
Ground-Up Java
by Philip Heller ISBN:0782141900

Sybex © 2003 (488 pages)

In addition to learning the core Java language, you will also
acquire a broad understanding of vital programming
concepts, including variables, control, memory, indirection,
compilation, and calling.

Table of Contents

Ground-Up Java
Introduction
Chapter 1 - An Introduction to Computers That Will Actually Help You in Life
Chapter 2 - Data
Chapter 3 - Operations
Chapter 4 - Methods
Chapter 5 - Conditionals and Loops
Chapter 6 - Arrays
Chapter 7 - Introduction to Objects
Chapter 8 - Inheritance
Chapter 9 - Packages and Access
Chapter 10 - Interfaces
Chapter 11 - Exceptions
Chapter 12 - The Core Java Packages and Classes
Chapter 13 - File Input and Output
Chapter 14 - Painting
Chapter 15 - Components
Chapter 16 - Events
Chapter 17 - Final Project
Appendix A - Downloading and Installing Java
Appendix B - Solutions to the Exercises
Glossary
Index
List of Figures
List of Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
This is the first effective Java book for true beginners. Sure, books before now focused on basic concepts
and key techniques, and some even provided working examples on CD. Still, they lacked the power to
transform someone with no programming experience into someone who sees, who really “gets it.”

Working with Ground-Up Java, you will definitely get it. This is due to the clarity of Phil Heller’s
explanations, and the smoothly flowing organization of his instruction. He’s one of the best Java trainers
around.

But what’s really revolutionary are his more than 30 animated illustrations. Each of these small programs,
visual and interactive in nature, vividly demonstrates how its source code works. You can modify it in
different ways, distinctly altering the behavior of the program. As you experiment with these tools—and
you can play with them for hours—you’ll gain both the skills and the fundamental understanding needed to
complete each chapter’s exercises, which steadily increase in sophistication. No other beginning Java book
can take you so far, so quickly, and none will be half as much fun.

About the Author

Philip Heller is a consultant, author, educator, and novelist. He is the lead author for Sybex’s best selling
Java Certification Study Guide and Java Exam Notes as well as a leading educator for Java University and a
well-known speaker on Java topics. Phil helped create the Java programmer and developer exams for Sun
and is their leading certification trainer. Phil is currently writing the second volume in the Grandfather
Dragon series.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ground-Up Java
Philip Heller

Associate Publisher: Joel Fugazzotto
Acquisitions Editor: Denise Santoro Lincoln, Tom Cirtin
Developmental Editor: Tom Cirtin
Production Editor: Dennis Fitzgerald
Technical Editor: Marcus Cuda
Copyeditor: Sean Medlock
Compositor: Maureen Forys, Happenstance Type-O-Rama
Graphic Illustrator: Jeffrey Wilson, Happenstance Type-O-Rama
CD Coordinator: Dan Mummert
CD Technician: Kevin Ly
Proofreaders: Emily Husan, Laurie O’Connell, Nancy Riddiough
Indexer: Ted Laux
Cover Designer/Illustrator: Richard Miller, Calyx Deisgns

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2003110719

ISBN: 0-7821-4190-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved. FullShot is a
trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc. For more information
on Macromedia and Macromedia Director, visit http://www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s).
The author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

To Laura, on whose violin
Are played the songs of spheres and heroes,
Above this world’s mortal din,
Above the plane of ones and zeroes.

Acknowledgements

First and foremost gratitude to Denise Santoro Lincoln, Tom Cirtin, and Steve Cavin. Thanks to Michelle, Ricardo, and everyone
at PB&G Productions for keeping me out dancing when I should have been writing. Thanks always to Simon Roberts, Suzanne
Blackstock, and Kathy Collina. And thanks to all the aces at Sybex: Dennis Fitzgerald, Sean Medlock, Kevin Ly, Dan Mummert,
and Maureen Forys and Jeff Wilson at Happenstance Type-O-Rama.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction

Overview
This book is unique. There’s nothing like it. It is the first of its kind. It’s important that you understand why, so please read on.

For a long time I thought it was impossible to write an introductory Java programming book that could be understood by people
with no programming experience. It would be like a fish writing about water. No one has better knowledge of the subject matter,
but it takes more than that to introduce a topic to a newcomer. Fish are intimately accustomed to water, and they can’t relate to us
land mammals, who need to have everything explained and broken down. A fish might say, “Wiggle your tail fin to swim forward,
and don’t forget to use your gills.” That would be glaringly obvious to another fish, but useless to you and me. It’s hard for a fish to
imagine what life would be like without tail fins or gills. A book about water, even if the wisest fish in the ocean wrote it, would be
full of accurate, but useless, information.

The same is true about Java. Programming is a craft, like playing a musical instrument or glassblowing. And like any other craft, it
has its conventions, jargon, and techniques. For practitioners of the craft, those conventions, jargon, and techniques become
deeply ingrained habits, household language, and the events of everyday life. It’s very difficult to write about one’s own “habitat.”

In the 1970’s, a language called C became popular. In the 1980’s, C was modified to support object-oriented programming. The
modified language was called C++. This is an example of craft jargon. In C, the symbol “++” means, very broadly speaking, “a bit
more.” So C++ means “C and a bit more,” and the meaning is clear to any C programmer.

The 1990’s saw another evolution. C++ is a highly effective language, but it can also be difficult. Moreover, it had no innate
support for recently invented technologies, such as high-resolution multi-color displays, databases, or the World Wide Web. The
new evolution was called Java. The name isn’t a play on words and it isn’t an abbreviation for anything. Java abandoned the parts
of C++ that had proved to be more trouble than they were worth, and it added support for modern technologies. Sometimes
people called it “C++--++”. There’s another symbol, “—”, that roughly means “a bit less.” So “C++--++” means “C++ and a bit less
and then a bit more.”

Java caught on like a midsummer bonfire. A huge portion of the C and C++ programming population switched at once to Java and
never looked back. Why were so many programmers able to make the switch so easily? I was one of them. I had been earning a
living programming in C++. I took a year off to write a novel about some dragons. I ran out of money before I finished the novel.
Luckily, it was a month after Java was introduced. Within weeks I considered myself a competent Java programmer, and within
months I was teaching it and writing about it. The credit goes not to me but to the designers of Java. If you know C and C++, Java
is easy. It’s like learning Portuguese if you already speak Spanish and Italian. Like everyone else who learned Java at that time, I
had years of experience with the concepts, techniques, and jargon that was needed.

But what about people who don’t have any programming experience?

When I was learning Java, there were two books on the subject. Today there are thousands. (I’m responsible for a few of them.)
Not one of them, except the one that you’re holding right now, does a good job of presenting programming concepts from the
ground up. The others are accurate for the most part, but they aren’t helpful.

So I had to ask myself: can I introduce Java from the ground up, concept by concept? Eventually I realized that I could only do it if
I could use something more than words and pictures. Which brings me to why this book is unique. It is unique because …

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Illustrations are Alive!
I realized that what I really wanted was a magic blackboard.

Think of a computer as a huge set of boxes, each box containing a number. The numbers represent text or colors or data, or
whatever else can be modeled by a program. The numbers change over time in complicated ways. Describing the life cycle of a
program is almost impossible if you can only use words and pictures. I wanted to create pictures that would change over time. And
I wanted something beyond animated cartoons that would be the same each time you watched them. I wanted living illustrations
that would respond to your curiosity. I wanted to give you the power to ask “what if …” questions of the illustrations.

I wanted something that can only be done on a computer.

The CD-ROM that comes with this book has more than 30 animated illustrations. These are programs that you run on your
computer. The book gives you complete instructions on how to use them. The illustration on the next page is an example.

This is a screenshot of NestedLoopLab, which appears in Chapter 5, “Conditionals and Loops.” The text in the upper-central part
of the screen (“int color = 5” and so on) is Java code. The swirly image at the bottom is the result of running the code. The
various controls let you vary the code, experimenting with different values until you get a feel for what the program is doing.

The animated illustrations are like training wheels on a bicycle. When you first learn to ride, there are so many things that can go
wrong. Without training wheels you spend a lot of just time crashing and getting back up. Training wheels let you develop the right
sense of balance. The animated illustrations won’t let you create code that crashes. They provide a safe environment in which you
can develop the right sense of balance.

Later, of course, it’s time to take off the training wheels. At the end of each chapter you’ll find a set of exercises that will have you
writing your own code. Suggested solutions to the exercises appear at the back of the book.

To the best of my knowledge, Ground-Up Java is the first book ever to use animated illustrations. So we have no data on how
effective they are as a teaching tool. My guess is that they are worth their weight in gold. Everyone who has seen them has been
very enthusiastic. But you are the most qualified judge. Try them! Please let me know what you think. You can e-mail your
comments to groundupjava@sgsware.com. I’m especially interested in knowing which animated illustrations worked the best
for you, and which ones didn’t. I’d also like to hear any suggestions you might have for more animations to appear in future
revisions of this book. You are invited to be part of the development of animated illustrations as a new technology for learning.

And now…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s Time To Download and Install Java
Before you can start writing or running. Java programs, you need to download some software. (The animated illustrations are Java
programs, so they won’t run if you don’t do the download.)

Downloading is free. After Java is loaded on your hard drive, you have to follow a few steps to install it. These aren’t difficult, but
there’s room for error, so please be careful. Complete instructions are explained in Appendix A, “Downloading and Installing
Java.”

And now you’re ready. Have fun!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: An Introduction to Computers That Will Actually Help
You in Life

Overview
Java is a programming language that tells computers what to do. This chapter will look at what computes really are, what they can
do, and how we use programming languages to control them.

We will begin by exploding the common myth that computers deal only with 0s and 1s. Once we establish what computers really
process, we will look at the kind of processing they perform.

This is emphatically not an intellectual exercise. Spending a bit of effort here will make your life much easier in the chapters that
follow. Many concepts that appear later in this book, such as data typing, referencing, and virtual machines, will make very little
sense unless you understand the underlying structure of computers. Without this understanding, learning to program can be
confusing and overwhelming. With the right fundamentals, though, it can be enjoyable and stimulating.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory: Not Exactly 0s and 1s
No doubt you've heard that computers only process 0s and 1s. This can't possibly be true. Computers are used to count votes in
elections, so they must be capable of counting past 1. Computers are also used to model the behavior of subatomic particles
whose masses are tiny fractions, so they must be capable of processing fractions as well as whole numbers. They're used for
writing documents, so they must be capable of processing text as well as numbers.

On the most fundamental level, computers do not process 0s and 1s, or whole numbers, or fractions, or text. Computers are
electronic circuits, so all they really process is electricity. Computer components are designed so that their internal voltages are
either approximately zero or approximately 5 or 6 volts. When part of a computer circuit carries a voltage of 5 or 6 volts, we say
that it has a value of 1. When part of a circuit carries zero voltage, we say that it has a value of 0. (Fortunately, this is all the
electronics knowledge you need to become a master programmer.)

It's all a matter of interpretation. Voltages are interpreted as 0s and 1s. As you'll see later in this chapter and in Chapter 2, "Data,"
the 0s and 1s are organized into clusters that are interpreted as numbers. More sophisticated parts of the computer interpret
those numbers as codes that represent fractions, or text, or colors, or images, or any of the other myriad classes of objects that
can be represented in a computer.

A modern computer contains billions of microscopic components, each of which has a value of 0 or 1. Any circuit where we only
care about the approximate values of the voltages is known as a digital circuit. Computers that are made of digital circuitry are
known as digital computers.

Note The opposite of digital is analog. In an analog circuit, we care about the exact voltages of the components. Analog
circuits are ideal for certain applications, such as radios and microwave ovens, but they don't work so well for
computers. Analog computers were used in the 1940s, but they were an evolutionary dead end. All modern computers
are digital.

One simple but useful type of digital circuit is known as memory. A memory circuit just stores a digital value (0 or 1, because we
programmers don't have to think about voltages). A single unit of memory is called a bit, which is an abbreviation for "binary digit."
You can think of a bit as a microscopic box, the contents of which are available to the rest of the computer. From time to time the
computer might change the contents. Bits are usually drawn as shown in Figure 1.1.

Figure 1.1: A bit

Bits are usually organized in groups of eight, known as bytes. Figure 1.2 shows a byte that contains an arbitrary combination of 0s
and 1s.

Figure 1.2: A byte

Note that the individual bits are numbered from right to left, and that the numbering starts from 0. Computer designers always start
numbering things from 0 rather than 1. This is true whether they are numbering bits in a byte, bytes in memory (as we are about to
see), or components in an array (as we will see in Chapter 6).

A byte can contain 256 combinations of bit values: 2 possibilities for bit #0 times 2 possibilities for bit #1 times 2 possibilities for bit
#3, and so on up through bit #7.

If you looked at a computer through a microscope and saw the byte shown in Figure 1.2, you might wonder what value it
contained. You would see the 0s and 1s, but what would they mean? It's a great question that has no good answer. A byte might
represent an integral number, a fraction, part of an integer or fraction, a character in a document, a color in a picture, or an
instruction in a program. It all depends on the byte's context. As a programmer, you are the one who dictates how each byte will
be interpreted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory Organization
Typically, a modern personal computer contains several hundred million bytes of memory. The prefix mega (abbreviated M)
means million, so we could also say that a computer has several hundred megabytes or MB. Programs and programmers need a
way to distinguish one byte from another. This is done by assigning to each byte a unique number, known as the byte's address.
Addresses begin at 0. Figure 1.3 shows 4 bytes.

Figure 1.3: Several bytes

If Figure 1.3 showed 512 MB and was drawn to the same scale, it would be about 2,000 miles high.

A single byte is not very versatile, because its value is limited to 256 possibilities. It doesn't matter whether the byte represents a
number or a letter or anything else—in computer applications, 256 of anything isn't much of a range. For this reason, computers
often use groups of bytes. Two bytes, taken together as a unit, can take on 256 times 256 possible values, or 65,536. Four bytes
can take on 256 times 256 times 256 times 256 values, or 4,294,967,296. This is where it starts to be useful. Eight bytes can take
on approximately 20 quintillion different values.

Memory is usually used in chunks of 1, 2, 4, or 8 bytes. (Later we will see that arrays and objects use chunks of arbitrary size.)
The chunks can represent integral numbers, fractions, text, or any other kind of information. From this perspective, we can see
that the statement "Computers only deal with 0s and 1s" is true only in a very limited sense.

Think of it this way: A computer is a digital circuit, and we think of its components as having values that represent 0s or 1s. But if
we look one level below the digital components, we see only electricity, not numbers. And if we look one level above the digital
components, we see that the bits are organized into chunks of 1 or more bytes that represent many types of information.

In addition to various types of data, memory can also store the instructions that operate on data. In the next section, we will look at
a very simple computer and see how instructions and data interact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Very Simple Computer
This chapter will introduce a very simple computer called SimCom. SimCom is imaginary. Or, to use a more respectable term, it is
virtual. Nobody has ever built a SimCom, but it is simulated in one of the animated illustrations on the CD-ROM.

The processors that power your own computer, the Pentiums, SPARCs, and so on, are not very different qualitatively from
SimCom. Quantitatively, however, there is a huge difference: the real processors have vastly more instructions, speed, and
memory. SimCom is as simple as a computer can be while still being a useful teaching tool.

The point of this section is not to make you a master SimCom programmer. The point is to use SimCom to introduce certain
principles of programming. Later in this book, the same principles will be presented in the context of Java. These principles
include

High-level languages

Loops

Referencing

Two's complement

Virtual machines

In this section, you will see some typical processor elements that are quite low-level. Modern programming languages like Java
deliberately isolate you from having to control these elements. However, it is extremely valuable to know that they exist and what
they do on your behalf.

The architecture of SimCom is very simple. There is a bank of 32 bytes of memory; each byte can be used as an instruction or as
data. There is one extra byte, called the register, which is used like scratch paper. Another component, called the program
counter, keeps track of which instruction is about to be executed. Figure 1.4 shows the architecture of SimCom.

Figure 1.4: SimCom architecture

The arrow in the figure indicates the program counter. The next instruction to be executed will be byte #7. Note that byte
addresses start at 0.

When SimCom starts up, it sets the program counter to 0. It then executes byte 0. (We'll see what this means in a moment.)
Execution may change the register or a byte of memory, and it almost always changes the program counter. Then the whole
process repeats: The instruction indicated by the program counter is executed, and the program counter is modified. This
continues until SimCom is instructed to halt.

Bits 7, 6, and 5 of an instruction byte tell SimCom what to do. They are known as the operation code or opcode bits. Bits 4
through 0 contain additional instructions; they are called the argument bits. This division of bits is shown in Figure 1.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.5: Opcode and argument bits

The SimCom computer has 7 opcodes. They are shown in Table 1.1.

Table 1.1: Opcodes

Opcode Function Abbreviation

000 Load LOAD

001 Store STORE

010 Add ADD

011 Subtract SUB

100 Jump to different current instruction JUMP

101 Jump if register is zero JUMPZ

110 or 111 Halt HALT

The 5 argument bits contain a value that is the base-2 address of a memory byte. The LOAD opcode copies the contents of this
address into the register. For example, suppose the current instruction is 00000011. The opcode is 000 (LOAD), and the
argument is 00011 (which is the base-2 notation for 3). When the instruction is executed, the value in byte #3 is copied into the
register. Note that the value 3 is not copied into the register. The argument is never used directly; it is always an address whose
contents are used.

The STORE opcode copies the contents of the register in the memory byte whose address appears in the argument. For
example, 00100001 causes the register to be copied into byte #1.

The ADD opcode adds two values. One value is the value stored in the byte whose address appears in the argument. The other
value is the contents of the register. The result of the addition is stored in the register. For example, suppose the register contains
00001100, and byte #1 contains 00000011. The instruction 01000001 causes the contents of byte #1 to be added to the contents
of the register, with the result being stored back in the register. Note that the argument (00001) is used indirectly, as an address.
The value 00001 is not added to the register; rather, 00001 is the address of the byte that gets added to the register.

The SUB opcode is like ADD, except that the value addressed by the argument is subtracted from the register. The result is stored
in the register.

After each of these four opcodes is executed, the program counter is incremented by 1. Thus, control flows sequentially through
memory. The remaining three opcodes alter this normal flow of control. The JUMP opcode does not change the register or
memory; it just stores its argument in the program counter. For example, after executing 10000101, the next instruction to be
executed will be the one at byte 00101, which is the base-2 notation for 5.

The JUMPZ opcode inspects the register. If the register contains 00000000, the program counter is set to the instruction's
argument. Otherwise, the program counter is just incremented (that is, increased by 1) and control flows normally. This is a very
powerful opcode, because it enables the computer to be sensitive to its data and to react differently to different conditions.

Finally, the HALT opcode causes the computer to stop processing.

Let's look at a short program:
00000100
01000100
00100100
11000000

The first thing to notice about this program is that it's hard to read. Let's translate it to a friendlier format:
LOAD 4
ADD 4
STORE 4
HALT

The program doubles the value in byte #4. It does this by copying the value into the register, then adding the same value into the
register, and then storing the result back in byte #4.

This example shows that anything is better than programming by manipulating 0s and 1s. These spelled-out opcodes and base-10
numbers are a compromise between the binary language of computers and the highly structured and nuanced language of
humans. The LOAD 4 notation is known as assembly language. In assembly language, a line of code typically corresponds to a
single computer instruction, and the programmer must always be aware of the computer's architecture and state. An assembler is
a program that translates assembly language into binary notation.

Playing with SimCom

Unfortunately we couldn't package a SimCom with every copy of this book, but we have done the next best thing. The first
animated illustration on the book's CD is a simulation of a SimCom in action.

Note If you don't already have Java installed on your computer, now is the time. If you're not sure how, please refer to
Appendix A, "Downloading and Installing Java," which walks you through the entire process. Throughout this book you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A, "Downloading and Installing Java," which walks you through the entire process. Throughout this book you
will be invited to run an animated illustration program, and you will be given a command to type into your machine. It
will all make sense after you go through Appendix A.

To run the SimCom simulation, type the following at your command prompt:
java simcom.SimComFrame

The simulation allows you to load and run preexisting programs or create your own programs. Figure 1.6 shows the simulation in
action.

Figure 1.6: SimCom in action

Each byte of memory is displayed in three formats: base-2, base-10, and opcode-plus-argument. The register is only displayed in
base-2 and base-10; since the register is never executed, there is no value in displaying which instruction would be executed. You
can change any byte in memory by first clicking inside that byte. This will highlight and select the byte for editing. Then, if you click
on the base-10 region, you will get a panel that lets you select a new base-10 value. If you click on the opcode region, you will get
a panel that lets you select a new opcode. To change the argument, first click on the argument region of the selected byte. As you
move the mouse, the closest byte address will light up. When the address you want is highlighted, click on it to set it as the
argument.

Try executing a very simple program. Click File ‚ Scenarios in the File menu, and select Load/Add/Store/. This program adds bytes
10 and 11 (not the numbers 10 and 11, but the contents of the memory bytes whose addresses are 10 and 11), and stores the
result in byte 12. Initially, bytes 10 and 11 both contain zero, so to see interesting results you will have to change their values. To
see the program in action, click the Step button. This executes the current instruction in slow motion. To run continuously, click the
Run button, which plays the animation until a HALT instruction is executed. If you get tired of the slow motion, you can click Step
Lightspeed or Run Lightspeed to get instant results. The Reset button reinitializes memory and sets the program counter to zero.

Try storing relatively large values in bytes 10 and 11. The largest value a byte can store is 255. What happens if you try to add 5 +
255?

Change the program so that byte 11 is subtracted from byte 10. What happens if byte 10 contains 5 and byte 11 contains 6?

When you are ready for a more interesting program, click Scenarios ‚ Times 5 in the File menu. This program multiplies the
contents of byte 31 by 5 and stores the result in byte 30. Experiment with a few values in byte 31 to convince yourself that it
works. Remember to click the Reset button after each run.

This program might seem needlessly complicated. It's too bad the SimCom instruction set doesn't include a multiply opcode, but
since it doesn't, wouldn't the following program be more straightforward?
LOAD 31
ADD 31
ADD 31
ADD 31
ADD 31
STORE 30
HALT

This is definitely more straightforward, but it is also less flexible than the version SimCom uses. That version uses a loop, a
powerful construct that appears in all programming languages. Note that initially, byte 29 contains 5; this byte is a loop counter
that controls how many times the loop will be executed. Lines 0 through 3 add whatever is in byte 31 (the value to be quintupled)
to whatever is in byte 30 (the accumulating result). Then lines 3 through 5 subtract 1 from the loop counter. If the loop counter
reaches zero, line 6 causes a jump to a HALT instruction. If the decremented loop counter has not yet reached zero, line 7 causes
a jump back to line 0, which is the beginning of the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset the Times 5 program. Change the value in byte 29 (the loop counter) from 5 to 6. Put a reasonable value in byte 31 and run
the program. Notice that the program now multiplies

by 6. This is to be expected, because the value in byte 31 has been added one extra time to the accumulated result.

Now you can see how the looping version is more flexible than the repeated-addition version shown earlier. To modify the looping
version so that it multiplies by 10 instead of 5, you just have to change the loop counter in byte 29. In the repeated-addition
version, you have to make sure you add the right number of ADD 31 lines, and then make sure the STORE 30 and HALT lines are
intact. That may not seem unreasonable to you, but what if you want the program to multiply by 30? With the looping version, you
just change the loop counter. With the repeated-addition version, you will run out of memory.

As you experiment with the SimCom simulation, you will probably notice a few things:

Specifying an instruction by selecting an opcode and an argument is much easier than figuring out what the base-
10 value should be.

Even so, SimCom programming isn't very easy.

When you look at any byte, you can't tell if it is supposed to be an instruction or a value. For example, a byte that
contains 100 might mean one hundred, or it might mean SUB 4.

The first two points suggest the need for higher-level programming languages. Hopefully, such languages will support
sophisticated operations like multiplication and looping.

The Lessons of SimCom

The point of presenting SimCom in this chapter was to expose you to certain basic functions of programming. Those were high-
level languages, loops, referencing, two's complement, and virtual machines. Now that you've been exposed, we can look at how
SimCom supports those functions.

Programming with opcodes and arguments is certainly easier than specifying base-10 or (worse yet) base-2 values. But SimCom
still forces you to think on the microscopic level. In the Times5 program, you have to remember that byte 29 is the loop counter
and byte 30 is the accumulated result. You always have to remember what's going on in the register. High-level languages like
Java isolate you from the details of the computer you're programming. (That probably sounds like a good thing, now that you have
suffered through SimCom.)

Loops are basic to all programming. Computers are designed to perform repetitive tasks on large data sets, such as printing a
paycheck for each employee, displaying each character of a document, or rendering each pixel of a scanned photograph. Loops
are difficult to create on SimCom, because everything is hard on SimCom. Java uses simple and powerful looping constructs.

We will cover referencing much later in this book, in Chapter 6, "Arrays." For now, you've had a preview. Remember how SimCom
never directly operated with an instruction's argument? The argument was always used as the address of the value to be loaded,
added, etc. Now you should be used to the difference between the address of a byte and the value in that byte. When you
program in Java, you don't have to worry about the address of your data, but you still have to think about its location. This will
make more sense later on. For now, it's enough to understand the distinction between the value of data and the location of data.

Two's complement is a convention for storing negative numbers. On its surface, SimCom seems to deal only with positive
numbers (and zero, of course). But subtraction is supported, and subtraction can lead to negative numbers. If you did the exercise
where you modified the LoadAddStore program to make it subtract, you noticed that SimCom thinks 5 minus 6 equals 255. In a
way, this is actually correct.

SimCom does not really exist. When you run the animated illustration, there is no actual SimCom computer doing the processing.
The program simulates the computer's activity. Thus, SimCom is an imaginary processor that produces real results. As stated
earlier in this chapter, an imaginary computer that is simulated on a real one is known as a virtual computer. You might have
heard of the JVM, or Java Virtual Machine. Java programs, like SimCom programs, run on a virtual computer.

There is a powerful benefit to this arrangement. When you buy software for your personal computer, you have to check the side of
the box to make sure the product works on your platform. If you own a Windows PC, it is useless to buy Macintosh software, just
as it is useless to buy SPARC software for a Mac. This is because different manufacturers use different kinds of processors. The
binary opcode for addition on one processor type might mean subtract to another type, and might be meaningless to a third type.
Thus, software vendors have needed to create a different product for each computer platform they want to support.

Virtual computers do not have this limitation. No matter what kind of computer you're using, SimCom loads when it executes 000,
stores when it executes 001, and multiplies by 5 when it executes the Times5 program.

The Java Virtual Machine is much more complicated than SimCom, but the same principle applies. Any Java program will run the
same on any hardware. Of course, the JVM itself varies from processor to processor. This is why you had to specify your platform
when you downloaded Java. From the JVM's point of view, your platform is known as the underlying hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note Every chapter in this book ends with exercises that test your understanding of the material and make you think about

issues raised in later chapters. The solutions are in Appendix B.
1. A cluster of eight bytes can take on approximately 20 quintillion different values. (One quintillion is a 1 followed

by 18 zeroes, or 10 to the 18th power.) Estimate the number of different values that a cluster of 16 bytes can
have. Just estimate, do not count. Can you think of anything that comes in such quantities?

2. The SimCom animated illustration is written in Java. When you run the program, how many virtual machines are
at work?

3. Write a SimCom program that adds 255 to the value in byte 31 and stores the result in byte 30. Observe the
program's behavior. What do you notice?

4. Write a SimCom program that computes the square of the value in byte 31 and stores the result in byte 30.
What happens when you try to compute the square of 254?

5. What features could be added to SimCom to make it more useful?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Data

Overview
Computers process data—factual information, such as numbers, text, images, and sound—in a form that can be processed by
electronic devices. That is the whole idea of computers. In this chapter, you will see how Java handles data. This chapter will
cover the two most important things a program does with data:

Declaring

Assigning

Declaring and assigning are activities that we perform in the context of a compiled language such as Java. This chapter will begin
by explaining what a compiled language really is. If you are already familiar with this topic, feel free to skip to the next section,
"Data Types."

In the previous chapter, we looked at the SimCom virtual machine and experienced its benefits and drawbacks. SimCom was not
much of a computer, but it was valuable as a learning tool. The drawbacks mostly had to do with scale: SimCom did not have
enough memory or commands to do anything very interesting. In this chapter, we leave SimCom behind and discuss Java itself.

Note Jumping into Java can be difficult if you're learning programming from the ground up. Even the simplest possible Java
program uses many unfamiliar constructs, including classes, methods, arrays, access, and static code. We can't
expect you to learn all these concepts before you look at a Java program. So beginning in this chapter, you will be
asked to accept that certain parts of all Java programs have to be in place in order for the program to work at all.
Eventually, later chapters will present everything you are being asked to accept.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Compiled Languages
The SimCom virtual computer is difficult to program. You have two options for specifying an instruction: You can enter a byte
value, or you can specify an opcode and an address. You've probably found that specifying an opcode and an address is a much
better approach, but it's still not very intuitive.

The language of programming with opcodes is known as assembly language. Every line of an assembly language program
roughly corresponds to a computer instruction in memory. Real computers have much more memory than SimCom, and assembly
programs that make real machines do something useful can be quite long. Such programs are created using a text editor. The
resulting file is known as source code, and it must be translated into the appropriate binary values before it can be executed by a
computer.

Conceivably, this translation could be done by people. In fact, in the very earliest days of programming, that's how it was done.
However, computers can do a much better job of it. Any program that translates assembly code into computer base-2 code is
called an assembler. Figure 2.1 shows the flow from assembly language source code to executable computer code.

Figure 2.1: Assembly language

After a program has been assembled, it must be loaded into memory and the computer must be told to execute it. This is the job
of the operating system.

Assembly programming has many shortcomings, all of which result from being too close to the underlying architecture. When you
are forced to think in terms of the interrelationships among hardware components, it is difficult to also consider the domain of the
problem you are trying to solve. For example, if you want to write a program to model weather patterns, you will be better off
thinking about air currents and water vapor, not about opcodes and registers. To do that, you need a compiled language.

Compiled vs. Assembly Languages

A compiled language is like assembly language in the sense that a source program is created using a text editor, and the source
must be translated into computer binary. The difference is that, unlike assembly code, a line of source code generally does not
correspond to a single instruction. In fact, one great benefit of compiled languages is that you don't need to know anything at all
about the underlying hardware.

Figure 2.2 shows the flow from compiled language source code to executable computer code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.2: Compiled language

Each type of computer (Pentium or SPARC, for example) has its own instruction set and architecture, and hence its own assembly
language. However, a compiled language can run on any target machine, provided there's a compiler that can translate it into the
target machine's instruction set. For example, there are compilers that translate C++ into Pentium code, and other C++ compilers
that produce code for SPARC processors.

Software can be developed much more efficiently with a compiled language than with assembly language. Moreover, in theory a
company only needs to develop one version of a software product. When the product is finished, one compiler can be used to
produce PC code, another compiler can be used to produce Macintosh code, and so on.

That's the theory. In practice it doesn't work so well. Certainly compiled languages are phenomenally more efficient for
development than assembly languages. However, the ideal of developing once and compiling many times is just an ideal. There
are differences among target computers that should be negligible, but are in fact significant. Source code that runs flawlessly on
one platform may require considerable tweaking to run on a different platform. Multiple versions of source code have to be
maintained. The process can get extremely expensive.

The Java Virtual Machine

Java is an interpreted compiled language. This means the compiler does not generate code that is specific to any particular
processor. Instead, the compiler generates code for an imaginary processor: a virtual machine. The compiler does almost all the
work. It checks for grammatical correctness, analyzes the structure of the source code, and breaks the source down into
elementary units. It does everything except create code that can be run by a computer that exists in the physical world. The Java
compiler's output is called bytecode, which is the binary format that is understood by the Java Virtual Machine, or JVM.

The JVM is a program that executes bytecode instructions. Like SimCom in Chapter 1, the JVM's architecture is usually
implemented in software rather than being built from circuit components. The JVM itself runs on physical hardware, so there is
one version for Windows platforms, one for SPARC platforms, one for Mac platforms, and so on.

When you run a Java application, you are really running the JVM, which in turn loads and executes the bytecode for your
application. All JVMs for all platforms execute bytecode in the same way. This means that with Java, you do not have to maintain
different versions of source code for different platforms. One of the Java slogans is, "Write once, run anywhere." And it works.
With Java, a program has exactly one version of source code. The result of compiling the source—the bytecode—will run on any
platform for which a JVM is available.

Figure 2.3 shows the evolution of a Java application from source code through execution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.3: Evolution of a Java application

In Figure 2.3, the source code is the file GreatStuff.java. All Java source files have to end with .java or the compiler won't
touch them. The compiler produces one or more files of bytecode output. The bytecode files, also known as class files, always
end with .class. To run a Java program, you type java classname, where classname is the name of the class file that
contains the starting point of the program. Note that here you omit the .class suffix. java is the name of the JVM program which
will read and execute the bytecode class file.

Now that you've seen how the Java compiler and Virtual Machine fit into the big picture, it's time to get acquainted with a
fundamental concept of Java programming: data types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Types
Imagine what would happen if SimCom accidentally treated bytes of data as if they were instructions, or instructions as if they
were data. In the first case, the virtual machine would execute a random series of opcodes, producing nothing of value. In the
second case, instructions would likely be modified (added to or subtracted from one another), again producing nothing of value.

The point is that SimCom uses memory for two different purposes, instructions and data, and each memory type must be treated
appropriately. There are no facilities built into SimCom to guarantee appropriate treatment. You just have to be a careful
programmer.

This distinction between memory uses is also found in Java and all other high-level languages. Fortunately, Java makes it
impossible to execute data or do arithmetic on opcodes.

SimCom has no facilities for dealing with fractions, characters, or very large numbers, and negative numbers are mysterious. Java
supports all these different characteristics of numbers. It does this by providing different data types. For now, you can think of a
data type as a way of using memory to represent data. SimCom uses an eight-bit base-2 representation. Java provides several
base-2 representations: two representations for numbers that might contain fractions, one for characters, and one for logical
(true/false) values.

Processing a Java data type as if it were a different type would produce worthless results. Java protects you from this kind of
problem by requiring you to declare all data types; the compiler enforces the integrity of your declarations. Of course, this will
make much more sense later in this chapter, after we discuss declarations. Right now, let's look at Java's data types. Later on,
you'll see how they're used.

Integer Data Types

In the terminology of programming, an integer is a data type that represents non-fractional numbers. In Java, all integer types are
signed, meaning that both positive and negative values are supported (as is zero). Java's four integer types are shown in Table
2.1.

Table 2.1: Java's Integer Data Types

Name Size Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits -32768 32767

int 32 bits -2147483648 2147483647

long 64 bits -9223372036854775808 9223372036854775807

Each data type shown in Table 2.1 has a finite range. Wider ranges are accommodated by data types that require more memory.
No type is unlimited – each has a minimum and a maximum value – but it is difficult to imagine exhausting the capacity of the
long type, which ranges from minus nine quintillion to plus nine quintillion.

Java uses a format known as two's complement to represent negative numbers. In nearly all cases, the details of this
representation are hidden from programmers, so you can go for a long time without having to know about it. However, there are
times when a program will produce baffling results if you don't know about two's complement. Also, there are some arithmetic
operators (discussed in Chapter 3, "Operations") that only make sense if you know how negative numbers are represented.

Two's complement is an evolution of the classical base-2 notation that we all learned in elementary school. If you need a review,
you can run the Simple Base 2 animated illustration on the CD-ROM. First run the Java setup script you created in Appendix A
(assuming you haven't run it already), and type java twoscomp.SimpleBase2Lab. You see a ten-bit number. You can click on
individual bits to change their values. When you're ready, click the Run button to see which number is represented. Figure 2.4
shows SimpleBase2Lab in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.4: SimpleBase2Lab

Straightforward base-2 notation, as shown in the Simple Base 2 animation, is not exactly what computers use to represent
numbers. Two's complement is more sophisticated than regular base-2, because of the way negative numbers are represented.

Imagine a car with an odometer that uses base-2 rather than base-10. There are a lot more digits than usual, and they roll over
more frequently, but otherwise this odometer is like an ordinary odometer. Every time you drive another mile, the displayed
number increases by 1. When the display is showing all 1s, and you drive one more mile, the odometer rolls over and shows all
0s. Thus if you wanted to get imaginative, you could say that in a way a display of all 1s represented -1 mile, because when you
add one more mile, you get zero miles.

What about a display that consists of all 1s except for the rightmost digit, which is zero? (This would be 11111110 on an 8-bit
odometer.) You could make a case that this reading represents -2 miles, because when you drive two more miles you get zero
miles.

Here is another way to make the same case: if you were willing to break the law, you could open the odometer and roll it back
manually. If it initially showed one mile and you rolled it back once, it would show zero miles. If you then rolled it back once more,
it would show 11111111.

Figure 2.5 shows a base-2 odometer.

Figure 2.5: A base-2 odometer

Two's complement works like an odometer. A value of all 1s represents -1. Other values are assigned to ensure consistency. For
example, with an 8-bit byte, a value of 11111110 represents -2. This makes sense, because adding 1 produces the "all 1s"
representation for -1.

The general rules for two's complement are as follows:

A value of all 0s represents zero.

If the leftmost bit is 0, the number is positive. The remaining bits represent the value in base-2.

If the leftmost bit is 1, the number is negative. To compute the magnitude of the value, invert all bits (changing 0s to
1s and 1s to 0s) and then add 1.

Figure 2.6 shows how to compute the value of the 16-bit short 1111111110011001.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.6: An example of two's complement

Figure 2.6 demonstrates that after you invert all the bits and add 1, the magnitude is 103. Thus, the original value of
1111111110011001 must represent -103.

Thinking in two's complement is not intuitive, but fortunately you rarely have to do it. However, it is important to get familiar with
this format. There is an animated illustration on the CD-ROM to make this process more enjoyable. To run it, type java
twoscomp.TwosCompLab. Figure 2.7 shows the program.

Figure 2.7: Two's complement lab

You can select 8-, 16-, or 32-bit data, corresponding to Java's byte, short, and int data types. (The 64-bit long type does not fit on
a screen.) Buttons allow you to set the data to all 0s or all 1s. You can click on an individual bit to change its value. When you are
ready, click on the Go button. The program will animate the steps involved in computing the value represented by the bit pattern.

Compute the value represented by the "all 1s" pattern for the byte, short, and int types.

Floating-Point Data Types

Integer data types cannot represent fractions. If you try to use an integer type to store a number with a fractional part, the
fractional part will just be discarded. For example, if you divide 29 by 10 (as you'll do in the next chapter) and store the result in a
short, you will find that the short contains 2, not 2.9.

Floating-point data types can represent numbers with fractional parts. Java provides two floating-point data types, called float and
double, as shown in Table 2.2.

Table 2.2: Java's Floating-Point Data Types

Name Size Minimum Value Maximum Value Smallest-
Magnitude Positive
Value

float 32 bits -3.4 x 1038 3.4 x 1038 1.4 x 10-45

double 64 bits -1.8 x 10308 1.8 x 10308 4.9 x 10-324

The maximum value for a float is approximately 34 followed by a string of 37 zeros: 340 undecillion. With such magnitudes, the
common ways of naming numbers become impractical. We use scientific notation, as shown in the value columns of Table 2.2.
With scientific notation, a number that would ordinarily have a huge string of zeros is represented by a value between 1 and 10
(always strictly less than 10), multiplied by 10 raised to the appropriate power.

The rightmost column of Table 2.2 shows the smallest positive numbers that the data types can represent. These values contain
long strings of zeros, not because they are very large, but because they are very small. 1.4 x 10-45 is another way of saying
0.0014.

The original computer output devices—terminals and teletypes—only had one font size, so superscripted exponents could not be
displayed. An abbreviation known as scientific notation was developed. In scientific notation, the letter E (which is short for
exponent) is shorthand for "times-ten-to-the." For example, the scientific notation for 3.45 x 10-67 would be 3.45E-67. If you write
code that prints out large numbers or very small fractions, you are likely to see scientific notation.

In the discussion of integer data types, you learned that you must understand two's complement notation to really understand
certain Java operations. Fortunately, you don't need to know how floating-point numbers are represented internally to understand
any Java operations. However, if you are interested in how this is done, you can run the Floating-Point Lab animated illustration by
typing java floating.FloatFrame. The program lets you vary the bits of a 32-bit float number and observe the effect this
has on the value. As you might expect, the fractional and exponent parts of the data are in base 2, and the exponent is a power of
2 rather than 10. You might discover certain bit combinations that result in "special values".

Doubles use 64 bits, twice as many as floats. The extra bits are used to give the data type both more range and more precision.
The name double originates from double precision.

Representing Characters

Java uses a 16-bit data type called char to represent text characters. The data type can accommodate 216 or 65,536 bit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java uses a 16-bit data type called char to represent text characters. The data type can accommodate 216 or 65,536 bit
combinations, so 65,536 characters can be represented. This is more than enough to encode all European-based languages, but
not enough for Chinese, Japanese, Korean, and certain others. The correspondence between characters and bit combinations is
defined by the Unicode standard, which is beautifully described at www.unicode.org.

Representing Logical Values

The integer and floating-point formats represent numerical values. The char data type represents text characters. Java has one
last data type, boolean, which represents logical values. Different JVMs may use different numbers of bytes to store booleans.
Often 4 bytes are used, although this is not always the case.

The numerical and char types can represent many different values, from 256 possible values for byte all the way up to
18446644073709551616 for long. The boolean type can represent only two possible values: true and false. This data type is
useful for controlling conditional execution. For example, a block of code might need to execute only if it's midnight and a certain
database query returns more than 100 records but less than 500. Or a block of code might need to execute if the user has entered
a special request and a password. Java uses logical values to express conditions like these that might be true and might be false
As you will see in Chapter 3, there are special boolean operations that operate on these values.

Logical values and the operations that act upon them were first studied by George Boole, an 18th-century British mathematician.
He is the only person in history whose name has been immortalized as a computer-language concept.

Recap of Java's Data Types

So far this chapter has introduced Java's 8 basic data types. These types are summarized in Table 2.3.

Table 2.3: Java's Primitive Data Types

Data Type # of Bits Used For Internal Format

byte 8 Very small integers 2's complement

short 16 Small integers 2's complement

int 32 Integers 2's complement

long 64 Large integers 2's complement

float 32 Fractions, very large
numbers

Floating-point

double 64 Fractions, huge numbers Floating-point

char 16 Characters Unicode

boolean ?? Logic Unavailable

These data types are collectively called primitives to distinguish them from object-oriented types. (We will begin our study of
objects in Chapter 7.)

We now turn to the question of what you can do with all this data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declaring and Assigning
In a sense, computer programming is the art of assigning the right value to the right data at the right time. In Java, as in many
other languages, you have to declare your data before you use it. Declaring means telling the compiler the types of data you will
be using. In this section you will see how to declare and assign data, and will look at your first complete Java program.

When you programmed SimCom, you had to specify the address of each data operand. That meant you had to remember what
you were using the different memory bytes for. For example, the Times 5 program used byte #29 as a loop counter and byte #30
for storing the result. Yet, when you look at the program for the first time, it's very difficult to tell what's going on.

In Java, you never have to remember which memory location is being used for which purpose. In fact, there is no way to even
know which memory location is being used for which purpose. You pick a name for each memory location you want to use, and
you refer to memory locations by name rather by address. The compiler assigns the addresses. All you have to do is tell the
compiler the names you will be using, and the data type associated with each name.

For example, if you wanted to use a byte as a loop counter, it would be reasonable to choose the name loopCounter. Then you
would declare as follows:
byte loopCounter;

A piece of memory that is declared and named in this way is known as a variable, so we will use that term from here on.

A declaration has three parts: a data type, a name, and a semicolon.

The data type (for now) is one of the eight primitive types: byte, short, int, long, float, double, char, and boolean. Later we will
introduce some other types.

The name has to begin with a letter, an underline (_), or a dollar sign ($). The rest of the name can consist of letters, underlines,
dollar signs, or digits. It is good programming practice to use variable names that begin with lowercase letters. If the name
consists of more than one word, the second word and all subsequent words begin with uppercase letters. This is what we have
done with loopCounter. Later in this book, you will see that there are other entities besides variables for which you will assign
names (including classes and interfaces). These entities use different naming conventions. Following the conventions helps make
source code easy to read.

The semicolon is a vital part of a declaration. A declaration is a kind of statement. A statement is a single instruction. All
statements must end with a semicolon. Otherwise, the compilation will fail and the compiler will print out an error message with the
line number where it ran into trouble.

Be aware that it is inherently impossible to create a compiler that produces consistently helpful error messages. Imagine someone
running along a rough cobblestone road. If his foot slips on a stone, he might stagger for a few steps before falling. Similarly, if the
compiler slips on an ungrammatical line, it might stagger over a few more lines before crashing and printing a message.

For the sake of convenience, you can declare multiple variables in a single statement, as long as the variables are all of the same
type. So the following:
double mass, velocity, energy;

is equivalent to the following:
double mass;
double velocity;
double energy;

After you declare a variable, you can assign values to it. The following two lines declare and assign a variable called velocity:
double velocity;
velocity = 123.456;

Notice that the assignment statement, like the declaration statement, ends with a semicolon. An assignment statement has the
form variable = value semicolon. (In the next chapter, you will see how the value can be a complicated mathematical
formula. For now, the value will be a simple literal number.) Be aware that the equal sign is just a symbol, and its meaning is not
exactly the same as its meaning in a mathematical context. In geometry, when we say Area = πr2, the equal sign means "is,
always has been, and always will be." In Java, the

equal sign means "store the value to the right of the equal sign in the variable to the left of the equal sign."

When you assign to a char variable, the easiest approach is to enclose the value in single quotes, like this:
char ch;
c = 'w';

After execution, the variable ch contains the Unicode representation for the letter w. The single quotes can also contain special
codes, called escape codes, that encode special characters. The most useful of these are

'\n' – Newline

'\t' – Tab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Very Simple Java Program
So far we have seen declaration and assignment lines, but only as code fragments. If you type any of the fragments into a file and
try to compile the file, you will get nothing more than compiler error messages. This is because a well-formed Java program—even
one that does almost nothing—must conform to certain structural rules.

And here we have a problem, which is best illustrated by an example. The following code listing is a complete Java program that
contains a declaration and an assignment.
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

The problem is this: the program contains a number of words and symbols that have not yet been introduced, and that will require
considerable explanation when the time comes. So for now, you just have to accept the mysterious parts of this code as things
that must be done to make the program work.

Type the program into a file called VerySimple.java. Compile it by typing javac VerySimple .java. If you get compiler
error messages, make sure you've typed in the program exactly as it appears here. The compiler output will be a file called
VerySimple.class.

The preceding program appears just as it would in a source file. However, when listings of more than a few lines appear in print, it
is convenient to number the lines:
1. public class VerySimple
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. }
8. }

The line numbers are convenient for referring to features of the code, but they should never appear in source code that is to be
compiled. Here, the line numbers let us point out that the relevant parts of the listing are lines 5 and 6, and all the rest is
mysterious code that will be explained later.

Output

The SimCom virtual machine lets you see all of memory all the time, but Java's memory is hidden. In the VerySimple program,
there is no way to see the value of age. The following program declares and assigns age, and then prints its value to the console:
1. public class VerySimple2
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. System.out.println(age);
8. }
9. }

The new line is #7. To print out any value, you can use the statement System.out .println(theValue);.

Here again, we ask you to accept that the syntax works. The explanation of why it works will come as soon as we have covered all
the underlying concepts. For now, be aware that in order to print the value of any variable, you need to type that variable's name
between the parentheses in a line like #7.

Notice that in line #1, the word following class has been changed from VerySimple to VerySimple2. The name following
class has to match the name of the source file. Therefore, if you want to type in this program, you should store it in a file called
VerySimple2.java. The compiler will generate an output file with the same name, followed by the .class suffix:
VerySimple2.class. This compiler-output file is known as a class file. To run the application, type java VerySimple2. Table
2.3 summarizes this naming consistency.

Table 2.3: Naming Consistency

Name in class line Source filename Class filename Invocation

VerySimple2 VerySimple2.java VerySimple2.class java VerySimple2

Printing out the value of a variable is convenient, but it would be even more convenient to print out a reminder of what the value
represents. "Age is 12.34" is much more informative than "12.34." The following program prints out the more informative line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. public class VerySimple3
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 123.456;
7. System.out.println("Age is " + age);
8. }
9. }

In line #7, the text inside the double quotes is known as a literal string. The plus sign does not indicate addition, since adding text
to a number doesn't really mean anything. In this context, the plus sign just means that the literal string is to be printed out,
followed by the value of age. Within the parentheses of a println statement, you can have any number of alternating literal
strings and variables. So if you wanted to print out the values of variables i, j, and k, separated by commas, you could use the
following line:
System.out.println(i + "," + j + "," + k);

Now that you can declare, assign, and display variables, you are ready for the next step: mathematical operations. That is the
topic of the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. According to Table 2.1, the maximum values for the byte and short data types are 127 and 32767, respectively.
Use the Twos-Complement Lab animated illustration to verify this. Which byte and short bit patterns produce the
maximum values? In general, which bit pattern produces the maximum value for a two's complement number of
N bits?

2. According to Table 2.1, the minimum values for the byte and short data types are -128 and -32768, respectively.
Use the Twos-Complement Lab animated illustration to verify this. What byte and short bit patterns produce the
minimum values? In general, what bit pattern produces the minimum value for a two's complement number of N
bits?

3. Launch the Twos-Complement Lab animated illustration by typing java TwosCompLab, set the data type to int,
and set all the bits to 1. Then set the three bits on the right to 0. Compute the value. Do the same for the byte
and short data types. What do you observe?

4. Launch the Floating-Point Lab animated illustration by typing java floating.FloatFrame. Set the rightmost
bit to 1 and all other bits to 0. The value represented is 1.4E-45. Try changing various bits' values by clicking on
them. Can you create a value that is smaller than 1.4E-45 but still greater than 0?

5. Write a Java application that declares and assigns values to three int variables named x, y, and z. Print out all
three values, separated by commas, on a single line.

6. White space means spaces, tabs, and line-break characters. Type in the VerySimple application from this
chapter (reproduced below) and experiment with inserting white space. Does anything change during
compilation or execution if you insert extra spaces between public and class? What if you insert a line break
between public and class? Can you find any adjacent words or symbols such that inserting white space
between them changes compilation or execution?
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Operations
The previous chapter showed you how to declare various types of primitive variables, and how to assign and print out the values
of variables. This chapter will look at the computational operations that you can perform on Java data. For numeric data—that is,
for all primitive types other than boolean—these computations include the familiar arithmetic operations of addition, subtraction,
multiplication, and division, as well as some more exotic operations. Arithmetic operations are not applicable to boolean data,
which has its own group of operations.

Before covering these topics, we will look at two ways to make programs easier to read: white space and comments.

White Space and Comments
This chapter is going to present some techniques for writing long and intricate programs. Before we begin, though, let's look at
how to write programs that are easy to read and understand.

Consider the following lines of code:
int x;
x = 5;

As far as the Java compiler is concerned, this code is identical to the following:
int x; x=5;

These two versions produce exactly the same compiled bytecode. In the preceding line, the gap after the semicolon can be
created by adding a few tabs or a lot of spaces. Either way, it doesn't matter to the compiler.

The compiler ignores any blank space created by using the spacebar or by typing Tab or Enter. Such space is called white space.
You can use white space to make your source code more readable. For example, the following code declares four variables:
 double velocity; boolean b;
 short x;
long

 hotSummer;

If you use this code in a program, someone who is unfamiliar with the program will have a hard time figuring out what your
intention is. (And the person sweating over your source code could be yourself, reviewing your own code long after you originally
wrote it.)

You can make your code more readable to humans by manipulating white space, like this:
double velocity;
boolean b;
short x;
long hotSummer;

Or better yet:
double velocity;
boolean b;
short x;
long hotSummer;

In the first example, some spaces and a return have been removed, and a return has been added, so that all the left edges line
up. In the second example, white space has been added. Now the eye of any reader, including you, will subconsciously arrange
the code into two columns. The words on the left are all data types, and the words on the right are all variable names. The
columns are easily aligned: You just press Tab before each data type and before each variable name. This formatting scheme is
so clear that it is considered correct style by convention. Any other formatting arrangement would be less readable, and would
also be considered sloppy style.

The previous chapter presented the following simple program:
1. public class VerySimple
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. }
8. }

Note Remember that the line numbers are not part of the source code. They are just included to make it easier to refer to
particular lines.

A Java program consists of one or more class definitions (though we will not discuss class definitions until Chapter 7, "Introduction
to Objects"). For now, be aware that lines 2-8 are the definition of a class named VerySimple. The class definition begins with
an open curly bracket (line 2) and ends with a closed curly bracket (line 8). Since these brackets are vertically aligned in the same
column, our brains notice that they are spatially related, and we subconsciously assume that they must also be functionally
related.

A class definition can contain (among other things) a number of method definitions. Methods will be discussed in detail in Chapter
4, "Methods"; for now, you just need to be aware that lines 4-7 are the definition of something called a method, whose name is
main. The method definition begins with an open curly bracket (line 4) and ends with a closed curly bracket (line 7). Again, the
vertical alignment of the brackets gives us visual information about the structure of the program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice how easy it is to look at lines 3 and 4, which tell us, "the method starts here," and find the end of the method. Within the
method, all the code (lines 5 and 6) is vertically aligned. If you look at the listing with your eyes out of focus, all you see are
several levels of nested blocks of blurry stuff. A Java program is (mostly) a block that contains blocks that contain blocks, etc. It is
extremely important to use white space and indentation to indicate the nesting level of all your lines of code.

In addition to white space, the Java compiler also ignores comments. There are two kinds of comments: single-line and multi-line.

A single-line comment begins with two slashes (//). There can't be anything between the slashes. The compiler ignores everything
from the slashes through the end of the line. This lets you put descriptive text after the slashes. Usually, the text explains what just
happened in the line. For example:
float distance; // Units are microns
double weight; // Units are ounces

Note the use of white space to vertically align the comments.

A multi-line comment, also known as a traditional comment, can span more than one line but doesn't have to. This kind of
comment begins with a slash immediately followed by an asterisk (/*). The comment ends with an asterisk immediately followed by
a slash (*/). For example:
/* Declare and initialize variables that
will later be used for computing
time-distortion effects at relativistic
speeds. All distance units are miles,
not kilometers. */

double speedOfLight;
int numberOfPlanets;

speedOfLight = 186000;
numberOfPlanets = 9;

Note the use of blank lines to separate the multi-line comment from the declarations, and the declarations from the assignments.

Now that you know how to make source code easy to read, we can move on to the main topic of this chapter, which is how to write
a program that makes your computer actually compute something.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arithmetic Operations
Java's arithmetic operations fall into two categories: basic arithmetic (addition, subtraction, multiplication, and division), and some
more exotic operations such as modulo and shifting. We will begin by looking at the simple operations.

Basic Arithmetic

The following code computes and prints out the sum, difference, product, and quotient of two numbers:
public class C3
{
 public static void main(String[] args)
 {
 int x, y; // Inputs
 int sum; // x plus y
 int diff; // x minus y
 int product; // x times y
 int quotient; // x divided by y

 /* First assign initial values to
 the x and y inputs. */
 x = 12;
 y = 3;

 // Now do arithmetic.
 sum = x + y;
 System.out.println("sum = " + sum);
 diff = x - y;
 System.out.println("diff = " + diff);
 product = x * y;
 System.out.println("product = " + product);
 quotient = x / y;
 System.out.println("quotient = " + quotient);
 }
}

Note the use of the asterisk (*) to indicate multiplication. The other three symbols (+, -, and /) are recognizable from standard
arithmetic. These symbols (as well as a few others that we'll see later on in this chapter) are known as binary operators. Here the
word binary indicates that the operators work on two numbers at a time, known as operands. Most Java operators are binary, but
there are several unary operators that each take a single operand. There is even a trinary operator that takes three operands. (We
will postpone discussion of the trinary operator until Chapter 5, "Conditionals and Loops.")

There is nothing surprising about this program's output:
sum = 15
diff = 9
product = 36
quotient = 4

As mentioned in the previous chapter, the meaning of the equal sign (=) here is a bit different from its traditional mathematical
meaning. In Java, the equal sign is called the assignment operator. It tells the computer to compute the value on the right-hand
side of the equal sign (usually abbreviated rhs), and to store the result in the variable that appears on the left-hand side (usually
abbreviated lhs). Until now, the rhs has been a literal value, but as this program shows, the rhs can also be a calculation. The
calculation's arguments can be variables or literals, so the following lines would be valid:
int halfProduct;
halfProduct = product / 2;

Java allows you to declare a variable and assign its initial value, all in a single statement. The preceding code can be rewritten as
int halfProduct = product / 2;

Later you can assign a different value to halfProduct. You can reassign values to variables as often as you like. Just don't
declare the variable more than once, because the second declaration will cause a compiler error.

The lhs of an assignment can appear in its own rhs. Consider the following line:
x = x + 5;

If this were a line of algebra and not a computer-language statement, it would be ridiculous. When you subtract x from both sides,
you get 0 = 5. But in Java, it is perfectly legal because the equal sign means assignment. The line says to add the value of x plus
5 and store the result back in x.

Precedence and Parentheses

Multiple operations can be combined in a single statement. For example, you might use the following code to compute the area of
a circle whose radius is known:
double area = 3.14159 * r * r; // Pi-r-squared

Use caution when combining different operators in a single statement. It would be reasonable to expect the statement to be
evaluated left to right, but Java doesn't do it that way. For example, you might expect that after the following line executes, the
value of x is 502:
int x = 1000 + 4 / 2;

Actually, x is 1002. Java gives multiplication and division higher precedence than addition and subtraction. This means that in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Actually, x is 1002. Java gives multiplication and division higher precedence than addition and subtraction. This means that in a
statement such as the one above, any multiplication or

division is performed before any addition or subtraction, even if the addition and subtraction appear first. So the division happens
first (4/2 = 2), and then the addition (1000+2 = 1002).

Note Java has strict evaluation precedence rules that govern all the operations presented in this chapter. The precedence is
summarized in Table 3.6.

If you don't like a statement's order of evaluation, as dictated by the precedence of its operators, you can use parentheses.
Operations that appear in parentheses have higher precedence than operations that do not. So the following code really does
compute a result of 502:
int x = (1000 + 4) / 2;

Parentheses can be nested, as the following example shows:
int x = 1+(2*(3-4)+(5-6)*(7+8));

The result is -16.

The EvaluatorLab animated illustration will help you get used to parentheses and operator precedence. To launch the program,
type java eval.EvaluatorLab. You will see the display shown in Figure 3.1.

Figure 3.1: EvaluatorLab

Type any arithmetic expression into the text field and press Enter. The arithmetic expression can consist of any combination of
literal integers, parentheses, and the binary operations +, -, *, and /. Click on the Run button to see an animation of the evaluation
of the expression. Click on Step to see an animation of just the next step in the expression's evaluation. The Run Lightspeed and
Step Lightspeed buttons perform the evaluation immediately, without animation. Figure 3.2 shows the program after evaluating the
configuration of Figure 3.2.

Figure 3.2: EvaluatorLab after evaluation

Type the following expressions into EvaluatorLab and observe the results:

1000+4/2

(1000+4)/2

1+(2*(3-4)+(5-6)*(7+8))

The EvaluatorLab only works with integer data. In Java, integer addition, subtraction, and multiplication behave exactly as you
would expect. Division, however, has a problem. Dividing an integer by an integer can produce a non-integer result. Be aware that
when Java divides a byte, short, char, int, or long by a byte, short, char, int, or long, the result is truncated. This means that any
fractional part is discarded. For example, 48 / 10 would be truncated from 4.8 to 4.

Truncation may seem like a problem, but it really isn't. If you are going to be dividing, and you know that the fractional parts of the
results will be important, just use a floating-point data type (float or double) rather than an integer type. A good rule of thumb is to
use integer types for quantities that can be counted, such as the number of employees or grizzly bears, and to use floating-point
types for things that can be measured, such as weight or speed.

Bitwise Operations

A bitwise operation treats its operands as collections of individual unrelated bits, rather than as representations of numbers. You
can only perform bitwise operations on integer data. Floats and doubles are not allowed.

There is one unary bitwise operator. Its symbol is the tilde (~). It toggles all the bits of its operand, changing all 0s to 1s and all 1s
to 0s. Figure 3.3 illustrates the operation ~144.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.3: The unary bitwise operator ~

With a binary bitwise operation, the nth bit of the result is computed from the nth bits of the two operands. The three binary bitwise
operations are and, or, and exclusive or. The operator symbols are &, |, and ^.

The "and" of two bits is 1 if both bits are 1. Otherwise, the result is 0. Another way to say this is that the result is 1 if one argument
bit is 1 and the other argument bit is 1.

The "or" of two bits is 1 if either (or both) of the bits is 1. Otherwise, the result is 0. Another way to say this is that the result is 1 if
one argument bit is 1 or the other argument bit is 1 (or both).

The "exclusive or" of two bits is 1 if either (but not both) of the bits is 1. Otherwise, the result is 0.

Table 3.1 shows the results of the three binary bitwise operations on all possible combinations of operand bits a and b.

