

STUDIES IN
INTEGER PROGRAMMING

Managing Editor

Peter L. HAMMER, University of Waterloo, Ont., Canada

Advisory Editors

C. BERGE, UniversitC de Paris, France
M.A. HARRISON, University of California, Berkeley, CA, U.S.A.
V. KLEE, University of Washington, Seattle, WA, U.S.A.
J.H. VAN LINT, California Institute of Technology, Pasadena, CA, U.S.A.
G.-C. ROTA, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

Based on material presented at theworkshop on Integer Programming, Bonn, 8-12 September 1975,
organised by the Institute of Operations Research (Sonderforschungsbereich 21), University of Bonn.
Sponsored by IBM Germany.

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK* OXFORD

ANNALS OF DISCRETE MATHEMATICS I

STUDIES IN
INTEGER PROGRAMMING

Edited by

P.L. HAMMER, University of Waterloo, Ont., Canada
E.L. JOHNSON, 1BM Research, Yorktown Heights, NY, U.S.A.
B.H. KORTE, University of Bonn, Federal Republic of Germany
G.L. NEMHAUSER, Cornell University, Ithaca, NY, U.S.A.

1977

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NEW YORK. OXFORD

@ NORTH-HOLLAND PUBLISHING COMPANY - 1977

All rights reserved. No part of this publication niay he reproduced, stored in a retrieval systen?
or transmitted, in any form or by any means, electronic, mechanical, photocop.ving, recording
or otherwise, without the prior permission of the copyright owner.

Reprinted from the journal .4nnals of Discrete Mathematics. Volume I

North-Holland ISBN for this Volume: 0 7204 0765 6

Published by:

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM NEW YORK. OX1:ORD

Sole distributors for the U.S.A. and Canada:

k.LSEVIER NORTH-HOLLAND, INC.
5 2 VANDERBILT AVENUE
NEW YORK, NY 10017

Printed in The Netherlands

PREFACE

This volume constitutes the proceedings of the Workshop on Integer Program-
ming that was held in Bonn, September 8-12, 1975. The Workshop was organized
by the Institute of Operations Research (Sonderforschungsbereich 21), University
of Bonn and was generously sponsored by IBM Germany. In all, 71 participants
frnm 13 different countries took part in the Workshop.

Integer programming is one of the most fascinating and difficult areas of
mathematical optimization. There are a great many real-world problems of large
dimension that urgently need to be solved, but there is a large gap between the
practical requirements and the theoretical development. Since combinatorial
problems in general are among the most difficult in mathematics, a great deal of
theoretical research is necessary before substantial advances in the practical
solution of problems can be expected. Nevertheless the rapid progress of research
in this field has produced mathematical results significant in their own right and has
also borne substantial fruit for practical applications. We believe that this will be
adequately demonstrated by the papers in this volume.

The 37 papers appearing in this volume cover a wide spectrum of topics in integer
programming. The volume includes works on the theoretical foundations of integer
programming, on algorithmic aspects of discrete optimization, on specific types of
integer programming problems, as well as on some related questions on polytopes
and on graphs and networks.

All the papers have been carefully referred. We express our sincere thanks to all
authors for their cooperation, to the referees for their useful support, to numerous
participants for stimulating discussions, and to the editors of the Annals of Discrete
Mathematics for their willingness to include this volume in their new series.

Bonn, 1976 The Program Committee

P. Schweitzer
IBM Germany

P.L. Hammer
E.L. Johnson

B.H. Korte
G.L. Nemhauser

V

CONTENTS

Preface
Con tents

A. BACHEM, Reduction and decomposition of integer programs over cones
E. BALAS, Some valid inequalities for the set partitioning problem
M. BALL and R.M. VAN SLYKE, Backtracking algorithms for network reliabil-

C. BERGE and E.L. JOHNSON, Coloring the edges of a hypergraph and linear

0. BILDE and J. KRARUP, Sharp lower bounds and efficient algorithms for the

V.J. BOWMAN, JR. and J.H. STARR, Partial orderings in implicit enumeration
C.-A. BURDET and E.L. JOHNSON, A subadditive approach to solve linear

V. CHVATAL and P,L. HAMMER, Aggregation of inequalities in integer

G. CORNUEJOLS, M. FISHER and G.L. NEMHAUSER, On the uncapacitated

D. DE WERRA, Some coloring techniques
J. EDMONDS and R. GILES, A min-max relation for submodular functions on

A.M. GEOFFRION, How can specialized discrete and convex optimization

D. GRANOT and F. GRANOT, On integer and mixed integer fractional

M. GROTSCHEL, Graphs with cycles containing given paths
M. GUIGNARD and K. SPIELBERG, Algorithms for exploiting the structure of

M. GUIGNARD and K. SPIELBERG, Reduction methods for state enumeration

P. HANSEN, Subdegrees and chromatic numbers of hypergraphs
R.G. JEROSLOW, Cutting-plane theory: disjunctive methods
E.L. LAWLER, A ‘pseudopolynomial’ algorithm for sequencing jobs to minim-

J.K. LENSTRA, A.H.G. RINNOOY KAN and P. BRUCKER, Complexity of machine

L. LOVASZ, Certain duality principles in integer programming
R.E. MARSTEN and T.L. MORIN, Parametric integer programming: the right-

ity analysis

programming techniques

simple plant location problem

integer programs

programming

location problem

graphs

methods be married

programming problems

the simple plant location problem

integer programming

ize total tardiness

scheduling problems

hand-side case
vi

V

vi

1
13

49

65

79
99

117

145

163
179

185

205

22 1
233

247

273
287
293

331

343
363

375

Contents uii

J.F. MAURRAS, An example of dual polytopes in the unit hypercube
P. MEVERT and U. SUHL, Implicit enumeration with generalized upper bounds
I . MICHAELI and M.A. POLLATSCHEK, On some nonlinear knapsack problems
J . ORLIN, The minimal integral separator of a threshold graph
M.W. PADBERG, On the complexity of set packing polyhedra
U.N. PELED, Properties of facets of binary polytopes
D.S. RUBIN, Vertex generation methods for problems with logical constraints
J.F. SHAPIRO, Sensitivity analysis in integer programming
T.H.C. SMITH and G.L. THOMPSON, A lifo implicit enumeration search

algorithm for the symmetric traveling salesman problem using Held and
Karp’s 1-tree relaxation

T.H.C. SMITH, V. SRINIVASAN and G.L. THOMPSON, Computational perfor-
mance of three subtour elimination algorithms for solving asymmetric
traveling salesman problems

J. TIND, On antiblocking sets and polyhedra
L.E. TROTTER, On the generality of multi-terminal flow theory
L.A. WOLSEY, Valid inequalities, covering problems and discrete dynamic

U. ZIMMERMAN, Some partial orders related to boolean optimization and the

S. ZIONTS, Integer linear programming with multiple objectives

programs

Greedy-algorithm

391
393
403
415
42 1
435
457
467

479

495
507
517

527

539
55 1

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 1-11
@ North-Holland Publishing Company

REDUCTION AND DECOMPOSITION OF INTEGER
PROGRAMS OVER CONES

Achim BACHEM
Institut fur Okonometrie und Operations Research, Universitat Bonn, Nassestrape 2, 0-53 Bonn,
F.R.G.

Received: 1 August 1975
Revised: 1 November 1975

We consider the problem
min c'x (t)
s.t. Nx + B y = b,

X E N , y E Z "

where N is an (m, r) , B an (m, n) integer matrix, and b E 2". In Section 2 we characterize all
solutions x E 2' of (t) by an explicit formula and give as a corollary a minimal group
representation of equality restricted integer programs, where some of the nonnegativity restric-
tions are relaxed. In Section 3 we discuss decomposing integer programs over cones in case the
matrix N has special structure.

1. Introduction

We consider the problem

min c'x

s.t. Nx + By = b

x E N', y E Z"

where N is an (m , r) and B an (m, n) integer matrix. As B is an arbitrary (m, n)
integer matrix, the convex hull of the feasible set of (1.1) is a generalized corner
polyhedron, that is an equality restricted integer program, where the nonnegativity
restriction of some of the variables are relaxed. To give a group representation of
the problem, we reformulate (1.1) as a congruence problem,

min c'x

s.t. Nx = b modB

x E N'

1

2 A. Bachem

where we define Nx = b (mod B) , iff there is a A E Z", such that Nx - b = BA
holds. To set this definition in a more general framework we have to introduce the
concepts of Smith and Hermite normal form.

Definition. If B is an (m, n) integer matrix, we denote by S(B) and H(B) the Smith
and Hermite normal form of B, S*(B) and H*(B) denotes the nonsingular part of
S(B), H(B) resp. The unimodulaz matrices which transform B into Smith normal
form are denoted by U,, KB and the projection matrices, which eliminate the
nonsingular part S*(B) of S(B) are denoted by WE, VB. Thus we have S*(B)=
WB UB B KB VB.

Sometimes it is advantageous to look at congruences from an algebraic point of
view, that is to look at the definition of a : = x (=moda) l as an image of the
function a : = h,(x) = x - a [x / a] (where "[x]" denotes the integer part of x). For
(m, n) matrices B with rank (B) E { m , n} the scalar a is replaced in the above
formula and we get the generalized form as

h E (x) : = x - B [Btx]

where B denotes the Hermite form H(B)VB of B (the zero colums of H(B) are
omitted) and where B denotes the Moore-Penrose inverse of B. In fact we have

Proposition (1.3). Let G be an additive subgroup of Z". The map hB : G -+ he (G) is
a homomorphism onto (he(G) ,@) with kernel (h B) = {x E G I x = BA, A E Z " } , and.
X @ Y : = he(X + y) .

Remark (1.4). Obviously

a = x (= modB)

- u - x = B A forsome A E Z "

a - x E kernel(hB) holds

and so problem (1.1) is equivalent to

min c ' x

6 h e (N) . & = he(b) , (1.5)
n=1

x, E N ,

where N, denotes the ith column of the matrix N and " = " is the group equation in
the group G(B) :=he(Z") .

Proof of Proposition (1.3). Since B has maximal column range, B'B is regular, and
we have
1 '.-, .- means that the left side of the equation will be defined.

Reduction and decomposition of integer programs 3

So we conclude

hence h, is a homomorphism. Let x E kernel(h,), that means x = B[Btx]. If we
denote b : = [B t x] E Z' and a : = (b',Oh-,)' we conclude x = H (B) a and x = Bc
where c = Ka, here K denotes the unimodular right multiplicator of H(B) . Let
now x = Ba with a E Z", that means x = Bb, b E Z'. With Btx = b we conclude
h B (x) = x - B [B t x] = Bb - Bb = 0 which completes the proof.

Clearly problem (1.5) is a group problem over the group G(B), which is not
necessarily of finite order (it depends obviously on the rank of B). If we follow the
usual definition of equivalent matrices (cf. (5)) , that is the (m, n) integer matrix A
and the (r , s) integer matrix B are equivalent iff they have the same invariant
factors (apart from units), we get a slight generalization of a well known fact:

Remark (1.6). The groups G (A) and G (B) are isomorphic, iff the matrices A and
B are equivalent and m-rank(A) = r-rank(B)holds.

Using this result it is easy to give a formula for the number of different
(nonisomorphic) groups G(B), where the product of invariant factors of the (rn, n)
matrices B is fixed. This number is well known for regular (m, n) integer matrices
B. Here we are going to treat the general case.

Definition. Let B be an (m, n) integer matrix. We call the product of the invariant
factors of B the invariant of B (inv (B)) which coincides with the determinant of B
in case B is a square nonsingular matrix.

If d = n;=, % P > is a representation of d = inv(B) as a product of prime factors
and p a function from NZ into N defined recursively as

p (O , m) : = l , p (n , O) : = O (n , m E N) , we define

Proposition (1.7). The number of nonisomorphic groups G(B), where B varies over
all (m , n) integer matrices (m, n E N) with maximal row rank and invariant d,
equals the integer number K (d) .

4 A. Bachem

The number of nonisomorphic groups G (B) , where A varies over all (m, n) integer
matrices (n E N) with r a n k (B) E { m , n } and invariant d, equals L (d , m) .

Notice that K (d) is a finite number, though we consider all (m , n) integer
matrices B with m, n E N. If we compute the numbers K (d) and L (d , m) for d's
between 1 and lo5, we note that 0 S K (d) 5 10 in 95% of the cases, that is the group
G (B) is more or less determined by d = inv(B).

Proof of Proposition (1.7). Two groups are isomorphic iff the generating matrices
are equivalent and the rank condition holds (cf. Remark (1.6)). Proving the first part
of the proposition we have only to deal with maximal row rank matrices and using
Remark (1.4) we can restrict ourselves to square matrices, because h, (x) is defined
in terms of H*(B) and this an (m , n) integer matrix with detH*(B) = inv(B).
Because of the divisibility property of the invariant factors of an (m , m) integer
matrix it suffices now to compute the number of different representations of the
exponents of a prime factor presentation of the determinant d = det B as a sum of
m nonnegative integers. In fact this number equals p (q , m) (cf. (2)) and moreover
H(d) is finite because

k

el<, : = max E~
J= I

leads to

To prove the second part of the proposition we first note that rank(B) m. Since
two groups G(A) and G(B) with matrices having both less than m columns,
cannot be isomorphic, the second statement follows obviously from the first one.

2. Minimal group representation

We have seen that (1.5) is a group problem, namely of the group G(B) . In fact
this is the group which will usually be considered in the asymptotic integer
programming approach (cf. (3)), whereas the actual underlying group of (1.5) is the
group

G (N / B) : = { h , (x) / x = N A , A E Z'}

which is a subgroup of G (B) generated by the columns of the matrix N. From a
computational point of view the group G (N / B) is more difficult to handle than the
group G (B) (though it has less elements), because there is n o proper respresenta-
tion of G (N / B) . From this reason here we are going to find a 6 E N" which will be
defined in terms of N and B, such that the group G (N / B) is isomorphic to

Reduction and decomposition of integer programs 5

G (diag(6)). Clearly this is a minimal group representation of problem (1.5) and as
a corollary we get the order of G (N / B) by

First we want to give some results concerning congruences which will be used
later, they seem to be of general interest, though.

Theorem (2.1). Let B be an (m, n) integer matrix with rank (B) = m, N an (m, s)
integer matrix, b E Z" and A : = (N , B) . The system of congruences

Nx = N b m o d B

x integer

has a solution iff S*(A)-' V, U, b is integer. In this case, all solutions are of the form

x = b m o d H

x integer

where H:=(K,V,WML, R) . Here we denote b y L:=S*(A)- 'UaN, M : =
S*(A)-'U,B and R denotes the last s - k columns of KM, where k:=rank(N).

Proof. Without loss of generality we set b = 0. It is easy to see that S*(M, L) equals
an (m, m) identity matrix I"', so we conclude

S(S(M) , u M L) = (I m , O m , n) .

With diag(tl , . .., t k) :=S*(M) , tk+,:=O (i = 1 , . . ., m - k) and D:= UML we get
immediately

(t) gcd(t , ,d,)= 1, i = 1 ,..., m,

where d , :=gcd(D, , / j = 1,. . ., n) (i = 1 , . . ., m) .
Obviously the system

N x = O m o d B

x integer

is equivalent to the system

y integer,

and using (t) it is also equivalent to

(S*(M), O m . s - k) y = 0 mod WMUML

y integer.

6 A. Bachem

Let y = (y i , y:)' be a (k , s - k) partition of y , then we get

S*(M)yl = O mod WMUML.

y l , y z integer

Let Ki(i = 1, . . ., k) be unimodular matrices, which transform the i th row of
d:= W,U,L into (d , , ~ , . . ., 0). Using

Ei:= K, diag(1,. . ., 1, t;', 1,. . ., 1) K 1

i = 1,. . ., m we define
1

E : = n E,.
i = k

By induction on i one can easily show that

diag(1,. . ., t i+ l , . . ., t m) y l = fi fl Eiz
1

j = ,

1

y z , n E,Z integer
j = i

is equivalent (for all i = 1 , . . ., m) to

(* 1 S*(M)yl = 0 m o d B

y l , Y Z integer

so that

y l = DEz

y 2 , Ez integer

is equivalent to (*).
Since E-' is an integer matrix and x = KMy, the equation

x = (KMVMYlf Ryz)

completes the proof.

Theorem (2.2). With the notations of theorem (2.1) we get
(i) S*(L) = S(A)-'UA U i ' S * (B)

(ii) s * (H) = i diag(t,,-,+,, . . ., t ,)
where S*(L)=: diag(tl, . . ., t m) .

Proof. Because of

L = s*(A)- ' U A ~ , ' ~ B B ,

(i) follows immediately from the equation

S*(L) = S*(L&) = S*(LKBVB).

Reduction and decomposition of integer programs 7

Let

where Is-' denotes an ((s - k) , (s - k)) identity matrix. Because of H =
KM(W,U,L, P) , we conclude S*(H) = S,*(WMUML, P), that is

where Q denotes the first k rows of U,.
From the proof of theorem (2.1) we know that

S*(L) = S*(H(U,L)) = diag(tl,. . ., t,,,),

S*(QL) = diag(t,-r+l,. . ., t m)
so

which completes the proof.

Now we are able to give an isomorphic representation of the subgroup G(N/B) .

Theorem (2.3). Let B be an (m, n) and N a n (m, r) integer matrix with rank(B) =
m. Then we get

G (N / B) = G(S*(E)) ,

that means the group G (N / B) is isomorphic to the group G(S*(E)) , where E : =
WM UML and L:=S*(N, B)-' U(N,B)N, M:=S*(N,B)- ' U(N,B)B.

Corollary (2.4).

0 : = UE S*(M)-'W,U, S*(N, B)-'U(fi,B)

is an isomorphism from G (N / B) to G(S*(E)) .

Corollary (2.5). The order of G (N / B) equals

inv (B)
det (S*(N, B))

Proof of Theorem (2.3). Let K be a unimodular matrix, so that NK is up to
permutations of rows in Hermite normal form. Let N be the matrix NK without the
zero columns. Obviously we have G (N / B) = G (N / B) . Let

{ N) : = { x ~ ~ m / x = N y for a ~ E Z ' }

be a subgroup of (Z"', +). Because h, : {N}+ he ({R}) is a homomorphism (Propo-
sition 1.3) G (N / B) is isomorphic to the factor group

8 A. Bachem

{I?} / kern el (he)

where kernel(hB) = {x E {I?} 1 x = 0 mod B}.
With Theorem (2.1) we conclude

kernel(hB) = {x E Z" 1 x = Ny, y = 0 modKMWMUMLfor a y E Z'}.

Let

Then
f:= S*(M)-'W,U,BL-'.

f : (R}+Zk
is an isomorphism and f (kernel(he)) = { z E Z' I z = 0 mod WMUML}. Thus we get

{I?}/kernel(h,) = Zk /kernel(&)

and because UE is also an isomorphism we get the isomorphism

G (N / B) = G (S * (E)) .

The corollaries follow immediately from Theorem (2.3) in conjunction with
Theorem (2.2).

3. Partitioning of integer programs over cones

The computational effort to solve the problem

min c 'x
s.t. Nx + By = b

x E N', y E Z"

usually grows rapidly according to the determinant of B. It is therefore sometimes
advantageous to decompose the problem into smaller subproblems and to link the
optima of the subproblems to a solution of the masterproblem. We give now two
examples of decomposing problem (3.1) in case the matrix N is of the form

N =

or

N =

I

= I N 1 0 . .

A l , , A,

N ,

0 N,

N,

b = (3.3)

Reduction and decomposition of integer programs 9

To simplify notation let B = S*(B) , i.e. B is given as a diagonal matrix. (Otherwise
we have to impose some special structure on UB.)

Let us denote the set of feasible solutions of problem (3.1) by

SG(N, b/B):={x E N ‘ 1 Nx - b E kernel(h,)}.

Let N be an (m, r) integer matrix of form (3.2), let b,(x):=he(b - N,x),,, where I,
corresponds to the row indices of the submatrix N, and let us denote by

if bz(y)e G(N, /B,,),
z(b,(y)): = minc:x,

the optimal value of the subproblems.

Proposition (3.4). The programs

[x E SG(N,, b,(y) /B,) otherwise,

min c’x
x E SG(N, b/B), (3.5)

are equivalent.

Proof. Let r, (y) be the minimard corresponding to the optimal value z (b, (y)). Let y
be optimal in (3.6) and assume that there is an f E S G (N , b/B),
(i# x:=(y, r2(y), . . ., r,(y)) such that c ‘ f < c’x.

Let f:= (f l , P 2 , . . ., P,), where 9, are the components corresponding to N,.
Because f, are feasible, we get

c : P, 3 min c,x, = c’X, i = 2 , ..., r

X, E S G (Nn, b, (9‘)/B,,)

and the contradiction

c‘P 3 c l j l + 2 c:P, a c’x = min ciy + 2 .z(b,(y))l y E N)

proves one part of the proposition, however the reverse direction is trivial.

z l (xz, . . . ,x,):=minc,x,
s.t.

I =z I 1=2

Let again N be an (m,r) integer matrix which has form (3.3) and define

z,(xi,. . . ,x,):=mincix, + zi-,(xi, . . . ,x,)

x,ESG(Ni ,b i /B, ,) , i = 2 ,..., r,

as the optimal value of the subproblems.

10 A. Bachem

Proposition (3.5). The programs

min c’x

x E SG(N, b l B)

and min c,x, + z,-](x,)

X, E S G (Nr, br/Br,)

are equivalent.

Proof. If we denote by

c’X: = min c’x

x E SG(N, b l B)

we obviously get

c , f l = min clxl

which yields in the same way

€or all i > 1, because

implies

So we get the result

c’X = min c,x, + Z , - ~ (X ,)

x, E S G (N , b , l B) ,

which completes the proof.

The computational experience with algorithms canonically based on Propositions
(3.4) and (3.5) is up to now limited to some of the Bradley-Wahi [l] test examples,
which have determinants greater than 1,000,000. The results are very promising in
the sense that it is possible to solve “cone problems” of such large order. The
complete computational results together with comparisons of existing group
algorithms will be the subject of a following paper.

Reduction and decomposition of integer programs 11

Acknowledgment. I wish to acknowledge the interesting discussions I had with E.L.
Johnson on the subject of this paper. The paper has been revised substantially while
he was a visiting professor at the University of Bonn.

References

[l] G.H. Bradley and P.N. Wahi, Integer Programming Test Problems, Report No. 28, Yale University,

[2] L. Comtet, Advances Combinatorics (Reidel, Dordrecht, 1974).
[3] R.E. Gomory, On the Relation between Integer and Non Integer Solutions to Linear Programs,

Proc. Nat. Acad. Sci. 53 (1965) 260-265.
[4] M. Marcus and E.E. Underwood, A Note on the Multiplicative Property of the Smith Normal Form,

J. of Res. of the Nat. Bureau of Standards-B., 76B (1972) 205-206.
[5] M. Newman, Integral Matrices (Academic Press, New York, 1972).
[6] M. Newman, The Smith Normal Form of a Partitioned Matrix, J. of Res. of the Nat. Bureau of

New Haven, December 1969.

Standards-B, Vol. 78B (1974) 3-6.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 13-47
@ North-Holland Publishing Company

SOME VALID INEQUALITIES FOR THE SET
PARTITIONING PROBLEM* .

Egon BALAS
Carnegie-Mellon University

We introduce a family of inequalities derived from the logical implications of set partitioning
constraints and investigate their properties and potential uses. We start with a class of
homogeneous canonical inequalities that we call elementary, and discuss conditions under which
they are (a) valid, (b) cutting planes, (c) maximal, and (d) facets or improper faces of the set
partitioning polytope. We give two procedures for strengthening nonmaximal valid elementary
inequalities. Next we derive two nonhomogeneous equivalents of the elementary inequalities,
which are of the set packing and set covering types respectively. Using the first of these
equivalents, we introduce a “strong” intersection graph, a supergraph of the (common)
intersection graph, whose facet generating subgraphs (cliques, odd holes, etc.) give rise to valid
inequalities for the set partitioning problem. These inequalities subsume or dominate the similar
inequalities that one can derive for the associated set packing problem. One subclass can be used
to enhance orthogonality tests in implicit enumeration or column generating algorithms. Further,
we introduce two types of composite inequalities, obtainable by combining elementary ine-
qualities according to specific rules, and some related inequalities obtainable directly from the set
partitioning constraints. These inequalities provide convenient primal all-integer cutting planes
that offer a greater flexibility and are usually stronger than the earlier cuts which d o not use the
special structure of the set partitioning problem. In the final section we discuss a primal algorithm
which uses these cuts in conjunction with implicit enumeration.

1. Introduction

Set partitioning is one of those combinatorial optimization problems which have
wide-ranging practical applications and for which n o polynomially bounded
algorithm is available. Though both implicit enumeration and cutting plane
algorithms have been reasonably successful on this problem, the practical impor-
tance of solving larger set partitioning models than we can currently handle makes
this a very lively research area (see [6] for a recent survey of theoretical results and
algorithms, and a bibliography of applications).

In this paper we introduce a family of valid inequalities derived from the logical
implications of the set partitioning constraints, and investigate their properties and
potential uses. We first define some basic concepts, then at the end of this section
we outline the content of the paper.

The set partitioning problem can be stated as

* This research was supported by the National Science Foundation under Grant # GP 37510x1 and
by the U.S. Office of Naval Research under contract N00014-67-A-0314-007NR.

13

14 E. Balm

min{cx I AX = e, x, = 0 or 1,; E N }

where A = (a , -) is an m x n matrix of 0's and l's, e is an rn-vector of l's,
N = (1,. . ., n } . We will denote by a, the j th column of A, and assume that A has no
zero row and n o zero column. Also, we will write M = (1,. . ., m}.

The convex hull and the dimensions of a set S, and the vertex set of a polytope T,
will be denoted by conv S, dim S and vert T respectively.

Denoting by "conv" the convex hull, we will call

P = conv{x E R" 1 Ax = e, xi = 0 or 1, ; E N }

the setpartitioning polytope, and denote the linear programming relaxation of P by

L P = { x E R " I A x = e , x s O } .

Clearly, vert P = P n (0, l}",
We will also refer to

p = conv{x E R" I Ax =s e, x, = 0 or l , j E N } ,

the sef packing polytope associated with P.
Whenever P # 0, we have

dim P =G dim LP = n - r(A)

where r(A) is the rank of A.
An inequality

7rx s r ro (1)

rrx = 570 (1')

satisfied by all x E P is called valid for P. A valid inequality (1) such that

for exactly k + 1 affinely independent points x E P, 0 k s dimP, defines a
k-dimensional face of P and will itself be called a face (though since dim P < n, a
given face can be defined by more than one inequality). If k <dimP, the face is
proper, otherwise it is improper. In the latter case, the hyperplane defined by (1')
contains all of P, and is called singular.

A valid inequality (1) is a cut, or cutting plane, if it is violated by some x E LP \ P.
A face of P, whether proper or not, may or may not be a cutting plane. If
dim P = dimLP, then the affine hull of P is the same as that of LP; hence any
hyperplane which contains all of P, also contains all of LP, and therefore n o
improper face of P is a cutting plane. If dim P < dim LP, then improper faces of P
may also be cutting planes.

Proper faces of maximal dimension are called facets. Evidently, P has faces
(hence facets) if and only if dimP 2 1, which implies n > r(A). If dim P = dimLP,

Some oalid inequalities 15

then the facets of P are of dimension n - r(A) - 1, i.e., each facet contains exactly
n - r (A) affinely independent points of P. Since 0 P, these affinely independent
points are linearly independent vectors.

A valid inequality (1) is maximal if for any k E N and any T ; > T k there exists
x E P such that

T : x * + 2
j E N - { k)

T j X , > T o .

This notion is the same as that of a minimal inequality (see Gomory and Johnson
[12]; and, more recently Jeroslow [13]), except that here we find it more convenient
to consider inequalities of the form S rather than 3 , in order to have a
nonnegative righthand side.

The following is an outline of the content of this paper.
We start (Section 2) with a class of homogeneous canonical inequalities that we

call elementary, since all the subsequent inequalities can be built up from these first
ones by various composition rules. The elementary inequalities, together with the
0-1 condition and the constraints Ax S e, imply the constraints Ax 3 e ; but they
also cut off fractional points satisfying Ax = e, x 3 0 . We discuss the conditions
under which a given elementary inequality is (a) a cutting plane, (b) maximal, (c) a
facet or an improper face of P.

When a given elementary inequality is not maximal, it can be strengthened. In
Section 3 we discuss two systematic strengthening procedures for these inequalities.

In Section 4 we show that each elementary inequality is equivalent on LP to a set
packing inequality and to each of several set covering inequalities. The first one of
these equivalences suggests a graph-theoretical interpretation. We introduce a
“strong” intersection graph of the matrix A defining P, and show that a set packing
inequality is valid for P if and only if it corresponds to a complete subgraph of the
strong intersection graph of A ; and it is maximal if and only if this complete
subgraph is a clique.

The next two sections deal with composite inequalities, obtained by certain rules
from the elementary inequalities. These composite inequalities have the following
property. Given an integer basic solution to the system Ax = e, x a 0 , and a set S of
nonbasic variables, none of which can be pivoted into the basis with a value of 1
without making the solution infeasible, there exists a composite inequality which
can be used as a primal all-integer cut to pivot into the basis any of the variables in S
without losing feasibility.

Finally, in Section 7 we introduce a class of inequalities which are satisfied by
every feasible integer solution better than a given one, and which can be
strengthened to a desired degree by performing implicit enumeration on certain
subproblems. We then discuss a hybrid primal cutting plane/implicit enumeration
algorithm based on these results.

Throughout the paper, the statements are illustrated on numerical examples.

16 E. Balas

2. Elementary inequalities

We shall denote

Mk = { i E M 1 a,k = I}, Gk = M\ Mk, k E N,

N, = { k E N I atk = l},

N,k = { j E N, 1 a,ak = o),

Is, = N , N,,

i E G k ,

i E M,

k E N.

N,, is the index set of those columns a, orthogonal to ak and such that a,, = 1.
Since alk = 0 (as a result of i E Gk), x k = I implies that at least one of the variables
x,, j E N , k , must be one.

Valid inequalities of the form

where Q C N i k , for some i E G k , will be called elementary. They play a central role
as building blocks for all the inequalities discussed in this paper. These elementary
inequalities are canonical in the sense of [4] (i.e., they have coefficients equal to 0, 1
or - l), hence each of them is parallel to a (n - 1 Q 1 - 1)-dimensional face of the
unit cube.

Remark 2.1. The slack of an elementary inequality is a 0-1 variable.

Proof.
cannot exceed 1.

Since Q C Nik C Ni for some i E M, the sum of the variables indexed by Q

Proposition 2.1. For every k E N and i E a,, the inequality

is satisfied by all x E P.

Proof. From the definition of Nik, for every x E vert P, XI, = 1 implies x, = 1 for at
least one j E Nik. But this is precisely the condition expressed by (2); thus (2) is
satisfied by all x Evert P, hence by all x E P. 0

Remark 2.2. The number of distinct inequalities (2) is at most c k E N (M k I .

Proof.
of these inequalities may be identical.

There is one inequality (2) for every zero entry of the matrix A, but some

The converse of Proposition 2.1 is not true in general, i.e., a 0-1 point satisfying
all inequalities (2) need not be in P, as one can easily see from the counterexample
offered by R such that X, = 1, V j E N. However, a weaker converse property holds.

Some valid inequalities 17

Proposition 2.2.
qualities (2), also satisfies Ax 3 e.

Any x E (0, l}", x # 0, which satisfies A x s e and all the ine-

Proof. Let X E (0, l}", X # 0, be such that AX s e, AX# e. Then there exists i E M
such that X, = 0, V j E N,. Further, since X# 0, there exists k E fit such that Xk = 1.
Therefore X violates the inequality

since Nik C Ni. 0

Corollary 2.2.1.
inequality (2) ; and every inequality (2) cuts off some x E p \ P.

Every nonzero vertex of P not contained in P is cut off by some

Proof. Every x E p \ P violates A x 2 e ; hence if it is a nonzero vertex of P,
according to Proposition 2.2 it violates some inequality (2). On the other hand,
every inequality (2) cuts off the point X € p defined by ?k = 1, Xj =o ,
V j E N \ { k } . 0

Proposition 2.3. For k E N, i E Mk and Q Nik, the inequality

is valid if and only if x E vert P and x k = 1 implies xi = 0, vj E Nik \ Q.

Proof.
Remark 2.1, x, = 0, vj E Q (since Q C Ngk) , and x violates (3).

because (2) is valid. 0

Necessity: if x E vert P and XI , = x, = 1 for some j E Nik \ Q, then from

Sufficiency: if x E vert P and X k = 1 implies x, = 0, vj E Nik \ 0, then (3) is valid

Next we illustrate the elementary inequalities on a numerical example.

Example 2.1.
polytope with coefficient matrix A (where the blanks are zeroes):

Consider the numerical example of [5], i.e., the set partitioning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1

1 1 1 1 1
1 1 1 1

For k = 1 , MI = {3,4,5}; N,, = {3,12}, N4, = {3,4}, N51 = {3,4,5,12}, and the
inequalities (2) are

18 E. Balas

XI - x3 - x** c 0

x1- x3 - x4 =s 0

X I - x.1- x4- xs- x,* c 0,

where the last inequality is dominated by each of the other two and hence is
redundant. Further, x1 = 1 implies x4 = x l Z = 0 for any feasible partition (this can be
seen by inspection; systematic checking of such implications is discussed in Section
3) and therefore each of the sets N31, N41 and N51 can be replaced by Q = {3}, and
each of the above inequalities can be replaced by

X I - x3 =s 0.

In the next section we discuss procedures for strengthening elementary ine-
qualities of the type (3) (which subsumes (2)) by systematically reducing the size of
the sets Q subject to the condition of Proposition 2.3.

As mentioned in Section 1, a valid inequality may or may not be a cut, i.e., may
or may not be violated by some x E LP, P.

Proposition 2.4.
8 E R" satisfying

The (valid) inequality (3) is a cut i f and only i f there exists no

- 1 j = k ,
1 j E Q ,
0 j E N , Q,

8ai a (4)

8e 3 0 . (5)

Proof. According to a classical result (see, for instance, [20, Theorem 1.4.4]), (3) is
a consequence of the system Ax = e, x 3 0 if and only if there exists 8 E R"
satisfying (4) and (5). If (3) is a consequence of Ax = e, x 3 0, it is clearly not a cut.
Conversely, if (3) is not a cut, then it is satisfied by all x E LP, hence a consequence
of Ax = e, x 3 0 . 0

Next we address the question of when a given elementary inequality is
undominated, i.e., maximal. First, if for some j E N, x E P implies x j = 0, then
clearly the coefficient of x j can be made arbitrarily large without invalidating the
given inequality. Therefore, without loss of generality, we can exclude this
degenerate case from our statement.

Proposition 2.5. Assume that the inequality (3), where Q C Ni, for some k E N,
i E M,, is valid; and for every j E N there exists x E vert P such that xj = 1. Then (3)
is maximal i f and only if

(i) for every j E Q there exists x E vert P such that x j = x k = 1;
(ii) for every j E # ... { k } there exists x E vert P such that x, = 1 and x k 2 x h ,

V h E Q.

Some ualid inequalities 19

Proof. This is a specialization of the statement that a valid inequalityrx s ro for a
0-1 polytope T C R" is maximal if and only if for every j E N there exists x E T
such that xJ = 1 and r x = ro. 0

If a valid inequality is not maximal, then at least one of its coefficients can be
increased without cutting off any x E P. In the case of an arbitrary polytope, this is
all we know, and it is not true in general that more than one coefficient can be
increased without invalidating the inequality. In the case of elementary inequalities
for P, however, one can say more.

Corollary 2.5.1. Assume that for every j E N there exists x E vert P such that
xj = 1. Let (3) be a valid, but not maximal inequality, with Q C Nik for some k E N,
i E M k , and let S1, S2 be the sets of those j E N for which conditions (i) and (ii),
respectively, are violated. Then all x E P satisfy the inequality

and the inequalities

for every T 5 \ { k } such that ahaJ # 0, Vh, j E T.

Proof.
To prove the validity of (7), let x E vert P be such that XI, = 1. Then xi = 0,

V j E Sz n Ni \ {k} (hence V j E Sz n T) , since otherwise from the definition of Sz,
x,, > XI, = 1 for some h E Q, which is impossible. Further, from (3), xi = 1 for some
j E Q. Hence (7) holds for all x E P such that xk = 1.

E 7'; and from
the definition of S2, xj = 1 for some j E Sz f l T implies xk < xh for some h E 0, i.e.,
x h = 1 for at least one h E Q. Hence (7) also holds for all x E P such that xk = 0. 0

Clearly, if for some S ' C N the nondegeneracy assumption of Proposition 2.5
(and Corollary 2.5.1) is violated for all j E S', then the coefficient of each xi, j E S',
can be made arbitrarily large, in addition to the changes in the coefficients of xi,
j E S = S , U S2, justified by the Corollary.

From the above Corollary, nonmaximal elementary inequalities can be
strengthened, provided we know S. In the following sections we give several
procedures for identifying subsets of S.

Next we turn to the question of when a maximal elementary inequality is a face of
maximal dimension, i.e., a facet or an improper face of P. This question is of
interest since P is the intersection of the halfspaces defining its facets and
improper faces. The next proposition gives a sufficient condition for an elementary
inequality to be a facet or an improper face of P.

The validity of (6) follows from Proposition 2.3 and the definition of S , .

Now let XI, = 0. From the definition of T, xj = 1 for at most one

20 E. Balas

Proposition 2.6.
for some k E N, i E f ik . Let N ' = N \ Q U {k}, and

Suppose (3) is a maximal (val id) inequality for P, with Q C N,,

P N . = P n { x E R ") x , = O , V j E Q U { k } } .

Then dimP 2 dimP,. + q, where q = 1 Q 1.
If dimP = dimPN8+ 4, then (3) is an improper face of P.
If dimP = dimP,. + q + 1, then (3) is either a facet, or an improper face of P.

Proof. Let d = dimP, d ' = dimPNs. Since (3) is maximal, for every j E Q there
exists x' Evert P such that x : = x i = 1. Also, since Q C N,, xl, = 0, V h E Q \ { j }
for each of these q points x ' . With each point x', j = 1,. . ., q, we associate a row
vector y' E R", obtained by permuting the components of x' so that x i comes first,
and the components indexed by Q come next.

Further, let z E R"", j = 1,. . ., d ' + 1, be a maximal set of affinely independent
vertices of PN,, and let yq" E R", j = 1,. . ., d ' + 1 be row vectors of the form
y"' = (O,z') , where 0 has q components. Clearly, each yq+' is, modulo the
permutation of components, a vertex of P. Then the matrix Y whose rows are the
vectors y ' , i = 1, .. . , q + d ' + 1, is of the form

XI I x*
x= [;+-]

where X I is the q x (q + 1) matrix

(tne blanks stand for zeroes), Z is the (d ' + 1) x (n - q - 1) matrix whose rows are
the vectors ti, j = 1,. . ., d ' + 1, 0 is the (d ' + 1) x (q + 1) zero matrix, and X , is a
q x (n - q - 1) matrix of zeroes and ones.

Since X and Z are of full row rank, so is Y ; and since Y has q + d ' + 1 rows, it
follows that P contains at least q + d ' + 1 affinely independent points; hence
d 2 d ' + q.

If d = d ' + q, then the d ' + q + 1 rows of Y define a maximum-cardinality set of
affinely independent points of P; and since each of these points satisfies (3) with
equality, the same is true of every other point of P. Hence in this case (3) is an
improper face of P.

+ 1, then there exists a point x ' E P which, together with the
d ' + q + 1 points corresponding to the rows of Y, forms an affinely independent set.
If x ' also satisfies (3) with equality, then (3) is an improper face of P; otherwise (3) is
a facet of P.

If d = d ' +

Some valid inequalities 21

Example 2.2.
inequalities

In example 2.1, the inequalities (2) for k = 1 and i = 3,4, i.e., the

XI - x3 - X I 2 s 0, X I - x3 - xq c 0

are cutting planes, since each of them cuts off the fractional point 2 defined by
XI = Xz = Xs = a, ffs = 1, Xj = 0 otherwise; but they are not maximal, since the
conditions of Proposition 2.5 are violated for j = 9,12 in the case of the first
inequality and j = 4 in the case of the second one. Therefore, x 1 - x3 S 0 and
x I - x 3 + x s - x I 2 s 0 are both valid (Corollary 2.5.1). The inequality x 1 - x3 s 0 is
maximal, since the assumption and conditions of Proposition 2.5 are satisfied. It is
also a facet of P, since the dimensionality condition of Proposition 2.6 is satisfied
and the point X defined by X, = XI4 = XIS = 1, Xj = 0 otherwise, does not lie on
X I - x3 = 0.

On the other hand, if P’ is the set partitioning polytope obtained from P by
removing the last column of A, then x1 - x 3 s 0 is an improper face of P’ since
x E P’ implies x , - x 3 = 0.

3. Strengthening procedures

An inequality r r ‘x s rro is called stronger than rrx G rro, if .rr: 3 rrj for all j , and
r r ; > T for at least one j .

In this section we discuss two procedures for replacing a valid elementary
inequality which is not maximal, with a stronger valid elementary inequality. The
first procedure uses information from the other elementary inequalities in which xk
has a positive coefficient; the second one uses information from the elementary
inequalities in which x, has a positive coefficient for some j E Q.

Proposition 3.1.
the inequalities

For some k E N, let the index sets Qi C Nik, i E Mk, be such that

are satisfied by all x E P. For each j E Uhe,,& oh, define

S.t . j E dh

and for i E Mk, let

T, = { j E Q, 1 Q G) ~ Q~ for some /I E Mk}.

Then the inequalities

22 E. Balas

are satisfied by all x E P.

Proof. From the definition of the sets QU), x E P with x j = 1 implies

for all j E Q,, i E GI,. Therefore, if j E T,, then x E P with x, = 1 implies

for some h E f i e ; which implies XI, = 0, since (3‘) holds for z = h.

satisfied by all x E P, then so is the system (8).
Hence x E P and xe = 1 implies xi = 0, V j E T,. Therefore, if the system (3’) is

0

Proposition 3.1 can be used to strengthen the inequalities (2) by replacing the sets
N,, with Qi = Nik ., T,. It can then again be applied to the strengthened inequalities,
and so on, until no further strengthening is possible on the basis of this proposition
alone.

Applying the proposition to an inequality of the system (3’) consists of identifying
the set T . This can be done by bit manipulation and the use of logical “and” and
logical “or”. The number of operations required is bounded by 1 Qi I X lak I .

Example 3.1.
of Example 2.1, and let us use Theorem 3.1 to strengthen the inequality

Consider again the set partitioning polytope defined by the matrix

X I - x3- x * 2 c 0

associated with N31. For k = 1, a, = {3,4,5}, and N31 = (3,121,
NS1 = {3,4,5,12}. Setting Qh = Nhl , h = 3,4,5, we have

= {3,4} and

Q(3) = {4,5,121, Q(l2) = {3,4,51,

and we find that Q(12) 3 Q4. Hence T3 = {12}, and the above inequality can be
replaced by

x1- x3 5z 0.

Since {3} is contained in each of N4] and NS1, the inequalities associated with

A second application of Proposition 3.1 brings no further improvement.
For k = 2, a2 = {1,5}, N,, = {13,14}, Nsz = {5,13} and none of the two corre-

For k = 5, a5 = {1,2,3,4}; Nls = {1,6,8,9,14}, N 2 S = {1,2,11,15}, N3s = {2,6,8},

these two sets can both be replaced by x 1 - x3 =s 0.

sponding inequalities can be strengthened via Proposition 3.1.

N4, = {2,8,9,11}. Using Proposition 3.1 to strengthen the inequality

Some valid inequalities 23

associated with N,5, we set Qh = Nh5, h = 1,2,3,4,

Q(1) = {2,6,8,9,11,14,15}, Q(6) = {1,2,8,9,14), Q(8) = {1,2,6,9,11,14},

Q(9) = {1,2,6,8,11,14), Q(14) = {1,6,8,9),

and we find that

Q(1) II Q3, Q(9) 3 0 3 ,

and hence TI = {1,9} and the inequality associated with N I 5 can be replaced b y

xs - x(j- xs - x,4 s 0.

When Proposition 3.1 is used to strengthen all rather than just one of the
elementary inequalities in which a certain variable x k has a positive coefficient, it is
convenient to work with the set

Qo= U Q,
,€Mk

and instead of forming the sets T, by looking at each j-E Q,, i E Mk, form directly
the set

T = u T,
i=G&

= { j E Qol Q(j)> Qh for some h € G k)

by looking once at each j E Qo, and then use Qi \ T in place of Qi, T, in (8).
The number of operations required for applying Proposition 3.1 once to all

elementary inequalities in which xk has a positive coefficient is then bounded by

Next we discuss a second procedure for strengthening elementary inequalities.
I a O I x l G k (.

Proposition 3.2.
inequalities

Let the index sets Qik C Nik, i E Gk., k E N, be such that the

are satisfied by all x E P.

24 E. Balas

1 1

2 1

3

4

5

Proof. Let k E N, i E M k , and 1 E u # k . Then there exists h E 6% n Ml such that
Qhk n Qbl = 0, and therefore adding the two elementary inequalities corresponding
to Qhk and Qhf respectively yields

1 1

1

1 1 1 1

1 1 1

1 1 1 1

Since Qhk U Qhl C Nh, adding equation h of Ax = e to the kist inequality yields

x k f s 1.
I E N h \ Q h k U Q h l

But then xk = 1 implies x1 = 0 and therefore (3”) can be replaced by (9).

If Proposition 3.2 is applied to several elementary inequalities, then repeated
applications may yield additional improvements like in the case of Proposition 3.1.

Applying Proposition 3.2 to an inequality (3”) consists of identifying the set Utk.

Again, this can be done by bit manipulation and use of logical “and” and logical
“or”. The number of operations required for each j E Q,k is bounded by n
G, 1, hence the total number of operations is bounded by I Qa 1 X I Qk 1, like in the
case of Proposition 3.1.

0

Example 3.2. Consider the set partitioning polytope defined by the matrix B

1 2 3 4 5 6 7 8 9 10

For k = 1, G, = {3,4,5,6,7}, and

N ~ I = {2,5,7}, N4i = {2,6,8}, NSI = {3,5,8},

N61 = {3,4,6}, N71 = {4,5,7}.

An attempt to apply Proposition 3.1 fails to strengthen any of the inequalities
associated with k = 1. On the other hand, Proposition 3.2 can be fruitfully applied
to replace both N,, and N4, with smaller sets, after applying Proposition 3.1 to
k = 2. We have A?f, = {1,2,5,6,7}, A?, f l M2 = {5,6,7} and N5z = (3, lo}, Nh2 = {3,4},
N72 = (4). Applying Proposition 3.1 we find that Q(3) 3 N72; thus T5 = T6 = {3}, and
the sets N5*, N6*, can be replaced by Ns2\ Ts = (10) and N6*\ Th = (4) respec-
tively.

Now writing Q,, = N, , and Q,Z = N,, \ T, for i = 5,6,7, we can apply Proposition
3.2 since

Some valid inequalities 25

Q ~ , n Q~~ = 0

and thus U,, = U,, = (2). Hence N3, and N4, can be replaced by N31\ U 3 , = {5,7}
and N4, \ U,, = {6,8} respectively.

4. Nonhomogeneous equivalents of the elementary inequalities and a graph-
theoretical interpretation

In this section we introduce two classes of nonhomogeneous canonical ine-
qualities, which are equivalent on LP to the elementary inequalities (3). One of
these two classes of inequalities lends itself to an interesting graph-theoretical
interpretation.

Proposition 4.1.
any one of the following inequalities i f and only i f it satisfies all of them:

For some k E N and i E f i k , let C N k . Then x E LP satisfies

Proof. Since Q C Nik and ke Ni, (10) can be obtained by adding equation i of
Ax = e to (3). Further, j E Nh implies a,ak# 0, and j E Q implies aiak = 0;
therefore Q n Nh = 0. From this and the fact that k E Nh, each inequality (11) can
be obtained by multiplying (3) with - 1 and then adding to it equation h of Ax = e.
Since any x E LP satisfies Ax = e, it follows that any x E LP that satisfies (3), also
satisfies (10) and each of the inequalities (11).

Further, (3) can be obtained from (lo), as well as from each of the inequalities
(l l) , by the reverse of the above operations, therefore any x E LP which satisfies
(lo), or any of the inequalities (l l) , also satisfies (3); and, in view of the preceding
paragraph, it also satisfies all the other inequalities of (lo), (11). 0

Remark 4.1. Proposition 4.1 remains true if the condition ‘‘x E LP” is replaced
by “x such that Ax = e ” .

Note however, that the set packing inequality (10) and the set covering
inequalities (11) are equivalent to (3) only with respect to points x E R” satisfying
Ax = e.

\ {k} # 0, V h E k f k , and
note that:

(i) x defined by XI, = 1, x, = 0, j E N , { k } , satisfies (10) but violates (3) and (11);

To illustrate this, we assume Q# 0, Ni \ Q # 0, Nh f l

26 E. Balm

(ii) x defined by x, = 1, V j EN, satisfies (3) and (l l) , but violates (10);
(iii) x = 0 satisfies (3) and (lo), but violates (11);
(iv) x defined by x, = 1, V j E N (i) , xi = 0, V j E N,, satisfies (10) and (l l) , but

Though the inequalities (10) are of the set packing type, they are not in general
associated with P. The next proposition states

violates (3).

valid for the set packing polytope
when exactly they are not.

Proposition 4.2. The inequality (10) cuts of some x E P \ P i f and only i f Q # Ntk.

Proof. Necessity. If Q = Nak, then aka, # 0, V j E N, \ Q. Also, aha, # 0, V h , j E

N, \ Q. Hence the columns of A indexed by {k} U (N , \ Q) are pairwise nonor-
thogonal, and therefore (10) is satisfied by all x E P.

Sufficiency. If Q# N,*, then since aka, = 0, V j E N,, ., Q, any point x such that
XI, = xh = 1 for some h E N,k \ Q, x, = 0 otherwise, belongs to P, but violates
(10).

Example 4.1. The (strengthened) elementary inequality

x1- x3 0

derived in Example 3.1 is equivalent (with respect to points x E LP) to:

X I + X2-k X6-k x7+ xS+ x12s 1, for i = 3,

X I + X2-k x4+ xS+ x9+ XI1 1, for i = 4,

x I + x 4 + x 5 + x 7 + x 1 0 + x 1 2 + x 1 3 ~ 1 , for i =5,

X3 + x6 + X7 -k Xs f Xs + Xt3 + Xi4 2 1, for h = 1,

XZ + x3 + XI0 + XI1 + x13 3 1, for h = 2 .

The first one of the above set packing inequalities cuts off the point x E P \ P
defined by x1 = x12 = 1, x, = 0, V j # 1,12; the second one cuts off x E P \ P defined
by x1 = x4 = 1, x, = 0, j # 1,4; while the third set packing inequality cuts off both of
the above points. Note that this third inequality strictly dominates the facet of r'
defined by

X I + X I + XlO+ XI3 == 1.

From the practical standpoint of an implicit enumeration algorithm, every
solution to the set packing problem defines a partial solution to the associated set
partitioning problem. In this context the above result has to do with cutting off
partial solutions to the set partitioning problem and has the following implication.
We say that a set Q C N,, is minimal if n o element of Q can be removed without
invalidating the (valid) inequality (3). Also, a partial solution is said to be cut off if
its zero completion is cut off.

Some valid inequalities 27

Corollary 4.2.1. Let k E N . If the sets Qi C Nk, i E M k are minimal, then the
inequalities (10) cut off all partial solutions of the form x k = x h = 1 with akah = 0,
which have no feasible completion.

Proof. Suppose the sets Q,, i E G k , are minimal, and let .Fk = t = 1, with &ah = 0,
be a partial solution which has no feasible completion. Then x E vert P and Xk = 1
implies x h = 0, and there exists i , E 6 i k such that h E Ngek. Let (lo),. be the
inequality (10) for i = i,. From Proposition 2.3, h E Nz.\ Q,.; for otherwise (lo),.
remains valid when Qg. is replaced by Q,. { h } , contrary to the minimality of Q#..
But then the zero completion of . f k = f h = 1, (i.e., the point obtained by setting
x =0 , j # k , h) , violates (lo),.. 0

Corollary 4.2.1 suggests that the inequalities (10) can be used to enhance the
orthogonality tests in implicit enumeration (see [9, 14, 191) or in an all-binary
column-generating algorithm [3]. The latter possibility is currently being explored.

The set packing inequalities (10) have a well-known graph-theoretical interpreta-
tion in terms of the intersection graph of the matrix A. We first discuss this
interpretation, then use it to derive a new interpretation on a different graph which
incorporates more properties of the set partitioning polytope P. For background
material, see [15, 16, 17, 211.

The intersection graph GA of the 0-1 matrix A has a node j for each column a,,
and an edge (i , j) for each pair of columns a,, a, such that a,a, # 0. An inequality of
the form

c X j S l
j e V

is valid for the set packing polytope defined on A, i.e., is satisfied by all x E P, if and
only if V is the node set of a complete subgraph of GA ; and (12) is a facet of if and
only if V is the node set of a clique, i.e., a maximal complete subgraph, of GA [8,
171. Evidently, all those inequalities (10) such that {k} U (N, \ Q) is the node set of a
complete subgraph of GA, are satisfied by all x E P; and from Proposition 4.2, these
inequalities are precisely those for which Q = Ngk. The other inequalities (lo), for
which Q # N,, have n o interpretation on GA.

This suggests the following interpretation on a supergraph of GA. We define
G(A) , the strong intersection graph of the matrix A, to have a node for each j E N,
and an edge for each pair i , j E N such that there exists n o x E {0,1}" satisfying
Ax = e, with x, = x, = 1. Clearly, GA is a subgraph of G(A) , since GA has an edge
for each pair i , j E N such that there exists n o x E {0,1}" satisfying Ax e, with

An equivalent definition of G (A) is as follows. We shall say that an independent
node set S C N of GA defines a feasible partition of N, if N can be partitioned into
subsets N,, . . ., N,, such that each N,, i = 1,. . ., p , induces a complete subgraph on
G, and contains exactly one node of S. In these terms, (i , j) is an edge of G (A) if

x, = x, = 1.

28 E. Balm

A =

and only if there exists no independent node set S of GA containing both i and j ,
which defines a feasible partition of N.

The inequalities (10) can then be interpreted on the strong intersection graph
G (A) as follows.

r l 0 0 1 0 0 1 0 0

1 0 0 0 1 0 1 0 0

0 1 0 0 0 1 1 0 0

0 1 0 0 0 1 0 1 0

0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 0 1

- 0 0 1 1 0 0 0 1 0

Proposition 4.3. (i) The inequality

is satisfied by all x E P if and only if V is the node set of a complete subgraph G‘ of

(ii) Assume that for each j E V there exists x E P such that x, = 1, and that (12) is
satisfied by all x E P. Then the inequality (12) is maximal if and only if V is the
node set of a clique of G (A) .

G (A) .

Some valid inequalities 29

Fig. 1

If A ' = (a',,) is the clique-node incidence matrix of G(A) (with a:,= 1 if clique i
contains node j , a:, = 0 otherwise), then the system A 'x e', where e' = (1,. . ., l),
is satisfied by all x E P. Furthermore, each inequality of A'x < e' is maximal. If p'
denotes the set packing polytope defined on A', i.e.,

F' = conv {x E R" 1 A'x S e ' , x = 0 or 1, j E N } ,

we have the following obvious consequence of Proposition 4.3:

Corollary 4.3.1.
inequalities for P.

The facets of P' (which subsume or dominate those of p) are valid

5. Composite inequalities of type 1

In this section we give two composition rules which can be used to combine
inequalities in a certain class (which contains as a subclass the elementary
inequalities of Sections 2-3) into a new inequality belonging to the same class and
stronger than the sum of the inequalities from which it was obtained.

The class of inequalities to be considered, which we call composite of type 1, is
that of all valid homogeneous inequalities with a single positive coefficient when
stated in the form '' c O", and with zero coefficient in all columns j that are not
orthogonal to the column k with the positive coefficient. In other words, we are
referring to inequalities of the form

x,, -c x, s o (13)
f E S

where aka, = 0, V j E S. The subclass of elementary inequalities is distinguished
by the additional property that s C Nk for some i E ak.

The first composition rule. given in the next theorem, generates a new inequality
(13) from a pair of inequalities of type (13), such that the positive coefficient of the
first inequality corresponds to a zero coefficient of the second one, while the
positive coefficient of the second inequality corresponds to a negative coefficient of
the first one.

30 E. Balm

For k E N, we will denote by L (k) the index set of those columns orthogonal to
ak, and by L (k) its complement; i.e.

L (k) = { j E N I aiak = 0}, L (k) = N\ L (k) .

Proposition 5.1.
and the inequalities

For k , h E N, let S, C L(r) , r = k , h, be such that h E s k , k E s h ,

are satisfied by all x E P. Then all x E P satisfy the inequality

where

s =(Sk\{h})U[Sh n L (k)] .

Furthermore, (15) is stronger than the sum of the two inequalities (14) i f and only i f

s h n [s k U L (k)] # 0 .

Proof. Adding the two inequalities (14) yields

where
s' = [(S k \ { h }) u s h] \ s k n s h .

Since xk = 1 implies xi = 0, V j E L (k) , S' can be replaced in (16) by S' n L (k) .
Also, since xk s 1, all coefficients 2 in (16) can be replaced by 1 without cutting off
any x E P. Thus (16) can be replaced by

where
s"= (s, n s h) u [sin ~ (k)]

and from the definition of S and S', we have S"= S. Thus (16') is the same as
(16). 0

The composition rule given in Proposition 5.1 can be applied sequentially to any
number of inequalities of the form (13), provided that at each step of this sequential
process one can find a pair k , h of inequalities satisfying the requirement of the
proposition.

Example 5.1.
N I S , NZ8 and Nz6 respectively, after strengthening via Proposition 3.1, are

Consider again Example 2.1. The inequalities (3) corresponding to

Some v d i d inequalities 31

Using Proposition 5.1 to combine the first two inequalities, we have k = 5 , h = 8,
Ss = {6,8,14}, Ss = {10,15}, S = ({6,8,14} \ (8)) U (15) [since {lo} @ L(5)] , and the
resulting composite inequality is

xs - xs- X14- XIS c 0.

Since {lo}€ Ss n L(5)# 0, this inequality is stronger than the sum of the
inequalities from which it was obtained. Combining the new inequality with the last
one of the above three inequalities, we have (the new) k = 5, h = 6, Ss = {6,14,15},
Ss= {11,15}, S = {14,15, ll}, and the composite inequality is

xs - XI1 - XI4 - XIS =s 0.

Since (15) E Ss n Ss # 0, this inequality is again stronger than the sum of the
inequalities from which it was obtained.

Next we give a second composition rule, which can be used to obtain all valid
inequalities (13) for a certain index k E N from the set of elementary inequalities
(3) corresponding to the same index k .

Proposition 5.2.
inequalities

For some k E N, let the sefs Qi C Nik, i E 6 f k , be such that the

are satisfied by all x E P, and let

Q o = U Q,.
1 E .Wk

Then the inequality

where S c N \ { k } , is satisfied by all x E P, i f and only if

Proof. (i) Necessity. If S G N , { k } does not satisfy (IS), then there exists some
Q C Qo \ S such that X defined by XI = 1, j E { k } U Q, XI = 0 otherwise, belongs to
P. But X violates (13).

(ii) Sufficiency. We first show that for all x E vert P,

32 E. Balas

X , = o , V j E N \ Q o U { k } . (19)

Since A has no zero column, h E L (k) implies that h E Nik for some i E g k .

Also, Nik C L (k) , V i E f i k . Therefore

From Proposition 2.3 and the validity of (3’), for all x Evert P, XI, = 1 implies
X , = 0, V] E Nik \ Q,, Vi E M k . But

u (N,k\Q,)> u Ntk\ u Q,
,€M* Z€Mk t € M k

= L (k) \ Qo,

where the last equality follows from (20) and (17). Hence x k = 1 implies x, = 0,
V j E L (k) \ Qo. Also, obviously x k = 1 implies x, = 0, V] E N\ L (k) U { k } . But

[L (k) \ Q o] U [N \ L (k) U { k }] = N \ Q o U { k }

which proves (19).

(19), X, = 0, V j E N , Qo U { k } . Hence
Now suppose X E vert P violates (13). Then f k = 1 and 2, = 0, V j E s. Also, from

which contradicts the condition (18) on S. 0

Evidently, a necessary condition for a valid inequality (13) to be maximal, is that
the set S is minimal, i.e., (18) ceases to hold if S is replaced by any of its proper
subsets.

Example 5.2. 0 was obtained
via the composition rule of Proposition 5.1. To obtain the same inequality via the
rule of Proposition 5.2, let k = 5. Then M5 = {1,2,3,4}, Nls = {1,6,8,9,14}, N2s =

{l, 2, 11,15}, N3s = {2,6, S}, and N45 = {2,8,9, ll}. Applying Proposition 5.2 with
Q, = N,s, i = 1,2,3,4, we find that

In Example 5.1, the inequality x s - x , ~ - x I 4 - x l s

Qo={1,2,6,8,9,11,14,15},

and condition (18) is satisfied, for instance, for S = (11, 14, 15). Hence the inequality

x s - x I 1 - x 1 4 - x 1 5 ~ 0

is satisfied by all x E P.
In Proposition 5.2, the condition on S is stated in terms of a set Qo which is the

union of the sets Q,, i E Mk associated with the elementary inequalities (3’). The
sets Q,, and hence Qo, are not uniquely defined, in that any Qi C Nik, i E Mk, for

Some valid inequalities 33

which the inequalities (3') are valid, can be used; and the smaller the set Qo, the
easier it is to generate all subsets Q C Qo which satisfy (19) and hence yield valid
cuts. However, from a different perspective, setting Qi = N,, for all i E a k gives a
particularly simple expression for the family of valid cuts of the form (13).

Corollary 5.2.1. The inequality

X t - c x j s o
j € S

where S c N \ { k } , is satisfied by all x E P i f and only i f

Proof.
Corollary follows.

In Proposition 5.2, set Qi = N i k , V i E 6 i k . Then Qo= L (k) , and the

Since the composite inequalities (13) do not have the property of elementary
inequalities that S C N, for some i E a k , there need not exist for each inequality
(13) a set packing inequality that is equivalent to it on LP. On the other hand, there
exist several inequalities of the more general form TX S 7ro, 7rj 2 0 integer, j E N,
T,, > 0 integer, which are equivalent to (13) on LP, and can be obtained by adding to
(13) r0 equations of Ax = e. Also, whenever S C L (k) , there exist several set
covering inequalities which are equivalent to (13) on LP, and which can be obtained
by subtracting from (13) any equation of Ax = e in which x k has a positive
coefficient, and multiplying by - 1 the resulting inequality.

Note also that the two strengthening procedures of Section 3 are in general not
applicable to the composite inequalities (13), since both procedures are based on
proofs which use the fact that for any elementary inequality Q, C N i k , for some
k E N.

Composite inequalities if type 1 can conveniently be used, along with the
elementary inequalities, in a primal all-integer cutting plane algorithm for solving
set partitioning problems. As we will show below, given any basic feasible integer
solution, and any nonbasic variable x k which cannot be pivoted into the basis with a
value of 1 without losing feasibility, it is always possible to generate either an
elementary or a composite inequality which can be used as a primal all-integer
cutting plane to pivot x k into the basis with a value of 0. These cuts are usually
considerably stronger than the corresponding all-integer Gomory cuts [111 used by
Young [22] and Glover [lo] in their primal cutting plane algorithms, since they are
derived from the special structure of the set partitioning problem. No direct
comparison is available at this time with the fractional cuts proposed in [13] (see
also [14]) which also use the set partitioning structure, but the cuts discussed here
are obtainable directly from the matrix A, whereas those of [13] require at least
partial knowledge of a fractional simplex tableau.

34 E. Balas

Finally, we note that the number of elementary inequalities is bounded by
x k e N I G (k) l , while the number of composite inequalities of type 1 is bounded by
CkeN2'L(k)'. The latter is of course a very weak bound for the number of
nonredundant inequalities of type (13), since the number of minimal sets S C Qo
satisfying (18) is much less than 2IL(*)'.

To state the specific property mentioned above, let i be an integer solution to the
system Ax = e, x 3 0, with associated basis B, let I and J be the basic and nonbasic
index sets respectively, and let Zj = B-'aj, G o = B-'e. Suppose now that for some
k E J ,

i.e., X k cannot be pivoted into the basis with value 1 without making the solution
infeasible (i.e., negative in some component).

Further, for i E G k , let Qi C & be such that the inequalities

are valid. If there exists i E Mk such that Q, C J, then the corresponding inequality
(3') can be appended to the simplex tableau and XI, can be pivoted into the basis in
the row corresponding to (3') with a value of 0. Furthermore, if the reduced cost
associate with column k was negative before the pivot, it will be positive after the
pivot. Note also that if without the inequality (3'), x k could have been pivoted into
the basis with a fractional value, then (3') cuts off the fractional vertex of LP
obtained in this way.

When Q,G J, V i E i i i k , i.e., when at least one of the variables x,, j E Q,, is basic
for each of the inequalities (3'), this cannot be done in general. However, in that
case one can use Proposition 5.2 to generate another primal all-integer cut as
follows.

Corollary 5.2.2. Given an integer solution to the system Ax = e, x 2 0 , and an
associated basis B , let I and J be the index sets for the basic and nonbasic variables
respectively, and let 5, = B-'aJ, j E J, Zo = B-'e. Suppose that for some k E J,

and the inequalities (3') are valid. Then

where Qo is defined by (17), is a valid inequality.

Some ualid inequalities

Proof. In view of (21), we have

35

C a,# e - ak, V Q G I .
j C Q

On the other hand, denoting S = Qo r l J = Qo \ I, condition (18) of Proposition
5.2 becomes for this case

C a,# e - a k ,
j C Q

Hence the condition of Proposition 5.2 is satisfied and (22) is a valid
inequality. 0

Thus, when no inequality (3') is available as a primal cut, the inequality (22) can
serve the same purpose. A pivot in the row corresponding to (22) (and column k)
has the same consequences discussed above for a pivot in the row corresponding to
an inequality (3').

Example 5.3.
Example 2.1 and whose cost vector is

Consider again the example of [5] , whose constraint set was given in

c =(5,4,3,2,2,2,3,1,2,2,1,1,1,0,0).

Performing all-integer primal simplex pivots produces Table 1, in which n o
variable with a negative reduced cost can be pivoted into the basis with a value of 1,
without making the solution infeasible.

1 - x , -x6 -x , -x3 -x9 -x,3 - X I , -x2 - X I 4 - X I S

- 3 3 1 0 2 0 - 3 1 5 - 2 0

1 1 0 0 0 0 0 1 1 0 1

0 - 1 0 0 1 - 1 -1 0 1 - 1 ,o
1 1 1 L 0 1 1 0 0 1 0

0 -1 -1 -1 1 0 -1 1 1 -1 0

0 1 1 2 -1 1 3 - 2 - 3 2 - 1

Table 1 .

To pivot xi3 into the basis, one could generate from the last row the primal
all-integer Gomory cut

1 1 3 - XZ- x3- XI1 - XI5 0.

However, the elementary inequality

x l 3 - x z ~ o

is considerably stronger. Appending it to the tableau and pivoting x13 into the basis
produces Table 2, where s1 stands for the slack variable associated with the cut.

36 E. Balm

1 - x , - X f i - x , - x , - x s -s, - X I , - x 2 - x , 4 - X I S

- 3 3 - 2 0 2 0 3 1 5 - 2 0

1 1 0 0 0 0 0 1 1 0 1

0 - 1 - 1 0 1 -1 1 0 1 - 1 0
1 1 2 1 0 1 - 1 0 0 1 0

0 -1 - 2 - 1 1 0 1 1 1 -1 0

0 1 4 2 - 1 1 - 3 - 2 - 3 2 -1
0 0 -1 0 0 0 1 0 0 0 0

Table 2

To pivot x6 into the basis, we generate the sets Ni6, i = 2,4,5, and find that each
of them contains at least one basic index: NZ6 = {10,11,15}, Nd6= (4, ll}, N56 =

(4, 5 , lo}. Hence we form the set Qo fl J = (4, 5 , 10, 11, 15}, and generate a
composite inequality of type 1, with S = Q n J = (11, 15):

x 6 - X I 1 - X I S 0.

Note that the corresponding Gomory cut is

x6-x2-x3-x11-x15-s1 s o .
Note also that the inequality X 6 - x l 1 - ~ ~ 5 ~ 0 happens to be an elementary

inequality, since {11,15} C{10,11,15}, which can be obtained by applying the
strengthening procedure of Proposition 3.1 to the elementary inequality x6 - x l o -
X I , - X I S s 0 .

In the next section we discuss additional options for generating primal all-integer
cuts which are often stronger than or otherwise preferable to, the inequalities used
here.

6. Composite inequalities of type 2

The two composition rules of Section 5 combine homogeneous canonical
inequalities with a single positive coefficient (when stated in the form G) , and
satisfying certain conditions, into a new inequality of the same form. In this section
we give a composition rule which combines homogeneous canonical inequalities
with (possibly) several positive coefficients into a new inequality of the same form.

Proposition 6.1.
V k , h E K , where

Let Ki, i E T, be pairwise disjoint subsets of N , such that akah # 0,

K = U K , ;
i E T

and let S (K i) C N, i E T, be such that the inequalities

Some valid inequalities

are satisfied by all x E P, and K n S (K) = B, where

is

Then the inequality

37

satisfied by all x E P.
Furthermore, (24) is stronger than the sum of the inequalities (23) if and only if the

sets S (Ki) , i E T, are not all pairwise disjoint.

Proof. Any x Ever t P which violates (24) is of the form fk = 1 for some k E K,
2, = 0 , V j E (K\ {k}) U S (K) , Xi arbitrary otherwise; but then 2 violates the i th
inequality (23), i being the index for which k E Ki. Hence (24) is satisfied by all
x E P .

Adding the inequalities (23) yields

where Pj is the number of sets S (K i) containing j . Clearly, (24) is stronger than (25)
if and only if at least one j E S (K) is contained in more than one set S(Ki) , i.e., if
and only if the sets S (K i) are not all pairwise disjoint. 0

Inequalities of the form (24) [or (23)] will be called composite of type 2. They
subsume, as special cases, all the earlier inequalities discussed in this paper.

A composite inequality of type 2 always has several nonhomogeneous equiva-
lents (on LP) of the form T X s no, rj 3 0 integer, j E N, T,, > 0 integer, which can
be obtained by adding r0 equalities of Ax = e to (24). On the other hand, whenever
K C N, for some i E M, subtracting equation i of A x = e from (24) and multiplying
by - 1 the resulting inequality produces a set covering inequality equivalent to (24)
on LP.

Since the positive coefficients of a composite inequality of type 2 are all equal to
1, and since they are computationally cheap, these inequalities can conveniently be
used as primal all-integer cutting planes, along with (or instead of) and in the same
way as, the elementary inequalities and the composite inequalities of type 1.

Example 6.1.
have produced Table 1, we generated the elementary inequality

In Example 5.2, after a sequence of primal integer pivots which

x , , - x z s 0

to be used as a primal all-integer cut. Pivoting in the cut-row then produced Table
2. However, the above inequality can be combined on the basis of Theorem 6.1 with
two other valid elementary inequalities,

38

xu

X I 0

XI2

X8

x4

x 3

x13

E. Balas

- 3 3 4 0 2 0 3 - 2 2 1 - 3

1 1 0 0 0 0 0 1 1 0 1

0 1 - 1 1 -1 0 0 -1 0 - 1 1
1 1 0 1 0 1 -1 1 1 0 1

0 -1 0 -1 1 0 1 0 0 0 1

0 1 - 2 2 -1 1 - 3 1 0 - 1 2
0 0 1 0 0 0 1 - 1 - 1 1 - 1

x6- XI1 - XIS c 0
and

XI4 - xz - XI1 - XIS c 0,

into the composite inequality of type 2

0, X6f x n + X14- Xz- XI1 - XI5

since the vectors as, a13, aI4 are pairwise nonorthogonal and {6,13,14}n
{2,11,15} = 0.

This composite inequality has a stronger effect than the inequality xI3 - xz s 0, in
that it leads to optimality without additional cuts. Indeed, adding the composite cut
to Table 1 and pivoting X I 3 into the basis produces Table 3:

Proposition 6.2. Let K C N be such that aiaj # 0, Vi, j E K, and let

L (K) = { j E N, K I ajak = o for some k E K } .

Then the inequality

c xj - c xj c 0,
j E K j € S

where S C N \ K, is satisfied by all x E P if and only i f

2 aj# e - ak, V k E K, V Q C L (K) \ S.
j E Q

Some valid inequalities 39

Proof. Necessity. Suppose (26) is violated for some k E K and Q C L(K)\ S.
Then there exists X E P such that ?k = 1 and f j = 0, V j E S, which implies that (25)
is not valid.

Sufficiency. Suppose i E vert P violates (25). Then f k = 1 for some k E K and
2, = 0, V j E S. Further, X, = 0, V j E N , L (K) U {k}. Hence

A? = ak + 2 ajfj = e
j€L(K)\S

and thus X violates (26).

Clearly, a necessary condition for the inequality (25) to be maximal, is that K be
maximal and S be minimal (in the obvious sense).

Proposition 6.2 can be used to give a simple procedure for generating yet another
primal all-integer cut, whenever none of several nonbasic variables can be pivoted
into the basis (associated with some feasible integer solution) with a value of 1
without losing feasibility. Furthermore, generating this cut does not require
knowledge of the sets Q, or Nik.

Corollary 6.2.1. Given an integer solution to the system A x = e, x 3 0 , and an
associated basis B, let I and J be the index sets for the basic and nonbasic variables
respectively, and let 5, = B-'aj, j E J, Go = B-le. Suppose that for some h E M and
K C Nh f l J, we have

min { 2 I aik > o } < 1 , V k € K.
i € I

Then

is a valid inequality.

Proof. In view of (27),

C a,# e -a t ,
j€Q

we have

Vk E K, VQ I f l L (K) = L (K) \ J fl L (K) . (26')

Setting S = J f l L (K) and applying Proposition 6.2 produces an inequality which
dominates (28), since J r l L (K) C J fl N , N h . 0

Example 6.2. In Example 5.3, consider again Table 1. Choose h E M such that Nh
contains as many as possible of those j E J with a negative reduced cost; i.e., let
h = 1. Then N , n J = {1,6,7,9,13,14}, and none of the variables x k , k E N1 f l J, can
be pivoted into the basis with a value of 1, since each of the columns indexed by
N , n J has a positive coefficient in a degenerate row (in the row of xs). Thus
K = N , n J is a legitimate choice, and the corresponding inequality (28) is

XI + X6-k x7+ X 9 - k X I 3 + x14- x2- x3- XI1 - XI5 0. (28')

40 E. Balm

x,,

X I 0

x,2

X"

x4

Xr

XI3

- 3 6 4 3 - 1 3 3 -2 2 1 - 3

1 1 0 0 0 0 0 1 1 0 1

0 0 1 1 0 0 1 - 1 0 0 - 1
1 0 0 0 1 0 - 1 1 1 0 1
0 0 0 0 0 1 1 0 0 0 - 1

0 -2 -2 - 1 2 -2 - 3 1 0 - 1 2

0 1 1 1 -1 1 1 - 1 - 1 1 -1

7. A hybrid primal cutting plane/implicit enumeration algorithm

In Section 1 we defined an inequality to be valid if it is satisfied by all x E P.
However, in the context of solving set partitioning problems in the sense of finding
an optimal solution (rather than all such solutions), it is useful to consider
inequalities which are satisfied by all x E vert P better than some given X Evert P.
The next theorem gives necessary and sufficient conditions for an inequality of the
form (25) to be valid in this latter sense.

Proposition 7.1. Let X E vert P and let

P+(x) = {x E vert P 1 cx < CX)

Further, let K C N be such that

c x , s L
I E K

L (K) = { j E N, K 1 a,ar = 0 for some k E K } .

Vx E vert P,

and let

Then the inequality

Some valid inequalities 41

c xj - c XJ 0,
j E K j € S

where S C N , K, is satisfied by all x E P'(X) if and only i f there exists no x E P+(2)
such that x k = 1 for some k E K and

Proof.
and (30) holds for x = f. Then, denoting

Necessity. Suppose there exists f E P'(2) such that f k = 1 for some k E K,

W = { k } U{L(K)\ S } ,

we have

aji j = e
j € W

and from f E P, 2, = 0, V j E N\ W. Hence f k = 1 and f, = 0, V j E S, i.e. f violates

Sufficiency. Suppose f E P'(X) violates (29). Then f k = 1 for some, k E K and
f, = 0, V j E S. Further, from the definition of L (K) , f, = 0, V j E N\ L (K) U {k}.
Hence

(29).

Af = ak + a$, = e,
IEL(K) \S

and thus (30) holds for 2. 0

Again, a necessary condition for the inequality (29) to be maximal, is that K be
maximal and S be minimal (in the obvious sense).

Proposition 7.1 can be used to generate a family of cutting planes which, in
combination with implicit enumeration on a sequence of subproblems, yields a
finitely converging primal algorithm for set partitioning.

Let X be a basic feasible integer solution to the linear programming relaxation of
the set partitioning problem, possibly amended with some cuts of the type to be
described below, and let

x, = 2," + c a,, (- t,), i E z u (0).

J - = { j E J 1 a", < O } ,

I E J

Denote

and assume that 0# J -
negative reduced cost. Assume also that

N and I C N, i.e. no slack variable is basic or has a

42 E. Balas

i.e., pivoting into the basis any single nonbasic variable with a negative reduced cost
would make the solution fractional (if = 0).

Let i , E I be such that J - r l N , . # 0, where, as before, N r . = { j E N 1 a, , = l}, and
let j , E J - rl N g . . Define

> 0) or leave it unchanged (if

f, = min(0, do, - doJJ, j E J - rl N z + ,

gJ = min (0, do,), j E J rl N\ N, . ,

h, = min (0, zioJ + do,.}, j E J n N \ Nt*,

and let J n N\ N,. = G(l), . . ., j (r) } be ordered so that

hj(k) h j (k + l) , k = 1, . . ., r - 1. (32)

Finally, define gic0) = 0, and let p E (0) U (1,. . ., r } be any integer such that

Such p always exists, since (33) holds for p = r. The left hand side of (33) is the
sum of negative reduced costs after a pivot in column j * and the row provided by
the cut (37) below.

Define

Q (P) = (I \ Ni.) U {j(l), . . .) j (p) } . (34)

If there exists k E J - rl Ni. and y E (0, 1}4, where q = 1 Q(p)J, satisfying

C ajyi = e - a k,
i e Q (p)

(35)

then f E R" such that fi = yJ, j E Q (p) , fi = 0, j E N\ Q (p) , is obviously a feasible
integer solution better than 2.

On the other hand, if this is not the case, then from Proposition 7.1 we have the
following.

Corollary 7.1.1.
(36), then the inequality

If there exists no k E J - rl N # . and y E (0,1)9 satisfying (35) and

l (1)

C t,- 2 t J S 0 (37)
J E J - n N , . I =,(&'+I)

is satisfied by all x E P such that cx < c f ; and pivoting in row (37) and column j ,
produces a simple table with nonbasic index set j and reduced costs Cia, such that,
denoting j - = { j E j 1 6, < 0},

Some valid inequalities 43

(38)

and doj 3 0, V j E J , N, while the solution .f remains unchanged.

Proof.
denoting

If there exists no k E J - f l N , . and y E {0,1}¶ satisfying (35) and (36), then,

K = J - fl Ni,and S = { j (p + l) , . . ., j (r) } , (39)

there exists no x E P'(.f) such that XI, = 1 for some k E K and

ajxj = e - ak. (40)
j€L(K)\S

To see this, note that

Now assume that there exists x^ E P+(f) satisfying (40) for some k E K. Then in
view of (41), 9 E (0,1)4 defined by 9, = fi, i E L (K) \ S, j i = 0 otherwise, satisfies
(3 9 , contrary to our assumption.

Thus, applying Proposition 7.1 with K and S as defined in (39), we find that the
inequality (37) is satisfied by all x E P'(2).

Further, pivoting in the row defined by (39) and column j * produces a simplex
tableau with the reduced costs

iioj - doi., j E J - fl Ni.\{jJ,

doj + doj., j = j(k), k = p + 1 , . . ., r,
i O j =

1 doj, otherwise,

and since min (0, - dOjS = min (0, d o j - c S o j .) = 0, the left hand side of (33) is the sum
of negative reduced costs after the pivot. Thus, (33) is the same as (38). Also,
do, 3 0 , V j E J\ N, since the reduced costs of t,, j E J\ N, remain unchanged.
Finally, since the right hand side of (37) is zero, .f also remains unchanged. 0

The strength of the cut (37), as well as the computational effort involved in the
search for a pair (k,y) satisfying (3 9 , (36) (which can be carried out by implicit

44 E. Balm

enumeration) depends on the size of the set Q (p) , viz. of the integer p . The strength
of the cut increases with the size of p , but so does the computational effort involved
in the search. Let pmin be the smallest value of p for which (33) holds. Note that
when pmin = 0, (35) cannot be satisfied for any k . Therefore in this case (37) (with
p = 0) is always a valid cut, and there is no need for implicit enumeration to
establish this fact.

Since implicit enumeration is highly efficient on small sets, but its efficiency tends
to decline rapidly with the increase of the set size, a reasonable choice for p is

p = max { P O , P m i J (42)

where p o is the largest integer sufficiently small to keep the cost of the implicit
enumeration acceptably low.

An algorithm based on Corollary 7.1.1 can be described as follows. Denote by J
the index set of nonbasic variables, by J\ N the index set of nonbasic slacks
associated with cuts.

Step 0. Choose a value for p o . Start with the linear programming relaxation of the
set partitioning problem and go to 1.

Step 1. Perform simplex pivots which (a) leave the solution primal feasible and
integer; (b) leave aoj 3 0, V E J\ N ; and either (c) reduce the objective function
value, or (4 leave the latter unchanged and reduce the absolute value of the sum of
negative reduced costs. (Note that this does not exclude pivots on negative entries,
or pivots which make the table fractional, provided they occur in degenerate rows.
The algorithm remains valid, however, if such pivots are excluded.) When this
cannot be continued, if aoj 2 0, V j E J, stop: the current solution is optimal.
Otherwise go to 2 .

Step 2. Define i , and j * by

respectively, order the set J n N -, AJ,. according to (32), and choose p according to
(42). Then use implicit enumeration (if necessary) to find k E J - n Nt. and
y E (0, 1}4 satisfying (359, (36) (case a) , or to establish that no such pair (k , y) exists
(case p) . Then go to step 3 (case a) or step 4 (case p) .

Step 3. Pivot into the basis with a value equal to 0 each nonbasic slack variable
and remove from the simplex tableau the corresponding row. Then pivot into the
basis each nonbasic variable t, such that yJ = 1, and go to 1.

Step 4. Generate the cutting plane (37), add it to the smplex tableau, pivot in the
new row and column j * , and go to 1.

Corollary 7.1.2. The procedure consisting of Steps 1-4 is finite.

Some valid inequalities 45

x o

XlO

XI2

x s

x4

1 5

S

Proof. Each pivot of Step 1 either decreases the objective function value z (if
nondegenerate), or leaves z unchanged and decreases the absolute value u of the
sum of negative reduced costs (if degenerate). Each application of Step 2 is
followed either by Step 3 or by Step 4. Step 3 consists of a sequence of pivots which
decreases z. Step 4 generates a cut and performs a pivot which decreases a, while
leaving z unchanged.

In conclusion, every iteration of the algorithm either decreases z , or leaves z
unchanged and decreases u. Since u is bounded from below by 0, z can remain
unchanged only for a finite sequence of iterations. Since z is also bounded from
below, the procedure is finite.

- 3 3 1 0 2 0 - 3 1 5 - 2 0

1 1 0 0 0 0 0 1 1 0 1
0 -1 0 0 1 -1 - 1 0 1 - 1 0

1 1 1 1 0 1 1 0 0 1 0

1 - 1 0 0 -1 - 1 - 1 1 0 - 1 1

0 1 1 2 - 1 1 3 - 2 - 3 2 -1
0 - 1 1 - 1 - 1 - 1

E. Balas

xn

1 - X I -x.5 - x , -x3 - x 9 -x *3 - X I 1 - x * - - s - X I 5

- 3 3 1 0 0 0 - 1 - 1 3 2 0
1 1 0 0 0 0 0 1 1 0 1
0 -1 0 0 0 - 1 0 -1 0 1 0

1 1 0 1 1 -1 0 1 1 1 1

0 - 1 -1 -1 0 0 0 0 0 1 0
0 1 1 2 1 1 1 0 -1 2 - 1
0 -1 1 - 1 -1 1

-2 5 2 2 1 1 1 1 3 4 0

Table 6.

Step 1. Pivoting xI1 into the basis in place of x l o , and then xI3 in place of xs, yields
the optimal solution xi = 1, j = 11,12,14, xi = 0 otherwise, with the following
reduced costs:

References

[I] E. Balas, Intersection cuts from disjunctive constraints, MSRR No. 330, Carnegie-Mellon Univer-
sity, February 1974.

[2] E. Balas, Disjunctive programming: Cutting planes from logical conditions, in: 0. Mangasarian,
R.R. Mayer, and S. Robinson, eds., Nonlinear Programming 2 (Academic Press, New York, 1975)

[3] E. Balas, R. Gerritsen and M.W. Padberg, An all-binary column generating algorithm for set

[4] E. Balas and R.G. Jeroslow, Canonical cuts on the unit hypercube. MSRR No. 198, Carnegie-

[5] E. Balas and M.W. Padberg, On the set covering problem. 11: An algorithm for set partitioning.

[6] E. Balas and M.W. Padberg, Set partitioning: A Survey. SIAM Review, 18 (1976) 710-760.
[7] V. Chvltal, On certain polytopes associated with graphs. J . Combin. Theory, B,l8 (1975) 138-154.
[8] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1 (1971)

[9] R.S. Garfinkel and G.L. Nemhauser, The set partitioning problem: Set covering with equality

[lo] F. Glover, A new foundation for a simplified primal integer programming algorithm. Operations

[l l] R.E. Gomory, All-integer integer programming algorithm, in: J.F. Muth and G.L. Thompson, eds.,

[12] R.E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra, I and 11,

[131 R.G. Jeroslow, Minimal inequalities. MSRR No. 362, Carnegie-Mellon University, March 1975,

pp. 279-311.

partitioning. Paper presented at the ORSA/TIMS meeting in Boston, April 1974.

Mellon University, August-December 1969. SIAM J. Appl. Math., 23 (1972) 61-69.

Operations Rex, 23 (1975) 74-90.

168-194.

constraints. Operations Res., 17 (1969) 848-856.

Res., 16 (1968) 727-740.

Industrial Scheduling (Prentice-Hall, Englewood Cliffs, NJ, 1963) pp. 193-206.

Math. Programming, 3 (1972) 23-85 and 35%389.

revised April 1975.
[14] R.E. Marsten, An algorithm for large set partitioning problems. Management Sci., 20 (1974)

779-787.
[15] G.L. Nernhauser and L.E. Trotter, Properties of vertex packing and independence system

polyhedra. Mathematical Programming, 6 (1973) 48-61.

Some valid inequalities 47

[I61 M.W. Padberg, Essays in integer programming. Ph.D. Thesis, Carnegie-Mellon University, May

(17) M.W. Padberg, On the facial structure of set packing polyhedra. Math. Programming, 5 (1973)

[18] M.W. Padberg, Perfect zero-one matrices. Math. Programming, 6 (1974) 180-196.
[19] J.F. Pierce and J.S. Lasky, Improved combinatorial programming algorithms for a class of all

(201 J. Stoer and C. Witzgall, Convexity and optimization infinite dimensions. I (Springer, Berlin, 1970).
[21] L.E. Trotter, A class of facet producing graphs for vertex packing polyhedra. Technical Report No.

[22] R.D. Young, A primal (all-integer) integer programming algorithm. J. Res. Nar. Bur. Stds., 69B,

1971.

199-2 15.

zero-one integer programming problems. Management Sci., 19 (1973) 528-543.

78, Yale University, February 1974.

1965, pp. 213-250.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 49-64
@ North-Holland Publishing Company

BACKTRACKING ALGORITHMS FOR NETWORK
RELIABILITY ANALYSIS *

Michael BALL* and Richard M. Van SLYKE
Network Analysis Corporation, Glen Cove, NY 11542, U.S.A.

Backtracking algorithms are applied to determine various reliability measures for networks.
These algorithms are useful in analyzing the reliability of many data communication networks.
We consider an undirected network where each node and each arc may be in one of two states:
operative o r inoperative. These states are independent random events. In addition to the more
usual measure of network reliability, the probability that a specified pair of nodes can
communicate, we consider more global measures such as the probability that all nodes can
communicate and all operative nodes can communicate.

1. Introduction

Backtracking algorithms are very useful in solving a variety of network-related
problems. They provide a framework for efficient manipulation of data with
relatively small storage requirements. For example, Hopcroft [4] gives backtracking
algorithms for partitioning a graph into connected components, biconnected
components and simple paths; and Read [7] gives backtracking algorithms for
listing cycles, paths and spanning trees of a graph. We have devised backtracking
algorithms for determining certain reliability measures of a network. The al-
gorithms are useful in analyzing the reliability of many data communications
networks. For example, we have used them in the analysis of communications
networks such as, ARPANET in which network nodes correspond to minicompu-
ters and network arcs correspond to transmission lines. In addition, they can be
used in the analysis of radio networks in which nodes correspond to broadcast
stations and arcs connect stations within broadcast range of each other.

The model we consider is an undirected network containing NN nodes and NA
arcs. Each arc consists of an unordered pair of nodes. We do not allow self loops,
that is, arcs of the form [N , N] . In addition we do not allow parallel arcs, that is,
each arc is distinct. Each node and arc may be in either of two states: operative or
inoperative. The state of a node or an arc is a random event. The state of each node
and arc is independent of the state of any other node or arc. Each arc, A, and node,
N, takes on the inoperative state with known probability P A (A) and P N (N)
respectively and the operative state with probability 1 - P A (A) and 1 - P N (N)

* This work was supported by the Advanced Research Projects Agency of the Department of

** Now at Bell Telephone Laboratories, Murray Hill, NJ, U.S.A.
Defense under Contract No. D A H C 15-73-CO135.

49

50 M . Ball, R.M. Van Slyke

respectively. Communication can exist between a pair of nodes if they are operative
and if there is a path consisting of operative nodes and arcs connecting them.

The underlying model is not new. An early reference on it is [6]. In this paper and
in the majority of the work done on this problem thus far nodes are assumed to be
perfectly reliable. The reliability measure most often considered is the probability
that a specified pair of nodes can communicate. The reliability problems associated
with many physical systems can be stated in terms of finding the probability that a
specified pair of nodes can communicate in a network with perfectly reliable nodes.

We are interested in the reliability of data communications networks. For this
problem we cannot assume that nodes are perfectly reliable and we require global
measures of reliability. In addition to the probability that a specified pair of nodes
can communicate we consider the probability that all nodes can communicate and
the probability that all operative nodes can communicate. All algorithms can obtain
exact answers; in addition, to allow for the analysis of larger networks we give a
truncation procedure with which approximate answers can be obtained in less time.

There are basically two approaches to network reliability analysis: simulation
and analytic. All known analytic methods for network reliability analysis have
worst case computation time which grows exponentially in the size of the network
considered. Our backtrack methods are analytic methods and are not exceptions to
this trend. Hence, they are not recommended for large networks. However, results
in [8] indicate that network reliability analysis is intrinsically very difficult.
Simulation methods, for which computation time grows only slightly faster than
linearly with network size, have been described in the literature. In our practical
experience we have found that simulation techniques are suitable for large
networks and are generally more flexible than analytic methods. However, they
have the disadvantage that they only give approximate answers; and when a high
degree of accuracy is necessary, the running time can grow quite large.

Analytic methods use basic probabilistic laws to reduce or decompose the
problem. Roughly speaking these methods use some combination of enumerative
and reduction techniques. Enumerative methods enumerate a set of probabilistic
events which are mutually exclusive and collectively exhaustive with respect to the
measure in question. Our algorithms are examples of enumerative algorithms.
Reduction algorithms collapse two or more network components into one network
component. The simplest example of network reduction is collapsing two series arcs
into one arc.

Enumerative algorithms for finding the node pair disconnection probability with
perfectly reliable nodes are given in [2,3,9]. Hansler, McAuliffe and Wilcox
produce as output a polynomial in P, the constant arc failure probability. Using an
APL implementation on an IBM 360-91 computer, their algorithm ran on two
9-node, 12-arc networks in a total of 18 seconds. Fratta and Montanari used a
network reduction technique to reduce a 21-node, 26-arc network to an %node,
12-arc network. They used a FORTRAN IV implementation on an IBM-360-67
computer. Once the reduction was accomplished, they used their enumerative

Backtracking algorithms 51

algorithm on the 8-node, 12-arc network to produce the exact disconnection
probability. The total time for the reduction and the enumerative algorithm was 112
seconds. The reduction algorithm most probably took a small percentage of that
time. Segal initially enumerates all paths in the network. He then uses the *
operator (P:Pb = P, iff a = b) to convert the probabilities that each path operates
to the probability that the node pair can communicate. This technique is especially
useful when the communication paths between the node pair are restricted.

Reduction techniques have been most successful in finding the probability that a
specified pair of nodes can communicate where parallel and series arcs can be
collapsed into single arcs. Rosenthal [8] gives more sophisticated reduction
techniques for finding other reliability measures. Rosenthal gives no computational
experience; however, it appears that his techniques may be valuable for analyzing
sparse networks. Generally, networks can only be reduced so far, so reduction
techniques must be used in conjunction with other methods. The one exception is in
the case of tree networks.

In [5] a recursive reduction algorithm is given for determining a variety of
reliability measures, including all of those mentioned in this paper, on tree
networks. A 500-node tree was run in If seconds on a PDP-10 computer.
Algorithms for general networks cannot come close to solving problems of this size.

Simulation methods have been given in [l l , 121. They provide a great deal of
flexibility in the measures that can be investigated. In addition, they contain
powerful sensitivity analysis capabilities. For a given number of samples, the
running times increase almost linearly in the number of nodes and arcs. A 9-node,
12-arc network was run using the simulation algorithm with a FORTRAN IV
implementation. The simulation algorithm produced the expected fraction of node
pairs communicating and the probability that all operative nodes can communicate
in 54 seconds on a PDP-10 computer.

We have implemented our algorithms using FORTRAN IV on a PDP-10
computer. The results indicate reduction in running time over the analytic
algorithms listed below. In addition, our algorithms produce global reliability
measures of more interest to network designers, whereas, most of the previous
work was concentrated on the specified node pair problem. Our algorithms also
appear to be much quicker than simulation algorithms for networks with fewer than
20 arcs. A complete summary of computational experience is given in a later
section.

2. Probabilistic backtracking

Suppose we wish to enumerate all subsets of a set with a desired property. We
examine elements of the set in a prescribed order. When an element is examined we
decide whether or not to include it in the subset under construction. When the
subset has the desired property we list it. Afterwards, we change our decision about

52 M. Ball, R . M . Van Slyke

the last element and begin adding new elements until the subset again has the
desired property. If changing our decision on an element cannot produce a subset
with the desired property we backup to the previous element. If this element has
been considered both in and out, we backup again. If it has only been considered in
one state, we change our decision on it and proceed as before. When the process
terminates all subsets have been enumerated. Walker [13] has appropriately named
this process “backtracking”. If the enumeration is represented by a tree it can be
thought of as a method for exploring a tree. More recently, it has been generalized
as a method for exploring any graph and in this context it is called “depth first
search” [lo].

We have found this process very useful in determining the probability of a
random event E. In the probabilistic context backtracking proceeds by adding
probabilistic events to a stack. When the intersection of the events on the stack
implies the event E, the probability of the stack configuration is added into a
cumulative sum. Afterwards, we complement the top event and begin adding new
events to the stack until it again implies the random event E. If complementing, the
top event implies that E cannot occur, we take the event off the stack and consider
the new top event. If both the event and its complement have been considered, we
take it off the stack. If its complement has not been considered, we complement it
and proceed as before. When this process terminates, the cumulative sum will
contain the probability of the event E. This is so because the events whose
probabilities were added into the sum form a partition of the event E.

3. Node pair disconnection

We will first consider finding the probability that a specified node pair cannot
communicate. One minus this value will give us the probability that the specified
pair can communicate which is the reliability measure of interest. Henceforth, this
node pair will be denoted as (S , T) . For the moment, we will assume that nodes are
perfectly reliable. All algorithms presented use the same basic approach. The
approach is best illustrated through the specified node pair problem which is the
simplest. Our algorithm embodies the general idea of [3] in a backtracking
structure. Their algorithm and ours enumerate a set of “modified cut sets”. A
modified cutset is the assignment of one of the states, operative, inoperative or free
to all arcs in t he network in such a way that the inoperative arcs form a cutset with
respect to the specified node pair. The probability of a modified cutset is the
product of the failure probabilities of all inoperative arcs times the product of one
minus the failure probabilities of all operative arcs. The modified cutsets we
enumerate are mutually exclusive and collectively exhaustive with respect to the
specified node pair being diconnected. Therefore, the sum of their probabilities is
the probability that the specified node pair cannot communicate.

We use probabilistic backtracking to enumerate the desired set of modified
cutsets. The events added to the stack are of the form “ A inoperative” or its

Backtracking algorithms 53

complement “A operative” where A is some arc. Inoperative events are added to
the stack until the inoperative arcs include an S-T cut. At this point the arcs on the
stack will form a modified cutset and its probability will be added into a cumulative
sum. The stack configuration corresponds to a modified cutset in the following
manner. Arcs not included in any events on the stack are free. Other arcs are
operative or inoperative depending on the type of event in which they appear.
After updating the cumulative sum, the top event is changed from “A inoperative”
to “A operative”. The algorithm continues to proceed in the backtracking manner
by again adding inoperative arcs to the stack. Two procedures are necessary to
implement the algorthm. The first is a method for choosing which arcs to mark
inoperative and add to the stack to form a modified cutset. In addition, after an
event has been changed from “A inoperative” to “A operative” we must be able
to determine if a cutset can be formed by making free arcs inoperative and adding
them to the stack. If one cannot be formed we do not make A operative but simply
take A off the stack. This will be the case if, when A is made operative, the
operative arcs on the stack would include an S-T path.

Given this basic structure, a number of algorithms could be developed depending
on how the arcs to be made inoperative are chosen. Any such algorithm will fit into
the following general form:

Step 0: (Initialization). Mark all arcs free; create a stack which is initially empty

Step 1: (Generate modified cutset)

cut.
(a) Find a set of free arcs that together with all inoperative arcs will form an S-T

(b) Mark all the arcs found in l(a) inoperative and add them to the stack.
(c) The stack now represents a modified custset; add its probability into a

cumulative sum.

Step 2: (Backtrack)
(a) If the stack is empty, we are done.
(b) Take an arc off the top of the stack.
(c) If the arc is inoperative and if when made operative, a path consisting only of

(d) If the arc is inoperative and the condition tested in 2(c) does not hold, then

(e) If the arc is operative, then mark it free and go to 2(a).

operative arcs would exist between S and T, then mark it free and go to 2(a).

mark it operative, put it back on the stack and go to Step 1.

Example.
,

s = 1, T = 4, 12 implies arc 12 is inoperative, 12 implies arc 12 is operative.

54 M. Ball, R.M. Van Slyke

Examples of possible stack configurations:

12,13 12, 13 are inoperative. All other arcs are free. This is a modified
cutset since 12 and 13 form an S-T cut and they are inoperative. If
this were the stack configuration at Step 2 13 would be marked
operative.

1 2 , E , 24,34 12, 24, 34 are inoperative; 13 is operative. All other arcs are free.
This is a modified cutset since 24 and 34 form an S-T cut and they
are inoperative. If this were the stack configuration at Step 2, 34
would be taken off the stack, since if it were marked operative, 13
and 34 would form an operative S-T path.

12, 23 are inoperative; 34 is operative. All other arcs are free. This i
not a modified cutset. If this were the stack configuration at Step 2
34 would be removed from the stack since it is operative.

12,23,%
-

The two non-trivial operations contained in this algorithm are Step l(a) and Step
2(c). In Step l(a), we choose which arcs to make inoperative and put on the stack
and in Step 2(c), we decide whether an inoperative arc should be complemented or
whether it should be taken off the stack. Of course, the procedure used in one of
these steps is closely related to the procedure used in the other.

We have devised two algorithms based on this general algorithm. Algorithm 1
enumerates a set of modified cutsets similar to the set enumerated by Hansler,
McAuliffe and Wilcox. Algorithm 2 enumerates a set of minimum cardinality
modified cutsets with the use of a min-cut algorithm.

In Algorithm 1 operative arcs form a tree rooted at node S. Inoperative arcs are
adjacent to nodes in the tree. Initially, the tree consists only of node S. Node 7' will
never be in the tree. Step l(a) chooses all free arcs adjacent to both a node in the
tree and a node not in the tree. These arcs clearly will disconnect the tree from the
rest of the network and consequently, will disconnect S and T. The fact that an
inoperative arc, when added to the stack, is adjacent to a node in the tree and a
node not in the tree insures that, when it is marked operative, the operative arcs
will continue to form a tree. In Step 2(c), an inoperative arc is taken off the stack if
it is adjacent to node T.

S = l , T = 4 .
The sequence of modified cutsets generated by Algorithm 1 is:

Backtracking algorithms 55

12,13;
12,E, 32,34;
- 12,13,32,24,34;
12,23,24,13;
12,23,24,E, 34.

_ _

-

This algorithm has a very simple structure and all subprocedures take a small
amount of time. The only subprocedure that cannot be done in constant time is
choosing the free arcs to add to the stack, (Step l(a)). We propose that nodes in the
tree be kept on a linked list. Step l(a) is implemented by searching the set of arcs
incident to nodes on this list. This operation requires n o more than O (N A) time.

Theorem. If NM = the number of modified cutsets enumer'ated and NA = the number
of arcs then Algorithm 1 is O(NA * N M) .

Proof. Any time an arc is made operative, a modified cutset is generated. As was
shown earlier, in the worst case, this operation is O(N,) . All operations
performed in Step 2 can be done in constant time. Each operation either results in
an arc being made operative and thus, a new cut being generated, or an arc being
deleted from the stack. 0

In Algorithm 2, operative arcs form a forest. Node S and node T are contained
in different components of the forest. Step l(a) chooses the set of free arcs of
minimum cardinality that together with the inoperative arcs forms an S-T cut. This
minimum set of arcs is found by finding the minimum S - T cut in the network with
free arcs having capacity 1, inoperative arcs deleted and operative arcs having
infinite capacity. The first set of free arcs added to the stack is a minimum
cardinality S-T cut. To implement Step 2(c), nodes in the operative tree containing
S are given the label L, where L is the length of the path in the tree from the node
to S. Nodes in the operative tree containing T are given the label -L where L is the
length of the path in the tree from the node to T. All other nodes have L = 0. In
Step 2(c), an inoperative arc is taken off the stack if it is adjacent to nodes whose
labels have opposite signs.

Example.

The sequence of modified cutsets generated by Algorithm 2 is

56 M. Ball, R.M. Van Slyke

12,13;
12 ,E , 32,34;
12,13,32,24,34;
12,24,34;
12,24,%, 13,23.

_ _
-.

-

Note that 1 less cutset was generated than in Algorithm 1.
Algorithm 2 enumerates an entirely different partition of the probability space

than Algorithm 1. The number of events in this partition is smaller than in
Algorithm 1. Algorithm 2 pays for this by the necessity of performing much more
work per modified cutset generated. Again, every time an arc is made operative,
the algorithm produces a modified cutset.

To find this cutset a min-cut algorithm must be performed. [1] gives a max-flow
algorithm for networks with unit arc capacities that runs in O(N?) time. This could
easily be converted to a min-cut algorithm suitable for our problem with the same
time bound. The only other time consuming operation is the maintenance of the
labels on the trees rooted at S and T. Between the generation of two modified
cutsets at most one operative arc is added to the stack but as many as NN - 2 may
be taken off. When an operative arc is added to the stack, if it is adjacent to a node
with a non-zero label, we must relabel all nodes added to the tree rooted at S or T.
This requires searching the tree that has just been joined to the tree rooted at S or
T. This operation requires at most O(NA) time. When an operative arc, A, is
changed to free, if the nodes adjacent to it have non-zero labels, we must set the
labels of the nodes that this operation disconnects from S or T to 0. We first find
the node, B, adjacent to A that has the label of higher absolute value. With arc A
changed to free node B will be the root of a tree not containing S or T whose nodes
have non-zero labels. We search this tree and change all node labels to 0. This
operation requires at most time proportional to the number of arcs adjacent to
nodes whose labels were changed. Changing any set of arcs to free can change the
label of each node at most once. Consequently, label changing operations between
the generation of modified cutsets require at most O(NA) time.

Theorem. If NM = the number of modified cutsets enumerated and N A = the number
of arcs, then Algorithm 2 is O(NY*N,).

Proof. The proof follows the logic in the equivalent proof for Algorithm 1 using the
facts that the max-flow algorithm is O(N?) and updating the labels is O(NA) for
each modified cutset. 0

The results concerning the computational complexity of Algorithm 2 led us to
believe that it would have a higher running time than Algorithm 1. Consequently,
we did not code Algorithm 2 and all extensions in this paper refer to Algorithm 1.
Algorithm 2 does have many interesting properties which we hope to explore later.

Backtracking algorithms 57

4. Network disconnection

A measure of the reliability of the entire network is the probability that all nodes
can communicate. We chose to compute the probability that the network is
disconnected which is one minus this value. Algorithm 1 extends to this case quite
easily. Each modified cutset will disconnect the graph rather than only the specified
node pair. (Clearly, any modified cutset which disconnects a specified node pair
would also disconnect the graph.) Rather than stopping the growth of the tree when
the specified node pair becomes connected, we stop it when it becomes a spanning
tree. Spanning trees can easily be recognized by a count on the number of operative
arcs.

In Step 2(e), we take an inoperative arc off the stack if the number of operative
arcs equals "-2.

Example.

s = 1.

disconnection alteration is:
The sequence of modified cutsets generated by Algorithm 1 with the network

12,13;
1 2 , E , 32,34;
12,3,32,34,42;
12,13,32,24,34;
12,23,24,13;

--
-

, . . , -
- 12,23,24,E, 34;
12.23.z.43.13; , , , , --
12,23,24,34.

5. Truncation

Assuming arcs have constant failure probability, P, each configuration with
exactly K arcs inoperative has probability Pk(l - P)N~-k. An approximation to the
node pair disconnection probability can be obtained by ignoring all network
configurations with more than LIMIT arcs inoperative. If LIMIT is the smallest L
such that

58 M. Ball, R.M. Van Slyke

L C CA (NA, k) Pk (1 - P)N~-k 3 1 - TOL,
k = l

where CA(NA, k) = NA things taken k at a time, then the approximation will be
within TOL of the true value.

Given LIMIT, we implement this truncation procedure in our backtracking
algorithm by keeping a count on the number of inoperative arcs. Whenever the
addition of an arc to the stack in Step l(6) would make the count exceed limit, the
algorithm immediately backtracks (goes to Step 2).

6. Node failures

While computations are simpler when only arcs can fail, in reality nodes are also
unreliable. When considering the possibility of node failures a question arises as to
the definition of network disconnection. The most obvious definition would be,
“the network is disconnected any time at least one node cannot communicate with
some other node” (ND1). By this definition, a network would be disconnected any
time at least one node failed. An alternative definition which is much more useful
for the network designer who has n o control over node failure rates is, “the
network is disconnected any time an operative node cannot communicate with
another operative node” (ND2). Thus, if a given node is inoperative its ability to
communicate with the rest of the graph is irrelevant.

(A) Probubility {NDl}. We will consider NDl first simply because it is easier to

Let :
handle. In fact, it reduces to the problem with perfectly reliable nodes.

A N 0 = {all nodes operative},
NANO = {not all nodes operative}.

Then since {ANO} and {NANO} are mutually exclusive, collectively exhaustive

P{NDl} = P{NDlI ANO}*P{ANO}+ P{NDl I NANO}*P{NANO}.

events the law of total probability gives us:

P{NDl(ANO} can be found using Algorithm 1 with the network disconnection
option.

”
P{ANO} = n (1 - PN(N))

N= 1

P(ND11 NANO} = 1

P{NANO} = 1 - P{ANO}.

Thus, with one extra straight forward calculation the graph disconnection problem
with node failures reduces to the graph disconnection problem with perfectly
reliable nodes.

Backtracking algorithms 59

(B) Probability { S , T cannot communicate}. The definition of ND2 presents a
much more difficult problem for which major modifications to the algorithm are
required. First, we will again consider the node pair disconnection problem.

Let:

S - T imply S can communicate with T,

S # T imply S cannot communicate with T.

Then

P{S# T } = P{S& TI S inop}*P{S inop}

+ P{S + T I s op, T inop}*P{S op, T inopj

+PIS + T 1 S op, T op}*P{S op, T op},

P{S P T 1 s inop} = P{S 4 T I s op, T inop} = 1,

P{S inop} = PN(S),

P{S op, T inop} = (1 - P,(S))*PN(T),

P{S Op, T O ~ } = (~ - P N (S)) * (I - P N (T)) .

The new version of the algorithm will compute P{S P T 1 S op, T op}; i.e., we
assume S and T are perfectly reliable and then find the probability that they cannot
communicate.

The problem now has been reduced to enumerating a mutually exclusive,
collectively exhaustive set of modified cutsets between S and T where nodes other
than S and T can also “take part” in cuts. The most straightforward modification to
Algorithm 1 that would compute the desired probability would be to put nodes as
well as arcs on the stack. Nodes are now marked either operative, inoperative, or
free. Every time an arc is made operative, the new node added to the tree is placed
on the stack and marked inoperative. To disconnect this tree from the rest of the
network, all free arcs between operative nodes in the tree and free nodes are added
to the stack and marked inoperative. When an inoperative node is encountered in a
backtrack, it is switched to operative and a new modified cutset is found in the same
manner.

Consider the following example:

S = 1, T = 4. The sequence of modified cutsets generated by the suggested
algorithm for the 1 ,4 node pair disconnection probability is:

M . Ball, R.M. Van Slyke

12,13;
1 2 , E , 3;
12,13,3,32,34;
12,13,3,32,2,34;
12,13,3,32,2,24,34;
12,2,13;

12,2,13,3,34;
12,2,23,24,13;
12,2,23,24,3,3;
12,2,23,24,13,3,34;

12,2,23,3,24,34;

- _

-
-
12,2,13,3; - - _
- _
- _
- _ - _
12,i ,23,3,24;

where 1 implies node 1 is inoperative and i implies node 1 is operative.

the following two events:
A large saving can be realized by taking advantage of the equivalence between

El = node N inoperative

Ez = node N operative; all arcs between node N and free nodes inopera-
tive.

Notice that in the example the modified cutsets

{12,2,13;12,2,3,3;12,2,13,3,34}
- _

are the same as
- _ - _ - _

{12,2,23,24,13; 12,2,23,24,3,3; 12,2,23,24,13,3,34)

except that 2 in the first set is replaced by 2, 23, 24 in the second set.
El and El are equivalent in the following sense. Given the current stack

configuration the subsequent enumeration with El on the stack is exactly the same
as the enumeration would be with the events in Ez on the stack. Stated probabilisti-
cally this relation is:

P{S# T I El n events on stack} = P{S& T I E z f l events on stack}

It we let C1 be the value of the cumulative sum when E l is placed on the stack and
C : be the value of the cumulative sum when El is changed t o operative we have:

P{S# T 1 El fl events on stack} = (C : - CI)/P{E1 fl events on stack}.

This relation also applies to Ez. Thus, when we change El to operative we may
update the cumulative sum to C2 t o account for all the enumeration that would
have proceeded with the events in Ez on the stack where:

Cz= (C ; - C1)*P{E,}/P{E1}+ C : .

Backtracking algorithms 61

After this update, we mark the arcs in EZ inoperative, add them to the stack and
immediately backtrack.

Example.

S = 1, T = 4. The sequence of modified cutsets generated for the 1 , 4 disconnection
probability with node failures treated implicitly is:

12,13;
12,13, 3 ;

cum. sum updated for 12,13,3,32,34,. . . ;
12.13.5.32.2.34:

I , I . , .

- cum. sum updated for 12,13,3,32,2,24,. . . ;
12,2,13;

cum. sum updated for E,2,13,3,34, . . . ;
cum. sum updated for 12,2,23,24,. . . ;
12,2,23,3,24;
cum. sum updated for 12,2,23,3,34,. . . .

-
12,2,13,3;

- _

It is instructive to compare this sequence of cuts with those generated in the
example for Algorithm 1.

(C) Probability ND2. We apply this method for treating node failures to find the
probability that at least one pair of operative nodes cannot communicate (ND2).
Let us first see what happens when the simple change that was made to Algorithm
1, to get the network disconnection probability, is applied to the node pair
disconnect algorithm with node failures. That is, rather than changing an arc from
inoperative to free, if it were incident to node T, we change it to free, if, when made
operative it would complete a spanning tree of operative arcs. With this alteration,
each event enumerated would disconnect node S from at least one other node in
the graph. We are interested in the probability that operative nodes cannot
communicate. Therefore, the probability of each event enumerated will be
multiplied by the probability that at least one node not in the tree is operative. The
algorithm will then produce the probability that node S does not communicate with
some other operative node. In other words, the algorithm will find the probability
that at least one operative node pair cannot communicate given that node S is
operative. If are mutually exclusive and collectively exhaustive,

62 M . Ball, R.M. Van Slyke

”

r = i
P(ND2) = C P(ND2 I Hr}*P(Hr}.

Let: {S,, S2, . . ., SN,) be a permutation of the nodes

H, = {node S, operative; nodes Sr-1,. . ., SI inoperative)

Clearly (HI}[= ,”, are mutually exclusive and collectively exhaustive.

P(H1) = (1 - PN(SI)) fi P N (S J) .
J = l

P(ND2 1 H,) is simply the output of the backtracking algorithm described in the
preceding paragraph. P(ND2 I Hr)r>l is the output of that same algorithm per-
formed on the network with nodes S,, . . ., Sr-1 deleted.

Thus, the complete algorithm for computing P(ND2) would compute P(ND2 I HI}
using S, as the root node. S , would then be deleted from the network and the
algorithm would compute P(ND2 1 Hz) using Sz as a root node. Sz would then be
deleted and S, used as the root node. The algorithm would continue in this manner
until all nodes had been used as root nodes. At each iteration the backtracking
algorithm would be applied to a network with one less node. The formulas given
above would be used to combine the output from each application of the
backtracking algorithm to get P(ND2).

It might appear that the running time of this algorithm would increase dramati-
cally. This is not the case. Since the running time of the backtracking subprocedure
grows exponentially, the running time on a graph with one or two nodes deleted is
much less than the running time of the algorithm on the original graph. Due to this
fact the running time to find P(ND2) is generally less than twice the running time to
find P(ND1).

The choice of the ordering of the nodes is arbitrary. One good method is to pick
the node with the highest degree, since on the next iteration, the maximum number
of arcs will be deleted. Looking toward a possible truncation, a procedure which
could be used, is to pick the node with lowest failure probability. In particular, if
some node has 0 failure probability it should be chosen as S , . In this case exactly
one call to the backtracking procedure would be necessary since all probabilities
subsequently enumerated must be multiplied by P,(S,).

7. Computational experience and comparison with other algorithms

We have implemented the algorithms presented in this paper to compute the
probability that a specified pair of nodes can communicate and the probability that
all operative nodes can communicate. The implementations consider both node and
arc failures. The algorithms were coded in FORTRAN IV on a PDP-10 computer.

(A) Probability (ND2). A series of runs was made on networks with between 10

Backtracking algorithms 63

and 19 arcs. Table 1 is for the computation of P(ND2) with both non-zero but
constant node and arc failure probabilities (PA (A) = 0.02 for all A ; PN(N) = 0.001
for all N) .

Table 1 (CPU times in seconds)

8 10 4.06
9 12 6.45

10 15 15.49
13 17 26.21
15 19 55.01

The times include the time to read in the data.

(B) Specified node pair. A series of runs was made on networks with between 12
and 28 arcs. Table 2 is for the computation of the probability that a specified node
pair cannot communicate. Node failures were zero and arc failures were constant
(PN(N)=O for all N ; PA(A)=0.02 for all A) . The networks were run with
tolerances of 0.00, 0.0001 and 0.001. The true error was usually much smaller than
the tolerance.

Table 2 (CPU times in seconds)

NN NA 0.000 = TOL 0.0001 = TOL 0.001 = TOL

9 12 4.36 4.20 4.34"
10 15 7.36 4.71 3.94
13 17 8.77 6.66 5.97
15 19 17.22 9.34 6.87
19 23 71.64 16.69 17.16"
24 28 not run not run 45.36

" I n these cases there was no reduction in time between 0.0001
tolerance and 0.001 tolerance. This occurs when LIMIT has the
same value for TOL = 0.0001 or TOL = 0.001.

A 10-node, 19-arc network with 0.00 tolerance ran in 26.82 seconds. Comparing
this time with the time for the 15-node, 19-arc network (17.22 seconds) seems to
indicate that denser networks require higher running times per number of arcs.

(C) Comparison with other algorithms. To compare our algorithm with the
results given in [3] we added the capability of producing a failure probability

64 M. Ball, R.M. Van Slyke

polynomial in P, the constant arc failure probability. Our algorithm produced the
node pair disconnection probability for the two Hansler, McAuliffe and Wilcox test
networks in 11.20 seconds. As was stated in the introduction, their algorithm
required 18 seconds. However, it should be noted that different computers and
languages were used.

To compare our algorithm with simulation results, we computed the probability
that all operative nodes can communicate on the same 9-node 12-arc network run
using the simulation algorithm. The running time was 6.45 seconds. This is a
marked improvement over the simulation time of 54 seconds; however, the
simulation algorithm also computed the expected fraction of node pairs com-
municating.

References

(11 S. Even and R.E. Tarjan, Network flow and testing graph connectivity, SIAMJ. Computing (1975)
507-518.

[2] L. Fratta and U. Montanari, A boolean algebra method for computing the terminal reliability in a

[3] E. Hansler, G. McAuliffe and R. Wilcox, Exact calculation of computer network reliability,
communication network, IEEE Trans. Circuit Theory, CT-20 (1973) 203-21 1.

Networks, 4 (1974) 95-112.
[4] J. Hopcroft and R. Tarjan, Efficient algorithms for graph manipulation, Comm. ACM, 16 (1973)

372-378.
[5] A. Kershenbaum and R. Van Slyke, Recursive analysis of network reliability, Networks, 3 (1973)

[6] C.Y. Lee, Analysis of switching networks, Bell System Tech. J. 34 (1955) 1287-1315.
[7] R. Read and R. Tarjan, Bounds on backtrack algorithms for listing cycles, paths and spanning

[8] A. Rosenthal, Computing reliability of complex systems, Ph.D dissertation, Department of Electrical

[Y] M. Segal, Traffic engineering of communications networks with a general class of routing schemes,

10) R.E. Tarjan, Depth-first search and linear graph algorithms, SIAMJ. Computing, 1 (1972) 146-160.
111 R.M. Van Slyke and H. Frank, Network reliability analysis: Part I, Networks 1 (1972) 279-290.
121 R.M. Van Slyke, H. Frank and A. Kershenbaum, Network reliability analysis: Part 11, in: R.E.

Barlow, ed., Reliability and Fault Tree Analysis, (SIAM, 1979, 619-650.
[13] R.J. Walker, An enumerative technique for a class of combinatorial problems, in: Richard Bellman

and Marshall Hall, Jr., eds., Combinatorial Analysis, Proceedings Symposium on Applied Marhema-
rics, 10 (Am. Math. SOC., Providence, RI, 1960) 91-94.

81-94.

trees, Networks, 5 (1975) 237-252.

Engineering and Computer Science, University of California, Berkeley, 1974.

presented at The Fourth International Teletrafic Congress, July, 1964.

Annals of Discrete Mathematics 1 (1977) 65-78
0 North-Holland Publishing Company

COLORING THE EDGES OF A HYPERGRAPH
AND LINEAR PROGRAMMING TECHNIQUES

Claude BERGE
University of Paris VI, Paris. France,

Ellis L. JOHNSON
IBM Research, Yorktown Heights, NY, U.S.A.

A theorem of Baranyai reduces the problem of finding the chromatic index of certain
hypergraphs to a cutting stock integer programming problem. Baranyai used this result to
establish the chromatic index for the complete h-uniform hypergraphs. We use a linear
programming technique of Gomory and Gilmore to extend his result to two other cases: the
hereditary closure of the complete h-uniform hypergraphs K ! , for h s4; and of the complete
h-partite hypergraphs.

1. Introduction

A hypergraph is defined by a set X (the oertices) and a family 8 = {Ei 1 i E Z} of
non-empty subsets of X (the edges). A k-coloring of the edges is a partition

% = % 2 + * . ' + 8 k

of the edge-set 8 into k classes such that all the edges in the same class are pairwise
disjoint .

Let H = (X, %)be a hypergraph. As in a graph, the degree d (x) of a vertex x E X
is the number of edges containing x . The maximum degree in H is denoted by

A (H) = max d (x) .
X E X

As in a graph, the chromatic index q (H) is the least k for which H possesses a
k-coloring of its edges. Clearly,

4 (H) 3 A (H I .

We say that H has the edge-coloring property if q (H) = A (H). When every vertex x
of H has the same degree, then H has the edge-coloring property if and only if the
index set Z of the edges can be partitioned into sets

z=z1+12+ . ' . + z k

such that for each A = 1,. . ., k, {a (i E I,} is a partition of the nodes X.
It is not difficult to see that the determination of whether or not a given

65

66 C. Berge, E.L. Johnson

hypergraph can be k-colored, for a given k, can be expressed as determining
whether or not a certain system of linear inequalities has an integer solution. The
usual formulation involves a large system which is not very useful. In this paper, a
theorem of Baranyai [l] will be used to relate the edge coloring problem for certain
hypergraphs to the cutting stock problem, which is well-known in Operations
Research (see Gilmore-Gomory [4]). The proof of Baranyai’s theorem uses
network flow theory and is interesting in itself. The theorem immediately gives the
chromatic index of the complete h -uniform hypergraph Kh,, which generalizes the
complete graph K , on n vertices. For other cases, it provides a much more useful
linear program in order to determine q (H) .

In Section 3, we derive the chromatic index for the hereditary closure of the
complete h-uniform hypergraph Kh, for k 4. The linear programming technique
of Gilmore-Gomory [4] is used.

In Section 4, we investigate the edge-coloring property for the complete h -partite
hypergraph k ;;,.,,,....., which generalizes the complete bipartite graph Kp.q.

2. The theorem of Baranyai and complete h -uniform hypergraphs

The complete h-uniform hypergraph Kh, is defined by a set X of n vertices. Then,
a set E X is an edge if and only if it has cardinality h. In [5], E. Lucas showed that
if n is even, then the complete graph K,, (or K:) has the edge-coloring property,
i.e., q(K,) = A (K n) . This result is now very well-known in Graph Theory and
Statistics. Lucas also conjectured that if n is a multiple of 3, then the complete
3-uniform hypergraph K: has the edge-coloring property. This result was proven
for n = 9 by Walecki (see Lucas [5]) and for all n = 3k by R. Peltesohn [6]. Her
proof was long and exhaustive. Finally, Baranyai established the chromatic index
for all Kh, [l].

In a different area, P. Gilmore and R. Gomory divised a linear programming
approach to the cutting-stock problem [4]. In that problem, one assumes that a
supply of rolls of paper, each roll of stock length n, is maintained. From these rolls
are to be cut k, pieces of length r,, for i = 1,. . ., q. In order to minimize the wastage,
we want to determine the least number

((n ; k, x r,, kz x r 2 , . . ., k, x rq)

of rolls that is needed. Necessarily,

r , s n , i = 1 , 2 ,..., q.

Clearly, we have

((n , k x r) = P / 1 . / r J 1 ,
where LA] is the largest integer smaller than or equal to A and [A] is the smallest
integer larger than or equal to A.

Coloring the edges of a hypergraph 67

In discussing this problem, we will refer to the stock lengths as being sticks of
length n rather than rolls; only the length n is important, and we prefer to think of
it as a linear form.

Baranyai’s Theorem. Consider the hypergraph K ? + K : + * * * + K k on a set X of n
vertices, whose edges are all the rl-subsets, all the r,-subsets, , . ., all the r, subsets of X .
(If two ri’s are equal, this hypergraph has multiple edges). Then the chromatic index
q (K ? + - . * + K?) is equal to

In other words, it is possible to color the

, = I f: (9
edges of this hypergraph with q colors if and only if it is possible to cut, from a stock
of q sticks of length n, (:,) pieces of length r l , (:J pieces of length rz, . . ., (?J pieces of
length r,. Each stick corresponds to a color. It is obvious that from a coloring, one
can cut the sticks as required. The importance of the theorem is the other direction,
in which the result says that one need not actually determine the particular edges to
be colored a given color, but instead one need only determine the coloring
“pattern” corresponding to each stick.

Denote by h,J the number of pieces of length r, that we cut from the j th stick.
Then the cutting stock problem is feasible if and only if (n ; rl, . . ., r p) and the p X q
matrix (h, ,) satisfy:

(1)

(2)

r, integer, 0 s r,

h,, integer and h,, 3 0, i = 1 , . . ., p and j = 1,. . ., q ;

n, i = 1, . . ., p ;

(3) i h i j = (”) , i = 1 , . . . , p ;
j = l ri
P

r,h,J < n, j = 1, . . ., q .
1=q

(4)

We now turn to the proof of Baranyai’s theorem. There is no essential difference
between the proof here and that in [l] ; we give it in full for three reasons: it is an
interesting use of network flow theory; [l] may not be readily available to the
reader; and the proof here is a little simpler.

Proof of the theorem. We shall show the following: if (n ; r l , . . ., rp) and (h,) satisfy
(l), (2), (3), and (4), then there exist subsets

E:, k = 1,2, . . ., h,j

such that:

68 C. Berge, E.L. Johnson

(A)

(B)

{Ef; 1 j = 1,. . ., q and k = 1,. . ., h,,} is isomorphic to K;, for i = 1,. . ., p ;

{ E t I i = 1,. . ., p and k = 1,. . ., hzJ} is a family of pairwise disjoint edges,
corresponding to color j , for j = 1,. . ., q.

The proof is by induction on n. Clearly, the result is true for n = i and n = 2.
To prepare for the induction, we first remove every r, = 0 and r, = n and remove

from (hJ) the corresponding rows. It is clear that if the result is true for a given n
without such r,, then it is true with such r,.

We next show that there exist integers E,! for i = 1,. . . ,p and j = 1,. . ., q such
that

(5) 1haJrz / n j E, [hyrl / n 1 ,

This demonstration uses the fact that if a network has integer bounds on each arc
flow and has a feasible flow, than it has a feasible integer flow. Specifically,
construct a transportation network with source s, sink t, and two sets P =

{1,2, . . . , p } and Q = {1,2,. . ., q} of vertices; the arcs are all the pairs (s, i) with
i E P, (i, j) with i E P and j E Q, and (j, r) with j E Q. The constraints on the flow 4
are

for every source arc (s, i) , i E P,

Lhi j r i /n j < + (i , j) = = [h i j r i / n l

for every intermediate arc (i, j) , i E P, j E Q,

for every sink arc (j, t) , j E Q.
Clearly, 4(s, i) = X, h,Jr, / n, 4(i, j) = h,r, / n, and 40, t) = c, h,,r, 1 n is a feasible

flow. Hence, there exists an integer feasible flow $. Letting E,, = Q(i, j) , i E P,
j E Q, gives (5) , (6), and (7).

Now, consider the vector (n - 1; r, - 1, r2- 1,. . ., r, - 1, r l , r 2 , . . ., r,) and the
(2p) x q matrix (h {,), where

for i = 1 ,..., p and j = l , . . . , q ;
h:,= [> g-p,J - F,-,,, for i = p + 1, . . ., 2, and j = 1, . . ., q.

We next show that this new vector and new matrix satisfy the conditions (l), (2), (3),

Coloring the edges of a hypergraph 69

and (4), corresponding to them. Condition (1) is true by having removed ri = 0 and
ri = n beforehand. Condition (2) is true by E~~ integer and

where the last inequality is by r, < n and h,, integer. To show (3), note that by (3) for
the old vector and matrix,

n - 1
n n

Hence, (3) now follows from (6) for i = 1 , . . ., p. For i = p + 1,. . ., 2p, (3) follows
from

4 4 4

2 (hij - E i j) = c hij - c Eij =
j = 1 j - l j = 1

by the binomial formula.
Condition (4) for the new vector and matrix is equivalent to

From (4) for the old vector and matrix and from (7),
P

2 E , ~ = o or 1,
i = l

P P

Hence, the required inequality is satisfied.

F $ of Y for k = 1,. . ., h $ j such that:
Let Y be a set of n - 1 vertices. By the induction hypothesis, there exist subsets

(C) {Fblj = 1,. . ., q and zij = 1) is isomorphic to K::; for i = 1,. . . , p ;

(D) {F;I j = 1,. , ., q and k = 1,. . ., h,-p , , - E # - , ~ } is isomorphic to K:?, for
i = p + l , . : . , 2 p ;

(E) { F : 1 i = 1, . . ., 2 p and k = 1, . . ., h i j } is a family of pairwise disjoint edges for
j = l , ...,q.

We have already seen that

3 Eij = o or 1,
i = I

so that the family of disjoint edges

{Ftl i = 1,. . ., 2 p and k = 1,. . ., h:,}

70 C. Berge, E.L. Johnson

has at most one edge of cardinality r, - 1; all others being of cardinality r,. Let X be
an n-set obtained from Y by adjoining one new vertex a, and let (for k = 1,. . ., h,f)

Ff :U{a}

k--Et,

if k = E , ~ = 1 ,

otherwise, { F,+,f
Efj=

for each i = 1, . . . , p and j = 1, . . ., q. This new family Efj satisfies (A) and (B),
completing the induction.

From this result follows:

Corollary 1. The chromatic index of the complete r-uniform hypergraph on n vertices
is

Corollary 2. The hypergraph KL has the edge-coloring property if and only if n is a
multiple of r.

Proof of Corollary 2. When n is a multiple of r,

n - 1
q(K' ,)= [:(:)1= (r - 1) = A(KL).

When n is not a multiple of r, both of the rounding operations in determining q(K' ,)
increase it above A (K',), and at least one increases the expression strictly.

3. The hereditary closure of the h-uniform hypergraph

For hypergraph H on X with edges {Ei 1 i E I}. The hereditary closure cl(H) is
the hypergraph on X where S is an edge if and only if

+# S c E i for some i E I.

We define cl(Kh,) to be the hereditary closure of the complete h-uniform
hypergraph Kh,. Thus, E is an edge of cl(K!) if and only if

+ # E C X , and

I E l c h .

From Baranyai's theorem, we show

Corollary 3. Let A ' = (a,. 1 i = 1,2, . . ., g) be vectors satisfying :
h

iaij s n, and
i = l

(8)

Coloring the edges of a hypergraph 71

(9) a,, 2 0 and a,, integer.

Suppose, further, that every distinct solution to (8) and (9) is represented as a column
of A. Then

(10) q(cl(Ki)) = min 2 x,
i

s.t.Ax = b, and x 3 0 and integer,

where b, = (r), i = 1 , . . ., h. Further, cl(Kh,) has the edge coloring property if and only if
there is a solution to (10) such that for every x, 2 1, the column A ’ satisfies (8) with
equality.

Proof. Use

cl(Kh,) = K!, + K: + . . * + K !

and Baranyai’s theorem, where the matrix H has x, copies of column A’ of A.
4. The result for h = 3

was given by Bermond [3].
We now establish the chromatic index of cl(Ki) for h

Theorem 2. The hereditary closure cl(Kh,), h S4, has the edge coloring property
except for the following cases:

h = 3 , n = l (m o d 3) , n 3 7 , then

q(cl(Kh,))= A(cl(K!))+ [$(n - 4)1 ;

h = 4, n = l (mod4), n 3 9, then

q(cl(Ki))= A(cl(KI:))+ ra(n -5)1 ;

h = 4, n = 2(mod4), n z= 10, then

Proof. The case h = 1 is trivial. For h = 2 and n even, the edge coloring property
for cl(Kh,) follows from the same property for K: and K:. For h = 2 and n odd, we
need only give the “pattern”; in this case, each color is one singleton and (n - 1)/2
2-edges, and there are n colors. The corresponding column of A is

1
[icn - 1 J

and satisfies (8) with equality. By Corollary 3, cl(KZ,) has the edge coloring property.
For h = 3 and n = O(mod3), the result follows from cl(K3.) = K3,+ cl(K:) and

Corollary 2 applied to K:, while cl(K?) has the edge coloring property for all n.
For h = 3 and n = 2(mod3), the required solution to (10) has columns A’ given

by

72

0 1
0 and ? (n - l) , or

1 0

a(n -3) 0

C. Berge, E.L. Johnson

0

i n and

0 0
0

- ; I >
with corresponding values of x, = (Z n) and x, = 1.

Before treating the case h = 3 and n = 1 (mod3), we show the edge coloring
property for h = 4 and n = O(mod4) or n = 3 (mod4). For n = 3 (mod 4), the
required solution to (10) has columns

- -
0 - 0 - - 1 - 0

n 0 0
7 and or

0 4 0 0

0 0 n n - 12

- - n - 1

-
- 4 - - 4 - - - - -

- -
n

0

0

0

and

- -

depending on whether n is odd or even. The corresponding values of xi are (Y) and
n, or n - 1 and 1.

For n = 0 (mod 4), the solution to (lo), provided n 2 12, has columns

depending on whether n is odd or even. The corresponding values of x, are

and n, or n - 1 and 1. n (n - l) (n -2)
8

For n = 4 and n = 8, the edge coloring property can be verified directly.
Three cases remain: h = 3, n = 1 (mod3); h = 4, n = 1 (mod4); and h = 4,

n 3 2 (mod4). In each of these three cases, we will first exhibit the optimum linear
programming solution associated with (10). In a minimization problem in integers,
such as (lo), the rounded up linear programming objective value is a clear lower
bound on the integer programming objective. In each of the three cases, we shall
show that an integer solution to (10) achieves that bound, thus establishing the
optimal integer objective value and, thereby, q(cl(K)k).

We first treat h = 3, n = 1 (mod 3). In this case, an optimum linear programming
basis is

0 0
2

n - 1 n - 4 n - 1

Coloring the edges of a hypergraph 13

To prove optimality, we give the primal and dual solutions corresponding to this
basis and show that the dual is feasible to T ~ A C 1. Optimality is then assured by the
complimentary slackness theorem or, alternatively, can be verified by showing
equality of the two objective values.

The primal solution is

n(n - 1) n(n - 4)
4 ’ 4 n,

and the dual solution is

Clearly, the primal is non-negative for n 3 4, although it may fail to be integer. To
show that the dual is feasible requires showing

a3=S 1 3 3
2 (n - 1) a 2 + z

whenever 2a2+ 3 a 3 s n, and a2, a3 3 0 and integer. This fact can be easily
demonstrated.

