 
LBk ( 8 )  = 

I --tc1 otherwise, 
(3.3) 

LB(8)=max{LBk(8)) k €z}. (3.4) 

The solutions which determine LB(8) will be called the incumbents. Each one is 
incumbent for a particular interval of 8. 

4. The upper bound functions 

Consider a given partial solution x q .  In order to demonstrate that no descendant 
of x q  could be optimal for any (Ps), we need an upper bound on the return achieved 
by any descendant and this upper bound must depend on 8. Such an upper bound 
can be obtained by introducing ( 8 d )  into the relaxed candidate problem (CP;). 
Define 

UBq(8) = 2 r,x4 + max 2 rjxj 
j € F q  j € J q  

subject to a ,x ,  s 6, + Od, - /3:, 1 S i c m, 
I E J ~  

so that UBq(0) = UBq. It is well known that UBq(8) is concave and piecewise linear 
on 0 s  0 c 1. The function UBq(8) could be obtained explicitly by ordinary 
parametric linear programming. The computational burden involved in doing this 
for every candidate problem could be quite substantial, however. Fortunately any 
dual feasible solution of (CP;) can be used to construct a linear upper bound 
function for UBq(8). An optimal dual solution of (CP; ), barring degeneracy, yields 
the first linear segment of UBq(8). By linear programming duality we know that: 
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m " 
UB"(8) = r,xF + min u,(b,  + Od, - P 4 ) +  2 u,, 

j E F q  z = l  , = I  

m 

subject to u,a,, + u, 2 r,, j E J q ,  
, = I  

u, 20, l s i s r n ,  

u, 20, l s j s  n. 

For notational convenience we have included all of the u, variables, even though 
u, = 0 for j' E F" in any optimal solution. Let D q  denote the dual feasible region 

Since the primal variables are all bounded and at least one (P,) is feasible, we may 
conclude that 0" is non-empty. Let {(u ' ,  u ' )  1 t E T q }  and { ( y ' ,  z " )  1 s E S " }  denote 
the sets of extreme points and extreme rays, respectively, of 0". Taking e = 

(1,. . ., 1) we have 

U B " ( 8 ) s  

for all t E T", with equality if (u ' ,  u ' )  is optimal for the objective function 
u ( b  + 8d - P q ) +  ue. As a function of 8 then, the return achieved by any descen- 
dant of x "  is bounded above by: 

r,x; + u ' ( b  + 8d - P q ) +  u'e 
, € F 4  

I UB4 (0 ;  t )  = (u*d)0  + r,xy + u ' ( b  - P q ) +  ule 
[f€F'' 

for any t E T". This is a linear function of 8 and, since u '  3 0, it is nondecreasing i f  
d 2 0 .  

In the modified branch-and-bound algorithm for (PIP), linear programming is 
applied to (CPZ) as usual. The functions UB4(8; t )  are obtained at n o  extra cost. 
The function obtained from an optimal dual solution will be denoted UB4(8; *). 
Barring degeneracy, UB"(8; *) coincides with the first linear segment of UB4(8) 
(see Fig. 2). As in conventional branch-and-bound, if the dual simplex method is 
used, then suboptimal dual solutions can be used to perform additional weaker 
tests. 

If (CPR) is infeasible, then the simplex method will terminate with an extreme 
point (u ' ,  u r )  3 0 and an extreme ray ( y ' ,  2') 3 0 ,  such that 

y ' ( b  - p ") + z 'e < 0. 

If y 'd  s 0 ,  then we may conclude that UB4(8) = - = for all 0 
then UB4(8)= - - f o r O s  8 < 8 *  a n d U B " ( 8 ) s  UB4(0 ; t)for 0 *  s 0 G 1, where 

8 s 1. If y " d  > 0 ,  

e*  = - Y ( b  - P ' )  - zse  
Y "d 
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0 6 

Fig. 2. Typical UB4 (0) and UB4 (0 ;  *) functions. 

5. A branch-and-bound algorithm for (PIP) 

Now that the upper and lower bound functions have been derived, the 
generalized bounding test may be stated. The partial solution x q  does not have a 
descendant that is better than an incumbent if 

UBq(8) s LB(8), for all 0 S 8 S 1, 

or if 

UB4(8; t )  S LB(8), for all 0 s 8 s 1, 

for some t E T4.  This test is the basis for a modified branch-and-bound algorithm 
that can solve (PIP). 

Step 1. Place (Po) in the candidate list and set LB(8) = - 30 for 0 
Step 2. If the candidate list is empty, stop. LB(8) = g(8) for 0 s 8 S 1 .  
Step 3. Select a candidate problem and remove it from the candidate list. Call it 

Step 4. Solve (CP;). If it is infeasible, obtain the appropriate dual extreme 
point ( u  *, v *) and extreme ray ( y  *, z *). Otherwise obtain an optimal dual solution 

8 S 1. 

(CP.). 

( u * ,  v*). 
Step 5. I. (CP:) infeasible. 
(a) y * d  0. Go to Step 2. 
(b) y * d > O .  Set 8 * = [ - y * ( b - p ) - z * e ] / y * d .  If UBq(8 ;* ) sLB(8)  for all 

8 *  s e s 1, go to Step 2. 
11. (CR4,) feasible. If UB4(8; *) == LB(8) for all 0 s 8 s 1 ,  go to Step 2. 

Step 6. If the optimal primal solution of (CPX) is all integer, use it to update 

Step 7. Use a heuristic to find feasible solutions of (CPq) with right-hand-side 
LB(8). 

( b  + 8 d )  for several values of 8. Use these feasible solutions to update LB(8). 



382 R.E. Marsten, T.L. Morin 

Step 8. Separate (CPq) into two new candidate problems (CP4') and (CP4") by 
choosing p E J 4  and setting Fq' = Fq" = F U { p }  x $  = 0, x;" = 1. Place (CP.') and 
(CP.") in the candidate list and return to Step 2. 

The validity of the generalized bounding test insures that an optimal solution for 
every (Po), 0 s  8 S 1, will be found by the search. At worst, an optimal solution 
may not be discovered until the bottom of the branch-and-bound tree is reached 
(Fq = J). This guarantees that LB(8) will coincide with g(8) by the time the 
algorithm is finished. It remains only to show how the optimal solutions are 
identified. 

Let { x k  1 k E E }  be the set of incumbents when the algorithm terminates. Let 
8 E [0,1] and suppose that (Po) is feasible, g ( 8 )  > - w. From the construction of 
LB(8), (3.1)-(3.4), we know that there is some k E K such that 

g ( 8 )  = LB(8) 
= LBk(8) 

= 2 r,x: > - w .  
1'1 

Furthermore, LBk(8)> - w means that 8 ; s  8 c O,", or equivalently that 

2 Ajxr b + 8d. 
j = 1  

Since x k  is feasible for (Po) and its return is equal to g ( B ) ,  it follows that x k  is 
optimal for (Po). To summarize, if k E K and 8 E [0,1], then x Ir is optimal for (Po) 
if and only if 

" 
(i) Ajx: 5 b + 8d 

j - 1  

At Step 6, in contrast to the prototype algorithm, x 4  is not fathomed when the 
optimal primal solution of (CPZ) is all integer. This is because x 4  may have other 
descendants which are optimal for 8 > 0. The use of heuristics at Step 7, while in 
principle optional, is an important part of the algorithm since integer solutions of 
(CPZ) can only yield LB(8) = LB(0) for 0 s 8 c 1. The heuristics are needed to 
produce stronger values of LB(8) for 8 > O .  

As with the prototype algorithm, the above procedure will admit considerable 
variation and refinement. If the dual simplex method is used. then suboptimal dual 
solutions can be used to perform additional bounding tests. Cutting planes can be 
generated for any candidate problem to give stronger upper bound functions. 
Parametric linear programming can be used to generate more than the first segment 
of UBq(8). If a candidate problem with an all-integer LP solution has to be 
separated at Step 8, then the same LP solution is optimal for one of the two new 
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candidates and does not have to be recomputed. Extensive experimentation will be 
required to determine the most effective computational tactics. 

6. Example 

In this section the algorithm will be applied to a simple example. In order to 
illustrate all of the different cases that can arise, the parameterization will be done 
over a relatively large interval. The test problem is 

max lox1 + 15x2 + l o x 3  + 5x4 

subject to 2x1 + 3x2 + 5x3 + 1x4 s 4 + 84  

~ x , + ~ x , + I x , + I x , ~ ~ +  84  

xi E {0,1} 1 s j s 4 

Thus b = (4,4), d = (4,4) and increasing 8 from zero to one amounts to doubling 
the right-hand-side. A picture of the optimal return function f(b') is given in Fig. 3. 

8 

7 

6 

5 

b; 
4 

3 

2 

01  1 I I I I 1 I 

25 - 

I 2  3 4 5 6  7 8  

bl' 

Fig. 3. The optimal return function f(b'). 

The dashed line indicates the line segment of interest: { b  + 8d 10 s 8 s 1). It is 
clear from this picture that three optimal solutions must be found, with values of 20, 
25, and 30. These solutions are (0,1,0, l),  (1,1,0,0), and (1,1,0,1) respectively. The 
g ( 8 )  function, shown in Fig. 4, is 

20 
25 for 112s  8 <3/4, 
30 

for 0 s 8 < 112, 

for 3 / 4 6  8 s 1. 
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t--+- 2 0  

I I I I 
0 114 I / 2  3 /4 I 

Fig. 4. The parametric function g(0). 

The optimal LP solution of (Po) is x = (1/2,1,0,0), u = (5,0),  u = (0) with value 
UBo = 20. The rounded down solution has value 15 and is feasible for 0 2 0; the 
rounded up solution has value 25 and is feasible for 0 2 1/2. This provides an initial 
lower bound function: 

15 for 0 s 8 < 1/2, 

25 for 1/2< 8 S 1 .  
LB(8) = 

The complete branch-and-bound tree is displayed in Fig. 5. The nodes will be 
discussed in the order in  which they were created. 

Fig. 5.  Branch-and-bound tree for the example 
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Node 1 .  LP solution: x = (0,1,0, l),  u = (5 ,0) ,  u = (0), UB' = 20. UB'(8; *) = 

208 + 20. The LP solution is all integer and is feasible for 8 3 0. Therefore the 
lower bound function may be improved: 

20 for 0 s 8 < 1/2, r 25 for 1 / 2 s  8 s 1. 
LB(8) = 

The bounding test for node 1 is shown in Fig. 6. Node 1 is not fathomed. 

I14 112 314 I 

Fig. 6. Bounding test for node 1 

Node 2. LP solution: x = (1,0,0,0), u = (0, lo), u = (0), UB2 = 10. UB'(8; *) = 

408 + 10. The bounding test, shown in Fig. 7, is not successful. Notice that if we 
were only interested in solving (Po) we would be finished. Node 1 has an all integer 
solution with value 20 and node 2 has upper bound UB2 = 10 < 20 = LB(0). 

I /4 1/2 314 I 

Fig. 7. Bounding test for node 2. 

Node 3. LP solution: x = (0,0,3/5,  l), u = (2,0), u = (0,0,0,3), UB3 = 11. 
UB3(8; *) = 88 + 11. The bounding test, shown in Fig. 8, is successful and node 3 is 
fathomed. 

Node 4. Same as node 1, since optimal LP solution at node 1 has x2 = 1 .  
Node 5. Same as node 2, since optimal LP solution at node 2 has xz = 0. 
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25t I 

5 t  
01 I I I 

I /4 112 3/4 I 

Fig. 8. Bounding test for node 3.  

Node 6. LP is infeasible. The dual extreme point is u = (0, lo), u = (0) and the 
extreme ray is y = (0, l), z = (0). The critical value of 8 is (- y (b - p") - z e ) / y d  = 
1/2. Thus UB"(8) = - m for 0 s 8 < 1/2 and UB"(8; *) = 408 + 5 for 1/2 s 8 G 1. 
The bounding test is shown in Fig. 9. 

I I I 
I /4 112 3/4 I 

Fig.9. Bounding test for node 6. 

Node 7. Same as nodes 1 and 4, since optimal LP solution for node 4 has x3 = 0. 
Node 8. LP is infeasible. The dual extreme point is u = (5,0), u = (0) and the 

extreme ray is y = (1,0), z = (0). The critical value of 8 is ( -  y ( b  - p 8 )  - z e ) / y d  = 

1, so UB8(8) = - O D  on 0 s 8 s 1 and node 8 is fathomed. 
Node 9. Same as nodes 2 and 5, since optimal LP solution for node 5 has x7 = 0. 
Node 10. LP is infeasible. The dual extreme point is u = (5,0),  u = (0) and the 

extreme ray is y = ( l ,O) ,  z = (0). The critical value of 8 is ( -  y ( b  - PIo) - z e ) / y d  = 

3/4. Thus UB'O(8) = - m for 0 s 8 < 3/4 and UB"(8; *) = 208 + 5 for 3/4 S 8 G 1. 
Node 10 is therefore fathomed. See Fig. 10. 

Node 11. LP is infeasible. The dual extreme point is u = (0,5), u = (0) and the 
extreme ray is y = (0, l), z = (0). The critical value of 8 is ( -  y ( b  - P I ' )  - ze ) / yd  = 
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30 t L B  ( 8 )  

o t  I I I 
I /4 1 /2  3/4 I 

Fig. 10. Bounding test for node 10. 

1/2. Thus UB"(8) = - rn for 0 s 8 < 1/2 and UB"(8; *) = 208 + 15 for 1/2 S 8 < 1. 
Node 11 is not fathomed. See Fig. 11. 

I /4  I / 2  3 14 

Fig. 11. Bounding test for node 11. 

Node 12. LP is infeasible. The dual extreme point is u = (5 ,0 ) ,  v = (0) and the 
extreme ray is y = (1,0), z = (0). The critical value of 8 is ( -  y(b  - p") - ze ) / yd  = 

1. Therefore UB1*(8) = - 
Nodes 13-18 are all at the bottom level of the search tree. The solution for node 

18, (1,1,0, l), has value 30 and is feasible for 8 2 3/4. The lower bound function 
may be improved by redefining LB(8) = 30 for 3/4 S 8 S 1. LB(8) now coincides 
with g ( 8 )  on 0 8 

for 0 s 8 =Z 1 and node 12 is fathomed. 

1. The algorithm terminates since the candidate list is empty. 

The amount of extra computation required to solve (PIP), as compared to (Po), 
depends on the length of the interval of parameterization. When this interval is 
small, the burden imposed by parameterization may be slight or even negligible. 
When it is large, however, as illustrated in this example, the burden can be quite 
substantial. 
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7. Computational results 

The ideas presented above were tested by incorporating them into a branch-and- 
bound computer code [3]. The’results for four test problems are presented in Table 
1. In each run the direction vector d was taken as some percentage of the right- 
hand-side b. For example, if d = 5% b, then (PIP) has right-hand-sides b + 8(.05)b 
for 0 s  6 1. The column headed “solutions” gives the number of optimal 
solutions found, or equivalently the number of steps of the g ( 8 )  function. 
“Heuristic” is the number of (evenly spaced) 8 values for which the heuristic is 
applied at Step 7. The problems are of the capital budgeting type and the heuristic 
employed is that of Toyoda [12]. “Pivots” is the total number of linear program- 
ming pivots and “time” is the total solution time in seconds on an IBM 370/168. 

Table 1. Computational results for four test problems 

rn n d solutions heuristic pivots time 

5 15 0 1 1 39 0.239 
0.05b 4 10 62 0.541 
0.10b 5 10 91 0.815 
0.15b 7 10 124 1.044 
0.20b 8 10 130 1.170 
0.25b 10 10 171 1.534 
0.506 16 20 315 3.162 

5 30 0 1 1 153 1.605 
0.056 11 10 529 8.114 
0.10b 28 20 1173 18.005 
O.lSb 37 20 2606 43.304 

10 28 0 1 1 66 1.155 
0.056 16 10 173 4.465, 
0.10b 25, 20 645 13.129 
0.156 42 20 1621 30.888 

20 30 0 1 1 180 3.242 
0.025b 6 5 400 9.486 
0.056 12 10 1350 32.185 

These results illustrate quite clearly how the computational burden increases as 
the interval of parameterization is lengthened. In order to facilitate comparison 
with our results by other researchers we have included the data for the 5 x 30 
problem as Table 2 and the corresponding g ( 0 )  function for a 15% increase in 6 as 
Table 3. 
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Table 2. The 5 X 30 test problem 
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188 
92 
6 

80 
91 
44 

108 
166 
171 
64 
97 
35 
51 
98 
36 
70 
27 
94 
68 
13 

13.2 
15.1 
3.3 
7.4 
7.0 
1.2 
7.0 

17.0 
13.8 
9.4 

91 
179 
146 
155 
102 
112 
126 
21 
39 
67 
29 
55 
72 
17 
0 

42 
15 
64 
53 
30 

2.8 
15.0 
2.6 
3.5 

17.0 
3.5 
5.1 

16.2 
13.2 
13.9 

20 
99 
95 
95 
84 

136 
166 
13 
20 

124 
42 
58 
43 
43 
44 
2 

88 
55 
68 
22 

6.8 
8.3 
8.9 
3.1 

16.5 
2.2 
9.7 
4.7 
1.8 

11.0 

86 
97 
42 
90 

101 
3 

101 
34 
25 
72 
96 
36 
3 

88 
97 
77 
50 
14 
77 
88 

11.3 
13.8 
4.5 

17.1 
11.8 
17.1 
19.1 
5.0 

10.2 
3.6 

164 
98 
2 

165 
140 
106 
88 
68 
84 

131 
55 
11 
17 
4 

47 
45 
11 
77 
36 
49 
2.9 

11.7 
19.2 
18.1 
3.8 

18.0 
8.8 
3.9 

16.9 
13.8 

936 
695 
390 

1152 
980 

lo00 
815 
109 
807 
156 
548 
335 
316 
528 
36 

573 
38 
3 

800 
392 
92 
4 

29 
81 

2 
40 
17 
16 
30 

118 

b = 8 0 0  800 700 700 800 

Table 3. The g(8)function for a 15% increase in b;  5 x 30 problem. 

0.0 
0.01833 
0.05524 
0.10286 
0.11250 
0.11416 
0.13583 
0.20952 
0.25238 
0.30666 
0.32750 
0.34952 
0.39333 

7515 
7578 
7607 
7612 
7633 
7696 
7725 
7777 
7806 
7807 
7822 
7836 
7839 

0.41523 
0.42000 
0.43714 
0.45667 
0.45809 
0.47833 
0.49428 
0.49809 
0.51809 
0.54190 
0.56095 
0.56285 
0.594 16 

7846 
7869 
7891 
7913 
7931 
7942 
7947 
7957 
7994 
8009 
8023 
8049 
8060 

0.60166 
0.62333 
0.71083 
0.73333 
0.75809 
0.77500 
0.79333 
0.82083 
0.87916 
0.93583 
0.99416 

8112 
8141 
8161 
8171 
8181 
8204 
8224 
8253 
8270 
8283 
8300 
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AN EXAMPLE OF DUAL POLYTOPES IN THE UNIT HYPERCUBE 

J.F. MAURRAS 
Dipartmenf Methodes d 'Optimisation, Electricif6 de France, 92141 Clamart, France 

Let N = {1,2,. . . , n }  and let S be a subset of N with S = {sl, sz, . . . , s,} such that 

0 s  s1 < s2< * < st G n. 

Let P be the polytope in R" defined by the system of inequalities: 

o s x j  s I, j = 1, ..., n ;  

for each I C N such that ~i < I I1 < Si+l, 

where ki = I I I - s i .  

Theorem 1 [l]. Pis the conuex hull of the zero-one uectors, xi = 0 or 1,  j = 1,. . . , n, 
such that 

2 xj E s. 
j = 1  

Theorem 2 [l]. The facets of P are given by:  
xj  6 1, j = 1 , .  . ., n, unless S is one of (0, n}, (0,1, n}, 11, n}; 
x j  2 0 ,  j = 1,. . . , n, unless S is one of (0, n} ,  (0, n - 1, n} ,  (0, n - 1); 
x x, 2 sI if and only if s1 > 0;  
x x, < s, i f  and only if s, < n ; 

for si < 1 I I < s ~ + ~ ,  if and only if, 
(i) 0 < s, and sitl < n, or 

(ii) si = 0 and si+,  < n and 111 = 1, or 
(iii) si > 0 and sitl = n and I I1 = n - 1. 
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These polytopes are  invariant under permutations of the indices of the variables. 
We shall investigate here the polytopes of this class which are duals (i.e., their face 
lattices are anti-isomorphic). 

Theorem 3. For n 3 3 ,  except for the n simplices, which are duals and self-duals, the 
only dual polytopes in this class are those defined by the following sets: 

(1, n - 1) and {0,1,. . . , n } ;  

{0,1, n - l }  and {1,2,. . . , n } ;  

(1, n - 1 ,  n }  and {0,1,. . . , n - 1); 

{0,1, n - 1, n }  and ( 1 , .  . . , n - 1). 

Sketch of proof. The  first dual pair is proven by showing that the dual of the unit 
hypercube, i.e. P and S = { 0 , 1 , .  . . , n } ,  is given by P when S = 11, n - 1). This can 
be proven from the result, using the terminology of [ 2 ] ,  that the n cross polytope 
(i.e., the convex hull of ( O , . .  ., +-1,O,.  . . ,0) ,  for all i )  is the dual of the unit 
hypercube. The n cross polytope is facially equivalent to P for S = (1, n - 1); this P 
is the convex hull of (0,. . . , + 1,0, .  . . ,O), (1,. . . ,1,0,1,. . . , 1) for all i. In fact, there 
is an affine transformation which takes this P to the n cross polytope. 

A different proof of this first pair is the heart of the proof of the entire theorem. 
A mapping from facets of the first P to  the vertices of the unit hypercube is: 

c x, 25 1 -+ (0,. . . ,0); 

XI 3 0 + ( 0  ) . . . )  l , o  ) . . . )  0); 

, = I  

i 

+ x ,  X ,  = o for i E Z, x, = 1 for  j 6 1; 

i 
X , < l + ( l )  . . . )  0,1, ..., 1 ) ;  

, 1 ) .  

The proof of the “only if”  part of the theorem requires showing, using invariance 
of P, that the pairs given with a mapping much as the one above, are the only 
possible dual pairs. 
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IMPLICIT ENUMERATION WITH GENERALIZED 
UPPER BOUNDS 

P. MEVERT and U. SUHL 
Department of Operations Research, Free University of Berlin, Dl000 Berlin 33, Germany 

A number of planning problems can be formulated as (0-1)-programs where all variables can 
be grouped into special ordered sets or generalized upper bounds. 

An implicit enumeration algorithm was developed and implemented for this class of problems. 
The generalized upper bounds are handled implicitly. Only non-zero elements of the large but 
sparse constraint matrix are stored explicitly and chained row-wise and column-wise. The storage 
structure allows for very efficient testing of partial solutions. Preliminary numerical results 
indicate that even large-scale problems can be solved efficiently. 

1. Introduction 

Balas introduced the concept of implicit enumeration more than ten years ago 
[3]. Since then, a number of major improvements have been suggested, e.g. [4, 5, 
10, 13, 14, 15, 16, 20, 23, 271. Numerical results, however, have been somewhat 
disappointing and success has been limited to problems of small or moderate size, 
in general. 

By contrast, quite large problems were solved successfully using LP-based 
branch-and-bound codes. This may have led to the belief that these methods are, in 
general, more powerful than implicit enumeration. 

It should be pointed out, however, that many man-years have gone into the 
development of LP-based codes like UMPIRE, MPSX-MIP, or APEX. On the 
other hand, very little effort has been spent, to our knowledge, to develop 
comparable implicit enumeration codes. Most authors report that their results were 
obtained using an experimental code on small artificial test problems. 

An important fact that seems to have been overlooked is the fact that realistic 
problems differ from the usual small test problems in two essential aspects. Firstly, 
they exhibit in most cases special structure. Secondly, the matrix of coeffcients is 
always sparse. Exploiting these two characteristics of real problems and being 
careful to minimize data handling in the implementation may increase the efficiency 
of implicit enumeration codes to the extent that even large-scale problems can be 
solved successfully. The following is an example of this approach. 

We consider (0-1) problems where the set of all variables can be partitioned into 
subsets and exactly one variable from each subset must take on the value one. We 
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will use the terminology special ordered sets, convexity constraints, multiple choice 
constraints, and generalized upper bounds interchangeably. (See [6] for the original 
more general concept of special ordered sets.) 

This class of problems contains a large number of applications, including 
assembly line balancing [MI, resource constrained network scheduling [2], distribu- 
tion problems [9], time-table problems [19], and a number of other scheduling 
problems [2, 7, 81. Certain production planning problems with setup costs and 
location-distribution problems can be formulated as mixed integer programming 
problems and solved by Benders’ Method [12]. In these and other cases, the master 
problem exhibits a structure such that all variables can be grouped into special 
ordered sets, as defined above. 

Thus, we consider the following problem P: 

minimize z 

s.t. z = c cjxj, 
j € J  

a,jx, 2 b ,  Vi E M, 
i E J  

xj  = 0  or 1, V j E J ,  

where Jk are the special ordered sets with 

u J k  = J  and J, nJk = 0  for i #  k. 
k E K  

Without loss of generality, we assume that 

c, 3 0 for all j E J.  

Following standard terminology we define a partial solution as a projection of the 
solution space onto a lower dimensional space by assigning binary values to a subset 
S CJ of the variables x,. An admissible partial solution is an assignment of binary 
values to the variables x,, j E S CJ such that each special ordered set contains at 
most one variable with value 1. We define: 

S index set of variables to which binary values are assigned; 

S1 index set of variables assigned the value 1; 

So index set of variables assigned the value 0; 

b , ( S )  = b, - a,,, current right-hand-side; 
J E S l  

z(S) = c,, current value of the partial solution S; 
j e S 1  
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V , ( S )  = { i  E M I b i ( S )  > 0) index set of general constraints (1) which would be 
violated if the partial solution were completed by 
assigning xj  = 0 to all j E J - S ;  

V,(S) = {k € K 1 S1 n Jk = 0) index set of convexity constraints (2) which would 
be violated if S were completed by xj  = 0, 
j € J - S ;  

F ( S )  index set of free (unassigned) variables xi, j E J - S ;  

[; n F ( S )  if S1 n Jk = 0, 
L k  ( S )  = 

otherwise, 

index set of admissible variables from the special ordered set Jk ; 

L ( S )  = u & ( S )  index set of admissible variables. 
k E K  

Note that a free variable is called admissible if n o  other variable in the same 

Then each admissible partial solution defines a subproblem P ( S ) :  
special ordered set is assigned the value 1. 

xj  = O  or 1, j E L ( S ) .  (3') 

Any feasible solution of P ( S )  defines a feasible completion of S by assigning the 
value 0 to all remaining free variables. A minimal completion corresponds to a 
minimal solution of P ( S ) .  

Note that P ( S )  is, in general, a much smaller problem than P, since L ( S ) C  
F ( S )  CJ. This fact will be used in the subsequent algorithm. Further, if Vl(S) = 

V2(S) = 0 (i.e. all b i ( S )  C 0 and all convexity constraints are satisfied) then x j  = 0, 
j E J - S is a minimal completion of S. 

A partial solution S is said to be fathomed if 
(a) it can be shown that the minimal value of P ( S )  is not less than zBeSt, where 

(b) it can be determined that P ( S )  has no solution; or 
(c) P ( S )  is solved, i.e. all completions of S have been (implicitly) enumerated. 

zBert is the value of the best feasible solution to P, found so far; or 
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A variable x,, j E S is said to be fixed to 1 if the partial solution S with the 
opposite value x, = 0 instead of x, = 1 has already been fathomed, i.e. is known to 
possess no completion with a smaller value of the objective function. Similarly, a 
variable x,, j E S is said to be fixed to 0 if the opposite branch x, = 1 has been or 
need not be investigated. 

By contrast, a variable x,, j E S is called set to a binary value p if the partial 
solution S with the opposite branch x, = 1 - p instead of x, = p is not excluded 
from further investigation. 

The information on the status of each variable x,, j E J is stored in a status vector 
st which contains information on all free and assigned variables. 

In order to keep relevant information on the enumeration history all indices j E S 
are stored in chronological order in a partial solution vector s = GI, j r ,  . . ., 1. .) 
where j k  is the index of the variable which was set or fixed at the k th level of the 
enumeration tree. Finally, Vz(S)  is conveniently stored in form of a vector vz  where 
02(k) = 0 if k E Vz(S),  and vz(k) = 1 if the kth multiple choice constraint is 
satisfied , 

2. The implicit enumeration procedure 

The problem is solved by implicit enumeration using a modification of the 
procedures suggested in [3], [13], and [15]. The approach is related to [9]. The 
multiple choice constraints (2) are stored implicitly but the enumeration procedure 
uses the structure of these constraints explicitly. 

The enumeration proceeds in the usual fashion from an admissible partial 
solution S. An attempt is made to fathom S. If this is successful, the last variable in 
S which was set to 0 or 1 is replaced by its complement, i.e. the node selection rule 
is LIFO. 

If S cannot be fathomed, one (or more) variables x,, j E L ( S )  are selected to be 
set or fixed to 0 or 1, depending on the outcome of some tests. Note that only 
admissible partial solutions can be generated. 

The algorithm uses several of the tests which have been suggested in the 
literature [3, 5, 10, 11, 201. Unly non-Lero elements of the constraint matrix (1) are 
stored and chained row-wise and column-wise, as will be discussed subsequently. In 
view of the storage structure, tests are preferred which require very little 
computational or updating effort. 

The basic sequence of tests is shown in Fig. 1. It should be mentioned, however, 
that Fig. 1 is only an approximate description of the algorithm. For example, if a 
test results in fixing some of the variables, then in some cases the test will be 
repeated after updating. In order to keep the exposition simple, such details are not 
given in Fig. 1. 

The following steps correspond to the numbers of Fig. 1: 
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1 b 
Lower bound Ib ( S )  

Ib ( S )  3 zkst 
I 

V*(S)  = 0 
2 

Feasibility test 

3 feas. compl. 

3 

Fixing tests 

3 candidates 

4 

Select branch 

5 1 
Forward step (s) 

I V@)l’ 1 
I 

f 

I Search L ( S )  I 
, 3 feas. cornpl. 

+ 
Record solution 

7 1 
Backtrack I 

3j E S not fixed b----. 
Fig. 1.  

(1) Calculate 

Ib(S) = z ( S ) +  min {c,} ,  
k E V z ( s )  I E L k ( s )  

where Ib(S) is a lower bound for P ( S ) .  If l b ( S ) ~ z B , , ,  backtrack. 
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( 2 )  If V , ( S ) # 0 ,  then tests are carried out to determine if S has a feasible 
completion. The basic test is as follows: Calculate 

sup, < 6, ( S )  backtrack. 
(3) (a) If sup, = b , (S ) ,  then all variables whose coefficients determine sup, can 

be set to 1 and all variables x,, j E L ( S )  with a,, < 0 can be set to 0; they can be fixed 
if sup, is determined by a unique set of variables. 

(b) If an element a, in sup, is replaced by the next smaller admissible element 
of the special ordered set and the sum is less than b , (S ) ,  then x, can be fixed to 1. 

(c) If there exist elements a,, < 0, i E V1(S), j E L ( S ) ,  such that sup, + a, < 
b,(S)<sup,, then x, can be fixed to  0. 

(4) If no candidates where found in step 3 which can be set or fixed to  0 or 1, then 
a variable x,, j E L ( S )  has to be selected to be set to 1. Several branching rules are 
possible. For most problems the following rule seemed to work best: 

if Vl(S) = 0, select x, with c, = minkcL(s){ck}; 
if Vl(S) # 0, select the variable with the smallest cost coefficient from those 

variables which determine sup,. 
( 5 )  The candidates found in step 3 or the variable selected in step 4 are set or 

fixed to 0 or 1. This is called a forward step. The vectors s, st, and v2, the right hand 
side b , ( S ) ,  i E M, and the cost constant z ( S )  are updated. Note that L ( S )  is not 
updated explicitly but is stored implicitly via v2, s, and st. Further, if variable x, 
from a special ordered set Jk is assigned a value 1 the other variables x,, j E Jk, j f  i 
are not set to 0 but remain free and only uz is updated. This requires substantially 
less book-keeping and storage space than explicit handling. 

(6) If exactly one multiple choice constraint is still violated then the set of 
admissible candidates L,(S), k E V,(S), is searched for a feasible completion. The 
search is sequential by increasing cost coefficients, thus the least cost completion is 
found first and the partial solution S is always fathomed. 

(7) The enumeration process backtracks if a partial solution S can be fathomed. 
In this case the partial solution vector s is searched from right to left until an index j 
is found whose status is “set to p”. The status of x, is then replaced by “fixed to 
1 - P’’  and 02, z (S) ,  b(S) ,  s, and st are updated; all indices in s to the right of j 
change their status from “fixed” to “free”. The enumeration stops when all 
elements of S have status “fixed”. 

For this implementation the efficiency of the basic enumeration was increased by 
using additional characteristics of the problem under consideration. For example, if 
constraints of the type ~ l E , a , j x , j  < b, with a,, 3 0 and b, 3 0 are present, the fact that 
these constraints must never be violated can be used advantageously in steps 2 , 3 , 4 ,  
and 6. Similarly, special tests were used for assembly-line-balancing problems. 
Finally, penalties can be calculated in steps 3 and 4 of the algorithm which reduces 
the number of branches significantly. 
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3. Data organization 

The efficiency of any enumeration procedure depends critically on the organiza- 
tion and storage structure of the problem data. The coefficient matrix of realistic 
problems is, in general, large but sparse. It is, therefore, not possible to keep the 
entire matrix in core. In addition, storing all elements explicitly will require an 
excessive computational effort for the usual feasibility and branching tests. 

Storing non-zero elements by rows, only, will reduce core requirements signifi- 
cantly and to some extend computation times for feasibility and branching tests. 
The updating of the right-hand-side, however, requires prohibitive search times. 

For this implementation non-zero elements were stored and chained row-wise as 
well as column-wise. The list structure can be characterized as follows: 
0 variables are ordered by increasing cost coefficients within each special ordered 

set; 
0 the constraint matrix (1) is partitioned into positive elements and negative 

elements; 
the positive elements of the same row and special ordered set are chained in 
decreasing order of magnitude; 
the negative elements of each row are chained in increasing order of mag- 
nitude; 
for each column, the positive elements and the negative elements are chained; 
the multiple choice constraints are stored implicitly. 

0 

0 

0 

0 

The storage of the coefficients of the constraint matrix (1) requires the following 5 
arrays: 

(a) value of element a,, ; 
(b) row index i ;  
(c) column index j ;  
(d) pointer to next smaller positive element in same row and special ordered set, 

or pointer to next larger negative element in same row; 
(e) pointer to next non-zero element in same column. 

The array (d) can be eliminated if elements are sorted in the appropriate order. In 
addition the following pointer arrays are used: 

(f) largest positive element in row i and special ordered set k ;  
(g) smallest negative element in row i ;  
(h) first positive element in column j ;  
(i) first negative element in column j ;  
(k) first variable of special ordered set k. 
Finally, the arrays s, sf, uz, c, and b have to be stored and one additional array is 

used which orders the variables by increasing cost coefficients within special 
ordered sets. 

The list structure allows efficient testing as well as updating. To calculate sup, in 
step 2 of Fig. 1, for example, the vector u2 is searched sequentially for zero entries. 
Assume u z ( k )  = 0; then pointer array (f) points directly to the largest positive 
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element a,, in row i and special ordered set k .  If the status of variable x, is free, 
then a,, is an element of sup, ; otherwise pointer array (d) is used to retrieve the next 
smaller element in row i and special orderd set k, etc. 

Similarly, in step 3c of Fig. 1, row i is searched for negative coefficients a,. For 
this test, pointer array (g) points to the smallest negative element a,,. If sup, -t a,, < 
b, ( S )  and j E L ( S ) ,  then x, is fixed to 0 and pointer array (d) is used to retrieve the 
second smallest element in row i, etc., until the test fails for the first time. 

As a final illustration, in step 6 of Fig. 1, the admissible variables of the remaining 
violated multiple choice constraint are searched sequentially €or a feasible comple- 
tion. If V , ( S ) =  P, then for j E L ( S )  only a ,  < O  have to be checked against 
b , ( S ) < O .  In this case, pointer array (i) leads to the top of the chain of negative 
elements in column j .  If V , ( S )  # P,, pointer array (h) leads to the chain of positive 
elements az, > 0 in column j which are checked against b , ( S )  > 0. 

4. Numerical results 

A preliminary version of the algorithm was implemented on a CDC CYBER 72. 
Three types of test problems were generated and run for various problem sizes. 
Problem A is an assembly-line-balancing problem. A detailed description can be 
found in [18]. Problems of type B are distribution and warehouse allocation 
problems with side constraints. Problem B.l  is based on [9], however, additional 
side constraints were added to render the solution of [9] infeasible. The data for 
problems B.2-B.5 were generated randomly. Coefficients of the objective functions 
are uniformly distributed in the interval [ l ,  1011; coefficients of the general 
constraints are uniformly distributed in the interval [ 1, 511. The right-hand-side 
coefficients of each problem were assigned values between 60 and 120. Problem C is 
a resource-constrained network scheduling problem. Table 1 summarizes the 
results. 

Thangavelu and Shetty [26] developed an efficient algorithm for assembly-line- 
balancing problems without additional side constraints. They solved problem A in 
4.8 sec. on the UNIVAC 1108. Solution times are difficult to compare; the 
UNIVAC 1108 is, in general, several times faster than the CYBER 72. Problem B.l 
without side constraints was solved by DeMaio and Roveda [9] who designed a 
specialized algorithm to solve “pure” problems of this type. Their reported solution 
time was 1 sec. on the 1108. Finally, problem C was solved previously in 58 sec. on 
the IBM 370/158, using MPSX-MIP. For comparison, an attempt was made to solve 
all problems except B.3, B.4, and B.5 using CDC’s LP-based system APEX 11. This 
code has a feature to handle special ordered sets implicitly and efficiently. Problems 
B. l  and C were solved on the CYBER 72 in 19 seconds and 200 seconds CPU-time, 
respectively. All other problems could not be solved in 1 hour CPU-time; the 
feasible solutions which were found in 1 hour CPU-time did not  contain the optimal 
solution in any of these cases. 
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Table 1 .  

number of 0-1 variables 
number of constraints 
number of multiple choice constraints 
density of problem matrix 
number of problems solved 
number of partial solutions investigated 
number of feasible solutions found 
total CPU-time in sec., including input processing 

n 
m 

P 
d 
prob 
nodes 
solns 
CPU 

Problem n m p d prob nodes s o h  CPU 
min max min max min max 

1280 - A 450 117 45 4.1 1 - 
B.l 20 13 5 23.1 2 4 12 1 
B.2 400 40 20 5.0 3 1237 7180 4 

141 - B.3 1000 65 25 3.1 1 - 
B.4 1000 65 40 3.1 2 1075 6256 4 

22688 - B.5 1000 70 50 2.9 1 - 

79 - C 58 46 6 23.5 1 - 

7.1 2 
2 0.2 0.2 
9 3.4 19.7 
2 - 1.6 
9 5.1 31.1 
3 - 90.4 

- 

1 s  - 1 .s5 
- - 

All optimal solutions enumerated 

The test results are insufficient to draw any final conclusions. It appears, 
however, that even large problems of this special structure can be solved by implicit 
enumeration in reasonable CPU-time. The number of general constraints seem to 
have little influence on solution times as the increased computational effort is off set 
by tighter bounds. The number of special ordered sets, however, appears to be a 
limiting factor, as the computation times increase exponentially with the number of 
special ordered sets. 
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ON SOME NONLINEAR KNAPSACK PROBLEMS 

I. MICHAEL1 and M.A. POLLATSCHEK 
Faculry of Industrial and Management Engineering, Technion, Haifa, Israel 

Minimization of separable strictly convex function is considered with nonnegative integer 
variables when the sum of variables is constrained. Theorems concerning the condition for the 
optimum and properties of the optimal solution are presented. For a few types of functions this 
problem displays “periodic” properties similar to those in linear integer programming: The 
difference between the noninteger and integer solution is a function depending solely on the 
position of the noninteger solution inside a hypercube formed by the neighbouring integer points. 
Utilization of this property shortens drastically the search for the integer solution, in many cases 
the problem reduces to nonlinear 0/1 problem. 

1. Introduction 

Nonlinear integer programs have attracted less attention than their linear or 
nonlinear 0/1 counterparts. (See [3,5] and the works referenced there for these two 
cases.) We are aware of references [ 1,2 ,6 ,7 ,8  and 101 only. If general theorems are 
desired, even the convex case appears to be quite intractable when there are more 
than one variable as has been pointed out recently [9]. 

Our aim is to eventually deal with the program wherein the minimand is 
separable and strictly convex and the constraints are linear. This paper is the first 
step toward this end: the constraint treated here is that the sum of variables is b. 
Thus, our problem is (P): 

minimize 2 fi (x i  = F(x) ,  
i = l  

subject to xi = b, 
i = l  

x i > O ,  i = 1 , 2  ,..., n, (3) 

xi is integer, i = 1,2,. . ., n, (4) 

where b is a positive integer and f, (x,) is finite strictly convex for each i, for all the 
values x, satisfying (2) and (3). 

The authors have been motivated by a problem where f i ( x , )  = c,p:1, which arises 
for example in allocating b (identical) weapons to n targets. Let c, be the utility of 
destroying target i, 1-p, the probability of destruction by a single weapon, 
assuming independence among the weapons and additivity of utility one arrives 

403 
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(after trivial modifications) to (P) with the above j ( . ) where x, is the number of 
weapons allocated to target i. 

It is hoped that (P) will serve as a vehicle to analyse the case where the 
constraints are linear but otherwise arbitrary. 

In Section 2 an easily applicable necessary and sufficient condition is derived for 
the (integer) optimum of (P) (Theorem 1 and its corollary). Denote an (integer) 
optimal point of (P) by x o  and the optimal point when (4) is disregarded by x * .  It is 
shown that either x: 3 [x :] for each i or x: [x T] + 1 for each i, or both, when [a] 
is the largest integer not exceeding a. It is easy to check whether both inequalities 
hold in which case (P) reduces to a 0/1 program which is less difficult to solve. 

It is hoped that Theorems 1 and 2 can be extended to a more general program, 
although their proofs exploit heavily the properties of constraint (2). 

For a few types of functions it can be shown that xo-  x *  is not a function of b. 
This is very similar to the phenomenon in asymptotic integer linear programs [4] 
and has not been previously observed in the literature for the nonlinear case. Thus, 
a general integer solution may be provided for an infinite number of right-hand 
sides. 

2. Theorems 

Theorem 1. 
(4) and (5) :  

x = (xl, xz, . . ., x.) is a solution of (P) i f  and only i f  it satisfies (2), (3),  

J ( X l ) + f ; ( X , ) ~ f , ( X l  + m)+fi(x,  - m )  ( 5 )  

for each pair i, j ( i  = 1,. . ., n ;  j = 1,. . ., n ;  i# j )  and each integer m such that 

Proof. The necessity of (2), (3), (4) and (5) for optimum is trivial. Their sufficiency 
will be established by contradiction. Assume that x o  is an optimal solution and x +  is 
not: F(x' )  > F(xo) ,  while both are feasible, i.e., satisfy (2), (3) and (4). Suppose that 
x+ also satisfies (5)  (xo clearly does). Denote one of them by x n  and the other by x h  
as follows: Define 

and order the variables and points so that 

(7) f f l  2 a!* 2.. . 3  a!", 

f f 1 + ( Y , C O .  (8) 

Note that this can be done without loss of generality and since both x R  and x h  
satisfy ( 2 )  we have 
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2 a, = 0. 
, = I  

Moreover, x a  # x 

a1 > 0; 

and (7) imply that 

a" < O .  

Two cases will be dealt with separately: the case where a1 + an = 0 and the case 

Case 1: Assume a1 + an = 0. Consequently, 
where ayl + a, < 0. (By (8), these are the only possibilities). 

x; + x:: = x: + xi,  

f i  (X ; ) + fn (x ) =S f i  (x :) + fn (x X ), (1 1) 

f l ( x ~ ) + f n ( X ~ ) ~ f l ( X ; ) + f n ( X : : ) .  (12) 

fl(x;) + f" (XE) = f l ( X ? )  + f" (x S) .  (13) 

and by assumption both x '  and x b  satisfy (5) ,  hence 

From (11) and (12) follows that 

If a1 = 1 (and a. = - 1) then, by (7) and (9), either a, = 1 or a, = - 1 or a, = 0 for 
each i. From (7) and (9) it also follows that 

a, + an+l-I = 0 

for each i, and hence analogously to (13): 

fi(x:)+fn+l-, (X::+Ih) = f i ( X : ) + f " + l - ,  (xi+1-,). 