Table 3.1: Binary Bitwise Operations

 a&b a|b a^b

a,b = 0,0 0 0 0

a,b = 0,1 0 1 1

a,b = 1,0 0 1 1

a,b = 1,1 1 1 0

As you can see from the table, the only way for & to generate a 1 is if both operands are 1. The only way for | to generate a 0 is if
both operands are 0. ^ generates a 1 if its two operands are different.

In practice, the binary bitwise operators work on integer values, not on integer bits. For example, if you take the "and" of two ints,
bit 0 of the result will be the "and" of the bit 0s of the two operands. Bit 1 of the result will be the "and" of the bit 1s of the two
operands, and so on through bit 31. This is illustrated in Figure 3.4.

Figure 3.4: Bitwise "and"

As you can see, every bit in the result is computed solely from the corresponding bits in the two operands.

Modulo

Java supports some binary arithmetic operations that we don't often encounter outside the realm of computer programming: the
modulo operation and three shift operations.

The symbol for modulo is the percent sign (%). The operation divides the first operand by the second operand and returns the
remainder. So for example, 506 % 100 is 6, 507 % 100 is 7, and so on.

Shifting

Shifting operations move the bits of an integer operand to the left or right by some number of positions. There is one left-shift
operation; its symbol is <<. There are two right-shift operations;their symbols are >> and >>>.

The left-shift operation is straightforward. The first operand is the value to be shifted. The second operand is the number of bit
positions to shift by. Figure 3.5 illustrates 18 << 5.

Figure 3.5: Left-shift: <<

As the figure shows, the high-order bits of the shifting value are discarded. The low-order bits are all set to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of the shift in base-2 is 1001000000, which is 576. Is there any numerical relationship between 576 and the original
value of 18? Yes, 576 is 18 times 32. Is there anything special about 32? Yes, 32 is 2 raised to the power of 5. In general, left-
shifting x by y is the same as multiplying x by 2y. This is elegant, and it makes good sense. Left-shifting a value by, for example, 3
bit positions is like writing three 0s to the right of the number. In base-10, if you write three 0s to the right of a number, you have
multiplied that number by 103 (that is, by 1000). It is not surprising that something similar happens in base-2.

There are two right-shift operations. One of them is bitwise, and the other is numeric.

The bitwise right-shift (>>>) is just the opposite of the left-shift: bits are moved to the right, any bits that fall off the right end are
lost, and the left end is filled with 0s. This is illustrated in Figure 3.6.

Figure 3.6: Bitwise right-shift: >>>

The original value in the figure has its sign bit set to 1, representing a negative number. The result has a sign bit of 0, since the
>>> operation always shifts 0s into the left portion of the result. You can see that >>> always converts negative numbers to
positive numbers that have no clear relationship to the original values. This is why the >>> shift is called bitwise. All it does is
move bits.

The other shift operation is >>. It is different from >>> in only one respect: The left bits of the result are set to the sign bit of the
original value, instead of being always set to 0. For positive numbers, the original sign bit is 0, so >>> is the same as >>. But for
negative numbers, the result is very different, as Figure 3.7 shows.

Figure 3.7: Numeric right-shift: >>

The sign of the result is always the sign of the original value. Does the result have any numerical relationship to the original? Yes,
although it is hard to see the relationship when you look at Figure 3.7. It turns out that x >> y is the same as x / 2y.

The different right-shift operations can be confusing until you have some experience with them. The ShiftLab animated illustration
will help you get that experience. Launch the program by typing java shift.ShiftLab. The display shows a 32-bit int value to
be shifted, as illustrated in Figure. 3.8.

Figure 3.8: ShiftLab

You can change the value by typing a base-10 number (positive or negative) into the text field, or by clicking on individual bits in
the display. Select the desired shift operation (<<, >>, or >>>) and the desired shift size, and then click on the Go button. The
program will animate the shift that you've specified. Figure 3.9 shows the result of "96 << 3".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.9: ShiftLab after shifting

Try viewing the following shifts:

10 << 10
16384 >> 14
-1 >>> 1
-1 >> 1
-1 >> 20
-2147483648 >>> 31

Unary Arithmetic

The unary arithmetic operators have the symbols + and -. These are the same as the symbols for binary addition and subtraction,
so the compiler has to figure out from context which kind of operation you want. A + or - between two operands is a binary
operator; a + or - with no operand to the left is unary.

The unary - operation just changes the sign of its operand. So for example, the following code prints out y = -5:
int x = 5;
int y = -x;
System.out.println("y = " + y);

The unary + operator maintains the sign of its operand. In other words, it doesn't really do anything.

++ and --

Two of the most common operations in programming are adding or subtracting 1 with a variable, and storing the result back in the
variable. If the variable is called x, these operations can be programmed as follows:
x = x + 1;
x = x - 1;

However, Java provides some convenient abbreviations. The first line can be abbreviated in either of the following ways:
x++;
++x;_

The second line can be abbreviated in either of the following ways:
x--;
--x;

The following program shows these operators in action:
public class PlusPlusMinusMinus
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = x;
 x++;
 y--;
 System.out.println("x=" + x + ", y=" + y);
 }
}

The output is
X=11, y=9

You can see that x has been incremented and y has been decremented.

When the operator appears after the operand, the rhs is first calculated as if the operator were not present. Then the rhs value is
assigned to the lhs. Lastly, the operand of ++ or -- is incremented or decremented. For example:
public class PostDec
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 1000 + x--;
 System.out.println("x=" + x + ", y=" + y);
 }
}

The output is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

X=9, y=1010

You can see that x, which was originally 10, must have been added to y before being decremented.

When ++ appears before its argument, it is called the pre-increment operator. When it appears after its argument, it is called the
post-increment operator. Similarly, -- before its argument is called the pre-decrement operator, and -- after its argument is called
the post-decrement operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean Operations
So far, all the operations we have looked at have dealt with numbers. Now we turn our attention to operations that work on
boolean data. Some of these operations share symbols with similar numeric operations (|, for example). However, the boolean
versions are essentially different from their numeric counterparts.

Most of Java's boolean operations are binary, and both operands must be of boolean type.

And, Or, Exclusive Or, Inversion

We have already seen these as bitwise arithmetic operations. The symbols for and, or, and exclusive or are, as before, &, |, and ^,
respectively. The symbol for inversion is ! rather than ~.

The following program prints out the results of applying these operators to true values:
public class BooleanOps
{
 public static void main(String[] args)
 {
 boolean a = true;
 boolean b = true;
 boolean x = a & b;
 System.out.println("true&true = " + x);
 x = a | b;
 System.out.println("true|true = " + x);
 x = a ^ b;
 System.out.println("true^true = " + x);
 x = !a;
 System.out.println("!true = " + x);
 }
}

The output is
true&true = true
true|true = true
true^true = false
!true = false

Boolean operations, like arithmetic operations, have precedence. The unary ! operator is evaluated before the binary &, |, and ^.
For example, the value of !false|true is true, because !false is evaluated first. You can override the effects of precedence
by using parentheses. In the current example, if you want the | operator to execute before !, use the expression !(false|true).

The BoolLab animated illustration demonstrates the evaluation of boolean expressions. Launch the program by typing java
bool.BoolLab. Figure 3.10 shows the program just after it starts up.

Figure 3.10: BoolLab: initial screen

You can type into the text field any valid expression composed of the variables a, b, and c, the literals true and false, the
operators &, |, ^, and !, and parentheses. After you enter the expression you want, press Enter. The expression will appear in large
font in the main area of the window. As with EvaluatorLab, you can click on the Run button to see an animation of the expression
being evaluated. Click on Step to see an animation of just the next step in the expression's evaluation. The Run Lightspeed and
Step Lightspeed buttons perform the evaluation immediately, without animation. Figure 3.11 shows the result of running the
configuration of Figure 3.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.11: BoolLab after execution

Try the following expressions in BoolLab:
false | false | false | false | false | true
true & true & false & true & true
false & (((!(true ^true) & (false|true))|false)^false)
true | (((!(false ^ false) & (true | false))| true)^ true)

The first expression shows that when you take the or of a number of values, a single true is enough to make the entire result true.
The second expression shows that when you take the and of a number of values, a single false is enough to make the entire
result false.

Now that you have seen Java's simple boolean operators, let's move on to the short-circuit operators, which shorten the time it
takes to execute an operation. Before you read the next section, can you guess the point of the lengthy third and fourth
expressions in the preceding code?

Short-Circuit Operators

This really happened to me, and perhaps it has happened to you. When I was a little boy, I was allowed to go out and play if I had
made my bed and finished my homework. I didn't mind doing my homework, but I hated making my bed and often I wouldn't do it.
When my mother asked if I had made my bed, I would start to say, "No, but I …" I was going to say that I had done my homework,
but my mother would interrupt me. She was a busy person and she had heard all she needed to hear. Our agreement was that I
would do two chores. As soon as she knew that I had not done one of those chores, there was nothing I could say about the other
chore to convince her that I had lived up to my part of the agreement.

False & anything is false. When you compute x & y, and x is false, you don't have to spend any time at all on y. You already know
the answer.

Consider the following expression, which you were invited to type into BoolLab in the previous section:
false & (((!(true ^true) & (false|true))|false)^false)

At first glance, this expression looks so complicated that you would not want to figure out its value in your head. But at second
glance, once you realize that the expression's form is "false & anything," you don't have to look any further. The value is false, no
matter what comes after the &.

Java provides an alternative to the & operator . It is called the short-circuit & operator, and its symbol is &&. The short-circuit
version stops computing and immediately returns false if its first operand is false. Let's slightly modify the previous example:
false && (((!(true ^true) & (false|true))|false)^false)

Now the first operator is the short-circuit version. This expression evaluates to the same value as the previous version, but the
evaluation takes less time because everything between the outermost parentheses is ignored.

There is also a short-circuit version of the | operator. Its symbol is ||, and it immediately returns true if its first operand is true.

The BoolLab animated illustration supports short-circuit operations. Launch the program again (type java bool.BoolLab), and
see how it evaluates the following expressions:
false && (true|false)
true && (true|false)
false || && (true|false)
true || && (true|false)

Java's short-circuit operators allow you to profit from the principle that false-and-anything is false and true-or-anything is true. The
amount of profit may seem trivial. In this example, the processing time that's saved by using && could not possibly be more than a
microsecond or so. But a short-circuit expression might be executed not once but many times—even many millions or billions of
times—so any time savings will be significant.

You will learn how to execute a single expression multiple times when you look at loops in Chapter 5. Moreover, the second
operand of the short-circuit operator might be a call to a method that takes minutes or hours to execute. In this case, you definitely
do not want to process the second operand unless you really have to. The next chapter will look at methods and method calling.

Now let's look at Java's comparison operators. These are binary operators whose operands can be numeric or boolean. The result
type is always boolean.

Comparison Operations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java's comparison operators always return a boolean value. Most of these operators work on numeric operands, but there are two
that can take numeric or boolean operands. Table 3.2 summarizes the comparison operators.

Table 3.2: Comparison Operators

Operator Meaning Numeric Operands Boolean Operands

== Equals 3 3

!= Does not equal 3 3

> Is greater than 3 no

>= Is greater than or equal to 3 no

< Is less then 3 no

<= Is less than or equal to 3 no

Note that the symbol for the equals comparison operator is a double equal sign (==), to distinguish it from the assignment symbol
(=).

Comparison operators can be combined with other boolean operators. For example, assuming w, x, y, and z are variables of
some numeric type, you might use the following expression:
w == x | y < z

Comparison operators have higher precedence than boolean operators, so the == and < comparisons happen before the | is
evaluated. The example can be rewritten as follows:
(w == x) | (y < z)

The parentheses make the expression clearer without changing the order of computation. Expressions such as this one are most
often seen in flow-control statements, which allow you to execute blocks of code repeatedly, or only if certain desired conditions
are met. We will look at flow-control statements in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound Assignment
A very common practice is to perform an operation on the value of a variable and then store the result back in the variable. For
example, you might want to do the following:
x = x - y;

For situations like this, Java provides an abbreviation called compound assignment. A compound assignment lets you modify a
variable (in certain restricted ways) and store the value back in the variable, all in a single statement. Compound assignments
have the form variable op= expression;, where op is a binary operation symbol that is immediately followed by =.

Table 3.3 summarizes the compound assignment operators. (The table assumes that b is boolean and x is of some numeric type.)

Table 3.3: Compound Assignment

Operator Example Equivalent

+= x += 5; x = x+5;

-= x -= 5; x = x-5;

*= x *= 5; x = x*5;

/= x /= 5; x = x/5;

%= x %= 5; x = x%5;

<<= x <<= 5; x = x<<5;

>>= x >>= 5; x = x>>5;

>>>= x >>>=5; x = x>>>5;

&= b &= false; b = b&false;

|= b |= false; b = b|false

^= b ^= false; b = b^false;

Compound assignments provide no new functionality. They just provide a convenient way to abbreviate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Numeric Result Type
You have now learned about all of Java's unary and binary operators. Before closing this chapter, you need to learn about more
topic: the result type of numeric operations.

Clearly, it would be inconvenient to prohibit operating on mixed types. You may find yourself doing arithmetic on two numbers, one
of which might be an int and the other of which might be a float. The next issue to consider is the data type of the result.

Java's rules for determining the type of the result are based on the concept of width. As you saw in Chapter 2, every numeric type
has a range. This is shown in Table 3.4.

Table 3.4: Ranges of Numeric Types

Name Size Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits -32768 32767

char 16 bits 0 65535

int 32 bits -2147483648 2147483647

long 64 bits -9223372036854775808 9223372036854775807

float 32 bits -3.4x1038 3.4x1038

double 64 bits -1.8x10308 -1.8x10308

If the range of any type completely contains the range of another type, the first range is considered to be wider than the second
range. If a range is completely contained within another range, the first range is narrower than the second range. Table 3.4 shows
that the byte type is narrower than the short type. Note that some types are neither wider nor narrower than some other types.
Short, for example, is neither wider nor narrower than char.

Figure 3.12 illustrates data type width. Figure 3.12 is definitely not drawn to scale. If the line representing double were scaled to
the line representing byte, the double line would be 5x10275 light years long. I really wanted to print the line to scale, because I
believe accuracy is important, but my editor pointed out that the line would be 3 x 10273 times the diameter of the universe. The
publisher was unwilling to pay for that much ink, and economics won out.

Figure 3.12: Data type width, not to scale

Another way to imagine width is shown in Figure 3.13. A type is wider than another type if you can get from the first type to the
second type by following the arrows. So double is wider than byte, and long is wider than char.

Figure 3.13: Data type width relationships

Figure 3.13 shows that float is wider than long, even though longs are 64 bits and floats are only 32 bits. That might seem
backwards, but you'll see why it's true if you think about the definition of "wider." If you don't feel like thinking about that right now,
you can wait until you get to Exercise 6.

Java's rule for the result data type is this: It's either int or the type of the widest operand, whichever is wider. This means that the
result of any arithmetic operation will never by a byte, short, or char.

This rule applies to unary as well binary operations. For example, if s is a short, -s is an int.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3.5 summarizes the result type combinations for binary operations.

Table 3.5: Binary Arithmetic Result Types

 byte short char int long float double

byte int int int int long float double

short int int int int long float double

char int int int int long float double

int int int int int long float double

long long long long long long float double

float float float float float float float double

double double double double double double double double

It is important to know about arithmetic result types because of another rule: You can only assign a numeric value to a variable
whose type is the same as, or wider than, the type of the numeric value. If you try to do anything else, the compiler will generate
an error. This makes sense, because you might be trying to store a value that the variable cannot represent. For example, you
can't store a long value in a byte variable, because the long value might be greater than 127 or less than -128. So the following
code fragment will generate a compiler error:
long distance = 999999;
long time = 5000;
byte rate = distance / time;

This rule sometimes gets in your way when you just want to initialize a variable with a literal value. Java dictates that all floating-
point literals are doubles, and all integral literals are ints. So 3.14 and 2.5e33 are both doubles, and 1234 is an int.

If you try to assign a value like 3.14 to a float (such as float f = 3.14;), the compiler will complain that you are trying to
assign a double to a float. To fix the problem, append the letter f or F to the end of the literal number. This will tell the compiler
that the literal is really a float:
float f = 3.14f; // Or 3.14F

The situation is a bit stranger if you try to assign a big literal value to a long variable. The following line generates a compiler error:
long timeAgo = 999999999999; // 12 digits

The 12-digit string of 9s is too big to be represented by an int. Even though you innocently want to assign a big number to a long
variable, behind the scenes the compiler is going to try to create an int to store the value 999999999999. This is because the
compiler uses ints to store literal integral numbers. To get around the problem, append the letter l or L to the literal value to
indicate that it's really a long:
long timeAgo = 999999999999L;

You could also use 999999999999l, but a lowercase l looks too much like a 1. The uppercase version is definitely preferable.

What happens when you want to assign a literal value to a byte, short, or char variable? In this case, the compiler gives you a
break. As long as the literal value falls within the variable's range, statements such as these are legal:
byte x = 12;
short y = -22;
char z = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Precedence Summary
This chapter presented 16 Java operations. Their evaluation precedence is shown in Table 3.6. Higher-precedence operators, the
ones that are evaluated first, appear at the top.

Table 3.6: Operator Precedence

Category Operators

Unary + - ! ~ ++ --

Higher-precedence arithmetic * / %

Lower-precedence arithmetic + -

Shift >> << >>>

Bitwise & ^ |

Short circuit && ||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. What happens when a comment appears inside a literal string? (Recall from Chapter 2 that a literal string is a
run of text enclosed between double quotes.) What would the following line of code do?
System.out.println("A /* Did this print? */ Z");

Write a program that includes this line. Does the program print the entire literal string, or does it just print "A Z"?

2. What is the value of ~100? What is the value of ~-100? First try to figure it out, and then write a program to print
out the values. (Hint: You can figure it out without using pen and paper if you remember something that was
discussed in Chapter 2.)

3. Write a program that prints out the following values:

32 << 3

32 >> 3

32 >>> 3

-32 << 3

-32 >> 3

-32 >>> 3

4. What are the values of the following expressions? First do the computations mentally. Then write a program to
verify your answer.
false & ((true^(true&(false|!(true|false))))^true)
true | (true^false^false^true&(false|!(true&true)))

5. The following expression looks innocent:
boolean b = (x == 0) | (10/x > 3);

You can assume x is an int. Write a program that prints out the value of this expression for the following values
of x: 5, 2, 0. What goes wrong? (You will see a failure message that you might not be familiar with, because we
have not introduced it yet. Don't worry – just try to understand the general concept.) How can you make the code
more robust by adding a single character to the expression?

6. The 32-bit float type is wider than the 64-bit long type. How can a 32-bit type be wider than a 64-bit type?

7. Write a program that contains the following two lines:
byte b = 6;
byte b1 = -b;

What happens when you try to compile the program?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: Methods

Overview
So far, all of the Java applications we have seen have been linear: The processing has proceeded line by line, from the start
through the end of the block that begins public static void main(String[] args).

Such applications don't really take full advantage of your computer's capability. In fact, with linear code your computer is not much
more than an expensive calculator. The topics in the following two chapters will begin to branch out—and so will the paths of
execution through the programs we will study. Instead of proceeding line by line, we will see how to make the execution path
detour, fork, and loop.

This chapter will look at methods, which are detours in the path of execution. Chapter 5, "Conditionals and Loops," will introduce
statements that redirect the flow of the program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method Structure
The easiest way to introduce methods is with an example. Suppose you want to print out the fifth powers of the numbers 5
through 9. The following code, which doesn't use methods, does the job in a clumsy, inelegant way:
 1. public class NoMethods
 2. {
 3. public static void main(String[] args)
 4. {
 5. int n = 5;
 6. int n5th = n*n*n*n*n;
 7. System.out.println(n + " >=> " + n5th);
 8. n = 6;
 9. n5th = n*n*n*n*n;
10. System.out.println(n + " >=> " + n5th);
11. n = 7;
12. n5th = n*n*n*n*n;
13. System.out.println(n + " >=> " + n5th);
14. n = 8;
15. n5th = n*n*n*n*n;
16. System.out.println(n + " >=> " + n5th);
17. n = 9;
18. n5th = n*n*n*n*n;
19. System.out.println(n + " >=> " + n5th);
20. }
21. }

The application's output is
5 >=> 3125
6 >=> 7776
7 >=> 16807
8 >=> 32768
9 >=> 59049

When you look at the source code, you might get the feeling that life ought to be better than this. The application has a lot of
repetition… and aren't computers supposed to be good at eliminating repetitive tasks? Five of the lines (6, 9, 12, 15, and 18) do
almost the same computation, but not quite. Each of them multiplies something by itself 5 times.

It would be great to have a piece of subordinate code that could compute the 5th power of anything. Of course, there would have
to be a way to tell the subordinate code what number to work with. The following application does just that, using methods:
 1. public class UsesMethods
 2. {
 3. public static void main(String[] args)
 4. {
 5. int n = 5;
 6. int n5th = toThe5th(n);
 7. System.out.println(n + " >=> " + n5th);
 8. n = 6;
 9. n5th = toThe5th(n);
10. System.out.println(n + " >=> " + n5th);
11. n = 7;
12. n5th = toThe5th(n);
13. System.out.println(n + " >=> " + n5th);
14. n = 8;
15. n5th = toThe5th(n);
16. System.out.println(n + " >=> " + n5th);
17. n = 9;
18. n5th = toThe5th(n);
19. System.out.println(n + " >=> " + n5th);
20. }
21.
22. static int toThe5th(int x)
23. {
24. int result = x * x * x * x * x;
25. return result;
26. }
27. }

The application's output is the same as the output from the previous version.

The code from lines 22-26 constitutes a method. Line 22 is called the method's declaration. It tells the compiler that what is about
to follow will be the definition of the method whose name (along with some other information) appears in the declaration line. The
definition, or body, of a method immediately follows the declaration, and it must appear within curly brackets.

The general format of a method declaration is

Optional_modifiers Return_type Name(Optional_ arguments)

The only mandatory parts of a declaration are the return type, the name, and the parentheses. In this example, we have one
modifier (static), the return type is int, the method's name is toThe5th, and there is one argument (int x) that appears inside the
parentheses. Let's look at each of these elements.

You have already been patiently tolerating the unexplained presence of the static modifier in every application we have looked
at in this book. It has appeared in the declaration of main, which is a method that appears in every Java application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at in this book. It has appeared in the declaration of main, which is a method that appears in every Java application.
Understanding static will become much easier after we introduce object-oriented programming in Chapter 7. For now, let's just
say that static means "don't be object-oriented." Other modifiers that might appear in a method declaration include access
modifiers, which will be presented in Chapter 9.

We'll look at the return type in a moment. Let's move now to the method name. The rules for the name are the same as those for
variable names: The first character must be a letter, an underscore, or a dollar sign. The subsequent characters may be any of
these, or they may be digits.

As with variable names, you have a broad choice. You should pick the name that does the best possible job of describing what the
method does. When the name appears outside the method, as in lines 6, 9, 12, 15, and 18 of this example, the path of program
execution detours through the method. This is known as calling or invoking the method, and a line that calls a method is the
method's caller.

Note that in the lines where the method is called, the method call (the name followed by something parenthetical) is used in a
context where you would expect to see a value. Until now, the right-hand side of an assignment has been either a literal, a
variable, or an arithmetic or boolean expression composed of literals, variables, and operators. Now we add something new to the
mix. Anywhere the compiler expects a value, you can use a method call. This is because a method call produces a value, called
the method's return value. When the computer executes a line of code that includes a method call, the computer takes a detour
through the method body in order to compute the return value. When the detour is finished, execution continues where it left off.

The arguments are the method's inputs. In this example, the argument list is int x. This means that the method has one input,
whose type is int. Within the body of the method, that input will be called x. When the method runs, the actual value of x will be
whatever the caller wants. The caller specifies an input value by putting the value in parentheses in the call line. Lines 6, 9, 12, 15,
and 18 all pass n as the method argument, but the value of n is different for each of those lines. In line 6, n is 5, so the call from
line 6 will execute with x set to 5. In line 9, n is 6, so the call from line 9 will execute with x set to 6. And so on. This demonstrates
the flexibility of methods.

The return type in the method declaration tells the type of the return value. The returning of a value happens in line 25, where we
see the return keyword. This causes the path of execution to return to the caller line. The value following return is the return value.
In this example, the return value is result, which is the 5th power of the argument.

Argument Lists

The toThe5th method in the previous example took a single argument, so within the parentheses in the method declaration, we
saw a single type (int) followed by a single name (x). You can create methods with an arbitrarily number of arguments of
arbitrary types. To do this, just write a declaration with the following format:

Mods Ret_type Name(type0 arg0, type1 arg1, type2 arg2 ...)

Note Note that the numbering of the arguments starts at 0, rather than 1. Whenever you see someone do this, you can be
certain that they work in the computer field, where counting from 0 is conventional. We already saw this in Chapter 1,
where SimCom's memory addresses started at 0. We will see it again in Chapter 6, "Arrays." It is important to get into
the habit of counting from 0 as soon as possible, even though there is a slight inconvenience. When you start counting
from 1, the last number you count out is the actual number of things you've counted. When you start from 0, the actual
number is 1 more than the last number you've counted out. So in the preceding declaration format, we have 3
arguments, and the largest index is 2.

The following method takes 2 arguments:
static double hypotSquared(double leg0, double leg1)
{
 return leg0*leg0 + leg1*leg1;
}

Recall that in any arithmetic expression, multiplication takes precedence over addition, so the method really does return the
square of the hypotenuse.

The MethodLab animated illustration demonstrates the passing of arguments and the returning of return values. To run the
program, type java methods.MethodLab. The display presents code that calls a method, as shown in Figure 4.1.

Figure 4.1: MethodLab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the Run button to see the animation. The black lines indicate the passing of arguments, which are called a and b in the
caller but x and y in the method. The blue line represents returning the return value. When the animation is finished, click Reset to
start again. Figure 4.2 shows MethodLab after the animation finishes.

Figure 4.2: MethodLab after animating

You can customize MethodLab by typing any integer value you like into the text fields for a and b. You can also enter any numeric
formula for the value of z, which becomes the return value. Try the formula in the preceding example. Since this method's
arguments are called x and y, the formula should be
x*x + y*y

With this formula, try running MethodLab with a = 3 and b = 4. Try again with a = 12 and b = 5. These combinations are the only
small integers that represent triangles with integer hypotenuses.

A method's argument list can be arbitrarily long. At times you might even want a method with no arguments at all. In that case, the
method's declaration has an empty pair of parentheses after the name, and the caller passes nothing at all inside its own
parentheses:
float f = sayHello();
…
static float sayHello()
{
 System.out.println("Hello");
 return 3.14159f;
}

The important thing is that when you call a method, the call should have the same number of arguments as the method
declaration, and the types of the arguments passed by the caller should be compatible with the types in the method declaration.
This is subtly different from saying that the caller's argument types should exactly match the types in the method declaration.
Recall from Chapter 3 that a value can be assigned to a variable of a different type, provided the new type is wider than the old
type. Figure 4.3 (first shown in Chapter 3) shows the width relationships among the numeric primitive types.

Figure 4.3: Numeric type widths

The rule for passing method arguments is similar to the rule for assignment: You can pass an argument whose type is different
from the type declared by the method, provided the type declared by the method is wider than the type that you pass. Recall that
a type is wider than another type if you can get from the first type to the second type by following the arrows in Figure 4.3.

For example, suppose a method has the following declaration:
static char abcde(long wayToGo)

This method can be called with a long argument, or with any argument whose type is narrower than long: byte, short, char, or int.

More on Return Types

At times, you might want to create a method that doesn't return anything. The method might print out a message, display a dialog
box, or store a value in a file. In cases such as these, it is difficult to think of any value that the method could meaningfully return,
and concocting a return value just for the sake of having one would not contribute to the quality of the program. (A basic principle
of writing fiction is that every word should contribute to developing the plot or developing the characters. We can invent a similar
principle for writing software: Every word of source code should contribute to the operation or the readability of the program.)

Suppose you want a method that prints a number along with a message. Since no return value is needed or relevant, replace the
return type in the declaration with the word void:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return type in the declaration with the word void:
static void printPretty(int x)
{
 System.out.println("x = " + x);
}

Note the absence of a return statement. A void method runs until it executes its last line. Then it returns automatically.
Optionally, you can add a return statement with no value at the end of the method:
static void printPretty(int x)
{
 System.out.println("x = " + x);
 return;
}

Here the return statement doesn't contribute to program execution or readability (we already know that the method returns when
it hits bottom), but later we will see cases where explicitly saying return can be useful.

A call to a method with a non-void return type can be used anywhere that a variable or literal of the same type can be used: as the
right-hand side of an assignment, as an operand in an operation, or even as an argument of another method call. By contrast, a
call to a void method has no type. So if method iAmVoid is void, you could not say int z = iAmVoid(); because there would
be no value to assign to z. When you call a void method, you just want it to do its thing, so you make the call all by itself, followed
by a semicolon, like this:
iAmVoid();

If a method changes the state of the program or the computer in any way (other than returning the return value), the change is
called a side effect. Clearly, when you call a void method, you do so because you are interested in a side effect. (In this example,
the side effect was the printing of the message.) Sometimes you might want to call a non-void method, not because you are
interested in the return value, but because you want the side effect. In that case, you can just call the method as if it were void.

For example, the following method both prints out and returns hypotenuse squared:
static int vocalHypotSquared(int a, int b)
{
 int hSquared = a*a + b*b;
 System.out.println("h-squared = " + hSquared);
 return hSquared;
}

If you just wanted to print out the message, you could call the method like this, ignoring the return value:
vocalHypotSquared(5, 12);

Polymorphism

Polymorphism comes from the Greek for "many forms." It is one of several five-syllable words pertaining to object-oriented
programming. In our context, it means that a method can have one name but many forms. In other words, you can define multiple
methods with the same name.

At first, this might seem impossible. How can the system know which of the various methods you had in mind? The rule is that if
two methods have the same name, their argument lists have to be different. That is, the types that appear in lists must differ; the
argument names are not considered here. If a method name appears more than once, we say that the name is overloaded.

For example, the following two methods could appear in the same program:
static int getMass(int n)
{
 …
}
static int getMass(double a, char c)
{
 …
}

Here, getMass() is legitimately overloaded. However, the following two methods could not appear in the same program:
static int getMass(int n)
{
 …
}
static int getMass(int x)
{
 …
}

The argument names are different, but that doesn't help. Both method versions have the same name, and each version takes a
single argument of type int, so the compilation will fail. If the argument types were different (for example, if the argument of
getMass() had type long or byte), the code would compile without error.

Methods That Call Methods

Methods can be called from anywhere – even from other methods. In fact, any complicated program is likely to consist of methods
that call other methods that call other methods, and so on, to many levels of depth. For example, you might have a method that
prints out two values:
static void print2Vals(int val0, int val1)
{
 System.out.println(val0 + " and " + val1);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Now what if you want a method that prints out the cubes of its two arguments? You might do it as follows:
static void print2Cubes(int val0, int val1)
{
 int val0Cubed = val0*val0*val0;
 int val1Cubed = val1*val1*val1;
 System.out.println(val0Cubed + " and " + val1Cubed);
}

Since you already have the print2Vals method, you can rewrite print2Cubes as follows:
static void print2Cubes(int val0, int val1)
{
 int val0Cubed = val0*val0*val0;
 int val1Cubed = val1*val1*val1;
 print2Vals(val0Cubed, val1Cubed);
}

Now you have a method, (print2Cubes) that calls another method (print2Vals). You can rewrite print2Cubes to be even
more terse, as follows:
static void print2Cubes(int val0, int val1)
{
 print2Vals(val0*val0*val0, val1*val1*val1);
}

Since the multiplication is repetitious, you can also introduce a new method:
static int nCubed(int n)
{
 return n*n*n;
}

Now print2Cubes becomes
static void print2Cubes(int val0, int val1)
{
 print2Vals(nCubed(val0), nCubed(val1));
}

Now you have a method, (print2Cubes) that consists of a single call to another method (print2Vals), and that call's
arguments are both expressed as method calls (to nCubed). This kind of structure—calls to calls to calls—is perfectly typical of
programs.

Passing by Value

In formal computer terminology, we say that Java passes by value. This is just another way to say that methods get copies of their
arguments and have no access to the original values. The alternative is called passing by reference, where methods work with the
caller's data and not with copies. The latter is a perfectly valid way to design a language; it's just not the way Java does it.

When a caller calls a method and the flow detours into the method's body, the JVM copies the argument values provided by the
caller and gives the copies to the method. This means that if the method alters its arguments, the alteration has no effect on the
caller.

Consider the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The method triples its argument. You might wonder what happens to the value that the caller passes to the method. For example,
what does the following print out?
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Does this code print "Now z is 10" or "Now z is 30"? If the method has access to the actual data passed in by the caller, the code
should print out "Now z is 30". However, the code actually prints "Now z is 10" because the method triples its own private copy,
not touching the

caller's version. After the method returns, the memory used for storing the method's copy is recycled. The method's copy does not
survive after the method returns.

Order

A program is, in large part, a collection of methods that call other methods. These other methods call still other methods, and so
on.

Within an application, methods can appear in any order. Once again, you are in a situation where your choices can make a
program either easier or harder for others to read. It makes sense to put related methods near one another. It is common practice,
though by no means universal, to put the main method at the very end, just before the final closing curly bracket. From here on,
this book will follow that convention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scope
When you write a method declaration, you can choose almost any argument names you like. Of course, the names have to be
legal (beginning with a letter, underscore, or dollar sign, and continuing with the same plus digits). Moreover, the name should be
indicative of the argument's meaning. But beyond these considerations, you have complete latitude. In particular, you are allowed
to reuse a variable name that has been used elsewhere in your program.

Every Java variable has a scope. A variable's scope is the matching pair of open and closed curly brackets that most tightly
encloses the variable's declaration. Another way to say this is in terms of blocks. A block is a contiguous piece of code that begins
with an open curly and ends with a matching closed curly. Blocks may contain many kinds of code. We have already seen blocks
that contain method bodies. Later in this book, we will see blocks that contain, among other things, other blocks. Those inner
blocks can contain, among other things, still other blocks, and so on, to whatever depth is useful.

Already we have seen blocks that contain other blocks, since every Java application is a block that looks like this:
1. public class ClassName
2. {
3. // Optional other methods.
4. public static void main(String[] args)
5. {
6. …
7. }
8. }

Any variable defined in the main method has a scope that spans from line 5 through line 7, since that is the tightest matched pair
of curlies that would contain the variable's declaration.

The scope of a method argument is the method itself, even though the argument is actually declared just before the open curly
that begins the scope.

Now, here is why it is so important to know about scope: A variable name may not be declared more than once in a single scope.
However, a name that is declared in one scope may be declared and used in any number of other scopes. Each declaration refers
to a different variable; the variables just happen to have the same name. The situation is similar to filenames in directories. Names
must be unique within any particular directory, but a filename that appears in one directory may be used in another directory. The
two files have nothing to do with each other, and the common name is just a coincidence.

Consider the following example:
 1. public class ReusesNames
 2. {
 3. static void printTriple(int x)
 4. {
 5. int i = 3*x;
 6. System.out.println("Triple = " + i);
 7. }
 8.
 9. public static void main(String[] args)
10. {
11. int x = 10;
12. int i = x+5;
13. printTriple(i);
14. }
15. }

Here we have two methods, main and printTriple, each with its own scope. Each method's scope has its own i and its own
x, unrelated to the i and x of the other method. Each method can use and modify its own i and x, but cannot touch the i and x
of the other method.

A convenient effect of Java's scoping rule is that when you write a method, you don't have to worry about whether a variable name
you like is already in use in a different method. This is especially convenient in a long program that might have hundreds of
methods, each with a dozen variables. If it were not for the scoping rule, we would quickly run out of good variable names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Which of the following are legal method names?
1. $25

2. 25$

3. abc_

4. _ABc

2. Suppose you want to write a method that returns the diameter of a planet, in millimeters. Since it's your program,
you can choose any name you like for the method. Rank the following method names, from worst to best. Use
your own judgment as to what makes one method name better or worse than another.

1. getPlanetDiameter

2. getSize

3. getPlanetDiameterMm

4. getIt

5. getPlanetSize

3. Suppose a method has the following declaration:
static int abc(int x, short y)

Suppose this method is called as follows:
abc(first, second)

Which of the following are legal types for the variables first and second?
1. int first, int second

2. short first, short second

3. byte first, char second

4. char first, byte second

4. Consider the following method declaration:
xyz(double d)

Which argument types can a caller pass into this method?

5. Earlier in this chapter, you learned that if method iAmVoid is void, you can't say int z = iAmVoid();
because there is no value to assign to z. What happens if you try? Write a program that does this experiment.

6. Earlier in this chapter, you saw the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The following code prints out "Now z is 10", not "Now z is 30", because the method modifies its own private copy
of the argument:
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Write a program that proves this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Conditionals and Loops
The previous chapter showed you how method calls can be used to detour the flow of program execution. This chapter will
introduce two more ways to vary program flow: conditionals and loops. By the end of this chapter, you will be able to write
programs in which control flows in quite intricate patterns.

Conditionals
If a method call is like a detour in the path of execution, then a conditional is like a fork in the road. Conditional code is executed
only if a certain criterion is met, typically when a certain boolean expression evaluates to true.

We will begin with the if statement, which is Java's most basic conditional. We will also look at the more complicated ternary
operator and switch statement.

if

In its simplest form, the if statement looks like this:
if (boolean_expression)
 do_something;

The code immediately following the if keyword must be of boolean type and must be enclosed in parentheses. The code that
follows the parenthetical boolean expression can be either a single statement or a block of statements enclosed in curly brackets.
Let's look at some examples.

The following code fragment prints out a message if x is divisible by 10:
if (x%10 == 0)
 System.out.println("x is divisible by 10.");

In the next example, y and z are both reduced if their product exceeds 1,000:
if (y*z > 1000)
{
 y -= 10;
 z -= 20;
}

Note in the previous example that if the condition is met, the action to be taken consists of two statements. When the conditional
action is longer than a single statement, the multiple statements of the action are enclosed in curly brackets.

if and else
An if statement can be enhanced with the else keyword. You can only use else after the statement or curly bracket-enclosed
block that follows an if. As with if, the code that follows else can be either a single statement or a block of statements within
curly brackets. As you might expect, the code following else is executed if the if statement's boolean expression evaluates to
false.

For example, the following code prints out a message that depends on whether the value of x is even or odd:
if (x%2 == 0)
 System.out.println(x + " is even.");
else
 System.out.println(x + " is odd.");

In the next example, the method "clamps" the value of its z argument. The return value is z, unless z exceeds a lower or upper
limit. If this is the case, the return value is the exceeded limit:
static long clamp(long z, long lowLimit, long highLimit)
{
 if (z < lowLimit)
 return lowLimit;
 else if (z > highLimit)
 return highLimit;
 return z;
}

If curly bracket-enclosed code blocks are used after if or else, those blocks themselves can contain if statements. The
following code fragment uses nested if statements:
if (x > 1000000)
{
 // x is big.
 if (x%2 == 0)
 System.out.println("Big and even.");
 else
 System.out.println("Big and odd.");
}
else
{
 // x is little.
 if (x%2 == 0)
 System.out.println("Small and even.");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println("Small and even.");
 else
 System.out.println("Small and odd.");
}

Note There is no limit to how deeply you can nest if statements. Of course, if you nest too deeply, your code becomes
difficult to read and understand. See the "Nesting" section later in this chapter for an explanation of this technique.

else if
In the previous section, you learned how to follow an if statement with an else statement. You can also follow an if statement
with an arbitrary number of else if statements. An else if statement is like an else statement, but it is followed by a
parenthetical boolean expression and then by a single statement or curly bracket-enclosed block. As you might expect, the single
statement or curly bracket-enclosed block is executed only if the boolean expression evaluates to true. There is no limit to the
number of else if statements that may follow an if statement, and the last else if statement may be followed by an else
statement.

The following example is a method that prints out one of a number of possible messages, based on the size of the z argument:
static void howBig(double z)
{
 if (z < 0.001)
 System.out.println("Very tiny");
 else if (z < 1)
 System.out.println("Tiny");
 else if (z < 100)
 System.out.println("Medium");
 else if (z < 100000)
 System.out.println("Large");
 else
 System.out.println("Very large");
}

Note that the series of tests on the value of z begins with a straightforward if statement, followed by three else if statements.
The else statement comes at the end, which is the only place where it may appear.

Before we continue, let's take a moment to appreciate the power of the various versions of the if statement. The Java
functionality presented in the previous chapters of this book, while impressive, amounts to using your computer as a very fast
calculator. For instance, a method would always process its arguments in exactly the same way. With the introduction of if
statements, we have programs that can react flexibly. The howBig method, for example, can react flexibly to the value of its z
argument.

Later in this chapter we will examine loops, which introduce an additional level of flexibility. But first, let's look at two more kinds of
conditional execution: the ternary operator and the switch statement.

The Ternary Operator

In Chapter 3, "Operations," we looked at Java's unary and binary operators. Now let's look at the ternary operator. The name
ternary just means that there are three operands. Since there are three, we will need two symbols to separate them: the question
mark (?) and the colon (:). The operator is used like this:
boolean_expression ? value_1 : value_2

The value of the ternary operation depends on the value of the boolean expression. If the boolean expression evaluates to true,
the value of the overall operation is value_1. If the boolean expression evaluates to false, the value of the overall operation is
value_2.

Typically, a ternary operation appears on the right-hand side of an assignment. For example, suppose you want radius to be 10
if mass is less than or equal to 50,000; otherwise, you want radius to be 99. Without the ternary operator, you could do it this
way:
if (mass <= 50000)
 radius = 10;
else
 radius = 99;

You can rewrite this in a single line with the ternary operator:
radius = mass <= 50000 ? 10 : 99;

The boolean expression does not need to appear in parentheses, but the line is more readable like this:
radius = (mass <= 50000) ? 10 : 99;

The ternary operator is a convenient replacement for an if...else expression.

Now let's look at the switch statement, which is a convenient replacement for a sequence of if...else expressions.

switch

In the previous section, you saw how the ternary operator can replace certain if...else structures. We will now look at the
switch statement, which can replace entire chains of if...else if...else if structures.

Suppose you wanted to write some code that takes special actions if the value of a char called theChar is a vowel (a, e, i, o, or
u). The special actions consist of printing a message and setting the value of an int called vowelNum. Using if and else, you
could write the code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (theChar == 'a')
{
 System.out.println("a is a vowel.");
 vowelNum = 0;
}
else if (theChar == 'e')
{
 System.out.println("e is a vowel.");
 vowelNum = 1;
}
else if (theChar == 'i')
{
 System.out.println("i is a vowel.");
 vowelNum = 2;
}
else if (theChar == 'o')
{
 System.out.println("o is a vowel.");
 vowelNum = 3;
}
else if (theChar == 'u')
{
 System.out.println("u is a vowel.");
 vowelNum = 4;
}

This can be rewritten as follows, using a switch statement:
switch (theChar)
{
 case 'a':
 System.out.println("a is a vowel.");
 vowelNum = 0;
 break;
 case 'e':
 System.out.println("e is a vowel.");
 vowelNum = 1;
 break;
 case 'i':
 System.out.println("i is a vowel.");
 vowelNum = 2;
 break;
 case 'o':
 System.out.println("o is a vowel.");
 vowelNum = 3;
 break;
 case 'u':
 System.out.println("u is a vowel.");
 vowelNum = 4;
 break;
}

The value in parentheses just after the switch keyword is called the expression of the switch statement, and it must be of type
byte, short, char, or int. (This example assumes that theChar has been declared to be a char.) When the switch code is
executed, Java searches through the case statements, looking for one that matches the expression's value. If no match is found,
nothing happens; execution continues after the closing curly bracket. If a match is found, control jumps to the first executable line
following the case statement. Then execution proceeds line by line until a break statement is reached. At this point, execution of
the switch code is terminated, and control continues after the closing curly bracket.

switch and default
The keyword default, followed by a colon, can appear in place of a case statement. The code following the default
statement is executed if none of the case statements match the expression. For example, suppose you want to modify your code
so that it prints out "Not a vowel" if theChar is not a vowel. If you couldn't use a switch statement, you would do the following:
if (theChar == 'a')
{
 System.out.println("a is a vowel.");
 vowelNum = 0;
}
else if (theChar == 'e')
{
 System.out.println("e is a vowel.");
 vowelNum = 1;
}
else if (theChar == 'i')
{
 System.out.println("i is a vowel.");
 vowelNum = 2;
}
else if (theChar == 'o')
{
 System.out.println("o is a vowel.");
 vowelNum = 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vowelNum = 3;
}
else if (theChar == 'u')
{
 System.out.println("u is a vowel.");
 vowelNum = 4;
}
else
 System.out.println("Not a vowel.");

This code is the same as the original solution, but with a final else at the end. The following code uses a switch statement with
a default block to achieve the same result:
switch (theChar)
{
 case 'a':
 System.out.println("a is a vowel.");
 vowelNum = 0;
 break;
 case 'e':
 System.out.println("e is a vowel.");
 vowelNum = 1;
 break;
 case 'i':
 System.out.println("i is a vowel.");
 vowelNum = 2;
 break;
 case 'o':
 System.out.println("o is a vowel.");
 vowelNum = 3;
 break;
 case 'u':
 System.out.println("u is a vowel.");
 vowelNum = 4;
 break;
 default:
 System.out.println("Not a vowel.");
 break;
}

When you look at all four versions of this example, you can see that using a switch statement does not significantly reduce the
number of lines of code (although there is a reduction). The main benefit is readability. The switch versions more clearly tell
readers what is happening.

Omitting the break
Once a case block is found that matches the switch statement's expression, execution continues until a break is reached or
the switch statement's closing curly bracket is reached, whichever comes first. If a case block does not end with a break,
execution continues past the next case statement and into the code for that case block.

In the previous example, suppose the case block for 'e' did not end with a break statement. (Perhaps due to an innocent
oversight. It's only human to forget to type break from time to time.) The code would then look like this:
 . . .
 7. case 'e':
 8. System.out.println("e is a vowel.");
 9. vowelNum = 1;
 10. case 'i':
 11. System.out.println("i is a vowel.");
 12. vowelNum = 2;
 13. break;
 . . .

We've added line numbers for easy reference. The switch statement detects that the expression value ('e') matches the case on
line 7. The message on line 8 is printed out, and then at line 9 vowelNum is set to 1. Since there is no break at line 10, execution
just keeps on going. The case statement at line 10 is ignored, and control flow continues at line 11. The message on line 11 is
printed out, and at line 12 vowelNum is set to 2. At last we have a break, so execution of the switch is finished.

This behavior of continuing from one case to the next in the absence of a break statement is called falling through. Falling
through is a mixed blessing. When it happens because you forgot to type break for a particular case, it's just a bug that might be
hard to find (but easy to fix once it's found).

On the other hand, falling through might be just the behavior that you want. The feature is especially useful when you want to use
the same code to process more than one case. The letters y and w are sometimes considered to be vowels. (Y occasionally, as in
occasionally; w very rarely, as in crwth, a medieval musical instrument, pronounced "crooth.") You might want to print out a special
message if theChar has either of these values. If you were using if...else code, you would insert the following lines:
. . .
else if (theChar == 'y' || theChar == 'w')
 System.out.println("y and w are sometimes vowels.");
. . .

You can incorporate this test into your switch code by inserting the following lines:
. . .
case 'y':
case 'w':
 System.out.println("y and w are sometimes vowels.");
 break;
. . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. . .

Where should these lines be inserted? Strictly speaking, the cases in a switch statement, including the default code, can
appear in any order. However, for readability, it makes the most sense to have the cases appear in their natural order (numerical
or alphabetical), with the default code appearing last.

Now that we have looked at Java's conditional code, we can turn our attention to loops.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loops
You have seen that conditional code is like a fork in the path of program execution. Extending this analogy, a loop is like an eddy
or a whirlpool. No, wait, that can't be right... paths don't have whirlpools. The analogy has broken down. At any rate, a loop is a
piece of code that is executed repeatedly. The number of repetitions can be some preset value, or the loop can run on and on
until a condition is met.

We will begin with while loops, and then move on to for loops. We will also look at several techniques for enhancing loop
behavior: breaking, continuing, and nesting.

While Loops

A while loop is a chunk of code that is executed repeatedly until a certain condition is met. The format for a while loop is
while (expression)
 loop_body

The expression must be of the boolean type. The loop body is the code to be repeated. This can be either a single statement or a
block of code enclosed in curly brackets. Initially the expression is evaluated, and if its value is true, the loop body is executed
once. Then the expression is evaluated again, and if its value is still true, the loop body is executed once again. This happens
again and again and again. Eventually (we hope), the expression evaluates to false. When this happens, the loop body is not
executed anymore. Instead, control jumps to the code immediately after the loop body.

This explanation might seem paradoxical. If the while loop is to be of any use, the expression must initially evaluate to true.
Otherwise, the loop body won't be executed at all. But if the expression is indeed initially true, how can the loop ever terminate?

The answer is that either the expression or the loop body must modify the data from which the expression is calculated. Let's look
at a few examples of how this works.

First, here is a useless loop that prints too many messages:
int x = 23;
while (x > 0)
 System.out.println("Still going!");

This loop runs forever or until you press Ctrl+C to terminate the program, whichever comes first. This example demonstrates the
need to somehow modify the data that constitutes the expression.

The next example is more useful. The following code prints the numbers 1 through 10:
int counter = 1;
while (counter <= 10)
{
 System.out.println("counter = " + counter);
 counter += 1;
}

You can use a pre-increment or post-increment operator to make this code slightly more terse:
int counter = 1;
while (counter <= 10)
{
 System.out.println("counter = " + counter);
 counter++;
}

The next example prints out consecutive square numbers that are less than 1,000:
int counter = 1;
while (counter*counter < 1000)
{
 System.out.println(counter * counter);
 counter++;
}

This example points out a useful feature of while loops: You don't need to know beforehand how many passes you want to make
through the loop body. You could certainly find a calculator, figure out that the square root of 1,000 is 31.6227766..., and write the
following:
int counter = 1;
while (counter <= 31)
{
 System.out.println(counter * counter);
 counter++;
}

This approach works, but it violates the spirit of making the computer compute. If you're programming a computer, you shouldn't
have to reach for a calculator. With the next-to-last version of the example, you take advantage of the fact that you don't have to
know how many passes you're going to make through a while loop. You just have to be able to know when you're done.

While loops are the first of several kinds of loops that we will present in this chapter. Loops are powerful because a few lines of
source code can cause the computer to execute a very large number of instructions.

The WhileLab animated illustration demonstrates while loops. To run the program, type java loops.WhileLab. You see a
display that shows a while loop with two assignment lines in its body, as shown in Figure 5.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.1: While Lab: initial display

The loop uses variables a and b. As the code executes, their values are displayed and updated. Click on the Step button to
animate the next line of code. Click on the Run button to animate the entire loop. You can click on Step Lightspeed or Run
Lightspeed to bypass the animation and just see the result. When the animation is finished, click Reset to start again.

You can type in your own values for the initial values of a and b, for the test expression, and for the new values that are assigned
to a and b within the loop. Figure 5.2 shows While Lab with a slightly modified test expression.

Figure 5.2: While Lab with modified test expression

Figure 5.3 shows the result of executing the configuration shown in Figure 5.2.

Figure 5.3: While Lab after execution

Try typing in different values for b <= ?? in the test expression. (If you enter a large number, the loop will be executed a large
number of times, so you probably want to execute with the Run Lightspeed button rather than the Run button.) As you vary the
limit on b, what do you notice about the final value of a?

Try configuring WhileLab's code display so that the code computes the following results (which can be in either a or b, whichever
you prefer):

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first five odd numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you have some experience with while loops, we can look at a variation on the theme: do-while loops.

Do-While Loops
A while loop always tests its condition before executing its body. There may be times when you want to execute the body first, and
then test. This is done with a do-while loop. The format of a do-while loop is
do
 loop_body
while (expression);

As with ordinary while loops, the loop body can be either a single statement or a curly bracket-enclosed block. Note that the
parenthetical expression must be followed by a semicolon.

When a do-while loop is executed, the loop body is executed. Then the expression is evaluated. If the expression evaluates to
true, the loop body is executed again, the expression is evaluated again, and so on until eventually the expression value is
false. At that point, execution of the loop is finished. As with ordinary while loops, you should write do-while code in such a way
that during execution of the loop, the data constituting the expression changes so that at some point the expression's value can
become false.

The code in the following example prints out the cube of x, and then increments x by 5, until x exceeds 100:
do
{
 System.out.println(x*x*x);
 x += 5;
}
while (x <= 100);

The body of a do-while loop is always executed at least once. In the preceding example, at least one line will be printed out, even
if the initial value of x is greater than 100.

Do-while loops are not very different from while loops. The main difference is that the body of a while loop might not ever be
executed, whereas the body of a do-while loop will always be executed at least once.

Now let's look at for loops, which are useful when you know how many passes through the loop body you want.

For Loops

The following code, which uses a while loop to compute a value and print a message ten times, has a very common structure:
int z = 0;
while (z < 10)
{
 int formula = z*z*z + z*z;
 System.out.println(formula);
 z++;
}

The code first initializes z, and then it enters a while loop. Within the loop body, the first two lines perform the internal business of
the loop, so to speak. The last line (z++) is concerned with updating the only data that changes from pass to pass in the loop.
Figure 5.4 shows the structure of the loop.

Figure 5.4: A common loop usage

This structure (initializing before a loop, incrementing at the end of the loop body) is so common that there is a special kind of loop
to support it. The for loop has the following format:
for (initialization; condition; update)
 body

This for loop is exactly equivalent to
initialization;
while (condition)
{
 body
 update
}

The for keyword must be followed by three items, known as the initialization, the condition, and the update. These are enclosed
in parentheses and separated by semicolons. When the for loop is processed, the initialization is executed once. Then the
condition, whose type must be boolean, is evaluated. If the condition is true, the loop body is executed. Then the condition is
evaluated again, and so on until the condition is false. Notice that no matter how many times the loop body is executed (zero
times, once, or multiple times) the initialization is executed exactly once.

For loops are useful when you know beforehand how many times you want the loop body to be executed. (They are especially
useful when you're processing arrays, which will be presented in the next chapter.) When you don't know beforehand how many
times the body should execute, you are generally better off using a while loop because your code will be less complicated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Usually, the initialization involves setting the value of a single variable, often to zero. The condition is usually a test on the value of
that variable, and the update increments the variable. For example, the following code prints out a message 10 times:
int i;
for (i=0; i<10; i++)
 System.out.println("DANGER!");

In this code, the variable i is used just to regulate the number of passes through the loop body. Since it does not appear in the
body, we could have chosen any name for the variable, but it is conventional to use i (or j if i is in use). A variable used in this
way (regulating the number of passes through the loop body, but otherwise playing little or no role in the body) is called a loop
counter. We could have initialized i to any value, as long as the value in the condition was 10 greater than that, but it is
conventional to start a loop counter at 0. If you follow these conventions, and we strongly recommend that you do so, people who
read your code will have a good chance of understanding your intentions.

The initialization and update portions of a for loop can have multiple parts, separated by commas. For example, the following code
prints out the areas of rectangles whose bases range from 5 to 10 inches, and whose heights are 2 inches more than the base:
int base, height;
for (base=5, height=7; base<=10; base++, height++)
{
 int area = base * height;
 System.out.println(area + " square inches");
}

Here, both the initialization and the update have multiple parts.

Breaking and Continuing

Usually a loop runs until its condition is false. However, there may be times when you want to terminate the loop prematurely.
This is called breaking out of the loop.

As an example of loop breaking, imagine you are writing a payroll program for a small company. The company has 100
employees whose ID numbers are 1001 through 1100. A method called getPayAmount, which takes an employee ID as its
argument, returns the amount of money the employee should be paid. Another method called printCheck, which has an
employee ID and an amount as its arguments, prints the specified employee's paycheck. A variable called balance keeps track
of how much money the company has in the bank.

The following code prints everybody's paycheck and keeps track of the bank balance:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

The problem with this code is that it doesn't take precautions against using up all the money in the bank account. The following
code uses a break statement to terminate the loop as soon as there isn't enough money left to cover the next paycheck:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 if (balance-pay < 0)
 break;
 printCheck(id, pay);
 balance -= pay;
}

The break statement causes immediate termination of the loop. Execution continues with the first line of code following the loop.
You can break out of any kind of loop: do, do-while, and for. Note that this application of break is unrelated to using break to
terminate a case in a switch block. The two situations are very different.

There might be times when you want to terminate not the entire loop, but just the current pass through the loop. You do this with
the continue statement. The following example uses continue in a loop that prints out the square and cube of every number
from 1 through 20, except 8:
int i;
for (i=1; i<=20; i++)
{
 if (i == 8)
 continue;
 int squared = i * i;
 int cubed = squared * i;
 System.out.println(squared + ", " + cubed);
}

The continue statement causes control to jump to the end of the loop body. Then the update (i++) is executed, the condition is
checked, and perhaps more passes are made through the loop body. In other words, the current pass through the loop body is
terminated prematurely. As with break statements, you can use continue statements with do and do-while loops as well as with
for loops.

The continue statement allows you to improve on the preceding paycheck example, which broke out of the loop as soon as you
couldn't afford to pay a salary. This was possibly unfair to the workers who had not yet been paid. After all, the employee who
caused the break might have had the highest salary in the company. Even if there was not enough money to pay that person,
there might still be enough left to pay someone else. So a more fair version of the program would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 if (balance-pay < 0)
 continue;
 printCheck(id, pay);
 balance -= pay;
}

The only difference between this version and the previous one is the replacement of break with continue. Now the loop never
terminates prematurely, although some passes through loop body might do so.

Nesting

The body of a loop can contain any valid Java code, including another loop, which can itself contain any valid Java code, including
another loop, and so on. The technique of putting a loop within a loop is called nesting.

As an example of loop nesting, suppose you are writing code to generate frames for an animated movie. Assume that a frame
consists of a grid of 1000 x 1000 pixels. (Pixel is an abbreviation for picture element. A pixel is a tiny dot of color, almost too small
to see. If you hold a magnifying glass up to your computer screen, you can see the individual pixels.) Assume also that there is a
method called computePixel, which takes as arguments the horizontal and vertical positions of the pixel whose color value is to
be computed. Fortunately, computePixel also stores the color value in the appropriate place, so all you have to worry about
here is calling the method with the right arguments.

The following code uses nested for loops to call computePixel for every pixel position:
1. int x, y; // x = horiz, y = vert
2. for (y=0; y<1000; y++)
3. for (x=0; x<1000; x++)
4. computePixel(x, y);

It is conventional to use x as a variable name for representing horizontal positions, and y for representing vertical positions. Line 2
says that the outer loop body will be executed with y ranging from 0 through 999. The outer loop body is lines 3 and 4. Line 3 says
that the inner loop body, which is line 4, will be executed with x ranging from 0 through 999. So the first value pair passed to
computePixel at line 4 will be (0, 0), followed by (1, 0), and then (2, 0), and then (3, 0), and so on up to (999, 0). Those
thousand calls are the first pass through the outer loop. Then y is incremented from 0 to 1 and compared to 1,000. Since y is
found to be still less than 1,000, the second pass through the outer loop begins: computePixel is called with arguments of (0,
1), (1, 1), through (999, 1). Every pass through the outer loop entails a thousand passes through the inner loop, until finally
computePixel is called with arguments of (999, 999). At this point, the outer loop's condition is false, so the outer loop is
finally done.

The body of the outer loop is two lines long (lines 3 and 4), but due to a technicality, the lines do not have to be enclosed in curly
brackets. This is because, technically speaking, lines 3 and 4 are a single statement: a for loop. Only bodies consisting of multiple
statements need to be enclosed in curly brackets. The precise definition of a statement is extremely intricate, but statements are
easy to recognize because they end with semicolons. So you can get away with omitting curly brackets in this example, although
you should indent responsibly to make it clear to readers that you are using a nested loop. However, it does no harm to add the
curly brackets anyway (it's okay to have a block that contains just a single statement). The curly brackets do not affect execution
speed, and they make the code a bit more readable, as you can see here:
1. int x, y; // x = horiz, y = vert
2. for (y=0; y<1000; y++)
3. {
4. for (x=0; x<1000; x++)
5. {
6. computePixel(x, y);
7. }
8. }

The NestedLoopLab animated illustration lets you use loops to draw cycloids. Cycloids are beautiful, complex geometric shapes. If
you have ever played with a Spirograph, you have already appreciated cycloids. You could create some wonderful images with a
Spirograph by drawing several curves in the same space but varying the curves' orientation or some other feature. If you have
done this, you have performed a repetitive complicated task, varying features from one repetition to the next. In other words, you
have done something that can be modeled with a loop, or possibly with nested loops.

A cycloid is the curve traced out by a point on a circle (the roller) as it rolls without slipping around the inside of a larger circle (the
gasket). The roller always touches the gasket at one point, as shown in Figure 5.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.5: A cycloid

The ratio between the size of the roller and the size of the gasket determines the number of lobes the curve will have. The ratio in
Figure 5.5 is 1:4, so the curve has 4 lobes.

The inset is the distance from the tracing point to the rim of the roller. NestedLoopLab uses arbitrary inset units of 0 through 10,
where 0 is the rim of the roller and 10 is the center. The orientation is the point of initial contact between the roller and the gasket,
measured in clockwise degrees from straight up.