The objective value is

n(n - 1) I n(n - 4) = n(2n - 1)
4 4 4 ’

n +

and since
A (c l (K) 3 = l + (n r 1) + (n - 1) - - n z - n + 2 ,

the objective value is

n - 4
A (cl(K)’,) + 7.

It remains to show that rounding this objective value up to the nearest integer is the
objective value for some integer solution to (10).

In preparation, observe that the objective of (10) is not changed if Ax = b is
changed to the seemingly, weaker Ax 3 b, because for any column of A, every
non-negative integer column less than that column is also a column of A. For
Ax 5 b, one can obtain an integer solution by rounding up the linear programming
answer, which here is

n(n - 1) n(n - 4)
4 ’ 4 .

Since n is always integer, let us write

n.

!n(n - 1)= I 2 + f i , O S f 2 < 1 ,

! n (n - 4) = 1 3 + f 3 , 0 S f 3 < 1 ,

74 C. Berge, E.L. Johnson

so that the objective value is

n + I z+I ,+ f z+f , .

If either fz o r f3 (or both) is zero, then rounding the variables up gives an objective
value, corresponding to an integer solution, of

n + Iz + 1, + [f21 + [f31 = [n f IZ + 1, + fz + f31
which says that there is an integer solution whose objective is equal to the rounded
up linear programming objective. Hence, assume that fz > 0 and f3 > 0. If f z + f3 >
1, then the same result holds. It is not possible that fz + f3 = 1 because then the
objective value

A (cl(K)”,> + a(n - 4)

is integer. Then, so is

i n (n - 4) = 1 , + f 3

an integer, contradicting f, > 0.
The remaining case is fz + f, < 1. Now fz must be 1/2 since

:n (n- l)=&=Iz+fz , I n

so f, must be one-fourth. Consider the integer solution to (10):

n [] + I ~ , [J.’,[] I + [1 =

f (n - I) f (n - 4) { (n - 1) ! (n - 4)

n
212+ 1 =I f (n - 1) + i&(n - 4) + f I , (n - 4) + { (n - 4),

The objective value is

n + I2 + I , + 1 = In + Z2 + I , + f2 + f31
and the solution satisfies Ax 3 b provided

2 L + 1 2 2(Iz + fz) and

n - 1 n - 4 n - 1 n - 4 n - 1 n - 4 n - 1 +- 3 n T + (I2 + f Z) T + (I , + f3)3. 3
+ I , - + 1 2 - n-

3 3 3

The first is clear by fz = 1/2. The second is equivalent to

n - 4 n - 4 n - 1 l n - 4 l n - 1 - 23 fzT + f 3 3 - 2 - 3 +-- 4 3 > 3
or

Coloring the edges of a hypergraph

+ (d

l n - 4 I n - 1
2 3 4 3 '
-->--

- - - - - -
0 0 0 0

1 + z3 0 +I4 0 + 0

1 3 0 1

,$(a - 5) - -$ (n - 9)- &$(r l - l) - - :(a - 5) -

1 5

n

or n 5 7. Since n = 4 can be treated specifically, the result follows.
Having developed the ideas, the remaining two cases will be treated more briefly.

For h = 4 and n = 1 (mod 4), an optimal linear programming basis is, for n 2 9,

-
1

0

0

- $ (n -

0 : I 1 $(n-1) $ (n - 5) $(n -9) $ (a -1)

1 0 0
0 1 0
0 1 3

with primal solution

which is clearly non-negative for n 2 5 . The dual solution is

2 4 4
3 (n - 1)'
-- 1 4

3 (n - 1)' 0, --
(a - 1)'

which can be shown to satisfy ?TA d 1. The objective value is

A (cI(K)",) + 4 II (n - 5) .

As before, only two variables have non-integer values and can be written as

t . f n (n - l) (n - 5) = 1 3 + f 3 ,

$ n ' (n - 5) = Z4+f4.

If only one of f 3 , f4 is positive, the result follows as before. If f3 + f4 > 1, then the
result also follows as before. Also, f3 + f4 = 1 is impossible because then the
objective value, and hence

$n(n - 5) ,

would be integer so that f4 = 0 follows. The remaining case is f3 + f3 < 1 and f3,

f4 > 0. But f3 must be 4 or 3 because one of n, n - 1, n - 5 is divisible by three.
Consider first

(i) f3 = i .
Then the solution

76 C. Berge, E. L. Johnson

n

satisfies Ax 2 b provided

f (n - 5) 5 f . ! (n - 9) + f 4 ! (n - 1) .

Since f3 + f4 = 4 + f4 < 1, f4 < f. But f4 is an integer over 9 SO f4 s $. Hence, Ax 3 b
provided

$ (n -5)>4.:(n - 9) + $. a (n - I),

or n 5 13.
The cases n = 5 and n = 9 can be directly checked.
(ii) f 3 = 3.
Then f4 S $, and the solution

r -
1 0

3

i(n - 9) - -

o + (;)
0 1

! (n - 1) !(n - 5)

-
2 0 0 0 -

0 1 0 0

0 0 2 0
- !(n - 2) ! (n - 2) a(n - 6) $ (n - 2) -

satisfies Ax 3 b provided

i (n -9)33.!(n - 9) + $. $ (n - I) ,

or n 32.5.

proof for n = 1 (mod4) is completed.
The values n = 13, 17, 21 can be checked to see that they do not give f3 = 3. The

The case n = 2 (mod 4) has an optimum linear programming basis

with primal solution

and dual solution

If n 3 10, the primal solution is non-negative. The case n = 6 can be shown to have
the edge coloring property. Also, because n is even the primal solution has at most
one fractional value so the result follows easily in this case.

The objective is

Coloring rhe edges of a hypergraph 77

A (cI(K)",) + 9.

4. The complete h -partite hypergraph

Kk is a generalization of the complete graph K,, ; now we can also generalize the
complete bipartite graph K,,,,,,. The complete h-partite hypergraph Kh,,.,,, ,nh is
defined by h disjoint sets X I , X 2 ,..., Xh, with

) X , I = n , (l ~ i ~ h)

0 n, < nz < * . . < n,, .

The vertex-set is the union U X , , and E 5 UX, is an edge if and only if

J E nx, I = 1 (1 c i ~ h) .

Lemma. The complete h -partite hypergraph has the edge coloring property.

This was proved by Berge [2] .

Theorem 2. The hereditary closure of the complete h -partite hypergraph has the edge
coloring property.

Proof. Let H' C cl(Kft,,,,, .,J be the hereditary closure of the complete h-partite
hypergraph on X 1 , Xz , . . . ,&. Consider h points a l , a r , . . ., ah which are not in
U X,, and put X', = X, U{a,}. We shall construct a complete h-partite hypergraph
H' on X i , X: , . . ., Xl, as follows: For each edge E of H there is an edge E' of H'
defined by:

E ' = E U { a , / E n X , =@}.

Hence, H = K:,+l.na+l, . n , , + l , and there is a bijection between the edges of H and the
edges of H'. By the lemma, the complete h-partite hypergraph has the edge
coloring property; hence:

q(H')=A(H')=(nz+l)(n3+1)...(nk +l) .

Consider a coloring of the edges of H' into q (H ') colors; if we color each edge of
H with the same color as the corresponding edge of H' , two intersecting edges of H
will have different colors; hence

q (H) s q(H') .

A vertex xo E X I is of minimum degree in H' and its degree in H' is the same as its
degree in H ; hence

A (H ') A (H) .

78 C. Berge, E.L. Johnson

Thus, we have

q (H) q (H’) = A (H’) A (H) q (H) .

Hence A (H) = q (H) , and therefore H has the edge coloring property.

References

[l] 2. Baranyai, On the factorization of the uniform hypergraph, in: A. Hajnal, R. Rado, V.T. S ~ S , eds.
Infinite and Finite Sets, (North-Holland, Amsterdam, 1975) 91-108.

[2] C. Berge, Nombres de coloration de l’hypergraphe h-parti complet, Annali di Mat. Pura. et Appl.
(IV), 103 (1975) 3-9. (For general definitions, see: C. Berge, Graphs et Hypergraphs (North-
Holland, Amsterdam, 1973).)

[3] J.C. Bermond, Private communication.
[4] P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem.

[S] E. Lucas, Recreations Mathematique I1 (1892). New edition (Blanchard, Paris, 1960) p. 195’.
[6] R. Peltesohn, Das Turnierproblem fur Spiele zu je dreien, Inaugural Dissertation, Friederich-

Operations Res. I (1%1) 849-859. I1 (1963) 863-889.

Wilhelms Universitat, Berlin, 1936.

Annals of Discrete Mathematics 1 (1977) 79-97
@ North-Holland Publishing Company

SHARP LOWER BOUNDS AND EFFICIENT ALGORITHMS
FOR THE SIMPLE PLANT LOCATION PROBLEM

Ole BILDE
Institute of Mathematical Statistics and Operations Research,
Technical Uniuersity of Copenhagen, Copenhagen, Denmark

Jakob KRARUP
Insrirure of Datalogy, Uniuersity of Copenhagen, Copenhagen, Denmark

A conceptually straightforward method for generating sharp lower bounds constitutes the basic
element in a family of efficient branch and bound algorithms for solving simple (uncapacitated)
plant location problems and special versions hereof including set covering and set partitioning.

After an introductory discussion of the problem formulation, a theorem on lower bounds is
established and exploited in a heuristic procedure for maximizing lower bounds. For cases where
an optimal solution cannot be derived directly from the final tableau upon determination of the
first lower bound, a branch and bound algorithm is presented together with a report on
computational experience.

The lower bound generation procedure was originally developed by the authors in 1967. In the
period 1967-69 experiments were performed with various algorithms for solving both plant
location and set covering problems. All results appeared in a series of research reports in Danish
and attracted accordingly limited attention outside Scandinavia. However, due to their simplicity
and high standard of performance, the algorithms are still competitive with more recent
approaches. Furthermore, they have appeared to be quite powerful for solving problems of
moderate size by hand.

1. Introduction

Initially, we formulate and discuss the close relationship among three problems,
the simple plant locution problem (PLP), the set covering problem (SCP), and the set
Partitioning problem (SPP). Since SCP and SPP can be viewed upon as special cases
of PLP, the remaining part of the paper is devoted entirely to PLP. Section 3 deals
with a theorem on lower bounds followed by a heuristic procedure for solving the
lower bound maximization problem. The bounding procedure is briefly discussed in
terms of Lagrangian relaxation in Section 4 before we proceed with a few remarks
as to how PLP’s may be solved by hand in Section 5. More expedient techniques
are, for obvious reasons, required for larger problems. A branch and bound
algorithm is presented in Section 6 together with a report on computational results
in the concluding Section 7.

The last decade had witnessed a significant research into these problems, not in
the least due to their wide applicability to real-world problems. An excellent
entrance to the relevant literature is an extensive bibliography, compiled and

79

80 0. Bilde, J . Krarup

commented by Francis and Goldstein [ll]. Their list comprises 226 papers on
normative approaches to location problems published in the period 1963-73.

The more significant works on PLP include, in chronological and alphabetical
order, Balinski [4], Bergendahl [6], Efroymson and Ray [lo], and Spielberg [IS].
Besides, the important paper by Khumawala [16] should be included in the list as
being a representative of the current state of art in solving PLP’s. Useful references
to SCP and SPP are the joint works by Garfinkel and Nemhauser [12, 131 and the
series of papers by Balas and Padberg [l , 2,3]. Readers concerned with real-world
problems will find a comprehensive bibliography of applications of SCP and SPP
(with emphasis on the latter) in an appendix to [3]; 44 references are cited.

Our personal contributions to PLP, SCP and SPP have manifested themselves in
[6,7,17] plus various lecture notes, unfortunately for most readers, with several of
the more important sections in Danish. The present paper, now in a language
accessible to wider circles, is basically an extract of those earlier works except for
the references above to more recent conquests and the inclusion of Section 4 on
Lagrangian relaxation. It is our sincere belief that the computational efficiency and
the simplicity of our approach (which makes it suited for hand computation as well)
will justify this apparent reboiling of old bones.

In addition, some of the “open” questions raised in our earlier contributions
have given rise to a 1975-paper [8] where PLP’s with certain structures are studied.
The main results comprise a polynomially bounded algorithm and the establish-
ment of a connection to linear programming such that post-optimal analysis of LP is
directly applicable for a class of structured PLP’s. Since the basic principles
underlying this new step ahead still are those from 1967-69, it is conceivable that
other researchers also may find some inspiration for future work. Anyway, the
PLP-SCP-SPP-family still offers lots of challenges!.

2. Plant location, set covering and set partitioning

The so-called simple plant location problem deals with the supply of a single
commodity from a subset of plants (sources) to a set of customers (sinks) with a
prescribed demand for the commodity. Irrespective of its realism in practice, we
assume unlimited capacity of each plant, i.e. any plant can satisfy all demands.’
Given the cost structure, we seek a minimum cost transportation plan which
satisfies the demand at each customer.

The constituents of a PLP are:
m : the number ot potential plants indexed by i , i E I = {1,2,. . ., m } ;
n : the number of customers indexed by j , j E J = (1,. . ., n } ;
k , : fixed cost associated with plant i ;

’ The adjective simple has been coined by Spielberg [IS] to express the assumption of unlimited
capacities. In this context, simple has now become commonly accepted as synonymous with uncapaci-
tared.

Sharp lower bounds and efficient algorithms 81

b,: demand (number of units) at customer j ;
t i j : unit transportation cost from plant i to customer j .

We shall frequently use the adjectives “open” and “closed” for designating the
state of a plant. The cost of sending no units from a plant is zero (i.e., the plant is
“closed”) while any positive shipment from the i’th plant incurs a fixed cost k, (the
plant is “open”) independent of the quantity shipped, plus a cost t,] proportional to
the number of units transported to the j’th customer.

We may adopt the mixed-integer mode formulation due to Balinski [4] but an
immediate observation (also mentioned by Efroymson and Ray [lo]) leads directly
to an all-integer formulation in 0-1 variables:

Let y, = 1 if plant i is open; otherwise y, = 0. For any set of y’s, the optimal
transportation plan can be determined directly by assigning each customer to the
“nearest” open plant, provided that at least one plant is open.

This implies that we may restrict ourselves to considering solutions where every
customer is supplied only by a single plant. Accordingly, let x,~ = 1 if customer j is
supplied by plant i ; otherwise, x,! = 0. Furthermore, let c , ~ = t$, denote the total
transportation cost incurred by x, = 1. Individual production costs (if any) at each
plant can easily be incorporated; if p# is the unit production cost associated with
plant i, we may replace f$, by (p , + t,/)b, in the expression for calculating the c ,~ ’s.

We observe finally, that possible negative fixed costs do not present anything
new. Without loss of generality, we shall therefore assume all fixed costs to be
nonnegative. We shall also assume nonnegative c,, ’s .

The simple plunr locution problem can now be stated (PLP):

2 xij 2 1, all j
i = l

all i, j
yi - xij 3 0,

xij = 0, l ; yi = 0 , l

Like the Classical Transportation Problem, the underlying network for PLP is
K,,,,, the complete bipartite network with in sources, n sinks and m x n edges. Of
more significance are the deviations between these two problems: the unlimited
supply at each source and, in particular, the nonnegative fixed costs. The presence
of the latter yields a concave cost function (with a discontinuity at zero for every
source); hence, local optima different from the global may occur. Therefore, we
cannot advocate the use of techniques based on extensions of Linear Programming
(e.g. separable programming); on the contrary, experiments have shown that the
results obtained may be quite misleading. Examples (or warnings against local
optima) can be found in Bergendahl [5] . Rather, studies of PLP’s can be claimed to
be a topic of combinatorial programming.

82 0. Bilde, J . Krarup

Before proceeding with PLP, let us introduce two more problems belonging to

Let I = (1,. . ., m} and J = (1,. . ., n} denote two finite sets and let A = {a i j } be a

A subset fc I defines a cover of J if

the same family.

m X n-matrix of zeros and ones.

C_ aij 3 1 , ail j .
i E I

f is called a partition of I if

Let yi = 1 if i E f and 0 otherwise and let ki be the cost associated with the i’th row
of A. The set couering problem is to find a cover of minimum cost (SCP):

yi = 0,1, all i.

Accordingly, the set partitioning problem reads (SPP):

y8 = 0, 1 all i.

Any SPP having a feasible solution can be converted into a SCP by changing the
cost vector. Independent verifications of this postulate can be found in Bilde [6] and
the perhaps more accessible book by Garfinkel and Nemhauser [13, p. 3001.

Now consider a particular PLP with all cil’s equal to zero or infinity and define a
SCP with the same ki’s and with

1, if cij = 0,
0, if cij = 00,

all i, j .

Conversely, for any SCP, define a PLP with the same ki’s and

if aij = 1,
‘1 [:, if aij = 0, c.. = all i, j . (7)

The existence of a finite solution to PLP implies the existence of a feasible solution
to SCP and vice versa. For any such pair of solutions, both objective functions will
assume the same value.

Sharp lower bounds and efficient ulgoriihms 83

Thus, SCP (and SPP) can be considered as special cases of the more general PLP.
The following sections-dealing entirely with PLP - will therefore apply for SCP
and SPP as well.

A word about the computational complexity of PLP's: Karp's Main Theorem
[151 states that 21 computational problems - virtually comprising all combinatorial
optimization problems - are NP-complete. Verbally, it means that either each of
them is solvable by a polynomial-bounded algorithm (i.e. an algorithm which
terminates within a number of steps bounded by a polynomial in the length of the
input) or none of them is. SCP is on that list too, and due to the relationship
between PLP and SCP, we can conclude that PLP is NP-complete as well.

3. Lower bounds for PLP

Consider the PLP-formulation (1) where the objective is to minimize total cost.
A direct way of generating a lower bound on zoprp = min{z,,,} could be to relax the
integrality constaints by replacing

by x,j, yi 2 0 , x , , yt = 091 all i, i

and to solve the resulting LP-problem.
However, due to reasons to be discussed later, we shall desist from use of an

LP-technique; instead a less sophisticated but highly effective heuristic method for
the lower bound maximization problem is suggested. The exposition follows the
lines given in Bilde and Krarup [7].

Let A = { A , J } be a (m x n)-matrix of reals. A is said to be feasible if the following
two conditions are met

A , s k,, all i,
j = 1

A , 3 0 , all i, j .

By introduction A in the PLP-formulation (1) by adding and subtracting the same
expression in the objective function, we arrive at an equivalent formulation:

i = l

The optimal solution to (1) or (9) is denoted by (x o , yo) with min{zpLp} = zoPLp.

function, we have
For the individual terms in the left hand part of the transformed objective

84 0. Bilde, J. Krarup

for any feasible A, and for any (x, y) representing a feasible solution to (9).
For any fixed set of feasible Aij's, designate the LP-problem (LBPLP)

m n c 2 (Cij Aij)Xgj = ZLBPLP(min)
i = l j = 1

all j
i = l

xi; 3 0, all i, j

with min{zLBpLp} = z EBPLP.
For (x , y) = (x o , y o) , we obtain by means of (9a)

No sophistication is required for solving LBPLP. By inspection of (lo), we realize
that

i.e. ztBPLP is simply the sum of the column minima of the (C + A)- matrix.
This explains the prefixed letters LB (Lower Bound) in LBPLP and proves the
following

Theorem I.

2 min { c , + dij } s ;Lp
j = 1 i

where A,J is any set of nonnegative numbers satisfying

2 A, k , , all i.
j=L

Verbally, Theorem 1 asserts that a lower bound on zoPLp can be achieved as the
summed column minima of the (C + A)-matrix for any set of feasible A,,'s. Such a
lower bound is, of course, strongly dependent on the way in which A is determined.

According to Theorem 1, the sharpest lower bound w",PLP is found as the
optimal solution to

Sharp lower bounds and efficient algorithms 85

2 A, c ki, all i,
, = I

A,, 3 0, all i, j .

Actually (13) could be slightly reformulated and solved by means of some
LP-technique. But since lower bounds normally have to be generated repeatedly
throughout the computations in a branch and bound algorithm, we seek a bounding
procedure which -rather than striving after an optimal solution to the bounding
problem -combines sharp bounds with limited computational effort.

The following heuristic procedure which possesses both properties is initiated
with the given C-matrix and a A -matrix consisting entirely of zeros. By introducing
a set r, of auxiliary variables, defined by the differences

r, = k, - A,,, all i , (14)
,=1

r, must equal k, initially and the n + 1 numbers (r#, A,,, . . ., A,,,) can throughout the
computations be viewed upon as a partitioning of the corresponding k,.

The idea of the procedure is to find partitionings of the fixed costs so as to
maximize the summed column minima of the resulting (C + A)-matrix. While all
c,,’s preserve their original values, the elements of A are increased iteratively such
that any augmentation of some A,, is followed by a reduction of the corresponding r,
by the same amount.

The procedure operates on the columns in the (C + A)-matrix, one at a time. In
each step we select a column and attempt to alter a subset of its elements by
increasing the respective A,,% in a way which, so to speak, gives maximum effect on
the corresponding column minimum with a minimum “consumption” of the r,’s
involved.

A few observations: To increase an element which is not a column-minimum in
the actual (C + A)-matrix will not influence that column minimum. Furthermore, if
two or more elements in a column are equal to the column-minimum, no effect on
the lower bound will be obtained unless they are all increased. Finally, we shall see
that a column-minimum cannot be further increased if any of the auxiliary variables
involved have been reduced to zero.

In order to guide the search for the column to be the next candidate for further
augmentation, we associate a so-called level-number, A,, with the j’th column in
C + A which is equal to the number of occurrences of the smallest element in that
column. At any stage of computation, the next candidate for selection j * is the
column with the smallest level number. In case of a tie, that column with the
smallest index is chosen. So, the selection rule reads:

j * = min j I Ai = min{A,} (15)
s E J

86 0. Bilde, J. Krarup

Instead of proceeding with the formal exposition of the heuristic approach which
will require additional symbols, we shall illustrate the method by means of a
numerical example.

A PLP (m = 5 , n = 4) is given in Table 1; also the initial values of the level
numbers are shown.

Table 1

Plant Fixed costs Customer
no. k, 1 2 3 4

7 1 0 7 5

6
6
7
3
5 1 9 1 5 4

Level numbers, A, 1 2 1 2

Initial tableau: A,, = 0, all i, j ; r, = k,, all i.

Step 1: minSEJ{A,} = 1 = A, = A,; j * = min{l,3} = 1.
csl = 1 is the smallest element in the first column and cl1 = 2 is the second smallest.
We intend to choose A51 so as to increase cSl+ Asl as much as possible without
exceeding cI1, i.e. by an amount /3 = cll - c51= 2 - 1 = 1. rs shall remain nonnega-
tive upon reduction by the same amount which, in this case does not affect the value
of /3, i.e.

/3 = min{(c,, - csl), rs} = min{l,5} = 1.

Finally, to complete the updating of the tableau after the first step increase A1 by 1
resulting in Table 2 .

Table 2

I 1, 1 2 3 4

1 6 2 10 9

7 9 ! } C + A
2 6 8

p = 1 3 7 9 7 6
4 3 7 10 7 5
5 4 2 9 15 4

2 2 1 2

Sharp lower bounds and efficient algorithms 87

In general, all elements which have been changed from one step to the next are
shown underlined in the corresponding tableau.

Step 2: j * = 3 . Increase A,,, and reduce r3 by p = min{(c34+A34)
- (c,, + A,,), r3} = min{l,7} = 1, and update A 3 producing Table 3.

Table 3

1 1, 1 2 3 4

1 6 2 10 9
2 6 8 7

p = l 3 6 9 7 7
4 3 I 10 7 5
5 4 2 9 15 4

9 :} C + A

2 2 2 2

Step 3: j * = 1. Increase A l l and A,, and reduce rl and r5 by p =
min((c4, + Ad])- (cI1 + All), r l , is} = min{5,6,4} = 4.

Note that the effective upper bound on p is r5 (= 4 before reduction).
Accordingly, A, remains unaltered and, what is more important, the smallest
element in the first column can not be further increased since r5 = 0 after reduction.
To emphasize this, we mark row 5 and column 1 in Table 4 with asterisks.

Table 4
*

1 rI 1 2 3 4

1 2 6 10 9 8
2 6 8 7 9

4 3 I 10 I 5
* 5 I! 6 9 15 4

4 2 2 2 2

p = 4 3 6 9 7 I

Step 4: A marked column is no longer a potential candidate for selection; hence
j * = 2.

88 0. Bilde, J. Krarup

Table 5.
p = min((9 - 7), 6,6} = 2

* I

I r, 1 2 3 4

1 2 6 10 9
2 4 8 9 9

p = 2 3 4 9 9 7
4 3 7 10 7 5

* 5 0 6 9 15 4

C+A

4 2 3 2 2

One of the smallest elements of column 2 in Table 5 appears in a marked row and
can accordingly never be further increased. Column 2 is therefore marked as well.

Step 5: j * = 3; p = min{(9-7), 4,3} = 2 produces Table 6.

Table 6
* *

I r. 1 2 3 4

1 2 6 10 9
2 4 8 9 9

p = 2 3 2 9 9 9
4 1 7 10 9 5

* 5 0 6 9 15 4

Step 6: j * = 4; p = min{(4-2), 4,2) = 2

Table 7
* * * *

I r, 1 2 3 4

1 2 6 10 9
2 2 8 9 9

p = 2 3 0 9 9 9 '} C+A
4 1 7 10 9 5

* 5 0 6 9 15 4

Sharp lower bounds and efficient algorithms 89

r3 is reduced to zero; consequently, row 3 and column 4 are both marked in Table 7.
Also the last column (column 3) can be marked since one of its smallest elements
now appears in a marked row.

All columns are marked and the process terminates with a lower bound equal to
the sum of the smallest elements in each column:

4

min{c i j+A, ,}=6+9+9+4S wFBpLp.
j = 1 i

4. The bounding procedure and Lagrangian relaxation

For a general integer LP-problem (IP):

cx = z,,(min),

Ax 3 b, Bx a d,

x a 0; xi integer, i E I,
(17)

the Lagrangian relaxation of IP relative to the constraint set Ax 3 b and a
conformable nonnegative vector A is defined by IPR:

cx + A (b - Ax) = zrpn(min),

Bx 2 d, (18)

x 2 0; x, integer, i E I.

The idea of Lagrangian relaxation is to identify a set of “complicating
constraints” (here Ax 2 b) , weighting these by multipliers and inserting them
in the objective function in order to obtain a problem IPR which, hopefully, is
simpler to solve than the underlying problem IP.

A general theory of Lagrangian relaxation, which has provided a unifying
framework for several bounding procedures in discrete optimization, has been
developed by Geoffrion [14] with particular emphasis on applications in the context
of LP-based branch and bound.

Let zYpR denote the minimum value of zrpR for given A. In a discussion of the
potential usefulness of a Lagrangian relaxation, Geoffrion points out that the ideal
choice would be to take A as an optimal solution to

which is the formal Lagrangian dual of IP with respect to the constraints Ax 3 b.
Now let us exemplify the situation sketched above by reconsidering our PLP with

yi - xij 3 0 as the set of “complicating constraints” and with the Aij’s as the
corresponding set of nonnegative multipliers. By (l), (17) and (18), the derived
Lagrangian problem becomes (PLPR):

0. Bilde, J. Krarup

9 x , 3 1, all j ,
i = l

xij = 0.1; yi = 0,1, all i, j .

If we restrict ourselves to considering multipliers satisfying (8), the yi -variables
may be removed from the Lagrangian problem because jl$Aij 2 ki for all i, and
PLPR above coincides with (10) which is solvable by inspection.

Due to (12), the minimum value of zpLpR is determined by

ZLR = 9 min{cij + ~ ~ ~ 1 .
j= l i

In terms of Lagrangian relaxation, our approach can be viewed upon as a
parametrized relaxation where the bounding procedure is a rule for setting the
A,, -parameters to obtain sharp lower bounds.

In this context it is of interest to notice that the Lagrangian dual (19) and the
lower bound maximization problem (13) are equivalent.

As was mentioned in the concluding remarks of Section 2 on computational
complexity: PLP is NP-complete. Since it is very unlikely that a polynomial-
bounded algorithm can be devised for a NP-complete problem (e.g. a PLP), it is
reasonable to advocate the use of heuristics for solving large-scale PLP’s. This is
one of the main arguments for Cornuejols, Fisher and Nemhauser [9] for studying
heuristics for solving a so-called account location problem which, as they point out,
is mathematically equivalent to PLP. Their main results are on the quality of
solutions obtained from heuristics and the quality of bounds obtained from LP and
Lagrangian relaxation. It is interesting to realize the fact that the question on how
the subset of “complicating constraints” should be selected does not necessarily
have an obvious answer. While our Lagrangian relaxation is relative to y, - x,, 3 0,
the complementary subset &x,, 3 1 is applied in [9]. However, to make a detailed
comparison of our ideas to those in [9] and to compare the computational
experience must be left over as an appropriate subject for future research.

5. Solving PLP’s by hand

Let (r * , A *) denote the final values of (r, A) upon termination of the bounding
procedure as was described in Section 3 and let w * be the lower bound thus
obtained:

r: = ki - AT,, all i
, = I

Sharp lower bounds and efficient algorithms

where a; = min{cij + A f j } , all j .
I

91

It may occur that equality holds, not only between w * and wtBPLp but also between
the latter and zELP. To illustrate this, let

and suppose a subset P C I of plants can be found which satisfies the following
conditions:

P C (J 0,

P n Di# 0, all j

j = l

A f j A : j = 0, all (i, s), i E P, s E P, i# s.
i = l

Define yi = 1 if i E P; otherwise, yi = 0. For each j , select an entry

{ (i , j) l i € P n D j , A : j > O } (27)

or if no such entry exists, let (i , j) be any member of the nonempty subset

{(i, j) I i E P n oj, A f j = 0) (28)

and assign the value 1 to the corresponding xij while all remaining x , ~ ’ s , s# i are
kept at zero level.

Intuitively, (23)-(25) means that we seek a subset P of open plants for which the
fixed costs have been totally absorbed during the process of constructing the A t i ’s .
Furthermore, all x i j = 1 selected by (27) or (28) corresponds to entries (i , j) with
yi = 1 and cY + A T i = ai, and (26) secures that A T i > 0, A f i > 0 cannot occur
simultaneously for any pair (i, s) of open plants, i.e.

A f j = k , J’ = { j I xij = l}, V i E P.
j € I ’

Besides, the column minima of every column of C + A * must appear in at least one
of the rows comprised by P. Thus, we have constructed not only a feasible solution
(x,y) representing an upper bound on zOpLp but a solution for which the lower
bound w * coincides with the value of the objective function. Hence, (x , y) is
optimal.

Consider the final tableau obtained in Section 3, now with all elements of C + A *
written explicitly as the sum of two terms displayed in Table 8.

92 0. Bilde, J . Krarup

Table 8

i k , r': 1 2 3 4

2
2

(3

@
1

2 + 4 1 0 + 0 9 + 0 8 + 0
8 + 0 7 + 2 9 + 0 2 + 2
9 + 0 1 7 + 2 b i 3 2 + 2 [
/ + u 1 0 + 0 7 + 2 5 + 0

'1 1 + 5 9 + 0 1 1 5 + 0 1-
Ic+**

Column minima, a, 6 9 9 4

By means of (23): D , = { S } , D2 = {3,5}, D, = {3}, D4 = {3,5}. Obviously, P = (3 , s)
satisfies (24)-(26); hence y , = y s = 1. The complete solution with w * = z",,, = 28 is
achieved by (27) and (28); actually, (27) suffices for all columns in this particular
case: x s l = x3z = x , ~ = x34 = 1.

Note, that we have not claimed the existence in general of a subset P satisfying
(24)-(26). Although it occurs frequently in practice, some reflection will show that
counter examples are easily constructed for any m 3 3, n a 3.

However, searching for P by simple inspection of the final bounding tableau is
not an overwhelming task for problems of moderate size. A series of real-world
problems ranging up to rn = 29, n = 14 were optimally solved on a blackboard
(including determination of the lower bound) within a few minutes.

In cases where P cannot be derived directly from the tableau, a branch and
bound technique almost suggests itself as the most natural way to proceed. For
problems of a reasonable size, hand computation is still a possibility provided that
the lower bounds are generated as described in Section 3.

6. Branch and bound algorithms

Several experiments with different selection rules for branching were performed
by the authors in the period 1967-69. Some preliminary results are reported on in
Krarup [17] but the methods were further improved later on by Bilde [6] from
which the material in this section is extracted.

At any node r in the branch and bound tree (representing a subproblem of the
given PLP or the subset of feasible solutions to that subproblem) the set of plants is
partitioned into three subsets

Sharp lower bounds and efficient algorithms 93

“Open” plants:

“Closed” plants:

“Free” plants:

I : = (i 1 yi = 1 at node t } ,

1: = { i 1 yi = 0 at node t } ,

I : = { i 1 y i is undefined at node t } .

Any fixed yi at node t (i.e. i E 1: U I;) preserves its value when further branchings
from node t are performed.

For node t, define a subproblem of the original PLP by ignoring:
all plants i E I ; (computationally, we may delete the corresponding rows or

replace k , i E I:, by very large numbers)
all fixed costs associated with the subset of open plants (k , i E I : , are replaced by

zeros).
Let wl, denote the lower bound obtained by the bounding procedure for this

particular subproblem. Obviously, a lower bound w ‘ for the subset of solutions
represented by node t can be achieved as

w‘ = w f + k , . (29)
i e r ;

No further branching from node t is required in the following two cases:
(1) If 1: = 0, an optimal solution determined by (I : , I:) has been found for node t

with zpLp = w‘.
(2) If w ‘ 2 zpLp, where zpLp represents the value of the best solution so far and

where this solution is obtained from the bounding procedure by opening those
plants (rows) which are marked and by serving all customers from the “nearest”
opened plants.

On the other hand, if 1: # 0 A w ’ < zpLp, two new subproblems corresponding to
nodes (t + 1) and (t + 2) are generated by the branching rule involving the selection
of a “free” plant i E 1::

Accordingly,

I{+’ = I: ; I:,’ = I; u { i } ; I:+’ = 1: - { i }

= 1: u { i } ; I;+2 = 1‘ . I:+’ - - 1: - { i } .
2 ,

What remains to discuss is the brunching rule itself: Determination of that node t
from which to branch and selection of that free plant i E 1; on which the branching
is to be based.

Two different rules are tested in [6]. Both apply ri and r t as was introduced by
(14) and (21) respectively.

94 0. Bilde, J. Krarup

Whenever a lower bound w‘ has been determined by (29)? the final bounding
tableau contains actual values of r : . For a forthcoming node t + 2 with some yi = 1,
i E I:, the following relation must hold

W f + 2 2 r ; + w‘

Rules A and B can now be stated:
Rule A : Select from I : a plant i for which ri = maxSEI: { i s } . Perform the

branching and proceed with node (t + 1).
Rule B : Let i denote that row which was the first to be marked in the bounding

procedure for calculating w ‘. Due to the definition of the subproblem represented
by node t, i is certainly a member of the nonempty subset 1:. Select that i for the
next branching and proceed with node (t + 2).

Clearly, we attempt as soon as possible to exclude the “bad” plants by Rule A or
to include the “good” plants by Rule B.

7. Computational experience

The two versions of the algorithm were tested in 1969 on an IBM 7094. The
results presented below in Tables A and B appeared originally in [6].
Headings of the tables:

rn: number of potential plants (rows),
n: number of customers (columns),
w : the first generated lower bound,
S: the number of distinct solutions obtained,
ZFLp: the value of the first solution obtained,
zoPLp: the value of the optimal (or best) solution,
BF: number of branchings required for obtaining the first

BO: number of branchings required for obtaining an optimal

BT: total number of branchings,
Time: computing time (IBM 7094) including input-output (sec.)

solution,

solution,

Problem a1 is a set covering problem with a density (percentage of ones) equal to

For all the remaining problems, the elements in the C-matrix have been drawn at
random from a discrete uniform distribution over the interval (0,1000).

Except for problem e l0 where all fixed costs are equal to 10,000, the fixed costs
for problems in Table 9 are all chosen at random over the intervals (l,OOO, 10,000)
for bl-b3 and (1,000, 2,000) for c l and c2.

The relative difference between zoPLp and w is 0 (al , b2) and a few percent (bl , b3)
so that the first application of the bounding procedure almost suffices for solving

15%.

Sharp lower bounds and efficient algorithms 95

Table 9
Computational experience with Rule A.

Prob- m n W s Z&;P Z",P BF BO BT Time
lem (sec.)

a1 29 14 31 1 31 31 23 23 23 < I

bl 50 100 15230 1 15372 15372 43 43 46 3
b2 50 100 14020 1 14020 14020 44 44 44 2
b3 50 100 15110 2 16919 15530 44 47 50 8

cl' 50 100 13954 7 17237 15180 44 571 (769) (> 250)
c2" 50 100 14973 1 16684 16684 43 43 (850) (> 250)

e10" 50 100 41841 3 47868 47012 50 78 (374) (> 150)

a Execution of the program interrupted before optimality was proved.

Table 10.
Computational experience with Rule B.

Problem m n W s Z L zR, BF BO BT Time
(sec.)

d l
d2
d3
d4
d5
d6
d7
d8
d9
d10

30 80
30 80
30 80
30 80
30 80
30 80
30 80
30 80
30 80
30 80

12248
16989
20950
24040
26532
29399
31887
33970
36075
37922

3
3
1
2
2
2
1
1
1
1

13805
19917
23821
27559
30559
33559
36122
38122
40122
42122

13416
19778
23821
27512
30512
33512
36122
38122
40122
42122

8 111 216
6 24 218
5 5 169
4 14 141
4 8 106
4 27 101
3 3 83
3 3 55
3 3 47
3 3 43

11
24
19
17
14
15
13
11
11
11

e l
e2
e3
e4
e5
e6
e7
e8
e9
el0

50 100
50 100
50 100
50 100
50 100
50 100
50 100
50 100
50 100
50 100

13054
18518
22646
26057
29249
32024
34670
37141
39725
41841

2
3
4
2
2
2
2
2
1
1

14983
2 1796

a26730
30350
33712
36712
39712
42712
45012
47012

14983
21593
26111
30111
33573
36573
39573
42573
45012
47012

10 19 1271 202
7 60 1112 172
6 56 384 82
5 39 258 65
4 14 193 53
4 9 136 43
4 13 131 42
4 7 143 48
3 3 117 44
3 3 79 37

96 0. Bilde, J . Krarup

these problems. However, a considerable growth of the relative difference is
noticed for (cl, c2, e10) and Rule A is no longer able to provide optimality within a
reasonable amount of time.

With the idea of Rule A in mind, a plausible explanation is that problems
(al , bl-b3) are characterized by very few good solutions while the converse is true
for (cl, c2, e10). The conclusion is that the performance of Rule A is good in some
situations but unsatisfactory for problems with a “flat” optimum.

Having realized the drawbacks of Rule A, a natural alternative would be to
“reverse” the philosophy underlying the selection of that plant on which the next
branching is to be based. Accordingly, Rule B was implemented and tested on a
series of examples, all believed to represent the most difficult cases: All fixed costs
of the same magnitude.

For the twenty problems, d, and e, in Table 10, all fixed costs are equal to
1000 x q. For e l0 which appears in both tables, a substantial drop in computing time
is recorded. In general, Rule B seems to be efficient for solving problems with a
large number of near-optimal solutions. Note, that the first solution obtained is
optimal in 35% of all examples and that the number of branchings required (the
BF-column) is extremely low.

Acknowledgements

Sincere thanks are due to P.M. Pruzan and to the referees who provided us with
useful suggestions which led to several improvements of the exposition. Further-
more, we are indebted to P.L. Hammer and to K. Spielberg who independently
expressed interest in our work at an early stage and encouraged us to perform this
extract in English.

References

[I] E. Balas and M.W. Padberg, On the set covering problem, Operations Res. 20 (6) (1972) 1152-1161.
[2] E. Balas and M.W. Padberg, On the set covering problem 11. An algorithm for set partitioning,

[3] E. Balas and M.W. Padberg, Set partitioning, in: B. Roy ed. CombinatorjalProgramnring: Methods

[4] M.L. Balinski, O n finding integer solutions to linear programs, Maternatica, (1964) oO(MO0.
[5] G. Bergendahl, Models for capacity planning, Ph.D. Dissertation in Business Administration,

University of Lund, Sweden (1966).
[6] 0. Bilde, Nonlinear and discrete programming, Ph.D. Dissertation No. 9, IMSOR, The Technical

University of Denmark (1970).
[7] 0. Bilde and J. Krarup,Besternmelse of optimal beliggenhed afproduktionssteder, Research Report,

IMSOR, The Technical University of Denmark (1967).
[8] 0. Bilde and J. Krarup, Plant location, set covering and economic lot size: an O(mn)-algorithm for

structured problems, Research Report, IMSOR, The Technical University of Denmark (1975) and
Report No. 75/6, Institute of Datalogy, University of Copenhagen (1975).

Operations Res. 23 (1) (1975) 74-90.

and Applications, (Reidel, Dordrecht, 1975), 205-258.

Sharp lower bounds and efficient algorithms 97

[9] G. Cornuejols, M.L. Fisher and G.L. Nemhauser, O n the uncapacitared location problem, Research
Report No. 7602, CORE, UniversitC Catholique de Louvain (1976). Ann. Discrete Math. 1 (1977)
163-177.

[lo] M.A. Efroymson and T.L. Ray, A branch-bound algorithm for plant location, Operations Res. 14

[l l] R.L. Francis and J.M. Goldstein, Location theory: a selective bibliography, Operations Res. 22 (2)

[12] R.S. Garfinkel and G.L. Nemhauser, The set partitioning problem: set covering with equality

[I31 R.S. Garfinkel and G.L. Nemhauser, Integer Programming, (Wiley, New York, 1972).
[141 A.M. Geoffrion, Lagrangian relaxation for integer programming, Math. Programming Study 2

[15] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Tatcher eds.

[16] B.M. Khumawala, An efficient branch and bound algorithm for the warehouse location problem,

[17] J. Krarup, Fixed-cost network flow problems, Ph.D. Dissertation No. 3, IMSOR, The Technical

(181 K. Spielberg, Algorithm for the simple plant-location problem with some side conditions,

(3) (1966) 361-368.

(1974) 400-409.

constraints, Operations Res. 17 (5) (1969) 848-856.

(1974) 82-114.

Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.

Management Sci. 18 (12) (1972) 8-718-731.

University of Denmark (1967).

Operations Res. 17 (1) (1969) 85-111.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 99-116
@ North-Holland Publishing Company

PARTIAL ORDERINGS IN IMPLICIT ENUMERATION

V. Joseph BOWMAN, Jr.
Graduate School of Industrial Administration, Carnegie -Mellon University, Pittsburgh, PA. 15213,
U S A .

James H. STARR
Bell Telephone Laboratories, Holmdel, NJ., U.S.A

This paper investigates the use of general partial orderings in implicit enumeration algorithms.
It is shown that if one chooses a partial order P such that x P y implies cx less than or equal to cy
then there exists an optimal solution which is “prime” in the sense that the solution, x, is feasible
and there exists no y P x such that y is feasible. Enumeration algorithms search for prime
solutions and two methods of performing this search are characterized. Finally the paper
illustrates these concepts by the introduction of two partial orders that are stronger than vector
partial ordering which is the basis of Balas type implicit enumeration algorithm.

1. Introduction

In this paper we investigate partial orderings as they apply to implicit enumera-
tion techniques for binary linear integer programs. This programming problem
consists of linear constraints which define the set of binary solutions which may be
considered, and a linear decision criteria or objective function which is used to find
the optimal solution. Enumeration algorithms usually base their enumeration, at
least implicitly, on some combination of objective function and feasibility consider-
ations. The obje‘ct is to find rules which generate a solution with a better objective
function value than has yet been found, or if this cannot be done, to terminate.
Orderings have been used by several authors as direct means of enumeration.
Lexicographic orderings have been used by Dragen [6] and Korte, Krelle and
Oberhofer [lo]. Lawler and Bell [ll] have used a combination of lexicographic and
vector partial orderings. Balas [l] has used vector partial ordering as a basis for his
additive algorithm.

We wish to investigate the explicit use of a partial ordering of binary solutions as
a surrogate for the objective function. The motivation is that if one were provided a
total order that corresponded to the ordering induced by the objective function, the
programming problem is reduced to searching that linear ordering until a first
feasible solution is found. It should be pointed out that the objective function does
not totally order all solutions since several solutions may have the same objective
value. In such cases we assume that these solutions of common value can be

99

100 V.J. Bowman, Jr., J .H. Starr

ordered in an arbitrary manner. This implies that if there are alternative optima we
have no preference between them and are only interested in one of these solutions.

If we have a partial ordering that agrees with the objective function ordering, i.e.,
elements ordered in the partial order are ordered in the same direction in the
objective order, then the partial order cannot contain as much information. In
return for this loss, however, we may receive the following advantage: solutions
that are potentially “better” may be easier to generate using the partial ordering
rather than the objective function. This may be true especially if we choose a well
structured partial order. For instance if c is the vector of costs and x and y are two
binary solutions such that x s y , i.e., x , s y i for all i, then c 2 0 implies cx cy.
Thus if x is feasible, there is no need to evaluate y since it cannot be optimal if we
are minimizing. Moreover we know that if w is an optimal solution then either
w G x or w is unordered with x . Thus we have implicitly enumerated all solutions y
such that x G y . This ordering is the one used by the Balas additive algorithm.

In the next section we shall discuss properties of general partial orderings that
agree with the objective function and how these properties can be used in
theoretical enumeration algorithms. The third section discusses two partial order-
ings and their particular properties.

2. Partial orderings

We shall consider the problem

min cx,

st. Ax 3 b, (1)

x binary,

where A is an m x n matrix and c, b and x are vectors of appropriate dimension.
b a feasible solution. A n y

feasible solution x such that cy < cx implies y is not feasible is called an optimal
solution.

Let P denote a partial ordering relationship on the solutions; that is for every two
binary vectors x and y , x # y only one of the following holds

We shall call any binary vector x a solution and if Ax

6) X P Y ,
(ii) y P x ,

(iii) neither x P y nor y P x ,
and if x P y and y P z , then X P Z . One can think of P as a preference relationship;
that is either x is preferred to y or y is preferred to x or neither of these. The
vector partial ordering discussed in section 1 is generated by the relationship
P = { c } ; that is, P is the usual vector partial ordering relation.

If condition (iii) holds x and y are unordered. If x P y (y P x) and there exists n o z

such that x P z P y (y P z P x) we say that x and y are adjacent. A chain is a

Partial orderings in implicit enumeration 101

sequence of adjacent elements (X I , x z , . . . , x k) with x ' P x i t l and such that there
exists n o y or z with z Px ' and x k P y . A partial chain is a sequence of adjacent
elements. (X I , . . . , x k) with x i Px'+' . x 1 is called the origin of the partial chain. We
say that P * agrees with P (P * is contained in P) if x P * y implies x P y . If for all x , y
binary either (i) or (ii) holds, then P generates a complete or linear order.

Throughout the remainder of this paper we shall consider only those partial
order relationships such that P E C where

C = { P 1 x P y + cx s cy for all x , y binary}.

C' will denote the set of linear orders in C, To simplify notation, the partial order
generated by P will be called the partial order P.

The following definition identifies the central property of solutions in a partial
order that is of concern in enumeration techniques.

Definition 1. A solution x is a prime solution with respect to a partial order P if
(i) x is feasible, and

(ii) if y P x then y is infeasible.

We know that if x is prime then all chains through x cannot contain a feasible
solution with lower cost, since all solutions y , such that y P x , are infeasible by
definition and all solutions y , such that x P y , have cx S cy since P E C.

Lemma 1. At least one optimal solution is a prime solution.

Proof. Let y be an optimal solution such that x P y implies x is not optimal. Now
x P y implies cx i cy thus x P y implies x infeasible since otherwise it is an
alternative optima but y is feasible and x P y implies x infeasible, thus y is prime.

Thus we can restrict our search to the prime solutions. Of course, the set of prime
solutions change with different partial orders and thus in searching for partial
orders one would desire to find a well-structured partial order with few prime
solutions. It is the function of enumeration schemes to find the prime solutions and
to identify them either directly or indirectly.

The distinction between direct and indirect enumeration techniques is not trivial.
Each embodies a different enumeration technique that generates solutions in
alternative ways. To contrast the differences we present a general algorithm for
each.

Rudimentary Direct Algorithm :
Step 1 : Choose a partial order P E C.
Step 2: Generate a prime solution.
Step 3: Establish criteria that eliminate all chains containing this prime solution.

Because of the generality of this Algorithm, each of the steps is non-trivial. The
Go to Step 2 .

102 V.J. Bowman, Jr., J.H. Starr

selection of the partial order P in Step 1 must be chosen so that Step 2 can
recognize when a prime solution is generated. Step 2 may contain a technique that
always generates a prime solution or more practically may generate several
solutions stopping when a prime solution is generated. Similarly Step 3 may be
implemented in several ways. The direct implication is that chains are actually
deleted from the partial order which is direct elimination of a set of solutions. A
more practical way may be to impose additional constraints that make the present
prime solution infeasible and that relies on multiple solution generation within Step
2. A direct search algorithm for set-covering problems has been used by Bowman
and Starr [3] for a partial ordering that will be described in the next section.

The indirect algorithm is more familiar to students of implicit enumeration and is
the search method used by Balas [l].

Rudimentary Indirect Algorithm :
Step 1: Choose a partial order P E C and a solution x such that there is no

Step 2: If x is feasible, go to Step 4. Otherwise go to Step 3.
Step 3: Choose a partial chain originating at x that contains a feasible solution.

Generate the adjacent solution to x, say y , on this chain. Let x = y and go to Step 2.
If n o such partial chain exists, go to Step 4.

Step 4: (Backtracking) Delete all partial chains originating at x. Retrace the
current chain to x until there is an element w that is the orign for at least two
chains. Let y be an adjacent element to w with w P y and such that y is not on the
current chain. Let x = y and go to Step 2. If there exists no such y terminate.

In the indirect algorithm, the choice of the partial order P is guided by the ease of
finding adjacent elements (for Steps 3 and 4) and the ability to determine partial
chains that contain a feasible solution. In actual practice Step 3 would probably be
relaxed to the statement of finding a chain that has potential for a feasible solution;
that is, it may not but we need to explore further. Step 4 implies the direct
elimination of solutions as did Step 3 of the direct algorithm. Here again practical
application would imply the addition of constraints that mark eliminated partial
chains.

In order to better understand the implications of this partial ordering material
and the two algorithms, we illustrate them with vector partial ordering, the ordering
used by Balas for his additive algorithm. As noted earlier, this ordering is generated
by the relationship P = { s } ; that is, x P y if x, s y , for all i . A graph of the partial
order for n = 4 is shown in Figure 1. We have that P E C if c 3 0 and since we can
always replace a variable with c, < 0 by its complement, i.e., x, = 1 - X,, we have
c 3 0 for any problem (I). The smallest element in this chain is at the top of Figure 1
and as one follows any chain from top to bottom the objective function is monotone
non-decreasing.

Let us investigate the Indirect Algorithm first as implemented by Balas [l]. We
have chosen the partial order P and we now choose a starting solution x, = 0 for all
j . This completes Step 1. The criteria for adjacency is the setting of one variable

solution y with y P x .

Partial orderings in implicit enumeration 103

1111

Fig. 1. Vector partial order, n = 4.

104 V.J. Bowman, Jr., J.H. Starr

x, = 0 to x, = 1 or of setting x, = 1 to x, = 0. At each iteration of a Balas type
algorithm the indices of variables are divided into two disjoint sets S and F. S
denotes indices of variables that are fixed at a particular value. These variables
constitute a partial solution. The remaining variables, those in index set F, are called
free. In the tests for feasibility or optimality, these variables are implicitly assigned a
value of zero. Thus each iteration corresponds to a solution of the problem. The
algorithm at a solution (or iteration) that is not feasible investigates by various
criteria (see for example [l, 2,7, 8, 9, 12]), to see if setting a variable with index in F
to one may lead to a feasible solution. If so the variable is set to one and its index
added to S and deleted from F. If some variable with index in F cannot yield a
feasible solution with value one it is fixed at zero, put in S and deleted from F and
is marked so that setting it to one from this solution will not be attempted. This
marking process corresponds to a partial chain elimination. It says that from this
solution any chain containing the marked index has been eliminated with the
variable at its other value. This corresponds to Step 3. The backtracking in Step 4
implicitly says that any partial chain originating at the present solution cannot
contain an optimal solution. The backtracking frees variables in S in the reverse
order they were added and stops at the first unmarked index, say k. Variable k is
then set at its opposite value and marked indicating that all partial chains
originating at its former value have been eliminated. This is Step 4.

Consider the following example:

Example 1. The problem is

min xI + 2x2 + 3x, + 4x4,

s.t. x, + 3x2 + x j 2 2,

2x1 - xz + x3+ xq 2 1.

A sequence of solutions that might be generated by an Indirect Algorithm is
displayed in Table 1.

It should be noted that several of the sequence numbers are generated by one
step of the indirect algorithm. In practice one iteration of an algorithm would also
generate several of these sequence numbers. They are explicitly stated here to
emphasize the investigative properties of the Indirect Algorithm. Reference to
Figure 1 may aid in understanding the sequence of exploration and the deletion of
chains.

As mentioned earlier the use of a Direct Algorithm has been limited to another
partial ordering discussed by Bowman and Starr. It is therefore necessary to discuss
an algorithm that will first find a prime solution and second indicate what solutions
are not contained in the chains containing this prime solution for vector partial
ordering. These are described below.

Prime Solution Generation :
Step 1: Set iteration counter t = 1 and j o = n + 1, 6, = b.

Partial orderings in implicit enumeration

Table 1.

105

Sequence Solution Information

0 Step 1
1 Step 3
2 Step 3

Step 4
4
5

Step 4

7
8 Step 4
9

10 Step 3

Step 4 12
13
14 Step 4
15
16
17 Step 4

18 Step 4

infeasible
infeasible
feasible
eliminate all partial chains originating at (1100)
non-optimal
eliminate all partial chains originating at (1010)
non-optimal
eliminate all partial chains originating at (1001)
eliminate all partial chains originating at (1000)
infeasible
non-optimal
eliminate all partial chains originating at (0110)
non-optimal
eliminate all partial chains originating at (0101)
eliminate all partial chains originating at (0100)
non-optimal
eliminate all partial chains originating at (0010)
non-optimal
eliminate all partial chains originating at (0001)

Step 2: Find k such that
k

(as)+ 2 b , for all i,
* = I

...
(as).+ < b , for some i,

S = l

where (a,,)+ = max(a,,,O). If k < j,+,, go to Step 3. Otherwise go to Step 4.

t = t + 1 go to Step 2.

to Step 2. Otherwise go to Step 5.

Step 3: Set j , = k, b,,,, = b,,, - a z k for all i. If b,,, S O , stop. Otherwise let

Step 4: Set It-, =it-, + 1 , k = j z - , , b,3, = b,,, - a , , k + a,,,-, for all i. If j,-, # 11-2, go

Step 5: Set t = t - 1. If t = 0, stop n o prime solution. Otherwise go to Step 4.
This algorithm is a systematic way of exploring the prime covers and a version of

To obtain solutions that are unordered with a prime solution, say y, any other
it is used by Bowman and Starr [3] for set covering problems.

solution x must satisfy the following two constraints:

where Q = { j 1 y, = 0) and R = { j 1 y, = 1). That is, a solution, x, is unordered with y
if and only if a zero value in y becomes one and a one value in y becomes zero. We
will combine these two by adding the constraints of (1) to the problem (I) after
every prime solution is generated.

106 V.J . Bowman, Jr., J . H . Starr

Example 2. Consider the problem of Example 1 and the algorithm described
above. The sequence of solutions and constraints generated are as in Table 2.

Table 2.

Sequence Solution Constraints

1 (1100) x l + x * s l X 3 + X 4 3 1

2 (1010) X , + X , ~ l X Z f X 4 3 1

3 (1001) x , + x q s 1 X Z + X , ~ l

4 (0111) X 2 + X 3 + X 4 5 2 X , Z l

In this case very few solutions are generated; however, the computation of the
prime solutions is not trivial and comprises the bulk of computation. We know of
no attempts to implement such an algorithm. The version presented here would
most certainly perform poorly with respect to sophisticated versions of a Balas
Indirect Algorithm and would require in-depth research to find efficient means of
generating prime solutions.

The approach to these two algorithms is completely different. The direct
algorithm requires efficient means of generating prime solutions and means of
eliminating all chains through a prime solution. The Indirect Algorithm needs
efficient means of finding adjacent solutions, detecting infeasibility in partial chains
and efficient means of eliminating partial chains. Since the requirements for these
algorithms are different it may be the case that different partial orders would
respond better to one algorithm than the other. However before such investigations
can be undertaken it is important to generate other partial orders than the vector
partial ordering. The next section discusses two such orderings and illustrates the
reductions that take place in terms of the number of chains.

3. Two specific partial orders

The first partial ordering we wish to consider has been discussed by Bowman and
Starr [3, 41 for the set covering problem, by Starr [15] for the 0-1 problem where
A 3 0 , and by Gale [16] and Zimmerman [17] with respect to Matroids. In the
Bowman and Starr papers the ordering relationship P was represented by { 6 }, and
in the Zimmerman paper P was represented as Si. In this paper we will use P 2 to
denote this ordeing. The two comes from the relationship of the 6 -ordering to two
comparability in switching functions. This relationship is discussed by Bowman and
Starr in [S] and for reference to two-comparability the reader should refer to
Muroga [13]. In the same manner we can refer to the vector partial ordering as P'
since it corresponds to 1-comparability. This numbering is also significant in that P'
agrees with P2, i.e., if x P ' y then x P 2 y .

Partial orderings in implicit enurrieration 107

The P 2 ordering is defined from the vector partial ordering of the index vectors of
binary vectors.

Definition 2. The index vector, s(x), of a binary solution x has the following
properties, where xo is the number of zero components of x.

(a) sl(x) = s2(x) = * . = s&) = 0,
(b) SJX) < s,+i(~) < . * * < sn(x),
(c) x, = 1 if and only if there exists a j such that sj = i.

The index vector lists the positive indices of a binary vector in increasing order.

Definition 3. Let x and y be any two solutions with associated index vectors s (x)
and s(y). If s (x) s sty), then x P 2 y. Here " S " denotes the usual vector partial
ordering.

The P z ordering defined by the index vectors satisfies our requirement for
decreasing desireability moving down a complete chain if the objective function is
linear and the elements of the objective function form a monotone non-decreasing
sequence.

The following lemma is proven in [3]:

Lemma 2. If O S C ~ S C ~ S ~ ~ ~ S C , , ~ ~ ~ xP2y , then c x ~ c y .

Lemma 3, proven in [3], shows that the vector partial ordering, PI, usually used
in programming algorithms, agrees with the P 2 ordering.

Lemma 3. If x s y, then x P z y .

The vector partial ordering is used as the basis for implicit enumeration, which
may be regarded as the enumeration of complete chains in the graph induced by
this ordering. Since the vector partial brder agrees with the P 2 ordering, the P 2
ordering must have fewer complete chains.

Figure 2 shows the P z ordering for n = 4. It is important to note that every
implication in Figure 1 is contained in Figure 2; this is from Lemma 3. In addition,
the number of prime solutions will be smaller in P 2 than in P' because of the
existence of additional relationships. In particular, note for the problem in Example
1 that three of the prime solutions under the PI ordering are not prime under the P 2
ordering; that is, the solutions (lolo), (1001) and (0111) are all ordered with (1100)
in the P 2 ordering. Bowman and Starr [3] provide a method for generating
successive prime solutions on this ordering for the set covering problem. This
generation is exploratory in nature in that several non-prime solutions may be
generated to find a prime solution. However, the computation times presented have
been quite small especially for those problems with distinct costs.

108 V.J. Bowman, Jr., J.H. Starr

0 1 1 1111

Fig. 2 . P*-order, n = 4.

The following examples highlight the gains that can be made by using the P 2
ordering.

Example 3. Consider again the problem of example 1. If one uses a Direct
Algorithm the sequence of solutions would be as in Table 3.

Partial orderings in implicit enumeration 109

Table 3.

Sequence Prime Solution Comments

1 (1100) only (0010) and (0001) are unordered
2 stop neither (0010) or (0001) is feasible

Example 4. An Indirect Algorithm would generate the sequence in Table 4.

Table 4.

Sequence Solution Comments

infeasible
infeasible
infeasible
feasible
eliminate all partial solutions originating at (1100)
non-optimal
eliminate all partial solutions originating at (0010)
eliminate all partial solutions originating at (0100)
eliminate all partial solutions originating at (1000)

In both these examples n o specific way is described of eliminating the partial
chains or of finding prime solutions. In fact there does not exist at present an
indirect algorithm for exploring this ordering outside of the very rudimentary one
described above. However, it is important to note that this ordering has the
significant effect of reducing the number of solutions that must be generated by
either a direct or indirect algorithm. This is offset however by the need for more
complicated algorithms to generate the successive solutions. In light of recent
research by Piper [14], showing that logical tests in Balas type enumerations have
strong influence on computation time, it might be suspected that efficient use of the
P 2 ordering would be helpful in enumeration techniques. This has been supported
by the success of the Bowman and Starr algorithm for set-covering.

There exists a further refinement of the P z ordering that has not been
investigated by any authors. The P2 ordering required the knowledge of the
ordering of the cost coefficients. This new ordering, which we denote P 3 , requires
that the cost coefficients be positive and in non-decreasing order and that one also
knows the ordering of the first differences of the cost coefficients.

Let A, = c, - c ~ - ~ , where co = 0. Then we have

We now define the P 3 ordering by the difference vector d (x) of a binary vector x.

110 V.J. Bowman, Jr., J.H. Starr

Definition 4. The differeke uector, d (x) , of a binary vector x has the following
properties:

(a) d (x) has n (n + 1)/2 components.

(c) Let { j , , j z , . . . , in} be a permutation of {1,2,. . . , n } . Then C:=,X, components

The importance of the difference vector lies in the creation of the cost function in

(b) 0 5 di (x) c dz(X) 6 *
* d n (n + i) / z (~) .

of d have value p if j, = k.

terms of first differences. This transformation is:

and follows directly from (2) and part (c) of the definition.
The difference vector involves two index sets, the index set (1,. . . , n } on the

elements of x and a permutation of these, {jl, j z , . . . , in} associated with the.first
differences of c. The following example shows the construction of a difference
vector:

Example 5 . Assume n = 4, jl = 2, j 2 = 1, j 3 = 4, j4= 3 . If x = (1010) then since
Z:;1=4xt = 0, 0 components of d have value ~ 3 because j 3 = 4; since Cf=,x, = 1, 1
component of d has value 4 because j4 = 3 ; since Cf=, x , = 1, 1 component of d has
value 1 because j , = 2; and since Cf=, x , = 2, 2 components of d have value 2
because j 2 = 1. Thus d (x) = (O,O, O,O, O,O, 1,2,2,4).

Furthermore,

cx = A,, + A, + A, + A,4

= A , + A , + A l + A ,

= (c2 - c,) + c1+ c1+ (c, - cz)

= c3 + c1.

Definition 5. Let x and y be any two solutions with associated difference vectors
d (x) and d (y) . If d (x) s d (y) , then x P 3 y .

The P 3 ordering satisfies our requirement for decreasing desirability if the
objective function is linear, the elements of the objective form a monotone
non-decreasing sequence and the first differences are monotone non-decreasing on
the index set Gl, j 2 , . . . , j n } .

Proof. Assume the ordering relationships and x P 3 y . We have
" (n + 1y2

cx = x A , , W
t = l

Purfial orderings in implicit enumeration 111

Since x P 3 y, di (x) G di(y) and by the ordering on first differences A j d i (x) S A j d , (y) .

Thus
n(n+ 1)/2

cx 2 A j d , (y) = cy.
, = 1

This proves the lemma.

agrees with the P 3 ordering.
Similar to the relationship of the P' and P 2 ordering we find that the P 2 ordering

Lemma 5. If x P 2 y , then x P 3 y .

Proof. If x P 2 y then s (x) s s (y) . Recall these are index vectors. By Definition 4 we
have

In addition since s k (x) S Sk (y) we have x?=sr(x) y , 2 n - k + 1. Since the elements of
d (x) and d (y) are monotone non-decreasing it immediately follows that d (x) s
d(Y 1.

In the same manner that P 2 contains more information than PI, this lemma
shows that P' contains more information than P2. However, this new information is
at the cost of a more complicated ordering vector (compare the generation of s(x)
to the generation of d (x)) . Moreover while for each n, P' and P 2 generate just one
ordering, P 3 generates several orderings for a given n because of various
relationships on the first differences. For the case with n = 4 there are 8 different
partial orders. These are shown in Fig. 3a through 3h along with the orderings on
the first differences that generate them. It is interesting to note that four of the
orders are linear orders. This is important since either a Direct or Indirect
Algorithm would terminate with the generation of the first feasible solution on
these orders.

Remark. There are n o known algorithms for searching the P 3 ordering. In fact it is
not clear that the representation of this order by the difference vector d (x) is the
most efficient method. It does give a means for beginning research on the
importance of this ordering in enumeration techniques. This is best exemplified by
the problem of Example 1. In this problem Ai = 1 i = 1,2,3,4 and consequently we
could choose any of the 4! orderings of the first differences. If we look at all the
orderings we find that both a Direct and Indirect Algorithm will terminate with the
generation of the first feasible solution for all orders except those shown in Fig. 3c
and 3d. This is because all elements in the other orders are ordered with the
solution (1100). For the orderings shown in Fig. 3c and 3d, the Direct Algorithm
will generate one prime solution as in Example 3, while an indirect algorithm will
backtrack and go forward only once, this latter being the examination of (1100) and
(0001).

112 V.J. Bowman, Jr., J.H. Starr

Fig. 3.

Partial orderings in implicit enumeration 113

1001

,110

Fig. 3(cont.).

114 V.J. Bowman, Jr., J.H. Starr

Fig. 3(cont.).

Parrial orderings in implicit enumeration 115

Summary

This paper has been an exposition on partial orders in enumeration algorithms.
The exploitation of partial orders gives rise to two types of algorithms, one which
directly searches for prime solutions and one which indirectly searches for prime
solutions. To-date most work in implicit enumeration has dealt with indirect
algorithms applied to vector partial ordering. This paper has described a rudamen-
tary direct algorithm for vector partial ordering. In addition it has described two
other partial orderings that are successive incorporation of more cost information.
Only a direct algorithm has been developed for the P z ordering and has demon-
strated some computational success for set-covering problems. This paper, how-
ever, has not closed any doors on enumeration techniques. Instead it has raised
many questions and many additional directions for further research in enumerative
methos.

Some of the questions raised are:
(a) What type of partial orderings should be explored?
(b) Do Indirect Algorithms always dominate Direct Algorithms or vice-versa?
(c) Is there a computationally efficient Direct Algorithm for vector partial

ordering?
(d) Are there computationally efficient Direct and Indirect Algorithms for the P z

and P 3 partial orders?
It is obvious that these questions can be answered only by further research. It is also
obvious that the natural nesting of the P’ , Pz and P 3 orderings can be expanded
until a complete ordering is generated. Moreover, it is not clear that this sequence
of partial orders is in any way the “best”. At a time when implicit enumeration has
shown its worth and when most researchers are exploring refinements on vector
partial orderings these ideas raise a whole new avenue to pursue in the area of
enumeration.

5. Acknowledgement

We would like to thank an anonymous referee for his useful suggestions.

References

[l] E. Balas, An additive algorithm for solving linear programs with zero-one variables, Operations

[2] E. Balas, Discrete programming by the filter method, Operations Res. 15(5) (1967) 915-957.
[3] V.J. Bowman and J.H. Starr, Set covering by ordinal cuts I: linear objective functions, Working

Paper 97-72-3, Graduate School of Industrial Administration, Carnegie-Mellon University, June,
1973.

[4] V.J. Bowman and J.H. Starr, Set covering by ordinal cuts 11: partial preference functions, Working
Paper 10-73-4, Graduate School of Industrial Administration, Carnegie-Mellon University, July,
1973.

Res. 13(4) (1965) 517-546.

116 V.J. Bowman, Jr., J.H. Starr

[S] V.J. Bowman and J.H. Starr, Two-comparable prime implicants and canonical switching functions,
Management Sciences Research Report 328, Graduate School of Industrial Administration,
Carnegie-Mellon University, January 1974.

[6] I. Dragen, Un algorithme lexicographique pour la risolution des programmes liniaires en variables
binaires, Management Sci. (Theory) 16 (1969) 246-252.

[7] N. Driebeek, An algorithm for the solution of mixed integer programming problems, Management
Sci. 12(7) (1966) 576-587.

[8] A. Geoffrion, An improved implicit enumeration approach for integer programming, Operations
Res. 17(3) (1969) 437-454.

[9] F. Glover, A multiphase-dual algorithm for the zero-one integer programming problem, Operations
Res. 13(6) (1965) 879-919.

[10) V.B. Korte, W. Krelle and W. Oberhover; Ein lexikographischer Suchalgorithmus Zur Losung
allgemeiner ganzzahliger Programmierungsaufgaben, Unrernehmensforshung, Part 1: 13 (1969)
73-98 Part 2: 13 (1969) 171-192.

[l l] E.L. Lawler and M.D. Bell, A method for solving discrete optimization problems Operations Res.

[12] C. Lemke and K. Spielberg, Direct search algorithms for zero-one and mixed integer programming,

[13] S. Muroga, Threshold Logic and its Applications (Wiley, New York, 1971).
[14] C. Piper, Computational studies in optimizing and postoptimizing linear programs in zero-one

[15] J.H. Starr, Zero-one programming: A partial ordering and its use in the optimization of numerical

[16] D. Gale, Optimal assignments in an ordered set: An application of matroid theory, J. Combinaror-

[17] U. Zimmerman, Some partial orders related to boolean optimization and the greedy algorithm,

14 (1966) 1098-1112.

Operations Res. 15(5) (1967) 892-914.

variables, Ph.D. Thesis, Carnegie-Mellon University, 1975.

and non-numerical functions, Ph.D. Thesis, Carnegie-Mellon University, 1975.

i d Theory 4 (1968) 176-180.

Ann. Discrete Math. 1 (1977) 539-550.

Annals of Discrete Mathematics 1 (1977) 117-143
@ North-Holland Publishing Company

A SUBADDITIVE APPROACH TO SOLVE LINEAR
INTEGER PROGRAMS

Claude-Alain BURDET
Systemarhica Consulting Group, Pittsburgh, PA 15213, U.S.A.

Ellis L. JOHNSON
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

A method is presented for solving pure integer programs by a subadditive method. This work
extends to the integer linear problem a method for solving the group problem. It uses some
elements of both enumeration and cutting plane theory in a unified setting. The method generates
a subadditive function and solves the original integer linear program.

1. Introduction

In a previous paper [5], we have developed an algorithm to solve the group
problem derived from an integer linear program using an approach based on
constructing a subadditive diamond gauge yielding a valid inequality. The group
problem, however, represents a relaxation of the original integer linear program in
that the optimal group solution need not be feasible with respect to all the initial
linear programming constraints. We now present an extension of our subadditive
method which will solve the original integer linear programming problem (ILP); the
group structure on the one hand and all the constraints of the initial linear program
on the other are both taken into account in the following developments.

The approach here is fundamentally different from branch-and-bound. One
difference is that we only keep one problem rather than dividing it up into
subproblems. Nor is the method like existing cutting plane methods. It begins by
adjoining an initial set of Gomory mixed integer cuts to the tableau, and solving the
resulting augmented linear program. However, no more cuts are generated
explicitly. Instead, a group enumerative phase is entered, and subsequently the
method alternates between group enumeration and parameter adjustment via a
linear programming (LP) problem. In the enumerative phase, we do not generate
an enumeration tree. Instead, an LP column is generated for each enumerated
point, and a better subadditive function is generated by parameter adjustment.
Despite a surface similarity, the method does not resemble enumerative cuts [3]
because the enumeration is not used to explicitly derive cuts which exclude part of
the linear programming feasible region. In fact, our enumerated points will often be
outside of the linear programming feasible region and will still help give progress.

117

118 C.A. Burdet, E.L. Johnson

The approach here resembles the duality methods of Fisher, Northup, and
Shapiro [6] more than any other work. To illustrate this point, one could say that
the “dual” problem here is based on the following program:

max no,

n o s n (x) ,

c, 5 n(8 ’) , s: =

0 i # j
, j = 1, ..., n, [1 i = ;

for all x satisfying some integer programming restrictions (the specific form used
here will be (2), (3), and (4) below); for a subadditive function r on R“ ; that is,

n (x I + x*) s n (x l) + n (x 2) .

The difficulty with this “dual problem” is that evaluating n (x) for all x feasible to
an integer program is as hard as solving the original integer program. The attempt
here is to relax the restriction on x satisfying the integer programming restrictions
while keeping the desirable properties of a dual:

no is a lower bound on the objective function r ,

max no = min z.

Our dual problem will involve several components:
(i) the enumerated set XE (Section 4);

(ii) various types of relaxation of (2), (3), and (4) which will be realized by the

(iii) parameters y+ , y- , a+, a-, which enter in the definition of n and A (Section

The problem (29), (30), (31) in Section 7 is of this form. For a given XE, there may
indeed exist a “duality gap”; that is, max no < min z, even for the best y’s and a’s.
However, adequate enumeration will eventually cause this gap to disappear;
typically, then, an integer feasible point x enters XE and the problem is solved. It
can happen that when an integer feasible x enters XE, it may not be optimal, or it
may be optimal but cannot be proven optimal.

Finally, let us mention another interesting approach due to Bell [2]. He closes the
duality gap by a “supergroup” approach, which embeds the original group problem
in a larger group.

choice of S (Section 2);

3).

1.1. The group problem

The derivation of the group problem from a linear integer program is well-known
[7]. The group problem can be stated as follows:

minimizer = C c jx j , (1)
j -1

A subadditive approach 119

j = 1 2 gijXj gio (mod l), i = 1,. . ., ml, (2)

x, 2 0 and integer, j = 1,. . ., n. (3)

Denoting the columns of the matrix G = (g i j) by g’, (2) can be restated as

Gx = 2 g’xj gO(mod 1).
j = 1

To clarify the various concepts introduced, we will illustrate them with the
following small example. The initial integer program is:

minimize

subject to

9 x 1 + 23xz + l o x , ,

4x1 + l l x z + 5x3 = 12,

xi 2 0 and integer,

The resulting group constraint is

2xl + f x z = 3 (mod l),

xl, xz 2 0 and integer.

1.2. The constrained group problem

In formulating the group problem (1)-(3), the non-binding constraints at the
linear programming optimum are dropped. Such constraints can all be expressed as
linear inequality constraints on the current non-basic variables xl, . . ., x.. In order to
restore the full set of original LP constraints, we shall consider here a general form
of the problem where the constraints (2) and (3) are taken together with a set of
linear inequalities (4):

2 aijxj 3 aio, i = 1, . . ., m2, (4)
j = 1

or, with A = (aij),

AX = 2 ajx, 2 a0.
j = l

Throughout, ui and g’ will denote the j th columns of the matrices A = (ai j) and
G = (g i j) in (4) and (2) , respectively.

The updated linear programming constraints will be used here as the inequality
(4). In our example above, it can be written as

- 4x1 - 11x2 3 - 12.

The resulting constrained group problem is, thus,

120 C.A. Burdet, E.L. Johnson

minimize z = X I + xZ,

$x,++x,-$(modl),

- 4x, - llxz 3 - 12,

x,, xz 3 0 and integer,

which is equivalent to the original integer program (with x3 = (12 - 4x1 - 11xz)/5).
In general the system (4) will simply consist of those constraints of the original

ILP which belong to the basic variables at the LP optimum (i.e. non-binding
constraints); but one may also consider adjoining some new additional constraints.
In any case, it should be apparent that this framework allows one to choose a
system of LP constraints (4) so that any solution to (2), (3) and (4) satisfies all the
constraints of the pure integer linear program. Naturally, when the group solution
already satisfies all of the non-binding constraints, the restriction (4) will be satisfied
by the optimum solution to (l), (2), (3) and need not be used at all.

As for our previous method [5] for the group problem, the present approach does
not require the explicit determination of the group structure (via the Smith normal
form, for example), nor is it critically dependent upon the order of the group which
may be very large in practice. In this method the group structure 9 is read directly
from the system (2) which comes from the updated linear programming tableau; in
fact, 9 is merely considered here as a subgroup of the group structure I"'] of infinite
order [lo] implied by the integrality requirements (3).

2. Valid inequalities

Definition 1. The inequality

i: rjx, 3 ?To
j=1

is called valid if it is satisfied by all xl,. . ., x, satisfying (2), (3), and (4).

Definition 2.
xl, . . ., x, with xj L O and integer:

Given the constraints (2) , (3), (4), define the following sets for each

S r (x) = {y l y 3 x and (2), (3) and (4) hold for y},

SG(x) = { y 1 y 3 x and (2) and (3) hold for y},

SL(x) = {y 1 y 2 x and (4) holds for y}.

Note that the ILP, group, and LP feasible sets can be denoted by SI(0) , SG(0) ,
and S,(O).

In our example from Section 1.2,

A subadditive approach 121

W O) = ((3, O N ,

&(0)={(0,2)+ (5k1,5k2), (3,0)+ (5ki75kz)},

for all k , , k z 2 0 and integer,

SL(0) = the LP feasible region

For each of these S sets, we sometimes consider the points

(u, 6) = (Gy, A y) E R"1 X Rm*, y E S.

Definition 3. Define the integer, group, and linear subpath sets as

These sets are called subpath sets because for x E X,, for example, there exists
y E S,(x), and if we think of y as generating a path using edges (G', A') from the
origin to a point

(Gy, A y) with Gy = g o , Ay 2 a',

then x s y generates a subpath of that path

Definition 4. For a given S R;, define the subclosure X of S to be

x = {x 3 0, integer 1 x c y for some y E s).
Z:, define Y to be subinclusive if the subclosure of Y is equal to Y. For Y

With this definition, X , XG, XL are the subclosures of Sr(0), SG(0) , and SL(0),
respectively. In the above definition of subclosure, S need not be contained in Z:,
but the subclosure X is contained in Z:. In particular, S L (0) has non-integer points
in it.

We summarize with a property below.

Property P1. (a) The sets X,, X,, XL are, respectively, the subclosures of S,(O),
SG (O), SL (O);

(b) each of the sets Xr, XG, X L is subinclusive.

122 C.A. Burdet, E.L. Johnson

This property and the next one are illustrated by the preceding example.

Proof. (a) If x E X,, then there exists y 2 x, y E S,(O), by definition of XI. Hence,
x belongs to the subclosure of S,(O), and since X I is defined to be precisely such x,
the subclosure of Sr(0) is Xr. The proof for I replaced by G or L is similar.

(b) This property follows from the fact that the subclosure X of any set S is
subinclusive.

Property P2. (a) S,(x) C SG(x) and Sr(x) C SL(x);
(b) X, C XG and XI C X,;
(c) S,(O) C XI and SG(0) C XG.

Proof. (a) Follows from the increasingly restrictive definitions of S,(X), SG(x), and

(b) Follows from (a) and the property Pl(a) that X , XG, and X L are the

(c) Follows from the fact that S,(O) and SG(0) (but not SL(0)) are subsets of Z:.

Our valid inequalities will be constructed from functions T defined on X such

S,(X), SL(X).

subclosures of SI(0) , SG(0) , and SL(0).

that Xr c X and X c Z:. For convenience, denote by 8’ the vector

O i f i f j

l i f i = j
, i = 1, ..., n.

Theorem 1. Let T be a subadditive function on XI, that is,

T (X ’ + x 2) s + I) + T (X 2) , (5)

for all XI , x 2 E XI such that (x’ + x2) E XI. Then the inequality

i: T j X j 2 T o
j = l

is valid, where

T, = T (8 J) , (7)

Tocmin{.rr(x)I x E ~ ~ (0)) . (8)

Note 1. If 8’g X , or, equivalently, & (a J) = 8, then T, can be set arbitrarily small
(-M). In this case, xJ can be eliminated from the problem by setting it to zero.

Note 2. If 0 E X,, ~ (0) = 0 is required.

Proof. If suffices to show that

j - 1

A subadditive approach 123

since if y E Sr(0), then y E XI by property P2(c) and by (9)

2 T J y J T (y) > T o
, = I

where the second inequality is by (8). Hence, we prove (9) for all x E XI.
Using 6' gives

x = (X I , . . .) x.) = xlal + . * . + X"6".

x ' = x : 6 ' + * . . + X L 6 "

By x E X, and subinclusion, if x, > 0, then 6' E X, and so does every

for 0 s x: x,, x: integer.
The proof can be done by induction on

If O E XI, then for x = 0, (9) reduces to ~ (0) s O . By subadditivity, T (O) ~ O , so

For T = 1, (9) follows from vj = ~ (6 ') whenever 6' E XI.
The induction step is exactly as appears in the proofs of theorem 1.5 of [8] or

we must require ~ (0) = 0 in this case (see note 2).

theorem 2.2 of [5] .

Remark 1. The strongest inequality is given by taking no equal to the minimum
value of Z .rr,x, in (6) over all integer programming feasible solutions x. However,
finding that minimum is as hard, in general, as the original ILP. A possible weaker
inequality is given by taking T,, to be the minimum given in (8). Finding that
minimum is also a constrained minimization problem of the same order of difficulty
as the original ILP. In practice we use, for convenience, a superset S 2 S(0) to yield
a weaker, but valid, inequality.

Remark 2. The direct application of Theorem 1 to construct valid inequalities can
become cumbersome (even when T is known). The formal expressions used to
define T can be complicated and their evaluations difficult. In [4], comparisons of
cutting planes of this form are given. Here, the particular T used is motivated by a
desire to be able to evaluate T (X) easily.

3. Generalized gauge functions

A function which is crucial to our development here is the generalized diamond
gauge function. It allows considerable flexibility to the subadditive functions A and
T to be constructed from it while still being easy to evaluate. We first define this
function and give some of its properties.

124 C.A. Burdet, E.L. Johnson

Definition 5. Given 2 m , + 2m2 real numbers
+ - + -

77 , . . .) y m , , 71,. . .> Y;,, a ? , . . .> a m z , ~ ~ 1 7 . . .>a,,

define the generalized diamond gauge function D on R" to R by

D (x) = max { y G x + aAxJ
Y.0

where the maximum is taken over all 2"1'"2 possible values:

yz = y : or - y ; ,

a, = a: or - a ; .

We require that

y : z= 0 and y ; 2 0, and

a:+ a , 2 0 .

For our example,

- 4 a ' X 1 - 1 l a ' X z
+ 4 a - x , + 11a-x *

5 y - X I - f y - x ,] +ma,(

y + u - a - 5

- y - u + a+(

- y - u - a-5

= max

where u = $xi + i x 2 and 5 = - 4x, - llx,. The y+ , y - , a+, a - are parameters of the
function D.

Properties of D

Property P3.
y + , y - , a+, a - satisfying 2 m 1 + m 2 inequalities (1 1) and (12).

The generalized diamond gauge D contains 2 m I + 2m2 parameters

Property P4. D is piecewise linear and continuous.

Property P5. D is convex and positively homogeneous.

Proof. Both convexity and positive homogeneity follow from the definition of D
as the maximum of the 2"'lfm2 linear functions (y G + aA)x, each of which goes
through the origin. By positively homogeneous is meant D (A x) = h D (x) for A 3 0.

A function f which is non-negative, convex, and positively homogeneous is called
a gauge by Rockafellar [12] . Dropping non-negativity, we call f a generalized

A subadditive approach 125

gauge. A generalized gauge can be characterized by being the support function (see
(121, section 13, particularly theorem 13.2) of a non-empty convex set (see [l l]
also).

Before continuing with D, we digress to give one result which is true of any
generalized gauge f (see [1 2] , theorem 4.7). We include its proof here for
completeness.

Property P6. A generalized gauge f i s subadditive.

Proof. We need to show

f (X + Y) G f (X) + f (Y) > X ? Y ER",

f (x + y) = f (1 2 x + t 2 y) s t f (2 x) + t f (2 y) .

whenever f is convex and positively homogeneous. By convexity,

By positive homogeneity,

completing the proof.

Property P7. Given x E R", let u = G x and 5 = A x . Then

Proof. Using (lo),

D (x) = max { y G x + a A x)
w

since the maximization can be done separately for each i.

Property PS.
y and a given by

Given x E R", let u = G x and .$ = A x , Then D (x) = y G x + a A x for

yz = (~ (u , , y:, y ;) and a, = u(5,, a:, a ;) (14)

where u is the sign transfer function, with arguments q, u+, u-, defined b y :

126 C.A. Burder, E.L. Johnson

u+, q >o,
0, 4 = o ,

-6, q < o .
u(q, u+, 6) =

This sign transfer function is related t o the fortran function SIGN by

SIGN (x 1, x2) = u (x 2 , x 1, x 1)

and to the usual absolute value function by

I x I = u (x , x, x).

f(s> = 4 4 % u+, u-1
W e remark that the function of one variable

is convex if and only if u+ + u- 3 0.

Proof of P8. The proof is from P7 and substituting

max { y : u,, - y ; u ,) = u,u(u,, y: , y ;) , and

max{a:t,, - a:t#I = tcc+(t,, a:, a;) ,

which follows from a: + a; 3 0 and y : + y ; 3 0.
We remark that only 7: + y ; 3 0 is needed, rather than the stronger (11). We

require (11) because it will eventually be needed for other reasons.
The main reason for using this D is property P7 (or P8) which allows an overall

maximum to be taken coordinate-wise. Thus a maximum over 2"1+"z linear
functions can be effected by taking rn, + rn2 pairwise maxima. For further general-
izations of diamond gauges [3] see [4].

We now turn t o a family of subadditive functions which can be defined from the
generalized diamond gauge. The prototype here is the Gomory mixed integer cut
for the case where rn, = 1 and rn2 = 0. To derive that cut, let the diamond gauge
have y + = l /g" and y - = 1/(1- go). In this case, A z (x) or A 3 (x) , t o be defined below,
only depend on the single parameter u = Gx = cg'x, and are given by

A (x) =

go< G (u) < 1,

where F (u) is the fractional part of u.

Definition 6.
diamond functions A,, A], A2, and A , by

For the generalized diamond gauge D, define the subadditive

A subadditive approach 127

A o (x) = mjn { D (z) I z satisfies: z 3 0, z integer, G z 2 Gx(mod l), Az 3 Ax},

(15)

A l (x) = min { y u 1 u = G z for z 2 0, integer, and G z = Gx(mod 1))

(16)
+ min {a[1 6 = Az for z 2 0, integer, and Az 3 Ax},

A z (x) = mjn { y u 1 u = Gx} + min {a[16 = Az for z 3 0 and Az 3 Ax}, (17)

d 3 (x) = mjn { y u I u = GX} + min {at It 2 AX), (18)
6

where y and a in (16), (17), and (18) are given by (14) as functions of u and 6.

Properties of A

Property P9. A , (x) 2 A , (x) 2 A 2 (x) 2 A , (x) .

Proof. A , (x) is obtained from A , (x) by splitting the minimization of the sum
yGy + a A y into the sum of two minimization with each minimization taken over a
larger set of y’s. Hence, A o (x) 3 A , (x) .

A , (x) is obtained from A , (x) by weakening the constraints of each minimization.
A 3 (x) is obtained from A z (x) by further relaxing the second constraint set.

m l

Property P10. A 2 (x) = c min{y:F(u,), - y; (F(u i) - 1))
* = I

where u = Gx and F (u i) is the fractional part of ui : F (u i) = ui(mod l), and 0 =s
F (u i) < 1.

Proof. The result
mI

m i n { y f (f = ~ x } = C min{-y:F(u,), - y ; (~ (u ,) - ~) }
, = I

follows from y : 3 0, y ; 3 0; that is, from (11). Secondly,

follows from property P8 and (14). This latter form of the minimization should
make it clear that in 6 and y the problem is a linear program with a separable,

128 C.A. Burdet. E.L. Johnson

piece-wise linear, convex objective function. Convexity follows from convexity of
tdt, a+, 4.

Property P11. For y : a O and y ; a O , define

Proof. This property is proven by showing

min{y:F(u,), - y;(F(u,)- l) I= (~ (F (u ,) - R ~ , y : F (u ,) , y ; (F (u ,) - l)) .

If y : = y ; = 0, then equality holds trivially. Hence, suppose y : + y ; > 0. Then the
condition

r:F(u,) 2 - y;(F(u,) - 1)

holds if, and only if,

F(u,) (y :+ Y J ~ y ; , or

F (u ,) 2 R,, by 7 : + y ; > 0, o r

F (u ,) - R, a 0.

Hence, we can conclude: if, and only if,

m2

+ C b,a(b,, a :, min{O, a ;I)
z = 1

where R, and u are as in Property P11 and where b = Ax, provided

a : a 0 .

Proof.
second half follows from

The first half of the expression for A , (x) is proven exactly as in P11. The

A subadditive approach 129

If b = A x has bi S O , then by a: S O ,

&(+(5#, a:, a ;) 3 a:b,.

If b, >0 , then

Hence, in either case

min{&c+(&, a:, a;)(6, 3 b,} = b,a(b., a:,rnin{O,a;}).

In order to use A. or A only y : + y ; 3 0 and a: + a, 3 0 need be imposed; A z
requires y : 3 0, y ; 3 0, and a: + a; 3 0; and A , requires even further that a: 3 0.

In practice, either A z or A , is used because their evaluations are not difficult. The
strongest function for our purposes would be d o , but the evaluations A o (x) are, in
general, as difficult as the original ILP.

The next property is true for all four A's, but will only be proven for A'.

Property P13. A2 is subadditive.

Proof. We refer back to the definition (17). We need to show

Az(x ')+ A 2 (x 2) 3 A z (x l + x') = A2(x3) ,

where x 3 = x ' + x'. But for some y ' , y', y 3 3 0 with

A y ' ~ A x ' , A y ' 3 A x ' , A y ~ 3 A x ~ ,

and f ' = G x ' , f ' = Gx' , f 3 = G x 3 ,

A z (x ') = y f i + aAy', i = 1 ,2 ,3 .

The minima in (17) are achieved because y T 3 0 , y ; 3 0 and a++ a;30 (see
property P11). Hence,

A2(x ') + A z (x 2) = yf' + aAy ' + yf' + aAyZ

= y(f '+ f ') + a A (y ' + y ')

3 yf'+ aAy3 = Az(x3) ,

because

G(f' + f ') = Gx ' + Gx '= G x 3 ,

A (y ' + y *) 5 A x ' + AX' = A x 3 .

130 C.A. Burdet, E.L. Johnson

The proof that A 3 is subadditive is even simpler. To prove do and A l are
subadditive, one needs to observe that when an infinite number of y's satisfy the
constraints, the minima in (15) and (16) need not be achieved. However, for a given
x , a y can be found so that, for example, D (y) - E = A , (x) for any preassigned
E > O . Then, the proof is much as before.

4. The generator set

In the preceding sections we have formulated a functional framework to be used
for the construction of valid inequalities which take into account the integrality
requirements (i.e. the group structure) and all LP constraints of the ILP. For
practical reasons we have focused our attention on a particular class of subadditive
functions called subadditive diamond functions built from generalized diamond
gauges D. However, D is convex, a property which is not required by the
subadditive theory for valid inequalities. In the present section, we use an ad hoc
device (viz. the generator set X ,) to produce non-convex subadditive functions n ; as
for the method [5] which solves the group problem, these n functions generate
enumerative inequalities and combine the concepts of group structure, cutting
plane and enumeration.

Throughout this section we need only assume A to be subadditive, but it will
become clear in Section 6 that the following developments would be meaningless
(certainly of no practical value) if a concrete example (i.e. diamond gauges) were
not available with specifically useful additional properties.

We now introduce the generator set XE, which is a finite set of non-negative
integer vectors y E Z:. Initially, XE will only be required to be subinclusive; that is,
if y E X,, 0 y ' s y , and y ' integer, then y ' E XE. Subsequently, X , will be
constructed sequentially as needed by the algorithm.

Definition 7.
set X,, and an arbitrary function d on X E by

Define n (x) , x E R", from a subadditive A on R", a finite generator

~ (x) = min { d (y) + A (x - y) } (19)
Y E I (X)

where I (x) 5 XE for all x .

and I (x) = X , n S (x) , where S (x) is the subclosure of x :
Two particularly useful ways of defining Z (x) will be used: I (x) = XE for all x

~ (x) = { y integer 1 o G y c x) .

Whereas n is defined for all x E R", XE and, hence, Z(x) are always subsets of the
integer points ZY CRY. When Z(x) = X , n S(x), then clearly n (x) = -to for all
x$Z R;I, so n may as well be considered to be only defined on R:.

A subadditive approach 131

Theorem 2. If I (x) = X , for all x, and i f

~ (y ' + y 2) s d (y 1) + d (y 2) f o r a l l y ' , y 2 E X E ,

then rr is subadditive.

The proof is virtually the same as that of [5, Theorem 3.111 and is similar to the
proof of Theorem 3 to follow. For those reasons, it is not given here.

Before giving Theorem 3, a lemma is needed.

Lemma 1. If I (x ') c Z(x2), then ~ (x ') + A (x2- x') 3 rr(x2) .

Proof.
y ' E I (x ') such that

By (19) and finiteness of XE, and hence of I (x) C X E , there is some

T (x ') = d (y ') + A (~ ' - y ') .

Hence,

rr (X ') + A (X - x ') = d (y ') + A (X ' - y ') + A (X - x ')

3 d (y ') + A (x' - y ').

NOW, by y ' E I (x ') c I (x 2) , y ' E I @ *) and

~ (x ') s d (y I) + A (x2 - y ')

from (19). Therefore,

T (~ ') + A (x ~ - x ') ~ . ~ ~ (X ~) .

Theorem 3. If I (x) = X E fl S(x), all x E R:, and if

then .rr is subadditive.

Proof. For XI , xz E R:, we wish to show that

T (X 1 + x2) s T (X 1) + T (X 2) .

Let y ' E I (x ') and y z E I (x 2) give the minimum in (19) defining ~ (x ') and .rr(x2).
Then

T (x ') + T (x ') = d (y ') + d (y 2) + A (x ' - y 1) + A (x z - y 2)

3 T (y ' + y ') + A (X ' + x * - (y ' + y '))

using (20) and subadditivity of A.

and therefore
Now, y ' E I (x ') , and thus y ' e x ' . Similarly, y ' c x ' . Hence, y ' + y ' S x 1 + x 2

132 C.A. Burdet, E.L. Johnson

I (y ’ + y ’)~Z(x ’+x’) .

Applying Lemma 1 gives

T(Y’+ Y ~) + A (~ ’ + X ’ - (~ ’ + ~ ~)) ~ T (X ~ + X ~) .

Therefore,

T (X 1) + T (X 2) 3 7r(x1+x2),

completing the proof.

In [5] , we showed that the condition (20) could be relaxed to a small subset of
yl , y 2 E X,. Theorem 4.3 there can be extended to this problem for the case
I (x) = X,. Here, we give the development for Z(x) = X , f l S(x). The resulting
Theorem 4 below holds true in either case.

Henceforth, we specialize d(y) to be

d(Y) = c CIY,?
, = I

where c, is the cost coefficient of x, in (1).

Lemma 2. For X , subinclusive, I (x) = XE n S(x), and d given by (21), the set

xg = {y E X , 1 d (z) + A (y - Z) > d(y), all o c z < y)

is also subinclusive.

Proof. Let y EX:. Then,

d(Z)+A(Y - z) > d (y)

for all 0 s z < y. Hence,

A(y - t) > d(y)- d (t) = d(y - Z)

since d is linear. In other words,

A(z)>d(z) , a l l O < z s y . (22)

In order to prove that X : is subinclusive, we need to show that for all z < y, we
have

d (~ ’) + A (Z - 2’) > d (z) , 0 s z ’ < Z.

Using the characterization (22) of X & we need to show

A (2”) > d(z ”) , all 0 < 2’‘ z.

However, condition (22) for y applies to z ” since these z” are less than y as well as
less than z. The proof is completed.

Given a subinclusive set X,, define the candidate set XF by

A subadditive approach 133

X , = { x E Z; 1 xfZ X E and S (x) - {x} c X E } ,

that is, if x E XF and y < x, then y E XE, assuming x ,y E Z:. The x E XF will
clearly be pairwise incomparable.

X1
Fig. 1

Conversely, given any set XF of incomparable elements, the generator set XE
whose candidate set would be X F can be characterized as follows: y E XE if and
only if for every x E X F either x > y or x and y are incomparable (see Fig. 1).

Lemma 3. For a subinclusive X E and its candidate set X,, let

Z+(X,) = { z 1 z = 2 kix' , where x ' E X F and ki 3 0, integer

Then

z: = z + (x F) + XE.

Proof. The lemma says that for any z E Z:, there is some x E Z+(XF) and y E X ,
such that z = x + y .

Consider z and let z o S t be any maximal element in Z + (X F) f l S (z) ; that is,
z o s z , z o E Z + (X F) . Then, for any x E X F , z o + x is either greater than z or
incomparable to z since z o + x E Z+(XF) . Therefore, for any x E XF, x is either
greater than z - z o or incomparable to z - zo. Hence, z - z o E X E , using the
characterization of X E given XF.

Theorem 4. If I (x) = X E fl S (x) , if d (y) = cy, and if

. r r (y ' + y Z) ~ d (Y ') + d (Y 2) , y i , y z E X L , y 1 + y 2 E X k , (23)

then T is subadditive.

Proof.
subinclusive. The X k is the candidate set for XL.

Here, X L is given from X E as in Lemma 2. By that lemma, X : is

By (23) and by linearity of d, for x E XL,

~ (x) S d (x) .

By definition (19) of .rr, for some y < x,

134 C.A. Burdet, E.L. Johnson

By the characterization (22) of X & A (x - y) > d (x - y) whenever x - y < x.
Hence, the only possible y is y = 0, and, therefore, A (x) < d (x) follows whenever
x E x ; .

Consider now Z+(X;), as in Lemma 3. If x 1 and x’ E Xk , then

A (x + x ’) S A (x I) + A (x ’) c d (x ’) + d (x ’) = d (x + x ’).

Continuing by induction, one has

A (x) s d (x) ,

all x E Z+(X;).
By Lemma 3, for any z E Z:,

z = x + y

for some x E Z+(X;) and y E XL. By (19),

d z) s d (Y) + A (X)

G d (y) + d (x) ,

s d (y + x) = d (z) .

by x E Z+(Xk)

Consider any y l , y 2 E XA. Then for z = y ’ + y 2 , .rr(y’+ y’)< d (y ’) + d(y’). B y
Theorem 3 , rr is subadditive.

Corollary 1. Given a subadditive A on R: and a linear d on R:, let

Assume X E isfinite. Then rr given by (19), using I (x) = X E f l S (x) , is subadditive.

Proof.
there. For this X,, XA= XE. Hence, we need only show

The X E given here is subinclusive by Lemma 2 and condition (22) for X A

A (x) s d (x) , x E XF.

For x EX, and y < x , y E X , so

A (y) > d (y) , if Y > O .

Hence, unless A (x) s d (x) , this x would also be in XE.

A subadditive approach

5. Bounds

135

Theorem 4, combined with Theorem 1, says that if

A (x) < d (x)

for every x E Xk, then

is a valid inequality whenever (8) holds; that is,

ToCmin{.rr(x)Ix E ~ ~ (0)) .

This no will be a lower bound on the optimum objective function value. To prove
6 c, will hold because this result, recall that T’ = ~ (6 ’) . Hence, the inequality

either
(i) 6’ E XL and then ~ (6 ’) = d (6 ’) = c,, or

(ii) 6’$Z X g and then 6’ E X b so ~ (6 ’) = A (6’) d (6 ’) = c,.
By r, < c,, T,, is a lower bound on the optimum objective value z in (1) because for
every x E S,(O)

We now consider the computations required by (8) for T constructed from do ,
A] , A 2 , and A, .

5.1 For A ,

= min d (y) + min {min{D(z)l z 3 0 , integer, Gz 3 G (x - y) , and
X E S l (0)

Az > A (x - y) } } } .

Y e X E I
Substituting t in place of z + y gives

or, finally,

136 C.A. Burdet, E.L. Johnson

To show that (24) is equivalent to the expression just above it requires showing that
the constraints on z :

z < y, integer, Gz = G x , A t 3 A x ,

for x E S,(O), are equivalent to the seemingly weaker restrictions:

z 2 y, integer, Gz = go, Az 3 a'.

In order to prove equivalence of these two sets of constraints, we must show that
for a z satisfying the latter set, there is some x E S,(O) for which z satisfies the
former set. However, this x can be taken to be t since z E S r (y) implies that

We consider the bounds given for our example with each of d o , A , , and A*, in
z E S,(O).

turn, using XE = { (O , O) } and X , = {(1,0), (0,1)}.
By (24) and x.5 = { (O , O) } ,

7r = d (O) + min {D(z)}
x e s m

= D(3,0),

since S,(O) = ((3 ,O)) . Now, for u = $ x l + 4x2 = $(3) + $ (O) = 2$ and 5 =
- 4x1 - 11x2 = - 4(3)- l l(0) = - 12,

1- y+2a+ a+(- 12),

y+23- a-(- 12),

- y-(23) + a+(- 12),
D(3,O) = max

from Section 3. The constraints A o (x) d (x) , x E X,, are satisfied provided

for a+ 3 0. For example, y + = 2, y - = :, a+ = a- = 0. Then, r0 = 3, which is the
optimum objective value of the example.

Evaluating T~ by (24) is as hard, in general, as solving the original ILP. Weaker
versions of it will be developed from A , , A 2 , and A, .

5.2 For A ,

d (y) + min {min{yGz I z 3 0, integer, GZ = G (x - y)}
x s w o)

+ min {aAz I z 3 0, z integer, Az 5 A (x - Y)}I].

A subadditive approach 137

Substituting z in place of z + y and simplifying gives

no = min { d (y) + min [y ~ (z - y) I z 2 y , integer, GZ = g o
Y E X E

+ rnin {min {aA (z - y) 1 z 2 y , z integer, Az 2 A x }]] .
x e S I (0)

If x E S,(O) is weakened to x E S where

s = {x integer 1 x 3 0, AX 3 a'}

then the expression simplifies to

r o = m i n { d (y) + m i n { y G (z - y) l z E S , (y) }
Y E X E

+ min { a ~ (z - y) I z 3 y , z integer, A Z z a')}.

Using the same values y+=$, y - = 3, a+ = a- = 0, (25) gives

y + u , u 2 0
- y-u , u < o 2.4 = $21 + :z*, z E So(0) r, = min

This bound, not unexpectedly, is not as large as the bound from A,.

5.3

Turning to A*, we obtain

d (y) + min { yf I f = go - Gy }

+ min {min{aA(z - y) (z Z=y,Az 2 A x } }] .
X=S,(O)

If x E S,(O) is now weakened to x E SL(0) , then

z 2 y , Az 3 Ax, x E SL(0)

is equivalent to the seemingly weaker

z z y , Az2aO.

Since if z satisfies the latter, then x = z E SL(0) can be used to give a solution to the
former. Hence,

138 C.A. Burdet. E. L. Johnson

no = min { d (y) + min { yf 1 f = go - Gy } + min {CYA (z - y) 1 z E SL (y)I). (26)
YExE

For our example, with a + = a - = 0,

5.4

The case A, is similar, but we arrive at

+ m i n { a (a - A y) l a SAX S a o , for some x >y)}, (27)

which can, in turn be weakened to give

r0= min { d (y) + m i n { y f (f ~ g O - G y } + m i n { a (a - A y) ~ a 2~")). (28)

Finally, we note that in (26), (27), and (28), the special property of diamond

Y e X ,

functions
m,

min{yf I f = go- Gy) = w(R, - 5, yT$,yT(l- t)), where f = F(go- GY),
, = I

is required, in somewhat the same manner as in property P l l .
In conclusion, the framework developed here is the construction of a subadditive

function n-, based on the generator set X,, such that T, S ci for all j = 1, ~. ., n. The
set X , expands, and this expansion is guided by the candidate set X,. In this
section, several (successively weaker but easier to use) forms of n- to determine r0
have been given beginning with an integer program (24), then a group minimization
(25), and finally three linear programs (26), (27), and (28).

6. The algorithmic scheme

The algorithm proceeds in two stages: group enumeration and LP optimization
of the parameters y and a. The more time one spends on parameter optimization,
the more the algorithm resembles a cutting plane method, and the more time spent
on enumeration, the more it resembles branch and bound, or enumeration. In
either extreme, the method is new, and it utilizes the underlying group structure.

The two steps, enumeration and optimization, alternate, but the enumeration
step does not require completion of the optimization of the parameters y and a. On
the other hand, completion of the optimization of the parameters must be followed

A subadditive approach 139

by some amount of enumeration in order to proceed. The enumeration is guided by
the outcome of the parameter optimization.

In this section we describe only the enumerative phase with fixed y and a (except
for a norming factor ao). An integer program can be solved with this phase alone
but to do so may require an unnecessarily large amount of enumeration. Some
optimization (presented in Section 7) should eliminate much enumeration by
adjusting the parameters y and a.

Initially, let the generator set X , be the origin XE ={O}. At this initial stage,
X , = { y ’ } where y : = 0, j = 1,. . ., n, and d (y ’) = 0. We also introduce the candidate
set X,. Initially XF = {S’ 1 j = 1 , . . ., n}. If any S’ is known not to belong to XI, where
X, from definition 3 is those points x E Z: with S j (x) non-empty, then 8’ can be
deleted from XF. More generally, any time an x E XF is known to have no optimal
solution z to the integer program with z x, then x can be deleted from X,. In this
case, the point x never enters the set X,, and, in common integer programming
terminology, one could say that x has been “fathomed”. No point larger than x
need ever be put in XE.

There are two readily available means of fathoming an x E XF. One is the
obvious upper bound restrictions. These may be placed in the constraints (4) but
can also be imposed here. The second method is by use of the lower bounds on the
objective as discussed in Section 6 (or any other method of finding such bounds).

The functions A and T will be left unspecified, but A 2 or A , would normally be
used. Except for computational difficulties, any subadditive function A could be
used. Because of our reliance on Theorem 4 and Corollary 1, we are taking
I (x) = X , n S(x). Let the parameters y and a be fixed.

Assume that

min { ~ (x) } > 0
X E S

for some S 2 S,(O). Then, scale T so that this minimum is equal to one. For A = A2,
this assumption becomes

1 = min {yf 1 f = g o) + min { ~ A Z 1 z E sL (o)),

using (26) with XE = (0).
Let

Then aoaO since cj SO. The initial subadditive function 7r is given by 7r(x)=
a o A (x) and the initial bound on the objective is ao.

The general step of the enumeration is to find x * E XF for which

140 C.A. Burdet, E.L. Johnson

Change a. to

move x * from XF to X E and adjoin to XF those points x > x *, x E Z:, such that
every y < x, y E Z;, has y E XE. In addition, we can drop any such x from XF if it is
known to not belong to XI. For instance, x can be dropped if x e XL 2 XI, which is
easily checked. Because of the norming factor ao, the bound ro is always given by

r0 = min [d (y) + min a o A (x - y)]
YeXE XES

for any S 2 SI(0) . If Az is used, then the bound is given by (26); that is,

where f = F(go - G y) and Ri is as in property P11. The minimum over aAz is a
separable, convex linear programming problem of the form discussed in property
P10. For each y E XE this minimization need only be solved once since only a. is
being varied here.

The computation A (x), x E XF, need only be done once for each such x since A
is not changed in this enumerative phase of the algorithm with fixed y and a.

We illustrate the algorithm using the example previously introduced. Beginning
with y + = y - = !, a+ = a- = 0, the initial bound is ro = 4. Now, let X E be enlarged
to X E = {(O,O), (1, O), (0,l)). Then, X F = ((2, O), (1, I), (0,2)) and

A z (l , 1) = min{i x 0} = 0,

Az(O, 2) = min {! $1 = f .
4x2

Hence, a. can be raised to 4, since d (x) = 2 for each x E XF. The new ro is given
by

no = min{O+4 x f, 1 + 4~ ;X :, 1 + 4 x ;X f } = 2.

Both (2,O) and (0,2) should be put in XE. Then XF = { (3 ,0) , (0 ,3) , (1 ,1) } and

A2(3 ,0) = 4 x :x $ = 2

A2(0 ,3) = 4 x ;X $ = 2.

Thus, a,, can be increased to 6, since both (3 , O) and (0,3) have d = 3. However,
ro remains at 2 because for y = (0,2)E XE, go- Gy = 0 and d (y) = 2. There are

A subadditive approach 141

two ways to proceed from here. One is to simply delete (0,2) from X , because any
z 3 (0,2) must violate - 42, - l l z , = - 12. The other is to adjust the parameters
y+, y - , a+, a- as discussed in the next section. We pick up the discussion of this
example there.

7. The parameters y and a

For a fixed X, and free parameters y and a!, the problem of finding the best
bound ro becomes;

max .rro (29)

s.t. r o S d (y) + A (x - y) , Y E X , , x E S , (30)

A (x) S d (x) , x E X,, (31)

where S 2 S,(y) and A could be any of the d o , A l , A*, A , functions.
We first must remark on the use of X , or XL. In Theorem 4, d (x) S A (x) is

required on XL. However, XLC(X, U X F) and so if x E XL, xfZ XF, then x E X,,
and consequently every y < x has d (y) < A (y) . Further d(x) 2 A (x). Hence, (31) is
satisfied. If x E Xkand x E X,, then clearly (31) is satisfied. Of course the bound r0
given by (30) would be improved if X A c X , was used. However, it is more
convenient to not insist on keeping X , as small as possible and to only contract it to
XL occasionally if at all.

Using A = A 2 , the constraint (31) becomes
m l

d (x) s x a(Ri -6, ylfi, y;(l-f ,))+min{aAz) Z 3 0 , A z S A X } , x EXF,
i = l

where f = F(Gx), and R, = y ; / (y :+ y;). The minimization of a A z can be
simplified by taking z = x instead of the optimal z, thereby weakening the bound.
Then, (31) becomes

m l m2

d (x) a C a (R , -fi,~:fi,y;(l-fi))+C hu(h,a:,aY),
z = 1 , = 1

where b = Ax. This constraint is linear in y and a! except for the R, term, which is a
rational function of y. If for each i we require y: , y ; to satisfy either

y:fi c y;(l- J) , thus R, - J 2 0,

yTJ 3 y;(l- J) , thus R, - fi c 0,
or

for all f = Gx, x E X,, then a certain region of y:, y ; will be allowed as shown in
Fig. 2. These regions may be modified during the course of the algorithm to
improve the bound ro. The constraints on y: , y ; are linear once the choice of
R, - J 3 0 or R, - f i S O is made for each f = Gx, x EX,.

142 C.A. Burdet, E.L. Johnson

'1 I i---t-

Fig. 2

The constraints (30) can be written, for A = A z , using (26) as

T O

m ,

d (y) + c a(R -fi, yTfi, yJ1- f)) + min{aA(z - Y) (z E S L (Y) } , y E XE,

where f = F(g"- Gy). As is true for the constraints (31), this constraint may be
reduced to a linear constraint by restricting y:, y; to an adequately specified region
of Rz.

The minimization over aAz is a linear program with separable, piecewise linear,
convex objective, for a given a. By solving each such problem for y E X E and then
adjoining linear restrictions on a to assure that those solutions remain optimal, the
parameter optimization can be kept as a linear problem.

At this point, we proceed with the example using (28). Table 1 represents
XE = { (O , O) , (l,O), (0, l), (2,0), (0,2)} and X, = {(3,0), (1, l), (0,3)}. If we solve the
indicated linear program, we find y + = 104, y - = 7, a+ = &, a- = - &, and no = 3.
In fact, the linear program picks out the optimum answer (3,O).

, = 1

Table 1

0 3 - _ 2 0 o = 0 y * g 0 0 - ? J 0 - - l o
y - 0 0 : 0 - 2 5 0 --: 0 - 5 a 5 0 o = 0
a* 0 0 0 0 0 0 0 -10 0 0 - 1 - 1 = 0
a- 12 15 33 -12 - 8 -1 - 4 0 0 0 - 1 o = 0
7ro 0 0 0 1 1 1 1 1 0 0 0 0 = 1
d 3 2 3 0 1 1 2 2 0 0 0 0

References

[I] J. Aroaz, Polyhedral neopolarities, Thesis, University of Waterloo, November 1973.
[2] D. Bell, The resolution of duality gaps in discrete optimization, Tech Report No. 81, Operations

Research Center, MIT, 1973.

A subadditioe approach 143

[3] C.-A. Burdet, Enumerative cuts I, Operations Res. 21 (1973) 61-89.
[4] C.-A. Burdet, On the algebra and geometry of integer programming cuts, Management Sciences

Report No. 291, Carnegie-Mellon University, Pittsburgh, PA., October 1972.
[S] C.-A. Burdet and E.L. Johnson, A subadditive approach to the group problem of integer

programming, Math. Programming Study 2 (1974) 51-71.
[6] M.L. Fisher, W.D. Northup and J.F. Shapiro, Using duality to solve discrete optimization

problems: Theory and computational experience, Working Paper OR 030-74, Operations Re-
search Center, M.I.T., 1974.

[7] R.E. Gomory, Some polyhedra related to combinatorial problems, Linear Algebra and Its Appl. 2

[8] R.E. Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra I, Math.

(91 E.L. Johnson, Cyclic groups, cutting planes, and shortest paths, in T.C. Hu and S . Robinson, eds.,

[lo] E.L. Johnson, On the group problem for mixed integer programming, Math. Programming Study 2

[111 E.L. Johnson, Integer programs with continuous variables, Institute for Econometrics and
Operations Research, University of Bonn, Nassestrasse 2, West Germany, Report No. 7419-0R3,
September 1974.

(1969) 451-558.

Programming 3 (1972) 23-85.

Mathematical Programming (Academic Press, New York, 1973).

(1974) 137-179.

[121 R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N.J., 1970).

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 145-162
0 North-Holland Publishing Company

AGGREGATION OF INEQUALITIES IN
INTEGER PROGRAMMING*

Vaclav CHVATAL
Dept. of Computer Science, Stanford University, Stanford, C A 94305, U.S.A.

Peter L. HAMMER
Depr. of Combinatorics an Optimization, University of Warerloo, Waterloo, Ontario, Canada

Given an m x n zero-one matrix A we ask whether there is a single linear inequality ax =z b
whose zero-one solutions are precisely the zero-one solutions of Ax 6 e. We develop an
algorithm for answering this question in O(mn2) steps and investigate other related problems.
Our results may be interpreted in terms of graph theory and threshold logic.

1. Introduction

Given a set of linear equations

2 aijxj = b, (i = 1,2 , . . ., m),
j = l

one may ask whether there is a single linear equation

2 a,xj = b
J = I

such that (1.1) and (1.2) have precisely the same set of zero-one solutions. As shown
by Bradley [2] , the answer is always affirmative. (Actually, Bradley’s results are
more general. Some of them have been generalized further by Rosenberg [12].) In
this paper, we shall consider a related question: given a set of linear inequalities

2 a,;x, c b, (i = 1,2, . . ., m),
;=l

we shall ask whether there is a single linear inequality

such that (1.3) and (1.4) have precisely the same set of zero-one solutions. In a
sense, which we are about to outline, this problem has been solved long ago.

First, a few definitions. A function

* This research was partly carried out at the Centre de recherches mathbmatiques, Universitb de
Montrbal; partial support of the NRC (Grant A 8552) is gratefully acknowledged.

145

146 V. Chvatal, P.L. Hammer

f : {0,11" + {0,11

is called a switchingfunction. If there are real numbers a t , az, . . ., a, and b such that

f(xl , xz, . . ., x,) = 0 C C ajxj b,
j = l

then f is called a threshold function. If there are (not necessarily distinct) zero-one
vectors yl, yz, . . ., y k and Z i , Z z , . . ., Z k Such that

f(yi) = 0, f (z i) = 1, for all i = 1,2, . . ., k,

then, for each integer rn with rn 5 k, the function f is called rn-surnmable. If f is
not rn-summable then f is called m-assumable. It is well-known [3, 81 that a
switching function is threshold of and only if it is m-assumable for every rn. (The
proof is quite easy: denote by S, the set of all the zero-one vectors x with f(x) = i .
By definition, f is threshold if and only if there is a hyperplane separating So from
S , . Such a hyperplane exists if and only if the convex hulls of So and S , are disjoint.
Clearly, these convex hulls are disjoint if and only i f f is rn -assumable for every rn.)

Coming back to our problem, we may associate with (1.3) a switching function f
defined by

f(x1, xZ, . . ., x.) = 0 C (1.3) holds.
Then the desired inequality (1.4) exists if and only i f f is rn-assumable for every rn.
However, such an answer to our question is unsatisfactory on several counts.
Above all, it does not provide an efficient algorithm for deciding whether (1.4)
exists. We shall develop such an algorithm in the special case when all the
coefficients a,, and b, in (1.3) are zeroes and ones.

An rn x n zero-one matrix A = (a,) will be called threshold if, and only if, there
is a single linear inequality

j = l

whose zero-one solutions are precisely the zero-one solutions of the system

Note that the zero-one solutions of (1.5) are completely determined by the set of
those pairs of columns of A which have a positive dot product. This information is
conveniently described by means of a graph; in order to make our paper
self-contained, we shall now present a few elementary definitions from graph
theory .

A graph G is an ordered pair (V, E) such that V is a finite set and E is some set
of two-element subsets of V. The elements of V are called the vertices of G, the

Aggregation of inequalities in integer programming 147

elements of E are called the edges of G. Two vertices u, u E V are called adjacent
if {u, v } E E and nonadjacent otherwise. For simplicity, we shall denote each edge
{u , v } by uv. A subset S of V is called stable in G if no two vertices from S are
adjacent in G.

With each m x n zero-one matrix A, we shall associate its intersection graph
G (A) defined as follows. The vertices of G (A) are in a one-to-one correspondence
with the columns of A ; two such vertices are adjacent if and only if the
corresponding columns have a positive dot product. The motivation for introducing
the concept is obvious: the zero-one solutions of (1.5) are precisely the characteris-
tic vectors of stable sets in G (A) . We shall call a graph G with vertices u l , uz, . . ., u,
threshold if there are real numbers al, az,. . ., a, and b such that the zero-one
solutions of

2 ujxj zs b
j = 1

are precisely the characteristic vectors of stable sets in G. Clearly, G (A) is
threshold if and only if A is threshold; let us also note that G (A) can be constructed
from A in O (m n 2) steps. Thus the question “Is A threshold?” reduces into the
question “Is G (A) threshold?”.

2. The main result

In this section, we develop an algorithm for deciding, within O(n2) steps, whether
a graph G on n vertices is threshold. We shall begin by showing that certain small
graphs are not threshold. These graphs are called 2Kz, P4 and C4; they are shown in
Fig. 1.

L4

FIG. 1

148 V. Chvatal. P.L. Hammer

Fact 1. If G is 2K2, P, or C,, then G is not threshold.

Proof. Assume that one of the above graphs G is threshold. Then there is a linear
inequality

alx l + a2x2 + a,x, + a4x4 s b

whose zero-one solutions are precisely the characteristic vectors of stable sets in G.
In particular, we have

a l + a 4 > b , a z + a s > b , a l + a , s b , a 2 + a 4 c b ;

clearly, these four inequalities are inconsistent. 0

In order to make our next observation about threshold graphs, we need the
notion of an “induced subgraph”. Let G = (V, E) be.a graph and let S be a subset
of V. The subgraph of G induced by S is the graph H whose set of vertices is S ; two
such vertices are adjacent in H if and only i f they are adjacent in G.

Fact 2. If G is a threshold graph, then every induced subgraph of G is threshold.

Proof. Let the zero-one solutions of

2 ajxj s b
, = I

be precisely the characteristic vectors of stable sets in G. Let H be a subgraph of G
induced by S. Denote by c* the summation over all the subscripts j with u, E S.
Then the zero-one solutions of

are precisely the characteristic vectors of stable sets in H.
Now, we have an easy way of showing that certain graphs are not threshold

(simply by pointing out an induced subgraph isomorphic to 2K2, P4 or C,). On the
other hand, we are about to develop a way of showing that certain graphs are
threshold. Let G be a graph with vertices u I , u 2 , . . ., u,. G will be called strongly
threshold if there are positive integers a l , a 2 , . . ., a, and b such that the zero-one
solutions of

0

2 ajxj s b
, = I

are precisely the characteristic vectors of stable sets in G. (It will turn out later, and
may be proved directly, that every threshold graph is strongly threshold.) We shall
show that the property of being strongly threshold is preserved under two simple
operations. Let G be a graph with vertices uI,uZ,...,un. By G + K l , we shall
denote the graph obtained from G by adding a new vertex u,,+~ and all the edges

Aggregation of inequalities in integer programming 149

U,U,+~ with 1 s i s n. G U KI, we shall denote the graph obtained from G by adding
a new vertex unil and no edges at all.

Fact 3. If G is strongly threshold then G + K , and G U K , are strongly threshold.

Proof.
of

Let a, , a 2 , . . ., a, and b be positive integers such that the zero-one solutions

2 a,x, s b
, = I

are precisely the characteristic vectors of stable sets in G. Then the zero-one
solutions of

2 a+, + bx,,, s b
j = 1

are precisely the characteristic vectors of stable sets in G + K , . Similarly, the
zero-one solutions of

are precisely the characteristic vectors of stable sets in G U K , . 0
Now, we are ready for the theorem.

Theorem 1. For every graph G, the following three conditions are equivalent:
(i) G is threshold,

(ii) G has no induced subgraph isomorphic to 2K2, P4 or C4,
(iii) there is an ordering v , , vz, .. ., v, of the vertices of G and a partition of

{ v z , v 3 , . . ., v n } into disjoint subsets P and Q such that
every v, E P is adjacent to all the vertices ui with i < j ,
every v, E Q is adjacent to none of the vertices vi with i < j .

Proof. The implication (i) + (ii) follows from Fact 1 and Fact 2. The implica-
tion (iii) =+ (i) may be deduced from Fact 3. Indeed, let G, denote the subgraph
of G induced by {v,, v z , . . ., v,} . If a+, E P, then G,,, = G, + K , ; if u , + ~ E Q, then
G,+I = G, U K1. Hence, by induction on t, every G, is strongly threshold.

It remains to be proved that (ii) =+ (iii). We shall accomplish this by means of
an algorithm which finds, for every graph G, either one of the three forbidden
induced subgraphs or the ordering and partition described in (iii). If G has n
vertices then the algorithm takes O (n 2) steps.

Before the description of the algorithm, a few preliminary remarks may be in
order. It will be convenient to introduce the notion of the degree d G (u) of a vertex u
in a graph G ; this quantity is simply the number of vertices of G which are adjacent
to u. At each stage of the algorithm, we shall deal with some sequence S of k

150 V. Chvatal, P.L. Hammer

vertices of G ; the remaining vertices will already be enumerated as u k + l , V k + z , . . ., u,
and partitioned into sets P and Q. Furthermore, each w E S will be adjacent to all
the vertices from P and to n o vertices from Q ; hence i t will be adjacent to exactly
dG (w) - 1 P 1 vertices from S .

Step 0. For each vertex w of G, evaluate d G (w) , (This may take as many as O (n 2)
steps.) Then arrange the vertices of G into a sequence w l , w 2 , . . ., w, such that

dG(w,) 2 dG(wz) 2 * . .a dG(w,);

call this sequence S. (This can be done in O (n log n) steps; the rest of the algorithm
takes only O (n) steps.) Set k = n and P = Q = 0.

Step 1. If k = 1, then S has only one term; call that vertex u l , and stop. If k > 1
then let u be the first term of S and let u be the last term of S ; note that

1 PI + k - 1 2 dG(U) 3 & (w) 3 dG(U) 2 I P I
forevery w E S . H d G (u) = J P I + k - 1 , g o t o S t e p 2 . 1 f d G (u) = J P I , g o t o S t e p 3 . 1 f
I P (< d , (v) ~ d , (u) < (P (+ k - l , go to Step 4.

Step 2. Set uk = u, delete u from S, replace P by P U { u k } , replace k by k - 1 and
return to Step 1.

Step 3. Let uk = u, delete u from S, replace Q by Q U {&}, replace k by k - 1
and return to Step 1.

Step 4. Let ul = u. Find a vertex u3 E S which is not adjacent to u l . Find a vertex
uz E S which is adjacent to u3. Find a vertex u4 E S which is adjacent to u1 but not
to u2. Then stop (the vertices ul, u2, u3, u4 induce 2Kz or P4 or C , in G) . 0

Remark. In Step 4, we take the existence of u, for granted. However, the
existence of such a vertex follows at once from the fact that d G (u 1) 3 dG(u2) and
from the fact that u3 is adjacent to uz but not to u l .

In the rest of this section, we shall present several consequences of Theorem 1.

Remark 1.
by writing u < u if and only if

For every graph G = (V, E) , we may define a binary relation < on V

u w E E , w # u ++ w u E E .

By this definition, < is reflexive and transitive but not necessarily antisymmetric.

From Theorem 1, we conclude the following.

Corollary 1A.
u, u of G, at least one of u < u and u < u holds.

A graph G is threshold i f and only i f for every two distinct vertices

Remark 2. For every graph G = (V, E) and for every vertex u of G, we define

N (u) = { u E V : u is adjacent to u } .

Aggregation of inequalities in integer programming 151

From Theorem 1, we conclude the following.

Corollary 1B.
V into disjoint sets A, B and an ordering ul , uz, . . ., Uk of A such that

A graph G = (V, E) is threshold if and only if there is a partition of

no two vertices in A are adjacent,
every two vertices in B are adjacent,
N (u J c N (U 2) c . . * c N u ,) .

Let us sketch the proof. If G has the structure described by Corollary IB then G
cannot possibly have an induced subgraph isomorphic to 2Kz, P4 or C,; hence G is
threshold. On the other hand, if G is threshold then G has the structure described
by (iii) of Theorem 1. In that case, we may set A = Q, B = V - Q. Finally, we scan
the list u l , u 2 , . . ., un in the reuerse order (from un to u l) and enumerate the vertices
of B as u l , uz, .. ., uk.

Remark 3. For every graph G, we define the complement G of G to be a graph
with the same set of vertices as G ; two distinct vertices are adjacent in G if and
only if they are not adjacent in G. From the equivalence of (i) and (ii) in Theorem 1,
we conclude the following.

Corollary 1C. A graph is threshold i f and only i f its complement is threshold.

Let us point out that this fact does not seem to follow directly from the definition.

Remark 4. In order to decide whether a graph G (with vertices u l , uz, . . ., u,) is
threshold, it suffices to know only the degrees dG(u ,) , &(u2), . . ., d G (u n) of its
vertices. Indeed, executing Steps 1, 2 and 3 of the algorithm, we manipulate only
these quantities. On the other hand, if we are about to execute Step 4 then we
already know that G is not threshold.

Remark 5. Theorem 1 implies that threshold graphs are very rare. Indeed, from
(iii) of Theorem 1, we conclude that the number of distinct threshold graphs with
vertices u,, u 2 , . . ., un does not exceed

n ! 2"-'.

On the other hand, the number of all distinct graphs with the same set of vertices is
2" (n ~ 1)/Z

Hence a randomly chosen graph will almost certainly be not threshold.

Remark 6.
switching function

With each graph G on vertices ul , u ~ , . .., u., we may associate a

f : {0,1)" + (0211

152 V. Chvatal, P.L. Hammer

by setting f (x , , xz, . . ., x,,) = 0 if and only if (xl, xz, . . ., x,) is the characteristic vector
of some stable set in G. A switching function arising in this way will be called
graphic.

From Theorem 1, we conclude the following.

Corollary 1D.
2-assumable.

A graphic switching function is threshold i f and only i f it is

Let us point out that for switching functions that are not graphic, the “if” part of
Corollary 1D is no longer true. Indeed, for every m with m 2 2, there are switching
functions which are m -assumable but not (m + l)-assumable. Ingenious examples
of such functions have been constructed by Winder [14].

Remark 7.
following zero-one linear programming problem:

When A = (a i i) is an m x n zero-one matrix, we shall consider the

maximize C cfx,

subject to u p j S 1 (1 S i S m) ,

x j = 0 , l (1 S j n) .

, = I

j = 1

Defining c(u ,) = c, for every vertex uj of G(A), we reduce (2.1) to the following
problem:

in G (A) , find a stable set S

maximizing c(s)= C c (u) .
U E S

In general, (2.2) is hard; one may ask whether it becomes any easier when A is
threshold. The answer is affirmative. Indeed, if G(A) is threshold then we can find
the ordering u l , uz, . . ., u, and the partition P U Q described in (iii), Theorem 1; this
takes only O (m n *) steps. Then we define

P, if c(ul)<O

{ v , } if c (u l) a O
s1 = {

and, for each t with 2 t n,

St-1, if u, E Q and c (u ,) < O ,

if u, E Q and c (v ,) a 0,

if u, E P and c (u ,) < c(S,-l),

if u, E P and c (u ,) S c (L 1) .

U { u,} ,

S,-l,

{utl,

Aggregation of inequalities in integer programming 153

Clearly, S, is a solution of (2.2).

Remark 8. G. Minty observed that it is quite easy to decide whether a threshold
graph has a hamiltonian cycle. We reproduce his observation below with a slightly
different proof. A graph G is called 1-tough if for every nonempty set S of its
vertices, the graph G - S has at most I S I components.

Corollary 1E.
equivalent:

For every threshold graph G, the following three conditions are

(i) G is hamiltonian,
(ii) G is 1-rough,

(iii) the degree sequence d , G d z <. . .

d , ~ j < n / 2 + d n - 1 3 n - j .

d , of G is such that

Proof. (i) hold for arbitrary
graphs (see [4, 5]) , it suffices to prove that (ii) + (iii). For this purpose, we shall
consider a threshold graph G violating (iii) and prove that G violates (ii). Thus we
have d, G j and dn-, < n - j for some j < n / 2 . Representing G as in Corollary lB ,
we observe that di = d G (u i) for i = 1 , 2 , . . ., k. Let us distinguish two cases.

Case 1: j s k. Define S = N({ul, uz, . . ., u,}) and observe that I S 1 = dj s j < n / 2 .
Note also that G - S contains j isolated vertices u l , uz,. . ., uj and at least one
additional component. Hence G is not 1-tough.

Case 2: j > k . This case simply cannot occur since d, 3 d t+ l 3 n - k - 1 3 n - j .

Since the implications (i) += (ii) and (iii)

3. Variations

Let A = (a,,) be an m x n zero-one matrix. We shall denote by r (A) the smallest t
for which there exists a system of linear inequalities

cijxl < di
j = 1

such that (3.1) and

(1 s i < t) (3.1)

have the same set of zero-one solutions. Theorem 1 characterizes matrices A with
t (A) = 1; in this section, we shall discuss the problem of finding t (A) for every
matrix A .

Again, the language of graph theory will be useful. For every graph G = (V, E),
we shall denote by t (G) the smallest t such that there are threshold graphs
GI = (V, El), Gz = (V, EZ), . . ., G, = (V, E,) with E , U E2 U * U E, = E. Our next
result may not sound too surprising. Note, however, that Theorem 1 is used in its
proof.

154 V. Chvatal, P.L. Hammer

Theorem 2. Let A be a zero -one matrix and let G be G (A). Then t (A) = t (G) .

Proof.
graphs G, = (V, Ei) with u E, = E and t = t (G) . For each i , there is an inequality

The inequality t (A) 6 t (G) is fairly routine. Indeed, there are t threshold

whose zero-one solutions are precisely the characteristic vectors of stable sets in G,.
A subset of V is stable in G if and only if it is stable in every G,. Hence the zero-one
solutions of the system

2 c,,x, s d, (1 s i 6 t) (3.3)
, = 1

are precisely the characteristic vectors of stable sets in G. Since G = G (A) , the
characteristic vectors of stable sets in G are precisely the zero-one solutions of
(3.1). Hence t (A) s t = t (G) .

In order to prove the reversed inequality, we shall use Theorem 1. There is a
system (3.2) with t = t (A) such that (3.1) and (3.2) have the same set of zero-one
solutions. Set V = {ul, ur,. . ., u,} for each i , define

E, = {u,u, : r# s and c,, + c,, > d , }

and G, = (V, E#) . Since (3.1) and (3.2) have the same set of zero-one solutions, we
have

U Ei = {u,u, : ai, + a, > 1 for some i = 1,2, . . ., m } .
,=I

Hence G = (V, u Ei) is G (A) ; it remains to be proved that each G, is threshold.
Assume the contrary. Then., by part (ii) of Theorem 1, there are vertices u,, us, up, u,
such that

u,u, E E,, u,u, E E,,

u,u,!Z E,, u,u,!Z E,.

Hence by the definition of E,, we have

c,, + c,, > d,, c,, + c,, > d,,

c,, + c,, d,, c,, + c,, =s d,.

Clearly, these four inequalities are inconsistent. 0

Next, we shall establish an upper bound on t (G) . In order to do that, we shall
need a few more graph-theoretical concepts. A triangle is a graph consisting of
three pairwise adjacent vertices; a star (centered at u) is a graph all of whose edges
contain the same vertex u. The stability number a (G) of a graph G is the size of the
largest stable set in G.

Aggregation of inequalities in integer programming 155

Theorem 3.
more, i f G contains no triangle, then t (G) = n - a (G) .

For every graph G on n vertices, we hnve t (G) s n - a(G) . Further-

Proof. Write G = (V, E) and k = n - a (G) . Let S be a largest stable set in G ;
enumerate the vertices in V - S as u l , u 2 , . . ., uk. For each i with 1 c i c k , let E,
consist of all the edges of G which contain u,. Then each G, = (V, E,) is a star and
therefore a threshold graph. Since S is stable, we have u E, = E. Hence t (G) S k .

Secondly, let us assume that G contains no triangle. There are t threshold graphs
G = (V, E ,) with 1 < i G t, t = t (G) and u E, = E. It follows easily from Theorem
1 that each G,, being threshold and containing n o triangle, must be a star. Hence
there are vertices u17 uz, . . ., u, such that every edge of every G, contains u,. Since
u E, = E. the set

v - {UI, u27. . ., U J

is stable in G. Hence cu(G)s n - t (G) . 0

Let us note that we may have t (G) = n - a (G) even when G does contain a
triangle. For example, see the graph in Fig. 2.

FIG. 2.

When a (G) is very large, the upper bound on t (G) given by Theorem 3 is much
smaller than n. O n the other hand, if a (G) is very small, then t (G) is often very
small. (In particular, if a (G) = 1, then t (G) = 1.) Thus one might hope that, say,
t (G) n / 2 for every graph on n vertices. Our next result shows such hopes to be
very much unjustified.

Corollary 3A.
t (G) > (1 - &) n .