Since for odd number of variables there must exist 

a ( n + l ) / z  = 0, 

we have (for even or odd number of variables) 

F(x")  = F(xb) ,  

which is a contradiction to the initial assumption that F(x") < F(x'). 
If aI > 1 then by strict convexity of fl(xl)  and f n ( x n )  and by (5 )  we have 

f l  (x ; ) + fn (x :: ) < fl(x 7 - a 1)  + fn (x :: - a n  ) 

or 

f l  (x ) + fn (x :: ) < f i  (x B ) + fn (x i )> 

which contradicts (13). 
Case 2 .  Assume a1 + an < 0. By assumption, both x a  and x b  satisfy (5):  

f l ( ~ ; ) + f n ( ~ : : ) < f l ( ~ ?  - y)+fn(xZ + y )  (14) 

f l ( x : ) + f " ( X i ) ~ f l ( X :  + 2 ) + f n ( x i  - z )  (15) 

for y and z integers, satisfying 
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Eqs. (16) and (15) can be rearranged as follows: 

fn(xf: + a n ) - f n ( x f :  + a n  + Y ) S ~ ~ ( X !  + a1-y) - f i (x !  + ( ~ 1 )  (17) 

Note that the substitution of (19) into (17) and (18) does not violate (3): By (6) and 
(lo), aI  is a positive integer, and 

x: + a1-a1= x; 20. 

x f : = x : : - a "  = x:: + a1 - (a1 + a,), 

XI: >x:: +a1, 

x: - a1 > x:: 2 0, 

We still have to show that xx - a1 is nonnegative. We have by (6) 

and since a1 + a, < 0, 

which is the desired result. 

hand-side of (17) and the left hand-side of (18), implying: 
Substitution of (19) into (17) and (18) results in equality between the right 

fn (x I: + a, ) - f" (x x + a1 + a, ) 5 fn (x x - a1) - fn (x 1: ), 

fn (X f: + a n )  + fn (X I: ) =S fn  (X 1: - a1) + fn (X f: + + an) .  

which can be rearranged as: 

By (7), (10) and the assumption a1 + a n  < 0, 

xf: +a, <xf :  - a 1 < x f :  

x I: + a, < x I: + (a1 + a,) < XI:, 

fn(xf: - a,)< Af"(XI:)+ (1 - A)f"(Xf: + an) 

and due to strict convexity of f,,(x,) we have 

fn(xf: + a , + a , ) < ( l - A ) f , ( x f : ) + f , ( x f : + ~ , )  

for A = 1 + al/an (note, that 0 < A < 1). 
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Summation of (21) and (22): 

f n ( X f : - a l ) + f n ( x f :  + ( y l + ( y n ) < f n ( x f : ) + f " ( x f : + ( y n )  

contradicts (20). 
These exhaust all the cases, and the proof of Theorem 1 is now complete. 0 

Corollary. x is a solution of (P) if and only if it satisfies (2) through (4) and 

f , ( x t ) + f , ( x , ) s f , ( x ~  + m ) + f , ( x J  - m ,  

max { - 1, - x ~ }  s m s min {x,, 1). 

(5) 

G 3)  

for each pair i , j  ( i  = 1,. . .7 n ; j  = 1,. . ., n ;  i # j )  and integer m :  

Proof. 
condition of the theorem 

The corollary differs from the theorem only in (23), which replaces the 

- x, =G m =G x,. 

However, this is possible by strict convexity of right hand-side of (5) as a function of 
O m, which follows from strict convexity of f, and f,. 

Consider the problem 

minimize{f,(y,)+f,(y,)Jyl+Y, = p ; Y ! 7 Y J  ER). 

Let y *  = (y:, y:) be the solution; clearly y *  is a function of p. 

Lemma 1. y T and y 7 are monotone nondecreasing functions of p, while 

Ifi moreover, f i  and f i  are differentiable, then y T and y 7 are monotone increasing in p, 
while 

Proof. Consider p1 and p2, P1 < Pz and the corresponding optimal y T = (y Tl,  y rl)  
and y = (y Tz, y TZ). Now 

p1<p2 * YTl+yTl<YT2+y:2. 

f:(y T l )  = f'.( I Y J 1  * ). 9 f :(y T*) = f:(y 3, 

Lagrangian optimality conditions require that 
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where f '  denote a point from the proper subdifferentials at points y T and y T resp. 
Suppose that y T l  > y T2. Consequently: 

y T l  > y TZ * f:(y T1) > f:(y T,) - f K Y  Tl) ' fKY TZ) 
* Y T I Z Y T 2 .  

The implications are due to the fact that f is strictly convex, while the equivalence 
follows from (26). Hence, 

y T* + y TI > Y T Z  + yT2, 

which contradicts (25) and proves that y T are monotone nondecreasing functions of 
p for each i .  

If the differentials exist (and denoted by f: and f:) then supposing y f l  5 y,; 
implies: 

y T I  3 y f 2  e f:(y TI) 5 f:(y TZ) - fXY T1) a f K Y  Tz) - y:1 Y Tz, 

analogously to the previous case, whit-- similarly contradicts (25) proving the 
monotone increasing property. 

Eqs. (24) and (24') follows from the monotone property and that the sum of y T 
0 and y: must be p. 

Theorem 2. 
and let xo = (x?, . . ., xz) be the (integer) solution of (P). Then either for each i 

Let x * = (x T, . . ., x ?:) be the (continuous) solution of (l), (2) and (3),  

x : < x t + 1  

or for each i 

x:>x:-1 

or both. 

Proof. 
of variables. Let us look at the variables xi  and x,. Define 

By Theorem 1, the optimality of x o  may be established by looking at pairs 

p*  2 x:+x: 

s 9 po- p * .  



Some nonlinear knapsack problems 409 

Let y *  = (y T, y;) be the optimal solution of 

minimize {fi (y,) + f, (Y, 1) 
subject to y, + y, = P o .  

If y * is integer we must have x: = y T, since x: is optimal, therefore the following is 
implied: 

yT - 1 < x: < y :  + 1. (27) 

If y * is noninteger note that [ y  T] + k and [y  71 + 1 - k consist of a feasible solution 
to the above minimization for any integer k. By optimality of y *  and strict 
convexity of f , ( .  ) and f , (  .): 

fi (Y T) + J (Y 3 < fi ([Y TI) + f, ([Y TI + 1) < fi ([Y TI - m) + f, ([y TI + 1 + m ), 

f,(Y T)+f,(Y T) <ft([Y TI + I ) +  i ( [ Y  Tl)<fl([Y T I  + 1 + m>+f,([y TI - m), 
for any m > O ,  integer. Now, by Theorem 1, 

fa (x :) + f, (x 7) s f, (x : + ) + f, (x 7 - fl  ) 

for any integer n. 

x: = [y TI + 1. This again implies (27). 

the case where 6 = 0. 

By comparing the last three inequalities i t  is apparent that either x: = [ y  t ]  or 

Let us now deal with three cases: The case where 6 > 0, the case where 6 < 0 and 

Case 1. For 6 > 0 we have by Lemma 1 

X T  c y : s x : +  6. 

By combining (27) with (28) we obtain 

(29) x:- 1 <x:< x:+ 6 + 1, 

and by the same way 

x y -  1 < x;<x:+ 6 + 1. 

x t -  6 s y f s x T .  

Case 2. For 6 < 0 we have by Lemma 1 

By combining (27) with (31) we obtain 

x t - ( 6  + 1)<x3< x t +  1, (32) 

and by the same way 

x; - (6  + 1)<x;< x;+ 1. 

Case  3. For 6 = 0 we have x T = y f ,  so by (27) we have 

(33) 
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and also 

x; - 1 < x:< x; + 1. 

Let us now define the correction f, of the variable x, by 

f, = x:- x f ,  

and let us arrange the variables in decreasing order of the t,’s such that 

(35) 

tl 2 t z  3 . . . 3 f,. 

Since c:=, t, = 0, we have tl 3 0 and f, 
x, and x, is 

0. Note that the value of 6 for the variables 

6 = f, + t,. 
In the case where + t,, 3 0 we have 

f l + f , 3 0 ,  j = 2  ,..., n, 

and by (29, (30), (34) and (35) we get 

x;.>x;-1 

for each j .  
In the case where f I  + f, < 0 we have 

t , + t , , < O ,  j = 1 ,  ..., n - 1 ,  

and by (32),  (33)  we get 

x;.< x; + 1 

for each j .  This completes the proof. 0 

Corollary. If there exists at least one variable for which x: > x T + 1, there exist at 
least two variables for which xy = [x TI, and if there exists at least one variable for 
which x: < x T - 1, there exist at least two variables for which xy = [x T] + 1. ([x :] is 
defined as the greatest integer which is not greater than x;). 

Proof. Define 

E ,  A x; - [ x f ] .  

By (2), X:=I x f = c:=1 [X T] + c:=, E ,  = b. Since [x T] and b are integers, c:=, E ,  must 
also be an integer. Since E ,  < 1 for each i, 

, = I  

Assume x t  > x 2 + 1, say 

x;=[x: ]+ l ;  1>2 .  

(36) 

(37) 
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By (2), xysl x4 = b, and we have 

i = l  i = l  i = l  
(38) 

Substitution of (37) into (38) yields 

i f k  i # k  i = l  

or 

C x 3 s z  [xT]+(n-l-Z) .  
i f k  i # k  

By (37), n - 1 - 1 s n - 3, hence 

C x : s z  [xT]+(n-3).  (39) 
i f k  i # k  

By Theorem 2 and by (37), for each i, x 9 2  [x TI, and by (39) at most n - 3 
variables may be at their optimal value with values greater than [x TI. This leaves at 
least two variables for which xs = [x 71. 

The second part of the corollary will be established in a similar way. Assume 

x i =  ( [x t ]+  1)- I ;  1 3 2 .  (40) 

BY (21, 

, = 1  # = 1  , = I  

Substitution of (40) into (41) yields 

c x9- I = c ([x:]+ 1)- c (1- E , ) .  
r#k i # k  ,=1  

Since C:=, (1 - E , )  s n - 1, 

or 

c. x 3 3 C  ( [xT]+ l ) - (n - l - l ) .  
i # k  i#k  
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By (40), n - 1 - 1 s n - 3 ,  hence, 

By Theorem 2 and by (40), for each i, x: < [ x : ]  + 1 ,  and by (42) at most n - 3 
variables may be in their optimal values with values lower than [x  :] + 1. 

0 This leaves at least two variables for which x: = [ x f ]  + 1. 

Lemma 2. 
defined as 

If fi(y,) and f i ( y l )  are differentiable and strictly convex, then G(P),  

G ( P  ) = min {f, ( Y ~  ) + f, (Y ,  ) I Y + y1 = P ; Y,, y1 E R), 
YhY,  

is also differentiable and strictly convex in p. 

Proof. Is straightforward, therefore omitted. 0 

The recursive application of Lemma 2 to Lemma 1 for differentiable h, 
i = 1,2, .  . ., n, implies the following: 

Corollary. 
monotone nondecreasing function of b. 

Denote by x x  the optimal (continuous) solution of (1)-(2). Then x x  is a 

Assume the existence of 6 so that x x  2 0  (the inequality is taken component- 
wise). Then, by the corollary, any right-hand side, b 2 6 implies x r  2 0, and (3) is 
automatically satisfied. 

This is analogous to  the asymptotic integer-linear programs [4] where the 
nonnegativity requirement is also assumed to hold. The analogy - at least for a few 
nonlinear functions, f, (x , ) ,  - is deeper: the difference between noninteger and 
integer solutions is independent of the right-hand side. This will be shown for 
f, (X#)  = c,p:: 

By Theorem 1: 

If b 2 b; (3)  may be discarded from the program comprising (l), (2) and (3) and at 
the continuous) optimum, x *: 

f : ( x  T) = c,p?lnp, = clp;;Inpl = f '(xT). 

Dividing the above inequality's sides by the corresponding sides of this equality and 
simplifying we obtain 
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(43) 

which, by the notation: z, A x:- [ x T ] ,  E ,  5 x': - [x f ] ,  may be written as: 

Note that a necessary and sufficient condition for the optimum is that this 
inequality holds for each pair i ,  j and integer m. z is a function of the problem's 
parameters and E : the position of x * in the hypercube {x I [x T] S xi S [x t] + 1). 
Two different right-hand sides b', b" yielding the same E induce also the same L or 
x o  - [x* ] ,  or, equivalently, the same x o -  x *  (as E is equal for b' and b", by 
assumption). There are a few other functions for which z is determined by E only. 

This observation depends on the fact that (43) is a function of x o  - x * ,  m and the 
parameters of the problem only. It can be generalized as follows: 

Theorem 3. Let fi(xi) be differentiable, denote its differential by f i ( x i ) .  Assume that 
there exists a bsuch that for b 2 b (3) is satisfied by the solution of (1)-(2). Assume 
the existence of a function H( . , . , . ) and of n functions q+i(. , . ) such that H( . , . , . ) is 
monotone increasing in its first argument and 

H(f,(xi)-fi(xi + m ) ,  f : ( y i ) ,  m )  = + ( m ,  Xi - y i ) .  

Then x3 - x depends only on x T - [x T] for each i (and not on b )  when b 2 b: 

Proof. 
(3) and at the (continuous) optimum, x * :  

If b 3 b; (3) may be disregarded from the program comprising (l), (2)  and 

f :(x T) = f : ( x  7 ) .  
Theorem 1 which can be written as 

J ( x ? )  - fi ( x ?  + m )  f, ( x ;  - m) - f, (x; ) ,  

is equivalent with 

+t (m,  x y - x T) c +, (m,  x - x 7 - m ) 

by the required property of H and the equality of the differentials. The last 
inequality, which is necessary and sufficient to the (integer) optimum, implies that 

0 x o  - x * depends only on x * - [x *] (when [ . ] is applied componentwise). 

Finally we illustrate Theorem 3 for the function f (x,) = u,xf + v,x, + wi : 

H(f,(x:)-fi(xY- m ) , f ' ( x T ) , m ) =  

=J(x:)-J(xy- m ) -  mf'(xT) 

= u,(x?)*+u,(x?)+ w, - [ u , ( ~ ~ - m ) ~ + v , ( x ~ - m ) + w , ] - m [ 2 u , x ~ + u , ]  

- 2mu,(x:- x ':) - u,m2 = +,(xy- x : ,  m ) .  - 
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THE MINIMAL INTEGRAL SEPARATOR OF A THRESHOLD 
GRAPH 

James ORLIN 
Deparfment of Operations Research, Stanford Uniuersify, Stanford, California 94305, U.S.A. 

A graph is called threshold if there exists a real number b and real numbers a, associated with 
its vertices w, such that ~ J E S a J  =s b holds iff S is a stable (independent) set of vertices. The vector 
(a,, . . , , an; b)  associated to a threshold graph is called an integral separator if a, + a, 3 b + 1 for 
every edge (w., w,) .  A simple algorithm is presented to determine for a given threshold graph its 
(unique) integral separator which minimizes b. 

Let G be a loopless finite graph without multiple edges. If w is a vertex of G, let 
d ( w )  be the degree of w. The edge joining vertices u and w will be denoted as 

Graph G is said to have property P if for every two vertices u, u such that (u, u )  is 
an edge, and for every pair of vertices u *, u* with d ( u * )  z d ( u )  and d ( u * )  z d ( u ) ,  
(u  *, u *) is an edge. In this definition it is possible that u * = u or that u * = u. 

It has been shown in [ l ]  that graph G has property P iff it is a threshold graph. 
Suppose G is a threshold graph with vertices w l ,  w2, wI,. . . , w,. For I C 

{1,2,. . . , n} let Sr = {w, I i E I}. Let A = (al, u2, .  . . , a, )  be a real vector and let b 
be a real number. The pair [A ; b ]  is said to separate G integrally if the following 
holds: 

(4 w). 

(1) a, 3 0  for i = 1, ..., n ;  
(2) Clcral 
(3) C,tra, 3 b + 1 iff Sr is a non-stable set of vertices. 
It was shown in [l] that a graph G is threshold iff there exists a pair [A ; b ]  which 

separates G integrally. 
The following algorithm determines for a threshold graph G a hyperplane 

[A *; b * ]  which separates G integrally and such that b* is minimum. It will also be 
shown that it is the unique hyperplane with minimum b. 

b iff Sr is a stable (independent) set of vertices; 

Algorithm A. 
Step 0: Relabel the vertices as wl,. . . , w. such that d ( w , )  d(w2) S * * C 

Step 1:  Let t = minimum index such that (w,, w ~ + ~ )  is an edge of G. [If n o  such z 

Step 2: If d ( w , ) = O  let aT=O. If d ( w l ) a l  let a T = l .  

d(w.). 

exists let at = 0 for i = 1 to n and let b* = 0. Then exit from algorithm.] 

415 
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Step 3: For i = 2 to  t if d ( w , )  = d ( w , - , )  then let a f  = 

Step 4: Let b * = a T + a T + . . . + a r  . 
Step 5: For i = t + 1 to n let s, be the minimum index such that (w,, w,,) is an 

if d ( w , )  > d ( w , - , )  
then let a f  = 1 + a :  + a :  + . .  . +  a ; - , .  

edge. Then let a :  = b * -  a : , +  1 .  

Example. Let G be the graph in Fig. 1. Table 1 shows how the algorithm worked. 

"9 

Fig. 1 

Table 1 

v, v2 v 3  v, v, V6 v, v, v9 

d ( V , )  1 1 2 2 3 3 4 6 8  
a t  1 1  3 3 9 9 1 8 2 4 2 6  

of algorithm 
defining step 2 3 3 3 3 3 5 5 5  

t = 6 as defined in step 1. 
b* = 26 as defined in step 4. 

Proposition 1. [A; b ]  U S  constructed in algorithm A does separate the threshold 
graph G integrally. 

Proof. Assume that the vertices have already been relabeled such that d ( w , ) s  
d ( w z )  S * * S d ( w . ) .  

Case Or Algorithm A exited at step 1 after labeling a T = 0 for i = 1 to n. 
Claim : G has n o  edges. Else consider edge (wi, w,) of G such that i < j .  Then 

i G n - 1 and j s n. From this it follows that d(w, - , )  5 d ( w i )  and d ( w , )  3 d ( w , ) .  
But G has property P. Thus ( w " - ~ ,  w,) is an edge. Thus in algorithm A t C n - 1. 
This contradicts that the algorithm exited at step 1. Hence G has n o  edges. It 
follows from the definitions that [A *, b*]  does separate G integrally in this case. 

Now assume that algorithm A exited at step 5 with [A *; b*] which does not 
separate G integrally. 
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Case 1: There exists a stable set Sl such that x , , l a :  > b * .  Let I = {jl, j 2 , .  . . , j k }  

with j l  G J z  S . . . S j k .  If j k  G t then x,,, a T G x:=l a = b* and we have a contradic- 
tion. Thus we may assume that j k  > t + 1 .  Let q = s,, as chosen in step 5 of 
algorithm A. Thus (w4, w,,,) is an edge of G. If q S j k - 1  then d(w, )  S d(w,,-J.  Since 
G has property P, this would mean that (w,,-,,  w,,) is an edge of G, contradicting 
that Sr is stable. Hence we may assume that q > j k - I .  But now by construction of 
[ A  *, b * ]  we have: 

q-1  

x a T C a T , + C  a T = a T , + ( a ; - l ) = b *  
, E l  , = I  

Thus for all stable sets SI the proposition is true. 
Case 2: There exists a non-stable set Sr such that C,,,aT < b* + 1 .  
Then Sl contains vertices w,, w, such that (w,, w,) is an edge. Assume that i < j .  If 

j S t then i 6 t - 1 and d ( w , )  < d(w,-,) and d(w,) S d(w,). Since G has property P, 
this would imply that ( w ~ - ~ ,  w, )  is an edge, which is a contradiction. Hence we may 
assume that j > t. Then by the choice of S, in step 5 it follows that i 5 s,. But then 

Thus the proposition is ture. 

Proposition 2. Let [ A ;  b ]  be any hyperplane that separates G integrally, where 
A = (al, a*, . . . , a n ) .  Then for all i from 1 to t it is true that a, 3 a :. 

Proof. Once again assume d(wl )  S d(w, )  < * .  . C d(w, ) .  If d ( w , )  = 0 than a T = 0 
which is minimum by definition. Else there exists w, such that ( w , ,  w,) is an edge. 
Thus in any hyperplane [ A  ; b ]  which separates G integrally we must have that 
a, S b and a ,  + a, 3 b + 1. This implies that a l  3 1. Thus a l  3 aT = 1 .  

Assume inductively that a :  is minimum for i = 1 to k - 1 for k c t. It will be 
shown that a :  is also minimum. 

Suppose d(wk-1) = d(wk).  Then since G has property P, Wk-1  and wk are 
adjacent to the same other vertices. By symmetry and by the induction hypothesis 
ak 3 a:-l. Since = a :  we have that ak 3 a :  and that a :  is thus minimum. 

Suppose instead that d(Wk-I) < d ( w k ) .  Choose q to be the minimum index such 
that wp is adjacent to wk but not to W k - 1 .  Since G has property P, w, is not adjacent 
to any w, for i = 1,. .  ., k - 1; it is also true that no  two vertices in S = 
{ w l ,  w z , .  . . , wk-1) are adjacent. Thus in any hyperplane [ A ;  b ]  we have 

k - 1  

a, + aq s b. 
, = I  
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It follows that 

J. Orlin 

Corollary. The value for b* is also minimum. 

Proof. { w l ,  w 2 , . .  ., w,}  is a stable set. Thus 

Proposition 3. The algorithm constructs the unique [ A ;  b ]  which separates G 
integrally with minimum b, 

Proof. Suppose [ A ;  b * ]  separates G integrally. Since 

it follows that a, = a t  
For i = t + l , t + 2 , .  

t 2 a : =  b* 
i = l  

for i = 1 to  t .  
., n we have that 

a, + a t , 2  b*  + 1 

a, + c a T c b * .  
f - 1 

, = 1  

By construction 
El - 1 

, = I  
C a T + I = a : , .  

Thus a, = b* - a: ,+ 1 = a ? .  

Proposition 4. The hyperplane [ A  *, b * ]  is also the solution to the following linear 
program : 

min b 

s.t. 2 a, c b 
, = 1  

and, for j = t + 1 to n, 

a, + as, 3 b + 1 
s - 1  

a, + c a , c b  
& = I  

where s, and t are chosen as in the algorithm. 
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Proof. By (2) and property P for any non-stable set S,, x lEra i  2 b + 1. If S, is stable 
then either I C {1,2,3, . . . , t }  or else I C {1,2, . . . , sj - 1, j }  for some j .  In either case 
by (1) and (3) we must have that xCi, ,ai  G b. 
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ON THE COMPLEXITY OF SET PACKING POLYHEDRA* 
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Graduate School, Faculty of Business Administration, New York University, New York, N Y  10006, 
U.S.A. 

We review some of the more recent results concerning the facial structure of set packing 
polyhedra. Utilizing the concept of a facet-producing graph we give a method that can be used 
repeatedly to construct (arbitrarily) complex facet-producing graphs. A second method, edge- 
division, is used to further enlarge the class of facet-defining subgraphs. 

1. Introduction 

We consider the set packing problem (SP) 

max ck 

A x S e  

x i = O  or 1 f o r j = 1 ,  ..., n 

where A is a m X n matrix of zeros and ones, e T  = (1,. . ., 1) is a vector of m ones 
and c is a vector of n (arbitrary) rational components. This class of combinatorial 
optimization problems has recently received much attention, both as a problem of 
considerable practical interest -see e.g. [3,10,22] for recent survey articles for this 
problem and its close relatives - as well as a combinatorial programming problem 
that captures most of the difficulties and computational complexities that are 
present in the general zero-one programming problem [2, 10, 11, 151. 

In this paper we extend the class of “strongest” cutting planes or facets known 
for problem (SP) and show that for set packing problems of sufficiently large size 
arbitrarily “complex” valid inequalities can be constructed that, however, are facets 
of the convex hull of (integer) sohtions to (SP), i.e. belong to the class of linear 
inequalities that uniquely define the convex hull of solutions to (SP). Without 
restriction of generality, we will assume throughout the paper that A does not have 
any zero column or zero row. Denote by P = P(A, e )  the polyhedron given by the 
feasible set of the linear programming problem associated with (SP), i.e. 

P(A, e )  = {x € R“ I Ax G e, x ZO}. (1.1) 

* Parts of this paper were presented in preliminary form at the NATO Advanced Study Institute 
Symposium on Cornbinatorial Programming held in Versailles, France, September 1974. 
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Furthermore, let PI = P l ( A ,  e )  denote the set packing polyhedron, i.e. the convex 
hull of integer points of P 

~ , ( ~ , e ) = c o n v { x  E P ( A , ~ ) ~ x  integer}. 

By the theorem of Weyl[25], there exists a finite system of linear inequalities whose 
solution set coincides with PI, i.e. 

PI = { x  E R "  ( H x  h , x  S O }  (1.3) 

for some appropriate matrix H and vector h. Some research activity has recently 
focused on identifying part (or all) of those linear inequalities that define PI, see [5, 
16, 17, 18,20,21,23,24]. This interest is motivated in part by the desire to use linear 
programming duality in proving optimality - with respect to the linear form cx - 
of a given extreme point of PI. As every extreme point of PI is also an extreme point 
of P and hence of any polyhedron P satisfying PI C P P, it is generally sufficient 
to work with a partial  - rather than a complete - linear characterization of PI. 
More precisely, one is interested in finding part (or all) of the linear inequalities that 
define facets of PI. Note that dim P = dimPI = n, i.e. both P and PI are fully 
dimensional. As customary in the literature, we will call an inequality n-x G r0 a 
facet  of PI if (i) T X  s m0 for all x E PI and (ii) there exist n affinely independent 
vertices x '  of PI such that n-x' = no for i = 1 , .  . ., n. One readily verifies that each 
inequality x, 2 0, j E N, is a (trivial) facet of PI, where N = {I,. . ., a} .  

A construction that has proved useful in identifying facets of PI is the 
intersection graph associated with the zero-one matrix A defining P. Denote by a, 
the j th  column of the m x n matrix A.  The intersection graph G = (N ,  E )  of A has 
one node for every column of A, and one (undirected) edge for every pair of 
nonorthogonal columns of A, i.e. ( i ,  j )  E E iff a ,u ,  2 1. One verifies readily that the 
weighted node packing problem (NP) on G for which the node weights equal c, for 
j = 1 , .  . ., n is equivalent to (SP), i.e. (NP) has the same solution set and set of 
optimal solutions as the problem (SP). (The weighted node packing problem (NP) 
on a finite, undirected, loopless graph G is the problem of finding a subset of 
mutually non-adjacent vertices of G such that the total weight of the selected 
subset is maximal, See [6, 10, 15, 181 for more detail on the stated equivalence.) 
This observation is very useful as it permits one to restrict attention to node packing 
problems in certain subgraphs of G when one tries to identify facets of PI. 

2. Facet producing subgraphs of intersection graphs 

Let n-x T,, be a non-trivial facet of PI. We can assume without loss of generality 
that both rrJ, j E N, and r0 are integers. From the non-negativity of A, it follows 
readily that 71; 2 0 for all j E N and .rr0>0. For suppose that N -  = { j  E N I 
T, < 0) # 0 for some non-trivial facet r x  s no of PI. As r x  s r0 is generated by n 
affinely independent points of PI, there exists an X E PI such that TX = no and 
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2, = 1 for some j E N - .  (For, if not, then by the assumed affine independence we 
have that I N-( = 1. It follows that ro = 0 and since all unit vectors of R" are feasible 
points, - that r x  < r(, is a triuial facet of the form x, 20) .  But the point x given by 
x, = Z,, j_E N - N-, = 0, j E N -  is contained in PI as A is non-negative and 
hence, r: > ro which is impossible. Consequently, every non-trivial facet r x  s ro 
satisfies r, 2 0  for all j E N and r o > O .  

Denote by S = S ( r )  the support of r, i.e. S = { j  E N I r, > O}. Let Gs = (S ,  Es)  
be the induced subgraph of G with node set S and edge set Es C E and let 
P s  = P n { x  E R" 1 x, = 0 for all if?!! S } .  Due to the non-negativity of A, one verifies 
readily that the convex hull PS of integer points of P s  satisfies PS= 
PI n {x E R" I x, = 0 for all j E  S } .  Furthermore, n-x S ro retains its property of 
being a facet of PS. If one considers proper subgraphs of Gs, this property of 
r x  s ro may or may not be "inherited." In fact, if all components of T are 
(non-negative) integers and ro  = 1, then one readily verifies that for all subgraphs 
(including those on single nodes) the property of r x  ro to  be a facet of the 
resulting (lower-dimensional) packing polyhedron is retained. The next theorem 
characterizes all facets of P, with integer r and ro= 1, see [9, 181. 

- 
- 

Theorem 1. 
K is the node set of a clique (maximal complete subgraph) of G. 

The inequality c,,,x, S 1, where K C N, is a facet of PI i f  and only i f  

Thus one knows all subgraphs of the intersection graph G of a zero-one matrix 
A that give rise to facets r x  ro with nonnegative integer r,, j = 1,. . ., n, and 
ro = 1. If, however, ro a 2 and ro  does not divide all components of r, then there 
exists a smallest subgraph G' of G, G' not an isolated node, such that T X  v0 
looses its property of being a facet of the packing polytope associated with the 
packing problem of any proper subgraph of G'. If r >O,  i.e. if S = N, then, of 
course, the (full) intersection graph G may have this property and thus G may be 
itself strongly facet-producing [24]. 

Definition. A vertex-induced subgraph Gs = ( S ,  E s )  of G = (N,  E )  with node set 
S C N is facet-producing if there exists an inequality r x  s 7r0 with nonnegative 
integer components r, such that (i) r x  s ro is a facet of PS = PI n { x  E R" I x, = 0 
for all j$Z S }  and (ii) r x  S m0 is not a facet for PT= PI n {x E R" I x, = 0 for all 
je  T }  where T is any subset of S such that I T 1 = IS I - 1. A subgraph Gs of G is 
called strongly fucet-producing if there exists an inequality r x  c ro such that (i) 
holds and (ii) holds for all T C S satisfying I T 1 G 1 S 1 - 1.  A subgraph Gs of G is 
facet-defining if there exists an inequality r x  s r,, such that (i) holds and (iii) such 
that r, > O  for j E S.  (Shortly we will say that Gs defines the facet r x  s ro.) 

Remark 1. Every strongly facet-producing (sub-)graph is facet-producing. Every 
facet-producing (sub-)graph is facet-defining. If Gs is facet-defining, then Gs is 
connected. 
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Proof. The first two parts being obvious, let rrx c rro be a facet defined by 
Gs = ( S ,  Es),  i.e. rr, > O  for j E S, and suppose that Gs is not connected. Then 
G, = ( S , E , )  can be written as Gs = GI  U G, where G, = ( S , , E , )  with S,#  0 for 
i = 1 , 2  and S = S ,  U S, ,  S,  f l  Sz = 0 and Es = E l  U EZ. Let Pi  be defined like P s  
with S replaced by S,, and let rri = max {rrx I x E P i }  for i = 1,2. Since T X  c is 
defined by Gs, it follows that rr; > 0 for i = 1,2. Define T T T ;  = rr, for j E S,,  rrf = 0 
for j e  S,, and let x ’  E P ;  be such that rrx‘ = a i  for i = 1,2.  Since Gs is 
disconnected, x ’ + x z  E P: and hence, rrX + rri c T o .  It follows that every x E PS 
satisfying nx = rro satisfies rr’x = IT,!, for i = 1,2  and consequently, rrx =G is not a 
facet of PS. 

By the discussion preceeding the definition, it is clear that every facet rrx s T o  of 
P, is either produced by the subgraph G, having S = S(T) or if not, that there 
exists a subgraph GT of Gs with T C S such that the facet i i x  =G m0 of PT is 
produced by GT where 71, = rrl for j E T, i;, = 0 for jE T and PT is defined as 
previously. The question is, of course, given i i x  < no can we retrieve the facet 
rrx n o  of PI. The answer is positive and follows easily from the following theorem 
which can be found in [16]. 

Theorem 2. Let P s  = PI fl { x  E R” 1 x, = 0 for all j @  S} be the set packing polyhe- 
dron obtained from PI by setting all variables x,, j E N - S,  equal to zero. I f  the 
inequality c,,, a,xl s a. is a facet of P?, then there exist integers &, 0 ao, such 
that Z J E S q x I  + Z , E N - s ~ J x l  s a. is a facet of PI.  

/?, 

Generalizations of Theorem 2 for more general polyhedra encountered in 
zero-one programming problems have been discussed in [l, 4,12,14,19,26,28]. 

The apparent conclusion from this result - in view of the notion of the 
intersection graph discussed above - is that the problem of identifying part (or all) 
of the facets of a set packing polyhedron P, is thus equivalent to the problem of 
identifying all those subgraphs of the intersection graph G associated with a given 
zero-one matrix A that are facet-producing in the sense defined above. (It should 
be noted that the “facet-defining’’ property of (sub-)graphs is a considerable weaker 
property as in this case we require solely that the corresponding facet has positive 
coefficients. The choice of terminology may seem somewhat arbitrary, but the 
positivity of all components of a facet furnished by a facet-defining (sub-)graph is 
crucial in some of the arguments to follow.) One  possible attack on  the problem of 
finding a linear characterization of PI is thus t o  “enumerate” all possible graphs 
that are facet-producing, a truly difficult task as we will show in the next section. 

3. Facet-producing graphs 

Let G = (N, E )  be any finite undirected graph having no loops. Denote by Ac 
the incidence matrix of all cliques of G (rows of A,) versus the nodes of G 
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(columns of Ac). Let N = (1,. . ., n }  and let Pc = {x E R“ 1 Acx S ec, x a 0) where 
ec = (1,. . ., 1) is dimensioned compatibly with Ac. As before let PI denote the 
convex hull of integer points of Pc, i.e. PI = conv{x E Pc I x integer). We will not 
note explicitly the dependence of the  respective polyhedra upon the graph G which 
may be taken as the intersection graph associated with some given zero-one matrix. 
The term of a facet-producing (facet-defining) graph is used here analogously with 
S = N. If x is a node (edge) of G, then by G - {x} we will denote the graph 
obtained from G by deleting node x from G and all edges incident to x from G (by 
deleting the edge x, but no node from G). Denote by G the complement of G, i.e. 
G = (N,  % ( N )  - E )  where % ( N )  is the set of all edges on n nodes. Every clique in 
G defines a stable (independent) node set (or node packing) in G and every 
maximal stable node set in G defines a clique in G. Let Qc = {x E R“ 1 Bcx s 
dc, x 3 0) where Bc is the incidence matrix of all cliques in G and d z  = (1,. . ., 1) is 
dimensioned compatibly. Furthermore, let QI = conv{x E Qc I x integer}. One 
verifies readily that Qc is the anti-blocker of PI and that Pc is the anti-blocker of 
QI, see [9, 201. 

Before investigating special facet-producing graphs it is interesting to note the 
following proposition which substantially reduces the search for facet-producing 
graphs. Contrary to what one might expect intuitively, it i s  not necessarily true that 
the complement C? of a facet-producing graph G is again facet-producing. The 
graph in Fig. 1 shows an example of a facet-producing graph G whose complement 
G is not facet-producing. In fact, whereas the graph G of Fig. 1 produces the facet 
x:Z1 x, s 4, its complement C? does not produce any facet in the sense of the above 
definition; rather, every facet of the associated packing problem is obtained by 
“lifting” the facets produced by some proper subgraph of G, as the clique-matrix of 
G is of rank 9. 

Fig. 1. 

To state the next theorem we meet the following definition from linear algebra: 
A square matrix M is said to be reducible if there exist permutation matrices P and 
Q such that 

N O  
O M ‘ = [ =  R ]  

where N and R are square matrices and 0 is a zero-matrix. If no such permutation 
matrices exist, then M is called irreducible. 

Theorem 3. Suppose that G defines the facet TX s r0 for PI such that 
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max { r r x  I x E Pc} = r r f  is assumed at a vertex X of Pc satisfying 0 < 2, < 1 for 
j = 1,. . ., n. If the submatrix A1 of Acfor which AIX = e, is irreducible (and square), 
then the complement graph G is strongly facet-producing. 

Proof. Since every row of Ac defines a vertex of Q I ,  it follows from the 
assumption that O < X j  < 1 for all j = 1, .. ., n that the hyperplane X y  = 1 is 
generated by n linearly independent vertices of Q I .  On the other hand, AcX ec 
implies validity of X y  S 1 for Q17 i.e. QI { y  E R” I Xy S l}. Hence, G defines the 
facet Xy s 1 of Q,. Suppose that Xy 6 1 defines a facet for some k-dimensional 
polyhedron Q, C QI satisfying k < n. Then there exist k linearly independent 
vertices y ’  of 6, satisfying X y ‘  = 1. Since the submatrix A ,  of A, defining X is 
square, it follows that upon appropriate reordering of the rows and columns of A1,  
A,  can be brought into the form (3.1) contradicting the assumed irreducibility 
of A , .  

As an immediate consequence we have the corollary: 

Corollary 3.1. 
is assumed at a vertex X of Pc satisfying 0 < 2, < 1 for all j = 1,. . ., n, then 
a facet of QI. 

If G defines a facet rrx rro of PI such that max{n-x 1 x E Pc} = rrf 

defines 

Chordless odd cycles (“holes”) as well as their complements (“anti-holes”) are 
known to define facets. In the former case one readily verifies the hypothesis of 
Theorem 3 to conclude that anti-holes as well as holes are strongly facet-producing. 
More recently, L. Trotter [24] has introduced the notion of a “web” which properly 
subsumes the aforementioned cases: A web, denoted W(n, k )  is a graph G = (N, E )  
such that IN/ = n 3 2  and for all i ,  j E N, ( i 7 j ) E  E iff j = 

i + k ,  i + k + 1,. . ., i + n - k ,  (where sums are taken modulo n ) ,  with 1 S k S [ n / 2 ] .  
The web W(n ,  k )  is regular of degree n - 2k + 1, and has exactly n maximum node 
packings of size k .  The complement W ( n ,  k )  of a web W ( n ,  k )  is regular of degree 
2 ( k  - 1 )  and has exactly n maximum cliques of size k .  One verifies that W ( n ,  1) is a 
clique on  n nodes, and for integer s 3 2 ,  W ( 2 s  + 1, s)  is an odd hole, while 
W ( 2 s  + 1 , 2 )  is an odd anti-hole. The following theorem is essentially from [ 2 4 ] ,  see 
the appendix. 

Theorem 4. k i f  and only i f  
k 2 2 and n and k are relatively prime. The complement W ( n ,  k )  of a facet- 
producing web W(n,  k )  defines (strongly produces) the facet c;=, x, s [ n / k ]  ( i f  and 
only i f  n = k [ n l k ]  + 1). 

The next theorem due to V. Chvital [5] provides some graph-theoretical insights 
into graphs that give rise to facets with zero-one coefficients. To this end, recall that 
an edge e of a graph is called a-critical if a ( G  - e )  = a ( G ) +  1, where a ( G )  
denotes the stability number of G, i.e. the maximum number of independent nodes 
of G. 

A web W(n,  k )  strongly produces the facet C,”=,x, 
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Theorem 5. Let G = (V, E )  be a graph ; let E * 
If G *  = ( V , E * )  is connected, then G defines the facet &,x, 

E be the set of its (Y -critical edges. 

a(G).  

It would be interesting to know whether all facets of set packing polyhedra 
having zero-one coefficients and a positive right-hand side constant can be 
described this way. (The question has been answered in the negative by Balas and 
Zemel [4a]). V. Chvatal also discusses in his paper [5] several graph-theoretical 
operations (such as the separation, join and sum of graphs) in terms of their 
polyhedral counterparts. Though very interesting in their own right, we will not 
review those results here. In particular, the two constructions given below are not 
subsumed by the graphical constructions considered by V. Chvbtal. 

We note next that graphs that satisfy the hypothesis of Theorem 5 need not be 
facet-producing in the sense defined in Section 2. In fact, the graph of Fig. 2 
provides a point in-case. The facet defined by the graph G of Fig. 2 is given by 
x;=l x, 2 which, however, is produced by the odd cycle on nodes {1,2,3,4,5}. The 
coefficient of x6 is obtained by “lifting” the facet x:=l x, S 2, i.e. by applying 
Theorem 2 .  

1 1 - - - - - - 7 p - ~  
5 

Fig. 2 

We next turn to a construction which permits one to  “build” arbitrarily complex 
facet-producing graphs. Let G be any facet-defining graph with node set V =  
(1,. . ., n }  with n 3 2 and consider the graph G * obtained by joining the i th node of 
G to  the i th node of the “claw” K1,” by an edge. The claw K,., ,  - also referred to 
as a “cherry” or “star”, see [13] - is the bipartite graph in which a single node is 
joined by n edges to n mutually non-adjacent nodes. We will give the node of K, , ,  
that is joined to the ith node of G the number n + i for i = 1,. . ., n, whereas the 
single node of Kl,,, that is not joined to any node of G, will be numbered 2n + 1. 
(See Fig. 3 where the construction is carried out for a clique G = K4.) Denote by 
V *  = (1,. . ., 2n + 1) the node set of G *  and by E *  its edge-set. It turns out that G* 
is facet-defining (this observation was also made by L. Woolsey [27]), and 
moreover, that G * is strongly facet-producing. 

Fig. 3. 

Theorem 6. Let G = ( V ,  E) be a graph on n 2 2 nodes and let T X  S no be a 
(non-trivial) facet defined by G. Denote by G*  = ( V * ,  E*) the graph obtained from 
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G by joining every node of G to the pending notes of the claw K1," as  indicated above. 
Then G *  strongly produces the facet 

where x ( ' ) =  ( x l , .  . ., x,,), x(')= ( x " + ~ ,  . . ., x2") and x ~ ~ + ~  are the variables of the 
node-packing problem on G * in the numbering defined above. 