NestedLoopLab lets you select a ratio and color. You also choose a loop style. The default is no loop, but you can choose Loop to
select a loop that varies the inset or the orientation. For really sophisticated images, you can use nested loops that vary the inset
and the orientation, in either order. The Color choice lets you leave the color constant or vary the color in any of the loops

To launch NestedLoopLab, type java loops.NestedLoopLab. You will first see the display shown in Figure 5.6.

Figure 5.6: NestedLoopLab: initial display

Figure 5.7 shows NestedLoopLab with a ratio of 8:15 and a small inset.

Figure 5.7: NestedLoopLab: 8:15

In Figure 5.8, the configuration uses a loop, with the inset ranging from 0–6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.8: NestedLoopLab with a loop

Figure 5.9: NestedLoopLab with nested loops

Now try it for yourself. Enjoy! You can use the File ‚ Gallery menu to view a few sample patterns. If you come up with a really
spectacular image, please e-mail its settings to me at www.sybex.com so we can include it in future revisions of the gallery.

Labeled break and Labeled continue

Breaking out of a hierarchy of nested loops can be difficult. It might happen that code in an inner loop detects a condition that
should cause an outer loop to be terminated. For example, you might use three nested loops to print paychecks for every
employee in every department in every division of a large company. (Each department uses its own set of employee IDs, starting
from zero.) The getPayAmount method now takes three arguments: division, department, and ID. Let's assume another feature
for this method: The if statement will return a negative value if the corporate database that it consults is down. When this
happens, paycheck processing should be terminated at once.

The following code would not be correct:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3.
4. for (divn=0; divn <nDivisions; divn ++)
 5. {
 6. nDepartments = getDepartmentCount(divn);
 7. for (dept=0; dept <nDepartments; dept ++)
 8. {
 9. nEmployees = getEmployeeCount(divn, dept);
10. for (id=0; id<nEmployees; id++)
11. {
12. pay = getPayAmount(divn, dept, id);
13. if (pay < 0)
14. break;
15. printCheck(divn, dept, id, pay);
16. balance -= pay;
17. }
18. }
19. }

The code assumes the presence of methods that return the number of departments in a division (getDepartmentCount) and
the number of employees in a department (getEmployeeCount). It also assumes that nDivisions has been preset to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the number of employees in a department (getEmployeeCount). It also assumes that nDivisions has been preset to the
number of divisions in the company. The variable names nDivisions, nDepartments, and nEmployees mean, of course, the
number of divisions, the number of departments, and the number of employees. This kind of naming convention is common and
useful.

Unfortunately, the code doesn't work. The break keyword breaks out of the immediately enclosing loop, not out of all loops. So
the break at line 14 just breaks out of the innermost loop (lines 10-17). Processing then continues with the next department
because we are still in the middle loop (lines 7-18).

There is a simple but clumsy solution, which is shown in the following code. The innermost loop, when it detects a database
problem, sets a boolean variable to true. The middle and outer loops have to check this variable and do their own break if it is
true. Incidentally, a boolean variable that's used in this way to indicate program status is often called a flag. Here is the correct
but clumsy code:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3. boolean trouble = false;
 4.
 5. for (divn=0; divn <nDivisions; divn ++)
 6. {
 7. nDepartments = getDepartmentCount(divn);
 8. for (dept=0; dept <nDepartments; dept ++)
 9. {
10. nEmployees = getEmployeeCount(divn, dept);
11. for (id=0; id<nEmployees; id++)
12. {
13. pay = getPayAmount(divn, dept, id);
14. if (pay < 0)
15. {
16. trouble = true;
17. break;
18. }
19. printCheck(divn, dept, id, pay);
20. balance -= pay;
21. } // End of inner loop
22. if (trouble)
23. break;
24. } // End of middle loop
25. if (trouble)
26. break;
27. } // End of outer loop

The code is difficult to read, which is a good indicator of code that is needlessly complicated. The solution is Java's labeled break
feature. This feature lets you assign a name, or label, to any for, while, or do-while loop. The label is any valid identifier (so you
just need to follow the same rules that govern variable or method names). The label, followed by a colon, appears just before the
for, while, or do keyword. Now you can break out of the labeled loop, even from code in a loop nested inside the labeled loop,
by adding the loop's label after the break keyword.

The following code elegantly fixes the paycheck program by using a labeled loop and a labeled break:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3.
 4. bigloop: for (divn=0; divn <nDivisions; divn ++)
 5. {
 6. nDepartments = getDepartmentCount(divn);
 7. for (dept=0; dept <nDepartments; dept ++)
 8. {
 9. nEmployees = getEmployeeCount(divn, dept);
10. for (id=0; id<nEmployees; id++)
11. {
12. pay = getPayAmount(divn, dept, id);
13. if (pay < 0)
14. break bigloop;
15. printCheck(divn, dept, id, pay);
16. balance -= pay;
17. }
18. }
19. }

Now line 14 causes the outermost loop to break.

Java also provides a labeled continue feature. The statement continue label; terminates the current pass through the
labeled loop. If the label were omitted, the current pass through the innermost loop would terminate instead.

Loops and Scope

The previous chapter introduced the concept of scope. As a reminder, a variable's scope is the block (inside curly brackets) that
most tightly encloses the variable's declaration. The variable has definition only within its scope. Outside the scope, the variable's
name may be reused, but the name refers to a different piece of data with its own scope.

With the introduction of loops, you begin to use code that can consist of blocks nested in blocks nested in blocks, and so on. This
raises the issue of where variables should be declared. A good rule of thumb is that a variable's scope should be as small as
possible. This means that if a variable is used only in a loop, it should be declared inside the loop.

For example, in the paycheck code of the previous section, you declared float pay outside the outermost loop, even though it
is only used in the innermost loop. A clear approach would be to eliminate the declaration on line 2 and change the innermost loop
to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (id=0; id<nEmployees; id++)
 {
 float pay = getPayAmount(divn, dept, id);
 if (pay < 0)
 break bigloop;
 printCheck(divn, dept, id, pay);
 balance -= pay;
 }

Now anyone who reads the code and wonders where pay is used only has to think about five lines.

You are allowed to declare a variable in the initialization statement of a for loop. Thus, the following is allowed (and, in fact, is
encouraged):
for (int i=0; i<10; i++)
{
 // Loop body
 // More loop body
}

The scope of i is the body of the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Rewrite the following code to maximize readability:
switch (x)
{
 case 100:
 System.out.println("x is big");
 break;
 case 101:
 System.out.println("x is big");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case -1000:
 System.out.println("x is negative");
 break;
}

2. Rewrite the following code to make it cleaner:
boolean flag = false;
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
}
if (!flag)
 z = 1000;

3. What happens when the following code is executed with val equal to 10? 100? 1,000? First, decide just by
looking at the source code. Then write a program to verify your answer.
switch (val)
{
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
}

4. Run the WhileLab animated illustration by typing java loops.WhileLab. Try changing the value in the
condition in the third line. What do you notice about the final value of a?

5. The description of WhileLab suggests three exercises, which are repeated here. For each desired result,
configure the inputs of WhileLab to produce that result. Then verify your work (and make sure WhileLab is
trustworthy) by writing an application that duplicates each while loop. The loops should generate the following
results:

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first 5 odd numbers.

6. There is a number game called Hotpo that can entertain you for a few minutes while you're stuck in traffic,
waiting for a movie to start, or having dinner with someone really boring. Hotpo stands for Half Or Triple Plus
One, and it works like this: Think of an odd number. Now mentally calculate another number, as follows: If the
first number was even, the next number is half the first one; if the first number was odd, the next number is 3
times the first number, plus 1. Now you can forget the first number and apply the Half Or Triple Plus One
formula to your current number. Keep going until the value reaches 1. Let's try this with a starting number of 5.
The series is 5 ® 16 ® 8 ® 4 ® 2 ® 1.

Write a program that plays Hotpo. First, initialize a variable called n to the starting value you're interested in.
Then enter a loop that prints out each number in the sequence, along with the current step number. For
example, the output for 3 would be
Step #1: 10
Step #2: 5
Step #3: 16
Step #4: 8
Step #5: 4
Step #6: 2
Step #7: 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step #7: 1

Should the program use a while loop or a for loop?

7. What is the value of n after the following code is executed?
int n = 1;
outer: for (int i=2; i<10; i++)
{
 for (int j=1; j<i; j++)
 {
 n *= j;
 if (i*j == 10)
 break outer;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Arrays

Overview
All of the data types presented so far in this book have represented single units of information. The char type represents a single
character, while the other types represent numbers with various formats and ranges.

This chapter will introduce arrays, which are clusters of data. You will learn how to create arrays and how to use them in
programs, especially in the context of loops.

Arrays are extremely basic examples of objects. We can't claim that when you master arrays, you will have mastered object-
oriented programming. However, in the course of this chapter, you will learn a number of concepts that will make it easy for you to
master objects when they are presented in the next several chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clusters of Data
An array is a cluster of variables, called components, all of the same type. The array has a name, but the individual variables
within the array do not. Each of the components has a unique identifying integer, called an index. The plural of index is indices,
which proves that someone was paying attention in Latin class. The indices range from 0 through n-1, where n is the number of
components in the array.

Before you use an array, you have to declare its type and create it. You have already seen type declarations in the context of
primitive data types, and array declaration is quite similar. Creation is a new concept, and we will discuss it in some depth.

Declaring Arrays

Array declaration, like primitive declaration, associates a variable name with a data type. There are two ways to declare an array.
The preferable format is
Component_type[] name;

Note the square brackets after the component type. An example of this format is
float[] temperaturesCelsius;

This declaration says that temperaturesCelsius is the name of an array whose components are all of type float. The number
of components will be specified later, when the array is created. Note the plural in the name, indicating that the variable relates to
more than one temperature.

The alternative format for array declaration is
Component_type name[];

The only difference is that the empty square brackets now come after the name, rather than after the component type. This format
is included as a holdover from older programming languages (C and C++). It is considered less readable than the first format, and
we will not use it in this book.

Creating Arrays

At some point after you declare an array, you need to create it. This is new. With primitives, all you had to do was declare a
variable's type, and the variable came into existence. Arrays, as well as all other kinds of objects, are different: You have to create
them explicitly. This is done with the keyword new.

The format of an array creation statement is
name = new component_type[number_of_components];

In the previous section, you declared a variable named temperaturesCelsius to be an array whose components have float
type. From this point on, we will say this more briefly: temperaturesCelsius is an array of floats. When you want to create the
array, you first have to decide how many components it will have. If you want 10 components, for example, you would create the
array like this:
temperaturesCelsius = new float[10];

The array size does not have to be a literal int. A variable is acceptable. Suppose you have a method called
getNTempReadings, which returns the number of temperatures available to the program. Then you might do the following:
int nTemps = getNTempReadings();
temperaturesCelsius = new float[nTemps];

You could even get more terse:
temperaturesCelsius = new float[getNTempReadings()];

When an array of primitives is created, all of its components are given an initial value. Numeric arrays (that is, arrays of byte,
short, int, long, float, and double) have all components initialized to 0. Boolean arrays have all components initialized to false.
Char arrays have all components initialized to the null character, which is a non-printing, do-nothing zero value that indicates "no
character at all."

It is convenient to represent an array as shown in Figure 6.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.1: A new array

Figure 6.1 shows the array after it has been created but before any of its components have been modified. Now is the perfect time
to learn how to modify the components.

Using Array Components

The components of an array of n components have indices from 0 through n-1. The names of those components are
arrayName[0], arrayName[1], and so on, through arrayName[n-1]. Thus, in this example, you could use the following code
to set the first and last components to -10 and 10, respectively:
temperaturesCelsius[0] = -10;
temperaturesCelsius[9] = 10;

Sometimes the first component is called the zeroth component, so that the adjective will match the index. The term eliminates
confusion, because one could reasonably (but wrongly) believe that the first component is temperaturesCelsius[1].

Figure 6.2 shows the array after the preceding code has been executed.

Figure 6.2: A used array

Of course, you can also read the value of an array component. The following code sets a component to the average of two other
components:
temperaturesCelsius[5] =
 (temperaturesCelsius[6]+ temperaturesCelsius[7]) / 2;

You can see that an individual array component can be used in any context where a primitive variable of the same type can be
used.

Array Length

When you create an array, you specify the number of components. Subsequently, the array knows its component count. You can
read the number of components with the expression arrayName.length. For example, if you have an array called
employeeNames, the following code sets an int called nEmployees to be the length of the array:
nEmployees = employeeNames.length;

The array's length is permanently fixed at creation time, so you can't modify it. The following code would cause a compilation
error:
employeeNames.length = 5000;

Array Initialization

We have already said that when an array is created, its components are initialized to zero for numeric types, or to false or the
null character for booleans and chars. If you want the array to start life with different contents, you can set the values of the
components you want to change one by one, such as follows:
char[] chars = new char[10];
chars[3] = 'L';
chars[4] = 'C';

If you want to specify a value for all the components of the new array, a more compact syntax is available:
name = new type[] {value0, value1, … };

The compiler determines the array length by counting the values in the curly brackets. The array components are initialized to
those values. For example, the following code creates and initializes an array of 4 bytes:
byte[] bytes = new byte[] { 3, 5, 7, 99};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arrays and Loops
Loops, and especially for loops, are ideal for processing arrays. No matter what you want to do to the array, you typically use a for
loop with a loop counter that ranges from 0 through array-length-minus-1. Within the loop's body you perform whatever processing
you want, using the loop counter as an array index.

For example, the following code computes the product of all the values in an array called measurements:
double product = 1;
for (int i=0; i<measurements.length; i++)
 product *= measurements[i];

Note that this code works on arrays of all sizes, because it reads the array size from measurements.length.

For another example, let's revisit the paycheck-printing code from the previous chapter. Here is one of the several versions of that
code:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

The code is a bit unrealistic, because in a company with 100 employees, people are going to join or leave the company. The
number of employees and their individual IDs are going to change. However, it is reasonable to assume that there could be a
method called getIDsFromDatabase, which queries the corporate database and returns an array of int containing the ID of
every employee who should get a paycheck. Then the preceding code would be modified as follows:
int[] ids = getIDsFromDatabase();
for (int id=0; id<ids.length; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multi-Dimensional Arrays
The arrays we have looked at so far have been one-dimensional. This means that each component is specified by a single unique
index. Java also supports multi-dimensional arrays, in which each component is specified by a unique sequence of indices. The
number of indices in the sequence is the array's dimension. In a two-dimensional array, for example, each component has two
indices. Figures 6.1 and 6.2 portrayed some one-dimensional arrays as columns of boxes. We can portray a two-dimensional
array as a lattice or matrix, where each component is identified by its row and column, as in Figure 6.3.

Figure 6.3: A two-dimensional array

If the array in Figure 6.3 were called twoDimInts, it would be declared as
int[][] twoDimInts;

The array is now declared but has not been created yet. When you create an n-dimensional array, you have to specify n sizes:
one size for each dimension. To create a two-dimensional array of 3 rows and 2 columns, as in Figure 6.3, use the following code:
twoDimInts = new int[3][2];

Now the array has been created. At creation time, every component is initialized, as with one-dimensional arrays. To access an
individual component, you use the array name followed by both indices, with each index in square brackets. For example, the
following code initializes every component of twoDimInts to 39:
 for (int i=0; i<3; i++)
 for (int j=0; j<2; j++)
 twoDimInts[i][j] = 39;

Suppose you have 50 weather stations, each of which takes a temperature reading every hour throughout one day. You might
store the data in a two-dimensional float array called temps, where temps[t][s] is the temperature at time t recorded by
station s.

The following code could be used to print the average temperature over all stations, hour by hour:
for (int hour=0; hour<24; hour++)
{
 float tempTotal = 0;
 for (int stn=0; stn<50; stn++)
 tempTotal += temps[hour][stn];
 float tempAvg = tempTotal / 50;
 System.out.println("Average temp at time " + hour +
 " = " + tempAvg);
}

On the other hand, you might want the average temperature over the entire day for each station. For that, you would use the
following code:
for (int stn=0; stn<50; stn++)
{
 float tempTotal = 0;
 for (int hour=0; hour <24; hour++)
 tempTotal += temps[hour][stn];
 float tempAvg = tempTotal / 24;
 System.out.println("Average temp at station " + stn +
 " = " + tempAvg);
}

These examples show that processing a two-dimensional array generally requires a two-deep nested loop. In general, processing
an N-dimensional array requires an N-deep nested loop.

The BoolArrayLab animated illustration uses a two-deep nested loop to let you set the values in a 200-by-200 boolean array. The
array contents are illustrated by a grid of 200 by 200 pixels. A blue pixel represents a value of true; a black pixel represents
false. (You probably can't see the individual pixels unless you use a magnifying glass.) To run the program, type java
arrays.BoolArrayLab. The code looks like this:
boolean[][] bools = new boolean[200][200];
for (int y=0; y<200; y++)
 for (int x=0; x<200; x++)
 bools[x][y] = ________________________ ;

You supply the formula in the last line. The formula can be any valid boolean expression. Initially, the program comes up with the
following formula:
 bools[x][y] = x>y;

Figure 6.4 shows BoolArrayLab's initial screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.4: BoolArrayLab

The File ‚ Gallery menu offers 7 sample formulas, and you are encouraged to try your own or modify the ones provided. Figure 6.5
shows a parabola.

Figure 6.5: BoolArrayLab drawing a parabola

The lower portion of the display renders the contents of the array. Since 200 x 200 is fairly large, the display uses a rectangular
grid of 200 x 200 pixels. An array component with a value of true is represented by a blue pixel, while a false value is
represented by a black pixel.

Before you launch the program, can you guess what sort of image is produced by the initial formula bools[x][y] = x>y;? If
you discover a formula that produces an interesting display, please email it to www.sybex.com. I will use it and mention your
name in the next edition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arrays as Objects
Now you know enough about arrays to write some very useful code. At this point, we will stop discussing the syntax and use of
array code. It's time to look at what you might think of as array anatomy. This material is extremely important, because nearly
everything you'll learn about array anatomy also applies to the anatomy of full-blown objects. If you understand the material in the
remainder of this chapter, you will have a good solid foundation for learning about object-oriented programming in Java.

You have already seen that declaring an array is different from declaring a primitive. When you declare a primitive, the variable is
right there for you. But when you declare an array, you still have to create it. This is a clue that there is more going on with arrays
than with primitives.

You can think of memory as being divided into two parts: accessible and inaccessible. (This is unofficial terminology, but it is very
useful and will be used throughout this book.) Primitives exist in accessible memory; arrays exist in inaccessible memory. Figure
6.6 shows memory divided into its two parts, populated with a few primitives and arrays.

Figure 6.6: Accessible and inaccessible memory

Any variable on the left side of the figure – that is, in accessible memory – can have its values read and written. Accessible
memory is for primitive variables, and for a kind of variable that you have already used without knowing it. This kind of variable is
called a reference. References are used for all access to arrays. When you declare an array, what gets created is just a reference.
(Remember, the array is not created until you say new.) The reference exists in accessible memory. No matter what kind of array
you declare – no matter what type, size, or number of dimensions it has – the reference is 32 bits wide.

When you create an array by invoking the keyword new, space for the array is reserved (or allocated) in inaccessible memory. For
example, the code int[][] ages = new int[3][2]; would cause allocation of 24 bytes (3 times 2 ints, times 4 bytes per
int), as shown in Figure 6.7.

Figure 6.7: An array of bytes in inaccessible memory

Invoking new is a bit like invoking a method: The code returns a value. The value returned by new is almost – but not quite – the
address in inaccessible memory of the freshly created array. If you are at all unclear about the distinction between memory
address and memory contents, you might want to return to Chapter 1 and play with the SimCom animated illustration.

Actually, it doesn't matter if the value returned by new is exactly the address of the array, or almost-but-not-quite the address, or
only vaguely related to the address. The details of the relationship are a hidden part of the Java Virtual Machine, and they may
even vary from one implementation of the JVM to another. For this reason, the value is called a reference to the array. Reference
implies that the value uniquely identifies the array in a way that is hidden from us.

Now we can look at what really happens when the following code is executed:
int[][] ages; // Allocation
ages = new int[3][2]; // Construction & ref assignment

The allocation line creates a reference named ages in accessible memory. Then the creation line causes space for the array to
be allocated in inaccessible memory. The invocation of new returns a reference to the array; this reference is the right-hand side
of the = assignment. The reference is then stored in the variable whose name appears on the left side of the = assignment,
namely ages. This situation is illustrated in Figure 6.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.8: Reference and array

Notice that the comment on the second line of code above says Construction rather than Creation. Construction is the
technical name for creating something in inaccessible memory by invoking new.

Why does this matter? So far, the array code we have presented has made sense without burdening you with all this reference
stuff. But there are certain very useful operations you can do with arrays that only make sense if you understand references.
These are operations that you have already seen in the context of primitives: assignment, and argument passing.

Suppose ages and otherAges are declared to be arrays of the same type. What does it mean to say the following?
ages = otherAges;

Contrary to reasonable expectation, this code emphatically does not create a new array whose components have the same values
as the original array. Remember that ages and otherAges are really references. So ages = otherAges; just copies the 32-
bit pattern from one reference to the other. The result is a second reference that (in some sense) points to the same thing the first
reference pointed to: the array. You now have two references to the same array, as shown in Figure 6.9.

Figure 6.9: Two references, one array

The CreateArrayLab animated illustration dynamically illustrates the following code:
double d = 1.23;
double e = d;
d = 3003;
double[] doubleArray = new double[4];
double[] theCopy = doubleArray;
doubleArray[1] = 98.6;
e = theCopy[1];

Start the program by typing java arrays.CreateArrayLab. You will see the display shown in Figure 6.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.10: CreateArrayLab

Click on the Go button to see the animation. When the animation finishes and you want to watch it again, you can click on Reset
to return the display to its original state.

References usually point to arrays (or to objects, as we will see later). However, there is a special value that can be assigned to
any reference. The value is null, and it indicates that the reference does not point to anything. For example, you might make the
following declaration and assignment:
double[] doubles;
doubles = null;

The null reference value is only slightly useful at the moment, but you will see a use for it in the section on garbage collection
later in this chapter. You will also make extensive use of null in later chapters, in the context of objects.

Passing References to Methods

Now you understand what really happens in code like the following:
float[] floatArray = new float[4];
float[] theCopy = floatArray;

Are you likely to encounter this situation? Are you likely to make a copy of a reference, when you already have a perfectly good
one, given the confusion that a copy might create? Actually, yes. Within a single method, there isn't really any good reason for
copying a reference. However, you might want to pass an array as a method argument.

Remember that when you pass a primitive as an argument to a method, the method actually gets a copy of the primitive. Thus,
the method can modify the copy, and the caller will never be aware of the modification because the caller has no access to the
modified copy.

With arrays and methods, the situation is a bit different. You don't actually pass an array into a method. You pass a reference to
the array. The method receives a copy of the reference. The caller's original reference and the method's copy are identical 32-bit
patterns, so they both (in some sense) point to the same object in inaccessible memory: the array. So when you pass an array
reference as a method argument, the method can use the reference to modify the array, and the modifications will be visible to the
caller.

The PassArrayLab animated illustration animates the following code:
int[] intarray = new int[3];
setInts(theArray);
 . . .
static void setInts(int[] ints)
{
 for (int n=0; n<ints.length; n++)
 ints[n] = 22;
 return;
}

The return statement isn't really required, since the method's type is void and it would return anyway after executing its last line.
The return is just there to make the animation more clear. When a method returns, all variables that were declared within the
scope of the method cease to exist. This includes the method's arguments (ints in this example). The space in accessible
memory that was allocated for the variables is reclaimed by the system. Conceivably, the next variable to be declared could
occupy the same bytes that used to constitute the ints argument. But all is not lost. Although the ints argument ceases to exist,
the array it references continues to exist.

Invoke PassArrayLab by typing java arrays.PassArrayLab. The Go and Reset buttons start the animation and reset the
display. Run the animation a few times, until you are confident that you understand that what gets passed to the method is a
reference and not an array. That way, changes made to the array are permanent and visible to the caller.

Garbage Collection

Garbage collection is a mundane term for a very important feature.

You have seen that arrays are created by invoking the keyword new. Surely there must be a way to recycle an array's memory
after the array is no longer needed. Something like this happens to the arguments and local data in a method, when the method
returns. But in that case, the recycled data consists of primitives and references. In other words, it's data in accessible memory
that was reserved by declaring arguments or variables. In the case of arrays, we are concerned with data in inaccessible memory
that was reserved by invoking new.

Java's precursor languages, and in particular C and C++, required the programmer to explicitly free up memory that was no longer
needed. This was the only way that the memory could become available for reuse. This led to problems. One such problem is
called a memory leak bug. If a bug causes a method to neglect to free up a few hundred bytes, that's not much of a problem. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

called a memory leak bug. If a bug causes a method to neglect to free up a few hundred bytes, that's not much of a problem. The
program is probably running on a system with at least several million bytes of available memory, so if a few hundred become
unavailable, there is still plenty left. But if the method is called in a loop that executes 1,000 times, a few hundred thousand bytes
become unavailable. That might have an impact. If the loop executes 1,000 times every hour, eventually there will be no more
memory available for allocating new arrays, and the program will crash. The problem is called a memory leak because the pool of
available memory gradually diminishes.

Java makes memory leaks highly unlikely, because in Java the programmer never decides when to recycle unneeded arrays and
objects. The JVM decides when memory is no longer needed, and such memory is automatically recycled. The JVM uses the
following logic to decide when to recycle memory:

When an array (and, as we'll see later, an object) is created, inaccessible memory is created and a reference is returned. The
JVM keeps track of how many references are pointing to an array or other object. Your program might make copies of a reference,
and might pass the reference as a method argument. As long as there is at least one reference to something, there is a chance
that you might want to use that particular something, so its memory will not be recycled. However, when the last reference to an
object ceases to exist, suddenly there is no way to read or write the object, or to use it in any way. You can't talk about something
if you have no name for it. Since the unreferenced object can no longer play any role in your program, its memory will be
automatically recycled. Such automatic recycling of unneeded memory is called garbage collection.

Consider the following method:
1. void useAnArray(int size)
2. {
3. int[] theArray = new int[size];
4. int[] aRefCopy = theArray;
5. int[] anotherCopy = theArray;
6. }

Line 3 constructs an array of ints and stores the returned reference in theArray. Line 4 copies the reference, so after line 4 there
are 2 references to the array. After line 5, there are 3 references to the array, but only briefly. Immediately after line 5, the method
returns, so all its variables are recycled. Suddenly, instead of 3 references to the array, there are none at all. Now the program no
longer has any way to access the array, which will be recycled shortly.

If you have an array that you no longer need, there is no explicit way to recycle its memory. However, you can usually set all
references to the array to null, which will cause garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. The following two declarations are equivalent as far as the compiler is concerned, but one is considered more
readable than the other. Which is more readable, and why?

1. double dubs[];

2. double[] dubs;

2. Write a line of code that declares an array of 5 ints and initializes the array to contain the first 5 prime numbers.
The code should be a single statement.

3. Write a method whose single argument is an array of double. The method should return the average (mean) of
the array's components. Write an application that tests the method by passing it an array containing any values
you like.

4. Write a program that uses the array-averaging method of Question 3. The program should compute and print
out the average of an array (you can choose the component values). Then the program should add 100 to each
component, and again compute and print out the average.

5. Write a program that contains a method that creates and returns an array of int containing the first n square
numbers, where n is the method's argument. Test your method by calling it with n=10. Your program should
print out the index and value of each component, in descending order.

6. Write a method that creates a multiplication table. The method should return a two-dimensional array of N by N
ints, where N is specified by the method's argument. In the array, the component at [row][col] should have a
value of row*col.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: Introduction to Objects
The previous chapter presented arrays, which are Java's simplest kinds of objects. Arrays are much less sophisticated than other
kinds of objects. Usually when people say "object," they mean it in a casual sense that excludes arrays. A program whose only
objects are arrays can hardly be called object-oriented. However, in learning about arrays, you have learned a number of concepts
that are vital to your mastery of full-fledged objects. You are now ready to enter the world of object-oriented programming,
perhaps never to return.

The animated illustrations for this chapter provide visual reinforcement for the concepts that will be presented here. Please be
sure to run them and take the time to play with them when the text invites you to do so.

Arrays Versus Objects
Before we begin, let's agree on some terminology. In the most formal sense, an array is a kind of object. However, we are about to
compare arrays and other objects, and we need to avoid cumbersome language. It would be useful to say, for example, "objects
have data and methods, rather than, "objects that aren't arrays have data and methods." So for the remainder of this book, unless
it will cause confusion, "object" will mean "object but not array."

You already know a lot about objects from your study of arrays. Here are some similarities between arrays and objects:

Objects contain clusters of data.

Objects are created by invoking the keyword new.

Objects inhabit inaccessible memory.

Objects are manipulated indirectly, via references.

Object references can be passed as method arguments; objects cannot.

Objects are not explicitly destroyed; they are garbage-collected when they have no more references.

Another recognizable feature of objects is the use of the period as a symbol to denote "property of" when it follows the name of an
array or object. With arrays, the syntax arrayReference.length gave you the number of components in the array. With
objects, the syntax objectReference.something gives you access to the extensive power and features of an object. You will
see how this works in great detail later in this chapter.

Objects have many features that go far beyond what arrays can do. Here are some unique features of objects:

They can contain data of different types.

They can contain methods as well as data.

They are related to classes.

Classes are among the most important concepts in object-oriented programming. They are actually quite simple to understand, as
you will see in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Classes
Plato would have approved of the concept of classes.

The easiest way to learn about classes is to step outside the domain of object-oriented programming for a moment and look at the
real world. (Plato might not have approved of calling it "real.") We experience things in the world, and we create categories in our
minds so that we can think about those things collectively. Figure 7.1 illustrates this mental process.

Figure 7.1: Class as mental category

As another example, "dog" is a category. In daily life, when dealing with the external world, we don't really experience the category
"dog." We experience individual dogs, such as Harley or Sumo or Rover. So "dog" is a class or category, and the individual dogs
Harley and Sumo and Rover are individual instances of that class.

Now back to object-oriented programming. In Java, a class is a piece of code that describes a category of thing that you want to
represent in software. In fact, a Java program is just a bunch of interacting class definitions. You might have suspected as much,
since every complete application listing we have seen so far has contained the mysterious keyword class. On the other hand,
you might not have suspected as much. So far we have put a lot of effort into concealing the object-oriented nature of class code,
because it was not yet time to talk about objects and classes. Well, now the time has come.

Suppose you want to write a program to model the behavior of Harley, Sumo, and Rover. First you spend some time thinking
about what these three have in common. Eventually you realize that they are all dogs, so you decide to create a class called Dog.
(In Java, a class name can be any valid identifier, but by convention we capitalize the first letter.) You create the class by writing a
source file that looks like this:
public class Dog
{
 . . .
}

This is called a class definition. The code that goes between the curly brackets is the body of the class definition. Bodies can be
as short as a few lines of code, for very simple classes. There is no upper limit on the size of the body, but typical large class
bodies can be hundreds or even thousands of lines long. Of course, you don't yet know how to write a class body, but that is what
the rest of this book is all about.

A class definition should appear in a file whose name matches the class name. So the Dog class should appear in a file called
Dog.java. Compiling this file will result in a file called Dog.class. Now that you know what a class is, the .class filename
extension makes sense. This is not an absolute rule, but explaining when you do and don't have to apply it would require
presenting a number of concepts that are out of place here. If you are curious, please wait until Chapter 9, "Packages and
Access."

So a class is something that you define when you write your source code. What about objects? An object is an individual instance
of a class. Objects are created when your program is executed. More specifically, an object, like an array, is created by an
invocation of the keyword new. The syntax for object creation is a bit different from the syntax for array creation, as you will see in
the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objects and Their Data
You have already learned that objects, like arrays, contain clusters of data. You have also learned that the data in an object,
unlike the data in an array, can be of differing types. The number, types, and names of an object's data elements are all defined in
the object's class definition.

Let's look at a very simple example. Here is a very simple class definition:
public class Person
{
 int age;
 short weight;
}

This is our first example of a class that does not contain a method called main. In fact, this class definition has no methods at all.
The class just defines a bundle of data. The bundle contains an int called age and a short called weight.

To create an individual instance of this class, you would use the following code:
Person keara;
keara = new Person();

The first line is a declaration. Like all other declarations, it tells the compiler that you will be using a variable called keara and it
will be of a certain type. At first glance, it appears that the type of keara will be Person; this is almost true, but not quite. Actually,
the declaration says keara will be a reference to an object, and that object will be an instance of the Person class. If the
distinction seems subtle, it is also very important.

The situation is similar to what we saw in the previous chapter, in the context of arrays. The declaration int[] temperatures;
says that temperatures will be a reference (in accessible memory) to an array (in inaccessible memory). Similarly, the
declaration Person keara; says that keara will be a reference (in accessible memory) to an array (in inaccessible memory). In
both cases, the declaration does not cause construction of the array or object. Nothing gets constructed until new is executed.

When the second line (keara = new Person();) executes, an object is constructed, using the class definition as a kind of
stencil or cookie cutter. The JVM knows which class definition to use (remember, a Java application can consist of many class
files) because the class name appears after new and before the empty parentheses. As with arrays, the invocation of new
constructs an object in inaccessible memory and returns a reference to that object. The reference is stored in the variable keara,
so keara now refers to the newly created object. At this point, the situation is as shown in Figure 7.2.

Figure 7.2: Reference and object

The figure shows that the object contains its own set of data variables, with names and types as specified in the class definition
source file. When an object is constructed, its data variables (called fields) are initialized in the same way array components are
initialized. Numeric fields are initialized to 0, char fields are initialized to the null character, and boolean fields are initialized to
false.

Now you can use the reference keara to manipulate the object's fields. The following code writes and reads the fields of an
object, using a new notation:
keara.age = 8;
short f = keara.weight;

In both lines, you use the following syntax to refer to an object's field:
Object_reference.field_name

The period is pronounced "dot." So if you were reading the first code line out loud, you would say, "Keara dot age equals eight."

The DataLab animated illustration shows the construction of an object and the use of a reference to access fields of that object.
Please take a moment now to run the animation by typing java objects.DataLab. Figure 7.3 shows DataLab's initial display.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.3: DataLab

Press the "Run" button to view the animation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multiple Objects
You have learned that a class is a kind of stencil or cookie cutter for creating objects. Cookie cutters are especially useful if you're
going to make lots of cookies. Similarly, classes are really useful because you can use a class to make multiple instances of that
class. Different cookies made from the same cutter have the same outline, but they can be frosted or decorated differently.
Similarly, different instances of the same class can have different data values.

Figure 7.4 shows three instances of the Person class. Each instance is referred to by a different reference.

Figure 7.4: Multiple objects

The data values inside an object can be manipulated in all the same ways you can manipulate ordinary variables. For example, if
curly and larry are references to Person objects, you might write the following:
curly.age = larry.age + 12;

The SeveralObjectsLab animated illustration lets you play with multiple instances of the Person class. Start the program by typing
java objects.SeveralObjectsLab. You will see the display shown in Figure 7.5.

Figure 7.5: SeveralObjectsLab

SeveralObjectsLab initially displays the following code:
Person reference1 = new Person();
Person reference2 = new Person();
Person reference3 = new Person();
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;

The reference variable names aren't very imaginative. Also, it isn't very useful to have five lines that all set the same field in the
same object to the same value.

That's where you come in. Type better names into the text fields in the declaration lines. Use the choices to reference different
fields in different objects. Use the text fields in the assignment lines to assign any value you like to the fields you have chosen.
The assignment values can be literals or expressions, and the expressions can include fields in any of the objects. Figure 7.6
shows SeveralObjectsLab after reconfiguring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.6: SeveralObjectsLab reconfigured

Figure 7.7 shows the result of executing Figure 7.7.

Figure 7.7: SeveralObjectsLab reconfigured and executed

Try configuring SeveralObjectsLab to execute the following code:
Person simon = new Person();
Person emily = new Person();
Person bethan = new Person();
simon.age = 30;
emily.age = simon.age - 20;
simon.weight = 150;
bethan.weight = simon.weight / 3;
bethan.age = bethan.weight / 5;

The program demonstrates construction of the objects and references, followed by assignment to the various fields. Try
configuring different values. Hopefully, the results will not be surprising.

The point of SeveralObjectsLab is to get you to think of objects as bundles of data. Objects are similar to other instances of the
same class, to the extent that all such objects contain similar clusters of data. That is, each cluster has the same number of
variables, and those variables have the same types and names, as defined in the class definition file. However, each object is
distinct and has its own version of each variable defined by the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objects and Their Methods
In addition to containing data, objects can also contain methods. You might have suspected as much, because all the application
classes presented in this book have contained at least one method (public static void main(String[] args), and
sometimes more than one. All those methods have had the keyword static in their declarations. Later in this chapter you will
see that static means, in a sense, "not object-oriented." The methods had to be static because we had not yet introduced
objects. Now it is time to present genuinely object- oriented methods.

Let's add a method to the Person class:
public class Person
{
 int age;
 short weight;

 int ageInNYears(int n)
 {
 return age + n;
 }
}

The method computes how old the person will be in n years. It has a lot in common with the methods you have already seen. It
has a declaration that specifies the method's return type, name, and argument list. It has a body enclosed in curly brackets, and it
returns a value.

There are two major differences between this method and the ones you have looked at in previous chapters:

There is no static in the declaration.

The method refers to a field (age) of the class where the method is defined.

To call a method of an object, you again use the "reference-dot" notation. The following code shows how this is done:
1. Person ed = new Person();
2. ed.age = 62;
3. ed.weight = 220;
4. int n = ed.ageInNYears(3);
5. System.out.println("Ed will be " + n +
 " in 3 years.");

Note in line 4 that the method call looks like the method calls you are used to, except that it is preceded by an object reference
and a dot. This syntax says, "Call the ageInNYears method of the object referenced by ed."

This brings up an important point about object-oriented programming. Until this chapter, all the methods presented in this book
have contained in their declarations the mysterious keyword static. We will explain static in detail in the next section. For
now, let's just say that a static method is one that is not object-oriented and does not belong to an individual object. It has been
useful to present only static methods for six chapters, because the non-static approach allowed us to introduce a great many
foundational concepts without the added complication of presenting objects. But in realistic Java programming, very few methods
are static. Most methods are non-static, which means they are associated with objects. Thus, most method calls involve not just
invoking a method, but invoking a method on an object.

Let's look again at the Person class, with line numbers:
 1. public class Person
 2. {
 3. int age;
 4. short weight;
 5.
 6. int ageInNYears(int n)
 7. {
 8. return age + n;
 9. }
10. }

The ageInNYears method makes use of the age variable. But which age variable? Every instance of the Person class has its
own version of age (and of weight). You may have already guessed correctly: The version of age that gets used is the one
belonging to the object on which the method call was made. So in the line int n = ed.ageInNYears(3);, the version of age
that gets used is the one belonging to the object referenced by ed.

The ObjectMethodLab animated illustration demonstrates a class called Square. Start the program by typing java
objects.SeveralObjectsLab. You will see the display shown in Figure 7.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.8: ObjectMethodLab

The class contains one variable, an int called side. The class also has one method, called dump, which outputs a message
followed by a value. The output appears in the text area at the bottom of the window. Initially, the method dumps out side = ,
followed by side itself. Of course, this is the version of side that is owned by the object on which the method was called. The
code creates two objects and gives them distinct values for side. These values are 10 and 20, but you can change them by
typing different numbers into the text fields.

Try configuring the code so that the method dumps the perimeter of the square. Configure again so that the method dumps the
area of the square. Observe how, when you call dump on an object, the method uses that object's version of side.

The next section will look deeper into how objects contain interacting data and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Truth About static
The time has come to show you how classes, objects, static code, and non-static code all work together to create a complete
object-oriented Java application program. To understand what's going on in an application, you need to be clear on the difference
between static and non-static parts of a class. You have already learned that methods can be either static or not, and that most
methods in most programs are non-static. Data, as well as methods, can be either static or not. Let's look at this distinction.

Static Data

The previous section explained that when a class defines data members, each instance of the class gets its own version of each
data member. This is true for ordinary non-static data. If you add static to the declaration of a variable in a class, you defeat this
one-version-per-instance mechanism. Instead of getting one version of the variable for each instance, you just get one version of
the variable, period.

Here's a version of the Person class that has a static variable:
 1. public class Person
 2. {
3. static int rev = 3;
 4. int age;
 5. short weight;
 6.
 7. int ageInNYears(int n)
 8. {
 9. return age + n;
10. }
11.
12. void dump()
13. {
14. System.out.println("rev " + rev +
15. " age = " + age);
16. }
17. }

Static variables have limited uses. One possible use is to keep track of the current revision of the class source. Here you set the
rev to 3. (As with any other variable declaration, you can initialize a static class variable in the same line where you declare it.) The
rev is 3 because version 1 from earlier in this chapter just had data, rev 2 from the previous section had data and a method, and
that brings us to rev 3.

When the dump method executes, the version of age that gets printed out is of course the version belonging to whatever Person
object is executing the method. The version of rev that gets printed out is... well, there is only one version, because the variable is
static. Consider the following example:
Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
thelma.dump();
louise.dump();

The output of this code is
rev 3 age = 28
rev 3 age = 38

The (static) rev does not change but the (non-static) age does.

Now consider the following code, which uses static data to get into trouble:
Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
thelma.rev = 999; // Change thelma's rev
louise.dump();

Now the output is
rev 999 age = 38

If you didn't know that rev was static, you would be surprised by the output. The code seems to change the rev of thelma, not
of louise. Of course, since rev is static, it doesn't belong to an individual object, so it isn't really meaningful to talk about the
rev "of thelma" or "of louise." There is just the rev.

Java offers you a way to refer to static variables without risking the confusion of the previous example. Instead of saying
thelma.rev or louise.rev, you can say Person.rev. In other words, instead of the reference-dot-staticVariableName
syntax, you can use classname-dot-staticVariableName. This makes static variable usage more conspicuous, because typical
class names begin with capital letters, while reference names begin with lowercase letters. (This is not a requirement of the
language; it is a style convention. There is no benefit to violating this convention.)

Using the new syntax, the previous example can be rewritten as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
Person.rev = 999;
louise.dump();

The change makes it clear that the thing that's getting set to 999 is a static variable, so the output should now be no surprise to
anyone. The classname-dot-staticVariableName notation reinforces the fact that the variable does not belong to any instance. It is
convenient to think of statics as belonging to the class as a whole, rather than to an individual instance. By contrast, non-static
variables are sometimes called instance variables.

We can now move from static data to the more subtle concept of static methods.

Static Methods

You have just seen that a static variable is not associated with an individual object. Similarly, a static method can be thought of as
acting in a way that is not associated with an object.

In an instance method (that is, a non-static method), access to an instance variable meant access to the version of the variable
owned by the currently executing object. Thus, in the Person class, the ageInNYears method used the age variable. Calling the
method on thelma meant that the method would use thelma's age. Calling the method on louise meant that the method would
use louise's age. In all cases, the method used the current object's version of the variable.

In a static method, there is no current object, so it would be meaningless for a static method to use a non-static variable. (Which
object's version of that variable should be used? There's no good answer.) A static method is not allowed to read or write the non-
static data of its class. Also, a static method may not call the non-static methods of its class.

Sort of.

To really understand what static code can and cannot do, you need to know about a useful Java feature called the this-reference
notation.

Earlier in this chapter, you learned about the reference-dot-variableName and reference-dot-methodName notations. These
constitute the grammar that lets Java be object-oriented. In object-oriented programming, you specify not only what data or
method you want to access, but the object that owns the data or method. But within the instance methods we have seen, instance
variables have been accessed without the reference-dot notation. The ageInNYears method returned age + n, and there is no
reference-dot notation there.

In an instance method, any use of a variable without a reference-dot prefix is something like an abbreviation. For example, the
method
int ageInNYears(int n)
{
 return age + n;
}

can be thought of as an abbreviation of
int ageInNYears(int n)
{
 return this.age + n;
}

The keyword this, also known as the this-reference, is a reference to the current object. So if you called
thelma.ageInNYears(20), within the method, this would reference the same object thelma referenced.

A static method has no this-reference, so it cannot use the abbreviated notation enjoyed by non-static methods. A static method
can indeed access non-static data and methods of its own class, or of any other class, but the method must explicitly provide a
reference to the intended object. So the following would be perfectly legal:
static void printLouisesAge(Person louise)
{
 System.out.println("Louise is " +
 louise.age);
}

We can summarize all this static/non-static information as follows:

A non-static method may use non-static data and methods of its class without using the reference-dot notation. The
current object is implied.

A static method must use the reference-dot notation. There is no current object.

A static method has no this-pointer.

Now at last, we can tie everything together and explain the role of the static main method.

The main Method

You have seen that static features of a class are a way of getting around the object-oriented requirement that data must live inside
objects and methods must be called on objects. Ideally, an object-oriented program would be a federation of objects of many
different classes that make method calls on one another, creating new objects as needed and allowing old ones to be garbage-
collected when no longer needed. This image is fine once the application is up and running, but how does the process get
started? If objects are constructed by other objects invoking new, how does the first object get created?

In Java, everything starts with the main method. Through the end of the last chapter, you patiently tolerated the presence of
static in the main method's declaration. Now you know what it means: main is not called on any individual object. It is static, so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static in the main method's declaration. Now you know what it means: main is not called on any individual object. It is static, so
it is just called. Within main, objects can be created and non-static calls can be made, so the object interactions quickly become
highly object-oriented.

Every application is invoked by typing
java ApplicationClassName

(The animated illustration programs require a prefix and a dot before the class name. We will explain that notation in Chapter 9.)
When you start up an application, a program called java is executed. This is the Java Virtual Machine. The JVM does not create
an instance of the application class. It could have been designed to do so, but the creators of Java decided to let us programmers
decide when and how to create objects.

After the JVM initializes itself, it makes use of one of its parts, called the class loader. The class loader is code that finds, reads,
and interprets .class files. After the class loader processes a .class file, the JVM is changed in two ways:

The class defined in the file can be used by the JVM.

Any static data declared in the class is allocated and initialized.

Initially, the JVM uses the class loader to load the class specified in the command line. Later on, during the course of execution,
any class used in the code that has not been loaded already is loaded as needed. Since the class loader allocates and initializes
static data before any instances of the class are constructed, you can access a class's static data, and even call its static
methods, even if no instances of the class exist.

That's good news, because the next thing the JVM does is call a static method of the class it just loaded. Of course, this is the
main method. Presumably, main constructs objects that construct objects that construct objects, and the program enters its
object-oriented phase. Static data and methods can still be used, but typically most accesses are non-static.

The ObjectLifeCycleLab animated illustration demonstrates how static code starts the chain of object-oriented interactions. Start
the program by typing java objects.ObjectLifeCycleLab. At first the display only shows a star, representing the static
main method of an application. This initial state is shown in Figure 7.9.

Figure 7.9: ObjectLifeCycleLab

When you click the Run button, the static code constructs an object that is an instance of one of three classes: Triangle,
Rectangle, and Oval. Each object contains its own data and methods. The static code makes a method call on the object,
represented by an expanding arrow. The colored dots near the arrowhead represent method arguments.

Now the code in the first object's method constructs a second object, on which a method call is made. The call is returned (that
colored dot near the shrinking arrowhead represents a return value), and the life cycle goes on and on and on. Sometimes objects
vanish; this represents garbage collection. Figure 7.10 shows ObjectLifeCycleLab after running for several minutes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.10: ObjectLifeCycleLab after running a while

Of course, ObjectLifeCycleLab is just a symbolic cartoon, but it illustrates several very important concepts. Watch the program
until you observe the following behaviors:

Everything starts with static code, all alone.

At any moment, the static code or a single object is current (recognizable by a highlighted background and flashing
data).

An object only gets garbage-collected if it is not in use.

Reference Data

Variables in a class don't have to be primitive. Classes may define variables that are references to objects or to arrays. Moreover,
arrays may contain references rather than primitives. When an object with reference data is constructed, the references are all
initialized to the null value, indicating that they do not yet point to any objects.

For example, suppose you are writing a Java program to control a weather station that has electronic access to a number of
remote thermometers. You might model this situation with two classes, WeatherStation and Thermometer.

Writing the code that would enable the Thermometer class to read input from a physical device is far beyond the scope of this
book. Let's just assume that somehow the class has a method called connect, which takes care of the connection, and another
method called readTemp, which returns a float.

The WeatherStation class would include the following data declarations:
Thermometer[] therms;

As with any other array, the declaration does not create the array. You would create the array in a method, with a line like the
following (assuming there are 20 thermometers):
therms = new Thermometer[20];

Now the array exists, and all its components are null. You now have to construct and connect each Thermometer object, as
follows:
for (int i=0; i<therms.length; i++)
{
 therms[i] = new Thermometer();
 therms[i].connect();
}

Now you can write a method to compute the average temperature:
float getAverageTemp()
{
 float totalTemp = 0;
 for (int i=0; i<therms.length; i++)
 totalTemp += therms[i].readTemp();
 return totalTemp / therms.length;
}

Let's refine the connect method to illustrate the use of null. Sometimes hardware fails. Let's assume that connect can detect
a failure of the thermometer belonging to the executing object. This failure will be indicated by the method's return value: true will
mean connection was successful, and false will mean there was some kind of failure. You can rewrite the array initialization
code like this:
for (int i=0; i<therms.length; i++)
{
 therms[i] = new Thermometer();
 if (therms[i].connect() == false)
 therms[i] = null;
}

Now you need to refine the getAverageTemp method so that it ignores all broken thermometers:
float getAverageTemp()
{
 float totalTemp = 0;
 int nWorkingThermometers;
 for (int i=0; i<therms.length; i++)
 {
 if (therms[i] != null)
 {
 totalTemp += therms[i].readTemp();
 nWorkingThermometers++;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nWorkingThermometers++;
 }
 }
 return totalTemp / nWorkingThermometers;
}

You use the variable nWorkingThermometers to count Thermometer objects that actually contributed to the average.

A reference whose value is null may not be used for accessing an object. (After all, null means that there is no object pointed
to by this reference.) For example, the following is illegal:
Thermometer thermo = null;
Float temp = thermo.readTemp();

When the second line is executed, the program is terminated abruptly with an error message about a null pointer exception. You
have already seen exceptions, but we will not discuss them in detail until Chapter 11, "Exceptions." The name "null pointer" is a
throwback. Java's predecessor languages, C and C++, use pointers, which are like references but less secure. It isn't clear why
the exception was named "null pointer exception" rather than "null reference exception."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Name four traits that arrays and objects have in common.

2. Name two differences between arrays and objects.

3. Objects are not passed as method arguments, but references to objects can be passed. When a reference is
passed into a method, any changes made to the referenced object by the method should be visible to the
method's caller. Write an application to demonstrate this.

Your application will have two classes: Cat and Ager. The Cat class should have a single variable: an int
called age. The Ager class should have a method whose signature is makeOlder(Cat kitty, int
nYears). This method should add nYears to the age of the Cat object referenced by kitty. Your main
method should go in the Ager class. It should create one instance of each class, set the cat's age, and then use
the Ager's method to change the age. Your main should then print out the cat's new age, and verify that it really
changed.

4. What happens if you move the main method of the previous question from the Ager class to the Cat class?

5. Write an application that causes a "null pointer exception" failure.

6. What does the following application print out?
public class Question
{
 static long x;

 public static void main(String[] args)
 {
 Question q1 = new Question();
 Question q2 = new Question();
 q1.x = 10;
 q2.x = q1.x + 20;
 System.out.println("q1.x = " + q1.x);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Inheritance
In the last chapter, you learned that objects are instances of classes, containing data and methods defined by the class. This
chapter will present two object-oriented concepts that will greatly enhance what you can do with objects. At first glance,
inheritance and constructors do not seem to have much to do with each other. However, by the end of this chapter, you will see
that a class's constructors are intimately related to that class's inheritance hierarchy.

Superclasses and Subclasses
You already know that a class has data and methods. You provide a class with these features by writing the code that defines the
class. Now it's time to learn another way that a class can get data and methods: inheritance.

Inheritance is how a class can get data and methods that are defined in a different class. For this mechanism to work, the two
classes must have a special relationship with each other: one must be a superclass of the other, which must be a subclass of the
first. In this section, you'll learn what this relationship means.

Let's start with an example. Suppose you are writing a Java program to support the personnel department of the company. You
decide that you should create two classes to represent the employees: Worker and Manager. These classes have some
similarities and some differences. Here are some of the similarities:

Workers and managers both have employee identification numbers, so both classes have an int called id.

Workers and managers both need to get paid, so both classes have a float called salary and a method called
printCheck. (The details of creating a method that prints checks are beyond the scope of this book, but it seems
only fair that everybody should get a check.)

Now here are some of the differences:

Managers have workers who report to them, so the Manager class has an array of Worker objects called
workers. Workers don't need this, because nobody reports to them.

Workers might or might not be eligible for overtime pay, so the Worker class has a boolean called getsOvertime.
Managers are never eligible for overtime, so the Manager class does not need this data field.

Of course, a realistic program would have many more data fields and methods in each class, but this is enough to demonstrate
the power and usefulness of inheritance. The Worker class looks like this:
public class Worker
{
 int id;
 float salary;
 boolean getsOvertime;

 void printCheck()
 {
 // Lots of intricate
 // check-printing code
 // goes here.
 }
}

And the Manager class looks like this:
public class Manager
{
 int id;
 float salary;
 Worker[] workers;

 void printCheck()
 {
 // Same intricate
 // check-printing code
 // goes here.
 }
}

Despite their differences, these classes have a lot in common. The most worrisome common feature is the printCheck()
method.

Note Notice the empty parentheses after the method name. This is a common practice when writing about a method. It
specifies that you're talking about a method rather than a variable or a class.

printcheck() is worrisome because it appears in identical forms in two places. Duplication of code should be avoided, because
code is never frozen in time. Code evolves. Over the lifetime of a program, bugs are found and new features are required. The
process of fixing bugs and adding features is called maintenance, and every program requires it. If a method appears in identical
forms in two places, every change must be made twice, and the risk of introducing errors rises dramatically.

It is not surprising that workers and managers share some common features. They are both categories of employees. And here
we find a simple but profound truth about the way we humans observe our world.

The previous chapter presented classes as programmatic representations of mental categories, such as "triangle" or "dog."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The previous chapter presented classes as programmatic representations of mental categories, such as "triangle" or "dog."
Object-oriented programming is a very human approach to writing software, because our minds are good at creating categories for
the things we experience in daily life. No doubt all animal species do this to some extent, with categories like "food" and "threat"
and "safe place to sleep." People do it best of all.

People are so good at creating mental categories that we take the process one step further. We don't just imagine categories of
things. With our talent for abstract thinking, we can imagine categories of categories! So the "triangle" category is one member of
a larger mental concept that we might call "shapes." Other members of this supercategory are "squares" and "rectangles."
Similarly, the "dog" category belongs to the supercategory "mammals," which in turn belongs to its own supercategory: "animals."

The Swedish philosopher Carl Linnaeus organized all living species into a hierarchy of supercategories with seven levels. This
organization is still in use among biologists. If you've ever had to memorize "kingdom, phylum, class, family, order, genus,
species" for a biology class, you were studying Linnaeus' hierarchy. His structure was more detailed than our "animal, mammal,
dog" hierarchy. You can't really say that either hierarchy is more or less correct, though. Each one is appropriate for certain tasks.

Well, enough philosophy. The point is that it's natural to think about hierarchies of categories, and Java supports this way of
thinking. Let's see how this is done.

Inheritance from Superclasses

In Java, a category is represented by a class. A supercategory (if you will continue to permit the use of this made-up word) is
represented by a superclass. Superclass is a real word, and so is its opposite: subclass. Every class can have one superclass.
That superclass in turn can have its own superclass, and so on. A class may not have multiple superclasses, but multiple
subclasses are allowed.

The extends keyword is used to denote the superclass/subclass relationship. To see how this works, let's continue the personnel
example from the previous chapter. Right before the philosophical digression, you learned that workers and managers are both
categories of employees. You will now create an Employee class that will contain all the shared functionality of workers and
managers.

In Java, every class is capable of being a superclass, and you don't have to do anything special in the class definition of a class
that will have subclasses. (The special work, as you'll soon see, comes when you define the subclasses.) So the superclass looks
like this:
public class Employee
{
 int id;
 float salary;

 void printCheck()
 {
 // The same intricate
 // check-printing code
 // goes here.
 }
}

Now let's create the Worker subclass:
public class Worker extends Employee
{
 boolean getsOvertime;
}

The class name is followed by the extends keyword, which is followed by the class's superclass. That's all we need to do! This
works because in Java, there are two ways for a class to have a variable or method:

The variable or method can be defined in the class.

The variable or method can be defined in the class's superclass.

This very simple Worker class just defines a single variable. But its superclass (Employee) defines the variables id and salary,
as well as the method printCheck(), so Worker also has those variables and that method. We say that Worker inherits id,
salary, and printCheck() from its superclass.

The Manager class is also simple:
public class Manager extends Employee
{
 Worker[] workers;
}

Again, Manager inherits id, salary, and printCheck() from its superclass. The situation is diagrammed in Figure 8.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.1: A Simple inheritance hierarchy

Figure 8.1 shows that Employee is the superclass of both Worker and Manager. Employee itself does not seem to have a
superclass, but in Java, every class you define has a superclass, even if you don't explicitly declare one with the extends
keyword. Java provides a class named Object, which is the ultimate ancestor of every class. A class that does not explicitly
extend something else extends Object.

The Inherit Lab animated illustration lets you create your own class hierarchy diagrams, so that you can see how variables and
methods are inherited. To run the program, type java inherit.InheritLab. You will see a display that shows a three-level
class hierarchy, as shown in Figure 8.2.

Figure 8.2: Inherit Lab

At the top of the diagram is the Object class. Object has two subclasses, called Class1 and Class4. Each of those classes
has two subclasses. The classes are color-coded based on their level in the hierarchy.

At first the classes are boring. Their names don't mean anything, and they don't have any data or methods. But if you left-click on
any class, you'll get a pop-up menu that lets you add a subclass, delete the class, or edit the class. (You can't delete or edit
Object, since its definition is beyond your control.) First, try adding and deleting classes. Then try editing a class. When you
select Edit in the pop-up menu, you get a dialog box that lets you change the name of the class, or add or delete data and
methods. The dialog box is shown in Figure 8.3.

Figure 8.3: Inherit Lab's class-editing dialog box

Try adding a variable to one of the classes in the blue level, just below Object. Type a name into the Add Data text field, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try adding a variable to one of the classes in the blue level, just below Object. Type a name into the Add Data text field, and
then click the Add Data button. Then click Apply. The edit dialog box will go away so that you can see the inheritance diagram.
The variable you've added will be seen in the box for the class you edited, and also in all of that class's subclasses, illustrating
inheritance of data. You can do the same with methods. Notice that data and methods are color-coded to tell you which class they
were defined in.

In the File menu, click on Scenarios. Then look at the two canned hierarchies, which represent animals and transportation. In the
Transportation scenario, the bottom-level classes (Car, Bicycle, etc.) inherit from two levels of superclass, as well as from
Object. Sophisticated object-oriented programs can have fairly deep hierarchies.

In each scenario, add a subclass at the bottom level and observe the inherited data and methods. Try creating a hierarchy from
scratch. If you create something interesting, send us a screenshot or a verbal description at GroundUpJava@sgsware.com. We
might include it in the next edition. If so, we'll give you credit.

An Inheritance Example

Let's look at an example of inheritance, expanding on the Worker class from the previous section. Worker is a subclass of
Employee, which looks like this:
public class Employee
{
 int id;
 float salary;

 void printCheck()
 {
 // Whatever.
 }
}

Let's add a slightly expanded Worker subclass:
 1. public class Worker extends Employee
 2. {
 3. boolean getsOvertime;
 4.
5. void dumpSalary()
 6. {
 7. System.out.println("Salary = " + salary);
 8. }
 9.
10. public static void main(String[] args)
11. {
12. Worker dagwood = new Worker();
13. dagwood.salary = 44444.44f;
14. dagwood.dumpSalary();
15. dagwood.printCheck();
16. }
17. }

Line 7 of the dumpSalary() method and line 13 of the main() method both act as if salary were an ordinary variable of the
Worker class... and they're right. The inherited variables of a class are just like its declared variables. The same is true for
inherited methods. Line 15 calls dagwood's printCheck() method, which is inherited.

We will return to this example later on in this chapter. First, it's time to learn what really happens when, as on line 12, an object is
constructed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Construction and Constructors
When you invoke new to construct a new instance of a class, automatically a call is made to a piece of code in that class, called
its constructor. This may come as a surprise, because for the past two chapters you have constructed objects without ever writing
constructors, or even knowing about them. In a moment you will see how this works out.

A constructor looks like a method. In fact, there are only two differences between a constructor and a method:

A constructor has no return type.

The constructor's name is the same as the class's name.

Like a method, a constructor has a body, enclosed in curly brackets. The code in the body can initialize the newborn object. In
fact, this initialization is the basic job of constructors. A constructor can always assume that the object's variables and methods
(whether declared in the class or inherited) exist and are accessible for reading, writing, and calling.