For every positive E there is a graph G on n vertices such that

Proof. Erdos [9] has proved that for every positive integer k there is a graph G on
n vertices such that G contains no triangle, a (G) < k and, for some positive
constant c (independent of k) , n > c(k/log k)’. Given a positive E , choose k large
enough, so that Eck 3 (log k) * , and consider the graph G with the above properties.
We have

156 V. Chvatal, P.L. Hammer

and so, by Theorem 3, t (G) = n - a (G) > (1 - ~) n . 0

Finally, we shall show that the problem of finding t (G) is very hard; more
precisely, we shall show that it is “NP-hard”. Perhaps a brief sketch of the meaning
of this term is called for. There is a certain wide class of problems; this class is called
NP. It includes some very hard problems such as the problem of deciding whether
the vertices of a graph are colorable in k colors. An algorithm for solving a problem
is called good if it terminates within a number of steps not exceeding some (fixed)
polynomial in the length of the input [7]. A few years ago, Cook [6] proved that the
existence of a good algorithm for finding the stability number of a graph would
imply the existence of a good algorithm for every problem in NP. Such a
conclusion, if true, is very strong. (For example, it implies the existence of a good
algorithm for the celebrated traveling salesman problem.) A problem X is called
NP-hard if the existence of a good algorithm for X would imply the existence of a
good algorithm for every problem in NP. (For more information on the subject, the
reader is referred to [l] and [lo].)

Corollary 3B. The problem of finding t (G) is NP-hard.

Proof. Poljak [ll] proved that even for graphs G that contain n o traingles, the
problem of finding a (G) is NP-hard. For such graphs, however, we have a (G) =

n - t (G) ; hence the existence of a good algorithm for finding t (G) would imply the
existence of a good algorithm for Poljak’s problem. Since Poljak’s problem is
NP-hard, our problem is NP-hard.

We shall close this section with two remarks on t (G) .

Remark 1. First of all, we shall present a simple lower bound on t (G) . For every
graph G = (V, E) , let us define a new graph G* = (V*, E *) as follows. The vertices
of G * are the edges of G ; that is, V* = E. Two vertices of G*, say {u , u } E V* and
{ w , z } E V*, are adjacent in G* if and only if the set {u, u, w , z } induces 2Kz, P, or
C, in G. Fig. 3 shows an example of G and G*.

As usual, the chromatic number x (H) of a graph H = (V, E) is the smallest k
such that V can be partitioned into k stable sets. We claim that

t (G) 2 ,y(G *). (3.4)

Indeed, there are threshold graphs G, = (V, E ,) with 1 i =s t, t = t (G) and
u E, = E. By (ii) of Theorem 1 and by our definition of G *, each E, is a stable set

of vertices in G *. Hence x (G *)
Note that the problem of finding the chromatic number of a graph is NP-hard;

hence for large graphs G, the right-hand side of (3.4) may be very difficult to

t .

Aggregation of inequalities in integer programming 157

I 2 3

4 5 6

G

36

12 A 14 15 25 45

056

G”

FIG. 3.

evaluate. For small graphs, however, (3.4) is quite useful and often precise. In fact,
we know of n o instance where it holds with the sharp inequality sign.

Problem. Is there a graph G such that t (G) > x (G *) ?

Remark 2. W e shall outline a heuristic for finding a “small’ (although not
necessarily the smallest) number of threshold graphs Gi = (V, E,) such that u E, = E, thereby providing an upper bound on t(G). The heuristic is based on a
subroutine for finding a “large” threshold graph Go = (V, Eo) with E o C E.

The subroutine goes as follows. Given a graph G = (V, E) , find a vertex u of the
largest degree in G, let S be the set of all the vertices adjacent t o u and let
H = (S, T) be the subgraph of G induced by S. Applying the subroutine recursively
to H, find a “large” threshold graph H o = (S , To) with To G T. Then define

E o = T ” U { w u : w E S }

and Go = (V, E”).
The heuristic goes as follows. Given a graph G = (V, E) , use the subroutine to

find a large threshold graph G o = (V ,Eo) with E’CE. Applying the heuristic
recursively to the graph (V, E - Eo), find threshold graphs G, = (V, E ,) with
u E, = E and, say, 1 S i S k. Then define G,,, = Go.

Clearly, the running time for this heuristic is O(n3) .

4. Pseudothreshold graphs

A switching function f : {0,1}” +{O, 1) is called pseudothreshold [13] if there a re
real numbers a,, a*, . . ., a,, b (not all of them zero), such that, for every zero-one
vector (x I ,xz , . . ., x,,), we have

158 V . Chuatal, P.L. Hammer

5 a,x, < b =S f (x l , x z , . . ., x n) = 0,
j = l

By analogy, we shall call a graph pseudothreshold if there are real numbers a (u) , b
(u E V) , not all of them zero, such that, for every subset S of V, we have

a (u) < b + S is stable,

2 a (u) > b =+ S is not stable.

“ES

u t s

In this section, we shall investigate the pseudothreshold graphs. (We do so at the
suggestion of the referee of an earlier version of this paper.) In fact, we shall
develop an algorithm for deciding whether a graph is pseudothreshold. When G
has n vertices, the algorithm terminates within O (n 4) steps; it is not unlikely that
this bound may be improved.

We shall begin by making our definition a little easier to work with.

Fact 1.
(u E V) such that b is positive and, for every subset S of V, we have (4.1).

A graph is pseudothreshold i f and only if there are real numbers a (u) , b

Proof. The “if” part is trivial; in order to prove the “only if” part, we shall
consider a pseudothreshold graph G = (V, E). We may assume E # 0 (otherwise
a (u) = 0 and b = 1 does the job). Since the empty set is stable, (4.1) implies b 2 0.
In order to prove b > 0, we shall assume b = 0 and derive a contradiction. First of
all, since every one-point set is stable, we have a (u) 0 for every u E V. Secondly,
since not every a (u) is zero, there is a vertex w with a (w) < 0. Finally, since E # 0,
there are adjacent vertices u and u. Setting S = { u , v, w } we contradict (4.1). 0

From now on, we shall assume b > 0. For every graph G = (V, E) we shall define
two subsets Po, Qo of V. The set Po consists of all the vertices u for which there are
three other vertices u l , uz, u3 such that

The set Qo consists of all the vertices u for which there are three other vertices
v l , uz , v, such that

These definitions are illustrated in Fig. 4.

Aggregation of inequalities in integer programming 159

u c Po

v o ' P'
v2
d

v3

v t Q o

FIG. 4.

Fact 2. Let G = (V, E) be u pseudothreshold graph. Then

u E P,, =+ u (u) s 2 b / 3

u E Qo 3 a (u) s b / 3 .

First of all, if u E PO, then Proof.

and so 3 u (v) < b. 0

Next, we shall define (by induction on t)

P,+, = P, U { u E V : uu E E for some u E Q,},

Qltl = Q, U { u E V : uulf E €or some u E PI} ,

P * = U PI, Q * = U Q,.

If G is a pseudothreshold graph, then P * n Q * = 0.

= cc

t = O t = O

Fact 3.

160 V. Chvatal, P.L. Hammer

Proof. It suffices to prove that

u E P * + a (u) 2 2b/3,

v E Q * =+ a (v) S b /3 ,

these implications follow easily (by induction on t) from Fact 2. 0

From the definition of P* and Q*, we readily conclude the following.

Fact 4.
vertices in Q * are adjacent.

If P* n Q * = 0, then every two vertices in P* are adjacent and no two
0

O u r next observation involves the graph 3K2 shown in Fig. 5.

Fact 5.
3K2.

No pseudothreshold graph contains an induced subgraph isomorphic to

Proof. Assume the contrary. Then

a (u ,) + a (u z) + a (u ,) c b,

a (v ,) + a (v 2) + a (v ,) S b,

a (u ,) + a (v ,) a b,

a (u 2) + a (v 2) a b,

a(u ,)+ a (v 3) a b.

Trivially, these inequalities a re inconsistent with b > 0. 0

Theorem 4. For every graph G = (V, E) , the following three properties are
equivalent :

(i) G is pseudothreshold,
(ii) P * n Q * = 0 and G has no induced subgraph isomorphic to 3K2,

(iii) there is a partition of V into pairwise disjoint subsets P, Q and R such that:
every vertex from P is adjacent to every vertex from P U R,
no vertex from Q is adjacent to another vertex from Q U R,
there are no three pairwise nonadjacent vertices in R.

Aggregation of inequalities in integer programming 161

Proof. The implication (i) + (ii) follows from Fact 3 and Fact 5 .
To see that (iii) =+ (i), simply set b = 2 and

0 if u E Q,

2 if u E P.

It remains to be proved that (ii) + (iii). We shall do this by means of a very
simple algorithm which terminates in O(n4) steps either by showing that (ii) does
not hold or by constructing the partition described in (iii). The algorithm goes as
follows.

First of all, find P* and Q*. (This can certainly be done in O(n4) steps.) Then find
out whether P* n Q * =0. (If not, stop: (ii) does not hold.) Then set S =

V - (P* U a*); note that by the definition of P* and Q*, every vertex from S is
.,adjacent to all the vertices from P* and to no vertex from Q*. Let So consist of all
the vertices in S which are adjacent to no other vertex in S ; define

p = P * , Q = Q * U S , , R = S - S o .

Find out whether there are three pairwise nonadjacent vertices in R. If not, stop: P,
Q and R have all the properties described in (iii). If, on the other hand, there are
three pairwise nonadjacent vertices ul , u2, u3 E R, then each u, is adjacent to some
u, E R. Using the fact that R f l (Po U 0,) = 0, the reader may now easily verify that
the set { u l , u2, u3, u l , uz, u,} induces a 3K2 in G. (This may be done in the following
order. Firstly, the u,’s are distinct. Secondly, each u, is adjacent to exactly one u,.

Finally, the u,’s are pairwise nonadjacent.) Hence (ii) does not hold. 0

Remark.
is pseudothreshold, then one can satisfy (4.1) with b = 2 and each a (u) E {0,1,2}.

It may be worth pointing out the following corollary of Theorem 1 : If G

References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms,
(Addison-Wesley, Reading, MA, 1974).
G.H. Bradley, Transformation of integer programs to knapsack problems, Discrete Math. 1 (1971)
29-45.

[3] C.K. Chow, Boolean functions realizable with single threshold devices, Proc. IRE 49 (1961)
370-371.

[4] V. Chvital, O n Hamiltonian’s ideals, J. Comb. Theory 12(B) (1972) 163-168.
[5] V. Chvatal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[6] S.A. Cook, The complexity of theorem proving procedures, in Roc. Third Annual A C M

[7] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.
[8] C.C. Elgot, Truth functions realizable by single threshold organs, IEEE Symposium on Switching

Symposium on Theory of Computing (1971) 151-158.

Circuit Theory and Logical Design (1961) 225-245.

162 V. Chvatal, P.L. Hammer

[9] P. Erdos, Graph theory and probability, 11, Canad. J. Math. 13 (1961) 346-352.
[lo] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatchec, eds.,

[I l l S. Poijak, A noteon stable sets and colorings of graphs, Cornrn. Math. Univ. Carolrnae 15 (1974),
Complexify of Compurer Computafions (Plenum Press, New York, 1972).

307-309.
[12] I.G. Rosenberg, Aggregation of equations in integer programming, Discrete Math. 10 (1974)

325-341.
[I31 T.A. Slivinski, An extension of threshold logic, IEEE TC C-19 (1970) 319-341.
[141 R.O. Winder, Threshold Logic, (Ph.D. thesis), Math,ematics Dept., Princeton University, 1962.

Annals of Discrete Mathematics 1 (1977) 163-177
@ North-Holland Publishing Company

ON THE UNCAPACITATED LOCATION PROBLEM*

Gerard CORNUEJOLS,
Department of Operations Research, Cornell University, Ithaca, NY, U.S.A.

Marshall FISHER
Department of Decision Sciences, The Wharton School, University of Pennsyluania, Philadelphia,
P A 191 74, U.S. A.

George L. NEMHAUSER
Department of Operations Research, Cornell University, Ithaca, N Y , U.S.A.

The problem of optimally locating bank accounts to maximize clearing times in discused. The
importance of this problem depends in part on its mathematical relationship to the well-known
uncapacitated plant location problem. A Lagrangian dual for obtaining an upper bound and
heuristics for obtaining a lower bound on the value of an optimal solution are introduced. The
main results are analytical worst case analyses of these bounds. In particular it is shown that the
relative error of the dual bound and a “greedy” heuristic never exceeds [(K - 1)/KIK < l /e for a
problem in which at most K locations are to be chosen. An interchange heuristic is shown to have
a worst case relative error of (K - 1)/(2K - 1) < 1/2. Examples are given showing that all these
worst case bounds are tight. The extreme points of an LP formulation equivalent to the
Lagrangian relaxation are also characterised.

The number of days required to clear a check drawn on a bank in city j depends
on the city i in which the check is cashed. Thus, to maximize its available funds, a
company that pays bills to numerous clients in various locations may find it
advantageous to maintain accounts in several strategically located banks. It would
then pay bills to clients in city i from a bank in city j (i) that had the largest clearing
time. The economic significance to large corporations of locating accounts so that
large clearing times can be achieved is discussed in a recent article in Business-
week [1].

To formalize the problem of selecting an optimal set of account locations, let
I = (1,. . ., m } be the set of client locations, J = (1,. . . , n } the set of potential
account locations, d) the fixed cost of maintaining an account in city j , f the fraction
of checks paid in city i, c#J~, the number of days (translated into monetary value) to
clear a check issued in city j and cashed in city i, and K the maximum number of
accounts that can be maintained. All of this information is assumed to be known
and c,, = fib,! represents thevalue of paying clients in city i from an account in city j .
To simplify the analysis we will also make the realistic assumption that d, 3 0 for all j .

* This research was supported by NSF Grants ENG75-00568 and SOC-7402516, Sections 1-4 of this
paper include a technical summary of some results given in [2]. Some proofs are omitted and may be
obtained in [?I.

163

164 G. Cornuejols, M. Fisher, G.L. Nemhauser

Let

1

0 otherwise,

if an account is maintained in city j ,
Y, = [

and x,,, 0 s x, c 1, be the fraction of customers in city i paid from an account in
city j .

The account location problem, which we call (P), can be stated as the integer
linear program (IP)

s.t. 2 x , ~ = 1, i E I,
IEJ

1 < 2 y , ~ K , (3)
J E J

x,, s y,, i E I, j E J, (4)

Y, E (0, I), j E J, (5)

x#J O? i € I , i € J , (6)

We denote by (LP) the linear program obtained from (IP) by replacing (5) by
0 s y, c 1, j E J.

The essential variables in (P) are the y,'s since given binary-valued y,'s, say
J o = { j I y, = l}, it is simple to determine an optimal set of x,,'s. Let

k E 3 "

Then, with respect to J o , an optimal set of x,,'s is given by x , ~ = 1 for some j E J o (i)
and x,, = 0 otherwise.

There is a vast literature on problems that are mathematically related to problem
(P). When I = J are the nodes of a graph, (5) is an equality contraint, and the
objective function (1) is replaced by minC,E,C,,3c,Jx,,, the model is known as the
K-median problem. When (1) is replaced by

the model is known as the simple or uncapacitated plant or warehouse location
problem. [2, 3, S] contain bibliographies and survey material of applications and
methods for this class of problems.

Useful relaxations for a variety of combinatorial problems have been obtained by
identifying a set of complicating constraints of the problem, weighting these
constraints by multipliers and placing them in the objective function. This dual
method is called Lagrangian relaxation. It was first shown to be a very effective

On the incapacitated location problem 165

computational tool for solving large combinatorial problems by Held and Karp
[6,7] in their work on the traveling salesman problem. Geoffrion [4] has proposed a
Lagrangian relaxation for (P) in which one dualizes (IP) with respect to the
constraints (2) . This partial dual is intimately related to the linear program (LP).
For example, both problems have the same optimum objective values.

Although most recent work on the class of problems represented generically by
problem (P) has been on exact algorithms, there is still a need to study heuristics.
Heuristics provide feasible solutions and lower bounds for exact algorithms. Most
importantly, however, heuristics appear to be the only reasonable option for
solving very large problems. The reason for this pessimistic remark is that problem
(P) belongs to the class of problems known to be NP-complete in the sense of Karp
[9]. The result that (P) is NP-complete is easily established by reducing the
NP-complete node covering problem to (P).

This paper analyzes approximations for problem (P). Our main results are on the
quality of solutions obtained from heuristics and upper bounds obtained from
linear programming and Lagrangian relaxations.

The paper is organized into five sections. In Section 1 we give a criterion for
evaluating heuristics and relaxations. Section 2 describes Geoffrion's Lagrangian
relaxation and defines a greedy heuristic. Section 3 contains the derivation of a tight
upper bound on the worst performance of the greedy heuristic and the Lagrangian
and (LP) relaxations. In Section 4 we formulate and analyze theoretically an
interchange heuristic. Although this heuristic is computationally more expensive
than the greedy heuristic, we will show that its worst possible performance is
inferior to that of the greedy heuristic. Finally, Section 5 provides a characterization
of the extreme points of (LP) and discusses implications for deriving cuts.

1. A criterion for measuring the quality of bounds

Let ?? be the family of problems generated from problem (P) by considering all
positive integer values for rn, n, and K , all real rn X n matrices C = { G , } and all real
nonnegative n-vectors d = (d l , . . . , d") . As before z denotes the optimal objective
value of a particular P E 8. Now let 2 and 2 be upper and lower bounds
respectively on z. These bounds may be obtained, for example, from the linear
programming relaxation and greedy heuristic, respectively.

When evaluating the quality of a bound - for definiteness say a lower bound -
it is not in general meaningful to consider the absolute deviation z - _z, since this
deviation is sensitive to scale changes in the data. Thus if there is a (P) that yields a
positive absolute deviation, we can construct problems in ?? with arbitrarily large
deviations.

Relative diviations are more meaningful. However, defining an appropriate
measure of relative deviation is subtle. For example, a popular measure of relative
deviation for a heuristic in a maximization problem is

166 G. Cornuejols, M . Fisher, G.L. Nemhauser

This measure is appropriate when z > 0 in which case 0 1. In a worst case
analysis of a particular heuristic one seeks to show that F 6 E < 1 for all problems
within some class. This is equivalent to showing that the ratio z / g is bounded by
the positive constant 1/(1- E) . Johnson [S] presents a survey of worst case analysis
of heuristics for a variety of combinatorial problems in which a measure that is
equivalent to (7) is used.

The measure (F) is inadequate for our problem. We cannot require z > 0 since a
minimization problem such as the simple plant location or K-median problem,
when translated into a maximization problem, would generally have z < 0. More
generally, for our problem, the measure F fails to have the following property that
we believe is essential. A modification of the data that adds a constant to the
objective value of every feasible solution but leaves the execution of the heuristic
unchanged should also leave the error measure unchanged. For example, if a
constant 6 is added to every element of a row of C in problem (P), then the
objective value of each feasible solution is increased by 6, but the execution of the
greedy heuristic (among others) is unchanged. The measure F is now equal to
(z - g) / (z + 6) and, provided z # g, it can be made as large (or small) as we like by
appropriate choice of 6.

With these considerations in mind, to evaluate lower bounds obtained from a
heuristic we use the measure

F

where zR is a suitably chosen reference value for (P). Ideally, the reference zR
should equal the minumum objective value of (P) but, in any event, zR should be a
lower bound on this minimum value that is sensitive to significant data changes such
as the addition of a constant to every element of a row of C. We may think of z - zR

as the worst absolute deviation that could be achieved by a heuristic. Then G
measures the deviation for a particular heuristic relative to the worst possible
deviation.

In problem (P) we define

ZR = c - KD, (9)
where c, = min,EJc,, c = ~ z E I ~ z and D = maxJEJdJ. Thus if d = 0 and c = 0, G = F.
Furthermore, if d = 0 and C 2 0, we can enforce G = F by adding a fictitious and
useless location (n + l), such that c,."+, = 0 for all i.

Our measure for evaluating upper bounds in maximization problems is similar to
G. Using the same value for zR, we define an error measure of an upper bound to be
H = (2 - z) / (Z - z R) . Note that in H the actual error (2 - z) is relative to the
worst possible error 2 - zR.

We will assume that 9' has been restricted to exclude all problems for which
z - zR = 0 or 2 - zR = 0. The relations zR c g c z 2 would make error bound

O n the incapacitated location problem 167

analysis rather pointless in these cases. We note that 0
and only if z = z , and H = 0 if and only if ,7 = z.

G 1,0 s H s 1, G = 0 if

2. A Lagrangian relaxation and the greedy heuristic

Let x be the matrix whose elements are x,, i E I, j E J, y = (y l , . . . , y ") ,

S = {x, y I x, y satisfies constraints (3), (4), (5) and (6)},

and u = (u,, . . . , u,) be multipliers for the constraints (2). A Lagrangian problem
for (P) is given by

and the corresponding Lagrangian dual by

Z D = min z ~ (u) .

It is well-known that z,, 3 2. Furthermore, since the matrix defined by the
constraints (2) and (3) is totally unimodular, it follows from a theorem of Geoffrion
[4] that zD is equal to the optimum value of the linear programming relaxation
(LP).

Define

p , (u) = 2 max(O,c,, - u,)- d,.
, € I

Observe that p , (u) is the potential contribution of location j to z D (u) , since in an
optimal solution city i will be assigned to a selected location j if and only if
c,, - u, ZO. Thus to determine t D (u) for fixed u we define J'(u) = { j E J I p, (u) >
0) and set J (u) = J'(u) if 1 < IJ'(u)l K. Otherwise let J (u) be an index set
corresponding to the K largest p , (u) if lJ'(u)l> K or the single largest p J (u) if
lJ ' (u) l= 0. We then have

Proposition 1. A n optimal solution to

is given b y

1 i f j E J (u) ,

0 otherwise;
Yi =

168 G. Cornuejols, M . Fisher, G.L. Nemhauser

1 if y , = 1 and c,, - u, > 0,

0 otherwise.
x,J =

As a consequence of Proposition 1 we have that

In studying the Lagrangian relaxation we observed that if J * C J represents a set
of selected locations and u, = maxJE,. c,,, then p,(u) , j E J * , represents the improve-
ment in the objective function if we augment J* by j . This observation leads quite
naturally to the conception of the following "greedy" heuristic for (P). This
heuristic is suggested by Spielberg [lo]. The greedy heuristic first chooses a location
to solve (P) for K = 1 and then proceeds recursively. Suppose k < K locations have
been selected. If there exists an unselected location that improves the value of the
objective function, choose one that yields the maximum improvement; otherwise
stop.

The greedy heuristic
Step 1: Let k = 1, J * = 0 and u : = minJEJc,,, i E I .
Step 2: Let p, (u ') = c,,, max(0, c,, - u :) - d,, j E J * . If p, (u ') s 0 for all j E J *

Step 3: Find jk +Z J* such that p J k (u k) = maxJEJ.p,(uk). Set J* = J * U { j k } . If

Step 4: Set k = k + 1. For i E I set

and I J *) 3 1 set k = k - 1 and go to Step 5. Otherwise, go to Step 3.

IJ*I = K go to Step 5, otherwise go to Step 4.

u f = ma? c,, = u f - ' + max(0, c,,,-, - u f - l)
J E J

Go to Step 2.

have 1 J * 1 = k and the value of the greedy solution is
Step 5: Stop; the greedy solution is given by y , = 1, j E J * , y , = 0, otherwise. We

The following example illustrates the greedy heuristic with d = 0, K = 2 and

0 1 1 6 9 c = [i : 9 4 0 0" ;) .
We initialize with J * = 0 and u I = (0,0, 0,O). Then p l (u ') = 24, p2(u ') = 23, p 3 (u 1) =

18, p 4 (u 1) = 14, j l = 1 and J * = (1). We set u z = (0,7,7,10) and obtain p2(uz) = 11,
p 3 (u z) = 7 and p4(u2) = 9. Thus j z = 2, J * = {1,2}, and z , = 35. We also note that
zD(u ') = 35 + 1 + 0 = 36 so that 35 z S 36.

On the incapacitated location problem 169

3. Analysis of the greedy heuristic and Lagrangian dual

In this section we show that

(z D - z ,) / (z D - zR) < l / e for all P E 8. (11)

G, = (t - z,)/(z - zR) < I/e,

HD = (z D - z) / (z D - zR) < l/e.

Since zR s z , s z s zD, (11) implies that

(12)

(13)

We will present examples to show that these are the best possible bounds; that is
suppc9 G, = suppc9 HD = l/e. Furthermore, since zD = zLp, the optimal value
of the linear programming relaxation (LP), we obtain the result that
(zLp- z)/(zLp- z R) < l/e. Let PK be the subfamily of 8 in which at most K
locations may be selected.

Lemma 1. For all P E PK

(zD - z ,) / (z D - zR) S [(K - 1)/KIK < l /e.

Proof. If K = 1 or p,,(u’)< 0, the theorem is clearly true since z , = z D (u l) .
Otherwise let k be the number of locations selected by the greedy heuristic and E
the number of times Step 2 of the greedy heuristic is executed. If k = K then E = k ;
otherwise E = k + 1. In either case z22. Let (Y = (K - 1)/K and, for notational
simplicity. pj = pz, (uJ) , j = 1 , . . ., k - 1 and p~ = ptG(uE) if E = k , p~ = 0 if k = k + 1.
The statement of the lemma is equivalent to

(14)

- -

(1 - a K) Z D f (Y K Z R s 2,.

-
For s = 1, . . . , k , x ,cI u : = c + c;:: (p, + d,) and Kp, is nonnegative and at least as

J * . Using these facts and D 2 d,, j ’ E J, we obtain large as the K largest p j (u ”) , j
from (10)

- r - 1

Z D ~ C + C p , + K p , + (s - l) D , ~ = 1 , ..., k .
j = 1

We will establish the lemma by showing that (14) holds when zD is replaced by the
minimum of the bounds given in (15).

c + a,, s = 1 , . . . , E.
Substituting in (14) zR = c - KD, z , = c + c:=, p,, and the bounds for zD, we must
show that

Let a, = xy:; pj + Kp, + (s - l)D so that (15) becomes z0

or (cancelling terms in c)

170 G. Cornuejols, M. Fisher, G.L. Nemhauser

We establish (16) by assuming
k -

(l - a K) a , - K a K D > C p,, s = l , ..., k - 1
J = 1

and showing that (17) implies
k

(1 - ~ ") U G - KaKD S C p,. (18)
J - 1

Substituting for UE in (18) and simplifying yields
E-1 k

(1 - a") pj + (1 - a")Kpr - C pj S [(l- E)(l - a")+ KaK]D. (19)
j = l j = 1

Multiply inequality s of (17) by and sum for s = 1, . . . , k - 1 to obtain

(1 - a") 5 aE+s [X pj + (s - 1)D + Kp, - K(1- a"-')Ka"D >
S = l 1

k

> K(1- C pj.
j = 1

where we have used the fact that Cfi: a'-'-'= (1 - a ' - ') / (l - a) = K(1- a'-'). It
can be shown that (20) can be simplified to

f - 1 k

(1 - a") c p, -(1- af-1) c p, > [K - k + 1 - a" + Ga" - Ka"-']D. (21)
J - 1 J = 1

We now consider two cases to show that (21) implies (19).
Case (a). [k = K = k] : Here (19) reduces to

"-1

- a" 2 p, + (K - 1)(1- a"-l)pK S [(l- K)(1- a")+ KaK]D (22)
J - 1

and (21) reduces to
"-1

a ") 2 pj - (1 - a"-l)p" > [l- a" + K(a" - a"-')]D.
,=1

Multiplying (23) by - a "/(aK-' - a") = 1 - K < 0 implies (22), which completes
the proof of case (a).

Case (b). [k < K, k = k + 11: Here (19) reduces to

- a" , = 1 p, + (1- CY")Kpk+i [- k(l-CtK)+ KaK]D (24)

and (21) reduces to
k

(ak - a") c p, > [K - k + ka" - KakID. (25)
j = 1

Multiplying (25) by - aK/ (ak - a")< 0 yields

O n the incapacitated location problem 171

- a K 2 pi < - a K [K - k + kaK - K a k] D / (a k - aK) .

Since, in this case, we have pr+l = 0 and D 3 0, (24) will be implied by the above
inequality if

- a K [K - k + ~ C Y ~ - K C I ~] / (C I * - a K) S - k (l - a K) + K a K . (26)

The inequality (26) simplifies to

k s KaK-k. (27)

We prove (27) by induction. For k = K - 1 we have KaK-' = K - 1 so that (27) is
an equality for all K. Now assume that (27) is true for k and consider k - 1. We
have

~ ~ K - k + 1 - - K ~ K - ~ - & K - k (1 - a) = KaK-k - a K - *

3 KaK-k - 1 3 k - 1,

where the last inequality is implied by the induction hypothesis. 0

As immediate consequences of Lemma 1 and the relations zR z , s z zD we
have the following two theorems.

Theorem 1. For all P E PK, G, s [(K - 1)/KIK.

Theorem 2. For all P E PK, HD [(K - 1)/KIK

We now give two families of problems in PK, K = 2,3,. . . , which show that
[(K - 1)/KIK is a tight bound for G, and HD respectively. (K = 1 is trivial). Either
family also implies the tightness of the bound in Lemma 1.

Theorem 3. Let P E PK, K = 2,3,. . . , be defined by m = K (K - l), n = 2K - 1,
d = 0 and C K where for j = 1, . . . , K - 1

(K - 1)KK-2ai-'[a = (K - 1) /K] , i = (j - l) K + 1 , . . . , jK,

[0, otherwise,
Cf: =

and for j = K, . . . ,2K - 1

KK- ' , i = l + j + (1 - 2) K , l = l , ..., K - 1 I 0, otherwise.
Cf: =

Then G, = [(K - 1)/KIK, K = 2,3,. . . .

Proof. See [2].

172 G. Cornuejols, M. Fisher, G.L. Nemhauser

Theorem 4. Let P, E PK, t = 2 , 3 , . . . , K = 2 , 3 , . . . , be defined by d = 0, n = Kt,
m = (y) and the 0-1 matrix CKt, where the rows of CK' consist of all 0-1 n-vectors
with precisely t positive elements. Then

and, for each K, as t approaches infinity HD approaches [(K - 1)/KIK.

Proof. See [2] .

4. The interchange heuristic

In this section we d o a worst-case analysis of an interchange heuristic. It will be
convenient throughout this section to treat the subfamily of P with d = 0. Since in
this subfamily (P) always has gn optimal solution that uses K locations, the
interchange heuristic will take a particularly simple form. T h e heuristic is initialized
with an arbitrary set J o C J of cardinality K. With respect to J o optimal values for
the x,, are chosen in the obvious manner mentioned in the introduction. W e then
determine if the solution can be improved by augmenting J o by a location not in J o
and deleting from J o one of its present members. The procedure continues in this
way until n o such interchange yields an improvement. In the worst-case analysis it is
not necessary to specify details on how the particular entering-leaving pair is
selected such as first improvement vs. maximum improvement.

Theorems 5 and 6 characterize the relative error of this heuristic. For problem (P)
let z , be the value of the solution produced by the interchange heuristic,
GI = (z - z ,) / (z - zR) , and Pk the subfamily of P in which d = 0 and at most K
locations a re to be selected.

Theorem 5. For all P E PK, GI =s (K - 1)/(2K - 1).

Proof. See [2] .

Theorem 6. Let P E PK, K = 1 , 2 , . . . , be defined by m = 2 K - 1 , n = 2K and

1
1

0

1
0
0

1 0
. .

O n the incapacitated location problem 173

(The first 2K - 1 columns of C K are unit vectors and the last column has K one’s.)
Then Gr = (K - 1)/(2K - l), K = 1,2,. . . .

Proof. The first K columns are an interchange solution since if any column j ,
K + 1 s j s 2K, is interchanged for one of the first K columns, the increase in the
objective function is 0. This gives zr = K. The last K columns are an optimal set, so
z = 2K - 1. Since zR = 0, G, = (2K - 1 - K)/(2K - 1) = (K - 1)/(2K - 1). 0

Since the interchange heuristic can begin with an arbitrary set of locations of
cardinality K, we might choose an initial solution by applying the greedy heuristic.
We will call the method that begins with the greedy solution and then applies the
interchange heuristic the “greedy-interchange’’ heuristic. Let zgr be the value of the
solution produced by the greedy-interchange heuristic and Ggr = (2 - z , ,) / (z - zR) .
The family of worst-case problems used in Theorem 3 show that we can have
zgr > 2,. However, there is a family of problems for which G, = [(K - 1)/KIK and
no improvements can be made by applying the interchange heuristic. In particular
we have

Theorem 7. Let P E PK, K = 2,3,. . . , be defined by m = K Z , n = 2K and the matrix
C K , where for 1 s j K

(K - l)’-’KK-’,

0, otherwise

i = (j - l)K + 1,. . , jK

K K - ’ , i = l K + j , l = O ,..., K - 1

0, otherwise.

C,: =

c ? K + , =

Then G, = G,, = [(K - 1)/KIK, K = 2,3,. . . .

Proof. See [2].

5. The extreme points of (LP)

In Section 3 we studied the relationship between (P) and (LP) in terms of their
objective values. These problems may also be compared by studying the extreme
points of their underlying polyhedra. It is easy to show that any solution t o the (IP)
formulation of (P) is also an extreme point of (LP). In this section we complete the
description of the LP polyhedron by characterizing the fractional extreme points of

For a given non-integer solution (x , y) of (LP) let J1 = { j E J 10 < y, < 1) and
(LP).

Il = { i E I I x,, = 0 or y, for all j and x, non-integer for some j } .

174 G. Cornuejots, M. Fisher, G.L. Nemhauser

Let
1 if x,, > 0,

0 if x,, = 0,
a,, =

and denote by A the 1 I , 1 X (J1 I matrix whose elements are a,, for i E II and j E J1

Theorem 8. The non-integer solution (x, y) of (LP) is an extreme point of the LP
polyhedron if and only i f

(i) y, = max,x, for all j E Jl,
(ii) for each i E I, there is at most one j with 0 < x, < y,,
(iii) the rank of A equals I J , I.

Proof. The proof will use the well-known fact that (x, y) is extreme if and only if
each pair of solutions (x', y ') and (x 2 , y 2) to (LP) that satisfy x = f x l + S x z ,
y = $ y 1 + f y 2 also satisfy X I = x 2 and y ' = y z .

We first show that (x, y) is not extreme if (i) or (ii) are violated. If (i) is violated
there exists a k such that rnax,x,k < Yk < 1. Let E = m i n (y k - max, xtk, 1 - y k) and set

Y : = Y k + & , Y : = y k - & , Y , ! = y : = Y , , j # k ,

x i, = x t = x,,, for all i and j .

Then since (x ' , y ') and (x ' , y ') are feasible in (LP) and satisfy x = fx1+;x2 ,
y = t y I + d Y Z the fact that y ' # y 2 implies (x, y) is not extreme. A similar argument
may be used in the case where (ii) is violated if we let k , jl, and j z denote indices
satisfying 0 < < yI1, 0 < X k f i < y,, and set

We now represent general (XI, y ') and (x', y ') as xh = x, + 8,,, x',= x,, - 8,,,
y : = y, + 8,, and y : = y, - 8, for i E I, j E J, where 8, and 8, are selected so that
(XI, y ') and (xz, y ') are feasible in (LP). We will complete the proof by showing that
when (i) and (ii) are satisfied, any such S,, and 8, satisfy 8,) = 8, = 0 if and only if the
rank of A is 1 Jl 1 . Let

JZ = { j E J 1 y, = 01,

J 3 = { j J 1 yJ =

I2 = { i E I I x,, integer for j E J } and

I , = {i E I I o < x, < y, for precisely one j E J) .

Note that J I , J z , J3 and I] , 12, I3 partition J and I.

O n the incapacitated location problem 175

It is immediate from the upper and lower limits on y, and x,, imposed by the
constraints of (LP) that S, = 0, j E J z U J,, S,, = 0, i E Z, j E Jz , and i E I*, j E J.
Also, by the definition of ZI and J,, x,, = 0 and hence S,, = 0 for i E 11, j E J,.

This leaves S,, j E J1 and S,,, i E I , , j E J , and i E Z3, j E J1 U J, undetermined.
For i E 11, j E J1, 6, = 0 if x,, = 0, and if x, > 0, then

because x i = x,, + a,, s y, + S, and x, = y, implies 6, S S, while x; = x,] - S,, S

y, - 6, and x,) = y, implies 6,) 3 S,. We may then use constraint (2) of (LP) to impose

For i E I,, j E J1 U J,, let j (i) denote the unique index for which 0 < x,)(,) < y,(,).
The feasibility requirements of (LP) imply 6,, = O if j EJ1 and x,, = O or
j E J 3 - { j (i) } ; and if x,, > O

6,, = 6,, i E Z3, j E jl - { J (i) } . (30)
Constraints (2) and (6) will be satisfied if

Feasible values for those S, and 6, that are not immediately equal to zero are
now completely determined by (28)-(32). If the rank of the coefficient matrix A of
(29) is 1 J1 1 then 6, = 0 for j E J , is the unique solution of (29). Equations (28) and
(30)-(31) then imply that the remaining S,, = 0 so that x, y is extreme. If the rank of
A is less than JJll, then let 6, j 6 J1 denote a nonzero solution to (29). Since a&
j E J1 satisfies (29) for any a, we may determine values for S,, using (28), (30), and
(31) and select a sufficiently small that (32) is satisfied. This implies that x, y is not
extreme. 0

If the rank of A equals I J , I then A contains a 1 Jl I x 1 J1 I nonsingular submatrix.
Let B denote such a submatrix and e a)J,I-component vector of ones. The
fractional part of x, y may be completely determined from the unique solution to
Bz = e by setting

y, = z,, j E J1

x,) = z,, x,, > 0 i E 11, j E J1 or i E L, j E J1 - { j (i) } .

(33)

(34)

176 G. Cornueiols, M . Fisher, G.L. Nemhauser

Intuitively, B contains the "fractional information" of (x, y) and should be useful
in determining a cut which removes (x , y) . An example of such a relationship is
afforded by a class of extreme points that are generated from the solution to Bz = e
when B is a generalized cycle matrix. Let C" = {c:} denote the k x k matrix whose
rows are 0-1 vectors in which t contiguous ones are successively moved one
position to the right.

For example

1 1 1 0
C 4 j 0 1 1 1 , 1 .

1 0 1 1
1 1 0 1

Ck' is nonsingular if (and only if) t and k are relatively prime, in which case Ck'
may be used to generate an extreme point of (LP) by selecting It C I and J l C J
with 1 II 1 = (Jl 1 = k and solving the system

with coefficient matrix Ck'. An extreme point is obtained by using the unique
solution z, = l / t , j E J1 of this system to determine fractional y , and x,, from
(33)-(35) and selecting any feasible integer values for the remaining yJ and xtJ. It is
interesting that a cut which removes this extreme point may also be determined
from the matrix C". This cut is

2 c;'xi , - yi s k - [k / t]
, € I , , E J , JEJl

where [k l t] denotes the least integer greater than or equal to k / t . This inequality is
valid for any k and t and is acut , that is it removes part of the (LP) feasible region if
k l t is not integer. However, in the process of removing these fractional extreme
points, it is certainly possible to create new ones.

References

[l] Businessweek, Making millions by stretching the float, 88-90, (November 23, 1974) 88-90.
[2] G. Cornuejols, M.L. Fisher and G.L. Nemhauser, An analysis of heuristics and relaxations for the

[3] R.M. Francis and J.M. Goldstein, Location theory: A selective bibliography, Operations Res. 22

[4] A.M. Geoffrion, Lagrangian relaxation for integer programming, Math. Programming Study 2

(51 A.M. Geoffrion, A guide to computer-assisted methods for distribution systems planning, Western

uncapacitated plant location problem, Management Sci., 23 (8) (April 1977).

(1974) 400-409.

(1974) 82-114.

man. Sci. Center, Paper No. 216, UCLA, 1974.

On the incapacitated location problem 177

[6] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations

[7] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part 11,

[8] D.S. Johnson, Approximation algorithms for combinatorial problems, J. of Computer and Systems

[9] R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.
[101 K. Spielberg, Algorithms for the simple plant-location problem with some side conditions,

Res. 18 (1970) 113&1162.

Math. Programming 1 (1971) 6-25.

Sciences 9 (1974) 256278.

Operations Res. 17 (1969) 85-111.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 179-184
@ North-Holland Publishing Company

SOME COLORING TECHNIQUES
D. de W E R R A
Dipartement de Mathtmatiques, Ecole Polytechnique Ftdtrale de Lausanne, Lausanne, Swirzer-
land

Two types of colorings for graphs and hypergraphs are considered here: good and equitable
colorings. By using several techniques (namely partial colorings and node splitting) we study
some classes of graphs (and hypergraphs) which have k-colorings of the above types for given
values of k. Some new results on edge colorings are obtained by combining these coloring
techniques.

1. Introduction

In this paper the terminology of Berge [2] will be used. By k-coloring of a
hypergraph H = (X, 8) we simply mean a partition of its node set X into k subsets
U1, . . . , U,. For multigraphs G = (X, E) we will deal only with edge colorings; so a
k-coloring of G will be a partition of its edge set E into k subsets U,, . . . , Uk ; it is
in fact a k-coloring of the dual hypergraph G* of G.

A usual coloring of H is a coloring where not all nodes in the same edge E ’ have
the same color (i.e. are in the same U ,) if I E’(3 2; for a graph G a coloring of G is
usual if n o two adjacent edges are of the same color.

Several extensions of usual colorings have been proposed; the most interesting so
far seem to be the equitable colorings [7] and the good colorings [3].

For a k-coloring (Ul , . . . , Uk) of H we denote by u, (E’) the cardinality of
U, rl E ’ (E ’ E 8 is an edge of H); in the same way, if (U, , . . . , U,) is a k-coloring of
G, u , (x) will be the number of edges in U, which are adjacent to node x.

(U1,. . . , U,) is an equitable k-coloring if
e(E’)= max,,,==k[u,(E‘)- u,(E’)J S 1 for each edge E’ of H, or
e (x) = max,.,,,[u,(x)- u,(x)]

k(E’)=I{iIu,(E’)~1}1=min(k,IEr() for each E’of H, or
k (x) = I{i 1 u , (x) 3 1}1 = min(k, d(x)) for each x in G.
In this paper we first intend to describe some classes of graphs which have

k-colorings of the above types for all k 3 s where s is a fixed number.
Besides if we are given a graph G and a positive integer k, G may not have a

k-coloring of the above types; however it may have a deficient k-coloring (i.e. a
k-coloring which is good o r equitable except possibly for a certain subset S of
nodes). We will also try to characterize subsets S of this kind.

1 for each node x of G.
It is a good k-coloring if

179

180 D. de Werra

In order to obtain the above mentioned results we shall apply two coloring
techniques: partial coloring and node splitting. These methods are described in the
next sections.

2. Partial colorings

In the remainder of the paper a generalized k-coloring will be an equitable or a
good k-coloring. A partial coloring of a hypergraph H (resp. of a graph G) is a
coloring of a sub-hypergraph of H (resp. of a partial graph of G).

For some coloring theorems constructive proofs based on the idea of partial
colorings (or more precisely recolorings) have been given. These theorems have the
following form. Let S (p) be any sufficient condition for the existence of a
generalized p-coloring.

Theorem 2.1. Let H be a hypergraph such that any subhypergraph of H satisfies
S (p) ; then, for each k 2 p , H has a generalized k-coloring.

A possible proof technique may be the following [3, 71: starting from any
k-coloring (U l , . . . , U k) of H one determines a subhypergraph H ’ generated by
UP,, U , for which (U l , . . . , U p) is not a generalized p-coloring. Since H ‘ satisfies
S (p) , there exists a partial p-coloring (Ur, . . . , UL) of H’ which is a generalized
p-coloring. One verifies separately for good and for equitable colorings that
(U ; , . . . , U;, Up+,, . . . , U,) is a k-coloring of H which is better than (U , , . . . , U k) in
the sense that for at least one edge some measure of quality of the coloring has
increased and for no edge has this measure of quality decreased. By repeated use of
this procedure, one finally gets a generalized k -coloring as required.

Remark 2.1. Notice that this type of proof would not be applicable to other types
of colorings such as r -bounded colorings for instance (i.e. colorings satisfying

e (E ’) = max [u , (E’) - u,(E’)] s r where r 3 2) .
hick

Application 1 [7] . A unimodular hypergraph has an equitable k-coloring for each
k 2 2 .

This follows from the characterization of totally unirnodular matrices given by A.

The measure of quality for edge E‘ is here the number of pairs of colors i , j for
Ghouila-Houri [6].

which u,(E’)- uj(E’) does not exceed a given value.

Application 2 [3]. A balanced hypergraph has a good k -coloring for each k 3 2.

Some coloring techniques 181

This is a direct consequence of the fact that any subhypergraph of a balanced
hypergraph has a good bicoloring [2, p. 4521. In this case the measure of quality for
edge E‘ is k (E’) i.e. the number of colors appearing in edge E’ . When restricted to
the case of graphs (or more generally of multigraphs) Theorem 2.1 becomes

Theorem 2.1.A. Let G be a multigraph such that any partial multigraph satisfies
S (p) ; then, for each k a p , G has a generalized k-coloring.

Application 1 [7]. A bipartite multigraph has an equitable k-coloring (and hence a
good k -coloring) for each k 3 2.

Here S (2) is the property of containing no odd cylces.
Now this conclusion may be generalized as follows:

Application 2 [S]. Let G be a multigraph such that in each odd cycle C there exist two
consecutive nodes which are not joined by an odd chain in G - C to any node of C.
Then G has an equitable k-coloring for each k 3 3 .

(This result is obtained by showing that the above property can be taken for
S(3D

Application 3 [9]. If in any partial multigraph of G the edges may be oriented in such
a way that for each node x, either d’(x) = 0 (mod p) or d - (x) 0 (mod p) , then G
has an equitable k-coloring for each k a p .

Remark 2.2. Similar conditions S (p) could be given for the existence of good
p-colorings in applications 2 and 3.

Notice finally that application 2 could be formulated in another way. Given a
multigraph G, we might say that an odd cycle C which does not have the above
described property is a strong odd cycle. (Thus in a strong odd cycle C among any
two consecutive nodes of C there is at least one which is joined by an odd chain in
G - C to a node of C.) Then if k is given and if S is a subset of nodes which meet
all strong odd cycles, G = (X , E) has a k-coloring which is equitable for all nodes
x E X - S (i.e. e (x) 1) but for nodes x E S we may have e (x) =S 2. (The
construction of k-colorings with e(x)==2 is always possible as shown in [7]).

In the next section we shall try to describe other sets S where we may not have
e (x) s 1 but possibly e (x) s 2.

3. Node splitting

If G is a simple graph, it is known that its chromatic index q (G) satisfies
d =s q (G) s d + 1 where d is the maximum degree in G. This is Vizing’s theorem;

182 D. de Werra

an elegant proof has been given by J.C. Fournier [5] . Beineke and Wilson [l] as well
as Fiorini and Wilson [4] say that a simple graph G is of class 1 if q(G) = d and of
class 2 otherwise. We will extend this definition to multigraphs.

Before proceeding further we need to introduce the idea of node splitting. Given
a multigraph G and a positive integer k, we may apply a k-splitting operation to the
nodes of G ; this will result in a multigraph Gk obtained as follows: for each node x
with degree d (x) > k, the d (x) edges adjacent to x are numbered arbitrarily; x is
split into (d (x) / k) nodes x’, x”, . . . , x (~) ((t) denotes the smallest integer not less
than t) . x ‘ is adjacent to the first k edges, x“ to the next k edges and so on (only
the last node x C p) may be adjacent to less than k edges). Clearly Gk will have
maximum degree k.

We will say that a property P of G is s-stable if any Gk obtained by a k-splitting
of G with k a s also has property P. For instance if P is the property of having no
odd cycles, then P is 2-stable. But if P is the property that no connected component
of G is an odd cycle, then it is not 2-stable.

Theorem 3.1. Let G be a multigraph and s 3 2 an integer; if for any k a s G as well
as any Gk obtained by k-splitting are of class 1 , then G has an equitable k -coloring.

Proof. Any usual k -coloring of Gk gives obviously an equitable k -coloring of G.

At this point we might derive the same applications as in the previous section by
choosing in each case a suitable property P. (We would have s = 2 in the first
application and s = 3 in the second one.) We will however concentrate on other
properties.

Applying a coloring procedure which is not a partial recoloring in the sense
defined above, J.C. Fournier has obtained the following result [5]:

Let G be a simple graph with maximum degree d ; if there is no cycle meeting only
nodes of degree d, then G is of class 1.

Using Fournier’s theorem we get

Application 1. Let G be a simple graph and h 3 2 an integer such that each cycle
contains at least one node with degree < h ; then, for each k 3 h, G has an equitable
k -coloring.

I f h is the maximum degree d , this is just the result of Fournier; and if h < d any
Gk is of class 1 from Fournier’s theorem (the property P of having in each cycle at
least one node with degree < h is h-stable).

This result may be extended to some classes of multigraphs since k-splitting
operations may sometimes transform multigraphs into simple graphs. Here m (x, y)

Some coloring techniques 183

is the multiplicity of the pair x, y of nodes, i.e. the number of parallel edges joining
nodes x and y.

Application 2. Let G be a multigraph such that in each cycle there exists at least one
node with degree < h. Let p be the largest integer such that m (x , y) c
(d (x) / p) (d (y) / p) for each pair of nodes x, y. Then if p 3 h, G has an equitable
k-coloring for each k with h s k s p.

Proof. If k S p one may construct a G, which is a simple graph. Furthermore in
each cycle of GI, there will be at least one node with degree < k (since k 3 h) .
Hence Fournier’s theorem may be applied.

Illustation. The multigraph G consisting of 3 nodes a, b, c and 5 edges (a , b) , (a , c) ,
(b, c) ~ , (b, c) ~ , (b, c) ~ is such that p = 3 since

m(b, c) = 3 S (4/3)(4/3) = (d (b) / p) (d (c) / p) .

We may take h = 3. G3 obtained by the 3-splitting operation has nodes a, b, b’, c, c’
and edges (a, b) , (a , c) , (b, c) , (b’, c) and (b, c’). It is a simple graph of class 1 . One
sees that G neither has an equitable 2-coloring nor an equitable 4-coloring.

Remark 3.1. Analogous results for good colorings could be derived by devising an
adequate k -splitting operation: each node x with degree d (x) > k is split into one
node x ’ of degree k and one or more other nodes of arbitrary degree not exceeding
k.

For hypergraphs node splitting operations would become edge splitting opera-
tions. However this procedure cannot be used in the same way as for graphs: while
any k-splitting applied to a bipartite multigraph still gives a bipartite multigraph,
any edge k -splitting operation acting on a balanced hypergraph may not produce a
balanced hypergraph.

As a conclusion we may combine several coloring techniques such as partial
coloring, node splitting and Fournier’s coloring procedure. This gives the following:

Theorem 3.2. Let G be a simple graph and let h 3 2 be such that each cycle where all
nodes have degrees at least h contains at least one node which does not belong to any
strong odd cycle. Then G has an equitable k-coloring for each k 3 h.

Proof. This result is obtained by first constructing Gk with k-splitting operations
and then determining any k -coloring. Then the recoloring procedure described by
Fournier [5] is applied until either the quality of the coloring is improved (i.e. as
previously the measure of quality has been increased for at least one node) or a
node x with degree k has been reached and x does not belong to any strong odd
cycle.

184 D. de Werra

In this case the partial coloring procedure (used for application 2 of theorem
2.1.A [8]) may be applied. This will also improve the quality of the coloring. By
iterating this procedure one eventually gets an equitable k -coloring.

Theorem 3.2 could also be formulated in an alternative way:

Let G be a simple graph and h a positive integer ; let F be the family of all cycles which
contain only nodes having degree at least h and belonging to some strong odd cycle. If
S is a subset of nodes meeting all cycles in F, then for each k z= h G has a k -coloring
satisfying e (x) < 1 for any node x E X - S and e (x) s 2 for any x E S.

References

[l] L.W. Beineke, R.J. Wilson, On the edge chromatic number of a graph, Discrete Math. 5 (1973)

[2] C. Berge, Graphs and Hypergraphs (North Holland, Amsterdam, 1973).
[3] C. Berge, Notes sur les bonnes colorations d’un hypergraphe, Cahiers du C.E.R.O., 1.5 (1973)

[4] S. Fiorini, R.J. Wilson, On the chromatic index of a graph, I, Cahiers du C.E.R.O., 15 (1973)

[5] J.C. Fournier, Colorations des ar&tes d’un graphe, Cahiers du C.E.R.O. 15 (1973) 311-314.
[6] A. Ghouila-Houri, Caractbrisation des matrices totalement unimodulaires, C.R. Acad. Sci., Paris,

[7] D. de Werra, Equitable colorations of graphs, R.I.R.O., R-3, 1971, pp. 3-8.
[8] D. de Werra, An extension of bipartite multigraphs, Discrete Math. 14 (1976) 133-138.
[9] D. de Werra, “How to color a graph”, in: B. Roy, ed. Combinatorial Programming: Methods and

15-20.

219-223.

253-262.

254 (1962) 1192.

Applications (Reidel, Dordrecht, 1975) 305-325.

Annals of Discrete Mathematics 1 (1977) 185-204
@ North-Holland Publishing Company

A MIN-MAX RELATION FOR SUBMODULAR FUNCTIONS
ON GRAPHS

Jack EDMONDS and Rick GILES*
CORE, Universiti Catholique de Louvain, B-3030 Heverlee, Belgium

1. Introduction

(1.0) We prove here a new combinatorial min-max equality which unifies and
extends results including the matroid intersection theorem [4] and the theorem of
Lucchesi and Younger on the minimum number of edges which meet every directed
cut in a graph [14]. Like matroid intersection theory and optimum matching theory
[15], the subject is developed as statements on the existence of integer-valued
optima to certain large combinatorially described linear programs.

The method of proof used here generalizes the method used in [6] to prove the
polymatroid intersection theorem and the method used in [13] to prove the
Lucchesi-Younger Theorem including an idea which Lovlsz attributes to Neil
Robertson.

We are especially grateful to Ellis Johnson for his help on this work.
The present section states the main theorem. Sections 2-6 discuss several cases of

i t . Sections 7, 8 and 9 prove it. The results in Sections 7 and 8 are also of interest in
themselves. Special cases of Section 7 appear in a number of places. Section 8
extends the idea of Robertson and a main idea of [2] . Section 10 proves a
consequence of the main theorem, and also places the theorem in a setting which
we call “box total dual integrality”.

(1.1)
each e E E has tail t (e) E V and head h (e) E V.

Let G = (V, E) be a directed graph with node-set V and edge-set E, where

(1.2) For S V, let

6 (S) = { e E E : t (e) E S , h (e) f Z S } .

For S c V, let
for { v } .

= V - S. For u E V, let V = V - { u } and let o be used sometimes

(1.3) A family F of subsets of V is called a crossing family on V if

* The research of each author is partially supported by a grant from the National Research Council of
Canada.

185

186 J . Edmonds, R. Giles

S n T E F , S U T E F ,

for any two sets S E F and T E F such that

S f l T # 8 , S U T # V .

(1.4)
submodular on F if

For any family F of subsets of V, a real-valued function f (S) , S E F, is called

f (S fl T) + f (S u T) S f (S) + f (T)

for all S, T E F such that S n T, S U T E F.
For any vector, x = (x, : e E E) E RE, and any H C E, let

x (H) = 2 (x. : e E H) .

For any given graph G = (V, E) , crossing family F on V, submodular function f
on F, and vectors a, d, c E (R U { 2 w})", consider the linear program,

(1.5) maximize cx,

(1.6a) where d c x c a ,

(1.6b) VS E F , x (S (S)) - X (S (S)) G f (S) .

(1.7) For y = (ys: S E F) E R', let

Yf = c (ysf(S): S E F) ,

F(y , e) = c (ys : S E F, e E S (S)) - c (y s : S E F, e E S(s)).
The linear programming dual of (1.5) is

(1.8) minimize yf + za - wd

where y E RF, z E RE, and w E RE

(1.9) satisfy y 2 0 , z 2 0 , w 3 0 ,

V e E E, 2, - w, + F(y , e) = c,.

The 1.p. duality theorem says that:

(1.10)
these optima exists.

The maximum in (1.5) equals the minimum in (1.8), assuming either of

(1.11) Theorem. If c is integer-valued, and linear program (1.8) has un optimum
solution, then it has an integer-valued optimum solution. Hence, if c is integer-
valued, (1.10) holds even when restricted to integer-valued solutions [y, z , w] of (1.9).

(1.12) Theorem. If a, d, and f are integer-valued, and linear program (1.5) has an
optimum solution, then it has an integer-valued optimum solution. Hence, if a, d , and

Min-max relation for submodular functions on graphs 187

f a re integer-valued, (1.10) holds even when restricted to integer-valued solutions x of
(1.6).

Using a simple fact of linear programming, Theorem (1.12) is immediately
equivalent to:

(1.13) If a, d, and f are integer-valued, then every non-empty face of the polyhedron
P of the system (1.6) contains a n integer point. In particular, if P has a vertex, then
every vertex of P is a n integer point.

2. Network Flows

(2.0) Let G = (V, E) be a graph; let d, a E (R U { * w }) ~ , and let r,q E
(R U { * m})". A feasible flow in network G in the classical sense of [lo] is a vector
x E R E which satisfies

(2.1) d S x < a,

r, s x (6 (v)) - x(6(a)) s q. for all v E V.

Let F, = { { v } : v E V } and F2 = {a: v E V}. Let F = F, U Fz. Let f ((v }) = q. and

Clearly, F is a crossing family, f is submodular on F, and (1.6) for this case is
f (V - v) = -ru.

(2.1). Theorems (1.11) and (1.12) for this case are well-known.

3. Polymatroids

(3.0) For a matroid M defined on the set E, the rank function of M is f (S) = IJI
for any maximal J S such that J is independent in M. (For example, where E is
the set of indices of the columns of a matrix A, and where J C E is independent in
M when the set of columns indexed by J is linearly independent.)

(3.1) The rank function f (S) , S C E, of a matroid on E is submodular; it is
non-decreasing: A C B C E implies f (A) < f (B) ; f (0) = 0; and for each e E E,
f ({ e }) s 1 . Such an f determines its matroid, say M, by the fact that J is
independent in M iff IJI = f (J) .

(3.2)
The polyhedron,

Let f be any submodular function of all subsets of E. Let a E (R U { 1+ m})".

P,, = {x E RE: 0 < x a ; x(S) =S f (S) , V S C E } ,

known as a polymatroid, is much like the family of independent sets of a matroid.

in8 J . Edmonds, R. Giles

(3.3) Furthermore, Theorems (1.1 1)-(1.13) hold where the linear programs
(lSk(1.6) and (1.8)-(1.9) are replaced by

(3.4) maximize {cx : x E Po}

and the dual of (3.4).

(3.5) This follows immediately from (1.11)-(1.13) by letting E of (3.2) be the
edge-sef of a graph G = (V, E) such that the heads and the tails of the members of
E are all different;

(3.6) letting the F of (1.5) be

F = { { t (e) : e E S } : S

and letting the f of (1.5) be

E } ;

f ({ t (e) : e E S }) = f(S), for S c E, as in (3.2).

Theorem (3.3) is especially simple when

(3.7) the vector a is all infinite, and when

(3.8) f(S), S C E, is a non-negative, non-decreasing submodular function.
The linear program (3.4) becomes

(3.9) maximize cx = C (c,x, : e E E) ,

where Ve E E, x, 3 0,

VS C E, c (x. : e E S) S f(S).

The dual 1.p. is

(3.10) minimize yf = (f(S) . y (S) : S c E) ,

where VS C E, y (S) 3 0,

Ve E E, 2 (y (~) : e E s c E) 2 c,.

The so-called “Greedy Algorithm Theorem” says that:

(3.11) In the case of (3.7)-(3.9), and where the vector c is arranged so that

the following vectors x ” = (x t (,) : i = 1,. . ., 1 E 1) and y o = (y O (S) : S C E) are op-
timum solutions, respectively, of (3.9) and (3.10).

Min-max relation for submodular functions on graphs 189

(3.12) Let S, = {e(l) , e (2) , . . ., e (i) } .

(3.13)
k + l , . . . , l E / .

Let X ! V) = f(Sl), x ! (~) = f(S,) - f(S,-,) for i = 2 , . . ., k ; and x t c t , = 0 for i =

(3.14) Let yo(S,) = ce (,) - cec,- ,) , for i = 1, . . ., k - 1; yo(&) = c,,,,; and yo(S) = 0
for other S C E.

That these are optimum solutions of (3.9) and (3.10) follows, using the weak 1.p.
duality theorem, by showing that cx" = yof, that y o is feasible for (3.10), and that x"
is feasible for (3.9).

It follows from the greedy algorithm theorem that:

(3.15)
form x " , as defined in (3.13).

The vertices of PI = { x 3 0: x(S) f(S), VS C E } are the vectors of the

(3.16) In particular, where f is the rank function of a matroid, the vectors x o are
the (incidence) vectors of the independent sets of M. That is, x : = 1 for e E J and
x: = 0 for e E E - J, where J C E is an independent set of M.

(3.17)
non-negative linear combination of the rank functions of various matroids on E.

An interesting way to get a function f of the form (3.8) is to take a

(3.18) Another way to get a very particular kind of f of the form (3.8) is to let
f(S) = g(1 S I), S C E, where g is a non-negative, non-decreasing, concave function.
That is, for i = 0,1,2,. . ., 1 E 1,

g (i) = g (O) + h (l) + h (2) + - * . + h (i) ,

(3.19) In particular, for the f of (3.18), where g(0) = 0, we have immediately from
(3.15), that a vector is a vertex of P , iff its components are any arrangement of
h(1) , h (2) , . . ., h (k) , and I E I - k zeroes for some k .

(3.20)
of the vectors which are the various permutations of the numbers h (l), . . ., h(l E I).

Hence, the face P I n { x : x (E) = f (E) } of the P , of (3.19) is the convex hull

The greedy algorithm theorem, as presented here, and some other theory of
polymatroids, first appeared in [6]. Further, and better, treatments are [9] and [12].

Balas [I] recently presented a different derivation of a linear system defining the
convex hull of the vectors of all permutations of the numbers 1 , 2 , . . ., [El. We much
appreciate the thoughtfulness which Chvital devoted to bringing togethtr Balas'
work and ours.

1 90 J. Edmonds, R. Giles

4. Polymatroid intersection

(4.0)
a E (R U { * a})E.

Let fl and fi be any two submodular functions of all subsets of E. Let

(4.1) For i = 1,2, let

P, = { x E RE: 0 s x s a ; x (S) s fi(S), VS C E } .

As in the last section, each P, ,is a polymatroid.

(4.2) The polyhedron P I n P, is not generally a polymatroid.

(4.3)
(1.10)-(1.13) where linear programs (1.5) and (1.8) are replaced by

Nevertheless we do have the “Polymatroid Intersection Theorem” which is

(4.4) max {cx : x E P I n P2} ,

and its 1.p. dual.

(4.5) Where we take the intersection of three polymatroids, P , fl Pz f l Ps, in place
of two, the (1.11)-(1.13) part of (4.3) is generally not true. Of course, the (1.10) part
still holds, it being merely an instance of the 1.p. duality theorem.

(4.6) We get (4.3) as a special case of (1.10)-(1.13) by letting the E of (4.0) be the
edge-set of the same graph G = (V, E) as in (3 3 , that is, such that each e E E and
its end-nodes comprise a separate component of G ; letting d = 0;

-
(4.7) letting F = { t (S) : S C E } U { h (S) : S C E }

where t (S) = { t (e) : e E S } and
__
h (S) = V - { h (e) : e E S } = { t (e) : e € E } U { h (e) : e$Z S } ;

(4.8) letting f(t(S)) = min [f , (S) , k]

f (h (S)) = min [f2(S), k]

for S C E,

for S C E,
-

where k = min [f l (E) , f2 (E)] .

It is straightforward to verify that F is a crossing family of V, that f is a
submodular function of F, and that for this F, f, and d, the system (1.6) is equivalent
to the system

(4.9) 0s x s a ;

vs c E, x(S) fl(S), x(S) f2(S).

Min-max relation for submodular functions on graphs 191

(4.10) Where f l and f 2 are the rank functions of any two matroids on E, say MI
and Ma, the polymatroid intersection theorem becomes the “matroid intersection
theorem”:

The (1.13) part immediately implies that:

(4.11) Where P, is the polyhedron of matroid M, on set E, i = 1,2, the vertices of
P , n P2 are precisely the vectors of subsets of E which are independent in both MI
and M2, that is, they are precisely the points which are vertices of both PI and P,!

Likewise the (1.12) aspect of the matroid intersection theorem (when a = 00)

gives us that:

(4.12)
both matroids, MI and M,, equals

The maximum weight, 2 (c, : e E J) , of a set J c E which is independent in

(4.13) min

where

(fl(S) * y l (S) + fi(S). yz(S) : s C E)

vs c E, y , (S) 3 0, y 2 (S) 3 0;

Ve E E, (y l (S) + y2(S): e E S E) 3 c,.

And the (1.11) part gives us that:

(4.14)
restricted to integers.

If c is integer-valued then the y , (S) , S C E, i = 1,2, of (4.13) may be

For the case where c is all ones, equation (4.12)-(4.13) reduces to:

(4.15) max{(JI : J, independent in MI and M z)

= min {f,(S) + f2 (E - S) : S c E}.

(4.16) The polymatroid intersection theorem, where the f are non-decreasing and
without the constraint x a, and the matroid instances of it, first appear in [6].
Algorithmic proofs of matroid instances were obtained and published earlier, [5 ,
81. The theorem, with the constraint x a and without the restriction on 6, as well
as the main generalization (l.lOk(1.13) being presented here, first appears in [12].

5. Directed cut k-packings

Let G = (V, E) be an acyclic graph and let

(5.0) D (G) = { S C V : 0 # S # v, s(s) = 01.

192 J . Edmonds, R. Giles

(5.1)
some S E D (G) is called a directed cut of G.

Clearly, D (G) is a crossing family on V. A set of edges of the form 6(S) for

(5.2) For a given integer-valued function f(S), S E D (G) , a set H C E such that

VS E WG), I f f n W)l s f(S),

is called a directed cut f-packing of G. The incidence vectors of the directed cut
f-packing of G are precisely the integer solutions of the system

(5.3) Ve E E, O s x , S 1,

VS E D (G) , x(6(S)) S f(S).

(5.4)
system (5.3) is of the form (1.6) and so theorems (l.lOk(1.13) apply.

theory .

When f(S) is submodular, in particular when f(S) is a constant integer k,

For a constant k, directed cut k-packings are easily treated without the present

The theorem of Dilworth on the maximum number of incomparable elements in
a partial order immediately implies that:

(5.5)
as few as k directed paths in G iff 1 TI =S k for any T C H such that

A subset H of the edges of an acyclic graph G is contained in the edge-set of

(5.6) n o directed path of G contains more than one member of T.

It can be shown that

(5.7) a set T C_ H has property (5.6) iff T is contained in some member of D (G) .

Hence, we have that

(5.8) a set H
only if H is contained in the edge-set of some k or fewer directed paths in G.

E is a directed cut k-packing in G, for constant integer k, if and

(5.9) Corollary. A set H C E is a directed cut k-packing in G, for constant integer
k, if and only if H can be partitioned into some k or fewer 1-packings of the directed
cuts in G.

I t follows directly from (5.8) that:

(5.10) For a given acyclic graph G ‘ = (V’, E’), a given integer k, and given
edge-weighting c = (ce: e E E’), t he maximum weight directed cut k-packings of

Min-max relation for submodular functions on graphs 193

G' can be realized as the optimum integer flows of the optimum network flow
problem described in Section 2,

(5.11) where the G of Section 2 is the G' of (5.10), with the same edge-weighting,
together with, for each e E E', k extra edges in parallel with e and each having
weight of zero; also let G have a new node S, k new zero-weighted edges going
from S to each u E V', a new node t, and k new zero-weighted edges going from
each u E V' to t. Let d be all zeroes, a be all ones, rs = qs = k, r, = q, = - k, and
r, = 4. = 0 for u E V'.

For the case k = 1, and c all ones, the subject of this section is treated by
Vidyasankar and Younger [16].

6. Directed cut k -coverings

Let G and D (G) be as in Section 5.

(6.0)
C
g-covering of G.

Where g(S) is a non-negative integer valued function of S E D (G) , a set
E such that 1 C n S (S) l 5 g(S) for every S E D (G) is called a directed cut

The incidence vectors of the directed cut g-coverings of G are precisely the
integer solutions of the system

(6.1) V e E E, O S x , S 1,

- x(S(S)) c f(S) = - g (S)

for every S E F = (S c V: E D(G)}.

(6.2) A function g(S) is called supermodular when - g(S) is submodular.

(6.3). When g(S) is supermodular, in particular a constant k, the system (6.1) is of
the form (1.6) and so Theorems (l.lOb(1.13) apply. The integer min-max relation of
(1.10)-(1.12) becomes:

(6.4) Where g(S), S E D (G) , is any integer supermodular function such that

O=zg(S)s16(S)I for every SED(G) ,

where c,, e E E, are integers, and C is a direct-cut g-covering of G, we have

(6.5) min (cp : e E C)

194 J . Edmonds, R. Giles

(6.6) = m a x z (y , . g (S) : S E D (G)) - x (z e : e E E)

(6.7) - m a x (C (y , . g (S) : S € D (G))

- c (max [o, - c, + x (ys : e E f i (~))] :

over integers y s 3 0 and ze 2 0 such that,

tle E E, - ze + 2 (ys : e E 6(~)) s c,.

In particular, where the c, are all ones, formula (6.5)-(6.7) becomes

(6.8) Theorem.
the maximum over all

The minimum cardinality o f a directed-cut g-covering of G equals

(6.9) Y C D (G) of

1 u (6 (S) : s E Y)I + c (g(S) - I S(S)l: s E Y) ,

Where g(S) is all ones, (6.8) implies the theorem of Lucchesi and Younger [I41
that:

(6.10)
the maximum cardinality of a family of mutually disjoint directed cuts of G.

The minimum cardinality of a 1-covering of the directed cuts of G equals

(6.11) A graph G = (V, E) is called strongly connected when, for every u, v E V,
there is a directed path in G from u to v. A connected graph G is strongly
connected if and only if every e E E is contained in a directed polygon (directed
cycle) in G.

(6.12) It is easy to show that c C E is a 1-covering of the directed cuts of a
connected graph G if and only if the graph obtained from G by “shrinking” the
members of C is strongly connected - equivalently, if and only if the graph
obtained from G by adjoining to G, for each e E C, an edge e’ such that
h (e ’) = t (e) and t (e ’) = h (e) , is strongly connected.

We hope t o be able t o prove the following conjecture:

(6.13) For any constant integer k > 0, C C E is a k-covering of the directed cuts
of G = (V, E) if and only if C can be partitioned into k I-coverings of the directed
cuts of G.

(6.14) The function I S(S)l, S E D (G) , is modular - that is, it is both submodular
and supermodular. Hence, though we derived directed-cut f-packings, for sub-
modular f, and directed-cut g-coverings, for supermodular g, as different special

Min-max relation for submodular funcrions on graphs 195

cases of a more general system, in fact the two are equivalent: H is an f-packing for
G if and only if E - H is a g-covering for G, where

7. Total dual integrality

(7.0) We say that a system, A x s b, of linear inequalities in x, with rational A and
b, is totally dual integral when the dual of the linear program max{cx :
Ax s b} has an integer-valued optimum solution for every integer-valued c such
that it has an optimum solution. We say that a polyhedron is totally dual integral if
it is the solution-set of a totally dual integral system.

(7.1) Theorem. If a polyhedron P is the solution-set of a totally dual integral
system which has integer right-hand sides, then every non-empty face of P contains
an integer point - in particular, any vertex of P is an integer point.

Or, stated another way:

(7.1') Theorem. For any finite linear system, Ax S b, having rational coefficients,
if min{yb: y 3 0 , y A = c } is an integer for any integer-valued c such that the
minimum exists, then for any c such that max{cx: Ax s b } exists there is an
integer-valued optimum x.

(7.2) Using Theorem (7.1) we can conclude (1.12) immediately from (1.11).

To prove (7.1) we use the following lemma which we presume to be classical.

(7.3) A finite system of linear equations, A o x = bo, having rational coefficients,
has no integer-valued solution x if and only if there is a vector T such that TAO is
integer-valued, and r b 0 is not an integer.

Proof of (7.1). Assume the hypothesis of (7.1) for the system Ax
P = {x: Ax S b}. By the 1.p. duality theorem we have immediately that

b. Let

(7.4) max{cx : x E P } is an integer for any integer-valued c such that the
maximum exists.

A face of P is any subset of the form Po = {x E P : A o x = bo} where Aox =s bo is a
subsystem of A x s b. It is easy to show that

(7.5) if P o is a minimal non-empty face of P, then Po = {x: A Ox = b'}. By the
complementary slackness theorem of linear programming, for any c such that

196 J . Edmonds, R. Giles

max { c x : x E P } exists, the maximum is achieved over all members of some
non-empty face of P, and hence over all members of some minimal non-empty face
of P. Thus it suffices to show that every minimal non-empty face of P, say
Po = { x : A o x = b"}, has an integer-valued member. Suppose not. Then, by (7.3), let
rr be such that r A o is an integer-valued vector and rb" is a non-integer.

Any c = AA", for a vector A 3 0, is such that cx is maximized over P by any
member of Po, since for x E Po we have cx = A A o x = Ab", and for x E P we have
c x = AAx S Ab".

Choose A 2 0 such that A + r 2 0 and such that co = AAo is integer-valued. Then
c ' = (A + r) A " is integer-valued. By (7.4), for i = 0,1, d ' = max{c'x: x E P } is an
integer. By (7.5), for i = 0,1, we have c ' x = d' for every x satisfying AOx = b".
Hence, d ' - d" = c ' x - c o x = r A " x = r b o is an integer. Contradiction. 17

8. Tree representation of cross-free families

(8.0) Two sets S, T C V are said to cross if S rl T # 0, S U T# V, S g T, and
TC S. A family F of subsets of V is called a cross-free family on V if n o two
members of F cross.

(8.1)
with a function 1 from a set V to V (T) , is called a V-labelled tree T.

A tree T, with node-set V (T) , and with directed edge-set E (T) , together

(8.2) For any V-labelled tree T, we have a family {S,: i E E (T) } of subsets of V
determined as follows: for each i E E (T) , there - is a unique T (i) C V(T) such that,
with respect to graph T, 6 (T (i)) = { i } , 6 (T (i)) = 0; T (i) is the set of nodes u
(including the node u = t (i)) such that the unique path in T from u to t (i) does not
contain i. We let

S, = { u E V: l (u) E T(i)} .

(8.3) Theorem.

(8.4)

A family F on set V is a cross-free family if and only i f

there exists a V-labelled tree T such that

F = {S , : i E E(T)} .

Proof. It is easy to check that (8.4) implies F is cross-free
If F consists of just one set S, then let T consist of a single e q e i and, for each

u E V, let l (u) = t (i) if ZI E S, and l (u) = h (i) if ZIE S. Clearly T and 1 are a
V-labelled tree T satisfying (8.4).

If F' is a cross-free family on V, such that I F'l 3 2 , choose some S E F' and let
F = F ' - {S}. Assume, by induction on 1 FI, that we have a V-labelled tree T with
labelling function 1, which satisfies (8.4).

Min-max relation for submodular functions on graphs 197

(8.5) Let I (S)= {Z (u) : u E S } , let s = V - S, let F (i) - V(T)- T (i) , etc.
Let TI and Tz be the unique minimal subtrees of T such that

I (S)C V(Ti) , I (S)C V(Tz).

If I V(TI) f l V(Tz) 1 3 2 then there is an edge i E E (TI) n E (Tz). However,
i E E (T ,) implies T (i) n l (S) # 0 and T(i) n I (S) # 0, and i E E(T2) implies
T (i) f l Z(S) # 0 and T (i) n I (s) # 0. Hence, S, and S cross, which contradicts F‘
being cross-free.

Therefore, we have I V(T1) n V(Tz)I s 1, and so we can extend TI and T2
respectively to subtrees T : and T: of T such that, for some node u E V (T) , we
have

 TI) n v(T:) = { u } ,

Z(S) c V(Ti),

v(T:) u v(T:) = v(T),

I(S) c V (T ;) .

Let T‘ be the tree, and let I’ be the V-labelling of T’, defined as follows:

V (T ’) = (V (T) - { u }) U { u l , u 2 } where ul ,uz$Z V(T).

E (T ’) = E (T) U { e ’ } where e’$Z E (T) .

For each e E E(T’) , the head h ‘ (e) of e in T‘ is the same as the head h (e) of e in
T, and the tail t ’ (e) of e in T‘ is the same as the tail t (e) of e in T, except

t ’ (e’) = u , ;

t ’ (e) = u,

h ’ (e) = u,

h ’ (e ‘) = u2;

if i E E (T :) and t (e) = u ;

if e E E (T :) and h (e) = u ; for i = 1,2.

For each u E V, I ’ (v) = I (u) if l (u) # u ;

if I (u) = u and u E S ; I ’ (u) = u I

I ’ (u) = uz if I (u) = u and u E S.

It is easy to verify that F’ and the V-labelled tree T’ satisfy (8.4). Thus, Theorem
(8.3) is proved.

9. Proof of (1.11)

Let [y”, z”, w”] be a rational-valued optimum solution to (1.8) where c =

(c, : e E E) is integer-valued.

(9.0)
since F is a crossing family, T n U E F and T U U E F. For S E F, define ys“ by

Starting with i = 0, suppose T, U E F, T and U cross and 0 < y >< y;. Then,

198 J. Edmonds, R. Giles

y $ + y ; , i f S E { T n U , T u U }

y;+1 = y $ - y ; , if S E{T, U } ii;, otherwise.

It is easy to check that F (y ' + ' , e) = F (y ' , e) for all e E E. Therefore [y ' + l , zo, wo]
is a feasible solution to (1.8). Furthermore,

Y ' + I f = Y If + Y ;.tf(T fl U) + f (T u U) - f(T) - f (U)l sz Y 'f,
by the submodularity of f. Hence [y ' + ' , zo, wo] must also be an optimum solution to
(1.8).

Let a be a common denominator of { y : : S E F}. Let uo = a y o and for each vector
y '+' constructed according to (9.0) let u ' + I = a y ' + ' . Since y I+' 5 0, u '+ '> 0 and u ' + I

is integer-valued. Since 1 - t"' = 1 . y ' , we have 1 u ' + l = 1 . u ' . There can be only a
finite number of non-negative integer-valued vectors u having the same sum 1 . u.
Hence there can be only a finite number of distinct vectors in the sequence
{ y o , y I , . . ., y ' , y ' + ' , . . .}. Since

2 (yh+'l S 1' : S E F) = (y i l S I* : S E F) + y ; J T n U ('+ I T U U I* - I TI' - I U1'

> c (y b (s 12: s E F,

the sequence has only finitely many terms.

(9.1) Therefore there is an optimum solution

[y f , z:, w:: S E F, e E El

to (1.8) with the property that the family F* = {S E F: y f > 0) is a cross-free family
on V.

(9.2) The vector

[Y S , z,, w,: S E F, e E El,

where y s = 0 for S E F - F * , is a feasible solution to (1.8) whenever

(9.3) [y s , z,, we : S E F*, e E El

is a feasible solution to the linear program:

(9.4)
RE such that y S O , w SO, z SO, and

minimize c{ysf(S): S E F * } + c{a ,z , - dew,: e E E } by y E RF' and z, w E

(9.5) Ve E E, z , - we + F * (y , e) = c, ;

F * (y , e) = 2 (y s : S E F * , e E 6(S)) - (y s : S E F*, e E S(s)).

Min-max relation for submodular functions on graphs 199

This is simply the 1.p. obtained from (1.8) by suppressing the variables y, for
S E F - F * .

(9.6) By (9.1) and (9.2), the vector

[y:, z!, w ! : S E F, e E El

is an optimum solution of (9.4), and hence

(9.7)
an optimum solution of (9.4).

Denote the system (9.5) by

the vector (9.2) is an optimum solution of (1.8) whenever the vector (9.3) is

(9.8) z - w + yA = C ;

V = [a . . : S E F * , e E El

where

1 if e E6(S) ,

as,e = - 1 if e E s (S) , I 0 otherwise.

(9.9)
represents, as described in Theorem (8.3)-(8.4), the cross-free family F* on V.

Let tree T, and function 1 from V to V (T) , be a V-labelled tree T which

Let H be the graph such that

(9.10) V (H) = V(T), E (H) = E (T) U E ;

(9.11) T is a spanning tree of H;

(9.12) for every e E E, the tail of e in H, t , (e), is I (t (e)) where t (e) denotes the
tail of e in G, and the head of e in H, h H (e) , is l (h (e)) where h (e) denotes the head
of e in G.

By the manner in which T and 1 represent F * , for each S E F* we have

(9.13) 6(S) U {i} = SH(T(i)) and

8(s) = 6 H (T(i)) ,

where 6, () denotes 6 () with respect to H, where 6 (S) and a(.!?) are with respect to
G, where the other notation is as in (8.5), and where i is the edge of T such that
S = S, as in (8.2).

Hence, the matrix

A ' = [a :e: i E E(T) , e E E(H)]

where

200 J. Edmonds. R. Giles

is the same as the matrix [J 1 A]

(9.14)
indexed by [S , : i E E (T)] or E (T) .

where J is the identity matrix with columns indexed by E (T) and rows

Let M denote the incidence matrix of the graph H. That is

M = [mu, : u E V (H) , e E E (H)]

where
1 if u = t H (e) ,

if u = h H (e) , - 1

0 otherwise.

(9.15)
which are indexed by nodes u E T(i).

Clearly we can get row i E E (T) of A ’ by adding together the rows of M

(9.16) Since A ’ contains the identity matrix J, the rank of A’ is 1 V (H) (- 1, and
hence the rank of M is at least I V(H)I - 1. Since the sum of the rows of M is all
zeroes, the rank of M is at most 1 V (H) (- 1.

(9.17) Hence, any row of M is a linear combination of rows of A ’ . That is,

M = DA = D[J 1 A] = [D I DA]

where D consists of the columns of M which are indexed by E (T) .
By (9.8) and (9.14), we may express the linear program (9.4) in the form:

(9.18) minimize yf+ za - wd

by
satisfying

y E RE(=), z E RE, w E RE
z 2 0 , w 2 0 , y J 3 0 , and z - w + yA = c.

The dual 1.p. of (9.18) is

(9.19) max cx
where
satisfy

x E RE, u E RE(T)
d s x s a, u 3 0 , and

(9.20) Ju + Ax = [J 1 A] (y) = f.

Multiplying equation (9.20) by D we get

(9.21) M (;) = Of.

Min-max relation for submodular functions on graphs 201

The linear program (9.19) with (9.20) replaced by the equivalent (9.21) is a
familiar optimum network flow problem, which we denote by (R) . As we
mentioned in Section 2, it is well-known that, for integer-valued c, the dual 1.p. of
(R) has an integer-valued optimum solution if it has an optimum solution. The dual
1.p. of (R) is

(9.22) minimize rrDf + za - wd

by
satisfying

T E R E (T) , t E RE, w E RE
z 2 0, w 3 0, rrDJ 2 0, z - w + ITDA = c.

By (9.6), (9.8) has an optimum solution. Hence (9.19) and (R) have optimum
solutions. Hence (9.22) has an integer-valued optimum solution, say [r ' , zl, w '] .

Clearly, since D is integer-valued,

(9.23)
(9.18), i.e., of (9.4).

where y ' = rr'D, [y', z l , w'] is an integer-valued optimum solution of

(9.24) Therefore, by (9.2), we have an integer-valued optimum solution to (1.8). 0

10. Everything above

(10.0) For any polyhedron P C RE, the dominent of P is defined as P + Rf =
{ w : w 2 x for some x E P } . One purpose now is to describe the dominent of the
polyhedron P of any system of the form (1.6).

(10.1) For example we have seen in (6.3) that one such P is the bounded
polyhedron, say P (G , k) , whose set of vertices is the set of incidence vectors of
directed-cut k -coverings of G. For a given graph G = (V, E) and a given integer
k 2 0 .

(10.2) it follows immediately from (6.3) that where F1 = {S(R): R E D (G) } is the
family of directed cuts of graph G = (V , E) , f (S) - k for S E F,, F2 =

{ { e } : e E E } - F,, f(S) = 0 for S E F2, F = Fl U F,, and a = (a,: e E E) is all ones,
then P (G , k) is the P of (10.17) below.

We will see that

(10.3) P (G , k) + Rf is defined by the system in (10.18) below.

(10.4) Another purpose now is to place the polyhedra P of (1.6) in a broader
setting. We say that a polyhedron P C RE is box TDI if P intersected with any
"box", {x E RE : d s x s a } , d and a E (R U { &to})", is totally dual integral. We say
that a linear inequality system is box TDI if it together with any upper and lower

202 J. Edmonds. R. Giles

bounds on the individual variables is totally dual integral. Our main theorem (1.11)
states that systems (1.6), and hence their polyhedra, including the above P(G, k),
are box TDI.

(10.5) For any polyhedron P = { x E R E : c (a,x,: j < E) c b} , a, and b being
appropriate vectors, and for any function, 4: E’+ E, from a finite set E’ into E, we
say that

I P‘= x ERE”€’: c (a,x, : j E E) + c (a , , , ,~ , : j E E ’) c b

is obtained from P by duplicating, I { j ’ E E’: +(it) = j } l times, the variable x,, for all
j E E.

r
(10.6) Clearly, every polyhedron P‘, obtained from a P of (1.6) by duplicating
variables, is itself given by a system of the form (1.6), where the graph G’ which
gives P‘ is obtained from the graph G which gives P simply by “duplicating” edges
so that each edge j E E’ has the same head and tail as edge +(j) E E. Hence, every
polyhedron P’, obtained from the polyhedron P of a system (1.6) by duplicating
variables, is box TDI.

In another paper on the box TDI property we prove the following:

(10.7) Theorem.
is a matrix such that every entry is 0 , 1, or - 1.

(10.8) Theorem. Any polyhedron obtained from a box TDI polyhedron by
duplicating variables is itself box TDI.

Any box TDI polyhedron i s defined by a system A x 3 b where A

Using (10.8), we now prove:

(10.9) Theorem. Where P = { x : A x 3 b } # 0 is box TDI, the dominent of P is the
set of points w such that TAW 3 r b for every integer-valued r 3 0 such that rA is
0,1 valued.

Proof. A vector w is such that w 3 x for some x E P iff

(10.10)

By the 1.p. duality theorem, (10.10) holds iff

(10.11)

min{l . x’: ~ ‘ 2 0 , - x 2 - w,Ax + A x ’ > b } s 0.

max{ - tw + r b : t 3 0 , r 3 0, - : + rA = 0, rA 6 1) =S 0.

Since, by (10.8), the constraint system of (10.10) is TDI, and since the objective
function has integer coefficients, the maximum in (10.11) is achieved by an
integer-valued (t , r) . Hence, (10.11) holds iff

(10.12)
r A C 1 . 0

tw 3 r b for every integer-valued (t, r) such that r 3 0 and 0 S t =

Min-max relation for submodular functions on graphs 203

Of course, by (10.6), we have Theorem (10.9) for the case where Ax b is of the
form (1.6) without using (10.8).

(10.13) It is trivial to show that any face of a box TDI polyhedron is box TDI.

(10.14) By (4.11), the convex hull, say P, of the vectors of largest common
independent sets of two matroids M I and Mz on set E is a face of PI P2 as defined
by (4.1) and (4.10). Hence, P is box TDI, and so, by (10.9),

(10.15) Theorem. P + Rf is the set of solutions x of the system

VS 5 E, x (S) h (S) ,
where

h (S) = min { x (S) : x E P }

= min { 1 S n J I : J is a largest common independent set

of MI and Mz}.

Theorem (10.15), which has also been proved by W.H. Cunningham [3], answers

The following result was suggested to us by our co-worker in polyhedral
affirmatively a conjecture of Ray Fulkerson [l l] .

combinatorics, Gilbert0 Calvillo.

(10.16) Theorem.
valued function of F. Let a = (ae: a E E)E RE.

Let F be any family of subsets of E. Let f(S), S E F, be any real

(10.17) Let P = { x E R E : x < a ; VS E F, x (S) S f (S) } # 0.

(10.18) Then P + R f = { x E R E : T C S E F , x (S - T) s f (S) - a (T) } , where
a (T) = C (ue : e E T) .

Proof. By a version of Farkas lemma, for any polyhedron P = { x E R E :
Ax 3 b} # 0 where A is rational, we have a finite set TT of rational vectors T 3 0,
TTA 3 0 , such that

P + R f = { x E R":VTT E U,(rA)x 3 r b } .

Clearly, we may consider each TT E U to be integer-valued.

say T T ~ , for the inequality
Where Ax 3 b is the system defining P in (10.17), each TT E IZ has a component,

x(S) 3 f(9, S E F, (S)

- x, 3 - a,, e E E. (el

and has a component, say me, for the inequality

204 J . Edmonds, R. Giles

We prove the theorem by showing that each (rrA)x 2 rrb, is a non-negative
combination of inequalities of the form

x (S - T) 3 f (S) - a (T) , T c s E F. (S, T)

Clearly, these inequalities where T = S are not needed since P# 0.
Think of (rrA)x 2 rrb as obtained by adding together a family U nE of

inequalities where nF consists of rrs copies of inequality (S), for each S E F, and nE
consists of rr, copies of inequality (e) , for each e E E. Since the e component of rrA
is

- rre + 2 (rrs : e E S) 2 0,

clearly there exists a mapping 4 of IIE to IIF such that, for each i EL',, +-'(i)
contains at most one copy of each inequality (e), and, where i is a copy of inequality
(S) , we have T C S where T is the set of elements e such that 4-'(i) contains a
copy of inequality (e).

For each i E ZI,, by adding together inequality i and inequalities c#-'(i), we get
an inequality, say i', of the form (S, T) . Adding together all of the inequalities i', for
i E I&, we get TAX 3 rb . 0

References

[11 E. Balas, A linear characterization of permutation vectors, Management Science Research Report

[2] W.H. Cunningham, A combinatorial decomposition theory, Doctoral Thesis, University of Water-

[3] W.H. Cunningham, An unbounded matroid intersection polyhedron, Technical Report No. 234,

(41 J. Edmonds, Minimum partition of a matroid into independent subsets, J. of Research, Section B,

[5] J. Edmonds, Matroid partition, in Math. of the Decision Science, Part 1 (A.M.S., Providence, RI,

(61 J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Structures

[7] J. Edmonds, Matroids and the greedy algorithms, Math. Programming 1 (1971) 127-136.
[8] J. Edmonds, Matroid intersections, unpublished paper.
[9] J. Edmonds and R. Giles, Polymatroid theory (to appear).

No. 364, Carnegie-Mellon University, Pittsburgh, Penn. (1975).

loo, Waterloo, Ontario (1974).

December 1975, Johns Hopkins University, Department of Applied Mathematics (to appear).

N.B.S. 69B (1965) 67-72.

1968) 335-345.

and their Applications (Gordon and Breach, 1970) 69-87.

[lo] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,
1962).

[l l] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971)
168- 194.

[121 R. Giles, Submodular functions, graphs and integer polyhedra, Doctoral Thesis, University of
Waterloo, Waterloo, Ontario (1975).

[I31 L. Lovasz, O n two minimax theorems in graph theory (to appear).
[14] C. Lucchesi and D. Younger (to appear).
[15] W.R. Pulleyblank, Faces of matching polyhedra, Doctoral Thesis, University of Waterloo,

Waterloo, Ontario (1973). Also: Edmonds and Pulleyblank, Optimum matchings and polyhedral
combinatorics, Johns Hopkins University Distinguished Lectures in Applied Mathematics, May
1975, to be published by the Johns Hopkins University Press.

[16] K. Vidyasankar and D. Younger, A minimax equality related to the longest directed path in an
acyclic graph, Can. J . of Math. 27 (1975), 348-351.

Annals of Discrete Mathematics 1 (1977) 205-220
@ North-Holland Publishing Company

HOW CAN SPECIALIZED DISCRETE AND CONVEX
OPTIMIZATION METHODS BE MARRIED?*

A.M. GEOFFRION
Western Management Science Institute, Uniuersiry of California, Los Angela , CA, U.S.A.

Numerous practical problems involve both logical design choices and continuous-valued
decision variables which are predicated in some manner on the logical design. For instance:
industrial scheduling problems usually involve both sequencing and the determination of how
continuously divisible resources should be applied for the chosen sequence, and network
synthesis problems involve both the logical design of the network and the programming of flows
for the chosen design. Many such problems which are difficult to solve directly as a whole have
the tantalizing properties that (a) specialized algorithms (discrete or combinatorial) are available
for close relatives of the logical design aspect of the problem, and (b) for any particular logical
design the resulting continuous optimization problem can be solved by an available convex
programming method (usually by LP or a network flow technique). This raises the question of
how the two specialized types of algorithms can be married to provide an effective overall
approach to the problem. Several possible kinds of marriages are surveyed and attractive
opportunities for further research are pointed out.

1. Introduction

Some of the most difficult yet important potential applications of optimization
are to decision and design problems which involve a mixture of both discrete and
continuous-valued choices. It is unfortunate that the mathematical apparatus and
algorithmic approaches applicable to the discrete aspect of such problems are
usually entirely different from and incompatible with those applicable to the
continuous aspect. The dissimilarities between discrete/combinatorial optimization
and linear/nonlinear programming are many and profound. Consequently, the
state-of-the-art for such hybrid problems is well behind that for problems which
involve only discrete choices or only continuous-valued choices. With too few
exceptions, the current practice is to adopt a discrete or combinatorial approach
with an approximation which essentially submerges the continuous choice aspect of
the problem, or to do the converse, or to adopt a heuristic approach which treats
both aspects of the problem more evenhandedly.

The purpose of this paper is to begin the systematic study of methods by which
effective hybrid algorithms can be developed for hybrid problems. The prospects
for success seem brightest for a broad class of problems dubbed “discrete/convex

* This paper was partialiy supported by the National Science Foundation and by the Office of Naval
Research, and was presented at the Workshop on Integer Programming near Bonn, Germany,

’ September 8-12, 1975.

205

206 A.M. Geoffrion

programs.” We define this class, survey its applications, describe four promising
approaches to the development of applicable hybrid algorithms, and finally
conclude with an indication of attractive opportunities for further research.

1.1. Definition of discretelconvex programming

By a discretelconvex program we mean an optimization problem of the form

Min cs + f , (x)
s,x

s.t. 6 E A , x E Xs,

where A is a finite set of possible discrete choices or logical designs 6, and X , is a
convex set of possible continuous choices or activities x associated with any given 6.
The objective function distinguishes the direct cost of 6, cs, from the cost f , (x) of
the activities carried out under 6. The asymmetry of the notation in 6 and x reflects
the fact that, in many of the applications we have in mind, the choice of x is
predicated on the choice of 6 but not conversely; that is, the very domain of x may
depend on 6 whereas the domain of 6 can always be described independently of x.
More specifically, we presume that (DC) satisfies these two properties:

Property 1. For any fixed 6 in A, f,(.) is convex on X, and its minimum can be
computed with reasonable efficiency by a known convex programming algorithm
(e.g., by LP, NLP, a network flow method, etc.)

Property 2 . A reasonable efficient discrete or combinatorial optimization al-
gorithm is known for some problem related to (and hopefully a reasonable
approximation of)

Min c, + v (6) , where v (6) Inf f , (x) .
, € A X E X .

Problem (D) obviously is equivalent to (DC): it is infeasible or has unbounded
optimal value if and only if (DC) does; and if S o is optimal (E1-optimal) in (D) and
xo is optimal (&,-optimal) in the “inner” problem defining v(So) , then (6°,xo) is
optimal (el + &,-optimal) in (DC).’ Notice that Property 1 assures the relatively easy
evaluation of v (6) . Exactly what relative of (D) for which a discrete or combinator-
ial algorithm is available is deliberately left unspecified in Property 2. Usually v (a)

must be approximated by a much simpler function in such an algorithm, and
sometimes c, or even A must also be approximated. The intent of Property 2 is
simply to focus on applications where the discrete aspect of the problem is tractable
provided suitable approximations are made to submerge the continuous aspect.

One further comment must be made about (DC): although X, will necessarily be
a subset of a finite-dimensional vector space, no such restriction need be imposed
on A . In some applications S will be a map of one finite set into another, or some

’ See, e.g., [15, Theorem I] (where (D) would be called the “projection” of (DC) onto 6).

How can optimization methods be married? 207

other combinatorial object, rather than a tuple of real numbers. It is not the
structure of the space in which A dwells, but rather the logical structure of A itself
(in addition to finiteness) which permits mathematical manipulations involving 6 to
be carried out. Of course (DC) could always be reformulated so that 6 is replaced
by integer-valued indicator variables. However, in most applications such an
artifice serves only to obscure the natural structure of A and to cause an excessive
increase in representational complexity or size or both.’ It therefore seems wise not
to insist that (DC) be stated as a conventional mathematical programming problem
in real variables and equality or inequality constraints.

2. Some applications

Here we survey briefly some of the principal types of applications which fall
within the domain of discrete/convex pi-ogramming as defined above.

2.1. Production scheduling [21, 24, 28, 291

Setup and sequence-dependent changeover costs, minimum batch sizes, prece-
dence constraints, and crew integrity are some of the factors which remove many
production scheduling problems from the realm of ordinary linear or nonlinear
programming. The logical design 6 typically determines which jobs are to be done
in what order on which machines (or machine configurations), and possibly which
crew will handle each setup. The activity vector x then determines, for a given 6,
the timing and quantities of each run, the allocation of divisible resources to job
activities, and so on.

An algorithm in keeping with Property 1 is likely to be of LP type, possibly with
some nonlinear costs, while combinatorial algorithms in keeping with Property 2
abound (but with only limited success) in the literature on machine/job shop
scheduling/sequencing [6, 71. Example 1 describes a case where a successful
partnership was achieved between linear programming and a quadratic assignment
algorithm (see Section 3.1).

2.2. Network design [l, 2, 3, 4, 5, 12, 13, 321

Many problems connected with the design or modification of communication
networks and transportation networks can be posed as discrete/convex programs.
The discrete design S may select nodes for the installation of facilities -
multiplexers, concentrators, or interface message processors in computer communi-
cation networks, junctions in pipeline networks, interchanges in highway networks,

See Example 1 below, and think of the futility of attempting to express many realistic scheduling and
sequencing problems as integer linear programs.

208 A.M. Geoflrion

and so on. A design 6 may also select connecting links from a finite list of
possibilities, both in terms of which nodes are to be connected and in terms of the
capacity of the connection (there are standard transmission speeds for communica-
tion lines, standard sizes for gas and oil pipelines, only a few choices for the number
of lanes of a highway, etc.). The choice of discrete design requires that due
consideration be given to its impact on the flows in the network. Differences in unit
flow costs, delays due to congestion, and demand elasticity all tend to render flow
prediction a nontrivial problem even when 6 is fixed (see [13] for a discussion of the
influence of cost and congestion on the utilization of store-and-forward communi-
cation networks, and 19, 331 for a discussion of equilibrium flows in transportation
networks). The activity vector x represents, of course, the flows in a network.

Network flow algorithms are obviously the most natural choice for the task posed
by Property 1, particularly since their power has increased dramatically during the
last few years. Convex cost functions occur when congestion delays are taken as the
criterion [131. A variety of discrete optimization algorithms have potential for
Property 2: minimum spanning trees [4] when the network must have a tree
structure, set covering (341 for emergency service networks, generalized assignment
[31] when peripheral facilities must be linked directly to fixed service facilities, and
so on. Example 2 describes an application where a multicommodity flow algorithm
can be combined with a knapsack algorithm (see Section 3.2).

2.3. Physical distribution system planning [19, 20, 251

In distribution system planning problems the discrete design 6 determines the
geographic location of plants and/or warehouses, and possibly also the all-or-
nothing assignment of customers to these facilities for each integral bundle of
products. The activity vector x corresponds to product flows. This class of models is
conceptually close to network design as discussed above, but has enough disting-
uishing characteristics (such as the absence of link capacities and the presence of
facility capacities and economies-of-scale) that separate treatment is warranted.

2.4. Facilities layout [lo, 231

Facilities layout problems occur on a hierarchy of scales. On a global scale, in
which cities should the various facilities of a firm be located? Within a given city,
which sub-facility should be located in each available building? Within a given
building, which department or operating unit should be located on each floor and in
each work area? Within a given work area, what should be the layout of the various
pieces of equipment? The problem appears to be a combinatorial one, but flows
and communications can be influenced by locational layout and often need to be
considered jointly. Locational layout would be specified by 6 and x would specify
flows and communications.

Example 3 describes an application where linear programming for

How can optimization methods be married? 209

flow/communications is combined with a quadratic assignment algorithm for the
layout choices (see Section 3.3).

2.5. Other applications

There are many other applications which can be modeled as discrete/convex
programs. One interesting class is that of selecting and sequencing interdependent
capital investment projects (for hydroelectricity, manufacturing capacity expansion,
etc.). The logical design 6 would determine which projects are selected and their
sequence of execution, while x would determine the details of project timing and
how the system corresponding to a given 6 is operated over time. A particularly
nice case is developed in [8], where a dynamic programming approach was derived
for (D) itself that can be used for a variety of different “operating cost submodels”
specified by Xs and f s (x) .

Another important class of applications for discrete/convex programming is
transport scheduling. The problem here is different from the transportation
network design problems discussed earlier because the major emphasis is on how
fleet vehicles (planes, ships, trains, pool trucks, etc.) should move over an
established transportation network in response to demands for transport. The
possible sequences of moves for each vehicle comprises the combinatorial aspect of
the problem, while the exact timing of the moves and the determination of
passenger/cargo patronage comprises the continuous aspect. It is usually essential
to consider both aspects together since patronage adjusts to the frequency and
timing of transport service. See, for instance, [30] for a treatment of the problem in
the context of airline routing; the evaluation of v(6) is a linear programming
problem which determines the maximum profit loading of available passengers to
flights.

3. Computational approaches

We now describe four promising generic computational approaches to the
development of hybrid algorithms for discrete/convex programming. They are: (i)
combinatorial seeding with local convex enumeration, (ii) generalized branch-and-
bound, (iii) cyclic marginal optimization over 6 and x, and (iv) improving
approximations to (D).

3.1. Combinatorial seeding with local convex enumeration

By Property 2, a discrete optimization algorithm is available for some relative of
(D). Let 6” be the resulting approximation to an optimal choice for 6. Now use 6’ as
a “seed” to be improved, if possible, via “low order” changes evaluated by the
convex programming algorithm postulated by Property 1. What constitutes a low

210 A . M . Geoflrion

-Solve an approximation “Seed” 80
4 Evaluate c a t ~(6). to (D).

order change depends on the structure of A ; for instance, if S were a binary n-tuple
the order of change might be measured as the number of components whose values
are altered. It is helpful but not necessary for A to be a subset of a metrizable space.
Sometimes it is convenient to use the term “neighbor” for any modification of 6
that qualifies as being of acceptably low order. The emphasis on low order changes
is designed, of course, to restrict the magnitude of the local enumeration task.
Generally one wants the allowable order of change to be sufficiently low that local
enumeration is computationally practical, yet sufficiently high that an improved
logical design will be found if one exists.

This approach is pictured informally in Fig. 1. It is understood that the seed is not
actually replaced as the incumbent until one of its neighbors proves to yield a
superior feasible solution of (DC). Termination occurs when no neighbor of the
current incumbent is superior; the higher the allowable order of change the
stronger the degree of local optimality at termination.

i

Giscrete Problem Convex Problem

Fig. 1

A variant would be to generate several seeds from (D) rather than just one, as by
solving several approximations to (D) or by finding several suboptimal solutions to
a single approximation.

This approach has familiar analogs in the literature on heuristic programming.
See [14, Chapter 91 and [27]. See also [32] €or a highly successful application to gas
pipeline network design that has since been adapted and used extensively for
computer communication network design (e.g., [111).

The author has had very satisfactory experience with this approach in the context
of scheduling parallel chemical reactors with product-dependent changeover costs.
This application is now briefly reviewed.

Example 1. A changeover scheduling problem [21]. Several independent continu-
ous process facilities or flow shop production lines are arranged in parallel. Each
can make (process) some subset of products with production rates that may vary
from line to line, but that are reasonably proportional from line to line (as would be
the case when lines are similar except for their scale of implementation or their
basic cycle time). Each line has a linear production cost for each product it can
make, and a possibly different changeover cost between each pair of products. The

How can optimiznrion methods be married? 211

changeover cost matrices are reasonably proportional across lines. A number of
independent production orders are given, each of which specifies a minimum and
maximum production quantity, an earliest start date, and a due date. Violation of
either date incurs a per diem cost penalty. Splitting production orders is allowed. It
is desired to find a production schedule - which line produces how much of what
and when -that fills the production orders at minimum total cost over a scheduling
horizon of fixed (but somewhat flexible) length.

In this application, 6 gives the sequence of production runs specified as to
product and line but nor fully specified as to duration. Durations are given by x .
Property 1 holds because, when 6 is fixed, the optimal choice of x may be
determined by solving a linear program. The LP balances production costs
(exclusive of changeover charges) against penalties associated with any violations of
earliest start and due dates. Property 2 holds because (D) can be approximated
quite well by a quadratic assignment problem of reasonable size.

An LP code and quadratic assignment code were combined in the manner of
Figure 1. The definition used for “neighbor” was that any single production run
may be moved to another position on the same or another line, and any two
production runs may be interchanged.

A real application was made to the monthly scheduling of a complex of six
chemical reactors. A three month independent parallel test showed that the
program was able to achieve considerably better solutions than (experienced)
manual schedulers. The program has since been installed on the firm’s computer
and is being used routinely [21].

3.2. Generalized branch -and - bound

The essential concepts of branch-and-bound, currently the dominant approach to
integer programming, require very little mathematical structure and are quite
broad enough to encompass discrete/convex programming. The framework of [22]
will serve nicely with only the obvious notational changes to phrase it in terms of
(DC) rather than in terms of mixed integer linear programming. It is also advisable
to generalize the notion of “relaxation,” whence nearly all bounds are obtained in
branch-and-bound methods, to the following: a minimizing problem (PR) is said to
be a relaxation of a minimizing problem (P) if the feasible region of (PR) contains
that of (P) and if the objective function of (PR) is less than or equal to that of (P)
everywhere on the latter’s feasible region. This generalized definition requires an
obvious modification to property R3 and fathoming criterion FC3 in [22] in order to
reflect the fact that an optimal solution of (PR) is not optimal in (P) unless it is
feasible in (P) and yields the same objective function value for both problems
(although an E-optimality statement can still be made if the very last condition
fails). [22] will be sufficiently accessible to most readers that the algorithmic
framework of Section I1 therein, as generalized to (DC), need not be given in detail
here.

212 A.M. Geoffrion

So far, no use whatever has been made of Properties 1 and 2. The principal way
of doing so is to select a type of relaxation which permits advantage to be taken of
one or the other or both of these properties when trying to fathom the candidate
problems (alias node- or sub-problems). There are two major types of relaxations
used in mixed integer linear programming, both of which can be generalized to
apply to candidate problems derived from (DC) provided certain conditions hold:
relaxations based on direct convexification of the decision domain of the candidate
problem (as by allowing integer variables to take on continuous values), and
Lagrangean relaxation of selected constraints [181. Suppose that candidate prob-
lems are derived from (DC) by partially specifying certain components of 6 (we
presume, as seems permissible for most potential applications, that the structure of
A renders this prescription meaningful). An obvious difficulty with such candidate
problems is that the very notion of convexification in the domain of 6 is not
meaningful unless 6 inhabits a vector space, which definitely is not the case in many
applications of interest (e.g., Example 1). Moreover, the mathematical operation of
Lagrangean relaxation requires X, to be expressible at least partially in terms of
conventional real-valued equality or inequality constraints. The first difficulty can
be skirted if necessary by convexifying not in the domain of S, but rather in the
range spaces associated with S - the range of the real-valued function c () and of
the point-to-set map X ,). The second difficulty apparently cannot be skirted.

There is a striking relationship between the two types of relaxation just
discussed. It was shown in [18] that, for mixed integer linear programs, the best
possible Lagrangean relaxation is equivalent in a natural sense to a corresponding
convexification in the domain of the decision variables and also to a corresponding
convexification in the range space of the objective function and Lagrangeanized
constraints. The analysis can be generalized. Dropping the assumption that all
functions are linear invalidates the equivalence to convexification in domain space
but does not invalidate the equivalence to convexification in range space. The latter
equivalence even remains true when 6 is no longer taken to dwell in a finite vector
space, and when the constraining conditions other than those being Lagrangeanized
are no longer expressible as conventional real-valued constraints. This is a
consequence of the fact that many basic results of Lagrangean duality theory
require virtually no assumptions at all on the domains of the functions (e.g., [16,
Lemmas 3, 4 and 51). A formal proof of the basic equivalence between the best
Lagrangean relaxation and problem convexification in range space can be found in
[26, Lemma 2.21.

In particular applications one seeks to apply the convexification or Lagrangean
relaxation devices just discussed or possibly some other device, in order to obtain
candidate problem relaxations which Properties 1 and/or 2 render tractable. The
following example illustrates a situation in which this can be done.

Example 2. Network expansion with a budget constraint. This problem is a
capacitated version of the one treated in [2]. A conventional multicommodity

How can optimization methods be married? 213

network is given with capacitated links, a known flow requirements matrix, and
linear flow costs. A number of possible new links have been proposed, each with a
given flow capacity, linear flow cost, and fixed capital cost. What is the optimal
subset of new links which reduces the total cost of the optimal flow as much as
possible without exceeding a given maximum authorized capital expenditure?

The problem can be stated mathematically as follows in an obvious notation
where ij refers to the particular commodity which flows from the i th to the j t h
node, A is the set of existing links, B is the set of possible new links, and D is the
capital budget.

x z , 2 o 0 ,

8 k f = 0 or 1,

for all ij and kl E A U B, (5)

(6) for all kl E B.

This is a mixed integer linear programming problem which, for reasonable
numbers of potential new links (not much more than a hundred, say), should be
tractable by branch-and-bound if the main candidate problem relaxation is chosen
suitably. The usual LP relaxation, obtained by allowing the free binary variables to
be fractional, is not a multicommodity flow problem; efficient specialized multicom-
modity flow algorithms cannot be used and one must fall back to general linear
programming algorithms. An attractive alternative to the usual LP relaxation is to
employ a “tandem” Lagrangean relaxation. This will be illustrated on the full
problem (P) as stated above since the candidate problems are of the same
mathematical form so long as conventional dichotomous branching is used.

Let po > 0 be the analyst’s best guess concerning the marginal value to (P) of
increasing the budget D by one dollar. Solve the relaxation of (P) which results
when (4) is Lagrangeanized using p o and (6) is convexified in the usual way. This is
equivalent to an ordinary classical multicommodity flow problem because the 6 k f
variables can be eliminated analytically (solve for from (3), which must hold with
equality in an optimal solution):

214 A.M. Geoffrion

Let xo be an optimal solution, and let 5okl be the optimal multipliers corresponding
to (3)'. It can be shown that

h ' h P 5 : , + p o (2) foral l k l € B (7)

is a set of optimal multipliers corresponding to (3) in the relaxed version of (P) prior
to analytic reduction to (MF,.). Now solve a second relaxed version of (Pj in which
(3)' is appended and h a from (7) is used to Lagrangeanize (3):

Evidently this problem can be solved independently for x and for 6. It is easy to
show that xn from (MF,.) is also optimal here, leaving just the binary knapsack
problem

Max c subject to (4) and (6) (KA(1)
6 k l € B

as the only work necessary to solve the second relaxation (PRAo). Methods are
available which can solve (KAo) very efficiently even with several hundred binary
variables.

In summary, a tandem relaxation of (P) has been proposed which requires the
solution of one ordinary multicommodity flow problem (cf. Property 1) and one
binary knapsack problem over the possible new links (cf. Property 2). Both
Properties 1 and 2 are exploited. An otherwise conventional branch-and-bound
procedure can be built around this tandem relaxation. How well such a procedure
would function depends on how good the resulting bounds are. This has not been
tested experimentally, but it can be observed from the known theory of Lagrangean
relaxation [18] that the lower bound produced by this tandem relaxation has the
potential of being superior to that provided by the usual LP relaxation (in which (6)
is convexified). I t all depends on the choice of pn. If pn happens to have the same
value as an optimal multiplier of (4) in the usual LP relaxation, then the bound
produced by (MF,.) will coincide with that of the usual L P relaxation and the
second bound obtained with the help of (K,.) will usually be still better (it cannot be
worse).

How can optimization methods be married? 215

It may be worthwhile to iterate on the choice of po. There are at least two
conspicuous ways to do this. One is to perform a one-dimensional (unimodal)
search for the value of p which leads to the highest optimal value of (MF,). This is
particularly easy to do if a parametric multicommodity flow algorithm is available
which accommodates a single linear parameter in the objective function (the cost
coefficients of the links in set B are cfcI+ p d k I / b k ,) . This search is equivalent to
solving the partial dual of the usual LP relaxation in which only the budget
constraint (4) is dualized. The second way to find an improved p is to feed back the
budget constraint multiplier from (K h ~) with (6) convexified.

3.3. Cyclic marginal optimization over 6 and x

In some applications, Property 2 permits (DC) to be optimized with any fixed x.
Then it is natural to think of seeking an optimum of (DC) by first optimizing over x
with some fixed 6, then optimizing over 6 with the resulting x, th,en by optimizing
over x again with the new resulting 6, and so on. A monotonely improving
succession of feasible solutions will be found by such a cyclic marginal optimization
approach until a “marginally optimal” solution is found after which the marginal
solutions in x and 6 begin to repeat. Marginal optimality is an obvious necessary
condition for global optimality, but whether i t is sufficient depends upon the
structure of the problem.

This general approach is, of course, far from novel (e.g., [35, p. 1111).
The following example illustrates a plausible application of this approach in

which the discrete and convex marginal optimization problems are, respectively, a
quadratic assignment problem and a linear program.

Example 3. A facility assignment problem. A firm has a number of indivisible
facilities and a number of distinct locations to which they could be assigned. The
firm carries on a number of different activities, each of which imposes its own
requirements for “traffic” between the facilities. These requirements are suffi-
ciently dissimilar, and the traffic costs are sufficiently high, that the assignment of
facilities to locations materially influences the most profitable mix of activities. It is
therefore appropriate to optimize jointly the facility location assignments and
activity mix.

We adopt the following notations and assumptions:
x k

Ax s b the constraints specifying the set of possible activities,
x z o

P k

41;

cl,

the level of the k th activity of the firm,

(independent of the facility location assignments),
the net profit per unit of activity k exclusive of traffic costs,
the amount of traffic between facilities i and j incurred for each unit of
activity k ,
the cost per unit of traffic between locations 1 and m,

216 A.M. Geoffrion

Select S1 cA.
Set K = 1 .

a,/

6

Then the problem can be written:

the cost associated with assigning facility i to location 1 (can be m to
indicate an impossible assignment),
a mapping of facilities into locations; 6 (i) = 1 means that 6 assigns
facility i to location 1.

Evaluate v(8 '). Call

the solution xK.
- 4

s.t. Ax b.

Select S1 cA.
Set K = 1 .

x 2 0 ,

6 a 1:l mapping.

Evaluate v(8 '). Call

the solution xK.
- 4

It is evident that this is an ordinary quadratic assignment problem for fixed x and an
ordinary linear program for fixed 6, and hence a plausible candidate for cyclic
marginal optimization. This approach has not been tested computationally.

3.4. Improving approximations to (D)

The essential idea of this computational approach is to generate a sequence of
approximations to (D) which are improving in the sense that their solutions tend to
converge to an optimal solution of (D) itself. Property 1 comes into play in the
course of evaluating the performance v (6 ") of the solution 6" of the K t h
approximation (b)". Of course, the form of (e)" must be compatible with the
scope of Property 2. A rule must be specified to prescribe how (8)" is to be
generated based on knowledge of 6' and x k obtained from previous (k =

1,. . ., K - 1) evaluations of ~ (6 ~) and (f i) k . See Fig. 2.

Approximation Generator

Generate an approximation (D)
to (D) based on knowledge of . and xk for k 8 k f 1, . . . , K.

Discrete Problem

Solve (61K+ '. Call the solution I aK+ 1' . Increment K by 1 .

sK

Fig. 2

How can oprimization methods be married? 217

The principal varieties of this approach are determined by the type of rule used
to construct (B)". The most widely known rule is probably the one specified by
Benders decomposition for the case in which X8 can be written as

Xs = { x E X : G,(x)<O}, (8)

where X is a convex set independent of 6 and, for each 6, G6 is a vector of convex
functions. Benders' rule specifies a global lower approximation to u (-) which, at
the Kth step, is the upper envelope of all lower approximations to u (0) generated
at previous steps as a byproduct of evaluating ~ (6 ~) .

Benders decomposition is well known in the context of mixed integer linear
programming and need not be described in detail here [15,22]. The most
appropriate version in the context of (DC) is a generalization worked out by the
author elsewhere [17] which avoids having to assume: a) that f a (.) and G, (-) in (8)
are additively separable in x and 6 and linear in x, and b) that X is the nonnegative
orthant. The generalization does, however, require a certain mathematical property
to hold in order for the computational procedure to be practical (see [17, p. 2511). In
any case, an examination of the essential arguments of [17] shows that the basic
finite convergence theorem (Th. 2.4) holds whether of not A is a subset of a vector
space.

See [20] for a detailed description of a successful application of Benders
decomposition to a multicommodity distribution system design problem. It com-
bines a specialized pure 0-1 integer programming algorithm with an algorithm for
the classical transportation problem.

A completely different class of rules for constructing (B)" is obtained by
introducing the notion of a policy function p (.) which associates a point in X, with
every S in A. The ideal policy function p * (.) obviously is one which specifies the
minimizing value of x for fs over X8 as a function of 6, in which case one has

f S (p * (S)) = u (6) and p*(S)E X8 for all 6 E A. (9)
Situations where f 8 does not achieve its infimum over X8, or where X , is empty,
could be accommodated by standard devices but will not be discussed here. The job
of the Approximation Generator (See Fig. 2) at the Kth iteration is to specify the
next approximation p"+'(.) to p * (-) which takes advantage of the previous
information obtained via Property 1 and yet leads to a mathematical structure of

Min cs + f 8 (p K + l (6)) (By+*
8 E A

which is tractable within the scope of Property 2. Within whatever latitude may be
offered by Property 2, it seems desirable to require

p K + ' (S k) = x k f o r k = l , ..., K (10)

and that p " + ' (.) otherwise be as simple a function as is consistent with any known
properties of p *(.), which in turn depend intimately on the structure of f8, x6, and

218 A . M . Geoffrion

A . Finite termination follows trivially from the finiteness of A if (10) can be
enforced with exact equality for all K.

Except for the trivial case where pK+’(.) is taken as identically equal to x K , I am
unable to cite an instance where the policy approximation approach has been used.
This presents an attractive research opportunity.

An interesting comparison can be drawn between the Benders decomposition
approach and the policy approximation approach: the former approximates u (.)
from below by constructs in the range space of f , and G,, while the latter
approximates u (a) from above by constructs in the domain space of fa.

4. Conclusions and opportunities for research

We have defined a category of optimization problems, herein dubbed
discrete/convex programs, which has numerous practical applications and also
lends itself to the development of hybrid algorithms that exploit the individual
tractability of the discrete and convex aspects of the problem taken separately
(so-called Properties 1 and 2) .

Much work remains to be done before discrete/convex programming reaches
maturity in its ability to synthesize practical hybrid algorithms from the separate
algorithmic repertoires of discrete optimization and linear or convex programming.
One important task is to accumulate a broader and more detailed inventory of
applicable discrete/convex models along with specific statements of Properties 1
and 2 for each. This is necessary in order to discern the practical scope of the field
more clearly and to provide grist for the mill of hybrid algorithmic development.

Another important undertaking is to study the computational approaches
outlined here in more detail, both individually and with reference to similar hybrid
algorithms already available in the literature. Among the interesting questions €or
study in various applications contexts are the following:

For the combinatorial seeding with local convex enumeration approach:
How does the quality of the “seed” interact with the definition of the
enumeration “neighborhood” to determine the total enumerative work and
the degree of global optimality upon termination?
Do some neighborhood definitions facilitate particularly efficient implicit
enumeration techniques in the local convex enumeration phase?

What useful kinds of relaxation or other bound-producing operations exist in
addition to convexification and Lagrangean relaxation?
What are the most effective ways to determine the best multipliers for
generalized Lagrangean relaxation?
To what extent do the accumulated auxiliary devices and conventional
wisdom of integer linear programming carry over to the more general context
of (DC)?

For the generalized branch-and-bound approach:

How can optimization methods be married? 219

For the cyclic marginal optimization approach:

For the improving approximations approach to (D):
Under what conditions does marginal optimality imply global optimality?

Are there applications where (8) does not hold and yet approximation rules
can be devised with properties similar to those of Benders decomposition?
Are there applications where useful properties of p * (*) can be derived to
guide the policy approximation approach? (Properties of optimal policies
have been a traditional concern in dynamic programming and inventory
theory, but have yet to receive serious attention in modern computationally
oriented mathematical programming.)
What other promising kinds of approximation generators for (D) are there
besides the two types discussed herein?

Finally, what other attractive approaches exist besides the four discussed in this
paper for the development of hybrid algorithms for discrete/convex programming?

References

[11 G. Bergendahl, Models for inuestmenrs in a road network, Department of Business Administration,
Stockholm University, Monograph No. 1, Bonniers, 1969.

[2] D.E. Boyce, A. Farhi and R. Weischedel, Optimal network problem: A branch-and-bound
algorithm, Environment and Planning, 5 (1973) 519-533.

[3] W. Chou, Computer communication networks - the parts make up the whole, 1975 National
Computer Conference, AFIPS Conference Proceedings (AFIPS Press, Montvale, NJ, 1975)

[4] W. Chou and A. Kershenbaum, A unified algorithm for designing multidrop teleprocessing
networks, Proc. Third IEEE Symposium on Data Networks Analysis and Design, St. Petersburg,
Florida, November 13-15, 1973, pp. 148-156.

[5] N. Christofides and P. Brooker, Optimal expansion of an existing network, Math. Programming, 6
(1974) 197-211.

[6] J.E. Day and M.P. Hottenstein, Review of sequencing research, Naval Res. Logist. Quart., 17
(1970) 11-39.

[7] S.E. Elmaghraby, The machine sequencing problem - review and extensions, Naual Res. Logist.
Quart., 15, 2 (June 1968), 205-232.

[8] D. Erlenkotter and J. Scott Rogers, Sequencing competitive expansion projects, Working Paper
No. 234, Wewtern Management Science Institute, UCLA, June 1975.

[9] M. Florian and S. Nguyen, A method for computing network equilibrium with elastic demands,
Publication #2, Centre de Recherche Sur Les Transports, University of Montreal, January 1974.

[lo] R.L. Francis and J.A. White, Facilities Layout and Location: A n Analytical Approach (Prentice-
Hall, Englewood Cliffs, NJ, 1974).

[l l] H. Frank, I.T. Frisch and W. Chou, Topological considerations in the design of the ARPA
computer network, SJCC 1970, AFIPS Conference Proceedings (AFIPS Press, Montvale, NJ) pp.
581-587.

[12] H. Frank, R.E. Kahn and L. Kleinrock, Computer communication network design - experience
with theory and practice, SJCC 1972, AFIPS Conference Proceedings (AFIPS Press, Montvale, NJ)

[13] L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: An approach to store-and-

[14] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (Wiley, New York, 1972).

119-128.

pp. 255-270.

forward communications network design, Networks, 3 (1973) 97-133.

220 A . M . Geoffrion

[15] Geoffrion, A.M., Elements of large-scale mathematical programming, Management Sci., 16 (1970)

[16] A.M. Geoffrion, Duality in nonlinear programming, SZAM Review, 13 (1971) 1-37.
[171 A.M. Geoffrion, Generalized Benders decomposition, J. Optimization Theory and Appl., 10 (1972)

[181 A.M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Study 2

[19] A.M. Geoffrion, A guide to computer-assisted methods for distribution systems planning, Sloan
Management Review, 16 (1975) 17-41.

[20] A.M. Geofffrion and G.W. Graves, Multicommodity distribution system design by Benders
decomposition, Management Sci., 20 (1974) 822-844.

[21] A.M. Geoffrion and G.W. Graves, Scheduling parallel production lines with changeover costs:
Practical application of a quadratic assignment/LP approach, Operations Res. 24 (1976) 595-610.

(221 A.M. Geoffrion and R.E. Marsten, Integer programming algorithms: A framework and state-ot-
the-art survey, Management Sci., 18, (1972) 465-491.

[23] F.S. Hillier and M.M. Connors, Quadratic assignment problem algorithms and the location of
indivisible facilities, Management Sci., 13 (1966) 42-57.

[24] M.L. Hong, Experiments with a job shop production model coupling a linear program and a
heuristic scheduling procedure, M.S. Thesis, Graduate School of Management, UCLA, 1974.

[25] A.C. Lea, Location-allocation systems: An annotated bibliography, Discussion Paper No. 13, Dept.
of Geography, University of Toronto, May 1973.

[26] T.L. Magnanti, J.F. Shapiro and M.H. Wagner, Generalized Linear Programming solves the dual,
Management Sci. 22 (1976) 1195-1203.

[27] H. Miiller-Merbach, Heuristic methods: Structures, applications, computational experience, in
R.W. Cottle and J. Krarup, eds., Optimization Methods (English Universities Press, London, 1974).

[28] T. Prabhakar, Some scheduling applications in the chemical industry, in Symp. Theory of
Scheduling and Its Appl., 86 (Springer, Berlin, 1973).

[29] T. Prabhakar, A production scheduling problem with sequencing considerations, Management Sci.,

[30] R.J. Richardson, Benders' decomposition method applied to an airline routing problem, Ph.D.
Dissertation, Dept. of Industrial Engineering, Systems Management, Engineering and Operations
Research, University of Pittsburgh, 1973.

[31] G.T. Ross and R.M. Soland, A branch and bound algorithm for the generalized assignment
problem, Math. Programming, 8 (1975) 91-103.

[32] B. Rothfarb et al., Optimal design of offshore natural-gas pipeline systems, Operations Rex, 18

[33] E.R. Ruiter, The prediction of network equilibrium - the state of the art, Transportation Systems

[34] C. Toregas, R. Swain, C. ReVelle and L. Bergman, The location of emergency service facilities,

[35] W.I. Zangwill, Nonlinear Programming (Prentice-Hall, Englewood Cliffs, NJ, 1969).

652-691.

237-260.

(1974) 82-114.

21 (1974) 34-42.

(1970) 992-1020.

Division, Dept. of Civil Engineering, MIT, June 1973.

Operations Res., 19 (1971) 1363-1373.

Annals of Discrete Mathematics 1 (1977) 221-231
@ North-Holland Publishing Company

ON INTEGER AND MIXED INTEGER FRACTIONAL
PROGRAMMING PROBLEMS*

Daniel GRANOT
Department of Economics a n d Commerce and Computing Science Program., Simon Fraser
University, Burnaby, BC, Canada

Frieda GRANOT
Faculty of Commerce and Business Administration, University of British Columbia,
Vancouver, BC, Canada

We construct in this paper new cutting plane algorithms for solving the Integer Fractional
Programming (IFP) and the Mixed Integer Fractional Programming (MIFP) problems.

By using Charnes and Cooper’s approach for solving continuous fractional programs we
develop two types of cutting planes, which can be systematically generated and applied while
solving (IFP) problems. Similar results are obtained for the (MIFP) problem.

By employing Martos’ approach for solving continuous fractional programs together with
Young’s primal algorithm for solving Integer Programming problems, we are able to construct a
primal algorithm for solving (IFP) problems in finitely many iterations.

1. Introduction

The Integer Fractional Programming (IFP) problem can be formulated as:

(IFP): max{(cTx + cO)/(dTx + do)}

s.t. Ax b, x 3 0 , x integer.

Problems with linear fractional objective function arise, e.g., in attrition games
[13], Markovian replacement problems [5,14], the cutting stock problem [7], primal
dual approaches to decomposition procedures [2 , 151, and portfolio theory [19, 231.
If the variables in the fractional model represent indivisible commodities, then
restricting them to integer values results with the (IFP) formulation. For example,
in [21] the Mining for Investment Return problem was formulated as an (IFP)
problem.

Robillard [18] has developed an algorithm for solving a special class of (0, 1)
fractional programs. The algorithms developed by Florian and Robillard [6],
Grunspan and Thomas [12] and Anzai [l] for solving (IFP) problems are based o n
Isbell and Marlow’s results for continuous fractional programs [13]. Their al-
gorithms reduce the problem of solving (IFP) to that of solving a finite sequence of
linear integer programming problems.

* This research was partly supported by NRC Grants Number A-4024, A-3998 and A-4181.

22 1

222 D. Granot, F. Granol

In this paper we construct new algorithms for solving (IFP) and Mixed Integer
Fractional Programming (MIFP) problems. In contrast with the results in [l , 6, 121,
which are based on Isbell and Marlow's approach to solve fractional programs, our
algorithms are based on Charnes and Cooper's method [4] and on Martos' method
[171 for solving continuous fractional programs. More specifically, applying Charnes
and Cooper's transformation [4] on (IFP) results with an equivalent problem,
denoted by (IFP1). By exploiting the relationship between (IFP) and (IFP1) we
develop two types of cutting planes which can be systematically generated and
applied while solving (IFP) problems. Similar results are obtained for the (MIFP)
problem. Also, based on Martos' [17] and on Young [22], or Glover [8], a primal
algorithm for solving the (IFP) problem in finitely many iterations is developed.

2. Cut A for (IFP)

Consider again the (IFP) problem:

max{(c ' x + co)/(d 'x + do)} (1)

s.t. Ax s b (2)

x 2.0, x integer (3)

where A is an m x n matrix, cT, d T and b' are given row vectors, co and do are
scalars and x is an n x 1 column vector of unknown variables.

Let us denote by

S = { x ; A x s b , x 2 0 } (4)

and assume that
Assumption 1: dTx + do > 0 on S.
Assumption 2: S is a non-empty and bounded set in R".
The difficulty in solving (IFP) problems stems from the fact that the algorithms

for solving continuous fractional programs, in which the objective function is
maintained in its original form (l), require that primal feasibility will be satisfied in
each iteration. Therefore, one cannot hope to solve an (IFP) problem by applying a
dual cutting plane algorithm, e.g., that in [9],-directly on (l), (2), (3). In order to
circumvent this difficulty we shall first apply Charnes and Cooper's transformation
[4] on (IFP) to obtain an equivalent problem, denoted by (IFPl), of the form:

max{t = c'y + cot } (5)

s.t. Ay - bt (6)

d T y + dot = 1 (7)

y , t 2 0 , y / t integer (8)

where y = tx. Then, we shall construct cutting-planes which can be used for solving
the equivalent (IFP1) problem.

Fractional programming problems 223

Remark 1. Assumption 1 above is not restrictive in the sense that when not
satisfied we may have to solve two or at most three problems of the form (IFP1).
Assumption 2 implies that t > 0 in every feasible solution (y, t) to (IFPl), see [4].

Theorem 1. I f d T x * + do > 0 for x *, an optimal solution for (IFP), and i f (y *, t *) is
an optimal solution for (IFPl), then y * / t * is an optimal solution for (IFP).

Proof. Similar to that of [4, Theorem 11, hence omitted.

From Theorem 1 we conclude that in order to solve (IFP) it is sufficient to solve
the equivalent problem (IFP1).

Let us solve the (LP) problem associated with (IFPl), after introducing slack
variables to convert inequalities in (6) to equalities. Then z and the basic variables
in the optimal tableau can be expressed in terms of the non-basic variables as
follows:

where Ie, IN are the set of indices corresponding to the basic variables (excluding t)
and the non-basic variables, respectively.

Note that Assumption 2 implies that t is a basic variable at the optimal solution.
Clearly, from the optimality criterion, do, 3 0, j E I N . Now if aio/am+l,o is integer for
all i E IB then an optimal solution x * to (IFP) is given by (x? = aio/am+l,o i E I,,
x T = 0 i E IN}. Otherwise, there exists at least one index, say k, for which ako/a,+l,o
is not integer.

Naturally, when striving to satisfy the integrality restriction, one is tempted to use
the kth basic constraint as a source row for generating a Gomory’s cut. However,
this might be somewhat complicated due to the congruence relation, y / t = O
modulo 1, in (8). In order to overcome this difficulty we shall resort to the
relationship between (IFP) and (IFPl), which was established for continuous
fractional programs in [4, 201.

Let us denote by B the optimal basis associated with the current optimal
continuous solution to (IFP1). Since t is a basic variable, 6 can be partitioned into

B = (I B -1)

224 D. Granot, F. Granot

where de contains the components of d corresponding to B. Further, it can be
shown by matrix calculation, see also [20], that if &' is partitioned into

8-' = (Z: Ell)
where M I I E R"'""', then

M11 = B-' - B-'b(do dBB-'b)-'deB-', h f 2 1 = - (do dBB-'b)-'dBB-',

Note that Assumption 1 implies that do + dEB-'b > 0.
Using (2) and the relationship between (IFP) and (IFPl), the continuous

fractional problem associated with (IFP) (after adding slack variables) can be
equivalently written as:

x 3 0 , x integer

where G,, = (B-')#N, and N, is the column of A corresponding to the non-basic
variable x,.

By assumption, a k o / a m + l , o is not integer and therefore the k t h constraint in (14)
can serve as a source row for generating a Gomory's cut, see [lo], of the form

where

0 &J = G k j - [Gk j] < 1, 0 < f k 0 = a k O / & + l , O - [a k O / a r n + l , O] < 1

and [a] denotes the largest integer smaller than or equal to a. Inequality (15) should
be satisfied by any feasible solution to (IFP). Multiplying (15) from both sides by 2,

t > 0, substituting tx, = yJ, j E IN and using (11) to express t, in (15), in terms of the
non-basic variable results with the constraint

Clearly, (16) is not satisfied by the current continuous optimal boiution rep-
resented by (lo), (11). Thus, whenever a constraint of the form (16) is appended to

Fractional programming problems 225

the optimal tableau it cuts off the optimal continuous solution but not any integer
feasible solution for (IFP). Cut of the for (16), to which we shall refer to as Cut A
can be systematically generated and appended to (IFP1) whenever the continuous
optimal solution does not satisfy the integrality requirements.

We remark that other cuts which were offered to Integer Programs can be used,
in a similar manner, to generate cuts for (IFP) problems, e.g., Martin’s “acceler-
ated” cut [16].

3. Cut B for (IFP)

By using similar arguments to those used by Gomory [9], we are able to construct
another cutting plane which can be systematically generated and employed when
solving (IFP) problems. In contrast with Cut A, the cut to be constructed in this
section, to which we shall refer to as Cut B, is generated directly from (IFP1).
However, while Cut A can Le applied whenever the optimal solution to the
associated continuous problem does not satisfy the integrality requirement, Cut B
can be applied only when an additional requirement, which can be easily verified at
the outset, is met.

Let us consider again the (IFP1) problem and let t be a lower bound for t in
(IFP1). Such a value can always be secured by solving the (LP) problem

max{dTx + do s.t. Ax s b, x * O } , (17)

and taking t = l/(dTx * + do) where x * is an optimal solution for (17). Assumptions
1, 2 guarantee that t > O .