Proof. 
polyhedron defined with respect to A,. The clique matrix of G * is given by A $: 

Let A, be the clique-matrix of G and denote by PI the set packing 

A, 0 0 

0 I e  
A $ = ' [  I I 0 1  (3.3) 

where I is the n x n identity matrix, e is vector with n components equal to one, 
and 0 are zero-matrices of appropriate dimension. Denote by PT the set packing 
polyhedron defined with respect to A 2.. To establish validity of (3.2) for P :  we note 
that x, = 1 for some j E { n  + 1, , . ., 2 n )  implies that x ~ , , + ~  = 0. Consequently, as 

+ x(2) < . e, every vertex of PT having x, = 1 for some j E { n  + 1,. . ., 2 n )  satisfies 
(3.2). On the other hand, since r x ( l ) <  no for every vertex of PT and no < c;=, n;, it 
follows that every vertex of PT satisfies (3.2). To establish that the inequality (3.2) 
defines a facet of PT, let B denote any n X n nonsingular matrix whose rows 
correspond to vertices of PI satisfying T X  < n,, with equality. Then define matrix 
B* as follows: 

0 
(3.4) 

where Z is the n x n identity matrix, E is the n X n matrix with all entries equal to 
one, e is the vector with n components equal to one, and 0 are zero-matrices of 
appropriate dimension. One  verifies that the absolute value of the determinant of 
B* is given by 

Hence, B * is non-singular since det Bf 0 and c;=, r, > r,, > 0. On the other hand, 
every row of B* corresponds to some vertex of PT satisfying (3.2) with equality. 
Consequently, (3.2) defines a facet of PT. To prove that G* produces a facet in the 
sense defined above, we show that no graph G * - { j }  defines the facet (3.2) for 
j = 1 ,  . . ., 2n + 1. Note first that from the positivity of rr it follows that every vertex 
of PT satisfying (3.2) with equality satisfies x, + xn+, + x z n + ,  3 1 for all j E V. Let 
now j E V and consider G * - { j } .  Every vertex of PT satisfying x, = 0 and (3.2) with 
equality, necessarily satisfies x,+, + x ~ , , + ~  = 1. Consequently, (3.2) does not define a 
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facet of P, = P: n{x ER*"+'Ix ,  = 0) for j E V. Consider next vertices of P t  
satisfying (3 .2)  with equality and x,+, = 0 for j E V. Since n 3 2 and rrx rro is 
defined by G, it follows that the node j of G has a neighbor k ( j )  in G, i.e. 
( j ,  k (j)) E E for some k (j) # j ,  k (j) E V. Consequently, every vertex satisfying (3 .2)  
with equality and x,+ ,  = 0, also satisfies the equation x n+k(,) + x ~ ~ + ~  = 1. Hence (3 .2)  
does not define a facet of Pa+, for j E V. Finally, every vertex of P t  satisfying (3 .2)  
with equality and xZ,,+' = 0 satisfies the equation x k  + x " + ~  = 1 for all k E V, and 
consequently, (3 .2)  does not define a facet of Pzn+l. Consider next a subgraph 
G'  = (V', E ' )  of G *  having I V'I s 2n - 1 nodes. If G'  defines the facet given by 
(3 .2) ,  then, as noted earlier, all vertices of P' = PT n { x  E R2"+' I x, = 

0, j E V* - V'} satisfying (3 .2)  with equality must satisfy x, + xn+,  + x ~ ~ + ~  3 1 for all 
j E V, since a vertex of P' is also a vertex of P : .  It follows that V' must contain the 
node numbered 2n + 1 and furthermore, that ie V' implies n + i E V' for all 
i E V. Consequently, V C V' and V' n { n  + 1 , .  . ., 2 n }  # 0.  Let N ' C  { n  f 1 , .  . ., 2 n }  
be the nodes of G *  that are not  in G'. Then either there exists a node n + j E N' 
such that the node j E V has a neighbor k (j) E V satisfying n + k (j) E V' or else, 
G is disconnected. The latter contradicts Remark 1. Consequently, by the above 
reasoning, we have N'  = 0, i.e. V = V'. This completes the proof of Theorem 6. 

Corollary 6.1. Let G, G *  and rr be as  in Theorem 6 .  If there exists a vertex X E Pc 
such that max {rrx  1 x E Pc} = rr2 is assumed at vertex 2 of Pc satisfying 0 < X, < 1 
for j = 1, . . ., n, then the complement graph G * of G * defines a facet. Moreover, this 
facet of the set packing polyhedron Q T associated with G * ( in  rational form ) is given 

by 

Z n i l  s 1 (3 .5)  + ( e  - 2).  x ( * ) +  f . x . 

where f = min {X, I j = 1,. . ., n } .  

Proof. Using the clique-matrix A T. as defined by (3 .3)  one verifies readily that the 
coefficients of the inequality (3 .5)  define a vertex of PT. with all components strictly 
between zero and one. Furthermore, the submatrix of A T. defining the vertex with 
components (X, e - X, Z) is nonsingular. As the cliques in G* define vertices of 0 T, 
Corollary 6.1 follows. 

The second construction uses edge-division. Let G be any facet-defining graph 
with node set V = (1,. . ., n }  and edge-set E. Let e = ( v ,  w ) E  E and consider the 
graph G*  with nodes set V* = (1,. . ., n, n + 1 ,  n + 2)  and edge-set 

E *  = ( E  - { e } )  U {(u,  n + l), ( n  + 1 ,  n + 2) ,  ( n  + 2 ,  w ) } .  

That is, G*  is obtained from G by "inserting" two new nodes into an (existing) 
edge of G. Let rrx rro be the facet defined by G. As usual, we will assume that rr is 
a vector of positive integers. An edge e = (u, w )  E E will be called rr-critical if 
there exists an independent node set F in the graph G - { e }  such that x , € F q  > no 
and c,,,-, rr, = rro or c,,,-, rr, = rro. Note that rr-criticality of an edge is entirely 
analogous to the concept of (Y -criticality used above. 
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Theorem 7 .  Let G = (V ,  E )  be a graph on n 3 3 nodes and let 7rx 6 rro be a facet 
defined by G. 

Denote by G * = (V*,  E *) the graph on n + 2 nodes obtained from G by inserting 
two nodes n + 1 and n + 2 into a 7r-critical edge e = (u,  w )  E E. Then G * defines the 
facet 

7rx + 7r * ( & + I  + X"+Z) 7ro + 7r * (3.6) 

where 7r* = min (7ru, 7 r w ) .  

Proof. Denote by Pr the set packing polyhedron defined with respect to the 
clique-matrix of G and let P ?  be defined correspondingly with respect to G*. 
Validity of the inequality (3.6) is immediate. Let B be any n X n nonsingular matrix 
of vertices of PI that satisfy 7rx 7ro with equality. Note that every vertex of Pr is a 
vertex of PT. We show next that among the linearly independent vertices of PI 
satisfying 7rx S 7ro with equality, there exists at least one vertex such that 
x, = x, = 0. For suppose not, then every vertex 2 of PI such that 7r2 = 7ro satisfies 
2, + 2, = 1. But by assumption, T X  S 7ro has at least three non-zero components. 
Consequently, since 7rx ro defines a facet of PI, there exists a vertex with the 
asserted property. Consider the matrix B* defined as follows 

where B is the n X n matrix defined above. The vector a has a + 1 entry if in the 
associated row of B the component with number ZI is zero, zeros elsewhere. The 
vector b has + 1 entry if the corresponding component of a is zero and if in the 
associated row of B the component with number w is zero; zeros elsewhere. As 
there exists at least one row in B such that in both positions 0 and w there are 
zeros, we let C be a duplicate of that row. Finally, d is the incidence vector of the 
stable set F in G - { e }  for which zjEF7r, > no. Using standard linear algebra 
arguments, one verifies that B * is nonsingular since, by construction, CB-' b = 0, 
a + b = e and d B - ' e  > 1. Consequently, the inequality (3.6) defines a facet of P:. 

Note that edge-division does not always yield facet-producing graphs if the 
construction is used on  facet-defining graphs. An example to this point is provided 
by the complete graph K4 on the node set {1,2,3,4} and the inequality cg=, x, G 1 
defined by K4. If we insert two nodes 5 and 6 into the edge {3,4}, the inequality (3.6) 
defined by G *  is produced by the odd hole on nodes {1,3,5,6,4} whereas the 
coefficient of node 2 is obtained by ''lifting'' the inequality xI + x1 + x4 + xs + x6 2. 
On the other hand, if the second construction is used on an odd hole on  5 nodes one 
obtains successively all odd holes. We thus suspect that G* is (strongly) facet- 
producing if one assumes in Theorem 7 that G is (strongly) facet-producing rather 
than facet-defining. 

To illustrate the foregoing, let us consider the graph G of Figure 3 .  The facet 
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R =  

T X  =s T,, produced by the graph is given by c;=I x, + 3x9 4. As one readily verifies, 
every edge of G is r-critical. Consequently, we can insert into any one of the edges 
of G two nodes; taking e = (8,9) we get a new graph G * and associated facet is 
cy=, x, + 3xy+ x lo+ xll s 5. Anyone of the edges of the graph G*  is again .rr-critical 
and we can continue inserting pairs of nodes into its edges, etc. Returning to the 
graph of Fig. 3 and adding a node 10 that is joined by edges to  nodes 5 , 6 , 7 , 8  and 9, 
we get from Theorem 2 the following facet defined (not produced) by the enlarged 
graph G’: %=, x, + 3xy + 3x10 < 4. Upon inspection, we find that the (9,lO) of G‘ is 
r-critical. Inserting two nodes in the way described in Theorem 7 we obtain the 
facet defined by the resulting graph to be given by cy,l x, + 3x9 + 3x10 + 3x11 + 
3xI2 < 7. Using the construction of Theorem 6, we can get a fairly complex looking 
facet. 

One  might suspect from the foregoing that, given any set of positive integers 
do,  d , ,  .... d, satisfying d, < do for j = 1,. ... n, at least four d, = 1 and c,”_l d, > do, 
there exists a graph G producing a facet r x  s r0 such that .rr, = d, for j = 

0,1, .  ... n, prorided that n is chosen sufficiently large. (The answer to this problem 
is definitely in the negative for small n.) My guess is that the answer is positive. 

The foregoing may suggest that the complexity of the facial structure of set 
packing polyhedra renders useless pursuit of this line of research as regards its use 
in any computation utilizing linear programming relaxations. The following exam- 
ple may serve to indicate the contrary and points to an interesting question that, 
presumably, can only be answered in a statistical sense. 

-0 1 0 . . . . .  0 

0 0 1 0 . . . 0  

i 

0 . . . . . . . . .  0 1 

-1 0 . . . . . . . .  0 

Example. Consider the maximum-cardinality node-packing problem on an odd 
anti-hole G with n 2 5  vertices and let AG denote the edge vs. node incidence 
matrix of G. Denote by R the following permutation matrix: 

We can write A : =  (AT, .... A 3  where p = [ n / 2 ] -  1 and A T = ( I +  R’)= for 
i = 1,. . ., p with Z being the n x n identity matrix. Let P = {x E R” 1 AGx s e, 
x 2 0 }  be the linear programming relaxation of the node-packing problem and PI 
the convex hull of integer solutions. As one readily verifies, max{c:;=, x, 1 x E P }  = 

n/2  for all n. But, the integer answer is two, n o  matter what value n assumes, i.e. 
rnax{C;=, x, I x E Pl}  = 2 for all n. Suppose now that we work with a linear 
programming relaxation of Pl utilizing a subset of the facets of P, given in Theorem 
1. Specifically, suppose that we have identified all cliques of G that are of maximum 
cardinality (this is in general a proper subset of all cliques of anti-holes). Denote by 
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A the corresponding clique-node incidence matrix. Then A = CP,, R ‘ .  Let P = 

{x E R” 1 A x  S t?, x 2 0) be the linear programming relaxation of the node-packing 
problem on G. Then PI C P C P. As one readily verifies, max {Z,”=, xi I x E P }  = 

2 +  l/[n/2] and the integer optimum of 2 follows by simply rounding down. 
The interesting fact exhibited by the example is that the knowledge of merely a 

few of the facets of PI in the case of odd anti-holes permits one to obtain a bound on 
the integer optimum that is “sharp” as compared to the bound obtained by working 
on the linear programming relaxation involving the edge-node incidence matrix of 
the anti-hole (which is arbitrarily bud according to how large one chooses n ) .  The 
general question raised by this example is of course, how often (in a statistical 
sense) it will be sufficient to work with only a small subset of all facets of a set 
packing polyhedron PI (such as those given by cliques, holes, etc.) in order to verify 
s-optimality of some extreme point of PI with respect to some linear form cx, 

where F is some given tolerance-level measuring the distance of an 1.p. optimum 
from the true integer optimum objective function value. 
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Appendix 

As Theorem 4 asserts more than proven in [24], we shall provide a proof of the 
new part in Theorem 4, which states that the complement W ( n ,  k )  of a facet- 
producing web W ( n , k )  strongly produces the facet c;=,x, s h if and only if 
n = kh + 1, where h = [ n / k ] .  We first prove the only-if part of the sentence. To do 
so, it suffices to show that the web W(n ,  k )  contains a (properly smaller) facet- 
producing web W ( n ’ ,  k ’ )  with [ n ’ l k ’ ]  = h if k 3 2, n and k are relatively prime and 
n = k h + j  with 2 ~ j ~ k - 1 .  Let k ’ = [ k / j J + l  and n ‘ = k ’ h + l .  Obviously, 
k ’ >  2 and g.c.d. ( n ’ ,  k ‘ )  = 1. To see that W(n’ ,  k ’ )  is a (vertex-induced) subgraph of 
W(n,  k ) ,  we check the necessary and sufficient conditions for containment of 
Theorem 4 of [24] which require that (i) n k ’ z  n‘k and (ii) n ( k ’ -  1) n ’ ( k  - 1). (i) 
follows because [ k / j ]  + 1 3  k / j .  (ii) follows because h ( k  - k ’ )  + k - 1 - j [ k / j ]  3.0. 
The latter holds because g.c.d. (n ,  k )  = 1 implies k - j [ k / j ]  3 1. Since W ( n ’ ,  k ’ )  is 
contained in W(n,  k ) ,  the complement W ( n ,  k )  of W(n,  k )  contains a subgraph 
defining the  facet C x, s h where the summation extends over a proper subset of all 
vertices of %(n, k ) .  Hence the facet c;=, x, s h is not produced by W ( n ,  k ) .  To 
prove the if-part of the above sentence, we note that the vertex-sets C, = 

{ i ,  i + k ,  . . ., i + ( h  - 1)k) define maximum cliques in W(n,  k )  where i = 1,. . ., n and 
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indices are taken modulo n. Let B be the incidence matrix of these cliques and note 
that B A T  = E - R where A is the incidence matrix of all cliques in w ( n ,  k )  (see 
[24]), E is a matrix of ones and R is a permutation matrix. To prove that B contains 
all maximum cliques of W(n,  k )  let b be the incidence vector to any maximum 
clique of W(n,  k ) .  Then bB-’ = e T -  b A T R T s  0 implies that bx 1 is inessential in 
defining P = {x E R” I Bx s e, x 3 0) or alternatively, identical to one of the rows of 
B. (The vector e is the vector of n ones.) Hence, since P contains the set-packing 
polyhedron associated with W(n, k), B contains the incidence vectors of all 
maximum cliques of W ( n , k ) .  Using an argument entirely analogous to the one 
used in the proof of Theorem 2 of (241, one shows that the matrix B is irreducible 
and hence, by Theorem 3, w ( n ,  k )  produces the facet x.i”=l xi d h if n = kh + 1. 
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PROPERTIES OF FACETS OF BINARY POLYTOPES 
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Department of Mathematics, University of Toronto, Toronto, Ont., Canada 

Properties of facets of full-dimensional polytopes P with binary vertices are studied. If Q is 
obtained from P by fixing some of the binary variables, then the facets of P that reduce to a given 
facet of Q are determined by the vertices of a certain polyhedron V. The case where V has a 
unique vertex is characterized. If P is completely monotonic and the facet of Q has 0-1 
coefficients, then the vertices of V lie in a hypercube of side I, and the integer vertices correspond 
to the sequential lifts or extensions. The self facets, i.e. hyperplanes spanned by binary points, are 
connected to the hyperplanes spanned by non-negative integral points. Every threshold function 
can be labelled by its Chow parameter vector. The faces of the convex hull of all n-argument 
parameter vectors are characterized. This leads to a necessary and sufficient condition for a 
parameter vector to label a self dual threshold function having a self facet separator. 

1. Introduction 

This paper deals with the facets of full-dimensional polytopes with binary 
vertices, i.e. the convex hulls of feasible solutions of binary programming problems. 
Section 2 is a unification and generalization of previous results by several authors 
on the connection between facets of such a problem P and the facets of a 
subproblem Q obtained by fixing some of the variables of P to binary values. The 
facets of P that reduce to a given facet of Q (“lift/extensions”) are shown to be 
determined by the vertices of a certain polyhedron V, and the cases where V has 
only one vertex are characterized. Section 3 makes the further assumption that P is 
completely monotonic (a class that subsumes knapsack problems) and that the facet 
of Q has binary coefficients. The vertices of V are then shown to lie within a 
hypercube of side 1, and the integral vertices correspond precisely to the facets of P 
that can be obtained by “sequential” lifts or extensions. In Section 4 we examine 
the totality of facets of full-dimensional polytopes with binary vertices (“self 
facets”). They are shown to be connected to hyperplanes spanned by non-negative 
integral points. In Section 5 we reverse the point of view and ask what threshold 
functions have self facet “separators”. Every threshold function (and some other 
Boolean functions) can be labelled by its Chow parameter vector. We characterize 
the non-empty faces of the convex hull of all n-argument Chow parameter vectors. 
The characterization of vertices and edges leads to a necessary and sufficient 
condition for a Chow parameter vector to label a self dual threshold function with a 
self facet separator. 

435 
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2. Lifts and extensions 

For an index set N = (1,. . ., n ) ,  let S C B N  (B denotes the set (0 ,  I}) be a set of 
0-1 N-vectors. Let N be partitioned into disjoint sets U, Z, F. Then by S," we mean 
the subset T C BF defined so that x E T if and only if the point y given by 

1 j E U ,  

y j  = 0 j E Z ,  i xi j E F, 

is in S. Thus S g  is obtained from S by fixing the components indexed by U and 2 
to 1 and 0, respectively, and then taking only the F components of the points of S 
satisfying these conditions. When U or 2 are empty we use the short notation Sz 
or S u .  If S is the set of feasible solutions of some 0-1 programming problem, or in 
short a problem, then S," corresponds to  the subproblem obtained by fixing xi, 
j E U U 2 as above. An important class of problems is that of the monotone ones. 
S is monotone if whenever x E S and some components of x are changed from 1 to 
0, the resulting point is still in S. In this section we relate the facets of conv (S) and 
conv ( S g )  (conv denotes convex hull). 

A linear inequality is said to be valid for a set of points when it is satisfied by all 
points in the set, and to support the set if in addition some points of the set satisfy it 
with equality. Clearly an inequality is valid for (supports) a polytope if and only if it 
is valid for (supports) the set of its vertices (a polytope is a convex hull of a finite set 
of points). 

Definition 1. Let S g  be non-empty and let 

C ajx, ao 
j € F  

be a valid inequality for S,". For each subset Z' C Z, the extension coefficient ez (of 
(1) relative to 2') is defined by 

where the maximum above is - m if n o  x satisfies the condition. Similarly for each 
subset U' C U, the lift coefficient lu., is defined by 

= m a  C ajxi - ao, (3)  
s:;:: I E F  

where the maximum above is - - co  if n o  x satisfies the condition. 

Proposition 1. 
(1) e z , s O ;  

Let S be monotone, S,"# 0 and (1) valid for S,". Then 
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(2) lu. is finite; 
(3 )  if (1) supports S,", then l u t S O .  

Proof. By monotonicity S,"_"z.'C S,", and so 

which proves (1). Similarly S,";:: 2 S,"# 0, and so 

which proves (2).  Moreover, if (1) supports S,", the last right-hand side is ao, which 
proves (3). 0 

The extension and lift coefficients impose conditions on the coefficients of valid 
inequalities for S that reduce back to (1) under the substitution xi = 1, j E U, x, = 0,  
j E Z. 

Proposition 2. Let S," be non-empty and let (1) be valid for it. If the inequality 

C a,x, s ao+ C a, 
, E N  j € U  

(4) 

is valid for S, then for each Z ' C  Z, &,. aj s ezr and for each U ' C  U , cjEu. aj 3 

lu2, In  particular a, s ej for all j E Z and a, 2 1, for all j E U. 

Proof. To prove ZjEz. a, S e,., we may assume that ez' is finite. Therefore there 
exists a point x E S,"_",".' satisfying ez, + CjeFa,x, = ao. But since S,"?'Z,' is a subprob- 
lem of S and (4) is valid for S, x must also satisfy Cjazo a, + cjEFu,xj s ao. The 
bound for lifts is proved similarly. 0 

We can prove the converse of Proposition 2 for pure extensions ( U  = 0) or pure 
lifts (2 = 0). 

Proposition 3. 
ez, holds for each Z' C Z, then ZJENa,x,  s a. is valid for S. Similarly if ~,EN-,,aJxJ s 
a. is valid for Su, and if & E U ,  a, 3 lu holds for each U ' c  U, then ~ , E N a J x J  s 
a. + Z,,, a, is valid for S. 

If the inequality CJEN-, aJx, s a. is valid for Sz, and if &EZ, a, 

Proof. Let x E S and let Z' = { j  E Z 1 xj = 1). By (2) we have ez,+ x j E N - Z a j x j  C 

a,,, and since e,. 2 c,,,. a, = cjEzajx,, x satisfies ~ i E N a j x i  s ao. The result for lifts 
has a similar proof. 0 

The preceding discussion can be generalized to mixed lift/extensions. If S," is 
non-empty and (1) is valid for it, then for each Z ' C  2, U ' C  U we may define the 
coefficient 
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It can then be shown that 
and only if for each 2' C 2, U ' C  U, 

= a. - ez., cO,,,. = a. + lu, and that (4) is valid for S if 

C ~ . , ~ . S  ao+ 2 a, - 2 a,. 
I E U '  ,EZ' 

Let us now turn to examine conditions under which (4) is not only valid for S, but 
also a facet of conv(S). We recall that a polyhedron is the solution set of a finite 
number of linear inequalities. Bounded polyhedra are the same as polytopes. The 
dimension of a polyhedron P is one less than the maximum number of affinely 
independent points of P. A face of a polyhedron P is the solution set of the system 
obtained by replacing some of the inequalities defining P by equalities. In 
particular, vertices are 0-dimensional faces, edges are 1-dimensional faces and 
facets are faces of dimension one less than that of P. The faces of P are the same as 
the extreme subsets of P and also the sets of optimal solutions of linear programs 
over P. If P is full-dimensional (i.e. its dimension equals the number of variables), 
then in any system of linear inequalities defining P, the irredundant inequalities 
correspond precisely (up to proportion) to the facets of P. As is customary, we call 
these inequalities themselves the facets of P. To state the next result, we use the 
following definition. 

Definition 2. Let (1) be a valid inequality for S,". Then its valid polyhedron is 
v = {a  E R~~~ I every x E s satisfies (4)). 

By definition, V is the polyhedron whose points are the U and 2 components of 
all valid inequalities for S that reduce to (1) by the substitution x, = 1, j E U, x, = 0, 
j E 2. The remark following Proposition 3 gives a defining system for V in terms of 
c Z . . U ' .  

Proposition 4. The valid polyhedron is full -dimensional and unbounded. 

Proof. If M is a large enough constant and 

- M  j € Z  

M j E U ,  
a, =[ 

then a E V. Thus V is not empty. Let d, be the j unit vector. We show that if 
a E V, then a - d, E V for j E 2 and a + d, E V for j E U. To prove the  first of 
these statements please note that for all binary x, if x, = 0, then (4) has the same 
form for a - d, as for a, and if x, = 1, then (4) for a - d, is the sum of (4) for a and 
the valid inequality - x, s 0. The second statement is proved similarly. 

The next theorem belongs to the type of polarity results that are obtained by 
Araoz [1] and also by Edmonds and Griffin [private communication]. 
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Theorem 1. Let conv ( S )  and conv ( S g )  be full-dimensional, and let (1) be a facet 
of the latter. Then (4) is a facet of the former i f  and only if a = (ai, j E U U Z )  is a 
vertex of the valid polyhedron V of (1). In that case (4) is called a liftlextension 

of (1). 

Proof. By definition, the validity of (4) means the same thing as a E V. To show 
the "only if" part of the theorem, it is sufficient to prove that a is an extreme point 
of V. Suppose that a = 5(b + c ) ,  where b, c E V. Then the two inequalities 

are valid for conv(S) and (4) is their arithmetic mean. Since conv(S) is full- 
dimensional and (4) is one of its facets, it must coincide with (5) and (6), otherwise it 
is redundant. Thus a = b = c, proving that a is extreme in V. 

We now show the "if" part. This time we show that there are n = IN1 affinely 
independent points of S satisfying (4) with equality, proving that it is an 
(n  - 1)-dimensional face. For ease of writing, let us reindex the variables so that 
U = (1,. . ., r} ,  2 = { r  + 1,. . ., r + s } ,  F = { r  + s + 1,. . ., n } .  Since a is a basic solu- 
tion of the system of inequalities (4) for all x E S, there exist r + s points 
xl , .  . ., x r f S  E S such that a satisfies the corresponding inequalities (4) as equalities 
and the coefficient matrix of a l ,  . . ., a,,, in these inequalities, namely 

is non-singular. Also since (1) is a facet of the full-dimensional conv(S,"), there 
exist n - r - s affinely independent points y'+'+', . . ., y "  E S," that satisfy (1) with 
equality. Let these points form the rows of the matrix 

By definition of S y, the points x r C s + ' ,  . . ., X "  defined by 

1 j € U ,  

x; = 0 j € Z ,  i Y ;  iEF, 

belong to S.  They too satisfy (4) with equality. It remains to show that the rows of 
the matrix 
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x ; ; ; .  . . X ' + S  x;;;+, . . . x,  

,+s+ 1 , + $ + I  ---I-- y r + s + 1  . . . y .  

are affinely independent. If r + s = n, then the rows of X *  differ from the rows of X 
by a fixed translation (1,. . ., 1,0,. . .,O). As the rows of X are affinely independent, 
so are the rows of X * .  If r + s < n, subtract the last row of X *  from each other 
row. It is enough to show that the first n - 1 rows are now linearly independent. 
These rows now constitute a matrix of the form [g :I, where the rows of X are 
linearly independent and the rows of L, being the differences y""" - y", . . ., 

n-' - ") are also linearly independent. This completes the proof of 
Theorem 1. 0 

Under the conditions of Theorem 1, suppose further that 2 contains an index i 
such that the extension coefficient e, relative to (1) is finite. If we consider S y  as a 
subproblem of S,"-,, then the valid polyhedron V is I-dimensional with a vertex at 
e,. Thus the inequality &EFa,x, + e,x, S a,, is a facet of conv ( S g - , ) .  If Z - i contains 
a further index whose extension coefficient relative to the present inequality is 
finite, the process can be continued. This is called sequential extension of (1). In 
particular, if S is full-dimensional and monotone, so are all its subproblems of the 
form Sz, and by Proposition 1 each facet of such a subproblem can be sequentially 
extended to (one or more, depending on the order of extension) facets of the 
complete problem. Hence, by Theorem 1, V has in fact vertices in that case. In a 
similar way one also has sequential lifts and sequential liftlextensions. Sequential 
extensions have been studied by many authors, including Balas [2], Balas and 
Zemel [3], Hammer, Johnson and Peled [7], Nemhauser and Trotter [12], Padberg 
[13], Pollatschek [15], Trotter [16], Wolsey [19] and Zemel [21]. Sequential lifts are 
treated by Wolsey [20], in a work that stimulated my interest in lifts. Theorem 1 was 
proved by Zemel [21] for the case of pure extensions. Non-sequential extensions 
are also discussed by Balas and Zemel [3]. 

We conclude this section with two corollaries and an example of Theorem 1. 

Corollary 1. 
of the valid polyhedron V corresponds to a sequential liftlextension of (1). 

Under the conditions of Theorem 1, i f  I U U Z 1 s 2, then every vertex 

Proof. We have already considered the case 1 U U 2 I = 1. For 1 U U Z I = 2, 
consider the typical case of pure extensions, U = 0, 2 = {I, 2}, other cases being 
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similar. We then have V = {(a,, a,)/ a ,  s e l ,  az S ez ,  a l  + az s e l z } .  It is easy to 
verify that if e l  + ez S e l > ,  then V has a unique vertex ( e l ,  ez), and if e l  + ez > e12, 
then V has two vertices ( e l ,  e l z  - e l )  and ( e l ,  - ez ,  e z ) .  All these vertices represent 
sequential extensions: in the first case the two sequences commute (give the same 
facet) and in the second case they do not. 0 

Corollary 1 appears, for pure extensions, in Hammer, Johnson and Peled [7] and 
in Zemel [21]. 

Corollary 2. 
and l,, j E U are finite. Then the following two conditions are equivalent: 

Under the conditions of Theorem 1, assume further that all e,, j E Z 

(1) the inequality 

is valid for S ;  

liftlextension ). 
In that case the unique vertex is in fact (e,, j E Z ;  l,, j E U ) .  

(2) the valid polyhedron V has a unique vertex (i.e. (1) has a unique 

Proof. Please note that as e, and 1, are finite, V has vertices (it being contained in 
an orthant of RU""). 

(1) =3 (2). It is enough to show that whenever (4) is a facet of conv(S), a, = e, 
for j E 2 and a, = 1, for j E U (this follows from Theorem 1). Since (4) is valid for 
S, Proposition 2 gives a, < e, for j E Z and a, 3 1, for j E U. Therefore we can add 
the valid inequalities 

(a, - e)x,  < 0 i E Z, 

(a, - l,)x, s a, - 1, j E U 

to the valid inequality (7) to obtain (4). But (4) is a facet of the full-dimensional 
conv ( S ) ,  and so it is irredundant. It follows therefore that a, = e, for j E Z and 
a, = I, for j E U. 

(2) =+ (1). Note that by Theorem 1 there is a unique facet of conv(S) of the 
form (4). On the other hand, such facets can be obtained by sequential 
lift/extensions. The sequence may start from any j E U U Z, since the lift/extension 
coefficients are all finite. This yields a, = 1, if j E U and a, = e, if j E Z. Therefore 
(7) is the unique facet in question and (1) certainly holds. 0 

Special cases of Corollary 2, involving pure extensions, appear in Balas [2], 
Hammer, Johnson and Peled [7] and Balas and Zemel [3]. 

Example. Let S be the set of incidence vectors of the node packings of the 
pentagon, i.e. the vectors x E B5 such that x, + x , + ~  s 1 (indices modulo 5). S is 
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full-dimensional and monotone. The subproblem S4 is not full-dimensional, 
because x4 = 1 implies x? = x s  = 0. Therefore let us consider the full-dimensional 
subproblem S: ,  = { x  E BZ I xI + xz  I} and the facet xl + x2  s 1 of its convex hull. 
The valid polyhedron V consists of (a? ,  a4,  a , )  that satisfy 

1 s 1 + a ‘ & ,  I +  0 3 6  1 + a , ,  1 + a s s  1 + a4, a , +  a 5 s  1 + a4. 

These inequalities are determined by the node packings ( l , O , O , O , O ) ,  ( l , O ,  1,0,0), 
(0,1,0,0,1) and (O,O, 1,0, l), respectively. The other node packings give redundant 
inequalities. V is 3-dimensional and has two vertices ( O , O , O )  and (1,1,1). Thus the 
lift/extensionsof x I  + xz  s 1 are x ,  + xz s 1 and x 1  + xz  + x 3  + x4 + x s  s 2. The second 
of these facets is the one “produced” by the pentagon in the sense of Trotter [16], 
i.e. it is not a pure extension of any subproblem. We see that it is not produced by 
the pentagon if we allow lift/extensions. It is not a sequential lift/extension (since 
e? = e,  = to, l4  = 0). The first facet is a sequential lift/extension (lift in x4 and then 
extend in x7,x5). 

3. Completely monotonic problems 

If (1) is valid for S,“ and (4) is valid for S,  Proposition 2 gives upper bounds for a,, 
j E Z and lower bounds for a,, j E U, namely the extension and l i f t  coefficients, 
respectively. Under suitable conditions there are sharp opposite bounds for the a,. 
We discuss here such conditions. 

Definition 3. Let L and M be disjoint subsets of the index set N and let S C B N .  
Then we write L 3 M (relative to S )  when S &  C S y .  In that case L and M are said 
to be comparable. When L 3 M holds but M b L does not, we write L > M. 

Informally, L M means that if x E S and x, = 1 for all j E L, x, = 0 for all 
j E M, then by moving the ones from L to M we transform x into another point of 
S. As an example, consider the linear inequality 

and let S = {x E B N  1 x satisfies (8)). Such an S is called a threshold set or a 
knapsack problem, and the inequality (8) is a separator of S. Relative to this S we 
have L 3 M if c , , L d ,  2 x, tMd, ,  hence all disjoint sets are comparable. 

The following properties of b are easily proved. 
(1) If K ,  L and M are disjoint in pairs and K b L b M, then K 2 M. This is true 

in particular for singletons. 
(2) Every subproblem of S inherits from S the  relations b between sets of its 

own variables. In other words, if L, M C F and L 3 M relative to S,  then L B M 
relative to S,”. 
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( 3 )  S is monotone if and only if every i E N satisfies { i }  3 0. Thus if every 
singleton is comparable with 0, S can be made monotone by complementing all 
variables x, such that 0 > { i } .  

Definition 4. S is completely monotonic if every two disjoint sets are comparable 
relative to S. 

Winder [ 181 has shown that in order to establish complete monotonicity, it is 
sufficient to check only disjoint sets L and M such that I L U M I S  !INI. As we 
have just seen, every threshold set S is completely monotonic. In order to discuss 
the converse statement, call S k-summable if for some j = 2 ,  ..., k there exist j 
points X I ,  ..., x J E S  and j points y ' ,  ..., y J E B N - S  satisfying x ' + - . . + x ' =  
y I +  . . . + y'. Otherwise S is k-asummable. It was shown by Elgot [6] that complete 
monotonicity is equivalent to 2-asummability, whereas the threshold property is 
equivalent to the property of k -asummability for every k = 2,3 ,  . . . In fact, Winder 
[I81 has shown that for every fixed k there are k-asummable sets that are not 
threshold. Thus the class of threshold sets is properly included in the  class of 
completely monotonic sets. 

If (4) is a valid inequality for S, a coefficient a,, j E U is said to be minimal in (4) 
if any decrease in a, makes (4) invalid. This is equivalent to the existence of a point 
x E S with x, = 0 that satisfies (4) as an equality. For example, if (4) is a facet of 
conv (S), other than x, 6 1, then a, is minimal in (4). With these definitions we can 
now state the next result. 

Theorem 2. Let S be completely monotonic and monotone. Let 

x, s b, Jc N -  U 
I E J  

be an inequality with 0-1 coefficients supporting S u ,  and let 

be valid for S.  Zf, for some i E U, a, is minimal in (lo), then a,  S I, + 1, where I, is the 
l i f t  coefficient of x, in (9). 

Proof. As remarked above, the relation 3 induces a total order on all t he  
singletons. For ease of writing, let us reindex the variables so that J = {I, 2 , .  . ., IJ I }  
with 

{IJl}a . .  . 2  {2}> {I}. (11) 
Since (9) supports S", there exists a point of S U  that satisfies (9) with equality, i.e. 
has exactly b components from J equal to 1. By monotonicity of S u  we may take 
all the components outside J to be 0, and by (11) it follows that the point x E BN-" 
given by 
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1 

0 j = b + l ,  . . . , I  JI  or j E N - U - J  

j = 1 , .  . ., b 

belongs to Su.  A reformulation of this statement is that the point x ' E  B N - ( U - ' )  
given by 

1 j = 1 ,  ..., b or j = i ,  

0 j = b + l ,  . . . , I  J l  or ; E N - U - J  
x; = 

belongs to Su- ' .  
By (3) the lift coefficient I ,  in (9) is given by 

b + 1, = max 2 y, 
y t S 7 '  IEJ  

and is finite by Proposition 1. For the same reasons as above, the optimal solution y 
can be taken to be the point 

1 

0 j = b + f < + l ,  ...,/.TI or ; E N - U - J .  

j = 1 ,  . . ., b + I ,  .={ 
The optimality of y implies that the point y ' E  BN-("-" given by 

1 j = I ,  ..., b + 1, + 1 
(13) { 0 j = b + 1  , +  2, . . . , I  J l  or j = i  or j E N - U - J  

Y:' 

does not belong to Su- ' .  Comparing (12) with (13) we see that x '  and y '  differ only 
at the components i and b + 1, .  . ., b + 1, + 1.  By complete monotonicity of Su- ' ,  the 
sets { i }  and { b  + 1,. . ., b + 1, + l} must be comparable, and since x '  is in S"-' and y '  
is not, we conclude that 

{ b  + 1 , .  . ., b + I ,  + 1) > { i }  (14) 

relative to S"-' ,  hence relative to S too. 
Let us now turn to the valid inequality ( lo) ,  in which a, was assumed to be 

minimal. This means that there exists a point z E S with z, = 0 that satisfies (10) as 
an equality. For the  same reasons as above we may assume that for some integer 
k = 0 , 1 ,  ..., IJI,  z satisfies z , = . . . = z k = l  and Z ~ - , = . . . = Z I ~ A = ~ .  Denoting 
M = { j  E U - i 1 z, = O}, we may then write the equality (10) in the form 

k = b + a ,  + 2 a,. 
I S M  

Since a, 3 1, by Proposition 2, (15) yields 

k s b + l , +  a,. 
I t M  
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We now distinguish two cases according to ~,,,a,. 

Case I :  C,,, a, = 0. By Propositions 1 and 2 we have 0 = c,,, a, 3 1, 3 0 and so 
1, = 0. Therefore the maximum of x , E J ~ J  is b not only for x E S", but also for 
x E S"-,, and it follows that { b  + 1) > M. We claim that k s b + 1, + 1. Indeed, 
suppose that k b + 1, + 2 were true. Since { b  + 1) > M ,  and since z E S,  the point 
u given by 

0 j = b + l  

u , =  1 j E M  I z, j E N - M - { b  + 1) 

belongs to S.  But u, = t, = 0, by definition of M u, = 1 for all j E U - i ,  and 
EJE,u,  = k - 1 3  b + 1, + 1. This contradicts the definition of the lift coefficient 1, 
and establishes the claim. But this claim, (15) and the condition of case 1 yield the 
desired result a, S 1, + 1. 

Case 2: C,,,a,#O. As in case 1 we have C,,,a, 3 0 ,  hence &,a, >0 .  Since k 
is an integer, (16) yields 

k s b +  1, + l .  (17) 
Let u be given by 

1 j = i ,  

u , =  0 j = k - l , ,  ..., k ,  i z, j E N - { i } - { k  - 4,. .., k } .  

By (17), (11) and (14) we have { k  - 1  ,,..., k ) p { b +  1 ,..., b + l ,  +l}>{i}, and 
therefore u E S. Hence u satisfies the valid inequality (lo), which reads k - I, - 1 s 
b +c,,Ma,. This and (15) gives a, cl, + 1 and completes the proof of 
Theorem 2 .  0 

A result analogous to Theorem 2 holds for extensions instead of lifts. It assumes 
that a coefficient in a valid inequality is maximal rather than minimal. The theorem 
can be proved by methods close to and somewhat simpler than the ones for 
Theorem 2 .  

Theorem 3. Let S be completely monotonic and monotone. Let 

be an inequality with 0-1 coefficient supporting Sz, and let 
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be valid for S .  If ,  for some i E Z, a,  is maximal in (19), then a ,  2 e, - 1, where e, is the 
extension coefficient of x ,  in (18). 

An important special case where the assumptions of Theorem 3 hold is when S is 
full-dimensional, J is a minimal set whose incidence vector is not in S (a “prime 
implicant” or a “minimal cover” of S ) ,  Z is taken as N - J and b is I J I - 1. Then 
(18) is a facet of the full-dimensional conv ( S z ) .  If (19) is a facet of conv ( S ) ,  i.e. an 
extension of (18), then Theorem 3 applies to every i E Z. This case was proved, for 
threshold sets S, by Balas and Zemel [3]. 

The following corollaries of the preceding two theorems assume that (9) (or (18)) 
is a facet of the full-dimensional conv(S”) (conv(S,)). Such facets with 0-1 
coefficients have been characterized by Balas [ 2 ] ,  Hammer, Johnson and Peled [7] 
and Wolsey [19]. The characterization has to assume no more than that S is 
“regular” (essentially that the singletons are comparable by ) and this is covered 
anyhow by the stronger assumption that S is completely monotonic. The result is a 
characterization of the sequential lifts (extensions) of (9) (or (18)). 

Corollary 3. Let S be completely monotonic and monotone and let conv(S) and 
conv ( S ” )  be full-dimensional with the facets (10) and (9), respectively. Then (10) is 
a sequential lift of (9) i f  and only i f  a = (a j ,  j E U )  is integral. 

Proof. The “only if” part is obvious, since sequential lifts of an inequality with 
integral coefficients have integral coefficients. To prove the “if” part, observe that 
by Proposition 2 and Theorem 2 each j E U satisfies a, = 1, or a, = 1, + 1. Let 
L = { j  E U 1 a, = 1,) and M = U - L .  Since (10) is valid for S,  the inequality 

is valid for S ” .  By Corollary 2 and Theorem 1, (20) is the unique lift of (9) that is a 
facet of conv(S“). Therefore this is a sequential lift of (9). It can be sequentially 
lifted further in M. The resulting coefficients will be integers, and since the resulting 
inequality will be a lift of (9) and a facet of conv(S), these coefficients must lie 
between 1, and I, + 1, i.e. they are either 1, or 1, + 1. But none of these coefficients 
can be l,, or else the facet (10) will be the sum of two valid inequalities. Therefore 
the resulting sequential lift is identical with (10). 0 

The analogous result for extensions is expressed by 

Corollary 4. Let S be completely monotonic and monotone and let conv(S) and 
conv ( S z )  be full-dimensional with the facets (19) and (18), respectively. Then (19) is 
a sequential extension of (18) i f  and only i f  a = (a,, j E 2 )  is integral. 

This result was obtained by Balas and Zemel [3] under the conditions discussed 
above. 
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4. Self facets 

In the previous sections we examined the question of how to obtain facets of a 
given problem from facets of a given subproblem. Here we look at the totality of 
facets of all full-dimensional polytopes with 0-1 vertices. Clearly if 

is such a facet, then it is also a facet of conv(S), where S is the threshold set 
S = {x E B N  I x satisfies (21)). For this reason a hyperplane 

is called a self facet when it is spanned by 0-1 points, i.e. when there are 1 NI affinely 
independent points x E B N  satisfying (22). In studying the self facets, we do  not 
lose generality by assuming that a,, a. > 0. Not every threshold set S has a separator 
that is a facet of conv ( S ) .  For example, if S = { x  E B 3  I2x, + x z  + x 3  2}, n o  facet 
of conv(S) is a separator of S. 

Given a hyperplane (22), let (h,, i E M )  be the set of distinct values among 
a , , j E N ,  and put N , = { j E N I a , = h , } ,  i E M .  Let A : R N - + R M  be a linear 
transformation defined by 

( A X ) ,  = c X, i E M. (23) 
I C N .  

Clearly if x E B N  satisfies (22), then t = Ax is an M-vector satisfying 

O t, 1 N, 1, t, integer, i E M. (25) 

Conversely, if t satisfies (23) and (24), then there is an x satisfying (22) and t = Ax. 
This correspondence carries over to facets as follows. 

Proposition 5. 
(1) (24) is spanned by points t satisfying (25); 
(2 )  i f  I N, 1 2 2 there is an integral t satisfying (24) and 0 < ti < I Ni I. 

If (22) is a self facet then 

Proof. Let X be a matrix whose rows are all the binary solutions of (22). Its 
columns are linearly independent. The rows of T = AX satisfy (24) and (25). We 
claim that its columns are linearly independent and hence (1) holds. Indeed let 
c E RM satisfy Tc = 0, and define d E RN by d, = c, for j E N,. Then Xd = 0, hence 
d = 0, hence c = 0. If (2) fails, then the i column of T consists solely of 0’s and 
IN, 1’s. Hence all the columns of X indexed by N, are equal to each other. Since 
IN, 1 3 2 ,  this contradicts the linear independence of the columns of X. 
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Proposition 6.  Let (24) be spanned by non-negative integral points t. Then there 
exist numbers (aJ, j E N )  such that (22) is a self facet and the sets of distinct values 
among (h,, i E M )  and among (a,, j E N )  are the same. In particular, if (h,, i E M )  
are distinct, then (a,, j E N )  is obtained by duplication of the h,. 

Proof. 
the largest entry in the i column of T. Put 

Let the rows of T be all the non-negative integral solutions of (24), with n: 

n : + l  if n : 2 2  and no row t of T 

n, = [ satisfies o <  t, < n : ,  (26) 

n :  otherwise, 

and define N, = { n ,  + . .  . +  n,-,  + 1,.  . ., n ,  + . .  . +  n,} ,  N = u , , M N , .  Then if a, = h, 
for all j E N, and the rows of X are the binary solutions of (22), we shall prove that 
the columns of X are linearly independent. Suppose that X d  = 0 for some d E RN. 
We claim that for each i E M, all the d,, j E N, are equal to each other. This is trivial 
for n, = 1. For n, 3 2, (26) shows that there exists a row t of T satisfying 0 < 1, < n,. 
Since T is a submatrix of A X ,  where A is given by (23), there exists a row x of X 
such that exactly t, of the x,, j E N, are equal to 1. All the (2) different row vectors 
obtained from x by permuting the N, components are also rows of X ,  and so are 
orthogonal to d. Hence by subtracting these equations from each other we establish 
the claim. Now it is possible to define c E RM by letting c, be the common value of 
the d,, j E N,, and hence ( A X ) c  = 0, Tc = 0, c = 0 and d = 0. 

We give some examples illustrating the preceding propositions. 