Let's add a constructor to the Worker class. Assume that all workers in the company have the same salary: $34,567.89. The
Worker class (with a different main() method) becomes the following:
 1. public class Worker extends Employee
2. {
 3. boolean getsOvertime;
 4.
 5. Worker()
 6. {
 7. salary = 34567.89f;
 8. }
 9.
10. void dumpSalary ()
11. {
12. System.out.println("Salary = " + salary);
13. }
14.
15. public static void main(String[] args)
16. {
17. Worker dagwood = new Worker();
18. dagwood.dumpSalary();
19. }
20. }

The constructor is lines 5-8. Constructors, variables, and methods can appear in any order in the body of a class definition.
However, it is common practice to have variables come first, followed by constructors, followed by methods. Usually, the main()
method comes at the end. When this application is run, line 17 constructs a new instance of Worker. First, space for all variables
is allocated. Then the constructor code is called. Line 7 of the constructor initializes salary to 34567.89, so the call to
printSalarydumpSalary() prints out Salary = 34567.89.

Overloading Constructors

It is not especially realistic to expect every worker in a company to have the same salary. Fortunately, you can pass arguments
into a constructor the same way you pass them into a method. As with a method, you can put an argument list inside the
parentheses that follow the constructor name. Those arguments are accessible within the method. The next version of Worker
has a constructor that accepts an argument.
 1. public class Worker extends Employee
 2. {
 3. boolean getsOvertime;
 4.
 5. Worker(float sal)
 6. {
 7. salary = sal;
 8. }
 9.
10. void dumpSalary ()
11. {
12. System.out.println("Salary = " + salary);
13. }
14.
15. public static void main(String[] args)
16. {
17. Worker dagwood = new Worker(55555.55f);
18. dagwood.dumpSalary();
19. }
20. }

The constructor now takes a float argument, and the invocation on line 17 passes a float. The output is Salary = 34567.89.

In Chapter 4, "Methods," you learned that methods are polymorphic. That is, different methods within a class may share a
common name, as long as their argument lists are different. The practice of reusing a method name in a class is called
overloading. (The term has a negative connotation in real life. When people or bridges are overloaded, that's bad. But in
programming, there is nothing bad about overloading.) You can also overload a class's constructor so that the class has multiple
constructors, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Manager extends Employee
{
 Worker[] workers;

 Manager(int nWorkers)
 {
 workers = new Worker[nWorkers];
 }

 Manager(float sal, int nWorkers)
 {
 salary = sal;
 workers = new Worker[nWorkers];
 }
}

This class has two constructors. In both versions, you specify the number of workers. In the second version, you also specify the
manager's salary.

Default Constructors

This section answers an important question: In the previous chapter and the first part of this one, how was it possible to construct
objects in classes that didn't have any constructors? To understand the answer, you have to know what a no-args constructor is.
It's just a constructor with an empty argument list.

When you create a class with no constructors, the compiler creates a no-args constructor automatically. A no-args constructor that
is created automatically is called a default constructor. You only get a default constructor if your class does not explicitly have any
constructors. If your class has constructors, no matter how many, no-args or otherwise, no default constructor is created for you.

This mechanism assures that every class has at least one constructor, even if the class was written by someone who has never
heard of constructors!

A default constructor does almost nothing. It contains no initialization code, because it contains no code at all. All it does is
participate in the constructor chain mechanism, which is discussed in the next section.

The Chain of Constructions

Objects are like onions. They consist of layers within layers within layers. Consider the Submarine class from InheritLab's
Transport scenario. This class extends WaterTransport, which extends Transport, which extends Object. One way to
visualize an instance of Submarine is as an instance of Object forming an inner core. Around this core is a layer consisting of
the data and methods of an instance of Transport. In turn, this layer is surrounded by a WaterTransport layer, which is
surrounded by a Submarine layer. The layered structure is shown in Figure 8.4.

Figure 8.4: Object layers

When a Submarine instance is constructed, each layer's constructor is called in turn, starting with Object (the innermost layer)
and moving outward. This mechanism doesn't have an official name, but we'll call it the chain of constructors.

The ConstructorLab animated illustration shows the chain of constructors in action. Start the program by typing java
inherit.ConstructorLab. At first glance, the program looks just like the InheritLab program that you already saw earlier in
this chapter. But when you click on an object, the pop-up menu has an extra Construct... item. If you make this selection, you see
an animation of the layer-by-layer construction of the class you've selected. Try it with the Submarine class from the Transport
scenario.

Here's how the chain-of-constructors mechanism works: When a constructor is called, but before any of its code is executed, a
call is made to the no-args constructor of the superclass. If the superclass is not Object, before any of its own constructor code
is executed, a call is made to its own superclass's no-args constructor. This chain of calls continues up the inheritance hierarchy
until it reaches Object, which has no superclass.

So when you call a constructor for Submarine, the first thing that happens is a call to the no-args constructor for
WaterTransport. Within that constructor, the first thing that happens is a call to the no-args constructor for Transport. Finally,
within Transport's no-args constructor, a call is made to the Object no-args constructor. At this point, the chain ends.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

within Transport's no-args constructor, a call is made to the Object no-args constructor. At this point, the chain ends.

Why does Java do this? Consider the benefits if you are the person who writes the Submarine class code. Your constructors
might need to access the data of the WaterTransport superclass, which might be initialized by WaterTransport's constructor.
That constructor might need to access the data of its own superclass, and so on. The chain-of-constructors mechanism
guarantees that by the time a class's constructor code begins to execute, the superclass portion of the class is intact and valid.

Note Bear in mind that the mechanism operates without your having to do anything at all. You don't have to make it happen.
As a matter of fact, you can't avoid it. But you can slightly alter its behavior.

As you know, constructor invocation begins with an automatic call to the superclass's no-args constructor. Recall that constructors
can be overloaded so that alternate superclass constructors could be available. There are two reasons why you might want to
invoke a different superclass constructor:

There is no superclass no-args constructor. This happens if you explicitly give the superclass one or more constructors that
take arguments. Now you don't get an automatic default constructor, so unless you explicitly coded a no-args constructor for
the superclass, there won't be one.

The superclass has a no-args constructor that doesn't do what you want. But there's another constructor that does exactly
what you want.

In either of these situations, you still want the construction chain to happen. You just want to invoke a different version of the
superclass constructor. This is done with the super keyword.

To see how super works, let's extend the Manager class from earlier in this chapter. The class looks like this:
public class Manager extends Employee
{
 Worker[] workers;

 Manager(int nWorkers)
 {
 workers = new Worker[nWorkers];
 }

 Manager(float sal, int nWorkers)
 {
 salary = sal;
 workers = new Worker[nWorkers];
 }
}

This class provides its own constructors, so there is no default constructor provided by the compiler. Neither is there an
explicitly coded no-args constructor, so any subclass of Manager will have to modify the construction chain to avoid
invocation of a constructor that doesn't exist.

Let's create a subclass called Officer. An officer is a high-ranking manager who may or may not serve on the board of
directors. The subclass will have an int variable called nYrsOnBoard, which tells how many years (if any) this officer has
served on the board. There will also be a single constructor whose arguments are the number of workers reporting to this
officer and the initial value for nYrsOnBoard. Officer salaries are $850,000.00. Nice work if you can get it. The Officer
code looks like this:

 1. public class Officer extends Manager
 2. {
 3. int nYrsOnBoard;
 4.
 5. Officer(int nWorkers, int initialNYrs)
 6. {
 7. super(850000f, nWorkers);
 8. nYrsOnBoard = initialNYrs;
 9. }
10. }

The line to notice is line 7, which introduces the super keyword. It looks like a call to a method called super(). In fact, the
code in the parentheses is an argument list, but you aren't allowed to create a method with that name. Instead, super is a
signal that you are modifying the construction chain by requesting a call to a different superclass constructor (that is, one that
isn't the no-args version). This use of super may only appear as the first executable code in a constructor (so if you
reversed lines 7 and 8, you would get a compiler error).

Line 7 invokes an alternative superclass constructor, but which one? This is determined by the argument list inside the
parentheses that follow super. Here there are two values: a float followed by an int. So the Manager constructor that gets
invoked will be the version that takes two arguments: a float and int. If you look at the Manager constructor, you'll see that
this corresponds to the second of its constructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overriding
You have already seen method overloading, where a method name is reused in a class definition. Java also supports method
overriding, which looks like it ought to be similar to overloading because the spellings are so similar. In fact, overriding is indeed a
kind of method name reuse. In this case, the reuse is within an inheritance hierarchy.

To continue this ongoing example, the Officer class is the bottom member of a three-level hierarchy. This is shown in Figure
8.5.

Figure 8.5: Inheritance of Officer

In the original version of Employee, you imagined a printCheck() method. This method is inherited by Worker, Manager,
Officer, and any other subclasses of Employee, immediate or indirect, that you might create in the future.

But what happens if a class inherits a method that is not appropriate to that class's operation? For example, printCheck()
might print checks on a monochrome printer that is loaded with low-cost blank check forms. That's fine for ordinary workers, and
even for managers, but officers need to have their checks printed by a special color printer, on high-grade fancy paper. So the
inherited version of printCheck() just won't do.

The solution is to override Officer's inherited version of printCheck(). You do this simply by putting into the Officer code a
version of printCheck() that does what you want it to do. The code looks like this:
 1. public class Officer extends Manager
 2. {
 3. int nYrsOnBoard;
 4.
 5. Officer(int nWorkers, int initialNYrs)
 6. {
 7. super(850000f, nWorkers);
 8. nYrsOnBoard = initialNYrs;
 9. }
10.
11. void printCheck()
12. {
13. // Whatever, and make it fancy.
14. }
15.
16. public static void main(String[] args)
17. {
18. Officer julius = new Officer(25, 50);
19. julius.printCheck(); // Fancy
20. Worker dagwood = new Worker(44444.44f);
21. dagwood.printCheck(); // Plain
22. }
23. }

Again, we've left out the details of how to print a check. The import point is line 11, where you have a declaration of
printCheck() that looks just like the version in Employee. The declarations are the same, but the bodies are different. Look at
the main() code. On line 19, you call printCheck() on an officer. The overriding (fancy) version of the method will be called.
On line 21, you call printCheck() on a worker. Since Worker does not override the method, the inherited (plain) version is
called.

In order for one method to override another, the superclass version and the subclass version must have identical return types,
method names, and argument list types. It is illegal for the return types to be different if the method names and argument list types
match. If the names or argument lists are different, that's legal but it isn't overriding.

Overriding allows you to use a very powerful kind of polymorphism, which will be explained in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Polymorphism Revisited
Recall from Chapter 4 that polymorphism means "many forms," implying "one name, many forms." In Chapter 4, you saw
polymorphism involving method overloading (reusing a method name within a class). The previous section presented overriding,
which is polymorphism of a different kind: name reuse in an inheritance hierarchy.

This section will present a powerful technique involving overriding polymorphism. Let's begin by exploring the difference between
the class of an object and the type of a reference.

The only way to create an object is to call a constructor. Not surprisingly, an object's class is the class whose constructor was
called when the object was created. So new Officer(50, 3); creates an object whose class is Officer.

A reference is not an object. You have already seen that a reference is a configuration of 32 bits that uniquely identifies an object.
References, not objects, are passed as method arguments. References, not objects, are declared as variables. The type of a
reference variable is the type that appears in the variable's declaration. So Worker dagwood; declares that dagwood is a
reference of type Worker.

So far, this should be glaringly obvious. Almost always, when a reference points to an object, the type of the reference is the same
as the class of the object. This happens, for example, in the line Worker dagwood = new Worker(22222.22f);.

But sometimes the reference type and the object class are not the same. Let's introduce this idea with an analogy to something
you already know about. In Chapter 3, "Operations," you learned that you can assign a numeric value to a variable whose type is
the same as, or wider than, the type of the numeric value. So you can assign a byte to a float, or an int to a double, as shown
here:
byte b = 12;
float f = b;
int i = 54321;
double d = i;

The new type (on the lhs of the assignment) must have enough capacity to encompass the value. Any extra capacity is no
problem. The same rule holds when you're passing an argument to a method. If the method expects an argument of a certain
type, you can pass data of any type, provided the type declared in the method is the same as, or wider than, the type you actually
pass.

A similar principle applies when you're assigning references. Consider this code:
newRef = oldRef;

It is legal for newRef and oldRef to have different types, as long as the type of newRef is above the type of oldRef in the
inheritance hierarchy. So the following is legal:
1. Worker dagwood;
2. Employee emp;
3.
4. dagwood = new Worker(22222.22f);
5. emp = dagwood;

Here you have one object with two references. Clearly the class of the object is Worker, because it is Worker's constructor that is
called on line 4. On line 5, the type of reference emp is Employee, which is the immediate superclass of reference dagwood.
Thus, the rule is obeyed, and line 5 is legal. You could also pass dagwood as an argument to a method that declared it took an
Employee argument.

So now you know that the type of a reference can be different from the class of the object the reference points to. This puts a
subtle but very important restriction on the Java compiler. You and I can look at lines 4 and 5 and say to ourselves, I know emp
has type Employee, but really it points to a Worker. We can do that, but the compiler can't.

This isn't a shortcoming on the part of the people who wrote the compiler. In fact, the developers of the Java compiler are some of
the smartest programmers in the world. But there are fundamental theoretical limits on what a compiler can do. No car designer,
no matter how brilliant, can make a race car that goes faster than light. Similarly, nobody can create a compiler that, in the general
case, can look at a reference and know what the class of the reference's target will be when the code is executed.

To put this more succinctly: At compile time, the compiler only knows the types of references. It does not know the classes of
objects. This means that a reference's type dictates the variables and methods you can access via that reference. You may only
access variables and methods that are the same type as the reference. To return to our example, the reference emp has type
Employee, so by using emp, you can read and write variables and call methods of Employee. (The data and methods can be
implemented in the Employee class, or they can be inherited from a superclass.) Using the reference dagwood (whose type is
Worker), you can access the data and methods (whether directly implemented or inherited) of Worker. This is shown in Table
8.1:

Table 8.1: References, Variables, and Methods

Variables via emp Variables via dagwood Methods via emp methods via dagwood

Id Id printCheck() printCheck()

salary salary dumpSalary()
 getsOvertime

Given the information in Table 8.1, the previous code example might be baffling. Here is the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Worker dagwood;
2. Employee emp;
3.
4. dagwood = new Worker(22222.22f);
5. emp = dagwood;

The table clearly shows that the reference dagwood gives you access to all the data and variables you can get to via emp, and
more. Even though line 5 is legal, why would you ever do it? Line 5 just trades a perfectly good reference for one that is less
powerful. There must be some compensating benefit to doing this, or nobody in their right mind would ever want to.

In fact, there is a very valuable compensating benefit, as you will see in the next section.

Inheritance Polymorphism

Let's continue our code example just a bit further. No doubt, there must be a piece of code somewhere in the program that
periodically prints a paycheck for everybody who works at the company. Let's suppose there's a class called Paymaster that
knows who all the employees are. Paymaster might look something like this:
public class Paymaster
{
 Worker[] workers;
 Manager[] managers;
 Officer[] officers;

 void payEveryone()
 {
 for (int i=0; i<workers.length; i++)
 {
 Worker wor = workers[i];
 wor.printCheck();
 }
 for (int i=0; i<managers.length; i++)
 {
 Manager man = managers[i];
 man.printCheck();
 }
 for (int i=0; i<workers.length; i++)
 {
 Officer off = officers[i];
 off.printCheck();
 }
 }
}

In reality, the Paymaster class would need a lot more code, including a constructor to set up the three arrays. In fact, there would
be a lot more arrays. Companies don't just have workers, managers, and officers. They have presidents, vice presidents,
directors, part-timers, and possibly many others. There could be lots of categories of people who need to get paid, and if there
had to be one array for each category, that would make for a lot of arrays.

Just to hammer the point home, let's suppose there are classes called President, VP, Director, and PartTimer, each of
which extends Employee. We won't show the code for these classes, but here is the monster that Paymaster has become:
public class Paymaster
{
 Worker[] workers;
 Manager[] managers;
 Officer[] officers;
 President prez; // No array: there's only 1 president
 VP[] vps;
 Director[] directors;
 PartTimer[] partTimers;

 void payEveryone()
 {
 for (int i=0; i<workers.length; i++)
 {
 Worker wor = workers[i];
 wor.printCheck();
 }
 for (int i=0; i<managers.length; i++)
 {
 Manager man = managers[i];
 man.printCheck();
 }
 for (int i=0; i<workers.length; i++)
 {
 Officer off = officers[i];
 off.printCheck();
 }
 prez.printCheck();
 for (int i=0; i<vps.length; i++)
 {
 VP veep = vps[i];
 veep.printCheck();
 }
 for (int i=0; i< directors.length; i++)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Director dir = directors[i];
 dir.printCheck();
 }
 for (int i=0; i<partTimers.length; i++)
 {
 PartTimer pt = partTimers[i];
 pt.printCheck();
 }
 }
}

Let's see how much you can simplify this code, using inheritance polymorphism. The first thing to do is eliminate all those arrays
and replace them with a single array, called employees:
public class Paymaster
{
 Employee[] employees;
 . . .

The components of the new array aren't really employees. That is, employees is an array of references whose types really are
Employee, but the classes of the objects pointed to by those references are really Worker, Manager, Officer, and so on. The
array is initialized by a lot of code along the following lines, which might appear in Paymaster's constructor:
. . .
Worker dagwood;
Manager julius;
President preston;
Director deirdre, dirwood;

. . .

employees[1154] = dagwood; // Employee <- Worker
employees[1155] = julius; // Employee <- Manager
employees[1156] = preston; // Employee <- President
employees[1157] = deirdre; // Employee <- Director
employees[1158] = dirwood; // Employee <- Director

. . .

The employees array is a cluster of references, all of type Employee. Each of the 5 commented assignment lines stores a
reference in a component of the array, and not one of those references is actually of type Employee. That's okay. The rhs
references are all of types that are subclasses of Employee, so the "up-the-inheritance-hierarchy" assignment rule is obeyed.

Now let's return to Paymaster's payEveryone() method. Here is all you have to do:
 void payEveryone()
 {
 for (int i=0; i<employees.length; i++)
 {
 Employee emp = employees[i];
 emp.printCheck();
 }
 }

That's all! All the references to all the people are now living peacefully together in one diverse community... er, array of references,
where the classes of the objects pointed to are unknown and mixed. But you do know that every class is a subclass of Employee
(or is Employee itself). So every object has a printCheck() method. This method might be the version inherited from
Employee, or it might be an overriding version.

What happens when the payEveryone() loop pays an officer? Recall that the Officer class overrides printCheck() to use
a fancy printer with fancy paper. You have a reference (some component of the employees array) of type Employee, pointing to
an object of class Officer. Each has its own version of printCheck(). Which one wins?

The answer, and this is crucially important, is that the type of the reference is ignored. The class of the object being called
determines which version of an overridden method will be called. So in this example, all the officers will get their checks printed in
fancy paper, and any other classes that override printCheck() will have the appropriate version called.

In case this is overwhelming you, let's look at a very simple example that illustrates the same principle:
public class FlyingMachine
{
 void whoAreYou()
 {
 System.out.println("I am a flying machine.");
 }
}

Subclass FlyingMachine like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subclass FlyingMachine like this:
public class Helicopter extends FlyingMachine
{
 void whoAreYou()
 {
 System.out.println("I am a helicopter.");
 }

 public static void main(String[] args)
 {
 FlyingMachine fm = new Helicopter();
 fm.whoAreYou();
 }
}

When the application runs, the output is "I am a helicopter." This proves that the class of the object, not the type of the reference,
determines the method version that gets called.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Which of the following hierarchies illustrate a good understanding of the difference between classes and
objects? Which ones represent mistaken understanding? The arrows mean "has subclass", so in option A,
Shape ® Triangle means "class Shape has subclass Triangle".

1. Shape ® Triangle ® RightTriangle

2. GreatLiterature ® GreatPoem ® DivineComedy

3. Planet ® Continent

4. Person ® HeadOfState ® Emperor

5. Person ® HeadOfState ® Emperor ® AugustusCaesar

2. Which of the following classes have a no-args constructor?
1. A)

class A { }

2. B)
class B
{
 B() { }
}

3. C)
class C
{
 C(int x) { }
}

4. D)
class D
{
 D(int y) { }
 D() { }
}

3. Write the code for two classes. The first, called WaterBird, has a float variable called weight. The class has a
single constructor that looks like this:
WaterBird(float w)
{
 weight = w;
}

Compile this class. Now create the second class, called Duck, which extends WaterBird. Duck has no
variables or methods, so it shouldn't take you long to write it. Will Duck compile? First, think about the issues
involved. Then try to compile Duck and see if you were right.

4. Write some code to demonstrate to yourself the chain of construction. Create an inheritance hierarchy of 4
classes. Give them any names you like. They don't have to have any data or methods, but each one should
have a no-args constructor. These constructors should print out a line identifying the current class (something
like "Constructing an instance of WaterBird"). Your main() method should construct a single instance of your
lowest-level subclass. What is the output? Does it matter which class contains the main() method?

5. Write some code to demonstrate inheritance polymorphism. Create a superclass class with 3 subclasses. The
superclass should have a method that prints out a line identifying the current class (something like "I am a
Monster"). Two of the subclasses should override this method to print out a different message (like "I am a
Werewolf"). Give the superclass a main() method with an array of size 4, typed as the superclass (for example,
Monster[] monsters = new Monster[4];). Your main() should populate the array with references to 4
objects, each with a different class, and then traverse the array, calling your method on each array component.
What is the output? Does it matter which class contains the main() method?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Packages and Access

Overview
Congratulations! At this point, you know almost all there is to know about Java's classes. The remainder of this book will look at
how classes interact, and it will present many of the core Java classes that the system provides to make your life easier. To make
an analogy with the life sciences, we are pretty much done with class anatomy (the analysis of the internal structure of a class)
and are ready to tackle class sociology (the study of how classes interact).

This chapter will first look at packages, which are organizations of interrelated classes. Once you understand packages, you will
have a good foundation for understanding access. Java has several keywords that control access, including public. This means
that by the time you finish this chapter, you will know why your application classes and your main methods have been marked as
public.

By the way, in this edition of this book, this chapter has no animated illustrations. The information presented here doesn't benefit
from the animated illustration model. However, if you can think of a concept from this chapter that would look good as an
animation, please send us your idea in detail at groundupjava@sgsware.com. If we use your idea in the next edition, we will
give you a credit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Packages
A package is a named group of classes. Generally, the classes of a package are collected together into a directory. It is possible
for package classes to appear in more than one directory, but it's hard to imagine when this would be helpful. So a package looks
a lot like a directory, even though they aren't exactly the same thing.

There is another similarity: Just as a directory can contain files and subdirectories, a package can contain classes and
subpackages. For example, a package called acmeproducts might contain two classes named Database and Connection. The
package might also contain a subpackage called utilities, which contains three classes named ThreadPool, Mailbox, and
UserProfile. Your package structure would most likely appear in the directory structure shown in Figure 9.1.

Figure 9.1: Example package/ directory structure

It's important to realize that the directory and the subdirectory shown in Figure 9.1 are not the actual package and subpackage.
They are just the places where the classes of the package and subpackage are found. Soon you'll learn how to put your own
classes in packages, and why you might want to do so. For now, be aware that there is more to it than just creating the right
directory structure and storing the class files appropriately.

When a class is part of a package, the class has a long, formal, official name. It's important to understand this long name, even
though it's rarely used. The official name of a class consists of its package structure, from top to bottom, followed by the class
name as defined in the source file. All these elements are separated by periods. For example, the Mailbox class in Figure 9.1
would be defined in a file called Mailbox.java. Its full name is acmeproducts.utilities .Mailbox, because it lives in
subpackage utilities, which lives in package acmeproducts. (Note that the package name is all lowercase. You are allowed to use
uppercase in package names, but by convention, nobody does.)

There is yet another parallel between directories and subpackages. Even a modest laptop can have tens of thousands of files on
its hard drive. If every file on the drive had to have a unique name, keeping track of which names were still available would be a
horrendous task. Thanks to directories, you only have to maintain name uniqueness within directories. So you might have a
directory called photos, with a subdirectory called NewYearsParty, which contains a file called JulieAndRich.jpg. If you had a
housewarming party, you could create a subdirectory of photos called housewarming, and if you took a picture of Julie and Rich at
the housewarming, you could store it in the housewarming subdirectory under the name JulieAndRich.jpg.

We say that a directory structure provides a namespace. A namespace is a way of organizing resources (files, classes, etc.) so
that name uniqueness only has to be maintained in relatively small and manageable regions.

Packages are also namespaces. Within a package, all class names must be unique. However, names may be reused in different
packages without restriction. Figure 9.2 shows a package structure that might be used by a fictional company called Stained Glass
Software. This company has two product lines: database products and ray-tracing software.

Figure 9.2: Package as namespace

Stained Glass Software has dozens of programmers, working in two divisions on opposite sides of the world. Life would be
impossible if every programmer had to check with every other programmer before creating a new class, just to make sure the
class name wasn't already in use. As you can see from Figure 9.2, both divisions have created a class called User. Fortunately
this isn't a problem, because the two classes are in different packages, and packages are namespaces. To put this another way,
one class is really called sgsware.db.User, and the other is really called sgsware.raytracing.User. You can see that packages
support collision-safe naming. In the real world, a package might be developed and maintained by several workgroups, by a single
workgroup, by a few individuals, or by a single person.

Creating Your Own Package

By now, we hope you're convinced that packages are a good thing. Here's how to create your own packaged classes.

You need to do two things:

Use the package keyword in your class source code.

Compile with the -d flag.

It's interesting to think about what isn't in this list. Here's what you don't have to do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a package.

Create the package directory structure.

Move the class files into the directory structure.

Let's suppose you are the founder of Stained Glass Software. You have a new computer, fresh out of the box, and you are ready
to write the sgsware.raytracing.Object3D class. This is the company's first class, so no structure has been created yet.

The first step is to create a directory where the package structure will go. Let's say you decide to put it in /products/revA. (You
might be using the kind of computer that uses the backslash as a file path separator, but for simplicity we'll use forward slashes
throughout this book.) After making sure that /products/revA exists, you create a directory to hold your source code. We'll call it
/products/source/ray. So initially, your directory structure looks like Figure 9.3.

Figure 9.3: Initial directory structure

When you write your source code, you have to tell the compiler that the class belongs to the sgsware.raytracing package. To do
this, you use the package keyword. Besides comments, the package declaration must be the first code in your source file:
// This class belongs to a package.
package sgsware.raytracing;

public class Object3D
{
 . . .
}

When you compile, use the -d command line option. This should come after javac, and it should be followed by a space. After the
space comes the directory where the package structure is to be stored. Since you're putting your package of classes in
/products/revA (known as the destination directory), you would compile like this:
javac -d /products/revA Object3D.java

The destination directory must exist before the command is typed. The compiler realizes that the class file should be
/products/revA/sgsware/raytracing/Object3D. The compiler will create any required subdirectories in the destination directory, and
it will place the class file it generates in the appropriate place. So after compilation, your directory structure would look like the one
shown in Figure 9.4.

Figure 9.4: After compilation

When you want to create a second raytracing class, you can put your source file anywhere you like. However, if you put the
source file anywhere other than /products/source/ray, it will only make life more baffling for yourself and others. Again, your source
should declare that it belongs to the sgsware.raytracing package:
package sgsware.raytracing;

public class User
{
 . . .
}

When you compile, you again use the -d flag:
javac -d /products/revA User.java

This time, the compiler does not have to create a subdirectory for storing the generated class file, since that subdirectory already
exists. After compilation, your directory structure looks like Figure 9.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.5: After more compilation

Now that you know how to create your own packages, let's look at how to use them.

Finding Packages: classpath

The designers of Java assumed that you would be working in an environment where you would be using lots of different
packages. This was a safe assumption, since Java itself comes with lots of different packages that support functions like string
manipulation, file I/O, and GUI components. Moreover, you are likely to be using other packages that you've created yourself, that
are standard for your company, or that were bought from a third party. You might be developing code that uses classes from many
different packages. When you compile and execute, the compiler and JVM need to know where in your file system these custom
packages are located. You do this with the classpath.

The classpath is a list of directories, or classpath elements, that contain package structures. The classpath elements can be
specified in two places:

The CLASSPATH environment variable

The -classpath or -cp argument of the javac or java command line

An environment variable is a variable whose scope is your computing session, rather than the interior of an program. Individual
programs can read environment variables and take action accordingly. The CLASSPATH variable, which is read by both the Java
compiler and JVM programs, is a list of classpath elements, separated by semicolons (;) for Windows machines and by colons (:)
for other systems.

You can set CLASSPATH either by typing a command or by running a script. Running a script is easier (after you create the
script). Some people prefer to set CLASSPATH in their boot or login scripts (or whatever the equivalent is on their own machines).
Appendix A, "Installing Java" shows how to write a script that sets CLASSPATH to ".", which is the current working directory.
Different operating systems use different commands to set an environment variable, as detailed in the appendix.

The other way to specify classpath elements is to type them into your compilation and execution command lines. You do this after
the javac or java command: type -classpath, then a space, then the classpath elements you want to specify. As with
CLASSPATH, if you have more than one element, they should be separated by semicolons (;) for Windows machines and by
colons (:) for other kinds of machines.

Suppose you are using a Windows machine, and you have acquired and built lots of custom packages. These packages are
stored in three different directories: \a\b, \c\d, and \e\f. There might be more than one package in any of these directories. The
names aren't very creative, and three is an inconveniently large number of classpath elements, but it makes for a nice clear
example.

Now suppose that, for some reason, you want to specify \a\b and \c\d in CLASSPATH, while specifying \e\f on the command line.
You would start by setting CLASSPATH (either manually or in a script) as follows:
SET CLASSPATH=\a\b;\c\d

Then you would compile source like this:
javac -d \my\destination -classpath \e\f MyThing.java

If MyThing is your application class, and it lives in package sgsware.db, you would execute your application like this:
java -classpath \my\destination;\e\f sgsware.db.MyThing

The application class, as well as any other classes used at any time in the application, must appear in one of the classpath
elements. So the MyThing.class file must be in one of the following directories:

\a\b\sgsware\db

\c\d\sgsware\db

\e\f\sgsware\db

Note that each of these directories consists of a classpath element, followed by a package structure.

The Java compiler and the JVM use a piece of code called a class loader. The class loader finds class files, reads them, and
translates them into internal representations. The first step in the process is to find files. The class loader does this by looking in
each classpath directory in turn. In each directory, it looks for a subdir that corresponds to the package of the class being loaded.
So when the class loader looks for MyThing.class, it looks in each of the directories listed in the preceding bulleted list.

Now you know how to create, store, and use packages. But there is still a problem, which will be presented and solved in the next
section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Importing

You have seen that a class name is really a list of package elements, separated by periods and ending with the (short) name of
the class. Packages provide a convenient way to organize software and reduce naming headaches, but there seems to be a
tradeoff with what happens in your source code.

In the previous section, you considered a class called MyThing in a package called sgsware.db. The true name of class MyThing
is sgsware.db.MyThing. That doesn't seem so bad until you realize that the following line of source code is not allowed:
MyThing m = new MyThing();

This line won't compile, because it doesn't use the true name of the class. The line ought to be
sgsware.db.MyThing m = new sgsware.db.MyThing();

Programming wouldn't be very much fun if you had to use full class names everywhere. Imagine what a burden it would be, if you
had to do so much typing. You would soon find yourself wishing for a way to abbreviate: "I wish I could tell the compiler that every
time I type MyThing, I really mean sgsware.db.MyThing." This wish is granted by Java's import feature.

Importing is a very useful feature with an unusual name. The name comes from earlier object-oriented languages, in which the
functionality was a kind of symbolic importation. Now the keyword continues to be used in Java, but the functionality has more to
do with abbreviation than with importation. The syntax of import is
import full.class.Name;

You can have as many import statements as you like in a source file. Imports must appear before the class declaration, as shown
in the following code. It assumes that you want to use the Employee and Manager classes of a package called biz:
 1. package sgsware.raytracing;
 2. import biz.Employee;
 3. import biz.Manager;
 4.
 5. public class User
 6. {
 7. Employee dagwood;
 8. Manager dithers;
 9.
10. . . .
11. }

Thanks to the imports on lines 2 and 3, you can use abbreviated class names on lines 7 and 8 (and everywhere else in this source
file). Without the imports, lines 7 and 8 would have to be
 7. biz.Employee dagwood;
 8. biz.Manager dithers;

Sometimes a source file might need to use many or all of the classes in a large package. It would be cumbersome to type in the
names of all those classes, one per import line. In the spirit of supporting abbreviation, you are allowed to use an asterisk (*) in
place of a class name. This causes all classes in the package to be imported. So the preceding code could be slightly shortened
as follows:
 1. package sgsware.raytracing;
 2. import biz.*;
 3.
 4. public class User
 5. {
 6. Employee dagwood;
 7. Manager dithers;
 8.
 9. . . .
10. }

One last note on importing: A class imports all the other classes in its package automatically. So you never have to do the
following:
package mypackage;
import mypackage.*;
. . .

Now that you understand how packages work, you have a foundation for learning about Java's various access modes. These will
be presented in the next section. You also have a basis for understanding Java's core classes. These will be introduced in
Chapter 12, "The Core Java Packages and Classes," and will be presented throughout the remainder of the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access
Java's access control is based on the idea that certain features of a class should not be usable by other classes. Before you learn
the details of access control, let's look at why this idea is sound.

One of the fundamental concepts of object-oriented programming is data hiding. This is the practice of making a class's data as
inaccessible as possible to other classes. Why would this be beneficial?

Often there are many valid ways to represent information. A temperature might be stored as degrees Kelvin, Celsius, or
Fahrenheit. A price might be listed in various currencies. A color might be represented as a name, as red/green/blue levels, as
red/yellow/blue levels, or as hue/ saturation/brightness levels. Maintenance considerations might force class code to be rewritten
so as to change the internal representation. For example, if an Italian company bought a company in the United States, money
representation might be converted from dollars to euros, and temperature representation might be converted from Fahrenheit to
Celsius.

Even if data representation does not change, it makes sense to localize the code that knows about representation inside a single
class. It is wasteful to make all classes know how data is represented internally, and it creates the risk of bugs (if the other classes
misinterpret the internal representation).

Imagine a class called Thermometer, which somehow reads a physical thermometer device. A very clean design is to give the
class a getTempCelsius() method. The method name leaves no room for confusion as to the units of the return value. There
could also be getTempFahrenheit() and getTempKelvin() methods, so that nobody ever has to look up the conversion
formulas. Moreover, nobody ever needs to know how temperature is represented within the class. It might be Fahrenheit, Celsius,
or Kelvin. It might change from one rev of the class software to another. The benefit to those of us who use the Thermometer
class is enormous: We never have to worry about the internal representation.

The general principle of data hiding is that an object's data should never be accessed directly from outside the object. Instead, the
object's class should provide methods for reading and setting the data. These methods are officially called accessors and
mutators, but they are often called by their nicknames: getters and setters. An accessor/getter has an empty argument list and
returns a data value. A mutator/setter has a void return type and a single argument. By common convention, the name of an
accessor method begins with get, followed by the property to be retrieved. The name of a mutator begins with set, followed by the
property to be modified.

To support this data-hiding approach, object-oriented languages provide facilities to let you restrict access to a class's data and
methods. In Java, this is done with access modifier keywords. Java has three access modifiers:

public

private

protected

These keywords appear before the declarations of the data or methods they apply to. The public modifier may also appear
before a class definition. Before we define what the various access modes mean, let's look at an example to clarify the syntax:
public class AccessExample
{
 public int x;
 private double d;
 protected static float f;
 char c;

 public int getX()
 {
 return x;
 }

 private void printC()
 {
 System.out.println("c = " + c);
 }

 protected void setD(double newD)
 {
 d = newD;
 }

 void bumpX()
 {
 x++;
 }

}

Access modifiers cannot apply to data defined within a method. (Since such data ceases to exist after the method returns, we
don't need to think about which outside classes may use it.) Notice the declaration of f, which is both protected and static. Access
modifiers can be freely combined with non-access modifiers such as static. Modifier order is unrestricted, so you could
equivalently say static protected float f;. For the sake of readability, it's good practice to align the first character of your
variable names on a tab stop, as the preceding example shows.

Java has three access modifier keywords, but four access modes. The fourth access mode is what you get if you don't specify
public, private, or protected. This fourth mode is called default, although you might also sometimes see it called package
or friendly. In the preceding example, variable c and method bumpX() both have default access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or friendly. In the preceding example, variable c and method bumpX() both have default access.

Now let's look at what the different access modes do.

Public Access

Public access is completely unrestricted. Classes, data, and methods can be designated public. A public class can be used by any
other class. Public data can be read and written by any code (violating the spirit of data hiding). Public methods can be called from
any code.

When you run an application, the Java Virtual Machine creates a class loader, which loads your application class. The class
loader is itself a class, and your application class must be public so that the loader can load it.

Private Access

The most restrictive access mode is private. Data and methods can be designated private, but not classes. (There is a kind of
class called an inner class that can be private or protected, but inner classes are beyond the scope of this book.) A private
variable can be written or read only by an instance of the class that defines the variable. A private method can be called only by
an instance of the class that defines the variable.

Private access may not be quite as private as you expect. Let's look at an example:
 1. public class Employee
 2. {
 3. private float salary;
 4.
 5. public float getSalary()
 6. {
7. return salary;
 8. }
 9.
10. public void setSalary(float newSalary)
11. {
12. salary = newSalary;
13. }
14.
15. public boolean earnsMoreThan(Employee other)
16. {
17. if (salary > other.salary)
18. return true;
19. else
20. return false;
21. }
22.
23. . . .
24. }

On line 3, salary is declared private. This makes sense, because one's salary should be kept private. The getSalary() and
setSalary() methods are in the spirit of data hiding. Public methods get and set private data, and there are no surprises. But
look at line 17, where the code compares the current employee object's salary to the salary of a different employee. Any object
that executes line 17 reads a private variable of a different object.

That's just how private access works. Any instance of Employee can read and write not just its own private data, but the private
data of any instance. Similarly, any instance of Employee can call any private method on any instance of Employee.

Default Access

Default access is all about packages. Fortunately, you have just learned all about packages, so you're in great shape to learn
about default access.

Default access does not correspond to a modifier keyword. Instead, it's the access mode you get when you don't mark a class,
variable, or method as public, private, or protected. A default-access class can be used by any instance of any class that's in the
same package. A default-access variable can be read or written only by an instance of a class in the same package as the class
that owns the default-access variable. A default-access method can be called only by an instance of a class in the same package
as the class that owns the default-access variable. In other words, anything with default access can be used by anything in the
same package, and it cannot be used from outside the package.

Default access is useful in this common situation: You sell a package of classes that solve a particular problem. A few of the
classes are for direct use by your customers. These are public and thoroughly documented (you'll see how this is done in Chapter
11). The rest of the classes in the package perform purely secondary roles. They are never used directly by your customers, and
are used only by the public classes to help in their internal workings.

There is no need for your customers to know about these secondary classes. In fact, everybody is better off if nobody but you
knows about them. This is true not just for classes, but for data and methods as well. Some classes, data, and methods are part
of your package's publicly visible interface, while others are nobody's business but your own.

We can draw a parallel between private features in a class and default-access features in a package. In a class, private data and
methods are only for the internal working of the class. In a package, default-access classes, data, and methods are only for the
internal working of the package.

You have already seen packages with default-access features, although you may not have realized it. When a JVM is executed, it
builds a package called the unnamed package. This consists of all classes in the current working directory that do not explicitly
contain package declarations. Consider the example classes you used in the previous chapter: Employee and its subclasses
Worker, Manager, and so on. Those classes didn't use packages, so the obvious way to proceed would be to put them all in the
same directory, and to compile with a command like javac *.java. Eventually, all the class files would exist in the current
working directory. Assuming one of those classes had a main() method, a JVM could run that application. Then all the classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

working directory. Assuming one of those classes had a main() method, a JVM could run that application. Then all the classes
would be considered to be in the no-name package. None of the data or methods in those classes had access modifiers (since
access modifiers weren't introduced until this chapter), so they got default access invisibly. And everything could work smoothly.
Any instance of any class could use any data, and call any method, of any instance of any class.

The no-name package allows your code organization to evolve as your understanding becomes more sophisticated. At first, you
don't know about packages or access. Related source files live together in a directory, along with the corresponding class files.
Everything can access everything. Later on, you learn about packages and access. You have several reasonable choices for
organizing your source code. All source files can be together in the same directory, or the source can be organized into
subdirectories that reflect the package structure, or you can use some other scheme. No matter how you organize your source
code, your class files are organized automatically (by the compiler, when you use the -d option) into directories that reflect the
package structure.

If you are developing code that involves more than just a few classes, it's a good idea to use packages. For smaller projects, it's
fine to use a single directory and take advantage of the no-name package. In this book, the code examples are as simple as
possible. Example classes have package declarations only when using a package is relevant to the topic of the example.

Protected Access

Protected access is default access plus a little bit more. Only data and methods may be protected; classes may not. (Actually,
inner classes may be protected, but they are beyond the scope of this book.)

Protected access is useful in a certain interesting situation. You already saw that default access comes into play when you are
sharing a package of interrelated classes, some of which will be directly used by your customers. Protected access comes into
play when you are sharing a package of interrelated classes, some of which will be subclassed by your customers.

It makes sense for your customers to leave your package intact. You certainly don't want dozens of different evolutions of your
package out there in the world, one evolution per customer. It is cleaner for everyone if the various subclasses created by your
various customers are in separate packages. But the subclasses might want access to non-public data or methods of their
superclasses. Even if those desirable variables and methods had default access, they still wouldn't be useful because they would
be in a different package. So protected access grants access to subclasses of the class that owns the protected features, even if
the subclasses live in different packages.

A protected method may be overridden in any subclass of the class that owns the method, even if the subclass is in a different
package. A protected method may be called by any instance of any subclass of the class that owns the method, even if the
subclass is in a different package.

Protected data is more complicated than protected methods. If a variable is protected, it is not accessible by just any instance of
any other-package subclass. It can be accessed only by the instance of the other-package subclass that owns the data.

Let's look at some simple examples. Here's a superclass:
package mystuff;
public class Fish
{
 protected float weight;
}

Here's a subclass in a different package that makes appropriate use of the protected variable:
import mystuff.Fish;

package yourstuff; // Different package!
public class Tuna extends Fish
{
 void printWeight()
 {
 System.out.println("I weigh: " + weight);
 }
}

The code is legal because any instance of Tuna that executes printWeight() is accessing its own version of the protected
variable weight.

Now here's an example that won't compile, to show you what protected access does not mean:
Import mystuff.Fish;

package yourstuff; // Different package!
public class Tuna extends Fish
{
 void printSomeonesWeight(Fish someone)
 {
 System.out.println("Someone weighs: " +
 someone.weight);
 }
}

This code is illegal, because protected access doesn't mean that any Tuna may access any other Tuna's protected data.
Protected access is different from private access in this regard.

Bear in mind that this restrictive meaning of "protected" only matters in a different-package subclass. The following code is
perfectly legal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package mystuff; // Same package as superclass
public class Snapper extends Fish
{
 void printSomeonesWeight(Fish someone)
 {
 System.out.println("Someone weighs: " +
 someone.weight);
 }
}

Here the situation is different, because the subclass and the superclass are in the same package. Remember that protected
access is default access plus a little more. Even if weight were default instead of protected, it could be accessed by any class in
the same package, independent of any superclass-subclass relationships.

Access and Overriding

Java has a rule that seems strange at first glance: When you override a method, the subclass's version may not have a more
restrictive access mode than the superclass's version. This is shown in Table 9.1:

Table 9.1: Legal Access Modes for Overriding Methods

Superclass Version Access Subclass Version Access

Public public

Protected public, protected

Default public, protected, default

Private public, protected, default, private

This rule seems arbitrarily restrictive, but on closer inspection, it is absolutely necessary. The previous chapter discussed
polymorphism, and you saw what a powerful tool it can be. It turns out that polymorphism is only possible if you have the
access/overriding rule. Let's see why this is.

Chapter 8 presented the Employee class, which had a printCheck() method. Employee had a subclass called Manager,
which had a subclass called Officer. The Officer class overrode printCheck(). You saw that you could have an array,
typed as Employee[], that contained references to objects of a variety of classes. Either Employee itself or any of its subclasses
were allowed, as shown in Figure 9.6.

Figure 9.6: Polymorphism revisited

You could then traverse the array as follows:
for (int i=0; i<employees.length; i++)
 employees[i].printCheck();

Each object would use its own class's version of the printCheck() method. This is especially useful if some subclasses
override the method.

The clean polymorphic system breaks down if a subclass is allowed to override a method so that the method's access becomes
more restricted. To see why this is so, let's assume that the check-printing loop is in some method in a class called Paymaster.
Let's create a new subclass of Employee, called PartTimer:
class PartTimer extends Employee
{
 private void printCheck()
 {
 // Whatever
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This class won't compile. That's good. If the class were allowed to override printCheck() as shown (making its access more
restricted, thus violating the rule), it would not be possible for an instance of Paymaster to call printCheck() on an instance of
PartTimer. A private method can be called only by an instance of the owning class, so a PartTimer's printCheck() could be
called only by an instance of PartTimer.

Consider what would happen in the absence of this rule. The polymorphic loop in Paymaster would work its way through the
array, calling printCheck() on workers, managers, and officers. Eventually, it would need to make an illegal call to
printCheck() on a PartTimer. This situation must be avoided, and the designers of Java had several options for preventing it.
The no-restrictive-overriding rule is sometimes an inconvenience, but actually it is an excellent solution because it gives priority to
clean polymorphism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Final and Abstract
This section will look at two more modifiers: final and abstract. They aren't access modifiers, but this is still a good place to
present them.

Final

Classes, methods, and data may be designated final. A final class may not be subclassed. A final method may not be overridden.
A final variable may not be modified after it is initialized.

Final data is useful for providing constants. For example, you might have a Zebra class that provides the zebra's weight in
pounds or kilograms:
class Zebra extends Mammal
{
 private double weightKg;

 public double getWeightKg()
 {
 return weightKg;
 }

 public double getWeightLbs()
 {
 return weightKg * 2.2;
 }
}

This class uses appropriate data hiding. A zebra's weight is stored in kilos (the variable name leaves no doubt there), but users of
the class never need to know that. Let's assume that eventually the class will have many methods that convert back and forth
between kilos and pounds. There will be a lot of multiplying and dividing by 2.2. The standard approach to this situation is to
declare a constant:
class Zebra extends Mammal
{
 static private final double KGS_TO_LBS = 2.2;

 private double weightKg;

 public double getWeightKg()
 {
 return weightKg;
 }

 public double getWeightLbs()
 {
 return weightKg * KGS_TO_LBS;
 }
}

The constant is called KGS_TO_LBS. It is static because its value is the always going to be the same for all instances of the class,
so there is no benefit in giving each instance its own non-static copy. It is private because it is only for use inside the class. It is
final because its value should never change under any circumstances. Constants require a little extra typing, but they are well
worth the effort for three reasons:

They explain what they do. Someone reading the code, especially someone who doesn't recognize 2.2 as the
kilogram-to-pounds conversion factor, will instantly understand the intention of a constant named KGS_TO_LBS.

They eliminate the need to look up or memorize conversion factors and similar values.

They provide protection against typos.

The third point requires an example. Suppose you aren't using constants, and it's late at night, and you're tired. Somewhere in the
Zebra source code, which is now thousands of lines in length, your finger slips and you accidentally type 3.3 instead of 2.2. It
could take a long time for the error to manifest itself, and when it does, you will have to soft through thousands of lines of code to
find the problem.

On the other hand, suppose you are committed to using the constant. It is still late at night, and your finger slips, and you
accidentally multiply by KGS_TO_LBX instead of KGS_TO_LBS. The next time you compile your code, the compiler will complain
that variable KGS_TO_LBX does not exist. When you use constants, the compiler finds your typos for you.

Abstract

Classes and methods may be designated abstract; data may not.

An abstract method has no method body. All the code from the opening curly bracket through the closing curly bracket is gone,
replaced with a single semicolon (;). Here is an example of an abstract method:
abstract protected double getAverage(double[] values);

The abstract keyword may be combined with the public and protected access modifiers. Here you see a method that is
both abstract and protected. There is nothing unusual about the declaration part of the method. It only gets strange after the
parenthesis that closes the argument list. Where you would expect to find the method body, there is only a semicolon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a class has an abstract method, that method's implementation will be found in the class's subclasses. In a moment you'll
see an example, but first let's cover a few rules governing abstract classes and methods.

An abstract class may not be instantiated. That is, you are not allowed to call any constructor of any abstract class. Also, if a class
contains any abstract methods, the class itself must be abstract. You might say that an abstract class is one that is incomplete: It
lacks one or more method implementations.

Suppose you want to create several classes, all of which share some functionality and model similar real-world things. This
strongly indicates that the classes should extend a common superclass, which should contain the shared functionality. Every
subclass will inherit the common methods, so this is a good object-oriented design. It would not be unusual at this point to realize
that there is some functionality that every subclass must have, but that every subclass should do in its own unique way.

For example, you might be writing classes to draw charts. (We won't cover graphics programming until Chapter 14, "Painting." For
now, the important point is the structure, not the content, of the code.) You might decide to create a Chart superclass with
subclasses, as shown in Figure 9.7.

Figure 9.7: Chart class and subclasses

The class will have an array of floats, called values, whose values are the values to be charted. The class will also need an array
of colors, called colors, since the color scheme should be flexible according to the user's taste. Java actually provides you with a
class called Color. Again, you won't see this class in detail until Chapter 14. For now, you only need to know that the class exists.
Its package is java.awt, so the code examples that follow all import java.awt.Color.

The most important superclass method will be display(), whose argument is an array of float values to be charted. An auxiliary
method will be setColorScheme(), whose argument is an array of colors. Another auxiliary method will be useColor(), which
has an int argument. The argument is an index into the color scheme array. Anything subsequently drawn on the screen, until the
next call to useColor(), will appear in the specified color.

So far the superclass looks like this:
package graphics;
import java.awt.Color;

public class Chart
{
 private float[] values; // Chart these values
 private Color[] colors;

 public void setValues(float[] vals)
 {
 values = values;
 }

 public void setColorScheme(Color[] newColors)
 {
 colors = newColors;
 display(values);
 }

 private void useColor(int colorIndex)
 {
 // Never mind how this works.
 // You'll see in chapter 14.
 }

 public void display(float[] values)
 {
 for (int i=0; i<values.length; i++)
 {
 useColor(i);
 // ??? Now what ??
 }
 }
}

The useColor() method is private, since it is for use inside this class only. The other methods are public, since any user might
want to call them. The problem is the "??? Now what ??" line in display(). It's obvious that for each value to be charted, you
should set the appropriate color and then draw a region. You know how to set the color. Ignoring for the moment that you won't
learn how to draw on the screen until later in the book, we have a deeper problem. A bar chart and a pie chart draw value regions
in different ways. The object-oriented approach tells us that the individual subclasses should encapsulate the knowledge of how to
draw appropriately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's convert Chart to an abstract class:
package graphics;

public abstract class Chart
{
 private float[] values; // Chart these values
 private Color[] colors;

 public void setValues(float[] vals)
 {
 values = values;
 }

 public void setColorScheme(Color[] newColors)
 {
 colors = newColors;
 display(values);
 }

 private void useColor(int colorIndex)
 {
 // Never mind how this works.
 // You'll see in chapter 15.
 }

 public void display(float[] values)
 {
 for (int i=0; i<values.length; i++)
 {
 useColor(i);
 paintRegion(i, values[i]);
 }
 }

 protected abstract void paintRegion(int n, float value);
}

You have added an abstract method: paintRegion(). Since the class now contains an abstract method, the class itself must be
abstract. Any subclass that doesn't want to be abstract will have to provide an implementation of paintRegion(). Since only a
non-abstract class can be constructed, the display() method in this superclass can trust that it can safely call paintRegion().
The true class of the executing object will never be Chart. It will be BarChart, or PieChart, or perhaps some other class to be
written in the future. (In the last case, the new class might not be in the same package as the superclass. That's why
paintRegion() is protected.)

The non-abstract subclasses won't look very interesting, because all their functionality is graphical. Graphical code won't make
any sense to you for another few chapters, so here you're just going to see the skeletons of the classes. Here is PieChart:
package graphics;

public class PieChart extends Chart
{
 protected void paint region (int n, float value)
 {
 // Details not shown. Paint a pie wedge.
 }
}

And here is BarChart:
package graphics;

public class BarChart extends Chart
{
 protected void paint region (int n, float value)
 {
 // Details not shown. Paint a bar.
 }
}

Abstract superclasses provide an elegant structure for partitioning shared and unique functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose package superpack contains subpackage subpack. Suppose a source file contains the following line:
import superpack.*;

Will this line import classes in subpack? Write code to support your answer.

2. Create a class that illegally tries to read a private variable of another class. What is the point of this exercise?

3. Create a class that illegally tries to call a default-access method of another class.

4. Create a class that illegally tries to write a protected variable of another class.

5. True or false: If a class has at least one abstract method, the class must be abstract. Write code to support your
answer.

6. True or false: If a class is abstract, it must have at least one abstract method. Write code to support your
answer.

7. Write an application that tries to construct an instance of an abstract class. Can you compile the application?
Can you execute it?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Interfaces
The previous chapter showed you how an abstract class is a class where something is missing. This chapter will present
interfaces. An interface is not actually a class, but it's like a class where nearly everything is missing.

A List of Method Declarations
An interface is mostly a list of public method declarations. The source code for an interface is similar to the source for a class in
several ways. In particular, an interface definition goes in its own source file, and the source file name should be the interface
name, plus .java at the end. When the code is compiled, the output file name is the interface name plus .class.

Here is an example of an interface. It should appear in source file Talker.java, and compilation will produce Talker.class:
package nature;
public interface Talker
{
 void say(String sayThis);
 void repeat(String repeatThis, int nTimes);
}

This interface is in a package called nature. Like a class, an interface can belong to a package. It is designated public, so it can
be used by any code anywhere. If it were not public, it could be used with the nature package only. Interfaces cannot be private
or protected.

Before we proceed, it's time to say a little about the String class, which appears in the argument list of both methods (and as an
array in the argument list of every main() method). This is one of many useful utility classes that come with Java. You'll learn
about them in Chapter 12, "The Core Java Packages and Classes". For now, be aware that an instance of the String class
encapsulates a "run" or "string" of text. The data and methods of String won't be used in this chapter.

The list of method declarations appears between the curly brackets that follow the interface name. These declarations are much
like abstract method declarations. The return types, method names, and argument lists are present, but the method body is
absent, replaced by a semicolon. Unlike abstract methods, the methods declared in an interface are all public. You can declare
them as public explicitly if you like, but you may not declare them private or protected. Omitting the access modifier results in
public, rather than default, access.

Any class can declare that it implements any interface. This declaration occurs in the class's definition file. The class name is
followed by the keyword implements, followed by the interface name. For example:
package nature;
class Parrot extends Bird implements Talker
{
 . . .
}

When a class declares that it implements an interface, the class is saying that it contains an implementation for each of the
methods in the interface. (If this is not the case, the class will not compile.) So if the Parrot class compiles, you know that it
contains a method called say() and another method called repeat(), with argument lists as specified in the interface.

A class is allowed to implement multiple interfaces. To do this, just provide a comma-separated list of interfaces after the
implements keyword. So if Flyer and BugEater are interfaces of the nature package, you could have the following class:
package nature;
class Mynah extends Bird
 implements Talker, Flyer, BugEater
{
 . . .
}

This class would have to provide implementations for the methods of all three interfaces.

Using Interfaces

To see why interfaces are useful, consider the class inheritance hierarchy shown in Figure 10.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: Animal kingdom class inheritance

Figure 10.1 would be a very natural way to organize your work if you were creating an extensive library of classes to model the
behavior of different kinds of animals. You can imagine behavior such as live birth, cold-bloodedness, and flight being
implemented by methods in the Mammal, Reptile, and Bird classes, respectively, and inherited by their respective subclasses.
However, there is some behavior that does not fit into the inheritance model.

The three shaded classes in Figure 10.1 share somewhat related behavior. All three species are capable of speech, although the
nature of that speech varies greatly from species to species. We humans speak out loud, and we understand what others say.
Gorillas can't speak out loud because they don't have the right kind of vocal cords, but they can be taught to use and respond to
sign language. (See www.gorilla.org for more information.) Parrots can speak out loud (and do so long after the charm has worn
thin), but they do it without comprehension.

A good computer model of the animal kingdom should include speech, so it would make sense to give each of the Human,
Gorilla, and Parrot classes its own version of the say() and repeat() methods described in the previous section. But in
that case, the three classes can declare that they implement the interface. For example, Gorilla might look like this:
package nature;
public class Gorilla extends Primate implements Talker
{
 public void say(String sayThis)
 {
 // Complicated code to produce sign language.
 }

 public void repeat(String repeatThis, int nTimes)
 {
 for (int i=0; i<nTimes; i++)
 say(repeatThis);
 }

 . . .
}

So far we have not mentioned any benefit associated with declaring that a class implements an interface. To understand the
benefit, let's revisit the issue of objects and references.

Objects and References

You have already seen that a reference is something that uniquely identifies an object. In Java, you don't have variables that are
objects. Instead, you have variables that are references to objects. In Chapter 8, "Inheritance," you saw that the type of a
reference can be different from the class of the object it refers to. This point is important enough that we make a distinction
between the type of a reference and the class of an object. A reference's type is what appears in the declaration of the reference
variable; an object's class is the class of the constructor that was invoked when the object was created.

You have already seen that when a reference points to an object, the type of the reference can be exactly the class of the object,
or it can be any superclass of the class of the object. Interfaces provide an even wider range of reference types, because
reference variable types can be interfaces as well as classes. An interface-type reference can legally point to an object if that
object's class implements the interface. So in our ongoing example, the following code would be perfectly legal:
Parrot polly = new Parrot();
Talker aTalker = polly;

Or even:
Talker aTalker = new Parrot();

With an interface-type reference, you can call only the methods of the interface. This may seem limiting, but the benefit is huge.
Consider the following method:
singHappyBirthday(Talker t, String forWhom)
{
 t.repeat("Happy birthday to you.", 2);
 t.say("Happy birthday, dear");
 t.say(forWhom);
 t.say("Happy birthday to you.");
}

This method has a talker recite the song, no matter what the class of the talker. A human will sing, a gorilla will sign, a parrot will
squawk. This is another example of polymorphism: A single method name (say, and also repeat) appears in many different
forms.

instanceof
Java has a keyword, instanceof, that tests the relationship between an object and a reference type. The syntax is
<reference> instanceof <type>

The reference can be any reference. The type can be the name of any class or interface. The value of an instanceof
expression is boolean. It is true if a reference of the given type legally can point to the object pointed to by the given reference. For
example, this code will print out the message:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Duck daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

So will the following:
Bird daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

And so will the following:
Object daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

The instanceof keyword doesn't care about the type of the variable (that is, the word that comes before instanceof. What
matters is the class of the object to which the variable points, and in all three examples the class is Duck. When the second
argument of instanceof is a class, as in this example, the value is true if the object's class is the same as, or a subclass of, the
second argument. Here is an example of instanceof where the second argument is an interface:
Duck daffy = new Duck();
if (daffy instanceof Talker)
{
 System.out.println("Yes, Daffy is a bird.");
}

When the second argument is an interface, the value of an instanceof expression is true if the object's class implements the
interface. Here, the object's class is Duck, which does not implement Talker, so the value is false. In the following code, the
value is true:
Gorilla ndume = new Gorilla();
if (ndume instanceof Talker)
{
 System.out.println("Yes, Ndume can talk.");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data in Interfaces
An interface is allowed to contain data, provided the data is public, final, and static. This provides an easy way to define constant
data.

In Chapter 9, "Packages and Access," you looked at static data within a class with the following example:
class Zebra extends Mammal
{
 static private final double KGS_TO_LBS = 2.2;
 . . .
}

The variable KGS_TO_LBS can be used anywhere within the Zebra class. If other classes in the same package want to use the
constant, you can declare KGS_TO_LBS to have default access (or even protected access, in which case the other-package
subclasses can also use it). The other classes can refer to the constant as Zebra.KGS_TO_LBS. Sometimes this is fine, but in
our example it seems to imply that converting from kilograms to pounds has something to do with zebras. If a constant is more
properly associated with a package in general, rather than with any individual class, generally it is better to put it in an interface.

For example, you might be creating a package of classes that model the physics of various mutually interacting heavenly bodies.
Your package would be called astro, and the classes would be Planet, Star, BlackHole, Comet, and so on. (Their official
names would be astro .Planet, astro.Star, astro.BlackHole, and astro.Comet.) The classes probably would all need
to use certain fundamental constants, such as the speed of light and the mass of a proton. Let's look at the various options for
implementing these.

First, you can avoid the use of constants altogether. Wherever you need the speed of light, use 3.0e8; wherever you need the
mass of a proton, use 1.67e-27. As you saw in Chapter 9, this approach is risky. If you type a wrong digit, you'll introduce a bug
that can be very hard to find. Moreover, readers of your code might not recognize the significance of 3.0e8 or 1.67e-27 (would
you?), so they would not understand the formulas you were implementing.

The next step is to put constants in one of your classes. You might pick Star, arbitrarily, and insert the following lines:
final static double LIGHT_SPEED = 3.0e8;
final static double PROTON_MASS = 1.67e-27;

By convention, constants are in all capital letters, with words separated by underscores. Recall that with constants, a typing error
results in a variable name that the compiler will not recognize, so you recruit the compiler to help you find typos.