Let us assume again that a k o / a m + l , O in (lo), (11) is not integer, and consider the
following two equations taken from (lo), (11)

r = am+i,o + C G m + t . j (- y j) .
J E I N

From y . G O modulo t we have

Further, since the value of f is always given by (19), we can add or subtract (19)
from (20) as many times as necessary in order to obtain

226 D. Granot, F. Granot

Moreover, we can use the relations

y, = 0 modulo r, j E IN

to obtain

2 fkfy, - f k o modulo
,€IN

where

0 fk j = fkj - [fk,]

From (23) we conclude that either

or

However, fk, 3 o and y, 3 o ~j E I,,,, thus, if f k 0 < t only relation (24) is feasible and
can then be replaced by the constraint

(26) sl = - f k 0 + 2 f k j y j *o, s, = 0 modulo r
J E I N

which should be satisfied by an optimal solution to (IFP1). Clearly, (26) is not
satisfied by the current optimal solution to (IFP1). Therefore, whenever there exists
y k for which a k O / a m + l . O is not integer and ~ k 0 - [~ k o / ~ m + l , o] ~ ~ m + ~ , , ~ < t , a cut of the
form (26) can be appended to (lo), (11) which will cut off the non-integer optimal
solution to (IFP1).

-

4. A primal algorithm for integer fractional programs

In this section a primal all integer algorithm for solving (IFP) is presented. The
algorithm proceeds to an optimal solution for (IFP) through a finite sequence of
feasible solutions. It is applied directly to (IFP) in a format originally suggested by
Martos [17] for continuous fractional programs, and is a direct and natural
extension of the primal algorithm for linear integer programs, see e.g., [2,8,22], to
(IFP) problems.

Consider again the (IFP) problem in which inequality constraints were converted
to equalities by introducing slack variables. Assume that all the given data in (IFP)
is in integers and that a feasible integer solution to (IFP) is at hand. Thus, (IFP) can
be equivalently written as:

xB, xN 3 0 and integers,

Fractional programming problems 227

where iio 3 0 and integer, A is a matrix of integer entries, xB and x N are vectors of
basic and non-basic components, respectively, and I N is the set of indices
corresponding to non-basic variables.

Clearly, neither Cut A nor B can be employed in a primal algorithm for solving
(IFP) problems, since adding any of these cuts to the constraints of (IFP) will
destroy primal feasibility. The primal algorithm to be presented in this section is
based on Martos’ [17] adjacent extreme point algorithm for solving continuous
fractional programs. In Martos’ algorithm the original structure of the constraints is
maintained, and the iterations are carried out in an augmented simplex tableau
which includes m + 3 rows. The first m rows correspond to the original constraints,
the m + 1 and m + 2 rows correspond to the numerator and denominator of the
fractional function, respectively, and the last row corresponds to the 6’s where

< = c o d , - doc,, j E IN. (28)
In every iteration of the algorithm the first m + 2 rows are modified through the
ordinary pivot opertions, whereas the last row is modified via (28).

0, j E IN, in (27), then (xB = Zo, xN = 0) is an optimal solution to
(IFP). Otherwise, there exists an index k , k E IN, for which t k > 0. Let

Now, if 6

A = min{ii,o/iia ; &k > 0). (29)

Then any row u, for which [& o / & k] S &, can serve as a source row for generating a
Gomory’s cut of the form

s + [~ q / & k] x ~ = [& O / & k] , s *o. (30)
lEIN

This cut was first suggested by Gomory in [lo] for his all integer algorithm, and was
used subsequently by Ben-Israel and Charnes [3] to construct their all-integer
primal algorithm for (IP).

In order to solve (IFP), cut (30) can be added to (27) and serve as a pivot row,
with the k t h column as a pivot column. Since the value of the pivot in this case is
[i i , k / &] = 1, the new coefficients obtained after performing the ordinary pivot
operations are all integers. Moreover, adding (30) to (27) does not exclude any
feasible integer solution to (27). The slack variable s in (30) will be a new basic
variable whose value in the new tableau will be [i i , , / d , k] .

Whenever [&JZUk] = 0 a stationary cycle’ occurs, and the value of the constant
vector is not changed. Since we assumed that S = { x ; Ax 6 b, x 2 0) is bounded, a
primal algorithm for (IFP) will converge in a finite number of iterations if we can
guarantee that any sequence of stationary cycles is finite*. In the (IFP) problem,

The problem of finiteness in the primal algorithm for (IP) is sometimes clarified by the distinction
between stationary cycles and transition cycles. A stationary cycle is a degenerate cycle in which
[aOa/auk J = 0, whereas in a transition cycle the objective function is strictly increased.

* For a very thorough discussion of the problem of finiteness in the primal algorithm for (IP) via the
distinction between stationary and transition cycles the reader is referred to [22].

228 D. Granot. E Granot

since the last row is modified via (28), we cannot establish strict lexicographical
decrease of a certain column vector, the way it was done in [S] or [22]. Thus, a
finiteness proof of a primal algorithm for (IFP) problems, in which we systemati-
cally generate cuts of the form (30), is not available at this stage.

Let us superscript the elements obtained from (27), (30) after performing one
pivot iteration by (A) . Then,

&<I = 50- [a u O / a o k] a k (31)
where

z k = (a l k , CZk,. . . > a m k) ' ,

A 1

= ?od, - do?, = (c o - ck[&o/a,k])(d, - &[&,/a,k])

-(do- zk[auO/auk])(c, - c k [a o , /auk])

=(cod; -d;lc,)-[a,/a"k](COdk -dock)-[aoo/a&](ckd, -&el)

= 6 - [& , / a o k] i k -[auO/a"k](dd, -ak?,),

where k is the pivot column and u is the source row in (30).
In a stationary cycle [i i ,o /&k] = 0 and thus, for a stationary cycle

. . -
?, = t , - [a",/a"k] ' T k . (32)

Therefore, the modification of the last row via (32) in stationary cycles can simply
be achieved through the ordinary pivot operations rather than by (28). Moreover,
(32) indicates that in stationary cycles the linear fractional objective function can be
replaced, for tableau modification sake, by a linear objective function whose
relative cost coefficients are the c's .

The above observation in conjunction with Young's ingenious reference row [22]
(see also Glover [S]) can be used to construct a primal algorithm, in which cut (30) is
systematically generated whenever for some k E IN, > 0, which converges to an
optimal solution t o (IFP) in finitely many iterations.

5. Mixed integer fractional programming (MIFP)

The mixed integer fractional programming problem is an optimization problem
of the form (MIFP):

max{(cTx + c z y + co)/(dfx + d : y + do)},

s.t. A ~ x + A , y S b,

x, y 3 0 , x integer.

Let us denote by

S = { (x , y) ; A ~ x + A z y b, X, y 3 O},

and assume

242 M. Grotschel

Proof. Clearly (6) is equivalent to (2) if rn = n. We have to prove that (6) implies
(r + 2)-connectedness.

If there is a k with r < k < f (n + r) such that dk-, S k , then by the arguments of
the proof of Theorem 8, Section (1) (a) (r t 2)-connectedness is assured.

If dk-, > k for all r < k < 1 (n t r) , we have d, 2 q + r, where q : = -

dn- , - , .
I n 2

Furthermore 2q 3 n - r and q < n - r - 1 (as r < n - 3) , thus q t r < d,
This implies

q = 2q - q 3 n - (r + q) > n - (q + r) - 1 3 n - d,-,-,- 1.

Thus condition (1) of Proposition 1 is satisfied and G is (r + 2)-connected.

Actually Berge proved a stronger theorem saying that Q only has to be a set of
edges of cardinality r such that the connected components of Q are paths.

Corollary 13 (Chvatal [4]). If the degree sequence d , , . . ., d, of a graph G, n
satisfies

3,

dk < k < f n dn-k a n - - , (7)

then G contains a hamiltonian cycle.

Proof. Take r = 0 in Corollary 12. 0

Furthermore, Chvital showed that this theorem is best possible in the sense that
if there is a degree sequence of a graph not satisfying (7) then there exists a
non-hamiltonian graph having a degree sequence which majorizes the given one.
This proves that Theorem 8 is also best possible in this special case. Moreover
Chvital (see [4]) showed that most of the classical results on hamiltonian graphs are
contained in his theorem, and therefore are also implied by Theorem 8.

A trivial consequence of Corollary 13 which however is not too “workable” is

Corollary 14. Let G‘ be an induced subgraph of a graph G having m n vertices. If
the degree sequence d I,. . ., dA of G‘ satisfies (7) then G contains a cycle of
length m. 0

4. Some examples

(a) We first show that the number m implied by Theorem 8 giving the minimum
length of a cycle containing a given path cannot be increased, i.e. we give an
example of a graph G with a path Q of length r such that the longest cycle
containing Q has length m.

Consider a graph with two disjoint vertex sets A and B. A is a clique of q

230 D. Granot, F. Granot

where

1; = { j ; j E 6 k J 3 o}, 1;; = { j ; j E IL, bkJ < o} (i = 1, 2).

If
that

is a lower bound for t in (MIFP) then from assumptions l', 2' we conclude
> 0. Further, since for every feasible t, t 2 i (37) implies

Moreover, if f k o - t < o then by multiplying (38) from both sides by f k O / c f k o - t) <
0 we obtain

Combining now inequalities (36) and (39) results with

Inequality (40) is not satisfied by the current optimal solution to (MIFPl), and
when added to the bottom of the optimal tableau it cuts off the optimal continuous
solution to (MIFP). Further, by using the fact that zj = 0 modulo t in (40) one can
obtain the following stronger cut

where

-
1 iiiis, if for some variable z L, ako/am+l,o is not integer, cut (41) can be applied

while solving (MIFP), provided i (the lower bound for t) satisfies
-

ak0 - [a k O / a m + l , O] * ak0 < t . (43)

One can show that if I k = 0, i.e., all variables in (33), (34) are constrained to be
* fkj > fko} # 0 then cut (41) is stronger than congruent to zero modulo t, and if { j ;

Cut A which was derived in section 2 for the (IFP) problem.

References

[l] Y. Anzai, On integer fractional programming, J. Operations Res. SOC. Japan 17 (1974) 49-66.
[2] E.J. Bell, Primal-dual decomposition programming, Ph.D. Thesis, Operations Research Center,

[3] A. Ben-Israel and A. Charnes, On some problems of diophantine programming, Cahiers Centre

[4] A. Charnes and W.W. Cooper, Programming with linear fractional functionals, Naval Res. Logist

[5] C. Derman, On sequential decisions and Markov chains, Management Sci. 9 (1962) 16-24.
[6] M. Florian and P. Robillard, Hyperbolic programming with bevalent variables, Department

[7] P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem -

[8] F. Glover, A new foundation for a simplified primal integer programming algorithm, Oper. Res. 16

[9] R.E. Gomory, An algorithm for integer solutions to linear programs, Princeton IBM Mathematics
Research Report, (Nov. 1958), also in: R.L. Graves and P. Wolfe, eds., Recent Advances in
Mathematical Programming (McGraw-Hill, New York, 1963) pp. 269-302.

[101 R.E. Gomory, All-integer integer programming algorithm, IBM Res. Center Report RC-189, (Jan.
1960); also in J.F. Muth and G.L. Thompson, eds., Industrial Scheduling (Prenctice-Hall,
Englewood Cliffs, NJ, 1963) 193-206.

University of California at Berkeley, Report ORC 65-92, (1965).

Etudes Recherche Optr. 4 (1962) 215-280.

Quart. 9 (1962) 181-186.

d’informatique, Universitk de Montrkal, Publication #41, (August, 1970).

Part 11, Oper. Res. 11 (1963) 853-888.

(1968) 727-740.

[Ill R.E. Gomory, An algorithm for the mixed integer problem, RAND, P. 1885, (Feb. 1960).
[I21 M. Grunspan and M.E. Thomas, Hyperbolic integer programming, Naval Res. Logist. Quart. 20

[13] J.R. Isbell and W.H. Marlow, Attrition games, Naval Res. Logist. Quart. 3 (1956) 71-93.
[141 M. Klein, Inspection - maintenance - replacement schedules under markovian deterioration,

Management Sci. 9 (1962) 25-32.
[15] L.S. Lasdon, Optimization Theory for Large Systems; Chapters I1 and IV, (MacMillan London,

1970).
[I61 G.T. Martin, An accelerated Euclidian algorithm for integer programming, in R.L. Graves and P.

Wolfe, eds., Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) pp.
311-317.

[I71 B. Martos, Hyperbolic programming, translated by A. and V. Whinston, Naval Res. Logisr. Quart.

[I81 P. Robillard, (0, 1) hyperbolic programming problems, Naval Res. Logist. Quart. 18 (1971) 47-57.
[I91 J. Tobin, Liquidity preference as behavior toward risk, Rev. Economic Studies 26 (1958) 65-86.
[20] H.H. Wagner and John S.C. Yuan, Algorithmic equivalence in linear fractional programming,

[21] H.P. Williams, Experiments in the formulation of integer programming problems, Math. Program -

(1973) 341-356.

11 (1964) 135-155.

Management Sci. 14 (1968) 301-306.

ming Study 2 (1974) 180-197.
[22] R.D. Young, A simplified primal (all-integer) integer programming algorithm, Oper. Res. 16 (1968)

750-782.
[23] W.T. Ziemba, F.J. Brooks-Hill and C. Parkan, Calculating of investment portfolios with risk free

borrowing and lending, Management Sci. 21 (1974) 209-222.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 233-245
@ North-Holland Publishing Company

GRAPHS WITH CYCLES CONTAINING GIVEN PATHS

M. GROTSCHEL
Institut fur Okonometrie und Operations Research, 0 - 5 3 Bonn, Nassestrafie 2, F.R. G.

In this note we establish a sufficient condition for the following property of a graph: given any
path of length r there is a cycle of length at least m 2 r + 3 containing this path. The theorem
implies the well-known theorem of Chvatal[4] on hamiltonian graphs and the theorem of Pdsa 17)
which gives sufficient conditions for a graph to contain cycles of a certain length. It is shown that
the theorem is neither stronger nor weaker than the theorem of Bondy [3] and the still unsettled
conjecture of Woodall [8].

1. Notation

The graphs G = (V, E) considered are undirected, loopless, and without multiple
edges. The degree d (u) of a vertex u E V is the number of edges e E E containing
u. A non-decreasing sequence d , , d 2 , . . ., d , of nonnegative integers will be called a
degree sequence if there is a graph G with n vertices v,,. . ., u. such that d (u ,) = d,,
i = 1,. . ., n. A sequence t , , . . ., t , majorizes a sequence d , , . . ., d , if t, 2 d,, i =

1,. . ., n. A sequence P = (ti,,. . ., u p) of distinct vertices of V is called a path if
{u,, v,+ ,}E E for all i = 1,. . . , p - 1. The length of the path is p - 1. =

(up, u p - , , . . . , u,) is also a path and will be called the reverse of P. If furthermore
{ u l , v,} E E, P is a cycle of length p and will be denoted by [u , , . . ., u p] . Sometimes
we will write [u l , , . ., v,, v,] instead of [u , , . . ., up] for clarity. A path from u , to u,,
q < p , along P will be denoted by (u , , P, u,). If two paths P ' = (v l , . . ., ub) and
P " = (v;, ..., vz) have exactly one vertex v:= ulsl in common then P =

(vl, P', v:, P", vz) is a well-defined path from u l to uz. By N (v) we denote the set of
neighbours of u, i.e. the set of vertices w E V such that {v, w } E E. 1 M 1 is the
cardinality of a set M. 1x1 is the greatest integer k with k x, [XI is the smallest
integer k with k 2 x.

2. Properties of h -connected graphs

As a tool for further proofs we cite and prove some results concerning h -
connected graphs, i.e. graphs which remain connected after the deletion of any
h - 1 vertices.

The first theorem is due to Bondy, see [l, p. 1731.

233

234 M . Grotschel

Proposition 1 (Bondy). Let G be a graph with degree sequence d,, . . ., d, such that
for some integer h < n the following holds:

d, 3 k + h - 1 forall 1 s k s n - dn-,,+,- 1. (1)

Then G is h-connected. 0

A well-known property of h-connected graphs is the following, cf. [l , p. 1681:

Proposition 2. If G is h -connected then the induced subgraph obtained by removing
one vertex is (h - 1)-connected. 0

The next two theorems can also be found in [1, p. 1691

Proposition 3. Let G = (V, E) be h-connected. Let W = { w l , . . ., wh} be a set of
vertices, 1 W 1 = h. If v E V - W, there exist h vertex-disjoint paths (v , . . ., wn),
i = l , . . ., h, joining v and W. 0

Proposition 4. Let G be a h -connected graph, h 3 2. Then there is a cycle passing
through an arbitrary set of two edges and h - 2 vertices. 0

A frequently used theorem is the following, see 12, p. 1921:

Proposition 5 (Menger-Dirac). Let P = (ao, a,, . . ., a,) be a path. If G is 2-
connected then there exist two paths P' and P" with the following properties:

(a) the endpoints of P' and P" are a. and up,
(b) P' and P" have no other points in common,
(c) if P' (or PI') contains vertices of P, then they appear in P' (or P") in the same

order as they do in P. 0

We now give an extension of Proposition 3 which will be of interest later.

Proposition 6. Let G be a 3-connected graph and P = (ao , . . .,a,) be a path, let
{as, a,,,} be an edge of this path. Then there exists a pair of paths P' , P" with the
following properties :

(a) The endpoints of P' and P" are a. and ap,
(b) P' and P" have no other points in common,
(c) if P' (or P") contains vertices of P, then they appear in P' (or P") in the same

(d) P' contains {as, as+,}.
order as they do in P,

Proof. By induction.

connected, there is another path P" from a. to a l . Take P' = P.
(1) Let P = (ao ,a l) , i.e. P is an edge. Then necessarily s = 0. As G is 2-

Graphs with cycles containing given paths 235

(2) P = (ao, al , az), s = 1. By Proposition 3 there are two vertex-disjoint paths
PI = (a o , . . ., al) and Pz = (ao , . . ., aZ). Define P' = (ao, P1, al, az) , P" = P2. The case
s = 0 is similar.

(3) P = (ao, a] , a2, a3), s = 1. By Proposition 3 there are three vertex-disjoint
paths (G is 3-connected): PI = (ao, . . ., a ~) , PZ = (ao, . . ., &), p3 = (ao, . . ., a3). Define
P' = (ao, PI, a] , az, a3) and P" = P3. All other cases are similar.

Now suppose the theorem is true for paths of length k . We prove that it is true for
paths of length k + 1.

Let P = (ao, a l , . . ., ~ k + ~) , PI = (ao, P, a) .
We may assume that s < k - 1, otherwise we take the reverse p of P. By

assumption there exist paths Pi and PY connecting a. and an having the desired
properties with respect to P I . From G we now remove the vertex ak and add the
edge {ao, at+l} , if it does not already exist. By Proposition 2 the new graph G' is
2-connected. By Proposition 4 there is a cycle in G' containing the edges {as, as+]}
and {ao, a k + l } . Thus there is a path Q = (ao, a : , . . ., ah, a k + l) in G connecting a. and
a k + l , which contains the edge {as, as+l} and does not contain the vertex ak.

Let x be the vertex of path Q which is as close as possible to a k + l and is contained
in the union of the vertex sets P1, Pi, and P:. Clearly x lies between a,+l and on
the path Q as a,+l is in Q and in Pi. If x is in Pi then x lies between a,+] and ak in
P : . We now have to investigate several cases.

(i) x = a k + l (a) x E Pi P' = (ao, Pi, x),
P" = (ao, PY, ak7

P'' = (ao, ZJ:, x).
P' = (ao, P: , x, Q, ak+]),
P" = (ao, p:, aa, a*+1),

P' = (ao, p: , Ua, U a + i) ,

P'' = (~ o , P',', X, Q, ~a+i).

(b) X E P: P' = (U o , P ; , Ua, &+I) ,

(ii) x not in P (a) x E P :

(b) X E P:'

(iii) x in P but x # @ + I , say x = a,, r 3 s + 1. Let p S r be the largest index such
that a, is contained in the union of the vertex sets of Pi and Py.

(a) a, E Pi

(b) a, E P','

P' = (ao, P i , a,, P, a,, Q,
P" = (ao, P'L a, a k + l) ,

P' = (ao, Pi, at,
P" = (ao, P;, a,, P, a,, Q, at+$

These are all the cases which have to be considered and hence we are done. 0

Corollary 7 . Let G be (r + 2)-connected and P = (a o , . . ., a p) be a path, r =s p , let
Q = (as, . . ., a,,,) be a path of length r contained in P. Then there exists a pair of paths
P' , P" with the following properties:

(a) the endpoints of P' and P'' are a. and a,,
(b) P' and P" have no other points in common,

236 M. Grotschel

(c) if P' (or P") contains vertices of P, then they appear in P' (P") in the same order

(d) P' contains the path Q.
as they do in P,

Proof. r = 0: Then by definition Q is an empty path and Corollary 7 reduces to
Proposition 5 .

r = 1 : This is Proposition 6.
r > 1 : Remove the r - 1 vertices a,+l, a,+z,. . ., a,,,. I and add the edge {as, a+,}.

The resulting graph G' is 3-connected by Proposition 2. The path PI =

(a", . .., a,, as+,, . .., a,), contains the edge {a,, as+,}. Application of Proposition 6
gives two paths Pi and P'i, and Pi contains {as, as+,}. The path P ' =
(a , , PI, a,, Q, a,,,, P: , a,) is well defined in G. Define P" = P',', then the pair P ' , P"
has the desired properties. 0

3. The theorem and its corollaries

The following theorem establishes a sufficient condition -in terms of the degree
sequence-for the following property of a graph: given any path of a specified
length, there exists a cycle containing this path and having a certain minimum
length. Formally the theorem is very like a theorem of Berge [l, p. 2041, which is an
extension of a theorem of ChvAtal [4] on hamiltonian graphs. The proof of case (i)
below is a slight variation of their proof which-in spirit -is due to Nash-Williams
[6]. Case (ii) of the proof was motivated by P6sa's proof of his own theorem [7]
which is also included in the following:

Theorem 8. Let d , , . . ., d, be the degree sequence of a graph G = (V, E) . Let n 3 3,
rn =G n, 0 r < m - 3, and let the following condition be satisfied:

d k S k + r d , . k - , s n - k forall O < k < ; (m - r) . (2)

Furthermore, let G be (r + 2)-connected if f (m - r) S n - dn..,-, - 1 holds and
dk > k + r holds for all 0 < k < $(in - r) . Then for each path Q of length r there exists
u cycle in G of length at least rn which contains Q.

Proof. (1) We prove: G is (r + 2)-connected. Let h = r + 2 < n, then (2) is equiva-
lent to

d , < k + h - 2 + dn-h+2-k 2 n - k for all 0 < k < $ (m - h + 2) . (2 ')

j + h - 2.
Condition (2') implies dn-h+Z-, 3 n - j . As d n - h + l 3 d "-,,+*-,, we obtain j >
n - (n - j) - 1 3 n - dn-,,+] - 1. Thus i f dk < k + h - 1, then k > n - d n - h + l - 1 .
Therefore the conditions of Proposition 1 are satisfied and G is h-connected.

(b) Suppose d, 3 k + h - 1 for all 0 < k < 4 (rn - h + 2) , then G is h-connected

(a) Suppose there exists a j such that 0 < j < f (rn - h + 2) and d,

Graphs with cycles containing given paths 237

by Proposition 1 if f (r n - h + 2) > n - dn-,,+, - 1. Otherwise h-connectedness
follows from the assumption. We note for the following that (r + 2)-connectedness
implies d , 3 r + 2.

(2) It is an easy exercise to see that a graph G’ obtained from G by adding any
new edge to G also satisfies (2) and the other conditions of the theorem.

(3) Suppose now that G is a graph satisfying the required conditions but which
contains a path Q of length r such that Q is not contained in a cycle of length 3 rn.

By adding new edges to G we construct a “maximal” graph (also called G) which
satisfies all the conditions of the theorem, contains a path Q of length r, has no
cycle of length 3 rn containing Q, and has the property that the addition of any
new edge to G creates a cycle of length 3 rn which contains Q. In the following we
shall deal with this maximal graph G.

(4) Let u, v E V be two nonadjacent vertices of G. The addition of the edge
{u, v } will create a cycle with the desired properties. Thus there exists a path

P : = (u ,,..., u p) , u , = u, up = v , p 3 rn

of length 3 rn - 1 connecting u and v, and which contains

Q : = (us , . . ., us+,), where s E (1,. . . , p - r } .

S : = { I E {l,. . . , p } : {u,, u , + ~ } E E } n ((1,. . ., s - 1) u { S + r, . . . , p })
Let

T :={iE{l) ...) p } : { u p , u , } E E } .

(a) We prove: S n T = +. Suppose i E S fl T, then [ul, u,+,, P, up, u,, p, u l] is a

(b) J S l + J T J < j P J - l b e c a u s e p t i f S U T .
(5) The degree sequence of G necessarily has exactly one of the following

Case (i) there is a ko , 0 < k o < i (r n - r) , such that db
Case (ii) d, > k + r for all 0 < k < (m - r) .

These cases will be handled separately.
Case (i).
(6) As d , 3 r + 2 and as the degree sequence d,, . . ., d, is increasing there is a

j < k, such that d, = j + r. (2) implies d n - , - r 3 n - j , i.e. there are j + r + 1 vertices
of V having degree at least n - j . The vertex having degree j + r cannot be adjacent
to all of these. Thus there exist two nonadjacent vertices a, b E V such that
d (a) + d (b) 3 n + r.

(7) Among all nonadjacent vertices of G choose u, v such that d (u) + d (u) is as
large as possible. Define P, S, T, Q as in (4). We calculate d (u) + d (v) . Obviously

cycle with the desired properties. Contradiction!

properties:
k o + r,

d (u) = I T I + a where a s (V - P J

d (u) s J S I + r + P where V - P I .
and

238 M. Grotschel

Suppose there is a w E V - P which is adjacent to both u and u. Then
[ul, uz, . . ., up, w] would be a desired cycle. Therefore (Y + p S I V - P 1, which
leads, using (4) (a) and (b), to

d (u) + d (v) S) TI+ a + 1 S 1 + r + p

< j P (- l + c Y + p + r

s I P I + J V - P I + ~ - I

< n + r - l .

By (6) d (u) + d (v) cannot be maximal. Contradiction!
Case (ii).
(8) Among all longest paths in G containing Q choose a path such that the sum

of the degrees of the endpoints is as large as possible. As G is maximal, the length
of this path is at least rn - 1, and the endpoints are not joined by an edge. Let this
path be P = (u l , . . ., up) and Q, T, S be defined as in (4).

(9) We prove: d (u J >l(m + r) , d (u p) ai(rn + r) . Suppose d (u l) < ! (rn + r) . A11
neighbours of ul and up are contained in P, otherwise P would not have maximal
length. As dl Z- r + 2, we have d(u,) > r + 1 and therefore 1 S 13 d (u l) - r > 1. All
vertices u,, i E S, have degree at most d (u l) , otherwise
(u,, u , - ~ , . . ., u l , u # + ~ , . ., up) would be a path of the same length as P and
d (u ,) + d (u p) > d (u l) + d(up) , contradicting the maximality assumption on the
endpoints of P. Let j o : = d(ul), then there are I S 12 j o - r vertices of degree at most
jo. As we are in case (ii), dk > k + r holds for all 0 < k < i(m - r) , which is
equivalent to d,-, > j for all r < j < t (r n + r) . Therefore j o 3 (rn + r) . By similar
arguments d (u p) 3 ! (rn + r) .

(10) From (9) it follows that

IS I + r + I T l a d (u l) + d (u p) a m + r.

T h u s ~ S ~ + ~ T ~ ~ r n m , a n d f r o m (4) (b) w e h a v e (P ~ ~ m + l . T h e r e f o r e i f rn = n we
have n = I P 1 > n which is a contradiction, and in this case we are done.

(11) Let N : = N (u J U N (u p) U {us , . . ., us+,} U {u , , up} . We prove: 1 N 12 rn. As
r 5 rn - 3, 1 {us , . . ., us+,} n {ul, u p } / s 1.

(a) Suppose max{i E S } < min{j E T'}, where T': = T - {s, . . ., s + r } . This
means that the index of a neighbour of u 1 which is not among us,. . ., us+, is less than
or equal to the smallest of the indices of the neighbours of up not among us, . . ., us+,.
Thus I(N(ul)n N (u p)) - { u s , . .., us+,}1s 1. Obviously

1 N l s l N (u 1) - { ~ ~ , . .., U ~ + , } I + l N (u p) - { u s , .. ., u s + , } (

+ / { u s , ..., ZJ,+,)I+ I { u ~ , ~ , } l - l (N (u l) n N (u p)) - { u s , . . ., U , + ~ } I
- i{uS,. . ., U,+J n {ul, up>i

3 I S 1 - 1 + 1 T'I + (r + 1) + 2 - 1 - 1

a1 S 1 +) T I 3 r n

Graphs with cycles containing given paths 239

(b) Suppose max{i E S } 2 min{j E T’}. Let

d : = min{(i + 1)-j : i E S, j E T’ such that i S j } ,

then we have d > 0. Now let io + 1 - j o = d.
(b,) io + 1 s. By definition j o < s and no vertex of the path P between u, and

u*+~ is linked to u1 or up by an edge. Thus

[Ul , %+I, %+2, * . ., u p , u,, % - I , . . ., U l]

is a cycle containing the path Q, all vertices u,, i E S, with the possible
exception of i = io, and all vertices u,, j E T’. It also contains u1 and u,. Thus
the length of this cycle is at least:

(r + 2) +) S 1 - 1 + 1 T’(31 S 1 + 1 TI 2 rn

which is impossible by assumption.
(b2) r + s G I . . Define the same cycle as in (b,) and by the same arguments we

obtain a contradiction.
(b,) j o < s, io > r + s. Define

jl : =min{j E T’} s j o , i l : =max{i + 1 : i E S } 3 r + s + 1.

The conditions of case (b3) imply the following:

UI # us, up# US+“

none of the vertices u,, jl < i s s, can be linked to u 1 by an edge, none of the vertices
u,, i l < i S p , is a neighbour of u I , thus

N(u1) c{u27 . . .> u J 1 } u { u S + l , . . .? u , ~ } 7

none of the vertices u,, 1 6 i < j , , is a neighbour of up, none of the vertices u,,
s + r < i < i l , is a neighbour of up, thus

N(u,) c{u,,, . . ., us+,} u {u,,, . . ., up-,}.

I N(u1) - {us, . . ., u,+,) I = I s I,
IN(u,)-{u, ,..., u s + , } [= I T ’ l .

Furthermore

The only vertices which might be neighbours of both u1 and up are u,,, u,, and
us+, , . . ., u,+,. This implies

I (N (U J n N (u ,)) - {us, . . ., us+,} I 2.

Therefore

I N I 3 I N (u J - {us, . . ., u,+,} 1 + I N (u ,) - {us, . . ., us+,} 1 + (r + 1) + 2 - 2 - 1

a I S (+ (T ’ (+ r

z= 1 S 1 + I TI m.

240 M. Groischel

These are all the cases which can occur, therefore I N 13 m is proved.
(12) Among all pairs of paths satisfying Corollary 7 with respect to P and Q

choose a pair P ' , P" such that the cycle K = [u l , P' , up, P", ul] contains as many
bertices of P as possible.

(13) To show that K has length 3 rn, we will prove: K contains all vertices of N.
Suppose there is a vertex of N which is not contained in K. Trivially the vertex is
either in N (u l) - {us, . . ., u,,,} or in N(u,)- {us , . . ., u,+,}. Without loss of generality
we assume that the vertex uk E N (u l) - {u,, . . ., us+,} is not contained in K. Let

io= max{i 1 u, E Nn K, i < k } , ill= min{i 1 u, E N n K, i > k } .

(a) Suppose uq,, u,E P', then

p ; = (u1, P ' , u,, P, u,<,, P ' , up),

PI" = p",

-
is a pair of paths satisfying Corollary 7, and K , = [u l , Pi , up, PY, ul] contains more
vertices of P then K does. Contradiction! If u,, u,,, E P" the contradiction follows
similarly.

(b) Suppose u,E P', u,E P". Let

PI = (u1, P, u,, P' , up),

p:' = (u1, uk, p, ua, P''? u p) .

If io s s, then Q is contained in (u,, P' , up) , otherwise Q is contained in (u , , P, u,).
Therefore Pi and P: satisfy the conditions of Corollary 7, and K , contains more
vertices of P then K does. Contradiction!

(c) Suppose u,E P", u,E P ' .
(cl) io =S s : this implies j o 6 s.

Take
pi = (u1, uk, p, ujo , u p)

P:'= (U l , P, ue7 P", u p) .

(cz) ill 3 r + s :
Let

P : = (u , , P, u,, P", up)*

p: = (ul, uk, p7 uj07 p ' , u p) *

These pairs of paths satisfy Corollary 7. The contradiction follows as above.
Thus in Case (ii) we have constructed a cycle K of length 5 m containing the

path Q, which contradicts the assumption that G does not contain such a cycle, and
we are done.

Theorem 8 has some immediate Corollaries and also includes some of the
classical theorems on graphs containing cycles of a certain minimum length.

Graphs with cycles containing given paths 24 1

Corollary 9. Let d , , . . ., d, be the degree sequence of a graph G = (V, E) . Let n 3 3,
q 2 2 and let the following condition be satisfied:

d k S k S q - l d , - , , > n - k . (3)

Furthermore, let G be 2-connected i f q - 1 < n - dn-, - 1 holds and dk > k holds for
all 1 c k s q - 1. Then G contains a cycle of length at least min{n, 2q) .

Proof. Take r = 0 in Theorem 8. 0

One of the well-known theorems implied by Theorem 8 is the following due to
P6sa [7] , which generalizes results of Dirac [5] .

Corollary 10 (PBsa [7]) . Let d , , . .., d, be the degree sequence of a 2-connected
graph G. Let q 3 2, n 3 29. If

dk > k for all k = 1 , . . ., 4 - 1, (4)

then G contains a cycle of length at least 2q.

Proof. Immediate from Corollary 9. 0

For bipartite graphs a simple trick yields:

Corollary 11. Let G = (V, W, E) be a bipartite graph with degree sequences
d (v ,) S - . . S d (v ,) a n d d (w ,) ~ . . . s d (w ,) , n s m . If

d (w ,) < k < n - 1 + d (v n - k) a m - k + 1, (5)

then G contains a cycle of length 2n.

Proof. Construct G * = (V U W, E *) by adding all edges to E which have both
endpoints in V. Clearly G * contains a cycle of length 2n if and only if G does. If G
satisfies (5) then G* satisfies (3). As (5) implies that d (w 1) > 2 and V defines a
clique in G*, G * is 2-connected. 17

Standard theorems giving sufficient conditions for a graph to be hamiltonian can
also be derived from Theorem 8.

Corollary 12 (Berge, [l, p. 2041). Let G = (V, E) be a graph with degree sequence
d, , . . ., d,. Let r be an integer, 0 < r S n - 3. If for every k with r < k < $ (n + r) the
following condition holds :

dk- , S k d,-,, 3 n - k + r, (6)

then for each subset Q of edges, I Q I = r, that forms a path there is a hamiltonian
cycle in G that contains Q.

242 M. Grotschel

Proof. Clearly (6) is equivalent to (2) if rn = n. We have to prove that (6) implies
(r + 2)-connectedness.

If there is a k with r < k < f (n + r) such that dk-, S k , then by the arguments of
the proof of Theorem 8, Section (1) (a) (r t 2)-connectedness is assured.

If dk-, > k for all r < k < 1 (n t r) , we have d, 2 q + r, where q : = -

dn- , - , .
I n 2

Furthermore 2q 3 n - r and q < n - r - 1 (as r < n - 3) , thus q t r < d,
This implies

q = 2q - q 3 n - (r + q) > n - (q + r) - 1 3 n - d,-,-,- 1.

Thus condition (1) of Proposition 1 is satisfied and G is (r + 2)-connected.

Actually Berge proved a stronger theorem saying that Q only has to be a set of
edges of cardinality r such that the connected components of Q are paths.

Corollary 13 (Chvatal [4]). If the degree sequence d , , . . ., d, of a graph G, n
satisfies

3,

dk < k < f n dn-k a n - - , (7)

then G contains a hamiltonian cycle.

Proof. Take r = 0 in Corollary 12. 0

Furthermore, Chvital showed that this theorem is best possible in the sense that
if there is a degree sequence of a graph not satisfying (7) then there exists a
non-hamiltonian graph having a degree sequence which majorizes the given one.
This proves that Theorem 8 is also best possible in this special case. Moreover
Chvital (see [4]) showed that most of the classical results on hamiltonian graphs are
contained in his theorem, and therefore are also implied by Theorem 8.

A trivial consequence of Corollary 13 which however is not too “workable” is

Corollary 14. Let G‘ be an induced subgraph of a graph G having m n vertices. If
the degree sequence d I,. . ., dA of G‘ satisfies (7) then G contains a cycle of
length m. 0

4. Some examples

(a) We first show that the number m implied by Theorem 8 giving the minimum
length of a cycle containing a given path cannot be increased, i.e. we give an
example of a graph G with a path Q of length r such that the longest cycle
containing Q has length m.

Consider a graph with two disjoint vertex sets A and B. A is a clique of q

Graphs with cycles containing given paths 243

vertices, and B consists of p isolated vertices. Each vertex of A is linked to each
vertex of B by an edge. Suppose that 1 < q - r and p 3 q - r + 1. The degree
sequence of G is

q , q)...) q, n-1 , ...) n - 1 . --
p times q times

Hence we have

By Theorem 8 for each path Q of length r there is a cycle of length 2q - r
containing Q.

If we choose a path Q of length r such that all vertices of Q are contained in A it
is obvious that no longer cycle containing Q exists.

(b) We give an example showing that the assumption of (r + 2)-connectedness in
Theorem 8 under the specified conditions is necessary.

Consider the graph G consisting of three vertex sets A, B, C. A and B have k
vertices and are complete, C has r + 1 vertices and is complete. Each vertex of C is
joined to each vertex of A U B by an edge. Hence G is (r + 1)-connected but not
(r + 2)-connected. Take a path Q of length r in C. Clearly the maximal length of a
cycle containing Q is k + r + 1. The degree sequence of this graph is

k + r , . . k + r , n - 1 , ..., n - 1 A'?
2k times r + 1 times

We have di > i + r for 0 < i 6 k - 1, therefore Theorem 8 would imply the
existence of a cycle of length at least 2k + r containing Q.

(c) We give an example showing that Corollary 14 is not stronger than
Corollary 9.

Consider a graph consisting of two disjoint cliques A, B, each having m vertices.
Link A and B by two disjoint edges. Obviously this graph is hamiltonian. The
degree sequence is

m - 1 , , m - l , m , m , m , m .
P

2m - 4 times

Corollary 9 implies that there exists a cycle of length 3 2m - 2, but Corollary 14
does not imply a cycle of length 3 2m - 2.

(c,) Delete 2 vertices of A, both must necessarily be distinct from the two
vertices linking A to B. The degree sequence is

244 M . Grotschel

m - 3 ,..., m - 3 , m - 2 , m - 2 , m - 1 , . . . , m - l , m , m - -
m - 4 times m - 4 times

which does not satisfy (7).

(c2) Delete one vertex of A and one of B, again both must be distinct from the
vertices linking A to B. The degree sequence is

m - 2 ,......, m - 2 , m - l , m - l , m - l , m - 1
2 (m -3) times

which also does not satisfy (7)

It is clear that Corollary 9 does not imply Corollary 14.
(d) Bondy proved (see [3]) the following

Theorem (Bondy). Let G be a 2-connected graph with degree sequence d , , . . ., d,. If

d, S j , dk S k (j# k) + d, + d, 2 c , (8)

then G has a cycle of length at least min (c, n) . 0

Chvatal showed that in the case c = n his theorem (Corollary 13) implies Bondy’s
theorem, thus in the hamiltonian case Corollary 9 is stronger than the theorem of
Bondy. In general this is obviously not true, nor is the converse as the following
example shows: The graph has three vertex sets A, B, C. A = { a l , a z , a 3 } ,
B = {b , , bZ, b,, b4}, I C 1 = m. The edges are the following: {a, , b J , {al, b J , {az, bl},
{ a 2 , b3}, {a3 , b2}, {a3 , b3}, {a3, b4}, and all edges having both endpoints in B U C. The
degree sequence is

2 ,2 ,3 , n - 4 , . . . , I t -4, n -3 , n - 2 , n - 2 , n - 2
T

m times

d 2 < 2 and d3 < 3. By P6sa’s theorem there is a cycle of length 2 4, by Bondy’s
theorem there exists a cycle of length 3 5 . A s d,-z* n - 2 and dn-3> n - 3 and
d, > i, 4 < i < $ n, G is hamiltonian by Corollary 9.

(e) In [8] Woodall stated the following (to my knowledge unsettled)

Conjecture. Let d] , ..., dn be the degree sequence of a 2-connected graph G,
m < n - 3, and let the following condition be satisfied:

for 1 [?,:.,,>r k i f k = 5 (n - m - 1).

Then G contains a cycle of length at least n - m. 0

k < $ (n - m - l),
(9)

Obviously Corollary 9 does not imply Woodall’s Conjecture, but surprisingly nor

Graphs with cycles containing given paths 245

does the Conjecture imply Corollary 9, although in most cases Woodall’s
Conjecture - if true- would be “better” than Corollary 9.

We give an example: Let n and rn be both odd (or even), j = ? (n - rn - 2) and
j ’a f (n + r n) (which is a solvable condition).

Consider the following graph consisting of three vertex sets A, B, { u } . B has j + 1
elements and is complete, u is linked to all elements of B by an edge. A consists of
j + rn isolated vertices, each element of A is linked to exactly j vertices of
B such that each element of B is linked to at least m + 1 vertices of A. This is
possible as (j + r n) j = jm + j z z jm + f (n + m) = j rn + j + m + 1 = (m + 1)(j + 1).
The degree sequence of this graph is

j ,, j , j + 1, m l ,,
-6

I + m time5 j+lTtimes
where m, 3 n - j for i = 1,. . ., j + 1. We have

dk+ , , ,>k for 1 S k S j - 1 ,
d,+m = j and j < i (n - r n - 1)

Thus Woodall’s Conjecture does not imply a cycle of length 3 n - m. On the other
hand

d k > k for 1 S k S j - 1 ,

d, = j and dn-, = rn, 2 n - j .

Hence by Corollary 9 there exists a cycle of length 2 (j + 1) = n - rn.

References

[11 C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] C. Berge, Thkorie des Graphes et ses Applications (Dunod, Paris, 1958).
[3] J.A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971) 121-132.
[4] V. Chvital, On Hamilton’s ideals, J. Combinntorial Theory 12 B (1972) 163-168.
[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 3 (2) (1952) 69-81.
[6] C.St.J.A. Nash-Williams, On hamiltonian circuits in finite graphs, Proc. A m . Math. Soc. 17 (1966)

[7] L. P6sa. On the circuits of finite graphs, Publ. Math. Inst. Hung. Adad. Sc. 8 (1963) 355-361.
[El D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. (3) 24 (1972)

466467.

739-755.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 247-271
@ North-Holland Publishing Company

ALGORITHMS FOR EXPLOITING THE STRUCTURE OF
THE SIMPLE PLANT LOCATION PROBLEM

Monique GUIGNARD
Department of Statictics, Wharton School, University of Pennsylvania, Philadelphia, P A 191 74,
U.S.A.

Kurt SPIELBERG
Scientific Marketing, IBM, White Plains, N Y 10604, USA

The paper is concerned with a number of approaches to the important simple plant location
problem. In addition to describing several decomposition approaches, the paper focuses on
modified simplex methods which exploit triangular bases.

1. Introduction

Simple (Uncapacitated) Plant Location Problems (we shall abbreviate Simple
Plant Location by SPL, and SPL problem by SPLP) are of great significance both
practically and theoretically. There exist telecommunication network problems
which could use algorithms handling problems with thousands of “plants” and
“destinations”. These can only be tackled by heuristics at present.

The SPLP is one of the simplest mixed integer problems which exhibit all the
typical combinatorial difficulties of mixed (0, 1) programming and at the same time
have a structure that invites the application of various specialized techniques.

1.1 . Brief survey

The referee’s comments about the literature on SPL and related problems, for
which we express our appreciation, indicate that a brief survey of some of the
literature is necessary, incomplete as it must be for such a big subject.

Exact formulations appear to go back to Balinski [4]. A first enumerative
algorithm of the branch-bound type, based on the “aggregated” constraints

x (i , j) s m (i) . y (i) , was developed by Efroymson, Ray in [13]. It was later
refined by a number of authors.

But the current state of the art must almost certainly rest squarely on the
resolution of the SPLP with “disaggregated” constraints x (i , j) y (i) , because the
“relaxed” problem with 0 y (i) =S 1 is very strong for the disaggregated and very
weak for the aggregated form. This notion appears to have been observed and
exploited independently by three groups of researchers.

247

248 M. Guignard, K. Spielberg

Bilde and Krarup, in a paper published in Danish (in 1967), and therefore
unfortunately largely unread (available now in [7]), devised excellent heuristic
techniques for producing strong lower bounds on the objective function of the
strong relaxed problem, exploited with good effect in a branch and bound
algorithm.

A class of enumerative algorithms by Spielberg [24, 251, based on widely
distributed IBM reports of 1967 and 1968, exploited the disaggregated form in
terms of dual variable analysis leading to strong Benders inequalities and “gain
functions”. The work was extended to more general problems in Guignard,
Spielberg [20]. A recent paper by Cornuejols, Fischer, Nemhauser [101 analyzes
nicely a “greedy algorithm” which is based on one of the algorithms of [25] and has
the additional merit of establishing clearly (by way of Lagrangean Techniques, due
to Held and Karp and extended and summarized by Geoffrion [15]) that the
disaggregated form of the constraints is indeed fully exploited in this fashion.

The third important approach (expressed in terms of the capacitated problem) is
due to Davis, Ray [12], who solved the linear program by decomposition in 1967.
This work established the practicability and desirability of solving the disaggre-
gated LP directly.

What lends special interest to the above is that there has been steadily increasing
recognition of the importance of disaggregation for large scale problems in the
entire class of location and distribution problems, an area whose practical
importance can hardly be overstated.

Without being in any sense complete, we can cite work on the M-Median Plant
Location Problem by Garfinkel, Neebe, Rao [18], a successful application of
Benders’ algorithm to a large distribution problem by Geoffrion, Graves [16], and a
general account of formulation techniques by Williams [26].

Finally we have recently seen the resolution of quite large distribution problems,
with several thousand integer varables, by the general purpose code MPSX-MIP of
IBM, after suitable introduction of disaggregated constraints (e.g., E.L. Johnson,
private communication).

1.2. Approach of current paper

The following paper focuses first on decomposition and then on new
possibilities for exploitation of the fully disaggregated linear program. In the latter
area one might also consult the work of Marsten [22] and Graves, McBride [19] on
specialized Simplex Methods.

Recent papers of Schrage [23] on implicit representation of generalized variable
upper bounds, and Glover [171 on compact LP bases provide general techniques for
problems which we called “weakly linked” in [5] and [20], a class of problems which
encompasses location and more general fixed charge problems.

Finally, it may be of interest that there is a link to the Russian literature via the
two references Frieze [14] and Babayev [l].

Algorithms for the plant location problem 249

The first paper demonstrates a property for the gain functions of [24,25], and the
second relates this property to a “method of successive calculation” of Cherenin
[91.

It is always enticing to start by decomposition techniques in order to get good
bounds on the objective function. Equally interesting is the construction of
specialized simplex algorithms which attempt to adhere to the great abundance of
all-integer vertices as much as is at all possible. We have been able to solve a
(20, 35) SPLP by a linear programming triangularization method, carefully bypas-
sing all fractional vertices which would naturally lie in the path of an unmodified
primal algorithm.

Such attempts have been given new impetus by the results of Balas and Padberg,
given in [2 , 31, to the effect that there is always a path of integer vertices leading to
the integer optimum of a SPLP. This is a nice result, but an algorithm such as
suggested in [3] runs into formidable difficulties which appear to be very much of an
enumerative nature.

As opposed to the “usual” set-packing problem treated in [2 , 31, the SPLP is
unusual in the sense that as linear programming (LP) problem it is enormously large
for problems which must be considered small in practice.

To tackle the SPLP successfully, then, one must have highly specialized tools for
treating everything within the LP problem implicitly. In Section 3 we discuss a
certain special basis representation, which we believe must play a role (possibly in a
yet somewhat more modified form) in any efficient direct linear programming
treatment of the SPLP.

Actually, we believe that Section 3 is important in several respects. The
possibility of constructing triangular bases which lead to easily obtainable updated
tableaux can be exploited for writing computationally efficient codes for problem
sizes which would otherwise be intractable. What may be just as important, the
latitude in constructing such bases can apparently be exploited to render them
“good”, in the sense of minimizing the number of negative reduced costs (related to
gain functions which have been found to be important elsewhere).

Finally, these triangularization procedures are such that they can be applied to
any integer feasible solution, no matter how it was found. This opens the way to a
class of algorithms, dependent on the actual triangularization process adopted,
consisting of steps such as:

(1) Heuristics, enumeration, etc., to give a feasible integer solution.
(2) Construction of a “good” triangular basis, and therefore a simply structured

(3) Exploration of neighbor vertices. Pivot or block pivot to neighbor vertex.
(4) Return to (1).
I.e., depending on the actual basis choices, one has a class of true hybrid

algorithms, which are LP intermittently, but then also permit jumps from one
lattice point to completely different lattice points without loss in efficiency of LP

(implicit) updated tableau.

250 M. Guignard, K. Spielberg

computation (e.g., given a solution point (x, y) arrived at by a LP step, it is possible
that x can be improved for given y by inspection, or the jump might correspond to
one of the simple heuristics which are easily available for SPLP). Notice that
tableaux are never updated, since bases and inverses are easily constructed from
the solution.

2. Decomposition and partitioning methods

There are many possibilities of decomposition and partitioning. On balance they
are by now quite well known. We believe that the “reverse partitioning” of 2.2.3 is
new, somewhat unusual, and therefore interesting.

What is most important, however, is the potential utilization of the special
problem characteristics. It is clear that the difference between success and failure
lies here, and we have tried to present ideas which might form a start for a real
algorithm (stand-alone or auxiliary algorithm within enumeration).

y(i) 0 or 1, x (i , j) 2 0.

The indices i and j range from 1 to m, and 1 to n, respectively. We admit only
f (i) z O and c(i , j)aO. Whether we consider (2.1) or its relaxed LP form (all y(i)
between 0 and 1) will usually be clear from the context.

2.1. Dantzig and Wolfe decomposition [111

Consider the relaxed problem:

min fy + cx (= gt)

s.t. x,, = 1 (= At) ,

where g = (f,c), t = (z) . Let t’, t2, . . . , tk,. . . , be the extreme points of 3 =

{t E R”’”” 1 Bt 3 0) (a compact set), and let K be the set of their indices. Then, for
all I E 3, there exists A = (A , , . . . , A k , . . .) such that

Algorithms for the plant location problem 251

A 3 0 ,

Then the decomposition algorithm will consider the following two problems:
(A -PI

S.t. c h t (A , f k) = 1, j = 1 , . . . , m,
k E K '

where K' is the index set of currently known vertices of 3, with the dual
(A -D)

m

i = max c U J + u
u.u

and the problem

2.52 M . Guignard, K. Spielberg

The continuous objective function of SPLP is in the bracket:

i + d s f s 2.

It is well known [8] that the algorithm converges even when (B-P) is not optimized,
but suboptimized, i.e. as long as the solution t = (y , x) is chosen so as to render d
negative and to b e an extreme point of 3. Also, as long as there a re feasible integer
solutions to SPLP whose objective function values a re between z and the current
best value z * = min z , every such solution is not yet included in the set of
generators of 3 and would yield an improvement over the current 2 AJ‘, i.e. yield
a negative value for d. If the optimal solution is not integral, the integer optimum is
among those feasible solutions that render the last d negative.

Also, if an improving (d < 0) feasible solution to SLPL is the only generator
added at that iteration, it will be the optimum of the next (A-P) problem. Yet it
might be better t o add both the optimum and a feasible solution of SPLP
simultaneously.

Remark 1. Every time a (A-P) problem is solved, its solution yields a new feasible
solution to the original LP. It is of the form (y , x) . Keeping in mind the original
problem, one may be able to find a better solution by taking y ’ defined by

y ’ (i) = mSx x (i , j) ,

the new cost f . y ’ + c . x being n o larger than f . y + c . x . This is important, since
f . y + c . x (or f . y ’ + c . x) is an upper bound for the optimal value of the original
problem. If (y ’ , x) is an extreme point of 3, one can add it t o the current set of
generators.

Remark 2. The constraints of a (B-P) problem are such that the problem is
separable, as the constraints which enforce the presence of exactly one x (i , j) = 1
per column have disappeared from its formulation. Each (B-P) yields m subprob-
lems of the form

min f i y , + C (c,, - u,)x, , - u / m ,

s.t. 0 s x,, s y! s 1,

1

whose solution is obvious: if c (i , j) - u(j)>O, set x (i , j) t o 0. Then, if there a re
some c (i , j) - u (j) < 0, set x (i , j) equal to, say, a. Thus, y (i) must be at least equal
t o a. The objective function is then equal t o (f (i) + xc,,<, , ,c(i , j) - u (j)) . a. If the
coefficient of a is negative, set a = 1, otherwise set a = 0. O n e can follow this by an
attempt to find a suboptimal, feasible solution to SPLP such that d (0 .

Remark 3. An initial set of extreme points of 3 should be carefully chosen to
allow generation of meaningful points from the outset. For instance, one might
choose:

Algorithms for the plant location problem 253

r : ' = 0 all 1, t : = 1 all I, t', . . . , t k + ' , . . . , t""

such that there is one 1 in column k of x, corresponding to the smallest c (i , j) , the
corresponding y (i) being set equal to 1, all others t o 0.

Example. The following data

1 10

10 1

yield a continuous optimal solution

Y =
o t z

and several integer optimal solutions among them:

1 1 0
y = [i], x =[; ; b], 2 - 5 .

Choosing

z (~ = ~ , z l=39 . z z = 2 , z 3 = 2 , z 4 = 2 ,

one solves four linear programs of type (A-P), arriving at a last (B-P) problem of
the form:

No solution yields d < O . Hence the last solution of (A-P) is optimal:

The integer optimum satisfies:

254 M . Guignard, K. Spielberg

Conclusion. Instead of solving a LP with 12 rows and 21 variables, one solves 4 LP's
with 4 rows and between 5 and 9 columns, each of them being identical with the
previous one with one new column added (so that relatively few pivot steps are
required). A condition (C) has been found which the integer solution must satisfy,
and a bracket for the optimal value has been obtained:

4.5 c z < 5.

2.2. Benders partitioning [6]

2.2.1. The general scheme
Consider the problem P:

It can be rewritten as

Let R be { u Iu . D + 6 2 0, u 2 0). R is independent of x. If R = 0, P has no
solution.

Otherwise, if for some x there exists u k , an extreme ray of R, such that
u k . (- p + C . x) > O , D = m a x U E R u . (- p + C . , y) is unbounded and L =
min,,o{ST)DT s p - C . x, T 3 0) has n o solution.

P can therefore be solved as G:

z I z 2 yx + max { - u (p - C . x) I u either extreme point of R
U E R

or extreme ray of R satisfying u (p - C . x) 2 011.
An algorithm would proceed as follows:

Step 0. Set k = O .
Step 1. Replace k by k + 1. Form Q, the set of indices of known extreme points

u ' and extreme rays u h of R. For k = 1, choose any x ' E S, go to 3.
Step 2. Solve G' over Q. If Gk has n o feasible solution, the same is true for P. In

that case terminate. Otherwise, let x', z' be an optimal solution of G'.
Step 3. Solve L' and D' with x = x k . Let f(h') be their optimal values. If f(x')

is - x , terminate with no feasible solution. If f (x k) is + w, there is n o feasible T
associated with x'; let u' be the optimal extreme ray of D'. Go to 1. If f(x') is
finite, let (T ~ , u k) be the optimal pair. It is a feasible solution for P. If

z ' 3 Y X k + f (x " ,

Algorithms for the plant location problem 255

then (x k , tk, z k) is optimal for P; terminate. Otherwise go to 1 with a new extreme
point u k of R.

We shall call the “normal” case, in which one identifies ,y with y. “direct
partitioning”. By contrast we shall use the term “reverse partioning” for the
identification ,y = x. (It is interesting that one can, at least for some problems, bring
back the integrality conditions, which in the direct case are taken care of (formally)
by ,y E S, in an indirect fashion.)

2.2.2. Direct partioning

alternatively the following two problems. Firstly Lk
Starting with an arbitrary y (often y ’ = (1 , 1 , . . . , l) , all plants open), one solves

I min C c (i , j) . x (i , j) l ~ (i , j) ~ y k ~ i) , C x (i , j) = l , x (i , j) 2 0 I

I
and its dual Dk

max 2 u(j1-c w (i , ,) . y k (i) l w (i , j) + c (i , j) 2 u ~) , w (i , j) p o }

with solutions x k ((i , j), u k u) , w k ((i , j) ; and secondly Gk+’

YES
[f(i)-x w h (i , j)] . y (i) + c u h (j) , h = 1 ,..., k

I I

and (w h , o h) extreme point of R ;

c w h (i , j) . y (i) 3 x u h (j) , h = 1 ,..., k

and (w h , v h) extreme ray of R .
i

1
Example. The 3 by 3 problem used before yields the following sequence of
problems:

L: z = 6, inequality for G: c y(i) + 3 6 z ;
G: z = 3, 3 s f 6, y = (O,O, 0);
L: infeasible, inequality for G: c i y (i) a 1;
G: z = 4, 4 f 6, y = (1,0,0);
L: z = 13, inequality for G: (1, - 8, - 8)y + 12 s z ;
G: z = 4, y = (0, 1,0), 4 6 z s 6;
L: z = 13, inequality for G : (- 8,1, - 8)y + 12 G z ;
G: z = 4, y = (O,O, l), 4 s z < 6;
L: z = 13, inequality for G: (- 8, - 8, l)y + 12 s z ;
G : z = 4.5, y = (S, .5, S);
L: z = 4.5, optimal.
We have run bigger problems and have experienced the normal difficulties

towards the end, as the number of constraints in G increases. We have tried two
versions of the algorithm, the one described above, and another one in which some

256 M. Guignard, K . Spielberg

heuristics are used to render y integer if i t turns out fractional. In the second case
we noticed much faster convergence. E.g., a 20 by 35 problem shows the following
behavior: after 20 iterations, the first algorithm gives the interval 209.0 c z c 344.8,
whereas the second has arrived at 235.7 s z c 245. The optimal value is 243.

2.2.3. Reverse partitioning
One now has to solve, for S = {x 1 x ,x (i , j) = 1, all j } ,

X E S / o s x (i , j) c y (i) , v j }) ,

or

t (i , j) .x (i , j) l t(i,j)*o. I t (i , j) s f (i)]]

i.e., Lk is min,f. y

y (i) 2 x k (i , j) , Vi,j

y (i) sO , V i

whose solution is clearly y (i) = max,xk(i,j), all i. Dk is

t(i, j) 2 0, Vi , j

and Gk is

min z l z z c . x + m a x t . x I t = t l , . . . , t k ,
X € S I ‘ r

t extreme point of the set (t * 0, C t (i , j) s f (i) }] }
i

whose dual reads

with c, = c + tP. Let d(i , j) = c p w p c p (i , j) - v(j). Sum p from 1 to k . Given w , one
can determine u and d via

v(j) = min 2 w p . c,(i,j) and d(i , j) = w p c p (i , j) - v(’j)sO.
Z P P

(1) The reduced cost of a d(i , j) is -x(i , j) , O s x (i , j) G 1, so that the only
candidates to enter t h e basis are the w’s .

Algorithms for the plant location problem 257

(2) If wpl comes in and wp2 goes out, the pivot row is cp w p = 1.
(3) If wpl comes in and d (i , j) goes out, the “pivot row” is

.(j) - c W ” C , (i , j) + d (i , j) = 0.
P

(4) Consider the constraint

~(j) - 2 w p c p (i , j) + d (i , j) = 0.
P

(a) Either u (j) < c w p c p (i , j) , then d (i , j) > O is basic and the constraint gives the

(b) u (j) = w p c p (i , j) , then
d (i , j) , or

(i) either d(i , j) = 0 nonbasic . . . row gives u or basic w,
(ii) o r d (i , j) = 0 basic . . . row gives d (i , j) .

For the 3 by 3 problem we obtain the continuous optimum after 10 iterations, i.e.
10 LP’s with 10 rows and between 4 and 10 variables (exclusive of the slacks) of type
GD. In fact one does not really need to use an LP code to solve GD, but rather one
uses a specialized technique involving much less computation.

The optimal value is immediately in the interval (3, 5), then at the 2nd iteration in
(4,5), then (4th iteration) (4.167, 4.83), finally in (4.5, 4.83) at the 5th iteration. The
next iterations leave the bracket unchanged, until the 10th iteration gives the
optimum 4.5.

3. Modified simplex methods

3.1. Simple plant location and the simplex method

The SPLP lends itself rather well to solution by LP techniques, in the sense that
the LP solutions are often integral. There are many bases which are unimodular
(vertices which are integral). A standard simplex algorithm, however, will en-
counter fractional vertices.

Also, the LP tableau of the SPLP is large. E.g., a 10 plant, 20 customer problem
corresponds to a LP with 20 + 10.20 = 220 rows and 10.20.2 + 10 = 410 variables,
including slacks.

An efficient implementation of the simplex method, then, requires that:
(i) The structure of the L P be carried along implicitly, all relevant elements of

the updated tableau being generated as needed, and
(ii) efforts be made to avoid fractional vertices.

3.2. A triangularization algorithm [21]

We have implemented a simple “triangularization” algorithm, which tries to
accomplish these objectives. In outline, it functions as follows.

258 M. Guignard, K . Spielberg

(1) Consider (2.1) as an equality system with slacks s (i , j) , i.e. with the
constraints:

x (i , j) + s(i , j) = y (i) , all i, j .

An initial triangular basis is easily found. To simplify matters, we always included
(and maintained) the y (i) in the basis. (In retrospect, we believe that this may be
too restrictive.)

(2) A t a typical iteration, given the triangularity of the basis, we can compute the
dual variables by recursive scanning of the dual constraints and substitution. If the
problem is not optimal (dually feasible) we select an incoming variable t(i *, j *),
which represents either x (i * , j *) or s (i * , j *) .

(3) We generate the pivot column by scanning the primal constraints and
expressing the basic variables y (i) and x (i, j) in terms of t (i *, j *). This is possible
on account of triangularity, and the scanning can be used to exhibit the sequence of
variables which shows the triangularity of the basis explicitly. It is clear, that the
basic s”(i , j) can be generated afterwards from the constraints (2.1), so that only the
x B , y

(4) Given the constant column (the values of the basic variables) and the pivot
column developed in (3), we can perform the standard ratio tests and decide on
an outgoing variable. Let t B = b + t * . p + * 1 (p.. . pivot column) represent the basic
variable vector t B in terms of its current value b and the incoming variable t*. The
b (i) are either 0 or 1, but the pivot column may, in general, contain integer entries
other than 0, 1, - 1 .

In the ratio test one searches for an outgoing variable t (i * * , j * *) which
corresponds to a maximal b (i) / p (i) , over p (i) < 0. When the maximal ratio is zero,
the pivot step is degenerate (does not change the value of the solution; one remains
at the same vertex of the polytope). It can be seen that one can then find an eligible
i** for which the p (i) is - 1, so that the new basis remains unimodular. When the
maximal ratio is - 1, we have a non-degenerate pivot step which leads to a new
unimodular basis. When the maximal ratio is fractional, i.e., when the p (i) is
negative other than - 1, we abandon the incoming variable t * because the new
basis would have to be non-triangular. In effect, one abandons motion along one
edge of the polytope from the current vertex to what would most likely (apparently
there are exceptions) be a fractional neighbor.

computations require iterative scanning.

Comments. (i) In our code all array representations are kept in binary form. We do
not generate p (i) which are other than 0, 1, - 1, but carry along a fourth type
(represented by a code of two bits) which we designate as “polluted”. Linear
combinations of polluted entries are also designated as polluted. We abandon
incoming variables (candidate edges) which lead to a polluted p (i * *) . This means
that our code is somewhat too restrictive (pessimistic).

(ii) The code will fail in two cases:
(a) There are n o candidate edges leading to a unimodular new basis.

Algorithms for the plan? location problem 259

-

-

?
?

243
343

(b) A new unimodular basis has been found and is yet non-triangular.
(iii) For very small problems (we have run a large number of problems with

m = 4 and n = 6) we have not been able to get one of the two conditions mentioned
above, no matter what data we tried.

Failure (a) apparently is unlikely for “easy” fixed charges. It can be “induced”
most readily by using uniformly large fixed charges (rendering the problem almost
fully combinatorial).

We have only one example for failure (b), for a fairly large problem of 20 plants
and 35 customers. The unimodular basis which appears to be non-triangular is of
size (735 by 735).

(iv) The real flaw of the method, however, lies in two other circumstances. One is
the well-known problem of degeneracy, which leads to large numbers of apparently
useless pivot steps. The other is that a method which treats the x (i , j) and s (i , j) as
the important variables is probably doomed to failure because of dimensionality.
We are now convinced that a direct LP technique will have to concentrate on the
y (i) , just as is done by enumerative methods. Our choice of taking all y (i) always
basic and preventing them from leaving the basis was probably unwise, and the
methods of the next section are probably more appropriate.

Table 1 exhibits selected computational results for small problems. The code
permits slight changes in initialization and selection of incoming variables. We do
not attribute any significance to such changes and only use an asterisk to distinguish
between two similar yet different runs.

-

-
80

30058
80

30058
2.52
243

Table 1

37
0

43
large

moderate

limensions

4 x 6

10 x 10

20 x 35

?
80

?
243
243

completed

no
’eason fc

failure

d a

d a
J b

Number of
iterations

11
6

1 6
11

6
14
34
14
3.5
54
84

Number of Optimal Value at
fractional value termination
vertices

discarded

4 10026

I 2.5

I

- I -

I

260 M. Guignard, K. Spielberg

3.3. Some special triangular bases

The SPLP can be (as was discussed among A. Hoffman, E.L. Johnson and M.
Padberg, and suggested to us by A. Hoffman) reformulated as follows in terms of
variables j j (i) = 1 - y (i) :

min C f (i) . (1 - j (i)) + C c (i , j) . x (i , j) ,
1. I

C x (i , j) = 1, vj,

or

x (i , j) + j j (i) + s (i , j) = 1, Vi , j ,

1 3 x (i , j) , y (i) , s (i , j) > O , Vi , j ,

Y (i) in (0, 11,

(3.2)

V i.

(3.2) is a highly structured and generally very large set partitioning problem.
Therefore, the interesting results of [2] and [3] apply, even though their practical
applicability is uncertain in view of the large problem size.

Note that:
(1) a given x (i , j) appears in exactly two explicit equations, one of which

(c,x(i, j) = 1) we shall term the c j (sigma j) equation, while the other (x (i , j) +
s (i , j) + jj(i) = 1) shall be referred to as * i j (cross i j) equation;

(2) a given y (i) appears in n equations * i l , . . . , * in;
(3) a slack s (i , j) appears only in one * i j equation. These observations are

important in pointing out how basic variables can be computed. One may establish
a number of useful properties:

Property 1. A basic s(i , j) can be determined only from * ij , so that when the
involved x (i , j) and y (i) have been determined, the basic s(i , j) is known. I.e., once
the basic x (i , j) and y (i) have been computed, the basic s(i , j) can be determined in
triangular fashion (one at a time). Therefore, one need only be concerned with the
subbasis B".', the subbasis whose columns correspond to x and y.

Property 2. Given j , there must be at least one x (i , j) basic expressed from cj. All
other basic x (i , j) must come from * i j .

Algorithms for ihe planf locafion problem 261

Property 3. Given i, a basic y(i) must be determined from one of the *ij.
Therefore, if all x (i , j) are basic, at least one of them must come from a xi, so that
y (i) can be computed.

Property 4.’The subbasis corresponding to basic Y (i) and x (i , j) equal to 1 can be
rearranged so as to be triangular.

The constraint matrix has only coefficients 0 and 1, the right hand side contains
only 1’s; there must therefore be exactly one 1 per row in the submatrix. There is no
zero column. Hence there must exist a permutation of the rows and columns which
brings an identity matrix to the upper part of the submatrix.

Property 5. It is always possible to complete the basis in a triangular fashion by
choice of basis columns which correspond to variables at zero.

Let A be the constraint matrix; let P be the set of indices of variables at 1 and let
7r and ii be suitable index sets. Then the subbasis of Property 4 is

At:

(a subscript is used for row indexing, a superscript for column indexing).
Consider A E. It also has exactly one 1 per row. Consider row i, i E 7r. It has one 1

in column j (i) , which can correspond to an x, a y or an s. We shall give one possible
way of completing the basis:

(1) if the entry corresponds to an x, say x (k , r) , x (k , r) = 1 in the current solution,
so that y (k) and s (k , r) are 0 and not yet in A P . Since s (k , r) occurs only in one
equation (* k r) , one can append column s (k , r) to A P .

(2) if the entry corresponds to a y, say y (k) , y (k) = 1 means x (k , j) = 0 Vj , and
s (k , j) = 0 Vj . The columns x (k , j) contain two 1’s and one of these might be above
the main diagonal, whereas the columns s (k , j) contain only one 1 and (a - 1) of
them are adjoined to A with their 1’s on the diagonal. One of the s (k , r) will be
nonbasic (its choice is arbitrary).

(3) the entry can not correspond to an s (k , j) at 1, since an s (k , j) column has
only one 1 which is in A:.

262

i

M. Guignard, K. Spielberg

Property 6. The basis thus constructed (which we shall call the s-canonical basis,
since only s columns were added), has the anti-involutive property:

ii

B =

IT

P F -
IT IT

Property 7. The top rows ii of the updated tableau are unchanged, whereas the
‘‘bottom” rows IT are equal to the original rows minus one of the top rows.

Let T = B-’ .A, then

P

T =

F

-
IT IT B N

... 1 I O I 1

X

B N

AF:-AEAX 1
and since A has only one nonzero element per row, one subtracts one row of the
top from one row of the bottom.

Algorithms for the plant location problem 263

More precisely, let us use the following notation:
(a) in each column j , let i (j) be the route on which x is 1:

x (i (j) , j) = 1.

(b) if y (i) = 1, (n - 1) of the s (i , j) are basic. Let ijo be the index of the nonbasic s
(notice that x (i , j) is a1sononbasic);we shall refer to (x (i , jo) , s (i , j o)) as the nonbasic
pair associated with a y (i) at 1 (i.e., with a closed plant), then

are the nonzero nonbasic entries of the updated tableau.
In the s-canonical basis no F (i) or x (i , j) at 0 is basic.

Property 8. The reduced costs of the nonbasic variables are:
d" = c N - c P A $

in particular

where

1 if s (i , j) E N,

0 if s (i , j) E B.
(s (i , j) E N) =

Every nonbasic y (k) is therefore a candidate for entering the basis; a nonbasic
x (i , j) is a candidate if its cost plus possibly the ith fixed charge is smaller than the
cost of the route currently used in column j . All these pivot steps are degenerate,
since the bottom part of the right hand side consists of O's, and each candidate
column has positive entries in the bottom part. Any move to a better neighbor
integer vertex therefore involves a block pivot (see [2] and [3]).

Example. Take f and c as in 2.1. Consider the solution

1 1 1
y = [k] , x = [; 0" (I]

264 M. Guignard, K. Spielberg

x 1

3

*22
31

11
12
13

21
23

The cost is 13. One can construct the s-canonical basis displayed in Table 2,
making s(2,2) and s(3,l) nonbasic on account of the large associated costs of x.

XI1 12 H y z 3 S I I I * I , 21 23 12 7 , xz, 22 2, 3 , 12 3, S2Z 3 , y ,

1 1 1
2 1 1 1

-

1 1 1

1 1
1 ' 1 1

1 1 - 1 - 1 1
1 1 - 1 - 1 1

1 1 - 1 - 1 1

1 1 1 - 1 - 1
1 - 1 1 - 1

Table 2. s-canonical basis: (B , TN)

The negative entries in the nonbasic tableau belong to the upated tableau, the
positive ones are the original entries which are preserved in the transformation to
the updated tableau. x(2,3), x(3,3), y(l) are candidates to enter the basis, but all
yield degenerate steps if taken alone.

Block pivot [3]. One looks for a set K of nonbasic columns to bring into the basis at
level 1, such that:

(giving the Ith basic variable value 1 or 0),

C T:=Oor - 1 if l E p ,
k E K

(rendering the lth basic variable 0 or 1).
For instance, bringing in x(2,3) at level 1 saves 9, renders s(2,3) infeasible

(= - l), which has to be corrected by bringing in at 1 either x(2,2) (costs
10 - 9 = 1) or s(2,2) (saves 9 - 1 = 8). Both changes render the problem feasible,
therefore yield neighbor vertices. Choosing the improving vertex, we get x(2,3) =

s(2,2) = 1 and

Algorithms for the plant location problem 265

y = [i] , x = [o 1 1 0 0 1 1 . s = [1 0 0 1 l o] , y=[;]

0 0 0 0 0 0

with a cost of 13 - 8 = 5.

Property 9. Given the set P of variables at 1, one can also complete the basis by
first adding columns corresponding to y (i) at zero, then only adding s columns as
needed.

We shall can this basis the y - s canonical basis. Essentially, the procedure is the
following: bring the identitiy matrix to the top of the basis as before, which
corresponds to placing first the rows El , . . . , En, then for each y (i) at 1 (y (i) = 0,
x (i , j) = s(i,j) = 0 V j) choose a nonbasic pair (i, jo(i)) (or ijo when not ambiguous) as
before. Then, for each F (i) at 0 (y (i) = 1, the plant is open) some x (i , j) must be 1 in
a basic solution since not all s (i , j) can be simultaneously positive and thus basic, as
y (i) also must come from one *ij. Choose one index j for which x (i , j) is 1 and
render s (i , j) nonbasic. Then complete with columns corresponding to s (i , j) = 1
(possible only with f (i) = O basic and x (i , j) nonbasic). This is still a triangular
procedure. Finally complete with s (i , j) = 0.

Table 3: (B , T N)

Example (cont.). The starred entries in Table 3 belong to the updated tableau.

d N = [9 1 1 1 8 - 1 9 0 - 1] .

Two columns are candidates to enter the basis: x21 and x33 (in slightly simplified
notation) at a saving of 1, but both pivot steps would be degenerate.

If one brings in x21 at level 1, s12 becomes - 1, which can be corrected by
bringing in at 1:

266 M . Guignard, K . Spielberg

s 11 at no improvement, but this is a feasible neighbor vertex.
x 2 2 at a cost of 9 - 1 = 8, which is also feasible, so that there is no need to pursue

this combination further.
x 3 2 at a saving of 1 , but this renders s 3 2 infeasible, which can be corrected by

setting x 3 1 or s 3 1 at 1 , with no improvement left. s 3 1 would yield a feasible point,
x 3 1 would create an infeasibility which could not be corrected at a saving.

If one brings x 3 3 in at 1, s 3 3 becomes - 1, s 3 1 would completely correct it at n o
saving, x 3 1 would cost 9- 1 = 8 and n o further saving is possible. The solution is
therefore optimal in integer variables.

Property 10. Given an integer feasible solution to SPLP, one can also define a
triangular basis (so-called y - x - y - s canonical b a s i s) having the following
columns: all y(i)’sat 1 , some x (i , j) ’ s at 0 for closed plants, all x(i,j)’sat 1, all y (i) ’ s
at 0, all s (i , j) ’ s at 1, some s (i , j) ’ s at 0.

We suggest that constructing such a basis as follows, one may achieve the goal of
arriving at a relatively small number of negative reduced costs (i.e., to position
oneself in a sense close to an optimal solution, in order to finish via relatively few
and simple block pivots).

(1) Place first the columns corresponding to y (i) = 1 (x (i , j) = s (i , j) = 0 V j) and
associate with each i a row *(i, j o) , where (x (i , j o (i) , s(i , j o (i)) will be a nonbasic pair
such that f(i)+ c(i , j)-f(i(j))- c (i (j) , j) is maximal for j = jo(i).

(2) For each i with y (i) = 1 , for each pair (x (i , j) , s (i , j)) , j =Io, if c(i , j)”
f (i (j))+ c (i (j) , j) make x (i , j) nonbasic, otherwise make s(i , j) nonbasic and add
row * i j and column x (i , j) to the subbasis.

(3) add rows xj and columns x (i (j) , j) .
(4) For y (i) = 0 (y (i) = 1 , one x (i , j) at least is l) , choose one j l (i) such that (a)

x (i , jl) = 1 and (b) the increase in cost for shipping from another plant is maximal
over { j l x (i , j) = 1) for j = jl. Note that for different i, we’ll get different jl(i) as
there is only one x (i , j) at 1 per column. We can therefore talk of jT1(j) with the
convention that f(j;’(j)) is f (i) if j = j l (i) and is 0 if there is no i such that j = j l (i) .
Then add row * i j (i) and column y(i) to the submatrix.

(5) Complete with the slacks at 1 , and then some slacks at 0. Then, if we call
Bo(i) = { j I x (i , j) is basic, x (i , j) = O}, we have the following properties:

d (s,,~(,)) = fi (all other s (i , j) are basic).

Algorithms for the plant location problem 267

N - - 0

268

f =

M. Guignard, K . Spielberg

- 5

10

10

-10

Example.

Y =

1 I0 0 1 0 0 1 3 2 4 2 2 0 5 - 1 -

0 ,

1

- 0 -

L 1 3 L 1 L

1 L l L 2 2

0 0 0 0 0 0

1 0 1 0 1 1
, x = 9 , c =

8 5 5 1 3 4 1 l o 0 0 0 0 0 1

L stands for a very large number. Tables 4 and 5 display the original basis and
updated nonbasis.

Table 5. Updated nonbasis (asterisked entries introduced in inversion process).

.22 .I, 12 44

1 1
1 1

x22

4,

42

44

1
1

1
1

X31

12

33

14

35

3

I' 1.
1' I* I' I'

I* I*
1 1

- 1'
I * - 1'

1 1
1

1 1 1
1 1

1

1 1 1

1

I I

Y3

I * 1'
1'

1

1

I * 1' I * I'
I' I'

I' 1' I ' 1'
1' 1'

1' 1' 1' 1.
I* I' I' I'

I* - 1'
-I'

1' - 1 -
- I'

1. - 1 '

- 1' - I'

I I'
1- 1' I

1' 1.
1- I

1'
I'

1
1

1

$14

21

23

24

26

33

35

36

43

46

__
d N -

1' -1. 1

- 1'
- 1'
- I f

6 3 2 1 - 8 L L 3 2 4 L L 18 3 L 2 5 I l l 3 4 5 4

Algorithms for the plant location problem 269

4. Enumeration

The SPLP behaves relatively well under enumeration. Enumerative codes often
start with all plants open, so that a “forward step” in the search consists of closing a
plant. (E.g., see [24].) More generally, one starts at a point with some plants fixed
open (i E E, y (i) = l), some fixed closed (i E C, y (i) = 0), some free but tentatively
open (i E F1, y (i) = l), some free but tentatively closed (i E F2, y (i) = 0).

4.1. State enumeration [20]

By the “state” at node v, we mean a partitioning of the index set into
E, C, F1, F2. With the state one associates a solution (z ”, y ”, x ”) by:

y ” (i) = 1 for i E E + F1,

y ” (i) = O for i E C + F 2 ,

X (i W , j) = 1,

x (i , j) = 0 , i# i (j) ,

io): c (i (j) , j) = min{c(i,j)} over E + F1.

Consider the problem SPLPD dual to (2.1):

C (i , j) + w (i , j) - u O ’) 2 0 ,

w (i , j) , uO’)>O,

i o v e r E ” a n d F l ” , j o v e r J = 1 , 2 ,..., n.

In terms of z and z * (a known upper bound on z) , one has the Benders inequality:

c (- f (i > + c w(i , i,) . y (i) + c (/(i) - c w(i , j)) . y (i) * - 2. (4.3)
FI” FZ”

In [20,24], the coefficients of the y (i) (multiplied by - 1) were called “global gain
functions”, g(i), and play a central role in curtailing and guiding the search.

4.2. Strengthening the gain functions

It is important to have the g (i) as small as posible. E.g., g (i) c O permits the
fixing of y (i) .

It is interesting that there is a great latitude in choosing the w (i , j) of (4.2), and
with them the g (i) . One good and not completely obvious choice of the dual
variables is: Let

270 M. Guignard, K. Spielberg

c(i (j) , j) = min{c(i,j)) i E E ” + F” - { i (j) } } ,

I c (i (j) , j) otherwise,
v “ (j) =

w ” (i , j) = max(0, v (j) - c(i,j)}.

c (to), j) if c (i (j) , j) 3 c (i (j) , j)

Then one has, correspondingly:

g (i) = -f(i) + max(0, c(i(j),j)- c (i , j) } , i E F2.
I

(4.4)

(4.5)

As in [24], one can also define “local” gain functions to aid in both curtailment of
search and strategy.

Now, it is quite clear that the reduced costs of any LP tableau associated with the
variables of a state problem at node v have the properties of gain functions. There
is then substantial interest in generating the various bases of Section 3 for node v,
and utilizing the reduced costs in the enumeration.

More fundamentally, it is clear that the gain functions as used in the past only
exploit a limited portion of the updated LP tableau. Having the entire updated
tableau at one’s disposal, at a cost which is relatively modest given the nice
properties of “canonical bases”, should permit substantial improvements.

In a sense, it provides a grasp of the LP polytope, e.g. by defining the edges
leading away from the state point. With some ingenuity, an improvement of
enumerative procedures should be attainable.

References

[l] Dj.A., Babayev, Comments on a Note of Frieze, Math. Programming, 7 (1974) 249-252.
[2] E. Balas and M.W. Padberg, O n the set-covering problem, J. ORSA, 20, (1972) 1152-1161.
[3] E. Balas and M.W. Padberg, On the set-covering problem 11, an algorithm, Mgmt. Sciences

Research Rep. 295, Carnegie Mellon Univ., 1972.
[4] M.L. Balinski, Fixed cost transportation problems, Naval Res. Logistics Quarterly, 8 (1961)

41-54.
[5] M.L. Balinski and K. Spielberg, Methods for integer programming: Algebraic, combinatorial and

enumerative, in J. Aronofsky, ed., Progress in Operation Res., Vol. 3, (Wiley, New York, 1969) pp.

[6] J.F. Benders, Paritioning procedures for solving mixed-variables programming problems, Num.
Math., 4 (1962) 238-252.

[7] 0. Bilde and J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location
problem, Research Report #75/5, Inst. of Datology, Univ. of Copenbagen, 1975 (based on report
in Danish of 1967).

[8] P. Broise, P. Huard and J. Sentenac, Decomposition des Programmes Mathematiques (Dunod,
Paris, 1968).

195-292.

Algorithms for the plant location problem 271

(9) V.P. Cherenin, Reshenie nechotorych combinatornych zadach optimalnogo planirovania metodom
posledovatelnych raschetov (Solving some combinatorial problems of optimal planning by the
method of successive calculation), in Proc. of the conference of experiences and perspectives of the
application of mathematical methods and electronic computers in planning, Mimeograph,
Novosibirsk, 1962.

[lo] G. Cornuejols, M.L. Fischer and G.L. Memhauser, An analysis of heuristics and relaxations for the
uncapacitated location problem, Cornell Univ., Techn. Report #271, Aug. 1975.

1111 G.B. Dantzig and Ph. Wolfe, Principle of decomposition for linear programs, J. ORSA, 8 (1960)
101-11 1.

[I21 P.S. Davis and T.L. Ray, A branch-bound algorithm for the capacitated facilities location problem,
Naval Res. Log. Quart., 16 (1969) 331-344.

[13] M.A. Efroymson and T.L. Ray, A branch-bound algorithm for plant location, J. ORSA, 14 (1966)
361-368.

[14] A.M. Frieze, A cost function property for plant location problems, Math. Programming, 7 (1974)
245-248.

[15] A.M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Study 2

[16] A.M. Geoffrion and G.W. Graves, Multicommodity distribution system design by Renders
decomposition, Management Sci., 20 (1974) 822-844.

[17] F. Glover, Compact LP bases for a class of IP problems, Report #75-18, Mgmt. Sc. Report Series,
Grad. School of Bus. Adm., Univ. of Col., April 1975.

[I81 R.S. Garfinkel. A.W. Neebe and M.R. Rao, An algorithm for the M-median plant location
problem, Working Paper #7312, Grad. School of Management, Univ. of Rochester, May 1973.

[191 G.W. Graves and R.D. McBride, The factorization approach to large-scale linear programming,
Working Paper #208, Western Mgmt. Sc. Inst., UCLA, Aug. 1973.

1201 M. Guignard and K. Spielberg, Search techniques with adaptive features for certain integer and
mixed-integer programming problems in: A.J.H. Morrell, ed., Information Processing 68, Volume
1 (North-Holland, Amsterdam, 1968) pp. 238-244.

[21] M. Guignard and K. Spielberg, Triangular structure in uncapacitated plant location, ORSA/TIMS
Meeting 1974, San Juan, Puerto Rico.

[22] R.E. Marsten, An algorithm for finding almost all of the medians of a network, Report, Center for
Math. Studies in Econ. and Mgmt. Sc., Northwestern Univ., Nov. 1972.

[23] L. Schrage, Implicit representation of generalized variable upper bounds in linear programs,
Report #7543, Dept. Econ. & Grad. School of Business, Univ. Chicago, Oct. 1975.

[24] K. Spielberg, Plant location with generalized search origin, Management Sci., 16 (1969) 165-178.
[25] K. Spielberg, Algorithms for the simple plant-location problem with some side conditions, J.

ORSA, (17) (1969) 85-111 (based on IBM New York Sci. Centre Report #2909, May 1967).
[26] H.P. Williams, Experiments in the formulation of integer programming problems, Math. Program-

ming Study 2 (1974) 180-197.

(1974) 82-114.

This Page Intentionally Left Blank

Annals of Discrete Mathematics I (1977) 273-285
@ North-Holland Publishing Company

REDUCTION METHODS FOR STATE ENUMERATION INTEGER
PROGRAMMING

Monique GUIGNARD
Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, P A 191 74,
U.S.A.

Kurt SPIELBERG
Scientific Marketing, IBM, White Plains, N Y 10604, U.S.A.

Integer programs with small bound intervals can often be dealt with effectively, by a
state-enumeration procedure with reduction methods. Our approach features the consistent use
of logical inequalities, derived during the computation, especially for influencing the choice of
appropriate directions for the search effort.

1. Introduction

In spite of much good research and a host of proposed algorithms, the all-integer
program P

is far from being solved successfully even for small problems.
Both branch-and-bound (BB) programming (see [4] for a recent survey) and

enumerative programming meet success for some problems (usually those with
which the analyst is familiar) and fail badly elsewhere.

There is a need for a flexible integer programming system, possibly with user
intervention on some kind of interactive level. In this paper we discuss an
experimental enumerative system which is meant to incorporate a family of
techniques which we have shown, or which we believe, to have substantial promise.

Among the practical problems which may require such techniques, we cite large
scale integer problems with substantial logical structure. Many of these are
scheduling problems with time-dependent (0,l) decision variables, say y(i, t) . (E.g.,
y(i, t) might be 1 (0) if a certain choice is made (not made) in time period t .)

A production code of the BB type (such as MPSX/MIP of IBM) takes a good deal

273

274 M. Guignard, K. Spielberg

of time solving linear programs. A promising alternative, then, is to solve only one
linear program (at level 0 of the search), or conceivably a linear program whenever
the search returns to level 0, and to finish by state enumeration.

MPSX/MIP 370 has a control language which would allow the writing of an
enumeration program (using procedures of MPSX) in PL/I. Knowledge about
special structure can probably be incorporated best in such an enumerative code.

Another area of interest for the techniques of this paper is to be found within a
production mixed-integer code, especially for problems with a large number of
continuous variables. The reduction and state enumeration procedures over
Benders inequalities would be executed entirely in core storage and would consume
negligible effort compared to the other I/O-bound solution procedures.

2. State enumeration

2.1 Scheme of search

The search is organized as follows. It starts at “level I = 0” and “node v = l”,
with all components “free”, i.e., with all components y (i) only constrained by the
initial bounds Lo’)’ and UQ)’.

At a general iteration, one is at level I which measures the number of explicit
bound changes (“forward branches”) which have been imposed from the last time
the search was at level 0.

At level 1 (and node v ; v is a running counter, increased by one at each
iteration), one basically takes one of two actions:

(i) A Forward Step from level 1 to level 1 + 1 (setting the bound of a branch
variable to a new value).

(ii) A Backward Step from level 1 to level I - 1 (with the search terminating
when 1 - 1 is - 1).
The explicit forward steps from level 0 to level 1 are recorded in two lists of 1
numbers:

List 1 consists of signed component indices, the sign of an index reserved for
indicating whether the associated variable was constrained by a raising (lowering)
of its lower (upper) bound.

List 2 contains the value to which the upper (lower) bound of the related
component from list 1 is to be lowered (raised) on return to a level.

It is clear that such a scheme suffices to record the history of the search and to
control the search on backward steps. Further details can be skipped.

2.2 The state

At node v (level 1) one easily computes a set of “Working Bounds”,
(Lo’), UG))”, i.e., a set of bounds determined by the explicit branches of the search,

Reducrion methods for integer programming 275

as well as by subsequent applications of the reduction procedures. (We shall usually
drop the superscript v on the working bounds.)

The State S ” is essentially meant to be a conjectured value y”, for which we
permit (to keep the search simple) the choice of setting a given y ” (j) either to its
lower bound L (j) or to its upper bound U(j) .

It is the state value y ” which is substituted as a trial solution. Forward branches
are taken so as to lead away from the state, and are chosen among some index set J
(see Section 4.2) so as to reduce total infeasibility.

In the numerical experimentation we determined an initial state at node v = 1
from the initial LP solution y ” :

y ’ (j) = L (j) if y A (j) 6 L (j) + r . (U (j) - LO’)) (2.1)
= U (j) if y ^ (j) > L (j) + r - (U (j) - L (j))

(r being an arbitrary rounding parameter). At subsequenct levels the state is carried
along, i.e. one uses the transformed state given by:

y ” (j) = L (j) if y’(j) was LO’)’

= U (j) if y’(j) was U(j)’

Alternatively, we also considered the options of setting y ”(j) always to the lower
working bound (in the tables indicated by “ALWL”) or always to the upper
working bound (in the tables: “ALWU”).

3. Techniques for integer state enumeration

No one technique can be expected to solve all problems. A modular collection of
techniques, possibly controlled in an interactive fashion, may eventually prove to
be the best vehicle for studying and resolving general and special integer programs.

In Section 3.1 below, we outline those techniques which will be stressed in this
paper, and for which some numerical results will be given. In Section 3.2 we outline
other methods which we have tried and for which results have been given
elsewhere. Some of these methods need to be generalized from the 0-1 to the
integer programming case.

The results of this paper demonstrate (for small problems; but we believe that
there is n o reason to assume drastically different behavior for larger problems) the
importance of state enumeration (good starting points for the enumeration) and of
some form of reduction (i.e., systematic tightening of bounds).

The generation of logical (“preferred”) inequalities does not yield, in these
experiments, much additional improvement. We believe that this shows the
necessity of combining such techniques with the use of penalties and propagation
(see Section 3.2, items 7 and 8).

276 M. Guignard, K. Spielberg

3.1 Techniques used in current experimentation

(1) Solution of only one linearprogram at the start (possibly followed by judicious
use of cutting planes to get optimal but non-integral tableaux with a relatively good
value for 2, i.e. a large value for the objective function of the relaxed problem).

(2) Retention of the top row (or the related Benders inequality, [2]) for purposes of
bound reduction or fixing of variables. For some purposes one may wish to retain
the entire tableau. Suitably updated they are referred to as “current” top row or
tableau.

(3) Definition and use of a state, i.e., a suitable origin for the search (see [8] or
[9]) (either permanenfly after solution of the initial LP, or dynamically according to
some (heuristic) criterion at each level of the search).

(4) “Reduction” of system (1 . 1) at every level of the search.
(a) Reduction of the bound intervals for the y o) and the slacks s (i) (as

proposed by Zionts [17]).
(b) Construction of logical relations (“minimal preferred inequalities”) which

are to guide the search so as to: (i) find feasible solutions, (ii) “minimize”
the search effort.

Each preferred inequality specifies d (degree) preferred or indicated bound
changes. One indicated bound change, at least, must be implemented if the
problem is to have a solution.

The main emphasis is on “contraction”, i.e., on guiding the search into (locally)
increasingly constrained directions [6, 14, 161.

(5) Local search of lattice points close to a given point y . A simple procedure
for looking at all points which differ from y in exactly ‘‘lev’’ (level: 1-level, 2-level
search) components by exactly one unit . The search is also used as a strategic
device, to select branches for getting to new points with decreased overall
infeasibility. As can be seen, there is some overlap and conflict between (4) and (5)
(see also Section 5) .

3.2 Techniques to be incorporated in a full system

(6) Cutting plane techniques. Our experimental system includes the ability of
adding cuts, followed by reoptimization (see [S , 10, 1 I]). The (0, 1) test problems of
this paper can be solved by such cutting plane methods, with only little enumera-
tion. More difficult problems (with larger gap between LP and IP objective
€unction) may prove intractable.

(7) Penalties and preferred variable inequalities. Preferred variable inequalities
(as this paper shows in conjunction with [7, 15, 161) are best invoked together with
penalties. One rules out certain branches of a suitable preferred inequality due to
large associated penalties and pursues alternatives when they are favorable from a
“contraction” point of view.

Reduction methods for integer programming 277

(8) Propagation. An “indicated branch (bound change)” of a minimal preferred
inequality (see Section 4.2) may often be implemented by “propagation”, tan-
tamount to fixing a variable (or altering a bound) at its current values, i.e. at
insignificant computational cost. See [151 for some excellent computational results.

(9) Mixed integer problems. For a mixed problem, one may work with Benders
inequalities generated during the search. Techniques (1)-(8) can then be applied to
a system of Benders inequalities in the integer variables, which in our experience
lend themselves well to reduction.

4. Reduction for integer variables

4.1 Reduction of bound intervals [17]

Consider the constraint set of problem (1.1) in equality form:

A . t = b (4-1)

L (j) s t(j)s U (j) , j = 1,2, . . . , n + m

with t a composite of the structural variables yo’) (j = 1,2, . . . , n) and the slacks
s (i) (i = 1,2 ,..., m) .

From (4.1) a new set of bounds can be computed in accordance with the
formulas:

[L (j); U (j) + (b (i) / a (i, j)) - (l/a (i, j))(AP U (i) + AML (i))
for i : a(i , j)>O, Lo’)’ = max { U(j)+(b(i)/u(i,j))-(l/u(i,j))(APL(i)+ AMU(i))

U(j) ; Lo’)+ (b (i) /u (i , j)) - (l/a(i,j))(APL(i)+AMU(i))

L o) + (b (i) / a (i , j)) - (l /a(i , j))(APU(i) + AML(i))
for i : a(i , j)>O,

for i : a(i , j)<O;

UQ)’ = min

j = 1,2 , . . . , n + m. (4 4

APU(i) = C a+(i , j) . U (j)

APL(i) = a ’ (i , j) - L (j)

A M U (i) = C C (i , j) . U (j)

AML(i) = a - (i , j) . L (j) .

(4.3)

Summation is from 1 to n + m,

278 M. Guignard, K . Spielberg

a+(i , j) = max(0, a(i , j)) ,
u - (i , j) = min(0, u(i , j)) . (4.4)

These formulas are easily derived. They are slightly altered from some of the
formulas found in [17].

At any node of the enumeration one applies (4.2) iteratively until there is no
more alteration of bounds. It appears to us (after some experimentation) that this
procedure is somewhat preferable to the equivalent one of Section 4.2 below (which
gives the same results by iterative application of minimal inequalities of degree 1).

In the numerical experiments which we conducted, little use was made of the
resulting bounds on the slacks. They could be exploited, for example, in Section 4.2.

4.2. Logical inequalities for integer variables

(i) The (0 , l) case [l, 6, 14, 161. Let (1.1) be a system in zero-one variables. One
can then associate with it a “minimal preferred variable” system

Q ’ y s q (4.5)

of degree d. (The unusual case that (4.5) is empty, i.e. that (1.1) does not imply any
logical relations for the y (i) , can be taken care of by simple default procedures. In
the following it is always assumed that (4.5) is not empty.)

Each row k of Q has d non-zero entries and row k of (4.5) represents one logical
condition implied by the system and the zero-one conditions. Let q (k , j) be the
entries in row k of Q.

q (k , j) = - 1 (+ 1) implies that the possibility yo’) = 1 (respectively y (j) = 0)
should be considered as a logical alternative (i.e., as preferred or indicated value) in
an either-or partitioning. E.g., d = 3, and q (k , j l) = - 1, q (k , j 2) = 1, q (k , j 3) =
- 1, q (k) = 0, represents the logical implication:

either y(j1) = 1, or y (j 2) = 0, or y (j 3) = 1.

(ii) The integer case
(a) Reduction. Starting with (l.l), one multiplies the columns of C by the bound

intervals U(j)-L(’j), and correspondingly subtracts c c (i , j) . L (j) from b (i) , for
each i. In this fashion one effectively changes to a system with variables t (j) in the
unit hypercube, i.e. to

Reduction methods for integer programming 279

The procedures for generating all minimal preferred inequalities for zero-one

When the t (j) are true zero-one variables, then an inequality such as
variables [16] are then applied to (4.6) as if (4.6) were a system in (0,l) variables.

- 2 . t (j 1) - 3 . T (j 2) S - 1

(with t(j) = 1 - t (j)) is interpreted as

t (j l) + 10'2)a 1,

i.e., either t (j 1) = 1 , or t (j 2) = 0.

y (j 1) must be raised, or the upper bound of y (j 2) must be lowered.

for zero-one variables) are best written as:

In the case of (4.6), however, all one can imply is that either the lower bound of

The minimal preferred inequalities (obtained by exactly the same procedures as

(4.7)

The degree d is equal to lr l , the cardinality of the preferred set under
consideration.

It should be noted that a partitioning relation such as (4.7) is usually much
stronger than conventional branch-bound dichotomies. In a branch-bound code,
the partitioning of the above example, for instance, could be exploited by the
successive solution of the two problems P[t(j l) = 11 and P[t(j2) = 0 and t(j1) = 01.
Clearly, analogous conjunctive conditions are imposed in integer branch-bound
programming. See [15, revised] for some details.

In enumerative programming, such conjunctive conditions are taken care of
automatically by the book-keeping.

One may summarize the situation more generally. Let

Theorem 1. In order that y be an integer solution of (l . l) , i t i s necessary that
f (r) # 0, i.e. that y (r) # u (r) .

Corollary 1. y can be an integer solution of (1.1) only i f Y (. r r) # O .

Corollary 2. If r = 0, the condition is uacuous. If d = 1, one may reduce the bound
interval of y (r) by 1 . If d > 1, one may reduce one of the d bound intervals of y (7)
by 1.

280 M. Guignard, K. Spielberg

When the reduction procedures of this section are preceded by those of Section

All techniques based on contraction, penalties, propagation, etc., clearly remain

(b) Implementation. In the experimentation for this paper we only implemented

The entries of Q give information about the effect of an enumeration branch

4.1, however, one assures that d # 1.

valid in some modified form.

simple procedures based on contraction, as are described in what follows.

from a node I, to its successor node v + 1. Let

It is clear that:
m 10) > 0 implies d ”+’ < d ” if one branches with y o ’) = 0,
m2U) > 0 implies d ”+’ < d ” if one branches with y o ’) = 1.
Such branches are called contracting branches, for they lead the search to a

successor point in the integer lattice at which the problem is more constrained than
before the branch.

The most favorable case is that of double -contraction, which arises for branch j
when:

m l O ‘) > 0 and m20’)>0.

The enumerative code described here isolates a set, J, of candidates for
branching according to the priorities:

(i) J = { j 1 m 10’) > 0 and rn 20’) > 0) . ~1 double contraction,
(ii) J = { j * I m 10’ *) or m 2 U *) > 1 and equal to (max, (m lo’), m 20’))) (4.9)

(iii) J = {all j : LO’) # U (j) } . “free” variables.
In all cases, a branch with variable j is chosen such that y ”“0’) = 1 (0) if y ”0 ’) = 0

As explained in [16], this requirement may necessitate a replacement of (4.5)
(which represents “free” reduction with no state imposed) by a reduction after
imposition of a state on (l.l), if the original preferred inequality system has n o row
for which all indicated branches lead away from the state.

Whether a procedure which ensures branching away from the state is indeed
desirable, is not entirely clear. Some of our results in [lo] seem to go against such a
conjecture.

Our experimental system has been designed to admit the use of a truly “dynamic
state”, i.e. a state which can be recomputed (most likely so as to satisfy as closely as
possible, in some sense, a set of minimal preferred inequalities) at each iteration.
Such a feature, however, has not yet been tested.

(1).

Reduction methods for integer programming

5. Experiments

281

5.1 The experimental algorithm

The experimental algorithm was that of Section 2 with the techniques of Sections
3 and 4, stressed as follows:
one linear program was resolved and retained as per Sections 3.1 and 3.2;
the reduction procedures of Section 3.4 were used after any bound change, for
whatever reason (possibly leading to some redundant work), in the order a and b ;
states were determined as per Section 2.2 (see below for details);
a local search was conducted at every iteration (see Section 3.5), except for
LEV = 0 (see below);
forward branches in that enumeration were chosen so as to lead to a successor with
improved feasibility. Preferred inequalities were invoked for branching only if no
improved feasibility was attained in the local search.

5.2 Experimental results

In Table 1 we describe a few test problems for which experimental results are
described in Tables 2, 3, 4 and 5 . The LP (Linear Programming) Objective
Functions given are those obtained after an initial preprocessing reduction phase.

Table 1. Description of test problems

(m, n) Source LP solutions Integer solutions
in (0, 1) in (0,2) in (0, 1) in (0, 1,2)

6.85 6.58 13 11
- 6155.3 - 6623.5 - 6120 - 6570
521.05 356.23 550 400
56.68 56.68 73 -
- 10672. - 10737. - 10620
31.34 27.71 47 ~

-

a Problem differs slightly from source problem.
Seems to have originated as test problem in IBM Paris.

The problems are small. They are from either [3] or [12] (with some coefficients
possibly altered by transcription errors), and are for the most part easily resolved as
(0,l) problems. However, we solved some of them also as (0,1,2) problems. Our
experimental work was on an APL system time-shared with some 100 users. Hence
even small problems require substantial on-line time, and in a sense our environ-
ment was not much different from that of a user with larger problems and greater
computing power via a dedicated machine.

282 M. Guignard, K. Spielberg

Table 2. Problem (6,12)

BND STA LEV NR R1 Q1 Q2

LP, .5
LP, .5
LP, .5
LP, .s
ALWL
ALWL
ALWL
ALWL
ALWU
ALWU
ALWU
ALWU

1 999 (155)
2 13 (140)
1 . . .
L

1
L . . .

. . . 1
2
1
2
1
2

. . .

. . .

. . .

. . .

. . .

3 5
2 3

1s 21

4 1

8 13

15 17
11 15
44 53
41 51

-

-

3 5
2 3

17 23
4 11
4 7
4 7
8 13

12 13
11 15
38 49
34 45

-

3 5
2 3

-

38 49
-

- stands for “not run”.
’ . . stands for “not run, believed to be a bad strategy”.

Table 3. Problem (10,20)

BND STA LEV NR R1 Q1 Q2

LP, .5
LP, .5
LP, 1
LP, 1

ALWL
ALWL
ALWL
ALWL
ALWU
ALWU

1
2
1
2
1
2
1
2
1
2

. . .
-6100 (225)

. . .
-6.570 (125)

. . .

. . .

. . .
-6120 (75)

57 57
6 9
1 21
I 25

4158 (60)
. . .
. . .

9 1s

51 51 1 11
6 9 7 9
1 19
1 23 1 19

-

-3960 (62) . . .
-3960 (140) . . .

.

9 15 -5880 (63)

Table 4. Problem (28,35)

BND STA LEV N R R l Q1 Q2

(1) 1 LP, .5 1 - 1 9 1 9 1 11
(2) 1 LP, .5 2 - 1 15 1 15 1 11
(3) 2 LP, 1 1 - 47 67 6 23 675 (35)

- (4) 2 LP, 1 2 - 5 25 5 23
(5) 1 ALWL 1
(9) I ALWU 1

(11) 2 ALWU 1

. 1075 (43) . . .

. 1300 (57) . . .
- - 30 45 -

Reduction methods for integer programming 283

Table 5. Diverse problems run with Ql

Type Problem B N D STA LEV Q1
~~~ ~~ 

2. ( 1  2,441 1 LP, .5 2 1 357 

2. ( 2 0 3 )  1 LP, .s 2 47 (800) 
2 .  (5,391 1 LP, .s 2 -10618 (60) 

Tables 2, 3 and 4 are  devoted t o  one  sample problem each, run in a number of 
different ways. Table 5 gives a few results for somewhat more difficult problems. 
T h e  (20,28) problem, for example, requires on the  order of one  hundred LP 
programs, even when cutting plane techniques a re  used in branch-and-bound 
programming. 

The  columns headed BND and S T A  describe what bounds were used (on all 
variables) and what state was utilized. In all cases the  state was computed at  node 1 
and updated in the  obvious manner. The  entry (LP, r )  signifies that the state was 
obtained by rounding with the rounding parameter r. Column LEV refers to the 
search, which was used in practically all runs with a search level of 1 o r  2 .  Search 
level 0 would correspond to n o  search. 

The  last columns are  devoted to  comparisons among four possible methods: 
N R  - no reduction method used at all, 
R1 - reduction used as in Section 4.1, 
Q1 - full reduction, Sections 4.1 and 4.2, 
Q2 - full reduction; reduction (not search) used for strategy. 
Under each of these 4 column headings there a re  two entries, NS, NT: 
NS - iteration number v at which optimal solution found; 
N T  - iteration number at which optimality ascertained. 
However, when the second entry is in parentheses, this is meant t o  signify that 

the run did not terminate properly but was interrupted. In that case, (NT) is the 
iteration number at  interruption and NS is the best objective function value found 
during the run (with some default value such as 9999, when n o  solution found). 

The  difference between Q1 and Q2 needs to be explained a little further. Having 
several features in an enumerative system often makes comparisons of results quite 
difficult. Accumulated counts of the  successes of a particular technique depend 
strongly on the use of other techniques and on the  order in which these techniques 
were deployed. In this particular instance, the fact that a search was used in all runs 
makes the subsequent use of minimal preferred inequalities somewhat ineffective. 
Column Q2 refers t o  runs in which the use of the search (to indicate indices of 
variables which lead to  improved solutions o r  to points of reduced infeasibility) was 
suppressed. 

It is not difficult t o  interpret the results, even though it is a little disappointing 
that there is so little difference among R1, Q1, Q2: 

(i) The  state has a very great influence on  the enumeration, even if only used in a 



281 M. Guignard, K. Spielberg 

simple manner, as here. (Dynamic state determination is clearly of interest.) This is 
not new (compare [13]), but often forgotten. W e  believe this to be  on account of the 
fact that standard branch and  bound methods work in the  neighborhood of L P  
solutions and  are  therefore often successful. This does not, however, negate the 
great importance of codes which permit the “imposition” of a state (not easily 
possible in BB programming) for full enumeration o r  for heuristic programming. 

(ii) Using a local search can, bu t  need not, make a big difference. Occasionally a 
I-level search misses a good solution which can be  found by a 2-level search, and 
then the  search procedure can meander uselessly for quite a while before leading 
back to a lattice area of interest. 

(iii) Search method NR, n o  reduction, was n o  good at all. To mitigate this result 
somewhat, we must consider, however, that NR was obtained by cutting out all 
reduction. Any decent enumerative code has some provision for making inferences 
about fixing variables or reducing bounds. NR is, therefore, not representative of a 
reasonable enumerative code, in spite of containing state and  search features. 

(iv) There appears t o  be  only a slight improvement due  to Q1 or Q2 over R1. 
O u r  conclusion is that using a local search feature for R1 renders somewhat 
ineffective the use of logical inequalities for strategic purposes. Other  evidence 
makes it fairly clear that penalties ought to b e  invoked in conjunction with logical 
inequalities. 

(v) It need hardly be emphasized that integer programming remains always 
unpredictable. Comparing row 1 and  row 10 of Table 3, for example, one  sees that 
in one case method Q2 is much better than Q1, in the other case much worse. This 
only confirms the  well-known impossibility of finding one suitable algorithm for all 
problems. 

Finally, one  might be able to  make a genuine case for the use of interactivity in 
integer programming. Watching the behaviour of the search, e.g. by printing out 
List 1 and  List 2 of Section 3.1, plus some selected data on obj. function, bounds 
and infeasibilities, ( s ( i )  < 0), does give a feeling as to  whether one  is doing well or 
not. 

For example, when one  follows the behaviour of a search carefully, one  will 
almost always notice that the “depth” of the overall search tree (namely the 
maximal 1 attained, before reduction procedures lead to backward steps) is a good 
indicator of whether things go  well o r  not. Large values of 1 should perhaps be  
taken as poor behaviour and  lead to  redefinition of state, local search level o r  other 
parameters of the  enumerative code. (In our  past experience this behaviour was 
most evident with large plant location problems [13], where the use of a good state 
led otherwise quite difficult problems with 100 plants t o  have a search tree with 
level practically always below three. Given the relatively small machine at  our 
disposal at  that time, we did not resolve the  problem but still believe that the search 
was “well behaved”.) 



Reduction methods for integer programming 285 

References 

[ 11 E. Balas and R.  Jeroslow, Canonical cuts on  the unit hypercube, SIAM J. Appl. Math. 23 (1972) 
61-69. 

[2] J.F. Benders, Partitioning procedures for solving mixed-variables programming problems, 
Numerische Math. 4 (1962) 238-252. 

[3] B. Bouvier and G. Messoumian, Programmes lineaires en variables bivalentes, Thesis, Faculte des 
Sciences, Univ. Grenoble, 1965. 

[4] R.  Breu and C.-A. Burdet, Branch and bound experiments in zero-one programming, Math. 
Programming Study 2, (1974) 1-50. 

[5] R.E.  Gomory and E.L. Johnson, Some continuous functions related to corner polyhedra, IBM Res. 
Report R03311. Feb. 1971 (see also two recent papers in Math. Programming). 

[6] F. Granot and P.L. Hammer, On the use of boolean functions in 0-1 programming, Methods of 
Operations Research, Vol. 12 (1972). 

[7] M. Guignard, Preferred shadow prices in 0-1 programming, Res. Report, Dept. Stat. & OR, 
Wharton School, Univ. of PA, 1974. 

[8] M. Guignard and K. Spielberg, Search techniques with adaptive features for certain integer and 
mixed-integer programming problems, Proc. IFIPS Congress, Edinburgh (North Holland, 1968). 

[9] M. Guignard and K. Spielberg, The state enumeration method for mixed zero-one programming, 
IBM Phil. Sc. Center Rep. 320-3000, Feb. 1971. 

[lo] M. Guignard and K. Spielberg, A realization of the state enumeration procedure, IBM Phil. Sc. 
Center Rep. 320-3025, June 1973. 

[ l l ]  E.L. Johnson and K. Spielberg, Inequalities in branch and bound programming, in: eds., R.W. 
Cottle, J. Krarup, Optimisation Methods (English Univ. Press, London, 1974). 

[I21 C. Lemke and K. Spielberg, Direct search algorithm for zero-one and mixed-integer programming, 
J. ORSA, 15 (1967) 892-914. 

[13] K. Spielberg, Plant location with generalized search origin, Management Sci. 16 (1969) 165-178. 
[ 141 K. Spielberg, Minimal Preferred Variable Reduction for Zero-One Programming, IBM Phil. Sc. 

[I51 K. Spielberg, A minimal inequality branch-bound method, IBM Phil. Sc. Center Rep. 320-3024, 

[ 161 K. Spielberg, Minimal preferred variable methods in zero-one programming, Working Paper, IBM 

[ 171 S. Zionts, Generalized implicit enumeration using bounds on variables for solving linear programs 

Center Rep. 320 3013, July, 1972. 

June 1973. 

Scientific Marketing, Dec. 1974. 

with zero-one variables, Naval Res. Logistics Quarterly 19 (1972) 165-181. 



This Page Intentionally Left Blank



Annals of Discrete Mathematics 1 (1977) 287-292 
@ North-Holland Publishing Company 

SUBDEGREES AND CHROMATIC NUMBERS OF HYPERGRAPHS 

Pierre HANSEN 
lnstitur d’Economie Scientifique et de Gestion, Lille, France and Faculti Uniuersitaire Catholique 
de Mons, Belgium 

The chromatic number ,y(H) of a hypergraph H is studied in relation with the degrees of the 
vertices of H and of the section hypergraphs of H. The subdegree of a vertex xI of H is defined as 
the smallest integer k such that a sequential supression of the vertices of degree s k suppresses 
xI. Bounds on  the chromatic number ,y(H) and on the independence number a(H) of H are 
obtained in terms of subdegrees. An algorithm for coloring H in x ( H )  colors is proposed and 
computational experience is reported on. 

1. Upper bounds on the chromatic number of a hypergraph 

Chromatic numbers of graphs have been extensively studied both from the 
theoretical and from the computational points of view (see e.g. [l, 3, 17-19, 211). 
Only some of the  results obtained for graphs have been generalised to hypergraphs 
and very few algorithms have been proposed for determining the chromatic number 
of a hypergraph. Berge [l] ,  Tomescu [22, 231 and Chcatal [4] have given upper 
bounds on the chromatic number of a hypergraph, as defined by Erdos and Hajnal 
[5]. Lovasz [16] has shown that the theorem of Brooks holds for uniform 
hypergraphs, under some restrictions. Fournier and Las Vergnas [S, 9, 111, among 
others, have studied bichromatic hypergraphs. Extremal problems on uniform 
bichromatic or r-chromatic hypergraphs (k -graphs with property B or with 
property B,) have been extensively studied. Results and references are given in 
chapter 4 of the book of Erdos and Spencer [6] “Probabilistic Methods in 
Combinatorics” and in a recent paper of Johnson [7]. 

Nieminen [20] has shown how the chromatic number of a hypergraph could be 
determined with a linear program in 0-1 variables; as both the numbers of variables 
and of constraints of that program are large the approach is more theoretical than 
practical. A heuristic algorithm for obtaining an approximation of the strong 
chromatic number of a hypergraph has been given by Lauriere [12]. 

In part one of this paper the subdegrees of the vertices of a hypergraph are 
defined. This concept allows us to reformulate and extend to hypergraphs a result 
obtained for graphs independently by Matula [17] and by Szekeres and Wilf [21]. 
Then an upper bound on the chromatic number of a hypergraph due to Tomescu 
[22, 231 and a lower bound on the independence number of a hypergraph, due to 

287 



288 P. Hansen 

Lorea [14, 151 are strengthened. The proofs of these last results are different and 
much shorter than the original proofs. In part two an exact algorithm for 
determining the chromatic number of a hypergraph H is proposed and computa- 
tional experience is reported on. Recall a hypergraph H = (X ,  E )  ([l, 21) is a couple 
where X = { x l ,  x 2 , .  . . , x n }  is a finite set of vertices and F ={El, EZ,. . ., Em} is a 
finite family of non-empty subsets of X ,  the union of which is X ,  called edges. An 
edge E, is incident to a vertex x, if and only if x, E E,. The partial hypergraph of 
H = (X ,  E )  generated by a family F C E is the hypergraph HF = (XF, F )  where 
X F  = U E , C F ~ l .  

The section hypergraph of H = (X ,  E )  generated by a set. A C X is the partial 
hypergraph H x A  = (A,  E L )  where E L  = {E,  1 E, E E ,  E, C A } .  

A subset S C X of vertices of H is independent if there is no E, with 1 E, 1 > 1 such 
that E, C S ;  the independence number a ( H )  of H is the maximum cardinality of an 
independent set of H. A coloration of H is a partition of X into independent sets; 
the chromatic number x(H) of H is the smallest number of independent sets in a 
coloration of H. The degree d w ( x , )  of a vertex x, of H is the maximum number of 
edges different from { x , }  forming a partial family (Ek, k E K )  with 

E, fl El = { x , }  ( k ,  I E K ;  k #  I ) .  

Let us call suppression of a vertex x, of H and of all edges incident to x, the 
replacement of H by its section hypergraph generated by X - x,. Let us define the 
subdegree d;I(x,)  of a vertex x, of H as the smallest integer k such that a sequential 
suppression of all vertices of degree c k and of all edges incident to those vertices 
in H (or in the section hypergraphs of H obtained after the first suppression) 
suppresses x,. Clearly d ; I ( x , ) c  d H ( x , )  for all j ;  hence the name subdegree. The 
subdegrees of a hypergraph can be computed by suppressing a vertex of minimum 
degree and the incident edges in H, then a vertex of minimum degree in the 
resulting hypergraph and so on. 

Note that the order of suppression of the vertices may not be unique but that the 
values of the subdegrees are unaffected by this order. Let us call subdegree order the 
reverse order of the order of suppression of the vertices of H when the subdegrees 
are computed. 

Theorem 1. Let h ’  denote the maximum subdegree of a hypergraph H = ( X ,  E ) ;  then 

X ( ~ )  G 1 + h’  = 1 + max min dHxa (x,) 
H r A  x , E A  

where H x A = (A,  E L )  is the section hypergraph of H generated by A C X and 
dHra (x , )  denotes the degree of x, in H X A.  

Proof. Consider a sequential coloration of the vertices of H in a subdegree order, 
each vertex being assigned the first color such that n o  edge has all of its vertices of 



Subdegrees and chromatic numbers 289 

the same color. Assume the vertices, x l , x z , .  . . , x , - ,  are colored; as the first 
uncolored vertex, x,, is incident to at most h’ edges colored in one color (except at 
x,) it can always be colored in one of 1 + h’ colors; by iteration the inequality part of 
( 1 )  is obtained. To prove the equality part note the right-hand side of (1) cannot be 
lower than 1 + h’ as there exists at least one section hypergraph H X B = (B, E L )  
such that minx,EB d H x B  (x,) = h’ by definition of h’ .  Assume there exists a section 
hypergraph H x C = (C, E L )  such that min,,,cdHxC(xf)> h ‘ .  

Let x k  be the last vertex in the subdegree order to belong to C, let D denote the 
set consisting of x k  and all preceding vertices in the subdegree order and let 
H x D = (D,  E A )  denote the section hypergraph generated by D. As C C D, 
E & C  E ;  and d H X c ( x k ) <  d H x D ( x k ) s  h‘,  a contradiction. 

Theorem 2. Let (S1,  S2, ..., S, )  denote a partition of the set X of vertices of 
H = (X ,  F )  in q independent sets and let 

Then 

x ( H )  s max min{k, dk+  1). 
k ==q 

(3) 

Proof. Let k *  denote the value of the right-hand side of (3) and S;= 
Sk n {x ,  I d A ( x , ) s  k * } ,  k = 1,2, .  . . , k * .  By coloring the vertices of S:, S : ,  . . . , S ; .  in 
the colors 1 ,2 , .  . . , k * respectively, all vertices such that d A ( x , )  3 k * are colored. 
The remaining vertices can then be colored sequentially in the subdegree order 
without introducing any new color. 

The subdegrees of the vertices of a hypergraph may be much smaller than their 
degrees. For instance, it is easily shown, by a similar argument as in the proof of the 
lemma of [lo], that the subdegrees of all the vertices of a hypergraph without cycles 
of length greater than two are equal to one; the degrees of the vertices of such a 
hypergraph may be arbitrarily large. 

Corollary 2.1. Let h’ denote the maximum subdegree of a hypergraph H = ( X ,  E )  

and n = 1x1; then 

(where [ a ] *  denotes the smallest integer greater than or equal to a ) .  

Proof. As H can be colored in x ( H )  s 1 + h’ colors, X can be partitioned in x ( H )  
independent sets and at least one of these sets contains at least [ n / ( h ’ + l ) ] *  
vertices. 



290 P. Hansen 

2. An algorithm for the chromatic number of a hypergraph 

The constructive proofs of Theorems 1 and 2 may be viewed as heuristic 
algorithms for coloring a hypergraph H in x ( H )  or slightly more colors; these 
heuristic algorithms could be combined with branch-and-bound in order to obtain 
exact algorithms for the coloration of H in x ( H )  colors. Such a procedure would 
probably be computationally inefficient as the determination of the subdegrees 
d;l(x,) of the vertices of H involves the resolution of a large number of packing 
problems. We therefore propose the following simple branch-and-bound algorithm: 

(a) Initialisation. Set nopt, number of colors in the best known solution, equal to 
1 X 1 + 1. Consider all vertices of H as uncolored, with no forbidden colors, and no 
edges of H as eliminated. 

(b) Resolution test. If all edges have at least two vertices of different color, and 
have been eliminated, note the current coloration in Copt, update nopt and go to (g). 

(c) Direct optirnalify test. If for an uncolored vertex the number of forbidden 
colors is equal to nopt - 1, go to  (8). 

(d) Conditional opfimality test. If for an uncolored vertex x, the number of 
forbidden colors is equal to nopt - 2, go to (f). 

(e) Selection of a vertex to be colored. Select the uncolored verex x, for which the 
most colors are forbidden; in case of ties select among the tied vertices that one 
which belongs to the most non-eliminated edges, weighted by the inverse of their 
number of uncolored vertices. 

(f) Coloration of a vertex. Seek the first color q not forbidden to x, ; note if this 
color has already been used or not; assign color q to x,. Consider all non-eliminated 
edges containing x, : if an edge E, has a vertex x k  colored in a different color than q, 
eliminate it; if an edge E, has all its vertices but one colored in color q, seek the 
uncolored vertex xk belonging to E, and forbid color q to x k  (if it has not yet been 
done). Then go to (b). 

(g) Backtracking. If coming from (b) uncolor the vertices in the reverse order of 
their coloration until the last color used disappears. Uncolor the last vertex chosen 
at step (e) and forbid the color used to that vertex; uncolor all vertices colored after 
that one. 

Update the tables of forbidden colors and of eliminated edges. If at least one 
vertex remains colored, go to (b). Otherwise, an optimal coloration Copt of H in nopt 
colors has been found (any uncolored vertex may be assigned any of the colors 
used). 

The algorithm described above has been programmed in Fortran Extended and 
tested on a CDC 6500 computer. All information (i.e. forbidden colors, eliminated 
edges, etc.) is updated from iteration to iteration and not recomputed. 60 test 
problems have been solved; the hypergraphs have 20 to 40 vertices and 200 
randomly generated edges; in the series 1 (respectively 3) 100 edges have 2 vertices 
(resp. 3 vertices) and 100 edges have 3 vertices (resp. 4 vertices); in the series 2 and 
4 all edges have 3 and 4 vertices respectively. The results of these experiments are 



Subdegrees and chromatic numbers 291 

summarized in Table 1. The algorithm appears to be efficient for coloring small 
h ypergraphs. 

Table 1 .  

Problem series Nv N' NVI NB T 
~~~ 

1 20
30
40

2 20
30
40

3 20
30
40

4 20
30

6 40

5.0
4.2
4.0
3.2
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.0

31.6
72.6
47.0

178.0
78.8
74.0
41.4
73.8

123.8
126.0
711.2

1529.8

2.4 0.764
6.4 1.781
1.6 1.679

28.6 3.448
6.8 2.095
5.2 2.575
4.6 1.024
7.0 2.130
9.6 3.806

18.8 2.854
81.6 15.780

137.2 33.909

Nv = number of vertices of H, Nc = number of colors in C,,,,, Nm = number of vertices in the solution
tree, NB = number of backtracks, T = computation time in seconds CPU on CDC 6500, input and
output times excluded; N,, N,, N,, T are averages for 5 problems.

References

C. Berge, Graphes et hypergraphes (Dunod, Paris, 1970).
C. Berge and D.K. Ray-Chauduri, eds., Hypergraph Seminar (Springer, Berlin, 1974).
J.R. Brown, Chromatic scheduling and the chromatic number problem, Management Sci., 19 (1972)
456-463.
V. ChGatal, Hypergraphs and Ramseyian theorems, Proc. Am. Math. SOC., 27 (1971) 434-440.
P. Erdos and A. Hajnal, On chromatic numbers of graphs and set-systems, Acta Math. Acad. Sc.
Hungaricae, 17 (1966) 61-99.
P. Erdos and J. Spencer, Probabilistic Methods in combinatorics (Academic Press, New York,
1974).
D. Johnson, On property B, J. Combinatorial Theory, 20 (1976) 64-66.
J.-C. Fournier and M. Las Vergnas, Une classe d'hypergraphes bichromatiques, Discrete Math., 2
(1972) 407-410.
J.-C. Fournier and M. Las Vergnas, Une classe d'hypergraphes bichromatiques, 11, Discrete Math.,
7 (1974) 99-106.
P. Hansen and M. Las Vergnas, On a property of hypergraphs without cycles of length greater than
two, 99-101 in: [2].
M. Las Vergnas, Sur les hypergraphes bichromatiques, 102-110 in [2].
J.L. LauriBre, ProblBmes d'emploi du temps et algorithme de coloration des hypergraphes,
Comptes Rendus Acad. Sci. Paris, 278 (1974) 1159-1162.
D.R. Lick and A.T. White, k-degenerate graphs, Canadian J. of Math., 22 (1970) 1082-1098.
M. Lorea, Ensembles stables dans les hypergraphes, Comptes Rendus Acad. Sci. Paris, 275 (1972)

M. Lorea, Ensembles stables dans les hypergraphes, Cahiers du Centre d'Etudes de Rech. Oper.,
14 (1972) 125-132.

163-1 65.

292 P. Hansen

[16] L. Lovasz, On chromatic number of finite set systems, Acta Mathematica Acad. Sci. Hungaricae, 19

[17] D.W. Matula, A min-max theorem for graphs with application to graph coloring, SIAM Review, 10

[I81 D.W. Matula, K-components, clusters and slicings in graphs, SIAM J. on Applied Math., 22 (1972)

[19] D.W. Matula, G. Marble and J.D. Isaacson, Graph coloring algorithms, in: R.C. Read, ed., Graph
Theory and Computing (Academic Press, New York, 1972) 109-122.

[20] J. Nieminen, A viewpoint to the minimum coloring problem of hypergraphs, Kybernetika, 10
(1974) 504.508.

[21] G . Szekeres and H.S. Wilf, An inequality for the chromatic number of a graph, J. Combinatorial
Theory, 4 (1968) 1-3.

[22] I . Tomescu, Sur le problkme du coloriage des graphes genkralists, Comptes Rendus Acad. Sci.
Paris, 267 (1968) 250-252.

[23] I . Tomescu, Mtthodes combinatoires dans la thtorie des automates finis, in Gr. C. Moisil, ed.,
Logique, Automatique, Informatique (Editions de I’AcadCmie de la Rtpublique Socialiste de
Roumanie), (1971) 267-424.

[24] K. Zarankiewicz, Sur les relations symktriques dans I’ensemble fini, Colloquium Math., 1 (1947)
10-15.

(1968) 59-67.

(1968) 481-482.

459-480.

Annals of Discrete Mathematics 1 (1977) 293-330
@ North-Holland Publishing Company

CUTTING-PLANE THEORY: DISJUNCTIVE METHODS

R.G. JEROSLOW
GSIA and Department of Mathematics, Carnegie-Mellon University, Pittsburgh P A 15213, U.S.A.

This paper is a survey, with new results, of the disjunctive methods of cutting-plane theory,
which were devised by Balas, Glover, Owen, Young, and other researchers, over the past half
decade. The basic disjunctive cut piinciple is derived, its interrelations with the other cut-
producing procedures are discussed, and applications of it are given. Many theorems from the
literature are concisely proven, and a fairly complete bibliography is provided. In addition,
several new results are presented, and finitely convergent disjunctive cutting-plane algorithms are
given for a wide class of programs.

0. Introduction

This paper is a survey, with new results, of the disjunctive methods in
cutting-plane theory that have been devised [l , 4, 15, 21, 24, 25, 32, 43, 501 and
developed by several authors (e.g., [2, 5 , 9, 10, 11, 12, 22, 26, 34, 35, 37, 511).

The new results presented here include: a broad sufficient condition for the
disjunctive cuts to provide all the valid cutting planes (Section 1.1.1, joint with C.E.
Blair); a sufficient condition for distributivity in the co-propositions that are used to
express the general cut-form of disjunctive cuts (Section 2.1.2); and proofs of finite
convergence for a class of cutting-plane algorithms that use disjunctive cuts
(Section 2.2). As we will show in a later paper, the distributivity result of Section
2.1.2 provides a finitely-convergent cutting-plane algorithm for a class of problems
that includes the linear complementarity problem.

In terms of expository presentation, we begin in Section 1.1 with the basic
principle of disjunctive constraints, as presented in the format of [3, 41. We then
relate this principle to the earlier one of the intersection/convexity cuts and show
that it is stronger (Section 1.2). We then discuss the connection between this
principle and the “polyhedral annexation” method of [24]. Following this, the
Lagrangean relaxations for integer programs are interpreted from the point of view
of disjunctive cuts (Section 1.3), and in turn disjunctive cuts are interpreted as cuts
obtained from sublinear and subadditive functions (Section 1.4). Next, three
examples are given illustrating various uses‘of disjunctive cuts (Section 1 S). Finally,
we give a compact presentation of the “co-propositions” of [37], which represent a
systematic development of the disjunctive cut principle, and we mention general
properties of the co-propositions, some for the first time (Section 2.1).

293

294 R. G. Jeroslow

References to the literature are given in the discussions of the appropriate
subsections following the statement of results.

The background necessary for this paper is a knowledge of the Duality Theorem
of Linear Programming, and polarity for polyhedra. Either [45] or [47] are good
general references, though for polarity [49] still deserves reading (see also [13]). For
Section 1.4 only, we assume some acquaintance with [36]. The paper is intended to
be read consecutively.

This paper is a revised version of Part 11 of [35]. A companion paper [36], which
is Part I of [35], surveys the algebraic methods of cutting-plane theory, and gives
new results. Some proofs are omitted; these are usually supplied in [35].

1. The basic disjunctive cut principle and its relationship to other principles and
approaches

The disjunctive methods consist of various ways that one can obtain cutting-
planes from logical constraints on linear inequalities. They use, in various forms, a
certain basic principle. This principle is equivalent, in some contexts, to a
cutting-plane formulation of certain enumerations or partial enumerations.

In what follows, the pointwise supremum SUPh€Hvh of a set of vectors { u h I h E
H } , v" = (v ? , . . ., v 5) for h E H, denotes that vector v = (v l , . . ., v ,) such that

v ,=sup v : , j = 1 , ..., r. (1 4
h € H

The writing of an expression sup v h entails that each supremum in (l.A) is finite.

1.1. The basic disjunctive cut principle

Theorem. Suppose that at least one of the linear inequality systems

A h x z= bh ,

x 2 0 , (h E H)

must hold. Then for any choice of non-negative vectors A h a 0 the inequality

(sup A h A h) x 3 inf Ahbh
h E H h € H

is valid. Furthermore, i f every system (s h) is consistent, then for any valid inequality

c T,Xj 2 T o (1.1 .A)

there are non-negative vectors A h 3 0, h E H , such that r0 =Z inf A hbh and, for

,=1

Cutting-plane theory 295

j = 1, . . ., r, the jth component of sup A hA " does not exceed rj. In this principle, H
may be infinite or finite.

Proof. Toward the forward direction of the principle, note that, since at least one
system (s h) holds for any x , at least one inequality (A h A h) x 5 Ahbh holds; but h
may depend on x . Taking the supremum and infimum in (DC) removes this
dependency, and is still valid since x 2 0 .

Toward the converse, assume that all systems (s h) are consistent. Since (1.l.A) is
implied by any one of them, by the duality theorem for any h E H there exist
A h 5 0 satisfying A"bh Z= r,, and (AhA")J s rJ, j = 1,. . ., r. Here, (A"A")J is the j th
component of A "A '. Taking infima, we obtain ro =s inf A "bh. Taking suprema, we
obtain (sup A "A h) J S rJ, j = 1,. . ., r. Q.E.D.

In the applications, one deduces the systems &), at least one of which must hold,
from the constraints of the integer program

inf cx,

subject to Ax = 6,

x 3 0 ,

x integer.

A trivial application is to use as (s h) the constraints

Ax = b

x = h

x 5 0

where h = (h , , . . ., h,) is a non-negative integer vector, and all such vectors (or, at
least all feasible ones, assuming (IP) consistent) are enumerated as h E H varies. In
principle, then, all valid cuts for (IP) become available, as one uses disjunctive
systems (DC) expanded further and further toward (s h) ' . As we shall see below,
there is more here than simply a similarity with branch-and-bound in the context of

Note that, if some inequalities of (s h) are replaced by equalities, the correspond-
ing multiplier is unrestricted in sign.

The forward direction of the above principle, for the special case when A h has a
single row and H is finite, was stated by Owen [43]. Balas [3,4] stated the forward
direction of the general principle; see [37] for the reverse direction. Balas [5 ,6] also
extended the principle to the case that x 2 0 is not required to occur among the
constraints of (s h) . Another generalization is in [37], and related results are in [23,
24, 25, 341 (more on Glover's alternate format for disjunctive cuts in Section 1.2.1
below).

6)'.

296 R.G. Jeroslow

1.1.1. A result on the converse to the disjunctive cut principle

A converse to the disjunctive cut principle is a statement that, under suitable
hypotheses, the principle gives all the valid cuts.

Not all the systems (S h) need be consistent for the disjunctive cut principle to give
all valid cuts; in [9] a general result is given for the converse, which we repeat here.
For a different converse, see [5 , Theorems 4.4 and 4.71.

For h E H, define the recession cone c h by

ch = {X 1 A h X 3 0, X 3 O}. (1.1.1 .A)

Theorem. The disjunctive cut principle (DC) gives all valid cuts for the logical
condition that at least one (S,,) holds, i f for every h E H such that (S,,) is inconsistent,
we have

C, C z{C, 1 p E H and (S,) consistent}, (1.1.1 .B)

(with the summation interpreted as {O} i f all (S,) are inconsistent).

Proof. To prove the stated result, it clearly suffices, for (S h) inconsistent, to find
A h 3 0 with A h A h < n- (r r = (n-,,. . ., rr,)) and Ahbh 2 r0, for any cut (1.l .A) valid
for all t he consistent systems (S,): then the taking of maxima and a minimum as in
the proof in 1 . 1 completes our proof.

Note that, if (S,) is consistent and (1.l .A) is valid, we have rrx 20 for x E C,.
This follows from the fact that A P A P G n- for some A P 3 0 , and the fact that x 2 0 .
But then if x E C,, with (S,,) inconsistent, writing

1 {
1 E H, (S,) consistent,
and x (~) E C,

x = c x (P) p

for certain X (~) E C, by (l . l . I .B), we have

n-x = c r r X ' P ' 2 0. (1 . I . l . C)

Also, (l . l . l .C) is trivial if all (S,) are inconsistent.
Therefore, T X 3 0 is implied by A h x 3 0, x 3 0, and by the Farkas Lemma, we

obtain the multipliers B h 3 0 with B h A h S rr. Finally, by the inconsistency of (S,,)
there is p h 2 0 with p h A Q 0, p h b h > 0. But then for r 3 0 suitably large, putting
A h = B h + rph, we have A h A < n- + 0 = n-, Ahbh 3 n-(), as desired. This completes
the proof. Q.E.D.