Examples. (1) If (24) has the form 2 t , + 3 t 2 =  12, then the matrix 

T = E  r ]  
has rank 2. The proof of Proposition 6 constructs the self facet (22) given by 
a = (2,2,2,2,2,2,3,3,3,3),  a,,= 12. By inspection one can see that a = 

(2 ,2 ,2 ,2 ,3 ,3 ,3 ,3)  also gives a self facet, but a = (2,2,2,3,3,3,3) does not. 
(2) An example similar to the following one was shown to me by J.F. Maurras. 

The hyperplane t ,  + 2t, + . . . + zk-'tk = Z k  is spanned by non-negative integral 
t E Rk. Indeed, the rows of the non-singular k by k matrix 

are solutions. In analogy with the proof of Proposition 6 we can construct the ni as 
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3,2 ,2 , .  . .,2. Hence there is a self facet with n, = 2k + 1 variables whose 
right-hand side is 2', namely xo + ( x l  + x,) + 2(x3 + x,) + . . . + 2'-'(X2k-l f X X )  = 2'. 
This is a class of self facets where the  largest coefficient is exponential in the 
number of variables. 

(3) Given an arbitrary set (h,, i E M )  of positive integers, let a. be the least 
common multiple of the h,. Then the equation (24) has I M 1 linearly independent 
solutions, such as (ao/h l ,  0, .  . ., 0) etc. Therefore there exists a self facet (22) such 
that the set of distinct values among a,, j E N is (hz, i E M ) .  The restriction of 
positivity of the h, is not essential here. This example demonstrates the complexity 
of the convex hulls of general threshold sets, as compared with the well-described 
combinatorial polytopes such as matroids or matchings. 

(4) The 0-1 master knapsack problem s b  is the set of 0-1 solutions x = ( x i )  of 
b K, 

2 x i x ; s b  ( b = 1 , 2 ,  ...), 
r = I  , = I  

where K,  = 1 + [ b / i ]  is the smallest integer larger than b/ i .  Knowledge of conv ( s b )  

will provide the convex hull of every threshold set having a separator with a 
right-hand side of b [ 8 ] .  Johnson [ l o ]  gave a procedure, based on  sequential 
lift/extensions, to find many facets of conv ( s b ) .  Hammer and Peled [9 ]  computed 
all the facets of conv (sb) for b S 7. With sb is associated the integer master 
problem Tb given by 

b c it, s b, t, ~ 0 ,  integer. 
, = I  

ArAoz [ I ]  studied the problem T b  and characterized its facets 
b c h,?, s h". 

, = I  

The following result was pointed out by E. Johnson: for ho > 0, (29) is a facet of 
conv(Tb) if and only if the inequality 

b K2 c c hiXj s ho 
, = I  , = I  

is a facet of conv (sb) ((30) is a facet with the special property that the coefficient of 
x i  does not depend on  j ;  there are many other facets). To prove the result we use 
the linear transformation t = A x ,  where t, = x::l x;. Clearly A maps Sb onto Tb, 
and (30) is valid for s b  if and only if (29) is valid for Tb. If (30) is a facet, then  by the 
argument of Proposition 5 the hyperplane (29) is spanned by points t = A x  such 
that x satisfies (30) with equality and (29) is a self facet. Conversely, assume that 
(29) is a self facet and let the rows of T be all points t E Tb that satisfy (29) with 
equality. If n: > 0 is the largest entry in the i column of T, then n: [ b / i ]  by (28), 
and therefore the n, given by (26) satisfy n, K,. The argument of Proposition 6 
shows that the hyperplane x:=, 2 ; ~ ~  h,x; = h,, is a self facet spanned by points that 
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satisfy (27). Therefore (30), which is obtained from it by duplicating coefficients, is a 
facet of conv ( S b ) .  

It is relatively simple to determine when a hyperplane (24) is spanned by integral 
points t .  This happens if  and only if (24) has some integral solution, or  equivalently 
when the greatest common divisor of the h, divides h,. This was proved by 
Edelberg [5].  But if we add the restriction that t, 3 0, the problem is harder, and we 
do  not know direct solutions to it. 

Let us conclude this section with an example [ll] of two different self facets that 
are separators of the same threshold set. It can be verified that the inequality 

13x1 + 7x2 + 6x3 + 6x4 + 4x5 + 4x6 + 3x7 + 2x8 C 24 

can be satisfied as an equality by 8 linearly independent 0-1 points. The solution set 
of this inequality is symmetric in x7 and xx. Therefore 

13x, + 7xz + 6x3 + 6x4 + 4xs + 4x6 + 2x7 + 3x8 C 24 

is another self facet defining the same threshold set. 

5. Chow parameters of self facets 

We now look at the self facets from another point of view. -.istead of asking, as in 
the previous section, what hyperplanes are facets of full-dimensional convex hulls 
of sets of binary points, we now ask what threshold sets S have a separator that is a 
facet of conv (S). It is convenient here to change the terminology slightly. First, we 
apply the transformation 

y, = 2 x , - 1  j E N ,  (31) 

which changes {0,1} into { - 1, l}, which we call now B. The new variables are more 
convenient for taking complements. Since (31) is an affine transformation, the 
image of a self facet is a hyperplane containing 1 N I affinely independent points y, 
and conversely, so we may keep calling these images “self facets”. Also, the image 
of a threshold set is the set of solutions y of a linear inequality, and conversely, so 
we may keep calling these images “threshold sets” and the corresponding 
inequalities “separators”. Second, we represent each subset S of B N  by the 
Boolean function F : B N  + B having value - 1 at the points of S and value 1 at the 
points of B - S. In particular, the Boolean functions representing threshold sets 
are called threshold functions. 

Chow has discovered a set of parameters, now bearing his name, associated with 
every Boolean function F, such that if F is a threshold function, no other Boolean 
function with the same number of variables has the same parameters. We use here 
one variant of the Chow parameters, following Winder (171. To define them we use 
the notion of dual Boolean functions. 
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Definition 5. 
- F (  - y). F is self dual if F(  - y )  = - F ( y ) .  

function F” : B 

If F is a Boolean function, its dual F d  is defined by F d ( y ) =  

If F : B N  +. B is any Boolean function and 0 is an index not in N, then the 
B given by 

F”(Y, Yo) = yo * F(Y)  + ( - Yo) * Fd(Y) 

is self dual. Here the multiplication opeation * is that of taking the minimum and 
the addition operation + is that of taking the maximum. It can be shown that the 
mapping F+ F” is a bijection of the Boolean functions on B N  onto the self dual 
Boolean functions on BNUo, that F = F” if and only if F is self dual and that F” 
retains many other properties of F, e.g. F” is a threshold function if and only if F is 
a threshold function. For these reasons F” may be thought of as a self dual version 
of F. We can now define the Chow parameters of F. 

Definition 6. 
parameter vector p is given by 

Let F be a Boolean function on BN. If F is self dual, its Chow 

If F is not self dual, its Chow parameter vector is that of F # .  
By using the self duality of F, we can rewrite (32) in the form 

so that p is proportional to the “center of gravity” of the points where F = 1. If G is 
another self dual function, obtained from F by complementing its values at a given 
point z and its complement - z, then the parameters of G are q = p - z F ( z ) .  The 
parameter vector of the self dual function F ( y )  = y l  is clearly p = (2”’-*, 0 , .  . ., 0), 
which is integral for 1 N (  3 2 and a vector of even integers for 1 N 1 2 3. Since every 
other self dual function on  B” can be obtained from F by a sequence of changing 
the functional values at a pair of complementary points, it follows that all the 
components of a Chow parameter vector are integers for I NI 3 2 and have the same 
parity for ( N I 3 3 .  Winder [I71 shows that, when F is a self dual function with 
parameters p ,  a given q is a parameter vector of a self dual G if and only if there 
exists a set S of points y satisfying F ( y )  = - 1 and &,, y = q - p .  This property 
can be used to characterize the Boolean functions F on B” (whether self dual or  
not) such that no other Boolean function on B N  has the same parameters as F has. 
The characterizing property is that for n o  positive integer k do there exist distinct 
points y ’ ,  . . . , y k ,  z ’ ,  . ..,zk of B N  satisfying F ( y ’ ) =  1, F ( z ’ ) =  - 1, y ’ #  - z’ and 
cf=, y ’  = c;=, z’.  In particular, then, threshold functions have this property, and so 
can be labelled by their Chow parameters. This was proved by Chow [4]. 

We may then rephrase the question at the beginning of this section as what 
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parameter vectors label threshold functions having a self facet separator. We shall 
assume that the threshold function in question is self dual. 

b with 
integral a (since the requirements on  a and b are homogeneous linear inequalities 
with integral coefficients). The dual function F d  has the separator a . y G - ( b  + 1). 
If F is self dual, i.e. F = Fd,  then the arithmetic mean of these two separators, 
namely a . y s - $, is another separator of F. Since a is integral, a . y s - r is a 
separator of F for every 0 s r s 1, and no point of B" is orthogonal to a. 
Conversely, if no point of B" is orthogonal to the integral a, then a . y s - r is a 
separator of the same self dual threshold function for all 0 r S 1. It is possible, but 
not easy, to find self dual threshold functions with a self facet separator of the  form 
a . y s - r with r 2 2 and a integral (of course, the greatest common divisor of the 
a, is understood to be 1). This is translated into 0-1 variables to mean a self dual self 
facet a ' x s b with b f  $ ( x , a ,  - 1). A n  example is given by Muroga [ I l l  as 
a = (29,25,19,15,12,8,8,3,3), r = 2.  Since exactly six of the a, are odd, a . y is 
even for all y E By, so no y satisfies a . y = - 1. Nevertheless a . y = - 2 is a self 
facet. 

In order to  answer the question of this section, we denote by P" the set of all 
parameter vectors of self dual Boolean functions on B", and Q" = conv(P"). 
Every vertex of Q" is thus a parameter vector. The next theorem characterizes the 
faces of Q". Special cases of it, involving the vertices and facets of Q", are given by 
Winder [17]. 

If F is a threshold function on  B", it has a separator a . y = C , t N ~ , y ,  

Theorem 4. 
defines a d-dimensional face of Q" ( d  = 0,1, .  . ., I N I - 1 )  if and only i f  
( 1 )  b = a . q, where q = f x, y , o  y - d c, y c O  y ( b  must be positive); 

Let a be a non-zero N-vector. Then the linear inequality a . w d b 

( 2 )  the rank 
In that case 

of the set { y  E B" 1 a . y = 0) = { t y ' ,  . . ., t y " }  is d. 
the set of parameter vectors on the face is 

m ttz u,y' 1 u E I?"] 
, = I  

Proof. 
only if 

Clearly a . w s b defines a non-empty face of Q" (supports Q") if and 

b = max a * w = max a . p = max t ( a  . y ) G ( y ) .  
W t O N  ' P € P N  Gcelfdual v 

The self dual functions G that realize this maximum must be such that G ( y )  and 
a . y have the same sign when a . y #  0. In fact, for each u E B", let F" be the self 
dual Boolean function defined by F " ( y )  = 1 if a . y > 0 ,  F " ( y )  = - 1 if a . y < 0 
and F " ( y ' )  = u,, F " (  - y ' )  = - u,. Then these F" are all the self dual functions G 
that realize the above maximum. It follows that b = a . q, so that the face is 
non-empty if and only if (1) holds. (That a ' q is positive follows from the fact that i f  



Properties of facets of binary polytopes 453 

a is orthogonal to all y ,  then a = 0.) Moreover, the parameter vectors on the face 
are precisely the parameters of the F", which by (32)  are given by 

To show (2), please note that since the face is spanned by {q  + iCy=l u,y' 1 u E B"} ,  
d + 1 is equal to the affine rank of {Cyl u,y' 1 u E B " }  and d is equal to its linear 
rank (since the y '  are orthogonal to a ) .  Let the rows of Y be y ' ,  . . ., y"  and the 
rows of U the 2" m-vectors u. Then d is the rank of UY. Since the rank of CJ is m, 
there exists a non-singular 2" by 2" matrix R such that U = R (i), where I is the m 
by m identity matrix. Hence 

rank ( U Y )  = rank ((:)Y) = rank (:) = rank ( Y ) .  17 

Corollary 5. 
threshold functions F on B N. A n  inequality a . y 
a ' w s a . p supports Q" only at w = p. 

The vertices of Q " are precisely the parameter vectors p of the self dual 
0 is a separator of F i f  and only i f  

Proof. If d = 0 then m = 0, so that a is not orthogonal to any y E B". Therefore 
a . y s 0 is a separator of a self dual threshold function F, and the parameter vector 
of F is just q, which is also the unique point on the face. Conversely, let F be a self 
dual threshold function. Then F has a separator of the form a . y S 0.  Any such a is 
not orthogonal to any y E B", and hence m = 0 and a . w G a * q is a 0- 
dimensional face of Q", i.e. a vertex. The vertex is q, which is also the parameter 
vector of F. 0 

Corollary 6. A n  edge of Q" contains exactly two parameter vectors, namely its 
extreme points. The difference between them is a vector y ' E B", and the self dual 
threshold functions labelled by the two parameter vectors differ only at & y '. 

Proof. Let a . w c b be an edge of Q". Then the rank of Y, the matrix of 
non-complementary vectors of B" orthogonal to a, is 1, so that Y has only one row 
y ' .  The edge then contains at most two distinct parameter vectors q + i y '  and 
q - f y  I ,  hence it contains exactly these parameter vectors. The self dual Boolean 
functions whose parameter vectors lie on the edge are the two functions G' and 
G(-'), which differ only at 2 y ', The parameter vectors are vertices of Q N ,  hence G' 
and G'-" are threshold functions and are uniquely determined by their para- 
meters. c3 

Theorem 5. - r < 0 be a separator of the self dual threshold function 
labelled by p. Zf q E Q", q - p = y * E B" and a . y * = - r, then q is  a vertex of Q" 
adjacent to p and for every r /n  < t < r / ( n  - 2 )  (where n = I N I 3 2),  ( a  + ty *) * y 0 
is a separator of the self dual threshold function labelled by q. 

Let a . y 
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Proof. Let p label the self dual threshold function F. Let p ' ,  . . ., p k  be all the 
vertices of Q" adjacent to p and let them label the self dual threshold functions 
F ' ,  . . ., Fk,  respectively. By Corollary 6 each F' differs from F only at a pair of 
complementary points y ' ,  - y ' ,  and by choosing y '  so that F ( y ' )  = - 1 we have 
p '  = p - y ' F ( y ' )  = p + y ' ,  Therefore a . p '  G a . p - r. Since q € Q", y *  = q - p is 
a non-negative combination of the extreme directions y '  = p '  - p,  i.e. there exist 
non-negative numbers c l , .  . ., ck such that y * = x:=l c,y'. If c, > 1, then a . y * G 

- r c,"_, c, < - r, contradicting our assumption. Therefore x:=, c, s 1.  This means 
that the t 1 vector y * is a convex combination of the * 1 vectors y ', . . ., y Ir and the 
origin. But the t 1 vectors are the extreme points of the hypercube 1 y,  I G 1 and the 
origin is an internal point. It follows that one of the c, must be 1 and y * is one of the 
y ' ,  say y ' ,  so that q = p ' .  To prove that ( a  + ty*)  1 y S 0 is a separator of F' we use 
the fact that F' differs from F only at * y * .  At the point y = y *  one has 
( a + t y * ) . y  = ( a + t y * ) - y * =  - r + t n > O .  At any other point y # y *  such that 
F ( y )  = - 1 one has a . y s - r and therefore ( a  + ty *) * y G - r + t ( n  - 2 )  S 0. At 
the complementary points - y we have of course the opposite inequalities. Thus 
the self dual threshold function with the separator (a + ty *) * y S 0 is identical 
with F' .  

We are now ready to characterize those vertices of Q" that label self dual 
threshold functions with self facet separators. 

Theorem 6. 
vector p. If F has a self facet separator of the form 

Let F be a self dual threshold function on B N  with Chow parameter 

then there exist I N 1 afinely independent vertices q ' of Q " adjacent to p such that 

a . q I = a ' p - r. (34) 

Conversely, if F has a separator (33) with r > 0 ,  and i f  (34) is satisfied by N afinely 
independent Chow parameter vectors q' ,  then (33) is a self facet and the q' are vertices 
of Q" adjacent to p.  

Proof. Assume that (33) is a self facet separator of F. Then r > 0 and there exist 
IN( linearly independent vectors y '  E B" satisfying (33) with equality. The self 
dual Boolean function that differs from F only at k y '  has a parameter vector 
q' = p - y ' F ( y ' )  = p + y ' .  These q' satisfy (34). By Theorem 5 they are vertices of 
Q" adjacent to p .  They are affinely independent because the y '  are (if F is 
monotone, then p 2 0  and the q '  are in fact linearly independent). 

Conversely, assume that r > 0, (33) is a separator of F and there exist I N 1 affinely 
independent parameter vectors q ' satisfying (34). Then by an earlier remark, for 
each i there exists a non-empty set S '  B N  of points y such that F ( y ) =  - 1 and 
cyE~,y = q' - p .  By (33) and (34) we then have 
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This shows that S '  is a singleton {y'}, and q' = p + y' .  By (34) the y '  satisfy (33) 
with equality and they are affinely independent because the 4' are. By Theorem 5 
the 4 '  are vertices of Q" adjacent to p. 

Example. Consider the self dual threshold function having the self facet separator 
a * y S - 1 with a = (3,3,2,2,2,1). Its Chow parameter vector is p = (7,7,5,5,5,1) 
and a . p = 73. The points y E B6 satisfying a * y = - 1 are 

(1,1, - 1, - 1, - 1, - 1) (1 point), 
(1, - 1,1,  - 1, - 1, l )  etc. (6 points), 
( -  1, - 1,1,1,1,  - 1) (1 point). 

These 8 points are the rows of a matrix with rank 6. Adding each of them t o  p, we 
get the following parameter vectors: 

(8,8,4,4,4,0) (1 vector), 
(8,6,6,4,4,2) etc. (6 vectors), 
(6,6,6,6,6,0) (1 vector). 

These 8 vectors q satisfy a . 4 = 72 and are the rows of a matrix with rank 6. By 
Theorem 5 they are vertices of Q6 adjacent to p, hence parameter vectors of self 
dual threshold funtions. Indeed they label the functions with separators b * y - 1, 
where b is, respectively, 

(2,2,1,1,1,0) (1 function), 
(4,3,3,2,2,1) etc. (6 functions), 
(1,1,1,1, LO) (1 function). 
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Recent work has shown how to  use vertex generation methods to  solve linear complementarity 
problems and cardinality constrained linear programs. These problems can be characterized as  
linear programs with additional logical constraints. These logical constraints can be  incorporated 
into Chernikova’s vertex generating algorithm in a natural and straightforward fashion. This 
study examines the extension of this technique to  other linear programs with logical constraints, 
and discusses its use as  a solution procedure for the 0-1 integer programming problem. 

We wish to consider the convex polyhedral set F = {x I Ax S b, x 2 0}, where A 
and 6 are given real matrices of order rn x n and m x 1, respectively, and x is an 
n x 1 vector of real variables. Introducing slack variables s, we may imbed F into a 
higher dimensional space as 

We shall be interested in the sets of vertices of F and F’. Since a natural and 
obvious correspondence exists between the vertices of these two polyhedra (and 
indeed between all of the points in these polyhedra) we shall henceforth refer to 
both of these sets as F. 

There are many problems in mathematical programming whose feasible region is 
a polyhedron F, and whose optimal solution is a vertex of F. In theory, any such 
problem can be solved by determining all the vertices of F and then choosing the 
best of this finite set. However, since the number of vertices of F grows 
exponentially in m and n, such a procedure is not practical except for small 
problems. 

Problems such as the cardinality constrained linear program [lo, 121 (see also 
[3,7]  where it is called the generalized lattice point problem) and the linear 
complementarity problem have optimal solutions which are vertices of F and which 
satisfy additional conditions which we refer to as “logical constraints.” 

Let Ll be a subset of {1,2,. . ., m + n} for 1 = 1,. . ., k.  Associated with each L, is 
an integer qr s I L, I. Let y be any point of F and let y ’ denote that subvector of y 
containing those components of y with indices in Ll. Let I w 1’ denote the number of 
positive components of an arbitrary vector w. Then the logical constraints are 

457 
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l y ' ( + G q e  1 = 1,2 , . . . ,  k .  

(We do  not assume that the sets LI are disjoint, nor that they exhaust 
{1,2, .  . ., m + n}. These assumptions hold in some problems of interest, e.g., the 
linear complementarity problem, but the procedure we shall present is valid 
whether they hold or not.) It is easy to show that if a linear program with logical 
constraints is feasible and bounded, then at least one vertex of F will be optimal. 

The body of this paper shows how to modify Chernikova's vertex generating 
algorithm [4,5] to generate only that subset of the vertices of F which also satisfy 
the logical constraints. To the extent that this is a small subset, the procedure will 
be practical; if the subset is large, it will not be useful. In the cardinality constrained 
linear program, there is only one logical constraint, with LI = {m + 1, . . ., m + n}. If 
q ,  = 1, there are at most 2n  vertices satisfying the logical constraint; but if 
q1 2 min {m, n}, then all vertices of F satisfy the logical constraint. In general, the 
strength of the logical constraints (in terms of the number of vertices of F which 
they exclude) in particular problems is a topic that, t o  the best of our knowledge, 
has not been studied. 

Rather than concentrating on the logically feasible vertices of F, it is possible to 
approach these problems by studying the convex hull of the feasible points of a 
linear program with logical constraints. In reference [2], Balas has given a 
characterization of the convex hull. Other discussions of linear programs with 
logical constraints can be found in references [l, 3,6-8,lO-121. 

Section 1 presents Chernikova's algorithm. Since this material is available 
elsewhere, it is included here only to  make the present paper self-contained. 
Section 2 shows how to modify that algorithm to incorporate the logical constraints; 
it is an extension and generalization of work found in references [9, 10, 111. Section 
2 also shows how to incorporate the objective function of the problem, if one exists, 
so that one generates only vertices better than those previously generated. 

In Section 3 we discuss the geometry of the procedure and contrast our work with 
the cutting-plane methods of Balas [ I ,  21 and Glover et al. [7, 81. This leads to 
Section 4, which investigates the application of the technique to the 0-1 integer 
program. Finally, in Section 5 we briefly discuss further modification of the 
algorithm to incorporate logical constraints of the form 1 y ' I+ = qr and 1 y ' I+ 3 ql. 

1. Chernikova's algorithm 

Chernikova has given an algorithm [4, 51 which calculates all the edges of a 
convex polyhedral cone in the nonnegative orthant with vertex at the origin. This 
algorithm can also be used to find all the vertices of F by virtue of the following 
easily proved lemma: 

Lemma 1. 2 is a vertex of F = {x I AX b, x z= 01 if and only if 
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is an edge of the cone 

Here 5 and h are scalar variables. 

W e  shall accordingly concern ourselves with finding all the edges of sets of the 
form C = {w I D w  3 0 ,  w 20}, where D is p x q. 

Consider the matrix (7) where I is a q x q identity matrix. Chernikova’s 
algorithm gives a series of transformations of this matrix which generates all the 
edges. A t  any stage of the process we denote the old matrix by Y = (3, and the new 
matrix being generated is denoted y. The matrices U and L will always have p and 
q rows, respectively; however, they will in general not have q columns. They will 
have more than q columns in most cases, but if C lies in some subspace of Rq they 
may have fewer than q columns. For w E Rq, we use the symbol ( w )  to denote the 
ray {Aw, A 2 0). 

The algorithm is as follows: 
0.0. If any row of U has all components negative, then w = 0 is the only point 

0.1. If all the elements of U are nonnegative, then the columns of L are the 

1. Choose the first row of U, say row r, with at least one negative element. 
2. Let R = { j  1 y,, 2 0). Let v = 1 R 1, i.e., the number of elements of R. Then the 

first v columns of the new matrix, y, are all the y ,  for j E R, where y ,  denotes the 
jth column of Y. 

2’. If Y has only two columns and y , I y , z  < 0, adjoin the column 1 yr21 y l  + 1 y r l  1 y 2  
to  the 

3. Let S = {(s, t )  I y,$y,, < 0, s < t}, i.e., the set of all (unordered) pairs of columns 
of Y whose elements in row r have opposite signs. Let lo be the index set of all 
nonnegative rows of Y. For each (s,  t )  E S,  find all i E 1, such that Y , ~  = Y , ~  = 0. Call 
this set I,(s,  t). W e  now use some of the elements of S t o  create additional columns 
for Y: 

(a) If ZI(s, t )  = 0 (the empty set), then y .  and y l  d o  not contribute another 
column to the new matrix. 

(b) If Z,(s, t )  # 0, check t o  see if there is a u not equal t o  either s or  f, such that 
ynu = 0 for all i E Il(s, t). If such a u exists, then y .  and y ,  do not contribute 
another column t o  the new matrix. If n o  such u exists, then choose 
a I , a 2 > 0  to satisfy ( ~ ~ y , ~  + a z y n  = 0. (One such choice is a ,  = ( y ,  1, 
az = I y,. I.) Adjoin the column a , y ,  + a z y ,  t o  the new matrix. 

4. When all pairs in S have been examined, and the additional columns (if any) 

in C. 

edges of C, i.e., the ray ( I , )  is an edge of C ;  here 1, denotes the jth column of L. 

matrix. Go t o  step 4. 
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have been added, we say that row r has been "processed." Now let Y denote the  
matrix t produced in processing row r, and return to step 0.0. 

The following remarks about the algorithm will be useful later. 
(1) Let C, be the cone defined by C, = { w  I D'w 3 0 ,  w S O } ,  where D'  is 

copposed of the first i rows of D. Let C,, = { w  1 w 3 0) and C, = C. Then 
C(, 2 C, 2 . . * 2 C,, and each cone differs from its predecessor in having one 
additional defining constraint. The algorithm computes the edges of Co, C, ,  . . ., C, 
successively by adding on  those additional defining constraints. Clearly the edges of 
C,, are the unit vectors. After the  algorithm has processed row i, the L matrix has 
all the edges of C, as its columns. 

(2) Let d '  denote the i t h  row of D. Then initially u,, = d ' l ,  and by linearity this 
property is maintained throughout the algorithm. Thus u, is the slack in the 
constraint d'l, 3 0. In particular, if d '  = ( -  a ' ,  b , )  and 1, = ( : I ) ,  then u , ~  is t he  slack in 
the constraint a 'x  s b,, i.e., in the ith constraint of A x  b, when x = x,. 

2. Modifications of Chernikova's algorithm 

From Lemma 1, we see that we want only those edges of C, that have 
Since the defining inequalities of C, are homogeneous, the edges constructed by 
the  algorithm can be normalized after the algorithm terminates. We prefer, 
however, to do the normalization as the algorithm proceeds. Accordingly, 
whenever an edge is created with 6 > 0, it will be normalized to change the 5 value 
to one. 

When applying Chernikova's algorithm to find the edges of C,, let y,  = ( p )  be the 
j th  column of Y. Let y :  be that subvector of y, containing those components of y ,  
whose indices are in the set Ll. Finally, let y : ( r )  be that subvector of y :  whose 
indices are in the set {1,2, .  . ., r - 1 ;  m + 1, m + 2 , .  . ., m + n} .  

Lemma 2. Suppose that in processing row r we produce a column y, with 1 y ; ( r ) l +  > 
qr. Then any column y k  subsequently produced as a linear combination of  y,  and some 
other y ,  will also have I y ( r ) l +  > qr. 

Proof. The algorithm creates new columns by taking strictly positive linear 
combinations of two old columns. Since L 2 0  and the first r - 1 rows of U are 
nonnegative after row r - 1 has been processed, the new y : ( r )  will have at least as 
many positive components as the old y: (r ) .  0 

Lemma 3. Suppose that in processing row r we encounter the following situation: 
yrs < 0 ,  y,, > 0 and there exist k and 1 such that ytk  = 0 for all i E I , ( s ,  t )  and 
Iy:(r) l i>qr.  For any al>O and aZ>O, let ye  = a,y,  + a z y r .  Then lyL(r) lL>qf .  

Proof. Suppose Y,.k is a strictly positive component of yk(r ) .  Since y , k  = O for all 
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i E Il(s, t ) ,  it follows that u e  Il(s, t ) .  Hence at least one of yus, y, ,  is strictly positive, 
and since cy, ,a2>0, we have yua > O .  Thus ~ y ~ ( r ) ~ ~ ~ ~ y ~ ( r ) ~ + > q ~ .  

Theorem 1. 
any I y ( r )  I+ > qr, that column may be discarded from further computation. 

If while processing row r, the algorithm ever produces a column with 

Proof. The theorem follows immediately from Lemmas 2 and 3 by induction. 0 

If we actually had to enumerate all the edges of C,, it would be impractical to use 
the Chernikova algorithm as a procedure to find the vertices of F satisfying the 
logical constraints. To repeat what was said earlier, however, to the extent that the 
logical conditions eliminate many of the vertices of C,, Theorem 1 will permit 
considerable savings of storage and time. Consider the linear complementarity 
problem (LCP) 

A x + s = b  

X , S S O  

X T S  = 0. 

Here A is m X m, and there are m logical constraints with Ll = (I, m + I} and 
qr = 1. If A = I ,  the identity matrix, and b > 0, then F has 2" vertices, all of which 
satisfy the logical constraints. On the other hand, any strictly convex quadratic 
program gives rise to an LCP whose logical constraints are so strong that only a 
single vertex of F satisfies them. 

In the LCP, we are interested only in finding some vertex which satisfies the 
logical constraints. However, in other problems such as the cardinality constrained 
linear program, there is a linear objective function cTx which is to be maximized. 
By introducing the objective function into consideration, we can try to  achieve 
savings besides those indicated by Theorem 1. 

Lemma 4. 
x, is a vertex of F. 

Suppose that we have processed row rand  that y j  3 0,  y m + n + l . ,  = 1 .  Then 

Proof. We know 1, is an edge of C,. Since u, 3 0, 1, satisfies - Ax f bt 3 0, so 
1, E CF. Since 1, is an edge of C, and CF C C,, 1, is also an edge of CF. It now follows 
from Lemma 1 that x, is a vertex of F. 0 

Suppose that after processing row r we have found a vertex of C, with cTx = p. 
We could now add the  constraint cTx 3 p to the constraints Ax b. This is a 
simple matter to do: We can initially include the vector ( c T ,  0) as the zeroth row of 
U. Thus yo, will be the value of cTx,. When we find a vertex with cTx = p, we 
modify the zerofh row to represent the constraint cTx 2 p. To do that we need only 
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change yo, to yo, - py m t n c l , , ,  and now we treat the zeroth row as another constraint 
and can apply the algorithm to it as well. 

Subsequently we may produce a column with yOk > 0, uk 3 0, y,,,,,, k = 1. Hence 
we have found a vertex with cTx = p + YOk > p. We can now change all yo, to 
yo, - Y()kym+n+,.,  and again treat the zeroIh row as a constraint. Continuing in this 
fashion we will only generate vertices at least as good as the  best vertex yet found. 
If we let y be the sum of the amounts which we have subtracted from the  yo,, then 
we can recover the true optimal value of the objective by adding y to the final value 
of yo, in the column representing the optimal vertex. 

It is not at all clear that using the objective function in this manner will make the 
procedure more efficient. Introducing the objective as a cutting plane in this fashion 
does exclude some vertices of F from consideration, but it may also create new 
vertices. It is impossible to tell a priori whether there will be a net increase or  
decrease in the number of vertices. 

3. The geometry of logical constraints 

The polyhedron F = { y  = (:)I Ax + s = b, y 2 0 )  lies in the nonnegative orthant 
in R”’”. Each logical constraint says that of the variables in the set L, at most q, can 
be strictly positive, or alternatively, at least 1 L, I - ql of these variables must be 
equal to 0. Thus each logical constraint excludes all vertices of F except those lying 
on a subset of the faces of the nonnegative orthant in R”’“. Since each constraint 
y, * O  defines a facet of the nonnegative orthant, and since the hyperplane 
{y I y, = 0 )  either supports F or  else has n o  intersection with F, it follows that the 
logical constraints restrict the feasible region of the problem to a union of some of 
the faces of F. Thus the feasible region is a union of convex polyhedra that in 
general is not  itself convex. 

The test given in Theorem 1 determines whether a column to be generated does 
lie on one of the permitted faces of the orthant. In effect the modified Chernikova 
algorithm is simultaneously finding all the vertices of a collection of convex 
polyhedra and automatically excluding from consideration those vertices of F 
which do not lie on the  “logically feasible faces.” The structure of the set of 
logically feasible faces for the 0-1 integer program is discussed further in the next 
section. 

The work of Balas [ l ,  21 and Glover et al. [7,8] discusses classes of problems 
which include our linear programs with logical constraints. Using the objective 
function of the problem, they find the best vertex of F. If that vertex does not satisfy 
the logical conditions, they add an intersection cut (also called a convexity cut) 
derived from the constraints defining F and the logical constraints. This constraint 
is valid on all the logically feasible faces of F. Thus their procedures work with all of 
F and then cut away regions in F that are not logically feasible. These procedures 
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can be characterized as dual algorithms. In contrast, our procedure considers only 
logically feasible vertices of F and can be characterized as a primal algorithm. 

4. The zero-one integer program 

We consider the problem 

max cTx 

subject to Dx s d 

Ix  i e 

x integer, 

where D is a real ( m  - n )  x n matrix, d is a real ( m  - n )  X 1 vector, I is the  n x n 
identity matrix and e is a vector of n ones. Introducing slack variables s and t to the 
constraints Dx < d and Zx s e, respectively, our integer program can be viewed as 
a linear program with logical constraints: 

L , = { m - n + I , m + l } ,  q - 1  f o r f = 1 , 2  ,..., n. 

The initial tableau for the algorithm is 

0 

Lemma 5. 
k = 1 , 2  ,..., n. 

At all stages of the process u,-,+k.,+ h, = l n + , , ,  in each column j ,  for all 

Proof. Clearly the condition holds in the initial tableau. It follows by linearity and 
induction that it holds for all columns subsequently produced. 

The import of the lemma is that there is no need to  carry along those rows of L 
corresponding to the initial identity matrix. They can always be reconstructed from 
the last n rows of U and the final row of L. 

Lemma 6. We may assume without loss of generality 
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(a) d I ,  the first row of D, is strictly positive, 
(b) d , ,  the first component of d, is strictly positive, 
(c) for each component d l j  of the first row of D we haue d , ,  G d ,  

Proof. By interchanging the names of the pair ( x , , t , ) ,  if necessary, we can 
guarantee that the first nonzero component of each column of D is strictly positive. 
(If any column of D contains all zero entries, we may eliminate that variable from 
the problem.) By taking appropriate nonnegative weights for the rows of D, we can 
create a surrogate constraint with strictly positive coefficients. Listing this con- 
straint first gives us part (a). If d ,  s 0, then F is empty or else F = (0). In either case 
the problem is uninteresting, which proves (b). If d , ,  > d , ,  then x, = 0 in any 
feasible solution, and so it may be eliminated from the problem, proving (c). 

Let us initiate the algorithm by processing row 1. Thus column n + 1 is retained, 
and each column y ,  for j = 1,. . ., n is replaced by 

In particular we now have lntl,,  = 1 for all j and hence by Lemma 5, u m--nrk. ,  + 1 = lk, 
for each column j and all k = 1, .  . ., n. Furthermore, it follows from part (c) of 
Lemma 6 that each entry in the last n rows of U either is negative or  else is equal to 
+ 1. (In fact the only negative entries are urn-,+,,, for j = 1 , 2 , .  . ., n, but we shall not 
use this fact.) The remark in the first paragraph of Section 2 now tells us  that all 
subsequent columns produced will be convex combinations of two other columns, 
and so it follows by induction that 

(1) All entries in row n + 1 of L will always be + 1, and hence we may discard 
the entire L matrix. 

(2) All entries in the last n rows of U will always be at most + 1. 
In the statement of Chernikova’s algorithm and its modifications, it was 

convenient to assume that the rows of A were processed sequentially from the top 
down. However, it is clear that they can be processed in any order. The amount of 
work needed on any given problem can vary greatly, depending on the order in 
which the rows are processed, but there seems to be n o  a priori way to determine an 
efficient order. A myopic heuristic is given in [lo]. Since the logical constraints in 
the 0-1 integer program involve the x and t variables, we cannot use the logical 
constraints to eliminate columns until we process some of the last n rows of U. 
Then after we have processed any of those rows, Theorem 1 can be rephrased as 
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Theorem 2. 
0 < u ,,-,, + k . ,  < 1 can be discarded. 

After row rn - n + k of U has been processed, all columns with 

The remaining columns can be divided into two sets, those with u m - - n + k , J  = 0 and 
those with U m - n + k , J  = 1. Theorem 2 now tells us that n o  column in one of these sets 
will ever be combined with any column in the other set. This is perhaps best 
understood in terms of the logically feasible faces discussed in Section 3. Each 
logical constraint in this problem defines a set of two logically feasible faces which 
are parallel to each other, and hence no convex combination of two points, one on 
each face, can itself be a feasible point for the problem. This result is not specific to  
the 0-1 integer program, but will hold in any problem whose logical constraints give 
rise to a set of disjoint logically feasible faces such that each feasible vertex must lie 
on at least one of the faces in the set. 

Once row rn - n + k has been processed, there are now two polyhedra of interest 

F~ = F n {y 1 X k  = I}, F,, = F n {y I xk = 0). 

Furthermore, we may, if we wish, work exclusively on  F1 or Fo, thereby reducing 
the active storage required to implement the procedure. Then the only information 
about FI that will be used in working on Fo will be information about the objective 
function as discussed in Lemma 4 and the subsequent comments. It should also be 
remarked that the splitting of F into Fo and F1 (and an irrelevant part between Fo 
and F,) and the subsequent separate processing of Fo and F,  will result in an 
algorithm that is similar in spirit to standard implicit enumeration algorithms. 

5. Other logical constraints 

We will conclude with a few brief remarks about extending the results of Section 
2 to logical constraints of the forms 1 y '  )+ = q, and 1 y '  /+  3 qr. First of all we note 
that such constraints may give rise to problems which fail to have optimal solutions 
even though they are feasible and bounded. Consider the example 

max y l +  yz  

subject to y l  + y3 = 1 

y 2 + y 4 =  1 

y 3 0  

L1 = {3,4}, q1 = 1. 

If the logical constraint is I y l l +  = 1, then feasible points with objective value 
arbitrarily close to 2 lie on the segments y l  = 1 and y2  = 1, but the point (1,1,0,0) is 
infeasible. A similar result holds if the logical constraint is 1 y l l +  2 1. Clearly vertex 
generation methods will be useless for such problems. 
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Let us then consider the more restricted problem on finding the best vertex of F 
subject to these new logical constraints. Clearly Lemmas 2 and 3 and Theorem 1 
apply as stated for constraints I y ' I+ = ql. However, since columns with I y I+ 3 qr 
can be constructed from columns with I y ' I+ < q1 it does not appear that Theorem 1 
can be strengthened for constraints I y ' I +  = 4,. Similarly we can see that there are no 
results analogous to Theorem 1 for constraints I y I+ 3 ql. For such constraints, the 
best we can do is to use Chernikova's algorithm to'generate all the vertices of F, and 
this is admittedly not particularly efficient. 

References 

[ 11 E. Balas, Intersection cuts from disjunctive constraints, Management Sciences Research Report 
No. 330, Carnegie-Mellon University, February 1974. 

[2] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Management 
Sciences Research ReFort No. 348, Carnegie-Mellon University, July 1974. 

(31 A.V. Cabot, On the generalized lattice point problem and nonlinear programming, Operations 
Res., 23 (1975) 565-571. 

[4] N.V. Chernikova, Algorithm for finding a general formula for the nonnegative solutions of a system 
of linear equations, U.S.S.R. Computational Mathematics and Mathematical Physics, 4 (1964) 

[5] N.V. Chernikova, Algorithm for finding a general formula for the nonnegative solutions of a system 
of linear inequalities, U.S.S.R. Computational Math. and Marh. Phys., S (1965) 22S233. 

[6] C.B. Garcia, On the relationship of the lattice point problem, the complementarity problem, and 
the set representation problem, Technical Report No. 145, Department of Mathematical Sciences, 
Clemson University, August 1973. 

(71 F. Glover and D .  Klingman, The generalized lattice-point problem, Operations Res., 21 (1973) 

[8] F. Glover, D. Klingman and J. Stutz, The disjunctive facet problem: Formulation and solution 

[9] P.G. McKeown and D.S. Rubin, Neighboring vertices on  transportation polytopes, to appear in 

[ 101 D.S. Rubin, Vertex generation and cardinality constrained linear programs, Operations Rex,  23 

[Il l  D.S. Rubin, Vertex generation and linear complementarity problems, Technical Report No. 74-2, 

[ 121 K. Tanahashi and D.  Luenberger, Cardinality-constrained linear programming, Stanford Univer- 

151-158. 

141-155. 

techniques, Operations Res., 22 (1974) 582-601. 

Naval Res. Logistics Quarterly, 22 (1975) 365-374. 

(1975) 555-565. 

Curriculum in Operations Research, University of North Carolina at Chapel Hill, December 1974. 

sity, 1971. 



Annals of Discrete Mathematics 1 (1977) 467-477 
@ North-Holland Publishing Company 

SENSITIVITY ANALYSIS IN INTEGER PROGRAMMING* 

Jeremy F. SHAPIRO 
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, 
U.S.A. 

This paper uses an IP duality Theory recently developed by the authors and others to derive 
sensitivity analysis tests for IP problems. Results are obtained for cost, right hand side and matrix 
coefficient variation. 

1. Introduction 

A major reason for the widespread use of LP models is the existence of simple 
procedures for performing sensitivity analyses. These procedures rely heavily on 
LP duality theory and the interpretation it provides of the simplex method. Recent 
research has provided a finitely convergent IP duality theory which can be used to 
derive similar procedures for IP sensitivity analyses (Bell and Shapiro [3] ;  see also 
Bell [l], Bell and Fisher [2], Fisher and Shapiro [6], Fisher, Northup and Shapiro 
[7], Shapiro [18]). The IP  duality theory is a constructive method for generating a 
sequence of increasingly strong dual problems to a given IP problem terminating 
with a dual producing an optimal solution to  the given IP problem. Preliminary 
computational experience with the IP  dual methods has been promising and is 
reported in [7]. From a practical point of view, however, it may not be possible 
when trying to solve a given IP problem to pursue the constructive procedure as far 
as the IP  dual problem which solves the given problem. The practical solution to  
this difficulty is to imbed the use of IP duality theory in a branch and bound 
approach (see [7]). 

The IP problem we will study is 

u = min cx 

(1) s.t. Ax + Is = b 

x, = O  or 1, s, =0 ,1 ,2  ,..., U,, 

where A is an m x n integer matrix with coefficients a,, and columns a,, b is an 
m x 1 integer vector with components b,, and c is a 1 X n real vector with 
components c,. For future reference, let F = { x p ,  sP};=, denote the set of all feasible 
solutions to (1). 

* Supported in part by the U.S. Army Research Office (Durham) under Contract No. 
DAHC04-73-C-0032. 
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We have chosen to add the slack variables explicitly to (1) because they behave in 
a somewhat unusual manner unlike the behavior of slack variables in LP. Suppose 
for the moment that we relax the integrality constraints in problem (1); that is, we 
allow 0 c x, < 1 and 0 c s, < U,. Let u T denote an optimal dual variable for the ith 
constraint in this LP, and let sT denote an optimal value of the slack. By LP 
complementary slackness, we have u T < 0 implies s t  = 0 and u T > 0 implies 
s T = U,. In the LP relaxation of (I), it is possible that 0 < s T < U, only if u T = 0. On 
the other hand, in IP we may have a non-zero price u T and 0 < s T < U, because the 
discrete nature of the IP problem makes it impossible for scarce resources to be 
exactly consumed. Specific mathematical results about this phenomenon will be 
given in Section 2. 

2. Review of IP duality theory 

A dual problem to (1) is constructed by reformulating it as follows. Let G be any 
finite abelian group with the representation 

G = Z,, @ Za@ - . . @ Zq, 

where the positive integers q, satisfy q1 3 2 ,  q, 1 qltl, i = 1,. . ., r - 1, and Zq, is the 
cyclic group of order q,. Let g denote the order of G;  clearly g = fl:=,q, and we 
enumerate the elements as uo, u,, . . ., ug-' with uo = 0. Let . . ., E, be any 
elements of this group and for any n-vector f, define the element +(f) = c E G by 

The mapping + naturally partitions the space of integer m -vectors into g equival- 
ence classes So, S , ,  . . ., Sg-l where f', f'E SK if and only if cK = +(f') = +cf'). The 
element aK of G is associated with the set SK; that is, 4( f )  = UK for all integer 
m-vectors f E SK. 