Before we go further, notice that the constant names can be improved on. As they stand, they are truthful but not entirely helpful.
1.66e-27 whats? 3.0e8 whats per what? For optimum clarity, it's best to put the units in the constant names:
final static double LIGHT_SPEED_M_PER_SEC = 3.0e8;
final static double PROTON_MASS_KG = 1.67e-27;

That takes a little more typing, but now nobody will ever think the speed of light is expressed in miles per second, or proton mass
in micrograms. Within the Star class, you can refer to the constants by name. Elsewhere in the astro package, you can refer to
them as Star.LIGHT_SPEED_M_PER_SEC and Star.PROTON_MASS_KG.

This is certainly better than typing literal constants, but it implies that the constants are somehow naturally associated with the
class they appear in. You can go one step further by creating an interface for your constants:
package astro;

interface AstroConstants
{
 final static double LIGHT_SPEED_M_PER_SEC = 3.0e8;
 final static double PROTON_MASS_KG = 1.67e-27;
}

You can also put method declarations in the interface code, but you don't have to. An interface can declare any number of
methods, including zero. Now classes in the astro package can refer to AstroConstants.LIGHT_SPEED_M_PER_SEC and
AstroConstants.PROTON_MASS_KG. You don't have to pick a class arbitrarily to put your universal constants in.

You can go one step further, because of the following rule: A class that implements an interface can use the constants of that
interface by name, without prefixing the interface name. So your BlackHole class could use the following declaration:
package astro;

class BlackHole implements AstroConstants
{
 . . .
}

You don't have to do any work to ensure that BlackHole implements all the methods of the interface, because there are no
methods in the interface! And now, anywhere within the BlackHole code, and within the code of any other class that implements
AstroConstants, you can refer simply to LIGHT_SPEED_M_PER_SEC and PROTON_MASS_KG.

Warning Beware of a subtlety concerning interfaces. All methods and constants in an interface are public. You can use the
public keyword explicitly for clarity, but if you omit it, the interface's features are still public. They do not have
default access, which is what you get if you omit an access modifier in the source code for a class. In an earlier
example, when you put the constants in class Planet, you didn't use an access modifier. So the constants had
default access and could be used anywhere within the astro package, but nowhere else. When you moved the
constants to the interface, they were forced to be public. Hence, they were accessible from any code regardless of
package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extending Interfaces
An interface is allowed to extend another interface. The syntax is
interface <interface_name> extends <parent_interface>
{
 // Declarations and data
}

The new interface consists of all the methods and data defined in the parent interface. For example, you might define the
following:
package nature;

interface SingingTalker extends Talker
{
 public void sing(String song);
}

This interface consists of the two methods defined in Talker (say() and repeat()), as well as sing(). A class that wants to
implement this interface must use all three methods.

A class can extend only a single parent class, but an interface can extend multiple parent interfaces. For example, if InterA,
InterB, and InterC are all interfaces, the following is legal:
interface ManyParents extends InterA, InterB, InterC
{
 public int anotherMethod(double d, char ch);
}

This interface consists of all the constants and methods of all three parents, plus the method defined explicitly in the source code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose an interface declares three methods. And suppose a class declares that it implements the interface,
but in fact it only implements two out of the three methods. What happens when you try to compile the class?
(The way to answer this question, of course, is to write an interface and a class.)

2. If class A implements an interface, any subclasses of A inherit all the methods specified in the interface. Does
this mean that subclasses of A also implement the interface? Write code to discover the answer.

3. Given the following interface:
interface InterfaceQ3
{
 void printALine();
}

Will the following code compile?
class ClassQ3 implements InterfaceQ3
{
 void printALine()
 {
 System.out.println("OK");
 }
}

4. Don't worry, the following question requires absolutely no understanding of physics. In fact, it might make you
grateful that you chose computer programming instead. Suppose you have the following interface:
package physics;
interface PhysicsConstants
{
 public static final double ELECTRON_MASS_KG = 9.11e-31;
 public static final double
 STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2 = 5.67e-8;
}

What does the following application print out?
package physics;

public class Q4 implements PhysicsConstants
{
 public static void main(String[] args)
 {
 System.out.println("The value is " +
 STEFAN_BOLTZMAN_CONSTANT_WATTS_PER_M2);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Exceptions

Overview
At several points in this book, you have seen how certain program features alter the usual linear flow of program execution. You
saw that loops are like whirlpools, conditional statements are like forks in the road, and method calls are like detours.

Extending this analogy, exceptions are like jumping through hyperspace. With exceptions, you can instantly end up far from where
you began, with no prospect of getting back. Of course, jumping through hyperspace is an unusual way to travel. And as you
might expect, exceptions are to be used only in unusual programming circumstances.

This chapter will show you how to use exceptions to indicate unusual conditions in the state of your programs. It will take a careful
approach to this topic, because exceptions are complicated. It would not be helpful to overwhelm you with information. First you'll
look at some of the basic concepts of exceptions. Then you'll learn how exceptions are used in real life.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions Oversimplified
This chapter will begin with an explanation of why exceptions are important. Then it will look at an extended example that uses
exceptions. Please bear in mind that the example code here is intended to demonstrate concepts, not to stand as an example of
good programming. Later on, once you understand how exceptions affect program flow, you'll see more realistic code examples.

The Trouble with Error Codes

First, let's look at why Java needs a feature to support unusual program status. Imagine a remote database that stores daily
rainfall reports for various weather stations. (A remote database is one where the data is stored on a different computer from the
one you are using. The two machines are connected by a network.) Without going into the details of how to get data from a
remote database into a Java program, imagine a class with a method that somehow retrieves rainfall numbers. The method might
be called
float getRainfall(int station, int year,
 int month, int day)

For example, to get the rainfall for station #7 for July 8, 2001, you would call
getRainfall(7, 2001, 7, 8);

You can imagine the method doing network connection stuff, database login/password stuff, database query stuff, network
disconnection stuff, and finally returning a value. The problem is, what happens if something goes wrong with the database? Here
are a few things that could go wrong:

The database computer could be turned off.

The network cables could break.

The database could be deleted.

The database management code could crash.

The database password could be changed.

All of these possibilities are beyond the control of the programmer who is writing the getRainfall() method. They are not bugs.
A bug is when you write code that doesn't do what you want it to do. Bugs can be avoided by intelligent design and programming,
but no amount of programming forethought on your part can prevent someone from walking up to a remote computer and turning
it off.

Your code has no straightforward way to deal with these unusual circumstances. There is no straightforward way to tell the
method's caller that the database computer was turned off or the password didn't work. Before the invention of exceptions (which
predate Java), the only reasonable option was to designate certain special return values, called error codes, to indicate that
something unusual happened.

In this example, you might reserve large return values as error codes. You might decide that 10,000 means the password didn't
work, 20,000 means the network was unresponsive, and so on. After all, if it ever rains 10,000 inches in a single day anywhere on
Earth, we'll all have more pressing problems than data processing to worry about.

What is wrong with this approach? The problem is that anyone, anywhere, who calls getRainfall() has to remember to deal
with all the error codes:
float rainfall = getRainfall(7, 2001, 7, 8);
if (rainfall < 1000)
{
 // Process normally.
}
else if (rainfall == 1000)
{
 // Deal with password problem.
}
else if (rainfall == 20000)
{
 // Deal with unresponsive net.
}

The error-processing code might display a message, or it might be more sophisticated. The password-handling code might try a
different password. The network-handling code might retry the query at one-second intervals, or it might page a system
administrator. But no matter how the errors are handled, anyone who calls the method has to check all return values to see if an
error code was returned. To do this, they need good documentation that describes each code and its meaning. The programming
language can do nothing to support error handling, because from the compiler's point of view, an error code is just an ordinary
value returned by a method.

Special problems are introduced when the method is revised, if the new revision introduces new error codes. Now all the old
documentation is incomplete. It's even worse if the new rev of the method changes the significance of an existing code.

Things can get worse yet. What if you realize that your error codes actually represent legitimate return values? Certainly, there's
nowhere on Earth where it rains 10,000 inches in a day. But on other planets, with active atmospheres and extremely long days
(Mercury, for example), 10,000 is common.

Less imaginatively, the data might be gathered automatically into the database by electronic rain gauges. If the electronics fail, a
gauge could erroneously report a measurement of 10,000. Then, when getRainfall() returned the value, the error-handling
code might page a system administrator, who would be paid overtime for rushing to the office at 4:30 in the morning. The
administrator would spend hours determining that the network was healthy, and would probably be grouchy for the rest of the day.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have probably realized that rainfall can never be less than zero, so you should have reserved negative error codes, rather
than large ones. That would make your method interplanetary, but the other problems would remain. Still, unless you use
exceptions, error codes are the only option. By the time you finish this chapter, you should be an enthusiastic user of exceptions.

Throwing Exceptions

In this section, you will meet two new Java keywords: throw and throws. They look almost identical, but throw only appears in
executable code, while throws only appears in method declarations. You will also meet the Exception class. By now, you are
aware that Java uses a number of classes that are provided for you by the system. The Object class is an obvious example, and
you have also seen a little bit of the String class. In Chapter 12, "The Core Java Packages and Classes," you will learn about
more of these classes. They are too numerous to describe in detail, but you will also learn where to find out about provided
classes as needed. But in order to learn that, you first have to understand exceptions.

To see exceptions in action, let's change the getRainfall() example. For now, let's suppose that only one unusual condition is
recognized by the code: a crashed database. To detect this condition, assume you have a boolean method called databaseOk()
that returns true if the database is healthy and false if it has crashed. If you were to use the error-code approach, you might write
the following:
1. float getRainfall(int station, int year,
2. int month, int day)
3. {
4. if (databaseOk() == false)
5. return -1;
6.
7. // Get & return rainfall from db
8. }

You use -1 as an error code to indicate a crashed database. Now here is the same method, rewritten to use an exception:
 1. float getRainfall(int station, int year,
 2. int month, int day) throws Exception
 3. {
 4. if (databaseOk() == false)
 5. {
 6. Exception x = new Exception("The db crashed.");
 7. throw x;
 8. }
 9. // Get & return rainfall from db
10. }

This changes the code in 3 ways:

It adds throws Exception to the declaration on line 1.

It creates an instance of the Exception class on line 6.

It throws the exception (whatever that means) on line 7.

The addition of throws Exception to the declaration announces that this method now might throw an exception. Any particular
call to the method might or might not throw, but any code that calls the method must be prepared to deal with the possibility.

Line 6 is just an ordinary constructor call. Until they are thrown, exceptions are just ordinary objects. There are two commonly
used versions of the Exception constructor: a no-args version, and the version used here, which takes a string of text as an
argument. The text can be retrieved later by calling the exception's getMessage() method. Later on, you will see how this is
useful when processing exceptions.

Line 7 is the big idea. The throw keyword must be followed by an exception. (Strictly speaking, a few other things can follow
throw, but they are beyond the scope of this book.) When the throw statement is executed, the current execution of the current
method is abandoned immediately. Execution jumps (as if through hyperspace!) to the appropriate exception-handling code for
the particular exception that was thrown. The exception handler uses the catch keyword, which is presented in the next section.

Catching Exceptions

It stands to reason that things that are thrown ought to be caught. This is true for balls, Frisbees, kisses, and exceptions.

When you call a method that declares that it throws an exception, the calling code can't just call the method. For example, the
following code will not work:
float rainfall = getRainfall(7, 2001, 7, 8);

This call used to be fine, but now getRainfall() throws an exception, which any calling code must be prepared to catch. The
call has to look something like this:
 1. try
 2. {
 3. float rainfall = getRainfall(7, 2001, 7, 8);
 4. System.out.println("rainfall was " + rainfall");
 5. }
 6. catch (Exception x)
 7. {
 8. System.out.println("getRainfall() failed.");
 9. System.out.println("Message is: " + x.getMessage();
10. }
11. System.out.println("And life goes on.");

The code on lines 2-5 (in the curly brackets immediately after try) is called a try block. There are two rules to know about try
blocks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any code that throws an exception must appear in a try block. (For now. Later you'll learn how to get around this
rule.)

At least one statement in the try block must throw an exception.

The code on lines 7-10 (in the curly brackets immediately after the catch line) is a catch block. When a statement in a try block is
executed and causes an exception to be thrown, the current pass through the try block is abandoned immediately. Execution
jumps to the first line of the catch block.

Note the code in parentheses on line 6, after catch. It looks like a variable declaration, and indeed it is. When an exception is
thrown, the JVM makes the exception object accessible to the catch block. When you declare Exception x, you are saying that
you want to use the variable name x as the name of your reference to the exception. This variable has scope (that is, valid
meaning) only within the catch block.

Notice line 9, which makes a method call on x. Recall that you can pass a message into the Exception constructor. The
message is stored in the exception object, and the getMessage() call retrieves it. Recall from the previous section that
getRainfall() stored a message that said, "The db crashed."

Note If you are at all uncomfortable with the way line 9 adds literal text to a method call, please be patient. All will be
explained in the next chapter. For now, just be aware that it works.

What happens if the try block runs in its entirety, with no exception being thrown? In this case, the catch block is ignored.
Execution jumps around the catch block, from line 4 to line 11. If this is the case, and if the rainfall value is 1.45 inches, the code
will produce the following output:
Rainfall was 1.45
And life goes on.

On the other hand, if the call to getRainfall() throws an exception, the output will be
getRainfall() failed.
Message is: The db crashed.

The Simple Exception Lab animated illustration demonstrates the flow of execution through code, which is almost identical to this
example. To run the program, type java exceptions.SimpleExceptionLab. You will see the display shown in Figure 11.1.

Figure 11.1: Simple Exception Lab

You will see the code for a method that calls another method to retrieve a rainfall measurement from an imaginary remote
database. (There isn't really a remote database, and your computer doesn't have to be connected to a network for the animated
illustration to work.) You can use the checkbox to control whether the imaginary database is working or not. As Figure 11.1 shows,
the DB (database) is initially okay. If you uncheck the checkbox, the second method will throw an exception that will be caught by
the first method. The text area to the left of the display will show all output from the println statements. Try running the program
once with the DB is Ok checkbox checked, to simulate normal execution. Figure 11.2 shows the final state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.2: Simple Exception Lab: final state with normal execution

Think about what the code would print out if the database wasn't okay. Run it again with the checkbox unchecked to observe the
error-handling behavior. Was the output what you expected?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions in the Real World
So far, the point of this chapter has been to familiarize you with exceptions, and especially with trying, throwing, and catching.
Now that you understand these concepts, it is time to tell you that the situation is actually a lot more complicated. There are many
kinds of exceptions, each one indicating a different kind of problem, and each one capable of being handled separately.

The remainder of this chapter will show you how to deal with the multitude of real-world exceptions.

Two Families of Exceptions

The Exception class has more than 100 subclasses in the core Java packages. (The core packages are the ones that you get
along with the JVM and the Java compiler. You can think of them as the infrastructure of Java, providing classes that are essential
to the operation of the JVM, the compiler, and your own applications.)

The two families are

Checked exceptions

Runtime exceptions

The Exception class has a subclass called RuntimeException. The family of runtime exceptions consists of the
RuntimeException class and all its subclasses. The family of checked exceptions consists of all other exception classes,
including Exception itself. (Note that there is no CheckedException class.)

Generally, exception classes have long and descriptive names, such as PrinterIOException and
ArrayIndexOutOfBoundsException. Usually, the class name tells you very specifically what went wrong. Let's use these two
classes to look at the difference between checked and runtime exceptions.

PrinterIOException is a checked exception. It's thrown by methods that interact with a printer. If a printer is jammed,
unavailable, or in some other failure state, the method throws PrinterIOException. ArrayIndexOutOfBoundsException
is a runtime exception. As you can guess from the name, it is thrown when an array index is >= the length of the array, or when
the index is negative.

What's the difference between these two situations? It all comes down to who is responsible for creating the problem. In the case
of PrinterIOException, you can't really say it's anyone's fault. Printers jam up or fail in other ways that are familiar to all
owners of printers. That's an environmental hazard. It's unavoidable, like bad weather. On the other hand, with
ArrayIndexOutOfBoundsException, it's easy to assign blame. The programmer who wrote the line of code that used the
illegitimate array index should have done a better job. After all, it would be ridiculous to tell you to turn to page 1,963 in this book…
or worse yet, to page -47. Similarly, you shouldn't refer to an array element that doesn't exist.

To generalize from these examples: All checked exceptions represent situations that are unavoidable. All runtime exceptions
represent situations that can be avoided by better programming. This implies that your Java programs might sometimes throw
checked exceptions, but they should never throw runtime exceptions.

The proper way to deal with checked exceptions is with the try/catch mechanism described earlier in this chapter. The proper way
to deal with runtime exceptions is… well, you should never have to deal with them, because your code should never throw them.
Of course, code is never perfect the first time you write it. Whenever you write a long piece of code, your first job is getting it to
compile. Once you do that, you're only halfway finished. The next step is to make your code run correctly by finding and
eliminating bugs. During this phase of development, you are likely to encounter runtime exceptions, and your job is to eliminate
them. So your finished, polished, ready-for-market code should never throw runtime exceptions. During development, runtime
exceptions are signposts that point to code that needs fixing.

Runtime exceptions should not be caught in catch blocks. But how can this be? Earlier in this chapter, you learned that if code
might throw an exception, the code has to appear in a try block and the exception has to be caught in a corresponding catch
block. Well, that was an oversimplification to avoid giving you too much information all at once. Now that you're half an expert on
exceptions, you can learn the whole story.

Code that throws checked exceptions must appear in a try block, with the exception caught in a catch block. But this rule does not
apply to code that throws runtime exceptions. Such code may appear in a try/catch structure, but it doesn't have to, and usually it
should not. Instead, the code that would throw the runtime exception should be fixed so that it no longer throws.

Runtime Exceptions and Stack Traces

Now you know that you should not catch runtime exceptions. But then what happens when one is thrown?

When any kind of exception is thrown, the JVM stores some very useful information in the exception. This information is called the
stack trace, and often it's all you need to find the source of the problem. The stack trace tells you what line of code threw the
exception, as well as the name of the method that contains the line. The stack trace also tells you what line of code called that
method, and so on. It goes back and back until you get the line in your main() method that called the method that called the
method that called the method that owned the line that threw the exception. It's like This Is the House That Jack Built, only it's
about a Java program instead of a house:

This is the program that you built.

This is the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

This is the line that threw the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

This is the method that owns the line that threw the ArrayIndexOutOfBoundsException that was thrown from the
program that you built.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the line that calls the method that owns the line that threw the ArrayIndexOutOfBoundsException that was
thrown from the program that you built.

This is the method that owns the line that calls the method that owns the line that threw the
ArrayIndexOutOfBoundsException that was thrown from the program that you built.

…

This is the main() method that owns the line that calls the method that owns the line that calls the method that owns the
line… that threw the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

Let's look at a practical example. Suppose you have the following application:
 1. public class ShowMeATrace
 2. {
 3. public static void main(String[] args)
 4. {
 5. int[] cubes = new int[10];
 6. storeCubes(cubes);
 7. }
 8.
 9. private static void storeCubes(int[] intArr)
10. {
11. for (int i=0; i<=10; i++)
12. storeOneCube(intArr, i);
13. }
14.
15. private static void storeOneCube(int[] ints,
16. int index)
17. {
18. ints[index] = index*index*index;
19. }
20. }

The main() method creates an array that's passed to storeCubes(). The storeCubes() method loads each array
component with the cube of its index. It does this by calling storeOneCube() once for each component. When you run this
application, you get the following output:

java.lang.ArrayIndexOutOfBoundsException

 at ShowMeATrace.storeOneCube(ShowMeATrace:18)

 at ShowMeATrace.storeCubes(ShowMeATrace:12)

 at ShowMeATrace.main(ShowMeATrace:6)

 Exception in thread "main"

This output is a stack trace. Reading from top to bottom, you find that an ArrayIndexOutOfBoundsException was
thrown from line 18 in the storeOneCube() method. The offending call to storeOneCube() was made on line 12 in
storeCubes(), which was called from line 6 in main(). (By the way, notice that the first line of the trace implies that
ArrayIndexOutOfBoundsException belongs to the java.lang package. The core Java classes belong to a package
called java, which contains many subpackages. The most important subpackage is java.lang, which contains a large
number of vital infrastructure classes. You will look at some of these classes in the next chapter.)

So the stack trace tells you to pay attention to lines 18, 12, and 6. Usually your best strategy is to look at lines in the order
they appear in the trace. Line 18 seems innocent, as long as index is reasonable. But index is supplied by the method's
caller, so you look at line 12. You see that index in storeOneCube() corresponds to i in storeCubes(). The maximum
value of i is 10, but the array only has 10 components, so the maximum legal index is 9. You have found the problem.

There are two ways to fix the bug. The lazy way would be to change line 11 like this:
for (int i=0; i<10; i++)

That would solve the problem at hand, but if the array size (in main()) ever changes, you will have to remember to change
line 11. The safe way, which is better style in all cases, is to use the following for line 11:

for (int i=0; i<intArr.length; i++)

If you have a program that uses an array, it is very likely that eventually you will create a for loop to do some kind of
processing on each array component. If you use the kind of for loop shown here, you will always be sure to process every
component while avoiding ArrayIndexOutOfBoundsException.

Warning Be aware that some versions of the JVM do not provide stack traces when exceptions are thrown. This usually
happens because the JVM performs some kind of optimization that makes it impossible to piece together the stack
trace information. When these machines throw an exception, you just get a message that tells you the class of the
exception.

Checked Exceptions

In the previous section, you saw that you should not catch runtime exceptions, even though the language allows you to. However,
when you call a method that throws a checked exception, you have no choice but to use the try/catch mechanism. If you don't,
your code will not compile.

Suppose you have a method, called printRetAddr(), that prints your return address on an envelope. Assume you have the
kind of printer that can detect whether it is loaded with paper or envelopes. If it is not loaded with envelopes, the method throws
PrinterIOException, which is a checked exception. If you want to call the method, your code might do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrinterIOException, which is a checked exception. If you want to call the method, your code might do the following:
void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
}

Simple enough, but it won't compile. Your compiler error will be something like this:
PrinterIOException must be caught or declared to be thrown at line xx, column xxx.

This tells you that you have two options. Your first option is to put the call to printRetAddr() inside a try block:
void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 {
 try
 {
 printRetAddr();
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 }
 }
}

Earlier in this chapter, you saw code that catches Exception. Here you see that any subclass of Exception may be caught (as
long as it really is thrown in the try block; see Exercise 4 at the end of this chapter). The catch block will be executed if the try
block causes a PrinterIOException to be thrown.

You have a second option. If you don't want to use try/catch, you can simply declare that printSomeEnvelopes() throws
PrinterIOException:
void printSomeEnvelopes(int nEnvelopes)
 throws PrinterIOException
{
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
}

Now any method that calls printSomeEnvelopes() must either use try/catch or declare that it too throws
PrinterIOException.

Multiple Catch Blocks

Typically, code in a try block can throw more than one kind of exception. To illustrate this, let's look at another type of checked
exception: ConnectException. This is usually thrown by code that attempts to connect to a machine on the network, such as a
Web server. If the remote machine does not respond (because it has been turned off, or is undergoing maintenance, or has
burned up), the code that detects the lack of response should throw a ConnectException. (You will look at network connections
in detail in Chapter 13, "File Input and Output." For now, the point is that now you know about two checked exception types.)

To extend this example, let's make printSomeEnvelopes() more responsible. Suppose you have two utility methods at your
disposal:

getNumEnvelopesInStock() Returns the number of envelopes left, not counting the ones you just printed. This value is
retrieved from a remote database.

setNumEnvelopesInStock() Updates the number of envelopes left. This value is stored on the remote database.

Both methods throw ConnectException if the machine where the remote database resides cannot be contacted. Now
printSomeEnvelopes() can be written like this:

void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 {
 try
 {
 printRetAddr();
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 return;
 }
 }

 try
 {
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 }
 catch (ConnectException conx)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 System.out.println("Couldn't connect.");
 }

 System.out.println("printSomeEnvelopes() done.");
}

The second try block updates the remote database, taking into account the number of envelopes that were just printed.
When printSomeEnvelopes() is called, there are four possibilities:

The code could run normally, with no exceptions being thrown. Neither catch block is executed. The method prints the
"done" message and then returns.

A PrinterIOException is thrown from printRetAddr(). Execution jumps to the first catch block, which prints the
"Please load…" message and then returns. (It returns because no envelopes were used, so the number in the database
shouldn't be decremented. If the catch block did not return, the second try block would be executed.)

A ConnectException is thrown from getNumEnvelopesInStock(). Execution jumps to the second catch block, which
prints the "Couldn't connect" message. Then execution continues after the catch block. The "done" message is printed, and
then the method returns.

A ConnectException is thrown from setNumEnvelopesInStock(). Just as in the previous case, execution jumps to the
second catch block, which prints the "Couldn't connect" message. Then the "done" message is printed and the method
returns.

This code can be simplified. A single try block is allowed to throw multiple exception types, provided there is a catch block for each
type. This might require multiple catch blocks for the try block:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 }
 catch (ConnectException cx)
 {
 System.out.println("Couldn't connect.");
 }
 System.out.println("printSomeEnvelopes() done.");
}

The work has been consolidated into the single try block. There are two catch blocks. If the try block threw five or 50 exception
types, there could be five or 50 catch blocks.

When the JVM detects a thrown exception in the try block, it scans the various catch blocks. The current pass through the try
block is abandoned, and execution continues in the first catch block that is appropriate to the type of thrown exception. This
version of the method behaves exactly like the previous version, but it's easier to read because all the normal execution code
appears in the try block, while problems are handled in the various catch blocks. No matter how many catch blocks there
are, a single thrown exception is only handled by one catch block. After the catch block runs (and it doesn't contain a
return statement), execution continues after the last catch block.

Catch Blocks and instanceof

The previous section introduced multiple catch blocks. You learned that execution continues in the first catch block that is
appropriate to the type of thrown exception. But what makes a catch block appropriate? You might think that the type declared in
parentheses after catch must match the class of the exception that was thrown. But this is not the whole story. The whole story
involves instanceof.

Recall from Chapter 10, "Interfaces", that the syntax for instanceof is
<reference> instanceof <type>

If the type is a class name, and the reference points to an object whose class is either the type or a subclass of the type,
instanceof evaluates to true.

When the JVM looks for a catch block to handle an exception, it uses instanceof to determine whether or not a particular catch
block is appropriate. To illustrate, let's blur the printSomeEnvelopes() example:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 // STUFF
 }
 catch (PrinterIOException piox)
 {
 // STUFF
 }
 catch (ConnectException cx)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch (ConnectException cx)
 {
 // STUFF
 }
 System.out.println("printSomeEnvelopes() succeeded.");
}

If the try block throws, the JVM asks if the exception is an instanceof PrinterIOException. If so, the first catch block is
executed. Otherwise, the next catch block is tested. The JVM asks if the exception is an instanceof ConnectException. If
so, the second catch block is executed. In either case, only the one catch block is executed; the other is ignored. If the executing
catch block does not return, execution then proceeds at the first statement following the last catch block.

If no exception is thrown, the try block runs to completion and both catch blocks are skipped.

Sometimes you can take advantage of how the JVM determines the appropriate catch block. In the last revision of our example,
the two different kinds of exceptions were handled differently, but this might not always be the case. Suppose you decide that no
matter what kind of trouble crops up, printSomeEnvelopes() should just print a message that says "Could not print" and then
return. If there is no trouble, the method should print "Succeeded."

Both PrinterIOException and ConnectException are subclasses of a common superclass called IOException. So
printSomeEnvelopes() can be rewritten like this:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 System.out.println("Succeeded");
 }
 catch (IOException iox)
 {
 System.out.println("Could not print");
 }
}

Now, any kind of exception that the try block might throw will pass the instanceof IOException test, so execution will end up
in the single catch block.

You can get even more sophisticated. There is a kind of catch block that is informally called a safety net catch block. This is not
official Java terminology, but it's very commonly used. You might have a try block that throws many subclasses of IOException,
including PrinterIOException and ConnectException. Suppose those two types require individual handling, but all other
types can be handled the same. You could do the following:
try
{
 // Lots
 // and
 // lots
 // and
 // lots
 // of code that throws
 // lots
 // and
 // lots
 // and
 // lots
 // of subclasses of IOException
}
catch (PrinterIOException piox)
{
 // Special PrinterIOException handling
}
catch (ConnectException cx)
{
 // Special ConnectException handling
}
catch (IOException iox)
{
 // General IOException handling
}

If either PrinterIOException or ConnectException is thrown, the appropriate specific catch block will be executed. If a
different type of IOException is thrown, the JVM will first check if the exception is an instanceof PrinterIOException. It
isn't, so next the JVM will check if it is an instanceof ConnectException. Again, it isn't, so the JVM checks if it is an
instanceof IOException. And it is, because subclasses pass the instanceof test, so the last catch block is executed. You
can see how the last catch block is a kind of safety net, catching all IOExceptions that aren't caught by the two specific catch
blocks.

The safety net block could have caught Exception instead of IOException. The code would have identical behavior, but the
safety net is overly general and is considered bad coding style. The exception type caught by a safety net should be the lowest-
level subclass that gets the job done. See Exercise 5 at the end of this chapter to find out why.

When you use a safety net, be careful about the order of appearance of your catch blocks. Don't do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

try
{
 // Something
}
catch (IOException iox)
{
 // General IOException handling
}
catch (PrinterIOException piox)
{
 // Special PrinterIOException handling
}
catch (ConnectException cx)
{
 // Special ConnectException handling
}

The second and third catch blocks can never be executed, because both PrinterIOException and ConnectException pass
the instanceof IOException test. The compiler will not allow this code. You will get a compiler message that says something
like, "Catch is unreachable at line xxx."

The Advanced Exception Lab animated illustration shows exception handling in situations where the try block can throw multiple
exception types from any of several lines. To start the program, type java exceptions.AdvancedExceptionLab. You will
see the display shown in Figure 11.3.

Figure 11.3: Advanced Exception Lab

You get to choose the type of exception that will be thrown. Click on the Choose Type… button and you will see a dialog that lets
you choose from four checked types, as shown in Figure 11.4.

Figure 11.4: Choosing an exception type in Advanced Exception Lab

You can click on any of the exception types except the Exception superclass. You can also choose which line throws the
exception by clicking on the checkbox on the line of your choice on the main screen. The lab lets you choose one of five code
configurations (via the File?Configurations menu). In each configuration, a method called top() calls a method called middle(),
which calls a method called bottom(). The bottom method has a try block from which an exception is thrown. Different
configurations handle the exception differently. Figure 11.5 shows the Spread Around configuration, with an AWTException
thrown from method ccc().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.5: Advanced Exception Lab reconfigured

Try all the configurations, and be sure that the exception handling makes sense to you in all cases.

Checked Exceptions and Stack Traces

You have already looked at stack traces in the context of runtime exceptions. Checked exceptions also have stack traces.
However, you usually don't see the trace because you have to catch checked exceptions. If you want to see a stack trace from a
checked exception, you can call the printStackTrace() method:
try
{
 getNumEnvelopesInStock();
}
catch (ConnectException cx)
{
 System.out.println("Stress!");
 cx.printStackTrace();
}

If an exception is thrown, this code will print the "Stress" message, followed by the exception's stack trace. This is extremely
useful during development. However, before you ship your code to paying customers, you might want to delete the
printStackTrace() calls. Paying customers might not want that much information.

Throwing Checked Exceptions

If you're writing a method that throws exceptions, you have to decide which exception type to throw. You have three options:

Throw Exception, as in the examples in the first half of this chapter.

Throw a subclass of Exception from the core Java classes.

Throw your own custom subclass.

The first option is not realistic. Your code will work, but throwing Exception doesn't tell anybody else who reads your code
anything about the nature of the exceptional condition. Also, you may need to call your method in a try block that calls other
methods that throw. If your method throws Exception, it may be difficult or impossible to write a decent set of catch blocks. This
is especially true if the try block calls more than one method that throws Exception when it could have thrown a more specific
type. Your code is always most robust when you throw exceptions that are as specific as possible.

Your second option is to throw a preexisting exception type chosen from the core Java classes. This is easy when you know how
to explore the core Java packages and discover the names and behaviors of the many classes they provide. You will learn how to
do this in the next chapter. For now, be aware that it's important to choose the most accurate and informative exception name you
can find. Most existing types have very long and informative names.

Unfortunately, a lot of programmers always throw IOException, even when the problem has nothing to do with Input/Output.
This is a bad habit. The rationale seems to be that, out of all the checked subclasses of Exception, IOException has the
shortest name. Please don't yield to this temptation.

Once you decide on an exception type, you construct and throw just as you saw earlier in this chapter, when you constructed and
threw Exception (which, as you now understand, you should never do). All exception subclasses in the core Java packages
have two forms of constructors: a no-arguments version, and a version that takes a text message as an argument. It is always
better to use the second form. Be sure to compose a message that is both accurate and helpful.

For example, earlier in this chapter you saw code that called a hypothetical method called getNumEnvelopesInStock(), which
threw ConnectException. Put yourself in the shoes of the person who wrote that method. He might have done something like
the following, assuming he had a method called connectionOK() that returned true if the connection to the database server
was sound:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public int getNumEnvelopesInStock()
 throws ConnectException
{
 if (connectionOK() == false)
 throw new ConnectException();

 // Get & return # of envelopes remaining.
 . . .
}

However, it would be more informative to include a message in the exception. You might pass something like the following into the
constructor: "Couldn't get # of envelopes from remote db." Then any catch block that caught your exception could call
getMessage() on it, printing out the result if appropriate.

What should you do if there's no appropriately named exception subclass in the core packages? You have to fall back on your
third option, which is to create your own class. To do this, first decide if you should create a checked exception or a runtime
exception. In other words, does your exception represent an unavoidable hazard of existence, or is it a programming error that
should be fixed? Most often you will create a checked exception. Next, choose a name. The name should end with Exception,
because that's what other people expect. For example, you might decide that if the getNumEnvelopesInStock() method can't
connect to its remote database, it should throw a custom exception type. A plausible name would be
RemoteEnvelopeCountException. The name says that the class is definitely an exception, and that both remote access and
the envelope count are involved.

Having chosen a name, next you have to decide on a superclass. A checked exception should extend Exception,
IOException, or some other checked exception type. In general, extend IOException or one of its many subclasses if the
exceptional condition you want to represent involves input or output. Otherwise, extend Exception. In the rare case when you
want to create a runtime exception, extend RuntimeException. In this example, RemoteEnvelopeCountException will be a
subclass of ConnecException, since the problem stems from an inability to connect to the remote machine that owns the
database.

Your custom class does not need any data or methods. It will inherit everything it needs. All you have to do is create constructors.
A custom exception should have both constructor versions. Here is the source for RemoteEnvelopeCountException, in its
entirety:
import java.net.*;

class RemoteEnvelopeCountException
 extends ConnectException
{
 RemoteEnvelopeCountException() { }

 RemoteEnvelopeCountException(String s)
 {
 super(s);
 }
}

The import line is required because the ConnectException superclass lives in the java.net package, which is one of the core
Java packages that you'll see in the next chapter. The first constructor is a no-arguments constructor that seems to do nothing
(but remember the chain of construction from Chapter 8, "Inheritance"). The second constructor takes a text message, which is
passed to the superclass constructor.

Custom exceptions are thrown and caught just like standard types, so you could call getNumEnvelopesInStock() like this:
try
{
 int n = getNumEnvelopesInStock();
 System.out.println(n + " envelopes remaining in stock.");
}
catch (RemoteEnvelopeCountException recx)
{
 System.out.println("Stress!");
 System.out.println(recx.getMessage());
}

Generally, it's better to use an existing exception type if you can find one whose name accurately and helpfully describes the
exceptional condition. However, if no such class exists, creating a custom class is good programming style.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. What happens when you run a program that creates an array of ints and then sets the value of an array
component whose index is greater than the length of the array?

2. What happens when you run a program that creates an array of ints whose length is less than zero?

3. What happens when you run a program that prints out the result of dividing a non-zero int by zero?

4. Write a program with a try block that just prints out a message. After the try block, add a catch block that
catches java.io.IOException (which obviously is not thrown by the try block). Does the code compile? If it
compiles, what happens when it runs?

5. Suppose a try block throws many different subclasses of IOException (and no other exception types).
Suppose you want to catch a few specific subclass types, such as PrinterIOException or
ConnectException. All other exception types should be caught in a safety-net block. Your safety-net block
can catch IOException or Exception. The code will produce the same behavior either way, but the "Catch
Blocks and instanceof" section of this chapter says that it's better to use IOException. Speculate on why this
is true.

6. What three decisions do you have to make when creating a custom exception subclass?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: The Core Java Packages and Classes

Overview
At this point in your Java education, you have a solid foundation in the essential language. There are some Java features that
have not been presented in this book, and won't be, but for the most part you know what you need to know to create programs
consisting of classes and interfaces.

The remainder of this book will look at a large number of classes that have been written on your behalf and that you can
incorporate into your code. You can use them freely. Moreover, since they are downloaded (along with the compiler and the JVM)
whenever anyone downloads Java, you already have them, and you can safely assume that anyone who uses your code has the
same set of classes.

We cannot possibly present them all in this book. There are well over a thousand core classes and interfaces, and many of them
have specialized functionality that is of interest only to people with the same specialization. Instead of providing an exhaustive
survey, we will just introduce the most important classes. Then we will show you how to learn all about the more specialized
classes and interfaces. By the end of this chapter, you will have the same fundamental tools as any other Java programmer:

An understanding of the language.

A knowledge of certain core classes and interfaces.

The ability to learn other core classes and interfaces as needed.

The ability to create your own classes and interfaces, when the supplied ones don't address your needs.

The last item implies that you should use existing code wherever possible. This approach has several powerful benefits:

The code in the core packages has been thoroughly tested.

The code in the core packages is available immediately.

The code in the core packages was developed at somebody else's cost (both time and money).

These benefits are offset by the principle that using an existing class to achieve an inappropriate result is generally more
expensive than developing appropriate code from scratch. So a good rule of thumb is: Use core code when you can, and develop
when you must.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The API Pages
There are more than 1,000 core Java classes, and every one of them has been described in detail by the Java creators. Unlike a
lot of manufacturers' technical specifications, these descriptions are well-written, accurate, and helpful. They are provided as a set
of interconnected HTML pages that you can download to your hard drive and view with the Web browser of your choice. Like Java
itself, they are freely downloadable. If you have not already done so, please download them before continuing with this chapter.
You can find instructions on how to do this in Appendix A.

The API pages do a fine job of presenting each class in detail. In fact, they do such a good job that there is no need to duplicate
their effort in this chapter. Instead, we will begin by showing you how to use the API pages. After that, we will mostly give you just
an overview of the classes and methods, while encouraging you to use your new API skills to look up details when you need them.

Digression: A Personal Anecdote

Quite a while ago, before the birth of the World Wide Web, I worked for a company that made computers. These computers used
a programming language that was a bit like C, but it was object-oriented. In addition to the language, there were a number of
classes that supported I/O, graphical user interfaces, math, and so on. If you saw it today, you would probably be reminded of
Java, but with fewer supplied classes.

There were several dozen of these classes. Their documentation consisted of two manuals that listed the classes in alphabetical
order. For each class, the manuals listed the inheritance hierarchy, the data, and the methods.

Those of us who wrote programs for this system each had our own copy of the manuals. You could tell how long someone had
been working there by the shape their manuals were in. Those books took a beating. We were always flipping back and forth. If I
wanted to remind myself what a certain method of a certain class did, I might find that the method wasn't explained where I
expected an explanation, because the class I was reading about inherited the method from its superclass. So I would look up the
superclass (which might be in the other volume), and I would see that it returned an object reference, and I would have to look up
that object's explanation because I hadn't seen it before.

I flipped a lot of pages because a lot of information for one class was (quite rightly) presented in the description of a different
class. For example:

The class's superclass

The type of a non-primitive variable

The type of a non-primitive method argument

The type of a non-primitive method return value

Any class, method, or variable mentioned for any reason in the description I was reading

A set of HTML documents would have eliminated all that page-turning. The only problem was, this was 1988 and there was no
HTML. The Web was just a glimmer in the eyes of a few people in Switzerland, and hypertext was an idea that wasn't discussed
much outside of universities. We programmers would often wonder, "Couldn't we fix it so I could read all this on my screen, and
somehow click on names of classes and data and methods to read their explanations?" But we didn't invent the World Wide Web.

Fast-forward to right now. We don't have a few dozen classes; we have more than a thousand. If you printed their explanations in
books, how many yards of shelf space would be required? How long would it take to look something up? Fortunately, it's all in
HTML files, and fortunately, someone invented the Web. But it wasn't me.

Starting at the Top

To get the most out of this section, read it in front of your computer. You will be invited to look at various API pages. If you haven't
yet downloaded and installed them, do it now!

Appendix A suggested that you download the Java documentation into j2sdk1.4.1_02\docs (depending on your operating
system, the path separator might be a forward slash). In the docs directory, there is a directory called api. Display the contents of
that directory. Double-click on the icon for index.html. Your browser will appear, displaying a fairly large page with 3 frames.
This is the index. It is your entry point into the dozens of millions of bytes of information that are your electronic documentation.

The API pages are copyrighted, so we can't show you a picture of the index. Its structure is shown in Figure 12.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.1: Structure of the API index

The index has 3 frames:

The packages frame

The classes frame

The details frame

Look at the packages frame in the upper-left corner of your browser. It is a list of all the core Java packages. Subpackages are
also listed. Notice that the 2nd package in the list is java.awt, which is followed by its 10 subpackages.

The remainder of the left edge of the page is occupied by the classes frame. Initially, all the classes of all the core packages are
displayed. When you click on an individual package in the packages frame, the classes frame displays the contents of the
selected package. Figure 12.2 shows the structure of the classes frame.

Figure 12.2: Structure of the classes frame

The classes frame shows all the interfaces, classes, exceptions, and errors of the selected package. (If you haven't yet selected a
package, or if you select All Classes in the packages frame, you see everything for all packages.) Each interface, class, exception,
and error is a link.

We haven't discussed errors in this book. They are like exceptions, but they indicate something deeply wrong with a program. As
a programmer, you should avoid throwing or catching errors. So for the remainder of this book, we will continue to ignore their
existence.

Try it. In the packages frame, click on java.awt. (We will spend the last three chapters of this book learning how to use this
package.) The classes frame shows that java.awt has a large number of interfaces, a very large number of classes, a few
exceptions, and one error.

Now go back to the packages frame, scroll down a bit, and click on java.lang. Click on the link for the Boolean class, which is
the first link in the list of classes. The details frame displays a complete explanation of the class.

The class description is quite long, even for a simple class like java.lang.Boolean. It is divided into 3 sections, as shown in
Figure 12.3.

Figure 12.3: Class description

The class overview presents the class name, its inheritance hierarchy, and a text description. All elements of the inheritance
hierarchy are links, so it's easy to look up a class's superclass.

The field, constructor, and method summaries are the really useful part of this frame. Figure 12.4 shows their structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.4: Field/constructor/ method summaries

Each field, constructor, and method is listed alphabetically, along with a brief description. To see a more detailed description, click
on the name of the field, constructor, or method. The name is a link to the position, further down on the same page, of the detailed
description. Any class name in the detailed description is a link to the API page for that class. Try it. In the method summary
section, click on the link for toString(). You see an explanation that is somewhat deeper than that brief one that appeared in
the summary. Any exceptions thrown by any constructor or method are listed in the detailed description.

Any field, constructor, method, or class mentioned anywhere in the details frame is itself a link. The return type of the
toString() method is String. Click on one of the occurrences of this word. The details frame displays the description of the
java.lang.String class.

Between the summary and detail sections is a short section that lists all the methods that the class inherits from all its parent
superclasses.

Typically, a session with the API pages goes like this. You want to look up a particular method of a particular class, for any of the
same reasons you would look up a word in a dictionary. You want to know:

How to spell it.

How to use it.

What it means.

For a method, you probably want to know one of the following:

Its spelling.

Its return type.

Its argument list.

What it does.

What exceptions it throws.

You begin your session by scrolling through the packages frame until you find the right package. You click on it, so that the
classes frame displays the contents of the package. You scroll through the classes frame until you find the class you want. You
click on the class link to make the details frame display the class description.

Now you scroll through the alphabetical list of methods until you find the one you want. The summary information might be
enough. If not, you click on the method name to view the detailed description.

If you're looking for the method's return type or argument list, you might find yourself looking at the name of a class that you don't
recognize. No problem. Click on the class name (it's a link) and read its API page.

The API pages contain more information than is presented here, but this is enough to get you going. If you are curious about the
additional API information, a good place to start is the very top of any class description page. Click on the Use, Tree, or Index link.

Deprecated Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Occasionally, an API page might tell you that a certain method is deprecated. A deprecated method is one that was introduced in
an early revision of Java, and since then has been replaced with something more robust, modern, bug-free, or trustworthy. You
are strongly cautioned not to use anything that is deprecated. Sun reserves the right to remove anything deprecated from future
revisions.

Ordinarily, Java is backward-compatible. This means that if you write Java code that compiles successfully and runs correctly with
the current revision of Java, your code will still compile successfully and run with the same behavior as before in any future
revision of Java. But if you use deprecated methods, you no longer get backward-compatibility. If one of the methods you call has
been removed, your code will no longer work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The java.lang Package
The core Java classes fall into three broad categories. There are classes that support specific tasks, such as database access or
graphical user interface (GUI) creation. These classes are organized into packages. For example, database support is in the
java.sql package, while GUI infrastructure is in the java.awt package and its many subpackages. Another category is classes
that are generally useful, no matter what kind of program you are writing. Most of these appear in the java.util package. The
third category is classes that are essential to the operation of any program. These are to be found in the java.lang package.
Let's begin with a look at a few of them.

The classes and interfaces in java.lang are so important that they are imported in all source code automatically. It is as if the
compiler inserted the following line into any source:
import java.lang.*;

We will not be looking at all the classes in java.lang. Again, the purpose of this book is not to tell you everything there is to
know about every class in the package. Instead, we will just look at a few of the most important classes. Since you know how to
read API pages, you know how to find out about the others.

The java.lang.String Class

We will start with String. You have been aware of this class ever since Chapter 2, when you first looked at applications and saw
the following:
public static void main(String[] args)
{
. . .
}

Now you know that this is a method declaration, and no doubt you've guessed that the method takes a single argument whose
type is an array of something called String.

The String class contains an ordered sequence of characters, representing a piece of text. The text that an instance contains is
specified as a constructor argument. The class is immutable. This means that after an instance is constructed, its contents cannot
be changed. So if an instance of String initially contains the text "Click here to select a color", it will contain that text throughout
its lifetime.

This class is unique, in that there are two ways to create an instance. One way, of course, is to call a constructor. The second
way, which is unique to the String class, is to use a literal string. A literal string is text enclosed in double-quotes, like this:
"I am a literal string."

When the compiler encounters a literal string, it generates code that creates an instance of String to represent the text in
quotes. (Actually, the situation is a bit more complicated than that, but we don't need to go into detail here.) We have often used
code with the following format:
System.out.println("value is " + x);

Now you know that the text between the quotes is a literal string. Later in this chapter, you will see what is really going on when
the literal string is added to x. For now, you know that whatever else might be happening in the line of code, execution involves
the creation of an instance of String that represents the text in quotes.

The shortest literal string is
""

This string has zero characters, but it is still an object that exists, and you can call any methods of the String class on it. It is
called the empty string.

The easiest way to create a String instance that contains a particular run of text is like this:
String s;
s = "To be, or not to be";

Or simply:
String s = "To be, or not to be";

There are 11 different versions of the String constructor. Here we will only look at one of them. (Later in this chapter you will
learn how to look for information about the rest, so you will be able to choose the best one for any situation.) The simplest
constructor is
public String(String s)

This constructor takes a single argument, which is a reference to another string. The new object is an exact replica of the
argument. Even though this is the simplest form of the String constructor, it isn't often used because you have the option of
using a literal string instead. For example, the following two lines are (almost) equivalent:
String s = new String("abcde");
String s = "abcde";

The second version is obviously easier to type.

The String class has a large number of methods. Here we will present a few of the more interesting ones. We start with
toUpperCase() and toLowerCase(). The toUpperCase() method converts all lowercase characters in a string to
uppercase. The toLowerCase () method converts all uppercase characters in a string to lowercase. Here is an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uppercase. The toLowerCase () method converts all uppercase characters in a string to lowercase. Here is an example:
String s = "Mm";
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println(upper);
System.out.println(lower);

The output of this code is
MM
Mm

These methods, and indeed all String methods that seem to modify a string, do not change the original string. That would be
impossible, because strings are immutable. After they are constructed, they cannot be changed. Instead, toUpperCase() and
toLowerCase() create and return a new string object. To prove this, you can modify the code example:
String s = "Mm";
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println(upper);
System.out.println(lower);
System.out.println(s);

The output of this code is
MM
mm
Mm

Notice the last line, which prints out the unscathed original string.

The situation can get confusing when a single reference is reassigned, as in the following example:
String s = new String("UPPER : lower");
System.out.println("BEFORE: " + s);
s = s.toUpperCase();
System.out.println("AFTER: " + s);

Here the single reference s refers first to the original string, and a little later to the new uppercase string. It looks like there is only
a single string object involved, especially when you look at the output:
BEFORE: UPPER : lower
AFTER: UPPER : LOWER

But there are actually two objects, although there is only one reference. When the reference is reassigned (s =
s.toUpperCase()), the original string object might get garbage- collected. This would happen if there were no other references
to the original object.

This might seem overly complicated when all you wanted to do was convert a string to upper- or lowercase, but it is always
important to bear in mind the difference between references and objects, and to know exactly what references are pointing to
what objects at every point in your code.

The StringLab animated illustration demonstrates strings in moving pictures. To run the animation, type java
strings.StringLab. You see a window with two code statements, as shown in Figure 12.5.

Figure 12.5: StringLab

The first statement creates a new instance of String. You can type anything you like to provide the text. The second statement
calls a method, toUpperCase() or toLowerCase(), on the string. Use the controls at the top of the window to choose the
method that will be called. You can also use the controls to choose between using two references or reassigning a single
reference. (Notice how the code in the main window changes when you change this option.) As usual, click Run to see the
animation, or click Run Lightspeed to skip the animation and see the final result. Be sure to watch the full animation with Reassign
Old Reference selected so you can see the original string being garbage-collected.

Figure 12.6 shows the result of converting to uppercase and using two references. Figure 12.7 shows the result of converting to
lowercase and reassigning the reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.6: StringLab: uppercase, 2 references

Figure 12.7: StringLab: lowercase, 1 reference

Now that you understand strings and methods, we can move quickly through a list of other String methods:

trim() Removes blank spaces from the start and end (but not the middle) of the executing string object.

substring(int n) Returns a portion of the executing string object. The substring consists of the run of characters
beginning at position n (where 0 is the first character) and ending at the end of the executing string object.

concat(String s) Appends s to the executing string object.

The return types are all String. These descriptions are deliberately brief. Detailed explanations are available to you in the
API pages.

Here are some String methods that return information about the executing string object. The return types vary, so they are
included in the list:

boolean equals(String s) Returns true if s and the executing string object contain identical text.

boolean equalsIgnoreCase(String s) Returns true if s and the executing string object contain identical text,
ignoring uppercase and lowercase distinctions.

char charAt(int n) Returns the nth character in the executing string object.

int length() Returns the length of the executing string object.

boolean startsWith(String s) Returns true if the executing string object begins with string s.

Here is a method whose argument is a string. The method prints out every character of the argument on its own line:
 void printChars(String s)
 {
 int length = s.length();
 for (int i=0; i<length; i++)
 {
 char c = s.charAt(i);
 System.out.println("Char #" + i + " is " + c);
 }
 }

Note the use of the length() and charAt() methods. Here is the output when the method is called with argument Alligator:
Char #0 is A
Char #1 is l
Char #2 is l
Char #3 is i
Char #4 is g
Char #5 is a
Char #6 is t
Char #7 is o
Char #8 is r

The only tricky method presented here is equals(). It is easy to understand what it does, provided you don't get misled by
the name. The equals()method does not check if the argument and the executing string object are the same object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the name. The equals()method does not check if the argument and the executing string object are the same object.
Instead, it checks whether the two objects both represent identical sequences of characters. To check if the argument and
the executing string are the same object, use the == operator, as demonstrated in the following example:

String s1 = new String("aa");
String s2 = new String("aa");
String s3 = s2;
if (s1.equals(s2))
 System.out.println("s1.equals(s2): YES");
if (s1 == s2)
 System.out.println("s1 == s2: YES");
if (s2 == s3)
 System.out.println("s2 == s3: YES");

The output is
s1.equals(s2): YES
s2 == s3: YES

Figure 12.8 shows the references and objects of this example.

Figure 12.8: String references and objects

We say that the == operator checks for reference equality, which means it checks if two references point to the same object.
The equals() method checks for object equality, which means it checks if two objects contain equal data. This distinction is
very important in object-oriented programming.

Command-Line Arguments
Every Java application has a main method that begins like this:
public static void main(String[] args) . . .

Of course, you can call the method argument anything you like, but args is the conventional name. The array contains the
application's command-line arguments. These are everything the user has typed into the command line that invoked the
application, except for the following:

java

The application class name

Any arguments for the JVM

So if you have an application class called database.Backup, and you run it by typing java database.Backup network
local greebo 1234, the args array will look like Figure 12.9.

Figure 12.9: Command-line arguments

Note that the last component in the array is a string. It is not a number, even though it looks like one because it consists entirely of
digit characters. Later you will learn how to convert an all-digit string into an int.

One job of the main() method is to check the command-line arguments and take appropriate action. For example, a main()
method might have the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public static void main(String[] args)
{
 for (int i=0; i< args.length; i++)
 {
 if (args [i].equals("help"))
 {
 printHelpMessage();
 break;
 }
 }
}

We assume the existence of a printHelpMessage() method that prints out an explanatory message on how to use the
program. The code scans the args array. If the array contains any occurrence of "help" (that is, if someone typed "help"
anywhere on the command line), the explanatory message is printed.

Some command-line arguments are intended for the JVM and do not get passed into the application. To see a list of JVM
arguments, type java -help. One such argument is -verbose. When you run a program with this argument, you get output
from the JVM about such activities as class loading. If you invoke an application by typing java -verbose database
.Backup network local greebo 1234, the -verbose argument will be consumed by the JVM and won't be passed on to
the application. So the application's args array will still be as shown in Figure 12.9, but the output will include the verbose
messages from the JVM.

The java.lang.Object Class

The Object class is the ultimate superclass of all other Java classes. It has about a dozen methods, many of which support
advanced functionality that is beyond the scope of this book. But it does have two methods that everyone should know about:
equals() and toString(). Since every other class extends Object (directly or indirectly), every other class inherits these
methods. You are not likely to create instances of Object, but you are very likely to use the equals() and toString()
methods that other classes inherit or override.

The first method we will look at is equals(). You already know about the implementation provided by the String class, and that
it checks for object equality and not reference equality. This distinction is maintained throughout the core Java classes: Any
implementation of equals() in any core class checks for object equality rather than reference equality. So
thisRef.equals(thatRef) will return true if the two references point to objects that contain equal variables. (Of course, if
the two references point to the same object, the call will also return true.)

For example, the java.awt.Point class represents a point in two-dimensional space. It has variables called x and y, which
hold the horizontal and vertical location of the point. If p1 and p2 are both references to instances of this class, you can check for
object equality by calling either
if (p1.equals(p2)) …

or
if (p2.equals(p1)) …

The equals() method of class Point returns true if p1.x equals p2.x and p1.y equals p2.y.

Not all core classes provide their own implementations of equals(). If you want to know if a class you are interested in provides
an implementation, you should look at the class's API page. Beware of classes whose API pages do not document an equals()
method. The class might inherit the method from Object, and that version is not very useful.

Now we will turn to the extremely useful toString() method. It is public, it returns a String, and it has no arguments, so its
declaration looks like this:
public String toString()

This method is intended to print out a useful message that includes information about the values of the executing object's
variables. The version provided by the Object class isn't very informative. In fact, it's downright cryptic. But every one of the core
Java classes overrides toString() with a version that provides useful information.

For example, there is a class called java.awt.Color that represents a color. The class has int variables called red, green,
and blue, which contain the amounts of red, green, and blue light that make up the represented color. Their values can range
from 0 through 255, and they are specified in the class's constructor.

Suppose you have a long intricate program with an instance of Color, referenced by variable foreground, that doesn't look
right. (Colors are used extensively in visual programming, which we will look at in the last 3 chapters of this book.) It would be
helpful if you knew exactly what the red, green, and blue components of the problematic color are. That information might lead
you to the source of the trouble. Thanks to toString(), you can easily create a line of debug code that tells you what is going
on inside your program. Always delete debug code after it has served your purpose. Otherwise it will accumulate, and your
program will emit lots of information that is no longer helpful.
Here is a debug line that prints out the puzzling color:
System.out.println("Weird color is " +
 foreground.toString());

The output looks something like this:
Weird color is java.awt.Color[r=100,g=255,b=0]

The output uses abbreviations instead of red, green, and blue, but it's clear what their values are. Now you can determine
which of them are wrong and look at the code that calculates the corresponding value that is passed into the Color constructor.

There is an easier way to print the toString value of the color, or of any other object. This brings us to the topic of string
concatenation. "Concatenation" is another of those five-syllable words. It just means joining strings consecutively, one after
another (after another, after another...). You have already used concatenation extensively, whenever you did something like

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.out.println("size is " + size +
 "and weight is " + weight);

Now it's time to see what's really going on between those parentheses. Look at those plus signs. Obviously they mean something
other than addition. In Java, plus signs have a double meaning:

When both items next to a plus sign are numeric, the plus sign means addition.

When one or both items next to a plus sign are references to strings, the plus sign means string concatenation.

In the second context, if one of the items next to the plus sign is a string, the other item can be anything! It can be a primitive,
another string reference, or a reference to an object of any other class. The other item is converted to a string according to the
rules shown in Table 12.1.

Table 12.1: String Concatenation Conversion Rules

Type Conversion Rule

boolean "true" or "false"

Primitive other than boolean A reasonable string representation

String The string

Object reference other than String Call toString() on the reference

The last entry in the table means that the line
System.out.println("Weird color is " +
 foreground.toString());

is equivalent to
System.out.println("Weird color is " +
 foreground);

In other words, when you're doing concatenation, you never need to type .toString().

The ConcatLab animated illustration shows concatenation in action. Run the program by typing java concat.ConcatLab. You
will see a window with three lines of code, as shown in Figure 12.10.

Figure 12.10: ConcatLab

The first statement creates an instance of java.awt.Color. The constructor's arguments are the three primary color values
(red/green/blue) that constitute the color. They must be in the range 0-255. You can type in any valid values. Later on, you will see
the color they represent.

The second statement creates an instance of a class called Point3D, which is not part of the core Java classes. To see the (very
simple) source for Point3D, click on the Edit Point3D button. You will see the display shown in Figure 12.11.

Figure 12.11: ConcatLab's Point3D class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The class represents a point in 3-D space, with x, y, and z coordinates. You will see a version of toString() that returns a
reasonable string representation. You can edit this code. Type any text you want into the text fields. When you're finished, click on
OK.

The third statement on the main window says
String s = "c is " + c + " and p is " + p;

Click on the Run button to run the animation, which shows how the four parts of the concatenated string are made. Figure 12.12
shows the result of running the animation, after some custom configuration.

Figure 12.12: ConcatLab's Point3D class

The java.lang.Integer Class, and other Wrappers

The java.lang package has eight very simple classes called wrappers. A wrapper is a class whose data is a single primitive
value. In other words, the primitive is "wrapped up" inside an object. The wrapper classes have names that are very similar to the
corresponding primitive names. In some cases, the names are identical except for the first letter, which is always uppercase for
class names and lowercase for primitive names. Table 12.2 shows the wrapper class names.

Table 12.2: Wrapper Class Names

Primitive Wrapper

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

The wrapper classes are immutable. This means that, just as with strings, the data contained in an instance doesn't change after
the instance is created. The contained data is passed into the constructor, as shown below:
Boolean boo = new Boolean(true);
Character cha = new Character('L');

byte b = 5;
Byte bye = new Byte(b);
short s = 10;
Short sho = new Short(s);
int i = 9999;
Integer inty = new Integer(i);
long n = 2222222;
Long lonny = new Long(n);
float f = 3.14159f;
Float flo = new Float(f);
double d = 1.2e200;
Double dubby = new Double(d);

It might not be clear why these classes would ever be useful. You'll find out why when you learn about the java.util class a
little later on. But for now, be aware that the wrapper classes all have static methods that are useful for translating strings into
primitives. For example, class Integer has a parseInt(String s) method that translates a string to an int. If the string does
not represent a number, the method throws NumberFormatException.