As one application of this strenghened converse, if all the matrices A h are
identical and at least one system (S,) is consistent, the converse will hold. For
instance, in (s h) ' there is no need to delete inconsistent systems.

For a second application, if at least one (S,,) is consistent and i f , for all h E H
there is some d h for which Ahx 2 d ', x > 0 is bounded and consistent, the converse

Cutting-plane theory 291

holds. Note that the consistency and boundedness of Ahx 3 d h , x 3 0 implies that
all C,, = (0).

1.1.2. Geometry of the disjunctive cut principle

It is easy to see that the cuts (1.l.A) which hold if any systems (S,,) holds, are
precisely those valid for the closed convex span clconv(T) of the set

T = { x 2 0 1 for at least one h E H , A h x 2 b h } . (1.1.2.A)

Indeed, (1.l.A) is valid on a closed convex set, hence valid for clconv (T) at least.
But for any point x$Z clconv(T), there is a separating hyperplane (1.l.A) valid for
clconv (T) 2 T, which cuts off x.

1.1.3. Earlier work on logical constraints for linear inequalities

Since Dantzig’s work in the early 1950’s, it has been widely known that a primary
use of integer variables in linear programs, is to express logical restrictions that are
placed on linear inequalities.

The disjunctive methods appear to be the first explicit use of this perspective
toward constructing cutting-planes. However, a result concerning linear in-
equalities constrained by logical requirements appears even earlier in [15, Appen-
dix A], and we repeat it here.

Theorem [15]. Suppose that every solution to

Ax 3 0

satisfies at least one of the homogeneous inequalities in the inequality system

Bx 3 0.

Then there are vectors of multipliers y 3 0, z 2 0, with z # 0, for which we have

y A = zB.

Note that if B has only one row, the theorem is the ordinary Farkas Lemma.
Since the publication of [15], Duffin has generalized the above theorem to treat

inhomogeneous inequalities (private communication).

1.2. The disjunctive cut principle and the earlier intersectionlconvexity cut principle

Just as the algebraic approach has been called the “subadditive” approach, due
to the recent emphasis on subadditivity as opposed to purely algebraic features, the
disjunctive approach has other synonyms: convexity, intersection, geometric.

The new principle has evolved as a strengthening and generalization of an earlier
principle, from which the other synonyms derive.

298 R.G. Jeroslow

Theorem: Let the convex body

c = { X I a hx S bh, h E H } (1.2. A)

be defined by certain hyperplanes a hx S bh, h E H, a h = (a !, . . ., a ;), and let S be an
arbitrary subset of R“.

Suppose that each bh >@, and that

h;. = sup { A 1 a h . (ejA) S bh, h E H } (1.2.B)

is non-zero for j = 1, . . ., r, where ej is the jth unit vector. Then i f S n C = 0, every
point x E S with x 5 0 satisfies the cut

2 (1/&)Xj 2 1,
, = 1

where l / ~ = @ .

Proof.
validity of (DC) in Section 1.1).

Omitted (but see e.g., [l] for one proof, and below for a justification via the
Q.E.D.

The use of the intersection/convexity cut (IC) occurs where x of (1.2.A) are the
non-basic variables of the Simplex Tableau, and the co-ordinate system has also
been translated so that the current linear programming vertex is at x = 0. S is taken
to be the integer points of the structural space. Then (1.2.B) represents the
intercept of the j t h tableau edge with the boundary of C. The hypotheses then state
that no integer point is in the interior of C. The cut (IC) is then the hyperplane
passing through the intersection points of the extended tableau edges with the
boundary of C, and it is oriented to “cut off” the current vertex x =@.

The strength of an intersection cut depends on the shape and size of the convex
set C. Based on this approach, several procedures were proposed for generating
cuts from suitably chosen convex sets [2,22,26]. We will not review these cuts here,
but will mention briefly that the outer polar cut of [2] was the first cutting-plane in
the literature to incorporate information from the problem constraints that are
slack at the point of the feasible set from which the cut is generated.

The new principle of disjunctive cuts is a direct improvement upon the earlier
one. To see the connection, note that the hypothesis of the theorem implies that at
least one of the systems

ahX 2 bh,

x 20,

holds for x E S (as S n C = 0). Therefore, setting A h = l/bh in the disjunctive
principle, we obtain as (DC) the cutting plane

Cutting-plane theory

From (1.2.B),

299

and so the j th coefficient of (IC) is

sup {a:/bh I u; > 01, if at least one a ; > 0;

if all a ; s 0.
1/A; =

(1.2.C)

(1.2.E)

Therefore, this coefficient is the same as sup a;/b,, from (DC)’ whenever a) > 0 for
at least one h E H. This is the case for all coefficients, whenever the convex set C is
bounded. If, however, a ; S 0 for all h E H, i.e., if C is unbounded and contains a
whole edge, the j th coefficient of the earlier cut is 0, whereas that of the new cut
may be negative. For a detailed discussion of the connections between the two
principles see [4].

The real advantage of the new principle, however, lies less in the fact that it is
theoretically stronger than the old one, than in the fact that it has proven easier to
use. Much of the ingenuity, needed to devise situations where the principle applies,
has been greatly reduced.

1.2.1. Glover’s format for disjunctive cuts

An alternate procedure for obtaining disjunctive cuts is Glover’s polyhedral
annexation technique [24, 251.

This technique is to be repeatedly applied to a family of polyhedra P1,. . ., P,,. It is
assumed that no point of a set S is in the interior of any A. The pk typically
represent the integrality constraints (e.g., Pk is a translate of { x 10 =z x 1 S 1)) or the
reverse of an inequality constraint defining the feasible region). A single application
of polyhedrai annexation involves only two of PI, . . ., P,, (plus additional polyhedra
added to the list) which are selected for the application.

A single application is as follows. Assume that polyhedra Q and U are chosen
with

41
0 = [x 1 2 a,xj s aio, i = I , . . .,

i = 1

(1.2.1 .A)

(1.2.1.B)

Then one selects an annexation index i * in (1 , . . ., q } and one adds the polyhedron

300 R. G. Jeroslow

w = x I C a,,x, s aLo, i f i * : [,Il
(1.2.1. C)

C (oka,*,+ hkbkl)Xj 0ka ,*I)+ &bko]
, = I

to the list of polyhedra, in addition to P I , ..., P,, and those previously added. In
(1.2.1.C), the parameters ok,hk 3 0 may be arbitrarily chosen.

The interpretation of this single polyhedral annexation is as follows. Given
inductively that Q and u have n o points of s in their interior’, and all hk + 8, > 0,
then neither does W. In particular, one may use W to obtain a valid cut, either by
the earlier intersection cut principle, or by its strengthened version.

Glover showed [25] that, in finitely many applications of polyhedral annexation,
followed by the taking of an implied cut, any valid cut (1.l.A) for a bounded integer
programming problem can be obtained. This result was announced in September
1973.

His proof reveals more, since a pivotal step is the following assertion. Putting

(1.2.1 .D) 1 Pk = { x 19 at,$) s b:, i = 1 , . . . , p k
] = I

i n finitely many steps one obtains a polyhedron of the form
r u

P = { x 1 % (c (~ i a i (k ~ x ~) 2 8 i b i (k) , all u E Z) (1.2.1 .E)

for any multipliers 0; 2 0, where (T denotes a function with domain (1,. . ., u } such
that (~ (k) is in (1, . . . ,&}for k = 1,. . ., u, and Z denotes the set of all such functions
(T. I.e., a (k) picks ou t one of the constraints of Pk, so as (T varies over 2, the 12 1
constraints of P represent all possible different ways of making selections of
constraints, one from each Pk.

The proof of this assertion is by induction on u all u 3 2 reducing to the case
u = 2. This case u = 2 can also be done by induction on the number of constraints
in the second polyhedron, say U of the pair Q, U above. The details are in [2 5] .

Regarding this assertion, we note the following. The cut for P of (1.2.1.E), used
by Glover to obtain cuts from the polyhedra developed in polyhedral annexation, is
the disjunctive cut obtained from the assertion that at least one of the defining
constraints of P goes the other way, i.e., that at least one of the inequalities

k = l h = l

(1.2.1 .F)

holds. Indeed, n o feasible point is in the interior of P.

are those obtained from t h e assertion that at least one of the systems

k = 1 , . . ., U,

However, the disjunctive cuts (DC) from (1.2.1.F), as the multipliers 0; 3 0 vary,

2 U b (k) , I X J 2 bb(k), (1.2.1.G)-
] = I

’ Here a point is “interior” to an inequality system, if i t satisfies each inequality strictly

Cutting -plane theory 30 1

holds. But if no feasible point is in the interior of any Pk of (1.2.1.D), then indeed at
least one of the systems (1.2.1.G)- holds - let ~ (k) denote the constraint of Pk
violated by a feasible x for (IP), k = 1, . . ., u.

In summary, the cuts showing the finiteness of the polyhedral annexation
procedure. are the disjunctive constraint cuts that one obtains by converting the
information regarding the Pk (i.e., that they have no interior feasible points) into
the form (s h) . Note that this conversion involves manipulating strings which may
have exponential length, and hence is not a practical way of obtaining all cuts (DC)
if 1 HI is small.

The reverse reduction is also true. Specifically, given that at least one system (s h)

holds, letting u denote a function which chooses one constraint from each system
(S,,), and writing A h = (a",), b h = (b!'), then there is no feasible integer point for
(IP) in the interior of P, given by

(1.2.2.H)

Indeed, for some p E H (S,) holds, so in P, the constraint for h = p is satisfied onl!-
in the direction (3), while (<) is needed for interior points. When I H 1 is finite, the
polyhedra P, for all u can form the basis for a polyhedral annexation process which
produces all cuts (DC), under suitable hypotheses analogous to those for the
converse direction of the principle of 1.1 above. Note also that this reverse
reduction also may involve string manipulations of exponential length, and hence is
not a practical way of obtaining a polyhedral annexation cut that requires only a
few annexation steps.

We have seen that either Balas' principle of 1.1., for the format (s h) , or Glover's
principle for the format of polyhedral annexation, yield the same family of valid
cuts when / H I is finite in 1.1 . Each is advantageous when information is presented
in (or easily converted to) its format.

1.3. Lagrangean relaxations interpreted via disjunctive cuts

There different ways of using the principle of 1.1, and in important instances they
are of different mathematical strength, with relative dominances ascertainable. In
providing one example here, which motivates our constructions in 2. below, we will
also obtain a new perspective on the Lagrangean relaxations; a particdarly
interesting discussion of these is in Geoffrion's paper [19], which also references
work in that topic.

Given a set of consistent constraints in integer variables x S O , it may be
advantageous to partition these into two sets, the second of which has some special
structure that one may be able to exploit:

Dx a d

Ex 3 e

(This is the point of view of [19].)

(1.3.A)

302 R. G. Jeroslow

Now we know that all valid cutting planes are obtainable from the disjunctive
systems

D x a d , E x a e , x = h (1.3 .B)h

as h varies over all non-negative integer vectors h, provided only that the
optimization problem

min cx

subject to Dx 3 d, Ex 3 e, (P)

x 2 0 , and integer

is consistent. One may try therefore to obtain the best possible cut (Le., to
maximize no in (1.l.A)) from the systems (1.3.B)h with n

But this may be difficult, while in contrast it may be easier to optimize disjunctive
cuts for the systems

c.

E x s e e , x = h (1.3.C)h

using the special structure. For if a special structure is advantageous for c, it ought
to be so for any T. Then to combine a cut from (1.3.C),, with the remaining
constraints Dx 3 d, one may simply take non-negative multiples, and in this way
one would solve

max Ad + no

subject to AD + 7r G c (1.3.D)

A 2 0

(1.l.A) a disjunctive cut from (1.3.C)h.
Indeed, Ad + no is the right-hand-side of the combination of the two cuts, so one

wants it to be as large as possible, since under the constraints of (1.3.D) the
inequality (AD + T) X 3 Ad + no implies cx 3 Ad + no (recall that x 3 0).

It is true that (1.3.D) is easier than optimizing with the full disjunctive system
(1.3.B),,, but is it as good? Intuitively, there ought to be cases where it is not as
good, because in (1.3.B),, one has the freedom of using a different multiplier A h a 0
on D in each (1.3.B),,, while in (1.3.D) only the one multiplier A 3 0 is available.

This intuition turns out to be correct, and is one evident way of seeing why gaps
can occur in Lagrangean duality. For it turns out that (1.3.D) is the Lagrangean dual
problem, as we now show.

Assuming that either E is rational or that

T = { x 1 Ex 3 e, x 2 0 and integer}

is compact, clconv(T) will be a polyhedron, so that it has a definition by linear
inequalities:

clconv (T) = {X 3 o 1 QX a 4). (1.3 .E)

Cutting-plane theory 303

The disjunctive cuts (1.l.A) from the systems (1.3.C),, are precisely those valid for
clconv(T) (see 1.1.2 above) hence those with 7r = eQ, 7roS eq for some 8 2 0 , so
that (1.3.D) is the linear program

max Ad+ eq,

subject to AD + OQ S c, (1.3.F)

A s o , e 30,

which is dual to the primal problem

min cx

subject to Dx 3 d

x E clconv{x 2 o 1 EX 2 e, x integer)

of Geoffrion [19] (recall (1.3.E) and the definition of T).
Next, since (P*) is

min cx

subject to Dx 3 d

Qx s q

x 3 0

(1.3.G)

by Lagrangean results for consistent linear programs, if (1.3.G) is bounded in value,
it is equivalent to both

max min {cx + A(d - D x) + e (q - Ox)}, (1.3.H)
h.Bz-0 x z - 0

and
max min {cx + A (d - Dx) 1 Qx 3 q, x 3 0). (1.3.1)

Furthermore, in optima to (1.3.H) the optimal 1, # (which exist) provide an optimal
A = 1, T = 8Q to (1.3.D), since 1, 8 are optimal in the equivalent (1.3.F) to (1.3.D).

A Z-0

Finally, (113.1) is the Lagrangean dual, since

min cx + A(d - Dx)

subject to Ex 3 e

x 3 0 and integer

is equivalent to

min cx + A(d - Dx) (1.3.5)

subject to x E {y 3 0 I Qy 3 q) = clconv {y 3 0 1 Ey 2 e, y integer}

304 R.G. Jeroslow

if one observes [191 that the infimum of a linear form on a set T is the infimum on
clconv (T) .

Fisher and Shapiro [16] have utilized the group problem [27] in (P), by in effect
taking Ex 3 e to be the convex span of the group points and taking Dx a d to be
the linear programming constraints: specifically, the group constraints are imposed
in place of Ex 3 e. As the above analysis shows, they obtain the bounds from the
polyhedron defined by intersecting the linear programming relaxation with the
group polyhedron.

Here algebraic features, specifically the ease of enumerating irreducible elements
of the group, allow one to bypass the explicit use of disjunctive constraints (1.3.C),,
in favor of a direct enumeration. The algorithm used in [16] is certainly not
disjunctive in nature!

In this section, we saw that gaps occur in Lagrangian duality because the cuts of
(1.3.B),, from

(DX 2 d A EX 3 e A X = h) V (D X 2 d A EX 2 e A X = h ’) V ‘ . .

are generally more than those from the expression

where “ A ” is “and” while “ v ” is “or”. This means that the gaps occur because a
distributive law of boolean logic fails in its cut formulation. In 2.1.2 we will give
hypotheses that insure that distribution holds.

1.4. Disjunctive cuts interpreted via subadditive functions

Recall from [34] that a subset M of R‘ is a monoid if 0 E M and u, w E M
implies v + w E M (i.e., M is an additive subgroup of R‘). A function f : M + R U

{ - % } defined on a monoid M is subadditive if

f (x + x ’) s f (x) + f (x ’) for x, x ‘ E M. (SUB)

The use of subadditive functions in cutting-plane theory originates in joint work of
Gomory and Johnson and is continued and further developed in Johnson’s
researches; we discuss these contributions in [35, 361. The subadditive functions
used by Gomory and Johnson have the unit interval, modulo unity, as domain.
They correspond to subadditive functions (SUB) with M = R“, which have unit
periods in each co-ordinate direction (for details, see [34, Proposition 2.1 11).

The basic principle of disjunctive cuts (1.1 above) can be cast in terms of
subadditive functions. The first step is to determine the functions in terms of the
space of the original variables x in which they are a certain subclass of the convex
functions; then these are “transferred” to functions acting on the space of the
columns of A in (IP), where they are subadditive, but generally not convex. Some
of what follows is in [34].

Cutting-plane theory 305

A function f is called sublinear, if it is both subadditive and positively
homogeneous:

f (A x) = A f (x) for all A 3 0

f (x + x ’) f (x) + f (x ’) .
(1.4 .A)

We called these functions conical in [34, 371 but it is best to use standard
terminology when it exists. The sublinear functions are convex [45,47], and include
the gauge functions, for which one imposes f(x) 3 0 in addition to (1.4.A).

For a subadditive function F, its directional derivative p (u) at zero in the
direction u, is defined by

F (u) = limsup{F(Su)/S L 0 +}. (DEW

In (DER), it is assumed that {Su I S 3 0 } is in the domain of F. One easily proves
that F is sublinear (see [37, 401).

We recall from [34,35,36] that the set of all valid cuts for the general constraints

A x + B y E S

x , y 2 0 (x = (X I , . . ., x r) , y = (Y l , . . ., y s)) (GC)

x integer,

S a set, can be obtained via the general cut form

where u t i) is the j th column of A and b(‘) is the k th column of B, and F is a
subadditive function with F(0) = 0.

To be precise, all cuts (CF) are valid for F subadditive with F(0) = 0; and if

is valid, then there is a subadditive function F “behind” the cut (VC), in the sense
that F satisfies:

(1) inf { F (u) 1 0 E S} 2 no;

(2) F (u ”)) < 7 r j 7 j = l , . . . , r ;
(3) F (b (k)) c k , k = 1 , . . ., S ;

(4) F(O)= 0.
For full details, see [34, 35 or 361. The pure-integer case of (CF), i.e., s = 0, is also
given in [39].

Linear functions are of course sublinear, and one easily shows (e.g., [34, Prop.
2.1.1) that, if f a is a class of sublinear functions indexed by a nonempty set I (a E I),
and if f (x) = sup,f,(x) is everywhere finite on its domain, then f is sublinear. If
I# 0 is finite and all f a are linear, we call f (homogeneous) polyhedral [45, 471.

306 R.G. Jeroslow

The functions behind the disjunctive cuts (DC) are sublinear and if H # 0 is finite,
they are polyhedral. For put f h (x) = (h h A h)x, f (x) = SUPhfh (x) . f (x) is sublinear,
since it is the pointwise supremum of sublinear functions. Further, the j th intercept
in (DC), implies via (1.4.A) that f (x) is finite on x 3 0 (nofe

f (x) = f (7 v,) c c x , f (e ,) for all x, 3 O),

hence sublinear. We rewrite the cut (DC) as

2 f (e j)x j 3 n n .
j = 1

For any function f subadditive on the domain of all x z- 0, x
defines a function F on the set of all non-negative integer
columns of A in (IP):

F (u) = inf { f (x) I u = A x , x 2 0 and integer}.

(1.4.B)

integer the following
combinations of the

(1.4.C)

F is subadditive, for, if a resp. a’ are strict upper bounds on F (u) resp. F (u ’) and x
resp. x ’ are non-negative integer vectors with u = A x resp. u ’ = A x ’ and also
f (x) < a resp. f (x ’) < a’, then we have

F (v + u ’) C f(x + x ’)

G f (x) + f b ’) (1.4.D)

G(Y+(Y’

(1.4.0) follows since u + u‘ = A (x + x’) with x + x ’ ? 0 integral, and since f is
subadditive. By taking infima on the right in (1.4.D) on a and then a’, we obtain
F (v + u‘) s F (u) + a‘ and then the desired F (u + u ’) S F (u) + F(u’) .

Now i f f is the function of (1.4.B), with the disjunctive systems (sh) derived from
the constraints of (IP), whenever x is feasible in (IP) we have f (x) 3 f,(x) 3 APbP 2
inf A hbh = 7ro, where p E H is any system (S,) which holds for x . Therefore,
F (b) 2 f (e ,) ,
j = 1, . . ., r, and hence (1.4.B) is obtained from the non-negativities x 2 0 and

by the definition (1.4.C). It is also clear from (1.4.C) that F(a”)

F(a”’)x j 3 F (b) . (1.4.E)
j = 1

This cut (1.4.E) is the pure-integer case of (CF).
If some variables are continuous, i.e., in the general case (GC), the same analysis

holds true. Since f is sublinear, for a continuous column b(‘) and any 6 > 0 we have
F(6b“)) G f (6e:) = 6f(e;), hence by the definition (DER), F(b(k)) f(e& and the
form (CF) is obtained.

From (1.4.C) follows F (A x) G f (x) . Functions G on the column space are
transferred to the row-space of x by the formula

g(x) = W A X) (1.4.F)

Cutting -plane theory 307

and therefore, if (1.4.C) is followed by (1.4.F), one ends back in the row space with

The reverse direction, that subadditive cuts (1.4.E) derive from disjunctive cuts
(DC), is trivial: the subadditivity of F implies the validity of (1.4.E), hence there
exist disjunctive multipliers A h 2 0 which yield a cut (DC) on which (1.4.E) is a
weakening.

The first interpretation of intersection/convexity cuts by subadditive functions is
due to Burdet [lo]. Specifically, with the hypotheses of the earlier principle given in
the theorem of 1.2., plus the assumption that (IC) is valid for the group polyhedron,
in either the pure-integer (s = 0) or pure-continuous (r = 0) cases, the cut (IC) is
shown in [lo] to be an instance of the general cut form (CF) with

g (x) s f (x) .

F (v) = inf {A > 0 I v / A E C}. (1.4.G)

Functions F of the form (1.4.G) are called gauge functions for the convex set C [45,
471, and they are gauge in the sense described above.

1.4.1. Abstract versus computational equivalence of cuts

Despite the theoretical interrelations above, the algebraic and the disjunctive
methods are not equivalent, since there are distinctions which are not touched by
these interrelations. For instance, to obtain a subadditive F from a sublinear f, the
interrelation provides only F of (1.4.C), whose definition is in terms of a family of
programs.

We ought to differentiate between: (1) Knowledge of properties of cuts and their
interrelations; (2) Knowledge of which specific inequalities are valid cuts.

The interrelations given above are of type (1). Typically, a result contains
knowledge of both types, as with the characterization of cuts by the constraints of
(FDP) of [35, 361. For type (l), we know that the valid cuts derive in a specific way
from the constraints of (FDP). For type (2) , we may devise methods for computing
certain solutions to these constraints, and from these find certain specific cuts. If the
constraint system is small, we may calculate all extreme solutions; otherwise, we
may never actually know all the extreme solutions which, in theory, do exist.

The differentiation above, in terms of “knowledge,” is inexact. To make it
rigorous, one might differentiate classes of cuts according to the amount of
computation they require. Cuts requiring extensive computation would not be
valued, unless they are expected to be particularly effective. Similarly, an equiva-
lence is primarily theoretical, if the reduction of one cut family to another requires
a prohibitive computation.

1.4.2. A subadditive view of Lagrangean relaxations

The Lagrangean relaxations (PR), can be easily cast in terms of subadditive
functions. Here fix A 2 0 and take f(x) = (c - AD)x, and use (1.4.C) with A = E to
get the function on to column space.

308 R.G. Jeroslow

Letting el be the j th column of E in (PR),, and (AD), the j th element of AD, the
inequalities for the value function F of (1.4.C) become

F (e ’) + (AD), S c,, j = 1,. . ., r. (1.4.2.A)

Again, we have a sum of valid cuts, one €or clconv{x 3 0 1 Ex 3 e, x integer} (via
F) , one from Dx 3 d.

1.4.3. Improving disjunctive cuts by subadditive methods

Consider the constraints (GC) for a set S # 8.
Suppose that a set M is known which is closed under addition and has 0 E M -

i.e., a monoid - with the property that

S + M C S . (1.4.3.A)

(This is clearly equivalent to S + M = S , since 0 E M.) In (1.4.3.A) we use the
notation s + M = {s + m I s E S, m E M) .
Then for any rn O) E M, with x , y 2 0 and x integer we see that (GC) implies

and therefore, from (CF),

(1.4.3.B)

(1.4.3.C)

Now in (1.4.3.C) the m O) are arbitrary, so we conclude

2 (inf {F(a‘”+ m) 1 m E M})x, + 2 F(b‘k’)yk 3 inf { F (u) 1 u E S } . (1.4.3.D)
, = I k = l

This improves (CF).
The cut (1.4.3.D) appears in [7] , where a version for bivalent variables x, is also

given. By setting G (u) = inf{F(u + m) l m E M } , one notes that (1.4.3.D) is
implied by the general cut-form for G. This provides an alternate proof of (1.4.3.D),
but requires that one first prove the subadditivity of G: we leave this to the reader.
In typical applications, Ax + By in (GC) is not the original constraints, but is the

Simplex tableau, or part of it, perhaps filled out with unit rows:

z - b = AX + By, (1.4.3.E)

where z is certain of the variables, including some basic ones; x is the set of integer
nonbasic variables; y is the continuous nonbasic variables; and b is the current
solution of the linear programming relaxation. The variables z are picked, typically
for the ability to exploit the constraints on them, say by disjunctive methods, for
these constraints may be z E T, with e.g.

T = { Z 12, = O or ~ , i = I , . . .,PI, z = (z,, . . ., zp) .

Cutting-plane theory 309

Then S is picked to be a suitable relaxation of these constraints, with

S > { u 1 u = z - b for some z E T } . (1.4.3 .F)

The choosing of S is an art; S must be close enough to { u I u = z - b for some
z E T } so that fairly good disjunctive cuts are produced, but also (1.4.3.A) must
hold for a monoid M which will allow the resulting strengthening (1.4.3.D) to be a
good cut.

Note that, in the context discussed, with the disjunctive cut obtained from the
condition u E S, the resulting function of these cuts is in the variables u - “local
variables,” we say - and so the disjunctive function f(u) is already on the column
space of (GC). Hence we set F = f in (1.4.3.D), and note that, since f is sublinear,
F = f = f.

In typical situations also, S is determined by linear constraints, i.e.,

S = { u 1 u = z - b, A‘z 2 b‘, z integer} (1.4.3.G)

with A ’ , b’ integral. Then the condition (1.4.3.B), with M a monoid, forces

M c { z 1 A’Z 3 0, z integer) (1.4.3.H)
so that, maximally, M contains the entire basis ((1.3.1.B) of [35, Part 11) of A’u 3 0
- in practice, one may utilize any of the solutions to A ’ u > 0, u integer, of which
one is aware.

In all situations, it does not actually matter how one determines a lower bound no

with nos inf{F(u) I u E S } ; all one needs is to know that this holds, so any
reasoning implied by u E S may be used to “design” F. The infima in (1.4.3.D) may
or may not be easily calculated, but since all x, 0, any quantity F(au’+ rn) for any
m E M may be validly used as a cut coefficient.

The next section gives details on the use of (1.4.3.D).

1.4.3.1. Non-redundancy of the strengthened cut. This algebraic strengthening of
the disjunctive constraints construction has a significant new property. Since (DC)
is implied by at least one (s h) holding, any branching scheme which imposes one of
these systems (S,,) will make (DC) redundant. However, the strengthening (1.4.3.D)
is generally not redundant after branching.

Because of this redundancy property of (DC), when used with an enumerative
branching scheme one either chooses the systems (s h) to be a different alternative
than is branched on - in this manner obtaining some of the fathoming power of
having used both types of branching - or else, when the branching alternative is
(s h) , one uses (DC) only for penalty calculations. With the strengthening (1.4.3.D),
these provisions can often be ignored.

1.5. Some applications

Here we provide a limited sampling of some of the situations to which the
disjunctive methods have been applied. The papers [4, 61 demonstrate the
versatility of these methods in several other contexts and supplement this section.

310 R.G. Jeroslow

Due to space limitations, we are forced to omit applications to problems with
complementarity constraints (see e.g., [43]), separable programming [51], and the
disjunctive facet problem and related topics (see e.g., [26]). See the earlier version
of this paper for these other applications [35].

1.5.1. The fractional and mixed-integer cuts of Gomory

From (1.4.3.F), if r0 G inf { F (v) I v E S } is implied simply by the condition that
u = z - b for z integer - i.e., if A ’ = 0 in (1.4.3.G) - then by (1.4.3.H) we may use
M = { z I z integer} in the improved cut (1.4.3.D).

For instance, let the constraints

express the basic variables x k in terms of non-basic variables f, of a Simplex
Tableau whenever xk is fractional in the current tableau. With local variable
u = XI, - ako we have the disjunctive constraints

v s - f k O or u ~ l - f k o , (1.5.1 .A)

where fk, is the fractional part of ak,.
From (1.5.1.A) we obtain the function f (v) = max{ - Alu, A z u } of one variable, as

the function of disjunctive constraints (A , , AZ 2 0). Putting s = { u 1 v = xk - a k o and
XI, integer}, we find

with the choice / \ I = l / f k o , / \z = 1/(1 -fko).
Then (CF) is (recall f = f)

(1.5.1.B)

(1.5.1.C)

Now letting JI resp. J 2 index the integral resp. the continuous non-basics, the
strengthening (1.4.3.D) with M = Z is

(1.5.1 .D)

This result (1.5.1.D) is an easy computation, which we omit. It is Gomory’s
mixed-integer cut [29]. If J z = 0, (1.5.1.D) is a strengthening of Gomory’s fractional
cut [28]. For an alternate derivation, see [4].

For some other cuts for the mixed-integer group problem, with essentially the
same derivation, take p = 2 rows of the tableau. In local variables u1 = x1 - a,,,
u2 = xZ - azO, the fact that (xl, xz) E 2’ implies that at least one of the disjunctive
systems

Cutting-plane theory 311

UI 2 (1 - f,o), u2 * (1 - f20)

U l 2 (1 - f l O) , u2 =s - f20

u1 - f l 0 , uz 3 (1 - f20)

UI - f l o , u2 =s - f20

or

or

or

holds. Here the disjunctive constraints function is

f (v l , u z) = max { h l u l + A2vZ, S l v l - S2u2, - ~~u~ + T ~ V ~ , - O1ul - -,v2} (1.5.

with all eight parameters non-negative, and the constant term r0 of the cut is

(1.5.1 .F)

which is strictly positive unless both of same pair of parameters are set to zero.
For j E JI, clearly

inf f(al, + m , , a2, + m2)
m t M

so the quantity on the right in (1.S.l.G) may be validly employed in place of the j th
cut intercept (1.4.3.D).

1.5.2. Set covering, set partitioning, and other logical constraints

Suppose that a set-covering requirement

x l + - . - + x , > l (1.5.2.A)

in bivalent variables x,, j = 1, . . ., p, either occurs among the constraints of (MIP), or
is inferred from those constraints. Let the tableau rows for these x k be given as in
(TB) where unit rows have perhaps been adjoined.

Put u = (u l , . .., up), and in (1.4.3.G) put

s = { u 1 u = x - b, x1 + . . + x, 3 I , all x, integer} (1.S.2.B)

where x = (x l , . . .,x,), b = (alo,. . ., a,"). Hence we find

M = {x 1 x1 + . . . + x, 3 0, all integer} (1.5.2 .C)

in (1.4.3.H).

conditions
One function which produces valid cuts for u E S is based on the disjunctive

312 R.G. Jeroslow

for some k = 1, . . . , p ,

uk 3 1 - a k 0
(1.5.2 .D)

and is

f (u) = max { A r U k } (Ak 3 0). (1.5.2 .E)

Since (1 S.2.A) is insured by linear programming, only the integrality conditions on
the x,, might be violated. If all XI, < 1, all aka< 1, and we have

inf{f(u) 1 u E S } = min A k (1 - aka) > 0. (1.5.2.F)

The strengthened cut (1.4.1.D) is

(1.5.2. G)

This cut is one of those reported in [7], where an algorithm is stated for computing
the coefficients of t,, j E Jl in no more than (p - 1) elementary iterations. The
process involves addition of the monoid basis elements for M.

Even when (1.5.2.A) is not a problem constraint, we may branch on it as a
condition. On one branch one we impose the cut (1.5.2.G) implied by (1.5.2.A), and
on the other we set xk = 0 for ail k = 1, . . ., p . This partitioning is due to Balas [3] .

Another application of (1.5.2.G) occurs in what we call “cross-branching’’ for
bivalent variables, in which two fractional bivalent variables xl, xz create a partition
by the settings

x1 = x, or x I = 1-x,. (1.5.2.H)

The first condition x, = x, of (1.5.4.H) implies the two covering constraints

X I + x;==1, x : + x 2 3 1 (1.5.2.1)

where x i = 1 - xl, x; = 1 - x2.

x1 = 1 - x2 implies two cuts.
We can obtain one cut (1.5.2.G) from each condition of (1.5.2.1), and similarly

For a set partitioning constraint

x l + . * . + x p = 1 (1.5.2. J)

in bivalent variables, we have

M = { x (x l + . * * + x p = O }

and using (1.5.2.5) and integrality of the xi, we can employ the disjunctive
constraints in local variables:

Cutting-plane theory

for at least one pair (i, k) ,

21, 5 1 - aio, Uk - a k 0 .

These constraints provide the function

313

(1.5.2.K)

and the right-hand-side

in an improved cut (1.4.3.D).
If doing a project is represented in (MIP) by w = 1 for a bivalent variable w, then

the fact that this project necessitates doing the projects represented by xl , . . ., x, is
stated

W sxk , k = 1, ...,?I, (1.5.2. N)

which is put in the form (1.5.2.A) by using w ’ = 1 - w and writing (1.5.2.N) as

ICXk+W’, k = l , ..., p . (1 5 2 . 0)

Similarly, conflicts between projects w and u become w ’ + u ’ 5 1 with u’ = 1 - u ;
the fact that w and u are alternatives becomes w ’ + u ’ = 1; the fact that w forces at
least one of x,, . . ., xk to be done becomes 1 w’ + x1 + . . . + xk. These comments
are simply by way of noting the importance of cuts derived from (1.5.2.A), to
provide additional fathoming power both before and after branching is initiated.

1.5.3. “On-off switch” constraints

Geoffrion [19] points out the importance of constraints such as

(1.5.3. A)

with x a zero-one variable and the yk’s continuous. Here all P k 2 0, p > 0, are
integers.

These constraints arise in facility-location problems, or, more generally, where
the bivalent variable x represents doing (x = 1) or not doing (x = 0) a project, and
y, , . . ., ys are among the variables of a linear program which represent the,activities
of the project. The constraint (1.5.3.A) allows the doing of the project to “activate”
all project variables, as well as serving as a means of expressing an economic
restriction. These constraints supplement those (1.5.2.A) of the previous subsec-
tion, which can be used to represent the “pure logic” of the interrelations between
projects.

Let x be currently fractional, represented as

x = a o + C a,(-t,) (1 S.3.B)
j € J

314 R.G. Jeroslow

in the tableau, and let the y k ' s be given by

y k = b k o + c b k l (- t l) . (TB)'
fEJ

Setting u = x - ao, u k = Y k - bko with f, the fractional part of a,, we have the
disjunctive constraints

(U a l - f o and O k a - b k o f O r k = 1 , ..., S) (1.5.3 .C)

Or (U c - f o and U k - b k o for k = 1 , . . ., S).

From (1.5.3.C) we obtain the disjunctive constraints function

f (v , u1,. . ., u s) =

and the constant term

Since the non-negativity of the tableau rows for the y k was used in (1.5.3.D),
(1.5.3.E), the cut is based upon the set

(1.5.3 .E)

Its elements include

any of which, in non-negative integer combinations, can be used to strengthen the
basic disjunctive cut.

2. Some theoretical aspects of the disjunctive approach

The theory associated with the disjunctive methods is more recent, and conse-
quently less extensive, than that associated with the algebraic methods. We discuss
some topics which have been treated at this writing.

We shall summarize several results obtained in [34, 371 and give some new ones.
Our treatment is in terms of "co-propositions." We use the co-propositions to deal
with logical conditions stated in arbitrary form, and as a setting in which to discuss
theoretical issues, such as exactness and distributivity, whose importance in the
context of the disjunctive normal form (S h) has already been established.

Cutting-plane theory 315

Balas’ study in [S] , in terms of the disjunctive normal form (S,,), contains several
important results for which we have not found any essentially simpler proofs. In
particular, [5] contains necessary and sufficient conditions for an inequality to be a
facet of the convex hull of feasible points, based on polars and reverse polars of
arbitrary sets, and [S] discusses ways of computing facets by linear programming.
Another important result of [S] , regarding a distributivity relation, is cited in
Section 2.1.2 below and generalized there.

2.1. Construction of co-propositions

To develop the systematic application [35, 371 of the ideas implicit in the
principle of 1.1 above, we consider a propositional logic [18, 441 in atomic letters
P, Q, R, . . . with propositions denoted A, B, C, The atomic propositions will
always stand for a linear inequality assertion

a,x , + * * . + a,x, 2 a0 (2.1. A)

and more complex propositions are constructed by putting ’v’ (for: “or”) or ‘ A ’

(for: “and”) between two given propositions, where B v D allows for the possibility
that both B and D are true.

To every proposition A, we inductively assign a co-proposition CT(A), which is a
polyhedral cone of cuts (1.l.A) that are valid if A is true (we change terminology
from [37]).

Ignore, for the moment, the ground step in the inductive assignment of the
co-proposition CT(P) to the proposition P. (The ground step changes, depending
on whether or not x 3 0.) Two inductive rules clearly are suggested by the concept
of a co-proposition, as vaguely as it has been described above.

The first rule is

CT(B A D) = CT(B) + CT(D). (2.1.B)

Indeed if all cuts of CT(B) are valid when B holds, and all cuts of CT(D) are valid
when D holds, then when B A D holds all cuts of CT(B) U CT(D) are valid, and
valid cuts are closed under addition.

The second rule is

CT(B v D) = CT(B) n CT(D). (2.1. C)

Indeed if B v D is true, but we do not know which, all we are certain of is that those
cuts which are valid on account of either are true: and (2.1.C) expresses this fact.

Clearly, CT(A) will depend on the syntactic form of A, as well as the truth set of
A, because in general

(CT(B) fl CT(DI)) + (CT(B) n CT(D,))

= CT((B v Dl) A (B A D2)).

316 R.G. Jeroslow

The ground step of the induction is also easy. If P is atomic and asserts (2.1.A),
then (1.l.A) is implied by (2.1.A) and x 3 0 precisely if there is a scalar A 3 0 with

ha, S T,, j = 1, . . ., r

A u ~ 3 TO. (2.1.D)

Now we will always take a valid cut (1.l.A) in the homogeneous form

T O X O + c (- 7r ,)XJ =s 0 (2.1. E)
J = 1

and therefore a possible assignment of a cone CT(P) of valid cuts to P is:

CT(P) = cone{(un, - u l , . . ., - u,), (- 1,0, . . ., 0),
(2.1.F)

since this cone includes all (rTT0, - T,, . . ., - T,) for which some A 3 0 exists with
(2.1.D). Here, cone (S) is the smallest closed convex cone containing S. Since
CT(P) has a finite basis, it is polyhedral [45, 47, 491.

The rules (2.1.B) and (2.1.C) do not depend on the ground step (2.1.F). Indeed,
any cone of cuts valid for the inequality (2.1.A) with all xi integer could have been
used: (2.1.F) is obtained without invoking the integrality of x. More generally, any
valid cone of cuts CT(B) can be used in these inductive assignments with B
occurring as a well-formed proposition that is part of the proposition A for which a
CT(A) is desired.

For any proposition B, all of whose linear inequalities are rational, the set of all
of the valid implied cuts (1.l.A) for x 2 0 with x integer, is a polyhedral cone.
Indeed, B can be expressed as a disjunctive system (s h) with H finite: one
considers all the possible combinations of “true” or “false” for the atomic letters
(2.1.A) occurring in B, and by listing all the combinations which make B true, and
placing “or” between them, the systems (s h) are obtained. For each system (s h) ,

since A h and b h are assumed rational, the set of all integral solutions is either
empty or a slice, with convex span a polyhedron, so the set of all implied
inequalities is a polyhedron r h . Therefore the set of all inequalities validly implied
by B itself is the polyhedron r = n h E H r h .

In practice, for CT(P) one takes any polyhedral cone of valid cuts (l . l .A) , usually
a cone lying between that of (2.1.F) and r of the last paragraph. Then inductively
by (2.1.B), CT(B A D) is a polyhedral cone: given finite bases for each of CT(B)
and CT(D), their union is a finite basis for CT(B A D) . Inductively by (2.1.C),
CT(B v D) is a polyhedral cone: it is defined by imposing all the defining
inequalities for both CT(B) and CT(D). Hence CT(A), for any proposition A, will
be a polyhedral cone.

The reader desiring a discussion of polyhedra, bases for polyhedra, and polarity
for polyhedra, may wish to consult [45,47, Chapter 21 and the original paper [49].

(0, - 1,0, . . .) O), . . .) (0 , . . .) 0 , - 1))

Cutting-plane t h e o j 317

Theorem.
h E H (H finite) hold in 1.1. That is, A states

Suppose that the proposition A states that at least one of the systems (s h),

(A'x a b l) v . - . v (A ' x a b ') (2.1.G)

where H = (1,. . ., t } and a matrix inequality Cx a f abbreviates the conjunction (i.e.,
repeated use of ' A ') of the individual inequalities. Then CT(A) consists precisely of
all cuts (DC) of Section 1.1., when (2.1.F) is used for atomic letters.

Proof. In CT(A h~ 3 b h) are all cuts (1.l.A) with T 3 A hA and ro S A h b h for any
A h 3 0 , as one sees by repeated application of (2.1.B). Then deriving CT(A) by
repeated intersection as in (2.1.C) amounts precisely to taking the maxima
indicated in (DC). Q.E.D.

Incidentally, the inductive clauses (2.1.B) and (2.1.C) also yield Balas' disjunctive
constraint cut [5] for x 3 0 deleted in (s h) , when the ground step of the induction is
changed to

(2.1. F) '

Since CT(A) represents valid cuts deduced from the fact that A is true, there is a
natural problem relaxation cp(A) associated with A, which consists of all x E R'
satisfying all cuts (1.l.A) of CT(A). That is,

CT(P) = cone{(ao, - a , , . . ., - a") , (- 1,0,. . ., 0)).

(2.1 .H) 2 r i x j 2 r0 whenever

(TO- T I , . . ., - T,) E CT(A)

The condition x 3 0 can be appended in cp(A) when (2.1.F) is used, or any cone of
cuts which includes, along with a given cut, all the weakenings of that cut, as
obtained by use of the unit vectors (- 1,0,. . ., 0), (0, - 1,0,. . ., 0), . . ., (O,O, . . ., - 1)
of (2.1.F). The unit vector (- 1,0,. . ., 0) of (2.1.F) is always validly included even
when the variables x are not non-negative.

The following result is easily proven from the standard facts concerning polarity
of polyhedra and we omit the proof (for a proof, see [35]).

Lemma. If P is the atomic sentence (2.1.A) and the groundstep is (2.1.F), then

With ground step (2.1.F)',

cp(P) = { x 1 i: a,x, 2 ao .
1 - 1 I

(2.1. I)

(2.1 .J)

cp(A) does provide a problem relaxation, in the very definite sense of the next
result. We use the notation A(x) to emphasize the dependence of A on x.

318 R.G. Jeroslow

Theorem. Zf (2.1.F) is the ground step,

cp(A) 2 clconv{x 0 1 A (x) is true}.

For the ground step (2.1.F)',

(2.1.K)

c p (~) 2 clconv {x I A (x) is true). (2.1 .L)

Proof.
inductive step is possible by (2.1.B), (2.1.C), and (2.1.H).

Use (2.1.1) resp. (2.1.5) for the ground steps of an induction, and the
Q.E.D.

We remark that equality rarely holds in (2.1.K) or (2.1.L), with the possible
exception that A is in disjunctive normal form or that A has some other special
property (see, e.g., Section 2.1.2 below).

Theorem.
extreme rays of CT(A) except possibly for a ray (- 1,0,. . ., 0).

If cp(A) is fully-dimensional, then the faces of cp(A) are precisely the

Proof.
(or see [35] for a proof).

Omitted, since it easily follows from a knowledge of polarity for polyhedra

Whenever clconv{x I A (x) is true} is fully-dimensional, as occurs in a fully-

Q.E.D.

dimensional integer program, (2.1.K) shows that cp(A) is fully-dimensional.

2.1.1. Exactness for co -propositions

From the nature of the reasoning behind (2.1.B), one expects

C ~ (B A D = C ~ (B) n CP(D). (2.1.1 .A)

(2.1.1.A) is in fact true and easy to prove (see, e.g., [35] or [37, p. 881).
From the same intuitions, one expects also cp(B v D) = clconv (cp(B) U cp(D)),

a condition we call the exactness of B v D. Exactness may fail, basically for the
same reason that consistency is needed in one of the converses of the disjunctive
constraints principle of 1.1: an example of its failure is in [37]. But exactness does
hold under so many broadly defined circumstances, that it rarely fails in connection
with applications to (IP).

To explore the issue of exactness, assume a general situation in which non-
negativities are not necessarily tacitly added to all atomic inequalities (2.1.A) -
i.e., assume a situation like (2.1.F)', as opposed to (2.1.F). Then let a polyhedral
definition

C T (B h) P = { X (Q h X - q h X o * O , X o ~ o }

be given for CT(Bh)P, where S p denotes the polar set to S R'", and where xo * 0
can always be appended due to the ability to indefinitely decrease r0 in any valid
cut (l.l.A). One easily shows that cp(Bh) = {x 1 Q h x 3 q " } (see e.g., [35]).

Cutting-plane theory 319

Note that the definition (2.1.C) for CT(BI v . - v B,), modified in the obvious
manner for t 3 3 , amounts to the following when (2.1.F)' is used. We have, by
Farkas' Lemma and standard properties of polarity,

Hence one has (1.l.A) as a cut in CT(B1v . . . vB,) precisely if there is a vector
A h a O with r = A h Q h and r r o 6 A h q h for h = 1 , ..., t.

Reviewing our reasoning of 1.1.1 above, regarding the general hypothesis
(l . l . l .B) for the converse to the disjunctive cut principle, we see that it applies here
as well.

Theorem.
have

If some cp(Bp) # 0 and if, for every h with Q h x 3 q" inconsistent, we

Q"X a o + x = C {x(p)I QPX 3 q p consistent) (2.1.1.B)

for certain x (~) with Q P ~ (P) 2 0, then CT(BI v . * v B,) includes all valid cuts for
clconv(U;=,{x 1 Q"X aqh)) . AISO

and CT(B1 v . . . v B1) is exact.

Proof. Omitted; for more details see [35]. Q.E.D.

A second, narrower, hypothesis insuring exactness is that all cp (B") = 0, i.e., all

For two particular applications of the above theorem, we have the following
the systems Q h~ z= q are inconsistent. We omit the proof (see [37] for a proof).

result.

Proposition. Exactness holds i f either:
(1) All Q = Q", independent of h = 1, . . ., t (see [37]);
(2) cp(B1 v * . . v B ,) is bounded.

Proof. For (2), note that the general relation [36]

cp(B, v - * v B,)> clconv (cp(B,) U. . * U cp(B,)) (2.1.1 .C)

320 R. G. Jeroslow

always holds. Clearly, (2.1.1.C) handles the case cp(B1 v . . . v Br) = 0. For
cp (B1 v . * v B,) # 0, at least one cp (B,) # 0, i.e., Q P x 2 q p is consistent. To obtain
(2.1.1.B) it suffices, therefore, to show that

If Q h x 2 q h is inconsistent, then Q h x 2 0 implies x = 0. (2.1.1.D)
Toward (2.1.1.D), let x " # O be given with Q h x ' 2 0 , and let x * be such that

Q P x * 2 q P . Now if (n,,,-rl ,..., - n ,) E C T (B h) , we have ~ ~ ' 3 0 with T =

(TI , . . ., T,):

TX'= AhQhxo(since n = A h Q h)

3 0 (since Q h x o 3 0, A 2 0).

Therefore m " 2 0 if

(no, - T) E CT(B, v * * * v B,) = CT(B1) fl ' . . n CT(B,) C CT(&).

Also, if (no, - T) E CT(Bl v . . v B,) C CT(B,), then TX * 3 no. Therefore, for any
A 2 0, T (X * + Ax') 3 T', showing that cp(Bl v * * . v B,) is unbounded. This con-
tradiction gives (2.1.1.D), and the proof of (2) is complete. Q.E.D.

This whole analysis can be repeated with the ground step (2.1.F) and with the
same results obtained: one simply appends x 2 0 to the inequalities Q h~ - q h ~ o 2 0,
X" 2 0.

2.1.2. Distributivity for co -propositions

The polyhedral sets of R', while they do have the lattice structure of a greatest
lower bound for two sets (take intersection) and a least upper bound for two sets
(take the closed, convex span of their union), do not form a distributive lattice: the
distributive law

rl n clconv (Tr u r3) = clconv ((r, n r2) u (rl n r3))
often fails, as we see in r = 1 taking rl = {l}, r2 = {0}, r3 = (2). However, the truth
value of A A (B v D) is that of (A A B) v (A A D) , i.e., the A , v - subpart of
propositional logic is a distributive lattice. This asymmetry in the two lattices causes
the mapping A --+ cp(A) to depend on the syntactic form of A as much as the truth
set of A.

"Half" of the distributive laws do hold in the relaxations cp(A):

Cp(B A (0 1 A . * * A 0,)) 2 Cp((B A DI) V . . . V (B A 0,)) (2.1.2.A)

Cp(B V (0 1 A ' ' ' A Dt))CCp((B V 0 1) A ' ' ' A (B V o r)) . (2.1.2.B)

These laws, and several others, are established in [37] .
From the inductive definitions (2.1.B), (2.1.C) and the ground clause (2.1.F)

which introduces a parameter A 3 0 (a different parameter for each occurrence of
P), more parameters are required for CT((B A 0,) v . . . v (B A 0,)) than for

Cutting-plane theory 32 1

CT(B A (Dl v . . . v Or)), showing that the former may include better cuts (see
(2.1.2.A)), but these generally require more computation than those of the latter.
Indeed, there are several interrelations between cp(A) and the number of
parameters needed for CT(A), e.g.,

C p ((h = b) A (X I = 0 V X I = 1) A . . . A (X , = 0 V X , = 1))

is usually much larger than cp(V,,,(Sh)’) with (sh)’ from 1.1. However, (2.1.2.B)
shows that, in some cases, more parameters can be worse.

In [5] Balas found an hypothesis on polyhedra, in order for the distributive law

h = l h = l

to be valid. The hypothesis is that r = { x I ax a b } where ax
empty) of the bounded set c lconv(Ui=, rh).

From (2.1.2.C), the set of all valid cutting-planes for

(2.1.2.C)

2 b is a face (possibly

the left-hand-side of
(2.1.3.C) is the set of valid cutting-planes for the right-hand-side. However, without
further analysis, the co-propositions corresponding to the left-hand-side and the
right-hand-side of (2.1.3.C) need not be equal, since the co-propositions are only
some of the valid inequalities for a given set, and which ones they are depend on
how the set is described.

Nevertheless, a co-propositional form of Balas’ result is valid, and we give it next.

Theorem. If cp(B) n cp(D1 v . . . v DI) is a face of cp(DI v . . v D,), and
cp(Dl v * v Or) is bounded, then

Cp(B A (01 V ’ * . V D c)) = Cp((B A 01) V . . . V (B A 0,))
(2.1.2.D)

= clconv (h = l U (c p (~) n cp(Dh))).

Proof. Part of (2.1.2.D) is easy, since the boundedness of

cp(Dl v . . . v 0,) 1 cp(B A (0, v * . . v D,)> cp(B A D 1) v . . . v (B AD,))

shows the boundedness, hence the exactness, of cp((B A Dl) v . . . v (B A 0,)) from
the proposition in 2.1.1 above: this is one equation of (2.1.2.D).

For the remaining equation, note that any face of the bounded set

is the convex span of those points of the generating set uk=, cp(Dh) which lie in it
- again, exactness here is implied by boundedness.

Suppose that x E cp(B A (Dl v * * * v Dl)) = cp(B) n cp(D1 v * + . v Or). By the last
paragraph, since cp(B) n cp(0 , v . . . v Or) is a face of cp(Dl v . . v Dc) , there is a
represen tation

322 R.G. Jeroslow

A h a 0 for h E H ; A h = 0 if cp(Dh) n cp(B) = 0; in which x(') is in cp(Dh) and in the
face cp(B) n cp(D1 v . * * v 0'). Hence each x (~ ' E cp(B) fl cp(Dh), yielding by
(2.1.2. E) that

x E clconv (cj (c p (~) n cp(Dh))) = c p ((~ A D ~) v . . . v (B A D,)).
h=1

This shows that

Cp(B A (01 V ' . ' V Dt)) c Cp((B A 0 1) V ' ' ' V (B A or)),
and (2.1.2.A) supplies the reverse inclusion. Thus the remaining equality of
(2.1.2.D) is proven. Q.E.D.

2.1.3. Linear programs equivalent to disjunctive systems

For the disjunctive systems (sh) with 1 HI finite, the disjunctive inequalities
r x 3 no arise from the projection of the polyhedron

A ~ A " s r,

A h b h 3 ro, (all h E H) ,

A h 3 0 ,

(2.1.3. A)

upon the (r + 1) co-ordinates of (r, ro). This is simply the principle in 1.1 of
disjunctive cuts, and in 2.1 above we saw that this projection gives
CT((A'x 3 b ') v . . . v (A'x 3 b')), H = (1,. . ., t } , under (2.1.F). Assume this co-
proposition is exact.

Therefore, from 2.1, if the disjunctive systems (s h) describe a fully-dimensional
body, the facets of clconv ({x I for some h E H, A h x 3 bh and x 2 0)) arise as
certain of the projections upon the co-ordinates (T , no), of the extreme rays of the
polyhedral cone of all solutions ({ A h 1 h E H}, T, ro) to (2.1.3.A) [5] .

If one wishes to

minimize cx

subject to A h x 3 bh, x Z= 0 for some h E H, (2.1.3 .B)

then one approach is to find the best disjunctive cut with rr = c. This gives

max T"

subject to A hA s c

Ahbh 3 rro

A h 30.

(all h E H)

(2.1.3.C)

Cutting-plane theory 323

The ordinary linear programming dual to (2.1.3.C) is
I

min 2 cxh
h = l

subject to A h ~ h - b h X h 3 0, h E H
(2.1.3.D)

where, for each h E H, we have introduced an r-vector x h and a scalar x h . (2.1.3.D)
provides a linear programming equivalent to the purely logical program (2.1.3.B),
under the same circumstances that the disjunctive cuts provide all valid cuts for
(2.1.3.B), e.g., when all the systems (s h) , h E H, are consistent (see [5]), or the
associated co-proposition is exact.

One can develop a linear programming formulation for every proposition A in v,
A , such that the linear program describes optimization over cp(A) [37]. When
specialized to (2.1.3.B), this program is (2.1.3.D).

Clearly, one way to compute the optimum 2 of (2.1.3.D) is to separately find the
values f h = min {cx 1 Ahx 2 bh, x 2 0) and put 2 = max f,,. This corresponds to
putting xk = 1 in (2.1.3.D) for one index k with f = A, and x k equal to the optimum
solution yielding fk. This method corresponds to the obvious branch-and-bound
procedure €or solving (2.1.3.B). In this way also, using systems like (s h y for (s h) ,

one recovers ordinary branch-and-bound as one specific way of implementing
(2.1.3.D).

For a more detailed discussion of generalized branch-and-bound schemes and
their relations to disjunctive cuts that have the redundancy property cited in 1.4.3.1
above, see [37, Section 51.

2.1.4. For future research

By leaving open the exact nature of CT(B) for propositions B “not further
analysed,” so long as (2.1.B), (2.1.C) are used inductively to determine other
co-propositions, we are of course allowing for an improvement by algebraic means,
in the broad sense that “algebraic” is used in [35, 361.

For if x E clconv{y 1 B (y) is true} implies Qx 2 q with Q, q rational, then any
slice form (1.3.1.M) of [35, Part 11 gives rise to the polyhedral cone of all (T, TO),
T = (T~, . . ., T,), with

T U (~) ~ r0, i = 1,. . . , a ,

m 0 ’) 3 O , j = 1 ,..., t. (2.1.4.A)

As before, the practical use of (2.1.4.A) depends on designing Qx 3 q to allow
efficient descriptions (2.1.4.A).

324 R . G. Jeroslo w

The current understanding, of how to properly devise “efficient relaxations”
Qx 2 q of logical conditions B, is poor. On the one hand, we have the example of
group relaxations, as for instance the group of [27]: here the irreducible group
elements allow efficient enumeration of u (’) for cutting-plane purposes (in smaller
groups), and the inequalities m(’) 3 0 become simple non-negativities. On the other
hand, we have the principle of 1.4.3 above, in which the directions of infinity xo)
give the monoid M that allows cut-strengthening.

Clearly, we need more instances of “efficient relaxations” to understand the
phenomenon better. Interestingly enough, those relaxations which have given us
some very good cuts are unbounded, even though virtually all practical integer
programs are bounded. As regards the set of v(’) of (2.1.4.A), one expects the
presence of certain automorphisms of this set to yield an “efficient relaxation”, but
the sense of this certainly needs clarification.

2.2. Finitely -convergent disjunctive cutting -plane algorithms

We apply the results of 2.1.1 to obtain finiteness proofs for a class of cutting-
plane algorithms for problems involving both linear and logical constraints; these
problems include bounded (IP).

In principle, the use of systems (s h) ’ solves (IP) by cutting-planes in one
application; however, the computation of the cutting-plane may be the work of a
partial enumeration to solve (IP). The individual cutting-planes added at each
iteration must be much simpler than those from (s h y for the method to represent an
alternative to those already known.

The cutting-plane algorithms presented here are part of our theoretical develop-
ment, and minimally these would have to be supplemented with good heuristic
rules to be successful in practice. Furthermore, the “best” ways of using cutting-
planes may be within an enumerative framework and with heuristically-found
primal solutions (see our discussions in [35, 361). In this section we have a purely
intellectual purpose, and that is to show that the disjunctive cuts do not require the
assistance of other devices in order to obtain finite convergence. While some of the
algorithms below do have promise and may prove successful when properly
implemented, we will not address such practical issues in this section.

First, for a simple case which provides a “subroutine” for the full construction to
follow, suppose we wish to solve the following program in linear logical constraints:

min cx

subject to Ax 2 b (2.2.A)

x 2 0

and also Q x 2 q for at least one w E H = { I , . . ., a } . (2.2.B)

We assume throughout that {x 1 Ax z= b, x 2 0) is bounded and non-empty.

Cutting-plane theory 325

The constraints of (2.2.A), (2.2.B) are of the form of those for the exactness result
in Proposition (1) of Section 2.1.1, if one uses

A' = [$1, (2.2.C)

b" = [,"-I, w E H = (1,. . . , a } . (2.2. D)

Hence exactness holds, and all valid cutting-planes are obtained from

C T ((A ' x Z b 1) v * . * v (A ' ~ a b ")) .

The following strategy suggests itself for (2.2.A), (2.2.B). We can solve (2.2.A) as
a linear program without the disjunctive constraints (2.2.B). For all linear programs
solved, we assume that an extreme point algorithm is used, i.e., one which provides
a solution that is an extreme point whenever the program is consistent and
bounded. The Simplex Algorithm is of this type; the subgradient algorithms are
not.

If the linear program is inconsistent, we halt: (2.2.A), (2.2.B) is inconsistent.
Otherwise, by boundedness, we obtain an optimal extreme point solution x". If x"
satisfies (2.2.B), we are done: it is optimal for (2.2.A), (2.2.B). In what follows, we
assume that x" does not solve (2.2.B).

We claim that there is at least one facet or singular defining inequality of the set

{x 1 A"x 2 d w , x Z O }) (2.2.E)

which is not satisfied by x", i.e., which "cuts off" x". Here A"x 3 d" includes the
constraints appended to Ax 2 b to date, including any previous cuts.

To see the claim, by the boundedness of

{ x (A x a b , x a O } > U { x I A " x a d " , x a O } ,
W E H

the extreme points of the set T are in its generator set

U { x 1 A"x d", x 3 0},
W E H

and this set is, in turn, contained in the current linear programming relaxation
A *x a d * , x z 0. Therefore, if x " E T, it would not be an extreme point of the
relaxation. This shows x"$Z T. Therefore, if T is fully-dimensional (as occurs if the
constraints (2.2.A), (2.2.B) define a fully dimensional set), there is a facet of T not
satisfied by x ; for T not fully-dimensional, either a facet or a singular inequality of
T is not satisfied by x .

After the facet or singular inequality is added as a "cutting-plane,'' the resulting
enlarged linear programming relaxation is reoptimized, and the procedure repeats.

We now prove finite convergence of the procedure. Here it is important to note

326 R.G. Jeroslow

that, after re-optimization, the new set T obtained is the same as the previous one
in (2.2.E). This is because the cutting-plane added is satisfied by the set of (2.2.E),
hence satisfied by each set {x 1 A”x 2 d ” , x 2 0} for w E H, and so when the matrix
A”x 2 d “ is enlarged by the new inequality, these sets, and therefore their convex
span, will not change.

Finite convergence follows simply because the set T of (2.2.E) has only finitely
many facets and singular inequalities. After all have been added- and a new one is
added each time -certainly (2.2.B) will be satisfied, since an extreme point of T is
in one of the sets { x 1 A”x 2 d”, x 3 0}, and therefore satisfies at least one of the
conditions of (2.2.B).

The facets of T of (2.2.E) are to be obtained from the co-proposition

CT((A”x 3 d ’) ~ . . . v (A”x 2 d ”)) .

This involves finding a suitable face -for T fully dimensional, an extreme ray -of
a system like (2.1.3.A), and projecting the (r, r0) co-ordinates. Not every projec-
tion is a facet or singular inequality, but they are among these projections, and only
finitely many facets of the desired type exist for (2.1.3.A). Therefore if, at each
iteration, we simply add the (T, To)-projection of a face for (2.1.3.A), finite
convergence is again guaranteed.

In the case that T is fully-dimensional, one can set up (2.1.3.A) in terms of the
current non-basic variables, turn the desired extreme rays into extreme points by
adding r0 2 1 (since only facets or singular inequalities “cutting-away’’ xo are
desired), and determine any extreme point of the resulting system.

Now consider a more complex logical linear program of the form

min cx

subject to Ax 2 b

x 3 0

(2.2.F)

cx E 2‘
and also, for every p E P = (1,. . ., O}, we have

Q‘,’X = qP.” (2.2. G)

for at least one w E H, = (1,. . ., t (p) } . In (2.2.F), we require that 3 is a finite set.
For instance, (IP) is of this form when it is bounded and c = (c,, . . ., c,) is integral,
by taking 3 as the integers, P = (1 , . . ., r } with Q‘,’x = 4”” as x, = w, w integer,
where H, is sufficiently large so that all possible values of x, are included. To
represent (IP) via (2.2.G) with disjunctive systems of n o more than two elements,
one may use a number of systems of the form (xi

Of course, by converting the logical constraints (2.2.G) into disjuctive systems
(S,,), we can reduce this problem to the one studied in (2.2.A), (2.2.B) above. But
the procedure that we now describe uses much smaller disjunctive systems; for (IP),
only systems with two conditions need be employed.

w or x, 2 w + 1).

Cutting -plane theory 327

The procedure described above for (2.2.A), (2.2.B) will provide our basic step, SO

again we are using linear optimization to repeatedly solve tighter and tighter linear
relaxations. But we shall suppose that this linear optimization is lexicographic with
respect to s(Q(')), . . ., s(Q(@)), in that order. Here s(Q',)) denotes the sum of the
rows of Q ' p) .

By such a lexicographic method, we mean the following. Reduced cost rows are
maintained for the linear forms s(Q',))x,p E P. First cx is optimized; then if
s(Q(")x can be further decreased without changing the value of cx (i.e., if there are
pivots in columns where the criterion function cx has zeroes), these pivots are
employed until n o more remain; then if s (QCL))x can be further decreased without
changing the value of cx or x(Q'")x, these pivots are employed until n o more
remain; etc. In this method, s (Q ' ,)) x is given complete priority over S(Q(~+'))X, by
only using pivots with entering columns that have zeroes in the rows for s(Q(")x,
i s p .

For an optimal solution xo to the current linear programming relaxation, call k
the truncation index if: (1) For each p = 1,. . ., k there is w (p) E H, such that
Q (p) ~ o = qp."(p); (2) Q"+')x"# qk+l .w for all w E f f k + I . I.e., (k + 1) is the index of the
"first" set of violated constraints. We put k = 0 if all logical constraints are violated.
If k = 8, we may terminate: xo is optimal for (2.2.F), (2.2.G). Assume now that
k < 8.

Associated with the truncation index k of x o is the vector (q'"''), . . ., qkVw(')) of
clause (l), the truncation vector. By definition, the truncation vector is 0 if k = 0.
Here it is important to make the observation that, if the truncation index for the
next optimum xoo after re-optimization is k ' < k, then this truncation vector will
never occur again for the same criterion value z o = cxo. Indeed, if z o = cx, since
there has occurred a lexicographic decrease in (cx, s(Q('))x,. . ., s(Q'"))x) with
truncation index k ' < k, for x in all subsequent solutions at least one of the
quantities cx, s(Q'")x,. . ., s(Q"'))x will be less than the corresponding quantity for
xo. But if Q@)x = qp3w(p) holds, then the value of s(Q'"')x is the sum of elements of
qP,'"@). Therefore, for some i = 1,. . ., k', q""") is not the ith component of any
subsequent truncation vector.

When c x o e 2, we add the cut

cx =z L.CX 5, (2.2.H)

where L u J denotes the largest element of 2 that is S u, for u E R. (If n o such
element exists, the program is inconsistent.) (2.2.H) certainly causes pivoting to a
new point. Otherwise, as in the algorithm for (2.2.A), (2.2.B) we add a facet or
singular inequality for the set

r(h)
clconv (U {x I A " x 3 d ' , x 3 0 , QCh)x = qh, '" }) , h = k + 1, (2.2.1)

w € H h

by means of the corresponding exact co-proposition. In (2.2.1), A " x 2 d ' , x 2 0 is
the current linear programming relaxation, and of course k is the truncation index.

328 R. G. Jeroslo w

The procedure just described is finite. By the boundedness of {x 1 Ax 2 b, x 2 0)
in (2.2.F), (2.2.G), only finitely many cuts of the type (2.2.H) can be added, since Z
is finite. Therefore, to prove finite convergence, it suffices to show that there will
not be an infinite sequence of cuts of the type (2.2.1) added all with the same value
of x ” = cxo. Since truncation vectors do not repeat when there is a decrease in the
truncation index, and since there are only finitely many truncation vectors, this case
simplifies to showing that the truncation index must decrease after finitely many
cuts are added.

However, the argument for (2.2.A), (2.2.B) shows that the truncation index
cannot remain the same in an infinite, consecutive sequence of cuts. If it decreases,
we are done. If it increases, the same analysis repeats for the larger truncation
index, and eventually the truncation index cannot increase, since it will reach the
upper bound of 8. This completes the proof of finite convergence.

Balas has provided finitely-convergent cutting-plane algorithms, also based on a
lexicographic argument, for a class of linear logical programs called “facial” [5] .
This class includes the important case of (IP) for bivalent variables.

Acknowledgements

I wish to thank my secretary Jacqueline Cavendish for her Herculean efforts in
typing and editing this paper in a brief period of time, an undertaking which seemed
at first simply impossible. I am also grateful to Karen Cassel for her generous,
voluntary assistance.

On scientific issues, I have been very fortunate in having Egon Balas as a
colleague. We have had many conversations on the topics treated here, and I have
always benefited from his grasp of the field and his profound insights and extensive
knowledge.

I learned several points about the disjunctive methods from Fred Glover, during
a visit to Boulder, and Vasek Chvatal’s comments on finiteness proofs have been
helpful to me.

The intellectual stimulation of many working sessions with Charlie Blair is
particularly appreciated, and our collaboration has sharpened my own understand-
ing of several phenomena.

I am very grateful to the sponsors of this Workshop, both the University of Bonn
and the IBM Corporation, for their supoport of this work.

The editors of Discrete Mathematics have been more than helpful in getting this
material in final form. I very much appreciate the editorial assistance of Ellis
Johnson, and the extraordinary and invaluable care taken by the referee of this very
long manuscript.

Lastly, so many thanks to Helen and Avi, for their patient support during July.

Cutting-plane theory 329

References

[I] E. Balas, Intersection cuts - A new type of cutting-plane for integer programming, Operations

[2] E. Balas, Integer programming and convex analysis: Intersection cuts from outer polars, Math.

[3] E. Balas, On the use of intersection cuts and outer polars in branch-and-bound, talk given at the

[4] E. Balas, Intersection cuts from disjunctive constraints, Man. Sci. Res. Rep. No. 330, Carnegie-

[5] E. Balas, Disjunctive programming: Facets of the convex hull of feasible points, Man. Sci. Res.

[6] E. Balas, Disjunctive programming: Cutting-planes from logical conditions, talk given at SIGMAP-

[7] E. Balas and R.G. Jeroslow, Strengthening cuts for mixed integer programs, Man. Sci. Res. Rep.

[8] C.E. Blair, Topics in integer programming, Ph.D. Dissertation, Carnegie-Mellon University, April

[9] C.E. Blair and R.G. Jeroslow, A note on disjunctive constraints, to appear.

Res. 19 (1971) 19-30.

Programming 2 (1972) 330-382.

MPS conference in Stanford, August 1973.

Mellon University, February 1974.

Rep. No. 348, Carnegie-Mellon University, July 1974.

UW Conference, April 1974; in [41, pp. 279-3121,

No. 359, Carnegie-Mellon University, February 1975.

1975, 27 pp.

[lo] C.-A. Burdet, The algebra and geometry of integer programming cuts: A combined approach,

[I l l C.-A. Burdet, Polaroids: A new tool in non-convex and in integer programming, Naval Res.

[12] C.-A. Burdet, Enumerative inequalities in integer programming, Marh. Programming 2 (1972)

[131 C. Caratheodory, “Uber den Variabilitatsbereich der Fourier’schen Konstanten von positiven

[14] V. Chvital, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math. 4 (1973)

[I51 R.J. Duffin, E.L. Peterson, and C. Zener, Geometric Programming-Theory and Application (Wiley,

[16] M.L. Fisher and J.F. Shapiro, Constructive duality in integer programming, SIAMJ. Appl. Math.

[17] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (Wiley, New York, 1972).
[IS] G. Gentzen, “Untersuchungen uber das logische Schliessen,” Mathematische Zeitschrift 39 (1935),

pp. 176210 and pp. 405-431. English translation is # 3 in: M.E. Szabo, ed., The Collected Papers of
Gerhard Gentzen (North-Holland, Amsterdam, 1969) 311 + pp.

[19] A.M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Study 2
(1974) 82-114.

[20] A.M. Geoffrion and R.E. Marsten, Integer programming algorithms: A framework and state-of-
the-art survey, Management Sci. 18 (1972) 465-491.

[21] F. Glover, Convexity cuts and cut search, Operations Res. 21 (1973) 123-134.
[22] F. Glover, Convexity cuts for multiple-choice problems, MSRS 71-1, University of Colorado,

January 1971.
[23] F. Glover, Polyhedral convexity cuts and negative edge extensions, MSRS 73-6, University of

Colorado, April 1973.
[24] F. Glover, Polyhedral annexation in mixed integer programming, MSRS 73-9, University of

Colorado, August 1973.
[25] F. Glover, On polyhedral annexation and generating the facets of the convex hull of feasible

solutions to mixed integer programming problems, MSRS 74-2, University of Colorado, March
1974.

[26] F. Glover and D. Klingman, The generalized lattice-point problem, Operations Res. 21 (1973)

[27] R.E. Gomory, On the relation between integer and non-integer solutions to linear programs, Proc.

October 1972.

Logistic Quarterly 20 (1973), 13-24.

32-64.

harmonischen Funktionen,” Rend. Cir. Mat. Palermo 32 (191 1) 193-217.

305-337.

New York, 1967).

27 (1974) 31-52.

135- 14 1.

Nat. Acad. Sci. 53 (1965) 260-265.

330 R.G. Jeroslow

(281 R.E. Gomory, An algorithm for integer solutions to linear programs, in: Graves and Wolfe, eds.,
Recent Advances in Mathematical Programming (McGraw-Hill, New York, 1963) pp. 269-302.

[29] R.E. Gomory, An algorithm for the mixed integer problem, RM-2597, RAND Corporation, 1960.
[30] G.A. Gorry and J.F. Shapiro, An adaptive group theoretic algorithm for integer programming

[31] P.L. Hammer and S. Rudeanu, Pseudo-boolean programming, Operations Res. 17 (1969) 233-264.
[32] Hoang Tuy, Concave programming under linear constraints, in Russian; Doklady Academii Nauk

(331 T.C. Hu, Integer Programming and Network Flows (Addison-Wesley, 1969) 432 + pp.
(341 R. Jeroslow, The principles of cutting-plane theory: Part I, Carnegie-Mellon University, February

[35] R. Jeroslow, The principles of cutting-plane theory, Part 11: Algebraic methods, disjunctive

(361 R. Jeroslow, Cutting-plane theory: Algebraic methods, February 1976.
[37] R. Jeroslow, Cutting-planes for relaxations of integer programs, Man. Sci. Res. Rep. No. 347,

[38] R. Jeroslow, A generalization of a theorem of Chvital and Gomory, in [41].
[39] E.L. Johnson, Integer programs with continuous variables, July 1974.
[40] E.L. Johnson, The group problem for mixed integer programming, Math. Programming Study 2,

[41] O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, Nonlinear Programming 2 (Academic Press,

(421 H. Minkowski, Theorie der Konvexen Korper, insbesondere Begrundung ihres Oberflachenbegriffs,

(431 G. Owen, Cutting-planes for prugrams with disjunctive constraints, J. Optimization Theory and Its

[44] D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm Studies in Philosophy 3

[45] R.T. Rockafeller, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[46] F.J. Shapiro, Generalized Lagrange multipliers in integer programming, Operations Res. 19 (1971)

68-76.
[47] J. Stow and C. Witzgall, Convexity and Optimization in Finite Dimensions I (Springer, Berlin,

1970).
(481 H. Uzawa, A theorem on convex polyhedral cones, in: Arrow, Hurwicz, Uzawa, eds., Studies in

Linear and Nonlinear Programming (Stanford University Press, Stanford, CA, 1958).
(491 H. Weyl, “Elementare Theorie der Konvexen Polyeder,” Comentarii Mathernatici Heluetici 7

(1935), pp. 290-306, English translation in Contributions to the Theory of Games, Kuhn and Tucker,
eds., Ann. Math. Studies no. 24, Princeton, 1950.

[50] K.U. Young, Hypercylindrically-deduced cuts in zero-one integer programs, Operations Res. 19
(1971) 1393-1405.

[51] P. Zwart, Intersection cuts for separable programming, Washington University, St. Louis, January
1972.

problems, Management Sci. 17 (1971) 285-306.

SSR (1964) English translation in Soviet Math. (1964) 1437-1440.

1974.

methods, Man. Sci. Res. Rep. no. 370 (revised), Carnegie-Mellon University, September 1975.

Carnegie-Mellon University, July 1974.

(1974), 137-179.

New York, 1975).

Gesammelte Abhandlungen 11, Leipzig, 191 1.

A@. 11 (1973) 49-55.

(Almqvist and Wiksell, Stockholm, 1965) 105 + pp.

Annals of Discrete Mathematics 1 (1977) 331-342
@ North-Holland Publishing Company

A “PSEUDOPOLYNOMIAL” ALGORITHM FOR SEQUENCING
JOBS TO MINIMIZE TOTAL TARDINESS*

Eugene L. LAWLER
Computer Science Division, University of California, Berkeley, C A

Suppose n jobs are to be processed by a single machine. Associated with each job j are a fixed
integer processing time p,, a due date d,, and a positive weight w,. The weighted tardiness of job j
in a given sequence is w, max(0, C, - d,), where C, is the completion time of job j . Assume that
the weighting of jobs is “agreeable”, in the sense that pi < p, implies w, z w,. Under these
conditions, it is shown that a sequence minimizing total weighted tardiness can be found by a
dynamic programming algorithm with worst-case running time of O(n4P) or O(nSp,) , where
P = c p, and pmex = max {p , } . The algorithm is “pseudopolynomial”, since a true polynomial-
bounded algorithm should be polynomial in c log,p,.

1. Introduction

Suppose n jobs are to be processed by a single machine. Associated with each
job j are a fixed integer processing time p,, a due date d,, and a positive weight w,.
The tardiness of job j in a sequence is defined as T, = max(0, C, - d,}, where C, is
the completion time of job j . The problem is to find a sequence which minimizes
total weighted tardiness, c w,T,, where the processing of the first job is to begin at
time t = 0.

Let us assume that the weighting of jobs is agreeable, in the sense that pa < p ,
implies w, 3 w,. Under these conditions, it is shown in this paper that an optimal
sequence can be found by a dynamic programming algorithm with worst-case
running time of O (n 4 P) or O(n5pmax), where P = cp,, and p,, = max{p,}.

The proposed algorithm is distinguished from previous algorithms [5,7,15] for this
problem in that its running time is bounded by a function that is polynomial, rather
than exponential, in n. However, the present algorithm does not qualify as a
polynomial algorithm in the accepted sense of the term. This is because the running
time is not bounded by a polynomial in the number of bits required to specify an
instance of the problem in binary encoding. To be polynomial in this sense, the
running time should be polynomial in clog2p,,, rather than P or pmaX.

Although the proposed algorithm is not polynomial with respect to binary
encoding of data, it is polynomial with respect to an encoding in which the p, values
are expressed in unary notation. For this reason, we say that the algorithm is
pseudopolynomial.

* Research supported by National Science Foundation Grant GJ-43227X.

331

332 E.L. Lawler

If the weights of jobs are unrestricted (“disagreeable”), then the weighted
tardiness problem is NP-complete, even if all data are encoded in unary notation.
(See proof in appendix.) This means that the existence of a pseudopolynomial
algorithm is very unlikely. O r more precisely, such an algorithm exists i f and only if
there are similar algorithms for the traveling salesman problem, the three dimen-
sional assignment problem, the chromatic number problem, and other well-known
“hard” problems [6].

It should be mentioned that there is as yet no proof that the agreeably weighted
tardiness problem is NP-complete with respect to binary encoding. Hence one may
still hope to find a polynomial algorithm. Some unsuccessful attempts are described
in the final section of this paper.

There are many closely related types of sequencing problems in which the
distinctions between agreeable weighting and unrestricted weighting and between
binary encoding and unary encoding are significant. For example, suppose all jobs
have the same due date. Then the unrestricted weighted tardiness problem can be
solved by a pseudopolynomial algorithm with O (n 2 P) complexity [lo], whereas the
agreeably weighted case yields to an O (n log n) procedure (SPTorder). O r suppose
we seek to minimize the weighted number of tardy jobs (with respect to arbitrary
due dates). The unrestricted problem is NP-complete with respect to binary
encoding, but can be solved in O (n P) time [lo]. The agreeably weighted case can
be solved in O (n log n) time [9,11].

2. Theoretical development

Theorem 1. Let the jobs have arbitrary weights. Let T be any sequence which is
optimal with respect to the given due dates d , , d z , . . ., d,, and let C, be the completion
time of job j for this sequence. Let d ; be chosen such that

min (d,, C,) c di max (dl , C,).
Then any sequence 7r’ which is optimal with respect to the due dates d ; , d : , . . ., dA
is also optimal with respect to d , , d, , . . ., d, (but not conversely).

Proof. Let T denote total weighted tardiness with respect to d , , d Z , . . ., d, and T’
denote total weighted tardiness with respect to d ; , d : , . .., d : . Let rr’ be any
sequence which is optimal with respect to d i , d $, ..., d ; , and let C : be the
completion time of job j for this sequence. We have

T (T) = T’(T) + A,,
i

T(rr‘) = T’(rr’) + Bl
I

where, if C, s d,,

Sequencing jobs to minimize tardiness 333

A, = 0

B, = - w, max (0, min (C;, d,) - d;),

and, if C, 2 d,,

A, = w, (d ; - d ,)

B, = w, max (0, min (C ; , d ;) - d,).

Clearly A, 2 B, and C,A, 2 C, B,. Moreover, T'(rr) 2 T'(rr'), because rr ' is
assumed to minimize T'. Therefore the right hand side of (1.1) dominates the right
hand side of (1.2). It follows that T(rr)* T(rr') and rr ' is optimal with respect to
di, dz, . . ., d,. 0

Theorem 2. Suppose the jobs are agreeably weighted. T h e n there exists a n optimal
sequence rr in which job i precedes job j if d , c d, and p, < p,, and i n which all on t ime
jobs are in nondecreasing deadline order.

Proof. Let rr be an optimal sequence. Suppose i follows j in rr, where d, d, and
p, < p,. Then a simple interchange of i and j yields a sequence for which the total
weighted tardiness is no greater. (Cf. [13, proof of Theorem 11.) If i follows j , where
d, G d, and i and j are both on time, then moving j to the position immediateIy
following i yields a sequence for which the total weighted tardiness is no greater.
Repeated applications of these two rules yields an optimal sequence satisfying the
conditions of the theorem. 0

In order to simplify exposition somewhat, let us assume for the purposes of the
following theorem that all processing times are distinct. If processing times are not
distinct, they may be perturbed infinitesimally without upsetting the assumption of
agreeable weighting or otherwise changing the problem significantly. Hence there is
no loss of generality.

Theorem 3. Suppose the jobs are agreeably weighted and numbered in nondecreas-
ing due date order, i.e. d , c d , . . . c d,. Le t job k be such that pk = max, {p,}. T h e n
there is some integer S,0 n - k , such that there exists a n optimal sequence n- in
which k is preceded by all jobs j such that j =s k + 6, and followed by all jobs j such
that j > k + 6.

S

Proof. Let C : be the latest possible completion time of job k in any sequence
which is optimal with respect to due dates d,, d,, . . ., d,. Let n- be a sequence which
is optimal with respect to the due dates d l , d Z , . . ., dk-1, d ; =

max (CA, d k) , d,,,, . . ., d,, and which satisfies the conditions of Theorem 2 with
respect to these due dates. Let Ck be the completion time of job k for r. By
Theorem 1, n- is optimal with respect to the original due dates. Hence, by

334 E.L. Lawler

assumption, c k S d;. Job k cannot be preceded in T by any job j such that dJ > d ’ ,
else job j would also be on time, in violation of the conditions of Theorem 2. And
job k must be preceded by all jobs j such that d, C d ; . Let 6 be chosen to be the
largest integer such that d k + S < d ; and the theorem is proved.

3. Dynamic programming solution

Assume the jobs are agreeably weighted and numbered in nondecreasing
deadline order. Suppose we wish to find an optimal sequence of jobs 1,2, . . ., n, with
processing of the first job to begin at time t. Let k be the job with largest processing
time. It follows from Theorem 3 that, for some 6, 0 S 6 S n - k , there exists an
optimal sequence in the form of:

(i) jobs 1,2 , . . ., k -1, k + 1 , . . ., k + 6, in some sequence, starting at time t,
followed by

(ii) job k, with completion time ck(6) = t + CJGktBP,, followed by,
(iii) jobs k + 6 + 1, k + 6 + 2,. . ., n, in some sequence, starting at time Ck(6).
By the well known principle of optimality it follows that the overall sequence is

optimal only if the sequences for the subsets of jobs in (i) and (iii) are optimal, for
starting times t and Ck (a), respectively. This observation suggests a dynamic
programming method of solution. For any given subset S of jobs and starting time t,
there is a well-defined sequencing problem. An optimal solution for problem S, t
can be found recursively from optimal solutions to problems of the form S ’ , t ’ ,
where S’ is a proper subset of S and t ‘ > t.

The subset S which enter into the recursion are of a very restricted type. Each
subset consists of jobs in an interval i, i + 1 , . . ., j , with processing times strictly less
than some value pk. Accordingly, denote such a set by

s (i, j , k = { j ’ 1 i G j ’ s j , p,, < pk 1,
and let

T(S(i, j , k) , t) = the total weighted tardiness for an optimal sequence
of the jobs in S(i, j , k) , starting at time t .

By the application of Theorem 3 and the principle of optimality, we have:

T(S(i , j ,k) , t)=min { T (S (i , k + 6 , k ‘) , t) + wk,max(0,Ck.(8)-dk.)
6

(3.1)
i- T (S (k ’ + 6 + l , j , k ’) , Ck,(6)}

where k’ is such that

p k , = max {pi, I j ’ E s (i , j , k) } ,

and

Sequencing jobs to minimize tardiness 335

c k ' (6) = + PJ',

where the summation is taken over all jobs j ' E S (i , k + 8, k ') .
The initial conditions for the equations (3.1) are

7x4, t) = 0

T({j} , t) = w, max (0, t + p, - d,) .

It is easy to establish an upper bound on the worst-case running time required to
compute an optimal sequence for the complete set of n jobs. There are no more
than O (n 3) subsets S (i , j , k) . (There are n o more than n values for each of the
indices, i , j , k. Moreover, several distinct choices of the indices may specify the same
subset of jobs.) There are surely no more than P = c p, np,,, possible values of t .
Hence there are no more than O (n 3 P) or O(n4P,, ,) equations (3.1) to be solved.
Each equation requires minimization over at most n alternatives and O (n) running
time. Therefore the overall running time is bounded by O (n 4 P) or O(n5p,, ,) .

At this point we have accomplished the primary objective of this paper, which is
to present an algorithm which is polynomial in n. The remaining sections are
devoted to a discussion of various computational refinements.

4. Refinements of the algorithm

There are several possible refinements of the basic algorithm that may serve to
reduce the running time significantly. However, none of these refinements is
sufficient to reduce the theoretical worst-case complexity; some may actually
worsen it.

Representation of subsets

It should be noted that S (i , j , k) may denote precisely the same subset of jobs as
S (i ' , j ' , k ') even though i # i ' , j # j ' , k # k ' . The notation used in (3.1) is employed
only for convenience in specifying subsets. Obviously, the computation should not
be allowed to be redundant.

State generation

Only a very small fraction of the possible subproblems S, t are of significance in a
typical calculation. Any practical scheme for implementing the recursion should
have two phases. In the first, subproblem generation phase, one starts with the
problem S = {l, 2, . . ., n } , t = 0 and successively breaks it down into only those
subproblems S, t for which equations (3.1) need to be solved. In the second,
recursion phase, one solves each of the subproblems generated in the first phase,
working in the order opposite to that in which they were generated.

336 E.L. Lawler

Restriction of 6

It is often not necessary for 6 to range over all possible integer values in (3.1).
The range of 6 can sometimes be considerably restricted by the technique
described in the next section, thereby reducing the number of subproblems that
need be generated and solved.

Shortcut solutions

There are some “shortcut” methods of solution for the sequencing problem.
Whenever one of these shortcut methods is applicable to a subproblem S , t
generated in the first phase of the algorithm, it is unnecessary to solve that problem
by recursion of the form (3.1) and no further subproblems need be generated from
it. A discussion of shortcut solution methods is given in Section 6.

Branch -and-bound

At least in the case of problems of moderate size, there appears to be relatively
little duplication of the subproblems produced in the subproblem generation phase
of the algorithm. In other words, the recursion tends to be carried out over a set of
subproblems related by a tree structure, or something close to it. It follows that
there may be some advantage to a branch-and-bound method, based on the
structure of equations (3.1). Such a branch-and-bound method might have a very
poor theoretical worst-case running time bound, depending on the nature of the
bounding calculation and other details of implementation. However, if a depth-first
exploration of the search tree is implemented, storage requirements could be very
drastically reduced.

It is apparent that the form of recursion (3.1) furnishes a point of departure for
the development of many variations of the basic computation.

5. Restriction of 6

The number of distinct values of 6 over which minimization must be carried out
in equation (3.1) can sometimes be reduced by appropriately invoking Theorems 1
and 2. If this is done in the state generation phase of the algorithm, there may be a
considerable reduction in the number of subproblems which must be solved.

Consider a subproblem S , t . Let k be such that

and assume that pk >pi, for all j E S - { k } . We also assume that the jobs are
numbered so that d , s dz c . . . 6 d,. The following algorithm determines distinct
values &, i = 1,2, . . . < n - k , over which it is sufficient to carry out minimization in
equation (3,l).

Sequencing jobs to minimize tardiness 337

(0) Set i = 1.
(1) Set d ; = t + cJ,,,pJ, where S ’ = { j 1 d, S d k ,] E S}.

Comment. If job k has due date dk, then by Theorem 2 there exists an optimal
sequence in which the completion time of job k is at least as large as d; .

(2) If d ; > dk set dk = d ; and return to Step 1.

Comment. By Theorem 1, there exists a sequence which is optimal with respect to
d ; which is optimal with respect to d,.

Let j be the largest index in S such that d, S d k . Set 8, = j - k.
Let S ” = { j I d, > d k , j E S}. If S” is empty, stop. Otherwise, let j ’ be such that

d,. = min {d,},
J E s”

and set dk = 4.. Set i = i + 1 and return to Step 1.

As an example of the application of the above procedure, consider the first test
problem given in Appendix A of [l]. All w, = 1. The p, and dJ values are as follows:

i 1 2 3 4 5 6 7 8

pJ 121 79 147 83 130 102 96 88

d, 260 266 269 336 337 400 683 719

Note,that k = 3. Equation (3.1) yields:

T({1,2,. . ., 8}, 0) = min

T(S(1,3,3), 0) + 78 + T(S(4,8,3), 347),

T(S(1,4,3), 0)+ 161 + T(S(5,8,3), 430),

T(S(l,5, 3), 0) + 291 + T(S(6,8,3), 560),

T(S(1,6,3),0)+ 393 + T(S(7,8,3), 662),

T(S(1,7,3), 0) + 489 + T(S(8,8,3), 758),

T(S(l,8, 3), 0) + 577 + T(4,846)

Applying the procedure above, we obtain 8, = 3, SZ = 5 and the simplified
equation :

T(S(1,6,3),0)+ 393 + T(S(7,8,3), 662,

T(S(1,8,3), 0) + 577 + T(4, 846)
T({1,2, . . ., 8}, 0) = min

6. Shortcut solutions

“Shortcut” solutions are sometimes provided by generalizations of two well-
known theorems for the unweighted tardiness problem [3].

338 E.L. Lawler

Theorem 4. Let the jobs be given arbitrary weights. Let rr be a sequence in which
jobs are ordered in nonincreasing order of the ratios witpi. If all jobs are tardy, then rr
is optimal.

Proof. Note that

c W , T = 2 W , c + c W, maX (0, dJ - c)- 2 WJdJ.

It is well-known [14] that rr minimizes
in the second summation is zero and that sum is also minimized.

w,/p, -ratio order is equivalent to shortest processing time order.

w,C,. If all jobs are tardy, then each term

Note that if jobs are agreeably weighted and processing times are distinct, then
0

Theorem 5. Let the jobs be given arbitrary weights. Let rr be a sequence for which

max { W I T }
I

is minimum, If at most one job is tardy, then rr is optimal.

Proof. Obvious.

Note that in the unweighted case, nondecreasing due date order minimizes
maximum tardiness. In the case of arbitrary weightings, a minmax optimal order
can be constructed by the O(n2) algorithm given in [8].

The application of these two theorems can be strengthened considerably by
applying them to an earlier or a later set of due dates induced by Theorems 1 and 2.

For a problem S, t let the jobs in S be numbered so that p l > p z > . . . > pn. New
(earlier) deadlines d ; for the application of Theorem 4 can be induced by the
following algorithm.

(0) Set k = n + 1.
(1) If k = 1, stop. Otherwise, set k = k - 1.

(3) Let s") = { j I j E S, d, 3 d ; , p, > pk}. Set ck = t + XJES-S(*)pJ.

Comment.
Theorem 2.

(4) If c k < d:, set d ; = ck and return to Step 3 . Otherwise, return to Step 1.

(2) Set d ; = dk.

S(') contains all those jobs which can be assumed to follow k by

New (later) due dates d can be induced by the following algorithm.
(0) Set k = 1.
(1) If k = n, stop. Otherwise, set k = k + 1.
(2) Set d : = d,.

(4) If c k > d ; , set d ; = c k and return to Step 3. Otherwise, return to Step 1.
(3) Let S(') = { j I j E S, d, c d k, p, < p k } . Set ck = t + pk + ~ , E s (~) P ~ .

Sequencing jobs to minimize tardiness 339

By Theorem 1, an optimal solution to the sequencing problem with respect to
induced due dates di , j = 1,2, . . ., n, is optimal with respect to the due dates dp
Hence Theorems 4 and 5 can be applied with respect to the induced due dates.

As an application of Theorems 4 and 5, let us solve equation (5.1). Consider first
the application of Theorem 5 to S(1,8,3), t = 0. If the jobs in S(1,8,3) are
sequenced in increasing d, -order, i.e. 1 ,2 ,4 ,5 ,6 , 7,8, then jobs 5 and 6 are tardy so
Theorem 5 does not apply. However, if induced due dates are computed, it is found
that d : = 515, with d ; = d,, for j # 5. When the jobs are sequenced in increasing
di-order, i.e. 1, 2, 4, 6, 5, 7, 8, no jobs are tardy with respect to di . By Theorem 1,
the sequence is optimal with respect to the original due dates and T(S(1,8,3), 0) =
178. Also by Theorem 5, T(S(1,6,3),0)= 178. And by Theorem 4,
T(S(7,8,3), 662) = 194. Hence (5.1) becomes:

178 + 393 + 194,
I78 + 577 + 0

T({1,2, . . ., 8}, 0) = min

= 755,

as indicated by Baker [l]. An optimal sequence is: 1, 2, 4, 6, 5, 7, 8, 3. Most of the
test problems on the same list can be resolved with similar simplicity.

It should be mentioned that even in the case that Theorems 4 and 5 do not yield
shortcut solutions, it may be possible to reduce the size of a subproblem with the
following observation.

Theorem 6. Let k be such that dL = max { d i I j E S } , where the di are induced
deadlines obtained as above. Let P be the sum of the processing times of jobs in S. If
P + t s d: , then

Proof. Cf. [2] . 0

7. Possibilities for a polynomial algorithm

As we have commented, the status of the agreeably weighted tardiness problem
is unclear. The proposed algorithm is only “pseudopolynomial”. However, no
problem reduction has been devised to show that the problem is NP-complete, and
one may still reasonably suppose that a polynomial algorithm does exist.

There are some possibilities that do not seem rewarding in searching for a
polynomial algorithm. For a given set S, T(S, t) is a piecewise linear function of t. If
T(S, t) were also convex, and all wj = 1, then T(S, t) could be characterized by at
most n + 1 linear segments, with successive slopes 0,1,2, . . .,n. The function T(S, t)

340 E.L. Lawler

could then be computed in polynomial time, using equation (3.1). Unfortunately,
T(S, t) is not convex, as can be shown by simple counterexamples.

If the values of S for which the minimum is obtained in (3.1) were monotonically
nondecreasing with t, then this would also suggest a polynomial bounded algorithm.
Unfortunately, there are simple counterexamples for this property, as well.

Appendix

The following proof of the unary NP-completeness of the weighted tardiness
problem was communicated to the author by M.R. Garey and D.S. Johnson. An
alternative proof has been developed by J.K. Lenstra. [12].

The so-called 3-partition problem was shown to be unary NP-complete in [4].
This problem is as follows. Given a set of 3n integers al, az , . . ., a,, between 1 and
B-1 such that 2 a, = nB, we wish to determine whether there is a partition of the
at’s into n groups of 3 , each summing exactly to B.

The corresponding scheduling problem:

“X”-jobs:

“A ”-jobs:

Processing times: p (X i) = L = (16B2)-+ 1,1 < i < n,

X,, 1 5 i < n.

Ai, 1 6 i C 3n.

n n + l
2

p(A,) = B + a,, 1 C i C 3n.

Weights: w(X,)= W = (L +48)(4B) - + 1,1 C i s n,

w(A,) = p(A.) = B + a,, 1 S i S 3n.

Due dates: d (X ,) = iL + (i - 1)4B, 1 i n,

d(A,) = 0 , l s i C 3n.

Question: Is there a schedule n- with total weighted tardiness T (T)

that the groups are (u ~ , - ~ ,
the jobs:

W - l?
Suppose the desired partition exists. We may assume without loss of generality

a3 j) , 1 < j < n. Consider the following ordering of

T = (Xi, A , , A2, A3, X2, Ad, Ah, XS,. . .,Xu

A3r-z ,A3, -1 ,A~l , . . . ,X11, A?n-~,A?n-i,A?n).

By assumption CP=-2p(A,j-,)= 4B for 1 s j s n. Thus X , will finish at time
iL + (i - 1)4B = d (X ,) , 1 G i < n, and so none of the X-jobs are tardy. On the
other hand, all the A jobs are tardy, with tardinesses equal to their completion

Sequencing jobs to minimize tardiness 341

times. For each j , 1 s j s n, the three jobs A3j-2, A3,-l, and AS, all finish by
j (L + 4B), and their total weight is 4B. Hence their collective weighted tardiness is
at most j (L + 4B)4B. Hence

"
T(7T) s c j(4B)(L + 4B) = W (4 B) (L + 4B) = w - 1,

, = 1

and 7~ is the desired schedule.
W - 1. Clearly no X-job can be

tardy, for even a tardiness of 1 would yield T (7 ~) s W. Now define W, to be the
total weight of the A-jobs which follow i X-jobs, with Wn+l = 0 by convention.
Then

Conversely, suppose that m is such that T (m)

Since all X-jobs meet their due date, we must have W, 2 (n - i + 1)4B, 1 s i s n.
Suppose some Wi 3 (n - i + 1)4B + 1. Then

-(4B)+ 1. C W, 2 1 + 2 (n - i + 1) 4 ~ = 2 , = I

This would imply that

T(m)2=L(4B)(n(n + 1))+16B 2 n (n + 1 = w,

a contradiction.
Thus W, = (n - i + 1)4B, 1 S i s n. From this we conclude that the set of A -jobs

between X, and X,,, in m has total weight 4B, 1 S i 6 n - 1, and similarly for the
set of A -jobs following X,. Since all A -jobs have B + 1 s w (A) S 2B - 1, each
such set must contain exactly 3 jobs. These n groups of 3 jobs correspond to the
desired partition. 0

Acknowledgement

The author wishes to acknowledge the helpful comments of Dr. Alexander
Rinnooy Kan.

References

[1] K.R. Baker, Introduction to Sequencing and Scheduling, (Wiley, New York, 1974).
[Z] S. Elmahgraby, The one-machine sequencing problem with delay costs, J. Industrial Eng. 19 (1974)

[3] H. Emmons, One-machine sequencing to minimize certain functions of job tardiness, Operations
187-1 99.

Res. 17 (1969) 701-715.

342 E. L. Lawler

[4] M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under resource

[5] M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, J. SOC.

[6] R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.
[7] E.L. Lawler, Sequencing problems with deferral costs, Management Sc. 11 (1964) 280-288.
[8] E.L. Lawler, Optimal sequencing of a single processor subject to precedence constraints,

[9] E.L. Lawler, Seauencing to minimize the weighted number of tardy jobs, to appear in Rev.

[lo] E.L. Lawler and J.M. Moore, A functional equation and its application to resource allocation and

[I l l J.M. Moore, An n job, one machine scheduling algorithm for minimizing the number of late jobs,

[12] J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems,

[13] A.H.G. Rinnooy Kan, B.J. Lageweg, J.K. Lenstra, Minimizing total costs in one-machine

[141 W.E. Smith, Various optimizers for single-stage production, Naval Res. Logistics Quarterly 3

(161 V. Srinivasan, A hybrid algorithm for the one-machine sequencing problem to minimize total

constraints, SIAM J. Comp. 4 (1975) 397-411.

Industr. Appl. Math. 10 (1962) 196-210.

Management Sc. 19 (1973) 544-546.

kransaise Automat. Informat. Recherche Optrationnelle, Suppl. to 10 (1976) 27-33.

sequencing problems, Management Sc. 16 (1969) 77-84.

Management Sci. l(1968) 102-109.

Ann. Discrete Math. 1 (1977) 343-362.

scheduling, Operations Res. 23 (1975) 908-927.

(1956) 59-66.

tardiness, Naval Res. Logistics Quarterly 18 (1971) 317-327.

Annals of Discrete Mathematics 1 (1977) 343-362
@ North-Holland Publishing Company

COMPLEXITY OF MACHINE SCHEDULING PROBLEMS

J.K. LENSTRA
Mathematisch Centrum, Amsterdam, The Netherlands

A.H.G. RINNOOY KAN
Erasmus University, Rotterdam, The Netherlands

P. BRUCKER
Uniuersitiit Oldenburg, G.F.R.

We survey and extend the results on the complexity of machine scheduling problems. After a
brief review of the central concept of NP-completeness we give a classification of scheduling
problems on single, different and identical machines and study the influence of various
parameters on their complexity. The problems for which a polynomial-bounded algorithm is
available are listed and NP-completeness is established for a large number of other machine
scheduling problems. We finally discuss some questions that remain unanswered.

1. Introduction

In this paper we study the complexity of machine scheduling problems. Section 2
contains a brief review of recent relevant developments in the theory of computa-
tional complexity, centering around the concept of NP-completeness. A classifica-
tion of machine scheduling problems is given in Section 3. In Section 4 we present
the results on the complexity of these problems: a large number of them turns out
to be NP-complete. Quite often a minor change in some parameter transforms an
NP-complete problem into one for which a polynomial-bounded algorithm is
available. Thus, we have obtained a reasonable insight into the location of the
borderline between “easy” and “hard” machine scheduling problems, although
some questions remain open. They are briefly discussed in Section 5.

2. Complexity theory

Recent developments in the theory of computational complexity as applied to
combinatorial problems have aroused the interest of many researchers. The main
credit for this must go to S.A. Cook [7] and R.M. Karp [25], who first explored the
relation between the classes 9 and N9 of (language recognition) problems
solvable by deterministic and non-deterministic Turing machines respectively, in a
number of steps bounded by a polynomial in the length of the input. With respect to

344 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

combinatorial optimization, we do not really require mathematically rigorous
definitions of these concepts; for our purposes we may safely identify 9 with the
class of problems for which a polynomial-bounded, good [8] or efficient algorithm
exists, whereas all problems in N.9 can be solved by polynomial-depth backtrack
sea rc h .

In this context, all problems are stated in terms of recognition problems which
require a yes/no answer. In order to deal with the complexity of a combinatorial
minimization problem, we transform it into the problem of determining the
existence of a solution with value at most equal to y , for some threshold y .

It is clear that 9 C N.9, and the question arises if this inclusion is a proper one or
if, on the contrary, 9 = N.9. Although this is still an open problem, the equality of
9’ and N.9 is considered to be very unlikely and most bets (e.g., in [28]) have been
going in the other direction. To examine the consequences of an affirmative answer
to the 9 = N.9 question, we introduce the following concepts.

Problem P’ is reducible to problem P (notation: P’ TX P) if for any instance of P’ an
instance of P can be constructed in polynomial-bounded time such that solving the
instance of P will solve the instance of P’ as well.

P‘ and P are equivalent if P‘ x P and P
P is NP-complete [28] if P E N.9 and P’ x P for every P’E N.9. Informally, the

reducibility of P’ to P implies that P’ can be considered as a special case of P; the
NP-completeness of P indicates that P is, in a sense, the most difficult problem in
NP.

In a remarkable paper [7], NP-completeness was established with respect to the
so-called Satisfiability problem. This problem can be formulated as follows.

P‘.

Given clauses C , , ..., Cu, each being a disjunction of literals from the set X =

{x,, . . ., xo .f,, . . ., f r } , is the conjunction of the clauses satisfiable, i.e., does there exist a
subset S C X such that S does not contain a complementary pair of literals (x,, X,), and
S n C, # 0 for j = 1, . . ., u ?

Cook proved this result by specifying a polynomial-bounded “master reduction”
which, given P E N.9, constructs for any instance of P an equivalent boolean
expression in conjunctive normal form. By means of this reduction, a polynomial-
bounded algorithm for the Satisfiability problem could be used to construct a
polynomial-bounded algorithm for any problem in N.9. It follows that

.9 = N.9 i f and only i f Satisfiability E 9.

The same argument applies if we replace Satisfiability by any NP-complete
problem. A large number of such problems has been identified by Karp [25; 261 and
others (e.g., [17]); Theorem 1 mentions some of them. Since they are all notorious
combinatorial problems for which typically no good algorithms have been found so
far, these results afford strong circumstantial evidence that .9 is a proper subset
of N P .

Complexity of machine scheduling problems 345

Theorem 1. The following problems are NP-complete:
(a) Clique. Given an undirected graph G = (V, E) and a n integer k , does G have

a clique (i.e., a complete subgraph) on k vertices?
(b) Linear arrangement. Given a n undirected graph G = (V, E) and an integer k ,

does there exist a one-to-one function n- : V-{l,. . ., I V I } such that & r , ,) E E I n(i) -
r r (j) l c k ?

(c) Directed hamiltonian circuit. Given a directed graph G = (V, A) , does G
have a hamiltonian circuit (i.e., a directed cycle passing through each vertex exactly
once)?

(d) Directed hamiltonian path. Given a directed graph G‘ = (V’, A’), does G’
have a hamiltonian path (i.e., a directed path passing through each vertex exactly
once)?

(e) Partition. Given positive in6egers a , , . . ., a,, does there exist a subset S C T =

(1, .. ., t } such that x , E s a , = C.,,,-sa,?
(f) Knapsack. Given positive integers a , , . . ., a,, b, does there exist a subset

S C T = (1,. . ., t } such that x , E s a k = b?
(g) 3-Partition. Given positive integers a , , . . ., a,,, b, does there exist a partition

(TI,. . . , T I) of T = (1,. . . ,3 t} such that I T, 1 = 3 and CIE7,al = b for j = 1 , . . ., t?

Proof. (a) See [7;25].
(b) See [17].
(c, e, f) See [25].
(d) NP-completeness of this problem is implied by two observations:

(A) Directed hamiltonian path E N.9;
(B) P O(Directed hamiltonian path for some NP-complete problem P

(A) is trivially true, and (B) is proved by the following reduction.

Given G = (V, A) , we choose v’ E V and construct G’ = (V’, A‘) with
Directed hamiltonian circuit Directed hamiltonian path.

V’ = v u {u”},

A’ = {(u, w) 1 (v , w) E A, w # v’} U {(v , v”) I (v , u’) E A}.

G has a hamiltonian circuit if and only if G’ has a hamiltonian path.
(g) See [12]. 0

Karp’s work has led to a large amount of research on the location of the
borderline separating the “easy” problems (in 9) from the “hard” (NP-complete)
ones. It turns out that a minor change in a problem parameter (notably-for some
as yet mystical reason -an increase from two to three) often transforms an easy
problem into a hard one. Not only does knowledge of the borderline lead to fresh
insights as to what characteristics of a problem determine its complexity, but there
are also important consequences with respect to the solution of these problems.
Establishing NP-completeness of a problem can be interpreted as a formal

346 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

justification to use enumerative methods such as branch-and-bound, since n o
substantially better method is likely to exist. Embarrassing incidents such as the
presentation in a standard text-book of an enumerative approach to the undirected
Chinese postman problem, for which a good algorithm had already been developed
in [9], will then occur less readily.

The class of machine scheduling problems seems an especially attractive object for
this type of research, since their structure is relatively simple and there exist
standard problem parameters that have demonstrated their usefulness in previous
research.

Before describing this class of problems, let us emphasize that membership of 9
versus NP-completeness only yields a very coarse measure of complexity. On one
hand, the question has been raised whether polynomial-bounded algorithms are
really good [2]. On the other hand, there are significant differences in complexity
within the class of NP-complete problems.

One possible refinement of the complexity measure may be introduced at this
stage. It is based on the way in which the problem data are encoded. Taking the
Knapsack and 3-Partition problems as examples and defining a * = max,,.{a,}, we
observe that the length of the input is O(t log a *) in the standard binary encoding,
and 0 (t a ,) if a unary encoding is allowed. 3-Partition has been proved NP-
complete even with respect to a unary encoding [12]. Knapsack is NP-complete
with respect to a binary encoding [25], but solution by dynamic programming
requires 0 (t b) steps and thus yields a polynomial-bounded algorithm with respect
to a unary encoding; similar situations exist for several machine scheduling
problems. Such “pseudopolynomial” algorithms [35] need not necessarily be
“good” in the practical sense of the word, but it may pay none the less to distinguish
between complexity results with respect to unary and binary encodings (cf. [16]).
Unary NP-completeness or binary membership of 9 would then be the strongest
possible result, and it is quite feasible for a problem to be binary NP-complete and
to allow a unary polynomial-bounded solution. The results in this paper hold with
respect to the standard binary encoding; some consequences of using a unary
encoding will be pointed out as well.

3. Classification

Machine scheduling problems can be verbally formulated as follows 16; 451:
A job J, (i = 1,. . ., n) consists of a sequence of operations, each of which

corresponds to the uninterrupted processing of J, on some machine Mk (k =

1,. . ., m) during a given period of time. Each machine can handle at most one job at
a time. What is according to some overall criterion the optimal processing order o n
each machine?

The following data can be specified for each J , :
a number of operations n, ;

Complexity of machine scheduling problems 341

a machine order v,, i.e. an ordered n,-tuple of machines;
a processing time plk of its k th operation, k = 1,. . ., n, (if n, = 1 for all J,, we shall

a weight w , ;
a release date or ready time r,, i.e. its earliest possible starting time (unless stated

a due date or deadline d , ;
a cost function f : N + R , indicating the costs incurred as a nondecreasing

We assume that all data (except v, and f i) are nonnegative integers. Given a

the starting time S, ;
the completion time C, ;
the lateness L, = C, - d, ;
the tardiness T, = max(0, C, - d , } ;
U, = i f C, s d, then 0 else 1.

usually write p, instead of p , ,) ;

otherwise, we assume that r, = 0 for all J z) ;

function of the completion time of J,.

processing order on each Mk, we can compute for each J,:

Machine scheduling problems are traditionally classified by means of four param-
eters n, m, 1, K. The first two parameters are integer variables, denoting the
numbers of jobs and machines respectively; the cases in which m is constant and
equal to 1, 2, or 3 will be studied separately. If m > 1, the third parameter takes on
one of the following values:

1 = F in a pow-shop where n, = m and u, = (Ml,. . ., M,) for each J , ;
1 = P in a permutation pow-shop, i.e. a flow-shop where passing is not permitted

1 = G in a (general) job-shop where n, and v, may vary per job;
1 = I in a parallel-shop where each job has to be processed on just one of m

identical machines, i.e. n, = 1 for all J, and the v, are not defined.
Extensions to the more general situation where several groups of parallel (possibly
non-identical) machines are available will not be considered.

The fourth parameter indicates the optimality criterion. We will only deal with
regular criteria, i.e., monotone functions K of the completion times C, , . . ., C, such
that

so that each machine has to process the jobs in the same order;

C, s C : for all i =+ K (Cl , . . ., Cn)< K (C i , . . ., CL)

These functions are usually of one of the following types:
K = fma. = max, {f(C)l;
K = xf = C : = , f (c) .

The following specific criteria have frequently been chosen to be minimized:
K = C,,, = max, {C,};

K = L,,, = max, { L , } ;
K = x W , c , = E ~ = I W , c , ;

K = x W , x = C:=l W , x ;
K = c W , u , = zY-1 W , u , .

348 J.K. Lenstru, A.H.G. Rinnooy Kun, P. Brucker

We refer to [45] for relations between these and other objective functions.
Some relevant problem variations are characterized by the presence of one or

more elements from a parameter set A, such as
prec (precedence constraints between the jobs, where “J, precedes J,” (notation:

J, < J,) implies C, s S ,) ;
free (precedence constraints between the jobs such that the associated prece-

dence graph can be given as a brunching, i.e. a set of directed trees with either
indegree or outdegree at most one for all vertices);

r, 3 0 (possibly non-equal release dates for the jobs);
C, < d, (all jobs have to meet their deadlines; in this case we assume that

no wait (no waiting time for the jobs between their starting and completion

n, n , (a constant upper bound on the number of operations per job);
p & p , (a constant upper bound on the processing times);
p & = 1 (unit processing times);
w, = 1 (equality of the weights; we indicate this case also by writing

In view of the above discussion, we can use the notation n I m 11, A 1 K to indicate
specific machine scheduling problems.

K E {Cm, , , WLCL)) ;

times; hence, C, = S, + xkp,k for each J ,) ;

c c,, c T,, x Ut).

4. Complexity of machine scheduling problems

All machine scheduling problems of the type defined in Section 3 can be solved
by polynomial-depth backtrack search and thus are members of N.9. The results on
their complexity are summarized in Table 1.

The problems which are marked by an asterisk (*) are solvable in polynomial-
bounded time. In Table 2 we provide for most of these problems references where
the algorithm in question can be found; we give also the order of the number of
steps in the currently best implementations. The problems marked by a note of
exclamation (!) are NP-complete. The reductions to these problems are listed in
Table 3. Question-marks (?) indicate open problems. We will return to them in
Section 5 to motivate our typographical suggestion that these problems are likely to
be NP-complete.

Table 1 contains the “hardest” problems that are known to be in 9’ and the
“easiest” ones that have been proved to be NP-complete. In this respect, Table 1
indicates to the best of our knowledge the location of the borderline between easy
and hard machine scheduling problems.

Before proving the theorems mentioned in Table 3 , we will give a simple example
of the interaction between tables and theorems by examining the status of the
general job-shop problem, indicated by n I m I G I C,,,.

Complexity of machine scheduling problems 349

Table 1. Complexity of machine scheduling problems

n jobs 1 machine 2 machines m machines

Lax * prec, r, 3 0 * F
* F, no waif
! F, tree
! F, r , 2 0

! m = 3 : F
? m = 3 : F, no wait
! F, no wait

* G, n, s 2
! G, n, s 3

* n = 2 : G
! m = 3 : G , n , S 2

* I, tree, pz = 1
? m = 3 : I, prec, p , = 1
! I , prec, p, = 1

! I
* 1, prec, r, 2 0, C,
! I , prec, p, s 2

d, , p , = 1

c w , c , * tree ! F, w, = 1 ! F, no wait, w, = 1
! prec, p, = 1
! prec, w, = 1
! r, 2 0 , w, = 1 ! I
* C, s d,, w, = 1
! C , s d ,

? F, no wait, w, = 1

* I, r, 3 0 , p, = 1
* I, w, = 1
! I, prec, p , = 1 , w, = 1

* I, prec, p, = 1, w, = 1
! I , prec, p, s 2 , w, = 1

Lax * prec ! F
* prec, r, 2 0, p, = 1
! r , Z O ! I

c W , T . * r, 2 0 , p, = 1 ! F, w, = 1
'! w, = 1
! ! I, w, = 1
! prec, p, = 1 , w. = 1
! r, 3 0 , w, = 1

c w , u , * r, 3 0 , pi = 1 ! F, w, = 1
* w , = 1
! ! I , w, = 1
! prec, p, = 1 , w, = 1
! r, 3 0 , w, = 1

*: problem in 8 ; see Table 2.
?: open problem; see Section 5.
! : NP-complete problem; see Table 3.

350 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

Table 2. References to polynomial-bounded algorithms

Problem

~~ ~

References Order

a An O(n log n) algorithm for the more general case of series parallel precedence

b A n O (n log n) algorithm for the more general case of agreeable weights (i.e.

O(n3) and O(nZ) algorithms for the n 12 1 I, prec, p , = 1 I C,. problem are given

Polynomial-bounded algorithms for the more general case of parallel non-

constraints is given in [36].

p. <p, + wi 2 w,) is given in [34].

in [lo] and [5] respectively; see also [13].

identical machines are given in [21; 41.

In Table 1 , we see that the n 12 I G, n, G 2 1 C,,, problem is a member of 9 and
that two minor extensions of this problem, n 12 1 G, n, c 3 I C,,, and n 13 1 G,
n, G 2 1 C,,,,,, are NP-complete. By Theorem 2(c, h), these problems are special cases
of the general job-shop problem, which is thus shown to be NP-complete by
Theorem 2(b). Table 2 refers to an O(n log n) algorithm [23] for the n 121 G,
n, S 2 1 C,,, problem. Table 3 tells us that reductions of Knapsack to both
NP-complete problems are presented in Theorem 4(a, b); the NP-completeness of
Knapsack has been mentioned in Theorem l(f).

Theorem 2 gives some elementary results on reducibility among machine
scheduling problems. It can be used to establish either membership of 9 or
NP-completeness for problems that are, roughly speaking, either not harder than
the polynomially solvable ones or not easier than the NP-complete ones in Table 1.

Theorem 2. (a) If n ’ ~ m ’ ~ l ’ , A ’ (K ’ ~ n (m ~ l , A (~ and n l m l l , A 1 ~ 6 Z . 9 , then
n ’ (m‘l 1‘, A ’ / K ’ E 9.

Complexity of machine scheduling problems 351

Table 3. Reductions to NP-complete machine scheduling problems

Reduction References

[36; 38; 401
[36; 38; 401
h.L, Theorem 5
h.l., Theorem 4(j)
h.L, Theorem 4(g)
h.L, Theorem 4(i)
[38; 401
h.l., Theorem 2(j)
[25]; h.l., Theorem 4(h)
[13; 38; 401
h.L, Theorem 2(j)
h.l., Theorem 4(f)
h.L, Theorem 4(d)
h.l., Theorem 4(a)
h.L, Theorem 3(a); cf. [4]
[40]; cf. [49]

h.L, Theorem 3(b); cf. [4]
h.l., Theorem 2(1); cf. [40]
h.L, Theorem 4(e)
h.l., Theorem 2(i)
h.l., Theorem 20‘)
h.l., Theorem 2(j)
h.L, Theorem 26)
h.l., Theorem 2(j)
h.l., Theorem 4(c)
h.l., Theorem 6(a)
h.L, Theorem 4(b)
[40]; cf. [49]
h.l., Theorem 6(b)
h.L, Theorem 2(1); cf. [40]

[I61

352 J.K. Lensfra, A.H.G. Rinnooy Kan, P. Brucker

Proof. Let P’ and P denote the problems on the left-hand side and right-hand side
respectively.

(a, b) Clear from the definition of reducibility.
(c) Trivial.
(d, e) P’ has an optimal solution with the same processing order on each machine

(f, g, h) In each case P’ obviously is a special case of P.
(i) Given any instance of P’ and a threshold value y’, we construct a correspond-

ing instance of P by defining d, = y ’ (i = 1,. . ., n) . P’ has a solution with value s y ’
if and only if P has a solution with value G O .

(j) Given any instance of P’ with due dates d : (i = 1,. . ., n) and a threshold value
y’, we construct a corresponding instance of P by defining d, = d : + y ’ (i = 1,. . ., n) .
P’ has a solution with value G y ’ if and only if P has a solution with value G 0.

[6; 451.

(k) Take d, = 0 (i = 1,. . ., n) in P.
(1) Given any instance of P’ and a y ’, 0 s y ’s n ’ p *, we construct a corresponding

instance of P by defining

n” = (n’ - 1) y’,
n = n’+ n”,
y = ny’+tn”(n”+ I),

and adding n” jobs J , + , (j = 1,. . ., n”) to P’ with

p n +,,I = 1,

J, <J,,+, (i = 1 ,..., n ’ + j - 1).

Now P‘ has a solution with value G y ‘ if and only if P has a solution with value S y :

c,,, s y ‘ =+ X C, s n‘y‘+ Xf=l(yr + j) = y ;

C,,,>y‘* c c , > y ‘ + c f : , (y ‘ + l +]) = y . 0

Remark. The proof of Theorem 2(c) involves processing times equal to 0, implying
that the operations in question require an infinitesimally small amount of time.
Whenever these reductions are applied, the processing times can be transformed
into strictly positive integers by sufficiently (but polynomially) inflating the problem
data. Examples of such constructions can be found in the proofs of Theorem
4(c, d, e, f) .

In Theorems 3 to 6 we present a large number of reductions of the form
P 0~ n I rn 1 I, A 1 K by specifying n I m 1 I, A I K and some y such that P has a solution
if and only if n 1 rn 11, A 1 K has a solution with value K < y. This equivalence is
proved for some principal reductions; in other cases, it is trivial or clear from the
analogy to a reduction given previously. The NP-completeness of n I m I 1, A I K then
follows from the NP-completeness of P as established in Theorem 1.

Complexity of machine scheduling problems 353

First, we briefly deal with the problems on identical machines. Theorem 3
presents two reductions which are simplified versions of the reductions given in [4].

Theorem 3. Partition is reducible to the following problems :
(a) n 12 I 11 C,,,;
(b) n 12 I I I wiCi.

Proof. Define A = EIETa, .
(a) Partition a n 12 1 I1 C,,,:

n = t ;
p, = a, (i E T) ;
y =!A.

(b) Partition

n = t ;
p, = w, = a, (i E T) ;

n 12 1 I I 2 w,C,:

y = 2 a , a , - t A Z
I S l S j S ,

Suppose that {J , I i E S} is assigned to MI and {J , 1 i E T - S } to M z ; let c =

ElESu, -;A. Since p8 = w, for all i, the value of c w,C, is not influenced by the
ordering of the jobs on the machines and only depends on the choice of S [6]:

2 W , c , = K (S) .

It is easily seen (cf. Fig. 1) that

and it follows that Partition has a solution if and only if this n 12 I I 1 c w,C, problem
has a solution with value < y . 0

S T - S S
L E I MI 7 - 1

T-S

M2 - F”2 I

value K (T) value K (S)
I

Fig. 1

Most of our results on different machines involve the Knapsack problem, as
demonstrated by Theorem 4.

354 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

Proof. Define A = C,ETa, . W e may assume that O < b < A.
(a) Knapsack 0~ n 12 I G, n, S 3 I C,,,:

n = t + l ;
v, = (M1), ptl = a, (i E T) ;
vn = (Mz, M2)j p n 1 = b, p n z = 1 , p n ? = A - b ;
y = A + l .

If Knapsack has a solution, then there exists a schedule with value C,,, = y, as
illustrated in Fig. 2. If Knapsack has n o solution, then x I E S a , - b = c # 0 for each
S C T, and we have for a processing order ({X 1 i E S } , J,, {J , I i E T - S }) on MI
that

c > O =3 C m a x a C p t l + p n 2 + p n 3 = A + c + l > y ;
IES

c < O =3 C m a x 2 p n l + p , , 2 + C p , l = A - c + l > y .
r E T - S

It follows that Knapsack has a solution if and only if this n (2 1 G, n, s 3 1 C,,,
problem has a solution with value s y .

S n T-S

t i 1
b b t l A t 1

Complexity of machine scheduling problems 355

If Knapsack has a solution, then there exists a schedule with value CmaX = y, as
illustrated in Fig. 3. If Knapsack has no solution, then CiEsu, - b = c # 0 for each
S C T, and we have for a processing order ({X I i E S } , { J 1 i E T - S}) on M ,
that

C > 0 a C,,, 3 2 p i , + pn- l , l + pn-l,z = 2A + c > y,
i E S

which completes the equivalence proof.

S n- 1 T-S-
n n- 1

'$ ----

M2
.. ..

S n T-S
------T

I I
t

2A
t

A t b
1 t

0 b 2 b

Fig. 3

(c) Knapsack 0: n 13 I F I C,,,,,:

n = t + l ;
pi1 = 1, pi2 = tui, pin = 1 (i E T) ;
p n l = tb, pa2 = 1, pm3 = t (A - b) ;
y = t (A + 1)+ 1.

If Knapsack has a solution, then there exists a schedule with value CmaX = y, as
illustrated in Fig. 4. If Knapsack has no solution, then xiEs a, - b = c # 0 for each
S C T, and we have for a processing order ({J 1 i E S } , J,, { X I i E T - S}) that

S n T-S

S n T-S
M1 -
M2 ' I I I

S n T-S
I

M3 f f f f t t
0 I S 1 t b + l S I t b t l S I + l t A + I S I + l t (A + 1) + 1

Fig. 4

356 J .K . Lenstra, A.H.G. Rinnooy Kan, P. Brucker

(d) Knapsack c~ n 12 I F, r, 3 0 1 C,,,,,:

n = t + l ;
r, = 0, = fa,, p , z = 1 (i E T) ;
r,, = tb, pnl = 1, p n 2 = t (A - b) ;
y = t (A + 1).

Cf. reduction 4(c).
(e) Knapsack

n = t + l ;
pti = 1 , pzz= ta,, d, = t (A + 1) (i E T) ;
pnl = tb, pn2 = 1, d, = t (b + 1);
y = O .

n 12 I F I L,,,:

Cf. reduction 4(c).

n = t + 2 ;

(f) Knapsack 0~ n 12 1 F, tree I C,,,,,:

p,i = ta,, pgz = 1 (i E T) ;
p.-ii=1, p n - i z = t b ;
pni = 1 , pnz = t (A - b) ;
J n - i < J , ;
y = t (A + 1)+ 1.

We have for a processing order ({ J , 1 i E R } , Jn-l, {J, I i E S } , J,, { J , I i E

T - S - R }) on MI that

R # 0 C,,, 3 t + p.-i i + ~ " - 1 . 2 + pni + p.2 = t (A + 1) + 2 > y .

The remainder of the equivalence proof is analogous to that of reduction 4(c).
(8) Knapsack a n I 1 1 r, 3 0 1 L,,,,;

n = t + l ;
r, = 0, p , = a,, d, = A + 1
r,, = b, p,, = 1, d, = b + 1;
y = O .

Cf. reduction 4(a) and Fig. 5.

i E T) ;

I S n T - S
i 1
T f
b b + l

t
At1

Fig. 5

(h) Knapsack zx n 1 1 (1 C w,Uz :

n = t ;

p , = w, = a,, d, = b (i E T) ;
y = A - b .

Complexity of machine scheduling problems 357

Cf. [25] and Fig. 6.

S T-S
1 1
1 1

' 0 b A i
Fig. 6

(i) Knapsack 0~ n I 111 2 w,T, :

n = t + l ;
p , = w, = a,, d, = 0 (i E T) ;
p . = 1, W, = 2, d, = b + 1;

Cf. Fig. 5. We have for a processing order ({J , I i E S } , J,,, {J , I i E T - S }) that
CIESa, - b = L,. Since p , = w, and d, = 0 for all i E T, the value of c,,,w,T, is not
influenced by the ordering of S and T - S (cf. the proof of Theorem 3(b)), and we
have

2 w,T = a,C, + 2T,
I E T

= C a,a, + C ai + 2max{0, L,}
l L i E , < t i E T - S

= y + IL, 13 y .

The equivalence follows immediately.
(j) Knapsack 0~ n 11 I C, s d, I w,C, :

n = t + l ;
p, = w, = a,, d, = A + 1 (i E T) ;
p,, = 1, w, = 0, d,, = b + 1;

Y = c a,al + A - b.
ISiSjS,

Cf. reduction 4(i) and Fig. 5.
This completes the proof of Theorem 4.

Theorem 5 . 3-Partition is reducibfe to n I 1 I r, 2 0 I C,.

Proof. A reduction 3-Partition 0~ n 11 1 r, 2 0 12 C, can be obtained by adapting
(a) the transformation of Knapsack to n I 11 r,, 2 0 1 2 Ci, presented in [45];
(b) the reduction 3-Partition 0~ n 12 I F I

Both procedures can be carried out in a straightforward way and lead to essentially
the same construction. 0

Ci, presented in [16].

358 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

The NP-completeness proofs for the problems with a no wait assumption are based
on the well-known relation between these problems and the travelling salesman
problem (TSP) of finding a minimum weight hamiltonian circuit in the complete
directed graph on the vertex set V with weights on the arcs.

Given an n I m I F, no wait I K problem, we define cij to be the minimum length of
the time interval between Si and Sj if Ji is scheduled directly after Ji. If we define

I

p h k = p h l i
1=1

it is easily proved [43; 44; 50; 391 that

Finding a schedule that minimizes C,,, is now equivalent to solving the TSP with
V = (0,. . ., n } and weights Cij defined by (2) and by Coh = 0, Cho = P h m for h # 0.

Theorem 6. Directed hamiltonian path is reducible to the following problems :
(a) n 1 m 1 F, no wait I C,,,,,;
(b) n I m 1 F, no wait 12 C,.

Proof.

we define
(a) Directed hamiltonian path a n I m I F, no wait 1 CmaX. Given G’ = (V’, A’),

n = 1 V’J,
m = n(n - l) + 2 .

All jobs have the same machine order (M I , M,, . . ., M,,,-,, M,,,). To each pair of jobs
(A, 4) (i, j = 1 , . . ., n, i# j) there corresponds one machine M k = M,ci,j)
(k = 2 , . . ., m - I) , such that for n o Jh some M,(j.h) directly follows an k f , (h , j) . Such
an ordering of the pairs (i , j) can easily be constructed. Due to this property of the
ordering, partial sums of the processing times can be defined unambiguously by

k p + A if k = ~ (h , j) and (h , j) E A’,
k p + A + l if k = K (h , j) a n d (h , j) E A ” ,

if k + 1 = ~ (i , h) and (i, h) € A’,
k p - A - 1 if k + 1 = K (i, h) and (i , h) !5! A’,

otherwise,

for k = 1,. . ., m, h = 1 , . . . , I t , where

A 3 1 ,
p 2 2 A +3 .

The processing times are given by (cf. (1))

Complexity of machine scheduling problems 359

Through the choice of p, these processing times are all strictly positive integers.

immediate that P,k - c , k _ l is maximal for k = ~ (i , j) . Hence,
We can now compute the c,, as defined by (2) . Through the choice of A, it is

if (i , j) € A ’ ,
CXJ = {L 1:; + 2 if (i , j) g A ’ .

Since P,, = m p for all J,, it now follows that G has a hamiltonian path if and only if
this n I m I F, no wait I C,,, problems has a solution with value

C,,, s (n - l)(p + 2A) + mp.

(b) Directed hamiltonian path = n I m I F, no wait I c Ci.
G‘ has a hamiltonian path if and only if the n I m IF, no wait 1 c Ci problem,
constructed as in (a), has a solution with value

0 Ci S 4 n (n - 1)(p + 2 A) + nmp.

Let us finally point out some consequences of the use of a unary encoding with
respect to the binary NP-complete problems, appearing in Theorems 3 to 6.

w,C, problems, dealt with in Theorem 3, can be
solved in unary polynomial-bounded time by straightforward dynamic program-
ming techniques.

A similar situation exists for the n I 1)) c w,U, problem from Theorem 4(h), which
can be solved by an O (n C p ,) algorithm [37]. For most other problems discussed in
Theorem 4, however, one can easily prove unary NP-completeness by converting
the Knapsack reduction to a 3-Partition reduction. The following adaptation of
reduction 4(i) might serve as a typical example (cf. the slightly different construction
given in [35]).

3-partition

The n 12 I I I Cmax and n 12 1 I I

n 1 111 C w , ~ , :

n = 4t - 1;
p, = w, = a,, d, = 0 (i E T) ;
p, = 1, w, = 2, d, = (i - 3 t) (b + 1) (i = 3t + 1 , . . .,4t - 1);

y = 2 a,aj +4t(t - 1)b.
I S i S J S 3 f

Furthermore, reductions of 3-Partition to n 12 I G I CmaX and n I 3 I F 1 C,,, can be
found in [16].

With respect to Theorem 5, the situation is different. In the reductions of
3-Partition to n 1 1 I r, 3 0 1 c C, and n 12 I F I c C,, the resulting numbers of jobs
are polynomials in both t and b. The (unary) NP-completeness proofs therefore
depend essentially on the unary NP-completeness of 3-Partition and n o truly
polynomial-bounded transformation of Knapsack to these problems is known.

360 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker

The reductions presented in Theorem 6 clearly prove unary NP-completeness for
both no wait problems.

5. Concluding remaks

The results presented in Section 4 offer a reasonable insight into the location of
the borderline between “easy” and “hard” machine scheduling problems. Compu-
tational experience with many problems proved to be NP-complete confirms the
impression that a polynomial-bounded algorithm for one and thus for all of them is
highly unlikely to exist. As indicated previously, NP-completeness thus functions as
a formal justification to use enumerative methods of solution such as branch-and-
bound.

Most classical machine scheduling problems have now been shown to be
efficiently solvable or NP-complete. Some notable exceptions are indicated by
question-marks in Table 1. These open problem are briefly discussed below.

The most notorious one is the n I 1)) x T, problem. Extensive investigations have
failed to uncover either a polynomial-bounded algorithm or a reduction proving its
NP-completeness. The existence of an O(n42pp ,) algorithm [35] implies that the
problem is definitely not unary NP-complete. However, we conjecture that it is
binary NP-complete, which would indicate a major difference between the x T,
and 2 U, problems, as demonstrated by Table 1.

The complexity of the n 13 I F, no wait 1 C,,, and n 12 1 F, no wait I x C, problems
is not clear; it is quite possible that both problems are in 9’. To stimulate research in
this direction, we will award an authentic clog to the first scientist who finds a
polynomial-bounded algorithm for any one of these problems.

The question of the complexity of the n 13 1 I, prec, p , = 1 I C,,, problem has been
raised already in [49].

Finally, let us stress again that the complexity measure provided by the NP-
completeness concept does not capture certain intuitive variations in complexity
within the class of NP-complete problems. Note, for example, that an n 11 I r, z=
01 L,,, algorithm has figured successfully in a lower bound computation for the
n I rn I G 1 C,,, problem [3; 311, although both problems are NP-complete and thus
equivalent up to a polynomial-bounded transformation. One possible refinement of
the complexity measure by means of differentiation between unary and binary
encodings has already been discussed. Another indication of a problem’s complex-
ity may be based on the analysis of approximation algorithms [15; 271. For relatively
simple NP-complete problems, there often exist heuristics whose performance is
arbitrarily close to optimal; on the other hand, there are situations in which even
the problem of finding a feasible solution within any fixed percentage from the
optimum has been proved NP-complete. Altogether, the development of a measure
that allows further distinction within the class of NP-complete problems remains a
major research challenge.

Complexity of machine scheduling problems 361

Acknowledgements

We gratefully acknowledge the valuable cooperation with B.J. Lageweg,
E.L. Lawler and H.W. Lenstra, Jr., and the useful comments by the referee and
D .S. Johnson.

References

[l] D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25 (1973) 403-423.
[2] J.M. Anthonisse and P. van Emde Boas, Are polynomial algorithms really good? Report BW 40,

Mathematisch Centrum, Amsterdam, 1974.
[3] P. Bratley, M. Florian and P. Robillard, On sequencing with earliest starts and due dates with

application to computing bounds for the (n /m/G/F, . .) problem, Naval Res. Logist. Quart. 20

[4] J. Bruno, E.G. Coffman, Jr. and R. Sethi, Scheduling independent tasks to reduce mean finishing

[5] E.G. Coffman, Jr. and R.L. Graham, Optimal scheduling for two-processor systems, Acta Informat.

[6] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading,

[7] S.A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Annual A C M Symp. Theory

[8] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449-467.
[9] J. Edmonds, The Chinese postman’s problem, Operations Res. 13 Suppl. 1 (1965) B73.

(1973) 57-67.

time, Comm. A C M 17 (1974) 382-387.

1 (1972) 200-213.

MA, 1967).

Cornput. (1971) 151-158.

[lo] M. Fujii, T. Kasami and K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J.