It can easily be shown that (1) is equivalent to (has the same feasible region as) 

( 2 4  u = min cx, 

(2b) s.t. Ax + Is = b, 

x, = O  or 1, 
(2d) s, =0 ,1 ,2  ). . .)  u,, 
where a, = +(a , )  and /3 = +(b) .  The group equations (2c) are a system of r 
congruences and they can be viewed as an aggregation of the linear system 
Ax + Is = 6. Hence the equivalence of (1) and (2). For future reference, let Y be 
the set of (x, s) solutions satisfying (2c) and (2d).Note that F C Y. 



Sensitivity analysis in integer programming 469 

The IP  dual problem induced by G is constructed by dualizing with respect to the 
constraints Ax + Is = b. Specifically, for each u define 

L ( u )  = ub + min {(c - uA)x - u s } .  
(X. S)E Y 

( 3 )  

The Langrangean minimization (3) can be perfoqmed in a matter of a few seconds 
or less for g up to 5000; see Glover [lo], Gorry, Northup and Shapiro [ll]. The 
ability to do  this calculation quickly is essential to the efficacy of the IP  dual 
methods. If g is larger than 5000, methods are available to try to circumvent the 
resulting numerical difficulty (Gorry, Shapiro and Wolsey [ 121). However, there is 
no guarantee that these methods will work, and computational experience has 
shown that the best overall strategy is to combine these methods with branch and 
bound. 

Sensitivity analysis on IP problem (1) depends to a large extent on sensitivity 
analysis with respect to the group G and the Langrangean L. Let 

m 

g ( a ;  u )  = min C (c, - ua,)x, + C - UJ, 
, = = I  , = l  

x, = 0 or 1, 

s, = O , l , 2  ) . . . )  u,. 
Then L ( u )  = ub + g ( p ;  u ) .  Moreover, the algorithms in [lo] and [ll] can be used 
to compute g ( a ;  u )  for all (+ E g without a significant increase in computation time. 

It is well known and easily shown that the function L is concave, continuous and 
a lower bound on u. The IP dual problem is to find the greatest lower bound 

w = maxL(u)  
(5)  

s.t. u E R". 

If w = +=, then the IP problem (1) is infeasible. 

summarized by the following: 

satisfy the optimality conditions if 

The desired relation of the IP dual problem (5) to  the primal IP problem (1) is 

Optimality Conditions : The pair of solutions ( x  *, s *) E Y and u * E R" is said to 

(i) L ( u * )  = u * b  + ( c  - u * A ) x *  - u * s  

(ii) Ax* + Is* = 6. 
It can easily be shown that a pair satisfying these conditions is optimal in the 
respective primal and dual problems. For a given IP dual problem, there is no 
guarantee that the optimality conditions can be established, but attention can be 
restricted to optimal dual solutions for which we try to find a complementary 
optimal primal solution. If the dual IP problem cannot be used to solve the primal 
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problem, then u > w and we say there is a duality g a p ;  in this case, a stronger IP 
dual problem is constructed. 

Specifically, solution of the IP problem (1) by dual methods is constructively 
achieved by generating a finite sequence of groups {Gk}f==o, sets {Yk}f=,, and IP 
dual problems analogous to  (5) with maximal objective function value wk. The 
group G" = Z1, Yo = {(x, s) I x, = 0 or 1, s, = 0,1,2, .  . ., U , }  and the corresponding 
IP dual problem can be shown to be the linear programming relaxation of (1). The 
groups here have the property that G k  is a subgroup of G'", implying directly that 
Yk+' C Y k  and therefore that u 3 w * + I  2 w '. Sometimes we will refer to Gk+' as a 
supergroup of Gk.  

The critical step in this approach to  solving the IP problem (1) is that if an optimal 
solution to  the k fh dual does not yield an optimal integer solution, then we are able 
to construct the supergroup Gk+' so that Yk+'S: Yk. Moreover, the construction 
eliminates the infeasible IP solutions (x, s) E Yk which are used in combination by 
the IP dual problem to produce a fractional solution to the optimality conditions. 
Since the set Yo is finite, the process must converge in a finite number of IP dual 
problem constructions to  an IP dual problem yielding an optimal solution to (1) by 
the optimality conditions, or prove that (1) has no feasible solution. Details are 
given in [3].  

The following theorem exposes how this IP duality theory extends the notion of 
complementary slackness to IP. 

Theorem 1. Suppose that (x* ,  s*) E Y and u * E R" satisfy the optimality condi- 
tions. Then 

(i) u f < 0 and s: > 0 implies E, # 0. 
(ii) u f  > O  and s: < U, implies F , # O .  

Proof. Suppose u T < 0 and sT > 0 but E ,  = 0. Recall that (x *, s *) E Y implies that 
c,"=, a , x ?  4 x:,"=, s,sT = ,B and L ( u  *) = u * b  + (c - u * A ) x *  - u*s.  Since E ,  = 0, we 
can reduce the value of s, to 0 and still have a solution in Y. But this new solution in 
thz Lagrangean has a cost of L ( u * )  + u:s* ,*  < L ( u * )  contradicting the optimality 
of (x *, s *). The proof of case (ii) is similar. 0 

The IP dual problem (5) is actually a large scale linear programming problem. Let 
Y = {XI, sf}:=, be an enumeration of Y. The LP formulation of (5) is 

w = max v 

(6) v ub + ( C  - u A ) x '  - U S '  

t = 1,.  . .) T. 

The linear programming dual to (6) is 
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T 

w = min C ( c x ‘ ) ~ , ,  
, = I  

T 

s.t. C ( A x ‘  + Zsf)wI = b, 
, = I  

(7) 

The number of rows T in (6), or  columns in (7), is enormous. The solution methods 
given in Fisher and Shapiro [6] generate columns as needed by ascent algorithms 
for solving (6) and (7) as a primal-dual pair. The columns are generated by solving 
the Lagrangean problem (3). 

The formulation (7) of the IP dual has a convex analysis interpretation. 
Specifically, the feasible region in (7) corresponds to  

{ ( x ,  s ) 1 A x  + Is = b, 0 s x, 1,0 s, s Ut} n [ Y ]  

where the left hand set is the feasible region of the LP  relaxation of the I P  problem 
(1) and “[ 1” denotes convex hull. Thus, in effect, the dual approach approximates 
the convex hull of the set of feasible integer points by the intersection of the LP  
feasible region with the polyhedron [ Y ] .  When the IP dual problem (5) solves the 
IP problem (l), then [ Y ]  has cut away enough of the LP feasible region to  
approximate the convex hull of feasible integer solutions in a neighborhood of an 
optimal IP solution. 

3. Sensitivity analysis of cost coefficients 

Sensitivity analysis of cost coefficients is easier than sensitivity analysis of right 
hand side coefficients because the set F of feasible solutions remains unchanged. As 
described in the previous section, suppose we have constructed an IP dual problem 
for which the optimality conditions are satisfied by some pair (x *, s*) E Y and u *. 

The first question we wish to answer is 

In what range of values can cI vary without changing the value of the zero-one 
variable x1 in the optimal solution ( x * ,  s*)? 

We answer this question by studying the effect of changing c1 on the Lagrangean. 

Theorem 2. Let ( x  *, s *) and u * denote optimal solutions to the primal and dual ZP 
problems, respectively, satisfying the optimality conditions. Suppose the zero-one 
variable x 7 = 0 and we consider varying its cost coefficient c1 to c1 + Acl. Then (x *, s *) 
remains optimal i f  
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(8) 

where g(  . , u *) is defined in (4).  

Acr 2 min (0, g ( p  ; u *) - (cI  - u * a r )  - g ( p  - aI ; u *)}, 

Proof. Clearly, if x T = 0 and (8) indicates that Acl 3 0, or cI increases, then x * 
remains optimal with x T = 0. Thus we need consider only the case when g ( p  ; u *) - 
( c I  - u * a r )  - g ( p  - aI ; u *) < 0. Let g ( a ;  u * 1 x r  = k ; A c r )  denote the minimal cost 
in (4) if we are constrained to set xI = k when the change in the 1‘” cost coefficient is 
Acr. If Acl satisfies (8), then 

(9) g ( P ;  u * 1 xI  = 1; A c l )  = cr + Acr - u *ar  + g ( p  - a I ;  u * 1 xI  = 0; A c r )  

= cr + Acr - u *ar + g ( p  - a I ;  u * 1 xI  = 0; 0) 

2 cI + Acr - u*ar + g ( p  - ar ;  u * )  

g ( P  ; *) 

= g ( p ;  u *  1 X I  = 0;O) 

= g ( p ; u * l x l  = O ; A c r ) ,  

where the first equality follows from the definition of g ( p ;  u * 1 x = 1; A c r ) ,  the 
second equality because the value of Acl is of no consequence if x I  = 0, the first 
inequality because g ( p  - c u r ;  u * )  may or may not be achieved with xI  = 0, the 
second inequality by our assumption that (8) holds, the third equality because 
g ( p ;  u *) = (c - u * A ) x *  - u *s and x: = 0, and the final equality by the same 
reasoning as the second equality. Thus, as long as Acl satisfies (8), it is less costly to 
set xI  = 0 rather than xI  = 1. 0 

On the other hand, marginal analysis when X T  = 1 is not as easy because the 
variable is used in achieving the minimal value g ( p ;  u * ) .  Clearly x *  remains 
optimal if cI is decreased. As cI is increased, xi should eventually be set to zero 
unless it is uniquely required for feasibility. 

Theorem 3. Let (x *, s *) and u * denote optimal solutions to the primal and dual IP 
problems, respectively, satisfying the optimality conditions. Suppose the zero -one 
variable x T = 1 and we consider varying its cost coefficient cI to cr + Acl.  Then (x *, s *) 
is not optimal in the Lagrangean if 

(10) 

where 

Acr > min{c, - u *a, I j E J ( a I )  and x T = 0) - (cr - u * a r )  

W e  assume there is at least one x: = 0 for j E J ( a r )  because otherwise the result is 
meaningless. 
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Proof. Note that we can order the elements jl, j 2 , .  . ., jv in J ( a r )  by increasing cost 
c, - x*a, with respect to u * such that x: = 1, j = 1, .  . ., j", x: = 0, j = ju  + 1,. . ., jv. 
This is because all these variables x, have the same effect in the constraints in (4). 
By assumption, there is an x 7 = 0, and if cf + Ac, - u * a r  > c, - u *a,, then x, = 1 will 
be preferred to xf = 1 in (4). In this case, (x* ,  s*) is no longer optimal in the 
Lagrangean and the optimality conditions are destroyed. 0 

The inequality (10) can be a gross overstatement of when (x* ,  s*) ceases to be 
optimal in the Lagrangean. Systematic solution of g(j3; u *) for increasing values of 
cr is possible by the parametric methods we discuss next. 

A more general question about cost coefficient variation in the IP problem (1) is 
the following 

How does the optimal solution change as the objective function c varies in the 
interval [c', c']? 

Parametric IP analysis of this type has been studied by Nauss [15], but without the 
IP duality theory, and by the author in [21] in the context of multicriterion IP. We 
give some of the relevant results here. The work required to do parametric IP 
analysis is greater than the sensitivity analysis described above which is effectively 
marginal analysis. 

For 8 E [0,1] define the function 

(11) u ( e )  = min((1- e ) c o +  8c1)x, 

Ax + Is = b, 

x, = 0 or 1, 

s, = 0 , 1 , 2  )...) u,. 

It is easy to show that u ( 8 )  is a piecewise linear concave function of 8. The IP dual 
objective function can be used to approximate u ( 8 )  from below. Specifically, 
suppose (11) is solved by the IP  dual at 8 = 0 and we consider increasing it. From 
(7), we have 

i- 

(12) s.t. (Ax' + Ist)wl = b 
' = I  

wt 3 0  

where w ( 8 )  is also a piecewise linear concave function of 8, and w(O)= u(0) 
because we assume an IP dual has been constructed which solves the primal. 
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Without loss of generality, assume (XI, s') is the optimal IP solution for 6 = 0. 
Then, w ,  = 1, wt = 0, t 3 1 is the optimal solution in the LP (12), and we can do 
parametric variation of 8 3 0  to find the maximal value, say 8*, such that 
v(8) = w ( 8 )  for all 6 E [0, @*I.  The difficulty is that the number of columns in (12) 
is enormous. For this purpose, generalized linear programming can be used to 
generate columns as needed for the parametric analysis. Included is the possibility 
that when w ,  = 1, wt = 0, t 3 1, becomes non-optimal, another feasible IP solution 
will become the optimal solution in (12). 

When a sufficiently large 8 is reached such that v(8) - w (8) > 0, then we can use 
the iterative IP dual analysis described in section two to strengthen the dual and 
ultimately eliminate the gap. Numerical excesses may make this impractical. 
However, any IP dual can be used to reduce the work of branch and bound in the 
parametric analysis of the interval [co, c'] being studied. These IP duals give 
stronger lower bounds than the LP and related lower bounds used in [15]. 

4. Sensitivity analysis of right-hand side coefficients 

This is a rich area of research which needs continuing investigation. Nevertheless, 
we can report on some results already obtained. Again we suppose that the IP 
duality theory has yielded an IP dual problem for which the optimality conditions 
hold for (x *, s *) E Y, u * E R"'. As in LP, constraint i is not binding if u T = 0. 
Specifically, it can easily be shown that x *  is optimal in IP(1) with the right hand 
side 6, equal to any of the numbers 

i: a,xT, i: a,xT + 1,. . ., i: a,,xT + u,, 
, = I  ] = I  , = I  

for any row i with u T = 0. The optimal value of the slack variable on such a row is 
b, - Cy= I U,,X 7 .  

To study further the effects of varying b, we define the perturbation function for b 
in a finite set B 

v ( b )  = min cx 

(13) s.t.Ax +Is = b 

x, = 0  or 1 

s , = o , 1 , 2  , . . .)  u, 

Attention is limited to a finite set rather than all integer vectors in R" because a 
finite set is more likely to be the type of interest, and also because it  avoids 
troublesome technical difficulties. For a finite set of integer right hand sides, 
universal upper bounds on the slacks can be found and used. The function v ( b )  is 
poorly behaved, except for the property that b ' a  b implies v(b') c v(b), which 
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makes it difficult to study. Note also that z1 is defined only on the integers and it is 
not differentiable, unlike perturbation functions in nonlinear programming. 

For each right hand side b E B, the finitely convergent duality theory given in [3] 
produces an IP dual problem which solves (13) by establishing the optimality 
conditions. These IP duals are related but specific results about their relationship 
are difficult to obtain. Instead, we consider the IP dual which solves (13) with the 
given right hand side bo,  and investigate its properties with respect to the other 
b E B. 

Let G denote the group used in the construction of the IP dual solving (13) with 
b = bo. This group induces a family of g related dual problems defined on each of 
the g equivalence classes of right hand sides So, S1, . . ,, Sg-l. For b E S, we have 

w,(b) = maxL,(u) 

s.t. u E R", (14) 

where 
L,(u) = ub + g(u;  u) .  

By assumption 

v ( b 0 ) = c x *  = w,o(bo)=L,~(u*),  

where P o  = +(bO) .  The solution of problem (4) for all right hand sides u gives us 
optimal solutions to a number of other IP problems (13). Let ( x ( u ) ,  s(u)) denote 
the optimal solution to  (4) with right hand side u when u = u *. It is easy to  show by 
direct appeal to the optimality conditions that ( x ( u ) ,  s(u)) is optimal in (13) with 

b , = ~ a , , x , ( u ) + s , ( u ) ,  i = l ,  ..., m. 
,=1  

Moreover, for i such that uT = 0, x ( u )  and the corresponding slack values are 
optimal in (13) with 

Thus, we may immediately have optimal solutions to some of the IP problems (13) 
for b E B. In addition, x ( u )  is a feasible but possibly non-optimal solution in (13) 
with b E B if Ax(u)G b and 

" 
b, - C u,,x,(u)E{O, 1,. . ., V,> 

/ = I  

Note, however, that not all constraints of an IP problem can be allowed to vary 
parametrically. For example, a constraint of the form x I 1  + x 1 2  1 indicating that 
project 1 can be started in period 1 or period 2, but not both, makes no  sense when 
extended to the constraint X ~ ~ + X , ~ G ~ .  Some constraints of this type can be 
included in the Lagrangean calculation. 

Marsten and Morin [14] have devised schemes for parametric analysis of the right 
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hand side of IP problems. The duality results here can be integrated with their 
approach to provide tighter lower bounds for the branch and bound procedure. 
They consider b to be a real vector and observe jumps in the function u ( b ) .  The 
selection of integer data for A and b in effect limits attention to the points where 
u ( b )  might change value. 

5. Sensitivity analysis of matrix coefficients 

This analysis is similar to the cost coefficient analysis since the dual approach is to 
convert constraints to costs. The question we address is: 

In what range of values can a coefficient aZf vary without changing the value of 
the zero-one variables xf in the optimal solution (x *, s *)? 

As before, the answer to this question is easier if x: = 0. 

Theorem 4. Let (x *, s *) and u * denote optimal solutions to the primal and dual IP 
problems, respectively, satisfying the optimality conditions. Suppose the zero -one 
variable x ?  = 0 and we consider varying the coefficient a,l to atf + Aa,, where Aa,, is 
integer. Then x *  remains optimal i f  Aa,f satisfies 

(15) 

There is no restriction on Aa,, if u T = 0. 

- u:Aa,, ~min{0,g( /3 ;u*) - (c l  - u*af)-g( /3  - af - A a , l s , ; u * ) } .  

Proof. The proof is identical to the proof of Theorem 2 .  The change Aa,, causes the 
change - u TAa,, in the cost coefficient analogous to the change A n  in Theorem 2, 
and the group identity of af is changed to a, +Aa,l.s,. 0 

A result similar to Theorem 3 for the case when x: = 1 can be obtained. We omit 
further details. A more general type of IP matrix coefficient variation is the 
problem of IP column generation. Such a problem would arise, for example, if there 
were a subproblem to be solved whose solution provided a candidate column a 
with cost coefficient c to be added to IP(1). A construction to do this using the IP 
duality theory appears possible but will not be developed here. 

6. Conclusions 

We have presented some results for performing IP sensitivity analyses using IP 
duality theory. More research into these methods is needed, particularly a more 
extensive study of the family of IP dual problems which result as the right hand side 
in (1) is varied. Computational experience with these methods, in conjunction with 
branch and bound, is crucial and will suggest important areas of research. We 
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mention that the work of Burdet and Johnson [5] appears to provide an analytic 
formalism for combining duality and branch and bound. Finally, the IP duality 
theory has been extended to mixed IP in [20] indicating that the results here cpn be 
readily extended to sensitivity analysis for mixed IP. 
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We propose here a LIFO implicit enumeration search algorithm for the symmetric traveling 
salesman problem which uses the 1-tree relaxation of Held and Karp. The proposed algorithm 
has significantly smaller memory requirements than Held and Karp’s branch-and-bound al- 
gorithm. Computational experience with this algorithm and an improved version of Held and 
Karp’s algorithm is reported and on the basis of the sample it can be  stated that the proposed 
algorithm is faster and generates many fewer subproblems than Held and Karp’s algorithm. 

1. Introduction 

In two excellent papers, [lo] and [ll], Held and Karp investigated the relation- 
ship between the symmetric traveling salesman problem and the minimum span- 
ning tree problem. They used this relationship to determine a lower bound on the 
length of a minimal tour and in [ I l l  developed an efficient ascent method for 
improving this lower bound. They incorporated this method in a branch-and-bound 
algorithm for the solution of the symmetric traveling salesman problem and 
reported exceptionally good computational experience with this algorithm. In a 
subsequent paper [ 121 Held, Wolfe and Crowder reported additional computa- 
tional experience with a refinement of the above ascent method used in Held and 
Karp’s branch-and-bound algorithm, verifying the effectiveness of the method in 
obtaining a near-maximal lower bound (of this type) on the minimal tour length. It 
is worth noting that Cristofides [2] independently considered an ascent method for 
the problem of finding a shortest Hamiltonian chain. 

A major disadvantage of Held and Karp’s (breadth-first) branch-and-bound 
algorithm (and of other branch-and-bound algorithms) is the creation of a list (of 
unpredictable length) of subproblems for each of which certain information must be 

* This report was prepared as part of the activities of the Management Sciences Research Group, 
Carnegie-Mellon University, under Contract N00014-75-C-0621 N R  047-048 with the U.S. Office of 
Naval Research. 
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kept. The memory requirements of such large lists severely limit the sizes of 
problems that can be solved using only the high speed memory of a computer. 

We propose here a LIFO (depth first) implicit enumeration algorithm [ l ,  5 ,  17, 
231 for the solution of the symmetric traveling salesman problem which does not 
suffer from this memory disadvantage and which, on the basis of some limited 
computational experience, performs better than an improved version of Held and 
Karp’s branch-and-bound algorithm. 

2. Terminology and review 

Let G be a complete undirected graph with node set N = {1,2,. . ., n } .  A cycle C 
in G is a connected subgraph of G in which each node is met by exactly two edges. 
If (N , ,  N z )  is a nontrivial partition of N, then the nonempty set of edges ( i ,  j ) ,  
i E N1, j E N2, of G is called a cutset in G. A spanning tree T in G is a connected 
subgraph of G with node set N which contains no  cycles. The edges of G in T are 
called branches of T while all other edges of G are called chords of T. The 
fundamental cycle of a chord c is the set of edges in the unique cycle in G formed 
by c and a subset of the branches. The fundamental cutset of a branch b is the set of 
edges in the cutset on the partition defined by the two connected subgraphs of G 
which are formed when b is removed from T. 

Suppose T,  and Tz are two spanning trees in G such that exactly one branch b, of 
TI is a chord of T2 (and exactly one chord co of T1 is a branch of T2). For any branch 
b of T, let D i ( b )  be its fundamental cutset and for any chord c of T, let C r ( c )  be its 
fundamental cycle, i = 1 or  2. The following theorem, which is also a consequence 
of Proposition 2 in [24], relates the fundamental cycles and cutsets of TI  and T,. 

Theorem 1. Let A denote the symmetric difference of two sets. Then we have: 
(i) Cz(bo)  = Cl(co) and D2(co) = Dl(bo);  

(ii) i f  c #  co is a chord of T,, it is also a chord of Tz and i f  boE  C,(c),  then 

(iii) i f  b f  bo is a branch of T I ,  it is also a branch of Tz and i f  c o g  D , ( b ) ,  then 
G ( c )  = C,(c),  else G ( c )  = Cl(c)AC,(co);  

D z ( b )  = D l ( b ) ,  else D 2 ( b )  = D,(b )ADl (bo) .  

A proof of this theorem can easily be constructed by drawing two trees satisfying 
the hypothesis of the theorem. 

Assume each edge ( i ,  j ) ,  i E N, j E N, of G has an associated length c,,. For any 
subset S of edges of G, the total length equals & i , , ) E S ~ , , .  The minimal spanning tree 
problem is that of finding a spanning tree T of G with minimum total length of the 
set of edges in T. Several methods for solving this problem have been proposed (see 
[3, 16, 19, 21, 241). According to the computational experience reported in [15], the 
most efficient of these in the case of a complete graph is the algorithm of Prim and 
Dijkstra. 
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The following are well-known necessary and sufficient conditions for a minimal 

NSl.  A spanning tree T is minimal if and only if every branch of T is at least as 

NS2. A spanning tree T is minimal if and only if every chord of T is at least as 

spanning tree ([3a, p. 1751 and [24]). 

short as any chord in its fundamental cutset. 

long as any branch in its fundamental cycle. 

Part (ii) of Theorem 2 also appears in [24]. 

Theorem 2. 
(i) If the length of chord co of T I  is made arbitrarily small in order to force c,, into 

the minimal spanning tree, a new minimal spanning tree T2 can be obtained from T ,  
by exchanging co and a longest branch bo in its fundamental cycle. 

(ii) I f  the length of a branch bo of Tz is made arbitrarily large in order to force b, out 
of the minimal spanning tree, a new minimal spanning tree T2 can be obtained from 
T I  by exchanging b, und a shortest chord co in its fundamental cutset. In both cases 
the increase in the length of the minimal spanning tree equals the length of c,, minus 
the length of b,,. 

Suppose T ,  is a minimal spanning tree. 

The proof is easy and is omitted. 

Let G'  be the complete subgraph of G with node set N' = N - (1). A 1-tree T in 
G is a spanning subgraph of G containing two edges incident to node 1 as well as 
the edges of a spanning tree T' in G'. The edges of T will also be referred to as 
branches and the edges of G not in T as chords. When we refer to the fundamental 
cutset/cycle of a branch/chord, we implicitly assume that it is an edge of G'. The 
minimal 1-tree problem is then the problem of finding the shortest two edges 
incident to node 1 as well as a minimal spanning tree in G'. 

The traoeling salesman problem is that of finding a minimal tour (i.e., a 1-tree 
with exactly two branches meeting each node in N ) .  As noted by Held and Karp in 
[lo] and Christofides [2], if, for any set of node weights {r,, i E N } ,  we transform the 
edge lengths using the transformation c:,  = c,, + rl + r,, i E N, j E N, the set of 
minimal tours stays the same while the set of minimal 1-trees may change. 

As indicated in  these references, the lengths of these minimal 1-trees can be used 
to construct lower bounds for tour lengths, which are usefull in the branch and 
bound search. 

3. Ascent methods 

In [lo] Held and Karp gave, among others, an ascent method which iteratively 
increases the lower bound L by changing a single node weight at each iteration. In a 
second paper [ 111 Held and Karp proposed a more efficient method for finding a set 
of node weights which yield a good lower bound. They implemented this method 
(in a rather crude way) in another branch-and-bound algorithm (which we will 
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henceforth call the HK-algorithm) for the solution of the symmetric traveling 
salesman problem and obtained excellent computational results. 

In a subsequent paper [12] Held, Wolfe and Crowder reported additional 
computational experience with a refined implementation of Held and Karp’s ascent 
method, verifying the effectiveness of the method in obtaining a near-maximal 
lower bound (of the type considered) on the minimal tourlength. A single iteration 
of this ascent method can be described as follows: 

Given a set of node weights {r,, i E N }  and an upper bound U on the minimal 
tourlength, find a minimal 1-tree T with respect to the transformed edge lengths 
and let L be the lower bound computed from T. If T is a tour the ascent is 
terminated since L is the optimal lower bound. Otherwise let d, be the number of 
branches meeting node i and A be a given positive scalar smaller than or  equal to 2. 
Compute the scalar quantity t = A ( U  - L) /c , , , (d ,  - 2)* and replace the old set of 
node weights with the new set of node weights {T:, i E N }  computed from the 
following formulas: 

7r: = 7r, + t (d,  - 2), i E N. (1) 

Our implementation of the ascent method is based on the strategies used in [I11 
and [12]. It requires input parameters K, z, a, p, T and A, where K is the initial 
number and t the minimum number of ascent iterations, and a, p, T and A are 
tolerances. Given a set of node weights and a upper bound U on the minimal 
tourlength, we initially do K ascent iterations of the type indicated above with the 
given tolerance value of A used in (1). Thereafter we successively halve A, put 
K = maximum ( K / 2 ,  z )  and do another K ascent iterations until the first iteration 
at which at least one of the following statements is true (at which point the ascent is 
terminated): 

(i) the computed f value is less than the tolerance a, 
(ii) the minimal 1-tree is a tour, 

(iii) K has the value z and n o  improvement in the (maximum) lower bound of at 

(iv) U - L s T. 
least /3 occurred in a block of 42 ascent iterations, 

At  termination of an ascent we restore the set of node weights which yielded the 
current lower bound and compute a minimal 1-tree with respect to  the transformed 
edge lengths. The particular values of the tolerances a and p (see (i) and (iii) 
above) that we used in our computational work, are given in the section on 
computational results. The tolerance T used in (iv) should be zero in general but 
under the assumption that the original edge lengths are integers, T can be taken as a 
real number smaller than unity. In our code for the improved version of the 
HK-algorithm (which we henceforth call the HKI-algorithm) we took T = 0.999. 
Furthermore we took the quantity z (which Held, Wolfe and Crowder call a 
“threshold value”) equal to the integer part of n / 8 .  The initial value of A in an 
ascent was taken equal to 2, except where noted otherwise. 

In the HK-algorithm one can distinguish between the use of the ascent method 
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on the original problem (called the initial ascent) and its use on subproblems 
generated subsequently in the branching process (called general ascents). In the 
HK-algorithm the initial and general ascents are done in exactly the same way. In 
the HKI-algorithm we implemented the initial and general ascents slightly differ- 
rently, starting the initial ascent with K = n but any general ascent with K = z. This 
had the effect that a general ascent generally required fewer ascent iterations than 
the initial ascent. Intuitively this is correct if one reasons that if the initial ascent 
finds a good set of node weights, a general ascent should require fewer ascent 
iterations than the initial ascent to find a good set of node weights for the 
subproblem under consideration. 

In the HKI-algorithm we used the same branching strategy as used by Held and 
Karp in their HK-algorithm. We noted that a last-created subproblem in a 
branching was often a subproblem with least lower bound among the subproblems 
currently in the list and hence could automatically be selected as the next 
subproblem to be subjected to the general ascent and subsequent branching. Our 
computational experience showed that the ascent method almost never produced 
an increase in the lower bound for a subproblem of this kind. We eliminated the 
ascent for such a subproblem in our code for HKI and in the three problems we 
used to test for an improvement, we found that the size of the search tree did not 
increase significantly but that the total number of ascent iterations (and hence total 
run time) dropped considerably. For instance in KT57, the 57-node problem of 
Karg and Thompson [14], the number of nodes in the search tree increased from 
378 to 409 while the number of ascent-iterations dropped from 8744 to 4407, cutting 
total run time from 8.25 minutes to 4.50 minutes. 

In any branch-and-bound or implicit enumeration algorithm for the traveling 
salesman problem it is important to have a good upper bound U on the minimal 
tourlength. We used the first phase of the heuristic algorithm of Karg and 
Thompson [14], incorporating most of the improvements given by Raymond [20], 
to find a reasonable value for U. This algorithm starts out with a subtour through a 
given pair of nodes. We took U as the minimum tourlength among the (K + 1) 
tours generated by successively starting out with a subtour through the node pairs 
(1,2), (1,7), . . ., (1,5K + 2) where K is the largest integer smaller than (n - 1)/5. 

4. A LIFO implicit enumeration algorithm 

A major disadvantage of a breadth first branch-and-bound algorithm such as the 
HK-algorithm, is the creation of a list (of unpredictable length) of subproblems for 
each of which certain information must be kept in memory. We propose here a 
LIFO implicit enumeration search algorithm, which we henceforth call the 
IE-algorithm, for the solution of the symmetric traveling salesman problem which 
does not suffer from this disadvantage, using the ideas in [1,5,6, 17,231. A stepwise 
description of this algorithm follows: 
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Step 0 (Initialization). Let the current subproblem be the original problem. 
Compute an upper bound U on the minimal tourlength and go to step 1. 
Step 1 (Calculation of a lower bound for the current subproblem). Apply the ascent 
to the current subproblem to obtain a lower bound L on the minimal tourlength. If 
the ascent terminates because the minimal 1-tree is a tour or  because U - L S T, go 
to step 3. Otherwise go to step 2. 
Step 2 (Partitioning of the current subproblem). Select a node in N’ which is met by 
more than two branches of the current minimal 1-tree. Let S be the set of all 
branches incident to this node which are not fixed in while F is the set of all 
branches incident to this node which are fixed in. Go to (a). 

(a) If I S U F 1 < 2, go to step 1. Otherwise remove the branch e with the longest 
transformed length from the set S and determine the increase E in the lower bound 
if e would be fixed out as well as the chord c which should be exchanged with e to  
obtain a minimal 1-tree for the resulting subproblem (if e is not incident to  node 1 
use Theorem 2(ii), otherwise c is the shortest chord incident to node 1 and E is the 
nonnegative difference in transformed lengths between e and c). If U - L - E > T, 
go to (b). Otherwise go to  (c) since fixing e out would cause the lower bound to 
exceed the upper bound for the resulting subproblem. 

(b) Fix e out of the minimal 1-tree (by changing its length temporarily to a large 
number) and find the new minimal 1-tree by exchanging e and c. If the resulting 
1-tree is a tour, go to step 3. Otherwise go to (a). 

(c) Fix e in the minimal 1-tree (by changing its length temporarily to a small 
number). If either of the end nodes of e is now met by two fixed branches, go to 
step 4. Otherwise set F = F U { e }  and go to (a). 

Step 3 (Backtrack and create new current subproblem). 
(a) If there are no  fixed edges, go to step 5. Otherwise free the last fixed edge e by 

restoring its length to its original value. If e is a branch, go to (b). Otherwise go 

(b) If e is incident to node 1 and longer than the shortest chord c incident to node 
1, exchange e and c to  get a minimal 1-tree. Otherwise, if e is longer than the 
shortest chord c in its fundamental cutset, exchange e and c to get a minimal 1-tree 
(see Theorem 2(ii)). Go to (a). 

(c) Determine the increase E in the lower bound if e would be fixed into the 
minimal 1-tree as well as the branch b which should be exchanged with e to obtain 
a minimal 1-tree (if e is not incident to node 1, use Theorem 2(i), otherwise E equals 
the difference in transformed lengths between e and the longest branch b incident 
to node 1). If E < O ,  exchange e and branch b to get the new minimal 1-tree. If 
U - L > T, go to (d). Otherwise go to (a) since fixing e in would cause the lower 
bound to  exceed the upper bound for the resulting subproblem. 

(d) If either of the endnodes of e is met by two fixed branches, go to (a) since e 
cannot also be fixed in the minimal 1-tree. Otherwise fix e in the minimal 1-tree and 
if e is still a chord, exchange e and the branch b to get the new minimal 1-tree. If 

to (c). 
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either of the endnodes of e is now met by two fixed branches, go to step 4. 
Otherwise go to step 1. 
Step 4 (Create new current subproblem by skipping). 

(a) For each endnode of e met by two fixed branches, consider successively all 
nonfixed edges incident to this node: If the edge e ’  currently under consideration is 
a chord, fix it out. Otherwise determine, in the same way as in step 2(a), the increase 
E in the lower bound if e ’  would be fixed out of the minimal 1-tree. If 
U - L - E T,  go to step 3. Otherwise fix e’  out of the minimal 1-tree and find the 
new minimal 1-tree by exchanging e’  and the appropriate chord. 

Step 5 (Termination). The tour which yielded the current upper bound U solves the 
original traveling salesman problem. 

(b) Go to step 2. 

We represented the 1-tree T in the FORTRAN V implementation of the 
IE-algorithm as the two nodes in N’ connected to node 1 together with the 
underlying spanning of tree T’ in G’ which we represented as an arborescence, 
using the three-index scheme of Johnson [13], augmented by the distance index of 
Srinivasan and Thompson [22]. Fundamental cutsets and cycles were found utilizing 
the ideas in [13] and [22]. The updating of the four-index representation after a 
branch-chord exchange (pivot) was handled by the method given in [7]. For a 
typical 60-node problem the mean times on the UNIVAC 1108 for: 

(i) finding the shortest chord in a fundamental cutset was 15.9 milliseconds, 
(ii) finding the longest branch in a fundamental cycle was 0.4 milliseconds, 

(iii) updating the 1-tree representation after a branch-chord exchange was 
0.8 milliseconds, 

(iv) finding a minimal 1-tree using the Prim-Dijkstra algorithm was 
61.4 milliseconds. 

The ascent method used in the IE-algorithm was exactly the same as that used for 
the HKI-algorithm, as described in the previous section. The parameter T used in 
the description of the IE-algorithm is the same as in the ascent method. We again 
assumed integer data and took T = 0.9 on all test problems except T46, for which 
we took T = 0.999. 

5. Computational results 

The computational comparison of the HKI- and IE-algorithms is based on a 
sample consisting of nineteen problems. Problems DF42 and KT57 are respectively 
42-node and 57-node problems that appear in [14] while HK48 is the 48-node 
problem of [9). Problem T46 is the 46-node Tutte problem given in [ll] (we 
associated a length of zero with each edge of the graph on page 23 of [ l l ]  and a 
length of 1 with every edge of Td6 which does not appear in the graph). The other 
fifteen problems were randomly generated as described below. 
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The input to the random problem generator consists of five parameters, I1 to 15. 
A rectangle is partitioned vertically into I1 blocks of height 14 and each of these 
blocks is partitioned horizontally into I2 blocks of breadth I4 with the result that the 
original rectangle with dimensions I1 x I4 by I2 x I4 is partitioned into I1 X I2 
square blocks with side length 14. Using a random number generator, I3 nodes are 
chosen randomly in each block. The output of the problem generator is the set of 
coordinates for the resulting n = I1 x I2 X I3 nodes generated. The distance mat- 
rices for these random problems were calculated using the Euclidean distance 
measure, rounded down to the next integer. The parameter values used for the 
different problems are given in Table 1.  The actual sets of coordinates for each of 
these problems are available on request from the authors. 

Table 1 

Problems I1 I2 I3 I4 

R481-R485 3 4 4 500 
R600 3 4 5 500 
R601-R605 3 5 4 500 
R606R609 1 1 60 1500 

The computational results of applying the HKI- and IE-algorithms to the 
above-mentioned nineteen problems are given in Table 2. The identification of the 
columns in Table 2 is as follows: 

(1) Mean time in milliseconds to compute one near-optimal tour using the 
Karg-Thompson-Raymond algorithm. 

(2) Mean time in milliseconds for one ascent iteration (see section on  ascent 
met hods). 

(3) Upper bound U on the minimal tourlength found using the 
Karg-Thompson-Raymond algorithm. 

(4) Lower bound L on the minimal tourlength after the initial ascent (the same 
for both algorithms). 

( 5 )  Minimal tourlength L * .  
(6) Number of subproblems generated by the HKI-algorithm which were never 

chosen as a subproblem of least lower bound. 
(7) Number of subproblems chosen as a subproblem of least lower bound by the 

HKI-algorithm which did not lead to branching because of a lower bound 
exceeding the current upper bound U. 

(8) Number of subproblems which lead to branching in the HKI-algorithm. 
(9) Total number of ascent iterations required by the HKI-algorithm. 

(10) Maximum number of subproblems on the storage list during computation 

(11) Total number of subproblems generated by steps 2(b), 2(c) and 3(d) of the 

(12) Total number of skipping steps (step 4) for the IE-algorithm. 

(for the HKI-algorithm). 

IE-algorithm. 



Table 2b 

DF42 
T46 
HK48 
KT57 
R481" 
R482 
R483 
R484 
R485 
R600 
R601" 
R602 
R603" 
R604 
R605" 
R606 
R607 
R608" 
R609 

308 31 
34 

456 39 
624 56 
484 40 
411 40 
422 39 
437 39 
471 39 
748 65 
731 60 
727 60 
737 57 
725 61 
725 60 
701 57 
704 59 
710 57 
699 57 

- 
699 

1 
11511 
13012 
9788 

10680 
10180 
9984 
9844 

10474 
11752 
12011 
12699 
12551 
12278 
8189 
8657 
8905 
9390 

696.9 
0.0 

11443.9 
12907.5 
9547.0 

10661.4 
10174.5 
9917.4 
9827.3 

10359.1 
11588.0 
11777.0 
12573.6 
12482.4 
12161.8 
8070.9 
8514.4 
8805.4 
9084.4 

699 
1 

11461 
12955 
9729 

10680 
10180 
9984 
9844 

10374 
11703 
11777 
12699 
12497 
12262 
8073 
8553 
8903 
9156 

0 
0 

21 
58 

391 
0 
0 
0 
0 

33 
254 

0 
254 
46 

254 
56 

235 
254 
29 

12 
292 

11 
100 
106 
21 
5 

89 
10 
9 

155 
0 

86 
24 
45 
0 

190 
44 

246 

45 
348 
35 

25 1 
567 
49 
33 

221 
42 
34 

545 
0 

423 
97 

379 
41 

594 
295 
582 

401 
2916 
57 1 

4407 
12773 

486 
261 

2059 
288 
389 

12053 
128 

10079 
1514 
8181 
361 

12849 
8734 
6895 

10 
102 
31 

103 
391 

15 
6 

49 
10 
43 

254 
0 

254 
56 

254 
56 

194 
254 
103 

6 
148 

6 
38 

346 
6 
4 

12 
6 

32 
121 

0 
222 

14 
343 

4 
125 
59 
4 

0 
28 
0 
2 

57 
0 
0 
0 
0 
0 

21 
0 

24 
0 

28 
0 

17 
4 
0 

182 
2664 

234 
1439 
9588 

304 
197 
529 
262 

1286 
4064 

128 
7106 
675 

10570 
312 

3715 
2319 
314 

b 5.8 
96.7 

81.6 

12.3 
7.8 

9.4 g 
391.6 S' z 

2. 

21.2 r 

10.5 z 
s g 85.3 

248.5 
7.7 in 

- 
m 

a 

m 

414.6 g 

224.1 : 
41.8 n 

646.2 s 
18.7 2, 

139.3 
18.9 

~ 

a HKI not completed because of insufficient storage. Lower bound for least lower bound subproblem on list at termination was 9628.2, 11653.1, 
12621.1, 12198.2 and 8845.4 for R481, R601, R603, R605 and R608 respectively. 

In T46 we took a = p =0.001. In all other problems we took a =0.01 and p =0.1.  
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(13) Total number of ascent iterations required by the IE-algorithm. 
(14) Total runtime in seconds for the IE-algorithm (exclusive of the time to 

compute an initial upper bound U ) .  
All times reported were obtained on a Univac 1108. 

When comparing the performance of the two algorithms, it is natural to compare 
their respective runtimes. However in both algorithms the major part of runtime is 
spent performing ascent iterations (in the case of the IE-algorithm more than 95% 
of the total runtime). Since the total number of ascent iterations does not depend 
on actual coding or on the particular computer used (as does total runtime), we 
consider this statistic a better measure of comparison than total runtime. As can be 
seen from the entries in columns (9) and (13) of Table 11, the IE-algorithm required 
fewer ascent iterations than the HKI-algorithm for all problems solved by both 
algorithms except R600. Excluding the problems not solved by the HKI-algorithm 
(because of insufficient storage for all the subproblems generated) and problem 
R602 for which a tour was found in the initial ascent, the IE-algorithm required on 
the average seven ascent iterations for every ten ascent iterations required by the 
HKI-algorithm. We d o  report the total runtime for the IE-algorithm in column (14) 
of Table 2. A lower bound on the total runtime for the HKI-algorithm can be 
obtained by multiplying the number of ascent iterations with the mean time for an 
ascent iteration. 

A second important statistic which does not depend on the actual coding or the 
particular computer used, is the total number of subproblems generated during 
computation. In the case of the HKI-algorithm this number is given by the sum of 
the entries in columns (6), (7) and (8) of Table 2 while for the IE-algorithm it is 
given by the entry in column (11) of Table 2 .  As can be seen from Table 2 ,  IE 
generated fewer subproblems than HKI on all problems except R602 including the 
problems that could not be solved by HKI. On the average HKI generated more 
than eight times as many subproblems than IE, excluding the problems not solved 
by HKI and problem R602. 

A third basis of comparison between the two algorithms is the total memory 
requirements. For a 60-node problem the total memory requirements for the 
IE-algorithm was 10K (where K = 1024) memory locations while the HKI- 
algorithm required 7 K  memory locations for everything except the list of subprob- 
lems. An additional 34K main storage locations and 128K external storage 
locations (on a drum) were reserved for this list. This memory allocation for the 
subproblem list may seem excessive but in fact five of the nineteen problems in the 
sample required more list storage than this. 

For every subproblem generated by HKI, the following information must be 
kept: (i) a set of node weights, (ii) the set of edges fixed in the minimal 1-tree, (iii) 
the set of edges fixed ou t  of the minimal 1-tree and (iv) the cardinality of the sets in 
(ii) and (iii). In our implementation of the HKI-algorithm we packed the set of fixed 
edges so that a single memory location could contain information about three fixed 
edges. Therefore the total memory requirements for the information about a 
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subproblem came to  n + n(n - 1)/6 + 2 memory locations for an n-node problem. 
For n = 60 this number equals 652 so that the 162K memory locations reserved for 
the list could accommodate 254 subproblems. 