The following code is an application that translates its first classes to an int, multiplies that value by 39, and then prints out the
result:
public class X39
{
 public static void main(String[] args)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if (args.length == 0)
 {
 System.out.println("Please supply a number.");
 }
 else
 {
 try
 {
 int n = Integer.parseInt(args[0]);
 int times39 = n * 39;
 System.out.println(args[0] + " * 39 = " +
 times39);
 }
 catch (NumberFormatException x)
 {
 System.out.println("That's not a number!");
 }
 }
 }
}

Note that this code doesn't create an instance of Integer. Instead, it calls a static method of Integer (in the first line of the try
block) to convert the string in args[0] to an int. Code like this is frequently seen near the beginning of main() methods.
Generally, an application that has numeric command-line arguments can't get very far until it converts the argument strings to
numeric primitives.

The java.lang.System Class

The java.lang.System class contains a hodgepodge of methods, most of which involve advanced functionality related to the
JVM. This brief section will only cover one of the class's methods. First, let's take a moment to look at two of its static variables:
out and in.

You have already used System.out extensively. Whenever you used
System.out.println(…);

You were making a call to the println() method of the System.out object.

The println() method is heavily overloaded. All of the versions of the method take a single argument. One version, which you
have been using throughout this book, takes a string argument. The string is printed out, followed by a newline character. The
newline character is not displayed. Instead, it moves the cursor position to the beginning of the next line.

Other versions of println() take args that are bytes, shorts, booleans, and so on. These versions convert their arguments to
strings and then print them out, followed by a newline character.

Perhaps the most commonly used method of java.lang.System is exit(). This method causes the JVM to terminate, thus
ending the current application immediately. The method takes an int argument called the exit code. Typically, 0 is used to indicate
a normal termination, while a non-zero value indicates that termination was caused by an error condition.

Some operating systems are able to run sequences of programs, where the exit code of one program is used to control the
operation of the next program. This is highly system-dependent and not relevant to an introductory Java book, but you need to
know what exit status codes are because you need to pass an argument into every System.exit() call. You won't go wrong if
you use 0 to mean normal termination and a small non-zero value to mean abnormal termination.

The following code is a rewrite of the previous example, using System.exit() to terminate execution.
public class X39RevB
{
 public static void main(String[] args)
 {
 if (args.length == 0)
 {
 System.out.println("Please supply a number.");
 System.exit(1); // Non-zero exit code
 }
 else
 {
 try
 {
 int n = Integer.parseInt(args[0]);
 int times39 = n * 39;
 System.out.println(args[0] + " * 39 = " +
 times39);
 System.exit(0);
 }
 catch (NumberFormatException x)
 {
 System.out.println("That's not a number!");
 System.exit(2);
 }
 }
 }
}

The System.exit(0) call at the end of the try block isn't actually necessary. When main() finishes, the JVM shuts down
anyway, with an exit code of 0.

The java.lang.Math Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The java.lang.Math class is the least object-oriented of all the core Java classes. All of its methods are static, so you never
need to create an instance. In fact, you aren't allowed to create an instance (see Exercise 3 for details).

The class has dozens of methods. Instead of listing them all, here's a short sampler. Consult the API page for the complete list.

int min(int a, int b) Returns the lesser of a and b

int max(int a, int b) Returns the greater of a and b

double sin(double angle) Computes the sine of an angle

double cos(double angle) Computes the cosine of an angle

double tan(double angle) Computes the tangent of an angle

double pow(double a, double b) Returns a raised to the power of b

double random() Returns a random number that is >=0 and <1

And so on. All trigonometry methods use radians, not degrees, for expressing angles. All methods that do intense calculation
have return types of double.

The random() method can be used to generate a random double in any range. For example, to generate a random double
that is >=0 and <30, just use 30 * Math.random(). To generate a random double that is >=10 and <40, just use 10 +
(30*Math.random()).

The following code generates 100 random numbers that are >=0 and <50. Then it computes the area of a circle whose radius is
the random number. The code keeps track of, and prints out, the largest area:
public class RandomAreas
{
 public static void main(String[] args)
 {
 double maxArea = 0;
 for (int i=0; i<100; i++)
 {
 double radius = 50 * Math.random();
 double area = 3.24159 * radius * radius;
 if (area > maxArea)
 maxArea = area;
 }
 System.out.println("Biggest area = " + maxArea);
 }
}

The lang class defines two public final static double variables, PI and E. They contain very precise values for these
mathematical constants, accurate to 20 digits to the right of the decimal point. So you never need to memorize, look up, or
type in either of these values. That's a good thing, because you might accidentally type in a wrong value that could throw off
all your subsequent calculations. In fact, that's what happened in this example. In the line that begins double area =, the
2 should be a 1. A better line would be

double area = Math.PI * radius * radius;

You can make the code a little shorter by replacing these lines:
if (area > maxArea)
 maxArea = area;

With this single line:
maxArea = Math.max(area, maxArea);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. In the beginning of this chapter you learned that a good rule of thumb is to use core code when you can and
develop original code when you must. Because Java is an object-oriented language, you have a third option,
which combines reusing existing code with creating your own. You learned about this option in an earlier
chapter. What is it?

2. If you write code that calls a deprecated method of one of the core Java classes, what valuable feature of Java
can you no longer rely on?

3. Suppose you are reading someone else's code and you come across the following lines:
Stack myStack = new Stack(); // java.util package
myStack.setSize(100);

You decide to look up setSize() in the APIs. The comment kindly tells you that class Stack is in package
java.util, so you click on java.util in the packages frame, and then you click on Stack in the classes frame.
You find yourself looking at the class description. You scroll down to the method summaries, and you don't see
setSize anywhere.

How should you proceed?

4. In the section on the String class, you learned about the startsWith(String s) method, which returns
true if the executing string object begins with the argument string s. It stands to reason that there should be a
similar method that tells you whether the executing string object ends with a specified string. Look at the API
page for java.lang.String and see if such a method exists.

5. What happens when you try to compile and execute the following application?
public class Ch12Q5
{
 public String toString()
 {
 return "I am an instance of Ch12Q5.";
 }
 public static void main(String[] args)
 {
 Ch12Q5 thing = new Ch12Q5();
 System.out.println(thing);
 }
}

6. What happens when you try to compile and execute the following application?
class Ch12Q6
{
 String toString()
 {
 return "I am an instance of Ch12Q6.";
 }
 public static void main(String[] args)
 {
 Ch12Q6 thing = new Ch12Q6();
 System.out.println(thing);
 }
}

7. Look up the explanation of the equals() method on the API page of class java.lang.Object. The explanation is
a bit wordy, but see if you can figure out what it does. (Focus on the last sentence, just before the "Parameters"
section.) What is the technical term for what the method does? (Hint: It was introduced in this chapter.)

8. You're not allowed to construct an instance of the java.lang.Math class. What happens if you try?

9. The following code models the behavior of a familiar piece of equipment that is used in many games throughout
the world. What is the piece of equipment?
long rand = 1 + Math.round(Math.random() * 5);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: File Input and Output
In Chapter 12, you saw a few of the core Java packages and classes. You also learned that creating successful Java programs
involves both writing your own code and using preexisting classes. This chapter will cover the fundamentals of reading and writing
disk files. It will take advantage of several core classes in the java.io package. This will be your first look at making extensive
use of core classes.

Files As Sequences of Bytes
In Chapter 1, you saw that a computer's memory is a clump of tiny circuits in which voltages represent 0s and 1s. It doesn't take a
degree in electrical engineering to know that when you turn off a circuit's power, the voltages go away. No more 0s, no more 1s.

Disks are like computer memory in the following sense: A disk is a collection of tiny "somethings" that can be in one of two
possible states. The surrounding electronics, and the software that controls the surrounding electronics, interpret the two states as
representing 0 or 1. With a hard disk, the states are microscopic magnetic fields that can point in either of two directions. With a
CD-ROM or DVD, the medium is filled with microscopic regions that either do or do not block light. Aside from the underlying
physics, the main difference between disks and memory is that disks remember what is stored in them, even after the power goes
off.

To make the rest of this discussion more clear, let's use the term RAM to mean ordinary computer memory, as distinct from disks,
which are also a kind of memory. RAM is an acronym for Random Access Memory. It's a cool-sounding acronym, but you may be
wondering what's so random about RAM. "Random" relates (distantly) to the amount of time it takes to read data out of memory or
to write data into memory. It takes exactly the same amount of time (less than one millionth of a second) to read any byte in the
circuit. Writing might take slightly longer than reading, but writing any byte takes exactly the same amount of time as writing any
other byte. So you can pick any two bytes at random, and they can be read in the same amount of time, or written in the same
amount of time, as each other.

Disks are not random access devices. At any moment, some parts of the disk data can be read more quickly than others. This is
because the disk is rotating. If you want to read some data, you have to wait until it has rotated into position next to the disk's
reading or writing hardware, which does not rotate. It you're lucky, the data will be just about rotated into position. If you're out of
luck, the data will have just rotated out of position, and you will have to wait until the disk makes another revolution.

So you see that RAM and disks have very different mechanical and physical properties, but they both can be treated as storing
ordered sequences of 0s and 1s.

As with RAM, you think of disks as being organized into bytes, each byte having a unique position. As with RAM, you would find it
impossibly limiting if you had to think exclusively in terms of bytes. As with RAM, you use groups of disk bytes to encode higher-
level multi-byte information. But unlike RAM, the first step in learning how to do disk input and output is to learn how to read and
write pure bytes. That is where we will begin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing and Reading Bytes
Document files don't really contain text. Image files don't really contain pictures. MP3 files don't really contain music, and MPEG
files don't really contain movies. They all contain bytes, because all files just contain bytes. The bytes encode information; they
are decoded by software appropriate to the encoded content. This is why filename extensions are so important. They tell the
computer what decoding software to use. If you take an image file that encodes a really beautiful picture and you change filename
extension to .mp3, it's probably going to sound terrible.

All files are sequences of bytes. Before we look at decoding and encoding the information represented by the files, you need to
learn how to write and read plain ordinary bytes. You will make extensive use of two of the classes in the java.io package:

FileOutputStream

FileInputStream

A file output stream writes bytes to a file; a file input stream reads bytes from a file. Our purpose here is not to present both
classes in their entirety. Here you will learn more than enough to be able to use them well. Whenever you want to complete your
understanding, you can refer to the API documentation.

Both classes have constructors with String arguments, where the string specifies the name of the file. On Windows machines,
the file separator (the character that goes between elements in a full pathname) is a backslash, and that can lead to problems. So
let's begin with a digression on dealing with backslashes.

Backslashes in Filenames

If you want to write bytes to a file in the current working directory called xyz, you can construct a file output stream like this:
FileOutputStream fos;
fos = new FileOutputStream("xyz");

Of course, you can create a file output stream in a similar way. Ignoring for the moment the issue of what you can actually do with
those streams, you have to deal with the question of what happens when you want to specify a full pathname on a Windows
system. For example, what if you want to write to a file whose full pathname is C:my_files\photos\abc? The following code
will not do what you want:
FileOutputStream fos;
fos = new FileOutputStream("C:my_files\photos\abc");

Surprisingly, this code will not compile! The compiler error says that there is an invalid escape character, whatever that means.

Actually, the problem has nothing to do with file output streams. It has to do with backslashes in literal strings. You would get the
same compilation error if you tried the following:
String s = "C:my_files\photos\abc";

In Chapter 2, "Data," you saw that certain characters (most notably the newline and tab characters) are represented by escape
codes, \n for newline and \t for tab. Those codes can also be embedded in literal strings. For example, the following code prints
some numbers, separated by tabs, on two lines:
String s = "123\t456\t789\n987\t654\t432";
System.out.println(s);

You can see that the backslash character has special meaning to the Java compiler. In literal strings and chars, backslash means,
"Ignore me and treat the next character as a special code." If you just want a simple ordinary backslash in a literal string or char,
you have to use a double backslash. For example, to print out the word "hello" followed by a backslash, you have to do the
following:
System.out.println("Hello\\");

Note the second backslash. Only one backslash is printed.

So you can see that
String s = "C:my_files\photos\abc";

won't compile, because \p and a are not valid escape codes. It's a good thing they aren't. The following code compiles, but with
an unexpected result:
String s = "C:my_backup\temporary\news";

So if you are writing file access code for a Windows machine, you always have to remember to use double backslashes for file
separators, like this:
FileOutputStream fos;
fos = new FileOutputStream("C:my_files\\photos\\abc");

Now that you know how to specify filenames, we can move on to writing to files.

Writing Bytes

To create a file full of bytes, you have to do three things:
1. Construct an instance of FileOutputStream.

2. Write the bytes.

3. Close the stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following application creates a file called "xyz" in the current directory, writes 10 bytes, and then closes the file:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. FileOutputStream fos;
 8. fos = new FileOutputStream("xyz");
 9. for (int i=0; i<10; i++)
10. fos.write(i);
11. fos.close();
12. }
13. }

Line 8 constructs the output stream. Line 10, which executes 10 times in the for loop, writes the bytes. It looks like line 10
actually writes ints, because i is an int, but the write() method actually only writes the low-order 8 bits of its argument. Line 11
"closes" the stream. Closing releases certain hidden operating system resources that the stream needs in order to access the
disk. After a stream is closed, it can't be written to.

Our code example will not compile, because lines 8, 10, and 11 throw exceptions. The constructor on line 8 throws
FileNotFoundException. The write() call on line 10 and the close() call on line 11 throw IOException. So the code can
be improved as follows:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. try
 8. {
 9. FileOutputStream fos;
10. fos = new FileOutputStream("xyz");
11. for (int i=0; i<10; i++)
12. fos.write(i);
13. fos.close();
14. }
15. catch (FileNotFoundException x)
16. {
17. System.out.println("Caught FileNotFoundEx");
18. }
19. catch (IOException x)
20. {
21. System.out.println("Caught IOExn");
22. }
23. }
24. }

This code compiles, and it executes correctly. But it can be simplified a bit. FileNotFoundException is a subclass of
IOException. So we can eliminate lines 13-16:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args_
 6. {
 7. try
 8. {
 9. FileOutputStream fos;
10. fos = new FileOutputStream("xyz");
11. for (int i=0; i<10; i++)
12. fos.write(i);
13. fos.close();
14. }
15. catch (IOException x)
16. {
17. System.out.println("Caught IOExn");
18. }
19. }
20. }

After this application runs, the current directory contains a 10-byte file named "xyz".

The Simple Output Lab animated illustration demonstrates an application that writes several bytes to a file. To run the program,
type "java io.SimpleOutputLab". The initial display is shown in Figure 13.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.1: Simple Output Lab

The animation is very simple, but it will give you a good graphical image of the relationships between the data, the output stream,
and the file. Figure 13.2 shows the animation in progress.

Figure 13.2: Simple Output Lab in progress

Reading Bytes

Reading bytes is almost exactly like writing bytes. You still have to do three things:
1. Construct an instance of FileInputStream.

2. Read the bytes.

3. Close the stream.

The following application reads back the file that was created in the previous section:
 1. import java.io.*;
 2.
 3. public class Read10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. try
 8. {
 9. FileInputStream fis;
10. fis = new FileInputStream ("xyz");
11. for (int i=0; i<10; i++)
12. {
13. int theByte = fis.read();
14. System.out.println(theByte);
15. }
16. fis.close();
17. }
18. catch (IOException x)
19. {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19. {
20. System.out.println("Caught IOExn");
21. }
22. }
23. }

Line 8 creates the input stream, line 12 reads the bytes, and line 14 closes the stream. Line 12 prints out the bytes that were read,
each one on its own line.

Note the strange variable on line 11. It is called theByte, but it is an int. The read() method of class FileInputStream reads
a byte from the disk, but returns an int. Usually, the high-order 24 bits of the returned int are all 0s; the low-order 8 bits are the
byte that was read from the disk. However, if the input stream has already read all the bytes in its file, the next read() call will
return the int value -1. Recall that this value consists of 32 1's. This is distinct from the byte value of -1, which consists of eight 1's.
If a file input stream reads such a byte from its file, the return value will have 1s in its low-order eight bits, and 0s in its high-order
24 bits. So there is no danger of confusing a byte read from the file whose value happens to be -1 with the int that signals that
there is no more data in the file. Table 13.1 makes this clear.

Table 13.1: Byte -1 vs. Int -1

byte -1, returned as an int int -1, signaling end of file

00000000 00000000 00000000 11111111 11111111 11111111 11111111 11111111

You can use the special return value when you don't know the length of the file you are reading. In this example, suppose you
don't know that the file contains 10 bytes. As you learned in Chapter 5, when you don't know how many times the loop will
execute, it's time to use a while loop:
import java.io.*;

 public class Read10Bytes
 {
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis;
 fis = new FileInputStream ("xyz");
 while (true)
 {
 int theByte = fis.read();
 if (theByte == -1)
 break;
 System.out.println(theByte);
 }
 fis.close();
}
 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
 }

This application generates exactly the same output as the previous version, but this time there is no need to know the size of the
file. This version can handle a file of any size.

The Simple Input Lab animated illustration demonstrates an application that reads several bytes from a file. To run the program,
type "java io.SimpleInputLab". The animation is very simple, but like SimpleOutputLab, it will give you a good graphical
image of the relationships between the data, the input stream, and the file. Figure 13.3 shows the animation in progress.

Figure 13.3: Simple Input Lab in progress

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing and Reading Data
At this point, you might be asking yourself, "When would I ever want to write or read bytes?" After all, one of the huge
disadvantages of SimCom, as compared to the JVM, is that it deals only in bytes, while Java supports eight primitive data types
and limitless class types.

The answer, fortunately, is that you never have to write or read bytes if you don't want to. You still have to create file input and
output streams, and you still have to close them when you're done using them, but you don't have to write to them or read from
them. Not directly, anyway. The writing and reading can be done by two very useful classes in the java.io package:

DataOutputStream

DataInputStream

The constructor for DataOutputStream takes a single argument. This argument is not the name of a file. Instead, it is a
reference to a file output stream. Data written to a data output stream gets chopped up into bytes, which the data output stream
passes to its file output stream. The technique of connecting streams together is called chaining. Figure 13.4 shows a data output
stream chained onto a file output stream.

Figure 13.4: Output chaining

DataOutputStream has a large number of methods that chop up data and deliver bytes to the next stream in the chain. Here we
will discuss nine of these methods:

writeBoolean(boolean boo)

writeByte(int b)

writeShort(int s)

writeChar(int c)

writeInt(int i)

writeLong(long n)

writeFloat(float f)

writeDouble(double d)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writeDouble(double d)

writeUTF(String s)

It is obvious what the first eight methods do: They convert their primitive arguments into bytes. (It's surprising that writeByte(),
writeShort(), and writeChar() take int args rather than the corresponding primitive types. That's just how it is.) What about
UTF? Recall that Java's char type uses Unicode encoding. So a Java string is a run of Unicode characters. UTF is a standard for
converting Unicode strings into bytes. Thanks to the writeUTF() method, you can use a data output stream to write any of
Java's eight primitives, as well as any string. This is illustrated in the following application.

The following code chains a data output stream onto a file output stream, and then it writes one of each primitive type as well as
one string:
import java.io.*;

public class WriteWithChain
{
 public static void main(String[] args)
 {
 boolean boo = true;
 byte b = 12;
 short sh = 12345;
 char c = 'M';
 int i = -654321;
 long n = 12341234;
 float f = 15;
 double d = 1.23e88;
 String s = "Where the devil did that dragon come from?";

 try
 {
 FileOutputStream fos;
 DataOutputStream dos;

 fos = new FileOutputStream("abc");
 dos = new DataOutputStream(fos);
 dos.writeBoolean(boo);
 dos.writeByte(b);
 dos.writeShort(sh);
 dos.writeChar(c);
 dos.writeInt(i);
 dos.writeLong(n);
 dos.writeFloat(f);
 dos.writeDouble(d);
 dos.writeUTF(s);
 dos.close();
 fos.close();
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

Note the two close() calls at the end of the try block. Every input and output stream should be closed after use. A good rule of
thumb is to close chained streams in the opposite

order from their creation. Since the file output stream was constructed before the data output stream, close the data output stream
first and the file output stream second.

Now you know how to write data to a file, so it is time to learn how to read data from a file. Again, you will chain a high-level
stream onto a stream that communicates with a file. But this time, you will chain a data input stream onto a file input stream.
Figure 13.5 shows this arrangement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.5: Input chaining

The DataInputStream class reads bytes from a lower-level stream, such as a file input stream has nine reading methods that
correspond to the nine writing methods of DataOutputStream:

readBoolean()

readByte()

readShort()

readChar()

readInt()

readLong()

readFloat()

readDouble()

readUTF()

These methods take no arguments. Their return types correspond to their names: boolean for readBoolean(), byte for
readByte(), and so on. readUTF() returns a string. When any of these calls are made, the data input stream gets the
appropriate number of bytes from its lower-level stream and assembles them to create the appropriate return value.

Now you can read the file by chaining a data input stream onto a file input stream:
import java.io.*;

public class ReadWithChain
{
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis;
 DataInputStream dis;

 fis = new FileInputStream("abc");
 dis = new DataInputStream(fis);
 boolean boo = dis.readBoolean();
 System.out.println("Read boolean: " + boo);
 byte b = dis.readByte();
 System.out.println("Read byte: " + b);
 short sh = dis.readShort();
 System.out.println("Read short: " + sh);
 char c = dis.readChar();
 System.out.println("Read char: " + c);
 int i = dis.readInt();
 System.out.println("Read int: " + i);
 long n = dis.readLong();
 System.out.println("Read long: " + n);
 float f = dis.readFloat();
 System.out.println("Read float: " + f);
 double d = dis.readDouble();
 System.out.println("Read double: " + d);
 String s = dis.readUTF();
 System.out.println("Read string: " + s);
 dis.close();
 fis.close();
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This application's output is
Read boolean: true
Read byte: 12
Read short: 12345
Read char: M
Read int: -654321
Read long: 12341234
Read float: 15.0
Read double: 1.23E88
Read string: Where the devil did that dragon come from?

Obviously, this output reflects the data that was originally written to the file in the previous example. The two applications work
together because the reading code reads exactly the same types, in exactly the same order, as were written by the writing code.
Whenever you read from a file that was created with a data output stream, your read calls have to correspond exactly to the write
calls that created the file. Otherwise, your data will be garbled beyond all recognition.

For example, suppose you mistakenly called readLong() instead of readInt(). The data input stream would grab the next
eight bytes so that it could build a long. Those eight bytes would be the four-byte int (which is the next item of data in the file), and
the first four bytes of the eight-byte long (which follows the int in the file).

The Data Chain Lab animated illustration demonstrates code that first writes three pieces of data to a file, and then reads them
back. To run the application, type "java io.DataChainLab". Figure 13.6 shows the display.

Figure 13.6: Data Chain Lab

In the three lines that write data, you will see pull-down choices for configuring which data type to write out. You can choose from
any of the seven methods that write numerical types. You can also choose the values to be written. When you change the type
being written, the corresponding reading code changes as well. This is in keeping with the rule that the type that is written must
match the type that is read.

When you're ready, click the "Run" button to view the animation. If you want to run it again, perhaps with different output methods
or values, first click "Reset". Then choose new methods and values, and click "Run" again.

Figure 13.7 shows Data Chain Lab in progress. It has been configured to write and then read a byte, a long, and a double.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.7: Data Chain Lab in progress: Text, writers, and readers

File output streams and file input streams are used for files that contain raw bytes. Data output streams and data input streams
are used for files whose bytes represent multibyte data. There is a third kind of file, whose bytes represent text. For access to text
files, Java provides classes called readers and writers.

Before presenting readers and writers, we should take a moment to explain what is meant by "text file". Recall that Java uses the
modern Unicode scheme to represent text, using two bytes per character. This means there are 65,536 possible characters that
can be represented. That's more than enough to represent every character of every language on the planet... until you consider
Chinese, Japanese, and Korean. These non-phonetic alphabets have huge numbers of characters, enough to consume all 65,536
bit combinations. The international Unicode Consortium decides which characters of which languages will be represented by
which bit combinations.

Well, that's the modern way to represent characters. It doesn't seem quite modern enough when you think about those Chinese,
Japanese, and Korean symbols that get left out, but it's better than what we had before. The old way of doing things, from the
invention of computers through the introduction of Unicode, was to use 8-bit characters. Every language group was on its own to
decide which of the 256 possible bit combinations would represent which character. Most files created during that time used an
encoding called ASCII, which stands for "American Standard Code for Information Interchange". ASCII encodes all the characters
in American English, plus punctuation marks, into the range 0-127. The range 128-255 encodes symbols such as accented
vowels, which are used in western European languages, as well as some Greek characters, line-drawing symbols, and some
others. All of the characters that are represented in ASCII are represented in Unicode.

So here's the situation today: Within the JVM, characters are represented by Unicode. But in the world in general, there are
millions of text files that use ASCII or other 8-bit representations. So Java needs a way to read those files and present their
contents as Unicode strings. Also, Java needs a way to write ASCII files (as well as other 8-bit formats), because files can be read
by non-Java programs that don't know about Unicode. Note that the problem cannot be solved by using data input and output
streams that do lots of readUTF() and writeUTF() calls, because UTF is compressed Unicode, not ASCII.

Readers and writers solve the problem of translating between 16-bit characters within a JVM and 8-bit characters in text files.
Figure 13.8 illustrates the roles of readers and writers.

Figure 13.8: Readers and writers

Reader is an abstract class that reads 8-bit text and delivers Unicode chars. Writer is an abstract class that reads Unicode
chars and delivers 8-bit text. For our purposes, the two most important subclasses of these two classes are FileReader and
FileWriter, which read and write 8-bit text files.

A FileWriter is a lot like a FileOutputStream. You construct one, passing as an argument the name of the file you want to
make. Then you write, and when you have finished, you close the FileWriter. This all must happen in a try block, because the
code can throw IOException and some of its subclasses. The following code writes two lines of text to a file called abc.txt:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\n");
5. fw.write("Goodbye\n");
6. fw.close();
7. }
8. catch (IOException x) {}

Line 4 writes "Hello", followed by a newline character. Line 5 writes "Goodbye", followed by a newline character. Note that the
newline is not automatic (as it is in the System.out.println() call, for example). If you want multiple lines of text, you have to
indicate the line breaks yourself. So the following code creates an identical file:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\nGoodbye\n");
5. fw.close();
6. }
7. catch (IOException x) {}

There are three common ways to indicate that a line has ended and a new line has begun:

A return character ('\r')

A newline character ('\n')

A return character followed by a newline character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Which should you use? It depends on which other programs will be reading the file you create. Programs that run on Windows
platforms expect a return character followed by a newline character. If you are creating files for Windows, you should do
something like the following:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\r\nGoodbye\r\n");
5. fw.close();
6. }
7. catch (IOException x) {}

If you run this code on a Windows machine and then double-click on the icon for the abc.txt file, Windows will open a Notepad
window that displays (and lets you edit) the file. You can also open the file with any other program that reads text files, including
Word.

You can read text files with the FileReader class, but this class is a bit limited. It is much easier to use the LineNumberReader
class, where the readLine() method reads lines of text and returns strings. (This assumes that your text file has multiple lines,
and that reading line by line will be useful to you. This is a safe assumption.) A call to readLine() reads one line from the input
file. A line is a run of text, terminated by either a return character, a newline character, or a return character followed by a newline
character. The line-termination characters are not part of the returned string.

A line number reader does not directly read from the input file. Rather, it is chained onto a file reader, in the same way a data
input stream is chained onto a file input stream. Figure 13.9 shows the relationship between a line number reader and a file
reader.

Figure 13.9: Line number reader and file reader

The following code reads and prints out the first two line of a character file:
try
{
 FileReader fr = new FileReader("zzz.txt");
 LineNumberReader lnr = new LineNumberReader(fr);
 System.out.println(lnr.readLine());
 System.out.println(lnr.readLine());
 lnr.close();
 fr.close();
}
catch (IOException x) { }

The LineNumberReader class keeps track of the number of lines it has read. You can retrieve the current line number by calling
getLineNumber().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The readline() method returns null if the end of the input file has been reached. So the following code prints out the line
number of all lines in file input.txt that contain the word "purple":
 1. try
 2. {
 3. FileReader fr = new FileReader("input.txt");
 4. LineNumberReader lnr = new LineNumberReader(fr);
 5. String s = "";
 6. while (s != null)
 7. {
 8. s = lnr.readLine();
 9. if (s != null && s.indexOf("purple") != -1)
10. System.out.println("Found \"purple\" at line " +
11. lnr.getLineNumber());
12. }
13. lnr.close();
14. fr.close();
15. }
16. catch (IOException x) { }

The while loop runs as long as s is not null (that is, as long as the end of the file has not been reached). So s has to be
initialized to anything besides null so that the loop will not immediately terminate. Line 9 calls indexOf() on the string returned
by the line number reader. This method returns the position (in the string on which the method was called) of the string that is the
method's argument. For example, if s in line 9 is "A ferocious purple dragon", the indexOf() call will return 12. If the argument
string does not appear at all, indexOf() returns -1. So the condition in line 9 evaluates to true when the reader has not yet
reached the end of the file, and the string just read contains "purple".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. In this chapter, you learned about the following line:
String s = "C:my_backup\temporary\news";

What does the following code print out?
String s = "C:my_backup\temporary\news";
System.out.println("***\n" + s + "***");

What is the moral of this exercise?

2. The code examples in the "Writing and Reading Data" section defined an int called i, a float called f, a double
called d, and so on. But the long was called n, which breaks the pattern. You might have expected the long to be
called l. Why do you think this was not done?

3. Write a program that creates a file containing 5,000 random doubles that are >= 0 and <200.

4. Write a program that verifies the file you created in the previous exercise. Your program should read the 5,000
doubles, making sure that each falls within the proper range. Your program should also make sure the file
contains exactly 5,000 longs.

5. Look up the API documentation for the java.io.File class. An instance of this class contains information
about an individual file. One of the methods of the class tells you the length in bytes of a file. Use this method to
determine the number of bytes in the file you created in Exercise 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14: Painting
We now begin a series of three chapters about visual programming. Up until now, all your applications have produced text output.
In Chapter 11, "Exceptions", you learned how to provide text input via command-line arguments. Text input and output are fine, up
to a point, but the mouse and the GUI provide a much richer environment for communicating a user's ideas to a program, and for
communicating a program's results to a user.

Graphical user interface is usually abbreviated GUI. (Yes, it's pronounced "gooey.") The java.awt package contains dozens of
classes that support GUI concepts like windows, colors, lines, squares, fonts, buttons, and check boxes. This chapter will show
you how to display a window on your screen and paint basic shapes in it. That isn't spectacular, but this chapter will also prepare
you for Chapters 15, "Components," and 16, "Events," where you will learn how to populate your GUIs with buttons, scrollbars,
labels, and other standard controls. This chapter will end with an extended example program whose GUI combines custom
painting with standard components.

Frames
A frame is a window on a computer screen, plus the "decoration" that makes it look like an independent window, plus the
underlying programmatic behavior that lets you move windows around on your screen, resize them, iconify them, and so on.
Figure 14.1 shows a frame whose contents are gray.

Figure 14.1: A frame with boring contents

The figure shows a Windows frame that was created by a Java program running on a Windows platform. Windows users will
recognize the Minimize, Maximize, and Close buttons in the upper-right corner, as well as the decorations that give the outline its
3-D beveled appearance. On a different platform, the same program would create a frame whose controls and decorations looked
slightly different, appropriate to the platform's windowing software.

So on any platform, a frame created by a Java program looks exactly like any other frame. This happens because the classes of
the java.awt package do not directly draw components onto the screen. Instead, they instruct the underlying system's
windowing software to do the work.

Note Java provides two alternative toolkits for creating GUIs. The simpler one is called AWT, which stands for Another
Windowing Toolkit. The more complicated toolkit is called Swing, which doesn't stand for anything and is not discussed
in this book. Swing does not use the underlying windowing software to draw components.

Here is the application that created the frame in Figure 14.1:
 1. import java.awt.*;
 2.
 3. public class EmptyFrame extends Frame
 4. {
 5. EmptyFrame()
 6. {
 7. setTitle("A bleak empty gray frame");
 8. setBackground(new Color(128, 128, 128));
 9. setSize(300, 220);
10. }
11.
12. public static void main(String[] args)
13. {
14. EmptyFrame em = new EmptyFrame();
15. em.setVisible(true);
16. }
17. }

The application class extends java.awt.Frame. The superclass provides all the generic functionality of a frame. When you
create a subclass of java.awt.Frame, you only have to provide the non-generic, application-specific behavior. In this example,
the subclass does four things:

Puts a message in the frame's title bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the frame's background color.

Sets the frame's size.

Makes the frame visible.

Line 7 sets the message in the title bar. The setTitle() method is inherited from the superclass; it takes a string argument.

Line 8 sets the frame's background color. Whenever the frame needs to be drawn on the screen, all of its pixels are set to the
background color (except for the decoration pixels, of course). Then any application-specific drawing is performed. In this
example, there is no application-specific drawing, so all you see in the frame's interior is uniform gray. The setBackground()
method takes an argument of type java.awt.Color. We will look more deeply at this class in the next section, "Colors."

Line 9 uses the setSize() method to set the frame's size. The method's arguments are the desired width and height, in pixels.
(A pixel, or picture element, is a dot on a display screen.) It's important to set a frame's size, because the default size is zero
pixels wide by zero pixels high. So if you neglect to call setSize(), your frame will be too small to see.

Line 14 makes the frame visible. Before a frame executes setVisible(true), it's just a lot of bytes somewhere in memory, like
any other object. The first time setVisible() is executed, the frame establishes communication with the windowing software on
the underlying system, and the windowing software draws the frame on the screen. The process is quite complicated, but it all
happens automatically. You only need to remember to call both setSize() and setVisible(). Otherwise, your frame will not
be seen.

Notice that the title bar message, foreground color, and size are set in the EmptyFrame constructor, while setVisible()is
called in main(), after the frame has been constructed. The program would function the same if any of the calls on lines 7-9 were
moved into main(). For example, the following code sets the background color and size in main():
 1. import java.awt.*;
 2.
 3. public class EmptyFrame extends Frame
 4. {
 5. EmptyFrame()
 6. {
 7. setTitle("A bleak empty gray frame");
 8. }
 9.
10. public static void main(String[] args)
11. {
12. EmptyFrame em = new EmptyFrame();
13. em.setBackground(new Color(128, 128, 128));
14. em.setSize(300, 220);
15. em.setVisible(true);
16. }
17. }

This version produces an identical frame, but the previous version is considered better design. In the previous version, the
constructor was responsible for setting the properties of the subclass instance, but it did not make the frame visible. This is clean
design, because code that uses the class might want to create the object but not display it for a while. In general, constructors
should set up the internal properties of an object without dictating when and how the object is to be used.

Note A frame that you create in Java does not automatically disappear when you click the "Close" button in its upper-right
corner. The frame only sends an event to its listeners, using the mechanism that will be explained in Chapter 16. To kill
a frame, you can always type CONTROL-C in the console window where you started the program.

The code examples throughout the remainder of this book will feature frame subclasses whose constructors do everything except
call setVisible(). Making the frame visible is the job of the code that uses the frame subclass. For us, this will always happen
in main(), immediately after the subclass is created.

Now you know how to create a frame with boring uniform contents. Now it's time to learn how to put interesting things inside the
frame. These things can be seen only if their colors are different from the frame's background color, so let's begin by looking at
how Java handles colors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colors
Computer screens, like television screens, consist of rows and columns of tiny dots. It's difficult to see the dots with your unaided
eye, but they are easy to see through a magnifying glass. The screen's electronics control each dot's color, under the direction of
the computer's software or the TV's signal.

If you look closely at a pixel, you'll see that it consists of a red region, a green region, and a blue region. These are the pixel's
primary colors.

This might contradict your childhood experiences. When you first started drawing or painting, you probably noticed that certain
colors combine to make other colors. Mix red and blue to make purple. Red and yellow make orange, and blue and yellow make
green. Other combinations aren't as pleasing: Red and green make an especially unpleasant brown. No doubt, someone
explained to you that red, yellow, and blue are the primary colors that can be combined to make all other colors.

That isn't exactly true (there's no way to make white), but it pretty much explains the world of color. That is, until you stare too
closely at a screen or start learning about computer colors. Then it seems that the primary colors are not red, yellow, and blue, but
rather red, green, and blue.

Which trio is the real set of primary colors? It depends on your situation. When you mix paints, the pigments in the paints absorb
certain colors from the ambient light. The remaining colors get reflected back into your eyes. Red, yellow, and blue (the primary
colors of painting) are called subtractive primary colors because they are primary when light reflects off the absorbing pigment.
Red, green, and blue (the primary colors of screens) are called additive primary colors because they are primary when different
colors of light combine without pigment to absorb any hues. With additive primary colors, red plus green makes yellow, and red
plus green plus blue makes white. You might have seen additive primaries in theaters or other venues that use colored spotlights.
Where a red and green spotlight overlap, the light is yellow. Where red, green, and blue spotlights overlap, the light is white.

So when you control colors in a Java program, you have to think in terms of additive, not subtractive, primary colors. Table 14.1
summarizes additive color mixing.

Table 14.1: Combining Additive Primary Colors

Primary Colors Result

Red + green Yellow

Red + blue Magenta

Green + blue Cyan

Red + green + blue White

In Java, colors are represented by the java.awt.Color class. The constructor for this class has three arguments, which
represent the amount of red, green, and blue that make up the color. The arguments range from a minimum of 0 through a
maximum of 255. If all three arguments are 0, the color is black. If all three are 255, the color is white. As you can see from Table
14.1, if red and blue are 255 while green is 0, the color is magenta. If red is 200, blue is 255, and green is 0, the color is a
somewhat bluer magenta (because it contains less red).

The Color class has 13 predefined colors. These are public final static variables of type Color. (It may seem convoluted for a
class to contain data of the same type as the class. That's just how it is.) The names of these variables are

Color.BLACK

Color.WHITE

Color.RED

Color.GREEN

Color.BLUE

Color.YELLOW

Color.CYAN

Color.MAGENTA

Color.ORANGE

Color.PINK

Color.LIGHT_GRAY

Color.GRAY

Color.DARK_GRAY

If you want to use one of these colors, you don't have to create a new instance. For example, to set a frame's background color to
orange, you can call setBackground(Color.orange). If the 13 predefined colors don't give you what you want, you need to
construct your own. You might find that Color.orange isn't intense enough. Its green level is 200, which tends to wash out the
brilliance of the red. A nice intense orange is created by calling new Color(255, 200, 0). You can make this the background
color of a frame by calling setBackground(new Color(255, 200, 0)).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color of a frame by calling setBackground(new Color(255, 200, 0)).

Looking at colors is better than reading about them. The Color Lab program lets you practice mixing primaries, and it also shows
you all 13 predefined colors. To run the program, type java visual.ColorLab. Figure 14.2 shows the initial display.

Figure 14.2: Color Lab

The control panel contains three scrollbars, with a text field showing the value of each scrollbar, as well as a pull-down menu.
When you choose Custom from the pull-down menu, as shown in Figure 14.2, the scrollbars are enabled. You can set them to
any value from 0 through 255, and the display area to the right of the control panel will show the color you've specified. You can
also type numbers into the text fields. Press Enter to make your entry take effect.

In addition to Custom, the pull-down menu lets you choose any of the 13 predefined colors of the Color class. When one of
these is selected, the scrollbars and text fields are disabled. They display the red/green/blue levels of the selected color, but you
can't use them for input. Figure 14.3 shows Color Lab displaying a predefined color.

Figure 14.3: Color Lab with a predefined color

Notice that the sliders have no bubbles, and the numbers in the text fields are gray, indicating that those components are not
enabled to receive user input.

Set the Color Lab inputs to display yellow. You can do this by selecting YELLOW, or by selecting Custom and manipulating the
scrollbars. Now look at the yellow area of the screen through a magnifying glass. Observe the separate red and green areas of the
individual pixels. Have a friend hold the magnifying glass steady, and move slowly backwards until the red and green seem to
coalesce into yellow. How far from the screen are you when this begins to happen? You are invited to e-mail the distance to us at
groundupjava@sgsware.com. We will compile the statistics and publish them on our website.

Now you know how to use Java's predefined colors, and how to construct a custom color when you need one. Now let's move on
to using colors to draw shapes inside a frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Painting
There are many reasons why a frame's contents may need to be redrawn:

The frame has become visible for the first time.

The contents have changed due to user input (as when you moved a scrollbar in Color Lab).

The frame has deiconified.

The frame has moved to the front of the desktop, after having been covered or partially covered by another frame.

When any of these occur, the underlying windowing software notifies the frame, and a call is made to the frame's paint()
method. The great thing about this arrangement is that you never have to detect these changes to the frame. The environment
takes care of all that for you. All you have to do is subclass Frame and provide a paint() method that draws the frame's interior.
In other words, you have to think about what to paint, but you don't have to think about when to paint.

When the environment decides that a frame needs painting, the frame's interior is cleared to its background color. By default, the
background color is white. But as you saw in the previous section, you can call setBackground() to set any background color
you like. After that, the environment calls the frame's paint() method. The paint() version inherited from Frame does nothing
at all. You are about to learn how to override paint() so that it does interesting things.

The argument of paint() is an instance of java.awt.Graphics. You might hear people call this object a graphics context, but
it's more correct to call it a graphics object, and that is the name we will use. The graphics object is like an artist with a paintbrush,
ready to paint the interior of a frame. It isn't a very talented artist (it only knows how to draw a few shapes), but it's very accurate.
And as you'll see, it has excellent penmanship. You never have to construct an instance of Graphics; that's done for you by the
environment. You just have to tell it what to paint.

An artist at work dips his brush in paint, brushes the paint onto paper, dips, brushes, and so on. The color that goes on the paper
is, of course, the last color that the brush was dipped into. A graphics object works the same way. It has a method called
setColor(), whose argument is a Color. It also has methods that draw shapes, including lines, rectangles, circles, and text
messages. The shapes appear in the color that was the argument of the most recent setColor() call. So you can see that
calling setColor() is like dipping your paintbrush into new paint. Another way to think of it is this: When you call setColor(),
you set the color of all shapes to be drawn until the next setColor() call.

Now let's take a look at the different shapes that a graphics object can paint.

Drawing and Filling with a Graphics Object

The shapes that you can draw with the Graphics class include the following:

Lines

Squares and rectangles

Circles and ovals

There are also methods that fill the interior of a square, rectangle, circle, or oval. All drawing happens in the color of the most
recent setColor() method, as you saw in the previous section. The methods have varying arguments that specify the size and
location of the shape. All arrays are in units of pixels, not inches or millimeters. Horizontal positions are always called x, and are
measured from the left edge of the frame. Vertical positions are called y, and are measured from the top of the frame. The
location of a point is denoted by (x, y), as shown in Figure 14.4.

Figure 14.4: Pixel coordinates

The point at (0, 0) is called the origin. A frame's origin is its top-left pixel. Note that x increases from left to right, and y increases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The point at (0, 0) is called the origin. A frame's origin is its top-left pixel. Note that x increases from left to right, and y increases
from top to bottom. This is different from the Cartesian coordinates that you may have learned about in school, where y increases
upward. The y-increases-downward scheme is standard in graphical programming, and it often causes confusion until people get
used to it. It probably got its start in word-processing software, where line numbers increase from the top to the bottom of a
document. Whatever its derivation might be, the scheme is here to stay.

To draw a line from (x0, y0) to (x1, y1), call the following on your graphics object:
drawLine(x0, y0, x1, y1);

The following code displays a frame with a black line on a white background:
1. import java.awt.*;
 2.
 3. public class BlackLineOnWhite extends Frame
 4. {
 5. BlackLineOnWhite()
 6. {
 7. setSize(150, 180);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.drawLine(60, 115, 120, 70);
14. }
15.
16. public static void main(String[] args)
17. {
18. BlackLineOnWhite blonw = new BlackLineOnWhite();
19. blonw.setVisible(true);
20. }
21. }

Figure 14.5 shows the frame.

Figure 14.5: A black line on a white background

The constructor just sets the frame's size. There's no need to set the background color explicitly, since you want the white default.
Line 12 actually isn't required, because when paint() is called, the graphics object is set up to draw in black automatically.

To draw a rectangle, call the drawRect() method. Its four arguments are the x, y, width, and height of the rectangle, where (x, y)
is the location of the rectangle's upper-left corner. The following code draws a blue rectangle that is 100 pixels wide by 35 pixels
high, with its upper-left corner at (25, 50):
 1. import java.awt.*;
 2.
 3. public class BlueRect extends Frame
 4. {
 5. BlueRect ()
 6. {
 7. setSize(150, 180);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.blue);
13. g.drawRect(25, 50, 100, 35);
14. }
15.
16. public static void main(String[] args)
17. {
18. BlueRect br = new BlueRect();
19. br.setVisible(true);
20. }
21. }

Figure 14.6 shows the frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.6: A rectangle

There is no separate method for drawing a square. You just call drawRect() with equal values for the width and height.

To draw an oval, you call drawOval() and specify the oval's bounding box. A bounding box is the smallest rectangle that
encloses the oval. Figure 14.7 shows several ovals and their bounding boxes.

Figure 14.7: Ovals and bounding boxes

Notice that one of the shapes in Figure 14.7 looks like a circle, not an oval. Actually, a circle is a kind of oval whose bounding box
is a square.

The following code draws three ovals (shown in Figure 14.8), one of which is a circle:
 1. import java.awt.*;
 2.
 3. public class ThreeOvals extends Frame
 4. {
 5. ThreeOvals ()
 6. {
 7. setSize(150, 220);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.drawOval(20, 40, 100, 35);
14. g.drawOval(20, 85, 50, 60);
15. g.drawOval(90, 105, 25, 25);
16. }
17.
18. public static void main(String[] args)
19. {
20. ThreeOvals throv = new ThreeOvals ();
21. throv.setVisible(true);
22. }
23. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.8: Three ovals

In the drawOval() calls, the arguments are the x, y, width, and height of the bounding box. Notice that in line 15, which draws
the circle, the width and height are the same.

The fillRect() method draws a rectangle and fills its interior. The fillOval() method draws an oval and fills its interior. The
following code displays two filled ovals and a filled rectangle:
 1. import java.awt.*;
 2.
 3. public class Filled extends Frame
 4. {
 5. Filled ()
 6. {
 7. setSize(200, 150);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.fillOval(20, 50, 50, 20);
14. g.fillRect(90, 40, 20, 70);
15. g.fillOval(130, 50, 50, 20);
16. }
17.
18. public static void main(String[] args)
19. {
20. Filled f = new Filled();
21. f.setVisible(true);
22. }
23. }

The result is shown in Figure 14.9.

Figure 14.9: Filled rectangle and ovals

Our last example in this section draws a filled oval that is centered in its frame. The oval is half as high and half as wide as the
frame. The code uses the frame's getSize() method, which is inherited from one of the superclasses of java.awt.Frame.
This method returns an instance of Dimension, which is a tiny class with two public ints called width and height:
 1. import java.awt.*;
 2.
 3. public class CenteredOval extends Frame
 4. {
 5. CenteredOval ()
 6. {
 7. setSize(200, 150);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. Dimension size = getSize();
14. g.fillOval(size.width/4, size.height/4,
15. size.width/2, size.height/2);
16. }
17.
18. public static void main(String[] args)
19. {
20. CenteredOval cenOv = new CenteredOval ();
21. cenOv.setVisible(true);
22. }
23. }

Figure 14.10 shows the frame in its original size.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.10: Original CenteredOval

If you replace line 7 with setSize(400, 300);, you get Figure 14.11.

Figure 14.11: Resized CenteredOval

No matter what size is assigned to the frame in line 7, the paint() method always draws an oval with the correct proportions.

Now you know how to use a graphics object to do the following:

Draw lines.

Draw rectangles, including squares.

Fill rectangles, including squares.

Draw ovals, including circles.

Fill ovals, including circles.

In the next section, you'll learn how to draw text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text and Fonts
To draw text in a frame, call the graphics object's drawString() method. The method's arguments are the string to be drawn
followed by its x and y position. The x position is the leftmost pixel of the first character in the string. The y position is the location
of the baseline. The baseline of a string is the bottom of all characters except g, j, p, q, and y, which descend below the baseline.
When you write on lined paper, the lines are baselines. Figure 14.12 shows a string containing two characters that descend below
the baseline.

Figure 14.12: The baseline

The following code draws a string that contains six descending characters. It also draws the baseline in light gray:
 1. import java.awt.*;
 2.
 3. public class FontAndBaseline extends Frame
 4. {
 5. FontAndBaseline()
 6. {
 7. setSize(200, 150);
 8. }
9.
10. public void paint(Graphics g)
11. {
12. int x = 25;
13. int yBaseline = 100;
14. g.setColor(Color.lightGray);
15. g.drawLine(x, yBaseline, 125, yBaseline);
16. g.setColor(Color.black);
17. g.drawString("just a gaping quay", x, yBaseline);
18. }
19.
20.
21. public static void main(String[] args)
22. {
23. FontAndBaseline fabl = new FontAndBaseline();
24. fabl.setVisible(true);
25. }
26. }

The drawstring() call is on line 17. Figure 14.13 shows the frame.

Figure 14.13: Text and baseline in a frame

You can use the graphics object's setFont() method to control the font in which text is displayed. Calling setFont() before
calling drawString() is a bit like calling setColor() before drawing or filling a shape. The setFont() call determines the font
of all subsequent drawString() calls, until the next setFont() call.

A font has three properties:

Style

Size

Family

The style can be either plain, bold, italic, or bold- italic. The size is in pixel units.

The font families that are available to you vary from one machine to the next, but there are three that you can always count on:

Monospaced

Serif

Sans Serif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Monospaced font, all characters are spaced equally. The spacing is determined by the font's size. It's difficult to read a dense
block of text in Monospaced font, but it's ideal for source code. All the code listings in this book appear in Monospaced font.

Serif is a variable-width font, which means that characters have different widths. For example, i is narrower than m. This book is
printed in a variable-width font. Notice how iiiiiiiiii is much narrower than mmmmmmmmmm, even though both are 10 letters long.
Variable-width fonts are designed for easy reading of dense text, such as you see in a book or newspaper. This font uses serifs,
which are small decorations on the tips of letters. Serifs improve readability in medium to large fonts, but are annoying in small
fonts.

Sans Serif is a variable-width font that does not use serifs. ("Sans" is French for "without".) This font works best when the font is
small enough that serifs would interfere with readability.

To use a font in Java, you must first construct an instance of the java.awt.Font class. The constructor takes three arguments:
the family, the style, and the size. The family is a string; the style and size are ints. For these three families, the strings are
Monospaced, Serif, and SansSerif. For plain, bold, and italic, the Font class provides public final static ints named Font.PLAIN,
Font.BOLD, and Font.ITALIC. For bold-italic style, use Font.BOLD + Font.ITALIC.

After you construct an instance of Font, you can pass it into the setFont() method of a graphics object. The following code sets
a 36-point bold-italic Serif font:
Font f = new Font("Serif", Font.PLAIN+Font.BOLD, 36);
g.setFont(f);

When these lines are inserted between lines 16 and 17 in the previous example (that is, just before the drawString() call), the
result is as shown in Figure 14.14.

Figure 14.14: Text in a frame

Your computer probably has dozens of fonts in addition to the three standard ones. Many of them may be more interesting and
playful than Monospaced, Serif, and Sans Serif. The more stylized fonts tend to be appropriate in more limited situations.

When you use a non-standard font in a Java application, be aware that you're taking a risk. It's possible that the font won't be
available on all computers that will be running your application. When this happens, all characters will appear on the screen as
small empty rectangles.

The GraphicsEnvironment class contains information about a computer's graphics system, including the names of all available
fonts. The class has a static method called getLocalGraphicsEnvironment(),which returns an instance of the class with all
the data fields set to reflect the capabilities of the underlying computer. Another call is getAvailableFontFamilyNames(),
which is not static. It returns the font families as an array of strings. So, to retrieve the array, you can do something like the
following:
GraphicsEnvironment grenv =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] names = grenv.getAvailableFontFamilyNames();

The Font Lab program lets you see all the fonts that are available on your computer. To run it, type java visual.FontLab. You
will see the GUI shown in Figure 14.15.

Figure 14.15: Font Lab

The pull-down menu in Font Lab's control panel lets you choose from among all of the fonts on your machine, as detected by
getAvailableFontFamilyNames(). You can change the family, style, and size. Some families do not support all styles. Some
have only plain and italic, and others have only plain. Figure 14.16 shows one of the more exotic fonts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.16: Font Lab with an exotic font

Play around with the various fonts. Find one that seems serious and one that seems playful. How do their shapes differ? Select
16-point plain Serif. Reduce the size one point at a time until the font becomes hard to read. Do the same for SansSerif. You will
probably find that SansSerif remains readable down to a slightly smaller size than Serif.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frame Lab
The Frame Lab animated illustration lets you practice setting colors, drawing shapes, setting fonts, and drawing text. To run the
program, type java visual.FrameLab. The initial display is shown in Figure 14.17.

Figure 14.17: Initial Frame Lab display

The animated illustration simulates a subclass of Frame, with a paint() method that you can configure. You can enter any class
name you like in the first text field. (Notice that the lines that declare and call the constructor change as you change the name.) If
you want your constructor to set the background color, make sure the check box in the setBackground line of the constructor is
checked, and select a color from the pull-down menu. The constructor sets the frame's size to 450 by 450, but you can enter any
number you want.

The body of the paint() method consists of ten lines, each controlled by its own pull-down menu that lets you select a method to
call on the graphics object. You can set the color or the font, or you can call any of the drawing methods that were presented in
this chapter. You can also select a comment (/********/), which indicates that you don't want the line to do anything. No matter what
you select, the line will present you with controls for entering the arguments of the method you've chosen.

When you're ready to simulate execution of the code you've set up, click either Run or Run Lightspeed to view either an animation
or an instant result. If you want to run again, click Reset, adjust the controls, and again click either Run or Run Lightspeed. Figure
14.18 shows one possible Frame Lab configuration.

Figure 14.18: Frame Lab with custom configuration

The resulting frame is shown in Figure 14.19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.19: The result of Figure 14.18

Try configuring Frame Lab to paint the following:

A line of text, in any font you like, with the baseline visible.

A line of text centered in a filled oval.

Three concentric circles.

Now draw anything you like. If you create any interesting results that you would like to share, please email them to us at
groundupjava@sgsware.com. In the next edition of this book, Frame Lab will include a gallery of the best pictures submitted,
along with the artists' names.

Take a look at the main() method in Frame Lab. So far in this chapter, all your main() methods have been two lines long, like
this:
public static void main(String[] args)
{
 FontAndBaseline fabl = new FontAndBaseline();
 fabl.setVisible(true);
}

In Frame Lab, vertical space is a valuable commodity. That's why the open curly brackets appear at the ends of lines, rather than
on their own lines. Frame Lab's main() is only one line long:
(new FancyFrame()).setVisible(true);

This is just a shorter equivalent of the following:
FancyFrame ff = new FancyFrame();
ff.setVisible(true);

In the single-line version, there is no reference to the instance of FancyFrame that gets constructed. If you want to make another
call on the instance after setVisible(), you're out of luck. The instance is anonymous. "Anonymous" means "without a name,"
and a reference is like an object's name. The single-line version of the constructor is considered better style, because there is no
need for the reference except in the setVisible() call. For the rest of this book, the Frame subclass instances will be
anonymous.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. The first code example in this chapter used the following code to set a frame's background color:
setBackground(new Color(128, 128, 128));

Describe the color that this line creates.

2. Run Color Lab, and adjust the scrollbars so that the displayed color matches something you can see (a piece of
clothing you're wearing, or something on your desk, or anything else you like). Now write an application that
displays a frame whose interior is the color you've chosen.

3. One of the code examples in this chapter used the getSize() method, which Frame inherits from one of its
superclasses. Use the API to find out which superclass implements the method.

4. Write a program that draws a five-pointed star. Your frame should be 400 x 400 pixels. The coordinates of the
star's points are (200, 375), (97, 58), (366, 254), (34, 254), and (303, 58). The easy way is to write a paint()
method that calls drawLine() five times. But that approach isn't ideal, because you have to type each x and
each y twice. (Each point is the end of two lines, so it appears in two drawLine() calls.) Typing data, code, or
anything else more than once is considered bad style. If one of the copies has a typo and doesn't match the
original precisely, your program won't function correctly. To avoid duplication of data, your program should have
two int arrays, defined as follows:
int[] xs = {200, 97, 366, 34, 303};
int[] ys = {375, 58, 254, 254, 58};

Your paint() method should have a loop that accesses these arrays. drawLine(…) should appear only once
in your code, inside the loop.

5. Write a program that lists all the font families that are available on your computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15: Components
A component is a GUI device that presents user input to programs and displays program information to users. Standard GUI
components include buttons, text fields, scrollbars, and menus. Java's awt package provides a rich suite of components, all of
which are reasonably easy to use. A program's GUI can combine custom drawing, which you learned about in the previous
chapter, with standard components, which you will learn about here and in the next chapter.

You have probably heard the expression "look and feel." For example, several years ago there was a major lawsuit between Apple
and Microsoft; one company alleged that the other had plagiarized their look and feel. A program's look and feel consists of its
appearance (look) plus its responses to user input (feel). This chapter will focus on look; feel will be covered in Chapter 16,
"Events."

A Survey of Components
In this section, you will learn about some of the most useful components of the awt package:

Buttons

Checkboxes

Choices

Labels

Menus

Text fields

Text areas

Scrollbars

You have probably encountered all of these component types in the course of using your computer. As a reminder, Figure 15.1
shows one of each component type listed.

Figure 15.1: A component sampler

Now let's jump in and learn about each of these components.

Buttons

Buttons are perhaps the most familiar of all component types. We are so accustomed to them that we take for granted statements
like, "Click on the OK button on your screen to confirm your purchase." Of course, there isn't really a button on the screen; it's just
a picture of a button. "Press the OK button" really means, "Move your mouse until the arrow on the screen is over the picture of
the button. Then press and release the button on your mouse."

Figure 15.2 shows a button in a frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.2: A button in a frame

In Java, buttons are represented by the java.awt.Button class. Here is the code that created Figure 15.2:
 1. import java.awt.*;
 2.
 3. class ShowButton
 4. {
 5. public static void main(String[] args)
 6. {
 7. Frame f = new Frame("Simple Button");
 8. LayoutManager lom = new FlowLayout();
 9. f.setLayout(lom);
10. Button btn = new Button("Hello");
11. f.add(btn);
12. f.setSize(200, 200);
13. f.setVisible(true);
14. }
15. }

Line 10 illustrates the most common Button constructor, which takes a string argument. The string appears as the button's text
label.

Something in this code is conspicuously absent, and something else in conspicuously mysterious. Look at Figure 15.2. The button
is a reasonable size. It's big enough to encompass its text, and not much bigger. It's near the top of the frame, and it's horizontally
centered. Conspicuously absent is the code that sets the button's size and location.

The mysterious code is lines 8 and 9, which construct and use an instance of FlowLayout. The FlowLayout class is a kind of
layout manager. Layout managers are responsible for setting the location and size of components. We will visit them in detail in
the second half of this chapter; you will find them much easier to understand after you know about components. For now, be
aware that the button's reasonable size and location were set by the layout manager. The call to add() on line 11 puts the button
in the frame. The method uses the layout manager to work out the details.

The example code is not very object-oriented. Here is a version that extends Frame:
 1. import java.awt.*;
 2.
 3. class BtnInAFrame extends Frame
 4. {
 5. public BtnInAFrame()
 6. {
 7. setLayout(new FlowLayout());
 8. Button btn = new Button("Hello");
 9. add(btn);
10. setSize(200, 200);
11. }
12.
13. public static void main(String[] args)
14. {
15. (new BtnInAFrame()).setVisible(true);
16. }
17. }

The GUI that this code produces is identical to the previous example. Notice that construction and use of the layout manager have
now been combined into a single line (line 7) so as to be less obtrusive.

In the previous chapter, you learned about fonts and colors. The Button class has three methods that let you control the font and
color of a button:

setFont(Font f)

setForeground(Color c)

setBackground(Color c)

Actually, Button inherits these methods from its superclass, java.awt.Component. All the component classes you will learn
about in this chapter extend java.awt.Component, so they all implement these three methods.

setFont() sets the font of any text that the component displays. setForeground() sets the color of the component's text, and
setBackground() sets the component's background color. The following code displays a button with a large yellow serif font on
a blue background:
import java.awt.*;

class FancyButtonInFrame extends Frame
{
 public FancyButtonInFrame()
 {
 LayoutManager lom = new FlowLayout();
 setLayout(lom);
 Button btn = new Button("Hello");
 Font font = new Font("Serif", Font.ITALIC, 36);
 btn.setFont(font);
 btn.setForeground(Color.yellow);
 btn.setBackground(Color.blue);
 add(btn);
 setSize(200, 200);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 FancyButtonInFrame b = new FancyButtonInFrame();
 b.setVisible(true);
 }
}

Figure 15.3 shows the button in the frame. The black-and-white screen shot does not do justice to the colors, but you can clearly
see the enlarged italic font.

Figure 15.3: A fancy button

Notice that the button is still large enough to encompass its text, even though the text is now considerably larger. We have the
mysterious layout manager to thank for that.

Buttons are for clicking. If you run any of the code in this section, you will find that the buttons do the right thing when you click on
them: They look like they're indented into the screen until you release the main mouse button. However, nothing happens within
the program. This should be expected, since there is no code in any of the programs that appears to deal with listening for button
input. Listening for input is a function of feel, not look, so it will be presented in the next chapter.