[Il l M.R. Garey, Private communication, 1975.
[121 M.R. Garey and D.S. Johnson, Complexity results for multiprocessor scheduling under resource

[13] M.R. Garey and D.S. Johnson, Scheduling tasks with nonuniform deadlines on two processors, J.

[14] M.R. Garey and D.S. Johnson, Two-processor scheduling with start-times and deadlines, to appear.
[15] M.R. Garey and D.S. Johnson, Approximation algorithms for combinatorial problems: an

annotated bibliography, in: J.F. Traub, ed., Algorithms and Complexity : New Directions and Recent
Results. (Academic Press, New York, 1976) 41-52.

[16] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling,
Math. Operations Res. 1 (1976) 117-129.

[17] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems,
Theorer. Comput. Sci. 1 (1976) 237-267.

[18] P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: a solvable case of the
traveling salesman problem, Operations Res. 12 (1964) 655-679.

[I91 W.W. Hardgrave and G.L. Nemhauser, A geometric model and a graphical algorithm for a
sequencing problem, Operarions Res. 11 (1963) 889-900.

[20] W.A. Horn, Single-machine job sequencing with treelike precedence ordering and linear delay
penalties, SIAM J. Appl. Math. 23 (1972) 189-202.

[21] W.A. Horn, Minimizing average flow time with parallel machines, Operations Res. 21 (1973)
846847.

[22] T.C. Hu, Parallel sequencing and assembly line problems, Operations Res. 9 (1961) 841-848.
[23] J.R. Jackson, An extension of Johnson’s results on job lot scheduling, Naval Res. Logist. Quart. 3

[24] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval

Appl. Marh. 17 (1969) 784-789; Erratum, 20 (1971) 141.

constraints, SIAM J. Cornput.. 4 (1975) 397-411.

Assoc. Comput. Mach. 23 (1976) 461-467.

(1956) 201-203.

Res. Logist. Quart. 1 (1954) 61-68.

362 J.K. Lenstra, A .H.G. Rinnooy Kan, P. Brucker

[25] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds.,

[26] R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.
[27] R.M. Karp, The fast approximate solution of hard combinatorial problems,Proc. 6th Southeastern

[28] D.E. Knuth, A terminological proposal, SIGACT News 6.1 (1974) 12-18.
[29] B.J. Lageweg and E.L. Lawler, Private communication, 1975.
[30] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Minimizing maximum lateness on one

machine : computational experience and some applications, Statistica Neerlandica 30 (1976) 25-41.
[31] B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, Job-shop scheduling by implicit enumera-

tion, Management Sci., to appear.
[32] E.L. Lawler, On scheduling problems with deferral costs, Mangement Sci. 11 (1964) 280-288.
[33] E.L. Lawler, Optimal sequencing of a single machine subject to precedence constraints, Manage-

[34] E.L. Lawler, Sequencing to minimize the weighted number of tardy jobs, Rev. Fran~aise Automat.

[35] E.L. Lawler, A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness,

[36) E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to precedence

[37] E.L. Lawler and J.M. Moore, A functional equation and its application to resource allocation and

[38] J.K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tract 69 (Mathematisch

[39] J.K. Lenstra and A.H.G. Rinnooy Kan, Some simple applications of the travelling salesman

[40] J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedence constraints,

(411 J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,

[42] H. Miiller-Merbach, Optimale Reihenfolgen (Springer, Berlin, 1970).
[43] J. Piehler, Ein Beitrag zum Reihenfolgeproblem, Unrernehmensforschung 4 (1960) 138-142.
[44] S.S. Reddi and C.V. Ramamoorthy, On the flow-shop sequencing problem with no wait in process,

[45] A.H.G. Rinnooy Kan, Machine Scheduling Problems : Classification, Complexity and Computations

[46] J.B. Sidney, Decomposition algorithms for single-machine sequencing with precedence relations

[47] W.E. Smith, various optimizers for single-stage production, Naval Res. Logist. Quart. 3 (1956)

[48] W. Szwarc, Solution of the Akers-Friedman scheduling problem, Operations Res. 8 (1960) 782-788.
[49] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10 (1975) 384-393.
[SO] D.A. Wismer, Solution of the flowshop-scheduling problem with no intermediate queues,

Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.

Conf. Combinatorics, Graph Theory, and Computing (1976) 15-31.

ment Sci. 19 (1973) 544-546.

Informat. Recherche Opirationnelle 10.5 Suppl. (1976) 27-33.

Ann. Discrete Math. 1 (1977) 331-342.

constraints, Ann. Discrete Mafh., to appear.

sequencing problems, Management Sci. 16 (1969) 77-84.

Centrum, Amsterdam, 1977).

problem, Operational Res. Quart. 26 (1975) 717-733.

Operations Res., to appear.

Management Sci. 15 (1968) 102-109.

Operational Res. Quart. 23 (1972) 323-331.

(Nijhoff, The Hague, 1976).

and deferral costs, Operations Res. 23 (1975) 283-298.

59-66.

Operations Res. 20 (1972) 689-697.

Annals of Discrete Mathematics 1 (1977) 363-374
@ North-Holland Publishing Company

CERTAIN DUALITY PRINCIPLES IN
INTEGER PROGRAMMING

L. LOVASZ
Bolyai Institute, J6zsef Attila University, Szeged, Hungary

This paper surveys some results of the following type: “If a linear program and some derived
programs have integral solutions, so does its dual.” Several well-known minimax theorems in
combinatorics can be derived from such general principles. Similar principles can be proved if
integrality is replaced by a condition of the least common denominator of the entries of a
solution. An analogy between Tutte’s 1-factor-theorem and the Lucchesi-Younger Theorem on
disjoint directed cuts is pointed out.

Introduction

The Duality Theorem of linear programming is an extremely useful tool in
handling both practical and theoretical problems; here we shall focus on the latter.
Whenever a problem can be formulated as a linear program, the Duality Theorem
provides us with a re-formulation which often requires a mere computation to
solve; and in all cases it gives a new insight into the problem. Those problems
arising from combinatorics have in most cases, the additional constraint that the
variables are restricted to integers. Many - and often the deepest - results in
combinatorics assert that for certain classes of integer programs the Duality
Theorem remains valid. These facts tempt one to try to develop general methods in
integer programming which would enable us to handle different minimax results in
combinatorics together. The Hoffman-Kruskal Theorem on unimodular matrices,
Edmonds’ theory of matchings, Berge’s theory of balanced hypergraphs and
Fulkerson’s theory of blocking and anti-blocking polyhedra represent results in this
direction.

The aim of this paper is to survey some results and applications in the
above-mentioned direction. Most of the general theorems will be of the following
form: if an integer program and certain derived programs have nice solutions (e.g.
the same solutions as if they were considered as linear programs) then so do their
duals. Very often it is useful to consider not only integral and real solutions but also
those where the denominators of coordinates are restricted to divisors of an integer
k. For k = 2, this links a variety of solved and unsolved graph-theoretical problems
to our duality results.

The whole area is not yet worked out very well. There are several minimax
results in graph theory which almost fit into this pattern but their generalization to

363

364 L. Lovasz

integer programming has not yet been found (at least not in the spirit of our paper).
Also, there are several open problems, which will be formulated in the paper. Most
of the theorems are formulated very similarly but their proofs are based on
completely different ideas (this was also remarked by A.J. Hoffman at the
International Congress of Mathematicians in Vancouver). This probably shows that
our understanding of the matter is superficial.

Only a few proofs will be given in detail; those which have not yet been published
and seem to be characteristic.

Definitions and notations

We will restrict ourselves to packing and covering programs; combinatorial
problems transform almost always into such programs. We shall use the language of
hypergraphs rather than of matrices. This is more difficult to compute with but
makes things easier to visualize.

A hypergraph H is a finite collection of non-empty finite sets; the same set may
occur more than once. The elements of hypergraphs are called edges; the elements
of edges are points (this way no isolated points are allowed). The set of vertices of
the hypergraph H will be denoted by V(H).

Removing an edge means that we remove this edge and all points which would
become isolated by this. Removing a vertex x E V(H) means that we remove all
edges adjacent to x. Multiplying a vertex x by k 3 0 means that we replace x by k
points x,, . . ., x k and replace each edge E containing x by k edges E - {x} U { x i } ,
i = 1,. . ., k.

Given a hypergraph H, we are interested in the maximum number, v (H) , of
disjoint edges of H and in the minimum number, T (H) , of points representing all
edges of H. To study these numbers we will introduce some related numbers.

A k-matching is a mapping rn : H +{O, 1,. . . } such that

m (E) s k (x E V(H)).
E 3 x

A k-cover is a mapping t : V(H)-+ {0,1,. . . } such that

2 t (x) z k (E E H) .
X E E

A fractional matching is a mapping m : H-+{non-negative reals} such that

and a fractional cover is a mapping t : V(H)-+{non-negative reals} such that

t (x) z l (E E H) .
x E E

Certain duality principles 365

We shall denote by u k (H) and r k (H) the maximum of

for all k-matchings and the minimum of

for all k-covers, respectively. If m runs over all fractional matchings and r runs
over all fractional covers we have

max c m (E) = min c t (x) = d e f r * (H) ,
E E H x E V (H)

by the Duality Theorem.
It is trivial that r , = r, v, = u, and also that

for every k. There is an integer s such that

Vks = kS7 *, T k s = k S T *

for every k (since the linear programs defining T* have rational optimal solutions).

Duality results

The following two theorems were proved in [8]; they can be derived from the
theory of blocking and anti-blocking polyhedra as well [3]:

Theorem 1.
removing points then v (H) = T (H) .

If v (H ') = r* (H ') holds for every hypergraph H' obtained from H by

Theorem 2. If r (H ') = r*(G') holds for every H ' c H, then v (H) = r (H) .

Berge (11 has observed the following sharpening of Theorem 2:

Theorem 2'. If rZ(H') = 27(H') holds true for every H ' c H, then v (H) = r (H) .

In [9] it was shown that if we require the inheritence for a larger class of
hypergraphs then the assumption in Theorem 1 can be weakened analogously:

Theorem 1'.
multiplication of vertices, then v (H) = r (H) .

If uZ(H') = 2v(H') holds for every hypergraph H' arising from H by

We remark that in the case of graphs the following much simpler result holds:

366 L. Lovasz

Theorem 3. Let G be a graph. Then T ~ (G) = 27(G) implies v (G) = T(G) . More
generally, for any graph we have T*(G) s T (G) + v(G).

Let us remark that in the last three assertions replacing the index 2 by an
arbitrary index k we could obtain similar results, which would be trivial conse-
quences of those formulated above.

Let us formulate two assertions:
(*) If vk(H’) = kT*(H’) holds for each hypergraph H’ arising from H by

multiplication of vertices then vk (H) = T~ (H) .
(**) If Tk(H’)= k T * (H ’) holds true for each ff’c H, then Q (H) = Tk(H).
These are true for k = 1 by Theorems 1’ and 2. In [lo] they were proved for

k = 2. Since my proof completely failed to work for k = 3, I ventured to conjecture
that they were false. However, recently I have found a proof of (**) for k = 3. As
my proof is rather complicated and it does not generalize to k = 4, I only dare to set
it as a question:-Are (*) and (**) valid for other, maybe for all, values of k ?

Theorem 4.
integer for all H’ C H. Then vk (H) = k T *(H).

Let k = 1,2 or 3. Let H be a hypergraph such that k . T * (H ’) is an

This clearly implies (**). We remark that the analogous sharpening of (*) is also
valid for k = 1,2.

Proof of Theorem 4.
fractional matching of H. Since

Let H be a minimal counterexample and rn an optimal

1
T*(H - {E}) T * (H) - -.

k

Since rn’ = rn (H - - (B J is a fractional matching of H - {E}, we must have

1
1) 171’11 = 1) m 1) - rn(E) T*(H - (E }) 6 T*(H) - k,

whence
1 m (E) s - k ’

For k = 1 this implies rn (E) = 1 hence that rn is a 1-matching, v l (H) = T*(H) . So
in this case the proof is finished.

Certain duality principles 367

Observe now that if x is any point with degree 3 k then

can only be fulfilled if the degree of x is k and m (E) = l / k for all edges incident to
x. Also we may suppose each edge E contains a point of degree 3 2 as otherwise its
removal would decrease both vk and kr* by exactly k , and H - {E} would be a
smaller counterexample. Hence if k = 2 then m (E) = 1/2 for all edges and we are
finished again.

So suppose k = 3. We show H has a point of degree 3. Suppose not. The
intersection graph L (H) of H cannot be bipartite, since then H would be balanced
(see [l]) and vk (H) = k 9 r * (H) would follow from the much stronger relation
v (H) = r (H) . Let (E l , . . ., Ez,+l) be any chordless odd circuit in L (H) . Then
H' = { E l , . . ., EZp+,} has 37*(H') = 3 p + f, contradicting the assumption that this
should be an integer.

Thus H has a point xo of degree 3. Let Eo be any edge adjacent to xo. Then we
know m (Eo) = 1/3. We need the following

Lemma. Let H be any hypergraph and EoE H. Then H has a decomposition
H = H , U H2 and H I has an optimum fractional matching m l with the following
properties :

(i) EoE H I :
(ii) for any decomposition H I = H : U HY, H i , HY# 0 there is an

I E V (H i) f l V(HY) with

2 m l (E) = 1 ;
E 3 x

(iii) for any optimum fractional matching m2 of H2, ml U m2 is an (optimum)
fractional matching of H.

Supposing this Lemma is true, let Eo be an edge adjacent to a point of degree 3
and consider the decomposition H I U H2 = H defined in the Lemma. The fractional
matching ml of H I takes values 1 / 3 , 2/3 only. For let

H : = { E : m l (E) = 1/3 or 2/3}

H; '= HI- H i .

Then Eo E Hi and so, Hi # 0. If HY # 0 then by (ii), there is a point x E V (H :) n
V(H7) with

Let El E H : , E2 E HY, x E El n E2. If x has degree 3 then, as noted above,
ml(E2) = 1/3. If x has degree 2 then

368 L. Lovcisz

rnl(E2) = 1 - ml(E1) = 1/3 or 2/3

since E l E Hi. In both cases we get a contradiction with E , E H’i.
So m l takes values 1/3 and 2/3. By the minimality assumption on H, Hz has an

optimum fractional matching rn, whose values are 0, 1/2, 2/3 or 1. By (iii) of the
Lemma, m , U m 2 is an optimum fractional matching with values 0, 1/2, 2/3 or 1.
This proves v,(H) = 37*(H), a contradiction.

Proof of the Lemma. Choose an HI C H and a maximum fractional matching mo of
H such that with m l = mol HI, (i) and (ii) are fulfilled. E.g. H , = {Eo} is such a
partial hypergraph; but choose HI maximal among all subcollections of H for
which an mo exists satisfying (i) and (ii). Let H, = N - HI.

Then for every edge E E H,, and for each point x E E n V (H ,) ,

otherwise E could be added t o H I . Let m2 be any optimum fractional matching of
H,, we claim m l U m2 is a fractional matching. For let E be a sufficiently small
positive number and

mo(F) for F E HI,

&m2(F) + (1 - &)mo(F) for F E H,.
m ‘ (F) =

Then by (l), m’(F) is a fractional matching if E is small enough. Hence

But since mz is an optimum fractional matching of Hz, we also have here the
converse inequality. Hence 1) m ’1) = (1 moll, i.e. m‘ is an optimum fractional matching.

If m ’ is a fractional matching for E = 1, then m , U mz is a fractional matching as
claimed. So suppose there is a largest En, O < E ~ < 1 for which rn’ is a fractional
matching. Then there must be a point x E V (H 1) fl V (H 2) such that

m’(F)= 1.
F 3 x

Thus replacing m, by m’, HI can be enlarged. This contradiction proves the
assertion that m , U rn, is a fractional matching. Now the optimality of m l U m2 is
clear since

IIm1 ” mzll = llm1ll + llmzll 3 llm I HIII + llm I HzII = IImoll.

This finishes the proof of the Lemma.

Certain duality principles 369

Decompositions

To guarantee that the conditions of the preceding theorems hold one has to show
that for hypergraphs arising from given combinatorial structures, fractional covers
with denominator k are not any better than fractional covers with denominator j ,
for certain values of k and j . (The derived hypergraphs arise usually in the same
way, so they need not be considered extra.) This often depends on the fact that
multiple covers decompose into the sum of other multiple covers.

Suppose a k-cover (k-matching) is the sum of a kl-cover and a k2-cover
(matching). If k l + kZ = k, we call this decomposition exact. The following two
theorems can be proved by a straightforward construction.

Theorem 5.
decomposed into a sum of 1-covers.

Let G be a bipartite graph. Then each k-cover of G can be exactly

Theorem 6. Let G be a graph. Then each k-cover of G can be (exactly)
decomposed into the sum of a 2-cover and a (k - 2)-cover.

A construction due to R.L. Graham [5] shows that no analogue of Theorem 6 is
valid for 3-uniform hypergraphs: there may be exactly indecomposable k -covers
for arbitrary large k.

A n r-partite hypergraph (r 3 2) is defined as follows: V (H) has a partition
Vl U. * U V, such that each edge meets each V, in exactly 1 point. Not even
k-covers of r-partite hypergraphs are always exactly decomposable for r 2 3; but
for non-exact decompositions, we have the following results:

Theorem 7.
1- covers.

Each k-cover of an r-partite hypergraph is a sum of 1 + [2(k - l) / r]

Theorem 8.
(k - 2(r - 1))-cover. Also, each k-cover is the sum of a 2-cover and a (k - r)-cover.

Each k-cover of an r-uniform hypergraph is sum of an r-cover and a

Proof.
direct constructions.

We only give the proof of Theorem 7; Theorem 8 can be verified by similar

We need a

Lemma. Let r 3 2, m 3 0. Then there exists an r x (m + 1) matrix (a i j) such that

for j = 1,2, . . ., m + 1 ([XI* is the least integer z= x),
(a) each row is a permutation of (0 ,1 , . . ., m) ;
(b) x:=, a,, [t r m] *

Proof. If we have such a matrix then we can get one for r + 2 by adding two rows

(0 1 m)

(m m - 1 0).

3 70 L. Lovdsz

... 0 m + l m + 3
2 2 m - - ...

- m m - 2 . . . 1 m - 1 . . .

So it suffices to deal with the cases r = 2,3. For r = 2,

[I :-1 0 “1
is an appropriate matrix. If r = 3 and m is even then

. . . , ,+1 - * . m O l m m
-- 1 2

1 m m - 2 0 m - 1 1

if r = 3 and m is odd then

m - 1 m

m - 3 m - l
2 2
--

2 0

is an appropriate matrix.
Let, now, t be a k-cover of an r-partite hypergraph H and define

1 if x E V1 and t(x) 2 a, + 1,

[0 otherwise,
t,(x) =

where m = [2(k - l)/r], a,, is defined as in the Lemma and j = 0,. . ., m. Then for
x E V,,

and thus,

On the other hand, we claim each ti defines a 1-cover. For let (u , , . . ., u,) E H,
u, E V,. Suppose for some j ,

t , (u z) = O for i = 1 ,..., r.

This means

t (U i) a,

Certain duality principles

and hence

371

mr * 9 t (v ,) s 9 a,. s [T] < k,
i = l i = l

a contradiction. This proves the Theorem.

The following are examples of decomposition results for certain special hyper-
graphs of interest.

Theorem 9. Let G be a graph and a, b two specified points. Consider the sets of
edges of (a , b)-paths in G as edges of a hypergraph H. Then any k-cover of H can be
exactly decomposed into 1-covers.

Theorem 10. Let G be a graph, S C V (G) . Call a path Pprincipal i f its endpoints
are in S but has no inner point in S. The sets of edges of principal paths form a
hypergraph H. Then each k-cover of H can be (exactly) decomposed into a 2-cover
and a (k -2)-cover.

Theorem 11. Let G be a digraph, a a specified vertex (root) and consider the sets of
edges of spanning arborescences rooted at a as edges of a hypergraph H. Then each
k-cover of H can be exactly aecomposed into 1-covers.

In all three cases, there is a direct construction proving them (direct not meaning
simple). Theorems 9 and 11 are also consequences of results of Fulkerson [3,4].

Proof, As an example we give that of Theorem 10. Let t be a k -cover of H ; define

2 if t (e) > k ;

1 if 0 < t (e) < k and e is the first edge with t(e)>O on one
of the principal paths (starting from either endpoint); I 0 otherwise;

t l (e) =

t,(e) = t (e) - tl(e).

consider principal paths P such that
It is immediate to see that tl is a 2-cover of H. To show that tZ is a (k - 2)-cover

is minimal and among these

is minimal. We claim P contains at most two edges e with t l (e) = 1. For if there
were three such edges, el, ez, e, say, in this order on the path P, then there would be

372 L. Louasz

a path Q connecting a point of S to an endpoint of e , such that t (f) = 0 for f E Q.
This path Q, together with one half of P, would form a principal path P‘ such that

a contradiction.
Now if t , (f) = 2 for some f E P, then

otherwise

c t , (e) = c t (e) - c t , (e) > k -2 .
C E P C E P e E P

This proves the Theorem.

The relation T~ = k7 is clearly a consequence of, but not equivalent to, the fact
that k-covers are exactly decomposible into 1-covers. An example showing that
T~ = k7 does not imply the decomposability of 1-covers is yielded by the following.

Theorem 12. Let C be a chain group mod 2 on a set S of atoms and let C‘ be a coset
of C. Considering the non-zero elements of C’ as subsets of S, the resulting
hypergraph H satisfies T ~ (H) = 2 7 (H) .

As an example of a hypergraph obtainable as in this theorem, consider the
hypergraph whose edges are the sets of edges of odd circuits in a graph. Here t = 1
represents a 2-cover (even a 3-cover) which is not the sum of two 1-covers if the
chromatic number of the graph is larger than 4 [14].

The exact decompositions of matchings are, usually, more difficult to handle. The
following results are true, but their proofs are not “direct”: they follow from
well-known theorems of Konig and Petersen, respectively.

Theorem 13.
1- matchings.

Let G be a bipartite graph. Then each k-matching of G is the sum of k

Theorem 14.
2- matchings.

Let G be a graph. Then each (2k)-matching of G is the sum of k

Often one can replace a k -matching by another k -matching of the same size and
of simpler structure, which can be decomposed. E.g. if the edges are cuts of a graph
or digraph, one can replace crossing cuts by non-crossing (laminar) ones (see
Lucchesi and Younger [121). The following two theorems can be proved this way:

Certain duality principles 373

Theorem 15. Let H consist of the directed cuts of a digraph. Then v 2 (H) = 2 v (H) .

Theorem 16.
cuts of G having an odd number of points of A on both sides. Then v z k (H) = kv2(H) .

Let G be a graph and A V(G), I A I even. Let H consist of those

Similar manipulation with paths yields

Theorem 17.
all paths connecting a 1 to a 1‘ or a 2 to a 2’. Then v z (H) = 2 v (H) .

Let us mark each point of a graph G by 1, l’, 2 or 2’. Let H consist of

Examples

Putting results of the two previous sections together we obtain several minimax
results in graph theory. Thus Theorems 2 and 5 yield Konig’s Theorem (this
theorem could be deduced from any of theorems l’, 2, 3 easily). Similarly,
Theorems 4 (with k = 2) and 6 imply the fact, observed by J . Edmonds and
probably others that each graph satisfies v2 = T ~ . Theorems 1’ and 15 imply the
result of Lucchesi and Younger (conjectured for several years by Robertson and
Younger) that the minimum number of edges in a digraph whose contraction results
in a strongly connected digraph equals the maximum number of edge-disjoint
directed cuts. Theorems 1‘ and 17 imply a theorem of Kleitman, Martin-Lof,
Rothschild and Whinston [6].

Putting Theorems 16 and (*) for k = 2 together we obtain a result which is
probably new [l o] ; and whose proof is given as a typical example of arguments
here.

Theorem 18. Let k denote the minimum number of edges of a graph G on 2n points
such that the subgraph on V (G) formed by them has even components. Then the
maximum number of cuts, separating G into two odd pieces and containing each edge
at most twice, is 2k.

Considering the case when k = n, Tutte’s Theorem on 1-factors can be deduced.

Proof. Let H be the hypergraph whose edges are those cuts of G which have an
odd number of points on both sides. It is easy to see that each hypergraph arising
from H by multiplying vertices is of the type considered in Theorem 16, and so, it
satisfies vz(H’) = 2T*(H’). Thus the conditions of (*) (for k = 2) are fulfilled and
hence, v z (H) = T ~ (H) . Moreover, H arises as the hypergraph in Theorem 12 (as a
coset of the chaingroup of all cuts separating the graph into two even pieces), and
so, Theorem 12 implies T ~ (H) = 2T(H). Thus v z (H) = 27(H) . Now a set of edges of
G covers all edges of H iff the subgraph formed by them on V (G) has even
components. So T (H) = k, and v2(H) = 2k, which is the assertion of the theorem.

Finally we quote three theorems which can be compared with Theorems 9-11
though no general result on hypergraphs would reduce them to those.

374 L. Lovcisz

Theorem 19 (Menger’s Theorem). The hypergraph in Theorem 9 satisfies v = T.

Theorem 20 (J. Edmonds [2]). The hypergraph in Theorem 10 satisfies v = r.

Theorem 21 [l l] . The hypergraph in Theorem 11 satisfies vz = rZ.

Problems. It is immediate to ask for duality principles linking Theorems i and
1 0 + i for i=9 ,10 ,11 .

It may be a very widely applicable direction of generalization of these problems
to extend them to situations where exact equalities are replaced by inequalities
(going in the non-trivial direction, of course).

There are very many results and problems in combinatorics asserting that for
certain hypergraphs v and T* or T* and T are “close” to each other. Just to mention
a few: The Edmonds-Tutte theorem on disjoint bases of a matroid; Vizing’s
Theorem; Gallai’s conjecture that in the hypergraph in Theorem 10, T =s 2v, etc.
Finding results for such “loose” situations would be very useful.

A conjecture of Ryser could be formulated as follows: each r-partite hypergraph
satisfies T c (r - 1)v. Our Theorem 7 implies T* < irv. Is there any duality principle
which would allow us to deduce Ryser’s conjecture from this?

References

[11 C. Berge, Balanced hypergraphs and some applications to graph theory, in: J.N. Srivastava, ed., A

[2] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Comb. Structures Appl .

[3] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971)

[4] D.R. Fulkerson, Packing weighted directed cuts in rooted directed graphs, Math. Programming 6

(51 R.L. Graham, 3-uniform hypergraphs can have horrible scores (preprint).
[6] D. Kleitman, A. Martin-Lof, B. Rothschild and A. Whinston, A matching theorem for graphs, J.

(71 L. Lovlsz, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267.
[8] L. LovPsz, Minimax theorems for hypergraphs, Hypergraph Seminar, Lecture Notes in Math. 411

[9] L. LovPsz, On two minimax theorems in graph theory, J. Comb. Theory 21 (1976) 96-103.

Survey of Combinatorial Theory (North-Holland, Amsterdam, 1973) 15-23.

(Gordon and Breach, London, 1970) pp. 69-87.

168-194.

(1974) 1-13.

Comb. Theory 8 (1970) 104-114.

(1974) 111-126.

[lo] L. Lovlsz, 2-matchings and 2-covers of hypergraphs, Acta Math. Acad. Sci. Hung. 26 (1975)

[l l] L. Lovasz, On some connectivity properties of Eulerian graphs, Acta Math. Acad. Sci. Hung. 28

[12] C . Lucchesi and D.H. Younger, A minimax theorem for directed graphs, Proc. London Math. SOC.

[13] D.H. Younger, Maximum families of disjoint directed cut sets, Recent Progress in Combin.,

[14] D.R. Woodall, Property B and the four color conjecture, Combinatorics, Proc. Conf. Southend-on-

433-444.

(1976) 129-138.

(to appear).

Academic Press, 1969, 329-333.

Sea (1972) 322-340.

Annals of Discrete Mathematics 1 (1977) 375-390
@ North-Holland Publishing Company

PARAMETRIC INTEGER PROGRAMMING:
THE RIGHT-HAND-SIDE CASE

Roy E. MARSTEN
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, M A 02139,
U.S.A.

Thomas L. MORIN
School of Industrial Engineering, Purdue University, West Lafa yette, IN, U.S.A.

A family of integer programs is considered whose right-hand-sides lie on a given line segment
L. This family is called a parametric integer program (PIP). Solving a (PIP) means finding an
optimal solution for every program in the family. It is shown how a simple generalization of the
conventional branch-and-bound approach to integer programming makes it possible to solve such
a (PIP). The usual bounding test is extended from a comparison of two point values to a
comparison of two functions defined on the line segment L. The method is illustrated on a small
example and computational results for some larger problems are reported.

Acknowledgement.
was performed by Lee Aurich and Nancy Kaplan.

The computer implementation of the algorithm reported here

1. Introduction

The purpose of this paper is to show how a simple generalization of the
conventional branch-and-bound approach to integer programming makes it possi-
ble to solve a parametric integer program. Following Nauss [6] we shall call the
family of programs (P,)

subject to a,xj s b, + ed, 1 S i s rn
j = 1

X j E { O , l } 1 s j s n

for 0 G 6 G 1 a single parametric integer program (PIP). By “solving” (PIP) we shall
mean obtaining an optimal solution of (P,) for every 0 s 8 1 for which (P,) is
feasible. We assume that (P,) is feasible for at least one value of 8.

Parametric integer programming has only recently emerged as a topic of
research. The pioneering papers include Noltemeier [7], Roodman [lo, 111, Piper
and Zoltners [S, 91, and Bowman [l]. Nauss [6] has reviewed this earlier work and
contributed many new results for parameterizations of the objective function. The

375

376 R.E. Marsten, T.L. Morin

present paper, which has grown out of the authors’ work on synthesizing dynamic
programming with branch-and-bound [3, 4, 51, is devoted to the right-hand-side
case.

In parametric linear programming, the first step is to solve (Po), i.e. (P,) for 8 = 0.
Then the direction vector d = (d,, . . ., d,) is specified and the analysis is performed
by driving 8 from 0 to 1. Critical values of 8 and new optimal solutions are
identified one at a time as 8 increases. In the procedure for parametric integer
programming to be presented here, the direction d must be specified in advance.
The (PIP) is solved in one branch-and-bound search. The usual bounding test is
modified so that a partial solution is eliminated only if none of its descendants is
optimal for any (P,), 0 S 8 6 1. This means that some partial solutions must be
retained that could otherwise be eliminated if only (Po) were of interest. The
severity of the resulting computational burden depends on the magnitude of d.

The organization of the paper is as follows. A prototype branch-and-bound
algorithm for (Po) is presented in Section 2 .
The lower bound and upper bound functions are developed in Sections 3 and 4,
respectively. The modified branch-and-bound algorithm for (PIP) is given in
Section 5 and applied to a sample problem in Section 6. Computational experience
with the algorithm is reported in Section 7.

2. A prototype branch-and-bound algorithm

We shall draw upon the framework and terminology of Geoffrion and Marsten
[2] to describe a simple linear programming based branch-and-bound algorithm for
(Po). Problem (Po) is separated, by fixing variables at zero and one, into smaller
candidate problems (CP4). Each candidate problem has an associated set of fixed
variables F4 C J = (1, . . ., n} and partial solution x q . That is, (CPq) is defined by the
conditions x, = x 4 for j E F4. The current set of candidate problems is called the
candidate list. If any feasible solutions of (Po) are known, the best of these is called
the incumbent and its value denoted by LB. If we let J 4 = J - F4 be the set of
“free” variables and

where Ai is the j th column of A, then a typical candidate problem may be written
as (CP4)

subject to u p , b, - p?, 1 i m,
J E J ~

x, E (0, l}, j E J 4 .

Parametric integer programming 377

An upper bound on the value of (CPq) is obtained by solving its LP relaxation
(CP;). It is also helpful to compute a lower bound on the value of (CP.). This can
be done by using a heuristic to find a feasible solution of (CP.). This feasible
solution, if it is better than the incumbent, becomes the new incumbent. A
prototype branch-and-bound algorithm may now be described as follows.

Step 1. Place (Po) in the candidate list and set LB = - 00.

Step 2. If the candidate list is empty, stop. If there is an incumbent, it is optimal

Step 3. Select a candidate problem and remove it from the candidate list. Call it

Step 4. Solve the linear program (CP;). Let UBq denote its optimal value.
Step 5. If UBq s LB, go to Step 2.
Step 6. If the optimal solution of (CP:) is all integer, make this solution the new

incumbent, set LB = UBq, and go to Step 2 .
Step 7. Use a heuristic to find a feasible solution of (CP.). Let H 4 denote its

value. If H q > LB, then make this solution the new incumbent and set LB = Hq.
Step 8. Separate (CP4) into two candidate problems (CPq') and (CP.") by

choosing p E J 4 and setting F4' = Fq" = Fq U { p } , x;' = 0, x;" = 1. Place (CP.') and
(CP.") in the candidate list and return to Step 2.

A great many variations on this pattern are described in [2] , but this prototype
will suffice for our purposes. Step 5 is the bounding test. If this test is satisfied, then
no descendant of x q is better than the incumbent. Notice that the bounding test
includes the case where (CPZ), and hence (CP.), is infeasible since then UBq =

- 00. If (CPq) does not have to be separated at Step 8, then we say that it has been
fathomed. This occurs if (CPq) passes the bounding test or if (CP;) has an all
integer solution. Step 7, the heuristic, is optional. Its purpose is to strengthen the
bounding test by improving the incumbent and increasing LB.

The modifications that must be made to this prototype algorithm to solve (PIP)
are confined to Steps 5, 6 and 7. The notion of the incumbent must be generalized
from a single value LB to a function LB(8) defined on 0 =s 8 =s 1. The upper bound
must also be expressed as a function of 8: UB4(8). The bounding test then becomes
a comparison of two functions on the interval 0 8 c 1 rather than just a point
comparison for 8 = 0.

for (Po). Otherwise (Po) is infeasible.

(CP.).

3. The optimal return and lower bound functions

In this section we shall investigate the behavior of the optimal value of an integer
program as a function of its right-hand-side. Let the optimal return function

f (b ') = max rx

subject to Ax s b'

x E (071)

378 R.E. Marsten, T.L. Morin

be defined for b‘ E R”’. It is apparent that f(b’) is nondecreasing in each component
of b’. Let {x 1 k E K} be the set of all feasible solutions of (PIP), i.e. of all (P,) for
0 S 8 S 1. For each k E K, define the step function

I ---do otherwise

for all b’ E R”’. The optimal return function f(b’) is the pointwise maximum of this
finite collection of nondecreasing step functions

f (b’) = max {fk (b’) 1 k E K }

and is therefore itself a nondecreasing step function.
K. A lower

approximation of f(b’) may be constructed from these known solutions, namely
Now suppose that the solutions {x * I k E z} are known, where 17

f(b’)=max{f*(b’)(k €17).

Clearly f (b ’) is also a nondecreasing step function and is a lower bound function for
f(b’), i.e. f (b ’) S f(b’) for all b’ E R”. The approximation can be improved as new
feasible solutions are discovered.

We are interested in a particular “slice” of f(b’) and f(b’): the line segment
{b + 8d 10 S 8 S 1) where b is the right-hand-side of (Po) and d is the given
direction vector. Define g (8) = f(b + 8d) and LB(8) = f (b + Bd) for 0 s 8 s 1.
Then g(8) and LB(8) are both step functions and LB(8) s g (8) for all 0 s 8 s 1. If
d 3 0, then g (8) and LB(8) are both nondecreasing. (See Fin. 1). There is at least
m e optimal solution of (PIP) associated with each step of g(8) . Solving (PIP) is
equivalent to constructing g (8) by finding at least one x solution for each of its
steps.

0 8 I

Fig. 1. Typical g(0) and LB(0) functions.

Parametric integer programming 379

The procedure for constructing LB(8) from the known feasible solutions is as
follows. For each k E define

8: = min { 8 1 2 A , x ; c 6 + Bd]
j = l

8: = max { 8 I 2 A j x 7 s 6 + (Id}
j = 1

where 8 : = 8: = + 00 if the indicated set is empty. Then

r jx: if 8 : s e c e:,
LBk (8) =

I --tc1 otherwise,
(3.3)

LB(8)=max{LBk(8)) k €z}. (3.4)

The solutions which determine LB(8) will be called the incumbents. Each one is
incumbent for a particular interval of 8.

4. The upper bound functions

Consider a given partial solution x q . In order to demonstrate that no descendant
of x q could be optimal for any (Ps), we need an upper bound on the return achieved
by any descendant and this upper bound must depend on 8. Such an upper bound
can be obtained by introducing (8 d) into the relaxed candidate problem (CP;).
Define

UBq(8) = 2 r,x4 + max 2 rjxj
j € F q j € J q

subject to a ,x , s 6, + Od, - /3:, 1 S i c m,
I E J ~

so that UBq(0) = UBq. It is well known that UBq(8) is concave and piecewise linear
on 0 s 0 c 1. The function UBq(8) could be obtained explicitly by ordinary
parametric linear programming. The computational burden involved in doing this
for every candidate problem could be quite substantial, however. Fortunately any
dual feasible solution of (CP;) can be used to construct a linear upper bound
function for UBq(8). An optimal dual solution of (CP;), barring degeneracy, yields
the first linear segment of UBq(8). By linear programming duality we know that:

380 R.E. Marsten, T.L. Morin

m "
UB"(8) = r,xF + min u,(b, + Od, - P 4) + 2 u,,

j E F q z = l , = I

m

subject to u,a,, + u, 2 r,, j E J q ,
, = I

u, 20, l s i s r n ,

u, 20, l s j s n.

For notational convenience we have included all of the u, variables, even though
u, = 0 for j' E F" in any optimal solution. Let D q denote the dual feasible region

Since the primal variables are all bounded and at least one (P,) is feasible, we may
conclude that 0" is non-empty. Let {(u ' , u ') 1 t E T q } and { (y ' , z ") 1 s E S " } denote
the sets of extreme points and extreme rays, respectively, of 0". Taking e =

(1,. . ., 1) we have

U B " (8) s

for all t E T", with equality if (u ' , u ') is optimal for the objective function
u (b + 8d - P q) + ue. As a function of 8 then, the return achieved by any descen-
dant of x " is bounded above by:

r,x; + u ' (b + 8d - P q) + u'e
, € F 4

I UB4 (0 ; t) = (u*d)0 + r,xy + u ' (b - P q) + ule
[f€F''

for any t E T". This is a linear function of 8 and, since u ' 3 0, it is nondecreasing i f
d 2 0 .

In the modified branch-and-bound algorithm for (PIP), linear programming is
applied to (CPZ) as usual. The functions UB4(8; t) are obtained at n o extra cost.
The function obtained from an optimal dual solution will be denoted UB4(8; *).
Barring degeneracy, UB"(8; *) coincides with the first linear segment of UB4(8)
(see Fig. 2). As in conventional branch-and-bound, if the dual simplex method is
used, then suboptimal dual solutions can be used to perform additional weaker
tests.

If (CPR) is infeasible, then the simplex method will terminate with an extreme
point (u ' , u r) 3 0 and an extreme ray (y ' , 2') 3 0 , such that

y ' (b - p ") + z 'e < 0.

If y 'd s 0 , then we may conclude that UB4(8) = - = for all 0
then UB4(8)= - - f o r O s 8 < 8 * a n d U B " (8) s UB4(0 ; t)for 0 * s 0 G 1, where

8 s 1. If y " d > 0 ,

e* = - Y (b - P ') - zse
Y "d

Param eiric integer programming 381

0 6

Fig. 2. Typical UB4 (0) and UB4 (0 ; *) functions.

5. A branch-and-bound algorithm for (PIP)

Now that the upper and lower bound functions have been derived, the
generalized bounding test may be stated. The partial solution x q does not have a
descendant that is better than an incumbent if

UBq(8) s LB(8), for all 0 S 8 S 1,

or if

UB4(8; t) S LB(8), for all 0 s 8 s 1,

for some t E T4. This test is the basis for a modified branch-and-bound algorithm
that can solve (PIP).

Step 1. Place (Po) in the candidate list and set LB(8) = - 30 for 0
Step 2. If the candidate list is empty, stop. LB(8) = g(8) for 0 s 8 S 1 .
Step 3. Select a candidate problem and remove it from the candidate list. Call it

Step 4. Solve (CP;). If it is infeasible, obtain the appropriate dual extreme
point (u *, v *) and extreme ray (y *, z *). Otherwise obtain an optimal dual solution

8 S 1.

(CP.).

(u * , v*).
Step 5. I. (CP:) infeasible.
(a) y * d 0. Go to Step 2.
(b) y * d > O . Set 8 * = [- y * (b - p) - z * e] / y * d . If UBq(8 ;*) sLB(8) for all

8 * s e s 1, go to Step 2.
11. (CR4,) feasible. If UB4(8; *) == LB(8) for all 0 s 8 s 1 , go to Step 2.

Step 6. If the optimal primal solution of (CPX) is all integer, use it to update

Step 7. Use a heuristic to find feasible solutions of (CPq) with right-hand-side
LB(8).

(b + 8 d) for several values of 8. Use these feasible solutions to update LB(8).

382 R.E. Marsten, T.L. Morin

Step 8. Separate (CPq) into two new candidate problems (CP4') and (CP4") by
choosing p E J 4 and setting Fq' = Fq" = F U { p } x $ = 0, x;" = 1. Place (CP.') and
(CP.") in the candidate list and return to Step 2.

The validity of the generalized bounding test insures that an optimal solution for
every (Po), 0 s 8 S 1, will be found by the search. At worst, an optimal solution
may not be discovered until the bottom of the branch-and-bound tree is reached
(Fq = J). This guarantees that LB(8) will coincide with g(8) by the time the
algorithm is finished. It remains only to show how the optimal solutions are
identified.

Let { x k 1 k E E } be the set of incumbents when the algorithm terminates. Let
8 E [0,1] and suppose that (Po) is feasible, g (8) > - w. From the construction of
LB(8), (3.1)-(3.4), we know that there is some k E K such that

g (8) = LB(8)
= LBk(8)

= 2 r,x: > - w .
1'1

Furthermore, LBk(8)> - w means that 8 ; s 8 c O,", or equivalently that

2 Ajxr b + 8d.
j = 1

Since x k is feasible for (Po) and its return is equal to g (B) , it follows that x k is
optimal for (Po). To summarize, if k E K and 8 E [0,1], then x Ir is optimal for (Po)
if and only if

"
(i) Ajx: 5 b + 8d

j - 1

At Step 6, in contrast to the prototype algorithm, x 4 is not fathomed when the
optimal primal solution of (CPZ) is all integer. This is because x 4 may have other
descendants which are optimal for 8 > 0. The use of heuristics at Step 7, while in
principle optional, is an important part of the algorithm since integer solutions of
(CPZ) can only yield LB(8) = LB(0) for 0 s 8 c 1. The heuristics are needed to
produce stronger values of LB(8) for 8 > O .

As with the prototype algorithm, the above procedure will admit considerable
variation and refinement. If the dual simplex method is used. then suboptimal dual
solutions can be used to perform additional bounding tests. Cutting planes can be
generated for any candidate problem to give stronger upper bound functions.
Parametric linear programming can be used to generate more than the first segment
of UBq(8). If a candidate problem with an all-integer LP solution has to be
separated at Step 8, then the same LP solution is optimal for one of the two new

Parametric integer programming 383

candidates and does not have to be recomputed. Extensive experimentation will be
required to determine the most effective computational tactics.

6. Example

In this section the algorithm will be applied to a simple example. In order to
illustrate all of the different cases that can arise, the parameterization will be done
over a relatively large interval. The test problem is

max lox1 + 15x2 + l o x 3 + 5x4

subject to 2x1 + 3x2 + 5x3 + 1x4 s 4 + 84

~ x , + ~ x , + I x , + I x , ~ ~ + 84

xi E {0,1} 1 s j s 4

Thus b = (4,4), d = (4,4) and increasing 8 from zero to one amounts to doubling
the right-hand-side. A picture of the optimal return function f(b') is given in Fig. 3.

8

7

6

5

b;
4

3

2

01 1 I I I I 1 I

25 -

I 2 3 4 5 6 7 8

bl'

Fig. 3. The optimal return function f(b').

The dashed line indicates the line segment of interest: { b + 8d 10 s 8 s 1). It is
clear from this picture that three optimal solutions must be found, with values of 20,
25, and 30. These solutions are (0,1,0, l), (1,1,0,0), and (1,1,0,1) respectively. The
g (8) function, shown in Fig. 4, is

20
25 for 112s 8 <3/4,
30

for 0 s 8 < 112,

for 3 / 4 6 8 s 1.

3 84 R.E. Marsten, T.L. Morin

t--+- 2 0

I I I I
0 114 I / 2 3 /4 I

Fig. 4. The parametric function g(0).

The optimal LP solution of (Po) is x = (1/2,1,0,0), u = (5,0), u = (0) with value
UBo = 20. The rounded down solution has value 15 and is feasible for 0 2 0; the
rounded up solution has value 25 and is feasible for 0 2 1/2. This provides an initial
lower bound function:

15 for 0 s 8 < 1/2,

25 for 1/2< 8 S 1 .
LB(8) =

The complete branch-and-bound tree is displayed in Fig. 5. The nodes will be
discussed in the order in which they were created.

Fig. 5. Branch-and-bound tree for the example

Parametric integer programming 385

Node 1 . LP solution: x = (0,1,0, l), u = (5 ,0) , u = (0), UB' = 20. UB'(8; *) =

208 + 20. The LP solution is all integer and is feasible for 8 3 0. Therefore the
lower bound function may be improved:

20 for 0 s 8 < 1/2, r 25 for 1 / 2 s 8 s 1.
LB(8) =

The bounding test for node 1 is shown in Fig. 6. Node 1 is not fathomed.

I14 112 314 I

Fig. 6. Bounding test for node 1

Node 2. LP solution: x = (1,0,0,0), u = (0, lo), u = (0), UB2 = 10. UB'(8; *) =

408 + 10. The bounding test, shown in Fig. 7, is not successful. Notice that if we
were only interested in solving (Po) we would be finished. Node 1 has an all integer
solution with value 20 and node 2 has upper bound UB2 = 10 < 20 = LB(0).

I /4 1/2 314 I

Fig. 7. Bounding test for node 2.

Node 3. LP solution: x = (0,0,3/5, l), u = (2,0), u = (0,0,0,3), UB3 = 11.
UB3(8; *) = 88 + 11. The bounding test, shown in Fig. 8, is successful and node 3 is
fathomed.

Node 4. Same as node 1, since optimal LP solution at node 1 has x2 = 1 .
Node 5. Same as node 2, since optimal LP solution at node 2 has xz = 0.

386 R.E. Marsten. T.L. Morin

25t I

5 t
01 I I I

I /4 112 3/4 I

Fig. 8. Bounding test for node 3.

Node 6. LP is infeasible. The dual extreme point is u = (0, lo), u = (0) and the
extreme ray is y = (0, l), z = (0). The critical value of 8 is (- y (b - p") - z e) / y d =
1/2. Thus UB"(8) = - m for 0 s 8 < 1/2 and UB"(8; *) = 408 + 5 for 1/2 s 8 G 1.
The bounding test is shown in Fig. 9.

I I I
I /4 112 3/4 I

Fig.9. Bounding test for node 6.

Node 7. Same as nodes 1 and 4, since optimal LP solution for node 4 has x3 = 0.
Node 8. LP is infeasible. The dual extreme point is u = (5,0), u = (0) and the

extreme ray is y = (1,0), z = (0). The critical value of 8 is (- y (b - p 8) - z e) / y d =

1, so UB8(8) = - O D on 0 s 8 s 1 and node 8 is fathomed.
Node 9. Same as nodes 2 and 5, since optimal LP solution for node 5 has x7 = 0.
Node 10. LP is infeasible. The dual extreme point is u = (5,0), u = (0) and the

extreme ray is y = (l ,O) , z = (0). The critical value of 8 is (- y (b - PIo) - z e) / y d =

3/4. Thus UB'O(8) = - m for 0 s 8 < 3/4 and UB"(8; *) = 208 + 5 for 3/4 S 8 G 1.
Node 10 is therefore fathomed. See Fig. 10.

Node 11. LP is infeasible. The dual extreme point is u = (0,5), u = (0) and the
extreme ray is y = (0, l), z = (0). The critical value of 8 is (- y (b - P I ') - ze) / yd =

Parametric integer programming 387

30 t L B (8)

o t I I I
I /4 1 /2 3/4 I

Fig. 10. Bounding test for node 10.

1/2. Thus UB"(8) = - rn for 0 s 8 < 1/2 and UB"(8; *) = 208 + 15 for 1/2 S 8 < 1.
Node 11 is not fathomed. See Fig. 11.

I /4 I / 2 3 14

Fig. 11. Bounding test for node 11.

Node 12. LP is infeasible. The dual extreme point is u = (5 ,0) , v = (0) and the
extreme ray is y = (1,0), z = (0). The critical value of 8 is (- y(b - p") - ze) / yd =

1. Therefore UB1*(8) = -
Nodes 13-18 are all at the bottom level of the search tree. The solution for node

18, (1,1,0, l), has value 30 and is feasible for 8 2 3/4. The lower bound function
may be improved by redefining LB(8) = 30 for 3/4 S 8 S 1. LB(8) now coincides
with g (8) on 0 8

for 0 s 8 =Z 1 and node 12 is fathomed.

1. The algorithm terminates since the candidate list is empty.

The amount of extra computation required to solve (PIP), as compared to (Po),
depends on the length of the interval of parameterization. When this interval is
small, the burden imposed by parameterization may be slight or even negligible.
When it is large, however, as illustrated in this example, the burden can be quite
substantial.

388 R.E. Marsten, T.L. Morin

7. Computational results

The ideas presented above were tested by incorporating them into a branch-and-
bound computer code [3]. The’results for four test problems are presented in Table
1. In each run the direction vector d was taken as some percentage of the right-
hand-side b. For example, if d = 5% b, then (PIP) has right-hand-sides b + 8(.05)b
for 0 s 6 1. The column headed “solutions” gives the number of optimal
solutions found, or equivalently the number of steps of the g (8) function.
“Heuristic” is the number of (evenly spaced) 8 values for which the heuristic is
applied at Step 7. The problems are of the capital budgeting type and the heuristic
employed is that of Toyoda [12]. “Pivots” is the total number of linear program-
ming pivots and “time” is the total solution time in seconds on an IBM 370/168.

Table 1. Computational results for four test problems

rn n d solutions heuristic pivots time

5 15 0 1 1 39 0.239
0.05b 4 10 62 0.541
0.10b 5 10 91 0.815
0.15b 7 10 124 1.044
0.20b 8 10 130 1.170
0.25b 10 10 171 1.534
0.506 16 20 315 3.162

5 30 0 1 1 153 1.605
0.056 11 10 529 8.114
0.10b 28 20 1173 18.005
O.lSb 37 20 2606 43.304

10 28 0 1 1 66 1.155
0.056 16 10 173 4.465,
0.10b 25, 20 645 13.129
0.156 42 20 1621 30.888

20 30 0 1 1 180 3.242
0.025b 6 5 400 9.486
0.056 12 10 1350 32.185

These results illustrate quite clearly how the computational burden increases as
the interval of parameterization is lengthened. In order to facilitate comparison
with our results by other researchers we have included the data for the 5 x 30
problem as Table 2 and the corresponding g (0) function for a 15% increase in 6 as
Table 3.

Parametric integer programming

Table 2. The 5 X 30 test problem

389

188
92
6

80
91
44

108
166
171
64
97
35
51
98
36
70
27
94
68
13

13.2
15.1
3.3
7.4
7.0
1.2
7.0

17.0
13.8
9.4

91
179
146
155
102
112
126
21
39
67
29
55
72
17
0

42
15
64
53
30

2.8
15.0
2.6
3.5

17.0
3.5
5.1

16.2
13.2
13.9

20
99
95
95
84

136
166
13
20

124
42
58
43
43
44
2

88
55
68
22

6.8
8.3
8.9
3.1

16.5
2.2
9.7
4.7
1.8

11.0

86
97
42
90

101
3

101
34
25
72
96
36
3

88
97
77
50
14
77
88

11.3
13.8
4.5

17.1
11.8
17.1
19.1
5.0

10.2
3.6

164
98
2

165
140
106
88
68
84

131
55
11
17
4

47
45
11
77
36
49
2.9

11.7
19.2
18.1
3.8

18.0
8.8
3.9

16.9
13.8

936
695
390

1152
980

lo00
815
109
807
156
548
335
316
528
36

573
38
3

800
392
92
4

29
81

2
40
17
16
30

118

b = 8 0 0 800 700 700 800

Table 3. The g(8)function for a 15% increase in b; 5 x 30 problem.

0.0
0.01833
0.05524
0.10286
0.11250
0.11416
0.13583
0.20952
0.25238
0.30666
0.32750
0.34952
0.39333

7515
7578
7607
7612
7633
7696
7725
7777
7806
7807
7822
7836
7839

0.41523
0.42000
0.43714
0.45667
0.45809
0.47833
0.49428
0.49809
0.51809
0.54190
0.56095
0.56285
0.594 16

7846
7869
7891
7913
7931
7942
7947
7957
7994
8009
8023
8049
8060

0.60166
0.62333
0.71083
0.73333
0.75809
0.77500
0.79333
0.82083
0.87916
0.93583
0.99416

8112
8141
8161
8171
8181
8204
8224
8253
8270
8283
8300

390 R.E. Marsten. T.L. Morin

References

[l] V.J. Bowman, The structure of integer programs under the Hermitian normal form, Operations
Rex, 22 (1974) 1067-1080.

[2] A.M. Geoffrion and R.E. Marsten, Integer programming algorithms: A framework and state-of-
the-art-survey, Management Sci., 18 (1972) 465-491.

[3] R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical programming, Sloan
School of Management, MIT, Cambridge, Mass., July, 1975.

[4] T.L. Morin and R.E. Marsten, An algorithm for nonlinear knapsacK problems, Management Sci.,
22 (1976) 1147-1158.

[5] T.L. Morin and R.E. Marsten, Branch and bound strategies for dynamic programming, Operations
Research, 24 (4) (1976) 611-627.

[6] R.M. Nauss, Parametric integer programming, Ph.D. Dissertation. University of California, Los
Angeles, January, 1975.

[7] H. Noltemeier, Sensitivitalsanalyse bei disketen linearen Optimierungsproblemen, in M. Beckman
and H.P. Kunzi, eds., Lecrure Notes in Operations Research and Mathematical Systems, # 30,
(Springer, Berlin, 1970).

[8] C.J. Piper and A.A. Zoltners, Implicit enumeration based algorithms for postoptimizing zero-one
problems, Management Sciences Research Report, No. 313, Graduate School of Industrial
Administration, Carnegie-Mellon University, March, 1973.

[9] C.J. Piper and A.A. Zoltners, Some easy postoptimality analysis for zero-one programming,
Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pa., 1975
(forthcoming in Management Science).

[101 G.M. Roodman, Postoptimality analysis in zero-one programming by implicit enumeration, Naval
Research Logistics Quarterly, Vol. 19, 1972, pp. 435-447.

[l l] G.M. Roodman, Postoptimality analysis in integer programming by implicit enumeration: The
mixed integer case, The Amos Tuck School of Business Administration, Dartmouth College,
October, 1973.

[121 Y. Toyoda, A simplified algorithm for obtaining approximate solutions to zero-one programming
problems, Management Sci., 21 (1975) 1417-1427.

Annals of Discrete Mathematics 1 (1977) 391-392
@ North-Holland Publishing Company

AN EXAMPLE OF DUAL POLYTOPES IN THE UNIT HYPERCUBE

J.F. MAURRAS
Dipartmenf Methodes d 'Optimisation, Electricif6 de France, 92141 Clamart, France

Let N = {1,2,. . . , n } and let S be a subset of N with S = {sl, sz, . . . , s,} such that

0 s s1 < s2< * < st G n.

Let P be the polytope in R" defined by the system of inequalities:

o s x j s I, j = 1, ..., n ;

for each I C N such that ~i < I I1 < Si+l,

where ki = I I I - s i .

Theorem 1 [l]. Pis the conuex hull of the zero-one uectors, xi = 0 or 1, j = 1,. . . , n,
such that

2 xj E s.
j = 1

Theorem 2 [l]. The facets of P are given by:
xj 6 1, j = 1 , . . ., n, unless S is one of (0, n}, (0,1, n}, 11, n};
x j 2 0 , j = 1,. . . , n, unless S is one of (0, n} , (0, n - 1, n} , (0, n - 1);
x x, 2 sI if and only if s1 > 0;
x x, < s, i f and only if s, < n ;

for si < 1 I I < s ~ + ~ , if and only if,
(i) 0 < s, and sitl < n, or

(ii) si = 0 and si+, < n and 111 = 1, or
(iii) si > 0 and sitl = n and I I1 = n - 1.

391

392 J. F. Maurras

These polytopes are invariant under permutations of the indices of the variables.
We shall investigate here the polytopes of this class which are duals (i.e., their face
lattices are anti-isomorphic).

Theorem 3. For n 3 3 , except for the n simplices, which are duals and self-duals, the
only dual polytopes in this class are those defined by the following sets:

(1, n - 1) and {0,1,. . . , n } ;

{0,1, n - l } and {1,2,. . . , n } ;

(1, n - 1 , n } and {0,1,. . . , n - 1);

{0,1, n - 1, n } and (1 , . . . , n - 1).

Sketch of proof. The first dual pair is proven by showing that the dual of the unit
hypercube, i.e. P and S = { 0 , 1 , . . . , n } , is given by P when S = 11, n - 1). This can
be proven from the result, using the terminology of [2] , that the n cross polytope
(i.e., the convex hull of (O , . . ., +-1,O,. . . ,0) , for all i) is the dual of the unit
hypercube. The n cross polytope is facially equivalent to P for S = (1, n - 1); this P
is the convex hull of (0,. . . , + 1,0, . . . ,O), (1,. . . ,1,0,1,. . . , 1) for all i. In fact, there
is an affine transformation which takes this P to the n cross polytope.

A different proof of this first pair is the heart of the proof of the entire theorem.
A mapping from facets of the first P to the vertices of the unit hypercube is:

c x, 25 1 -+ (0,. . . ,0);

XI 3 0 + (0) . . .) l , o) . . .) 0);

, = I

i

+ x , X , = o for i E Z, x, = 1 for j 6 1;

i
X , < l + (l) . . .) 0,1, ..., 1) ;

, 1) .

The proof of the “only if” part of the theorem requires showing, using invariance
of P, that the pairs given with a mapping much as the one above, are the only
possible dual pairs.

References

[l] P. Camion and J.F. Maurras, Polyhedrons with Vertices in [0, l]“, submitted for publication.
[Z] P. McMullen and G.C. Shephard, Conoex Polytopes and the Upper Bound Conjecture, London Math.

Society Lecture Notes Ser. No. 3 (Cambridge University Press, London, 1971).

Annals of Discrete Mathematics 1 (1977) 393-402
@ North-Holland Publishing Company

IMPLICIT ENUMERATION WITH GENERALIZED
UPPER BOUNDS

P. MEVERT and U. SUHL
Department of Operations Research, Free University of Berlin, Dl000 Berlin 33, Germany

A number of planning problems can be formulated as (0-1)-programs where all variables can
be grouped into special ordered sets or generalized upper bounds.

An implicit enumeration algorithm was developed and implemented for this class of problems.
The generalized upper bounds are handled implicitly. Only non-zero elements of the large but
sparse constraint matrix are stored explicitly and chained row-wise and column-wise. The storage
structure allows for very efficient testing of partial solutions. Preliminary numerical results
indicate that even large-scale problems can be solved efficiently.

1. Introduction

Balas introduced the concept of implicit enumeration more than ten years ago
[3]. Since then, a number of major improvements have been suggested, e.g. [4, 5,
10, 13, 14, 15, 16, 20, 23, 271. Numerical results, however, have been somewhat
disappointing and success has been limited to problems of small or moderate size,
in general.

By contrast, quite large problems were solved successfully using LP-based
branch-and-bound codes. This may have led to the belief that these methods are, in
general, more powerful than implicit enumeration.

It should be pointed out, however, that many man-years have gone into the
development of LP-based codes like UMPIRE, MPSX-MIP, or APEX. On the
other hand, very little effort has been spent, to our knowledge, to develop
comparable implicit enumeration codes. Most authors report that their results were
obtained using an experimental code on small artificial test problems.

An important fact that seems to have been overlooked is the fact that realistic
problems differ from the usual small test problems in two essential aspects. Firstly,
they exhibit in most cases special structure. Secondly, the matrix of coeffcients is
always sparse. Exploiting these two characteristics of real problems and being
careful to minimize data handling in the implementation may increase the efficiency
of implicit enumeration codes to the extent that even large-scale problems can be
solved successfully. The following is an example of this approach.

We consider (0-1) problems where the set of all variables can be partitioned into
subsets and exactly one variable from each subset must take on the value one. We

393

394 P. Meuert, U. Suhl

will use the terminology special ordered sets, convexity constraints, multiple choice
constraints, and generalized upper bounds interchangeably. (See [6] for the original
more general concept of special ordered sets.)

This class of problems contains a large number of applications, including
assembly line balancing [MI, resource constrained network scheduling [2], distribu-
tion problems [9], time-table problems [19], and a number of other scheduling
problems [2, 7, 81. Certain production planning problems with setup costs and
location-distribution problems can be formulated as mixed integer programming
problems and solved by Benders’ Method [12]. In these and other cases, the master
problem exhibits a structure such that all variables can be grouped into special
ordered sets, as defined above.

Thus, we consider the following problem P:

minimize z

s.t. z = c cjxj,
j € J

a,jx, 2 b , Vi E M,
i E J

xj = 0 or 1, V j E J ,

where Jk are the special ordered sets with

u J k = J and J, nJk = 0 for i # k.
k E K

Without loss of generality, we assume that

c, 3 0 for all j E J.

Following standard terminology we define a partial solution as a projection of the
solution space onto a lower dimensional space by assigning binary values to a subset
S CJ of the variables x,. An admissible partial solution is an assignment of binary
values to the variables x,, j E S CJ such that each special ordered set contains at
most one variable with value 1. We define:

S index set of variables to which binary values are assigned;

S1 index set of variables assigned the value 1;

So index set of variables assigned the value 0;

b , (S) = b, - a,,, current right-hand-side;
J E S l

z(S) = c,, current value of the partial solution S;
j e S 1

Implicit enumeration 395

V , (S) = { i E M I b i (S) > 0) index set of general constraints (1) which would be
violated if the partial solution were completed by
assigning xj = 0 to all j E J - S ;

V,(S) = {k € K 1 S1 n Jk = 0) index set of convexity constraints (2) which would
be violated if S were completed by xj = 0,
j € J - S ;

F (S) index set of free (unassigned) variables xi, j E J - S ;

[; n F (S) if S1 n Jk = 0,
L k (S) =

otherwise,

index set of admissible variables from the special ordered set Jk ;

L (S) = u & (S) index set of admissible variables.
k E K

Note that a free variable is called admissible if n o other variable in the same

Then each admissible partial solution defines a subproblem P (S) :
special ordered set is assigned the value 1.

xj = O or 1, j E L (S) . (3')

Any feasible solution of P (S) defines a feasible completion of S by assigning the
value 0 to all remaining free variables. A minimal completion corresponds to a
minimal solution of P (S) .

Note that P (S) is, in general, a much smaller problem than P, since L (S) C
F (S) CJ. This fact will be used in the subsequent algorithm. Further, if Vl(S) =

V2(S) = 0 (i.e. all b i (S) C 0 and all convexity constraints are satisfied) then x j = 0,
j E J - S is a minimal completion of S.

A partial solution S is said to be fathomed if
(a) it can be shown that the minimal value of P (S) is not less than zBeSt, where

(b) it can be determined that P (S) has no solution; or
(c) P (S) is solved, i.e. all completions of S have been (implicitly) enumerated.

zBert is the value of the best feasible solution to P, found so far; or

396 P. Meveri, U. Suhl

A variable x,, j E S is said to be fixed to 1 if the partial solution S with the
opposite value x, = 0 instead of x, = 1 has already been fathomed, i.e. is known to
possess no completion with a smaller value of the objective function. Similarly, a
variable x,, j E S is said to be fixed to 0 if the opposite branch x, = 1 has been or
need not be investigated.

By contrast, a variable x,, j E S is called set to a binary value p if the partial
solution S with the opposite branch x, = 1 - p instead of x, = p is not excluded
from further investigation.

The information on the status of each variable x,, j E J is stored in a status vector
st which contains information on all free and assigned variables.

In order to keep relevant information on the enumeration history all indices j E S
are stored in chronological order in a partial solution vector s = GI, j r , . . ., 1. .)
where j k is the index of the variable which was set or fixed at the k th level of the
enumeration tree. Finally, Vz(S) is conveniently stored in form of a vector vz where
02(k) = 0 if k E Vz(S), and vz(k) = 1 if the kth multiple choice constraint is
satisfied ,

2. The implicit enumeration procedure

The problem is solved by implicit enumeration using a modification of the
procedures suggested in [3], [13], and [15]. The approach is related to [9]. The
multiple choice constraints (2) are stored implicitly but the enumeration procedure
uses the structure of these constraints explicitly.

The enumeration proceeds in the usual fashion from an admissible partial
solution S. An attempt is made to fathom S. If this is successful, the last variable in
S which was set to 0 or 1 is replaced by its complement, i.e. the node selection rule
is LIFO.

If S cannot be fathomed, one (or more) variables x,, j E L (S) are selected to be
set or fixed to 0 or 1, depending on the outcome of some tests. Note that only
admissible partial solutions can be generated.

The algorithm uses several of the tests which have been suggested in the
literature [3, 5, 10, 11, 201. Unly non-Lero elements of the constraint matrix (1) are
stored and chained row-wise and column-wise, as will be discussed subsequently. In
view of the storage structure, tests are preferred which require very little
computational or updating effort.

The basic sequence of tests is shown in Fig. 1. It should be mentioned, however,
that Fig. 1 is only an approximate description of the algorithm. For example, if a
test results in fixing some of the variables, then in some cases the test will be
repeated after updating. In order to keep the exposition simple, such details are not
given in Fig. 1.

The following steps correspond to the numbers of Fig. 1:

Implicit enumeration

Initialize

397

1 b
Lower bound Ib (S)

Ib (S) 3 zkst
I

V*(S) = 0
2

Feasibility test

3 feas. compl.

3

Fixing tests

3 candidates

4

Select branch

5 1
Forward step (s)

I V@)l’ 1
I

f

I Search L (S) I
, 3 feas. cornpl.

+
Record solution

7 1
Backtrack I

3j E S not fixed b----.
Fig. 1.

(1) Calculate

Ib(S) = z (S) + min {c,} ,
k E V z (s) I E L k (s)

where Ib(S) is a lower bound for P (S) . If l b (S) ~ z B , , , backtrack.

398 P. Mevert, U. Suhl

(2) If V , (S) # 0 , then tests are carried out to determine if S has a feasible
completion. The basic test is as follows: Calculate

sup, < 6, (S) backtrack.
(3) (a) If sup, = b , (S) , then all variables whose coefficients determine sup, can

be set to 1 and all variables x,, j E L (S) with a,, < 0 can be set to 0; they can be fixed
if sup, is determined by a unique set of variables.

(b) If an element a, in sup, is replaced by the next smaller admissible element
of the special ordered set and the sum is less than b , (S) , then x, can be fixed to 1.

(c) If there exist elements a,, < 0, i E V1(S), j E L (S) , such that sup, + a, <
b,(S)<sup,, then x, can be fixed to 0.

(4) If no candidates where found in step 3 which can be set or fixed to 0 or 1, then
a variable x,, j E L (S) has to be selected to be set to 1. Several branching rules are
possible. For most problems the following rule seemed to work best:

if Vl(S) = 0, select x, with c, = minkcL(s){ck};
if Vl(S) # 0, select the variable with the smallest cost coefficient from those

variables which determine sup,.
(5) The candidates found in step 3 or the variable selected in step 4 are set or

fixed to 0 or 1. This is called a forward step. The vectors s, st, and v2, the right hand
side b , (S) , i E M, and the cost constant z (S) are updated. Note that L (S) is not
updated explicitly but is stored implicitly via v2, s, and st. Further, if variable x,
from a special ordered set Jk is assigned a value 1 the other variables x,, j E Jk, j f i
are not set to 0 but remain free and only uz is updated. This requires substantially
less book-keeping and storage space than explicit handling.

(6) If exactly one multiple choice constraint is still violated then the set of
admissible candidates L,(S), k E V,(S), is searched for a feasible completion. The
search is sequential by increasing cost coefficients, thus the least cost completion is
found first and the partial solution S is always fathomed.

(7) The enumeration process backtracks if a partial solution S can be fathomed.
In this case the partial solution vector s is searched from right to left until an index j
is found whose status is “set to p”. The status of x, is then replaced by “fixed to
1 - P’’ and 02, z (S) , b(S) , s, and st are updated; all indices in s to the right of j
change their status from “fixed” to “free”. The enumeration stops when all
elements of S have status “fixed”.

For this implementation the efficiency of the basic enumeration was increased by
using additional characteristics of the problem under consideration. For example, if
constraints of the type ~ l E , a , j x , j < b, with a,, 3 0 and b, 3 0 are present, the fact that
these constraints must never be violated can be used advantageously in steps 2 , 3 , 4 ,
and 6. Similarly, special tests were used for assembly-line-balancing problems.
Finally, penalties can be calculated in steps 3 and 4 of the algorithm which reduces
the number of branches significantly.

Implicit enumeration 399

3. Data organization

The efficiency of any enumeration procedure depends critically on the organiza-
tion and storage structure of the problem data. The coefficient matrix of realistic
problems is, in general, large but sparse. It is, therefore, not possible to keep the
entire matrix in core. In addition, storing all elements explicitly will require an
excessive computational effort for the usual feasibility and branching tests.

Storing non-zero elements by rows, only, will reduce core requirements signifi-
cantly and to some extend computation times for feasibility and branching tests.
The updating of the right-hand-side, however, requires prohibitive search times.

For this implementation non-zero elements were stored and chained row-wise as
well as column-wise. The list structure can be characterized as follows:
0 variables are ordered by increasing cost coefficients within each special ordered

set;
0 the constraint matrix (1) is partitioned into positive elements and negative

elements;
the positive elements of the same row and special ordered set are chained in
decreasing order of magnitude;
the negative elements of each row are chained in increasing order of mag-
nitude;
for each column, the positive elements and the negative elements are chained;
the multiple choice constraints are stored implicitly.

0

0

0

0

The storage of the coefficients of the constraint matrix (1) requires the following 5
arrays:

(a) value of element a,, ;
(b) row index i ;
(c) column index j ;
(d) pointer to next smaller positive element in same row and special ordered set,

or pointer to next larger negative element in same row;
(e) pointer to next non-zero element in same column.

The array (d) can be eliminated if elements are sorted in the appropriate order. In
addition the following pointer arrays are used:

(f) largest positive element in row i and special ordered set k ;
(g) smallest negative element in row i ;
(h) first positive element in column j ;
(i) first negative element in column j ;
(k) first variable of special ordered set k.
Finally, the arrays s, sf, uz, c, and b have to be stored and one additional array is

used which orders the variables by increasing cost coefficients within special
ordered sets.

The list structure allows efficient testing as well as updating. To calculate sup, in
step 2 of Fig. 1, for example, the vector u2 is searched sequentially for zero entries.
Assume u z (k) = 0; then pointer array (f) points directly to the largest positive

400 P. Mevert. U. Suhl

element a,, in row i and special ordered set k . If the status of variable x, is free,
then a,, is an element of sup, ; otherwise pointer array (d) is used to retrieve the next
smaller element in row i and special orderd set k, etc.

Similarly, in step 3c of Fig. 1, row i is searched for negative coefficients a,. For
this test, pointer array (g) points to the smallest negative element a,,. If sup, -t a,, <
b, (S) and j E L (S) , then x, is fixed to 0 and pointer array (d) is used to retrieve the
second smallest element in row i, etc., until the test fails for the first time.

As a final illustration, in step 6 of Fig. 1, the admissible variables of the remaining
violated multiple choice constraint are searched sequentially €or a feasible comple-
tion. If V , (S) = P, then for j E L (S) only a , < O have to be checked against
b , (S) < O . In this case, pointer array (i) leads to the top of the chain of negative
elements in column j . If V , (S) # P,, pointer array (h) leads to the chain of positive
elements az, > 0 in column j which are checked against b , (S) > 0.

4. Numerical results

A preliminary version of the algorithm was implemented on a CDC CYBER 72.
Three types of test problems were generated and run for various problem sizes.
Problem A is an assembly-line-balancing problem. A detailed description can be
found in [18]. Problems of type B are distribution and warehouse allocation
problems with side constraints. Problem B.l is based on [9], however, additional
side constraints were added to render the solution of [9] infeasible. The data for
problems B.2-B.5 were generated randomly. Coefficients of the objective functions
are uniformly distributed in the interval [l , 1011; coefficients of the general
constraints are uniformly distributed in the interval [1, 511. The right-hand-side
coefficients of each problem were assigned values between 60 and 120. Problem C is
a resource-constrained network scheduling problem. Table 1 summarizes the
results.

Thangavelu and Shetty [26] developed an efficient algorithm for assembly-line-
balancing problems without additional side constraints. They solved problem A in
4.8 sec. on the UNIVAC 1108. Solution times are difficult to compare; the
UNIVAC 1108 is, in general, several times faster than the CYBER 72. Problem B.l
without side constraints was solved by DeMaio and Roveda [9] who designed a
specialized algorithm to solve “pure” problems of this type. Their reported solution
time was 1 sec. on the 1108. Finally, problem C was solved previously in 58 sec. on
the IBM 370/158, using MPSX-MIP. For comparison, an attempt was made to solve
all problems except B.3, B.4, and B.5 using CDC’s LP-based system APEX 11. This
code has a feature to handle special ordered sets implicitly and efficiently. Problems
B. l and C were solved on the CYBER 72 in 19 seconds and 200 seconds CPU-time,
respectively. All other problems could not be solved in 1 hour CPU-time; the
feasible solutions which were found in 1 hour CPU-time did not contain the optimal
solution in any of these cases.

Implicit enumeration 40 1

Table 1 .

number of 0-1 variables
number of constraints
number of multiple choice constraints
density of problem matrix
number of problems solved
number of partial solutions investigated
number of feasible solutions found
total CPU-time in sec., including input processing

n
m

P
d
prob
nodes
solns
CPU

Problem n m p d prob nodes s o h CPU
min max min max min max

1280 - A 450 117 45 4.1 1 -
B.l 20 13 5 23.1 2 4 12 1
B.2 400 40 20 5.0 3 1237 7180 4

141 - B.3 1000 65 25 3.1 1 -
B.4 1000 65 40 3.1 2 1075 6256 4

22688 - B.5 1000 70 50 2.9 1 -

79 - C 58 46 6 23.5 1 -

7.1 2
2 0.2 0.2
9 3.4 19.7
2 - 1.6
9 5.1 31.1
3 - 90.4

-

1 s - 1 .s5
- -

All optimal solutions enumerated

The test results are insufficient to draw any final conclusions. It appears,
however, that even large problems of this special structure can be solved by implicit
enumeration in reasonable CPU-time. The number of general constraints seem to
have little influence on solution times as the increased computational effort is off set
by tighter bounds. The number of special ordered sets, however, appears to be a
limiting factor, as the computation times increase exponentially with the number of
special ordered sets.

References

[l] S. Ashour and A. Char, Computational experience on zero-one programming approaches to
various combinatorial problems, J.Op.Res.Soc. Japan 13 (1970) 78-108.

[2] K.R. Baker, Introduction to Sequencing and Scheduling, (Wiley, 1974).
[3] E. Balas, An additive algorithm for solving linear programs with zero-one variables, ORSA 13

[4] E. Balas, Discrete programming by the filter method, ORSA 15 (1967) 915-957.
[5] M. Balinski and K. Spielberg, Methods for integer programming, in: J. Aronofsky, ed., Progress in

Operations Research Vol. 111, (Wiley, New York, 1969) pp. 195-292.
[6] E.M.L. Beale and J.A. Tomlin, Special facilities in a general mathematical programming system for

non-convex problems using ordered sets of variables, in: J. Lawrence, ed., Proc. 5Ih IFORS
Conference (Wiley, New York, 1970).

(1965) 517-546.

[7] A.R. Brown, Selling television time: An optimization problem, Computer J. 12 (1969) 201-207.
[8] A.R. Brown, Optimum Packing and Depletion, (McDonald, London, 1971).
[9] A. De Maio and C. Roveda, An all zero-one algorithm for a certain class of transportation

problems, ORSA 19 (1971) 1406-1418.
[lo] B. Fleischmann, Computational experience with the algorithm of Balas, ORSA 15 (1967) 153-155.
[l l] R.S. Garfinkel and G.L. Nemhauser, Integer Programming, (Wiley, New York, 1972).

402 P. Mevert, U. Suhl

1121 A.M. Geoffrion and G.W. Graves, Multicommodity distribution system design by Benders

[13] A. Geoffrion, Integer programming by implicit enumeration and Balas’ method, SIAM Review 9

[14] A. Geoffrion, An improved implicit enumeration approach for integer programming, ORSA 17

[15] F. Glover, A multiphase-dual algorithm for the zero-one programming problem, ORSA 13 (1965)

[16] F. Glover and S. Zionts, A note OD the additive algorithm of Balas, ORSA 13 (1965) 546549.
(171 W. Healy, Jr., Multiple choice programming, ORSA 12 (1964) 122-138.
[18] M.D. Kilbridge and L. Wester, A review of analytical systems of line balancing, ORSA 10 (1962)

[19] N.L. Lawrie, An integer linear programming model of a school time-tabling problem, Computer J.

[20] C. Lemke and K. Spielberg, Direct search algorithms for zero-one and mixed integer programming,

[21] C. Peterson, Computational experience with variants of the Balas algorithm applied to the selection

[22] G.T. Ross and R.M. Soland, A branch and bound algorithm for the generalized assignment

[23] H. Salkin, On the merit of generalized origin and restarts in implicit enumeration, ORSA 18 (1970)

[24] H. Salkin, Integer Programming (Addison-Wesley, Reading, MA, 1975).
[25] U. Suhl, Entwicklung von Algorithmen fur ganzzahlige Optimierungsmodelle, unpublished

[26) S.R. Thangavelu and C.M. Shetty, Assembly line balancing by 0-1 integer programming, AIIE

[27] N. Tuan, A flexible tree-search method for integer programming problems, ORSA 19 (1971)

decomposition, Management Sci. 20 (1974) 822-844.

(1967) 178-190.

(1969) 437-454.

879-919.

626638.

12 (1969) 307-316.

ORSA 15 (1967) 892-914.

of R. & D. projects, Management Sci. 13 (1967) 7367.50.

problem, Math. Programming 8 (1975) 91-103.

549-555.

dissertation, Freie Universitat Berlin (1975).

Trans. I11 (1971) 64-79.

115-119.

Annals of Discrete Mathematics 1 (1977) 403-414
@ North-Holland Publishing Company

ON SOME NONLINEAR KNAPSACK PROBLEMS

I. MICHAEL1 and M.A. POLLATSCHEK
Faculry of Industrial and Management Engineering, Technion, Haifa, Israel

Minimization of separable strictly convex function is considered with nonnegative integer
variables when the sum of variables is constrained. Theorems concerning the condition for the
optimum and properties of the optimal solution are presented. For a few types of functions this
problem displays “periodic” properties similar to those in linear integer programming: The
difference between the noninteger and integer solution is a function depending solely on the
position of the noninteger solution inside a hypercube formed by the neighbouring integer points.
Utilization of this property shortens drastically the search for the integer solution, in many cases
the problem reduces to nonlinear 0/1 problem.

1. Introduction

Nonlinear integer programs have attracted less attention than their linear or
nonlinear 0/1 counterparts. (See [3,5] and the works referenced there for these two
cases.) We are aware of references [1,2 ,6 ,7 ,8 and 101 only. If general theorems are
desired, even the convex case appears to be quite intractable when there are more
than one variable as has been pointed out recently [9].

Our aim is to eventually deal with the program wherein the minimand is
separable and strictly convex and the constraints are linear. This paper is the first
step toward this end: the constraint treated here is that the sum of variables is b.
Thus, our problem is (P):

minimize 2 fi (x i = F(x) ,
i = l

subject to xi = b,
i = l

x i > O , i = 1 , 2 ,..., n, (3)

xi is integer, i = 1,2,. . ., n, (4)

where b is a positive integer and f, (x,) is finite strictly convex for each i, for all the
values x, satisfying (2) and (3).

The authors have been motivated by a problem where f i (x ,) = c,p:1, which arises
for example in allocating b (identical) weapons to n targets. Let c, be the utility of
destroying target i, 1-p, the probability of destruction by a single weapon,
assuming independence among the weapons and additivity of utility one arrives

403

404 I . Michaeli, M . A . Pollatschek

(after trivial modifications) to (P) with the above j (.) where x, is the number of
weapons allocated to target i.

It is hoped that (P) will serve as a vehicle to analyse the case where the
constraints are linear but otherwise arbitrary.

In Section 2 an easily applicable necessary and sufficient condition is derived for
the (integer) optimum of (P) (Theorem 1 and its corollary). Denote an (integer)
optimal point of (P) by x o and the optimal point when (4) is disregarded by x * . It is
shown that either x: 3 [x :] for each i or x: [x T] + 1 for each i, or both, when [a]
is the largest integer not exceeding a. It is easy to check whether both inequalities
hold in which case (P) reduces to a 0/1 program which is less difficult to solve.

It is hoped that Theorems 1 and 2 can be extended to a more general program,
although their proofs exploit heavily the properties of constraint (2).

For a few types of functions it can be shown that xo- x * is not a function of b.
This is very similar to the phenomenon in asymptotic integer linear programs [4]
and has not been previously observed in the literature for the nonlinear case. Thus,
a general integer solution may be provided for an infinite number of right-hand
sides.

2. Theorems

Theorem 1.
(4) and (5) :

x = (xl, xz, . . ., x.) is a solution of (P) i f and only i f it satisfies (2), (3),

J (X l) + f ; (X ,) ~ f , (X l + m)+fi(x, - m) (5)

for each pair i, j (i = 1,. . ., n ; j = 1,. . ., n ; i# j) and each integer m such that

Proof. The necessity of (2), (3), (4) and (5) for optimum is trivial. Their sufficiency
will be established by contradiction. Assume that x o is an optimal solution and x + is
not: F(x') > F(xo) , while both are feasible, i.e., satisfy (2), (3) and (4). Suppose that
x+ also satisfies (5) (xo clearly does). Denote one of them by x n and the other by x h
as follows: Define

and order the variables and points so that

(7) f f l 2 a!* 2.. . 3 a!",

f f 1 + (Y , C O . (8)

Note that this can be done without loss of generality and since both x R and x h
satisfy (2) we have

Some nonlinear knapsack problems

2 a, = 0.
, = I

Moreover, x a # x

a1 > 0;

and (7) imply that

a" < O .

Two cases will be dealt with separately: the case where a1 + an = 0 and the case

Case 1: Assume a1 + an = 0. Consequently,
where ayl + a, < 0. (By (8), these are the only possibilities).

x; + x:: = x: + xi,

f i (X ;) + fn (x) =S f i (x :) + fn (x X), (1 1)

f l (x ~) + f n (X ~) ~ f l (X ;) + f n (X : :) . (12)

fl(x;) + f" (XE) = f l (X ?) + f" (x S) . (13)

and by assumption both x ' and x b satisfy (5) , hence

From (11) and (12) follows that

If a1 = 1 (and a. = - 1) then, by (7) and (9), either a, = 1 or a, = - 1 or a, = 0 for
each i. From (7) and (9) it also follows that

a, + an+l-I = 0

for each i, and hence analogously to (13):

fi(x:)+fn+l-, (X::+Ih) = f i (X :) + f " + l - , (xi+1-,).

Since for odd number of variables there must exist

a (n + l) / z = 0,

we have (for even or odd number of variables)

F(x") = F(xb) ,

which is a contradiction to the initial assumption that F(x") < F(x').
If aI > 1 then by strict convexity of fl(xl) and f n (x n) and by (5) we have

f l (x ;) + fn (x ::) < fl(x 7 - a 1) + fn (x :: - a n)

or

f l (x) + fn (x ::) < f i (x B) + fn (x i)>

which contradicts (13).
Case 2 . Assume a1 + an < 0. By assumption, both x a and x b satisfy (5):

f l (~ ;) + f n (~ : :) < f l (~ ? - y)+fn(xZ + y) (14)

f l (x :) + f " (X i) ~ f l (X : + 2) + f n (x i - z) (15)

for y and z integers, satisfying

406 I . Michaeli, M . A. Po llatsc he k

Eqs. (16) and (15) can be rearranged as follows:

fn(xf: + a n) - f n (x f : + a n + Y) S ~ ~ (X ! + a1-y) - f i (x ! + (~ 1) (17)

Note that the substitution of (19) into (17) and (18) does not violate (3): By (6) and
(lo), aI is a positive integer, and

x: + a1-a1= x; 20.

x f : = x : : - a " = x:: + a1 - (a1 + a,),

XI: >x:: +a1,

x: - a1 > x:: 2 0,

We still have to show that xx - a1 is nonnegative. We have by (6)

and since a1 + a, < 0,

which is the desired result.

hand-side of (17) and the left hand-side of (18), implying:
Substitution of (19) into (17) and (18) results in equality between the right

fn (x I: + a,) - f" (x x + a1 + a,) 5 fn (x x - a1) - fn (x 1:),

fn (X f: + a n) + fn (X I:) =S fn (X 1: - a1) + fn (X f: + + an) .

which can be rearranged as:

By (7), (10) and the assumption a1 + a n < 0,

xf: +a, <xf : - a 1 < x f :

x I: + a, < x I: + (a1 + a,) < XI:,

fn(xf: - a,)< Af"(XI:)+ (1 - A)f"(Xf: + an)

and due to strict convexity of f,,(x,) we have

fn(xf: + a , + a ,) < (l - A) f , (x f :) + f , (x f : + ~ ,)

for A = 1 + al/an (note, that 0 < A < 1).

Some nonlinear knapsack problems 407

Summation of (21) and (22):

f n (X f : - a l) + f n (x f : + (y l + (y n) < f n (x f :) + f " (x f : + (y n)

contradicts (20).
These exhaust all the cases, and the proof of Theorem 1 is now complete. 0

Corollary. x is a solution of (P) if and only if it satisfies (2) through (4) and

f , (x t) + f , (x ,) s f , (x ~ + m) + f , (x J - m ,

max { - 1, - x ~ } s m s min {x,, 1).

(5)

G 3)

for each pair i , j (i = 1,. . .7 n ; j = 1,. . ., n ; i # j) and integer m :

Proof.
condition of the theorem

The corollary differs from the theorem only in (23), which replaces the

- x, =G m =G x,.

However, this is possible by strict convexity of right hand-side of (5) as a function of
O m, which follows from strict convexity of f, and f,.

Consider the problem

minimize{f,(y,)+f,(y,)Jyl+Y, = p ; Y ! 7 Y J ER).

Let y * = (y:, y:) be the solution; clearly y * is a function of p.

Lemma 1. y T and y 7 are monotone nondecreasing functions of p, while

Ifi moreover, f i and f i are differentiable, then y T and y 7 are monotone increasing in p,
while

Proof. Consider p1 and p2, P1 < Pz and the corresponding optimal y T = (y Tl, y rl)
and y = (y Tz, y TZ). Now

p1<p2 * YTl+yTl<YT2+y:2.

f:(y T l) = f'.(I Y J 1 *). 9 f :(y T*) = f:(y 3,

Lagrangian optimality conditions require that

408 I. Michaeli, M.A. Pollatschek

where f ' denote a point from the proper subdifferentials at points y T and y T resp.
Suppose that y T l > y T2. Consequently:

y T l > y TZ * f:(y T1) > f:(y T,) - f K Y Tl) ' fKY TZ)
* Y T I Z Y T 2 .

The implications are due to the fact that f is strictly convex, while the equivalence
follows from (26). Hence,

y T* + y TI > Y T Z + yT2,

which contradicts (25) and proves that y T are monotone nondecreasing functions of
p for each i .

If the differentials exist (and denoted by f: and f:) then supposing y f l 5 y,;
implies:

y T I 3 y f 2 e f:(y TI) 5 f:(y TZ) - fXY T1) a f K Y Tz) - y:1 Y Tz,

analogously to the previous case, whit-- similarly contradicts (25) proving the
monotone increasing property.

Eqs. (24) and (24') follows from the monotone property and that the sum of y T
0 and y: must be p.

Theorem 2.
and let xo = (x?, . . ., xz) be the (integer) solution of (P). Then either for each i

Let x * = (x T, . . ., x ?:) be the (continuous) solution of (l), (2) and (3),

x : < x t + 1

or for each i

x:>x:-1

or both.

Proof.
of variables. Let us look at the variables xi and x,. Define

By Theorem 1, the optimality of x o may be established by looking at pairs

p* 2 x:+x:

s 9 po- p * .

Some nonlinear knapsack problems 409

Let y * = (y T, y;) be the optimal solution of

minimize {fi (y,) + f, (Y, 1)
subject to y, + y, = P o .

If y * is integer we must have x: = y T, since x: is optimal, therefore the following is
implied:

yT - 1 < x: < y : + 1. (27)

If y * is noninteger note that [y T] + k and [y 71 + 1 - k consist of a feasible solution
to the above minimization for any integer k. By optimality of y * and strict
convexity of f , (.) and f , (.):

fi (Y T) + J (Y 3 < fi ([Y TI) + f, ([Y TI + 1) < fi ([Y TI - m) + f, ([y TI + 1 + m),

f,(Y T)+f,(Y T) <ft([Y TI + I) + i ([Y Tl)<fl([Y T I + 1 + m>+f,([y TI - m),
for any m > O , integer. Now, by Theorem 1,

fa (x :) + f, (x 7) s f, (x : +) + f, (x 7 - fl)

for any integer n.

x: = [y TI + 1. This again implies (27).

the case where 6 = 0.

By comparing the last three inequalities i t is apparent that either x: = [y t] or

Let us now deal with three cases: The case where 6 > 0, the case where 6 < 0 and

Case 1. For 6 > 0 we have by Lemma 1

X T c y : s x : + 6.

By combining (27) with (28) we obtain

(29) x:- 1 <x:< x:+ 6 + 1,

and by the same way

x y - 1 < x;<x:+ 6 + 1.

x t - 6 s y f s x T .

Case 2. For 6 < 0 we have by Lemma 1

By combining (27) with (31) we obtain

x t - (6 + 1)<x3< x t + 1, (32)

and by the same way

x; - (6 + 1)<x;< x;+ 1.

Case 3. For 6 = 0 we have x T = y f , so by (27) we have

(33)

410 I. Michaeli, M.A. Pollatschek

and also

x; - 1 < x:< x; + 1.

Let us now define the correction f, of the variable x, by

f, = x:- x f ,

and let us arrange the variables in decreasing order of the t,’s such that

(35)

tl 2 t z 3 . . . 3 f,.

Since c:=, t, = 0, we have tl 3 0 and f,
x, and x, is

0. Note that the value of 6 for the variables

6 = f, + t,.
In the case where + t,, 3 0 we have

f l + f , 3 0 , j = 2 ,..., n,

and by (29, (30), (34) and (35) we get

x;.>x;-1

for each j .
In the case where f I + f, < 0 we have

t , + t , , < O , j = 1 , ..., n - 1 ,

and by (32), (33) we get

x;.< x; + 1

for each j . This completes the proof. 0

Corollary. If there exists at least one variable for which x: > x T + 1, there exist at
least two variables for which xy = [x TI, and if there exists at least one variable for
which x: < x T - 1, there exist at least two variables for which xy = [x T] + 1. ([x :] is
defined as the greatest integer which is not greater than x;).

Proof. Define

E , A x; - [x f] .

By (2), X:=I x f = c:=1 [X T] + c:=, E , = b. Since [x T] and b are integers, c:=, E , must
also be an integer. Since E , < 1 for each i,

, = I

Assume x t > x 2 + 1, say

x;=[x:]+ l ; 1>2 .

(36)

(37)

Some nonlinear knapsack problems 41 1

By (2), xysl x4 = b, and we have

i = l i = l i = l
(38)

Substitution of (37) into (38) yields

i f k i # k i = l

or

C x 3 s z [xT]+(n-l-Z) .
i f k i # k

By (37), n - 1 - 1 s n - 3, hence

C x : s z [xT]+(n-3). (39)
i f k i # k

By Theorem 2 and by (37), for each i, x 9 2 [x TI, and by (39) at most n - 3
variables may be at their optimal value with values greater than [x TI. This leaves at
least two variables for which xs = [x 71.

The second part of the corollary will be established in a similar way. Assume

x i = ([x t]+ 1)- I ; 1 3 2 . (40)

BY (21,

, = 1 # = 1 , = I

Substitution of (40) into (41) yields

c x9- I = c ([x:]+ 1)- c (1- E ,) .
r#k i # k ,=1

Since C:=, (1 - E ,) s n - 1,

or

c. x 3 3 C ([xT]+ l) - (n - l - l) .
i # k i#k

412 I . Michaeli, M . A . Pollatschek

By (40), n - 1 - 1 s n - 3 , hence,

By Theorem 2 and by (40), for each i, x: < [x :] + 1 , and by (42) at most n - 3
variables may be in their optimal values with values lower than [x :] + 1.

0 This leaves at least two variables for which x: = [x f] + 1.

Lemma 2.
defined as

If fi(y,) and f i (y l) are differentiable and strictly convex, then G(P),

G (P) = min {f, (Y ~) + f, (Y ,) I Y + y1 = P ; Y,, y1 E R),
YhY,

is also differentiable and strictly convex in p.

Proof. Is straightforward, therefore omitted. 0

The recursive application of Lemma 2 to Lemma 1 for differentiable h,
i = 1,2, . . ., n, implies the following:

Corollary.
monotone nondecreasing function of b.

Denote by x x the optimal (continuous) solution of (1)-(2). Then x x is a

Assume the existence of 6 so that x x 2 0 (the inequality is taken component-
wise). Then, by the corollary, any right-hand side, b 2 6 implies x r 2 0, and (3) is
automatically satisfied.

This is analogous to the asymptotic integer-linear programs [4] where the
nonnegativity requirement is also assumed to hold. The analogy - at least for a few
nonlinear functions, f, (x ,) , - is deeper: the difference between noninteger and
integer solutions is independent of the right-hand side. This will be shown for
f, (X#) = c,p::

By Theorem 1:

If b 2 b; (3) may be discarded from the program comprising (l), (2) and (3) and at
the continuous) optimum, x *:

f : (x T) = c,p?lnp, = clp;;Inpl = f '(xT).

Dividing the above inequality's sides by the corresponding sides of this equality and
simplifying we obtain

Some nonlinear knapsack problems 413

(43)

which, by the notation: z, A x:- [x T] , E , 5 x': - [x f] , may be written as:

Note that a necessary and sufficient condition for the optimum is that this
inequality holds for each pair i , j and integer m. z is a function of the problem's
parameters and E : the position of x * in the hypercube {x I [x T] S xi S [x t] + 1).
Two different right-hand sides b', b" yielding the same E induce also the same L or
x o - [x*] , or, equivalently, the same x o - x * (as E is equal for b' and b", by
assumption). There are a few other functions for which z is determined by E only.

This observation depends on the fact that (43) is a function of x o - x * , m and the
parameters of the problem only. It can be generalized as follows:

Theorem 3. Let fi(xi) be differentiable, denote its differential by f i (x i) . Assume that
there exists a bsuch that for b 2 b (3) is satisfied by the solution of (1)-(2). Assume
the existence of a function H(. , . , .) and of n functions q+i(. , .) such that H(. , . , .) is
monotone increasing in its first argument and

H(f,(xi)-fi(xi + m) , f : (y i) , m) = + (m , Xi - y i) .

Then x3 - x depends only on x T - [x T] for each i (and not on b) when b 2 b:

Proof.
(3) and at the (continuous) optimum, x * :

If b 3 b; (3) may be disregarded from the program comprising (l), (2) and

f :(x T) = f : (x 7) .
Theorem 1 which can be written as

J (x ?) - fi (x ? + m) f, (x ; - m) - f, (x;) ,

is equivalent with

+t (m, x y - x T) c +, (m, x - x 7 - m)

by the required property of H and the equality of the differentials. The last
inequality, which is necessary and sufficient to the (integer) optimum, implies that

0 x o - x * depends only on x * - [x *] (when [.] is applied componentwise).

Finally we illustrate Theorem 3 for the function f (x,) = u,xf + v,x, + wi :

H(f,(x:)-fi(xY- m) , f ' (x T) , m) =

=J(x:)-J(xy- m) - mf'(xT)

= u,(x?)*+u,(x?)+ w, - [u , (~ ~ - m) ~ + v , (x ~ - m) + w ,] - m [2 u , x ~ + u ,]

- 2mu,(x:- x ':) - u,m2 = +,(xy- x : , m) . -

414 I. Michaeli, M.A. Pollatschek

Acknowledgements

The authors wish to express their gratitute to the anonymous referees who
helped to make this communication clearer, correct and readable.

References

[I] E. Balas, Duality in discrete programming 11. The quadratic case, Management Sci., 16 (1969)
14-32.

[2] R.E. Burkard, A method for mixed-integer convex programming, in Proc. Fourih Conf. on
Probability Theory (Editura Academiei Republicii Socialiste Romania, 1973).

[3] A.M. Geoffrion and R.E. Marsten, Integer-programming algorithms, Management Sci., 18 (1972)
465-491.

[4] R.E. Gomory, On the relation between integer and non-integer solutions to linear programs, Roc.
Nat. Sci., USA, 53 (1965) 260-265.

[5] P.L. Hammer, Boolean procedures for bivalent programming, in: P.L. Hammer and G. Zouten-
dijk, eds., Murhemarical Programming in Theory and Applications (North-Holland, Amsterdam,
1974).

[6] B. Korte, W. Krelle and W. Oberhofer, Ein Lexicographischer Suchalgorithmus zur Losung
allgemeiner ganzzaliger Programmirungsaufgaben, Unternehrnensforschung, 13 (1969) 73-98;
171-192.

[7] H.P. Kunzi and W. Oettli, Integer quadratic programming, in: R.L. Groves and P. Wolf, eds.,
Recent Advances in Mafhemafical Programming (McGraw Hill, New York, 1963).

[8] B.L. Miller, On minimizing non-separable functions defined on integers with an inventory
application, SIAM J. Appl. Math., 21 (1971) 166-185.

[9] A. Washburn, A note on integer maximization of unimodal functions, Operations Res., 23 (1975)
358-360.

[101 C. Witzgall, An all-integer programming algorithm with parabolic constraints, J. SIAM., 11 (1963)
855-871.

Annals of Discrete Mathematics 1 (1977) 415-419
@ North-Holland Publishing Company

THE MINIMAL INTEGRAL SEPARATOR OF A THRESHOLD
GRAPH

James ORLIN
Deparfment of Operations Research, Stanford Uniuersify, Stanford, California 94305, U.S.A.

A graph is called threshold if there exists a real number b and real numbers a, associated with
its vertices w, such that ~ J E S a J =s b holds iff S is a stable (independent) set of vertices. The vector
(a,, . . , , an; b) associated to a threshold graph is called an integral separator if a, + a, 3 b + 1 for
every edge (w., w,) . A simple algorithm is presented to determine for a given threshold graph its
(unique) integral separator which minimizes b.

Let G be a loopless finite graph without multiple edges. If w is a vertex of G, let
d (w) be the degree of w. The edge joining vertices u and w will be denoted as

Graph G is said to have property P if for every two vertices u, u such that (u, u) is
an edge, and for every pair of vertices u *, u* with d (u *) z d (u) and d (u *) z d (u) ,
(u *, u *) is an edge. In this definition it is possible that u * = u or that u * = u.

It has been shown in [l] that graph G has property P iff it is a threshold graph.
Suppose G is a threshold graph with vertices w l , w2, wI,. . . , w,. For I C

{1,2,. . . , n} let Sr = {w, I i E I}. Let A = (al, u2, . . . , a,) be a real vector and let b
be a real number. The pair [A ; b] is said to separate G integrally if the following
holds:

(4 w).

(1) a, 3 0 for i = 1, ..., n ;
(2) Clcral
(3) C,tra, 3 b + 1 iff Sr is a non-stable set of vertices.
It was shown in [l] that a graph G is threshold iff there exists a pair [A ; b] which

separates G integrally.
The following algorithm determines for a threshold graph G a hyperplane

[A *; b *] which separates G integrally and such that b* is minimum. It will also be
shown that it is the unique hyperplane with minimum b.

b iff Sr is a stable (independent) set of vertices;

Algorithm A.
Step 0: Relabel the vertices as wl,. . . , w. such that d (w ,) d(w2) S * * C

Step 1: Let t = minimum index such that (w,, w ~ + ~) is an edge of G. [If n o such z

Step 2: If d (w ,) = O let aT=O. If d (w l) a l let a T = l .

d(w.).

exists let at = 0 for i = 1 to n and let b* = 0. Then exit from algorithm.]

415

416 J . Orlin

Step 3: For i = 2 to t if d (w ,) = d (w , - ,) then let a f =

Step 4: Let b * = a T + a T + . . . + a r .
Step 5: For i = t + 1 to n let s, be the minimum index such that (w,, w,,) is an

if d (w ,) > d (w , - ,)
then let a f = 1 + a : + a : + . . . + a ; - , .

edge. Then let a : = b * - a : , + 1 .

Example. Let G be the graph in Fig. 1. Table 1 shows how the algorithm worked.

"9

Fig. 1

Table 1

v, v2 v 3 v, v, V6 v, v, v9

d (V ,) 1 1 2 2 3 3 4 6 8
a t 1 1 3 3 9 9 1 8 2 4 2 6

of algorithm
defining step 2 3 3 3 3 3 5 5 5

t = 6 as defined in step 1.
b* = 26 as defined in step 4.

Proposition 1. [A; b] U S constructed in algorithm A does separate the threshold
graph G integrally.

Proof. Assume that the vertices have already been relabeled such that d (w ,) s
d (w z) S * * S d (w .) .

Case Or Algorithm A exited at step 1 after labeling a T = 0 for i = 1 to n.
Claim : G has n o edges. Else consider edge (wi, w,) of G such that i < j . Then

i G n - 1 and j s n. From this it follows that d(w, - ,) 5 d (w i) and d (w ,) 3 d (w ,) .
But G has property P. Thus (w " - ~ , w,) is an edge. Thus in algorithm A t C n - 1.
This contradicts that the algorithm exited at step 1. Hence G has n o edges. It
follows from the definitions that [A *, b*] does separate G integrally in this case.

Now assume that algorithm A exited at step 5 with [A *; b*] which does not
separate G integrally.

The minimal integral separator 417

Case 1: There exists a stable set Sl such that x , , l a : > b * . Let I = {jl, j 2 , . . . , j k }

with j l G J z S . . . S j k . If j k G t then x,,, a T G x:=l a = b* and we have a contradic-
tion. Thus we may assume that j k > t + 1 . Let q = s,, as chosen in step 5 of
algorithm A. Thus (w4, w,,,) is an edge of G. If q S j k - 1 then d(w,) S d(w,,-J. Since
G has property P, this would mean that (w,,-,, w,,) is an edge of G, contradicting
that Sr is stable. Hence we may assume that q > j k - I . But now by construction of
[A *, b *] we have:

q-1

x a T C a T , + C a T = a T , + (a ; - l) = b *
, E l , = I

Thus for all stable sets SI the proposition is true.
Case 2: There exists a non-stable set Sr such that C,,,aT < b* + 1 .
Then Sl contains vertices w,, w, such that (w,, w,) is an edge. Assume that i < j . If

j S t then i 6 t - 1 and d (w ,) < d(w,-,) and d(w,) S d(w,). Since G has property P,
this would imply that (w ~ - ~ , w,) is an edge, which is a contradiction. Hence we may
assume that j > t. Then by the choice of S, in step 5 it follows that i 5 s,. But then

Thus the proposition is ture.

Proposition 2. Let [A ; b] be any hyperplane that separates G integrally, where
A = (al, a*, . . . , a n) . Then for all i from 1 to t it is true that a, 3 a :.

Proof. Once again assume d(wl) S d(w,) < * . . C d(w,) . If d (w ,) = 0 than a T = 0
which is minimum by definition. Else there exists w, such that (w , , w,) is an edge.
Thus in any hyperplane [A ; b] which separates G integrally we must have that
a, S b and a , + a, 3 b + 1. This implies that a l 3 1. Thus a l 3 aT = 1 .

Assume inductively that a : is minimum for i = 1 to k - 1 for k c t. It will be
shown that a : is also minimum.

Suppose d(wk-1) = d(wk). Then since G has property P, Wk-1 and wk are
adjacent to the same other vertices. By symmetry and by the induction hypothesis
ak 3 a:-l. Since = a : we have that ak 3 a : and that a : is thus minimum.

Suppose instead that d(Wk-I) < d (w k) . Choose q to be the minimum index such
that wp is adjacent to wk but not to W k - 1 . Since G has property P, w, is not adjacent
to any w, for i = 1,. . ., k - 1; it is also true that no two vertices in S =
{ w l , w z , . . . , wk-1) are adjacent. Thus in any hyperplane [A ; b] we have

k - 1

a, + aq s b.
, = I

418

It follows that

J. Orlin

Corollary. The value for b* is also minimum.

Proof. { w l , w 2 , . . ., w,} is a stable set. Thus

Proposition 3. The algorithm constructs the unique [A ; b] which separates G
integrally with minimum b,

Proof. Suppose [A ; b *] separates G integrally. Since

it follows that a, = a t
For i = t + l , t + 2 , .

t 2 a : = b*
i = l

for i = 1 to t .
., n we have that

a, + a t , 2 b* + 1

a, + c a T c b * .
f - 1

, = 1

By construction
El - 1

, = I
C a T + I = a : , .

Thus a, = b* - a: ,+ 1 = a ? .

Proposition 4. The hyperplane [A *, b *] is also the solution to the following linear
program :

min b

s.t. 2 a, c b
, = 1

and, for j = t + 1 to n,

a, + as, 3 b + 1
s - 1

a, + c a , c b
& = I

where s, and t are chosen as in the algorithm.

The minimal integral separator 419

Proof. By (2) and property P for any non-stable set S,, x lEra i 2 b + 1. If S, is stable
then either I C {1,2,3, . . . , t } or else I C {1,2, . . . , sj - 1, j } for some j . In either case
by (1) and (3) we must have that xCi, ,ai G b.

Acknowledgement. Partial support through NRC (Grant A 8552) is gratefully
acknowledged.

Reference

[l] V. Chvital and P.L. Hammer, Aggregation of Inequalities in Integer Programming, Ann. Discrete
Math. 1 (1977) 145-162.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 421-434
0 North-Holland Publishing Company

ON THE COMPLEXITY OF SET PACKING POLYHEDRA*

Manfred W. PADBERG
Graduate School, Faculty of Business Administration, New York University, New York, N Y 10006,
U.S.A.

We review some of the more recent results concerning the facial structure of set packing
polyhedra. Utilizing the concept of a facet-producing graph we give a method that can be used
repeatedly to construct (arbitrarily) complex facet-producing graphs. A second method, edge-
division, is used to further enlarge the class of facet-defining subgraphs.

1. Introduction

We consider the set packing problem (SP)

max ck

A x S e

x i = O or 1 f o r j = 1 , ..., n

where A is a m X n matrix of zeros and ones, e T = (1,. . ., 1) is a vector of m ones
and c is a vector of n (arbitrary) rational components. This class of combinatorial
optimization problems has recently received much attention, both as a problem of
considerable practical interest -see e.g. [3,10,22] for recent survey articles for this
problem and its close relatives - as well as a combinatorial programming problem
that captures most of the difficulties and computational complexities that are
present in the general zero-one programming problem [2, 10, 11, 151.

In this paper we extend the class of “strongest” cutting planes or facets known
for problem (SP) and show that for set packing problems of sufficiently large size
arbitrarily “complex” valid inequalities can be constructed that, however, are facets
of the convex hull of (integer) sohtions to (SP), i.e. belong to the class of linear
inequalities that uniquely define the convex hull of solutions to (SP). Without
restriction of generality, we will assume throughout the paper that A does not have
any zero column or zero row. Denote by P = P(A, e) the polyhedron given by the
feasible set of the linear programming problem associated with (SP), i.e.

P(A, e) = {x € R“ I Ax G e, x ZO}. (1.1)

* Parts of this paper were presented in preliminary form at the NATO Advanced Study Institute
Symposium on Cornbinatorial Programming held in Versailles, France, September 1974.

42 1

422 M.W. Padberg

Furthermore, let PI = P l (A , e) denote the set packing polyhedron, i.e. the convex
hull of integer points of P

~ , (~ , e) = c o n v { x E P (A , ~) ~ x integer}.

By the theorem of Weyl[25], there exists a finite system of linear inequalities whose
solution set coincides with PI, i.e.

PI = { x E R " (H x h , x S O } (1.3)

for some appropriate matrix H and vector h. Some research activity has recently
focused on identifying part (or all) of those linear inequalities that define PI, see [5,
16, 17, 18,20,21,23,24]. This interest is motivated in part by the desire to use linear
programming duality in proving optimality - with respect to the linear form cx -
of a given extreme point of PI. As every extreme point of PI is also an extreme point
of P and hence of any polyhedron P satisfying PI C P P, it is generally sufficient
to work with a partial - rather than a complete - linear characterization of PI.
More precisely, one is interested in finding part (or all) of the linear inequalities that
define facets of PI. Note that dim P = dimPI = n, i.e. both P and PI are fully
dimensional. As customary in the literature, we will call an inequality n-x G r0 a
facet of PI if (i) T X s m0 for all x E PI and (ii) there exist n affinely independent
vertices x ' of PI such that n-x' = no for i = 1 , . . ., n. One readily verifies that each
inequality x, 2 0, j E N, is a (trivial) facet of PI, where N = {I,. . ., a} .

A construction that has proved useful in identifying facets of PI is the
intersection graph associated with the zero-one matrix A defining P. Denote by a,
the j th column of the m x n matrix A. The intersection graph G = (N , E) of A has
one node for every column of A, and one (undirected) edge for every pair of
nonorthogonal columns of A, i.e. (i , j) E E iff a ,u , 2 1. One verifies readily that the
weighted node packing problem (NP) on G for which the node weights equal c, for
j = 1 , . . ., n is equivalent to (SP), i.e. (NP) has the same solution set and set of
optimal solutions as the problem (SP). (The weighted node packing problem (NP)
on a finite, undirected, loopless graph G is the problem of finding a subset of
mutually non-adjacent vertices of G such that the total weight of the selected
subset is maximal, See [6, 10, 15, 181 for more detail on the stated equivalence.)
This observation is very useful as it permits one to restrict attention to node packing
problems in certain subgraphs of G when one tries to identify facets of PI.

2. Facet producing subgraphs of intersection graphs

Let n-x T,, be a non-trivial facet of PI. We can assume without loss of generality
that both rrJ, j E N, and r0 are integers. From the non-negativity of A, it follows
readily that 71; 2 0 for all j E N and .rr0>0. For suppose that N - = { j E N I
T, < 0) # 0 for some non-trivial facet r x s no of PI. As r x s r0 is generated by n
affinely independent points of PI, there exists an X E PI such that TX = no and

Complexity of set packing polyhedra 423

2, = 1 for some j E N - . (For, if not, then by the assumed affine independence we
have that I N-(= 1. It follows that ro = 0 and since all unit vectors of R" are feasible
points, - that r x < r(, is a triuial facet of the form x, 20) . But the point x given by
x, = Z,, j_E N - N-, = 0, j E N - is contained in PI as A is non-negative and
hence, r: > ro which is impossible. Consequently, every non-trivial facet r x s ro
satisfies r, 2 0 for all j E N and r o > O .

Denote by S = S (r) the support of r, i.e. S = { j E N I r, > O}. Let Gs = (S , Es)
be the induced subgraph of G with node set S and edge set Es C E and let
P s = P n { x E R" 1 x, = 0 for all if?!! S } . Due to the non-negativity of A, one verifies
readily that the convex hull PS of integer points of P s satisfies PS=
PI n {x E R" I x, = 0 for all j E S } . Furthermore, n-x S ro retains its property of
being a facet of PS. If one considers proper subgraphs of Gs, this property of
r x s ro may or may not be "inherited." In fact, if all components of T are
(non-negative) integers and ro = 1, then one readily verifies that for all subgraphs
(including those on single nodes) the property of r x ro to be a facet of the
resulting (lower-dimensional) packing polyhedron is retained. The next theorem
characterizes all facets of P, with integer r and ro= 1, see [9, 181.

-
-

Theorem 1.
K is the node set of a clique (maximal complete subgraph) of G.

The inequality c,,,x, S 1, where K C N, is a facet of PI i f and only i f

Thus one knows all subgraphs of the intersection graph G of a zero-one matrix
A that give rise to facets r x ro with nonnegative integer r,, j = 1,. . ., n, and
ro = 1. If, however, ro a 2 and ro does not divide all components of r, then there
exists a smallest subgraph G' of G, G' not an isolated node, such that T X v0
looses its property of being a facet of the packing polytope associated with the
packing problem of any proper subgraph of G'. If r >O, i.e. if S = N, then, of
course, the (full) intersection graph G may have this property and thus G may be
itself strongly facet-producing [24].

Definition. A vertex-induced subgraph Gs = (S , E s) of G = (N, E) with node set
S C N is facet-producing if there exists an inequality r x s 7r0 with nonnegative
integer components r, such that (i) r x s ro is a facet of PS = PI n { x E R" I x, = 0
for all j$Z S } and (ii) r x S m0 is not a facet for PT= PI n {x E R" I x, = 0 for all
je T } where T is any subset of S such that I T 1 = IS I - 1. A subgraph Gs of G is
called strongly fucet-producing if there exists an inequality r x c ro such that (i)
holds and (ii) holds for all T C S satisfying I T 1 G 1 S 1 - 1. A subgraph Gs of G is
facet-defining if there exists an inequality r x s r,, such that (i) holds and (iii) such
that r, > O for j E S. (Shortly we will say that Gs defines the facet r x s ro.)

Remark 1. Every strongly facet-producing (sub-)graph is facet-producing. Every
facet-producing (sub-)graph is facet-defining. If Gs is facet-defining, then Gs is
connected.

424 M. W. Padberg

Proof. The first two parts being obvious, let rrx c rro be a facet defined by
Gs = (S , Es), i.e. rr, > O for j E S, and suppose that Gs is not connected. Then
G, = (S , E ,) can be written as Gs = GI U G, where G, = (S , , E ,) with S,# 0 for
i = 1 , 2 and S = S , U S, , S, f l Sz = 0 and Es = E l U EZ. Let Pi be defined like P s
with S replaced by S,, and let rri = max {rrx I x E P i } for i = 1,2. Since T X c is
defined by Gs, it follows that rr; > 0 for i = 1,2. Define T T T ; = rr, for j E S,, rrf = 0
for j e S,, and let x ’ E P ; be such that rrx‘ = a i for i = 1,2. Since Gs is
disconnected, x ’ + x z E P: and hence, rrX + rri c T o . It follows that every x E PS
satisfying nx = rro satisfies rr’x = IT,!, for i = 1,2 and consequently, rrx =G is not a
facet of PS.

By the discussion preceeding the definition, it is clear that every facet rrx s T o of
P, is either produced by the subgraph G, having S = S(T) or if not, that there
exists a subgraph GT of Gs with T C S such that the facet i i x =G m0 of PT is
produced by GT where 71, = rrl for j E T, i;, = 0 for jE T and PT is defined as
previously. The question is, of course, given i i x < no can we retrieve the facet
rrx n o of PI. The answer is positive and follows easily from the following theorem
which can be found in [16].

Theorem 2. Let P s = PI fl { x E R” 1 x, = 0 for all j @ S} be the set packing polyhe-
dron obtained from PI by setting all variables x,, j E N - S, equal to zero. I f the
inequality c,,, a,xl s a. is a facet of P?, then there exist integers &, 0 ao, such
that Z J E S q x I + Z , E N - s ~ J x l s a. is a facet of PI.

/?,

Generalizations of Theorem 2 for more general polyhedra encountered in
zero-one programming problems have been discussed in [l, 4,12,14,19,26,28].

The apparent conclusion from this result - in view of the notion of the
intersection graph discussed above - is that the problem of identifying part (or all)
of the facets of a set packing polyhedron P, is thus equivalent to the problem of
identifying all those subgraphs of the intersection graph G associated with a given
zero-one matrix A that are facet-producing in the sense defined above. (It should
be noted that the “facet-defining’’ property of (sub-)graphs is a considerable weaker
property as in this case we require solely that the corresponding facet has positive
coefficients. The choice of terminology may seem somewhat arbitrary, but the
positivity of all components of a facet furnished by a facet-defining (sub-)graph is
crucial in some of the arguments to follow.) One possible attack on the problem of
finding a linear characterization of PI is thus t o “enumerate” all possible graphs
that are facet-producing, a truly difficult task as we will show in the next section.

3. Facet-producing graphs

Let G = (N, E) be any finite undirected graph having no loops. Denote by Ac
the incidence matrix of all cliques of G (rows of A,) versus the nodes of G

Complexity of set packing polyhedra 425

(columns of Ac). Let N = (1,. . ., n } and let Pc = {x E R“ 1 Acx S ec, x a 0) where
ec = (1,. . ., 1) is dimensioned compatibly with Ac. As before let PI denote the
convex hull of integer points of Pc, i.e. PI = conv{x E Pc I x integer). We will not
note explicitly the dependence of the respective polyhedra upon the graph G which
may be taken as the intersection graph associated with some given zero-one matrix.
The term of a facet-producing (facet-defining) graph is used here analogously with
S = N. If x is a node (edge) of G, then by G - {x} we will denote the graph
obtained from G by deleting node x from G and all edges incident to x from G (by
deleting the edge x, but no node from G). Denote by G the complement of G, i.e.
G = (N, % (N) - E) where % (N) is the set of all edges on n nodes. Every clique in
G defines a stable (independent) node set (or node packing) in G and every
maximal stable node set in G defines a clique in G. Let Qc = {x E R“ 1 Bcx s
dc, x 3 0) where Bc is the incidence matrix of all cliques in G and d z = (1,. . ., 1) is
dimensioned compatibly. Furthermore, let QI = conv{x E Qc I x integer}. One
verifies readily that Qc is the anti-blocker of PI and that Pc is the anti-blocker of
QI, see [9, 201.

Before investigating special facet-producing graphs it is interesting to note the
following proposition which substantially reduces the search for facet-producing
graphs. Contrary to what one might expect intuitively, it i s not necessarily true that
the complement C? of a facet-producing graph G is again facet-producing. The
graph in Fig. 1 shows an example of a facet-producing graph G whose complement
G is not facet-producing. In fact, whereas the graph G of Fig. 1 produces the facet
x:Z1 x, s 4, its complement C? does not produce any facet in the sense of the above
definition; rather, every facet of the associated packing problem is obtained by
“lifting” the facets produced by some proper subgraph of G, as the clique-matrix of
G is of rank 9.

Fig. 1.

To state the next theorem we meet the following definition from linear algebra:
A square matrix M is said to be reducible if there exist permutation matrices P and
Q such that

N O
O M ‘ = [= R]

where N and R are square matrices and 0 is a zero-matrix. If no such permutation
matrices exist, then M is called irreducible.

Theorem 3. Suppose that G defines the facet TX s r0 for PI such that

426 M.W. Padberg

max { r r x I x E Pc} = r r f is assumed at a vertex X of Pc satisfying 0 < 2, < 1 for
j = 1,. . ., n. If the submatrix A1 of Acfor which AIX = e, is irreducible (and square),
then the complement graph G is strongly facet-producing.

Proof. Since every row of Ac defines a vertex of Q I , it follows from the
assumption that O < X j < 1 for all j = 1, .. ., n that the hyperplane X y = 1 is
generated by n linearly independent vertices of Q I . On the other hand, AcX ec
implies validity of X y S 1 for Q17 i.e. QI { y E R” I Xy S l}. Hence, G defines the
facet Xy s 1 of Q,. Suppose that Xy 6 1 defines a facet for some k-dimensional
polyhedron Q, C QI satisfying k < n. Then there exist k linearly independent
vertices y ’ of 6, satisfying X y ‘ = 1. Since the submatrix A , of A, defining X is
square, it follows that upon appropriate reordering of the rows and columns of A1,
A, can be brought into the form (3.1) contradicting the assumed irreducibility
of A , .

As an immediate consequence we have the corollary:

Corollary 3.1.
is assumed at a vertex X of Pc satisfying 0 < 2, < 1 for all j = 1,. . ., n, then
a facet of QI.

If G defines a facet rrx rro of PI such that max{n-x 1 x E Pc} = rrf

defines

Chordless odd cycles (“holes”) as well as their complements (“anti-holes”) are
known to define facets. In the former case one readily verifies the hypothesis of
Theorem 3 to conclude that anti-holes as well as holes are strongly facet-producing.
More recently, L. Trotter [24] has introduced the notion of a “web” which properly
subsumes the aforementioned cases: A web, denoted W(n, k) is a graph G = (N, E)
such that IN/ = n 3 2 and for all i , j E N, (i 7 j) E E iff j =

i + k , i + k + 1,. . ., i + n - k , (where sums are taken modulo n) , with 1 S k S [n / 2] .
The web W(n , k) is regular of degree n - 2k + 1, and has exactly n maximum node
packings of size k . The complement W (n , k) of a web W (n , k) is regular of degree
2 (k - 1) and has exactly n maximum cliques of size k . One verifies that W (n , 1) is a
clique on n nodes, and for integer s 3 2 , W (2 s + 1, s) is an odd hole, while
W (2 s + 1 , 2) is an odd anti-hole. The following theorem is essentially from [2 4] , see
the appendix.

Theorem 4. k i f and only i f
k 2 2 and n and k are relatively prime. The complement W (n , k) of a facet-
producing web W(n, k) defines (strongly produces) the facet c;=, x, s [n / k] (i f and
only i f n = k [n l k] + 1).

The next theorem due to V. Chvital [5] provides some graph-theoretical insights
into graphs that give rise to facets with zero-one coefficients. To this end, recall that
an edge e of a graph is called a-critical if a (G - e) = a (G) + 1, where a (G)
denotes the stability number of G, i.e. the maximum number of independent nodes
of G.

A web W(n, k) strongly produces the facet C,”=,x,

Complexity of set packing polyhedra 427

Theorem 5. Let G = (V, E) be a graph ; let E *
If G * = (V , E *) is connected, then G defines the facet &,x,

E be the set of its (Y -critical edges.

a(G).

It would be interesting to know whether all facets of set packing polyhedra
having zero-one coefficients and a positive right-hand side constant can be
described this way. (The question has been answered in the negative by Balas and
Zemel [4a]). V. Chvatal also discusses in his paper [5] several graph-theoretical
operations (such as the separation, join and sum of graphs) in terms of their
polyhedral counterparts. Though very interesting in their own right, we will not
review those results here. In particular, the two constructions given below are not
subsumed by the graphical constructions considered by V. Chvbtal.

We note next that graphs that satisfy the hypothesis of Theorem 5 need not be
facet-producing in the sense defined in Section 2. In fact, the graph of Fig. 2
provides a point in-case. The facet defined by the graph G of Fig. 2 is given by
x;=l x, 2 which, however, is produced by the odd cycle on nodes {1,2,3,4,5}. The
coefficient of x6 is obtained by “lifting” the facet x:=l x, S 2, i.e. by applying
Theorem 2 .

1 1 - - - - - - 7 p - ~
5

Fig. 2

We next turn to a construction which permits one to “build” arbitrarily complex
facet-producing graphs. Let G be any facet-defining graph with node set V =
(1,. . ., n } with n 3 2 and consider the graph G * obtained by joining the i th node of
G to the i th node of the “claw” K1,” by an edge. The claw K,., , - also referred to
as a “cherry” or “star”, see [13] - is the bipartite graph in which a single node is
joined by n edges to n mutually non-adjacent nodes. We will give the node of K, , ,
that is joined to the ith node of G the number n + i for i = 1,. . ., n, whereas the
single node of Kl,,, that is not joined to any node of G, will be numbered 2n + 1.
(See Fig. 3 where the construction is carried out for a clique G = K4.) Denote by
V * = (1,. . ., 2n + 1) the node set of G * and by E * its edge-set. It turns out that G*
is facet-defining (this observation was also made by L. Woolsey [27]), and
moreover, that G * is strongly facet-producing.

Fig. 3.

Theorem 6. Let G = (V , E) be a graph on n 2 2 nodes and let T X S no be a
(non-trivial) facet defined by G. Denote by G* = (V * , E*) the graph obtained from

428 M . W. Padberg

G by joining every node of G to the pending notes of the claw K1," as indicated above.
Then G * strongly produces the facet

where x (') = (x l , . . ., x,,), x(')= (x " + ~ , . . ., x2") and x ~ ~ + ~ are the variables of the
node-packing problem on G * in the numbering defined above.

Proof.
polyhedron defined with respect to A,. The clique matrix of G * is given by A $:

Let A, be the clique-matrix of G and denote by PI the set packing

A, 0 0

0 I e
A $ = ' [I I 0 1 (3.3)

where I is the n x n identity matrix, e is vector with n components equal to one,
and 0 are zero-matrices of appropriate dimension. Denote by PT the set packing
polyhedron defined with respect to A 2.. To establish validity of (3.2) for P : we note
that x, = 1 for some j E { n + 1, , . ., 2 n) implies that x ~ , , + ~ = 0. Consequently, as

+ x(2) < . e, every vertex of PT having x, = 1 for some j E { n + 1,. . ., 2 n) satisfies
(3.2). On the other hand, since r x (l) < no for every vertex of PT and no < c;=, n;, it
follows that every vertex of PT satisfies (3.2). To establish that the inequality (3.2)
defines a facet of PT, let B denote any n X n nonsingular matrix whose rows
correspond to vertices of PI satisfying T X < n,, with equality. Then define matrix
B* as follows:

0
(3.4)

where Z is the n x n identity matrix, E is the n X n matrix with all entries equal to
one, e is the vector with n components equal to one, and 0 are zero-matrices of
appropriate dimension. One verifies that the absolute value of the determinant of
B* is given by

Hence, B * is non-singular since det Bf 0 and c;=, r, > r,, > 0. On the other hand,
every row of B* corresponds to some vertex of PT satisfying (3.2) with equality.
Consequently, (3.2) defines a facet of PT. To prove that G* produces a facet in the
sense defined above, we show that no graph G * - { j } defines the facet (3.2) for
j = 1 , . . ., 2n + 1. Note first that from the positivity of rr it follows that every vertex
of PT satisfying (3.2) with equality satisfies x, + xn+, + x z n + , 3 1 for all j E V. Let
now j E V and consider G * - { j } . Every vertex of PT satisfying x, = 0 and (3.2) with
equality, necessarily satisfies x,+, + x ~ , , + ~ = 1. Consequently, (3.2) does not define a

Complexity of set packing polyhedra 42 9

facet of P, = P: n{x ER*"+'Ix , = 0) for j E V. Consider next vertices of P t
satisfying (3 .2) with equality and x,+, = 0 for j E V. Since n 3 2 and rrx rro is
defined by G, it follows that the node j of G has a neighbor k (j) in G, i.e.
(j , k (j)) E E for some k (j) # j , k (j) E V. Consequently, every vertex satisfying (3 .2)
with equality and x,+ , = 0, also satisfies the equation x n+k(,) + x ~ ~ + ~ = 1. Hence (3 .2)
does not define a facet of Pa+, for j E V. Finally, every vertex of P t satisfying (3 .2)
with equality and xZ,,+' = 0 satisfies the equation x k + x " + ~ = 1 for all k E V, and
consequently, (3 .2) does not define a facet of Pzn+l. Consider next a subgraph
G' = (V', E ') of G * having I V'I s 2n - 1 nodes. If G' defines the facet given by
(3 .2) , then, as noted earlier, all vertices of P' = PT n { x E R2"+' I x, =

0, j E V* - V'} satisfying (3 .2) with equality must satisfy x, + xn+, + x ~ ~ + ~ 3 1 for all
j E V, since a vertex of P' is also a vertex of P : . It follows that V' must contain the
node numbered 2n + 1 and furthermore, that ie V' implies n + i E V' for all
i E V. Consequently, V C V' and V' n { n + 1 , . . ., 2 n } # 0. Let N ' C { n f 1 , . . ., 2 n }
be the nodes of G * that are not in G'. Then either there exists a node n + j E N'
such that the node j E V has a neighbor k (j) E V satisfying n + k (j) E V' or else,
G is disconnected. The latter contradicts Remark 1. Consequently, by the above
reasoning, we have N' = 0, i.e. V = V'. This completes the proof of Theorem 6.

Corollary 6.1. Let G, G * and rr be as in Theorem 6 . If there exists a vertex X E Pc
such that max {rrx 1 x E Pc} = rr2 is assumed at vertex 2 of Pc satisfying 0 < X, < 1
for j = 1, . . ., n, then the complement graph G * of G * defines a facet. Moreover, this
facet of the set packing polyhedron Q T associated with G * (in rational form) is given

by

Z n i l s 1 (3 .5) + (e - 2). x (*) + f . x .

where f = min {X, I j = 1,. . ., n } .

Proof. Using the clique-matrix A T. as defined by (3 .3) one verifies readily that the
coefficients of the inequality (3 .5) define a vertex of PT. with all components strictly
between zero and one. Furthermore, the submatrix of A T. defining the vertex with
components (X, e - X, Z) is nonsingular. As the cliques in G* define vertices of 0 T,
Corollary 6.1 follows.

The second construction uses edge-division. Let G be any facet-defining graph
with node set V = (1,. . ., n } and edge-set E. Let e = (v , w) E E and consider the
graph G* with nodes set V* = (1,. . ., n, n + 1 , n + 2) and edge-set

E * = (E - { e }) U {(u, n + l), (n + 1 , n + 2) , (n + 2 , w) } .

That is, G* is obtained from G by "inserting" two new nodes into an (existing)
edge of G. Let rrx rro be the facet defined by G. As usual, we will assume that rr is
a vector of positive integers. An edge e = (u, w) E E will be called rr-critical if
there exists an independent node set F in the graph G - { e } such that x , € F q > no
and c,,,-, rr, = rro or c,,,-, rr, = rro. Note that rr-criticality of an edge is entirely
analogous to the concept of (Y -criticality used above.

430 M.W. Padberg

Theorem 7 . Let G = (V , E) be a graph on n 3 3 nodes and let 7rx 6 rro be a facet
defined by G.

Denote by G * = (V*, E *) the graph on n + 2 nodes obtained from G by inserting
two nodes n + 1 and n + 2 into a 7r-critical edge e = (u, w) E E. Then G * defines the
facet

7rx + 7r * (& + I + X"+Z) 7ro + 7r * (3.6)

where 7r* = min (7ru, 7 r w) .

Proof. Denote by Pr the set packing polyhedron defined with respect to the
clique-matrix of G and let P ? be defined correspondingly with respect to G*.
Validity of the inequality (3.6) is immediate. Let B be any n X n nonsingular matrix
of vertices of PI that satisfy 7rx 7ro with equality. Note that every vertex of Pr is a
vertex of PT. We show next that among the linearly independent vertices of PI
satisfying 7rx S 7ro with equality, there exists at least one vertex such that
x, = x, = 0. For suppose not, then every vertex 2 of PI such that 7r2 = 7ro satisfies
2, + 2, = 1. But by assumption, T X S 7ro has at least three non-zero components.
Consequently, since 7rx ro defines a facet of PI, there exists a vertex with the
asserted property. Consider the matrix B* defined as follows

where B is the n X n matrix defined above. The vector a has a + 1 entry if in the
associated row of B the component with number ZI is zero, zeros elsewhere. The
vector b has + 1 entry if the corresponding component of a is zero and if in the
associated row of B the component with number w is zero; zeros elsewhere. As
there exists at least one row in B such that in both positions 0 and w there are
zeros, we let C be a duplicate of that row. Finally, d is the incidence vector of the
stable set F in G - { e } for which zjEF7r, > no. Using standard linear algebra
arguments, one verifies that B * is nonsingular since, by construction, CB-' b = 0,
a + b = e and d B - ' e > 1. Consequently, the inequality (3.6) defines a facet of P:.

Note that edge-division does not always yield facet-producing graphs if the
construction is used on facet-defining graphs. An example to this point is provided
by the complete graph K4 on the node set {1,2,3,4} and the inequality cg=, x, G 1
defined by K4. If we insert two nodes 5 and 6 into the edge {3,4}, the inequality (3.6)
defined by G * is produced by the odd hole on nodes {1,3,5,6,4} whereas the
coefficient of node 2 is obtained by ''lifting'' the inequality xI + x1 + x4 + xs + x6 2.
On the other hand, if the second construction is used on an odd hole on 5 nodes one
obtains successively all odd holes. We thus suspect that G* is (strongly) facet-
producing if one assumes in Theorem 7 that G is (strongly) facet-producing rather
than facet-defining.

To illustrate the foregoing, let us consider the graph G of Figure 3 . The facet

Complexity of set packing polyhedra 43 1

R =

T X =s T,, produced by the graph is given by c;=I x, + 3x9 4. As one readily verifies,
every edge of G is r-critical. Consequently, we can insert into any one of the edges
of G two nodes; taking e = (8,9) we get a new graph G * and associated facet is
cy=, x, + 3xy+ x lo+ xll s 5. Anyone of the edges of the graph G* is again .rr-critical
and we can continue inserting pairs of nodes into its edges, etc. Returning to the
graph of Fig. 3 and adding a node 10 that is joined by edges to nodes 5 , 6 , 7 , 8 and 9,
we get from Theorem 2 the following facet defined (not produced) by the enlarged
graph G’: %=, x, + 3xy + 3x10 < 4. Upon inspection, we find that the (9,lO) of G‘ is
r-critical. Inserting two nodes in the way described in Theorem 7 we obtain the
facet defined by the resulting graph to be given by cy,l x, + 3x9 + 3x10 + 3x11 +
3xI2 < 7. Using the construction of Theorem 6, we can get a fairly complex looking
facet.

One might suspect from the foregoing that, given any set of positive integers
do, d , , d, satisfying d, < do for j = 1,. ... n, at least four d, = 1 and c,”_l d, > do,
there exists a graph G producing a facet r x s r0 such that .rr, = d, for j =

0,1, n, prorided that n is chosen sufficiently large. (The answer to this problem
is definitely in the negative for small n.) My guess is that the answer is positive.

The foregoing may suggest that the complexity of the facial structure of set
packing polyhedra renders useless pursuit of this line of research as regards its use
in any computation utilizing linear programming relaxations. The following exam-
ple may serve to indicate the contrary and points to an interesting question that,
presumably, can only be answered in a statistical sense.