For five of the nineteen problems in our sample the HKI-algorithm generated 
more subproblems than could be accommodated in the 162K reserved memory 
locations. Since for a given problem, there is n o  reasonable upper bound on the 
number of subproblems to be generated by the HKI-algorithm (or the HK- 
algorithm), these unpredictable memory requirements are a serious disadvantage of 
both the HKI- and HK-algorithms. 

We may also note the reason for the large number of subproblems being 
generated by both algorithms for problems R481, R601, R603, R605 and R608. On 
the basis of Held, Wolfe and Crowder’s results [ 121 we are fairly confident that the 
lower bound L generated in the initial ascent was close to its optimal value. But in 
each of these problems the difference L * - L between the minimal tourlength and 
the lower bound L at the end of the initial ascent was much larger than the 
corresponding difference for the fourteen problems which generated many fewer 
subproblems. We suggest that this difference may therefore be a useful measure of 
problem difficulty. 

An explanation for the fact that the IE-algorithm generates many fewer 
subproblems than the HKI-algorithm lies in the particular way subproblems are 
generated in step 2 of the IE-algorithm. The latter method of subproblem 
generation is much more oriented towards the goal of finding a minimal 1-tree that 
is a tour than is the partitioning method used in the HKI- and HK-algorithms. Our  
partitioning of a subproblem in step 2 of I E  forces a minimal 1-tree towards a tour 
by fixing out “excess” branches of the minimal 1-tree. This involves the same idea 
as is present in the ascent method which can be viewed as a penalty method (see [2]) 
which forces the minimal 1-tree towards a tour by “penalizing” a node met by more 
than two branches (by increasing its node weight) and by “rewarding” a node met 
by only one branch (by decreasing its node weight). 

In [ l l ]  Held and Karp presented the search trees for the problems for which they 
reported computational experience. It is interesting to compare their search trees 
for the problems DF42, HK48 and KT57 with the search trees generated by the 
IE-algorithm for the same problems. These are represented respectively in Figs. 1, 
2, and 3 .  The search trees for DF42 and HK48 correspond to the runs reported in 
Table 2 while the search tree for KT57 presented in Fig. 3 was obtained by starting 
each general ascent with the parameter A set to 1 instead of 2. Note that, unlike 
Held and Karp’s search trees which have some or all of the terminal nodes omitted, 
we show the complete search trees. The node numbers (underlined) in the search 
trees in Figs. 1, 2 and 3 correspond to  the order in which the subproblems 
represented by the nodes were generated. If one views the search tree as a 
downward-directed arborescence with root node 1, the branch leaving a node 
vertically/obliquely represents an edge of G being fixed in/out with the endnodes of 
the edge being fixed given next to the oblique branch. 
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After completing the experiments described above, we obtained the recent 
computational results of Hansen and Krarup [8]. They present an improved version 
of the HK-algorithm and report computational experience on an IBM 360/75 
computer. 

We generated three 15-problem samples of 50,60 and 70 node problems each as 
well as five 80 node problems in the same manner as Hansen and Krarup and solved 
them with the IE-algorithm. Since the Karg-Thompson-Raymond heuristic cannot 



Table 3’ 

n = 50 

Gap Itera- Nodes Time 
tions 

0.00 
0.00 
0.00 
0.00 
1.17 
0.00 
0.00 
0.02 
0.30 
0.41 
0.08 
0.02 
0.16 
0.20 
0.10 

67 
56 

104 
74 

1863 
84 
60 

207 
1114 
65 1 
894 
936 
73 1 
604 
452 

1 2.8 
1 2.4 
2 4.3 
1 3.1 

70 79.5 
1 3.5 
1 2.5 
7 8.6 

39 46.7 
21 27.2 
27 37.2 
27 38.9 
21 30.4 
19 25.2 
15 18.8 

Average Runtime = 22.1 

n = m  

Gap Itera- Nodes Time 
tions 

0.00 418 15 24.9 
0.53 858 23 51.0 
0.00 65 1 3.8 
0.00 76 1 4.5 
0.26 1165 35 70.3 
0.00 80 1 4.7 
0.24 341 9 20.2 
0.51 3211 85 190.9 
0.10 977 25 58.0 
0.00 80 1 4.7 
0.09 820 23 48.9 
0.10 193 5 11.5 
0.00 73 1 4.3 
0.00 61 1 3.6 
0.06 169 3 10.0 

Average Runtime = 34.1 

n = 70 

Gap Itera- Nodes Time 
tions 

0.23 550 11 45.8 
0.63 1417 39 115.7 
0.00 82 1 6.6 
0.00 108 1 8.7 
0.05 219 3 17.6 
0.37 800 22 64.5 
0.10 191 3 15.4 
0.00 66 1 5.3 
0.18 2299 67 185.7 
0.39 2687 63 217.6 
0.43 1129 29 91.2 
0.00 80 1 6.4 
0.71 1104 25 89.7 
0.16 555 15 44.9 
0.00 117 1 9.4 

Average Runtime = 61.6 

n = 8 0  

Gap Itera- Nodes Time 
tions 

0.00 109 1 11.8 
0.31 695 11 75.4 
0.17 2530 59 275.4 
0.00 125 1 13.6 
0.12 361 5 38.9 

Average Runtime = 83.0 

(I = 0.01, p = 0.1, T = 0.9 in all problems. 

P s 
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be expected to provide a good upper bound U, for the type of problem under 
consideration, we took as upper bound 1.01 times the value of the lower bound at 
the end of the initial ascent (if no tour is found, the algorithm has to be run again 
with a higher upper bound). In the initial ascent we computed the stepsize as 
t = A ( 0 . 5 M ) / ~ z , N ( d ,  - 2)* (where M is the maximum lower bound obtained in the 
current ascent) while in a general ascent we took t = A(0.005 M ) / Z I E N ( d ,  - 2)’. All 
ascents were started with the parameter K set equal to 2, the threshold value. 

Our computational experience with the above fifty problems are reported in 
Table 3 where the column headings have the following interpretations: 

Gap: The difference between the optimal tour length and the lower bound 
at the end of the initial ascent as a percentage of the optimal 
tourlength. 

Iterations: The total number of ascent iterations. 
Nodes: The total number of subproblems generated in steps 2(b), 2(c) and 

3(d) of IE. 
Time : The total runtime in seconds on the UNIVAC 1108. 

A 100 node problem was also solved and took 13.6 minutes on the UNIVAC 1108, 
generating 95 nodes and requiring 5014 ascent iterations. 
For the reasons stated above it is extremely difficult to compare the IE-algorithm 
with that of Hansen and Krarup. However, there does exist the possibility of 
improving the IE-algorithm further by making use of efficient sorting techniques 
and Kruskal’s algorithm for finding a minimal spanning tree (see [16]) as done by 
Hansen and Krarup. 

6. Conclusions 

Our computational results indicate that the IE-algorithm is considerably faster 
than the HKI-algorithm. Since the major computational effort in the IE-algorithm 
is spent on Step 1 (the ascent method) in order to find good lower bounds on 
subproblems, an increase in the efficiency of the algorithm can be obtained by 
speeding up the ascent method. We are currently considering techniques for doing 
the latter. 
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In this paper we develop and computationally test three implicit enumeration algorithms for 
solving the asymmetric traveling salesman problem. All three algorithms use the assignment 
problem relaxation of the traveling salesman problem with subtour elimination similar to the 
previous approaches by Eastman, Shapiro and Bellmore and Malone. The present algorithms, 
however, differ from the previous approaches in two important respects: 

(i) lower bounds on the objective function for the descendants of a node in the implicit 
enumeration tree are computed without altering the assignment solution corresponding to the 
parent node - this is accomplished using a result based on “cost operators”, 

(ii) a LIFO (Last In,  First Out) depth first branching strategy is used which considerably 
reduces the storage requirements for the implicit enumeration approach. The three algorithms 
differ from each other in the details of implementing the implicit enumeration approach and in 
terms of the type of constraint used for eliminating subtours. Computational experience with 
randomly generated test problems indicates that the present algorithms are more efficient and can 
solve larger problems compared to (i) previous subtour elimination algorithms and (ii) the 
1-arborescence approach of Held and Karp (as implemented by T.H.C. Smith) for the asymmetric 
traveling salesman problem. Computational experience is reported for up to 180 node problems 
with costs (distances) in the interval (1,1000) and up to 200 node problems with bivalent costs. 

1. Introduction 

Excluding the algorithms of this paper, the state-of-the-art algorithms for the 
asymmetric traveling salesman problem appears to be that of [ll] and more 
recently [l], both of which use the linear assignment problem as a relaxation (with 
subtour elimination) in a branch-and-bound algorithm. In the case of the symmetric 

* This report was prepared as part of the activities of the Management Science Research Group, 
Carnegie-Mellon University, under Contract N00014-75-C-0621 NR 047-048 with the U.S. Office of 
Naval Research. 

A considerably more detailed version of this paper is available (Management Sciences Research 
Report No. 369), and can be obtained by writing to the third author. 
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traveling salesman problem these algorithms as well as another interesting al- 
gorithm of Bellmore and Malone [1] based on the 2-matching relaxation of the 
symmetric traveling salesman problem are completely dominated in efficiency by 
the branch-and-bound algorithm of Held and Karp [lo] (further improved in [S]) 
based on a 1-tree relaxation of the traveling salesman problem. In [13] an implicit 
enumeration algorithm using a LIFO (Last I n  First Out )  depth first branching 
strategy based on Held and Karp’s 1-tree relaxation was introduced and extensive 
computational experience indicates that algorithm to be even more efficient than 
the previous Held-Karp algorithms. 

In [I71 Srinivasan and Thomspon showed how weak lower bounds can be 
computed for the subproblems formed in the Eastman-Shapiro branch-and-bound 
algorithm [5 ,  111. The weak lower bounds are determined by the use of cell cost 
operators [14, 151 which evaluate the effects on the optimal value of the objective 
function of parametrically increasing the cost associated with a cell of the 
assignment problem tableau. Since these bounds are easily computable, it was 
suggested in [I71 that the use of these bounds instead of the bounds obtained by 
resolving or post-optimizing the assignment problem for each subproblem, would 
speed up the Eastman-Shapiro algorithm considerably. In this paper we propose 
and implement a straightforward LIFO implicit enumeration version of the 
Eastman-Shapiro algorithm as well as two improved LIFO implicit enumeration 
algorithms for the asymmetric traveling salesman problem. In all three of these 
algorithms the weak lower bounds of [I71 are used to guide the tree search. The use 
of weak lower bounds in the branch-and-bound subtour elimination approach is 
explained with an example in [17]. 

We present computational experience with the new algorithms on problems of up 
to 200 nodes. The computational results indicate that the proposed algorithms are 
more efficient than (i) the previous subtour elimination branch-and-bound al- 
gorithms and (ii) a LIFO implicit enumeration algorithm based on the 1- 
arborescence relaxation of the asymmetric traveling salesman problem suggested 
by Held and Karp in [9], recently proposed and tested computationally in [12]. 

2. Subtour elimination using cost operators 

Subtour elimination schemes have been proposed by Dantzig, et al. [3, 41, 
Eastman [5], Shapiro [ I l l ,  and Bellmore and Malone [l]. The latter four authors 
use, as we do, the Assignment Problem (AP) relaxation of the traveling salesman 
problem (TSP) and then eliminate subtours of the resulting A P  by driving the costs 
of the cells in the assignment problem away from their true costs to very large 
positive or very large negative numbers. 

The way we change the costs of the assignment problem is (following [17]) to use 
the operator theory of parametric programming of Srinivasan and Thompson [14, 
151. To describe these let 6 be a nonnegative number and ( p ,  q )  a given cell in the 
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assignment cost matrix C = {cij}. A positive (negative) cell cost operator SC&(SC,) 
transforms the optimum solution of the original AP into an optimum solution of the 
problem AP+(AP-) with all data the same, except 

c ; =  c, + 6;  (c,= c, - 6). 

The details of how to apply these operators are given in [14, 151 for the general case 
of capacitated transportation problems and in [17] for the special case of assign- 
ment problems. Specifically we note that p + ( p - )  denotes the maximum extent to 
which the operator SCL(SC,) can be applied without needing a primal basis 
change. 

Denoting by Z the optimum objective function value for the AP, the quantity 
(Z  + p + )  is a lower bound (called a weak lower bound in [17]) on the objective 
function value of the optimal AP-solution for the subproblem formed by fixing 
( p ,  q )  out. The quantity p +  can therefore be considered as a penalty (see [7]) for 
fixing ( p ,  q )  out. The important thing to note is that the penalty p +  can be computed 
from an assignment solution without changing it any way. Consequently, the 
penalties for the descendants of a node in the implicit enumeration approach can be 
efficiently computed without altering the assignment solution for the parent node. 

In the subtour elimination algorithms to be presented next, it becomes necessary 
to “fix out” a basic cell ( p ,  q) ,  i.e., to exclude the assignment ( p ,  4). This can be 
accomplished by applying the operator MC&, where M is a large positive number. 
Similarly a cell ( p , q )  that was previously fixed out can be “freed”, i.e., its cost 
restored to its true value, by applying the negative cell cost operator. A cell can 
likewise be “fixed in” by applying MC,. 

3. New LIFO implicit enumeration algorithms 

The first algorithm (called TSP1) uses the Eastman-Shapiro subtour elimination 
constraints with the modification suggested by Bellmore and Malone [ l ,  p. 3041 and 
is a straightforward adaptation to the TSP of the implicit enumeration algorithm for 
the zero-one integer programming problem. We first give a stepwise description of 
algorithm TSP1: 

Step 0. Initialize the node counter to zero and solve the AP. Initialize ZB = M 
(ZB is the current upper bound on the minimal tour cost) and go to Step 1.  

Step 1. Increase the node counter. If the current AP-solution corresponds to a 
tour, update ZB and go to Step 4. Otherwise find a shortest subtour and determine 
a penalty p +  for each edge in this subtour (if the edge has been fixed in, take 
p+  = M, a large positive number, otherwise compute p+).  Let ( p ,  q )  be any edge in 
this subtour with smallest penalty p +. If Z + p +  z= ZB, go to Step 4 (none of the 
edges in the subtour can be fixed out without Z exceeding ZB). Otherwise go to 
Step 2. 
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Step 2 .  Fix ( p ,  q )  out. If in the process of fixing out, Z + p +  a ZB, go to Step 3. 
Otherwise, after fixing ( p ,  q )  out, push (p ,  q )  on to the stack of fixed edges and go to 
Step 1. 

Step 3 .  Free ( p ,  q) .  If (9, p )  is currently fixed in, go to Step 4. Otherwise fix ( p ,  q )  
in, push ( p , q )  on to the stack of fixed edges and go to Step 1. 

Step 4. If the stack of fixed edges is empty, go to Step 6. If the edge (p ,  q )  on top 
of the stack has been fixed out in Step 2 ,  go to Step 3. Otherwise, go to Step 5. 

Step 5.  Pop a fixed edge from the stack and free it (if it is a fixed in edge, restore 
the value of the corresponding assignment variable to one). Go to Step 4. 

Step 6 .  Stop. The tour corresponding to the current value of ZB is the optimal 
tour. 

In Step 1 of TSPl we select the edge (p ,  q )  to be fixed out as the edge in a shortest 
subtour with the smallest penalty. Selecting a shortest subtour certainly minimizes 
the number of penalty calculations while the heuristic of selecting the edge with the 
smallest penalty is intuitively appealing (but not necessarily the best choice). We 
tested this heuristic against that of selecting the edge with (i) the largest penalty 
among edges in the subtour (excluding fixed in edges) and (ii) the largest associated 
cost, on randomly generated asymmetric TSP’s. The smallest penalty choice 
heuristic turned out to be three times as effective than (i) and (ii) on the average, 
although it did not do uniformly better on all test problems. 

Every pass through Step 1 of algorithm TSPl requires the search for a shortest 
subtour and once an edge ( p ,  q )  in this subtour is selected, the subtour is discarded. 
Later, when backtracking, we fix (p ,  q )  in during Step 3 and go to Step 1 and again 
find a shortest subtour. This subtour is very likely to be the same one we discarded 
earlier and hence there is a waste of effort. An improvement of the algorithm TSPl 
is therefore to save the shortest subtours found in Step 1 and utilize this information 
in later stages of computation. We found the storage requirements to do this were 
not excessive, so that this idea was incorporated into the next algorithm. 

The second algorithm, called TSP2, effectively partitions a subproblem into 
mutually exclusive subproblems as in the scheme of Bellmore and Malone [1, p. 
3041 except that the edges in the subtour to be eliminated are considered in order 
of increasing penalties instead of the order in which they appear in the subtour. 
Whereas the search tree generated by algorithm TSPl has the property that every 
nonterminal node has exactly two descendants, the nonterminal nodes of the search 
tree generated by algorithm TSP2 in general have more than two descendants. We 
now give a stepwise description of Algorithm TSP2. In the description we make use 
of the pointer S which points to the location where the Sth subtour is stored (i.e. at 
any time during the computation S also gives the level in the search tree of the 
current node). 

Step 0. Same as in algorithm TSP1. In addition, set S = 0. 
Step 1. Increase the node counter. If the current AP-solution corresponds to a 

tour, update ZB and go to Step 4. Otherwise increase S, find and store a shortest 
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subtour as the Sth subtour (together with a penalty for each edge in the subtour, 
computed as in Step 1 of algorithm TSP1). Let ( p ,  q )  be any edge in this subtour 
with smallest penalty p+.  If Z + p +  3 ZB, decrease S and go to Step 4 (none of the 
edges in the subtour can be fixed out without Z exceeding Z B ) .  Otherwise go to 
Step 2. 

Step 2. Same as in algorithm TSP1. 
Step 3. Free ( p ,  q). If all edges of the Sth subtour have been considered in Step 2 ,  

decrease S and go to Step 4. Otherwise determine the smallest penalty p +  stored 
with an edge (e,f) in the Sth subtour which has not yet been considered in Step 2 .  If 
Z + p + < Z B ,  fix ( p , q )  in, push ( p , q )  on to the stack of fixed edges, set 
( p ,  q )  = (e, f )  and go to Step 2. Otherwise decrease S and go to Step 4. 

Step 4. Same as in algorithm TSP1. 
Step 5. Same as in algorithm TSP1. 
Step 6. Same as in algorithm TSP1. 

The third algorithm, called algorithm TSP3, effectively partitions a subproblem 
into mutually exclusive subproblems as in the scheme of Garfinkel [6]. A stepwise 
description of the algorithm follows: 

Step 0. Same as in algorithm TSP2. 
Step 1. Increase the node counter. If the current AP-solution corresponds to a 

tour, update ZB and go to Step 6. Otherwise increase S and store a shortest 
subtour as the Sth subtour (together with a penalty for each edge in the subtour, 
computed as in Step 2 of algorithm TSP1). Let ( p ,  q )  be the edge in this subtour with 
smallest penalty p+.  If Z + p +  2 ZB, go to Step 5. Otherwise go to Step 2 .  

Step 2. Fix out all edges ( p ,  k) with k a node in the Sth subtour. If in the process 
of fixing out, Z + pt  2 ZB, go to Step 3. Otherwise, when all these edges have been 
fixed out, go to Step 1. 

Step 3. Free all fixed out (or partially fixed out) edges ( p ,  k )  with k a node in the 
Sth subtour. If all edges in the Sth subtour have been considered in Step 2, go to 
Step 4. Otherwise determine the smallest penalty p+ stored with an edge ( e , f )  in 
the Sth subtour which has not yet been considered in Step 2. If Z + pf  < ZB, fix 
out all edges ( p ,  k )  with k not a node in the Sth subtour, let p = e and go to Step 2. 
Otherwise go to Step 4. 

Step 4. Free all edges fixed out for the Sth subtour and go to Step 5. 
Step 5. Decrease S. If S = 0, go to Step 7. Otherwise go to Step 6. 
Step 6. Let ( p ,  k )  be the last edge fixed out. Go to Step 3 .  
Step 7. Stop. The tour corresponding to the current value of ZB is the optimal 

tour. 

Note that the fixing out of edges in step 3 is completely optional and not required 
for the convergence of the algorithm. If these edges are fixed out, the subproblems 
formed from a given subproblem do not have any tours in common (see [6]). Most 
of these edges will be nonbasic so that the fixing out process involves mostly cost 
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changes. Only a few basis exchanges are needed for any edges that may be basic. 
However, there remains the flexibility of fixing out only selected edges (for 
example, only non-basic edges) or not fixing out of any of these edges. 

4. Computational experience 

Our major computational experience with the proposed algorithms is based on a 
sample of 80 randomly generated asymmetric traveling salesman problems with 
edge costs drawn from a discrete uniform distribution over the interval (1,1000). 
The problem size n varies from 30 to 180 nodes in a stepsize of 10 and five problems 
of each size were generated. All algorithms were coded in FORTRAN V and were 
run using only the core memory (approximately 52,200 words) on the UNIVAC 
1108 computer. 

We report here only our computational experience with algorithms TSP2 and 
TSP3 on these problems since algorithm TSPl generally performed worse than 
either of these algorithms, as could be expected a priori. 

In Table 1 we report, for each problem size, the average runtimes (in seconds) for 
solving the initial assignment problem using the 1971 transportation code of 

Table 1. 

Summary of computational performance of algorithms TSP2 and TSP3 

Average Algorithm TSP2 
time to Average runtime Average 

Problem obtain (including the runtime Average time Average quality 

n solution TSP2 TSP3 regression first tour (% from optimum) 
size assignment solution of the AP) estimated by to obtain of first tour 

30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
1 80 

0.2 
0.4 
0.5 
0.7 
1.1 
1.5 
1.9 
2.1 
2.8 
3.5 
4.0 
5.6 
6.2 
7.0 
8.0 
8.9 

0.9 
2.9 
1.7 
9.3 
8.5 

13.8 
42.0 
53.0 
22.3 
62.9 

110.1 
165.2 
65.3 

108.5 
169.8 
441.4 

1 .o 0.8 
2.8 1.9 
3.4 3.9 

11.4 6.9 
11.8 11.3 
16.1 17.3 
56.8 25.2 
59.6 35.2 
- 47.6 
- 62.8 
- 80.9 
- 102.4 
- 127.6 
- 156.6 
- 189.9 
- 227.7 

0.3 
0.5 
0.6 
1.5 
1.3 
2.3 
3.6 
5.2 
3.7 
5.7 
8.3 

12.9 
9.0 

10.0 
13.2 
23.0 

3.7 
4.0 
0.8 
4.1 
0.5 
1 .0 
2.7 
3.8 
1.3 
1.5 
2.0 
4.2 
1.1 
1.1 
1.3 
3.1 

Note. (1) All averages are computed over 5 problems each. 
(2) All computational times are in seconds on the UNIVAC 1108. 
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Srinivasan and Thompson [16] as well as the average runtime (in seconds including 
the solution of the A P )  for algorithms TSP2 and TSP3. From the results for 
n G 100, it is clear that algorithm TSP2 is more efficient than TSP3. For this reason, 
only algorithm TSP2 was tested on problems with n > 100. We determined that the 
function t ( n )  = 1.55 X x n3.* fits the data with a coefficient of determination 
(R’) of 0.927. The estimated runtimes obtained from this function are also given in 
Table 1. 

It has been suggested that implicit enumeration or branch-and-bound algorithms 
can be used as approximate algorithms by terminating them as soon as a first 
solution is obtained. In order to judge the merit of doing so with algorithm TSP2, 
we also report in Table 1 the average runtime (in seconds) to obtain the first tour as 
well as the quality of the first tour (expressed as the difference between the first tour 
cost and the optimal tour cost as a percentage of the latter). Note that for all n the 
first tour is, on an average, within 5% of the optimum and usually much closer. 

We mentioned above that the fixing out of edges in step 3 of algorithm TSP3 is 
not necessary for the convergence of the algorithm. Algorithm TSP3 was temporar- 
ily modified by eliminating the fixing out of these edges but average runtimes 
increased significantly (the average runtimes for the 70 and 80 node problems were 
respectively 24.3 and 25.5 seconds). Hence it must be concluded that the partition- 
ing scheme introduced by Garfinkel [6] has a practical advantage over the original 
branching scheme of Bellmore and Malone [l]. 

The largest asymmetric TSP’s solved so far appears to be two 80-node problems 
solved by Bellmore and Malone [l] in an average time of 165.4 seconds on an IBM 
360/65. Despite the fact that the IBM 360/65 is somewhat slower (takes about 10 to 
50% longer time) compared to the UNIVAC 1108, the average time of 13.8 seconds 
for TSP2 on the UNIVAC 1108, is still considerably faster than the 
Bellmore-Malone [ 11 computational times. Svestka and Huckfeldt [ 181 solved 
60-node problems on a UNIVAC 1108 in an average time of 80 seconds (vs. 9.3 
seconds for algorithm TSP2 on a UNIVAC 1108). They also estimated the average 
runtime for a 100 node problem as 27 minutes on the UNIVAC 1108 which is 
considerably higher than that required for TSP2. 

The computational performance of algorithm TSP2 was also compared with the 
LIFO implicit enumeration algorithm in [ 121 for the asymmetric traveling salesman 
problem using Held and Karp’s 1-arborescence relaxation. The 1-arborescence 
approach reported in [12] took, on the average, about 7.4 and 87.7 seconds on the 
UNIVAC 1108 for n = 30 and 60 respectively. Comparison of these numbers with 
the results in Table 1 again reveals that TSP2 is computationally more efficient. For 
the symmetric TSP, however, algorithm TSP2 is completely dominated by a LIFO 
implicit enumeration approach with the Held-Karp 1-tree relaxation. See [ 131 for 
details. 

A more detailed breakdown of the computational results are presented in Table 
2 (for TSP2 and TSP3 for n S 100) and in Table 3 (for TSP2 for n > 100). The 
column headings of Tables 2 and 3 have the following interpretations: 
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Table 2. 

Computational characteristics of algorithms TSP2 and TSP3 for n C 100. 

Maximum 
subtours Runtime 

Problem Gap Pivots Nodes Penalties stored (secs.) 
TSP2 TSP3 TSP2 TSP3 

- 
P30-1 
P30-2 

P30-4 
P30-5 

P40-2 

P40-4 
P40-5 
P50-1 

P50-3 
P50-4 
P50-5 
P60-1 
P60-2 
P60-3 
P60-4 
P60-5 
P70- 1 
P70-2 
P7G-3 
P70-4 
P70-5 
P80- 1 
P80-2 
P80-3 

P30-3 

P40-1 

P40-3 

P50-2 

P80-4 
P80-5 
P90- 1 
P90-2 
P90-3 
P90-4 
P90-5 
P100-1 
P100-2 
P100-3 
P l o w  
P100-5 

2.48 187 196 
3.25 174 194 
1.31 402 344 
1.62 175 464 
4.06 250 251 
2.52 127 137 
2.94 352 657 
8.64 1278 1136 
1.13 144 177 
0.24 572 514 
0.20 134 134 
0.37 171 173 
1.65 544 1307 
2.56 257 300 
3.28 340 872 
1.22 524 2935 
2.42 559 1099 
0.77 1611 1029 
1.64 2164 1260 
0.55 266 268 
1.16 449 503 
1.52 1863 2676 
2.20 309 310 
1.79 622 883 
3.05 1000 1397 
0.36 1005 1078 
0.47 819 885 
1.34 1759 2348 
1.23 1357 1597 
1.27 832 994 
0.64 543 570 
0.87 841 831 
1.17 5858 7331 
0.99 1822 4282 
0.84 3596 4867 
1.83 3080 804 
0.72 1382 1741 
0.54 4341 8812 
0.93 603 638 
0.95 3770 3990 

11 
6 

24 
14 
17 
5 

16 
58 
7 

44 
2 
3 

31 
7 

11 
13 
23 
65 
92 
3 
8 

94 
3 

21 
34 
36 
25 
43 
25 
29 

3 
5 

226 
37 

140 
90 
35 

144 
8 

160 

12 
6 

24 
14 
17 
5 

16 
51 
7 

25 
2 
3 

54 
7 

11 
112 
22 
37 
32 
3 
8 

103 
3 

21 
34 
33 
25 
47 
27 
27 

3 
5 

217 
102 
139 

8 
36 

248 
8 

88 

TSP2 

173 
121 
488 
173 
280 
42 

381 
1674 

77 
786 

6 
19 

613 
192 
350 
428 
605 

1611 
3279 

27 
260 

2630 
30 

62 1 
988 

1154 
827 

1934 
1345 
696 
185 
253 

9239 
1835 
4990 
4294 
1530 
6187 

193 
6255 

___ 
TSP3 TSP2 TSP3 TSP2 TSP3 

177 
142 
385 
469 
290 
55 

686 
1459 
115 
627 

6 
21 

1768 
236 
908 

4176 
1147 
1029 
1348 

29 
312 

3715 
31 

878 
1373 
1210 
885 

2636 
1658 
863 
222 
243 

10860 
5608 
6353 
254 

1914 
12877 

226 
5232 

4 
3 

10 
4 
7 
3 
5 

10 
3 

10 
1 
2 
8 
4 
6 
7 
6 

12 
20 
2 
4 

13 
2 
7 
6 

10 
8 
9 
6 
8 
2 
3 

34 
7 

17 
17 
9 

17 
5 

28 

4 
3 
7 
4 
6 
3 
6 

10 
3 
6 
1 
2 

11 
4 
5 

19 
6 
7 
7 
2 
4 

13 
2 
7 
6 
9 
7 
8 
6 
8 
2 
3 

29 
10 
17 
4 

10 
29 

5 
12 

0.7 
0.5 
1.6 
0.7 
1 .o 
0.4 
1.9 
7.7 
0.6 
3.7 
0.4 
0.5 
3.9 
1.5 
2.3 
4.1 
4.9 

12.5 
24.2 

1.0 
3.4 

22.9 
1.1 
6.4 
8.9 

13.3 
9.1 

21.4 
15.6 
9.6 
4.4 
6.3 

108.1 
24.6 
66.4 
61.4 
23.3 
94.3 
4.8 

81.1 

0.7 
0.6 
1.4 
1.3 
1 .0 
0.5 
2.8 
6.9 
0.8 
3.0 
0.3 
0.4 

10.5 
1.6 
4.2 

30.4 
7.0 
8.5 

10.2 
0.9 
4.1 

34.6 
1.1 
7.7 

11.3 
13.2 
10.1 
28.4 
17.6 
11.3 
4.3 
5.9 

129.8 
67.8 
76.0 
5.9 

29.8 
182.4 

4.8 
75.0 
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Table 3. 

Computational characteristics of algorithm TSP2 for n > 100. 

Maximum 
Problem Gap Pivots Nodes Penalties subtours Runtime 

stored (secs.) 

P110-1 
P110-2 
P110-3 
P110-4 
P110-5 
P120-1 
P 120-2 
P 120-3 
P 120-4 
P120-5 
P130-1 
P130-2 
P130-3 
P130-4 
P130-5 
P140-1 
P140-2 
P140-3 
P140-4 
P140-5 
P150-1 
P 150-2 
P150-3 
P150-4 
P150-5 
P160-1 
P 160-2 
P 160-3 

P160-5 
P170-1 
P170-2 
P170-3 
P170-4 
P170-5 
P180-1 
P180-2 
P180-3 
P180-4 

P160-4 

P180-5 

0.98 
0.65 
0.36 
0.83 
0.05 
0.85 
0.45 
0.31 
1.06 
1.17 
0.33 
0.06 
2.16 
0.12 
0.49 
0.65 
0.54 
1.49 
1.21 
0.06 
0.81 
0.64 
0.49 
1.29 
0.86 
0.10 
0.40 
0.85 
0.78 
0.80 
0.06 
0.40 
0.68 
0.55 
0.12 
1.37 
0.56 
0.21 
2.90 
0.38 

2948 
1223 
1141 
1526 
719 

2754 
2044 
1526 
1311 
6046 
7451 
1985 
5968 
3107 
2557 
17.57 
1568 

1 1109 
8772 
2274 
1491 
4139 
1597 
2915 
2788 
3729 
3683 
3563 
3250 
3615 
4133 
3048 
4311 
4196 
8080 

12535 
7115 

13043 
9292 
7202 

55 
25 
22 
14 

2 
74 
61 
31 
20 

149 
184 
44 

139 
77 
40 
26 
17 

319 
236 
52 
20 
84 
14 
61 
73 
79 
66 
54 
79 
74 
77 
40 
66 

110 
199 
271 
189 
299 
179 
135 

3605 
1053 
699 

1162 
9 

3237 
2396 
143 1 
838 

9336 
11910 
1804 
8063 
4264 
2615 
1067 
895 

19591 
13684 
2540 
769 

4902 
680 

2675 
3151 
4923 
4056 
3314 
4363 
4422 
4393 
2854 
4119 
6532 

12577 
19031 
10614 
21300 
13900 
9168 

13 
6 
7 
5 
1 

11 
13 
6 
7 

14 
17 
8 

12 
13 
8 
8 
6 

49 
37 
10 
5 

16 
6 

10 
15 
10 
12 
13 
16 
11 
10 
7 

11 
13 
17 
24 
22 
27 
24 
20 

52.0 
18.9 
14.7 
23.0 
2.9 

62.7 
46.7 
28.9 
16.8 

159.3 
218.4 
40.0 

152.7 
83.2 
56.1 
27.4 
24.4 

407.1 
307.6 
59.3 
23.5 

128.4 
21.9 
74.1 
78.5 

120.5 
105.0 
92.5 

105.8 
118.9 
123.9 
85.9 

135.1 
173.5 
330.4 
574.2 
304.4 
609.2 
430.1 
289.1 
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Problem : 
Gap : 

Pivots : 
Nodes : 

Penalties : 

Maximum : 
Subtours 
Stored 
Runtime : 

The ith problem of size n is identified as Pn-i. 
The difference between the optimal assignment cost and the optimal 
tour cost as a percentage of the optimal tour cost. 
The total number of basis exchanges. 
The number of nodes in the search tree generated (i.e. the final value 
of the node counter used in the algorithm descriptions). 
The total number of times that p+ or p ~ were computed (either as a 
penalty or in the process of fixing out or freeing a cell). 
The maximum number of subtours stored simultaneously (i.e. the 
maximum depth of a node in the search tree generated). 

The total runtime in seconds on the UNIVAC 1108 including the time 
for solving the AP but excluding time for problem generation. 

From Tables 2 and 3 we find that the maximum number of subtours that had to 
be stored €or a problem of size n was always less than n /3  except for a 90 node 
problem which had 34 maximum subtours and a 140 node problem which had 49 
maximum subtours. Thus allowing for a storage of a maximum of about n / 2  
subtours should suffice almost always. 

In [2] Christofides considers asymmetric traveling salesman problems with 
bivalent costs - i.e. each cost c , ,  i #  j ,  can have only one of two values. He  
conjectured that this type of problem would be “difficult” for methods based on 
subtour elimination and hence proposed and tested a graph-theoretical algorithm 
for these special traveling salesman problems. In the testing of his algorithm (on a 
CDC 6600) he made use of six problems ranging in size from 50 to 500 nodes. These 
problems were randomly generated with an average of four costs per row being 
zero and all nonzero costs having the value one (except for diagonal elements which 
were M, as usual). 

For each of the problem sizes 50, 100, 150 and 200 we generated five problems 
(i.e. twenty problems altogether) with zero-one cost matrices (except for diagonal 
elements) which have the same type of distribution of zeros as Christofides’ 
problems. We solved the problems with fewer than 200 nodes with both algorithms 
TSPl and TSP2 and the five 200 node problems with algorithm TSPl only (because 
of core limitations on the UNIVAC 1108 we are limited to 200-node problems for 
algorithm TSPl and 180-node problems for algorithm TSP2). 

The average runtimes (in seconds) for each problem size are reported in Table 4. 
The last column of Table 4 contains the CDC 6600 runtime (in seconds) obtained by 
Christofides on a problem of the given size. Since the CDC 6600 is generally 
regarded as faster (takes about 10-50% less time) compared to the UNIVAC 1108, 
algorithms TSPl and TSP2 can be regarded as more efficient than the algorithm in 
[ 2 ] .  An interesting observation was that for all the problems of this type which were 
solved, the optimal assignment cost equalled the optimal tour cost (i.e., a n  optimal 
AP solution is also optimal to the TSP). 
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Table 4. 

Computational comparisons for bivalent cost asymmetric traveling salesman problems. 

Problem 
size 

n 

Average runtime" 
(UNIVAC 1108 secs.) 

TSPl TSP2 

Christofides' [2] 
runtime 

(CDC 6600 secs.) 

50 
100 
150 
200 

0.5 0.6 
1.4 1.5 
5.4 5.4 
6.4 - 

9.5 
15.9 

12.8 
- 

Average based on 5 problems each. 

5. Conclusion 

We have proposed new algorithms for the asymmetric traveling salesman 
problem and presented extensive computational experience with these algorithms. 
The results show that our algorithms are: 

(i) more efficient than earlier algorithms and 
(ii) capable of solving problems of more than twice the size previously solved. 

In view of the ongoing research on transportation .algorithms and the improvements 
in computer performance, it is likely that the proposed algorithms will be able to 
solve much larger traveling salesman problems in the near future. 
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ON ANTIBLOCKING SETS AND POLYHEDRA 

Jbrgen TIND 
Znsritur for Operationsanalyse, Aarhus Unioersitet, c / o  Maremarisk Znsrirur Ny Munkegade, 
8000 Aarhus C, Denmark. 

This paper first gives an economic interpretation of the duality correspondence for antiblocking 
sets and polyhedra, which at least in the polyhedral case play an important role in the study of 
certain integer programming problems, e.g. covering problems. We then discuss, in view of the 
duality correspondence, how bounds for such problems may be obtained by relatively simple 
network flow methods. 

1. Introduction 

This paper gives an economic interpretation of the duality relationship for a pair 
of antiblocking sets/polyhedra. The interpretation is similar to the one given by 
A.C. Williams for conjugate, convex functions [8]. But here in the antiblocking 
framework they are replaced by antiblocking, concave functions, a concept related 
to polar functions [ 5 ] .  As in [8] we also consider the relationship between a 
manufacturer and a contractor, who wants to compute a minimal compensation for 
taking over the production activities from the manufacturer. For that purpose the 
contractor quotes unit prices on the activities. The manufacturer’s objective is here 
to minimize his average cost per unit produced. By the duality relationship for 
antiblocking sets it is then shown that the selected price mechanism operates in a 
natural way such that it makes no difference for the manufacturer, if he produces by 
himself or not. 

The concept of antiblocking sets is a generalization of antiblocking polyhedra, 
which have been introduced by Fulkerson [l] and which have been shown to be an 
excellent framework for consideration of many combinatorial problems. One of 
these problems is the covering problem. The last part of the paper is devoted to an 
idea for computation of bounds for such problems by means of chains or antichains 
in constructed networks. The idea has previously been used in [4] for the set 
partitioning problem. 

In order to avoid lengthening this paper the relating blocking framework is not 
considered here, even though a similar discussion may be developed for this case, 
too. 

507 
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2. Antiblocking sets 

Let B C R" be a closed, convex set, containing 0. The polar set B * of B is defined 
as 

B* = { X * E R "  I x . X * S  i , v x  E B } .  

B *  is also a closed, convex set that contains 0. 

Minkowski polarity correspondence (see e.g. [5, section 141). 

B C R" of B with respect to D as follows: 

Additionally we have that B **  = B, i.e. B is again the polar set of B *. This is the 

Let also D C R" be a closed convex set containing 0. Define the antiblocking set 

B = B * n o .  

In the following we will investigate conditions under which 

B = B, (2.1) 

i.e., when B is the antiblocking set of B with respect to D. In that case B and B are 
called a pair of antiblocking sets. 

It is seen that with D = R" we are back in the Minkowski polarity. But in more 
general cases it is necessary to impose special conditions on B in order to show the 
polarity correspondence in (2.1). 

Let c l C  denote the closure of C and let convC denote the convex hull of C, 
where C C R". We then have the following theorem which gives a necessary and 
sufficient condition for equation (2.1) to be valid. 

Theorem 2.1. B = B, i f  and only i f  B = cl(conv(B U D * ) )  fl D. 

Proof. B = (B)* n D = (B* n D)* n D. 

(B n D ) * = c l c o n v ( B * U D * )  

E = cl(conv(B** u D * ) )  n D = cl (conv(B u D *)) n D. 

We have for polar sets in general that 

(see [5 ,  Corollary 165.21). Hence with B replaced by B* we get that 

The next theorem gives another set of conditions that are necessary and sufficient 
for (2.1) to be valid. These conditions can especially be applied when B is described 
as the intersection of halfspaces. 

Theorem 2.2.' 
containing 0 such that B = C n D and such that C* C D. 

= B, i f  and only i f  there exists a closed, convex set C C R" 

For polyhedra, Theorem 2.2 is a special case of joint work by Jnlian Arloz, Jack Edmonds and 
Victor Griffin. Personal communication. 
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Proof. = B, and let C = cl (conv (B U D *)). Obviously, 
C is closed, convex and 0 E C. Theorem 2.1 implies that B = C n D. Additionally, 
as C 2 D *, we have that C* 

Now assume that we have a set C such that B = C f l  D and C * C  D. [It is 
remarked that C here in general might be different from the previous set 
cl(conv(B U D*))] .  From theorem 2.1 it is now sufficient to  show that 

Let us first assume that 

D * *  = D. This shows one direction of the theorem. 

B = cl (conv (B u D *)) n D. 

Since B = B fl D C cl(conv(B U D * ) )  fl D it is enough to show the reverse 
inclusion: 

B 2 cl (conv (B u D *)) n D. (2.2) 

By assumption C* c D, which implies that C 2 D*.  Moreover, C 2 B. Since C is 
closed and convex, we obtain that C 2 cl (conv (B U D *)). Hence 
cl(conv(B U D * ) )  fl D c C n D = B, where the last equation follows by assump- 
tion. This shows (2.2), and the theorem is proved. 

The assumption C* C D in the theorem expresses in particular that all support- 
ing hyperplanes for C have their normals contained in D. (The defining linear 
forms are normalised ( =  1)). 

If D = R : = { x E R " I x a O )  and C = { X E R " ) A X S ~ } ,  where A is an m x n  
matrix of nonnegative elements and 1 = (1, .  . ., 1) with m elements, then the 
theorem can be applied on B = C n D. In this case B and B constitute a pair of 
antiblocking polyhedra [l]. 

Theorem 2.2 is an extension of a result in [6]. 
A similar discussion can also be made for blocking sets and polyhedra ([6] 

and [7]) .  

3. A geometrical illustration of antiblocking sets 

The relation between B and its polar set B* can be given in the following 
equivalent way. 

B* = { x *  E R" 1 (x, l ) - ( x * ,  - 1) S 0, VX E B}, 

where (x, 1) and (x* ,  - 1) are vectors in R"+'. 
Hence, if we consider the space R"+' and let B be placed in the hyperplane If+', 

where H" = {(x, 1) I x E R"}, then B * can be obtained as follows. Construct the 
cone P generated by B with vertex at O E  R"" and its polar cone P *  = 

{y * E R"" I y . y * S 0, Vy E P } .  Where B * intersects the hyperplane H-' = 

{(x, - 1) E R"" 1 x E R"} we get an image of B *. B is now by definition obtained as 
the intersection of B* and D. 

Let us look at the situation where D = R: = {x E R2 1 x 3 0). Fig. 1 gives now an 
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H +' 

H -1 

B and are indicated by FRfl 
B*and (B)" are indicated by l=l 

Fig. 1. 

illustration of a set B E R: and its antiblocking set B E RZ iI1 me situation where 
= B. Here B and B are actually polyhedra. 

4. An economic interpretation 

Consider a concave, nonnegative closed function f ( x )  : R? + R,. 
Let sub, f E R" denote the nonnegative subgraph of f ( x ) ,  i.e. 

sub+ f = {(x, y )  E Rnfl I x 3 0,  0 =z y S f ( x ) } .  

Since f(x) is a nonnegative function, it is uniquely determined by sub+f. 

containing 0. 
With the given specifications on f ( x )  it follows that sub, f is a closed, convex set, 

Define the following function f ( x  *) : R: + R,. 