Checkboxes

A checkbox is a little box that can be either checked or not checked. The checked/not checked state changes whenever the user
clicks on the component. The two most useful constructors are

Checkbox(String s)

Checkbox(String s, boolean state)

The string is the checkbox's text. The boolean in the second form is the checkbox's initial state. The following code builds and
displays a simple unchecked checkbox:
import java.awt.*;

class CboxInnaFrame extends Frame
{
 public CboxInnaFrame ()
 {
 setLayout(new FlowLayout());
 Checkbox cbox = new Checkbox("Check Me");
 add(cbox);
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 (new CboxInnaFrame ()).setVisible(true);
 }
}

The result is shown in Figure 15.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.4: A simple checkbox

The figure just shows the initial state of the GUI. If someone clicks on the box, it will be checked.

The following code displays a checkbox that is checked if the application was invoked with "yes" as its first command-line
argument.
import java.awt.*;

class CheckedCbox extends Frame
{
 public CheckedCbox(boolean b)
 {
 setLayout(new FlowLayout());
 Checkbox cbox = new Checkbox("Check Me", b);
 add(cbox);
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 boolean state = false;
 if (args.length > 0 && args[0].equals("yes"))
 state = true;
 (new CheckedCbox(state)).setVisible(true);
 }
}

Figure 15.5 shows the result when the application is invoked by typing java CheckedCbox yes.

Figure 15.5: A checked checkbox

Now it's time to display several components together. The following code creates three checkboxes and a button:
 1. import java.awt.*;
 2.
 3. class Boats extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7. String[] sizes = { "small", "medum", "large" };
 8.
 9. Boats()
10. {
11. setLayout(new FlowLayout());
12.
13. cboxes = new Checkbox[sizes.length];
14. for (int i=0; i<sizes.length; i++)
15. {
16. String s = "a " + sizes[i] + " boat";
17. cboxes[i] = new Checkbox(s);
18. add(cboxes[i]);
19. }
20. btn = new Button("Add to shopping cart");
21. add(btn);
22.
23. setSize(600, 200);
24. }
25.
26. public static void main(String[] args)
27. {
28. new Boats().setVisible(true);
29. }
30. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30. }

This application is slightly longer than any of our previous GUI code examples. It is long enough to warrant some structure. Note
that the three checkboxes, which could have been constructed one by one, are constructed in a loop. Line 16 generates the text
for each checkbox, based on the appropriate string from the sizes array on line 7. A nice benefit of this structure is the visual
isolation of the literal strings. They are easy to find, up near the top of the code listing.

Did you notice that "medium" was misspelled? Would you have noticed so easily if the literal strings were in the middle of the
code? Imagine the difficulty in correcting a spelling error if the strings were scattered over a 300-line constructor. When you
misspell a keyword (like "for" or "new"), the compiler tells you the line number where the error occurs. But when you misspell a
literal string, the compiler can't help you. You have to go hunting for the string.

Another benefit of this program's structure is the ease with which it can be modified. If you want to add or delete some sizes,
changing the array on line 7 is the only change you need to make. Exercises 2 and 3 show this in action.

Figure 15.6 shows the example program's GUI. (The spelling error has been fixed.)

Figure 15.6: Three checkboxes and a button

In the figure, the user has checked both "a small boat" and "a large boat". This is suspicious. A GUI should capture the user's
precise intention. Moreover, a well-designed GUI should make it impossible for a user to enter invalid data. Figure 15.6 gives the
impression that the user is supposed to check only one of the three checkboxes. If the checkboxes represent mutually exclusive
alternatives, the GUI should be changed to discourage (or, better yet, prevent) selection of more than one boat size.

There are two ways to change the GUI:

Insert text that tells the user to check only one box.

Insert code that automatically unchecks a box whenever the user makes a new selection.

The first option puts all the responsibility on the user. The GUI still permits invalid input, and the user gets all the blame when
something goes wrong. This approach is unforgivable. It's also distressingly common: Every Web user has experienced an
extreme version of it. Think of the last time you typed your credit card number or phone number into a Web page, only to be told
that you should have (or should not have) used spaces or hyphens. Then you have to wait for the page to reload, you have to
reenter your credit card or phone number, and if the page designer was especially inept, you have to reenter your name and
address as well.

The second option makes it impossible for any user to select more than one option. The result is a GUI that is free from blame.
This is the approach we will take.

Java's checkboxes can act as radio buttons. A radio button is a member of a group, only one of which can be selected at any
time. The term comes from the station-selection buttons on a car radio. To give radio-button behavior to a group of checkboxes,
you first create an instance of the class java.awt.CheckboxGroup:
CheckboxGroup cbg = new CheckboxGroup();

When you construct your checkboxes, use one of the following constructors:
Checkbox(String s, boolean state,
 CheckboxGroup cbg)

or
Checkbox(String s, CheckboxGroup cbg,
 boolean state)

Here is the previous example, rewritten to use a checkbox group:
 1. import java.awt.*;
 2.
 3. class RadioBoats extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7. String[] sizes = { "small", "medium", "large" };
 8.
9. RadioBoats()
10. {
11. setLayout(new FlowLayout());
12.
13. cboxes = new Checkbox[sizes.length];
14. CheckboxGroup cbg = new CheckboxGroup();
15. for (int i=0; i<sizes.length; i++)
16. {
17. String s = "a " + sizes[i] + " boat";
18. boolean state = (i == 0);
19. cboxes[i] = new Checkbox(s, state, cbg);
20. add(cboxes[i]);
21. }
22. btn = new Button("Add to shopping cart");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22. btn = new Button("Add to shopping cart");
23. add(btn);
24.
25. setSize(600, 200);
26. }
27.
28. public static void main(String[] args)
29. {
30. new RadioBoats().setVisible(true);
31. }
32. }

Line 18 creates a boolean whose value is true in the first pass through the loop. Thus, the first checkbox is checked and the rest
are not. Figure 15.7 shows the GUI after the "a large boat" box has been selected.

Figure 15.7: Checkboxes as radio buttons

Notice the appearance of the checkboxes. There are no check marks, and there are no boxes. The circular buttons are a standard
visual cue that the components have radio behavior. This cue is standard not just in Java, but in all current windowing toolkits.

When you create a GUI that has multiple checkboxes, ask yourself if the checkboxes can be selected independently, or if only one
should be selected at any moment. If they are independent, use plain checkboxes. If they are exclusive, give them radio behavior
by creating a checkbox group for them.

Choices

Suppose you want to create a GUI for specifying a font. Suppose also that you want your users to choose one of the three
standard font families, and also to choose a size from among a small set of options. You might use the following code:
import java.awt.*;

class ChooseFontByRadios extends Frame
{
 String[] families = {"Monospaced", "Serif", "SansSerif"};
 int[] sizes = {16, 24, 32, 64};

 public ChooseFontByRadios()
 {
 setLayout(new FlowLayout());

 CheckboxGroup familyCBG = new CheckboxGroup();
 for (int i=0; i<families.length; i++)
 add (new Checkbox(families[i], (i==0), familyCBG));

 CheckboxGroup sizeCBG = new CheckboxGroup();
 for (int i=0; i<sizes.length; i++)
 add (new Checkbox(""+sizes[i], (i==0), sizeCBG));

 setSize(500, 200);
 }

 public static void main(String[] args)
 {
 (new ChooseFontByRadios ()).setVisible(true);
 }
}

This code creates two checkbox groups. The result, as you can see in Figure 15.8, is less than brilliant.

Figure 15.8: Multiple checkbox groups

The problem with the GUI is that there are no visual cues to tell you that there are two independent groups of checkboxes. This
brings us to an important principle of GUI design: Components that are functionally related should also be visually related. To
create a sensation of visual relationship among a group of components, you need to do two things:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Place the components near one another.

Isolate them from other nearby components.

In Figure 5.8, the components that control the font family are certainly near one another, but they are not isolated from the
components that control size.

The java.awt.Choice component class offers an alternative to groups of checkboxes. A choice is a single component that lets
the user make a one-of-many selection. Figure 15.9 shows a simple choice.

Figure 15.9: A choice

Choices are like pull-down menus. When you click on the component, the entire set of options is displayed, as shown in Figure
15.10.

Figure 15.10: An expanded choice

Here is the code that created the GUIs in Figures 15.9 and 15.10:
 1. import java.awt.*;
 2.
 3. class SimpleChoice extends Frame
 4. {
 5. String[] families = {"Monospaced", "Serif",
 6. "SansSerif"};
 7.
 8. public SimpleChoice()
9. {
10. setLayout(new FlowLayout());
11. Choice c = new Choice();
12. for (int i=0; i<families.length; i++)
13. c.add(families[i]);
14. add(c);
15. setSize(200, 200);
16. }
17.
18. public static void main(String[] args)
19. {
20. (new SimpleChoice()).setVisible(true);
21. }
22. }

The choice is created in line 11. Notice that there are no constructor arguments. Line 13 calls the choice's add() method to add
more options; the method's argument is a string. After the choice is constructed and populated, it is added to the GUI at line 14.
Notice that line 14 uses the add() method of the frame to add the choice component to the frame. This is a different method from
the add() in line 13, which adds options to the choice.

The following application uses choices to support selection of a font family and size:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class FontChoice extends Frame
 4. {
 5.
 6. String[] families = {"Monospaced", "Serif",
 7. "SansSerif"};
 8. int[] sizes = {16, 24, 32, 64};
 9.
10. public FontChoice()
11. {
12. setLayout(new FlowLayout());
13. Choice c = new Choice();
14. for (int i=0; i<families.length; i++)
15. c.add(families[i]);
16. add(c);
17. c = new Choice();
18. for (int i=0; i<sizes.length; i++)
19. c.add(""+sizes[i]);
20. add(c);
21. setSize(200, 200);
22. }
23.
24. public static void main(String[] args)
25. {
26. (new FontChoice()).setVisible(true);
27. }
28. }

The resulting GUI is shown in Figure 15.11.

Figure 15.11: Two choices

You can see that the choice component does an excellent job of isolating its parts visually.

Labels

Labels are by far the simplest Java components. They are the only components that cannot be used to gather user input. They
just sit there. Often labels appear next to scrollbars, text fields, choices, or other components that do not have their own labels.

A label looks like text on a screen, exactly as if it had been painted there by the drawString() method of the Graphics class,
which you saw in the previous chapter. The following code adds labels to the GUI of the last example in the previous section:
 1. import java.awt.*;
 2.
 3. class FontChoiceWithLabels extends Frame
 4. {
 5. String[] families = {"Monospaced", "Serif",
 6. "SansSerif"};
 7. int[] sizes = { 16, 24, 32, 64 };
 8.
 9. public FontChoiceWithLabels()
10. {
11. setLayout(new FlowLayout());
12. Label familyLabel = new Label("Font family:");
13. add(familyLabel);
14. Choice c = new Choice();
15. for (int i=0; i<families.length; i++)
16. c.add(families[i]);
17. add(c);
18. Label sizeLabel = new Label("Font size:");
19. add(sizeLabel);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19. add(sizeLabel);
20. c = new Choice();
21. for (int i=0; i<sizes.length; i++)
22. c.add(""+sizes[i]);
23. add(c);
24. setSize(350, 200);
25. }
26.
27. public static void main(String[] args)
28. {
29. (new FontChoiceWithLabels()).setVisible(true);
30. }
31. }

Lines 12 and 18 construct labels. The constructor takes a single argument, which is the label's text. Figure 15.12 shows this
code's GUI.

Figure 15.12: Choices with labels

The figure shows a typical use of labels. They rarely appear in isolation. Most often, they are used to give information or
instructions about adjacent components.

Menus

Menus have a lot in common with choices:

They drop down to reveal options.

The options are arranged vertically.

They roll back up after a selection is made.

There are also some important differences:

Menus are attached to a frame's boundary, whereas choices occupy the interior.

Menus are hierarchical. They can contain submenus, which can contain sub-submenus, and so on. Choices are
linear.

Commercial-grade sites are expected to have menus, which are expected to follow certain conventions. There are
no such expectations or conventions for choices.

To insert menus into a frame, follow these steps:
1. Create a menu bar.

2. Create the menus.

3. Attach the menus to the menu bar.

4. Attach the menu bar to the frame.

These steps are all straightforward. The following code creates a frame with a single menu, labeled File. The menu contains three
options: Open..., Close, and Exit.
 1. import java.awt.*;
 2.
 3. class FrameWithSimpleMenu extends Frame
 4. {
 5. String[] options = { "Open...", "Close", "Exit" };
 6.
 7. public FrameWithSimpleMenu()
 8. {
 9. // Create the menu bar.
10. MenuBar mbar = new MenuBar();
11.
12. // Create the file menu.
13. Menu fileMenu = new Menu("File");
14. for (int i=0; i<options.length; i++)
15. fileMenu.add(options[i]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15. fileMenu.add(options[i]);
16.
17. // Populate the menu bar.
18. mbar.add(fileMenu);
19.
20. // Attach the menu bar to the frame.
21. setMenuBar(mbar);
22.
23. setSize(200, 200);
24. }
25.
26. public static void main(String[] args)
27. {
28. (new FrameWithSimpleMenu()).setVisible(true);
29. }
30. }

Line 10 creates a menu bar. In Java, a frame may have at most one menu bar, to which all menus must be attached. Line 13
creates a File menu. The string passed to the Menu constructor appears in the menu bar. Line 15 adds options to the menu. Line
18 attaches the menu to the menu bar. Menus appear on the bar in the order of attachment, from left to right. Finally, line 21
attaches the menu bar to the frame. The result is shown in Figure 15.13.

Figure 15.13: A menu in a menu bar

The Menu class has a method called addSeparator(), which inserts a horizontal separator bar. You can rewrite the loop at lines
14-15 in the previous example, adding a separator bar between the Close and Exit items:
for (int i=0; i<options.length; i++)
{
 fileMenu.add(options[i]);
 if (i == 1)
 fileMenu.addSeparator();
}

The result is shown in Figure 15.14.

Figure 15.14: A menu with a separator

In this example, you've created a menu and added items to it using the add() method, passing strings as method arguments. To
create a hierarchical menu, add a menu instead of a string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class FrameWithSubmenu extends Frame
 4. {
 5. public FrameWithSubmenu()
 6. {
 7. MenuBar mbar = new MenuBar();
 8.
 9. Menu subSubMenu = new Menu("Subsub");
10. subSubMenu.add("This");
11. subSubMenu.add("That");
12. Menu subMenu = new Menu("Sub");
13. subMenu.add("Here");
14. subMenu.add("There");
15. subMenu.add(subSubMenu);
16. Menu fileMenu = new Menu("File");
17. fileMenu.add("Open...");
18. fileMenu.add("Close");
19. fileMenu.add(subMenu);
20.
21. mbar.add(fileMenu);
22. setMenuBar(mbar);
23.
24. setSize(200, 200);
25. }
26.
27. public static void main(String[] args)
28. {
29. (new FrameWithSubmenu()).setVisible(true);
30. }
31. }

The GUI appears in Figure 15.15.

Figure 15.15: Hierarchical menus

You can nest menus within menus within menus as much as you want, but don't get carried away. The more complicated your
menu structure is, the more difficult it will be for users to find important menu items.

There are many industry-standard conventions that govern the use of menus in GUIs. These are the result of extensive
psychological research, as well as many years of practical usage. Here are a few guidelines that are easy to follow:

There should always be a File menu, and it should occupy the leftmost position in the menu bar. The items New,
Open..., and Close should, if present, appear in that order. New should be the first item in the File menu. The Exit
item should always be present and should be the last item in the File menu.

If the application has an Edit menu, it should immediately follow the File menu. The Edit menu should support
functions such as Cut, Copy, and Paste.

If a Help menu is present, it should occupy the rightmost position menu bar.

Any menu item that causes a new frame or dialog box to be displayed should have three dots following its label.
This explains why Open menu items, which typically display file selection dialogs, appear as Open... The three-dots
notation is called an ellipsis.

These guidelines should be followed in appropriate situations. It isn't necessary to follow them when you're writing code to solve
exercises, but keep them in mind whenever you are writing code that is at least moderately complicated and will be used by other
people. This book's animated illustrations are all moderately complicated. They are much bigger than exercises and much smaller
than commercial applications. They all follow these guidelines.

Text Fields

A text field is a component that displays a single line of text. Unlike labels, text fields respond to keyboard input. To create a text
field, use one of the following constructors:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextField(String contents)

TextField(int numColumns)

TextField(String contents, int numColumns)

The first version creates a text field that is just wide enough to accommodate its contents, which are specified by the string
argument. The second version creates a blank text field that is wide enough to accommodate a string of numColumns characters.
The width is only approximate, since most characters have varying widths when rendered in most fonts. The third version is like
the second version, but the text field's contents are initialized to contents.

The following application creates two text fields for entering a first and last name. The Last Name text field uses a large non-
default font:
import java.awt.*;

class TFs extends Frame
{
 public TFs()
 {
 setLayout(new FlowLayout());

 add(new Label("First Name: "));
 TextField tf = new TextField("Livia", 10);
 add(tf);
 add(new Label("Last Name: "));
 tf = new TextField("Soprano", 12);
 Font font = new Font("Monospaced", Font.PLAIN, 24);
 tf.setFont(font);
 add(tf);

 setSize(550, 200);
 }

 public static void main(String[] args)
 {
 (new TFs()).setVisible(true);
 }
}

Figure 15.16 shows the GUI.

Figure 15.16: Two text fields

As you can see from the figure, there is something dissonant about having two related text fields with two unrelated fonts. The
GUI would be much improved if both fields used the same font, but it illustrates an important point: Text fields can grow to
accommodate their fonts. For the moment, we will simply attribute this behavior to the mysterious layout manager, with a promise
of a full explanation in the second half of this chapter.

Text Areas

A text area is like a text field, but it can display multiple lines of text. If its contents exceed its height, it can automatically display
scrollbars.

The most useful TextArea constructor is
TextArea(int numRows, int numColumns)

The constructor creates a text area with numRows rows and numColumns columns. Caution: The order of the constructor's
arguments might seem backwards. Generally, we are used to specifying first a width and then a height (for example, in the various
drawing methods of the Graphics class). But numRows is a specification of height, and numColumns is a specification of width. If
you get confused about which comes first, you might try to create a tall, narrow text area and end up with a short, broad one. We
say that the dimensions of the text area are specified in row major order, which just means that the number of rows comes first.

Here is a very simple program that creates a text area:
import java.awt.*;

class TAInnaFrame extends Frame
{
 public TAInnaFrame()
 {
 setLayout(new FlowLayout());
 TextArea ta = new TextArea(10, 30);
 add(ta);
 setSize(550, 220);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setSize(550, 220);
 }

 public static void main(String[] args)
 {
 (new TAInnaFrame()).setVisible(true);
 }
}

The code is simple, but the text area is not. All we did was create a 10-by-30 text area, as shown in Figure 15.17.

Figure 15.17: A text area

The text area's contents can be changed, either under program control or by user input. A little bit of typing results in Figure 15.18.

Figure 15.18: Multiple checkbox groups

As more text is entered, the contents become taller than the component. When this happens, the text area automatically installs
scroll bars, as shown in Figure 15.19.

Figure 15.19: A text area with scroll bars

To add text to a text area programatically, use the append() method, which takes a string argument. The string is added to the
end of the component's contents. Caution: Text areas do not automatically word-wrap. If you want to add text on a new line, your
new text should start with a newline character (\n).

Scrollbars

A checkbox has two states, true and false. A choice has several states, one state for each item that might be selected. Both
component types are good for situations where users have a limited range of choices. Scrollbars are input devices that come into
play when the range of choices is broad. They are most commonly seen in word processors and Web browsers, where they are
used to specify the vertical position of a document.

The java.awt.Scrollbar class has two main constructors:

Scrollbar()

Scrollbar(int orientation)

The first version creates a vertical scrollbar. The second version creates a scrollbar that is either horizontal or vertical, depending
on the value of the orientation argument. The class defines two static ints, called Scrollbar.HORIZONTAL and
Scrollbar.VERTICAL. So to construct a horizontal scrollbar, you would call new Scrollbar(Scrollbar.HORIZONTAL).

The following code creates two scrollbars, one in each orientation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.awt.*;

class TwoBars extends Frame
{
 public TwoBars()
 {
 setLayout(new FlowLayout());
 add(new Scrollbar()); // Vertical
 add(new Scrollbar(Scrollbar.HORIZONTAL));
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 (new TwoBars()).setVisible(true);
 }
}

There is nothing very exciting about this code. Unfortunately, there is also nothing very exciting about the GUI it creates, as you
can see from Figure 15.20.

Figure 15.20: A pair of disappointing scrollbars

Neither of the scrollbars is long enough to be useful. A decent vertical scrollbar should be taller, and a decent horizontal scrollbar
should be wider. You can't be effective at setting a component's height or width unless you know about layout managers.
Fortunately, we have completed our survey of components, so let's move on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layout Managers
The java.awt package contains a very useful class called Container. Generally, you don't instantiate this class directly.
Rather, you instantiate its various subclasses, which include Frame. All containers have the following properties:

They are rectangular.

They can contain other components, including other containers.

They use layout managers to determine the locations and positions of the components they contain.

The great thing about layout managers is that you don't have to think about the details of component layout. Each layout manager
class imposes a different layout policy on the container it manages. All you have to do is become familiar with the various layout
policies available to you. The layout manager will take care of the details.

To change a container's layout policy, you construct an instance of the desired layout manager class. Then you call the
container's setLayout() method, passing in the layout manager. All the code examples in this chapter have used frames, and
the layout manager for a frame is something called a border layout manager. The border layout policy is completely inappropriate
to what we wanted to do, but a different manager, the flow layout manager, is perfect.

This explains why every example constructed an instance of FlowLayout and then passed the instance into a setLayout()
call. Usually this was done in a single line:
setLayout(new FlowLayout());

To understand layout policies, and therefore to understand why we used flow layout so extensively, you have to understand the
concept of preferred size. Every component has a preferred size, which a layout manager can either honor or ignore. For
components that have text, such as buttons and checkboxes, the preferred size is just large enough to accommodate the
component's text. For components without text, the preferred size is arbitrary, which usually is not very good. The preferred size of
a scrollbar, for example, is 15x50 pixels.

The Flow Layout Manager

The flow layout manager always honors the preferred size of its container's components. Every component in every figure in this
chapter has been its preferred size, because every frame has used a flow layout manager.

When a container uses a flow layout manager, its contained components appear from left to right in the order they were added to
the container. There is a gap of five pixels between adjacent components. The cluster of components appears at the top of the
container and is centered horizontally. (Horizontal centering is the default. There are other options. See Exercise 6.)

The following code creates three components and uses a flow layout manager to position them in a frame:
import java.awt.*;

class SimpleFlow extends Frame
{
 public SimpleFlow()
 {
 setLayout(new FlowLayout());
 add(new Label("ABCDEFGH"));
 add(new Button("Hello"));
 Font f = new Font("SansSerif", Font.BOLD, 24);
 Button btn = new Button("Goodbye");
 btn.setFont(f);
 add(btn);
 setSize(300, 200);
 }

 public static void main(String[] args)
 {
 (new SimpleFlow()).setVisible(true);
 }
}

Figure 15.21 shows the code's GUI. Notice how the components are spaced evenly and centered horizontally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.21: Flow layout manager

Figure 15.22 shows the same GUI, after the frame has been made wider. The cluster is still centered.

Figure 15.22: Wider

And Figure 15.23 shows the GUI one last time. Now the frame is too narrow to fit all three components. When this happens, the
flow layout manager makes another row. If the frame were even narrower, there would be yet another row.

Figure 15.23: Narrower

You can configure flow layout managers to place their clusters at the left or right of their containers, rather than in the center. You
do this by passing an int into the FlowLayout constructor. If the int is FlowLayout.LEFT, the cluster will appear at the left; if the
int is FlowLayout.RIGHT, the cluster will appear at the right. Figure 15.24 shows the three-component GUI of the current
example, with the setLayout() line changed to
setLayout(new FlowLayout(FlowLayout.LEFT));

Figure 15.24: Left-aligned

The Flow Lab animated illustration lets you experiment with components that are managed by a flow layout manager. To start the
application, type java flow.FlowLab. Figure 15.25 shows the initial screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.25: Flow Lab

Flow Lab lets you select a left-, center-, or right-aligning layout manager. You can add buttons, checkboxes, text fields, and labels.
Experiment with Flow Lab until you have a good feel for how the layout manager arranges its components. Select left alignment.
Add components of a uniform size until the top row is full and a second row is created. How many components are in the top row?
Does the number of components in the top row change when you select center or right alignment?

Notice that your selection of layout alignment affects only the main region of the display; the two control panels at the top of the
display are not affected. It seems the layout manager you selected is only responsible for part, not all, of the frame. You will see
how this is done a little later, in the "Panels" section. But first you have another layout manager to learn about.

The Border Layout Manager

The border layout policy is bizarre at first glance. It only makes sense after you learn what it's good for. So if your reaction to the
next few paragraphs is, "This is weird," congratulations. You're right on track.

A border layout manager partially honors and partially ignores the preferred size of its container's components. A preferred size
consists of two dimensions: width and height. A border layout manager might ignore one of a component's preferred dimensions
while honoring the other. Or both preferred dimensions might be ignored. They are never both honored.

A container that uses a border layout manager may not contain more than five components. The layout manager divides the
container into five regions, named North, South, East, West, and Center. Each region may be occupied by zero or one
components.

The component in the North region is placed at the top of its container. The component's height is its preferred height; its width is
the entire width of the container. Figure 15.26 shows a horizontal scrollbar in the North region of a frame.

Figure 15.26: Scrollbar at North

Here is the code that produced Figure 15.26:
 1. import java.awt.*;
 2.
 3. class BarAtNorth extends Frame
 4. {
 5. public BarAtNorth()
 6. {
 7. Scrollbar bar=new Scrollbar(Scrollbar.HORIZONTAL);
 8. add(bar, "North");
 9. setSize(200, 100);
10. }
11.
12. public static void main(String[] args)
13. {
14. (new BarAtNorth()).setVisible(true);
15. }
16. }

The constructor does not call setLayout(), because you want to use a border layout manager, which is the default for a frame.
In other words, the right kind of layout manager is already there.

Look at line 8. When you add components to a container that uses a border layout manager, you have to pass a second argument
to the add() method. This is a string that must be North, South, East, West, or Center.

The component at South is attached to the bottom of the container. Otherwise, it is treated like the component at North. Its
preferred height is honored, and its width is the entire width of the container.

Figure 15.27 shows a frame with a horizontal scrollbar at North and a text field at South.

Figure 15.27: North and South occupied

The code that produced Figure 15.27 is almost identical to the code that produced Figure 15.26. The difference is that this code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code that produced Figure 15.27 is almost identical to the code that produced Figure 15.26. The difference is that this code
has the following lines before the setSize() call:
TextField tf = new TextField("Hello");
add(tf, "South");

As you might guess, the components at East and West are attached to the right and left edges of their container, respectively.
Their preferred widths are honored. Their heights are the height of the container... almost. They extend all the way up to the top of
the container, unless there is a component at North. In that case, they only extend to the bottom of the North component.
Similarly, if there is no component at South, the East and West components can extend all the way down to the bottom of the
container. But if there is a component at South, the East and West components extend down just to the top of the South
component.

There are many combinations of the presence or absence of North or South or East or West components, but Figure 15.28 should
make things clear. In the figure, there are components at North, East, and West.

Figure 15.28: North, East, and West occupied

There is no component at South, so the two buttons extend down all the way to the bottom of the container. Since the scrollbar
occupies North, the buttons do not extend all the way to the top of the container. They defer to North, extending up to the bottom
of the scrollbar. Notice how the buttons have different preferred widths as a result of their different fonts.

So much for North, South, East, and West. The component at Center, if there is one, occupies all the territory that is left over after
all other components have been sized and positioned. The white region in Figure 15.28 is the area where there are no
components, so the white background of the frame is visible. If the frame had a component at Center, that component would fill
the white region exactly. In Figure 15.29, a text area has been added at Center.

Figure 15.29: North, East, West, and Center occupied

Here is the code that produced Figure 15.29:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class NEAndW extends Frame
 4. {
 5.
 6. public NEAndW()
 7. {
 8. Scrollbar bar=new Scrollbar(Scrollbar.HORIZONTAL);
 9. add(bar, "North");
10. Button btn = new Button("Me West");
11. add(btn, "West");
12. btn = new Button("Me East");
13. btn.setFont(new Font("Serif", Font.PLAIN, 50));
14. add(btn, "East");
15. TextArea ta = new TextArea();
16. add(ta, "Center");
17. setSize(600, 400);
18. }
19.
20. public static void main(String[] args)
21. {
22. (new NEAndW()).setVisible(true);
23. }
24. }

Notice the TextArea constructor on line 15. This version is different from the one you were introduced to, where you passed in
arguments to specify the number of rows and columns. The no-args version used here is for situations where the text area's size
will be determined by the layout manager, so there is no need for you to specify a size.

Panels

Panels are components that divide containers into regions that are smaller and more manageable. The java.awt.Panel class
extends java.awt.Container, so every panel has its own layout manager. You can think of panels as rectangular components
that can contain other components, including panels. These in turn can include panels, and so on, so it is possible to create a
complex layered hierarchical GUI.

Figure 15.30 shows a frame whose South component is a panel containing three buttons. The panel's only other component is a
text area at Center.

Figure 15.30: A panel in a frame

Here is the code that created Figure 15.30:
 1. import java.awt.*;
 2.
 3. class PanelInFrame extends Frame
 4. {
 5. public PanelInFrame()
 6. {
 7. Panel pan = new Panel();
8. pan.add(new Button("OK"));
 9. pan.add(new Button("Cancel"));
10. pan.add(new Button("Help"));
11. add(pan, "South");
12. TextArea ta = new TextArea();
13. add(ta, "Center");
14. setSize(400, 250);
15. }
16.
17. public static void main(String[] args)
18. {
19. (new PanelInFrame()).setVisible(true);
20. }
21. }

When you use panels, you make a lot of calls to the add() method of various containers. It's important to keep track of what is
being added to what. On lines 8-10, the buttons are added to the panel. On line 11, the panel is added to the frame. On line 13,
the text area is added to the frame.

The code has no setLayout() calls. The default layout manager for panels is flow. This is confusing, because the default
manager for frames is border layout. You have to remember which container type defaults to which layout policy. But in practice,
the defaults are usually what you want, so you don't often have to call setLayout().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the defaults are usually what you want, so you don't often have to call setLayout().

The flow layout manager makes more sense when you know about panels. Most GUI-based applications consist of a frame that
contains a control area and a work area. For example, all Web browsers have a control panel at the top of the display with buttons
for going forward, back, home, and so on. Below the control panel is the Web page viewing area. Generally, at the bottom is a
status message. When you enlarge the browser, you don't want more space for the controls or the status message; you want a
bigger Web page viewing area. The same holds true for most word processors, painting programs, and indeed most programs in
general. When the user resizes, it is the main work area below the control area that should do most of the growing.

This is exactly the behavior that you get when you use a frame with a panel at North and some kind of work area at Center. The
panel is attached to the top of the frame, and is as wide as the frame. It is a tall as it needs to be to accommodate the
components it contains. (That's how the preferred height of a panel is defined.) When the frame becomes wider or narrower, the
panel's components are repositioned automatically. When the frame becomes higher or shorter, it is the work area and not the
panel that grows or shrinks. At the end of the next chapter, after you have learned how to detect input activity from components,
you will work through a final project whose GUI consists of a panel at North and a work area at South.

The Layout Lab animated illustration lets you experiment with hierarchical combinations of containers, layout managers, and
components. Layout Lab is designed to let you play with layout ideas without going through the effort of writing code to implement
your ideas. To start the program, type java layout.LayoutLab. You will see the display shown in Figure 15.31.

Figure 15.31: Layout lab

Initially, the display displays a representation of a frame named Frame0. If you want to change the frame's properties, including its
layout manager, click on the Frame0 button. You will see the dialog box shown in Figure 15.32.

Figure 15.32: Layout lab's frame editing dialog

Make sure the frame's layout manager is set to Border. Then dismiss the edit dialog by clicking its Apply button. Now add a
component to the frame. Click on the + button. You will see a small dialog that lets you choose a button, a scrollbar, a checkbox, a
text field, or a panel. Select Panel, and then click the Apply button. The main window will now look like Figure 15.33.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.33: Layout Lab with an added panel

Now click on the Pan0 button to edit the properties of the new panel. Since the panel is inside the frame, which uses a border
layout manager, one of the panel's properties is its region within the frame (North, South, East, West, or Center). Select South
and then click the Apply button.

Now it's time to put a few buttons in the panel. In the main screen, click on the + button. When the little component-chooser dialog
appears, select Button and then click Apply. Now the main window will look like Figure 15.34.

Figure 15.34: A button in a panel in a frame

Edit the button by clicking on Btn0 in the main window. You will see a dialog box that lets you edit the button's location, position,
font, and text. Set both X and Y to 500. Set the font to something conspicuously non-default, like SansSerif 36-point bold italic.
Set the label to whatever text you like, and click the Apply button.

Now you have created a description of a slightly complicated hierarchical GUI: a button in a panel at the South of a frame. To see
what the GUI really looks like, click the Make It So button. You will see a frame that looks like Figure 15.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.35: Layout Lab makes it so

The button is definitely not 500x500 pixels in size. Is the button's property dialog broken? No. Remember that the panel is using a
flow layout manager, which honors the button's preferred size. As you can see in Figure 15.34, the button's preferred size is much
smaller than 500x500. In fact, it is just large enough to accommodate the button's text.

Now experiment with layout lab. Try adding more buttons, or other kinds of components, to the panel. Add a panel to the frame's
Center. Choose a layout manager for the new panel, add components, including a panel, and add components to that. If you want
to get rid of a component, click on its X button in the main display. (If the component is a panel, all its contents will be deleted as
well. You aren't allowed to delete the frame.) You can click the ^ and v buttons to change the ordering of components in their
container.

Play with Layout Lab until you feel comfortable with the idea of components inside a panel that is inside a panel that is inside a
frame.

Other Layout Managers

Before we leave the topic of layout managers, it is appropriate to mention that there are other options besides flow and border.
The java.awt package provides three other managers, called CardLayout, GridLayout, and GridBagLayout. All three are
beyond the scope of an introductory book, but you should know that they exist so that you can investigate them if you ever decide
you need them.

CardLayout allows only one component to be seen at any time. GridLayout organizes its container into a grid of rows and
columns; each component occupies a single grid location. GridBagLayout also creates rows and columns, but it provides many
more options than GridLayout does.

Several other layout managers (BoxLayout, OverlayLayout, and SpringLayout) are part of the javax.swing package.
Swing is an alternative to the AWT toolkit. Its components are much more sophisticated than those of AWT.

You can create your own layout manager class. To do this, you implement the java.awt.LayoutManager interface. It isn't
especially hard once you get the hang of it. The interface only has five methods, and several of them are trivial. Many of this
book's animated illustrations display Java source code that is mostly text, with a few scattered text fields or choices that allow you
to configure the source code. The data chain lab in Chapter 13 did this. This kind of layout cannot be achieved with any of the
standard layout managers, so a new layout manager class was created.

There is one last layout manager option, and it is offered with caution. You can call setLayout(null) to operate with no layout
manager at all. Then it is your responsibility to set the size and location of every component. You do this by calling the following
methods on the components:

void setLocation(int x, int y) Sets the component's location (upper-left corner) to (x, y).

void setSize(int width, int height) Sets the component's size to width-by-height.

void setBounds(int x, int y, int width, int height) Sets the component's location to (x, y) and its size to
width-by-height.

The following code uses no layout manager. It creates a 300-by-300 button and positions it at (40, 40):
import java.awt.*;

class NullLayout extends Frame
{

 public NullLayout()
 {
 setLayout(null);
 Button btn = new Button("Cancel");
 btn.setSize(300, 300);
 btn.setLocation(40, 40);
 add(btn);
 setSize(400, 400);
 }

 public static void main(String[] args)
 {
 (new NullLayout()).setVisible(true);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Figure 15.36 shows the GUI.

Figure 15.36: No layout manager

The Layout Lab animated illustration lets you set any container's layout manager to None. Do this to the frame, and add two
buttons labeled OK and Cancel. Edit each button's position and size until you like what you see. Get a feel for the ease or difficulty
of this task.

The no-layout-manager strategy should be used with caution. As Figure 15.36 shows, it is easy to create a GUI with
components of inappropriate size or location. Moreover, when your container has more than a very few components, it is
unlikely to look good when the user resizes it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose you use the following code to create a checkbox:
Checkbox cbox = new Checkbox("Ok", true);

What is the checkbox's state after you click on it 20,000 times?

2. In the "Checkboxes" section of this chapter, the Boats application is 30 lines long. The code isolates literal
strings in an array near the top of the listing. You saw how this approach, along with the use of a loop to create
the checkboxes, results in more maintainable code. Rewrite the code to eliminate the loop and the string array.
In place of the loop in the constructor, just create three checkboxes one by one. How many lines of code does
your new application have?

3. This is an extension of Exercise 2. Suppose you need to change the Boats application so that instead of
offering three sizes (small, medium, and large), it offers ten (rubber duck, sponge, tiny, small, kinda small,
medium, kinda large, large, huge, titanic). How does this affect the size of the code as it appears in the
"Checkboxes" section of this chapter? How does it affect the size of the code that you wrote for Exercise 2?

4. Write an application that displays a frame with a menu bar. The bar should have the following menus:

An Edit menu with items Copy and Cut.

A File menu with items Close, Exit, and Open.

A Help menu with item Help. Assume that clicking on this item will display a helpful dialog.

A Whatever menu with items Stuff and Nonsense. The Nonsense item should be a submenu with items Ordinary
Nonsense and Extreme Nonsense.

Make sure that your GUI follows the guidelines listed at the end of the "Menus" section.

5. Write a program that creates a GUI that looks like the following illustration. The text in the text area should be
set programmatically by a single call to the text area's append() method. The call should come directly after the
text area is constructed.

6. Using the API page for java.awt.FlowLayout, determine how to create a flow layout manager that right-
justifies its cluster of components rather than centering it.

7. The java.awt.Component class, which is a superclass of java.awt.Button, has a method called
setSize(int width, int height). The method's documentation says that it resizes the component so
that its size is width times height.

What do you expect the following code to do? First, read the listing and decide on your answer. Then, type in
the code and run it. Did you see what you expected to see?
import java.awt.*;

class Q7 extends Frame
{
 public Q7()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Abcde");
 btn.setSize(500, 500);
 add(btn);
 setSize(700, 700);
 }

 public static void main(String[] args)
 {
 (new Q7()).setVisible(true);
 }
}

8. This entire chapter has been about components that are installed inside containers. The previous chapter was
about painting. What happens if a frame that contains components also has a paint() method that paints a
part of the screen that is occupied by a component? Write a program that will reveal the answer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Events

Overview
Now you know how to create components and lay them out in a GUI. The next step is to learn about events, which are the
mechanism by which components inform us that they have been used.

A component that does not send events is like a doorbell that does not ring. It looks okay, but it can't make anything happen. It
has look but no feel. In this chapter, you will learn how to make components responsive. This will prepare you for Chapter 17,
"Final Project," where you will observe in detail a Java application that uses painting, components, events, and all the other
programming techniques presented in this book.

Java's original event mechanism was quite limited. It was designed back when it was believed that Java would mostly be used to
create applets on Web pages, where space would be limited and GUIs would be simple. It soon became evident, however, that
Java was an excellent programming language for domains that had nothing to do with Web pages. As non-Web-based Java
applications propagated, GUIs became more complicated, and the current event mechanism was introduced in release 1.1.

The new mechanism is scalable, which means it is useful and efficient over a broad range of complexity, from very elementary
GUIs to extremely intricate ones. This comes at a price. The event mechanism is not simple. It isn't horribly complicated, but it
does consist of several interacting pieces, and it might not make sense until you have seen all the pieces. But hang in there. It will
all make sense soon, and when it does, you will have a powerful tool for creating full-fledged GUIs that have both look and feel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event-Driven Programs
GUI-based programs are fundamentally different from the applications you saw and wrote prior to Chapter 14 ("Painting"). The
earlier programs began execution at the beginning of the main() method, ran through the end of main(), and that was that.
When main() was finished, the program was finished. The Java Virtual Machine ceased to exist, and you saw a new prompt in
your console window.

Now consider the behavior of an application with a GUI. The following code creates a frame that contains a button and displays a
blue circle:
import java.awt.*;

public class Xxxx extends Frame
{
 Xxxx()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 add(btn);
 setSize(300, 300);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.blue);
 g.fillOval(100, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 (new Xxxx()).setVisible(true);
 }
}

Figure 16.1 shows the GUI.

Figure 16.1: A GUI waiting for events

There is something mysterious about this code's behavior, and indeed about the behavior of all the GUI-based applications you
saw in Chapters 14 and 15. In fact, there are two mysteries, and perhaps you have already wondered about them.

The main() method consists of a single line. After the instance of class Xxxx has been constructed and made
visible, one would expect the program to terminate. This is not the case. The JVM continues to run (but doing
what?) until someone types Ctrl+C into the console window. It is only then that the frame vanishes and the console
is ready to accept a new command.

The application does not call paint() anywhere. The method is implemented but never invoked. But something
somewhere must have called it, because the circle is right there in the middle of the frame. Who called paint()?

Something within the Java Virtual Machine seems to be keeping an eye on things on our behalf, calling paint() at the right time
and keeping the GUI alive after main() finishes. You could almost say the JVM has multiple personalities: One personality to run
main(), and one to take care of the mysterious GUI behavior.

In fact, the JVM has the computer equivalent of multiple-personality disorder. Don't worry! For computers it's a good thing,
because the personalities function together harmoniously. We say that the JVM is multithreaded, which means it is capable of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the personalities function together harmoniously. We say that the JVM is multithreaded, which means it is capable of
performing more than one task at a time. Each task is called a thread. Java's threading capabilities are powerful and intricate. You
can write applications that create several or many threads, each performing its own task. Creating your own threads and
maintaining harmony among them is far beyond the scope of this book. In order to understand GUI event processing, you don't
need to know any details about creating or managing threads. But you do need to know a little bit about what threads are. As you'll
see in the next section, my own exposure to threads began many years ago in a barbershop.

Threads

I was eight years old. I was waiting my turn to get my hair cut, and I was reading a Superman comic book. The Man of Steel was
entertaining some kids at an orphanage by playing ping-pong against himself. He would serve the ball, and then run at super-
speed to the other side of the table to return the ball. Then he would run back to the original side, and so on. Each time he
changed sides, he ran so fast that nobody could see him, and he ended up exactly where he had been before. This created the
illusion of two identical Supermen.

Computers do something similar. They create the illusion of doing several things simultaneously by rapidly switching from one task
to another, many times each second, like Superman running from one side of the ping-pong table to the other. The individual
tasks are called threads.

Thread support is built into the Java language and the JVM. When you run an application, even a very simple one that just prints
out a message from main(), there are actually two threads the work. One of these is called the main thread. Its job is to execute
your main() method. Until you began working with GUIs, all behavior of all the applications you wrote came from the main
thread.

The second thread is called the garbage collection thread. Recall from Chapter 6, "Arrays," that Java's garbage-collection feature
recycles memory from objects and arrays when they can be used no longer. This recycling happens while your program is
executing. In other words, the main thread and the garbage collection thread operate simultaneously. You don't have to do
anything special to make the garbage collection thread work; it is created automatically by the JVM.

Another thread that is created automatically as part of the JVM infrastructure is the event dispatch thread, also known as the GUI
thread. It is not present in all applications; it appears only in applications with GUIs. The Event dispatch thread knows when the
display needs to be redrawn and calls paint() at the appropriate moment. As you will see later in this chapter, it is the Event
dispatch thread that knows when components have been activated and calls the appropriate methods in the appropriate objects.

The presence of an Event dispatch thread affects the life cycle of the JVM. If an application has no GUI, the JVM terminates when
the main thread finishes its work. However, if an Event dispatch thread is present, the JVM continues to run after the main thread
is done. The JVM remains in existence until the Event dispatch thread terminates. Typically, this happens when the Event
dispatch thread executes a System.exit() call.

It is easy to imagine what the JVM is doing while the main thread is alive. Mostly, the JVM is executing the application's bytecode,
but now and then the garbage collection thread recycles some memory. But what about a GUI application, where main() calls
the constructor of a Frame subclass, calls setVisible() on the constructed object, and then is done? At this point the frame is
on the screen, just sitting there. You saw this in numerous examples in the previous chapter. If the frame is doing nothing, and
main() has terminated, what is the JVM doing?

The answer is: Absolutely nothing! The Event dispatch thread is lurking in the background, waiting for the user to do something
that requires attention. For example, if the frame becomes covered by another frame and is subsequently uncovered, the Event
dispatch thread will call paint() so that the screen can be updated. It is also the job of the Event dispatch thread to notice when
user input has occurred, and to respond appropriately by making certain method calls to certain objects.

We say that Java GUI programs are event-driven. This means that after some initialization, the programs only act in response to
user input. An event is a single unit of user input. In the next section, you will learn about Java's simplest type of event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Action Listeners and Action Events
Java uses many types of events. The simplest is the action event, which is used by buttons and several other components to
indicate that simple user input activity has occurred. The other event types are slightly more complicated than action events, but
they are used in analogous ways. The nice thing about Java's event mechanism is that once you've learned how to handle one
kind of event, it's easy to handle the other kinds.

Every button has a list of objects that are interested in being notified when the button is pushed. These objects are the button's
action listeners. In general, a listener is an object that should be notified when a component is stimulated in some way.

Not all objects are eligible to be a button's action listener. An action listener must implement the
java.awt.event.ActionListener interface. Note that this interface lives in the java.awt.event package, along with all
the other classes and interfaces that make up Java's event mechanism. So a GUI application is likely to use the following two
import lines:
import java.awt.*;
import java.awt.event.*;

The first line imports all the component classes; the second imports the event-related classes and interfaces.

The java.awt.event.ActionListener interface defines a single method:
public void actionPerformed(ActionEvent e);

When a button is pressed, the Event dispatch thread constructs an instance of java.awt .event.ActionEvent. This is a very
simple class that contains a small amount of information about the button activity. Then the Event dispatch thread calls the
actionPerformed() method of each of the button's action listeners, passing the instance of ActionEvent as the method
call's argument.

When a button is constructed, its list of action listeners is empty. This explains why none of the buttons created in the example
code in the previous chapter actually caused anything to happen. To add an action listener to a button's list, call the button's
addActionListener() method, passing as an argument the listener to be added. The listener must implement the
ActionListener interface.

Here is a class that implements the interface, and so is eligible to be a button's action listener:
import java.awt.event.*;

class SimpleActionListener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("The button was pushed.");
 }
}

The following code creates a button that uses an instance of SimpleActionListener as its action listener:
import java.awt.*;

public class UsesListener extends Frame
{
 UsesListener ()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 SimpleActionListener sal = new SimpleActionListener();
 btn.addActionListener(sal);
 add(btn);
 setSize(300, 100);
 }

 public static void main(String[] args)
 {
 (new UsesListener ()).setVisible(true);
 }
}

Figure 16.2 shows the GUI.

Figure 16.2: A button that sends events

The important thing to notice about Figure 16.2 is that there is nothing important to notice. The button looks perfectly ordinary.
There is nothing to tell us that it has feel as well as look. But when you push it, the following message appears in your console:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The button was pushed.

Congratulations! You have now seen your first example of a GUI that has both look and feel.

In addition to the addActionListener() method, the Button class also has a removeActionListener() method, which
can be called when a listener no longer wants to get called when the button is pushed.

Note In practice, buttons rarely have multiple action listeners, and removeActionListener() is rarely called. In most
cases, a button has a single action listener that is added just after the button is constructed and is never removed.

The procedure for writing code with a button that responds to user input can be summarized as follows:
1. Construct a button.

2. Create a listener class that implements the ActionListener interface.

3. Construct an instance of your listener class.

4. Call the button's addActionListener() method, passing in the instance of your listener class.

The Simple Event Lab animated illustration lets you experiment with buttons and listeners without writing code. Start the program
by typing java events.SimpleEventLab. You will see the display shown in Figure 16.3.

Figure 16.3: Simple Event Lab: initial screen

The program lets you create simulated buttons and listener classes. You can create simulated instances of the simulated listener
classes, click on the buttons, and observe how calls are made to the listeners.

Begin by creating some buttons. Click on Add Button three times. You will see things that look somewhat like buttons, as shown in
Figure 16.4.

Figure 16.4: Simple Event Lab with simulated buttons

Now create a (simulated) listener class. In real life, you would do this by writing a class that implements ActionListener. In
Simple Event Lab, you do it by clicking on Create Listener Class... in the lower part of the frame. The button label ends with dot-
dot-dot (officially called ellipsis). As you learned in the previous chapter, this means that the button causes a new frame or dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dot-dot (officially called ellipsis). As you learned in the previous chapter, this means that the button causes a new frame or dialog
box to appear. Indeed, clicking the button brings up a dialog box that lets you choose the name of the class. After you dismiss the
dialog, a picture of the class appears at the bottom of the screen, as shown in Figure 16.5.

Figure 16.5: Simple Event Lab with a listener class

The figure shows that a listener class called GoodListener has been created. Create your own class, choosing any name you
like.

Now it's time to create an instance of the listener class. Click on the picture of the class. You will see a pop-up menu that lets you
instantiate the class or delete it. Choose Construct Instance. A simulated instance of the class will appear below the simulated
buttons in the main screen, as you can see in Figure 16.6.

Figure 16.6: Simple Event Lab with a listener object

You can click on the picture of the listener object to change its name or to delete it.

Up to this point, you have simulated the first three steps listed earlier in this section. You have created buttons, you have created
a listener class, and you have constructed an instance of the listener class. Now it's time to register the listener object as an action
listener of one of the buttons.

Click on one of the simulated buttons. You will see a pop-up menu that invites you to add an action listener or delete the
component. Choose Add Action Listener. The cursor will turn into crosshairs. As you move the mouse over the listener object, the
object's outline will be highlighted, indicating that you are over a valid listener for the button. Click on the listener. You will see a
line connecting the button to the listener.

Now the fun begins. Click the Run button at the top of the screen. The simulated buttons will turn into real buttons, as shown in
Figure 16.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.7: Simple Event Lab continued

Now click the button that you connected to the action listener object. The program will show a call being made to the listener's
actionPerformed() method. The yellow ball represents the ActionEvent object.

Click on the Clear button to remove all simulated components, listener classes, and listener objects. Now that you have a clean
slate, see if you can repeat the process of connecting a button to a listener without looking at this page.

Experiment with multiple listener classes and multiple listener objects. Can a single listener object be an action listener for more
than one button? Can a button have more than one action listener? What does the Show Code... button do?

Getting Information from an Action Event

In the previous section, you were asked to use Simple Event Lab to determine whether a single listener object can be an action
listener for more than one button. The answer is yes, as shown in Figure 16.8.

Figure 16.8: One listener object for many buttons

But now there is a problem. Obviously, the code needs to respond differently to different buttons. How does the listener's
actionPerformed() method know which button was clicked?

The answer is found inside the method's argument. The ActionEvent class has a getSource() method that returns
the button that was clicked. Many actionPerformed() methods have a structure that is similar to the following:
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == okButton)
 doOkStuff();
 else if (e.getSource() == cancelButton)
 doCancelStuff();
 else if (e.getSource() == applyButton)
 doApplyStuff();
}

The method determines which button was used and responds accordingly. For this to work, the method has to have access to
references to the three buttons. The simplest way to make this happen is to put actionPerformed() in the frame subclass that
creates the buttons. Make sure the frame subclass declares that it implements ActionListener (no problem, since it has an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creates the buttons. Make sure the frame subclass declares that it implements ActionListener (no problem, since it has an
actionPerformed() method). Finally, when the buttons are created, the frame subclass itself is registered as their action
listener. It looks like this:
 1. import java.awt.*;
2. import java.awt.event.*;
 3.
 4. public class ListeningFrame extends Frame
 5. implements ActionListener
 6. {
 7. private Button okButton, cancelButton, applyButton;
 8.
 9. ListeningFrame()
10. {
11. setLayout(new FlowLayout());
12. okButton = new Button("Ok");
13. okButton.addActionListener(this);
14. add(okButton);
15. cancelButton = new Button("Cancel");
16. cancelButton.addActionListener(this);
17. add(cancelButton);
18. applyButton = new Button("Apply");
19. applyButton.addActionListener(this);
20. add(applyButton);
21. setSize(300, 100);
22. }
23.
24. public void actionPerformed(ActionEvent e)
25. {
26. if (e.getSource() == okButton)
27. doOkStuff();
28. else if (e.getSource() == cancelButton)
29. doCancelStuff();
30. else if (e.getSource() == applyButton)
31. doApplyStuff();
32. }
33.
34. public static void main(String[] args)
35. {
36. (new ListeningFrame()).setVisible(true);
37. }
38. }

The implements ActionListener statement makes the ListeningFrame class eligible to be an action listener for buttons.
Lines 13, 16, and 19 register this as each button's listener. Recall that this is a reference to an object that owns the code being
executed. In other words, it's the instance of ListeningFrame that is being constructed. The doOkStuff(),
doCancelStuff(), and doApplyStuff() methods are omitted.

Here is another example that uses the same design structure. The program plays a version of the game Nim. This game is played
by placing 10 coins in a pile. Each player in turn takes one, two, or three coins. The player who takes the last coin is the winner.
The GUI consists of four buttons: Take 1, Take 2, Take 3, and Quit. As each player takes a coin, the code prints out the number
of remaining coins. Figure 16.9 shows the GUI.

Figure 16.9: Simple Nim GUI

Here's the code:
import java.awt.*;
import java.awt.event.*;

public class SimpleNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 SimpleNim()
 {
 nCoins = 10;
 setLayout(new FlowLayout());
 btn1 = new Button("Take 1");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 add(quitBtn);
 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 System.out.println(nCoins + " left.");
 }

 public static void main(String[] args)
 {
 (new SimpleNim()).setVisible(true);
 }
}

The actionPerformed() method first determines if the event source was the Quit button. If so, System.exit() is called to
terminate the program. In event-driven programming, calling System.exit() in response to user input is the appropriate way to
end a program. If the event came from one of the Take buttons, the coin count nCoins is decremented and the remaining value is
printed out.

This application works as an example of how to process events, but it is certainly no improvement over a pile of coins. (Unless you
don't have 10 coins. But if you don't have 10 coins, you probably can't afford a computer.) The situation points out an important
principle of GUI design, which is violated all to often on the World Wide Web: Only create a GUI if it makes life better.

In the next section, you will see the last example improved on in several ways. You might not think the final version is better than a
pile of coins, but you will certainly find it an improvement over the original version. And, more importantly, you will learn some
important techniques for creating useful GUIs.

Improving the GUI

In this section, the SimpleNim application will be improved in three stages. To keep life simple, the Nim Lab program on your CD-
ROM gives you easy access to all four versions (the original and the three improvements). To run Nim Lab, type java
events.NimLab. You will see the display shown in Figure 16.10.

Figure 16.10: Nim Lab

Each improvement will illustrate a general principle of GUI design. The first principle is that the results of user input activity should
appear near where the activity happened. In this way, cause and effect are visually related. (The cause is the input, and the effect
is the resulting change to the screen.) In the SimpleNim version, you clicked buttons in the GUI, but your output appeared at the
console from which you ran the program. This is inconvenient, because you have to keep moving your eyes back and forth.

It would be better if the output could happen in the GUI. For this, you will use a text area. The TextArea class has a method
called append() that appends text the component's contents, so let's modify the actionPerformed() method so that it calls
append() rather than System.out.println().

Figure 16.11 shows the GUI after a game has been played.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.11: Nim, with output to a text area

Here is the code:
import java.awt.*;
import java.awt.event.*;

public class TextAreaNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private TextArea ta;
 private int nCoins;

 TextAreaNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");
 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 ta.append(nCoins + " left.\n");
 }

 public static void main(String[] args)
 {
 (new TextAreaNim()).setVisible(true);
 }
}

The frame uses a border layout manager. There is a panel (controls) at North containing the buttons. The text area is at
Center. Thus, when you make the frame bigger (try it!), most of the new space goes to the text area.

The original line
System.out.println(nCoins + " left.");

has been replaced by
ta.append(nCoins + " left.\n");

Notice the newline character (\n) in the new version. When you call System.out.println(), a newline is printed
automatically. This does not happen when you call append() on a text area, so you have to provide your own newline.

This version is definitely an improvement. You no longer have to look up to do input and look down to read output. But the output
is pure text.

The next principle of GUI design that we will apply is this: Show me, don't tell me. Our next improvement will be to draw coins on
the screen, rather than displaying text that merely tells you about coins. This is not a book on graphic design, so the coins will just
be filled circles. But the code will show what you could do if you were working with a graphics designer who provided you with
code for painting exquisitely detailed coins.

Figure 16.12 shows the initial state of the new version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.12: Nim with graphical output

Figure 16.13 shows the GUI after a few coins have been taken.

Figure 16.13: Nim with graphical output, game in progress

Figures 16.12 and 16.13 dramatically show that pictures are better than words. Here's the code:
import java.awt.*;
import java.awt.event.*;

public class GraphicOutputNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 GraphicOutputNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");
 setSize(350, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 repaint();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void paint(Graphics g)
 {
 int x = 25;
 int y = 85;

 g.setColor(Color.blue);
 for (int i=0; i<nCoins; i++)
 {
 g.fillOval(x, y, 20, 20);
 x += 30;
 }
 }

 public static void main(String[] args)
 {
 (new GraphicOutputNim ()).setVisible(true);
 }
}

The text area is gone. The line at the end of actionPerformed(), which originally called System.out.println() and then
called the text area's append() method, is now the following:
repaint();

The repaint() method causes two things to happen:
1. The frame's interior is cleared to its background color. (Components contained in the frame are not affected.)

2. A call is made to the frame's paint() method.

Whenever you want a display to be refreshed in response to GUI input, calling repaint() is the best approach. It would be
beyond the scope of this book to explain why. Here is an oversimplified explanation: When you call repaint(), eventually your
paint() method will be called, at an appropriate time, with an appropriate Graphics argument. You never need to call
paint() directly. You are always better off calling repaint() and letting the environment call paint().

The paint() method uses a loop to draw the appropriate number of blue-filled circles, based on the value of nCoins. The
variable x determines the horizontal position of each circle's bounding box. It is increased by 30 each time a circle is drawn. To
see the program in action, run Nim Lab and select Graphical Output....

Now let's make one last improvement to enforce what is perhaps the most important GUI principle of all. If you pay attention to the
other principles, you might create a great GUI. But if you ignore the most important principle, you will certainly create a poor GUI.

Here's the most important principle: A GUI should never let a user perform illegal input.

The latest Nim version violates this rule. To see this, run Nim Lab and select Graphical Output.... Click the Take 3 button three
times. Now there is only one coin left, but the GUI will let you take two or three coins. This should not be allowed. You also should
not be allowed to take three coins if there are two coins left.

There are two ways to make illegal input impossible. At the appropriate time, the buttons can be either removed or disabled.
Removing the buttons may sound like a good idea (after all, you can't push a button that isn't there), but extensive research has
shown that users are uncomfortable with GUIs whose components pop in and out of existence. This approach creates too much
movement in the peripheral field of vision. The commonly accepted technique is to disable components that should not be used.
The components are still visible, but they are unresponsive. A disabled component has a slightly different appearance. It is
somewhat grayer than its enabled counterpart. Figure 16.14 shows two buttons. The first is enabled, the second is disabled.

Figure 16.14: Enabled and disabled buttons

In the previous version of the Nim GUI, the Take buttons are enabled only if there are enough coins left. Figure 16.15 shows the
program when one coin remains.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.15: Nim with disabled buttons

Notice that the Take 2 and Take 3 buttons are disabled. To enable or disable any component, call its setEnabled() method.
The method takes a boolean argument: true to enable, false to disable. Here's the code:
import java.awt.*;
import java.awt.event.*;

public class DisablingNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 DisablingNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");
 setSize(350, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;

 if (nCoins < 3)
 btn3.setEnabled(false);
 if (nCoins < 2)
 btn2.setEnabled(false);
 if (nCoins < 1)
 btn1.setEnabled(false);

 repaint();
 }

 public void paint(Graphics g)
 {
 int x = 25;
 int y = 85;

 g.setColor(Color.blue);
 for (int i=0; i<nCoins; i++)
 {
 g.fillOval(x, y, 20, 20);
 x += 30;
 }
 }

 public static void main(String[] args)
 {
 (new DisablingNim()).setVisible(true);
 }
}

The new code appears at the end of actionPerformed():
 if (nCoins < 3)
 btn3.setEnabled(false);
 if (nCoins < 2)
 btn2.setEnabled(false);
 if (nCoins < 1)
 btn1.setEnabled(false);

Further improvements to the GUI are possible. (See Exercise 5 at the end of this chapter.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But enough about Nim. At this point, you know how to respond to GUI input from buttons. It will be easy to move on to responding
to other component types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events from other Components
In Chapter 15, you learned how to create a variety of component types:

Buttons

Check boxes

Choices

Labels

Menus and menu items

Scrollbars

Text areas

Text fields

Now you will learn how to respond to user input activity on each type of component. You already know how to respond to buttons.
Labels do not send events. In the rest of this chapter, you will learn how to detect events from the other component types.