-0 1 0 0

0 0 1 0 . . . 0

i

0 0 1

-1 0 0

Example. Consider the maximum-cardinality node-packing problem on an odd
anti-hole G with n 2 5 vertices and let AG denote the edge vs. node incidence
matrix of G. Denote by R the following permutation matrix:

We can write A : = (AT, A 3 where p = [n / 2] - 1 and A T = (I + R’)= for
i = 1,. . ., p with Z being the n x n identity matrix. Let P = {x E R” 1 AGx s e,
x 2 0 } be the linear programming relaxation of the node-packing problem and PI
the convex hull of integer solutions. As one readily verifies, max{c:;=, x, 1 x E P } =

n/2 for all n. But, the integer answer is two, n o matter what value n assumes, i.e.
rnax{C;=, x, I x E Pl} = 2 for all n. Suppose now that we work with a linear
programming relaxation of Pl utilizing a subset of the facets of P, given in Theorem
1. Specifically, suppose that we have identified all cliques of G that are of maximum
cardinality (this is in general a proper subset of all cliques of anti-holes). Denote by

432 M.W. Padberg

A the corresponding clique-node incidence matrix. Then A = CP,, R ‘ . Let P =

{x E R” 1 A x S t?, x 2 0) be the linear programming relaxation of the node-packing
problem on G. Then PI C P C P. As one readily verifies, max {Z,”=, xi I x E P } =

2 + l/[n/2] and the integer optimum of 2 follows by simply rounding down.
The interesting fact exhibited by the example is that the knowledge of merely a

few of the facets of PI in the case of odd anti-holes permits one to obtain a bound on
the integer optimum that is “sharp” as compared to the bound obtained by working
on the linear programming relaxation involving the edge-node incidence matrix of
the anti-hole (which is arbitrarily bud according to how large one chooses n) . The
general question raised by this example is of course, how often (in a statistical
sense) it will be sufficient to work with only a small subset of all facets of a set
packing polyhedron PI (such as those given by cliques, holes, etc.) in order to verify
s-optimality of some extreme point of PI with respect to some linear form cx,

where F is some given tolerance-level measuring the distance of an 1.p. optimum
from the true integer optimum objective function value.

Acknowledgement

I am indebted to E. Balas and L.E. Trotter, Jr. for helpful criticism of an earlier
version of this paper. In particular, Les Trotter pointed out to me an error in the
original proof of Theorem 6.

Appendix

As Theorem 4 asserts more than proven in [24], we shall provide a proof of the
new part in Theorem 4, which states that the complement W (n , k) of a facet-
producing web W (n , k) strongly produces the facet c;=,x, s h if and only if
n = kh + 1, where h = [n / k] . We first prove the only-if part of the sentence. To do
so, it suffices to show that the web W(n , k) contains a (properly smaller) facet-
producing web W (n ’ , k ’) with [n ’ l k ’] = h if k 3 2, n and k are relatively prime and
n = k h + j with 2 ~ j ~ k - 1 . Let k ’ = [k / j J + l and n ‘ = k ’ h + l . Obviously,
k ’ > 2 and g.c.d. (n ’ , k ‘) = 1. To see that W(n’ , k ’) is a (vertex-induced) subgraph of
W(n, k) , we check the necessary and sufficient conditions for containment of
Theorem 4 of [24] which require that (i) n k ’ z n‘k and (ii) n (k ’ - 1) n ’ (k - 1). (i)
follows because [k / j] + 1 3 k / j . (ii) follows because h (k - k ’) + k - 1 - j [k / j] 3.0.
The latter holds because g.c.d. (n , k) = 1 implies k - j [k / j] 3 1. Since W (n ’ , k ’) is
contained in W(n, k) , the complement W (n , k) of W(n, k) contains a subgraph
defining the facet C x, s h where the summation extends over a proper subset of all
vertices of %(n, k) . Hence the facet c;=, x, s h is not produced by W (n , k) . To
prove the if-part of the above sentence, we note that the vertex-sets C, =

{ i , i + k , . . ., i + (h - 1)k) define maximum cliques in W(n, k) where i = 1,. . ., n and

Complexity of set packing polyhedra 433

indices are taken modulo n. Let B be the incidence matrix of these cliques and note
that B A T = E - R where A is the incidence matrix of all cliques in w (n , k) (see
[24]), E is a matrix of ones and R is a permutation matrix. To prove that B contains
all maximum cliques of W(n, k) let b be the incidence vector to any maximum
clique of W(n, k) . Then bB-’ = e T - b A T R T s 0 implies that bx 1 is inessential in
defining P = {x E R” I Bx s e, x 3 0) or alternatively, identical to one of the rows of
B. (The vector e is the vector of n ones.) Hence, since P contains the set-packing
polyhedron associated with W(n, k), B contains the incidence vectors of all
maximum cliques of W (n , k) . Using an argument entirely analogous to the one
used in the proof of Theorem 2 of (241, one shows that the matrix B is irreducible
and hence, by Theorem 3, w (n , k) produces the facet x.i”=l xi d h if n = kh + 1.

References

[11 E. Balas, Facets of the knapsack polytope. MSRR No.323, Carnegie-Mellon University, September

[2] E. Balas and R. Jeroslow, Canonical cuts on the hypercube, SIAM J. on Appl. Math., 23 (1972)

[3] E. Balas and M.W. Padberg, Set partitioning, in: B. Roy (ed.), Combinatorial Programming:

[4] E. Balas and E. Zemel, All the facets of the knapsack polytope, MSSR No.374, Carnegie-Mellon

[4a] E. Balas and E. Zemel, Critical cutsets of graphs and canonical facets of set packing polytopes,

[5] V. Chvital, On certain polytopes associated with graphs. CRM-238, University de Montreal,

[6] J. Edmonds, Covers and packings in a family of sets, Bull. A m . Math. Soc., 68 (1962) 494-499.
[7] J. Edmonds, Path, trees and flowers, Canadian J. Math., 17 (1965) 449-467.
[8] J. Edmonds, Maximum matching and a polyhedron with 0, 1 vertices. J. Rex National Bureau of

Standards, 69B (1965) 125-130.
[9] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra. Math. Programming, 1 (1971)

168-194.
[lo] R. Garfinkel and G.L. Nemhauser, A survey of integer programming emphasizing computation and

relations among models, in: T.C. Hu and S.M. Robinson, eds.: Mathematical Programming
(Academic Press, 1973).

[l l] F. Granot and P.L. Hammer, O n the use of boolean functions in CL1 Programming, O.R.
Mimeograph No. 70, Technion, 1970.

[12] P.L. Hammer, E.L. Johnson and U.N. Peled, Facets of regular 0-1 polytopes. CQRR 73-19,
University of Waterloo, October, 1973.

[13] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
[14] E.L. Johnson, A class of facets of the master 0-1 knapsack polytope, Thomas J. Watson Research

[15] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller et al., eds., Complexify of

[16] G.L. Nemhauser and L.E. Trotter, Properties of vertex packing and independence system

[17] M.W. Padberg, Essays in integer programming. Ph.D. Thesis, Carnegie-Mellon University, May,

[18] M.W. Padberg, On the facial structure of set packing polyhedra. Math. Programming, 5 (1973)

1973. Forthcoming in Math. Programming.

61-69.

Methods and Applications, (Reidel Publishing Company, Dordrecht, 1975).

University, 1975.

MSSR No. 385, Carnegie-Mellon University, 1976.

October, 1973. Forthcoming in the J. Comb. Theory.

Center Report RD-5106, IBM Research, October 1974.

Computer Computations (Plenum Press, New York, 1972).

polyhedra. Math. Programming, 6 (1974) 48-61.

1971.

199-2 15.

434 M.W. Padberg

[19] M.W. Padberg, A note on zero-one programming. Operations Res., 23 (1975) 833-837.
[20] M.W. Padberg, Perfect zero-one matrices. Marh. Programming, 6 (1974) 180-196.
[21] M.W. Padberg, Almost integral polyhedra related to certain combinatorial optimization problems,

GBA Working Paper 75-25, 1975, New York University. Forthcoming in Linear Algebra and its
Applications.

[22] H.M. Salkin and J. Saha, Set covering: uses, algorithms results, Technical Memorandum No. 272,
Case Western Reserve University, March 1973.

[23] L.E. Trotter, Solution characteristics and algorithms for the vertex packing problem. Technical
Report No. 168, Operations Research, Cornell University, 1973.

[24] L.E. Trotter, A class of facet producing graphs for vertex packing polyhedra. Discrete Math., 12
(1975) 373.

[25] H. Weyl, Elementare Theorie der konvexen Polyeder, Comm. Math. Helv. 7, 1935, 290-306
(translated in Contributions to the Theory of Games, Vol. I, 3-18, Annals of Mathematics Studies,
No. 24, Princeton, 1950).

[26] L. Wolsey, Faces for linear inequalities in zero-one variables. CORE Discussion Paper No. 7338,
November, 1973.

[27] L. Wolsey, Oral Communication, Bonn, September 1975.
[28] E. Zemel, Lifting the facets of 0-1 polytopes, MSRR No. 354, Carnegie-Mellon University,

December 1974.

Annals of Discrete Mathematics 1 (1977) 435-456
@ North-Holland Publishing Company

PROPERTIES OF FACETS OF BINARY POLYTOPES

Uri N. PELED
Department of Mathematics, University of Toronto, Toronto, Ont., Canada

Properties of facets of full-dimensional polytopes P with binary vertices are studied. If Q is
obtained from P by fixing some of the binary variables, then the facets of P that reduce to a given
facet of Q are determined by the vertices of a certain polyhedron V. The case where V has a
unique vertex is characterized. If P is completely monotonic and the facet of Q has 0-1
coefficients, then the vertices of V lie in a hypercube of side I, and the integer vertices correspond
to the sequential lifts or extensions. The self facets, i.e. hyperplanes spanned by binary points, are
connected to the hyperplanes spanned by non-negative integral points. Every threshold function
can be labelled by its Chow parameter vector. The faces of the convex hull of all n-argument
parameter vectors are characterized. This leads to a necessary and sufficient condition for a
parameter vector to label a self dual threshold function having a self facet separator.

1. Introduction

This paper deals with the facets of full-dimensional polytopes with binary
vertices, i.e. the convex hulls of feasible solutions of binary programming problems.
Section 2 is a unification and generalization of previous results by several authors
on the connection between facets of such a problem P and the facets of a
subproblem Q obtained by fixing some of the variables of P to binary values. The
facets of P that reduce to a given facet of Q (“lift/extensions”) are shown to be
determined by the vertices of a certain polyhedron V, and the cases where V has
only one vertex are characterized. Section 3 makes the further assumption that P is
completely monotonic (a class that subsumes knapsack problems) and that the facet
of Q has binary coefficients. The vertices of V are then shown to lie within a
hypercube of side 1, and the integral vertices correspond precisely to the facets of P
that can be obtained by “sequential” lifts or extensions. In Section 4 we examine
the totality of facets of full-dimensional polytopes with binary vertices (“self
facets”). They are shown to be connected to hyperplanes spanned by non-negative
integral points. In Section 5 we reverse the point of view and ask what threshold
functions have self facet “separators”. Every threshold function (and some other
Boolean functions) can be labelled by its Chow parameter vector. We characterize
the non-empty faces of the convex hull of all n-argument Chow parameter vectors.
The characterization of vertices and edges leads to a necessary and sufficient
condition for a Chow parameter vector to label a self dual threshold function with a
self facet separator.

435

436 U.N. Peled

2. Lifts and extensions

For an index set N = (1,. . ., n) , let S C B N (B denotes the set (0 , I}) be a set of
0-1 N-vectors. Let N be partitioned into disjoint sets U, Z, F. Then by S," we mean
the subset T C BF defined so that x E T if and only if the point y given by

1 j E U ,

y j = 0 j E Z , i xi j E F,

is in S. Thus S g is obtained from S by fixing the components indexed by U and 2
to 1 and 0, respectively, and then taking only the F components of the points of S
satisfying these conditions. When U or 2 are empty we use the short notation Sz
or S u . If S is the set of feasible solutions of some 0-1 programming problem, or in
short a problem, then S," corresponds to the subproblem obtained by fixing xi,
j E U U 2 as above. An important class of problems is that of the monotone ones.
S is monotone if whenever x E S and some components of x are changed from 1 to
0, the resulting point is still in S. In this section we relate the facets of conv (S) and
conv (S g) (conv denotes convex hull).

A linear inequality is said to be valid for a set of points when it is satisfied by all
points in the set, and to support the set if in addition some points of the set satisfy it
with equality. Clearly an inequality is valid for (supports) a polytope if and only if it
is valid for (supports) the set of its vertices (a polytope is a convex hull of a finite set
of points).

Definition 1. Let S g be non-empty and let

C ajx, ao
j € F

be a valid inequality for S,". For each subset Z' C Z, the extension coefficient ez (of
(1) relative to 2') is defined by

where the maximum above is - m if n o x satisfies the condition. Similarly for each
subset U' C U, the lift coefficient lu., is defined by

= m a C ajxi - ao, (3)
s:;:: I E F

where the maximum above is - - co if n o x satisfies the condition.

Proposition 1.
(1) e z , s O ;

Let S be monotone, S,"# 0 and (1) valid for S,". Then

Properties of facets of binary polytopes 437

(2) lu. is finite;
(3) if (1) supports S,", then l u t S O .

Proof. By monotonicity S,"_"z.'C S,", and so

which proves (1). Similarly S,";:: 2 S,"# 0, and so

which proves (2). Moreover, if (1) supports S,", the last right-hand side is ao, which
proves (3). 0

The extension and lift coefficients impose conditions on the coefficients of valid
inequalities for S that reduce back to (1) under the substitution xi = 1, j E U, x, = 0,
j E Z.

Proposition 2. Let S," be non-empty and let (1) be valid for it. If the inequality

C a,x, s ao+ C a,
, E N j € U

(4)

is valid for S, then for each Z ' C Z, &,. aj s ezr and for each U ' C U , cjEu. aj 3

lu2, In particular a, s ej for all j E Z and a, 2 1, for all j E U.

Proof. To prove ZjEz. a, S e,., we may assume that ez' is finite. Therefore there
exists a point x E S,"_",".' satisfying ez, + CjeFa,x, = ao. But since S,"?'Z,' is a subprob-
lem of S and (4) is valid for S, x must also satisfy Cjazo a, + cjEFu,xj s ao. The
bound for lifts is proved similarly. 0

We can prove the converse of Proposition 2 for pure extensions (U = 0) or pure
lifts (2 = 0).

Proposition 3.
ez, holds for each Z' C Z, then ZJENa,x, s a. is valid for S. Similarly if ~,EN-,,aJxJ s
a. is valid for Su, and if & E U , a, 3 lu holds for each U ' c U, then ~ , E N a J x J s
a. + Z,,, a, is valid for S.

If the inequality CJEN-, aJx, s a. is valid for Sz, and if &EZ, a,

Proof. Let x E S and let Z' = { j E Z 1 xj = 1). By (2) we have ez,+ x j E N - Z a j x j C

a,,, and since e,. 2 c,,,. a, = cjEzajx,, x satisfies ~ i E N a j x i s ao. The result for lifts
has a similar proof. 0

The preceding discussion can be generalized to mixed lift/extensions. If S," is
non-empty and (1) is valid for it, then for each Z ' C 2, U ' C U we may define the
coefficient

438 U.N. Peled

It can then be shown that
and only if for each 2' C 2, U ' C U,

= a. - ez., cO,,,. = a. + lu, and that (4) is valid for S if

C ~ . , ~ . S ao+ 2 a, - 2 a,.
I E U ' ,EZ'

Let us now turn to examine conditions under which (4) is not only valid for S, but
also a facet of conv(S). We recall that a polyhedron is the solution set of a finite
number of linear inequalities. Bounded polyhedra are the same as polytopes. The
dimension of a polyhedron P is one less than the maximum number of affinely
independent points of P. A face of a polyhedron P is the solution set of the system
obtained by replacing some of the inequalities defining P by equalities. In
particular, vertices are 0-dimensional faces, edges are 1-dimensional faces and
facets are faces of dimension one less than that of P. The faces of P are the same as
the extreme subsets of P and also the sets of optimal solutions of linear programs
over P. If P is full-dimensional (i.e. its dimension equals the number of variables),
then in any system of linear inequalities defining P, the irredundant inequalities
correspond precisely (up to proportion) to the facets of P. As is customary, we call
these inequalities themselves the facets of P. To state the next result, we use the
following definition.

Definition 2. Let (1) be a valid inequality for S,". Then its valid polyhedron is
v = {a E R~~~ I every x E s satisfies (4)).

By definition, V is the polyhedron whose points are the U and 2 components of
all valid inequalities for S that reduce to (1) by the substitution x, = 1, j E U, x, = 0,
j E 2. The remark following Proposition 3 gives a defining system for V in terms of
c Z . . U ' .

Proposition 4. The valid polyhedron is full -dimensional and unbounded.

Proof. If M is a large enough constant and

- M j € Z

M j E U ,
a, =[

then a E V. Thus V is not empty. Let d, be the j unit vector. We show that if
a E V, then a - d, E V for j E 2 and a + d, E V for j E U. To prove the first of
these statements please note that for all binary x, if x, = 0, then (4) has the same
form for a - d, as for a, and if x, = 1, then (4) for a - d, is the sum of (4) for a and
the valid inequality - x, s 0. The second statement is proved similarly.

The next theorem belongs to the type of polarity results that are obtained by
Araoz [1] and also by Edmonds and Griffin [private communication].

Properties of faceis of binary polytopes 439

Theorem 1. Let conv (S) and conv (S g) be full-dimensional, and let (1) be a facet
of the latter. Then (4) is a facet of the former i f and only if a = (ai, j E U U Z) is a
vertex of the valid polyhedron V of (1). In that case (4) is called a liftlextension

of (1).

Proof. By definition, the validity of (4) means the same thing as a E V. To show
the "only if" part of the theorem, it is sufficient to prove that a is an extreme point
of V. Suppose that a = 5(b + c) , where b, c E V. Then the two inequalities

are valid for conv(S) and (4) is their arithmetic mean. Since conv(S) is full-
dimensional and (4) is one of its facets, it must coincide with (5) and (6), otherwise it
is redundant. Thus a = b = c, proving that a is extreme in V.

We now show the "if" part. This time we show that there are n = IN1 affinely
independent points of S satisfying (4) with equality, proving that it is an
(n - 1)-dimensional face. For ease of writing, let us reindex the variables so that
U = (1,. . ., r} , 2 = { r + 1,. . ., r + s } , F = { r + s + 1,. . ., n } . Since a is a basic solu-
tion of the system of inequalities (4) for all x E S, there exist r + s points
xl , . . ., x r f S E S such that a satisfies the corresponding inequalities (4) as equalities
and the coefficient matrix of a l , . . ., a,,, in these inequalities, namely

is non-singular. Also since (1) is a facet of the full-dimensional conv(S,"), there
exist n - r - s affinely independent points y'+'+', . . ., y " E S," that satisfy (1) with
equality. Let these points form the rows of the matrix

By definition of S y, the points x r C s + ' , . . ., X " defined by

1 j € U ,

x; = 0 j € Z , i Y ; iEF,

belong to S. They too satisfy (4) with equality. It remains to show that the rows of
the matrix

440 U.N. Peled

x ; ; ; . . . X ' + S x;;;+, . . . x,

,+s+ 1 , + $ + I ---I-- y r + s + 1 . . . y .

are affinely independent. If r + s = n, then the rows of X * differ from the rows of X
by a fixed translation (1,. . ., 1,0,. . .,O). As the rows of X are affinely independent,
so are the rows of X * . If r + s < n, subtract the last row of X * from each other
row. It is enough to show that the first n - 1 rows are now linearly independent.
These rows now constitute a matrix of the form [g :I, where the rows of X are
linearly independent and the rows of L, being the differences y""" - y", . . .,

n-' - ") are also linearly independent. This completes the proof of
Theorem 1. 0

Under the conditions of Theorem 1, suppose further that 2 contains an index i
such that the extension coefficient e, relative to (1) is finite. If we consider S y as a
subproblem of S,"-,, then the valid polyhedron V is I-dimensional with a vertex at
e,. Thus the inequality &EFa,x, + e,x, S a,, is a facet of conv (S g - ,) . If Z - i contains
a further index whose extension coefficient relative to the present inequality is
finite, the process can be continued. This is called sequential extension of (1). In
particular, if S is full-dimensional and monotone, so are all its subproblems of the
form Sz, and by Proposition 1 each facet of such a subproblem can be sequentially
extended to (one or more, depending on the order of extension) facets of the
complete problem. Hence, by Theorem 1, V has in fact vertices in that case. In a
similar way one also has sequential lifts and sequential liftlextensions. Sequential
extensions have been studied by many authors, including Balas [2], Balas and
Zemel [3], Hammer, Johnson and Peled [7], Nemhauser and Trotter [12], Padberg
[13], Pollatschek [15], Trotter [16], Wolsey [19] and Zemel [21]. Sequential lifts are
treated by Wolsey [20], in a work that stimulated my interest in lifts. Theorem 1 was
proved by Zemel [21] for the case of pure extensions. Non-sequential extensions
are also discussed by Balas and Zemel [3].

We conclude this section with two corollaries and an example of Theorem 1.

Corollary 1.
of the valid polyhedron V corresponds to a sequential liftlextension of (1).

Under the conditions of Theorem 1, i f I U U Z 1 s 2, then every vertex

Proof. We have already considered the case 1 U U 2 I = 1. For 1 U U Z I = 2,
consider the typical case of pure extensions, U = 0, 2 = {I, 2}, other cases being

Properties of facers of binary polytopes 44 1

similar. We then have V = {(a,, a,)/ a , s e l , az S ez , a l + az s e l z } . It is easy to
verify that if e l + ez S e l > , then V has a unique vertex (e l , ez), and if e l + ez > e12,
then V has two vertices (e l , e l z - e l) and (e l , - ez , e z) . All these vertices represent
sequential extensions: in the first case the two sequences commute (give the same
facet) and in the second case they do not. 0

Corollary 1 appears, for pure extensions, in Hammer, Johnson and Peled [7] and
in Zemel [21].

Corollary 2.
and l,, j E U are finite. Then the following two conditions are equivalent:

Under the conditions of Theorem 1, assume further that all e,, j E Z

(1) the inequality

is valid for S ;

liftlextension).
In that case the unique vertex is in fact (e,, j E Z ; l,, j E U) .

(2) the valid polyhedron V has a unique vertex (i.e. (1) has a unique

Proof. Please note that as e, and 1, are finite, V has vertices (it being contained in
an orthant of RU"").

(1) =3 (2). It is enough to show that whenever (4) is a facet of conv(S), a, = e,
for j E 2 and a, = 1, for j E U (this follows from Theorem 1). Since (4) is valid for
S, Proposition 2 gives a, < e, for j E Z and a, 3 1, for j E U. Therefore we can add
the valid inequalities

(a, - e)x, < 0 i E Z,

(a, - l,)x, s a, - 1, j E U

to the valid inequality (7) to obtain (4). But (4) is a facet of the full-dimensional
conv (S) , and so it is irredundant. It follows therefore that a, = e, for j E Z and
a, = I, for j E U.

(2) =+ (1). Note that by Theorem 1 there is a unique facet of conv(S) of the
form (4). On the other hand, such facets can be obtained by sequential
lift/extensions. The sequence may start from any j E U U Z, since the lift/extension
coefficients are all finite. This yields a, = 1, if j E U and a, = e, if j E Z. Therefore
(7) is the unique facet in question and (1) certainly holds. 0

Special cases of Corollary 2, involving pure extensions, appear in Balas [2],
Hammer, Johnson and Peled [7] and Balas and Zemel [3].

Example. Let S be the set of incidence vectors of the node packings of the
pentagon, i.e. the vectors x E B5 such that x, + x , + ~ s 1 (indices modulo 5). S is

442 U.N. Peled

full-dimensional and monotone. The subproblem S4 is not full-dimensional,
because x4 = 1 implies x? = x s = 0. Therefore let us consider the full-dimensional
subproblem S: , = { x E BZ I xI + xz I} and the facet xl + x2 s 1 of its convex hull.
The valid polyhedron V consists of (a? , a4, a ,) that satisfy

1 s 1 + a ‘ & , I + 0 3 6 1 + a , , 1 + a s s 1 + a4, a , + a 5 s 1 + a4.

These inequalities are determined by the node packings (l , O , O , O , O) , (l , O , 1,0,0),
(0,1,0,0,1) and (O,O, 1,0, l), respectively. The other node packings give redundant
inequalities. V is 3-dimensional and has two vertices (O , O , O) and (1,1,1). Thus the
lift/extensionsof x I + xz s 1 are x , + xz s 1 and x 1 + xz + x 3 + x4 + x s s 2. The second
of these facets is the one “produced” by the pentagon in the sense of Trotter [16],
i.e. it is not a pure extension of any subproblem. We see that it is not produced by
the pentagon if we allow lift/extensions. It is not a sequential lift/extension (since
e? = e, = to, l4 = 0). The first facet is a sequential lift/extension (lift in x4 and then
extend in x7,x5).

3. Completely monotonic problems

If (1) is valid for S,“ and (4) is valid for S, Proposition 2 gives upper bounds for a,,
j E Z and lower bounds for a,, j E U, namely the extension and l i f t coefficients,
respectively. Under suitable conditions there are sharp opposite bounds for the a,.
We discuss here such conditions.

Definition 3. Let L and M be disjoint subsets of the index set N and let S C B N .
Then we write L 3 M (relative to S) when S & C S y . In that case L and M are said
to be comparable. When L 3 M holds but M b L does not, we write L > M.

Informally, L M means that if x E S and x, = 1 for all j E L, x, = 0 for all
j E M, then by moving the ones from L to M we transform x into another point of
S. As an example, consider the linear inequality

and let S = {x E B N 1 x satisfies (8)). Such an S is called a threshold set or a
knapsack problem, and the inequality (8) is a separator of S. Relative to this S we
have L 3 M if c , , L d , 2 x, tMd, , hence all disjoint sets are comparable.

The following properties of b are easily proved.
(1) If K , L and M are disjoint in pairs and K b L b M, then K 2 M. This is true

in particular for singletons.
(2) Every subproblem of S inherits from S the relations b between sets of its

own variables. In other words, if L, M C F and L 3 M relative to S, then L B M
relative to S,”.

Properties of facets of binary polytopes 443

(3) S is monotone if and only if every i E N satisfies { i } 3 0. Thus if every
singleton is comparable with 0, S can be made monotone by complementing all
variables x, such that 0 > { i } .

Definition 4. S is completely monotonic if every two disjoint sets are comparable
relative to S.

Winder [181 has shown that in order to establish complete monotonicity, it is
sufficient to check only disjoint sets L and M such that I L U M I S !INI. As we
have just seen, every threshold set S is completely monotonic. In order to discuss
the converse statement, call S k-summable if for some j = 2 , ..., k there exist j
points X I , ..., x J E S and j points y ' , ..., y J E B N - S satisfying x ' + - . . + x ' =
y I + . . . + y'. Otherwise S is k-asummable. It was shown by Elgot [6] that complete
monotonicity is equivalent to 2-asummability, whereas the threshold property is
equivalent to the property of k -asummability for every k = 2,3 , . . . In fact, Winder
[I81 has shown that for every fixed k there are k-asummable sets that are not
threshold. Thus the class of threshold sets is properly included in the class of
completely monotonic sets.

If (4) is a valid inequality for S, a coefficient a,, j E U is said to be minimal in (4)
if any decrease in a, makes (4) invalid. This is equivalent to the existence of a point
x E S with x, = 0 that satisfies (4) as an equality. For example, if (4) is a facet of
conv (S), other than x, 6 1, then a, is minimal in (4). With these definitions we can
now state the next result.

Theorem 2. Let S be completely monotonic and monotone. Let

x, s b, Jc N - U
I E J

be an inequality with 0-1 coefficients supporting S u , and let

be valid for S. Zf, for some i E U, a, is minimal in (lo), then a, S I, + 1, where I, is the
l i f t coefficient of x, in (9).

Proof. As remarked above, the relation 3 induces a total order on all t he
singletons. For ease of writing, let us reindex the variables so that J = {I, 2 , . . ., IJ I }
with

{IJl}a . . . 2 {2}> {I}. (11)
Since (9) supports S", there exists a point of S U that satisfies (9) with equality, i.e.
has exactly b components from J equal to 1. By monotonicity of S u we may take
all the components outside J to be 0, and by (11) it follows that the point x E BN-"
given by

443 U.N. Peled

1

0 j = b + l , . . . , I JI or j E N - U - J

j = 1 , . . ., b

belongs to Su. A reformulation of this statement is that the point x ' E B N - (U - ')
given by

1 j = 1 , ..., b or j = i ,

0 j = b + l , . . . , I J l or ; E N - U - J
x; =

belongs to Su- ' .
By (3) the lift coefficient I , in (9) is given by

b + 1, = max 2 y,
y t S 7 ' IEJ

and is finite by Proposition 1. For the same reasons as above, the optimal solution y
can be taken to be the point

1

0 j = b + f < + l , ...,/.TI or ; E N - U - J .

j = 1 , . . ., b + I , .={
The optimality of y implies that the point y ' E BN-("-" given by

1 j = I , ..., b + 1, + 1
(13) { 0 j = b + 1 , + 2, . . . , I J l or j = i or j E N - U - J

Y:'

does not belong to Su- ' . Comparing (12) with (13) we see that x ' and y ' differ only
at the components i and b + 1, . . ., b + 1, + 1. By complete monotonicity of Su- ' , the
sets { i } and { b + 1,. . ., b + 1, + l} must be comparable, and since x ' is in S"-' and y '
is not, we conclude that

{ b + 1 , . . ., b + I , + 1) > { i } (14)

relative to S"-' , hence relative to S too.
Let us now turn to the valid inequality (lo) , in which a, was assumed to be

minimal. This means that there exists a point z E S with z, = 0 that satisfies (10) as
an equality. For the same reasons as above we may assume that for some integer
k = 0 , 1 , ..., IJI, z satisfies z , = . . . = z k = l and Z ~ - , = . . . = Z I ~ A = ~ . Denoting
M = { j E U - i 1 z, = O}, we may then write the equality (10) in the form

k = b + a , + 2 a,.
I S M

Since a, 3 1, by Proposition 2, (15) yields

k s b + l , + a,.
I t M

Properties of facets of binary polytopes 445

We now distinguish two cases according to ~,,,a,.

Case I : C,,, a, = 0. By Propositions 1 and 2 we have 0 = c,,, a, 3 1, 3 0 and so
1, = 0. Therefore the maximum of x , E J ~ J is b not only for x E S", but also for
x E S"-,, and it follows that { b + 1) > M. We claim that k s b + 1, + 1. Indeed,
suppose that k b + 1, + 2 were true. Since { b + 1) > M , and since z E S, the point
u given by

0 j = b + l

u , = 1 j E M I z, j E N - M - { b + 1)

belongs to S. But u, = t, = 0, by definition of M u, = 1 for all j E U - i , and
EJE,u, = k - 1 3 b + 1, + 1. This contradicts the definition of the lift coefficient 1,
and establishes the claim. But this claim, (15) and the condition of case 1 yield the
desired result a, S 1, + 1.

Case 2: C,,,a,#O. As in case 1 we have C,,,a, 3 0 , hence &,a, >0 . Since k
is an integer, (16) yields

k s b + 1, + l . (17)
Let u be given by

1 j = i ,

u , = 0 j = k - l , , ..., k , i z, j E N - { i } - { k - 4,. .., k } .

By (17), (11) and (14) we have { k - 1 ,,..., k) p { b + 1 ,..., b + l , +l}>{i}, and
therefore u E S. Hence u satisfies the valid inequality (lo), which reads k - I, - 1 s
b +c,,Ma,. This and (15) gives a, cl, + 1 and completes the proof of
Theorem 2 . 0

A result analogous to Theorem 2 holds for extensions instead of lifts. It assumes
that a coefficient in a valid inequality is maximal rather than minimal. The theorem
can be proved by methods close to and somewhat simpler than the ones for
Theorem 2 .

Theorem 3. Let S be completely monotonic and monotone. Let

be an inequality with 0-1 coefficient supporting Sz, and let

446 U.N. Peled

be valid for S . If , for some i E Z, a, is maximal in (19), then a , 2 e, - 1, where e, is the
extension coefficient of x , in (18).

An important special case where the assumptions of Theorem 3 hold is when S is
full-dimensional, J is a minimal set whose incidence vector is not in S (a “prime
implicant” or a “minimal cover” of S) , Z is taken as N - J and b is I J I - 1. Then
(18) is a facet of the full-dimensional conv (S z) . If (19) is a facet of conv (S) , i.e. an
extension of (18), then Theorem 3 applies to every i E Z. This case was proved, for
threshold sets S, by Balas and Zemel [3].

The following corollaries of the preceding two theorems assume that (9) (or (18))
is a facet of the full-dimensional conv(S”) (conv(S,)). Such facets with 0-1
coefficients have been characterized by Balas [2] , Hammer, Johnson and Peled [7]
and Wolsey [19]. The characterization has to assume no more than that S is
“regular” (essentially that the singletons are comparable by) and this is covered
anyhow by the stronger assumption that S is completely monotonic. The result is a
characterization of the sequential lifts (extensions) of (9) (or (18)).

Corollary 3. Let S be completely monotonic and monotone and let conv(S) and
conv (S ”) be full-dimensional with the facets (10) and (9), respectively. Then (10) is
a sequential lift of (9) i f and only i f a = (a j , j E U) is integral.

Proof. The “only if” part is obvious, since sequential lifts of an inequality with
integral coefficients have integral coefficients. To prove the “if” part, observe that
by Proposition 2 and Theorem 2 each j E U satisfies a, = 1, or a, = 1, + 1. Let
L = { j E U 1 a, = 1,) and M = U - L . Since (10) is valid for S, the inequality

is valid for S ” . By Corollary 2 and Theorem 1, (20) is the unique lift of (9) that is a
facet of conv(S“). Therefore this is a sequential lift of (9). It can be sequentially
lifted further in M. The resulting coefficients will be integers, and since the resulting
inequality will be a lift of (9) and a facet of conv(S), these coefficients must lie
between 1, and I, + 1, i.e. they are either 1, or 1, + 1. But none of these coefficients
can be l,, or else the facet (10) will be the sum of two valid inequalities. Therefore
the resulting sequential lift is identical with (10). 0

The analogous result for extensions is expressed by

Corollary 4. Let S be completely monotonic and monotone and let conv(S) and
conv (S z) be full-dimensional with the facets (19) and (18), respectively. Then (19) is
a sequential extension of (18) i f and only i f a = (a,, j E 2) is integral.

This result was obtained by Balas and Zemel [3] under the conditions discussed
above.

Properties of facets of binary polytopes 441

4. Self facets

In the previous sections we examined the question of how to obtain facets of a
given problem from facets of a given subproblem. Here we look at the totality of
facets of all full-dimensional polytopes with 0-1 vertices. Clearly if

is such a facet, then it is also a facet of conv(S), where S is the threshold set
S = {x E B N I x satisfies (21)). For this reason a hyperplane

is called a self facet when it is spanned by 0-1 points, i.e. when there are 1 NI affinely
independent points x E B N satisfying (22). In studying the self facets, we do not
lose generality by assuming that a,, a. > 0. Not every threshold set S has a separator
that is a facet of conv (S) . For example, if S = { x E B 3 I2x, + x z + x 3 2}, n o facet
of conv(S) is a separator of S.

Given a hyperplane (22), let (h,, i E M) be the set of distinct values among
a , , j E N , and put N , = { j E N I a , = h , } , i E M . Let A : R N - + R M be a linear
transformation defined by

(A X) , = c X, i E M. (23)
I C N .

Clearly if x E B N satisfies (22), then t = Ax is an M-vector satisfying

O t, 1 N, 1, t, integer, i E M. (25)

Conversely, if t satisfies (23) and (24), then there is an x satisfying (22) and t = Ax.
This correspondence carries over to facets as follows.

Proposition 5.
(1) (24) is spanned by points t satisfying (25);
(2) i f I N, 1 2 2 there is an integral t satisfying (24) and 0 < ti < I Ni I.

If (22) is a self facet then

Proof. Let X be a matrix whose rows are all the binary solutions of (22). Its
columns are linearly independent. The rows of T = AX satisfy (24) and (25). We
claim that its columns are linearly independent and hence (1) holds. Indeed let
c E RM satisfy Tc = 0, and define d E RN by d, = c, for j E N,. Then Xd = 0, hence
d = 0, hence c = 0. If (2) fails, then the i column of T consists solely of 0’s and
IN, 1’s. Hence all the columns of X indexed by N, are equal to each other. Since
IN, 1 3 2 , this contradicts the linear independence of the columns of X.

448 U.N. Peled

Proposition 6. Let (24) be spanned by non-negative integral points t. Then there
exist numbers (aJ, j E N) such that (22) is a self facet and the sets of distinct values
among (h,, i E M) and among (a,, j E N) are the same. In particular, if (h,, i E M)
are distinct, then (a,, j E N) is obtained by duplication of the h,.

Proof.
the largest entry in the i column of T. Put

Let the rows of T be all the non-negative integral solutions of (24), with n:

n : + l if n : 2 2 and no row t of T

n, = [satisfies o < t, < n : , (26)

n : otherwise,

and define N, = { n , + . . . + n,-, + 1,. . ., n , + . . . + n,} , N = u , , M N , . Then if a, = h,
for all j E N, and the rows of X are the binary solutions of (22), we shall prove that
the columns of X are linearly independent. Suppose that X d = 0 for some d E RN.
We claim that for each i E M, all the d,, j E N, are equal to each other. This is trivial
for n, = 1. For n, 3 2, (26) shows that there exists a row t of T satisfying 0 < 1, < n,.
Since T is a submatrix of A X , where A is given by (23), there exists a row x of X
such that exactly t, of the x,, j E N, are equal to 1. All the (2) different row vectors
obtained from x by permuting the N, components are also rows of X , and so are
orthogonal to d. Hence by subtracting these equations from each other we establish
the claim. Now it is possible to define c E RM by letting c, be the common value of
the d,, j E N,, and hence (A X) c = 0, Tc = 0, c = 0 and d = 0.

We give some examples illustrating the preceding propositions.

Examples. (1) If (24) has the form 2 t , + 3 t 2 = 12, then the matrix

T = E r]
has rank 2. The proof of Proposition 6 constructs the self facet (22) given by
a = (2,2,2,2,2,2,3,3,3,3), a,,= 12. By inspection one can see that a =

(2 ,2 ,2 ,2 ,3 ,3 ,3 ,3) also gives a self facet, but a = (2,2,2,3,3,3,3) does not.
(2) An example similar to the following one was shown to me by J.F. Maurras.

The hyperplane t , + 2t, + . . . + zk-'tk = Z k is spanned by non-negative integral
t E Rk. Indeed, the rows of the non-singular k by k matrix

are solutions. In analogy with the proof of Proposition 6 we can construct the ni as

Properties of facets of binary polytopes 449

3,2 ,2 , . . .,2. Hence there is a self facet with n, = 2k + 1 variables whose
right-hand side is 2', namely xo + (x l + x,) + 2(x3 + x,) + . . . + 2'-'(X2k-l f X X) = 2'.
This is a class of self facets where the largest coefficient is exponential in the
number of variables.

(3) Given an arbitrary set (h,, i E M) of positive integers, let a. be the least
common multiple of the h,. Then the equation (24) has I M 1 linearly independent
solutions, such as (ao/h l , 0, . . ., 0) etc. Therefore there exists a self facet (22) such
that the set of distinct values among a,, j E N is (hz, i E M) . The restriction of
positivity of the h, is not essential here. This example demonstrates the complexity
of the convex hulls of general threshold sets, as compared with the well-described
combinatorial polytopes such as matroids or matchings.

(4) The 0-1 master knapsack problem s b is the set of 0-1 solutions x = (x i) of
b K,

2 x i x ; s b (b = 1 , 2 , ...),
r = I , = I

where K, = 1 + [b / i] is the smallest integer larger than b/ i . Knowledge of conv (s b)

will provide the convex hull of every threshold set having a separator with a
right-hand side of b [8] . Johnson [l o] gave a procedure, based on sequential
lift/extensions, to find many facets of conv (s b) . Hammer and Peled [9] computed
all the facets of conv (sb) for b S 7. With sb is associated the integer master
problem Tb given by

b c it, s b, t, ~ 0 , integer.
, = I

ArAoz [I] studied the problem T b and characterized its facets
b c h,?, s h".

, = I

The following result was pointed out by E. Johnson: for ho > 0, (29) is a facet of
conv(Tb) if and only if the inequality

b K2 c c hiXj s ho
, = I , = I

is a facet of conv (sb) ((30) is a facet with the special property that the coefficient of
x i does not depend on j ; there are many other facets). To prove the result we use
the linear transformation t = A x , where t, = x::l x;. Clearly A maps Sb onto Tb,
and (30) is valid for s b if and only if (29) is valid for Tb. If (30) is a facet, then by the
argument of Proposition 5 the hyperplane (29) is spanned by points t = A x such
that x satisfies (30) with equality and (29) is a self facet. Conversely, assume that
(29) is a self facet and let the rows of T be all points t E Tb that satisfy (29) with
equality. If n: > 0 is the largest entry in the i column of T, then n: [b / i] by (28),
and therefore the n, given by (26) satisfy n, K,. The argument of Proposition 6
shows that the hyperplane x:=, 2 ; ~ ~ h,x; = h,, is a self facet spanned by points that

450 U.N. Peled

satisfy (27). Therefore (30), which is obtained from it by duplicating coefficients, is a
facet of conv (S b) .

It is relatively simple to determine when a hyperplane (24) is spanned by integral
points t . This happens if and only if (24) has some integral solution, or equivalently
when the greatest common divisor of the h, divides h,. This was proved by
Edelberg [5]. But if we add the restriction that t, 3 0, the problem is harder, and we
do not know direct solutions to it.

Let us conclude this section with an example [ll] of two different self facets that
are separators of the same threshold set. It can be verified that the inequality

13x1 + 7x2 + 6x3 + 6x4 + 4x5 + 4x6 + 3x7 + 2x8 C 24

can be satisfied as an equality by 8 linearly independent 0-1 points. The solution set
of this inequality is symmetric in x7 and xx. Therefore

13x, + 7xz + 6x3 + 6x4 + 4xs + 4x6 + 2x7 + 3x8 C 24

is another self facet defining the same threshold set.

5. Chow parameters of self facets

We now look at the self facets from another point of view. -.istead of asking, as in
the previous section, what hyperplanes are facets of full-dimensional convex hulls
of sets of binary points, we now ask what threshold sets S have a separator that is a
facet of conv (S). It is convenient here to change the terminology slightly. First, we
apply the transformation

y, = 2 x , - 1 j E N , (31)

which changes {0,1} into { - 1, l}, which we call now B. The new variables are more
convenient for taking complements. Since (31) is an affine transformation, the
image of a self facet is a hyperplane containing 1 N I affinely independent points y,
and conversely, so we may keep calling these images “self facets”. Also, the image
of a threshold set is the set of solutions y of a linear inequality, and conversely, so
we may keep calling these images “threshold sets” and the corresponding
inequalities “separators”. Second, we represent each subset S of B N by the
Boolean function F : B N + B having value - 1 at the points of S and value 1 at the
points of B - S. In particular, the Boolean functions representing threshold sets
are called threshold functions.

Chow has discovered a set of parameters, now bearing his name, associated with
every Boolean function F, such that if F is a threshold function, no other Boolean
function with the same number of variables has the same parameters. We use here
one variant of the Chow parameters, following Winder (171. To define them we use
the notion of dual Boolean functions.

Properties of facets of binary polytopes 45 1

Definition 5.
- F (- y). F is self dual if F(- y) = - F (y) .

function F” : B

If F is a Boolean function, its dual F d is defined by F d (y) =

If F : B N +. B is any Boolean function and 0 is an index not in N, then the
B given by

F”(Y, Yo) = yo * F(Y) + (- Yo) * Fd(Y)

is self dual. Here the multiplication opeation * is that of taking the minimum and
the addition operation + is that of taking the maximum. It can be shown that the
mapping F+ F” is a bijection of the Boolean functions on B N onto the self dual
Boolean functions on BNUo, that F = F” if and only if F is self dual and that F”
retains many other properties of F, e.g. F” is a threshold function if and only if F is
a threshold function. For these reasons F” may be thought of as a self dual version
of F. We can now define the Chow parameters of F.

Definition 6.
parameter vector p is given by

Let F be a Boolean function on BN. If F is self dual, its Chow

If F is not self dual, its Chow parameter vector is that of F # .
By using the self duality of F, we can rewrite (32) in the form

so that p is proportional to the “center of gravity” of the points where F = 1. If G is
another self dual function, obtained from F by complementing its values at a given
point z and its complement - z, then the parameters of G are q = p - z F (z) . The
parameter vector of the self dual function F (y) = y l is clearly p = (2”’-*, 0 , . . ., 0),
which is integral for 1 N (3 2 and a vector of even integers for 1 N 1 2 3. Since every
other self dual function on B” can be obtained from F by a sequence of changing
the functional values at a pair of complementary points, it follows that all the
components of a Chow parameter vector are integers for I NI 3 2 and have the same
parity for (N I 3 3 . Winder [I71 shows that, when F is a self dual function with
parameters p , a given q is a parameter vector of a self dual G if and only if there
exists a set S of points y satisfying F (y) = - 1 and &,, y = q - p . This property
can be used to characterize the Boolean functions F on B” (whether self dual or
not) such that no other Boolean function on B N has the same parameters as F has.
The characterizing property is that for n o positive integer k do there exist distinct
points y ’ , . . . , y k , z ’ , . ..,zk of B N satisfying F (y ’) = 1, F (z ’) = - 1, y ’ # - z’ and
cf=, y ’ = c;=, z’. In particular, then, threshold functions have this property, and so
can be labelled by their Chow parameters. This was proved by Chow [4].

We may then rephrase the question at the beginning of this section as what

452 U.N. Peled

parameter vectors label threshold functions having a self facet separator. We shall
assume that the threshold function in question is self dual.

b with
integral a (since the requirements on a and b are homogeneous linear inequalities
with integral coefficients). The dual function F d has the separator a . y G - (b + 1).
If F is self dual, i.e. F = Fd, then the arithmetic mean of these two separators,
namely a . y s - $, is another separator of F. Since a is integral, a . y s - r is a
separator of F for every 0 s r s 1, and no point of B" is orthogonal to a.
Conversely, if no point of B" is orthogonal to the integral a, then a . y s - r is a
separator of the same self dual threshold function for all 0 r S 1. It is possible, but
not easy, to find self dual threshold functions with a self facet separator of the form
a . y s - r with r 2 2 and a integral (of course, the greatest common divisor of the
a, is understood to be 1). This is translated into 0-1 variables to mean a self dual self
facet a ' x s b with b f $ (x , a , - 1). A n example is given by Muroga [I l l as
a = (29,25,19,15,12,8,8,3,3), r = 2. Since exactly six of the a, are odd, a . y is
even for all y E By, so no y satisfies a . y = - 1. Nevertheless a . y = - 2 is a self
facet.

In order to answer the question of this section, we denote by P" the set of all
parameter vectors of self dual Boolean functions on B", and Q" = conv(P").
Every vertex of Q" is thus a parameter vector. The next theorem characterizes the
faces of Q". Special cases of it, involving the vertices and facets of Q", are given by
Winder [17].

If F is a threshold function on B", it has a separator a . y = C , t N ~ , y ,

Theorem 4.
defines a d-dimensional face of Q" (d = 0,1, . . ., I N I - 1) if and only i f
(1) b = a . q, where q = f x, y , o y - d c, y c O y (b must be positive);

Let a be a non-zero N-vector. Then the linear inequality a . w d b

(2) the rank
In that case

of the set { y E B" 1 a . y = 0) = { t y ' , . . ., t y " } is d.
the set of parameter vectors on the face is

m ttz u,y' 1 u E I?"]
, = I

Proof.
only if

Clearly a . w s b defines a non-empty face of Q" (supports Q") if and

b = max a * w = max a . p = max t (a . y) G (y) .
W t O N ' P € P N Gcelfdual v

The self dual functions G that realize this maximum must be such that G (y) and
a . y have the same sign when a . y # 0. In fact, for each u E B", let F" be the self
dual Boolean function defined by F " (y) = 1 if a . y > 0 , F " (y) = - 1 if a . y < 0
and F " (y ') = u,, F " (- y ') = - u,. Then these F" are all the self dual functions G
that realize the above maximum. It follows that b = a . q, so that the face is
non-empty if and only if (1) holds. (That a ' q is positive follows from the fact that i f

Properties of facets of binary polytopes 453

a is orthogonal to all y , then a = 0.) Moreover, the parameter vectors on the face
are precisely the parameters of the F", which by (32) are given by

To show (2), please note that since the face is spanned by {q + iCy=l u,y' 1 u E B"} ,
d + 1 is equal to the affine rank of {Cyl u,y' 1 u E B " } and d is equal to its linear
rank (since the y ' are orthogonal to a) . Let the rows of Y be y ' , . . ., y" and the
rows of U the 2" m-vectors u. Then d is the rank of UY. Since the rank of CJ is m,
there exists a non-singular 2" by 2" matrix R such that U = R (i), where I is the m
by m identity matrix. Hence

rank (U Y) = rank ((:)Y) = rank (:) = rank (Y) . 17

Corollary 5.
threshold functions F on B N. A n inequality a . y
a ' w s a . p supports Q" only at w = p.

The vertices of Q " are precisely the parameter vectors p of the self dual
0 is a separator of F i f and only i f

Proof. If d = 0 then m = 0, so that a is not orthogonal to any y E B". Therefore
a . y s 0 is a separator of a self dual threshold function F, and the parameter vector
of F is just q, which is also the unique point on the face. Conversely, let F be a self
dual threshold function. Then F has a separator of the form a . y S 0. Any such a is
not orthogonal to any y E B", and hence m = 0 and a . w G a * q is a 0-
dimensional face of Q", i.e. a vertex. The vertex is q, which is also the parameter
vector of F. 0

Corollary 6. A n edge of Q" contains exactly two parameter vectors, namely its
extreme points. The difference between them is a vector y ' E B", and the self dual
threshold functions labelled by the two parameter vectors differ only at & y '.

Proof. Let a . w c b be an edge of Q". Then the rank of Y, the matrix of
non-complementary vectors of B" orthogonal to a, is 1, so that Y has only one row
y ' . The edge then contains at most two distinct parameter vectors q + i y ' and
q - f y I , hence it contains exactly these parameter vectors. The self dual Boolean
functions whose parameter vectors lie on the edge are the two functions G' and
G(-'), which differ only at 2 y ', The parameter vectors are vertices of Q N , hence G'
and G'-" are threshold functions and are uniquely determined by their para-
meters. c3

Theorem 5. - r < 0 be a separator of the self dual threshold function
labelled by p. Zf q E Q", q - p = y * E B" and a . y * = - r, then q is a vertex of Q"
adjacent to p and for every r /n < t < r / (n - 2) (where n = I N I 3 2), (a + ty *) * y 0
is a separator of the self dual threshold function labelled by q.

Let a . y

454 U.N. Peled

Proof. Let p label the self dual threshold function F. Let p ' , . . ., p k be all the
vertices of Q" adjacent to p and let them label the self dual threshold functions
F ' , . . ., Fk, respectively. By Corollary 6 each F' differs from F only at a pair of
complementary points y ' , - y ' , and by choosing y ' so that F (y ') = - 1 we have
p ' = p - y ' F (y ') = p + y ' , Therefore a . p ' G a . p - r. Since q € Q", y * = q - p is
a non-negative combination of the extreme directions y ' = p ' - p, i.e. there exist
non-negative numbers c l , . . ., ck such that y * = x:=l c,y'. If c, > 1, then a . y * G

- r c,"_, c, < - r, contradicting our assumption. Therefore x:=, c, s 1. This means
that the t 1 vector y * is a convex combination of the * 1 vectors y ', . . ., y Ir and the
origin. But the t 1 vectors are the extreme points of the hypercube 1 y, I G 1 and the
origin is an internal point. It follows that one of the c, must be 1 and y * is one of the
y ' , say y ' , so that q = p ' . To prove that (a + ty*) 1 y S 0 is a separator of F' we use
the fact that F' differs from F only at * y * . At the point y = y * one has
(a + t y *) . y = (a + t y *) - y * = - r + t n > O . At any other point y # y * such that
F (y) = - 1 one has a . y s - r and therefore (a + ty *) * y G - r + t (n - 2) S 0. At
the complementary points - y we have of course the opposite inequalities. Thus
the self dual threshold function with the separator (a + ty *) * y S 0 is identical
with F' .

We are now ready to characterize those vertices of Q" that label self dual
threshold functions with self facet separators.

Theorem 6.
vector p. If F has a self facet separator of the form

Let F be a self dual threshold function on B N with Chow parameter

then there exist I N 1 afinely independent vertices q ' of Q " adjacent to p such that

a . q I = a ' p - r. (34)

Conversely, if F has a separator (33) with r > 0 , and i f (34) is satisfied by N afinely
independent Chow parameter vectors q' , then (33) is a self facet and the q' are vertices
of Q" adjacent to p.

Proof. Assume that (33) is a self facet separator of F. Then r > 0 and there exist
IN(linearly independent vectors y ' E B" satisfying (33) with equality. The self
dual Boolean function that differs from F only at k y ' has a parameter vector
q' = p - y ' F (y ') = p + y ' . These q' satisfy (34). By Theorem 5 they are vertices of
Q" adjacent to p . They are affinely independent because the y ' are (if F is
monotone, then p 2 0 and the q ' are in fact linearly independent).

Conversely, assume that r > 0, (33) is a separator of F and there exist I N 1 affinely
independent parameter vectors q ' satisfying (34). Then by an earlier remark, for
each i there exists a non-empty set S ' B N of points y such that F (y) = - 1 and
cyE~,y = q' - p . By (33) and (34) we then have

Properties of facets of binary polytopes 455

This shows that S ' is a singleton {y'}, and q' = p + y' . By (34) the y ' satisfy (33)
with equality and they are affinely independent because the 4' are. By Theorem 5
the 4 ' are vertices of Q" adjacent to p.

Example. Consider the self dual threshold function having the self facet separator
a * y S - 1 with a = (3,3,2,2,2,1). Its Chow parameter vector is p = (7,7,5,5,5,1)
and a . p = 73. The points y E B6 satisfying a * y = - 1 are

(1,1, - 1, - 1, - 1, - 1) (1 point),
(1, - 1,1, - 1, - 1, l) etc. (6 points),
(- 1, - 1,1,1,1, - 1) (1 point).

These 8 points are the rows of a matrix with rank 6. Adding each of them t o p, we
get the following parameter vectors:

(8,8,4,4,4,0) (1 vector),
(8,6,6,4,4,2) etc. (6 vectors),
(6,6,6,6,6,0) (1 vector).

These 8 vectors q satisfy a . 4 = 72 and are the rows of a matrix with rank 6. By
Theorem 5 they are vertices of Q6 adjacent to p, hence parameter vectors of self
dual threshold funtions. Indeed they label the functions with separators b * y - 1,
where b is, respectively,

(2,2,1,1,1,0) (1 function),
(4,3,3,2,2,1) etc. (6 functions),
(1,1,1,1, LO) (1 function).

Acknowledgements

I am grateful to Professors Peter Hammer, Ellis Johnson and Jack Edmonds for
stimulating and illuminating discussions on the problems of this paper. The referees
made valuable suggestions for improving an earlier version [14]. This work was
supported by NRC Postgraduate Scholarship.

References

[11 J.A. Araoz Durand, Polyhedral neopolarities, Ph.D. Thesis, University of Waterloo, Faculty of

[2] E. Balas, Facets of the knapsack polytope, Mark Programming 8 (1975) 146-164.
(31 E. Balas and E. Zemel, Facets of the knapsack polytope from minimal covers, Carnegie-Mellon

Mathematics, Department of Applied Analysis and Computer Science, November 1973.

University, Management Science Research Report, No. 352, December 1974.

456 U.N. Peled

[4] C.K. Chow, On the characterization of threshold functions, in Switching Circuit Theorey and
Logical Design, IEEE Special Publication S-134, September 1961, pp. 34-38.

[S] M. Edelberg, Integral convex polyhedra and an approach to integralization, Ph.D. Thesis,
Massachusetts Institute of Technology, Electrical Engineering Department, August 1970.

[6] C.C. Elgot, Truth functions realizable by single threshold organs, in Switching Circuit Theory and
Logical Design, IEEE Special Publication S-134, September 1961, pp. 225-245.

[7] P.L. Hammer, E.L. Johnson and U.N. Peled, Facets of regular 0-1 polytopes, Math. Programming
8 (1975) 179-206.

[8] P.L. Hammer, E.L. Johnson and U.N. Peled, The role of master polytopes in the unit cube,
University of Waterloo, Combinatorics and Optimization Research Report, CORR 74-25, October
1974, forthcoming in SIAM J. Appl. Math.

[9] P.L. Hammer and U.N. Peled, Computing low capacity 0-1 knapsack polytopes, University of
Waterloo, Combinatorics and O$imization Research Report, CORR 74-5, February 1975.

[lo] E.L. Johnson, A class of facets of the master 0-1 knapsack polytope, IBM Thomas J . Watson
Research Center, RC 5106, 1974.

[l l] S. Muroga, Threshold logic and its applications (Wiley, New York, 1971).
[12] G.L. Nemhauser and L.E. Trotter, Jr., Properties of vertex packing and independence systems

polyhedra, Math. Programming 6 (1974) 48-61.
[I31 M.W. Padberg, O n the facial structure of set packing polyhedra, Math. Programming 5 (1973)

199-215.
(141 U.N. Peled, Unfixed variables, self facets and Chow parameters, University of Waterloo, Com-

brnatorics and Optimization Research Report, CORR 75-16, July 1975.
[lS] M.A. Pollatschek, Algorithms on finite weighted graphs, Ph.D. Thesis, Technion - Israel Institute

of Technology, Faculty of Industrial and Management Engineering, 1970 (in Hebrew, with English
Synopsis).

[16] L.E. Trotter, Jr., A class of facet producing graphs for vertex packing polyhedra, Discrete Math. 12
(1974) 373-388.

[17] R.O. Winder, Chow parameters in threshold logic, J.A.C.M. 18 (1971) 265-289.
[181 R.O. Winder, Threshold logic, Ph.D. Thesis, Princeton University, Department of Mathematics,

1962, published on demand by University Microfilms, Xerox Company, Ann Arbor, Mich., 1973.
[191 L.A. Wolsey, Faces for a linear inequality in 0-1 variables, Math. Programming 8 (1975) 164-178.
[20] L.A. Wolsey, Facets and strong valid inequalities for integer programs, CORE, University of

[21] E . Zemel, Lifting the facets of 0-1 polytopes, Carnegie-Mellon University, Management Science
Louvain, April 1974.

Research Report, No. 354, December 1974, Revised December 1975.

Annals of Discrete Mathematics 1 (1977) 457-466
@ North-Holland Publishing Company

VERTEX GENERATION METHODS FOR PROBLEMS
WITH LOGICAL CONSTRAINTS

David S. RUBIN
Graduate School of Business Administration, University of North Carolina, Chapel Hill, NC,
27514 U.S.A.

Recent work has shown how to use vertex generation methods to solve linear complementarity
problems and cardinality constrained linear programs. These problems can be characterized as
linear programs with additional logical constraints. These logical constraints can be incorporated
into Chernikova’s vertex generating algorithm in a natural and straightforward fashion. This
study examines the extension of this technique to other linear programs with logical constraints,
and discusses its use as a solution procedure for the 0-1 integer programming problem.

We wish to consider the convex polyhedral set F = {x I Ax S b, x 2 0}, where A
and 6 are given real matrices of order rn x n and m x 1, respectively, and x is an
n x 1 vector of real variables. Introducing slack variables s, we may imbed F into a
higher dimensional space as

We shall be interested in the sets of vertices of F and F’. Since a natural and
obvious correspondence exists between the vertices of these two polyhedra (and
indeed between all of the points in these polyhedra) we shall henceforth refer to
both of these sets as F.

There are many problems in mathematical programming whose feasible region is
a polyhedron F, and whose optimal solution is a vertex of F. In theory, any such
problem can be solved by determining all the vertices of F and then choosing the
best of this finite set. However, since the number of vertices of F grows
exponentially in m and n, such a procedure is not practical except for small
problems.

Problems such as the cardinality constrained linear program [lo, 121 (see also
[3,7] where it is called the generalized lattice point problem) and the linear
complementarity problem have optimal solutions which are vertices of F and which
satisfy additional conditions which we refer to as “logical constraints.”

Let Ll be a subset of {1,2,. . ., m + n} for 1 = 1,. . ., k. Associated with each L, is
an integer qr s I L, I. Let y be any point of F and let y ’ denote that subvector of y
containing those components of y with indices in Ll. Let I w 1’ denote the number of
positive components of an arbitrary vector w. Then the logical constraints are

457

358 D.S. Rubin

l y ' (+ G q e 1 = 1,2 , . . . , k .

(We do not assume that the sets LI are disjoint, nor that they exhaust
{1,2, . . ., m + n}. These assumptions hold in some problems of interest, e.g., the
linear complementarity problem, but the procedure we shall present is valid
whether they hold or not.) It is easy to show that if a linear program with logical
constraints is feasible and bounded, then at least one vertex of F will be optimal.

The body of this paper shows how to modify Chernikova's vertex generating
algorithm [4,5] to generate only that subset of the vertices of F which also satisfy
the logical constraints. To the extent that this is a small subset, the procedure will
be practical; if the subset is large, it will not be useful. In the cardinality constrained
linear program, there is only one logical constraint, with LI = {m + 1, . . ., m + n}. If
q , = 1, there are at most 2n vertices satisfying the logical constraint; but if
q1 2 min {m, n}, then all vertices of F satisfy the logical constraint. In general, the
strength of the logical constraints (in terms of the number of vertices of F which
they exclude) in particular problems is a topic that, t o the best of our knowledge,
has not been studied.

Rather than concentrating on the logically feasible vertices of F, it is possible to
approach these problems by studying the convex hull of the feasible points of a
linear program with logical constraints. In reference [2], Balas has given a
characterization of the convex hull. Other discussions of linear programs with
logical constraints can be found in references [l, 3,6-8,lO-121.

Section 1 presents Chernikova's algorithm. Since this material is available
elsewhere, it is included here only to make the present paper self-contained.
Section 2 shows how to modify that algorithm to incorporate the logical constraints;
it is an extension and generalization of work found in references [9, 10, 111. Section
2 also shows how to incorporate the objective function of the problem, if one exists,
so that one generates only vertices better than those previously generated.

In Section 3 we discuss the geometry of the procedure and contrast our work with
the cutting-plane methods of Balas [I , 21 and Glover et al. [7, 81. This leads to
Section 4, which investigates the application of the technique to the 0-1 integer
program. Finally, in Section 5 we briefly discuss further modification of the
algorithm to incorporate logical constraints of the form 1 y ' I+ = qr and 1 y ' I+ 3 ql.

1. Chernikova's algorithm

Chernikova has given an algorithm [4, 51 which calculates all the edges of a
convex polyhedral cone in the nonnegative orthant with vertex at the origin. This
algorithm can also be used to find all the vertices of F by virtue of the following
easily proved lemma:

Lemma 1. 2 is a vertex of F = {x I AX b, x z= 01 if and only if

Vertex generation methods 459

is an edge of the cone

Here 5 and h are scalar variables.

W e shall accordingly concern ourselves with finding all the edges of sets of the
form C = {w I D w 3 0 , w 20}, where D is p x q.

Consider the matrix (7) where I is a q x q identity matrix. Chernikova’s
algorithm gives a series of transformations of this matrix which generates all the
edges. A t any stage of the process we denote the old matrix by Y = (3, and the new
matrix being generated is denoted y. The matrices U and L will always have p and
q rows, respectively; however, they will in general not have q columns. They will
have more than q columns in most cases, but if C lies in some subspace of Rq they
may have fewer than q columns. For w E Rq, we use the symbol (w) to denote the
ray {Aw, A 2 0).

The algorithm is as follows:
0.0. If any row of U has all components negative, then w = 0 is the only point

0.1. If all the elements of U are nonnegative, then the columns of L are the

1. Choose the first row of U, say row r, with at least one negative element.
2. Let R = { j 1 y,, 2 0). Let v = 1 R 1, i.e., the number of elements of R. Then the

first v columns of the new matrix, y, are all the y , for j E R, where y , denotes the
jth column of Y.

2’. If Y has only two columns and y , I y , z < 0, adjoin the column 1 yr21 y l + 1 y r l 1 y 2
to the

3. Let S = {(s, t) I y,$y,, < 0, s < t}, i.e., the set of all (unordered) pairs of columns
of Y whose elements in row r have opposite signs. Let lo be the index set of all
nonnegative rows of Y. For each (s, t) E S, find all i E 1, such that Y , ~ = Y , ~ = 0. Call
this set I,(s, t). W e now use some of the elements of S t o create additional columns
for Y:

(a) If ZI(s, t) = 0 (the empty set), then y . and y l d o not contribute another
column to the new matrix.

(b) If Z,(s, t) # 0, check t o see if there is a u not equal t o either s or f, such that
ynu = 0 for all i E Il(s, t). If such a u exists, then y . and y , do not contribute
another column t o the new matrix. If n o such u exists, then choose
a I , a 2 > 0 to satisfy (~ ~ y , ~ + a z y n = 0. (One such choice is a , = (y , 1,
az = I y,. I.) Adjoin the column a , y , + a z y , t o the new matrix.

4. When all pairs in S have been examined, and the additional columns (if any)

in C.

edges of C, i.e., the ray (I ,) is an edge of C ; here 1, denotes the jth column of L.

matrix. Go t o step 4.

460 D. S. Ru bin

have been added, we say that row r has been "processed." Now let Y denote the
matrix t produced in processing row r, and return to step 0.0.

The following remarks about the algorithm will be useful later.
(1) Let C, be the cone defined by C, = { w I D'w 3 0 , w S O } , where D' is

copposed of the first i rows of D. Let C,, = { w 1 w 3 0) and C, = C. Then
C(, 2 C, 2 . . * 2 C,, and each cone differs from its predecessor in having one
additional defining constraint. The algorithm computes the edges of Co, C, , . . ., C,
successively by adding on those additional defining constraints. Clearly the edges of
C,, are the unit vectors. After the algorithm has processed row i, the L matrix has
all the edges of C, as its columns.

(2) Let d ' denote the i t h row of D. Then initially u,, = d ' l , and by linearity this
property is maintained throughout the algorithm. Thus u, is the slack in the
constraint d'l, 3 0. In particular, if d ' = (- a ' , b ,) and 1, = (: I) , then u , ~ is t he slack in
the constraint a 'x s b,, i.e., in the ith constraint of A x b, when x = x,.

2. Modifications of Chernikova's algorithm

From Lemma 1, we see that we want only those edges of C, that have
Since the defining inequalities of C, are homogeneous, the edges constructed by
the algorithm can be normalized after the algorithm terminates. We prefer,
however, to do the normalization as the algorithm proceeds. Accordingly,
whenever an edge is created with 6 > 0, it will be normalized to change the 5 value
to one.

When applying Chernikova's algorithm to find the edges of C,, let y, = (p) be the
j th column of Y. Let y : be that subvector of y, containing those components of y ,
whose indices are in the set Ll. Finally, let y : (r) be that subvector of y : whose
indices are in the set {1,2, . . ., r - 1 ; m + 1, m + 2 , . . ., m + n} .

Lemma 2. Suppose that in processing row r we produce a column y, with 1 y ; (r) l + >
qr. Then any column y k subsequently produced as a linear combination of y, and some
other y , will also have I y (r) l + > qr.

Proof. The algorithm creates new columns by taking strictly positive linear
combinations of two old columns. Since L 2 0 and the first r - 1 rows of U are
nonnegative after row r - 1 has been processed, the new y : (r) will have at least as
many positive components as the old y: (r) . 0

Lemma 3. Suppose that in processing row r we encounter the following situation:
yrs < 0 , y,, > 0 and there exist k and 1 such that ytk = 0 for all i E I , (s , t) and
Iy:(r) l i>qr. For any al>O and aZ>O, let ye = a,y, + a z y r . Then lyL(r) lL>qf .

Proof. Suppose Y,.k is a strictly positive component of yk(r) . Since y , k = O for all

Vertex generation methods 461

i E Il(s, t) , it follows that u e Il(s, t) . Hence at least one of yus, y, , is strictly positive,
and since cy, ,a2>0, we have yua > O . Thus ~ y ~ (r) ~ ~ ~ ~ y ~ (r) ~ + > q ~ .

Theorem 1.
any I y (r) I+ > qr, that column may be discarded from further computation.

If while processing row r, the algorithm ever produces a column with

Proof. The theorem follows immediately from Lemmas 2 and 3 by induction. 0

If we actually had to enumerate all the edges of C,, it would be impractical to use
the Chernikova algorithm as a procedure to find the vertices of F satisfying the
logical constraints. To repeat what was said earlier, however, to the extent that the
logical conditions eliminate many of the vertices of C,, Theorem 1 will permit
considerable savings of storage and time. Consider the linear complementarity
problem (LCP)

A x + s = b

X , S S O

X T S = 0.

Here A is m X m, and there are m logical constraints with Ll = (I, m + I} and
qr = 1. If A = I , the identity matrix, and b > 0, then F has 2" vertices, all of which
satisfy the logical constraints. On the other hand, any strictly convex quadratic
program gives rise to an LCP whose logical constraints are so strong that only a
single vertex of F satisfies them.

In the LCP, we are interested only in finding some vertex which satisfies the
logical constraints. However, in other problems such as the cardinality constrained
linear program, there is a linear objective function cTx which is to be maximized.
By introducing the objective function into consideration, we can try to achieve
savings besides those indicated by Theorem 1.

Lemma 4.
x, is a vertex of F.

Suppose that we have processed row rand that y j 3 0, y m + n + l . , = 1 . Then

Proof. We know 1, is an edge of C,. Since u, 3 0, 1, satisfies - Ax f bt 3 0, so
1, E CF. Since 1, is an edge of C, and CF C C,, 1, is also an edge of CF. It now follows
from Lemma 1 that x, is a vertex of F. 0

Suppose that after processing row r we have found a vertex of C, with cTx = p.
We could now add the constraint cTx 3 p to the constraints Ax b. This is a
simple matter to do: We can initially include the vector (c T , 0) as the zeroth row of
U. Thus yo, will be the value of cTx,. When we find a vertex with cTx = p, we
modify the zerofh row to represent the constraint cTx 2 p. To do that we need only

462 D.S. Rubin

change yo, to yo, - py m t n c l , , , and now we treat the zeroth row as another constraint
and can apply the algorithm to it as well.

Subsequently we may produce a column with yOk > 0, uk 3 0, y,,,,,, k = 1. Hence
we have found a vertex with cTx = p + YOk > p. We can now change all yo, to
yo, - Y()kym+n+,., and again treat the zeroIh row as a constraint. Continuing in this
fashion we will only generate vertices at least as good as the best vertex yet found.
If we let y be the sum of the amounts which we have subtracted from the yo,, then
we can recover the true optimal value of the objective by adding y to the final value
of yo, in the column representing the optimal vertex.

It is not at all clear that using the objective function in this manner will make the
procedure more efficient. Introducing the objective as a cutting plane in this fashion
does exclude some vertices of F from consideration, but it may also create new
vertices. It is impossible to tell a priori whether there will be a net increase or
decrease in the number of vertices.

3. The geometry of logical constraints

The polyhedron F = { y = (:)I Ax + s = b, y 2 0) lies in the nonnegative orthant
in R”’”. Each logical constraint says that of the variables in the set L, at most q, can
be strictly positive, or alternatively, at least 1 L, I - ql of these variables must be
equal to 0. Thus each logical constraint excludes all vertices of F except those lying
on a subset of the faces of the nonnegative orthant in R”’“. Since each constraint
y, * O defines a facet of the nonnegative orthant, and since the hyperplane
{y I y, = 0) either supports F or else has n o intersection with F, it follows that the
logical constraints restrict the feasible region of the problem to a union of some of
the faces of F. Thus the feasible region is a union of convex polyhedra that in
general is not itself convex.

The test given in Theorem 1 determines whether a column to be generated does
lie on one of the permitted faces of the orthant. In effect the modified Chernikova
algorithm is simultaneously finding all the vertices of a collection of convex
polyhedra and automatically excluding from consideration those vertices of F
which do not lie on the “logically feasible faces.” The structure of the set of
logically feasible faces for the 0-1 integer program is discussed further in the next
section.

The work of Balas [l , 21 and Glover et al. [7,8] discusses classes of problems
which include our linear programs with logical constraints. Using the objective
function of the problem, they find the best vertex of F. If that vertex does not satisfy
the logical conditions, they add an intersection cut (also called a convexity cut)
derived from the constraints defining F and the logical constraints. This constraint
is valid on all the logically feasible faces of F. Thus their procedures work with all of
F and then cut away regions in F that are not logically feasible. These procedures

Vertex generation methods 463

can be characterized as dual algorithms. In contrast, our procedure considers only
logically feasible vertices of F and can be characterized as a primal algorithm.

4. The zero-one integer program

We consider the problem

max cTx

subject to Dx s d

Ix i e

x integer,

where D is a real (m - n) x n matrix, d is a real (m - n) X 1 vector, I is the n x n
identity matrix and e is a vector of n ones. Introducing slack variables s and t to the
constraints Dx < d and Zx s e, respectively, our integer program can be viewed as
a linear program with logical constraints:

L , = { m - n + I , m + l } , q - 1 f o r f = 1 , 2 ,..., n.

The initial tableau for the algorithm is

0

Lemma 5.
k = 1 , 2 ,..., n.

At all stages of the process u,-,+k.,+ h, = l n + , , , in each column j , for all

Proof. Clearly the condition holds in the initial tableau. It follows by linearity and
induction that it holds for all columns subsequently produced.

The import of the lemma is that there is no need to carry along those rows of L
corresponding to the initial identity matrix. They can always be reconstructed from
the last n rows of U and the final row of L.

Lemma 6. We may assume without loss of generality

164 D.S. Rubin

(a) d I , the first row of D, is strictly positive,
(b) d , , the first component of d, is strictly positive,
(c) for each component d l j of the first row of D we haue d , , G d ,

Proof. By interchanging the names of the pair (x , , t ,) , if necessary, we can
guarantee that the first nonzero component of each column of D is strictly positive.
(If any column of D contains all zero entries, we may eliminate that variable from
the problem.) By taking appropriate nonnegative weights for the rows of D, we can
create a surrogate constraint with strictly positive coefficients. Listing this con-
straint first gives us part (a). If d , s 0, then F is empty or else F = (0). In either case
the problem is uninteresting, which proves (b). If d , , > d , , then x, = 0 in any
feasible solution, and so it may be eliminated from the problem, proving (c).

Let us initiate the algorithm by processing row 1. Thus column n + 1 is retained,
and each column y , for j = 1,. . ., n is replaced by

In particular we now have lntl,, = 1 for all j and hence by Lemma 5, u m--nrk. , + 1 = lk,
for each column j and all k = 1, . . ., n. Furthermore, it follows from part (c) of
Lemma 6 that each entry in the last n rows of U either is negative or else is equal to
+ 1. (In fact the only negative entries are urn-,+,,, for j = 1 , 2 , . . ., n, but we shall not
use this fact.) The remark in the first paragraph of Section 2 now tells us that all
subsequent columns produced will be convex combinations of two other columns,
and so it follows by induction that

(1) All entries in row n + 1 of L will always be + 1, and hence we may discard
the entire L matrix.

(2) All entries in the last n rows of U will always be at most + 1.
In the statement of Chernikova’s algorithm and its modifications, it was

convenient to assume that the rows of A were processed sequentially from the top
down. However, it is clear that they can be processed in any order. The amount of
work needed on any given problem can vary greatly, depending on the order in
which the rows are processed, but there seems to be n o a priori way to determine an
efficient order. A myopic heuristic is given in [lo]. Since the logical constraints in
the 0-1 integer program involve the x and t variables, we cannot use the logical
constraints to eliminate columns until we process some of the last n rows of U.
Then after we have processed any of those rows, Theorem 1 can be rephrased as

Vertex generation methods 465

Theorem 2.
0 < u ,,-,, + k . , < 1 can be discarded.

After row rn - n + k of U has been processed, all columns with

The remaining columns can be divided into two sets, those with u m - - n + k , J = 0 and
those with U m - n + k , J = 1. Theorem 2 now tells us that n o column in one of these sets
will ever be combined with any column in the other set. This is perhaps best
understood in terms of the logically feasible faces discussed in Section 3. Each
logical constraint in this problem defines a set of two logically feasible faces which
are parallel to each other, and hence no convex combination of two points, one on
each face, can itself be a feasible point for the problem. This result is not specific to
the 0-1 integer program, but will hold in any problem whose logical constraints give
rise to a set of disjoint logically feasible faces such that each feasible vertex must lie
on at least one of the faces in the set.

Once row rn - n + k has been processed, there are now two polyhedra of interest

F~ = F n {y 1 X k = I}, F,, = F n {y I xk = 0).

Furthermore, we may, if we wish, work exclusively on F1 or Fo, thereby reducing
the active storage required to implement the procedure. Then the only information
about FI that will be used in working on Fo will be information about the objective
function as discussed in Lemma 4 and the subsequent comments. It should also be
remarked that the splitting of F into Fo and F1 (and an irrelevant part between Fo
and F,) and the subsequent separate processing of Fo and F, will result in an
algorithm that is similar in spirit to standard implicit enumeration algorithms.

5. Other logical constraints

We will conclude with a few brief remarks about extending the results of Section
2 to logical constraints of the forms 1 y ')+ = q, and 1 y ' /+ 3 qr. First of all we note
that such constraints may give rise to problems which fail to have optimal solutions
even though they are feasible and bounded. Consider the example

max y l + yz

subject to y l + y3 = 1

y 2 + y 4 = 1

y 3 0

L1 = {3,4}, q1 = 1.

If the logical constraint is I y l l + = 1, then feasible points with objective value
arbitrarily close to 2 lie on the segments y l = 1 and y2 = 1, but the point (1,1,0,0) is
infeasible. A similar result holds if the logical constraint is 1 y l l + 2 1. Clearly vertex
generation methods will be useless for such problems.

466 D.S. Rubin

Let us then consider the more restricted problem on finding the best vertex of F
subject to these new logical constraints. Clearly Lemmas 2 and 3 and Theorem 1
apply as stated for constraints I y ' I+ = ql. However, since columns with I y I+ 3 qr
can be constructed from columns with I y ' I+ < q1 it does not appear that Theorem 1
can be strengthened for constraints I y ' I + = 4,. Similarly we can see that there are no
results analogous to Theorem 1 for constraints I y I+ 3 ql. For such constraints, the
best we can do is to use Chernikova's algorithm to'generate all the vertices of F, and
this is admittedly not particularly efficient.

References

[11 E. Balas, Intersection cuts from disjunctive constraints, Management Sciences Research Report
No. 330, Carnegie-Mellon University, February 1974.

[2] E. Balas, Disjunctive programming: Properties of the convex hull of feasible points, Management
Sciences Research ReFort No. 348, Carnegie-Mellon University, July 1974.

(31 A.V. Cabot, On the generalized lattice point problem and nonlinear programming, Operations
Res., 23 (1975) 565-571.

[4] N.V. Chernikova, Algorithm for finding a general formula for the nonnegative solutions of a system
of linear equations, U.S.S.R. Computational Mathematics and Mathematical Physics, 4 (1964)

[5] N.V. Chernikova, Algorithm for finding a general formula for the nonnegative solutions of a system
of linear inequalities, U.S.S.R. Computational Math. and Marh. Phys., S (1965) 22S233.

[6] C.B. Garcia, On the relationship of the lattice point problem, the complementarity problem, and
the set representation problem, Technical Report No. 145, Department of Mathematical Sciences,
Clemson University, August 1973.

(71 F. Glover and D . Klingman, The generalized lattice-point problem, Operations Res., 21 (1973)

[8] F. Glover, D. Klingman and J. Stutz, The disjunctive facet problem: Formulation and solution

[9] P.G. McKeown and D.S. Rubin, Neighboring vertices on transportation polytopes, to appear in

[101 D.S. Rubin, Vertex generation and cardinality constrained linear programs, Operations Rex, 23

[Il l D.S. Rubin, Vertex generation and linear complementarity problems, Technical Report No. 74-2,

[121 K. Tanahashi and D. Luenberger, Cardinality-constrained linear programming, Stanford Univer-

151-158.

141-155.

techniques, Operations Res., 22 (1974) 582-601.

Naval Res. Logistics Quarterly, 22 (1975) 365-374.

(1975) 555-565.

Curriculum in Operations Research, University of North Carolina at Chapel Hill, December 1974.

sity, 1971.

Annals of Discrete Mathematics 1 (1977) 467-477
@ North-Holland Publishing Company

SENSITIVITY ANALYSIS IN INTEGER PROGRAMMING*

Jeremy F. SHAPIRO
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139,
U.S.A.

This paper uses an IP duality Theory recently developed by the authors and others to derive
sensitivity analysis tests for IP problems. Results are obtained for cost, right hand side and matrix
coefficient variation.

1. Introduction

A major reason for the widespread use of LP models is the existence of simple
procedures for performing sensitivity analyses. These procedures rely heavily on
LP duality theory and the interpretation it provides of the simplex method. Recent
research has provided a finitely convergent IP duality theory which can be used to
derive similar procedures for IP sensitivity analyses (Bell and Shapiro [3] ; see also
Bell [l], Bell and Fisher [2], Fisher and Shapiro [6], Fisher, Northup and Shapiro
[7], Shapiro [18]). The IP duality theory is a constructive method for generating a
sequence of increasingly strong dual problems to a given IP problem terminating
with a dual producing an optimal solution to the given IP problem. Preliminary
computational experience with the IP dual methods has been promising and is
reported in [7]. From a practical point of view, however, it may not be possible
when trying to solve a given IP problem to pursue the constructive procedure as far
as the IP dual problem which solves the given problem. The practical solution to
this difficulty is to imbed the use of IP duality theory in a branch and bound
approach (see [7]).

The IP problem we will study is

u = min cx

(1) s.t. Ax + Is = b

x, = O or 1, s, =0 ,1 ,2 ,..., U,,

where A is an m x n integer matrix with coefficients a,, and columns a,, b is an
m x 1 integer vector with components b,, and c is a 1 X n real vector with
components c,. For future reference, let F = { x p , sP};=, denote the set of all feasible
solutions to (1).

* Supported in part by the U.S. Army Research Office (Durham) under Contract No.
DAHC04-73-C-0032.

467

36X J.F. Shapiro

We have chosen to add the slack variables explicitly to (1) because they behave in
a somewhat unusual manner unlike the behavior of slack variables in LP. Suppose
for the moment that we relax the integrality constraints in problem (1); that is, we
allow 0 c x, < 1 and 0 c s, < U,. Let u T denote an optimal dual variable for the ith
constraint in this LP, and let sT denote an optimal value of the slack. By LP
complementary slackness, we have u T < 0 implies s t = 0 and u T > 0 implies
s T = U,. In the LP relaxation of (I), it is possible that 0 < s T < U, only if u T = 0. On
the other hand, in IP we may have a non-zero price u T and 0 < s T < U, because the
discrete nature of the IP problem makes it impossible for scarce resources to be
exactly consumed. Specific mathematical results about this phenomenon will be
given in Section 2.

2. Review of IP duality theory

A dual problem to (1) is constructed by reformulating it as follows. Let G be any
finite abelian group with the representation

G = Z,, @ Za@ - . . @ Zq,

where the positive integers q, satisfy q1 3 2 , q, 1 qltl, i = 1,. . ., r - 1, and Zq, is the
cyclic group of order q,. Let g denote the order of G; clearly g = fl:=,q, and we
enumerate the elements as uo, u,, . . ., ug-' with uo = 0. Let . . ., E, be any
elements of this group and for any n-vector f, define the element +(f) = c E G by

The mapping + naturally partitions the space of integer m -vectors into g equival-
ence classes So, S , , . . ., Sg-l where f', f'E SK if and only if cK = +(f') = +cf'). The
element aK of G is associated with the set SK; that is, 4(f) = UK for all integer
m-vectors f E SK.

It can easily be shown that (1) is equivalent to (has the same feasible region as)

(2 4 u = min cx,

(2b) s.t. Ax + Is = b,

x, = O or 1,
(2d) s, =0 ,1 ,2). . .) u,,
where a, = +(a ,) and /3 = +(b) . The group equations (2c) are a system of r
congruences and they can be viewed as an aggregation of the linear system
Ax + Is = 6. Hence the equivalence of (1) and (2). For future reference, let Y be
the set of (x, s) solutions satisfying (2c) and (2d).Note that F C Y.

Sensitivity analysis in integer programming 469

The IP dual problem induced by G is constructed by dualizing with respect to the
constraints Ax + Is = b. Specifically, for each u define

L (u) = ub + min {(c - uA)x - u s } .
(X. S)E Y

(3)

The Langrangean minimization (3) can be perfoqmed in a matter of a few seconds
or less for g up to 5000; see Glover [lo], Gorry, Northup and Shapiro [ll]. The
ability to do this calculation quickly is essential to the efficacy of the IP dual
methods. If g is larger than 5000, methods are available to try to circumvent the
resulting numerical difficulty (Gorry, Shapiro and Wolsey [121). However, there is
no guarantee that these methods will work, and computational experience has
shown that the best overall strategy is to combine these methods with branch and
bound.

Sensitivity analysis on IP problem (1) depends to a large extent on sensitivity
analysis with respect to the group G and the Langrangean L. Let

m

g (a ; u) = min C (c, - ua,)x, + C - UJ,
, = = I , = l

x, = 0 or 1,

s, = O , l , 2) . . .) u,.
Then L (u) = ub + g (p ; u) . Moreover, the algorithms in [lo] and [ll] can be used
to compute g (a ; u) for all (+ E g without a significant increase in computation time.

It is well known and easily shown that the function L is concave, continuous and
a lower bound on u. The IP dual problem is to find the greatest lower bound

w = maxL(u)
(5)

s.t. u E R".

If w = +=, then the IP problem (1) is infeasible.

summarized by the following:

satisfy the optimality conditions if

The desired relation of the IP dual problem (5) to the primal IP problem (1) is

Optimality Conditions : The pair of solutions (x *, s *) E Y and u * E R" is said to

(i) L (u *) = u * b + (c - u * A) x * - u * s

(ii) Ax* + Is* = 6.
It can easily be shown that a pair satisfying these conditions is optimal in the
respective primal and dual problems. For a given IP dual problem, there is no
guarantee that the optimality conditions can be established, but attention can be
restricted to optimal dual solutions for which we try to find a complementary
optimal primal solution. If the dual IP problem cannot be used to solve the primal

470 J.F. Shapiro

problem, then u > w and we say there is a duality g a p ; in this case, a stronger IP
dual problem is constructed.

Specifically, solution of the IP problem (1) by dual methods is constructively
achieved by generating a finite sequence of groups {Gk}f==o, sets {Yk}f=,, and IP
dual problems analogous to (5) with maximal objective function value wk. The
group G" = Z1, Yo = {(x, s) I x, = 0 or 1, s, = 0,1,2, . . ., U , } and the corresponding
IP dual problem can be shown to be the linear programming relaxation of (1). The
groups here have the property that G k is a subgroup of G'", implying directly that
Yk+' C Y k and therefore that u 3 w * + I 2 w '. Sometimes we will refer to Gk+' as a
supergroup of Gk.

The critical step in this approach to solving the IP problem (1) is that if an optimal
solution to the k fh dual does not yield an optimal integer solution, then we are able
to construct the supergroup Gk+' so that Yk+'S: Yk. Moreover, the construction
eliminates the infeasible IP solutions (x, s) E Yk which are used in combination by
the IP dual problem to produce a fractional solution to the optimality conditions.
Since the set Yo is finite, the process must converge in a finite number of IP dual
problem constructions to an IP dual problem yielding an optimal solution to (1) by
the optimality conditions, or prove that (1) has no feasible solution. Details are
given in [3].

The following theorem exposes how this IP duality theory extends the notion of
complementary slackness to IP.

Theorem 1. Suppose that (x* , s*) E Y and u * E R" satisfy the optimality condi-
tions. Then

(i) u f < 0 and s: > 0 implies E, # 0.
(ii) u f > O and s: < U, implies F , # O .

Proof. Suppose u T < 0 and sT > 0 but E , = 0. Recall that (x *, s *) E Y implies that
c,"=, a , x ? 4 x:,"=, s,sT = ,B and L (u *) = u * b + (c - u * A) x * - u*s. Since E , = 0, we
can reduce the value of s, to 0 and still have a solution in Y. But this new solution in
thz Lagrangean has a cost of L (u *) + u:s* ,* < L (u *) contradicting the optimality
of (x *, s *). The proof of case (ii) is similar. 0

The IP dual problem (5) is actually a large scale linear programming problem. Let
Y = {XI, sf}:=, be an enumeration of Y. The LP formulation of (5) is

w = max v

(6) v ub + (C - u A) x ' - U S '

t = 1,. . .) T.

The linear programming dual to (6) is

Sensitivity analysis in integer programming 47 1

T

w = min C (c x ‘) ~ , ,
, = I

T

s.t. C (A x ‘ + Zsf)wI = b,
, = I

(7)

The number of rows T in (6), or columns in (7), is enormous. The solution methods
given in Fisher and Shapiro [6] generate columns as needed by ascent algorithms
for solving (6) and (7) as a primal-dual pair. The columns are generated by solving
the Lagrangean problem (3).

The formulation (7) of the IP dual has a convex analysis interpretation.
Specifically, the feasible region in (7) corresponds to

{ (x , s) 1 A x + Is = b, 0 s x, 1,0 s, s Ut} n [Y]

where the left hand set is the feasible region of the LP relaxation of the I P problem
(1) and “[1” denotes convex hull. Thus, in effect, the dual approach approximates
the convex hull of the set of feasible integer points by the intersection of the LP
feasible region with the polyhedron [Y] . When the IP dual problem (5) solves the
IP problem (l), then [Y] has cut away enough of the LP feasible region to
approximate the convex hull of feasible integer solutions in a neighborhood of an
optimal IP solution.

3. Sensitivity analysis of cost coefficients

Sensitivity analysis of cost coefficients is easier than sensitivity analysis of right
hand side coefficients because the set F of feasible solutions remains unchanged. As
described in the previous section, suppose we have constructed an IP dual problem
for which the optimality conditions are satisfied by some pair (x *, s*) E Y and u *.

The first question we wish to answer is

In what range of values can cI vary without changing the value of the zero-one
variable x1 in the optimal solution (x * , s*)?

We answer this question by studying the effect of changing c1 on the Lagrangean.

Theorem 2. Let (x *, s *) and u * denote optimal solutions to the primal and dual ZP
problems, respectively, satisfying the optimality conditions. Suppose the zero-one
variable x 7 = 0 and we consider varying its cost coefficient c1 to c1 + Acl. Then (x *, s *)
remains optimal i f

472 J.F. Shapiro

(8)

where g(. , u *) is defined in (4).

Acr 2 min (0, g (p ; u *) - (cI - u * a r) - g (p - aI ; u *)},

Proof. Clearly, if x T = 0 and (8) indicates that Acl 3 0, or cI increases, then x *
remains optimal with x T = 0. Thus we need consider only the case when g (p ; u *) -
(c I - u * a r) - g (p - aI ; u *) < 0. Let g (a ; u * 1 x r = k ; A c r) denote the minimal cost
in (4) if we are constrained to set xI = k when the change in the 1‘” cost coefficient is
Acr. If Acl satisfies (8), then

(9) g (P ; u * 1 xI = 1; A c l) = cr + Acr - u *ar + g (p - a I ; u * 1 xI = 0; A c r)

= cr + Acr - u *ar + g (p - a I ; u * 1 xI = 0; 0)

2 cI + Acr - u*ar + g (p - ar ; u *)

g (P ; *)

= g (p ; u * 1 X I = 0;O)

= g (p ; u * l x l = O ; A c r) ,

where the first equality follows from the definition of g (p ; u * 1 x = 1; A c r) , the
second equality because the value of Acl is of no consequence if x I = 0, the first
inequality because g (p - c u r ; u *) may or may not be achieved with xI = 0, the
second inequality by our assumption that (8) holds, the third equality because
g (p ; u *) = (c - u * A) x * - u *s and x: = 0, and the final equality by the same
reasoning as the second equality. Thus, as long as Acl satisfies (8), it is less costly to
set xI = 0 rather than xI = 1. 0

On the other hand, marginal analysis when X T = 1 is not as easy because the
variable is used in achieving the minimal value g (p ; u *) . Clearly x * remains
optimal if cI is decreased. As cI is increased, xi should eventually be set to zero
unless it is uniquely required for feasibility.

Theorem 3. Let (x *, s *) and u * denote optimal solutions to the primal and dual IP
problems, respectively, satisfying the optimality conditions. Suppose the zero -one
variable x T = 1 and we consider varying its cost coefficient cI to cr + Acl. Then (x *, s *)
is not optimal in the Lagrangean if

(10)

where

Acr > min{c, - u *a, I j E J (a I) and x T = 0) - (cr - u * a r)

W e assume there is at least one x: = 0 for j E J (a r) because otherwise the result is
meaningless.

Sensitivity analysis in integer programming 473

Proof. Note that we can order the elements jl, j 2 , . . ., jv in J (a r) by increasing cost
c, - x*a, with respect to u * such that x: = 1, j = 1, . . ., j", x: = 0, j = ju + 1,. . ., jv.
This is because all these variables x, have the same effect in the constraints in (4).
By assumption, there is an x 7 = 0, and if cf + Ac, - u * a r > c, - u *a,, then x, = 1 will
be preferred to xf = 1 in (4). In this case, (x* , s*) is no longer optimal in the
Lagrangean and the optimality conditions are destroyed. 0

The inequality (10) can be a gross overstatement of when (x* , s*) ceases to be
optimal in the Lagrangean. Systematic solution of g(j3; u *) for increasing values of
cr is possible by the parametric methods we discuss next.

A more general question about cost coefficient variation in the IP problem (1) is
the following

How does the optimal solution change as the objective function c varies in the
interval [c', c']?

Parametric IP analysis of this type has been studied by Nauss [15], but without the
IP duality theory, and by the author in [21] in the context of multicriterion IP. We
give some of the relevant results here. The work required to do parametric IP
analysis is greater than the sensitivity analysis described above which is effectively
marginal analysis.

For 8 E [0,1] define the function

(11) u (e) = min((1- e) c o + 8c1)x,

Ax + Is = b,

x, = 0 or 1,

s, = 0 , 1 , 2)...) u,.

It is easy to show that u (8) is a piecewise linear concave function of 8. The IP dual
objective function can be used to approximate u (8) from below. Specifically,
suppose (11) is solved by the IP dual at 8 = 0 and we consider increasing it. From
(7), we have

i-

(12) s.t. (Ax' + Ist)wl = b
' = I

wt 3 0

where w (8) is also a piecewise linear concave function of 8, and w(O)= u(0)
because we assume an IP dual has been constructed which solves the primal.

474 J.F. Shapiro

Without loss of generality, assume (XI, s') is the optimal IP solution for 6 = 0.
Then, w , = 1, wt = 0, t 3 1 is the optimal solution in the LP (12), and we can do
parametric variation of 8 3 0 to find the maximal value, say 8*, such that
v(8) = w (8) for all 6 E [0, @*I. The difficulty is that the number of columns in (12)
is enormous. For this purpose, generalized linear programming can be used to
generate columns as needed for the parametric analysis. Included is the possibility
that when w , = 1, wt = 0, t 3 1, becomes non-optimal, another feasible IP solution
will become the optimal solution in (12).

When a sufficiently large 8 is reached such that v(8) - w (8) > 0, then we can use
the iterative IP dual analysis described in section two to strengthen the dual and
ultimately eliminate the gap. Numerical excesses may make this impractical.
However, any IP dual can be used to reduce the work of branch and bound in the
parametric analysis of the interval [co, c'] being studied. These IP duals give
stronger lower bounds than the LP and related lower bounds used in [15].

4. Sensitivity analysis of right-hand side coefficients

This is a rich area of research which needs continuing investigation. Nevertheless,
we can report on some results already obtained. Again we suppose that the IP
duality theory has yielded an IP dual problem for which the optimality conditions
hold for (x *, s *) E Y, u * E R"'. As in LP, constraint i is not binding if u T = 0.
Specifically, it can easily be shown that x * is optimal in IP(1) with the right hand
side 6, equal to any of the numbers

i: a,xT, i: a,xT + 1,. . ., i: a,,xT + u,,
, = I] = I , = I

for any row i with u T = 0. The optimal value of the slack variable on such a row is
b, - Cy= I U,,X 7 .

To study further the effects of varying b, we define the perturbation function for b
in a finite set B

v (b) = min cx

(13) s.t.Ax +Is = b

x, = 0 or 1

s , = o , 1 , 2 , . . .) u,

Attention is limited to a finite set rather than all integer vectors in R" because a
finite set is more likely to be the type of interest, and also because it avoids
troublesome technical difficulties. For a finite set of integer right hand sides,
universal upper bounds on the slacks can be found and used. The function v (b) is
poorly behaved, except for the property that b ' a b implies v(b') c v(b), which

Sensitioity analysis in integer programming 475

makes it difficult to study. Note also that z1 is defined only on the integers and it is
not differentiable, unlike perturbation functions in nonlinear programming.

For each right hand side b E B, the finitely convergent duality theory given in [3]
produces an IP dual problem which solves (13) by establishing the optimality
conditions. These IP duals are related but specific results about their relationship
are difficult to obtain. Instead, we consider the IP dual which solves (13) with the
given right hand side bo, and investigate its properties with respect to the other
b E B.

Let G denote the group used in the construction of the IP dual solving (13) with
b = bo. This group induces a family of g related dual problems defined on each of
the g equivalence classes of right hand sides So, S1, . . ,, Sg-l. For b E S, we have

w,(b) = maxL,(u)

s.t. u E R", (14)

where
L,(u) = ub + g(u; u) .

By assumption

v (b 0) = c x * = w,o(bo)=L,~(u*),

where P o = +(bO) . The solution of problem (4) for all right hand sides u gives us
optimal solutions to a number of other IP problems (13). Let (x (u) , s(u)) denote
the optimal solution to (4) with right hand side u when u = u *. It is easy to show by
direct appeal to the optimality conditions that (x (u) , s(u)) is optimal in (13) with

b , = ~ a , , x , (u) + s , (u) , i = l , ..., m.
,=1

Moreover, for i such that uT = 0, x (u) and the corresponding slack values are
optimal in (13) with

Thus, we may immediately have optimal solutions to some of the IP problems (13)
for b E B. In addition, x (u) is a feasible but possibly non-optimal solution in (13)
with b E B if Ax(u)G b and

"
b, - C u,,x,(u)E{O, 1,. . ., V,>

/ = I

Note, however, that not all constraints of an IP problem can be allowed to vary
parametrically. For example, a constraint of the form x I 1 + x 1 2 1 indicating that
project 1 can be started in period 1 or period 2, but not both, makes no sense when
extended to the constraint X ~ ~ + X , ~ G ~ . Some constraints of this type can be
included in the Lagrangean calculation.

Marsten and Morin [14] have devised schemes for parametric analysis of the right

476 J.F. Shapiro

hand side of IP problems. The duality results here can be integrated with their
approach to provide tighter lower bounds for the branch and bound procedure.
They consider b to be a real vector and observe jumps in the function u (b) . The
selection of integer data for A and b in effect limits attention to the points where
u (b) might change value.

5. Sensitivity analysis of matrix coefficients

This analysis is similar to the cost coefficient analysis since the dual approach is to
convert constraints to costs. The question we address is:

In what range of values can a coefficient aZf vary without changing the value of
the zero-one variables xf in the optimal solution (x *, s *)?

As before, the answer to this question is easier if x: = 0.

Theorem 4. Let (x *, s *) and u * denote optimal solutions to the primal and dual IP
problems, respectively, satisfying the optimality conditions. Suppose the zero -one
variable x ? = 0 and we consider varying the coefficient a,l to atf + Aa,, where Aa,, is
integer. Then x * remains optimal i f Aa,f satisfies

(15)

There is no restriction on Aa,, if u T = 0.

- u:Aa,, ~min{0,g(/3 ;u*) - (c l - u*af)-g(/3 - af - A a , l s , ; u *) } .

Proof. The proof is identical to the proof of Theorem 2 . The change Aa,, causes the
change - u TAa,, in the cost coefficient analogous to the change A n in Theorem 2,
and the group identity of af is changed to a, +Aa,l.s,. 0

A result similar to Theorem 3 for the case when x: = 1 can be obtained. We omit
further details. A more general type of IP matrix coefficient variation is the
problem of IP column generation. Such a problem would arise, for example, if there
were a subproblem to be solved whose solution provided a candidate column a
with cost coefficient c to be added to IP(1). A construction to do this using the IP
duality theory appears possible but will not be developed here.

6. Conclusions

We have presented some results for performing IP sensitivity analyses using IP
duality theory. More research into these methods is needed, particularly a more
extensive study of the family of IP dual problems which result as the right hand side
in (1) is varied. Computational experience with these methods, in conjunction with
branch and bound, is crucial and will suggest important areas of research. We

Sensitivity analysis in integer programming 477

mention that the work of Burdet and Johnson [5] appears to provide an analytic
formalism for combining duality and branch and bound. Finally, the IP duality
theory has been extended to mixed IP in [20] indicating that the results here cpn be
readily extended to sensitivity analysis for mixed IP.

References

[I] D.E. Bell, Improved bounds for integer programs: A supergroup approach, IIASA RM-73-5,
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1973, to appear in SIAM
J. Appl. Math.

[2] D.E. Bell and M.L. Fisher, Improved integer programming bounds using intersections of corner
polyhedra, Math. Programming 8 (1975) 345-368.

[3] D.E. Bell and J.F. Shapiro, A convergent duality theory for integer programming, RM 75-33,
International Institute for Applied Systems Analysis, Schloss Laxenburg, Austria, 1975, to appear
in Operations Research, 1977.

[4] C. Burdet and E.L. Johnson, h subadditive approach to the group problem of integer program-
ming, Math. Programming Study 2 (1974) 51-71.

[5] C.A. Burdet and E.L. Johnson, A subadditive approach to solve linear integer programs, 1975.
[6] M.L. Fisher and J.F. Shapiro, Constructive duality in integer programming, SIAM J. Appl. Math.

27 (1974) 31-52.
[7] M.L. Fisher, W.D. Northup and J.F. Shapiro, Using duality to solve discrete optimization

problems: Theory and computational experience, Math. Programming Study 3 (1975) 56-94.
[8] A.M. Geoffrion, Lagrangean relaxation for integer programming,. Mathematical Programming

[9] A.M. Geoffrion and R.E. Marsten, Integer programming algorithms: A framework and state-of-
Study 2 (1974) 82-114.

the-art survey, Management Science 18 (1972) 465-491.
[lo] F. Glover, Integer programming over a finite additive group, SIAMJ. Control 7 (1969) 213-231.
[I l l G.A. Gorry, W.D. Northup and J.F. Shapiro, Computational experience with a group theoretic

[I21 G.A. Gorry, J.F. Shapiro and L.A. Wolsey, Relaxation methods for pure and mixed integer

[13] M. Held and R.M. Karp, The travelling-salesman problem and minimum spanning trees: Part 11.

[I41 R.E. Marsten and T.L. Morin, Parametric integer programming: The right-hand side case, 1975.
[IS] Robert M. Nauss, Parametric integer programming, UCLA Working Paper No. 226, Western

[I61 T.R. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[17] G.M. Roodman, Postoptimality analysis in zero-one programming by implicit enumeration, Naval

Research Logistic Quarterly 19 (1972) 435-447.
[181 J.F. Shapiro, Generalized Lagrange multipliers, in integer programming, Operations Res. 19 (1971)

68-76.
[19] J.F. Shapiro, A decomposition algorithm for integer programming problems with many columns,

Proc. 25th Annual A C M Conference, Boston, August, 1972, pp. 52EL533.
[20] J.F. Shapiro, A new duality theory for mixed integer programming. Operations Research Center

Working Paper No. OR 033-74, Massachusetts Institute of Technology, 1974. To appear in Proc.
Congress on Math. Programming and Its Applications, Rome.

[21] J. F. Shapiro, Multiple criteria public investment decision making by mixed integer programming,
pp. 170-182 in Multiple Criteria Decision Making, edited by H. Thiriez and S. Zionts, Springer-
Verlae. 1976.

integer programming algorithm, Mathematical Programming 4 (1973) 171-192.

programming problems, Management Sci. 18 (1972) 229-239.

Math. Programming 1 (1971) 6-25.

Management Science Institute, UCLA (1975).

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 479-493
@ North-Holland Publishing Company

A LIFO IMPLICIT ENUMERATION SEARCH ALGORITHM
FOR THE SYMMETRIC TRAVELING SALESMAN PROBLEM
USING HELD AND KARP’S l7TREE RELAXATION*

T.H.C. SMITH
Department of Statistics, Rand Afrikaans Unioersity, Johannesburg, R.S.A.

G.L. THOMPSON
Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, P A 15213,
U.S.A.

We propose here a LIFO implicit enumeration search algorithm for the symmetric traveling
salesman problem which uses the 1-tree relaxation of Held and Karp. The proposed algorithm
has significantly smaller memory requirements than Held and Karp’s branch-and-bound al-
gorithm. Computational experience with this algorithm and an improved version of Held and
Karp’s algorithm is reported and on the basis of the sample it can be stated that the proposed
algorithm is faster and generates many fewer subproblems than Held and Karp’s algorithm.

1. Introduction

In two excellent papers, [lo] and [ll], Held and Karp investigated the relation-
ship between the symmetric traveling salesman problem and the minimum span-
ning tree problem. They used this relationship to determine a lower bound on the
length of a minimal tour and in [I l l developed an efficient ascent method for
improving this lower bound. They incorporated this method in a branch-and-bound
algorithm for the solution of the symmetric traveling salesman problem and
reported exceptionally good computational experience with this algorithm. In a
subsequent paper [121 Held, Wolfe and Crowder reported additional computa-
tional experience with a refinement of the above ascent method used in Held and
Karp’s branch-and-bound algorithm, verifying the effectiveness of the method in
obtaining a near-maximal lower bound (of this type) on the minimal tour length. It
is worth noting that Cristofides [2] independently considered an ascent method for
the problem of finding a shortest Hamiltonian chain.

A major disadvantage of Held and Karp’s (breadth-first) branch-and-bound
algorithm (and of other branch-and-bound algorithms) is the creation of a list (of
unpredictable length) of subproblems for each of which certain information must be

* This report was prepared as part of the activities of the Management Sciences Research Group,
Carnegie-Mellon University, under Contract N00014-75-C-0621 N R 047-048 with the U.S. Office of
Naval Research.

479

480 T.H.C. Smith, G.L. Thompson

kept. The memory requirements of such large lists severely limit the sizes of
problems that can be solved using only the high speed memory of a computer.

We propose here a LIFO (depth first) implicit enumeration algorithm [l , 5 , 17,
231 for the solution of the symmetric traveling salesman problem which does not
suffer from this memory disadvantage and which, on the basis of some limited
computational experience, performs better than an improved version of Held and
Karp’s branch-and-bound algorithm.

2. Terminology and review

Let G be a complete undirected graph with node set N = {1,2,. . ., n } . A cycle C
in G is a connected subgraph of G in which each node is met by exactly two edges.
If (N , , N z) is a nontrivial partition of N, then the nonempty set of edges (i , j) ,
i E N1, j E N2, of G is called a cutset in G. A spanning tree T in G is a connected
subgraph of G with node set N which contains no cycles. The edges of G in T are
called branches of T while all other edges of G are called chords of T. The
fundamental cycle of a chord c is the set of edges in the unique cycle in G formed
by c and a subset of the branches. The fundamental cutset of a branch b is the set of
edges in the cutset on the partition defined by the two connected subgraphs of G
which are formed when b is removed from T.

Suppose T, and Tz are two spanning trees in G such that exactly one branch b, of
TI is a chord of T2 (and exactly one chord co of T1 is a branch of T2). For any branch
b of T, let D i (b) be its fundamental cutset and for any chord c of T, let C r (c) be its
fundamental cycle, i = 1 or 2. The following theorem, which is also a consequence
of Proposition 2 in [24], relates the fundamental cycles and cutsets of TI and T,.

Theorem 1. Let A denote the symmetric difference of two sets. Then we have:
(i) Cz(bo) = Cl(co) and D2(co) = Dl(bo);

(ii) i f c # co is a chord of T,, it is also a chord of Tz and i f boE C,(c), then

(iii) i f b f bo is a branch of T I , it is also a branch of Tz and i f c o g D , (b) , then
G (c) = C,(c), else G (c) = Cl(c)AC,(co);

D z (b) = D l (b) , else D 2 (b) = D,(b)ADl (bo) .

A proof of this theorem can easily be constructed by drawing two trees satisfying
the hypothesis of the theorem.

Assume each edge (i , j) , i E N, j E N, of G has an associated length c,,. For any
subset S of edges of G, the total length equals & i , ,) E S ~ , , . The minimal spanning tree
problem is that of finding a spanning tree T of G with minimum total length of the
set of edges in T. Several methods for solving this problem have been proposed (see
[3, 16, 19, 21, 241). According to the computational experience reported in [15], the
most efficient of these in the case of a complete graph is the algorithm of Prim and
Dijkstra.

A LIFO implicit enumeration search algorithm 481

The following are well-known necessary and sufficient conditions for a minimal

NSl. A spanning tree T is minimal if and only if every branch of T is at least as

NS2. A spanning tree T is minimal if and only if every chord of T is at least as

spanning tree ([3a, p. 1751 and [24]).

short as any chord in its fundamental cutset.

long as any branch in its fundamental cycle.

Part (ii) of Theorem 2 also appears in [24].

Theorem 2.
(i) If the length of chord co of T I is made arbitrarily small in order to force c,, into

the minimal spanning tree, a new minimal spanning tree T2 can be obtained from T ,
by exchanging co and a longest branch bo in its fundamental cycle.

(ii) I f the length of a branch bo of Tz is made arbitrarily large in order to force b, out
of the minimal spanning tree, a new minimal spanning tree T2 can be obtained from
T I by exchanging b, und a shortest chord co in its fundamental cutset. In both cases
the increase in the length of the minimal spanning tree equals the length of c,, minus
the length of b,,.

Suppose T , is a minimal spanning tree.

The proof is easy and is omitted.

Let G' be the complete subgraph of G with node set N' = N - (1). A 1-tree T in
G is a spanning subgraph of G containing two edges incident to node 1 as well as
the edges of a spanning tree T' in G'. The edges of T will also be referred to as
branches and the edges of G not in T as chords. When we refer to the fundamental
cutset/cycle of a branch/chord, we implicitly assume that it is an edge of G'. The
minimal 1-tree problem is then the problem of finding the shortest two edges
incident to node 1 as well as a minimal spanning tree in G'.

The traoeling salesman problem is that of finding a minimal tour (i.e., a 1-tree
with exactly two branches meeting each node in N) . As noted by Held and Karp in
[lo] and Christofides [2], if, for any set of node weights {r,, i E N } , we transform the
edge lengths using the transformation c:, = c,, + rl + r,, i E N, j E N, the set of
minimal tours stays the same while the set of minimal 1-trees may change.

As indicated in these references, the lengths of these minimal 1-trees can be used
to construct lower bounds for tour lengths, which are usefull in the branch and
bound search.

3. Ascent methods

In [lo] Held and Karp gave, among others, an ascent method which iteratively
increases the lower bound L by changing a single node weight at each iteration. In a
second paper [111 Held and Karp proposed a more efficient method for finding a set
of node weights which yield a good lower bound. They implemented this method
(in a rather crude way) in another branch-and-bound algorithm (which we will

482 T.H.C. Smith, G.L. Thompson

henceforth call the HK-algorithm) for the solution of the symmetric traveling
salesman problem and obtained excellent computational results.

In a subsequent paper [12] Held, Wolfe and Crowder reported additional
computational experience with a refined implementation of Held and Karp’s ascent
method, verifying the effectiveness of the method in obtaining a near-maximal
lower bound (of the type considered) on the minimal tourlength. A single iteration
of this ascent method can be described as follows:

Given a set of node weights {r,, i E N } and an upper bound U on the minimal
tourlength, find a minimal 1-tree T with respect to the transformed edge lengths
and let L be the lower bound computed from T. If T is a tour the ascent is
terminated since L is the optimal lower bound. Otherwise let d, be the number of
branches meeting node i and A be a given positive scalar smaller than or equal to 2.
Compute the scalar quantity t = A (U - L) /c , , , (d , - 2)* and replace the old set of
node weights with the new set of node weights {T:, i E N } computed from the
following formulas:

7r: = 7r, + t (d, - 2), i E N. (1)

Our implementation of the ascent method is based on the strategies used in [I11
and [12]. It requires input parameters K, z, a, p, T and A, where K is the initial
number and t the minimum number of ascent iterations, and a, p, T and A are
tolerances. Given a set of node weights and a upper bound U on the minimal
tourlength, we initially do K ascent iterations of the type indicated above with the
given tolerance value of A used in (1). Thereafter we successively halve A, put
K = maximum (K / 2 , z) and do another K ascent iterations until the first iteration
at which at least one of the following statements is true (at which point the ascent is
terminated):

(i) the computed f value is less than the tolerance a,
(ii) the minimal 1-tree is a tour,

(iii) K has the value z and n o improvement in the (maximum) lower bound of at

(iv) U - L s T.
least /3 occurred in a block of 42 ascent iterations,

At termination of an ascent we restore the set of node weights which yielded the
current lower bound and compute a minimal 1-tree with respect to the transformed
edge lengths. The particular values of the tolerances a and p (see (i) and (iii)
above) that we used in our computational work, are given in the section on
computational results. The tolerance T used in (iv) should be zero in general but
under the assumption that the original edge lengths are integers, T can be taken as a
real number smaller than unity. In our code for the improved version of the
HK-algorithm (which we henceforth call the HKI-algorithm) we took T = 0.999.
Furthermore we took the quantity z (which Held, Wolfe and Crowder call a
“threshold value”) equal to the integer part of n / 8 . The initial value of A in an
ascent was taken equal to 2, except where noted otherwise.

In the HK-algorithm one can distinguish between the use of the ascent method

A LIFO implicit enumeration search algorithm 483

on the original problem (called the initial ascent) and its use on subproblems
generated subsequently in the branching process (called general ascents). In the
HK-algorithm the initial and general ascents are done in exactly the same way. In
the HKI-algorithm we implemented the initial and general ascents slightly differ-
rently, starting the initial ascent with K = n but any general ascent with K = z. This
had the effect that a general ascent generally required fewer ascent iterations than
the initial ascent. Intuitively this is correct if one reasons that if the initial ascent
finds a good set of node weights, a general ascent should require fewer ascent
iterations than the initial ascent to find a good set of node weights for the
subproblem under consideration.

In the HKI-algorithm we used the same branching strategy as used by Held and
Karp in their HK-algorithm. We noted that a last-created subproblem in a
branching was often a subproblem with least lower bound among the subproblems
currently in the list and hence could automatically be selected as the next
subproblem to be subjected to the general ascent and subsequent branching. Our
computational experience showed that the ascent method almost never produced
an increase in the lower bound for a subproblem of this kind. We eliminated the
ascent for such a subproblem in our code for HKI and in the three problems we
used to test for an improvement, we found that the size of the search tree did not
increase significantly but that the total number of ascent iterations (and hence total
run time) dropped considerably. For instance in KT57, the 57-node problem of
Karg and Thompson [14], the number of nodes in the search tree increased from
378 to 409 while the number of ascent-iterations dropped from 8744 to 4407, cutting
total run time from 8.25 minutes to 4.50 minutes.

In any branch-and-bound or implicit enumeration algorithm for the traveling
salesman problem it is important to have a good upper bound U on the minimal
tourlength. We used the first phase of the heuristic algorithm of Karg and
Thompson [14], incorporating most of the improvements given by Raymond [20],
to find a reasonable value for U. This algorithm starts out with a subtour through a
given pair of nodes. We took U as the minimum tourlength among the (K + 1)
tours generated by successively starting out with a subtour through the node pairs
(1,2), (1,7), . . ., (1,5K + 2) where K is the largest integer smaller than (n - 1)/5.

4. A LIFO implicit enumeration algorithm

A major disadvantage of a breadth first branch-and-bound algorithm such as the
HK-algorithm, is the creation of a list (of unpredictable length) of subproblems for
each of which certain information must be kept in memory. We propose here a
LIFO implicit enumeration search algorithm, which we henceforth call the
IE-algorithm, for the solution of the symmetric traveling salesman problem which
does not suffer from this disadvantage, using the ideas in [1,5,6, 17,231. A stepwise
description of this algorithm follows:

4x4 T. H. C. Smith, G. L. Thompson

Step 0 (Initialization). Let the current subproblem be the original problem.
Compute an upper bound U on the minimal tourlength and go to step 1.
Step 1 (Calculation of a lower bound for the current subproblem). Apply the ascent
to the current subproblem to obtain a lower bound L on the minimal tourlength. If
the ascent terminates because the minimal 1-tree is a tour or because U - L S T, go
to step 3. Otherwise go to step 2.
Step 2 (Partitioning of the current subproblem). Select a node in N’ which is met by
more than two branches of the current minimal 1-tree. Let S be the set of all
branches incident to this node which are not fixed in while F is the set of all
branches incident to this node which are fixed in. Go to (a).

(a) If I S U F 1 < 2, go to step 1. Otherwise remove the branch e with the longest
transformed length from the set S and determine the increase E in the lower bound
if e would be fixed out as well as the chord c which should be exchanged with e to
obtain a minimal 1-tree for the resulting subproblem (if e is not incident to node 1
use Theorem 2(ii), otherwise c is the shortest chord incident to node 1 and E is the
nonnegative difference in transformed lengths between e and c). If U - L - E > T,
go to (b). Otherwise go to (c) since fixing e out would cause the lower bound to
exceed the upper bound for the resulting subproblem.

(b) Fix e out of the minimal 1-tree (by changing its length temporarily to a large
number) and find the new minimal 1-tree by exchanging e and c. If the resulting
1-tree is a tour, go to step 3. Otherwise go to (a).

(c) Fix e in the minimal 1-tree (by changing its length temporarily to a small
number). If either of the end nodes of e is now met by two fixed branches, go to
step 4. Otherwise set F = F U { e } and go to (a).

Step 3 (Backtrack and create new current subproblem).
(a) If there are no fixed edges, go to step 5. Otherwise free the last fixed edge e by

restoring its length to its original value. If e is a branch, go to (b). Otherwise go

(b) If e is incident to node 1 and longer than the shortest chord c incident to node
1, exchange e and c to get a minimal 1-tree. Otherwise, if e is longer than the
shortest chord c in its fundamental cutset, exchange e and c to get a minimal 1-tree
(see Theorem 2(ii)). Go to (a).

(c) Determine the increase E in the lower bound if e would be fixed into the
minimal 1-tree as well as the branch b which should be exchanged with e to obtain
a minimal 1-tree (if e is not incident to node 1, use Theorem 2(i), otherwise E equals
the difference in transformed lengths between e and the longest branch b incident
to node 1). If E < O , exchange e and branch b to get the new minimal 1-tree. If
U - L > T, go to (d). Otherwise go to (a) since fixing e in would cause the lower
bound to exceed the upper bound for the resulting subproblem.

(d) If either of the endnodes of e is met by two fixed branches, go to (a) since e
cannot also be fixed in the minimal 1-tree. Otherwise fix e in the minimal 1-tree and
if e is still a chord, exchange e and the branch b to get the new minimal 1-tree. If

to (c).

A LIFO implicit enumeration search algorithm 485

either of the endnodes of e is now met by two fixed branches, go to step 4.
Otherwise go to step 1.
Step 4 (Create new current subproblem by skipping).

(a) For each endnode of e met by two fixed branches, consider successively all
nonfixed edges incident to this node: If the edge e ’ currently under consideration is
a chord, fix it out. Otherwise determine, in the same way as in step 2(a), the increase
E in the lower bound if e ’ would be fixed out of the minimal 1-tree. If
U - L - E T, go to step 3. Otherwise fix e’ out of the minimal 1-tree and find the
new minimal 1-tree by exchanging e’ and the appropriate chord.

Step 5 (Termination). The tour which yielded the current upper bound U solves the
original traveling salesman problem.

(b) Go to step 2.

We represented the 1-tree T in the FORTRAN V implementation of the
IE-algorithm as the two nodes in N’ connected to node 1 together with the
underlying spanning of tree T’ in G’ which we represented as an arborescence,
using the three-index scheme of Johnson [13], augmented by the distance index of
Srinivasan and Thompson [22]. Fundamental cutsets and cycles were found utilizing
the ideas in [13] and [22]. The updating of the four-index representation after a
branch-chord exchange (pivot) was handled by the method given in [7]. For a
typical 60-node problem the mean times on the UNIVAC 1108 for:

(i) finding the shortest chord in a fundamental cutset was 15.9 milliseconds,
(ii) finding the longest branch in a fundamental cycle was 0.4 milliseconds,

(iii) updating the 1-tree representation after a branch-chord exchange was
0.8 milliseconds,

(iv) finding a minimal 1-tree using the Prim-Dijkstra algorithm was
61.4 milliseconds.

The ascent method used in the IE-algorithm was exactly the same as that used for
the HKI-algorithm, as described in the previous section. The parameter T used in
the description of the IE-algorithm is the same as in the ascent method. We again
assumed integer data and took T = 0.9 on all test problems except T46, for which
we took T = 0.999.

5. Computational results

The computational comparison of the HKI- and IE-algorithms is based on a
sample consisting of nineteen problems. Problems DF42 and KT57 are respectively
42-node and 57-node problems that appear in [14] while HK48 is the 48-node
problem of [9). Problem T46 is the 46-node Tutte problem given in [ll] (we
associated a length of zero with each edge of the graph on page 23 of [l l] and a
length of 1 with every edge of Td6 which does not appear in the graph). The other
fifteen problems were randomly generated as described below.

486 T.H.C. Smith, G.L. Thompson

The input to the random problem generator consists of five parameters, I1 to 15.
A rectangle is partitioned vertically into I1 blocks of height 14 and each of these
blocks is partitioned horizontally into I2 blocks of breadth I4 with the result that the
original rectangle with dimensions I1 x I4 by I2 x I4 is partitioned into I1 X I2
square blocks with side length 14. Using a random number generator, I3 nodes are
chosen randomly in each block. The output of the problem generator is the set of
coordinates for the resulting n = I1 x I2 X I3 nodes generated. The distance mat-
rices for these random problems were calculated using the Euclidean distance
measure, rounded down to the next integer. The parameter values used for the
different problems are given in Table 1. The actual sets of coordinates for each of
these problems are available on request from the authors.

Table 1

Problems I1 I2 I3 I4

R481-R485 3 4 4 500
R600 3 4 5 500
R601-R605 3 5 4 500
R606R609 1 1 60 1500

The computational results of applying the HKI- and IE-algorithms to the
above-mentioned nineteen problems are given in Table 2. The identification of the
columns in Table 2 is as follows:

(1) Mean time in milliseconds to compute one near-optimal tour using the
Karg-Thompson-Raymond algorithm.

(2) Mean time in milliseconds for one ascent iteration (see section on ascent
met hods).

(3) Upper bound U on the minimal tourlength found using the
Karg-Thompson-Raymond algorithm.

(4) Lower bound L on the minimal tourlength after the initial ascent (the same
for both algorithms).

(5) Minimal tourlength L * .
(6) Number of subproblems generated by the HKI-algorithm which were never

chosen as a subproblem of least lower bound.
(7) Number of subproblems chosen as a subproblem of least lower bound by the

HKI-algorithm which did not lead to branching because of a lower bound
exceeding the current upper bound U.

(8) Number of subproblems which lead to branching in the HKI-algorithm.
(9) Total number of ascent iterations required by the HKI-algorithm.

(10) Maximum number of subproblems on the storage list during computation

(11) Total number of subproblems generated by steps 2(b), 2(c) and 3(d) of the

(12) Total number of skipping steps (step 4) for the IE-algorithm.

(for the HKI-algorithm).

IE-algorithm.

Table 2b

DF42
T46
HK48
KT57
R481"
R482
R483
R484
R485
R600
R601"
R602
R603"
R604
R605"
R606
R607
R608"
R609

308 31
34

456 39
624 56
484 40
411 40
422 39
437 39
471 39
748 65
731 60
727 60
737 57
725 61
725 60
701 57
704 59
710 57
699 57

-
699

1
11511
13012
9788

10680
10180
9984
9844

10474
11752
12011
12699
12551
12278
8189
8657
8905
9390

696.9
0.0

11443.9
12907.5
9547.0

10661.4
10174.5
9917.4
9827.3

10359.1
11588.0
11777.0
12573.6
12482.4
12161.8
8070.9
8514.4
8805.4
9084.4

699
1

11461
12955
9729

10680
10180
9984
9844

10374
11703
11777
12699
12497
12262
8073
8553
8903
9156

0
0

21
58

391
0
0
0
0

33
254

0
254
46

254
56

235
254
29

12
292

11
100
106
21
5

89
10
9

155
0

86
24
45
0

190
44

246

45
348
35

25 1
567
49
33

221
42
34

545
0

423
97

379
41

594
295
582

401
2916
57 1

4407
12773

486
261

2059
288
389

12053
128

10079
1514
8181
361

12849
8734
6895

10
102
31

103
391

15
6

49
10
43

254
0

254
56

254
56

194
254
103

6
148

6
38

346
6
4

12
6

32
121

0
222

14
343

4
125
59
4

0
28
0
2

57
0
0
0
0
0

21
0

24
0

28
0

17
4
0

182
2664

234
1439
9588

304
197
529
262

1286
4064

128
7106
675

10570
312

3715
2319
314

b 5.8
96.7

81.6

12.3
7.8

9.4 g
391.6 S' z

2.

21.2 r

10.5 z
s g 85.3

248.5
7.7 in

-
m

a

m

414.6 g

224.1 :
41.8 n

646.2 s
18.7 2,

139.3
18.9

~

a HKI not completed because of insufficient storage. Lower bound for least lower bound subproblem on list at termination was 9628.2, 11653.1,
12621.1, 12198.2 and 8845.4 for R481, R601, R603, R605 and R608 respectively.

In T46 we took a = p =0.001. In all other problems we took a =0.01 and p =0.1.

488 T.H.C. Smith, G.L. Thompson

(13) Total number of ascent iterations required by the IE-algorithm.
(14) Total runtime in seconds for the IE-algorithm (exclusive of the time to

compute an initial upper bound U) .
All times reported were obtained on a Univac 1108.

When comparing the performance of the two algorithms, it is natural to compare
their respective runtimes. However in both algorithms the major part of runtime is
spent performing ascent iterations (in the case of the IE-algorithm more than 95%
of the total runtime). Since the total number of ascent iterations does not depend
on actual coding or on the particular computer used (as does total runtime), we
consider this statistic a better measure of comparison than total runtime. As can be
seen from the entries in columns (9) and (13) of Table 11, the IE-algorithm required
fewer ascent iterations than the HKI-algorithm for all problems solved by both
algorithms except R600. Excluding the problems not solved by the HKI-algorithm
(because of insufficient storage for all the subproblems generated) and problem
R602 for which a tour was found in the initial ascent, the IE-algorithm required on
the average seven ascent iterations for every ten ascent iterations required by the
HKI-algorithm. We d o report the total runtime for the IE-algorithm in column (14)
of Table 2. A lower bound on the total runtime for the HKI-algorithm can be
obtained by multiplying the number of ascent iterations with the mean time for an
ascent iteration.

A second important statistic which does not depend on the actual coding or the
particular computer used, is the total number of subproblems generated during
computation. In the case of the HKI-algorithm this number is given by the sum of
the entries in columns (6), (7) and (8) of Table 2 while for the IE-algorithm it is
given by the entry in column (11) of Table 2 . As can be seen from Table 2 , IE
generated fewer subproblems than HKI on all problems except R602 including the
problems that could not be solved by HKI. On the average HKI generated more
than eight times as many subproblems than IE, excluding the problems not solved
by HKI and problem R602.

A third basis of comparison between the two algorithms is the total memory
requirements. For a 60-node problem the total memory requirements for the
IE-algorithm was 10K (where K = 1024) memory locations while the HKI-
algorithm required 7 K memory locations for everything except the list of subprob-
lems. An additional 34K main storage locations and 128K external storage
locations (on a drum) were reserved for this list. This memory allocation for the
subproblem list may seem excessive but in fact five of the nineteen problems in the
sample required more list storage than this.

For every subproblem generated by HKI, the following information must be
kept: (i) a set of node weights, (ii) the set of edges fixed in the minimal 1-tree, (iii)
the set of edges fixed ou t of the minimal 1-tree and (iv) the cardinality of the sets in
(ii) and (iii). In our implementation of the HKI-algorithm we packed the set of fixed
edges so that a single memory location could contain information about three fixed
edges. Therefore the total memory requirements for the information about a

A LIFO implicit enumeration search algorithm 489

subproblem came to n + n(n - 1)/6 + 2 memory locations for an n-node problem.
For n = 60 this number equals 652 so that the 162K memory locations reserved for
the list could accommodate 254 subproblems.

For five of the nineteen problems in our sample the HKI-algorithm generated
more subproblems than could be accommodated in the 162K reserved memory
locations. Since for a given problem, there is n o reasonable upper bound on the
number of subproblems to be generated by the HKI-algorithm (or the HK-
algorithm), these unpredictable memory requirements are a serious disadvantage of
both the HKI- and HK-algorithms.

We may also note the reason for the large number of subproblems being
generated by both algorithms for problems R481, R601, R603, R605 and R608. On
the basis of Held, Wolfe and Crowder’s results [121 we are fairly confident that the
lower bound L generated in the initial ascent was close to its optimal value. But in
each of these problems the difference L * - L between the minimal tourlength and
the lower bound L at the end of the initial ascent was much larger than the
corresponding difference for the fourteen problems which generated many fewer
subproblems. We suggest that this difference may therefore be a useful measure of
problem difficulty.

An explanation for the fact that the IE-algorithm generates many fewer
subproblems than the HKI-algorithm lies in the particular way subproblems are
generated in step 2 of the IE-algorithm. The latter method of subproblem
generation is much more oriented towards the goal of finding a minimal 1-tree that
is a tour than is the partitioning method used in the HKI- and HK-algorithms. Our
partitioning of a subproblem in step 2 of I E forces a minimal 1-tree towards a tour
by fixing out “excess” branches of the minimal 1-tree. This involves the same idea
as is present in the ascent method which can be viewed as a penalty method (see [2])
which forces the minimal 1-tree towards a tour by “penalizing” a node met by more
than two branches (by increasing its node weight) and by “rewarding” a node met
by only one branch (by decreasing its node weight).

In [l l] Held and Karp presented the search trees for the problems for which they
reported computational experience. It is interesting to compare their search trees
for the problems DF42, HK48 and KT57 with the search trees generated by the
IE-algorithm for the same problems. These are represented respectively in Figs. 1,
2, and 3 . The search trees for DF42 and HK48 correspond to the runs reported in
Table 2 while the search tree for KT57 presented in Fig. 3 was obtained by starting
each general ascent with the parameter A set to 1 instead of 2. Note that, unlike
Held and Karp’s search trees which have some or all of the terminal nodes omitted,
we show the complete search trees. The node numbers (underlined) in the search
trees in Figs. 1, 2 and 3 correspond to the order in which the subproblems
represented by the nodes were generated. If one views the search tree as a
downward-directed arborescence with root node 1, the branch leaving a node
vertically/obliquely represents an edge of G being fixed in/out with the endnodes of
the edge being fixed given next to the oblique branch.

490 T.H.C. Smith, G.L. Thompson

i\ 10,12

5

h , 1 8 kt533

7 6 4 3

Optimum tour found by
the heuristic program

Fig. 1. DF42 Fig. 2. HK48

32 i \?3

h,53 ' A 4 2

34 33 31 30

.4.23
I \ 9.18 I \

\
18

Tour(11461)

Fig. 3. KT57

After completing the experiments described above, we obtained the recent
computational results of Hansen and Krarup [8]. They present an improved version
of the HK-algorithm and report computational experience on an IBM 360/75
computer.

We generated three 15-problem samples of 50,60 and 70 node problems each as
well as five 80 node problems in the same manner as Hansen and Krarup and solved
them with the IE-algorithm. Since the Karg-Thompson-Raymond heuristic cannot

Table 3’

n = 50

Gap Itera- Nodes Time
tions

0.00
0.00
0.00
0.00
1.17
0.00
0.00
0.02
0.30
0.41
0.08
0.02
0.16
0.20
0.10

67
56

104
74

1863
84
60

207
1114
65 1
894
936
73 1
604
452

1 2.8
1 2.4
2 4.3
1 3.1

70 79.5
1 3.5
1 2.5
7 8.6

39 46.7
21 27.2
27 37.2
27 38.9
21 30.4
19 25.2
15 18.8

Average Runtime = 22.1

n = m

Gap Itera- Nodes Time
tions

0.00 418 15 24.9
0.53 858 23 51.0
0.00 65 1 3.8
0.00 76 1 4.5
0.26 1165 35 70.3
0.00 80 1 4.7
0.24 341 9 20.2
0.51 3211 85 190.9
0.10 977 25 58.0
0.00 80 1 4.7
0.09 820 23 48.9
0.10 193 5 11.5
0.00 73 1 4.3
0.00 61 1 3.6
0.06 169 3 10.0

Average Runtime = 34.1

n = 70

Gap Itera- Nodes Time
tions

0.23 550 11 45.8
0.63 1417 39 115.7
0.00 82 1 6.6
0.00 108 1 8.7
0.05 219 3 17.6
0.37 800 22 64.5
0.10 191 3 15.4
0.00 66 1 5.3
0.18 2299 67 185.7
0.39 2687 63 217.6
0.43 1129 29 91.2
0.00 80 1 6.4
0.71 1104 25 89.7
0.16 555 15 44.9
0.00 117 1 9.4

Average Runtime = 61.6

n = 8 0

Gap Itera- Nodes Time
tions

0.00 109 1 11.8
0.31 695 11 75.4
0.17 2530 59 275.4
0.00 125 1 13.6
0.12 361 5 38.9

Average Runtime = 83.0

(I = 0.01, p = 0.1, T = 0.9 in all problems.

P s

492 T.H.C. Smith, G.L. Thompson

be expected to provide a good upper bound U, for the type of problem under
consideration, we took as upper bound 1.01 times the value of the lower bound at
the end of the initial ascent (if no tour is found, the algorithm has to be run again
with a higher upper bound). In the initial ascent we computed the stepsize as
t = A (0 . 5 M) / ~ z , N (d , - 2)* (where M is the maximum lower bound obtained in the
current ascent) while in a general ascent we took t = A(0.005 M) / Z I E N (d , - 2)’. All
ascents were started with the parameter K set equal to 2, the threshold value.

Our computational experience with the above fifty problems are reported in
Table 3 where the column headings have the following interpretations:

Gap: The difference between the optimal tour length and the lower bound
at the end of the initial ascent as a percentage of the optimal
tourlength.

Iterations: The total number of ascent iterations.
Nodes: The total number of subproblems generated in steps 2(b), 2(c) and

3(d) of IE.
Time : The total runtime in seconds on the UNIVAC 1108.

A 100 node problem was also solved and took 13.6 minutes on the UNIVAC 1108,
generating 95 nodes and requiring 5014 ascent iterations.
For the reasons stated above it is extremely difficult to compare the IE-algorithm
with that of Hansen and Krarup. However, there does exist the possibility of
improving the IE-algorithm further by making use of efficient sorting techniques
and Kruskal’s algorithm for finding a minimal spanning tree (see [16]) as done by
Hansen and Krarup.