O n  antiblocking sets and polyhedra 511 

f ( x * )  = sup{y * E R 1 - x * x * + y*f(x)  5z 1, v x  5 0). 

Call f ( x  *) the antiblocking function of f .  f ( x  *) becomes also nonnegative, and its 
nonnegative subgraph is given by 

sub+ f = {(x *, y *) E R"" I (X *, y *) . ( -  X, y )  1 

for all (x, y)  E sub+f} fl {(x *, y *) E R"" 1 (x *, Y *) 3 0). 

This shows that f is concave and closed. 
Let T denote the linear transformation T : (x, y)+ ( -  x, y). If D = R?+', it is 

seen that sub+f is obtained by the antiblocking relation with respect to  D as 
follows: 

sub+ f = T(sub+ f). 

Additionally it is assumed that f ( x )  is a non-decreasing function in each 
component, which implies that all supporting hyperplanes for T(sub+ f )  have their 
normals in D. Hence, it is obtained by the same reasoning as in the proof of 
theorem 2.1, that 

T(sub+ f )  = sub+ f. 

This shows that 

7 = f, (4.1) 

i.e., f is the antiblocking function of f .  
We will try to give an economic interpretation of this equataion in the following. 
Note that f ( x * )  can be expressed alternatively as 

- x * . x + 1  f ( x * )  = inf -~ 
x s o  f(x) ' 

where (x * . x + l)/f(x) = 00, if f ( x )  = 0. 

1 by an arbitrary number k > O ,  which means that 
The polarity will not be disturbed by rescaling, i.e. by replacement of the number 

Assume now that a manufacturer produces a product by means of n activities. 
Let the components of the vector x S O  denote the activity level of each activity. 
With a given activity level he produces f ( x )  units of the product. Assume 
additionally that the components of the vector x * > 0 denote market prices that 
equal the cost for use or consumption of one unit of the corresponding activities. 
Hence x . x * is a cost for production of f ( x )  units of the product. In addition to this 
cost, which is linear in x, there is supposed to be a constant cost of size k.  It is 
further supposed that the manufacturer's objective is to minimize the average cost 
per unit produced, i.e., the manufacturer wants to solve the following problem 
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Hence the antiblocking function of f denotes the minimal average cost, given a 
price vector x * .  

Now the manufacturer also considers selling his activities at a given level x 5 0 to 
a contractor, who in return should pay him with an amount of the finished product. 
For that purpose the contractor quotes a unit price x * 2 0 on each activity. Based 
on this price the manufacturer at  least would demand an amount of the finished 
product that equals the estimated production costs, divided by the average cost per 
unit, i.e. 

Hence, the contractor, seeing no reason to  return more than that amount, will get 
the task to find a price x * 2 0 that solves the problem 

- x . x * +  k 
T ( x ) =  inf -- 

x . 2 0  f(x*) 

By (4.1) we get the reasonable result that with such a price the amount of finished 
product does not depend on whether he produces by himself o r  lets the contractor 
do  it for him. 

It is remarked that the idea of antiblocking functions is almost the same as the 
idea of polar functions in [5, section 151. But again, the polarity is considered with 
respect to a given set, here R:. This has the effect that the prices x *  are 
nonnegative, and the function f ( x )  is non-decreasing, which seems reasonable in 
the economic context above. 

5. Bounds for set-covering problems 

From the preceding discussion it is seen that the antiblocking relation itself is 
developed over the continuous space R". But historically the concept came up 
through studies of discrete problems, especially certain integer programming 
problems [l]. 

In the following discussion one of these integer programming problems will be 
examined, in view of the duality for antiblocking polyhedra. An example will be 
given, which illustrates how one may obtain computationally simple bounds for the 
value of those problems. The idea for construction of these bounds has previously 
been developed and used in [4] for the set-partitioning problem, and the following 
material is highly related to this work. 

Here we will look at the following set covering problem: 
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min 1 .  x 

Ax 3 w (5.1) 
x 3 0 and integer, 

where A is an m X n matrix of zeros and ones, w is a nonnegative integer 
m-vector, and 1 = (1, .. ., 1) with n elements. By removal of the integrality 
requirement we get: 

m i n 1 . x  

Ax 2 w (5.2) 

x 3 0 ,  

which, as usual, by standard LP gives a lower bound for the objective function in 
(5.1). But in some cases a bound can be obtained even simpler. For example, if the 
columns in A are incidence vectors for all maximal chains in an oriented network 
without cycles, then the problem can be solved by an algorithm of the network flow 
type. For instance: Connect all endpoints of the chains to  a source and a sink, 
respectively. Place a lower bound of w, (the i th component of w )  on the i th node, 
and compute the minimal flow from s to t .  

With w = (1,. . ., 1) this problem is a generalization of one part of the Dilworth 
theorem. See for example [3]. The result is integer. This is seen directly, or in more 
general terms from the antiblocking theory this follows by the min-max equality, 
which here holds for A and A. The columns in are the incidence vectors of all 
maximal antichains in the same network, and the set B = { y  3 0 I yA l}, (which is 
the dual constraint set of (5.2)) and the set B = {y * 3 0 I y *A S 1) constitute a pair 
of antiblocking polyhedra. See [l]. 

Now generally A is not the incidence matrix of all maximal chains in a network. 
But a network can be constructed in which A is the incidence column matrix of at 
least some chains. Then, by solving the covering problem over all chains, we receive 
a lower bound for (5.1). This lower bound is easy to compute, although in general it 
is weaker than the bound obtained by solving (5.2). 

Consider the following example, where w = (1,. . ., l), [4]: 

4 

m i n z  xi 
i = l  
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Let the nodes in the network be numbered corresponding to  the row numbers of 
A. Then the network looks as follows, 

5 

and the bound is 2 (the minimal number of chains that cover all nodes, which is 
equal to  the maximal size of an antichain; Dilworth). 

The result is generally dependent on the permutation of rows. For example, with 
the matrix: 

we get the network 
1 2 3 4 5 
o : c : = : =  0 

and the bound is equal to  1. 
We can also construct a loopless oriented network, in which the matrix A 

corresponds to  some of the antichains in the network. For the problem (5.3) the 
network may look like the following: 

l5 

,;- n \ ', 

The minimal number of covering antichains, which is equal to the largest chain 
(the companion to  the Dilworth theorem [l]) gives a lower bound. The result here 
is 2. 

An upper bound for the set covering problem can be found in a similar way by 
network flow methods, where now the rows of the matrix are incidence vectors for 
chains (or antichains). For example, with chains we get the following network for 
the problem (5.3): 

t 
,+-. 

I 
/ 

/ /  9 
I', a' 

J' 
S 
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The numbers correspond to the columns. The endpoints of the chains are 
connected to a source s and a sink t, respectively. The problem is now to find a 
minimal number of nodes that block all s-t  chains, (which is equal to the maximal 
number of node independent chains from s to t ;  Menger’s Theorem). Here the 
result is 2. 

We believe that such bounds may be helpful in an algorithm for solution of set 
covering type problems, and an algorithm incorporating that feature is now under 
development. 
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ON THE GENERALITY OF MULTI-TERMINAL 
FLOW THEORY 

L.E. TROTTER, Jr.* 
Department of Operations Research, College of Engineering, Cornell University, 
Ithaca, NY, U.S.A. 

We consider the problem of determining maximal flows between each pair of nodes in an 
undirected network. Gomory and Hu have studied this problem and have provided an efficient 
algorithm for its solution. We reexamine their procedure and generalize certain results of 
multi-terminal flow theory using well-known aspects of matroid theory. Additional implications 
afforded by this approach are also discussed. 

1. Introduction 

In their interesting paper [5] (see also [4,6]) Gomory and Hu have considered the 
problem of determining the maximum flow value between each pair of nodes in a 
finite, undirected graph. This problem, known as the multiterminal maximum pow 
problem, has also been studied by Mayeda [9] and Chien [l]. In [3] Elmaghraby has 
examined the sensitivity of multi-terminal flows to  changes in the capacity of a 
single edge in the graph. In the present paper we adopt the viewpoint of matroid 
theory and reexamine some basic results of multi-terminal flow theory in this more 
general, abstract setting. We begin with a brief summary of multi-terminal flow 
theory. In this discussion reader familiarity with the fundamental aspects of 
network flow theory, as set forth in [4], is presumed. 

Assume given a finite, undirected graph (network) G. We will further require 
that G has neither loops nor multiple edges and that G is connected, though these 
latter assumptions are only for convenience of exposition. As usual, associated with 
each edge e of G is a nonnegative, real-valued capacity c ( e ) .  We also have, for 
each unordered pair of nodes {x, y }  of G, a maximum flow value v ( { x ,  y } ) '  between 
x and y with respect to the given edge capacities. The real-valued, nonnegative 
function u is called the flow function for G. Notice that when G has n nodes u may 
be viewed as a function defined on the edges of K,, the complete graph on n nodes. 

Our primary concern is with the flow function 21. O n e  question of interest is that 

* This research was partially supported by grant GK-42095 from the National Science Foundation to 

The cumbersome notation is chosen to  emphasize the fact that u is a function from the pairs of 
Yale University. 

nodes of G to the nonnegative reals. The reason for this emphasis will become apparent in Section 3. 
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of realizability : When is a function the flow function of some graph? Gomory and 
Hu [5] have answered this question with the following characterization. 

Theorem 1. 
function of an n-node undirected network i f  and only i f  

A function u from the edges of K,  to the nonnegative reals is the flow 

u({xl, x,}) 3 min [u({x1, ~ 2 1 ) ~  u((x2, x3), . . .) ~ ( { X , - I ~  xp})19 (1) 
for any node sequence XI, x2,. . ., x,. 0 

Two networks which have the same flow function are termed flow-equivalent. An 
important consequence of (1) which becomes evident in the construction used to 
prove the sufficiency of these conditions is that every undirected network is 
flow-equivalent to a tree. Thus the flow function for a graph with n nodes assumes 
at most n - 1 different values. 

A second question of interest is the following: How does one efficiently 
determine the flow function for a given graph? Of course, one may construct the 
flow function for an n-node network by solving each of the ( 2 n )  maximum flow 
problems which correspond to all pairs of nodes in the network. However, since the 
flow function assumes at most n - 1 distinct values, one might hope to do better. 
Gomory and Hu [5] have accomplished this by providing an elegant algorithm 
which determines the flow function by solving only n - 1 maximum flow problems. 

In order to describe their procedure we use the max-flow min-cut theorem of 
Ford and Fulkerson [4] to change emphasis slightly and view v ( { x , y } )  as the 
capacity of a minimum cut separating x and y .  If sets X,  x partition the nodes of G, 
we denote the corresponding cut by 

(X ,  x) = { e  = {x, f} : x E X ,  3 E x and e is an edge of G}. 

When each of the sets X n Y, X n ?, is nonempty, the two cuts 
(X ,  2) and (Y,  F) cross each other; otherwise these cuts are non-crossing. A family 
of cuts is termed non-crossing if each pair in the family is non-crossing. The 
following result which appears in [7] characterizes families of non-crossing cuts. 

fl Y, x n 

Lemma 1. 
precisely to the spanning trees of K.. 

In a graph on n nodes, the families of n - 1 non-crossing cuts correspond 

Certain of the minimum capacity cuts in a network also obey a non-crossing 
property. This is demonstrated in the following lemma, which is a simple 
consequence of the results of [5]. 

Lemma 2. Suppose cuts (x1, g1), . . ., (&I,  % I )  are non-crossing and (x,  X i )  is 
a minimum capacity cut separating xi and I, for 1 < i < k - 1. Also assume that no 
(xi,Xi) separates x k  and T ~ .  Then there exists a minimum capacity cut ( X k j x k )  

separating X k  and ,fk which crosses no (xi, x), 1 C i C k - 1. 17 
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The Gomory-Hu procedure is essentially an ( n  -1)-fold application of Lemma 2. 
One begins arbitrarily by choosing a pair of nodes {xl,.fl}, and determining a 
minimum cut (Xl, XI) which separates x1 and 2,. At the kth stage (k > 1) one has 
non-crossing cuts (x1, XI), . . ., (xk-1, %I), the i th being minimal for x, and x,. If 
k < n (the proof of) Lemma 1 shows that we may choose xk  and x k  which are 
separated by no ( X ,  x), 1 S i S k - 1. One then determines (xk, Xk) as described* 
in Lemma 2. The procedure continues until k = n and termination occurs with 
n - 1 non-crossing cuts. 

By Lemma 1 these cuts correspond to  a spanning tree T of K.. T need not be a 
subgraph of G. Gomory and Hu call T the cut-tree for the graph G. This 
terminology reflects the fact that, for each pair {x, y} of nodes of G, T determines 
both the flow value v ( { x ,  y}) and a minimum cut of G which separates x and y. T 
specifies this information in the following manner: For any node pair { x , y }  
corresponding to an edge of T, removal of that edge from T produces two subtrees 
with node sets, say, X,  and x,. Then the cut (Xn,  x,) is a cut of minimum capacity 
separating x and y in G ;  that is, u ( { x ,  y}) is given by the capacity of (X8,  x). The 
cut (XI,xv) is, as the notation commemorates, one of those discovered by the 
algorithmic procedure of the preceding paragraph. Once we know v ( { x ,  y}) for each 
{x, y }  corresponding to an edge of T, the remaining values for u may be determined 
by the relation 

v ( b ,  y l )  = min [v({xl, XJ), v ( b ,  ~ 4 , .  . ., v ( h - 1 ,  x,})I, 
where (x = xl, xz, x3,. . ., x,-,, x, = y )  is the unique path from x to y in T. 

2. Matroids 

In the present section we summarize pertinent fundamental aspects of matroid 
theory. For a more thorough treatment the unfamiliar reader is referred to  the 
works of Whitney [13], Tutte [12] and Minty [lo]. 

A matroid M = (E,  %) is a finite set of elements E = (1,. . ., n }  and a family % of 
nonempty subsets of E. Members of % are called circuits, and they must satisfy the 
following two axioms: 

(i) no circuit contains another, 
(ii) if CI, Cz E % with e E C1 f~ Cz and f E Cl\Cz, then there is some C3 E (e for 

which f E C3 C C1 U C,\{e}. 

A subset of E which contains a circuit is called dependent. A subset of E which 
contains no circuit is termed independent and a (set-wise) maximal independent set 
is called a base. It is clear that the minimal dependent subsets of E are precisely the 

* Note that we have not specified how (xk, xk) is to be determined. This is accomplished by solving a 
maximum flow problem for xk  and .fk on a network obtained by suitably restricting G to insure that 
(Xk, Zk)  does not cross (X, x,), 1 =z i s k - 1. 
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circuits. A well-known consequence of axioms (i) and (ii) is that for any set S C E, 
every maximal independent subset of S is the same size. Another straightforward 
consequence is that for any base B and any e e B, B U { e }  contains a unique circuit 
C,, called a fundamental circuit relative to B ;  furthermore, e E C, and for any 
f E Ce\{e},  B’= B U { e } \ { f }  is also a base. 

Given a matroid M = (E ,  %‘), let % *  denote the family of minimal, nonempty 
subsets C* C E which satisfy 1 C* f l  C 1 # 1, for each C E % ( 1  . I is the cardinality 
function). It is not difficult to show that M *  = (E,  %*) is a matroid. Matroid M *  is 
called the dual of M ;  the circuits of M * (members of %’ *) are called cocircuits. One 
can also show that the bases of M *  (called cobases) are simply the complements 
relative to E of the bases of M. 

One standard example of a matroid comes from graph theory: Let E be the edge 
set of a finite, undirected graph G and let %‘ denote the edge sets of the simple 
cycles in G. It is evident that M = (E,  %) satisfies axioms (i) and (ii). Such a matroid 
is called graphic and its dual is cographic. The cocircuits which define the dual 
matroid M *  = (E,  %*) are given by minimal cutsets for G ;  i.e., by minimal sets of 
edges whose removal increases the number of components of G. The bases of M 
are the edge sets of spanning forests in G. In Section 3 it is shown that the matroid 
M *  plays a central role in multi-terminal flow theory. 

We now associate with each element e E E a weight c ( e )  and consider the 
problem of determining a base of M which has maximum total weight. For graphic 
matroids this problem was treated by Kruskal[8] and Prim [11]. Kruskal’s “greedy” 
algorithm for constructing a spanning forest of maximum weight is discussed for 
general matroids by Edmonds in [2], where it is shown to be a characterizing 
property of matroids. The following theorem provides necessary and sufficient 
conditions for a base to be of maximum weight. The theorem may be deduced from 
results in [2]; we provide an alternative proof based on matroid duality. 

Theorem 2 .  
suppose B is a base of M.  Then B is a maximum weight base i f  and only i f  

Let M = (E,  %) be a matroid with element weights c ( e ) ,  e E E, and 

e E B  =3 c ( e ) <  min c ( f ) ,  
f fz c, \{e 1 

where C, is the fundamental circuit relative to B determined by e. 

Proof. The necessity is clear, for if c ( e ) >  c ( f )  for some f E  Ce\{e},  then B ’ =  
B U { e } \ { f }  is of larger weight than B. For the sufficiency suppose B1 satisfies (2) 
and let Bz be a base of maximum weight. We will show that B1 and Bz are of equal 
weight. If B1 = Bz we are done. Otherwise choose e E Bz\BI and consider the 
fundamental circuit C, C B1 U { e }  and the fundamental cocircuit C: C 
(E\B2) U { e } .  Since 1 C, n C %  1 # 1, there is an element f #  e so that f E C, n C:. 
Now f #  e, so f E C, implies f E B1 and f E C: implies f!Z Bz. Thus f E BI\B2. 
Consider the fundamental circuit C, C Bz U { f } .  Since 1 Cf f l  Cf I # 1, there is an 
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element g #  f so that g E C, n C:. Now g #  f, so g E C, implies g E Bz. Thus 
g E Bz n C: and we conclude that g = e. Applying ( 2 )  first to B1 and C, and then 
using the necessity to apply ( 2 )  to Bz and C, shows that c ( e )  = c(f). Thus 
B: = B2 U { f } \ {e}  is also of maximum weight. Since 1 B4\B1 1 < I BZ\BI 1, iterative 
application of this argument shows that B1 is of maximum weight. 0 

3. Realizability conditions for matroids 

Let x and y be two nodes of graph G and recall that u ( { x , y } )  represents the 
maximum flow between x and y in G. If edge e = {x, y }  is not present in G, we d o  
not alter u for G by inserting e and defining c ( e )  = 0. Thus one may view u ( { x ,  y } )  
as the minimum weight (capacity) of a cut containing e. Indeed, if G has n nodes 
and we define c ( e ) = O  for edges of K ,  not present in G, it is plain that the 
multi-terminal flow problem for G may be interpreted as follows: For each edge e 
of K ,  determine a minimum weight cut containing e. In the present section we 
consider the same problem for arbitrary matroids and derive conditions analogous 
to (1) for the more general case. 

Suppose M = (E,  %) is a matroid with nonnegative weights c ( e )  for e E E. Now 
let u ( e ) ,  e E E, denote the minimum weight of a circuit which contains e ;  i.e., 

u ( e )  = min 2 (c(f): f E c). 
{c:eecee)  

(If element e E E is in no member of %, define u ( e )  = + m.) We will call u the 
minimum weight circuit function for M. The following theorem provides conditions 
which must be satisfied by u :  

Theorem 3. 
e E E, and minimum weight circuit function u. Then for each e E E, 

Let M = (E,  %) be a matroid with nonnegative element weights c ( e ) ,  

u ( e ) > , , t ~ i ~ ~ , u ( f ) ,  V C * E  % *  such that e E C * .  (3) 

Proof. If e is in no circuit, then u ( e )  = + m and (3) holds trivially; if e is a loop 
(single element circuit), then e is in no cocircuit and so (3) holds vacuously. Suppose 
C is a circuit of minimum weight containing e and let e E C* E %'*. Then 
1 C n C* 1 # 1 implies there is an f E C n C* distinct from e. Since f E C, u(f) S 

c ( c ( g ) :  g E C) = u ( e ) .  Thus u satisfies (3). 0 
The conditions (3) are also sufficient in the following sense. For a given matroid 

M = (E, %) and nonnegative, real-valued function u on E, call u realizable if there 
exists a nonnegative weight function c on E so that u is the minimum weight circuit 
function for M with respect to c. Theorem 4 below shows that the conditions (3) 
imply realizability. Together Theorems 3 and 4 constitute an appropriate general- 
ization of Theorem 1 to arbitrary matroids. The proof of Theorem 4 follows closely 
the proof of sufficiency for Theorem 1 (see [4, 5, 61). 
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Theorem 4. Let M = (E ,  '%) be a matroid and let u be a nonnegative, real-ualued 
function on E which satisfies (3). Then u is realizable as a minimum weight circuit 
function for M. 

Proof. Let B * be a base of maximum weight for M *  = (E,  59 *) with respect to the 
element weights v ( e ) ,  e E E. Now define c ( e )  = u ( e )  for e E B* and c ( e )  = 0 for 
e E B = E\B*. I f  e E B*,  then B U { e }  contains a unique circuit C, whose total 
weight with respect to c is c (e ) .  Since c ( f )  3 0  for all f E E, C, must be a minimum 
weight circuit for e. Note that c ( c ( f )  : f E C,) = c ( e )  = u(e) .  O n  the other hand if 
e E B, then B * U { e }  contains a unique cocircuit C :  and e E C:.  From (2) (applied 
to B *) and (3) it follows that u ( e )  = minf,G,l.) u( f ) .  Thus we may choose f E Ct, 
f # e for which u ( e )  = vc f )  = c ( f ) .  Now B U { f }  contains a unique circuit Cf whose 
total weight is c ( f ) .  Since 1 C, n C:l# 1, we must have e E C, also. Thus the 
minimum weight of a circuit containing e is no  larger than c(f). Suppose 
e E c E %. Since 1 r l  Ct  I # 1, there is an element g so that e # g E f? n Cb. Then 
it is straightforward to  verify that 

( c ( h ) :  h E c)a c ( g )  = u ( g ) a  u ( f )  = c ( f )  = ( c ( h ) :  h E C,). 

Thus C, is a minimum weight circuit for e. 0 

For a given matroid we will say nonnegative weight functions c and c '  are 
equivalent if they give rise to the same minimum weight circuit function u. The 
proof of Theorem 4 shows that to any given nonnegative weighting c for M there 
corresponds an equivalent weighting c'(e),  e E E, for which the elements given 
nonzero weight are contained in a dual base B*. When specialized to  multi- 
terminal flows, this is simply the observation made earlier that each undirected 
network is flow-equivalent to a tree. Furthermore, to indentify minimum weight 
circuits with respect to this equivalent weighting c ' ,  one uses precisely the same rule 
as with the cut-tree: For e E B*, a minimum weight circuit for e is given by the 
circuit C, c B U { e }  ( B  = E\B *); for e E B, a minimum weight circuit is deter- 
mined from among the / C :  1 - 1 circuits C, C B U { f } ,  for each f € C:\{e}, where 
Ct is the cocircuit contained in B* U {e} .  A s  with multi-terminal flows, the 
following consequence is evident: 

Corollary. 
function for M is no greater than the size of a base for M*.  

The number of distinct values assumed by a minimum weight circuit 
0 

4. Discussion 

Given that the realizability conditions for multi-terminal flows generalize directly 
for arbitrary matroids, it is natural to ask to what extent the algorithmic procedure 
of Gomory and Hu generalizes. Of particular interest would be the existence of a 
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structure for matroids which determines not only the minimum weight circuit 
values but also the circuits themselves in a manner analogous t o  that of the cut-tree 
specified at the end of Section 1. Such an object does not exist in general’, as is 
demonstrated by 

Example : Consider the graphic matroid with edge weights as indicated in Fig. 1. 

(a) (b) 

FIG. 1.  (a) Original graph, (b) Equivalent weighting. 

For this graph the minimum weight cycles for the edges are given by: cycle 14351, 
for edges {1,4}, {3,4}, (3,s)  and (1,s);  1241, for {2,4} and {1,2}; 1251, for {1,2} and 
{2,5}; 2352, for {2,3}. An  equivalent weighting with nonzero weights only within a 
dual base is also given in Fig. l(b). Note, however, that the minimum weight cycles 
determined by the equivalent weighting are not necessarily the same as those for 
the original graph; e.g., in the original graph cycle 1241 is of minimum weight for 
edge {2,4}, whereas with the equivalent weights, 24352 is the minimum weight cycle 
for {2,4}. It is not difficult t o  check that no equivalent weighting which is nonzero 
only on a dual base will determine the minimum weight cycles for the original 
graph. 0 

Thus in general one cannot expect to  determine an equivalent weighting for a 
dual base which will play the role of the cut-tree in determining minimum weight 
circuits. This is not surprising - even for cographic matroids, the cut-tree need not 
be a subgraph of the original graph. A correct interpretation of this fact is that for a 
given matroid and element weights, there may exist n o  base whose fundamental 
circuits are minimum weight for the respective (out-of-base) elements which 
determine them. The latter is a consequence of the following proposition. 

~~ 

Proposition. Let M = (E ,  %) be a matroid with element weights c ( e ) ,  e E E. Also 
let B be a base of M for which e B implies the fundamental circuit C. C B U { e }  is a 
minimum weight circuit fore. If e E B is in a circuit, a minimum weight circuit fore is 
defined by 

The author is indebted to R.E. Bixby for several helpful discussions concerning this point. 
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where Cg is the fundamental cocircuit relative to B * = E\B determined b y  e, and C, 
is the fundamental circuit relative to B determined b y  f. 

Proof. First note that e E C, for each C, indicated by (4), else 1 Ct n C, I = 1. Pick 
e E B and suppose e E C E %. Since I Cl: r l  C1# 1, there is an f E C fl Cf, f # e. 
Now f #  e and f E Cf imply that fe B. Consequently C, is a minimum weight 
circuit for f. Thus c ( c ( g )  : g E C,) ( c ( g )  : g E C), which verifies (4). 0 

In the case of multi-terminal flows we recall that each edge e of the  cut-tree T 
defines (by its removal from T )  a minimum capacity cut C, for e. Thus the above 
proposition provides a validation of the method described in Section 1 for 
determining v ( {x ,  y } )  when {x, y} was not an edge of T. A further consequence of 
this proposition is the following simple proof of the existence of a cut-tree. We 
assume that each cut has a distinct capacity; if not, this may be achieved by 
perturbing edge capacities slightly, as described in [4]. Thus there will be exactly 
n - 1 distinct values for the minimum capacity cuts. The Gomory-Hu procedure 
described in Section 1 finds n - 1 non-crossing cuts, each of minimum capacity for 
some node pair. By Lemma 1 these cuts correspond to a tree T. Each edge of T is in 
only one of these n - 1 cuts, namely, the cut defined by the removal of that edge 
itself from T. Thus the edges of T satisfy the hypotheses of the above proposition, 
which implies that T is the cut-tree for G. 

Finally, we remark that when G is a planar graph multi-terminal flow theory has 
implications for the shortest path problem. Associated with G is the dual graph G *  
for which the cycles of G containing edge e of G correspond precisely to the cuts of 
G* containing edge e of G*. Thus for any edge e of G, the cut-tree T *  of G* 
determines a minimum weight cycle which contains e. Such a cycle determines a 
shortest path from x to y in G, where e = {x, y } ,  by comparing the two possible 
paths from x to y around this cycle. Thus T* provides a compact representation of 
all shortest path information for the edges of G. 
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Various discrete optimization problems such as the integer and 0-1 programming problems, 
and the travelling salesman problem have been represented as discrete dynamic programming, or 
network problems. We show how such representations lead naturally to a characterization of the 
valid inequalities for the feasible solution sets Q of such problems. In particular we obtain 
polytopes r of valid inequalities having the facets of Q among their extreme points. In addition 
the problems of “packing” or “covering” with feasible solutions to the discrete problem have 
natural network representations, which are the duals of problems over r. 

Reversing the approach, any special properties of the valid inequalities can in turn be used to 
give new formulations of the corresponding network problems. In particular this allows a 
reformulation of the “minimum equivalent knapsack inequality” problem, and the “cutting 
stock” problem. 

1. Introduction 

The characterization of valid inequalities for various combinatorial problems has 
been the subject of much recent research. The motivation is in part practical, 
stronger valid inequalities giving better bounds and cuts, and partly theoretical in 
the belief that a better understanding of the underlying structures will eventually 
lead to improved algorithms. 

In this paper we examine the question of characterizing such inequalities for the 
class of combinatorial problems that can be viewed as discrete dynamic programs, 
and the consequences of the fact that this question can be reinterpreted in terms of 
a “covering” problem. 

Various combinatorial problems (Po) 

can be viewed as discrete dynamic programs, or longest route network problems. 
Here we show that such a viewpoint provides useful information on two related 
problems: (PI) 

Find a polytope r such that (T; r0) E r if and only if T X  G no is a non-trivial 
valid inequality for Q, 

(The Covering Problem) min{l . y I By 2 w, y 2 0) where the columns of B 
are vectors representing the feasible points of Q, and w is a nonnegative 
integer vector. 

and (P2) 

527 
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Relationships between these three problems have been demonstrated in various 

For instance by duality (PI, P2) 
special cases, but do not seem to have been fully exploited. 

min l l .  y I BY 5 w, y 3 0) = max { w T  I TB c I, T 5 01 
=max{w.rrI(.rr;.rr0)Er,.rrTTos1,T30} 

See [4] on antiblocking polyhedra where this duality is used but very special 
representations of r are sought. 

(Po, P,) The problem (Po) : max {TX 1 x E Q} can be formulated as a DP recursion 
or as a network flow problem. We claim that r is obtained by constraining (T ; .no) 
to be dual-feasible for the network flow problem. Alternatively the constraints of r 
are directly evident from the D P  recursion. See [ l ]  and [6] where polytopes r 
closely resembling the D P  recursion have been obtained. 

(Po, Pz) The dual of max {WT I (T; r0) E r, T,, s 1, T a 0) gives a representation of 
the covering problem on the network associated with (Po). Unlike (Po) this problem 
is not totally unimodular due to capacity constraints involving several arcs 
simultaneously. 

Below we shall look at several examples so as to demonstrate the relationships. 
In Section 2 we look at the 0-1 monotone problem in some detail. Here the 
representation of r has two apparent advantages over other suggested representa- 
tions, simplicity, and a limited number O(np) of constraints and variables where p is 
the number of D P  states. For the special case of the 0-1 knapsack problem, we 
show that the “minimum equivalent inequality problem” is equivalent to a variety 
of covering problems. 

In Section 3 we look at the integer monotone problem. Here although a good 
deal about representations of r is known [l], no one has apparently looked at the 
corresponding representation of (P2). Both the natural network representation, and 
a representation based on a “minimal” r appear new, and appear to have 
advantages over the standard column generating formulations of the “cutting 
stock” problem. 

Finally, in Section 4, we mention briefly two other problems amenable to 
treatment in this way. 

To close this section we give two general definitions. 

Definition 1.1. The inequality: 

is said to be a valid inequality denoted (T; no) for Q if every feasible point in Q 
satisfies the inequality. A valid inequality is a facet of Q if 3n affinely independent 
points of Q satisfying it with equality. 

Definition 1.2. 
is a nonnegative integer vector such that x ’ s  x, and x E Y, then x ’  E Y. 

A set of nonnegative integer vectors Y is monotone if whenever x ’  
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Throughout the paper we shall only be concerned with valid inequalities with 
ro # 0. (If Q is monotone, this only essentially eliminates the trivial inequalities 
XI  2 0). 

2. Valid inequalities for 0-1 monotone polytopes 

Here we consider the 0-1 monotone polytope, from the viewpoint that, given a 
linear objective, we obtain a problem amenable to solution by discrete dynamic 
programming, or as a longest path network problem. 

We consider in particular the set Q :  

a,xl s b, xi E (0, 1) 
] = I  

where b E Z; (the set of m-dimensional nonnegative integer column 
vectors). 

Clearly the set Q above is monotone. 
Now we shall define certain standard terms used in dynamic programming. 

Let 

Q,(A)= ( x  12 alxl S A , ~ ,  E(o,i} 
] = I  

where the terms are only defined for 0 S r s n, A E Z: with A S b. 
Note that Q = Q,(b) and that G,(A) = max{G,-I(A), G,-l(A - a , )+  T,}, where 

Go(A)=O for 0 s  A < b, and any expression containing an undefined term is 
ignored. 

Also (1) is a valid inequality for Q if and only if r0 a Gn(b).  It is righr if 
ro = G,(b). 

Now let us write (Po): m a x { m  1 x E Q }  as a network flow problem, with nodes 
( r ,  A )  for 0 6 r s n, and 0 S A s b, edges [ ( r  - 1, h - a,), ( r ,  A)] and [ ( r  - 1, A),  (r,  A ) ]  
containing flows & ( A ) ,  q , ( A )  respectively r = 1,2, .  . ., n,O 6 A b if both endpoints 
of the edge are legitimate nodes. 

Proposition 2.1. 
(FPo): 

Problem (Po) is equivalent to the totally unimodular flow problem 

G.(b) = max c c ..&(A) 
A r  

s.t. ( , ( A ) +  q r ( A ) - ( , + i ( A  + a , + , ) -  q r + i ( A ) = O  

r = 1,2, .  . ., n - 1 

& ( A ) + q n ( A ) = O  O s A < b  

0 s  A s b 

(n(b)+qn(b)= 1 

( , ( A ) , q , ( A ) > O  r = 1 , 2  ,..., n ;  O G A S b .  
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Proof. We note that with this choice of notation, an x E Q with ax = b - p 
corresponds to a path in the network from (0, p )  to (n,  b )  or a feasible solution of 
(FPo). Hence G , ( b )  6 EAErn-,&(A). Conversely the linear program has an optimal 
solution which is integer, It therefore corresponds to a path from (0, p )  to ( n ,  b ) ,  

with ax = b - p. Hence zAz,n-,&(A)S G , ( b ) .  and an x E Q 

Theorem 2.2. 
@,(A), r = 1,2,  

r =  

(n - ;  T,,) is a valid inequality for Q i f  and only i f  there exist values 
. ., n, 0 s A s b such that (n- ; & ( A ) )  E r with r0 = &(b)  where : 

@ ( A )  - &l(A - u ~ )  - T, 2 0 
( r ;  (-w)) 

& ( A ) -  L ( A )  3 0  

r = 1,2,. . ., n, 0 6 A 6 b, where again undefined terms vanish i.e. when r = 1 ,  the 
constraints become O1(A)  - r1 3 0; O1(A)  3 0 when b 3 A 3 a l ,  and reduce to & ( A )  3 

B,-,(A) when a, < A. 

Proof. (T; 8 , (b ) )  is a valid inequality for Q if and only if 8 . ( b ) a  G , ( b ) .  Taking 
the dual of (FPo) we obtain {min 8 , (b )  1 (T; @,(A)) E r} = G , ( b ) ,  and hence if 
(n-,B,(A))ET with no= 8,(b) ,  then ( n - ; ~ " )  is valid for Q. The converse is 
immediate taking & ( A )  = G,(A). 

Remark 2.3. 
obtained directly. 

Replacing G,(A) by & ( A )  in the DP recursion, we see that r can be 

Theorem 2.4. 
extreme point of r with 

If E,"_l v j x j  C r0 is a non-trivial facet of Q, then (n-, G,(A)) is an 

= G,(b) .  

Proof. Suppose not. 'l'hen 

(T, G,(A)) = ;(TI, O!(A))  + $(T', O f ( A ) ) .  

Case ( a ) .  r i  # T, i = 1,2. This contradicts the fact that a non-trivial facet of Q is 
extreme among the valid inequalities for Q. 

Case ( b ) .  n-l = T' = n-. Then as (n-, 8: ( A ) )  E r, 6: ( A )  3 G,(A), i = 1,2. However 
S O ! ( A ) + t O f ( A ) =  G,(A), and hence f ? : ( A ) =  G,(A) i = 1,2Vr,A, contradicting the 
hypothesis that ( T I ,  e!(A)) and (n2, 03(A)) are distinct. 

Therefore we have shown that the extreme points of r, restricted to the variables 
T, & ( b )  include the non-trivial facets of Q. 

Remark 2.5. We note also that the polytope r is very easy to describe and has at 
most ( n  + l)p variables and 2np constraints where p = nTZl (b, + 1). 

An alternative characterization of valid inequalities for knapsack problems is 
given in [2,7], based in part upon the total ordering among the variables. Although 
it is efficient for small values of b, the number of constraints in the resulting 
polytope grows exponentially with b. 
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Consider now the covering problem (Pz), and in particular its representation in 
the form max{wr 1 (r, & ( A ) ) €  I‘, & ( b )  S 1, r 5 0). Taking its dual we obtain the 
network flow problem: 

min Zo 

& ( A )  + ?,(A) - 5,+l (A + a,+l) - q + , ( A )  = 0, 

& ( A ) +  q n ( A )  = 0, 

& ( b )  + 7, ( b )  - z o = o ,  

C 3 w,, 

&(A) ,  ~ . ( A ) * O , Z o S O .  
This problem involves the same network as in (FPo) where the first three 

constraint sets represent flow feasibility constraints, but the last “covering” set of 
constraints imposes a minimum aggregate flow over certain subsets of the arcs, and 
destroys the property of total unimodularity. 

An application to find “minimum equivalent knapsack inequalities” 

Given a single linear inequality (L) 

where a, >0,  we consider the problem of finding a linear inequality x.i”=l bixj S bo 
which is 

(i) valid for (L), 
(ii) EC;=, bjy, 2 bo + 1 for all 0-1 points y not lying in (L), 

(iii) for which bo is minimum. 
We restrict ourselves without loss of generality, (see [2 ] ) ,  to inequalities (L) for 

which x is feasible if and only if e - x is infeasible, where e = (1,1,1,. . ., l)T. Now it 
is known that with this restriction the extreme points of the polyhedron of valid 
inequalities defined by (i), (ii) satisfy x;=l bj = 2bo + 1, and that this equality plus (i) 
implies (ii), see [2, 10, 111. 

Therefore the problem can be reduced to (Ro) 

I min ro I rB C roe ,  2 rj = 2 r 0  + 1, ri 3 0 I j = 1  

where B as in the introduction is the matrix having the 0-1 feasible solutions to (L) 
as columns. 

Below we shall use our results to derive several reformulations of (Ro). Using the 
characterization of r we obtain (R1): 

min( e . ( a o ) ) ( r , O , ( A ) ) E I ‘ , ~  j = 1  rj = 2 8 . ( a o ) + 1 , r j  2 0 1  
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or its network dual (R,) 

max Zo, 

5 r ( A ) ,  v r ( A ) S O .  
In terms of solutions of (L), (RZ) is evidently equivalent to (R3): 

max Zo, 

e .  y = 1 + 2Z0, 

By 3 Zoe, 

Y 3 0 ,  

where the variables y can be thought of as the weights given to the different paths 
from (0, p )  to (n, a,). Hence (R3) is a special covering problem (also obtainable 
directly as the dual of (R,)). Finally substituting for 2, in (R3) gives (Rd): 

max 5 e . y - 5 ,  

s.t. ( E  - 2B)y  s e, 

Y 3 0 ,  

a special packing problem whose matrix E - 2B has entries * 1, where E is a 
matrix of all 1’s. 

Alternatively changing the normalization, and replacing (ii) by c,”_I b,y, > b,,, 
b, = 1 and (iii) by rnax xi.,, b,, we can replace (Ro) by (R,) 

6 = max{n-. e 1 TB s e, n- 2 0). 

This follows from two observations. First that 5 > 2,  and any valid inequality with 
T. e > 2 is a representation of the inequality. Second that if rr* is an optimal 
solution of (R5) with T * e  = 2 + l/r, f > 0, then r r r *  is an optimal solution of (R,), 
and conversely. 

Taking its dual we obtain a last reformulation (R6): 

6 = min e .  y 

By S e  

y 2 0  

the most basic covering problem. 
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Remark 2.5 suggests that formulations (R1) and (R2) may be advantageous 
computationally. See [2] for computational results using a formulation derived 
from (Ro). 

Example. 

rn((ao) = z0 = 3, r j  = e .  y = 7, 6 = I  3 .  
, = I  

Minimum Equivalent Inequality 

2x, + 2x2 + x3 + xq + x5 s 3, xj E {0,1}. 

Cover ( L 3 )  (293) ( L 4 )  (2,4) (195) (2 ,5)  (3,475). 
These 7 solutions together make use of each variable at least 3 times. 

3. Valid inequalities for integer monotone polytopes 

Here we consider the set Q: 

a,x, b 
) = I  

x, 2 0 and integer 

where a,, b E Zk. 
For this problem all the representations of the valid inequalities that we present 

are known. We stress however that they also derive from the DP or network 
structure. The main emphasis below is on (P2) the covering, or “cutting stock” 
problem, and we use the characterizations of r and of a subset of the valid 
inequalities including the maximal and extreme valid inequalities to obtain two 
different formulations of (P2). 

Defining G(A) = max {x;=, T~X, 1 x;=, a,x, s A, x, 2 0 and integer}, we obtain from 
dynamic programming the recursion 

G(A)= max 0, max {G(A - a, )+  T,} , [ 1 = 1 .  ,” I 
where G ( h )  is defined for A s b, A E ZL, and undefined terms are ignored. This 
leads immediately to the network problem: 

G(b) = max 2 2 T J t A - a , , A  
A I  

- C t o . ,  s 0 
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Lemma 3.1. 
A E ZL such that (T ,  @(A)) E r with T,, = 8(b),  where 

(T ; T o )  is valid for Q i f  and only i f  there exist values 8 ( A ) ,  A S b, 

Proof. From the dual of the above problem we have that G ( b ) =  
min{@(b)/(T,  O(A))Er.}. Conversely (n- ,G(A))Er.  

We see also that once again r could have been written down directly from the 
DP recursion. 

Looking now at the covering problem (Pz) we have (R,): 

max{w. T I (T, 8(A))E r, B(b) s 1, T 2 O}. 

We note that this problem has n + /3 variables and n/3 constraints, and hence has 

Its dual is (Rr): 
far fewer constraints than in the standard column generation formulation. 

min Z,, 

s.t. 

c t A - a , . A  

t A - a j , A  0, ZO 3 0. 
This is again a network flow problem with additional constraints, where is 

the number of cutting patterns (solutions of Q) with a piece of length a, cut 
between A - a, and A ( x ,  = 1 when in state A - a,). 

Now we consider the possibility of replacing r in problem (RJ by some other 
polytope of valid inequalities. 

Theorem 3.2. [l] Every maximal inequality 

(T ; = ( e ( a J )  ; 8 ( b ) )  

of Q lies in r* = { 8 ( A )  1 8 ( A )  3 8 ( A  - a,) + 8(a,) ,  8 ( A )  3 0} and conuersely i f  
@ ( A )  E r*, then (O(a,) ; B(b)) is valid for Q. In addition the extreme points of r* 
include the non-trivial facets of Q. 

The above polytope is suggested by noting that an inequality is maximal for Q 
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only if .rr, = G ( a j ) ,  and that (n-, G(A))E r, so that necessarily the maximal 
inequalities are in r*. 

Now as the optimal solution to problem (PJ and hence (R,) corresponds to a 
non-trivial facet of Q, we obtain the equivalent problem (R3): 

-aint - B(A + p )  Associate the dual variables 7 ,,+ with the con! 

max 2 w j e ( a j )  
j = l  

B ( A )  E r*, B(b) S 1. 

e ( P . ) a  
0 where either A or p or both equal a, for some j = 1,2,. . ., n and if “ S ” is some 
ordering of the elements of 0 < A S b, A E Z,,,, qA,, is only defined for A S p. 

This problem then has as dual (R4): 

min Zo 
node a,: 

node p #  a,: 

node b :  

- c 7 7 a k . b - a k -  c 7) b - a k . a k +  2 0  0; 
a k  e b - a k  b - a k e a k  

7 7 A , f i S o ,  Z O 3 0 .  
Here we can interpret qA.,, as the number of paths passing through the nodes A 

and A + p, and using a single arc from A to A + p. Alternatively it is the number of 
cutting patterns having a single piece of size p in position (A, A + p ) .  

Looking at the inequalities in (R4), the first term counts the number of single 
pieces of size aj that occur in the cutting patterns in any but the first i.e. ( 0 , ~ ~ )  
position. The remaining three terms count the numger of single pieces that occur in 
the first position, in particular the number of pieces with a cut in position a, (term 2) 
less the number of pieces containing a cut between 0 and a, (term 3 + term 4). The 
final constraint counts the total number of patterns used Z,. 
(R4) can also be obtained by eliminating the variables to,, in (Rz). 