6. Conclusions

Our computational results indicate that the IE-algorithm is considerably faster
than the HKI-algorithm. Since the major computational effort in the IE-algorithm
is spent on Step 1 (the ascent method) in order to find good lower bounds on
subproblems, an increase in the efficiency of the algorithm can be obtained by
speeding up the ascent method. We are currently considering techniques for doing
the latter.

References

[l] E. Balas, An additive algorithm for solving linear programs with zero-one variables, Operations

[2] N. Cristofides, The shortest hamiltonian chain of a graph, SIAMJ. Appl . Math. 19 (1970) 689-696.
[3] E.W. Dijkstra, A note on two problems in connection with graphs, Num. Math. 1 (1959) 269-271.
[3a] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,

Res. 13 (1965) 517-546.

1962).

A LIFO implicit enumeration search algorithm 493

[4] R.S. Garfinkel and G.L. Nemhauser, Integer Programming (John Wiley, New York, 1972).
[5] A.M. Geoffrion, Integer programming by implicit enumeration and Balas’ method, SIAM Reo. 7

(1967) 178-190.
[6] F. Glover, A multiphase-dual algorithm for the zero-one integer programming problem, Operations

Res. 13 (1965) 879-919.
[7] F. Glover, D. Klingman and D. Karney, The augmented predecessor index method for locating

stepping stone paths and assigning dual prices in distribution problems, Transportation Sci. 6 (1972)

[8] K.H. Hansen and J. Krarup, Improvements of the Held-Karp algorithm for the symmetric

[9] M. Held and R.M. Karp, A dynamic programming approach to sequencing problems, SIAM 10

[lo] M. Held and R.M. Karp, The traveling-salesman problem and minimum spanning trees, Operations

[l l] M. Held and R. Karp, The traveling salesman problem and minimum spanning trees: 11, Math.

[12] M. Held, P. Wolfe and H.P. Crowder, Validation of subgradient optimization, Math. Programming

[13] E. Johnson, Network and basic solutions, Operations Res. 14 (1960) 619-623.
1141 R.L. Karg and G.L. Thompson, A heuristic approach to solving traveling salesman problems,

[15] J. Kershenbaum and R. Van Slyke, Computing minimum trees, Proc. A C M Annual Conference

[16] J.B. Kruskal, O n the shortest spanning subtree of a graph and the traveling salesman problem,

[17] J.D.C. Little, et al., An algorithm for the traveling salesman problem, Operations Res. 11 (1963)

[18] A.K. Obruca, Spanning tree manipulation and the traveling salesman problem, Computer J. 10

1191 R.C. Prim, Shortest connection networks and some generalizations, Bell System Tech. J. , X (1957)

[20] T.C. Raymond, Heuristic algorithm for the traveling salesman problem, IBM J. Res. Deu., 13 (1969)

[21] P. Rosenstiehl, L’arbre minimum d’un graphe, in: P. Rosenstiehl, ed., Theory of Graphs (Gordon

[22] V. Srinivasan and G.L. Thompson, Accelerated algorithms for labeling and relabeling of trees, with

1231 G.L. Thompson, The stopped simplex method: I. Basic theory for mixed integer programming,

[24] G.L. Thompson, Pivotal operations for solving optimal graph problems, working paper.

171-1 80.

traveling-salesman problem, Math. Programming 7 (1974) 87-96.

(1962) 196210.

Res. 18 (1970) 1138-1162.

Programming 1 (1971) 625.

6 (1974) 62-88.

Management Sci. 10 (1964) 225-248.

(1972), 518-527.

Proc. A m . Math. SOC. 2 (1956) 48-50.

972-989.

(1968) 374-377.

1389- 140 1.

400-407.

and Breach, New York, 1967).

applications to distribution problems, J. Assoc. Computing Machinery 19 (1972) 712-726.

integer programming, Reuue Francaise De Recherche Operationelle 8 (1964) 159-182.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 495-506
@ North-Holland Publishing Company

COMPUTATIONAL PERFORMANCE OF THREE SUBTOUR
ELIMINATION ALGORITHMS FOR SOLVING ASYMMETRIC
TRAVELING SALESMAN PROBLEMS*

T.H.C. SMITH
Department of Statistics, Rand Afrikaans University, Johannesburg, R.S.A.

V. SRINIVASAN
Graduate School of Business, Stanford Universify, Stanford, C A 94305, U.S.A.

G.L. THOMPSON
Graduate School of Industrial Administration, Carnegie -Mellon Universify, Pittsburgh, P A 15213,
U.S.A.

In this paper we develop and computationally test three implicit enumeration algorithms for
solving the asymmetric traveling salesman problem. All three algorithms use the assignment
problem relaxation of the traveling salesman problem with subtour elimination similar to the
previous approaches by Eastman, Shapiro and Bellmore and Malone. The present algorithms,
however, differ from the previous approaches in two important respects:

(i) lower bounds on the objective function for the descendants of a node in the implicit
enumeration tree are computed without altering the assignment solution corresponding to the
parent node - this is accomplished using a result based on “cost operators”,

(ii) a LIFO (Last In, First Out) depth first branching strategy is used which considerably
reduces the storage requirements for the implicit enumeration approach. The three algorithms
differ from each other in the details of implementing the implicit enumeration approach and in
terms of the type of constraint used for eliminating subtours. Computational experience with
randomly generated test problems indicates that the present algorithms are more efficient and can
solve larger problems compared to (i) previous subtour elimination algorithms and (ii) the
1-arborescence approach of Held and Karp (as implemented by T.H.C. Smith) for the asymmetric
traveling salesman problem. Computational experience is reported for up to 180 node problems
with costs (distances) in the interval (1,1000) and up to 200 node problems with bivalent costs.

1. Introduction

Excluding the algorithms of this paper, the state-of-the-art algorithms for the
asymmetric traveling salesman problem appears to be that of [ll] and more
recently [l], both of which use the linear assignment problem as a relaxation (with
subtour elimination) in a branch-and-bound algorithm. In the case of the symmetric

* This report was prepared as part of the activities of the Management Science Research Group,
Carnegie-Mellon University, under Contract N00014-75-C-0621 NR 047-048 with the U.S. Office of
Naval Research.

A considerably more detailed version of this paper is available (Management Sciences Research
Report No. 369), and can be obtained by writing to the third author.

495

496 T.H.C. Smith, V. Srinivasan, G.L. Thompson

traveling salesman problem these algorithms as well as another interesting al-
gorithm of Bellmore and Malone [1] based on the 2-matching relaxation of the
symmetric traveling salesman problem are completely dominated in efficiency by
the branch-and-bound algorithm of Held and Karp [lo] (further improved in [S])
based on a 1-tree relaxation of the traveling salesman problem. In [13] an implicit
enumeration algorithm using a LIFO (Last I n First Out) depth first branching
strategy based on Held and Karp’s 1-tree relaxation was introduced and extensive
computational experience indicates that algorithm to be even more efficient than
the previous Held-Karp algorithms.

In [I71 Srinivasan and Thomspon showed how weak lower bounds can be
computed for the subproblems formed in the Eastman-Shapiro branch-and-bound
algorithm [5 , 111. The weak lower bounds are determined by the use of cell cost
operators [14, 151 which evaluate the effects on the optimal value of the objective
function of parametrically increasing the cost associated with a cell of the
assignment problem tableau. Since these bounds are easily computable, it was
suggested in [I71 that the use of these bounds instead of the bounds obtained by
resolving or post-optimizing the assignment problem for each subproblem, would
speed up the Eastman-Shapiro algorithm considerably. In this paper we propose
and implement a straightforward LIFO implicit enumeration version of the
Eastman-Shapiro algorithm as well as two improved LIFO implicit enumeration
algorithms for the asymmetric traveling salesman problem. In all three of these
algorithms the weak lower bounds of [I71 are used to guide the tree search. The use
of weak lower bounds in the branch-and-bound subtour elimination approach is
explained with an example in [17].

We present computational experience with the new algorithms on problems of up
to 200 nodes. The computational results indicate that the proposed algorithms are
more efficient than (i) the previous subtour elimination branch-and-bound al-
gorithms and (ii) a LIFO implicit enumeration algorithm based on the 1-
arborescence relaxation of the asymmetric traveling salesman problem suggested
by Held and Karp in [9], recently proposed and tested computationally in [12].

2. Subtour elimination using cost operators

Subtour elimination schemes have been proposed by Dantzig, et al. [3, 41,
Eastman [5], Shapiro [I l l , and Bellmore and Malone [l]. The latter four authors
use, as we do, the Assignment Problem (AP) relaxation of the traveling salesman
problem (TSP) and then eliminate subtours of the resulting A P by driving the costs
of the cells in the assignment problem away from their true costs to very large
positive or very large negative numbers.

The way we change the costs of the assignment problem is (following [17]) to use
the operator theory of parametric programming of Srinivasan and Thompson [14,
151. To describe these let 6 be a nonnegative number and (p , q) a given cell in the

Computational performance of subtour elimination algorithms 497

assignment cost matrix C = {cij}. A positive (negative) cell cost operator SC&(SC,)
transforms the optimum solution of the original AP into an optimum solution of the
problem AP+(AP-) with all data the same, except

c ; = c, + 6; (c,= c, - 6).

The details of how to apply these operators are given in [14, 151 for the general case
of capacitated transportation problems and in [17] for the special case of assign-
ment problems. Specifically we note that p + (p -) denotes the maximum extent to
which the operator SCL(SC,) can be applied without needing a primal basis
change.

Denoting by Z the optimum objective function value for the AP, the quantity
(Z + p +) is a lower bound (called a weak lower bound in [17]) on the objective
function value of the optimal AP-solution for the subproblem formed by fixing
(p , q) out. The quantity p + can therefore be considered as a penalty (see [7]) for
fixing (p , q) out. The important thing to note is that the penalty p + can be computed
from an assignment solution without changing it any way. Consequently, the
penalties for the descendants of a node in the implicit enumeration approach can be
efficiently computed without altering the assignment solution for the parent node.

In the subtour elimination algorithms to be presented next, it becomes necessary
to “fix out” a basic cell (p , q) , i.e., to exclude the assignment (p , 4). This can be
accomplished by applying the operator MC&, where M is a large positive number.
Similarly a cell (p , q) that was previously fixed out can be “freed”, i.e., its cost
restored to its true value, by applying the negative cell cost operator. A cell can
likewise be “fixed in” by applying MC,.

3. New LIFO implicit enumeration algorithms

The first algorithm (called TSP1) uses the Eastman-Shapiro subtour elimination
constraints with the modification suggested by Bellmore and Malone [l , p. 3041 and
is a straightforward adaptation to the TSP of the implicit enumeration algorithm for
the zero-one integer programming problem. We first give a stepwise description of
algorithm TSP1:

Step 0. Initialize the node counter to zero and solve the AP. Initialize ZB = M
(ZB is the current upper bound on the minimal tour cost) and go to Step 1.

Step 1. Increase the node counter. If the current AP-solution corresponds to a
tour, update ZB and go to Step 4. Otherwise find a shortest subtour and determine
a penalty p + for each edge in this subtour (if the edge has been fixed in, take
p+ = M, a large positive number, otherwise compute p+). Let (p , q) be any edge in
this subtour with smallest penalty p +. If Z + p + z= ZB, go to Step 4 (none of the
edges in the subtour can be fixed out without Z exceeding ZB). Otherwise go to
Step 2.

498 T.H.C. Smith, V. Sriniuasan, G.L. Thompson

Step 2 . Fix (p , q) out. If in the process of fixing out, Z + p + a ZB, go to Step 3.
Otherwise, after fixing (p , q) out, push (p , q) on to the stack of fixed edges and go to
Step 1.

Step 3 . Free (p , q) . If (9, p) is currently fixed in, go to Step 4. Otherwise fix (p , q)
in, push (p , q) on to the stack of fixed edges and go to Step 1.

Step 4. If the stack of fixed edges is empty, go to Step 6. If the edge (p , q) on top
of the stack has been fixed out in Step 2 , go to Step 3. Otherwise, go to Step 5.

Step 5. Pop a fixed edge from the stack and free it (if it is a fixed in edge, restore
the value of the corresponding assignment variable to one). Go to Step 4.

Step 6 . Stop. The tour corresponding to the current value of ZB is the optimal
tour.

In Step 1 of TSPl we select the edge (p , q) to be fixed out as the edge in a shortest
subtour with the smallest penalty. Selecting a shortest subtour certainly minimizes
the number of penalty calculations while the heuristic of selecting the edge with the
smallest penalty is intuitively appealing (but not necessarily the best choice). We
tested this heuristic against that of selecting the edge with (i) the largest penalty
among edges in the subtour (excluding fixed in edges) and (ii) the largest associated
cost, on randomly generated asymmetric TSP’s. The smallest penalty choice
heuristic turned out to be three times as effective than (i) and (ii) on the average,
although it did not do uniformly better on all test problems.

Every pass through Step 1 of algorithm TSPl requires the search for a shortest
subtour and once an edge (p , q) in this subtour is selected, the subtour is discarded.
Later, when backtracking, we fix (p , q) in during Step 3 and go to Step 1 and again
find a shortest subtour. This subtour is very likely to be the same one we discarded
earlier and hence there is a waste of effort. An improvement of the algorithm TSPl
is therefore to save the shortest subtours found in Step 1 and utilize this information
in later stages of computation. We found the storage requirements to do this were
not excessive, so that this idea was incorporated into the next algorithm.

The second algorithm, called TSP2, effectively partitions a subproblem into
mutually exclusive subproblems as in the scheme of Bellmore and Malone [1, p.
3041 except that the edges in the subtour to be eliminated are considered in order
of increasing penalties instead of the order in which they appear in the subtour.
Whereas the search tree generated by algorithm TSPl has the property that every
nonterminal node has exactly two descendants, the nonterminal nodes of the search
tree generated by algorithm TSP2 in general have more than two descendants. We
now give a stepwise description of Algorithm TSP2. In the description we make use
of the pointer S which points to the location where the Sth subtour is stored (i.e. at
any time during the computation S also gives the level in the search tree of the
current node).

Step 0. Same as in algorithm TSP1. In addition, set S = 0.
Step 1. Increase the node counter. If the current AP-solution corresponds to a

tour, update ZB and go to Step 4. Otherwise increase S, find and store a shortest

Computational performance of subtour elimination algorithms 499

subtour as the Sth subtour (together with a penalty for each edge in the subtour,
computed as in Step 1 of algorithm TSP1). Let (p , q) be any edge in this subtour
with smallest penalty p+. If Z + p + 3 ZB, decrease S and go to Step 4 (none of the
edges in the subtour can be fixed out without Z exceeding Z B) . Otherwise go to
Step 2.

Step 2. Same as in algorithm TSP1.
Step 3. Free (p , q). If all edges of the Sth subtour have been considered in Step 2 ,

decrease S and go to Step 4. Otherwise determine the smallest penalty p + stored
with an edge (e,f) in the Sth subtour which has not yet been considered in Step 2 . If
Z + p + < Z B , fix (p , q) in, push (p , q) on to the stack of fixed edges, set
(p , q) = (e, f) and go to Step 2. Otherwise decrease S and go to Step 4.

Step 4. Same as in algorithm TSP1.
Step 5. Same as in algorithm TSP1.
Step 6. Same as in algorithm TSP1.

The third algorithm, called algorithm TSP3, effectively partitions a subproblem
into mutually exclusive subproblems as in the scheme of Garfinkel [6]. A stepwise
description of the algorithm follows:

Step 0. Same as in algorithm TSP2.
Step 1. Increase the node counter. If the current AP-solution corresponds to a

tour, update ZB and go to Step 6. Otherwise increase S and store a shortest
subtour as the Sth subtour (together with a penalty for each edge in the subtour,
computed as in Step 2 of algorithm TSP1). Let (p , q) be the edge in this subtour with
smallest penalty p+. If Z + p + 2 ZB, go to Step 5. Otherwise go to Step 2 .

Step 2. Fix out all edges (p , k) with k a node in the Sth subtour. If in the process
of fixing out, Z + pt 2 ZB, go to Step 3. Otherwise, when all these edges have been
fixed out, go to Step 1.

Step 3. Free all fixed out (or partially fixed out) edges (p , k) with k a node in the
Sth subtour. If all edges in the Sth subtour have been considered in Step 2, go to
Step 4. Otherwise determine the smallest penalty p+ stored with an edge (e , f) in
the Sth subtour which has not yet been considered in Step 2. If Z + pf < ZB, fix
out all edges (p , k) with k not a node in the Sth subtour, let p = e and go to Step 2.
Otherwise go to Step 4.

Step 4. Free all edges fixed out for the Sth subtour and go to Step 5.
Step 5. Decrease S. If S = 0, go to Step 7. Otherwise go to Step 6.
Step 6. Let (p , k) be the last edge fixed out. Go to Step 3 .
Step 7. Stop. The tour corresponding to the current value of ZB is the optimal

tour.

Note that the fixing out of edges in step 3 is completely optional and not required
for the convergence of the algorithm. If these edges are fixed out, the subproblems
formed from a given subproblem do not have any tours in common (see [6]). Most
of these edges will be nonbasic so that the fixing out process involves mostly cost

500 T.H.C. Smith, V. Sriniuasan, G.L. Thompson

changes. Only a few basis exchanges are needed for any edges that may be basic.
However, there remains the flexibility of fixing out only selected edges (for
example, only non-basic edges) or not fixing out of any of these edges.

4. Computational experience

Our major computational experience with the proposed algorithms is based on a
sample of 80 randomly generated asymmetric traveling salesman problems with
edge costs drawn from a discrete uniform distribution over the interval (1,1000).
The problem size n varies from 30 to 180 nodes in a stepsize of 10 and five problems
of each size were generated. All algorithms were coded in FORTRAN V and were
run using only the core memory (approximately 52,200 words) on the UNIVAC
1108 computer.

We report here only our computational experience with algorithms TSP2 and
TSP3 on these problems since algorithm TSPl generally performed worse than
either of these algorithms, as could be expected a priori.

In Table 1 we report, for each problem size, the average runtimes (in seconds) for
solving the initial assignment problem using the 1971 transportation code of

Table 1.

Summary of computational performance of algorithms TSP2 and TSP3

Average Algorithm TSP2
time to Average runtime Average

Problem obtain (including the runtime Average time Average quality

n solution TSP2 TSP3 regression first tour (% from optimum)
size assignment solution of the AP) estimated by to obtain of first tour

30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
1 80

0.2
0.4
0.5
0.7
1.1
1.5
1.9
2.1
2.8
3.5
4.0
5.6
6.2
7.0
8.0
8.9

0.9
2.9
1.7
9.3
8.5

13.8
42.0
53.0
22.3
62.9

110.1
165.2
65.3

108.5
169.8
441.4

1 .o 0.8
2.8 1.9
3.4 3.9

11.4 6.9
11.8 11.3
16.1 17.3
56.8 25.2
59.6 35.2
- 47.6
- 62.8
- 80.9
- 102.4
- 127.6
- 156.6
- 189.9
- 227.7

0.3
0.5
0.6
1.5
1.3
2.3
3.6
5.2
3.7
5.7
8.3

12.9
9.0

10.0
13.2
23.0

3.7
4.0
0.8
4.1
0.5
1 .0
2.7
3.8
1.3
1.5
2.0
4.2
1.1
1.1
1.3
3.1

Note. (1) All averages are computed over 5 problems each.
(2) All computational times are in seconds on the UNIVAC 1108.

Computational performance of subtour elimination algorithms 501

Srinivasan and Thompson [16] as well as the average runtime (in seconds including
the solution of the A P) for algorithms TSP2 and TSP3. From the results for
n G 100, it is clear that algorithm TSP2 is more efficient than TSP3. For this reason,
only algorithm TSP2 was tested on problems with n > 100. We determined that the
function t (n) = 1.55 X x n3.* fits the data with a coefficient of determination
(R’) of 0.927. The estimated runtimes obtained from this function are also given in
Table 1.

It has been suggested that implicit enumeration or branch-and-bound algorithms
can be used as approximate algorithms by terminating them as soon as a first
solution is obtained. In order to judge the merit of doing so with algorithm TSP2,
we also report in Table 1 the average runtime (in seconds) to obtain the first tour as
well as the quality of the first tour (expressed as the difference between the first tour
cost and the optimal tour cost as a percentage of the latter). Note that for all n the
first tour is, on an average, within 5% of the optimum and usually much closer.

We mentioned above that the fixing out of edges in step 3 of algorithm TSP3 is
not necessary for the convergence of the algorithm. Algorithm TSP3 was temporar-
ily modified by eliminating the fixing out of these edges but average runtimes
increased significantly (the average runtimes for the 70 and 80 node problems were
respectively 24.3 and 25.5 seconds). Hence it must be concluded that the partition-
ing scheme introduced by Garfinkel [6] has a practical advantage over the original
branching scheme of Bellmore and Malone [l].

The largest asymmetric TSP’s solved so far appears to be two 80-node problems
solved by Bellmore and Malone [l] in an average time of 165.4 seconds on an IBM
360/65. Despite the fact that the IBM 360/65 is somewhat slower (takes about 10 to
50% longer time) compared to the UNIVAC 1108, the average time of 13.8 seconds
for TSP2 on the UNIVAC 1108, is still considerably faster than the
Bellmore-Malone [11 computational times. Svestka and Huckfeldt [181 solved
60-node problems on a UNIVAC 1108 in an average time of 80 seconds (vs. 9.3
seconds for algorithm TSP2 on a UNIVAC 1108). They also estimated the average
runtime for a 100 node problem as 27 minutes on the UNIVAC 1108 which is
considerably higher than that required for TSP2.

The computational performance of algorithm TSP2 was also compared with the
LIFO implicit enumeration algorithm in [121 for the asymmetric traveling salesman
problem using Held and Karp’s 1-arborescence relaxation. The 1-arborescence
approach reported in [12] took, on the average, about 7.4 and 87.7 seconds on the
UNIVAC 1108 for n = 30 and 60 respectively. Comparison of these numbers with
the results in Table 1 again reveals that TSP2 is computationally more efficient. For
the symmetric TSP, however, algorithm TSP2 is completely dominated by a LIFO
implicit enumeration approach with the Held-Karp 1-tree relaxation. See [131 for
details.

A more detailed breakdown of the computational results are presented in Table
2 (for TSP2 and TSP3 for n S 100) and in Table 3 (for TSP2 for n > 100). The
column headings of Tables 2 and 3 have the following interpretations:

SO2 T.H.C. Smith, V. Sriniuasan, G.L. Thompson

Table 2.

Computational characteristics of algorithms TSP2 and TSP3 for n C 100.

Maximum
subtours Runtime

Problem Gap Pivots Nodes Penalties stored (secs.)
TSP2 TSP3 TSP2 TSP3

-
P30-1
P30-2

P30-4
P30-5

P40-2

P40-4
P40-5
P50-1

P50-3
P50-4
P50-5
P60-1
P60-2
P60-3
P60-4
P60-5
P70- 1
P70-2
P7G-3
P70-4
P70-5
P80- 1
P80-2
P80-3

P30-3

P40-1

P40-3

P50-2

P80-4
P80-5
P90- 1
P90-2
P90-3
P90-4
P90-5
P100-1
P100-2
P100-3
P l o w
P100-5

2.48 187 196
3.25 174 194
1.31 402 344
1.62 175 464
4.06 250 251
2.52 127 137
2.94 352 657
8.64 1278 1136
1.13 144 177
0.24 572 514
0.20 134 134
0.37 171 173
1.65 544 1307
2.56 257 300
3.28 340 872
1.22 524 2935
2.42 559 1099
0.77 1611 1029
1.64 2164 1260
0.55 266 268
1.16 449 503
1.52 1863 2676
2.20 309 310
1.79 622 883
3.05 1000 1397
0.36 1005 1078
0.47 819 885
1.34 1759 2348
1.23 1357 1597
1.27 832 994
0.64 543 570
0.87 841 831
1.17 5858 7331
0.99 1822 4282
0.84 3596 4867
1.83 3080 804
0.72 1382 1741
0.54 4341 8812
0.93 603 638
0.95 3770 3990

11
6

24
14
17
5

16
58
7

44
2
3

31
7

11
13
23
65
92
3
8

94
3

21
34
36
25
43
25
29

3
5

226
37

140
90
35

144
8

160

12
6

24
14
17
5

16
51
7

25
2
3

54
7

11
112
22
37
32
3
8

103
3

21
34
33
25
47
27
27

3
5

217
102
139

8
36

248
8

88

TSP2

173
121
488
173
280
42

381
1674

77
786

6
19

613
192
350
428
605

1611
3279

27
260

2630
30

62 1
988

1154
827

1934
1345
696
185
253

9239
1835
4990
4294
1530
6187

193
6255

TSP3 TSP2 TSP3 TSP2 TSP3

177
142
385
469
290
55

686
1459
115
627

6
21

1768
236
908

4176
1147
1029
1348

29
312

3715
31

878
1373
1210
885

2636
1658
863
222
243

10860
5608
6353
254

1914
12877

226
5232

4
3

10
4
7
3
5

10
3

10
1
2
8
4
6
7
6

12
20
2
4

13
2
7
6

10
8
9
6
8
2
3

34
7

17
17
9

17
5

28

4
3
7
4
6
3
6

10
3
6
1
2

11
4
5

19
6
7
7
2
4

13
2
7
6
9
7
8
6
8
2
3

29
10
17
4

10
29

5
12

0.7
0.5
1.6
0.7
1 .o
0.4
1.9
7.7
0.6
3.7
0.4
0.5
3.9
1.5
2.3
4.1
4.9

12.5
24.2

1.0
3.4

22.9
1.1
6.4
8.9

13.3
9.1

21.4
15.6
9.6
4.4
6.3

108.1
24.6
66.4
61.4
23.3
94.3
4.8

81.1

0.7
0.6
1.4
1.3
1 .0
0.5
2.8
6.9
0.8
3.0
0.3
0.4

10.5
1.6
4.2

30.4
7.0
8.5

10.2
0.9
4.1

34.6
1.1
7.7

11.3
13.2
10.1
28.4
17.6
11.3
4.3
5.9

129.8
67.8
76.0
5.9

29.8
182.4

4.8
75.0

Computational performance of subtour elimination algorithms 503

Table 3.

Computational characteristics of algorithm TSP2 for n > 100.

Maximum
Problem Gap Pivots Nodes Penalties subtours Runtime

stored (secs.)

P110-1
P110-2
P110-3
P110-4
P110-5
P120-1
P 120-2
P 120-3
P 120-4
P120-5
P130-1
P130-2
P130-3
P130-4
P130-5
P140-1
P140-2
P140-3
P140-4
P140-5
P150-1
P 150-2
P150-3
P150-4
P150-5
P160-1
P 160-2
P 160-3

P160-5
P170-1
P170-2
P170-3
P170-4
P170-5
P180-1
P180-2
P180-3
P180-4

P160-4

P180-5

0.98
0.65
0.36
0.83
0.05
0.85
0.45
0.31
1.06
1.17
0.33
0.06
2.16
0.12
0.49
0.65
0.54
1.49
1.21
0.06
0.81
0.64
0.49
1.29
0.86
0.10
0.40
0.85
0.78
0.80
0.06
0.40
0.68
0.55
0.12
1.37
0.56
0.21
2.90
0.38

2948
1223
1141
1526
719

2754
2044
1526
1311
6046
7451
1985
5968
3107
2557
17.57
1568

1 1109
8772
2274
1491
4139
1597
2915
2788
3729
3683
3563
3250
3615
4133
3048
4311
4196
8080

12535
7115

13043
9292
7202

55
25
22
14

2
74
61
31
20

149
184
44

139
77
40
26
17

319
236
52
20
84
14
61
73
79
66
54
79
74
77
40
66

110
199
271
189
299
179
135

3605
1053
699

1162
9

3237
2396
143 1
838

9336
11910
1804
8063
4264
2615
1067
895

19591
13684
2540
769

4902
680

2675
3151
4923
4056
3314
4363
4422
4393
2854
4119
6532

12577
19031
10614
21300
13900
9168

13
6
7
5
1

11
13
6
7

14
17
8

12
13
8
8
6

49
37
10
5

16
6

10
15
10
12
13
16
11
10
7

11
13
17
24
22
27
24
20

52.0
18.9
14.7
23.0
2.9

62.7
46.7
28.9
16.8

159.3
218.4
40.0

152.7
83.2
56.1
27.4
24.4

407.1
307.6
59.3
23.5

128.4
21.9
74.1
78.5

120.5
105.0
92.5

105.8
118.9
123.9
85.9

135.1
173.5
330.4
574.2
304.4
609.2
430.1
289.1

504 T.H.C. Smith, V. Sriniuasan, G.L. Thompson

Problem :
Gap :

Pivots :
Nodes :

Penalties :

Maximum :
Subtours
Stored
Runtime :

The ith problem of size n is identified as Pn-i.
The difference between the optimal assignment cost and the optimal
tour cost as a percentage of the optimal tour cost.
The total number of basis exchanges.
The number of nodes in the search tree generated (i.e. the final value
of the node counter used in the algorithm descriptions).
The total number of times that p+ or p ~ were computed (either as a
penalty or in the process of fixing out or freeing a cell).
The maximum number of subtours stored simultaneously (i.e. the
maximum depth of a node in the search tree generated).

The total runtime in seconds on the UNIVAC 1108 including the time
for solving the AP but excluding time for problem generation.

From Tables 2 and 3 we find that the maximum number of subtours that had to
be stored €or a problem of size n was always less than n /3 except for a 90 node
problem which had 34 maximum subtours and a 140 node problem which had 49
maximum subtours. Thus allowing for a storage of a maximum of about n / 2
subtours should suffice almost always.

In [2] Christofides considers asymmetric traveling salesman problems with
bivalent costs - i.e. each cost c , , i # j , can have only one of two values. He
conjectured that this type of problem would be “difficult” for methods based on
subtour elimination and hence proposed and tested a graph-theoretical algorithm
for these special traveling salesman problems. In the testing of his algorithm (on a
CDC 6600) he made use of six problems ranging in size from 50 to 500 nodes. These
problems were randomly generated with an average of four costs per row being
zero and all nonzero costs having the value one (except for diagonal elements which
were M, as usual).

For each of the problem sizes 50, 100, 150 and 200 we generated five problems
(i.e. twenty problems altogether) with zero-one cost matrices (except for diagonal
elements) which have the same type of distribution of zeros as Christofides’
problems. We solved the problems with fewer than 200 nodes with both algorithms
TSPl and TSP2 and the five 200 node problems with algorithm TSPl only (because
of core limitations on the UNIVAC 1108 we are limited to 200-node problems for
algorithm TSPl and 180-node problems for algorithm TSP2).

The average runtimes (in seconds) for each problem size are reported in Table 4.
The last column of Table 4 contains the CDC 6600 runtime (in seconds) obtained by
Christofides on a problem of the given size. Since the CDC 6600 is generally
regarded as faster (takes about 10-50% less time) compared to the UNIVAC 1108,
algorithms TSPl and TSP2 can be regarded as more efficient than the algorithm in
[2] . An interesting observation was that for all the problems of this type which were
solved, the optimal assignment cost equalled the optimal tour cost (i.e., a n optimal
AP solution is also optimal to the TSP).

Computational performance of subtour elimination algorithms 505

Table 4.

Computational comparisons for bivalent cost asymmetric traveling salesman problems.

Problem
size

n

Average runtime"
(UNIVAC 1108 secs.)

TSPl TSP2

Christofides' [2]
runtime

(CDC 6600 secs.)

50
100
150
200

0.5 0.6
1.4 1.5
5.4 5.4
6.4 -

9.5
15.9

12.8
-

Average based on 5 problems each.

5. Conclusion

We have proposed new algorithms for the asymmetric traveling salesman
problem and presented extensive computational experience with these algorithms.
The results show that our algorithms are:

(i) more efficient than earlier algorithms and
(ii) capable of solving problems of more than twice the size previously solved.

In view of the ongoing research on transportation .algorithms and the improvements
in computer performance, it is likely that the proposed algorithms will be able to
solve much larger traveling salesman problems in the near future.

References

[l] M. Bellmore and J.C. Malone, Pathology of traveling salesman subtour-elimination algorithms,

[2] N. Christofides, Large scheduling problems with bivalent costs, Computer J. 16 (1973) 262-264.
[3] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a large scale traveling salesman

[4] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, On a linear programming, combinatorial

[5] W.L. Eastman, Linear programming with pattern constraints, Unpublished Ph.D. Dissertation,

[6] R.S. Garfinkel, On partitioning the feasible set in a branch-and-bound algorithm for the

[7] R.S. Garfinkel and G.L. Nemhauser, Integer Programming, (John Wiley, New York, 1972).
[8] K.H. Hansen and J. Krarup, Improvements of the Held-Karp algorithm for the symmetric

[9] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations

[lo] M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part 11,

[I l l D.M. Shapiro, Algorithms for the solution of the optimal cost and bottleneck traveling salesman

Operations Res. 19 (1971) 278-307.

problem, Operations Res. 2 (1954) 393-410.

approach to the traveling salesman problem, Operations Res. 7 (1959) 58-66.

Harvard University (1958).

asymmetric traveling salesman problem, Operations Res. 21 (1973) 340-343.

traveling salesman problem, Math. Programming 7 (1974) 87-96.

Res. 18 (1970) 1138-1162.

Math. Programming 1 (1971) 625 .

problems, unpublished Sc. D. Thesis, Washington University, St. Louis, (1966).

506 T.H.C. Smith, V. Srinivasan, G.L. 7'hompson

[121 T.H.C. Smith, A LIFO implicit enumeration algorithm for the asymmetric traveling salesman
problem using a 1-arborescence relaxation, Management Science Research Report No. 380,
Graduate School of Industrial Administration, Carnegie-Mellon University (1975).

[13] T.H.C. Smith and G.L. Thompson, A LIFO implicit enumeration search algorithm for the
symmetric traveling salesman problem using Held and Karp's I-tree relaxation, Ann. Discrete
Math. 1 (1977) 479-493.

[14] V. Srinivasan and G.L. Thompson, An operator theory of parametric programming for the
transportation problem-I, Naval Res. Logistics Quarterly 19 (1972) 205-225.

[15] V. Srinivasan and G.L. Thompson, An operator theory of parametric programming for the
transportation problem-11, Naval Res. Logistics Quarterly 19 (1972) 227-252.

[16] V. Srinivasan and G.L. Thompson, Benefit-cost analysis of coding techniques for the primal
transportation algorithm, J. Assoc. Compuring Machinery 20 (1973) 194-213.

[17] V. Srinivasan and G.L. Thompson, Solving scheduling problems by applying cost operators to
assignment models, in: S.E. Elmaghraby (Ed.), Symp. Theory of Scheduling and its Applications,
(Springer, Berlin, 1973) 399-425.

[18] J. Svestka and V. Huckfeldt, Computational experience with an M-salesman traveling salesman
algorithm, Management Sci. 19 (1973) 790-799.

Annals of Discrete Mathematics 1 (1977) 507-515
@ North-Holland Publishing Company

ON ANTIBLOCKING SETS AND POLYHEDRA

Jbrgen TIND
Znsritur for Operationsanalyse, Aarhus Unioersitet, c / o Maremarisk Znsrirur Ny Munkegade,
8000 Aarhus C, Denmark.

This paper first gives an economic interpretation of the duality correspondence for antiblocking
sets and polyhedra, which at least in the polyhedral case play an important role in the study of
certain integer programming problems, e.g. covering problems. We then discuss, in view of the
duality correspondence, how bounds for such problems may be obtained by relatively simple
network flow methods.

1. Introduction

This paper gives an economic interpretation of the duality relationship for a pair
of antiblocking sets/polyhedra. The interpretation is similar to the one given by
A.C. Williams for conjugate, convex functions [8]. But here in the antiblocking
framework they are replaced by antiblocking, concave functions, a concept related
to polar functions [5] . As in [8] we also consider the relationship between a
manufacturer and a contractor, who wants to compute a minimal compensation for
taking over the production activities from the manufacturer. For that purpose the
contractor quotes unit prices on the activities. The manufacturer’s objective is here
to minimize his average cost per unit produced. By the duality relationship for
antiblocking sets it is then shown that the selected price mechanism operates in a
natural way such that it makes no difference for the manufacturer, if he produces by
himself or not.

The concept of antiblocking sets is a generalization of antiblocking polyhedra,
which have been introduced by Fulkerson [l] and which have been shown to be an
excellent framework for consideration of many combinatorial problems. One of
these problems is the covering problem. The last part of the paper is devoted to an
idea for computation of bounds for such problems by means of chains or antichains
in constructed networks. The idea has previously been used in [4] for the set
partitioning problem.

In order to avoid lengthening this paper the relating blocking framework is not
considered here, even though a similar discussion may be developed for this case,
too.

507

508 J . Tind

2. Antiblocking sets

Let B C R" be a closed, convex set, containing 0. The polar set B * of B is defined
as

B* = { X * E R " I x . X * S i , v x E B } .

B * is also a closed, convex set that contains 0.

Minkowski polarity correspondence (see e.g. [5, section 141).

B C R" of B with respect to D as follows:

Additionally we have that B ** = B, i.e. B is again the polar set of B *. This is the

Let also D C R" be a closed convex set containing 0. Define the antiblocking set

B = B * n o .

In the following we will investigate conditions under which

B = B, (2.1)

i.e., when B is the antiblocking set of B with respect to D. In that case B and B are
called a pair of antiblocking sets.

It is seen that with D = R" we are back in the Minkowski polarity. But in more
general cases it is necessary to impose special conditions on B in order to show the
polarity correspondence in (2.1).

Let c l C denote the closure of C and let convC denote the convex hull of C,
where C C R". We then have the following theorem which gives a necessary and
sufficient condition for equation (2.1) to be valid.

Theorem 2.1. B = B, i f and only i f B = cl(conv(B U D *)) fl D.

Proof. B = (B)* n D = (B* n D)* n D.

(B n D) * = c l c o n v (B * U D *)

E = cl(conv(B** u D *)) n D = cl (conv(B u D *)) n D.

We have for polar sets in general that

(see [5 , Corollary 165.21). Hence with B replaced by B* we get that

The next theorem gives another set of conditions that are necessary and sufficient
for (2.1) to be valid. These conditions can especially be applied when B is described
as the intersection of halfspaces.

Theorem 2.2.'
containing 0 such that B = C n D and such that C* C D.

= B, i f and only i f there exists a closed, convex set C C R"

For polyhedra, Theorem 2.2 is a special case of joint work by Jnlian Arloz, Jack Edmonds and
Victor Griffin. Personal communication.

On antiblocking sets and polyhedra 509

Proof. = B, and let C = cl (conv (B U D *)). Obviously,
C is closed, convex and 0 E C. Theorem 2.1 implies that B = C n D. Additionally,
as C 2 D *, we have that C*

Now assume that we have a set C such that B = C f l D and C * C D. [It is
remarked that C here in general might be different from the previous set
cl(conv(B U D*))] . From theorem 2.1 it is now sufficient to show that

Let us first assume that

D * * = D. This shows one direction of the theorem.

B = cl (conv (B u D *)) n D.

Since B = B fl D C cl(conv(B U D *)) fl D it is enough to show the reverse
inclusion:

B 2 cl (conv (B u D *)) n D. (2.2)

By assumption C* c D, which implies that C 2 D*. Moreover, C 2 B. Since C is
closed and convex, we obtain that C 2 cl (conv (B U D *)). Hence
cl(conv(B U D *)) fl D c C n D = B, where the last equation follows by assump-
tion. This shows (2.2), and the theorem is proved.

The assumption C* C D in the theorem expresses in particular that all support-
ing hyperplanes for C have their normals contained in D. (The defining linear
forms are normalised (= 1)).

If D = R : = { x E R " I x a O) and C = { X E R ") A X S ~ } , where A is an m x n
matrix of nonnegative elements and 1 = (1, . . ., 1) with m elements, then the
theorem can be applied on B = C n D. In this case B and B constitute a pair of
antiblocking polyhedra [l].

Theorem 2.2 is an extension of a result in [6].
A similar discussion can also be made for blocking sets and polyhedra ([6]

and [7]) .

3. A geometrical illustration of antiblocking sets

The relation between B and its polar set B* can be given in the following
equivalent way.

B* = { x * E R" 1 (x, l) - (x * , - 1) S 0, VX E B},

where (x, 1) and (x* , - 1) are vectors in R"+'.
Hence, if we consider the space R"+' and let B be placed in the hyperplane If+',

where H" = {(x, 1) I x E R"}, then B * can be obtained as follows. Construct the
cone P generated by B with vertex at O E R"" and its polar cone P * =

{y * E R"" I y . y * S 0, Vy E P } . Where B * intersects the hyperplane H-' =

{(x, - 1) E R"" 1 x E R"} we get an image of B *. B is now by definition obtained as
the intersection of B* and D.

Let us look at the situation where D = R: = {x E R2 1 x 3 0). Fig. 1 gives now an

510 J. Tind

H +'

H -1

B and are indicated by FRfl
B*and (B)" are indicated by l=l

Fig. 1.

illustration of a set B E R: and its antiblocking set B E RZ iI1 me situation where
= B. Here B and B are actually polyhedra.

4. An economic interpretation

Consider a concave, nonnegative closed function f (x) : R? + R,.
Let sub, f E R" denote the nonnegative subgraph of f (x) , i.e.

sub+ f = {(x, y) E Rnfl I x 3 0, 0 =z y S f (x) } .

Since f(x) is a nonnegative function, it is uniquely determined by sub+f.

containing 0.
With the given specifications on f (x) it follows that sub, f is a closed, convex set,

Define the following function f (x *) : R: + R,.

O n antiblocking sets and polyhedra 511

f (x *) = sup{y * E R 1 - x * x * + y*f(x) 5z 1, v x 5 0).

Call f (x *) the antiblocking function of f . f (x *) becomes also nonnegative, and its
nonnegative subgraph is given by

sub+ f = {(x *, y *) E R"" I (X *, y *) . (- X, y) 1

for all (x, y) E sub+f} fl {(x *, y *) E R"" 1 (x *, Y *) 3 0).

This shows that f is concave and closed.
Let T denote the linear transformation T : (x, y)+ (- x, y). If D = R?+', it is

seen that sub+f is obtained by the antiblocking relation with respect to D as
follows:

sub+ f = T(sub+ f).

Additionally it is assumed that f (x) is a non-decreasing function in each
component, which implies that all supporting hyperplanes for T(sub+ f) have their
normals in D. Hence, it is obtained by the same reasoning as in the proof of
theorem 2.1, that

T(sub+ f) = sub+ f.

This shows that

7 = f, (4.1)

i.e., f is the antiblocking function of f .
We will try to give an economic interpretation of this equataion in the following.
Note that f (x *) can be expressed alternatively as

- x * . x + 1 f (x *) = inf -~
x s o f(x) '

where (x * . x + l)/f(x) = 00, if f (x) = 0.

1 by an arbitrary number k > O , which means that
The polarity will not be disturbed by rescaling, i.e. by replacement of the number

Assume now that a manufacturer produces a product by means of n activities.
Let the components of the vector x S O denote the activity level of each activity.
With a given activity level he produces f (x) units of the product. Assume
additionally that the components of the vector x * > 0 denote market prices that
equal the cost for use or consumption of one unit of the corresponding activities.
Hence x . x * is a cost for production of f (x) units of the product. In addition to this
cost, which is linear in x, there is supposed to be a constant cost of size k. It is
further supposed that the manufacturer's objective is to minimize the average cost
per unit produced, i.e., the manufacturer wants to solve the following problem

512 J . Tind

Hence the antiblocking function of f denotes the minimal average cost, given a
price vector x * .

Now the manufacturer also considers selling his activities at a given level x 5 0 to
a contractor, who in return should pay him with an amount of the finished product.
For that purpose the contractor quotes a unit price x * 2 0 on each activity. Based
on this price the manufacturer at least would demand an amount of the finished
product that equals the estimated production costs, divided by the average cost per
unit, i.e.

Hence, the contractor, seeing no reason to return more than that amount, will get
the task to find a price x * 2 0 that solves the problem

- x . x * + k
T (x) = inf --

x . 2 0 f(x*)

By (4.1) we get the reasonable result that with such a price the amount of finished
product does not depend on whether he produces by himself o r lets the contractor
do it for him.

It is remarked that the idea of antiblocking functions is almost the same as the
idea of polar functions in [5, section 151. But again, the polarity is considered with
respect to a given set, here R:. This has the effect that the prices x * are
nonnegative, and the function f (x) is non-decreasing, which seems reasonable in
the economic context above.

5. Bounds for set-covering problems

From the preceding discussion it is seen that the antiblocking relation itself is
developed over the continuous space R". But historically the concept came up
through studies of discrete problems, especially certain integer programming
problems [l].

In the following discussion one of these integer programming problems will be
examined, in view of the duality for antiblocking polyhedra. An example will be
given, which illustrates how one may obtain computationally simple bounds for the
value of those problems. The idea for construction of these bounds has previously
been developed and used in [4] for the set-partitioning problem, and the following
material is highly related to this work.

Here we will look at the following set covering problem:

On antiblocking sets and polyhedra 513

min 1 . x

Ax 3 w (5.1)
x 3 0 and integer,

where A is an m X n matrix of zeros and ones, w is a nonnegative integer
m-vector, and 1 = (1, .. ., 1) with n elements. By removal of the integrality
requirement we get:

m i n 1 . x

Ax 2 w (5.2)

x 3 0 ,

which, as usual, by standard LP gives a lower bound for the objective function in
(5.1). But in some cases a bound can be obtained even simpler. For example, if the
columns in A are incidence vectors for all maximal chains in an oriented network
without cycles, then the problem can be solved by an algorithm of the network flow
type. For instance: Connect all endpoints of the chains to a source and a sink,
respectively. Place a lower bound of w, (the i th component of w) on the i th node,
and compute the minimal flow from s to t .

With w = (1,. . ., 1) this problem is a generalization of one part of the Dilworth
theorem. See for example [3]. The result is integer. This is seen directly, or in more
general terms from the antiblocking theory this follows by the min-max equality,
which here holds for A and A. The columns in are the incidence vectors of all
maximal antichains in the same network, and the set B = { y 3 0 I yA l}, (which is
the dual constraint set of (5.2)) and the set B = {y * 3 0 I y *A S 1) constitute a pair
of antiblocking polyhedra. See [l].

Now generally A is not the incidence matrix of all maximal chains in a network.
But a network can be constructed in which A is the incidence column matrix of at
least some chains. Then, by solving the covering problem over all chains, we receive
a lower bound for (5.1). This lower bound is easy to compute, although in general it
is weaker than the bound obtained by solving (5.2).

Consider the following example, where w = (1,. . ., l), [4]:

4

m i n z xi
i = l

514 J. Tind

Let the nodes in the network be numbered corresponding to the row numbers of
A. Then the network looks as follows,

5

and the bound is 2 (the minimal number of chains that cover all nodes, which is
equal to the maximal size of an antichain; Dilworth).

The result is generally dependent on the permutation of rows. For example, with
the matrix:

we get the network
1 2 3 4 5
o : c : = : = 0

and the bound is equal to 1.
We can also construct a loopless oriented network, in which the matrix A

corresponds to some of the antichains in the network. For the problem (5.3) the
network may look like the following:

l5

,;- n \ ',

The minimal number of covering antichains, which is equal to the largest chain
(the companion to the Dilworth theorem [l]) gives a lower bound. The result here
is 2.

An upper bound for the set covering problem can be found in a similar way by
network flow methods, where now the rows of the matrix are incidence vectors for
chains (or antichains). For example, with chains we get the following network for
the problem (5.3):

t
,+-.

I
/

/ / 9
I', a'

J'
S

On anriblocking sets and polyhedra 515

The numbers correspond to the columns. The endpoints of the chains are
connected to a source s and a sink t, respectively. The problem is now to find a
minimal number of nodes that block all s-t chains, (which is equal to the maximal
number of node independent chains from s to t ; Menger’s Theorem). Here the
result is 2.

We believe that such bounds may be helpful in an algorithm for solution of set
covering type problems, and an algorithm incorporating that feature is now under
development.

Acknowledgement

I wish to thank J. Ar6oz for his useful comments on an earlier version of this
paper.

References

[l] D.R. Fulkerson, Anti-blocking polyhedra, J. Comb. Theory 12 (1972) 50-71.
[2] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971)

[3] D.R. Fulkerson, Flow networks and combinatorial operations research, A m . Math. Monthly 73

[4] G.L. Nemhauser, L.E. Trotter, Jr. and R.M. Nauss, Set partitioning and chain decomposition,

[5] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[6] J. Tind, Blocking and antiblocking sets, Math. Programming 6 (1974) 157-166.
[7] J. Tind, Dual correspondences for blocking and antiblocking sets (1974), 10 pp., Institut for

Operationsanalyse, University of Aarhus; or Report No. 7421-OR, Institut fur Okonometrie und
Operations Research, University of Bonn.

168-194.

(1966) 115-138.

Management Sci. 20 (1974) 1413-1423.

[S] A.C. Williams, Nonlinear activity analysis, Management Sci. 17 (1970) 127-139.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 517-525
@ North-Holland Publishing Company

ON THE GENERALITY OF MULTI-TERMINAL
FLOW THEORY

L.E. TROTTER, Jr.*
Department of Operations Research, College of Engineering, Cornell University,
Ithaca, NY, U.S.A.

We consider the problem of determining maximal flows between each pair of nodes in an
undirected network. Gomory and Hu have studied this problem and have provided an efficient
algorithm for its solution. We reexamine their procedure and generalize certain results of
multi-terminal flow theory using well-known aspects of matroid theory. Additional implications
afforded by this approach are also discussed.

1. Introduction

In their interesting paper [5] (see also [4,6]) Gomory and Hu have considered the
problem of determining the maximum flow value between each pair of nodes in a
finite, undirected graph. This problem, known as the multiterminal maximum pow
problem, has also been studied by Mayeda [9] and Chien [l]. In [3] Elmaghraby has
examined the sensitivity of multi-terminal flows to changes in the capacity of a
single edge in the graph. In the present paper we adopt the viewpoint of matroid
theory and reexamine some basic results of multi-terminal flow theory in this more
general, abstract setting. We begin with a brief summary of multi-terminal flow
theory. In this discussion reader familiarity with the fundamental aspects of
network flow theory, as set forth in [4], is presumed.

Assume given a finite, undirected graph (network) G. We will further require
that G has neither loops nor multiple edges and that G is connected, though these
latter assumptions are only for convenience of exposition. As usual, associated with
each edge e of G is a nonnegative, real-valued capacity c (e) . We also have, for
each unordered pair of nodes {x, y } of G, a maximum flow value v ({ x , y }) ' between
x and y with respect to the given edge capacities. The real-valued, nonnegative
function u is called the flow function for G. Notice that when G has n nodes u may
be viewed as a function defined on the edges of K,, the complete graph on n nodes.

Our primary concern is with the flow function 21. O n e question of interest is that

* This research was partially supported by grant GK-42095 from the National Science Foundation to

The cumbersome notation is chosen to emphasize the fact that u is a function from the pairs of
Yale University.

nodes of G to the nonnegative reals. The reason for this emphasis will become apparent in Section 3.

517

518 L.E. Trotter, Jr.

of realizability : When is a function the flow function of some graph? Gomory and
Hu [5] have answered this question with the following characterization.

Theorem 1.
function of an n-node undirected network i f and only i f

A function u from the edges of K, to the nonnegative reals is the flow

u({xl, x,}) 3 min [u({x1, ~ 2 1) ~ u((x2, x3), . . .) ~ ({ X , - I ~ xp})19 (1)
for any node sequence XI, x2,. . ., x,. 0

Two networks which have the same flow function are termed flow-equivalent. An
important consequence of (1) which becomes evident in the construction used to
prove the sufficiency of these conditions is that every undirected network is
flow-equivalent to a tree. Thus the flow function for a graph with n nodes assumes
at most n - 1 different values.

A second question of interest is the following: How does one efficiently
determine the flow function for a given graph? Of course, one may construct the
flow function for an n-node network by solving each of the (2 n) maximum flow
problems which correspond to all pairs of nodes in the network. However, since the
flow function assumes at most n - 1 distinct values, one might hope to do better.
Gomory and Hu [5] have accomplished this by providing an elegant algorithm
which determines the flow function by solving only n - 1 maximum flow problems.

In order to describe their procedure we use the max-flow min-cut theorem of
Ford and Fulkerson [4] to change emphasis slightly and view v ({ x , y }) as the
capacity of a minimum cut separating x and y . If sets X, x partition the nodes of G,
we denote the corresponding cut by

(X , x) = { e = {x, f} : x E X , 3 E x and e is an edge of G}.

When each of the sets X n Y, X n ?, is nonempty, the two cuts
(X , 2) and (Y, F) cross each other; otherwise these cuts are non-crossing. A family
of cuts is termed non-crossing if each pair in the family is non-crossing. The
following result which appears in [7] characterizes families of non-crossing cuts.

fl Y, x n

Lemma 1.
precisely to the spanning trees of K..

In a graph on n nodes, the families of n - 1 non-crossing cuts correspond

Certain of the minimum capacity cuts in a network also obey a non-crossing
property. This is demonstrated in the following lemma, which is a simple
consequence of the results of [5].

Lemma 2. Suppose cuts (x1, g1), . . ., (&I, % I) are non-crossing and (x, X i) is
a minimum capacity cut separating xi and I, for 1 < i < k - 1. Also assume that no
(xi,Xi) separates x k and T ~ . Then there exists a minimum capacity cut (X k j x k)

separating X k and ,fk which crosses no (xi, x), 1 C i C k - 1. 17

On the generality of multi-terminal pow theory 519

The Gomory-Hu procedure is essentially an (n -1)-fold application of Lemma 2.
One begins arbitrarily by choosing a pair of nodes {xl,.fl}, and determining a
minimum cut (Xl, XI) which separates x1 and 2,. At the kth stage (k > 1) one has
non-crossing cuts (x1, XI), . . ., (xk-1, %I), the i th being minimal for x, and x,. If
k < n (the proof of) Lemma 1 shows that we may choose xk and x k which are
separated by no (X , x), 1 S i S k - 1. One then determines (xk, Xk) as described*
in Lemma 2. The procedure continues until k = n and termination occurs with
n - 1 non-crossing cuts.

By Lemma 1 these cuts correspond to a spanning tree T of K.. T need not be a
subgraph of G. Gomory and Hu call T the cut-tree for the graph G. This
terminology reflects the fact that, for each pair {x, y} of nodes of G, T determines
both the flow value v ({ x , y}) and a minimum cut of G which separates x and y. T
specifies this information in the following manner: For any node pair { x , y }
corresponding to an edge of T, removal of that edge from T produces two subtrees
with node sets, say, X, and x,. Then the cut (Xn, x,) is a cut of minimum capacity
separating x and y in G ; that is, u ({ x , y}) is given by the capacity of (X8, x). The
cut (XI,xv) is, as the notation commemorates, one of those discovered by the
algorithmic procedure of the preceding paragraph. Once we know v ({ x , y}) for each
{x, y } corresponding to an edge of T, the remaining values for u may be determined
by the relation

v (b , y l) = min [v({xl, XJ), v (b , ~ 4 , . . ., v (h - 1 , x,})I,
where (x = xl, xz, x3,. . ., x,-,, x, = y) is the unique path from x to y in T.

2. Matroids

In the present section we summarize pertinent fundamental aspects of matroid
theory. For a more thorough treatment the unfamiliar reader is referred to the
works of Whitney [13], Tutte [12] and Minty [lo].

A matroid M = (E, %) is a finite set of elements E = (1,. . ., n } and a family % of
nonempty subsets of E. Members of % are called circuits, and they must satisfy the
following two axioms:

(i) no circuit contains another,
(ii) if CI, Cz E % with e E C1 f~ Cz and f E Cl\Cz, then there is some C3 E (e for

which f E C3 C C1 U C,\{e}.

A subset of E which contains a circuit is called dependent. A subset of E which
contains no circuit is termed independent and a (set-wise) maximal independent set
is called a base. It is clear that the minimal dependent subsets of E are precisely the

* Note that we have not specified how (xk, xk) is to be determined. This is accomplished by solving a
maximum flow problem for xk and .fk on a network obtained by suitably restricting G to insure that
(Xk, Zk) does not cross (X, x,), 1 =z i s k - 1.

520 L.E. Trotter, Jr.

circuits. A well-known consequence of axioms (i) and (ii) is that for any set S C E,
every maximal independent subset of S is the same size. Another straightforward
consequence is that for any base B and any e e B, B U { e } contains a unique circuit
C,, called a fundamental circuit relative to B ; furthermore, e E C, and for any
f E Ce\{e}, B’= B U { e } \ { f } is also a base.

Given a matroid M = (E , %‘), let % * denote the family of minimal, nonempty
subsets C* C E which satisfy 1 C* f l C 1 # 1, for each C E % (1 . I is the cardinality
function). It is not difficult to show that M * = (E, %*) is a matroid. Matroid M * is
called the dual of M ; the circuits of M * (members of %’ *) are called cocircuits. One
can also show that the bases of M * (called cobases) are simply the complements
relative to E of the bases of M.

One standard example of a matroid comes from graph theory: Let E be the edge
set of a finite, undirected graph G and let %‘ denote the edge sets of the simple
cycles in G. It is evident that M = (E, %) satisfies axioms (i) and (ii). Such a matroid
is called graphic and its dual is cographic. The cocircuits which define the dual
matroid M * = (E, %*) are given by minimal cutsets for G ; i.e., by minimal sets of
edges whose removal increases the number of components of G. The bases of M
are the edge sets of spanning forests in G. In Section 3 it is shown that the matroid
M * plays a central role in multi-terminal flow theory.

We now associate with each element e E E a weight c (e) and consider the
problem of determining a base of M which has maximum total weight. For graphic
matroids this problem was treated by Kruskal[8] and Prim [11]. Kruskal’s “greedy”
algorithm for constructing a spanning forest of maximum weight is discussed for
general matroids by Edmonds in [2], where it is shown to be a characterizing
property of matroids. The following theorem provides necessary and sufficient
conditions for a base to be of maximum weight. The theorem may be deduced from
results in [2]; we provide an alternative proof based on matroid duality.

Theorem 2 .
suppose B is a base of M. Then B is a maximum weight base i f and only i f

Let M = (E, %) be a matroid with element weights c (e) , e E E, and

e E B =3 c (e) < min c (f) ,
f fz c, \{e 1

where C, is the fundamental circuit relative to B determined by e.

Proof. The necessity is clear, for if c (e) > c (f) for some f E Ce\{e}, then B ’ =
B U { e } \ { f } is of larger weight than B. For the sufficiency suppose B1 satisfies (2)
and let Bz be a base of maximum weight. We will show that B1 and Bz are of equal
weight. If B1 = Bz we are done. Otherwise choose e E Bz\BI and consider the
fundamental circuit C, C B1 U { e } and the fundamental cocircuit C: C
(E\B2) U { e } . Since 1 C, n C % 1 # 1, there is an element f # e so that f E C, n C:.
Now f # e, so f E C, implies f E B1 and f E C: implies f!Z Bz. Thus f E BI\B2.
Consider the fundamental circuit C, C Bz U { f } . Since 1 Cf f l Cf I # 1, there is an

O n the generality of multi-terminal pow theory 521

element g # f so that g E C, n C:. Now g # f, so g E C, implies g E Bz. Thus
g E Bz n C: and we conclude that g = e. Applying (2) first to B1 and C, and then
using the necessity to apply (2) to Bz and C, shows that c (e) = c(f). Thus
B: = B2 U { f } \ {e} is also of maximum weight. Since 1 B4\B1 1 < I BZ\BI 1, iterative
application of this argument shows that B1 is of maximum weight. 0

3. Realizability conditions for matroids

Let x and y be two nodes of graph G and recall that u ({ x , y }) represents the
maximum flow between x and y in G. If edge e = {x, y } is not present in G, we d o
not alter u for G by inserting e and defining c (e) = 0. Thus one may view u ({ x , y })
as the minimum weight (capacity) of a cut containing e. Indeed, if G has n nodes
and we define c (e) = O for edges of K , not present in G, it is plain that the
multi-terminal flow problem for G may be interpreted as follows: For each edge e
of K , determine a minimum weight cut containing e. In the present section we
consider the same problem for arbitrary matroids and derive conditions analogous
to (1) for the more general case.

Suppose M = (E, %) is a matroid with nonnegative weights c (e) for e E E. Now
let u (e) , e E E, denote the minimum weight of a circuit which contains e ; i.e.,

u (e) = min 2 (c(f): f E c).
{c:eecee)

(If element e E E is in no member of %, define u (e) = + m.) We will call u the
minimum weight circuit function for M. The following theorem provides conditions
which must be satisfied by u :

Theorem 3.
e E E, and minimum weight circuit function u. Then for each e E E,

Let M = (E, %) be a matroid with nonnegative element weights c (e) ,

u (e) > , , t ~ i ~ ~ , u (f) , V C * E % * such that e E C * . (3)

Proof. If e is in no circuit, then u (e) = + m and (3) holds trivially; if e is a loop
(single element circuit), then e is in no cocircuit and so (3) holds vacuously. Suppose
C is a circuit of minimum weight containing e and let e E C* E %'*. Then
1 C n C* 1 # 1 implies there is an f E C n C* distinct from e. Since f E C, u(f) S

c (c (g) : g E C) = u (e) . Thus u satisfies (3). 0
The conditions (3) are also sufficient in the following sense. For a given matroid

M = (E, %) and nonnegative, real-valued function u on E, call u realizable if there
exists a nonnegative weight function c on E so that u is the minimum weight circuit
function for M with respect to c. Theorem 4 below shows that the conditions (3)
imply realizability. Together Theorems 3 and 4 constitute an appropriate general-
ization of Theorem 1 to arbitrary matroids. The proof of Theorem 4 follows closely
the proof of sufficiency for Theorem 1 (see [4, 5, 61).

522 L.E. Trotter, Jr.

Theorem 4. Let M = (E , '%) be a matroid and let u be a nonnegative, real-ualued
function on E which satisfies (3). Then u is realizable as a minimum weight circuit
function for M.

Proof. Let B * be a base of maximum weight for M * = (E, 59 *) with respect to the
element weights v (e) , e E E. Now define c (e) = u (e) for e E B* and c (e) = 0 for
e E B = E\B*. I f e E B*, then B U { e } contains a unique circuit C, whose total
weight with respect to c is c (e) . Since c (f) 3 0 for all f E E, C, must be a minimum
weight circuit for e. Note that c (c (f) : f E C,) = c (e) = u(e) . O n the other hand if
e E B, then B * U { e } contains a unique cocircuit C : and e E C:. From (2) (applied
to B *) and (3) it follows that u (e) = minf,G,l.) u(f) . Thus we may choose f E Ct,
f # e for which u (e) = vc f) = c (f) . Now B U { f } contains a unique circuit Cf whose
total weight is c (f) . Since 1 C, n C:l# 1, we must have e E C, also. Thus the
minimum weight of a circuit containing e is no larger than c(f). Suppose
e E c E %. Since 1 r l Ct I # 1, there is an element g so that e # g E f? n Cb. Then
it is straightforward to verify that

(c (h) : h E c)a c (g) = u (g) a u (f) = c (f) = (c (h) : h E C,).

Thus C, is a minimum weight circuit for e. 0

For a given matroid we will say nonnegative weight functions c and c ' are
equivalent if they give rise to the same minimum weight circuit function u. The
proof of Theorem 4 shows that to any given nonnegative weighting c for M there
corresponds an equivalent weighting c'(e), e E E, for which the elements given
nonzero weight are contained in a dual base B*. When specialized to multi-
terminal flows, this is simply the observation made earlier that each undirected
network is flow-equivalent to a tree. Furthermore, to indentify minimum weight
circuits with respect to this equivalent weighting c ' , one uses precisely the same rule
as with the cut-tree: For e E B*, a minimum weight circuit for e is given by the
circuit C, c B U { e } (B = E\B *); for e E B, a minimum weight circuit is deter-
mined from among the / C : 1 - 1 circuits C, C B U { f } , for each f € C:\{e}, where
Ct is the cocircuit contained in B* U {e} . A s with multi-terminal flows, the
following consequence is evident:

Corollary.
function for M is no greater than the size of a base for M*.

The number of distinct values assumed by a minimum weight circuit
0

4. Discussion

Given that the realizability conditions for multi-terminal flows generalize directly
for arbitrary matroids, it is natural to ask to what extent the algorithmic procedure
of Gomory and Hu generalizes. Of particular interest would be the existence of a

On the generality of multi-terminal flow theory 523

structure for matroids which determines not only the minimum weight circuit
values but also the circuits themselves in a manner analogous t o that of the cut-tree
specified at the end of Section 1. Such an object does not exist in general’, as is
demonstrated by

Example : Consider the graphic matroid with edge weights as indicated in Fig. 1.

(a) (b)

FIG. 1. (a) Original graph, (b) Equivalent weighting.

For this graph the minimum weight cycles for the edges are given by: cycle 14351,
for edges {1,4}, {3,4}, (3,s) and (1,s); 1241, for {2,4} and {1,2}; 1251, for {1,2} and
{2,5}; 2352, for {2,3}. An equivalent weighting with nonzero weights only within a
dual base is also given in Fig. l(b). Note, however, that the minimum weight cycles
determined by the equivalent weighting are not necessarily the same as those for
the original graph; e.g., in the original graph cycle 1241 is of minimum weight for
edge {2,4}, whereas with the equivalent weights, 24352 is the minimum weight cycle
for {2,4}. It is not difficult t o check that no equivalent weighting which is nonzero
only on a dual base will determine the minimum weight cycles for the original
graph. 0

Thus in general one cannot expect to determine an equivalent weighting for a
dual base which will play the role of the cut-tree in determining minimum weight
circuits. This is not surprising - even for cographic matroids, the cut-tree need not
be a subgraph of the original graph. A correct interpretation of this fact is that for a
given matroid and element weights, there may exist n o base whose fundamental
circuits are minimum weight for the respective (out-of-base) elements which
determine them. The latter is a consequence of the following proposition.

~~

Proposition. Let M = (E , %) be a matroid with element weights c (e) , e E E. Also
let B be a base of M for which e B implies the fundamental circuit C. C B U { e } is a
minimum weight circuit fore. If e E B is in a circuit, a minimum weight circuit fore is
defined by

The author is indebted to R.E. Bixby for several helpful discussions concerning this point.

524 L.E. Troffer, Jr.

where Cg is the fundamental cocircuit relative to B * = E\B determined b y e, and C,
is the fundamental circuit relative to B determined b y f.

Proof. First note that e E C, for each C, indicated by (4), else 1 Ct n C, I = 1. Pick
e E B and suppose e E C E %. Since I Cl: r l C1# 1, there is an f E C fl Cf, f # e.
Now f # e and f E Cf imply that fe B. Consequently C, is a minimum weight
circuit for f. Thus c (c (g) : g E C,) (c (g) : g E C), which verifies (4). 0

In the case of multi-terminal flows we recall that each edge e of the cut-tree T
defines (by its removal from T) a minimum capacity cut C, for e. Thus the above
proposition provides a validation of the method described in Section 1 for
determining v ({x , y }) when {x, y} was not an edge of T. A further consequence of
this proposition is the following simple proof of the existence of a cut-tree. We
assume that each cut has a distinct capacity; if not, this may be achieved by
perturbing edge capacities slightly, as described in [4]. Thus there will be exactly
n - 1 distinct values for the minimum capacity cuts. The Gomory-Hu procedure
described in Section 1 finds n - 1 non-crossing cuts, each of minimum capacity for
some node pair. By Lemma 1 these cuts correspond to a tree T. Each edge of T is in
only one of these n - 1 cuts, namely, the cut defined by the removal of that edge
itself from T. Thus the edges of T satisfy the hypotheses of the above proposition,
which implies that T is the cut-tree for G.

Finally, we remark that when G is a planar graph multi-terminal flow theory has
implications for the shortest path problem. Associated with G is the dual graph G *
for which the cycles of G containing edge e of G correspond precisely to the cuts of
G* containing edge e of G*. Thus for any edge e of G, the cut-tree T * of G*
determines a minimum weight cycle which contains e. Such a cycle determines a
shortest path from x to y in G, where e = {x, y } , by comparing the two possible
paths from x to y around this cycle. Thus T* provides a compact representation of
all shortest path information for the edges of G.

References

[I] R.T. Chien, Synthesis of a communication net, IBM J . Res. Deoelop. 4 (1960) 311-320.
[2] J. Edmonds, Matroids and the greedy algorithm, Math. Programming 1 (1971) 127-136.
[3] S.E. Elmaghraby, Sensitivity analysis of multiterminal flow networks, Oper. Res. 12 (1964) 680-688.
[4] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Nefworks (Princeton University Press, Princeton, NJ,

[5] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J. Soc. Ind. and Appl. Math. 9 (1961)

[6] T.C. Hu, Inreger Programming and Network Flows (Addison-Wesley, Reading, MA, 1969).
[7] T.C. Hu, Optimum communication spanning trees, MRC Technical Summary Report # 1374, The

1962).

55 1-570.

University of Wisconsin-Madison (1973).

On rhe generality of multi-terminal pow theory 525

[8] J.B. Kruskal, Jr., On the shortest spanning subtree of a graph and the traveling salesman problem,

[9] W. Mayeda, Terminal and branch capacity matrices of a communication net, IRE Trans. Circuit

[lo] G.J. Minty, O n the axiomatic foundations of the theories of directed linear graphs, electrical

[l l] R.C. Prim, Shortest connection networks and some generalizations, Bell Systems Tech. J. 36 (1957)

[12] W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Srd. B 69 (1965) 1-47.
[13] H. Whitney, On the abstract properties of linear dependence, Am. J. Marh. 57 (1935) 507-553.

Proc. Am. Math. SOC. 7 (1956) 48-50.

Theory, Vol. CT-7 (1960) 251-269.

networks, and network programming, J. Marh. Mech. 15 (1966) 485-520.

1389-1401.

This Page Intentionally Left Blank

Annals of Discrete Mathematics 1 (1977) 527-538
@ North-Holland Publishing Company

VALID INEQUALITIES, COVERING PROBLEMS
AND DISCRETE DYNAMIC PROGRAMS

Laurence A. WOLSEY
Center for Operations Research & Econometrics, Uniuersitt! Catholique de Louuain, Belgium

Various discrete optimization problems such as the integer and 0-1 programming problems,
and the travelling salesman problem have been represented as discrete dynamic programming, or
network problems. We show how such representations lead naturally to a characterization of the
valid inequalities for the feasible solution sets Q of such problems. In particular we obtain
polytopes r of valid inequalities having the facets of Q among their extreme points. In addition
the problems of “packing” or “covering” with feasible solutions to the discrete problem have
natural network representations, which are the duals of problems over r.

Reversing the approach, any special properties of the valid inequalities can in turn be used to
give new formulations of the corresponding network problems. In particular this allows a
reformulation of the “minimum equivalent knapsack inequality” problem, and the “cutting
stock” problem.

1. Introduction

The characterization of valid inequalities for various combinatorial problems has
been the subject of much recent research. The motivation is in part practical,
stronger valid inequalities giving better bounds and cuts, and partly theoretical in
the belief that a better understanding of the underlying structures will eventually
lead to improved algorithms.

In this paper we examine the question of characterizing such inequalities for the
class of combinatorial problems that can be viewed as discrete dynamic programs,
and the consequences of the fact that this question can be reinterpreted in terms of
a “covering” problem.

Various combinatorial problems (Po)

can be viewed as discrete dynamic programs, or longest route network problems.
Here we show that such a viewpoint provides useful information on two related
problems: (PI)

Find a polytope r such that (T; r0) E r if and only if T X G no is a non-trivial
valid inequality for Q,

(The Covering Problem) min{l . y I By 2 w, y 2 0) where the columns of B
are vectors representing the feasible points of Q, and w is a nonnegative
integer vector.

and (P2)

527

528 L.A. Wolsey

Relationships between these three problems have been demonstrated in various

For instance by duality (PI, P2)
special cases, but do not seem to have been fully exploited.

min l l . y I BY 5 w, y 3 0) = max { w T I TB c I, T 5 01
=max{w.rrI(.rr;.rr0)Er,.rrTTos1,T30}

See [4] on antiblocking polyhedra where this duality is used but very special
representations of r are sought.

(Po, P,) The problem (Po) : max {TX 1 x E Q} can be formulated as a DP recursion
or as a network flow problem. We claim that r is obtained by constraining (T ; .no)
to be dual-feasible for the network flow problem. Alternatively the constraints of r
are directly evident from the D P recursion. See [l] and [6] where polytopes r
closely resembling the D P recursion have been obtained.

(Po, Pz) The dual of max {WT I (T; r0) E r, T,, s 1, T a 0) gives a representation of
the covering problem on the network associated with (Po). Unlike (Po) this problem
is not totally unimodular due to capacity constraints involving several arcs
simultaneously.

Below we shall look at several examples so as to demonstrate the relationships.
In Section 2 we look at the 0-1 monotone problem in some detail. Here the
representation of r has two apparent advantages over other suggested representa-
tions, simplicity, and a limited number O(np) of constraints and variables where p is
the number of D P states. For the special case of the 0-1 knapsack problem, we
show that the “minimum equivalent inequality problem” is equivalent to a variety
of covering problems.

In Section 3 we look at the integer monotone problem. Here although a good
deal about representations of r is known [l], no one has apparently looked at the
corresponding representation of (P2). Both the natural network representation, and
a representation based on a “minimal” r appear new, and appear to have
advantages over the standard column generating formulations of the “cutting
stock” problem.

Finally, in Section 4, we mention briefly two other problems amenable to
treatment in this way.

To close this section we give two general definitions.

Definition 1.1. The inequality:

is said to be a valid inequality denoted (T; no) for Q if every feasible point in Q
satisfies the inequality. A valid inequality is a facet of Q if 3n affinely independent
points of Q satisfying it with equality.

Definition 1.2.
is a nonnegative integer vector such that x ’ s x, and x E Y, then x ’ E Y.

A set of nonnegative integer vectors Y is monotone if whenever x ’

Valid inequalities 529

Throughout the paper we shall only be concerned with valid inequalities with
ro # 0. (If Q is monotone, this only essentially eliminates the trivial inequalities
XI 2 0).

2. Valid inequalities for 0-1 monotone polytopes

Here we consider the 0-1 monotone polytope, from the viewpoint that, given a
linear objective, we obtain a problem amenable to solution by discrete dynamic
programming, or as a longest path network problem.

We consider in particular the set Q :

a,xl s b, xi E (0, 1)
] = I

where b E Z; (the set of m-dimensional nonnegative integer column
vectors).

Clearly the set Q above is monotone.
Now we shall define certain standard terms used in dynamic programming.

Let

Q,(A)= (x 12 alxl S A , ~ , E(o,i}
] = I

where the terms are only defined for 0 S r s n, A E Z: with A S b.
Note that Q = Q,(b) and that G,(A) = max{G,-I(A), G,-l(A - a ,)+ T,}, where

Go(A)=O for 0 s A < b, and any expression containing an undefined term is
ignored.

Also (1) is a valid inequality for Q if and only if r0 a Gn(b). It is righr if
ro = G,(b).

Now let us write (Po): m a x { m 1 x E Q } as a network flow problem, with nodes
(r , A) for 0 6 r s n, and 0 S A s b, edges [(r - 1, h - a,), (r , A)] and [(r - 1, A), (r, A)]
containing flows & (A) , q , (A) respectively r = 1,2, . . ., n,O 6 A b if both endpoints
of the edge are legitimate nodes.

Proposition 2.1.
(FPo):

Problem (Po) is equivalent to the totally unimodular flow problem

G.(b) = max c c ..&(A)
A r

s.t. (, (A) + q r (A) - (, + i (A + a , + ,) - q r + i (A) = O

r = 1,2, . . ., n - 1

& (A) + q n (A) = O O s A < b

0 s A s b

(n(b)+qn(b)= 1

(, (A) , q , (A) > O r = 1 , 2 ,..., n ; O G A S b .

530 L.A. Wolsey

Proof. We note that with this choice of notation, an x E Q with ax = b - p
corresponds to a path in the network from (0, p) to (n, b) or a feasible solution of
(FPo). Hence G , (b) 6 EAErn-,&(A). Conversely the linear program has an optimal
solution which is integer, It therefore corresponds to a path from (0, p) to (n , b) ,

with ax = b - p. Hence zAz,n-,&(A)S G , (b) . and an x E Q

Theorem 2.2.
@,(A), r = 1,2,

r =

(n - ; T,,) is a valid inequality for Q i f and only i f there exist values
. ., n, 0 s A s b such that (n- ; & (A)) E r with r0 = &(b) where :

@ (A) - &l(A - u ~) - T, 2 0
(r ; (-w))

& (A) - L (A) 3 0

r = 1,2,. . ., n, 0 6 A 6 b, where again undefined terms vanish i.e. when r = 1 , the
constraints become O1(A) - r1 3 0; O1(A) 3 0 when b 3 A 3 a l , and reduce to & (A) 3

B,-,(A) when a, < A.

Proof. (T; 8 , (b)) is a valid inequality for Q if and only if 8 . (b) a G , (b) . Taking
the dual of (FPo) we obtain {min 8 , (b) 1 (T; @,(A)) E r} = G , (b) , and hence if
(n-,B,(A))ET with no= 8,(b) , then (n - ; ~ ") is valid for Q. The converse is
immediate taking & (A) = G,(A).

Remark 2.3.
obtained directly.

Replacing G,(A) by & (A) in the DP recursion, we see that r can be

Theorem 2.4.
extreme point of r with

If E,"_l v j x j C r0 is a non-trivial facet of Q, then (n-, G,(A)) is an

= G,(b) .

Proof. Suppose not. 'l'hen

(T, G,(A)) = ;(TI, O!(A)) + $(T', O f (A)) .

Case (a) . r i # T, i = 1,2. This contradicts the fact that a non-trivial facet of Q is
extreme among the valid inequalities for Q.

Case (b) . n-l = T' = n-. Then as (n-, 8: (A)) E r, 6: (A) 3 G,(A), i = 1,2. However
S O ! (A) + t O f (A) = G,(A), and hence f ? : (A) = G,(A) i = 1,2Vr,A, contradicting the
hypothesis that (T I , e!(A)) and (n2, 03(A)) are distinct.

Therefore we have shown that the extreme points of r, restricted to the variables
T, & (b) include the non-trivial facets of Q.

Remark 2.5. We note also that the polytope r is very easy to describe and has at
most (n + l)p variables and 2np constraints where p = nTZl (b, + 1).

An alternative characterization of valid inequalities for knapsack problems is
given in [2,7], based in part upon the total ordering among the variables. Although
it is efficient for small values of b, the number of constraints in the resulting
polytope grows exponentially with b.

Valid inequalities 531

Consider now the covering problem (Pz), and in particular its representation in
the form max{wr 1 (r, & (A)) € I‘, & (b) S 1, r 5 0). Taking its dual we obtain the
network flow problem:

min Zo

& (A) + ?,(A) - 5,+l (A + a,+l) - q + , (A) = 0,

& (A) + q n (A) = 0,

& (b) + 7, (b) - z o = o ,

C 3 w,,

&(A) , ~ . (A) * O , Z o S O .
This problem involves the same network as in (FPo) where the first three

constraint sets represent flow feasibility constraints, but the last “covering” set of
constraints imposes a minimum aggregate flow over certain subsets of the arcs, and
destroys the property of total unimodularity.

An application to find “minimum equivalent knapsack inequalities”

Given a single linear inequality (L)

where a, >0, we consider the problem of finding a linear inequality x.i”=l bixj S bo
which is

(i) valid for (L),
(ii) EC;=, bjy, 2 bo + 1 for all 0-1 points y not lying in (L),

(iii) for which bo is minimum.
We restrict ourselves without loss of generality, (see [2]) , to inequalities (L) for

which x is feasible if and only if e - x is infeasible, where e = (1,1,1,. . ., l)T. Now it
is known that with this restriction the extreme points of the polyhedron of valid
inequalities defined by (i), (ii) satisfy x;=l bj = 2bo + 1, and that this equality plus (i)
implies (ii), see [2, 10, 111.

Therefore the problem can be reduced to (Ro)

I min ro I rB C roe , 2 rj = 2 r 0 + 1, ri 3 0 I j = 1

where B as in the introduction is the matrix having the 0-1 feasible solutions to (L)
as columns.

Below we shall use our results to derive several reformulations of (Ro). Using the
characterization of r we obtain (R1):

min(e . (a o)) (r , O , (A)) E I ‘ , ~ j = 1 rj = 2 8 . (a o) + 1 , r j 2 0 1

532 L.A. Wolsey

or its network dual (R,)

max Zo,

5 r (A) , v r (A) S O .
In terms of solutions of (L), (RZ) is evidently equivalent to (R3):

max Zo,

e . y = 1 + 2Z0,

By 3 Zoe,

Y 3 0 ,

where the variables y can be thought of as the weights given to the different paths
from (0, p) to (n, a,). Hence (R3) is a special covering problem (also obtainable
directly as the dual of (R,)). Finally substituting for 2, in (R3) gives (Rd):

max 5 e . y - 5 ,

s.t. (E - 2B)y s e,

Y 3 0 ,

a special packing problem whose matrix E - 2B has entries * 1, where E is a
matrix of all 1’s.

Alternatively changing the normalization, and replacing (ii) by c,”_I b,y, > b,,,
b, = 1 and (iii) by rnax xi.,, b,, we can replace (Ro) by (R,)

6 = max{n-. e 1 TB s e, n- 2 0).

This follows from two observations. First that 5 > 2, and any valid inequality with
T. e > 2 is a representation of the inequality. Second that if rr* is an optimal
solution of (R5) with T * e = 2 + l/r, f > 0, then r r r * is an optimal solution of (R,),
and conversely.

Taking its dual we obtain a last reformulation (R6):

6 = min e . y

By S e

y 2 0

the most basic covering problem.

Valid inequalities 533

Remark 2.5 suggests that formulations (R1) and (R2) may be advantageous
computationally. See [2] for computational results using a formulation derived
from (Ro).

Example.

rn((ao) = z0 = 3, r j = e . y = 7, 6 = I 3 .
, = I

Minimum Equivalent Inequality

2x, + 2x2 + x3 + xq + x5 s 3, xj E {0,1}.

Cover (L 3) (293) (L 4) (2,4) (195) (2 ,5) (3,475).
These 7 solutions together make use of each variable at least 3 times.

3. Valid inequalities for integer monotone polytopes

Here we consider the set Q:

a,x, b
) = I

x, 2 0 and integer

where a,, b E Zk.
For this problem all the representations of the valid inequalities that we present

are known. We stress however that they also derive from the DP or network
structure. The main emphasis below is on (P2) the covering, or “cutting stock”
problem, and we use the characterizations of r and of a subset of the valid
inequalities including the maximal and extreme valid inequalities to obtain two
different formulations of (P2).

Defining G(A) = max {x;=, T~X, 1 x;=, a,x, s A, x, 2 0 and integer}, we obtain from
dynamic programming the recursion

G(A)= max 0, max {G(A - a,)+ T,} , [1 = 1 . ,” I
where G (h) is defined for A s b, A E ZL, and undefined terms are ignored. This
leads immediately to the network problem:

G(b) = max 2 2 T J t A - a , , A
A I

- C t o . , s 0

534 L. A. Wolsey

Lemma 3.1.
A E ZL such that (T , @(A)) E r with T,, = 8(b), where

(T ; T o) is valid for Q i f and only i f there exist values 8 (A) , A S b,

Proof. From the dual of the above problem we have that G (b) =
min{@(b)/(T, O(A))Er.}. Conversely (n- ,G(A))Er.

We see also that once again r could have been written down directly from the
DP recursion.

Looking now at the covering problem (Pz) we have (R,):

max{w. T I (T, 8(A))E r, B(b) s 1, T 2 O}.

We note that this problem has n + /3 variables and n/3 constraints, and hence has

Its dual is (Rr):
far fewer constraints than in the standard column generation formulation.

min Z,,

s.t.

c t A - a , . A

t A - a j , A 0, ZO 3 0.
This is again a network flow problem with additional constraints, where is

the number of cutting patterns (solutions of Q) with a piece of length a, cut
between A - a, and A (x , = 1 when in state A - a,).

Now we consider the possibility of replacing r in problem (RJ by some other
polytope of valid inequalities.

Theorem 3.2. [l] Every maximal inequality

(T ; = (e (a J) ; 8 (b))

of Q lies in r* = { 8 (A) 1 8 (A) 3 8 (A - a,) + 8(a,) , 8 (A) 3 0} and conuersely i f
@ (A) E r*, then (O(a,) ; B(b)) is valid for Q. In addition the extreme points of r*
include the non-trivial facets of Q.

The above polytope is suggested by noting that an inequality is maximal for Q

Valid inequalities 535

only if .rr, = G (a j) , and that (n-, G(A))E r, so that necessarily the maximal
inequalities are in r*.

Now as the optimal solution to problem (PJ and hence (R,) corresponds to a
non-trivial facet of Q, we obtain the equivalent problem (R3):

-aint - B(A + p) Associate the dual variables 7 ,,+ with the con!

max 2 w j e (a j)
j = l

B (A) E r*, B(b) S 1.

e (P .) a
0 where either A or p or both equal a, for some j = 1,2,. . ., n and if “ S ” is some
ordering of the elements of 0 < A S b, A E Z,,,, qA,, is only defined for A S p.

This problem then has as dual (R4):

min Zo
node a,:

node p # a,:

node b :

- c 7 7 a k . b - a k - c 7) b - a k . a k + 2 0 0;
a k e b - a k b - a k e a k

7 7 A , f i S o , Z O 3 0 .
Here we can interpret qA.,, as the number of paths passing through the nodes A

and A + p, and using a single arc from A to A + p. Alternatively it is the number of
cutting patterns having a single piece of size p in position (A, A + p) .

Looking at the inequalities in (R4), the first term counts the number of single
pieces of size aj that occur in the cutting patterns in any but the first i.e. (0 , ~ ~)
position. The remaining three terms count the numger of single pieces that occur in
the first position, in particular the number of pieces with a cut in position a, (term 2)
less the number of pieces containing a cut between 0 and a, (term 3 + term 4). The
final constraint counts the total number of patterns used Z,.
(R4) can also be obtained by eliminating the variables to,, in (Rz).

Example.

Q = {x I 2x1 + 3x2 + 5x3 G 6, xi 2 0 and integer}.

(wi , wz, ~ 3) = (8,3,4).

536 L.A. Wolsey

(R3)

max 8e(2)+ 3 q 3) + 40(S)

L e (i) + e(2) - e(3) s o , q 1 2
2 0 (2) - O(4) s o , 7722

W) + @(3) - W) s o , q 2 3

0 (2) + O(4) - O(6) s 0, 7724

W) + e(3) - e(4) so? 7713

20(3) - e(6) s 0, q x 3

W) + e(s) - e(6) 0, 7 1 5

e (6) s 1, zo
8 (A) 3 0,Z" 2 0.

Remark. The formulations (RJ-(R4) can be used in column generation proce-
dures, as in the standard Gilmore and Gomory (1961) approach. The new column at
iteration k is generated by taking the current variables n-' and solving:
max{.rrkx 1 x E Q}. Supposing X' is the optimal solution, either r k x k = 1 and the
algorithm terminates, or n k x k > 1, and at least one of the constraints: O (A) +
(?(a,) s 6(A + a,) is violated for some r with xs = 1, and can be added to generate
the new problem at iteration k + 1.

Example (cont). Starting from

max 8e(2)+38(3)+48(S)

s.t. e(i)+ e (2) - e(3) s 0,

20(3) e(6) s 0,

+ e(S)- e(6) s 0,

e(6) s 1,
0 (1)

B (A) 2 0,
we solve the LP to obtain

n- l = e = (o , ; , ? ,~ , I, 1).

Solving

max fx, + ixz + Zx,

s.t. 2x1 + 3x2 + 5x3 s 6, X, E {0, l},

we obtain the optimal solution x 1 = (3,0,0) with r l x l = $> 1.
The solution x ' indicates immediately that at least one of the constraints

Valid inequalities

(n, 0 , ~)

537

& (A) 5 &](A - a,) + T,
r = 0,1,. . ., n

A C b , A E Z ,
e w a @,-,(A)

8,(0) 5 0

2e(2)- o(4) SO

e(2) + e(4) - e(6) s o
is violated.

Solving
Adding these constraints and resolving the LP, we obtain d = 8 = (0, f , $, $,1,1,).

max f x l + f x z + 1x3,

s.t. 2x , + 3x, + 5x, S 6, x, E {O, l},

we obtain an optimal solution x z = (O , O , 1) with r z x 2 = 1 and therefore 7 ~ ’ is the
optimal solution.

4. Further dynamic polytopes

Various other dynamic programming recursions generate polytopes of valid
inequalities in a natural way. We consider two examples.

(1) The travelling salesman problem

A well-known recursion for the problem [S] is the following:

f (S , j) = minic,, + f (S -1, i) }

over all i E S - J , where c,, is the distance from i to j , and f(S,j) is the minimum
length path which starts at vertex 1, visits all vertices in S, and terminates at j E S,
where S C N = {1 ,2 , . . ., n}. Q is the set of all tours and G (S , j) the shortest length
path with arc lengths 7r,k.

We obtain the dynamic polytope:

r = { (~ , k , e (~ , j))) e (s , ~) ~ . r r , + e (s - ~ , i) v i ~ s - j , . r r , k s o , e (s , j p o } ,
for the valid inequalities c c ?Ttkx,k 2 r0 for Q (denoted (T # k , no)).

Lemma 4.1. (T i e ; no) is a valid inequality for Q if and only if there exist values
e(s,j) such that (T i k t e(s,J)) E r with r0 = 8(N, 1). If (r i k , no) is extreme among the
valid inequalities for Q, then (n i k , G(S, j)) is extreme in with no = G (N , 1).

538 L.A. Wolsey

with & (A) defined for r = 0,1,. . ., A S b, A E Z,, generating valid inequalities:
CT,X, S G,(b) for Q where T, - + + w if there is no solution with x, = 1, or
6,(A)-+-w if Q,(A) has no solution.

References

[11 J.A. Araoz-Durand, Polyhedral Neopolarities. Ph.D. thesis. University of Waterloo, Faculty

[q G.H. Bradley, P.L. Hammer and L.A. Wolsey, Coefficient Reduction for Inequalities in 0-1

[3] N. Christofides and S. Eilon, The Loading Problem. Management Sci., 17 (1971) 259-268.
[4] D.R. Fulkerson, Blocking and Antiblocking Pairs of Polyhedra. Marh. Programming, 1 (1971)

[5] P. Gilmore and R.E. Gomory, A Linear Programming Approach to the Cutting Stock Problem I.

[6] R.E. Gomory, Some Polyhedra Related to Combinatorial Problems. Linear Algebra Appl., 2 (1969)

[7] P.L. Hammer and U.N. Peled, Computing Low Capacity 0-1 Knapsack Polytopes. CORR No.

[8] M. Held and R.M. Karp, A Dynamic Programming Approach to Sequencing Problems. SIAM
Appl. Marh., 10 (1962) 196-210.

[9] T.L. Morin and R.E. Marsten, Branch and Bound Strategies for Dynamic Programming.
Discussion Paper No. 106, Northwestern University, Center for Mathematical Studies in
Economics and Management Science (1974).

of Mathematics, Department of Applied Analysis and Computer Science (1973).

Variables. Math. Programming, 7 (1974) 263-282.

168-194.

Operations Res., 9 (1961) 849-858.

451-558.

75-4, University of Waterloo, Faculty of Mathematics (1975).

[lo] S. Muroga, Threshold Logic and its Application, (Wiley, New York, 1971).
[I l l B. Peleg, On Weights of Constant-Sum Majority Games. SIAMJ. Appl. Marh., 16 (1968) 527-532.

Annals of Discrete Mathematics 1 (1977) 539-550
@ North-Holland Publishing Company

SOME PARTIAL ORDERS RELATED TO BOOLEAN
OPTIMIZATION AND THE GREEDY ALGORITHM

Uwe ZIMMERMANN
Mathemarisches Institut, Universitut Koln, 5 Koln I, Weyertal 86-W, F. R. G.

For B = { O , l} and ordered sets (H, C) the objective f : B" --* H shall be maximized under the
restriction x E S C B". The Greedy algorithm can be formulated for this problem without
difficulties. The question is for which objectives f and which restrictions S one can use the
algorithm to solve the above defined Boolean optimization problem. Dealing with this question,
it turned out to be useful to replace the objective by a preorder. The problem then is to determine
a maximum of a given preorder on B" in S C B". Concerning some partial orders on B" problems
are characterized for which the optimal solution does not depend on the special choice of the
objective. Assumptions with regard to S are closely related to matroid theory; in view of the
preorder a certain monotonicity condition is important. The dual greedy algorithm and a
modified form of it leads us to the definition of dual partial orders. Herewith it is possible to
characterize those S C B" for which the greedy algorithm and its dual determine the same vector.

1. Introduction

For B = (0,l) and an ordered set (H, S) consider the Boolean optimization
problem (BOP)

max f (x)
X E S

with a function f : B" + H and a subset S of B". During the last years, it appeared
that it is very unlikely to expect "good" algorithms - in the sense of Edmonds'
polynomial bounded algorithms - for such arbitrary zero-one problems. O n the
other hand there are "good" algorithms for special problems, for example the
greedy algorithm. In this paper we describe a class of problems which can be solved
by the application of this algorithm and/or its dual. The greedy algorithm has been
treated before by Kruskal [S], Edmonds [5] , Gale [6], Dunstan and Welsh [4],
Magazine, Nemhauser, and Trotter [lo], and others.

2. Some binary relations on B" (combinatorial structure)

Let us introduce some notations for binary relations R on B". R is called a partial
preorder, if it is reflexive and transitive; if the adjective "partial" is omitted, then
either xRy or yRx must hold; if the prefix "pre-" is omitted, then R is
antisymmetric.

539

540 U. Zimmermann

Between the subsets of N = {1,2,. . ., n } and the vectors of B" there is an
one-to-one correspondence; every vector x is the incidence vector of its support set
T (x) := { i E N I x, = 1). The subvector relation

(2.1) y C x : T (y) C T (x)

is thus a partial order on B". Corresponding to the union of the support sets we
define an addition

1 if x, = 1 or y , = 1

{ 0 otherwise,
(2.2)

for all i E N. (B", +) is a semigroup. For an arbitrary nonempty subset S of B" let
be

(x + y J : =

s:= { y E B" 1 3 x E S : T (y) C T (x) } .

We can compute the lexicographical maximum x(S) by application of the greedy
algorithm (A)

(1) x : = o ; j : = 1;
(2) if x + e, E S,
(3) if j = n,

otherwise

(2.3) Definition.
(bijective) function cp : T (x) + T (y) such that

set x : = x + e , ;

stop,
set j : = j + 1; return to (2).

Let x, y E B". Then x ~ ' y (x L~ y) if there exists an injective

cpo')sj, vj E T (x) .

The two binary relations defined in (2.3) are partial orders and have the following
properties:

(2.4) Proposition. Let x, y E B". Then
(1) x * x L ' Y ,
(2) X C Y =+ X L l Y ,

(3) x i ' y =s- x < y.

Proof.
j . Suppose y < x and let k be

the minimal element in ~ (x) , ~ (y) . Then cp [Tk (x)] c Tk (y f but I T k (x) 1 =

I T , (y) / + 1 with T k (x) :={i E T (x) l i - k } . This is a contradiction to the injectivity

(1) and (2) follow immediately by definition.
(3) Let cp : T (x) + T (y) be injective with cpG)

of Cp.

(2.5) Definition.
called a maximum (minimum) of S with regard to R i f

Let R be a binary relation on B" and S C B". Then x E B" is

(1) x E s,
(2) Y R X (X R Y) , VY ES.

Partial orders related to Boolean optimization 541

The set of all such maxima is denoted by maxR (S). If R is a partial order, then
the existence of a maximum implies its uniqueness. Furthermore, (2.4) yields

(2.6) Corollary.
R, then x = x (S) .

(respectively L') are closely related to matroids. Let be T (S) : = { T (x) 1 x E S } .

Let R E { L ~ , L', c }. I f x E B" is the maximum of S with regard to

The subsets of B" which have a maximum with regard to the partial order L~

(2.7) Definition (bases). Let B c B". Then M = M (N , T (B)) is a matroid, if
(2.7.1) for all I, J E T(B) , I e J A Jg I, provided I# J ;
(2.7.2) for all I, J E T (B) , if j E J, then there exists an element i E I such that

(J\{il) u {il E W).
The elements of T (B ; are called the bases of the matroid M. All bases have equal

cardinality.

(2.8) Definition (independent sets).
troid, if

Let S C B". Then M = M(N, T (S)) is a ma-

(2.8.1) for all J E T(S) , I C J + I € T (S) ;
(2.8.2) for all I, J E T (S) , if I I / < 1 J 1, then there exists an element j E J such that

The elements of T (S) are called the independent sets of the matroid M. (2.7) and
(2.8) are equivalent definitions as known from matroid theory. The bases are the
maximal independent sets and vice versa a subset of a base is an independent set.

I U{j}E T (S) .

(2.9) Definition.
IT E P,,, 7i : B" + B" is the bijective function defined by [&(x)],(~) : = xi for i E N.

The relationships between matroids and the partial orders defined in (2.3) are given
by a theorem corresponding closely to the results of Gale [6].

Denote the set of all permutations IT : N + N by P,. Then for

(2.10) Theorem.
ments are

Let B c B " such that (2.7.1) holds for T (B) . Equivalent state-

(2.10.1) M = M(N, T (B)) is a matroid,
(2.10.2) for all IT E Pn there exists the maximum of + (B) with regard to L ~ .

Before proving (2.10) we state an equivalent theorem which can be verified by (2.7),
(2.8), and (2.3).

(2.11) Theorem.
are

Let S C B" such that (2.8.1) holds for T (S) . Equivalent statemen(

(2.11.1) M = M(N, T (S)) is a matroid,
(2.11.2) for all IT E Pn there exists the maximum of k (S) with regard to L'.

542 U. Zimmermann

Thus matroids yield special examples for subsets of B“ which have a maximum with
regard to L~ (respectively L’).

Proof of (2.10) (=+) If M = M(N, T (B)) is a matroid, then 7rM =
M (N , T (+ (B)) is a matroid for all rr E P,,. Thus we have to show only the existence
of the maximum of B with regard to L’. Let x = x (B) and choose y E B. Let

T (x) = { i l , i*, . . .) i , } , i l < i 2 < * * * < i,,

T (y) = { j l , j z ,..., j ,) , j l < j 2 < . . . < j r .

If ik s j k holds for all 1 c k =S r then y L’ x. Otherwise suppose rn :=min{k I
ik > j k } . Since T (B) is the set of bases of a matroid, it follows from (2.7) and (2.8)
that there exist

j E { j l , j 2 , . . - , j m } ,

z,,,+~, . . ., i t € {i,,,,. . ., i,} . I

. . I such that { i l , . . ., i m - l , j , I , , , + ~ , . . ., i:}€ T(B) . Let x ’ be the incidence vector of this
set. Then by x $ X ‘ we have a contradiction.

1 is
very easy. Otherwise suppose the existence of i E T(u)\ T (u) such that

(+) We have to verify (2.7.2). Let u, u E B. The case 1 T(u)\ T(u)l

(T (u) \ { i }) U { j } 6 i T (B) V j E T(u)\ T (u) .

Now we choose rr E P,, such that elementwise we have

(2.12) 7r [T(u)n ~ (v)] < T [(T (u) \ T(u))\{i}] < rr[T(u)\ T (u)J < rest].

Let be x = x (+ (B)) which is the maximum of +(B) with regard to L~ by (2.6).
Clearly

IT(~) l= IT(u) l= IT(x) l ,

7 j (u) < 7 ; (u) s x = : + (Z) .
f

By virtue of (2.12) it follows that there exists an element j E T (u) \ T (u) such that

W) = (T(u) \ {i}) U { j l

and hence a contradiction.

(2.13) Lemma. Let a E B”. Then B : = {x E B“ (x L’ a } defines a matroid M =

M (N , W)).

Proof.
be x, y E B and x # y . From the definition of B it follows that

We have to verify (2.7.1) and (2.7.2). If I B I = 1, this is trivial. Otherwise let

I W)I = I T(a)l= I T(Y)l

Partial orders related to Boolean optimization 543

which implies (2.7.1). Let be i E T(x)\ T(y) . If there exists j E T(y) \ T (x) such
that i < j , then

T(x'):= (T (x) \ { i })U{ j }E T (B)

for 1 L' x. Otherwise define

j : = max(T(y)\ T(x)) .

Then j < i and I T k (x) l < (T k (y) l for all j C k C i , and therefore for
T (1) : = (T (x) , { i }) U { j } ,

As x L ~ U and y ~~a this implies

1 Tk(x')l < I Tk(a)l for all 1 s k s n.

This is equivalent to 1 L; a. By 1 T(x')l = 1 T (a) (it follows that x' L' a, i.e. x' E B.

The set B in the preceding lemma is a special case of a regular set with regard to
a partial order.

(2.14) Definition. Let be S
regular with regard to R, if for all x E S

B" and R a partial order in B". Then S is called

y R x +- Y E S .

In this sense the set is a regular set with regard to C . Regular sets with regard to
L' have been considered in the literature by Hammer, Johnson and Peled [7] and
Wolsey [ll]. (2.10) and (2.13) imply

(2.15) Theorem.
statements are equivalent :

Let be B CB" a regular set with regard to L ~ . The following

(1) M = M (N , T (B)) is a matroid,
(2) there exists the maximum of B with regard to L'.

In [ll, Theorem 5.51 Wolsey proves an equivalent theorem, which is in our notation

(2.16) Theorem.
statements are equivalent:

Let be S c B " a regular set with regard to L'. The following

(1) M = M (N , T (S)) is a matroid,
(2) there exists the maximum of S with regard to L;.

The class of regular sets with regard to L~ and the class of sets which yield a
matroid thus only overlap in a very special case.

544 U. Zimmermann

3. Reformulation of the BOP (algebraic structure)

A given objective function f induces a preorder on B" by

An equivalent formulation of (Pl) is therefore

(P2) Determine x € max 5 (S).

Without loss of generality we only consider functions with the property

(3.2)

or in view of (P2)

(3.2')

f (e ,) c f (e , - J 6 . . 1 s f (e l)

en 5 en-1 5 . . . $ e l . -
Apparently this coincides with the lexicographical ordering of the unit vectors.

(3.3) Definition.
semigroup if for all x, y€ B" and all e,

Let 5 be a preorder on B". (B", + , <) is called a preordered
x + y (M) holzs:

(M) X Z Y * x + e , $ y + e , .

The monotonicity property (M) is a restriction of the choice of f (resp. of the
preorder). In view of (Pl) there is an important example of a preordered
semigroup.

(3.4) Example. Let (H, *, c) be an ordered semigroup, that is
(3.4.1) (H, S) is an ordered set,
(3.4.2) (H, *) is a semigroup,
(3.4.3) a 6 b + a * c c b * c, Va, 6, c E H,

and define with c,, ct, . . ., c, E H a special objective

(3.4.4) f(x):= * c,
X I = 1

Then f is well-defined and induces a preorder 5 -
preordered semigroup.

such that (B", + ,s) - is a

Proof. Let x~ y and e,p x + y . Then x, = y, = 0 and therefore

f (x + e /) = f (x) * c, f (y) * c/ = f (Y + e J)

which implies x + e , s y + e, by definition. -
The vectors of B" have a canonical representation by unit vectors

Partial orders related to Boolean optimization

(3.5) x = C xi e,
t = 1

545

with 0 . e , : = 0 and 1 * e, = e, for i E N.

(3.6) Definition.
empty put k : = n + 1). Then

Let 5 be a preorder on B", k : = min { j E N I e, <_ - 0) (if the set is

x + : = C xi * e i
i c k

(3.7) Definition. Let T (x) = { j l , j 2 , . . ., j , } with jl < j z < * . . < j,. Then x(') is given

by

T(x"') = { j l , j Z , . . .,jmt"(r,,)} for i E N.

The special subvectors defined by (3.6) respectively (3.7) have some useful
properties in preordered semigroups. Let be 11 x I/:=/ T (x) (.

(3.8) Proposition. Let (B", + , 5) - be a preordered semigroup. r = IIx 1). Then
(3.8.1) o < x +
(3.8.2) y L ' X -a y z x +

(3.8.4)
(3.8.3) (1 y I (= i A y L I X y - < X I ')

there exists t E N such that x(') = x+,

X (') < X (z) < . . . < x (' - - L) < x +)

x'''< X (r - l) < . . . < x('+l)s x + .
= = = z =

- - = - =

(3.8.1)-(3.8.4) follow by the monotonicity property (M) and (3.2'). Let us consider
for example (3.8.2). Let cp correspond to the definition of YL'X. Then, by repeated
application of (M)

y = C y, * e z s C y, . e , , ,) =: yf

for c p (i) i implies e, 5 e,+,(,) by (3.2)'. Analogously -

with k as defined in (3.6).

The application of the greedy algorithm to S yields step by step the sequence

(3.9) x(') , x(2) 9 x (3) ,..-, x (') = x (S)

thus by (3.8.4) it is possibl- &- determine x(S)'. An immediate consequence of
(3.8.2) and (2.6) is

546 U. Zimmermnnn

(3.10) Theorem. Let 5 be a preorder on B" and S c B". If
(3.10.1)
(3.10.2)

(B", + , 5) 15- a preordered semigroup,
there exists the maximum x of S with regard to L',

then y - 5 x+, V y E 9.

The two assumptions describe a class of problems which can be solved by the
application of the greedy algorithm. After the determination of X + one has to check
whether X + E S or not. If x t E 9, S, then it is only an upper bound. If S = 9, then
x + is a solution of (P2). The following theorem implies by (3.8.4) Theorem (3.10).
Let usdenote S , : = { x E S [I l x I (= i } .

(3.11) Theorem. The assumptions of (3.10) yield for ail 1 S i s I(S /I:=
max{llx Ib E S)

y <, X(I), vy E (S) , .
The theorem follows from (3.8.3) and (2.6). The two theorems refer to different

combinatorial structures.

(3.12) Corollary.
defined by (3.4), then

Let B C B". If M = M (N , T (B)) is a matroid by (2.7) and 5 - is

x (B) E max s (B) .

(3.13) Corollary.
defined by (3.4) then

Let S c B". If M = M (N , T (S)) is a matroid by (2.8) and 5 - is

[x(S)]+ E max z (S) .

The two corollaries follow from (3.11) respectively (3.10) and (2.10) respectively
(2.11). We consider the following class of functions in view of (Pl):

(3.14) Definition. Let F denote the set of all functions f : B" -+ H with
(3.14.1) (H, c) is a n ordered set,
(3.14.2) f(e,) s f(e,-,) S . . . c f (e l) ,
(3.14.3) (B", + ,s -) is a preordered semigroup with regard to

the preorder induced by f .

(3.15) Corollary.
choice of the objective f E F, [x(S)]+ is a solution of the problem maxxEsf(x).

Let S c B" with S = 9. If (3.10.2) holds, then regardless of the

This follows from (3.10). Clearly there is an analogous corollary corresponding to
(3.11).

(3.16) Corollary. Let B C B" with 11 y 11 = IIB 1) V y E B. If (3.10.2) holds then
regardless of the choice of the objective f E F x (B) is a solution of the problem
maxxEs f(x).

values of the objective function for the unit vectors.
These corollaries reflect the fact that the greedy algorithm only considers the

Partial orders related to Boolean optimization 547

At the end of Section 2 we introduced regular sets with regard to L'. As shown by
(2.16) in this case the assumption (3.10.2) implies that M = M (N , T (S)) is a
matroid. Results for more general regular sets with regard to C and L' are given
by Hammer, Johnson and Peled in [7]. If the objective "agrees" with the partial
order R, that is

(3.17) x R y + f(x) f (y) , vx, Y E B",

then

(3.18) max 5 S max 5 SR

clearly holds for S CB", S R : = {x E B" I 3 y E S : x R y } .

(3.18). In this case the BOP (Pl) is equivalent to
If distinct vectors in (3.17) imply distinct function values, then equality holds in

(P3) max f(x).

As shown in [7] Sc can be described by the restrictions of a covering problem, that
means all restrictions are of the form

XCSR

(l - x j) z l , with J C N .
j € J

In the case R = L' a further simplification is possible and developed in [7].
In connection with covering problems the partial order i ' h a s been considered by

Bowman and Starr [l] . They present an enumerative algorithm for the problem of
maximizing a partial order on B", which fulfills (3.2)' and (M) in (3.3). If in this
section 5 denotes only a partial preorder, then under the additional assumption to
(3.2')

(3 . 2) 0 5 en or e , < 0 or there exists k E N,(1) such that e k z O < e k -]

all results hold which refer to 5 .

-

- = +=

-

4. Dual partial orders

(4.1) Definition.
R ' , defined by

Let R be a partial order on B". Then the dual partial order of R is

x R' y : G(y)RG(x)

with aEPn, a (i) : = n - i + l for IEN.

Partial orders and their duals may coincide more or less

(4.2) Proposition. (1) x C ' y C y C x,
(2) x L b ' y - x L b Y .

548 U. Zimmermann

In view of proposition (2.4) the dual partial orders of those partial orders defined
by (2.1) and (2.3) have analogous properties.

(4.3) Proposition. (1) y C x =+- x L~ y,
(2) X L b Y * X L I ' Y ,

(3) x L I ' y * x < ' y .

In connection with dual partial orders we consider a modified greedy algorithm

(1) x:=O; j : = n ;
(2) if x + e, E S, set x:= x + ei;
(3) if j = 1, stop,

otherwise set j := j - 1 and return to (2).

(A')

The output vector of this algorithm applied to S C B" shall be denoted by x ' (S) .
The application of (A') to S * := (1 - x I x E S} is called dual greedy algorithm.

(4.4) Proposition. x'(S) is the minimum of S with regard to <'.

Proof.
Hence x'(S) = x(&(S)). (4.4) follows by (4.1).

The application of (A') to S is equivalent to the application of (A) to & (S) .

For an arbitrary set S the four vectors representing the maxima respectively the
minima of S with regard to < respectively to <' may be pairwise distinct. For
example, take S = {x, y, u, v } with

x = (1 0 0 lo),

y = (0 11 00),

u = (0 1 0 0 l),

u = (00 1 lo),

maximum with regard to < ,

maximum with regard to <',

minimum with regard to =S',

minimum with regard to < .

(4.5) Proposition. Let R E { C , _> , L ~ , L', L", 6 , < '}. Then

X R Y (l - y) R (l - X) .

Let us show this for example in the case of R = L'. Equivalent to the left side
there is

I Tk(x)(I Tk(y)(, v1 k n

and this is equivalent to

1 T k (1 - x) I 3 I T k (1 - y) 1, v 1 k s n.

The rest follows analogously to the first equivalence. An immediate consequence of
(4.5) is the next proposition.

Partial orders related to Boolean optimization 549

(4.6) Proposition.
the minimum of S with regard to < .

1 - x'(S*) is the maximum of S with regard to <'. 1 - x (S *) is

The lexicographical maximum or minimum of S as well as the dual lexicographi-
cal maximum or minimum of S can be computed by the application of (A) or (A') to
S or S*.

(4.7) Theorem. Let B B". The following statements are equivalent :
(4.7.1)
(4.7.2)

there exists the maximum x E B with regard to L~

there exists the common maximum x E B with regard to L~ and L'.

An implication of (4.7.1) or (4.7.2) is

(4.7.3) x (S) = 1 - x'(S*) .

Proof.
then follows by definition I(x 11 6 1) y 11 < 1) x (1 and therefore y L~ x .

(4.7.1) implies (4.7.2) by (2.4) and (4.3). Reversely, if y L " X and y L ' X ,

(4.7.2) implies (4.7.3) by (2.6), (4.3) and (4.6).

If (4.7.1) or (4.7.2) hold, the dual greedy algorithm yields the complement of the
lexicographical maximum of S. This may be impdrtant in view of problem (Pl). The
crucial point - in the application of the greedy algorithm is the test whether x E or
not. If x E (S *) is easier to check, then one will prefer the dual greedy algorithm.

5. Remarks

The combinatorial structure of problems for which the greedy algorithm is valid
is closely related to matroids. The corresponding algorithm for the intersection of
two matroids, namely the weighted intersection algorithm of Lawler [9], has not yet
been considered in this way, but similar studies have been published by Burkard,
Hahn, and Zimmermann [3] as well as Burkard [2] about the assignment problem
which is a special example of the intersection of two matroids. Already in this
special case it turned out that similar results as in (3.15) cannot be attained, yet an
algorithm is stated in [3] which solves the assignment problem with generalized
objectives.

References

[l] V.J. Bowman, and J.H. Starr, Set covering by ordinal cuts 1/11, Management Sciences Research
Reports No 321/322, 1973 Carnegie-Mellon University Pittsburgh, Pennsylvania.

[Z] R. Burkard, Kombinatorische Optimierung in Halbgruppen in: R. Bulirsch, W. Oettli, J. Stoer,
eds., Optimization and Optimal Control, Lecture notes in mathematics, 477 (Springer, Berlin, 1975)
pp. 1-17.

550 U. Zimmermann

[3] R. Burkard, W. Hahn and U. Zimmermann, An algebraic approach to assignment problems,

[4] F.D.J. Dunstan and D.J.A. Welsh, A greedy algorithm for solving a certain class of linear

[5] J. Edmonds, Matroids and the greedy algorithm, Math. Programming 1 (1971) 127-136.
[6] D. Gale, Optimal assignments in an ordered set: an application of matroid theory, J. Comb. Theory

[7] P.L. Hammer, E.L. Johnson and U.N. Peled, Regular 0-1-programs, Research Report CORR

[8] J. B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman problem,

[9] E.L. Lawler, Matroid intersection algorithms, Math. Programming 9 (1975) 31-56.

Report 1974-1, Mathematisches Institut der Universitat Koln 1974.

programmes, Math. Programming 5 (1973) 338-353.

4 (1968) 176180.

73-18, University of Waterloo.

Proc. Am. Math. Soc. 7 (1956) 48-50.

[lo] M.J. Magazine, G.L. Nemhauser and L.E. Trotter, When the greedy solution solves a class of
knapsack problems, MRC Technical Summary Report No. 1421 (1974), Mathematics Research
Center University of Wisconsin, Madison, Wisconsin, U.S.A.

[ll] L.A. Wolsey, Faces for a linear inequality in 0-1-Variables, Math. Programming 8 (1975) 165-178.

Annals of Discrete Mathematics 1 (1977) 551-562
@ North-Holland Publishing Company

INTEGER LINEAR PROGRAMMING WITH
MULTIPLE OBJECTIVES*

Stanley ZIONTS
School of Management, State University of New York ar Buffalo, Buffalo, N Y , U.S.A.

Although it may seem counterintuitive, a method for solving multiple criteria integer linear
programming problems is not an obvious extension of methods that solve multiple criteria linear
programming problems. The main difficulty is illustrated by means of an example. Then a way of
extending the Zionts-Wallenius algorithm [6] for solving integer problems is given, and two types
of algorithms for extending it are briefly presented. An example is presented for one of the two
types. Computational considerations are also discussed.

1. Introduction

In [6] a method was presented for solving multiple criteria linear programming
problems. Because integer programming is a generalization of linear programming
in that a subset of variables may be required to take on integer values, it is
reasonable to ask if multicriteria integer problems can be solved by an obvious
extension to the method: solving the multicriteria linear programming problem
using that method and then using the associated multipliers to solve the integer
problem. In general, unfortunately, such a procedure is not valid. Assuming that
the implicit utility function of the decision maker is a linear additive function of
objectives, the general idea can be modified into a workable algorithm for solving
mixed or all integer programming problems involving multiple objectives.

Numerous approaches to various problems involving multiple objective functions
have been proposed. B. Roy [3] discusses a number of them. He also develops a
typology of methods [3, p. 2401:

“1. aggregation of multiple objective functions in a single function defining a

2. progressive definition of preferences together with exploration of the

3. definition of a partial order stronger than the product of the n complete

4. maximum reduction of uncertainty and incomparability.”

complete preference order;

feasible set;

orders associated with the n objective functions;

To put things into perspective, the approach of [6] is a combination of 1 and 2 in
that an aggregation of the functions is accomplished by an interactive process in

* An earlier version of this paper has also been issued as Working Paper 75-32 of the European
Institute for Advanced Studies in Management in Brussels.

551

552 S. Zionts

which preferences are expressed. The use of multiple criteria in an integer
framework has been mentioned in [6] and more recently in [1] and [4].

The plan of this paper is to first indicate why noninteger methods cannot be
extended in an obvious way to solve multiple criteria integer problems. Then two
extensions of the method of [6] for solving integer problems are developed, an
example is solved, and some considerations for implementation are given. In an
appendix the method of [6] is briefly overviewed.

2. Some considerations for solving multiple criteria integer problems

The problem to be considered is a mixed integer linear programming problem.
Let the decision variables be a vector x of appropriate order where some or all of
the variables are required to take on integer values. Denote the set of integer
variables as J. The constraint set is then

Ax = b

x 3 0

x,, j E J integer,

where A and b are, respectively, a matrix and vector of appropriate order. In
addition we have a matrix of objective functions C where row i of C gives the ith
objective C,. Each objective of u is to be maximized and we may thus write

Iu - c x 6 0. (2)

The formulation (1) (2) is the most general formulation of the multiple criteria
integer programming problem if one grants that any nonlinearities are already
represented in the constraints (1) using piecewise linearizations and integer
variables as necessary. If we accept that the implicit utility function is a linear
function (as was done originally in [6]) of the objectives u, we may therefore say
that our objective is to maximize Au where A is an unknown vector of appropriate
order. Were A known, the problem of maximizing Au subject to (1) and (2) would
be an ordinary integer programming problem. Such a problem could be solved
using any method for solving integer linear programming problems. The problem is
that h is not known.

In an earlier paper [6] Wallenius and I developed a method for solving linear
programming problems having multiple objectives. That method is briefly summar-
ized in the appendix. The method has been extensively tested and seems to work in
practice. A natural extension of that method would appear to be an extension for
solving problems involving integer variables:

1. Solve the continuous multiple criteria problem according to the method of [6];
2. Using the multipliers obtained in step 1, solve the associated integer linear

programming problem.

Integer linear programming with multiple objectives 553

Unfortunately as the following simple example shows, that extension does not

Given the constraints:
necessarily work.

XI + 4x2 c 3;

xl, xz 5 0 and integer

with objectives u1 = xl, and uz = x2 then provided that the true multipliers A, and A 2
(> 0) satisfy the following relationships

h1 > fh2

hl < 3Az

then the continuous solution x1 = 2.34, xz = 2.34 is optimal. However, for this
problem there are three optimal integer solutions corresponding to the same
continuous optimum depending on the true weights:

If 3Az > A l > 2Az, then x1 = 3, xz = 0 is optimal;
If 2Az > h l > O S A , , then xI = x2 = 2 is optimal;
If 0.5Az > A l > !A2, then x1 = 0, xz = 3 is optimal.

The example could readily be made more complicated, but it serves to show that
further precision may be required in the specification of the multipliers than only to
identify the multiplier valid at a noninteger optimal solution. (Further precision is
not always required; change the constraint value of the problem from 3.125 to 2.99.)

3. Adapting the Zionts-Wallenius method for solving integer programming
problems

To further specify the multipliers A to find the optimal integer solution, it is
necessary to ask additional questions of the decision maker. There are numerous
ways in which this may be done, and we shall explore two cf them. Both of these
proposals represent untested procedures.

3.1. A branch and bound approach

We first consider branch and bound algorithms. The multiple criteria method can
be altered to work in a branch and bound integer framework. To do this we first
present a flow chart of a simple branch-and-bound algorithm, [5, p. 4161 in Fig. 1.
As usual, [y] is the largest integer not exceeding y. The idea is to solve a sequence
of linear programming problems thereby implicitly enumerating all of the possible
integer solutions. The best one found is optimal. The procedure of Fig. 1 cannot be

554

Tc Halt
optimum

S. Zionts

Choose an integer
variable Xk whose
solution value Vk
is not an integer.

Select solution with the maximum
objective function value from l is t ,
I f l i s t is empty halt: there is no
feasible integer solution to the problem.

FIG. 1. Flow Chart of a Simple Branch and Bound Algo r i t hm
Taken f r o m [S, page 4161.

Integer linear programming with multiple objectives 555

used directly, but must be modified. The modifications wh'ich are to be made are
based on the following theorem.

Theorem.
list) provided the following two conditions hold :

A solution can be excluded from further consideration (not added to the

(1) the decision maker prefers an integer solution to it,

Solve multicriteria linear programming
problem obtained by relaxing integer
constraints. If solution satisfies
integer constraints, stop.

Yes Discard

Solution

- the conditions of the

I

Choose an integer variable xk whose
solution value yk is not integer.

Solve two problems, each having adjoined
one of the following constraints:

Xk 5 [Ykl

Xk 2 [Ykl -+ 1
Exclude any infeasible solutions
from further consideration.

FIG. 2.
Flow Chart of a Branch and Bound Multicriteria

Integer Linear Programming Method

556 S. zionrs

P
f' Test each of the newly generated solutions against

the best known integer solution. I f the best known
integer solution i s preferred to or is indifferent to
a solution and none of the efficient tradeoffs from
the solution are attractive to the decision maker,
discard the solution; otherwise add it to the list.
I f an integer solution is preferred to the best known
integer solution, such a solution becomes the best
known integer solution. (The previous best known
integer solution may be discarded if the conditions
of the theorem are satisfied.) Change objective
functions whenever the old objective function
weights no longer satisfy constraints constructed
from decision maker's responses.

g' Choose next branching solution. Choose one of the
newly found solutions i f possible." I f there are two,
choose the most (least) preferred. Otherwise choose
the most (least) preferred solution from the list.
If the l is t is empty, an optimal solution has been
found; stop. I f the solution i s not optimal
with respect to the current composite objective,
find the optimal solution for the current
composite objective.

FIG. 2 (Continued)

* A depth first strategy has been adopted.
I t is an option that may or may not be
desirable.

(2) all efficient tradeoff questions associated with the solution are viewed negatively
or with indifference.

Proof. As shown by the decision-maker's preference the known integer solution
has a greater objective function value than the solution in question. Further, since
no continuous neighbor is preferred to the solution, any further restricted solution
will have a lower objective function than the solution in question and therefore the
integer solution.

Integer linear programming with multiple objectives 557

x1

~2

u1

~2

We were tempted to weaken the second condition of the theorem to a
comparison between the known integer solution and the efficient adjacent extreme
point solutions of the solution in question by using a slight alteration to our method
proposed by Fandel and Wilhelm [2]. Unfortunately, such a change is not valid
here.

The question of preference is first checked by comparing the preference
relationship with previously expressed preferences (derived from responses) to see
whether or not the preferences can be deduced. If that is the case the preference is
known; if not a question is posed to the decision maker, and the responses further
restrict the multiplier space. Whenever a new set of multipliers is found they are to
be substituted for the old set. An algorithm based on the above presentation is
given in Fig. 2, and an example will be solved using it.

The letter references correspond in the two figures. Substantial changes have
occurred in blocks f and g. Where “most (least) preferred” are indicated are
option-points. We have chosen the one not in parentheses, arbitrarily, but not
because we have evidence it is superior. Many other options are possible, such as
the use of penalty methods in choosing the branching variable, etc., but we have
generally ignored such considerations in this paper.

We now present an example, the example presented in Section 2 . We use the
algorithm of Fig. 2 assuming that the true weights are hl = 0.7, h2 = 0.3, but that the
weights chosen at the continuous optimum are A 1 =0.3, A * = 0.7. The tree of
solutions is given in Fig. 3, and the number in each block indicates the solution
number - the order in which each solution is found. (The shaded region is what
also would have been generated if every branch had to be terminated either in an
integer solution or an infeasible solution without terminating any branches
otherwise.) (For this problem no solution had to be re-solved.)

Table 1 is the optimal continuous solution, where xs and xq are the slack
variables. (The identity matrix has been omitted.)

X3 X4

2.34 1.125 - 0.375
2.34 -0.375 1.125

2.34 1.125 - 0.375

2.34 -0.375 1.125

The questions to Table 1 are both efficient (this is not demonstrated) and the two
questions are found in the last two rows of the table: Are you willing (for variable
x,) to decrease ul by 1.125 units and increase uz by 0.375 units? A simulated
response is obtained by using the true weights. Here we compute - 1.125(.7)
+ 0.375(.3). Since the sum is negative, the simulated response is no. Are you willing

558
S. Z

ion
ts

m

i' NCU .A
N

x

x

cu
V

I
N

x

integer linear programming with multiple objectives 559

(for variable x,) to increase u1 by 0.375 units by having u2 decrease by 1.125 units?
(Simulated response: no). The negative responses confirm the optimality of the
solution to Table 1. The constraints are then

A, > !A2

A1 < 3&.

By using A , + A 2 = 1, we have on eliminating A t :

0.25 < A l < 0.75.

As indicated above we use A 1 = 0.3 (noting that the true value is A, = 0.7). Solving
the two linear programming problems by branching on x1 from the noninteger
optimum we have solutions 2 and 3. Which is preferred is not obvious and we
illustrate the test. Solution 3 has a utility of 3A1 + 0.375A2. Solution 2 has a utility of
2A1 + 2.458A2. The difference between the utility of solution 3 and that of solution 2
is

A1 - 2.0833A2 - 0 .

On using A2 = 1 - A , we have

3.0833A1 - 2.0833 0.

Because 0.25 < A 1 < 0.75, the term can be either positive or negative (in general two
small linear programming probIems must be partiaIIy solved to know this); hence a
question is asked. Using a simulated test of preference, as above, the decision
maker prefers solution 3, and we have a new constraint.

3.0833A1 - 2.0833 > 0 or A 1 > 0.675.

Thus we now have 0.675 < A 1 < 0.75 so we choose A 1 = 0.72. We then branch on
solution 3 to find solutions 4 and 5 (not feasible) and then branch on solution 4 to
find solutions 6 and 7 (not feasible). To this point there have been no known integer
solutions; thus the tests against the best known integer solution have been
suppressed. Since solution 6 is integer, it becomes the best known integer solution.
Next we choose the only remaining solution on the list, solution 2. As the
comparison with solution 6 is not implied, the decision maker is asked which
solution he prefers. He prefers solution 2; then the constraint

A, - 2.4583A2 < 0 or A, < 0.711,

is added and we have 0.675 < A 1 < 0.711 and we choose A 1 = 0.69. We next branch
on solution 2; this yields solutions 8 and 9. Both solutions may be discarded because
the conditions of the theorem are satisfied. (The constraints on the A's are
sufficiently tight that all preferences are implied and no questions need to be
asked.) Since there are no other solutions on the list, solution 6 has been found to
be optimal. The method of Figure 1 using the correct weights enumerates the same
solutions except that solutions 8 and 9 are not enumerated.

560 S. Zionfs

3.2. A cutting plane approach

To illustrate another algorithm we also present a dual cutting plane approach. It
is a logical extension of any dual cutting plane method with respect to multiple
criteria decision making. Let k be a nonnegative integer, a choice variable that
specifies the frequency of generating additional questions in the absence of finding
an integer solution. The parameter k may be sufficiently large as to be effectively
infinite. Then the procedure is the following:

(1) Find the continuous multiple criteria optimum using the method of [6] and
set i to 0. Use the associated weights to generate a composite objective function.

(2) Adjoin a cut, increment i by one unit and optimize using the present
composite objective function. Denote the solution found as the incumbent.

(3) If the incumbent solution is integer, go to 4. Otherwise, if i is not equal to k ,
go to 2. If i is equal to k go to 5.

(4) Set i to zero, generate efficient questions (see the appendix for the definition)
for the current solution that are consistent with previous responses. If the decision
maker finds none of the tradeoffs attractive (or if there are no efficient tradeoffs)
stop; the optimal solution has been found. Otherwise, use the responses to find a
new composite objective function and perform the iterations necessary to achieve a
linear programming optimum. Designate the associated solution as the incumbent
solution and go to 3.

(5) Set i to zero, generate efficient questions for the current solution that are
consistent with previous responses. Use the decision maker’s responses to generate
a new composite objective function and perform the iterations (possibly none)
necessary to achieve a linear programming optimum. Designate the associated
solution as the incumbent solution and go to 3.

That this method is valid follows from the fact that every time an integer solution
is found (and so long as k is not infinite, more often), questions are generated and
the multipliers may be altered by the procedure. Every time step 4 is utilized the
optimality of an efficient integer solution (an efficient extreme point of the convex
hull of all feasible integer solutions) is confirmed or denied. If it is confirmed, the
optimality has been demonstrated; if it is denied, one extreme point of the convex
hull of all feasible integer solutions has been eliminated from consideration. So long
as the solution space is closed and bounded, the number of such extreme points is
finite. Therefore in such a case the procedure is finite.

The effectiveness of choosing k to be finite is not clear, nor is the effectiveness of
the method known. How well this scheme works depends on the power of the cut
method employed. Since dual cut methods are not currently used much because
they do not work well in practice, it is unlikely that a multiple criteria scheme based
on a dual cut will work well.

Although approaches may be developed for other integer algorithms, we shall
not develop any additional approaches here.

Integer linear programming with multiple objectives 561

4. Discussion

The implementation of multiple criteria integer programming in liaison with dual
cut methods and with branch and bound methods seems straightforward, although
it appears warranted only in conjunction with branch and bound methods.
Implementation should not be difficult, and it is felt that the difference between
solving integer programming problems with multiple criteria and integer program-
ming problems with a single criterion would be roughly the same as the perfor-
mance of a multiobjective linear program as compared to a single objective linear
program. More questions will be asked in the integer case, and probably more
partial solutions will be generated as well, but it seems that the increase will not be
considerable. A number of tests which correspond to solving relatively very small
linear programming problems must be incorporated as well. The above statements
are rather speculative and require further testing. For testing purposes, a computer
program of the Zionts-Wallenius method now being prepared by the SIDMAR
Corporation working together with the University of Ghent may be extended to the
integer case and used. It is designed to be an easily usable and alterable program.

In the noninteger case we were able to relax the assumption of the additive utility
function to a general concave utility function. Such a generalization in the integer
case seems rather unlikely because a point other than an extreme point solution of
the convex polyhedron of feasible integer solutions can be optimal in the general
concave case. A simple example of such a model would be the use of a utility
function involving a product of objectives. (See Bowman [l], for an example.) In
the linear case a neighborhood of feasible solutions would be identified and a point
in the neighborhood would be optimal. Unfortunately, the use of such a scheme in
the integer case would terminate with an integer solution and a neighborhood
which need not contain any other feasible integer solutions.

Appendix. Overview of the Zionts-Wallenius method [6] for solving multiple
criteria linear programming problems

Let the problem of concern be

Ax = b

x a 0

Iu - e x c 0. (A.1)

The objective is to maximize hu where A > 0 but unknown. The procedure is as
follows:

(1) Choose an arbitrary A > O .
(2) Solve the associated linear programming problem (A.1). The solution is an

efficient solution. Identify the adjacent efficient extreme points in the space of the

562 s. Zionts

objective functions for which a negative answer by the decision maker is not
implied. If there are none, stop; the optimal solution has been found. The marginal
rates of change in the objectives from the point to an adjacent point is a tradeoff
offer, and the corresponding question is called an efficient question.

(3) Ask the decision maker if he likes or dislikes the tradeoff offered for each
efficient question.

(4) Find a set of weights A consistent with all current and previous responses of
the decision maker.
Go to step 2.

References

[l] V.J. Bowman, On the Relationship of the Tchebycheff Norm and the Efficient Frontier of
Multiple-Criteria Objectives, Paper presented at the conference on Multiple Criteria Decision
Making, May 21-23, 1975, at Jouy-en-Josas, France.

[2] G. Fandel and J. Wilhelm, Towards the Theory of Multiple Criteria, Paper presented at the
Conference on Multiple Criteria Decision Making, May 21-23, 1975, at Jouy-en-Josas, France.

[3] B. Roy, Problems and Methods with Multiple Objective Functions, Mark Programming, 1,2 (1971)
239-266.

[4] J.F. Shapiro, Multiple Criteria Public Investment Decision Making by Mixed Integer Programming,
Paper presented at the Conference on Multiple Criteria Decision Making, May 21-23, 1975, at Jouy-
en-Josas, France.

[5] S. Zionts, Linear and Integer Programming (Prentice Hall, Englewood Cliffs, NJ, 1974).
[6] S. Zionts and J. Wallenius, An Interactive Programming Method for Solving the Multiple Criteria

Problem, Working Paper 74-10, European Institute for Advanced Studies in Management, Brussels,
Revised March 1975. Management Science, 22, 6 (1976) 652-663.

	Studies in Integer Programming
	Copyright Page
	Preface
	Contents
	Chapter 1. Reduction and Decomposition of Integer Programs Over Cones
	Chapter 2. Some Valid Inequalities for the Set Partitioning Problem
	Chapter 3. Backtracking Algorithms for Network Reliability Analysis
	Chapter 4. Coloring the Edges of a Hypergraph and Linear Programming Techniques
	Chapter 5. Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem
	Chapter 6. Partial Orderings in Implicit Enumeration
	Chapter 7. A Subadditive Approach to Solve Linear Integer Programs
	Chapter 8. Aggregation of Inequalities in Integer Programming
	Chapter 9. On the Uncapacitated Location Problem
	Chapter 10. Some Coloring Techniques
	Chapter 11. A Min-Max Relation for Submodular Functions on Graphs
	Chapter 12. How Can Specialized Discrete and Convex Optimization Methods be Married
	Chapter 13. On Integer and Mixed Integer Fractional Programming Problems
	Chapter 14. Graphs with Cycles Containing Given Paths
	Chapter 15. Algorithms for Exploiting the Structure of the Simple Plant Location Problem
	Chapter 16. Reduction Methods for State Enumeration Integer Programming
	Chapter 17. Subdegrees and Chromatic Numbers of Hypergraphs
	Chapter 18. Cutting-Plane Theory: Disjunctive Methods
	Chapter 19. A ’Pseudopolynomial’ Algorithm for Sequencing Jobs to Minimize Total Tardiness
	Chapter 20. Complexity of Machine Scheduling Problems
	Chapter 21. Certain Duality Principles in Integer Programming
	Chapter 22. Parametric Integer Programming: the Righthand-Side Case
	Chapter 23. An Example of Dual Polytopes in the Unit Hypercube
	Chapter 24. Implicit Enumeration with Generalized Upper Bounds
	Chapter 25. On Some Nonlinear Knapsack Problems
	Chapter 26. The Minimal Integral Separator of a Threshold Graph
	Chapter 27. On the Complexity of Set Packing Polyhedra
	Chapter 28. Properties of Facets of Binary Polytopes
	Chapter 29. Vertex Generation Methods for Problems with Logical Constraints
	Chapter 30. Sensitivity Analysis in Integer Programming
	Chapter 31. A Lifo Implicit Enumeration Search Algorithm for the Symmetric Traveling Salesman Problem Using Held and Karp’s 1-Tree Relaxation
	Chapter 32. Computational Performance of Three Subtour Elimination Algorithms for Solving Asymmetric Traveling Salesman Problems
	Chapter 33. On Antiblocking sets and Polyhedra
	Chapter 34. On the Generality of Multi-Terminal Flow Theory
	Chapter 35. Valid Inequalities, Covering Problems and Discrete Dynamic Programs
	Chapter 36. Some Partial Orders Related to Boolean Optimization and the Greedy Algorithm
	Chapter 37. Integer Linear Programming with Multiple Objectives