Example. 

Q = {x I 2x1 + 3x2 + 5x3 G 6, xi 2 0 and integer}. 

(wi ,  wz, ~ 3 )  = (8,3,4). 
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(R3) 

max 8e(2)+ 3 q 3 )  + 40(S) 

L e ( i ) +  e(2) - e(3) s o ,  q 1 2  
2 0 (2) - O(4) s o ,  7722 

W) + @(3) - W )  s o ,  q 2 3  

0 ( 2 )  + O(4) - O(6) s 0, 7724 

W )  + e(3)  - e(4) so?  7713 

20(3 )  - e(6) s 0, q x 3  

W )  + e(s) - e(6) 0, 7 1 5  

e ( 6 ) s  1, zo 
8 ( A )  3 0,Z" 2 0. 

Remark. The formulations (RJ-(R4) can be used in column generation proce- 
dures, as in the standard Gilmore and Gomory (1961) approach. The new column at 
iteration k is generated by taking the current variables n-' and solving: 
max{.rrkx 1 x E Q}. Supposing X' is the optimal solution, either r k x k  = 1 and the 
algorithm terminates, or n k x k  > 1, and at least one of the constraints: O ( A ) +  
(?(a,) s 6(A + a,) is violated for some r with xs = 1, and can be added to generate 
the new problem at iteration k + 1. 

Example (cont). Starting from 

max 8e(2)+38(3)+48(S) 

s.t. e( i )+ e ( 2 ) -  e(3) s 0, 

20(3) e(6) s 0, 

+ e(S)- e(6) s 0, 

e(6) s 1, 
0 (1) 

B ( A )  2 0, 
we solve the LP to obtain 

n- l  = e = (o , ; , ? ,~ ,  I, 1). 

Solving 

max fx,  + ixz + Zx, 

s.t. 2x1 + 3x2 + 5x3 s 6, X, E {0, l}, 

we obtain the optimal solution x 1  = (3,0,0) with r l x l  = $> 1. 
The solution x '  indicates immediately that at least one of the constraints 
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(n, 0 , ~ )  
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& ( A )  5 &](A - a,) + T, 
r = 0,1,. . ., n 

A C b , A E Z ,  
e w a  @,-,(A) 

8,(0) 5 0 

2e(2)- o(4) SO 

e(2) + e(4) - e(6) s o 
is violated. 

Solving 
Adding these constraints and resolving the LP, we obtain d = 8 = (0, f ,  $, $,1,1, ). 

max f x l  + f x z  + 1x3, 

s.t. 2x ,  + 3x,  + 5x, S 6, x, E {O, l}, 

we obtain an optimal solution x z  = ( O , O ,  1) with r z x 2  = 1 and therefore 7 ~ ’  is the 
optimal solution. 

4. Further dynamic polytopes 

Various other dynamic programming recursions generate polytopes of valid 
inequalities in a natural way. We consider two examples. 

( 1 )  The travelling salesman problem 

A well-known recursion for the problem [S] is the following: 

f ( S , j )  = minic,, + f ( S  -1, i ) }  

over all i E S - J ,  where c,, is the distance from i to j ,  and f(S,j) is the minimum 
length path which starts at vertex 1, visits all vertices in S,  and terminates at j E S, 
where S C N = {1 ,2 , .  . ., n}. Q is the set of all tours and G ( S , j )  the shortest length 
path with arc lengths 7r,k. 

We obtain the dynamic polytope: 

r = { ( ~ , k , e ( ~ , j ) ) ) e ( s , ~ ) ~ . r r , + e ( s - ~ , i ) v i ~ s - j , . r r , k  s o , e ( s , j p o } ,  
for the valid inequalities c c ?Ttkx,k 2 r0 for Q (denoted ( T # k ,  no)). 

Lemma 4.1. ( T i e ;  no) is a valid inequality for Q if and only if there exist values 
e(s,j) such that ( T i k t  e(s,J)) E r with r0 = 8(N,  1). If ( r i k ,  no) is extreme among the 
valid inequalities for Q, then ( n i k ,  G(S,  j ) )  is extreme in with no = G ( N ,  1). 
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with & ( A )  defined for r = 0,1,. . ., A S b, A E Z,, generating valid inequalities: 
CT,X, S G,(b) for Q where T, - + + w  if there is no  solution with x, = 1, or 
6,(A)-+-w if Q,(A) has no  solution. 
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For B = { O ,  l} and ordered sets (H,  C ) the objective f : B" --* H shall be maximized under the 
restriction x E S C B". The Greedy algorithm can be formulated for this problem without 
difficulties. The question is for which objectives f and which restrictions S one can use the 
algorithm to solve the above defined Boolean optimization problem. Dealing with this question, 
it  turned out to be useful to replace the objective by a preorder. The problem then is to determine 
a maximum of a given preorder on B" in S C B". Concerning some partial orders on B" problems 
are characterized for which the optimal solution does not depend on the special choice of the 
objective. Assumptions with regard to S are closely related to matroid theory; in view of the 
preorder a certain monotonicity condition is important. The dual greedy algorithm and a 
modified form of it leads us to the definition of dual partial orders. Herewith it is possible to 
characterize those S C B" for which the greedy algorithm and its dual determine the same vector. 

1. Introduction 

For B = (0,l) and an ordered set (H,  S )  consider the Boolean optimization 
problem (BOP) 

max f ( x )  
X E S  

with a function f : B" + H and a subset S of B". During the last years, it appeared 
that it is very unlikely to expect "good" algorithms - in the sense of Edmonds' 
polynomial bounded algorithms - for such arbitrary zero-one problems. O n  the 
other hand there are "good" algorithms for special problems, for example the 
greedy algorithm. In this paper we describe a class of problems which can be solved 
by the application of this algorithm and/or its dual. The greedy algorithm has been 
treated before by Kruskal [S], Edmonds [5 ] ,  Gale [6], Dunstan and Welsh [4], 
Magazine, Nemhauser, and Trotter [lo], and others. 

2. Some binary relations on B" (combinatorial structure) 

Let us introduce some notations for binary relations R on B". R is called a partial 
preorder, if it is reflexive and transitive; if the adjective "partial" is omitted, then 
either xRy or yRx must hold; if the prefix "pre-" is omitted, then R is 
antisymmetric. 

539 
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Between the subsets of N = {1,2,. . ., n }  and the vectors of B" there is an 
one-to-one correspondence; every vector x is the incidence vector of its support set 
T ( x )  := { i  E N I x, = 1). The subvector relation 

(2.1) y C x : T ( y ) C  T ( x )  

is thus a partial order on B". Corresponding to the union of the support sets we 
define an addition 

1 if x, = 1 or y ,  = 1 

{ 0 otherwise, 
(2.2) 

for all i E N. (B", + )  is a semigroup. For an arbitrary nonempty subset S of B" let 
be 

( x  + y J  : = 

s:= { y  E B" 1 3 x  E S : T ( y )  C T ( x ) } .  

We can compute the lexicographical maximum x(S) by application of the greedy 
algorithm (A)  

(1) x : =  o ; j : =  1; 
(2) if x + e, E S, 
(3) if j = n, 

otherwise 

(2.3) Definition. 
(bijective) function cp : T ( x ) +  T ( y )  such that 

set x : =  x + e , ;  

stop, 
set j : =  j + 1; return to (2). 

Let x,  y E B". Then x ~ ' y  ( x  L~ y )  if there exists an injective 

cpo')sj, vj  E T ( x ) .  

The two binary relations defined in (2.3) are partial orders and have the following 
properties: 

(2.4) Proposition. Let x, y E B". Then 
(1) x * x L ' Y ,  
(2) X C Y  =+ X L l Y ,  

(3) x i ' y  =s- x < y. 

Proof. 
j .  Suppose y < x and let k be 

the minimal element in ~ ( x ) ,  ~ ( y ) .  Then cp [ Tk ( x ) ]  c Tk ( y f  but I T k  ( x )  1 = 

I T , ( y ) /  + 1 with T k ( x )  :={i  E T ( x ) l  i - k } .  This is a contradiction to the injectivity 

(1) and (2) follow immediately by definition. 
(3) Let cp : T ( x ) +  T ( y )  be injective with cpG) 

of Cp. 

(2.5) Definition. 
called a maximum (minimum) of S with regard to R i f  

Let R be a binary relation on B" and S C B". Then x E B" is 

(1) x E s, 
(2) Y R X  ( X R Y ) ,  VY ES. 
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The set of all such maxima is denoted by maxR (S). If R is a partial order, then 
the existence of a maximum implies its uniqueness. Furthermore, (2.4) yields 

(2.6) Corollary. 
R,  then x = x ( S ) .  

(respectively L') are closely related to matroids. Let be T ( S ) : = { T ( x )  1 x E S } .  

Let R E { L ~ ,  L', c }. I f x  E B" is the maximum of S with regard to 

The subsets of B" which have a maximum with regard to the partial order L~ 

(2.7) Definition (bases). Let B c B". Then M = M ( N ,  T ( B ) )  is a matroid, if 
(2.7.1) for all I, J E T(B) ,  I e  J A Jg I, provided I# J ;  
(2.7.2) for all I, J E T ( B ) ,  if j E J, then there exists an element i E I such that 

(J\{il) u {il E W). 
The elements of T ( B ;  are called the bases of the matroid M. All bases have equal 

cardinality. 

(2.8) Definition (independent sets). 
troid, if 

Let S C B". Then M = M(N,  T ( S ) )  is a ma- 

(2.8.1) for all J E  T(S) ,  I C J  + I €  T ( S ) ;  
(2.8.2) for all I, J E T ( S ) ,  if I I /  < 1 J 1, then there exists an element j E J such that 

The elements of T ( S )  are called the independent sets of the matroid M. (2.7) and 
(2.8) are equivalent definitions as known from matroid theory. The bases are the 
maximal independent sets and vice versa a subset of a base is an independent set. 

I U{j}E T ( S ) .  

(2.9) Definition. 
IT E P,,, 7i : B" + B" is the bijective function defined by [ &(x)],(~) : = xi  for i E N. 

The relationships between matroids and the partial orders defined in (2.3) are given 
by a theorem corresponding closely to the results of Gale [6]. 

Denote the set of all permutations IT : N + N by P,. Then for 

(2.10) Theorem. 
ments are 

Let B c B "  such that (2.7.1) holds for T ( B ) .  Equivalent state- 

(2.10.1) M = M(N,  T ( B ) )  is a matroid, 
(2.10.2) for all IT E Pn there exists the maximum of + ( B )  with regard to L ~ .  

Before proving (2.10) we state an equivalent theorem which can be verified by (2.7), 
(2.8), and (2.3). 

(2.11) Theorem. 
are 

Let S C B" such that (2.8.1) holds for T (S) .  Equivalent statemen( 

(2.11.1) M = M(N,  T ( S ) )  is a matroid, 
(2.11.2) for all IT E Pn there exists the maximum of k ( S )  with regard to L'. 
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Thus matroids yield special examples for subsets of B“ which have a maximum with 
regard to L~ (respectively L’). 

Proof of (2.10) ( =+ ) If M = M(N,  T ( B ) )  is a matroid, then 7rM = 
M ( N ,  T ( + ( B ) )  is a matroid for all rr E P,,. Thus we have to show only the existence 
of the maximum of B with regard to L’. Let x = x ( B )  and choose y E B. Let 

T ( x )  = { i l ,  i*, . . .) i , } ,  i l  < i 2  < * * * < i,, 

T ( y ) = { j l , j z  ,..., j , ) ,  j l < j 2 < . . . < j  r .  

If ik s j k  holds for all 1 c k =S r then y L’ x. Otherwise suppose rn :=min{k I 
ik > j k } .  Since T ( B )  is the set of bases of a matroid, it follows from (2.7) and (2.8) 
that there exist 

j E { j l ,  j 2 , .  . - , j m } ,  

z,,,+~, . . ., i t €  {i,,,,. . ., i,} . I  

. . I  such that { i l , .  . ., i m - l , j ,  I , , , + ~ ,  . . ., i:}€ T(B) .  Let x ’  be the incidence vector of this 
set. Then by x $  X ‘  we have a contradiction. 

1 is 
very easy. Otherwise suppose the existence of i E T(u)\  T ( u )  such that 

( + ) We have to verify (2.7.2). Let u, u E B. The case 1 T(u)\  T(u)l 

( T ( u ) \ { i } ) U { j } 6 i  T ( B )  V j E  T(u)\ T (u) .  

Now we choose rr E P,, such that elementwise we have 

(2.12) 7r [T(u)n ~ ( v ) ]  < T [ ( T ( u ) \  T(u))\{i}] < rr[T(u)\ T (u)J  <  rest]. 

Let be x = x ( + ( B ) )  which is the maximum of +(B) with regard to L~ by (2.6). 
Clearly 

IT(~) l= IT(u) l= IT(x) l ,  

7 j ( u ) <  7 ; ( u ) s x  = : + ( Z ) .  
f 

By virtue of (2.12) it follows that there exists an element j E T ( u )  \ T ( u )  such that 

W )  = (T(u) \ {i}) U { j l  

and hence a contradiction. 

(2.13) Lemma. Let a E B”. Then B : =  {x E B“ ( x  L’ a }  defines a matroid M = 

M ( N ,  W)).  

Proof. 
be x, y E B and x #  y .  From the definition of B it follows that 

We have to verify (2.7.1) and (2.7.2). If I B I = 1, this is trivial. Otherwise let 

I W)I = I T(a)l= I T(Y)l 
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which implies (2.7.1). Let be i E T(x)\ T(y) .  If there exists j E T(y) \  T ( x )  such 
that i < j ,  then 

T(x'):= (T (x ) \ { i } )U{ j }E  T ( B )  

for 1 L' x. Otherwise define 

j : =  max(T(y)\  T(x ) ) .  

Then j < i  and I T k ( x ) l < ( T k ( y ) l  for all j C  k C i ,  and therefore for 
T ( 1 ) : =  ( T ( x ) , { i } ) U { j } ,  

As x L ~ U  and y ~~a this implies 

1 Tk(x')l < I Tk(a)l  for all 1 s k s n. 

This is equivalent to 1 L; a. By 1 T(x')l = 1 T ( a ) (  it follows that x' L' a, i.e. x' E B. 

The set B in the preceding lemma is a special case of a regular set with regard to 
a partial order. 

(2.14) Definition. Let be S 
regular with regard to R, if for all x E S 

B" and R a partial order in B". Then S is called 

y R x  +- Y E S .  

In this sense the set is a regular set with regard to C . Regular sets with regard to 
L' have been considered in the literature by Hammer, Johnson and Peled [7] and 
Wolsey [ll]. (2.10) and (2.13) imply 

(2.15) Theorem. 
statements are equivalent : 

Let be B CB" a regular set with regard to L ~ .  The following 

(1) M = M ( N ,  T ( B ) )  is a matroid, 
(2)  there exists the maximum of B with regard to L'. 

In [ll, Theorem 5.51 Wolsey proves an equivalent theorem, which is in our notation 

(2.16) Theorem. 
statements are equivalent: 

Let be S c B "  a regular set with regard to L'. The following 

(1) M = M ( N ,  T ( S ) )  is a matroid, 
(2 )  there exists the maximum of S with regard to L;. 

The class of regular sets with regard to L~ and the class of sets which yield a 
matroid thus only overlap in a very special case. 
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3. Reformulation of the BOP (algebraic structure) 

A given objective function f induces a preorder on B" by  

An equivalent formulation of (Pl )  is therefore 

(P2) Determine x € max 5 (S). 

Without loss of generality we only consider functions with the property 

(3.2) 

or in view of (P2) 

(3.2') 

f ( e , )  c f ( e , - J  6 . . 1 s f ( e l )  

en 5 en-1 5 . . . $ e l .  - 
Apparently this coincides with the lexicographical ordering of the unit vectors. 

(3.3) Definition. 
semigroup if for all x, y€ B" and all e, 

Let 5 be a preorder on B". (B", + , <) is called a preordered 
x + y ( M )  holzs: 

(M) X Z Y  * x + e , $ y + e , .  

The monotonicity property (M) is a restriction of the choice of f (resp. of the 
preorder). In view of (Pl) there is an important example of a preordered 
semigroup. 

(3.4) Example. Let (H,  *, c) be an ordered semigroup, that is 
(3.4.1) (H,  S )  is an ordered set, 
(3.4.2) (H,  *) is a semigroup, 
(3.4.3) a 6 b + a * c c b * c, Va, 6,  c E H, 

and define with c,, ct, .  . ., c, E H a special objective 

(3.4.4) f(x):= * c, 
X I  = 1 

Then f is well-defined and induces a preorder 5 - 
preordered semigroup. 

such that (B", + ,s) - is a 

Proof. Let x~ y and e,p x + y .  Then x, = y, = 0 and therefore 

f ( x  + e / )  = f ( x )  * c, f ( y )  * c/ = f ( Y  + e J )  

which implies x + e , s  y + e, by definition. - 
The vectors of B" have a canonical representation by unit vectors 
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(3.5) x = C xi e, 
t = 1  

545 

with 0 .  e , : =  0 and 1 * e, = e, for i E N. 

(3.6) Definition. 
empty put k : =  n + 1). Then 

Let 5 be a preorder on B", k : = min { j  E N I e, <_ - 0) (if the set is 

x + : =  C xi * e i  
i c k  

(3.7) Definition. Let T ( x )  = { j l ,  j 2 ,  . . ., j , }  with jl < j z  < * . . < j,. Then x(') is given 

by 

T(x"') = { j l , j Z ,  . . .,jmt"(r,,)} for i E N. 

The special subvectors defined by (3.6) respectively (3.7) have some useful 
properties in preordered semigroups. Let be 11 x I/:=/ T ( x ) ( .  

(3.8) Proposition. Let (B", + , 5) - be a preordered semigroup. r = IIx 1). Then 
(3.8.1) o < x +  
(3.8.2) y L ' X  -a y z x +  

(3.8.4) 
(3.8.3) (1 y I (  = i A y L I X  y - < X I ' )  

there exists t E N such that x(') = x+, 

X ( ' ) < X ( z ) < . .  . < x ( ' - - L ) < x + )  

x'''< X ( r - l ) < .  . . < x('+l)s x + .  
= = = z  = 

- - = - =  

(3.8.1)-(3.8.4) follow by the monotonicity property (M) and (3.2'). Let us consider 
for example (3.8.2). Let cp correspond to the definition of YL'X. Then, by repeated 
application of (M) 

y = C y, * e z s  C y, . e , , , )  =: yf 

for c p ( i )  i implies e, 5 e,+,(,) by (3.2)'. Analogously - 

with k as defined in (3.6). 

The application of the greedy algorithm to S yields step by step the sequence 

(3.9) x(')  , x(2) 9 x ( 3 )  ,..-, x ( ' ) =  x ( S )  

thus by (3.8.4) it is possibl- &-  determine x(S)'. An immediate consequence of 
(3.8.2) and (2.6) is 
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(3.10) Theorem. Let 5 be a preorder on B" and S c B". If 
(3.10.1) 
(3.10.2) 

(B", + , 5 ) 15- a preordered semigroup, 
there exists the maximum x of S with regard to L', 

then y - 5 x+,  V y  E 9. 

The two assumptions describe a class of problems which can be solved by the 
application of the greedy algorithm. After the determination of X +  one has to check 
whether X +  E S or not. If x t  E 9, S, then it is only an upper bound. If S = 9, then 
x +  is a solution of (P2). The following theorem implies by (3.8.4) Theorem (3.10). 
Let usdenote S , : = { x E S [ I l x I ( = i } .  

(3.11) Theorem. The assumptions of (3.10) yield for ail 1 S i s I( S /I:= 
max{llx Ib E S )  

y <, X(I), vy E ( S ) , .  
The theorem follows from (3.8.3) and (2.6). The two theorems refer to different 

combinatorial structures. 

(3.12) Corollary. 
defined by (3.4), then 

Let B C B". If M = M ( N ,  T ( B ) )  is a matroid by (2.7) and 5 - is 

x ( B ) E  max s ( B ) .  

(3.13) Corollary. 
defined by (3.4) then 

Let S c B". If M = M ( N ,  T ( S ) )  is a matroid by (2.8) and 5 - is 

[x(S)]+ E max z ( S ) .  

The two corollaries follow from (3.11) respectively (3.10) and (2.10) respectively 
(2.11). We consider the following class of functions in view of (Pl): 

(3.14) Definition. Let F denote the set of all functions f : B" -+ H with 
(3.14.1) (H,  c )  is a n  ordered set, 
(3.14.2) f(e,) s f(e,-,) S . . . c f ( e l ) ,  
(3.14.3) (B", + ,s - ) is a preordered semigroup with regard to 

the preorder induced by f .  

(3.15) Corollary. 
choice of the objective f E F, [x(S)]+ is a solution of the problem maxxEsf(x). 

Let S c B" with S = 9. If (3.10.2) holds, then regardless of the 

This follows from (3.10). Clearly there is an analogous corollary corresponding to 
(3.11). 

(3.16) Corollary. Let B C B" with 11 y 11 = IIB 1) V y  E B. If (3.10.2) holds then 
regardless of the choice of the objective f E F x ( B )  is a solution of the problem 
maxxEs f(x). 

values of the objective function for the unit vectors. 
These corollaries reflect the  fact that the greedy algorithm only considers the 
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At the end of Section 2 we introduced regular sets with regard to L'. As shown by 
(2.16) in this case the assumption (3.10.2) implies that M = M ( N ,  T ( S ) )  is a 
matroid. Results for more general regular sets with regard to C and L' are given 
by Hammer, Johnson and Peled in [7]. If the objective "agrees" with the partial 
order R,  that is 

(3.17) x R y + f(x) f (y) ,  vx, Y E B", 

then 

(3.18) max 5 S max 5 SR 

clearly holds for S CB", S R : =  {x E B" I 3 y  E S : x R y } .  

(3.18). In this case the BOP (Pl) is equivalent to 
If distinct vectors in (3.17) imply distinct function values, then equality holds in 

(P3) max f(x). 

As shown in [7] Sc can be described by the restrictions of a covering problem, that 
means all restrictions are of the form 

XCSR 

( l - x j ) z l ,  with J C N .  
j € J  

In the case R = L' a further simplification is possible and developed in [7]. 
In connection with covering problems the partial order i ' h a s  been considered by 

Bowman and Starr [ l] .  They present an enumerative algorithm for the problem of 
maximizing a partial order on B", which fulfills (3.2)' and (M) in (3.3). If in this 
section 5 denotes only a partial preorder, then under the additional assumption to 
(3.2') 

( 3 . 2 )  0 5  en or e , < 0  or there exists k E N,(1) such that e k z O <  e k - ]  

all results hold which refer to 5 .  

- 

- = += 

- 

4. Dual partial orders 

(4.1) Definition. 
R ' ,  defined by 

Let R be a partial order on B". Then the dual partial order of R is 

x R' y : G(y)RG(x)  

with aEPn,  a ( i ) : = n - i + l  for IEN.  

Partial orders and their duals may coincide more or less 

(4.2) Proposition. (1) x C ' y  C y C x, 
(2) x L b ' y  - x L b Y .  
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In view of proposition (2.4) the dual partial orders of those partial orders defined 
by (2.1) and (2.3) have analogous properties. 

(4.3) Proposition. (1) y C x =+- x L~ y, 
(2) X L b Y  * X L I ' Y ,  

(3) x L I ' y  * x < ' y .  

In connection with dual partial orders we consider a modified greedy algorithm 

(1) x:=O; j : =  n ;  
(2) if x + e, E S, set x:= x + ei;  
(3)  if j = 1, stop, 

otherwise set j := j - 1 and return to (2). 

(A') 

The output vector of this algorithm applied to S C B" shall be denoted by x ' ( S ) .  
The application of (A') to S *  := (1 - x I x E S} is called dual greedy algorithm. 

(4.4) Proposition. x'(S) is the minimum of S with regard to <'. 

Proof. 
Hence x'(S) = x(&(S)). (4.4) follows by (4.1). 

The application of (A') to S is equivalent to the application of (A) to & ( S ) .  

For an arbitrary set S the four vectors representing the maxima respectively the 
minima of S with regard to  < respectively to <' may be pairwise distinct. For 
example, take S = {x, y, u, v }  with 

x = (1 0 0 lo), 

y = (0 11 00), 

u = (0 1 0 0  l), 

u = (00 1 lo), 

maximum with regard to < , 

maximum with regard to <', 

minimum with regard to =S', 

minimum with regard to < . 

(4.5) Proposition. Let R E { C , _> , L ~ ,  L', L", 6 ,  < '}. Then 

X R Y  ( l - y ) R ( l - X ) .  

Let us show this for example in the case of R = L'. Equivalent to the left side 
there is 

I Tk(x)( I Tk(y)( ,  v1 k n 

and this is equivalent to 

1 T k  (1 - x)  I 3 I T k  (1 - y ) 1, v 1 k s n. 

The rest follows analogously to the first equivalence. An immediate consequence of 
(4.5) is the next proposition. 
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(4.6) Proposition. 
the minimum of S with regard to < . 

1 - x'(S*)  is the maximum of S with regard to <'. 1 - x ( S * )  is 

The lexicographical maximum or minimum of S as well as the dual lexicographi- 
cal maximum or minimum of S can be computed by the application of (A) or (A') to 
S or S*. 

(4.7) Theorem. Let B B". The following statements are equivalent : 
(4.7.1) 
(4.7.2) 

there exists the maximum x E B with regard to L~ 

there exists the common maximum x E B with regard to L~ and L'. 

An implication of (4.7.1) or (4.7.2) is 

(4.7.3) x ( S )  = 1 - x'(S*) .  

Proof. 
then follows by definition I( x 11 6 1) y 11 < 1) x (1 and therefore y L~ x .  

(4.7.1) implies (4.7.2) by (2.4) and (4.3). Reversely, if y L " X  and y L ' X ,  

(4.7.2) implies (4.7.3) by (2.6), (4.3) and (4.6). 

If (4.7.1) or (4.7.2) hold, the dual greedy algorithm yields the complement of the 
lexicographical maximum of S. This may be impdrtant in view of problem (Pl). The 
crucial point - in the application of the greedy algorithm is the test whether x E or 
not. If x E ( S * )  is easier to  check, then one will prefer the dual greedy algorithm. 

5. Remarks 

The combinatorial structure of problems for which the greedy algorithm is valid 
is closely related to matroids. The corresponding algorithm for the intersection of 
two matroids, namely the weighted intersection algorithm of Lawler [9], has not yet 
been considered in this way, but similar studies have been published by Burkard, 
Hahn, and Zimmermann [3] as well as Burkard [2] about the assignment problem 
which is a special example of the intersection of two matroids. Already in this 
special case it turned out that similar results as in (3.15) cannot be attained, yet an 
algorithm is stated in [3] which solves the assignment problem with generalized 
objectives. 
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INTEGER LINEAR PROGRAMMING WITH 
MULTIPLE OBJECTIVES* 

Stanley ZIONTS 
School of Management, State University of New York ar Buffalo, Buffalo, N Y ,  U.S.A. 

Although it may seem counterintuitive, a method for solving multiple criteria integer linear 
programming problems is not an obvious extension of methods that solve multiple criteria linear 
programming problems. The main difficulty is illustrated by means of an example. Then a way of 
extending the Zionts-Wallenius algorithm [6] for solving integer problems is given, and two types 
of algorithms for extending it are briefly presented. An example is presented for one of the two 
types. Computational considerations are also discussed. 

1. Introduction 

In [6] a method was presented for solving multiple criteria linear programming 
problems. Because integer programming is a generalization of linear programming 
in that a subset of variables may be required to take on integer values, it is 
reasonable to ask if multicriteria integer problems can be solved by an obvious 
extension to the method: solving the multicriteria linear programming problem 
using that method and then using the associated multipliers to solve the integer 
problem. In general, unfortunately, such a procedure is not valid. Assuming that 
the implicit utility function of the decision maker is a linear additive function of 
objectives, the general idea can be modified into a workable algorithm for solving 
mixed or all integer programming problems involving multiple objectives. 

Numerous approaches to various problems involving multiple objective functions 
have been proposed. B. Roy [3] discusses a number of them. He also develops a 
typology of methods [3, p. 2401: 

“1. aggregation of multiple objective functions in a single function defining a 

2. progressive definition of preferences together with exploration of the 

3. definition of a partial order stronger than the product of the n complete 

4. maximum reduction of uncertainty and incomparability.” 

complete preference order; 

feasible set; 

orders associated with the n objective functions; 

To put things into perspective, the approach of [6] is a combination of 1 and 2 in 
that an aggregation of the functions is accomplished by an interactive process in 

* An earlier version of this paper has also been issued as Working Paper 75-32 of the European 
Institute for Advanced Studies in Management in Brussels. 
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which preferences are expressed. The use of multiple criteria in an integer 
framework has been mentioned in [6] and more recently in [1] and [4]. 

The plan of this paper is to first indicate why noninteger methods cannot be 
extended in an obvious way to solve multiple criteria integer problems. Then two 
extensions of the method of [6] for solving integer problems are developed, an 
example is solved, and some considerations for implementation are given. In an 
appendix the method of [6] is briefly overviewed. 

2. Some considerations for solving multiple criteria integer problems 

The problem to be considered is a mixed integer linear programming problem. 
Let the decision variables be a vector x of appropriate order where some or all of 
the variables are required to take on integer values. Denote the set of integer 
variables as J. The constraint set is then 

Ax = b 

x 3 0  

x,, j E J integer, 

where A and b are, respectively, a matrix and vector of appropriate order. In 
addition we have a matrix of objective functions C where row i of C gives the ith 
objective C,. Each objective of u is to be maximized and we may thus write 

Iu - c x  6 0. (2) 

The formulation (1) (2) is the most general formulation of the multiple criteria 
integer programming problem if one grants that any nonlinearities are already 
represented in the constraints (1) using piecewise linearizations and integer 
variables as necessary. If we accept that the implicit utility function is a linear 
function (as was done originally in [6]) of the objectives u, we may therefore say 
that our objective is to maximize Au where A is an unknown vector of appropriate 
order. Were A known, the problem of maximizing Au subject to (1) and (2) would 
be an ordinary integer programming problem. Such a problem could be solved 
using any method for solving integer linear programming problems. The problem is 
that h is not known. 

In an earlier paper [6] Wallenius and I developed a method for solving linear 
programming problems having multiple objectives. That method is briefly summar- 
ized in the appendix. The method has been extensively tested and seems to work in 
practice. A natural extension of that method would appear to be an extension for 
solving problems involving integer variables: 

1. Solve the continuous multiple criteria problem according to the method of [6]; 
2. Using the multipliers obtained in step 1, solve the associated integer linear 

programming problem. 
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Unfortunately as the following simple example shows, that extension does not 

Given the constraints: 
necessarily work. 

XI + 4x2 c 3; 

xl, xz 5 0 and integer 

with objectives u1 = xl, and uz = x2 then provided that the true multipliers A,  and A 2  
(> 0) satisfy the following relationships 

h1  > fh2 

hl < 3Az 

then the continuous solution x1 = 2.34, xz = 2.34 is optimal. However, for this 
problem there are three optimal integer solutions corresponding to the same 
continuous optimum depending on the true weights: 

If 3Az > A l  > 2Az, then x1 = 3, xz = 0 is optimal; 
If 2Az > h l  > O S A , ,  then xI = x2 = 2 is optimal; 
If 0.5Az > A l  > !A2, then x1 = 0, xz = 3 is optimal. 

The example could readily be made more complicated, but it serves to show that 
further precision may be required in the specification of the multipliers than only to 
identify the multiplier valid at a noninteger optimal solution. (Further precision is 
not always required; change the constraint value of the problem from 3.125 to 2.99.) 

3. Adapting the Zionts-Wallenius method for solving integer programming 
problems 

To further specify the multipliers A to find the optimal integer solution, it is 
necessary to ask additional questions of the decision maker. There are numerous 
ways in which this may be done, and we shall explore two cf them. Both of these 
proposals represent untested procedures. 

3.1. A branch and bound approach 

We first consider branch and bound algorithms. The multiple criteria method can 
be altered to work in a branch and bound integer framework. To do this we first 
present a flow chart of a simple branch-and-bound algorithm, [5, p. 4161 in Fig. 1. 
As usual, [y]  is the largest integer not exceeding y. The idea is to solve a sequence 
of linear programming problems thereby implicitly enumerating all of the possible 
integer solutions. The best one found is optimal. The procedure of Fig. 1 cannot be 
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Tc Halt 
optimum 

S. Zionts 

Choose an integer 
variable Xk whose 
solution value Vk 
is not an integer. 

Select solution with the maximum 
objective function value from l is t ,  
I f  l i s t  is  empty halt: there is no 
feasible integer solution to  the problem. 

FIG. 1. Flow Chart of a Simple Branch and Bound Algo r i t hm 
Taken f r o m  [S, page 4161. 
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used directly, but must be modified. The modifications wh'ich are to be made are 
based on the following theorem. 

Theorem. 
list) provided the following two conditions hold : 

A solution can be excluded from further consideration (not added to the 

(1) the decision maker prefers an integer solution to it, 

Solve multicriteria linear programming 
problem obtained by relaxing integer 
constraints. If solution satisfies 
integer constraints, stop. 

Yes Discard 

Solution 

- the conditions of the 

I 

Choose an integer variable xk whose 
solution value yk is not integer. 

Solve two problems, each having adjoined 
one of the following constraints: 

Xk 5 [Ykl 

Xk 2 [Ykl -+ 1 
Exclude any infeasible solutions 
from further consideration. 

FIG. 2. 
Flow Chart of a Branch and Bound Multicriteria 

Integer Linear Programming Method 
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P 
f' Test each of the newly generated solutions against 

the best known integer solution. I f  the best known 
integer solution i s  preferred to or is indifferent to 
a solution and none of the efficient tradeoffs from 
the solution are attractive to the decision maker, 
discard the solution; otherwise add it to the list. 
I f  an integer solution is preferred to the best known 
integer solution, such a solution becomes the  best 
known integer solution. (The previous best known 
integer solution may be discarded if the conditions 
of the theorem are satisfied.) Change objective 
functions whenever the old objective function 
weights no longer satisfy constraints constructed 
from decision maker's responses. 

g' Choose next branching solution. Choose one of the 
newly found solutions i f  possible." I f  there are two, 
choose the most (least) preferred. Otherwise choose 
the most (least) preferred solution from the list. 
If the l is t  is empty, an optimal solution has been 
found; stop. I f  the solution i s  not optimal 
with respect to  the current composite objective, 
find the optimal solution for the current 
composite objective. 

FIG. 2 (Continued) 

* A depth first strategy has been adopted. 
I t  is an option that may or may not be 
desirable. 

(2)  all efficient tradeoff questions associated with the solution are viewed negatively 
or with indifference. 

Proof. As shown by the decision-maker's preference the known integer solution 
has a greater objective function value than the solution in question. Further, since 
no continuous neighbor is preferred to the solution, any further restricted solution 
will have a lower objective function than the solution in question and therefore the 
integer solution. 
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x1 

~2 

u1 

~2 

We were tempted to weaken the second condition of the theorem to a 
comparison between the known integer solution and the efficient adjacent extreme 
point solutions of the solution in question by using a slight alteration to our method 
proposed by Fandel and Wilhelm [2]. Unfortunately, such a change is not valid 
here. 

The question of preference is first checked by comparing the preference 
relationship with previously expressed preferences (derived from responses) to see 
whether or not the preferences can be deduced. If that is the case the preference is 
known; if not a question is posed to the decision maker, and the responses further 
restrict the multiplier space. Whenever a new set of multipliers is found they are to 
be substituted for the old set. An algorithm based on the above presentation is 
given in Fig. 2, and an example will be solved using it. 

The letter references correspond in the two figures. Substantial changes have 
occurred in blocks f and g. Where “most (least) preferred” are indicated are 
option-points. We have chosen the one not in parentheses, arbitrarily, but not 
because we have evidence it is superior. Many other options are possible, such as 
the use of penalty methods in choosing the branching variable, etc., but we have 
generally ignored such considerations in this paper. 

We now present an example, the example presented in Section 2 .  We use the 
algorithm of Fig. 2 assuming that the true weights are hl  = 0.7, h2 = 0.3, but that the 
weights chosen at the continuous optimum are A 1  =0.3, A * =  0.7. The tree of 
solutions is given in Fig. 3, and the number in each block indicates the solution 
number - the order in which each solution is found. (The shaded region is what 
also would have been generated if every branch had to be terminated either in an 
integer solution or an infeasible solution without terminating any branches 
otherwise.) (For this problem no solution had to be re-solved.) 

Table 1 is the optimal continuous solution, where xs and xq are the slack 
variables. (The identity matrix has been omitted.) 

X3 X4 

2.34 1.125 - 0.375 
2.34 -0.375 1.125 

2.34 1.125 - 0.375 

2.34 -0.375 1.125 

The questions to Table 1 are both efficient (this is not demonstrated) and the two 
questions are found in the last two rows of the table: Are you willing (for variable 
x,) to decrease ul by 1.125 units and increase uz by 0.375 units? A simulated 
response is obtained by using the true weights. Here we compute - 1.125(.7) 
+ 0.375(.3). Since the sum is negative, the simulated response is no. Are you willing 
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(for variable x,) to increase u1 by 0.375 units by having u2 decrease by 1.125 units? 
(Simulated response: no). The negative responses confirm the optimality of the 
solution to Table 1. The constraints are then 

A, > !A2 

A1 < 3&. 

By using A ,  + A 2  = 1, we have on eliminating A t :  

0.25 < A l  < 0.75. 

As indicated above we use A 1  = 0.3 (noting that the true value is A, = 0.7). Solving 
the two linear programming problems by branching on x1 from the noninteger 
optimum we have solutions 2 and 3. Which is preferred is not obvious and we 
illustrate the test. Solution 3 has a utility of 3A1 + 0.375A2. Solution 2 has a utility of 
2A1 + 2.458A2. The difference between the utility of solution 3 and that of solution 2 
is 

A1 - 2.0833A2 - 0 .  

On using A2 = 1 - A ,  we have 

3.0833A1 - 2.0833 0. 

Because 0.25 < A 1  < 0.75, the term can be either positive or negative (in general two 
small linear programming probIems must be partiaIIy solved to know this); hence a 
question is asked. Using a simulated test of preference, as above, the decision 
maker prefers solution 3, and we have a new constraint. 

3.0833A1 - 2.0833 > 0 or A 1  > 0.675. 

Thus we now have 0.675 < A 1  < 0.75 so we choose A 1  = 0.72. We then branch on 
solution 3 to find solutions 4 and 5 (not feasible) and then branch on solution 4 to 
find solutions 6 and 7 (not feasible). To this point there have been no known integer 
solutions; thus the tests against the best known integer solution have been 
suppressed. Since solution 6 is integer, it becomes the best known integer solution. 
Next we choose the only remaining solution on the list, solution 2. As the 
comparison with solution 6 is not implied, the decision maker is asked which 
solution he prefers. He prefers solution 2; then the constraint 

A, - 2.4583A2 < 0 or A, < 0.711, 

is added and we have 0.675 < A 1  < 0.711 and we choose A 1  = 0.69. We next branch 
on solution 2; this yields solutions 8 and 9. Both solutions may be discarded because 
the conditions of the theorem are satisfied. (The constraints on the A's are 
sufficiently tight that all preferences are implied and no questions need to be 
asked.) Since there are no other solutions on the list, solution 6 has been found to 
be optimal. The method of Figure 1 using the correct weights enumerates the same 
solutions except that solutions 8 and 9 are not enumerated. 
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3.2. A cutting plane approach 

To illustrate another algorithm we also present a dual cutting plane approach. It 
is a logical extension of any dual cutting plane method with respect to multiple 
criteria decision making. Let k be a nonnegative integer, a choice variable that 
specifies the frequency of generating additional questions in the absence of finding 
an integer solution. The parameter k may be sufficiently large as to be effectively 
infinite. Then the procedure is the following: 

(1) Find the continuous multiple criteria optimum using the method of [6] and 
set i to 0. Use the associated weights to generate a composite objective function. 

(2) Adjoin a cut, increment i by one unit and optimize using the present 
composite objective function. Denote the solution found as the incumbent. 

(3) If the incumbent solution is integer, go to 4. Otherwise, if i is not equal to k ,  
go to  2. If i is equal to k go to 5. 

(4) Set i to zero, generate efficient questions (see the appendix for the definition) 
for the current solution that are consistent with previous responses. If the decision 
maker finds none of the tradeoffs attractive (or if there are no efficient tradeoffs) 
stop; the optimal solution has been found. Otherwise, use the responses to find a 
new composite objective function and perform the iterations necessary to achieve a 
linear programming optimum. Designate the associated solution as the incumbent 
solution and go to 3. 

(5) Set i to zero, generate efficient questions for the current solution that are 
consistent with previous responses. Use the decision maker’s responses to generate 
a new composite objective function and perform the iterations (possibly none) 
necessary to achieve a linear programming optimum. Designate the associated 
solution as the incumbent solution and go to 3. 

That this method is valid follows from the fact that every time an integer solution 
is found (and so long as k is not infinite, more often), questions are generated and 
the multipliers may be altered by the procedure. Every time step 4 is utilized the 
optimality of an efficient integer solution (an efficient extreme point of the convex 
hull of all feasible integer solutions) is confirmed or denied. If it is confirmed, the 
optimality has been demonstrated; if it is denied, one extreme point of the convex 
hull of all feasible integer solutions has been eliminated from consideration. So long 
as the solution space is closed and bounded, the number of such extreme points is 
finite. Therefore in such a case the procedure is finite. 

The effectiveness of choosing k to be finite is not clear, nor is the effectiveness of 
the method known. How well this scheme works depends on the power of the cut 
method employed. Since dual cut methods are not currently used much because 
they do not work well in practice, it is unlikely that a multiple criteria scheme based 
on a dual cut will work well. 

Although approaches may be developed for other integer algorithms, we shall 
not develop any additional approaches here. 
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4. Discussion 

The implementation of multiple criteria integer programming in liaison with dual 
cut methods and with branch and bound methods seems straightforward, although 
it appears warranted only in conjunction with branch and bound methods. 
Implementation should not be difficult, and it is felt that the difference between 
solving integer programming problems with multiple criteria and integer program- 
ming problems with a single criterion would be roughly the same as the perfor- 
mance of a multiobjective linear program as compared to a single objective linear 
program. More questions will be asked in the integer case, and probably more 
partial solutions will be generated as well, but it seems that the increase will not be 
considerable. A number of tests which correspond to solving relatively very small 
linear programming problems must be incorporated as well. The above statements 
are rather speculative and require further testing. For testing purposes, a computer 
program of the Zionts-Wallenius method now being prepared by the SIDMAR 
Corporation working together with the University of Ghent may be extended to the 
integer case and used. It is designed to be an easily usable and alterable program. 

In the noninteger case we were able to relax the assumption of the additive utility 
function to a general concave utility function. Such a generalization in the integer 
case seems rather unlikely because a point other than an extreme point solution of 
the convex polyhedron of feasible integer solutions can be optimal in the general 
concave case. A simple example of such a model would be the use of a utility 
function involving a product of objectives. (See Bowman [l], for an example.) In 
the linear case a neighborhood of feasible solutions would be identified and a point 
in the neighborhood would be optimal. Unfortunately, the use of such a scheme in 
the integer case would terminate with an integer solution and a neighborhood 
which need not contain any other feasible integer solutions. 

Appendix. Overview of the Zionts-Wallenius method [6] for solving multiple 
criteria linear programming problems 

Let the problem of concern be 

Ax = b 

x a 0  

Iu - e x  c 0. (A.1) 

The objective is to maximize hu where A > 0  but unknown. The procedure is as 
follows: 

(1) Choose an arbitrary A > O .  
(2) Solve the associated linear programming problem (A.1). The solution is an 

efficient solution. Identify the adjacent efficient extreme points in the space of the 
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objective functions for which a negative answer by the decision maker is not 
implied. If there are none, stop; the optimal solution has been found. The marginal 
rates of change in the objectives from the point to an adjacent point is a tradeoff 
offer, and the corresponding question is called an efficient question. 

(3) Ask the decision maker if he likes or dislikes the tradeoff offered for each 
efficient question. 

(4) Find a set of weights A consistent with all current and previous responses of 
the decision maker. 
Go to step 2. 
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