Check Boxes, Choices, and Item Events

In this section, you'll learn how to respond to activity from check boxes and choices. As a reminder, Figure 16.16 shows a check
box and a choice.

Figure 16.16: Check box and choice

Check boxes and choices don't have action listeners, but they have something similar: item listeners. An object that wants to be
notified when activity happens in a check box or a choice must implement the java.awt.event.ItemListener interface. This
interface defines one method:
public void itemStateChanged(ItemEvent e);

When a check box or choice is activated, an itemStateChanged() call is made to each of its item listeners. You can call
addItemListener(ItemListener x) to add an item listener to a check box's or choice's list. You can call
removeItemListener(ItemListener x) to remove an item listener from a check box's or choice's list.

Within an itemStateChanged() method, you can determine which component was activated by calling the ItemEvent's
getSource() method, just as you would call getSource() on an ActionEvent in an actionPerformed() method. (In fact,
ActionEvent, ItemEvent, and the other event classes you will learn about in this chapter all inherit getSource() from a
superclass that they all extend.)

The following code builds a GUI that contains a check box, a choice, and a text field. When the check box or the choice are
activated, the text field displays an appropriate message.
import java.awt.*;
import java.awt.event.*;

public class CboxAndChoice extends Frame
 implements ItemListener
{
 private Checkbox cbox;
 private Choice ch;
 private TextField tf;

 CboxAndChoice()
 {
 setLayout(new FlowLayout());
 cbox = new Checkbox("Click here");
 cbox.addItemListener(this);
 add(cbox);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ch = new Choice();
 ch.add("Red");
 ch.add("Yellow");
 ch.add("Blue");
 ch.add("Plaid");
 ch.add("Paisley");
 ch.addItemListener(this);
 add(ch);

 tf = new TextField(25);
 add(tf);

 setSize(475, 75);
 }

 public void itemStateChanged(ItemEvent e)
 {
 if (e.getSource() == cbox)
 tf.setText("Checkbox: " + cbox.getState());
 else
 tf.setText("Choice: " + ch.getSelectedIndex());
 }

 public static void main(String[] args)
 {
 (new CboxAndChoice()).setVisible(true);
 }
}

The itemStateChanged() method calls the event's getSource() method to determine which component was activated. The
getState() method of Checkbox returns true if the component is checked, and false if it is not checked. The
getSelectedIndex() method of Choice returns the position (counting from 0) of the component's selected item.

Figure 16.17 shows the GUI.

Figure 16.17: Receiving events from a check box and a choice

By now, you probably get the feel of it. Components have lists of listeners. When the components are activated, method calls are
made to the listeners.

That's about it. You'll probably have an easy time with the next several sections.

Text Fields and Text Areas

Text fields and text areas both send text events to text listeners. The events are sent each time a user types a keystroke. The
TextListener interface defines one method:
public void textValueChanged(TextEvent e);

To add an object to a text field's or text area's list of text listeners, call the component's addTextListener() method, passing in
the listener object.

Text fields (but not text areas) can also send action events to action listeners. This happens when the user presses the Enter key.

We won't work through a detailed code example, because if you understand how to handle action and item events, handling text
events should be obvious. Instead, let's step back for a moment and look at the big picture.

A Java GUI consists of a number of components of various types. Each component may have zero, one, or multiple listeners for
each event type that the component supports. When a component is activated, the Event dispatch thread calls the appropriate
method of each listener.

The Event Lab animated illustration lets you experiment with multiple component, listener, and event types, without writing any
code. Event Lab is an extension of Simple Event Lab. In addition to buttons, you can create check boxes, choices, and text fields.
When you create a listener class, you select which listener interfaces it will implement. (Your choices are ActionListener,
ItemListener, and TextListener. Remember that classes are allowed to implement more than one interface, so listener
classes are allowed to implement more than one listener interface.)

Start the program by typing java events.EventLab. You control the program just as you did Simple Event Lab. Figure 16.18
shows Event Lab with a fairly complicated configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.18: Event Lab

Configure Event Lab with your own complicated setup. Then click the Run button. The simulated components will become real.
Activate your buttons, check boxes, choices, and text fields until you have a good feel for how various component types send
various event types to various listeners in an event-driven GUI program.

Events from Menus

In Chapter 15, you saw the simplest way to populate menus. It looked something like this:
Menu fileMenu = new Menu("File");
fileMenu.add("Open…");
fileMenu.add("Close");
...

The add() calls created individual menu items. That approach was good for showing you what Java menus look like, but there is
a better way if you want to receive event notification from the menu items. The preceding code can be rewritten as follows:
Menu fileMenu = new Menu("File");
MenuItem openMI = new MenuItem("Open…");
fileMenu.add(openMI);
MenuItem closeMI = new MenuItem("Close");
fileMenu.add(closeMI);
...

Like buttons, menu items send action events to action listeners. So to add menuListener to openMI's list of action listeners, you
would call
openMI.addActionListener(menuListener);

There's no need to present a detailed example, because the code is so similar to the code you've already seen that handles
action events from buttons.

Scrollbars and Adjustment Events

Scrollbars send adjustment events to adjustment listeners. Adjustment listeners implement the
java.awt.event.AdjustmentListener interface. Once again, we have a listener interface that defines a single method:
public void adjustmentValueChanged(AdjustmentEvent e);

An object gets added to a scrollbar's listener list via a call to the addAdjustmentListener() method. The following code
receives adjustment notification from a scrollbar, and reports the scrollbar's value to a text field. The code uses the getvalue()
method of the Scrollbar class. The return type is int:
import java.awt.*;
import java.awt.event.*;

public class BarAndTF extends Frame
 implements AdjustmentListener
{
 private Scrollbar bar;
 private TextField tf;

 BarAndTF()
 {
 bar = new Scrollbar(Scrollbar.HORIZONTAL);
 bar.addAdjustmentListener(this);
 add(bar, "North");
 Panel pan = new Panel();
 tf = new TextField(" ");
 pan.add(tf);
 add(pan, "South");

 setSize(300, 100);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void adjustmentValueChanged(AdjustmentEvent e)
 {
 tf.setText("Value = " + bar.getValue());
 }

 public static void main(String[] args)
 {
 (new BarAndTF()).setVisible(true);
 }
}

The GUI is shown in Figure 16.19.

Figure 16.19: Scrollbar and text field

Now you know how to respond to events from all the component types you learned about in Chapter 15. In the next chapter, which
finishes this book, you will work through a detailed final project that draws from everything you have learned so far, from Chapter 1
through the period at the end of this sentence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Write a program that displays a frame. The frame's paint() method should draw something simple. The
application should also maintain a count of the number of times paint() is called. This count should be printed
out every time paint() is called. Execute your application, and use it to help determine whether paint() is
called when:

The application starts up.

The frame is minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is moved.

The frame is partially covered by another frame.

The frame is uncovered.

2. Every Java thread is represented by an instance of the java.lang.Thread class. You can get a reference to
the currently running thread by calling the currentThread() static method of the Thread class. Threads have
names. The class has a method called getName(), which returns the name as a string. So you can print out the
name of the current thread by calling
System.out.println(Thread.currentThread().getName());

Write a simple frame application that makes this call in its main() method and in its paint() method. Verify
that main()and paint() are executed in different threads.

3. Write an application that adds the same action listener to a button twice. For example, if myButton is the button
and myListener is the action listener, your code would contain the following lines:
myButton.addActionListener(myListener);
myButton.addActionListener(myListener);

Your listener's actionPerformed() method should print out a message to tell you that it got called. If you
press the button once, do you expect the message to be printed out once or twice? Run your application to see
if you guessed right.

Of course, in real life there would never be a good reason for doing this. But you might do it by accident. For
example, you might paste the line into your source code twice by accident. So it's good to know in advance what
the symptom will be, so that you can recognize it and fix the problem if it ever comes up.

4. Suppose a class has an actionPerformed() method, as specified by the ActionListener interface, but
the class does not state that it implements the interface. Can an instance of the class be used as a button's
action listener?

5. Run Nim Lab by typing java events.NimLab. Select Disable Buttons... and play the game. This version is the
result of three rounds of improvements made to the original program. What additional improvements can you
suggest? Think about how the game could be modified to make the GUI easier and more natural.

6. The various event classes (ActionEvent, ItemEvent, etc.) all inherit the getSource() method from a
superclasss. Use the API pages to determine the name of that superclass.

7. Write an application with a GUI that contains a choice and a text area. When the choice is activated, a message
should be written to the text area, stating the choice's selected index.

Suggested design: Your frame should contain a panel (at North) that contains the choice. The text area should
be at South. If you need a guideline, the TextAreaNim program in the "Improving the GUI" section has a similar
structure.

8. Write an application with a GUI that contains a text field and a text area. When the user presses the Enter key in
the text field, the text field's contents should be copied into text area, followed by a newline character.

Your event-handling code will need to retrieve the contents of the text field. You do that by calling the text field's
getText() method, which returns a string.

Suggested design: Your frame should contain a panel at North that contains the text field. The text area should
go at Center.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17: Final Project
You made it! With the presentation on event handling in the previous chapter, you have finished your from-the-ground-up
introduction to the Java programming language. You now know a lot about Java, and in this chapter you'll prove it. You will
observe the development of a substantial programming project, and it will all make sense. The project will draw on the information
you learned in every other chapter of this book. It includes a GUI that paints, uses components, and sends out events. Classes
will be extended and interfaces will be implemented. Exceptions will be thrown and caught.

This chapter doesn't just walk you through a finished, polished program. That would be like dissecting an animal in high-school
biology class. Seeing something grow and develop is better than studying something that's dead. So for each piece of the project,
you will see not just the final product, but also the living process that culminates in the finished, polished program.

Description of the Project
We will create a GUI that displays Java source code in an easy-to-read format. The user will be able to choose any .java file. Most
of the code will appear in black letters, but line comments and Java keywords will appear in different colors, to be specified by the
user.

Figure 17.1 shows the application in action. It is displaying one of the source files of the project.

Figure 17.1: Final Project

The Show lines check box draws horizontal lines to make the text more readable. Figure 17.2 is the same code, with lines.

Figure 17.2: Final Project, with lines

The black-and-white figures don't communicate the dramatic effect of multicolored source code.

Now is a good time to run the actual project code, so you can get familiar with what you'll be doing in the rest of this chapter. Type
java fancysrc.FancySrcFrame. You'll see the GUI controls shown in the figures, above a blank display area. To display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java fancysrc.FancySrcFrame. You'll see the GUI controls shown in the figures, above a blank display area. To display
some code, select Open… in the File menu. You will see a file chooser. Use the chooser to select one of the source files on the
CD-ROM, or one of your own Java source files.

Now let's get to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building the Pieces
The overall structure of the project code will be familiar to you. We will create a subclass of java.awt.Frame, called
FancySrcFrame, in package fancysrc. The frame will have a panel at North, containing various components. The
FancySrcFrame class will be the event listener for all events from all components.

We will divide the work into five pieces. We will develop each piece in turn before assembling everything into the final product.
The five pieces are:

The menu

The file-specification code

The color-specification code

The display area

The painting code

Each piece of the project is discussed in its own section.

The File Menu

Over the years, the software industry has created a substantial number of conventions for interacting with GUI-based programs.
Every GUI is different, but they can all be approached in the same way, with the same reasonable expectations. This is
enormously beneficial to the community of software users (that's us), because it reduces the amount of time we have to spend
learning to use a new program.

The automobile industry is in a similar situation. If you know how to drive a car, you pretty much know how to drive every car. If
this were not the case, car rental would be even more stressful than it already is.

One of the standard GUI practices is to install a menu bar in every program's main frame. The leftmost menu is a File menu,
whose last item is Exit. In our case, the File menu will have an Open… item. Here we won't worry about how to actually open a
file. That's covered in the next section, "Specifying a File." For the moment, our concern is to construct a menu bar with a File
menu.

Building and responding to a menu requires techniques that were presented in Chapters 15, "Components," and 16, "Events." The
constructor for our main application class (FancySrcFrame, in package fancysrc) will build the menu.

When you write code that builds menus, you might find it helpful to draw a diagram like the one in Figure 17.3.

Figure 17.3: Menu schematic

A menu schematic might be trivial for the project at hand, but it makes life much easier if you are creating complicated menu bars,
with many menus and submenus. After you write your menu code, you can test all the menus to make sure they match your
schematic.

Chapter 15 presented a list of steps for building a menu structure:
1. Create a menu bar.

2. Create the menus.

3. Attach the menus to the menu bar.

4. Attach the menu bar to the frame.

Here is some code that builds the menu structure:
 1. MenuBar mbar = new MenuBar();
 2. Menu fileMenu = new Menu("File");
 3. openMI = new MenuItem("Open…");
 4. openMI.addActionListener(this);
 5. fileMenu.add(openMI);
 6. exitMI = new MenuItem("Exit");
 7. exitMI.addActionListener(this);
 8. fileMenu.add(exitMI);
 9. mbar.add(fileMenu);
10. setMenuBar(mbar);

Line 1 creates a menu bar. Lines 2-8 create a menu. Line 9 attaches the menu to the menu bar, and line 10 attaches the menu
bar to the frame. Assume the current class implements the java.awt.event.ActionListener interface, so this is a legal
argument to the addActionListener() calls in lines 4 and 7.

The variables mbar and fileMenu are declared within the constructor. (Remember, all the preceding code goes in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The variables mbar and fileMenu are declared within the constructor. (Remember, all the preceding code goes in the
FancySrcFrame constructor.) However, openMI and exitMI will be declared as variables of the FancySrcFrame class. You'll
see why shortly. Meanwhile, can you guess? (Hint: It has something to do with event handling.)

Now that we have a small chunk of code, let's test it. We'll embed it in a test class called MenuTest. This class implements
ActionListener, so that lines 4 and 7 will compile. If the code works, we can later copy it verbatim from the test program into
our final project code.

Here is the source for MenuTest:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class MenuTest extends Frame implements ActionListener
{
 private MenuItem openMI, exitMI;

 MenuTest()
 {
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 openMI = new MenuItem("Open…");
 openMI.addActionListener(this);
 fileMenu.add(openMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);
 setSize(250, 100);
 }

 public void actionPerformed(ActionEvent e)
 {

 }

 public static void main(String[] args)
 {
 (new MenuTest()).setVisible(true);
 }
}

The actionPerformed() method doesn't do anything, because for now we just want to check the structure of the menu. We
are testing look, not feel. If you want to run MenuTest, it's on your CD-ROM. Just type java fancysrc.MenuTest. It looks like
Figure 17.4.

Figure 17.4: Teting the menu's look

The figure matches the menu schematic from Figure 17.3, so apparently the code is good.

Now let's add code to respond to menu activation, so we can test feel as well as look. We just need to put some println() calls
in the actionPerformed() method. Later we'll replace the calls with code that actually opens a file or exits the program.

Here's the new version of actionPerformed():
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 System.out.println("OPEN Menu item");
 else
 // Must be the "Exit" menu item.
 System.out.println("EXIT Menu item");
}

When the test program is run and the two menu items are activated one after another, the output is
OPEN Menu item
EXIT Menu item

The output shows that the menu item action events are being handled correctly.

Implementing the exiting code is trivial. We just insert a call to System.exit():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implementing the exiting code is trivial. We just insert a call to System.exit():
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 System.out.println("OPEN Menu item");
 else
 // Must be the "Exit" menu item.
 System.exit(0);
}

The test code is on your CD-ROM. If you want to run it, type java fancysrc .MenuEventTest. At this point the menu looks
right, and its events are being handled properly, so we can move on to the question of how to open a file.

Specifying a File

Most computer programs modify data stored in files. This accounts for the prominent position of the File menu. Selecting a file for
a program to process is a very common activity. You would expect file selection to be standardized in some way, and this is
indeed the case.

Java provides a class called java.awt.FileDialog, which supports all the functionality needed to help users specify a file. The
class is easy to use. As the name implies, it creates a dialog box. A dialog box is a window that is subordinate to its program's
main frame, used for brief user interaction. When you delete a file or exit a program, and a box pops up to ask you if you're sure,
you are looking at a dialog box.

Many dialog boxes are modal. A modal dialog box consumes all mouse and keyboard input to the program. This implies that you
can't continue using the program until you have dealt with the dialog box and dismissed it. Most "Are you sure?" dialog boxes are
modal. Java's file dialog box is also modal.

The FileDialog class shares a lot of behavior with the Frame class. This is not surprising, since the classes have a common
superclass called Window, as shown in Figure 17.5.

A glance at the API shows that FileDialog class has three constructors:
FileDialog(Frame parent)
FileDialog(Frame parent, String title)
FileDialog(Frame parent, String title,
 int mode)

Figure 17.5: Window, Frame, and FileDialog

The parent argument is the frame over which the dialog box will appear. The title string determines what appears in the
dialog box's title bar. The mode specifies whether the dialog box will be used for opening or saving a file. Opening is the default,
so you don't have to worry about specifying the mode. (But see Exercise 1 at the end of this chapter.)

Figure 17.6 shows a file dialog box, configured for opening:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.6: File dialog box configured for opening

Unlike frames, file dialog boxes are created with non-zero width and height, so you don't have to call setSize() on them.
However, like frames, they are not visible until you call setVisible(true) on them. When you make this call, the dialog box
appears, and the rest of the program's GUI refuses to accept mouse or keyboard input. Moreover, execution of your program
pauses. Eventually, the user deals with and dismisses the dialog box. At this point, the rest of the GUI once more accepts input,
and execution of your program continues from the line immediately following the setVisible(true) call.

The functionality is complicated, but using file dialog boxes is actually very simple. You construct your dialog box and, at the right
moment, call setVisible(true) on it. The next line of code will not execute until a file has been specified (or the user has
selected Cancel). There are two useful calls that you can then make on your dialog box, and both methods return strings:

getFile() The getFile() method returns the name of the file the user chose, or null if the dialog box was canceled.

getDirectory() The getDirectory() method returns the name of the chosen directory.

Whenever you learn about a new Java class, it's a good idea to write a practice program that creates an instance of the class and
uses it in a way similar to the way you will later be using it in your program. That way you can experiment freely, and there is no
danger that you will break your project accidentally by deleting or changing perfectly good code.

Here is a practice program that creates a file dialog box when a button is clicked:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class FileDialogPractice extends Frame implements ActionListener
{

 public FileDialogPractice()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Show me…");
 btn.addActionListener(this);
 add(btn);
 setSize(200, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 FileDialog dia = new FileDialog(this);
 dia.setVisible(true);
 String fileName = dia.getFile();
 if (fileName == null)
 System.out.println("You canceled the dialog.");
 else
 System.out.println("Your chose file " + fileName + "
 in " + dia.getDirectory());
 }

 public static void main(String[] args)
 {
 (new FileDialogPractice()).setVisible(true);
 }
}

Notice the code in actionPerformed():
1. FileDialog dia = new FileDialog(this);
2. dia.setVisible(true);
3. String fileName = dia.getFile();
 …

After line 1 executes, processing does not move on to line 2 until the user has dismissed the dialog box. The getFile()
call on line 3 returns null if the dialog box was canceled. If you want to try the test program, it's on your CD-ROM. To run it,
type java fancysrc.FileDialogPractice.

What should the code do after the file has been specified? We don't know yet, but we will figure it out in good time. At this point,
we have code to capture the user's desired input file. Before we worry about processing and displaying the file, let's turn our
attention to the remaining GUI-related piece of the puzzle.

Specifying Colors

This section will look at the portion of the GUI that supports color selection. First you'll see a perfectly reasonable design:
straightforward, but nothing fancy. Then the design will be improved in stages, ending with code that is elegant and reusable.

Let's start with what we know. We want to users to select from among a small number of colors. The colors must be dark enough
that they can be read easily on a white background. That rules out yellow, pink, and several others. Let's settle on these:

Black

Blue

Green

Red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cyan

Magenta

Cyan and magenta are marginal. For now, we'll include them. We can throw them out later on if they don't look good. If throwing
them out proves to be difficult, that's an indication that our design wasn't very flexible.

Our users will have to select from these six colors… twice. Once for the keyword color, and once for the comment color. Of the
components that you learned about in Chapter 15, there are two that support making an exclusive selection from a small set of
options: choices and radio buttons. We can rule out radio buttons because we would need 12 of them, compared to only two
choices. If we used radio buttons, they would dominate the GUI, forcing the control area to be much larger than it needs to be, as
shown in Figure 17.7.

Figure 17.7: Too many radio buttons

For this situation, choices are much cleaner. Let's assume that our main application class will be called FancySrcFrame and will
extend Frame. The class code will include the following declarations:
private Choice keywordChoice, commentChoice;

The choice components should be built in the FancySrcFrame constructor. One way to build them would be like this:
keywordChoice = new Choice();
keywordChoice.add("BLACK");
keywordChoice.add("BLUE");
keywordChoice.add("GREEN");
keywordChoice.add("RED");
keywordChoice.add("CYAN");
keywordChoice.add("MAGENTA");
commentChoice = new Choice();
commentChoice.add("BLUE");
commentChoice.add("BLACK");
commentChoice.add("GREEN");
commentChoice.add("RED");
commentChoice.add("CYAN");
commentChoice.add("MAGENTA");

This code can be improved, because every call appears twice. Whenever code is duplicated, consider the alternative of creating a
method. The following code is much easier to read and more reliable:
keywordChoice = buildColorChoice();
commentChoice = buildColorChoice();
…
private Choice buildColorChoice()
{
 Choice c = new Choice();
 c.add("BLACK");
 c.add("BLUE");
 c.add("GREEN");
 c.add("RED");
 c.add("CYAN");
 c.add("MAGENTA");
 return c;
}

The new version is 13 lines long, compared to 14 in the original. That's not much of a difference, but later you might want to add a
third color choice, and perhaps a fourth. In the old version, each additional color choice required seven lines, compared to only
one line in the new version. Moreover, all choice components created by the buildColorChoice() method will be identical.
With the original approach, each time you type the seven repeated lines, you introduce the possibility of a transcription error. Did
you notice that in the first block of code, the second choice reverses the order of BLACK and BLUE?

An even cleaner approach uses an array of color names. The following would appear along with the other variables of the
FancySrcFrame class:
private String[] colorNames =
{
 "BLACK", "BLUE", "GREEN", "RED", "CYAN", "MAGENTA"
};

Now the buildColorChoice() method is just the following:
private Choice buildColorChoice()
{
 Choice c = new Choice();
 for (int i=0; i<colorNames.length; i++)
 c.add(colorNames[i]);
 return c;
}

If you want to add or remove colors from the set of options, you just edit the contents of colorNames.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to add or remove colors from the set of options, you just edit the contents of colorNames.

The choices will need an item listener. The logical candidate is the FancySrcFrame class. The itemStateChanged() method
should cause the display to be repainted, using the new keyword or comment color. Somewhere (we don't need to decide where
right now), some code will have to figure out which colors to use, based on the settings of the two choices. One way to do this
would be to have a method that returns an instance of Color:
private Color getColorFromChoice(Choice c)
{
 int index = c.getSelectedIndex();
 if (index == 0)
 return Color.BLACK;
 else if (index == 1)
 return Color.BLUE;
 else if (index == 2)
 return Color.GREEN;
 else if (index == 3)
 return Color.RED;
 else if (index == 4)
 return Color.CYAN;
 else
 return Color.MAGENTA;
}

That certainly works, but there is a much cleaner way. First, we'll create an array of colors. For maximum readability, it should
appear next to the colorNames array:
private Color[] colors =
{
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
};

To determine the color indicated by a choice component, use the choice's selected index as an index into the colors array:
private Color getColorFromChoice(Choice c)
{
 int index = c.getSelectedIndex();
 return colors[index];
}

We have now worked out one piece of our design. We could go on to work out all our other design decisions, but before we blaze
ahead, let's test what we have so far. If it doesn't work, we need to try again. If it works, we aren't committed to it. We reserve the
right to improve on our color-specifying design later on.

Since color specification is the first code we will develop, our test will be simple. We don't yet know how we will select the file to be
read, or paint lines on the screen, or paint source code on the screen in appropriate colors. So we'll create a program that just
implements the color-specifying part of the GUI. To verify that the right colors are being returned from getColorFromChoice(),
we'll just draw two squares in the frame. The square on the left will be the keyword color. The square on the right will be the
comment color. Figure 17.8 shows the GUI.

Figure 17.8: Testing color selection

Here's the code:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class ColorTest extends Frame implements ItemListener
{
 private String[] colorNames =
 {
 "BLACK", "BLUE", "GREEN",
 "RED", "CYAN", "MAGENTA"
 };

 private Color[] colors =
 {
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Choice keywordChoice, commentChoice;

 public ColorTest()
 {
 setLayout(new FlowLayout());
 add(new Label("Keyword Color:"));
 keywordChoice = buildColorChoice();
 keywordChoice.addItemListener(this);
 add(keywordChoice);
 add(new Label("Comment Color:"));
 commentChoice = buildColorChoice();
 commentChoice.addItemListener(this);
 add(commentChoice);
 setSize(500, 300);
 }

 private Choice buildColorChoice()
 {
 Choice c = new Choice();
 for (int i=0; i<colorNames.length; i++)
 c.add(colorNames[i]);
 return c;
 }

 private Color getColorFromChoice(Choice c)
 {
 int index = c.getSelectedIndex();
 return colors[index];
 }

 public void itemStateChanged(ItemEvent e)
 {
 repaint();
 }

 public void paint(Graphics g)
 {
 Color keywordColor = getColorFromChoice(keywordChoice);
 g.setColor(keywordColor);
 g.fillRect(100, 100, 100, 100);
 Color commentColor = getColorFromChoice(commentChoice);
 g.setColor(commentColor);
 g.fillRect(300, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 new ColorTest().setVisible(true);
 }
}

The class code begins with the arrays colorNames and colors. Notice how each name is aligned vertically with its
corresponding color. It's a small touch that creates a visual relationship between the functionally related items.

The itemstateChanged() method just calls repaint(). Remember from Chapter 16 that when you want to paint your display
in reaction to user input, you shouldn't directly call paint(). Rather, you should call repaint(), which clears the display and
then calls paint(). Our paint() method draws the two squares.

It works. If you want to try it, the code is on your CD-ROM. Just type java fancysrc .ColorTest.

We can't rest on our laurels yet. The code works, ColorTest proves it, but it isn't very object-oriented. The software that supports
a single function (color selection) is spread throughout the class. The great thing about object-oriented programming is that it
allows you to encapsulate related functionality. Let's see how to encapsulate color selection.

Think about the Choice class. Its getSelectedIndex() method returns an int. A lot of the code in ColorTest is devoted to
converting that int to the corresponding color. Life would be a lot easier if Choice had a method called getSelectedColor().
Of course, no such method exists, because Choice is a general-purpose class intended for specifying colors, fonts, font sizes,
names, countries, languages, or anything else that any programmer might think of. But we can subclass Choice to create a
special-purpose class that does exactly what we want.

We will create a subclass called ColorChoice. The constructor will populate the component with the appropriate strings. The
colorNames and colors arrays will go inside the new class, since no other code will need them. We will provide a
getSelectedColor() method. The new class looks like this:
package fancysrc;

import java.awt.*;

public class ColorChoice extends Choice
{
 private static String[] colorNames =
 {
 "BLACK", "BLUE", "GREEN",
 "RED", "CYAN", "MAGENTA"
 };

 private static Color[] colors =
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
 };

 public ColorChoice()
 {
 for (int i=0; i<colorNames.length; i++)
 add(colorNames[i]);
 }

 public Color getSelectedColor()
 {
 return colors[getSelectedIndex()];
 }
}

Notice that the two arrays have been declared as static. Remember that if a variable is static, there is only one copy of it,
shared by all instances of the class. We know that there will be two instances of ColorChoice. There is no need to create two
identical versions of the arrays, which is what would happen if they were not static. Each instance would have its own version. If
the GUI changed later so that there were 25 color choices, there would be 25 identical versions of each array. Duplication of data
is always something to be avoided. Here we avoid it by making the arrays static.

Testing the code is much easier. The complicated stuff is now in the ColorChoice class. The test code becomes the following:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class ColorChoiceTest extends Frame implements ItemListener
{
 private ColorChoice keywordChoice, commentChoice;

 public ColorChoiceTest()
 {
 setLayout(new FlowLayout());
 add(new Label("Keyword Color:"));
 keywordChoice = new ColorChoice();
 keywordChoice.addItemListener(this);
 add(keywordChoice);
 add(new Label("Comment Color:"));
 commentChoice = new ColorChoice();
 commentChoice.addItemListener(this);
 add(commentChoice);
 setSize(500, 300);
 }

 public void itemStateChanged(ItemEvent e)
 {
 repaint();
 }

 public void paint(Graphics g)
 {
 Color keywordColor = keywordChoice.getSelectedColor();
 g.setColor(keywordColor);
 g.fillRect(100, 100, 100, 100);
 Color commentColor = commentChoice.getSelectedColor();
 g.setColor(commentColor);
 g.fillRect(300, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 new ColorChoiceTest().setVisible(true);
 }
}

The arrays are gone. The variables keywordChoice and commentChoice are now declared as type ColorChoice. We can
call addItemListener() on them, just as if they were instances of Choice, because they inherit all the event-processing
functionality of Choice. If you want to run the code, type java fancysrc.ColorChoiceTest. The GUI looks just like the
earlier test GUI, so there's no need for a screenshot.

Now we can rest on our laurels! The source for class ColorChoice is less than 30 lines long, and look at what it can do:

Look good.

Behave exactly like a standard Choice.

Be manipulated by a layout manager.

Send out item events when activated.

Report the selected color.

That's not a bad resume for such a small class. But we can't rest on our laurels all day. It's time to develop the rest of the code.

The Main Display Area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most of the GUI work is now complete. We still have to create the check box that requests lines, but we'll get to that a bit later.
Now we're going to step back and look at the big picture.

Our display will be involved a lot of painting. The painting examples you saw in Chapter 14 all involved painting a frame. You saw
subclasses of java.awt.Frame with specialized versions of the paint() method. Later you saw that when user input makes it
necessary to revise the display, you should call your frame's repaint() method, which causes the screen to be cleared and the
paint() method to be called.

As it happens, the repaint() mechanism works for certain other component types in addition to frames. There is a class called
java.awt.Canvas that has no inherent appearance at all. If you construct a canvas and install it in a GUI, you won't see
anything worth mentioning. That's okay, because you never actually put a canvas in a GUI. You create a subclass of Canvas, with
a paint() method that draws whatever you want, and it is the subclass that you use in your GUI.

We will use a Canvas subclass, called FancySrcCanvas, for our main display area. The frame that contains everything will use
its default Border layout manager. The control components (the Show lines check box and the two color choices) will go in a panel
at North, and the canvas will be at Center, as shown in Figure 17.9.

Figure 17.9: GUI layout

The FancySrcCanvas will need to redisplay itself whenever the user changes the file, the Show lines preference, or the keyword
or comment color. The GUI code will detect all these changes. The FancySrcCanvas class needs a method that the GUI can call
when it's time to redisplay. Let's call this method reconfigure(). It will need four arguments:

A string representing the name of the new source file.

A boolean that controls whether or not lines should be displayed.

Colors for keywords.

Colors for comments.

The method should not paint directly to the screen, because painting is always relegated to the paint() method. Our
reconfigure() method will simply record its four arguments and then call repaint(). This will trigger a behind-the-scenes
chain of events that will clear the canvas and call paint(). When paint() runs, it will know what to do (what file to read, what
colors to use, whether it should underline), because it will read the values stored by reconfigure().

We can now write the skeleton of FancySrcCanvas:
public class FancySrcCanvas extends Canvas
{
 private String fileName;
 private boolean showLines;
 private Color keywordColor, commentColor;

 FancySrcCanvas()
 {
 // To do
 }

 void reconfigure(String file, boolean line,
 Color kColor, Color cColor)
 {
 fileName = file;
 showLines = line;
 keywordColor = kColor;
 commentColor = cColor;
 repaint();
 }

 public void paint(Graphics g)
 {
 // To do
 }
}

The body of the constructor and the paint() method have been left for later. The constructor will be trivial, but paint(), as you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The body of the constructor and the paint() method have been left for later. The constructor will be trivial, but paint(), as you
might expect, will be substantial.

Once again, as you saw with the ColorChoice class, subclassing allows us to create clean, encapsulated code. If we did not use
a canvas subclass, the painting would happen in the paint() method of the main frame subclass. This painting code would be
jumbled in along with all the other code. With subclassing, we know that all the painting code, and nothing except the painting
code, is to be found in FancySrcCanvas.

Painting Colored Code

Now we have a workable concept for the FancySrcCanvas class, so we can fill in the details. The boring details go in the
constructor. The interesting ones go in the paint() method.

Let's dispense with the boring details first. We need to choose a font and make some decisions about how to lay out the lines of
text. The values we'll use here are somewhat arbitrary. We need to decide on a y coordinate for the topmost line of code.
(Remember, when you paint text, you specify the text's baseline, not the top of the text). We need to decide how much vertical
space to leave between consecutive lines of code, and we need to choose an x coordinate for the text. Figure 17.10 shows how
text will be positioned.

Figure 17.10: Positioning text

We'll use a plain monospaced 16-point font. (Remember, monospaced fonts are always best for displaying source code.) The
topmost baseline will be at 20. Every line of text will be 18 pixels below the previous line. The x-coordinate of all text will be 9.
These values were arrived at after a fair amount of boring experimentation. The result is the following constructor for
FancySrcCanvas:
FancySrcCanvas()
{
 font = new Font("Monospaced", Font.PLAIN, 16);
 topBaseline = 20;
 leftMargin = 9;
 verticalSpace = 18;
}

With the font we have chosen, each character is 10 pixels wide. This number will be extremely useful later on. For now, can you
guess why it's important?

There is a riddle that brings a knowing gleam to the eyes of experienced programmers, even though it isn't very funny. How do
you fit five elephants into a Volkswagen Beetle? Answer: two in the front, three in the back. It isn't a good riddle, but it's a good
example of top-down development, where you begin with an overall design idea, breaking each piece down into successively
more refined designs until there is nothing left to do but implement your solution. Of course, if the design doesn't work, it's not the
fault of the elephants.

We will take a top-down approach to developing the paint() method of FancySrcCanvas, starting with what we know. We
know that the horizontal lines must be painted if showLines is true. We also know that the text must be painted if a source file
has been specified. That is, if fileName, which is initialized to null, is no longer null. That's all we know, but it's enough to
start. Here's our paint() method:
public void paint(Graphics g)
{
 if (showLines)
 paintLines(g);
 if (fileName != null)
 paintText(g);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Now we have to create the paintLines() and paintText() methods. paintLines() seems easy. Starting from the topmost
baseline, horizontal lines must be drawn across the entire width of the canvas. Lines must be drawn verticalSpace pixels
apart, down to the bottom of the canvas. It would all be simple, if only we knew how wide and tall the canvas is.

Fortunately, Canvas has a getSize() method that returns an instance of java.awt.Dimension. This very simple class has
variables width and height. So the code can use getSize().width and getSize().height to determine the size of the
canvas.

Here is the paintLines() code:
private void paintLines(Graphics g)
{
 g.setColor(Color.lightGray);
 int height = getSize().height;
 int width = getSize().width;
 for (int y=topBaseline; y<height; y+=verticalSpace)
 g.drawLine(0, y, width, y);
}

Now it's time to write paintText(). We don't yet know how we're going to draw text in three colors, but we don't have to know.
This is top-down development. Let's stay with what we do know. There's a Java source file whose name is found in the variable
fileName. We know that paintText() will need to read each line in turn from that file and paint the line. So here is the method,
with the issue of painting multicolored text deferred for later consideration:
 1. private void paintText(Graphics g)
 2. {
 3. g.setFont(font);
 4.
 5. try
 6. {
 7. // Create the readers.
 8. FileReader fr = new FileReader(fileName);
 9. LineNumberReader lnr = new LineNumberReader(fr);
10.
11. // Read & display.
12. String s = "xx"; // Anything but null
13. int y = topBaseline;
14. while (s != null)
15. {
16. s = lnr.readLine();
17. if (s == null)
18. break;
19. paintOneSourceLine(g, s, y);
20. y += verticalSpace;
21. }
22.
23. // Close the readers.
24. lnr.close();
25. fr.close();
26. }
27.
28. catch (IOException x)
29. {
30. System.out.println("Trouble!" + x.getMessage());
31. }
32. }

The method uses a file reader chained to a line number reader. You were introduced to readers in Chapter 13, "File Input and
Output." The while loop in lines 14-21 reads lines of text from the file until the readLine() call on line 16 returns null,
indicating that the end of the file has been reached. (On line 12, s has to be initialized to any non-null string, so that the loop
won't terminate the first time through.)

The variable y determines the baseline of the next line of text to be painted. On line 13, y is initialized to topBaseline. Every
pass through the loop, it is incremented by verticalSpace (line 20).

Text is painted on line 19, where a call is made to paintOneSourceLine(). We'll write this method shortly. Its arguments are
the Graphics object, the string to be painted (s), and the y-coordinate of the text (y).

We have deferred thinking about how to paint multicolored source text until we could create a good structure for the paint()
method of FancySrcCanvas. That structure is now in place, so it's time to decide how to paint the code. Here's the skeleton of
paintOneSourceLine():
private void paintOneSourceLine(Graphics g,
 String srcLine,
 int y)
 {
 …
 }

Here's the strategy. First, the method will paint the entire text line in black, whether or not it contains any keywords or comments.
Then the line will be inspected to see if contains any keywords or comments. If so, part of the text will be painted again, in the
appropriate color. As you will see, there are methods in the String class that make this easy.

Let's start by painting the entire line in black. We don't have to call setFont() because that call was made already, in
paintText():
// First paint entire line in black.
g.setColor(Color.black);
g.drawString(srcLine, leftMargin, y);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

g.drawString(srcLine, leftMargin, y);

That was easy. Now to detect and render comments. Comments begin with a double slash (//) and continue through the end of
the line. So the code needs to answer the following questions:

Does the string contain a double slash?

If so, where is the double slash?

If the answer to the first question is "no," there is no comment to paint.

Fortunately, class String has a method called indexOf(). Its argument is another string. If the argument string appears
anywhere in the executing object string, the method returns the position of the argument string within the executing object
string. For example, if s1 is whether and s2 is the, s1.indexOf(s2) is 3. If the argument string does not appear in the
executing object string, indexOf() returns -1. For example, if s1 is whether and s2 is heather, s1.indexOf(s2) is -1.

The comment-painting code uses another method of the String class: substring(). You were introduced to this method
in Chapter 12, "The Core Java Packages and Classes." When called with a single int argument, it returns the portion of the
string beginning at the argument position. For example, if s1 is whether, s1.substring(2) is ether.

Here is the code that paints comments:
1. // Paint comment (if any).
2. int commentIndex = srcLine.indexOf("//");
3. if (commentIndex >= 0)
4. {
5. g.setColor(commentColor);
6. String comment = srcLine.substring(commentIndex);
7. int x = charIndexToX(commentIndex);
8. g.drawString(comment, x, y);
9. }

To illustrate how this code works, consider what happens when srcLine is
height += 25; // Increment height

The comment begins at character position 14, so commentIndex is 14. On line 6, comment is //increment height.
This is the string that is overpainted in the comment color, at line 8.

Line 7 makes a call to charIndexToX(), which returns the x-coordinate where the comment will be painted. This value
must be calculated exactly, so that the new text will exactly overwrite the black text. This method is

private int charIndexToX(int charIndex)
{
 return leftMargin + 10*charIndex;
}

Earlier in this section, you read that in a 16-point monospaced font, each char is 10 pixels wide. This implies that, for
example, the 18th character in any line is 180 pixels to the right of the 0th character. And the 0th character is always painted
at leftMargin. So the x-coordinate of the nth character is leftMargin + 10*n. This is the formula used by
charIndexToX().

So far our paintOneSourceLine() code is
private void paintOneSourceLine(Graphics g,
 String srcLine,
 int y)
{
 // First paint entire line in black.
 g.setColor(Color.black);
 g.drawString(srcLine, leftMargin, y);

 // Paint comment (if any).
 int commentIndex = srcLine.indexOf("//");
 if (commentIndex >= 0)
 {
 g.setColor(commentColor);
 String comment = srcLine.substring(commentIndex);
 int x = charIndexToX(commentIndex);
 g.drawString(comment, x, y);
 }

 …

We are ready to deal with keywords, but we have to be careful. If we just search for keywords and overwrite them in the right
color, we could get confounded by a line like this:
x = 16; // try to while away the time

The code contains no Java keywords, but the comment does. When the line is being searched for keywords, the search should
not include the comment. This will not guarantee that the code will never erroneously color non-keyword text, but it guards against
one common situation. (Making the keyword search 100% foolproof would be a daunting task. It would overwhelm the code and
would seriously reduce the learning value of the project. Not searching comments will be enough for our purposes. Exercise 5 at
the end of this chapter invites you to think more about the problem.)

If the software is going to search for keywords, it needs to know which strings are keywords. The FancySrcCanvas class
needs an array of strings that are Java keywords. Here it is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private String[] keywords =
{
 "abstract", "boolean", "break", "byte", "case", "catch",
 "char", "class", "continue", "default", "double", "do",
 "else", "extends", "false", "final", "float", "for",
 "if", "implements", "import", "instanceof", "int",
 "interface", "long", "new", "null", "package", "private",
 "protected", "public", "return", "short", "static",
 "super", "switch", "this", "throws", "throw", "true",
 "try", "void", "while"
};

Actually, the list is incomplete. It only includes Java keywords that were introduced in this book. There are a handful of
others. Strictly speaking, null, true, and false are not keywords, but something similar.

Here is the skeleton of the remainder of the paintOneSourceLine() code:
// Search every position in string, through comment,
// for any keyword.
g.setColor(keywordColor);
int lastCharPosition = srcLine.length()-1;
if (commentIndex >= 0)
 lastCharPosition = commentIndex - 1;
for (int index=0; index<=lastCharPosition; index++)
{
 …
}

The for loop will search every position in the line of code, through lastCharPosition, to see if it begins with any entry in
the keywords array. If the line does not contain a double-slash comment, lastCharPosition is set to the last character
position in the line. If a double- slash comment is present, lastCharPosition is set to the last character position before
the comment. For example, suppose the source line is

x = new Line();// Construct a line

The for loop will check each of the following substrings:
x = new Line();
 = new Line();
= new Line();
 new Line();
new Line();
ew Line();
w Line();
 Line();
Line();
ine();
ne();
e();
();
);
;

Each of the substrings will be compared against each entry in the keywords array. The code will use two methods of
String that were presented in Chapter 12, substring() and startsWith(). The substring() method takes an int
argument. It returns the portion of t he original string beginning at the specified index. For example, if s1 is Meryl Streep,
s1 .substring(9) is eep. The startsWith() method takes a string argument. It returns true if the original string
starts with the argument string. For example, if s1 is Meryl Streep and s2 is Me, s1.startsWith(s2) is true.

Now the body of the for loop can be filled in:
 1. for (int index=0; index<=lastCharPosition; index++)
 2. {
 3. // Search at this position for every keyword.
 4. String sub = srcLine.substring(index);
 5. for (int i=0; i<keywords.length; i++)
 6. {
 7. if (sub.startsWith(keywords[i]))
 8. {
 9. int x = charIndexToX(index);
10. g.drawString(keywords[i], x, y);
11. break; // Can't be any more keywords here
12. }
13. }
14. }

Recall that the Graphics object has already had its color set to the keyword color. Line 9 makes use of the
charIndexToX() method, which was written for the comment-painting code, to compute where to overdraw the keyword
string.

That's all for the FancySrcCanvas class. Here is the whole class listing, all in one place:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's all for the FancySrcCanvas class. Here is the whole class listing, all in one place:
package fancysrc;

import java.io.*;
import java.awt.*;

class FancySrcCanvas extends Canvas
{
 private String[] keywords =
 {
 "abstract", "boolean", "break", "byte", "case", "catch",
 "char", "class", "continue", "default", "do", "double",
 "else", "extends", "false", "final", "float", "for",
 "if", "implements", "import", "instanceof", "int",
 "interface", "long", "new", "null", "package", "private",
 "protected", "public", "return", "short", "static",
 "super", "switch", "this", "throws", "throw", "true",
 "try", "void", "while"
 };

 private Font font;
 private int topBaseline;
 private int leftMargin;
 private int verticalSpace;
 private String fileName;
 private boolean showLines;
 private Color keywordColor, commentColor;

 FancySrcCanvas()
 {
 font = new Font("Monospaced", Font.PLAIN, 16);
 topBaseline = 20;
 leftMargin = 9;
 verticalSpace = 18;
 }

 void reconfigure(String file, boolean line,
 Color kColor, Color cColor)
 {
 fileName = file;
 showLines = line;
 keywordColor = kColor;
 commentColor = cColor;
 repaint();
 }

 public void paint(Graphics g)
 {
 if (fileName == null)
 return;

 if (showLines)
 paintLines(g);

 paintText(g);
 }

 private void paintLines(Graphics g)
 {
 g.setColor(Color.lightGray);
 int height = getSize().height;
 int width = getSize().width;
 for (int y=topBaseline; y<height; y+=verticalSpace)
 g.drawLine(0, y, width, y);
 }

 private void paintText(Graphics g)
 {
 g.setFont(font);

 try
 {
 // Create the readers.
 FileReader fr = new FileReader(fileName);
 LineNumberReader lnr = new LineNumberReader(fr);

 // Read & display.
 String s = ""; // Anything but null
 int y = topBaseline;
 while (s != null)
 {
 s = lnr.readLine();
 if (s == null)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (s == null)
 break;
 paintOneSourceLine(g, s, y);
 y += verticalSpace;
 }

 // Close the readers.
 lnr.close();
 fr.close();
 }

 catch (IOException x)
 {
 System.out.println("Trouble! " + x.getMessage());
 }
 }

 private void paintOneSourceLine(Graphics g,
 String srcLine, int y)
 {
 // First paint entire line in black.
 g.setColor(Color.black);
 g.drawString(srcLine, leftMargin, y);

 // Paint comment (if any).
 int commentIndex = srcLine.indexOf("//");
 if (commentIndex >= 0)
 {
 g.setColor(commentColor);
 String comment = srcLine.substring(commentIndex);
 int x = charIndexToX(commentIndex);
 g.drawString(comment, x, y);
 }

 // Search every position in string, through comment,
 // for any keyword.
 g.setColor(keywordColor);
 int lastCharPosition = srcLine.length();
 if (commentIndex >= 0)
 lastCharPosition = commentIndex - 1;
 for (int index=0; index<=lastCharPosition; index++)
 {
 // Search at this position for every keyword.
 String sub = srcLine.substring(index);
 for (int i=0; i<keywords.length; i++)
 {
 if (sub.startsWith(keywords[i]))
 {
 int x = charIndexToX(index);
 g.drawString(keywords[i], x, y);
 break; // Can't be any more keywords here
 }
 }
 }
 }

 private int charIndexToX(int charIndex)
 {
 return leftMargin + 10*charIndex;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Putting It All Together
The previous section presented the entire listing for FancySrcCanvas, which is the longest of the project's three source files. You
already saw ColorChoice in the "Specifying Colors" Section. That leaves only FancySrcFrame, which follows. You have seen
its important pieces, but they were in pieces. Here it is, all in one place:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

public class FancySrcFrame extends Frame implements
 ActionListener, ItemListener
{
 private MenuItem openMI, exitMI;
 private String fileName;
 private Checkbox showLinesBox;
 private ColorChoice keywordChoice, commentChoice;
 private FancySrcCanvas srcCanvas;
 private FileDialog dialog;

 FancySrcFrame()
 {
 // Build menu.
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 openMI = new MenuItem("Open…");
 openMI.addActionListener(this);
 fileMenu.add(openMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);

 // Build control panel.
 Panel panel = new Panel(); // Uses flow layout
 showLinesBox = new Checkbox("Show lines");
 showLinesBox.addItemListener(this);
 panel.add(showLinesBox);
 keywordChoice = new ColorChoice();
 keywordChoice.addItemListener(this);
 keywordChoice.select(1);
 panel.add(new Label("Keyword color"));
 panel.add(keywordChoice);
 commentChoice = new ColorChoice();
 commentChoice.addItemListener(this);
 commentChoice.select(2);
 panel.add(new Label("Comment color"));
 panel.add(commentChoice);
 add(panel, BorderLayout.NORTH);

 // Build text display panel.
 srcCanvas = new FancySrcCanvas();
 add(srcCanvas, BorderLayout.CENTER);

 // Set to a reasonable size.
 setSize(720, 550);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);
 dialog.setVisible(true); // Modal
 if (dialog.getFile() == null)
 return; // Canceled
 fileName = dialog.getDirectory() + dialog.getFile();
 boolean underline = showLinesBox.getState();
 Color keywordColor =
 keywordChoice.getSelectedColor();
 Color commentColor =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Color commentColor =
 commentChoice.getSelectedColor();
 srcCanvas.reconfigure(fileName, underline,
 keywordColor, commentColor);
 }

 else // Must be "Exit" menu item
 System.exit(0);
 }

 // Called if user activity in checkbox or
 // either choice.
 public void itemStateChanged(ItemEvent e)
 {
 boolean underline = showLinesBox.getState();
 Color keywordColor = keywordChoice.getSelectedColor();
 Color commentColor = commentChoice.getSelectedColor();
 srcCanvas.reconfigure(fileName, underline,
 keywordColor, commentColor);
 }

 public static void main(String[] args)
 {
 (new FancySrcFrame()).setVisible(true);
 }
}

The only part of this code that has not been explained already is the itemStateChanged() method. This is called when the user
checks the Show lines check box or either color choice. There is no need to call getSource() and figure out which component
caused the method call, because the response is the same in any case: A call is made to the reconfigure() method of the
FancySrcCanvas.

Note The complete source to this project is on your CD-ROM, in the FinalProjectSource directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Goodbye! Don't Forget to Write!
Please take a moment to appreciate what happened in this chapter. You observed the development of a multisource application
involving several hundred lines of code:

The program uses awt components for input and paints graphics for its output.

Each of the three source modules defines a subclass.

One of the classes implements not just one interface, but two.

There are loops and conditional statements, and an array.

There are calls to methods that throw exceptions.

And it all made sense. You saw how it fit together. You deserve sincere congratulations for the work you had to do in Chapters 1
through 16. Without that foundation, this chapter would make no sense at all. You are well on your way toward mastery of the
Java language.

This book is by no means a complete introduction. There is a lot more to be said about the language, the core classes, and
programming techniques. With your strong foundation, you're now qualified to learn it all.

Were the animated illustrations beneficial? As far as I know, and as far as anybody at Sybex knows, this is the first computer book
to use them. If you have any suggestions for how they can be improved, or ideas for new ones, please e-mail them to
groundupjava@sgsware.com.

Are you interested in learning more about Java? Would you like to see another volume, picking up where this one leaves off, also
based on animated illustrations? Please write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Write a program that creates a frame with a File menu. The menu should have two items, Save… and Exit.
When Save… is selected, the code should display a file dialog box, configured for saving a file. When the user
has specified a file via the dialog box, your code should output the name of the file. All the information you need
is on the API page for java.awt.FileDialog.

2. The FileDialog class has a setDirectory() method that controls which directory the dialog box will
display. Look up the method description in the API to become familiar with how it works. Modify the final project
code so that when the file dialog box appears, it displays one of the directories on your computer where you
have stored some of your own Java source code. This will make it easier to display your own work.

3. Write an application that displays a canvas subclass in a frame, at Center. The frame does not contain any other
components.

Use the following code as the paint() method for the canvas subclass:
1. public void paint(Graphics G)
2. {
3. g.setFont(new Font("Serif", Font.PLAIN, 24));
4. g.setColor(Color.blue);
5. g.drawString("Look at this!", 0, 0);
6. }

Run the program. Do you see what you expected to see? How do you explain the results?

Now change line 5 to this:
g.drawString("A bluejay in a quagmire", 0, 0);

Now do you see what you expected to see? Again, how do you explain the results?

4. The FancySrcCanvas class has an array of Java keywords. In that array, throws comes before throw.
Otherwise, the list is alphabetical. Why does throws comes before throw?

5. There are several situations in which the project code would improperly draw text in the keyword color. How
many of these situations can you name?

6. How would you modify the project code so that null, true, and false are not rendered in the keyword color?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A: Downloading and Installing Java
This is the most important part of this book. Java is not a spectator sport. The best way to learn and enjoy it is to use it. Every
chapter of this book except Chapter 1 has programming assignments. You can't do them if your computer doesn't have Java.
Equally important, the animated illustrations are all Java programs, and you can't run them without Java. So take the time right
now to download and install it. You will be richly rewarded for your effort. Java is an educational tool that will keep you fascinated
for the rest of your life.

Overview of the Process
We'll start these instructions with a brief overview of what is involved in downloading and installing. Then you should follow
whichever one of the brand-specific sections corresponds to your own computer.

You're going to go to a Javasoft Web page and download two very large files (tens of megabytes). If you have fast Internet
access, congratulations. If you don't, each download could take several hours. If that's the case, consider starting one download at
the end of the day. The file will be there for you in the morning. That evening, do the same with the second file.

The first file is Java itself. It is an archive containing the Java compiler, the Java Virtual Machine, and various other helpful
programs. (If you don't know what a compiler or Java Virtual Machine are, they're discussed in Chapter 2.) The official name for
this download is the SDK, or Software Developer's Kit. The second file contains the API pages, a huge collection of HTML pages
that describe the core Java packages and classes. You won't need the API pages until Chapter 12, but you might as well
download them as soon as possible.

Before you run any Java program (including the compiler, which is itself a Java program), you have to add the location of Java's
executables to your PATH environment variable. You may also need to set the CLASSPATH environment variable. There are many
ways to set these values. The approach presented here involves creating a script to be run manually when you are ready to view
the animated illustrations or play with Java. Avoid modifying boot-time or login scripts, because a small typing error can get you
into a lot of trouble. Also, manual scripts are easier to undo.

The following section is about installing Java in Windows. If you use a Macintosh, please skip to the "Macintosh" section later in
this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows
This section will walk you through downloading and installing Java on Windows-based computers.

You download Java for Windows from http://java.sun.com/j2se/1.4/download.html. This page contains a list of
platforms for which the current version of Java is available. For most of these platforms, you can download a JRE (Java Runtime
Environment) or an SDK (Software Developer's Kit). You want the SDK, not the JRE. At or near the top of the list, you will find
Windows (U.S. English only) and Windows (all languages, including English). Click on the link for Windows (all languages,
including English).

This opens a page for specifying optional personal information. Then you move on to a license agreement page. If you do not
accept the license, you will not be allowed to proceed. The next page allows you to download the file you want. The file has a
complicated name, something like j2sdk-1_4_1_02-windows-i586.exe.

Click on the link to start the download. If your browser asks you to choose between running the program from its current location
or saving it to disk, save it to disk. You can save it anywhere you like, and you can delete it after you run it. You might as well save
it in the \ directory of your C disk.

Execute the file by clicking on its icon in Windows Explorer. The installation wizard begins by asking you to accept the license
policy (again). Then you're asked where you want the Java files to be placed. Put them in the \ directory of your C disk. We'll
assume that you use the default. The default name is something complicated, like j2sdk1.4.1_02.

Next, you're asked to choose which parts of installation you want. You must select the program files. You don't need any of the
other parts, but if you have the disk space, you might be interested in the demos.

Then the installation wizard finishes its work. When it's done, your disk contains a new structure that looks something like Figure
A.1.

Figure A.1: Windows SDK file layout

The figure shows the three most important files in the bin subdirectory: the Java Virtual Machine (java.exe), the Java compiler
(javac.exe), and the jar archive tool (jar.exe). Throughout this book, you will need the Java Virtual Machine and the compiler.
You may need the archive tool shortly.

All the Java files are in place. Now create a directory where you will write Java programs. Again, you can call it whatever you want
and put it wherever you like, but simpler is better. Here we'll assume your programming directory is called C:\MyJavaCode.

The next step is to create a batch file for setting your PATH and CLASSPATH environment variables. The PATH variable tells the
operating system where to look for executable files when you run a program from the command line of a Command Prompt
window. (And that is how you will run the animated illustrations and compile and execute your own programs.) The CLASSPATH
variable tells Java where to look for class files. (That won't make sense unless you've read Chapter 8.) You can call your script
anything you like, and you can store it anywhere you like. The whole point of a batch file is to simplify things and reduce typing, so
call it something simple and save it somewhere easy to remember. We will call it \ja.bat. It looks like this:
SET PATH=$PATH$;C:\j2sdk1.4.1_02\bin
SET CLASSPATH=.;D:\AnimatedIllustrations
CD C:\MyJavaCode

You don't have to use exactly this script, but if you like it there's a copy on the CD-ROM, in the ExampleScripts\Windows
subdirectory. If you want to use it as-is, just copy it to the root directory of your primary disk drive. You might want to copy it
anyway and use a text editor such as Notepad to edit it, rather than typing in your version from scratch.

The first line of the script appends Java's bin directory to your PATH environment variable, so that you will be able to run
programs like java, javac, and jar. Remember that you will be running them by typing command lines into a Command Prompt
window, not by double-clicking on icons.

The second line sets the CLASSPATH environment variable to the current directory, plus the directory on this book's CD-ROM
where the animated illustration programs are stored. (If your CD-ROM drive letter is something other than D, substitute the
appropriate letter. Alternately, you can copy the AnimatedIllustrations directory to your hard drive. That way you don't have
to make sure the CD-ROM is loaded whenever you want to run an animated illustration. If you copy the
AnimatedIllustrations directory to your hard drive, replace D:\ AnimatedIllustrations in the script with the full path,
including drive letter, of the copied version of the AnimatedIllustrations directory.)

The third line of the script takes you into the directory where you will create and store the Java programs that you will write, in
answer to some of the questions at the end of each chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To test your work, open a Command Prompt window. Run your batch file script by typing \ja. The script runs. Note that it only
affects the one Command Prompt window you are working in. If you close that window, you will have to open another one and
then run the batch file again.

To make sure your script ran properly, type java -version. You get a message that tells you which version of Java is running,
along with some other obscure, cryptic information that probably means something important to someone. This message means
that you have installed Java and your PATH variable is set correctly. If the command doesn't work, make sure the full pathname of
the bin directory in your script is spelled correctly, and that the directory contains java.exe.

Now type java welcome.Welcome. You should see a simple welcoming screen. This means that your CLASSPATH variable is
set correctly. If you don't see the welcoming screen, make sure the value assigned to CLASSPATH in your script is spelled
correctly, and that the directory is the AnimatedIllustrations directory from the CD-ROM. If you are running the animated
illustrations directly from the CD-ROM (that is, if you didn't copy the files to your hard drive), make sure the CD-ROM is in the
correct drive.

That takes care of the Java program files. They are all you need until Chapter 12, where you will also need the API pages. These
are a huge number of HTML pages to be viewed with the Web browser of your choice. You download them as a single zip file that
you will have to extract.

You begin the download at the same page you visited before: http://java.sun.com/j2se/1.4/download.html. This page
contains a list of several dozen products that you can download. Near the end of the list, you see J2SE 1.4.1 Documentation.
Click on this item's Download link. After accepting another license agreement, you see a page with a link for downloading j2sdk-
1_4_1-doc.zip. Click on the link. You're prompted to specify where you want to put the zip file. Put it in the directory where you
stored your Java files. We recommend C:\j2sdk1.4.1_02.

Now you might have to extract the zip file. Some versions of Windows present a zip file as if it were a directory, extracting files
only as needed. This saves a lot of space. If your system does this for you and it's satisfactory, you're done. To find out, open a
Windows Explorer window and have it display your C:\j2sdk1.4.1_02 directory. If j2sdk-1_4_1-doc.zip looks like a
directory rather than a single file, you don't need to extract if you don't want to. Otherwise, you need to extract.

To extract, you could double-click on the j2sdk-1_4_1-doc.zip icon and use Winzip to unpack the archive. But you might not
have Winzip. Besides, there is a slicker way. If you haven't done so already, run your batch file script by typing \ja. Next, type cd
into the directory that contains the j2sdk-1_4_1-doc.zip file. Unless you have done your own thing, the command to do so is
cd C:\j2sdk1.4.1_02

Now type the following command:
jar xvf j2sdk-1_4_1-doc.zip

The jar command is one of the useful Java executables. It became usable when you ran the script and added
C:\j2sdk1.4.1_02\bin to your path. Jar stands for JavaArchive. It is like Winzip, but you run it from the command line.
Fortunately, the jar file format is compatible with the .zip format, so you can use jar to extract any .zip archive.

Creating Program Files

Congratulations! You are ready to go. Right now you can run any animated illustration in the book. And please do... they are an
essential part of your Ground-Up Java experience.

The other essential part of your experience is writing your own Java programs. You will do this when you work on the "write-a-
program" questions at the end of the chapters, and of course you can write programs that implement your own ideas. We have
already recommended that you do this in a directory called \MyJavaCode, and have your script "cd" in that directory. But now the
question is, how do you create Java code? Chapter 2 explained that writing a Java program means creating one or more files,
called source files, in plain text format, with names that end with .java.

There are two ways to create Java source files:

Use a general-purpose editor.

Use an Integrated Development Environment (IDE).

You have several general-purpose editors installed on your system, including Notepad and Wordpad. It's a good idea to start with
one of these; they are good enough for small programs. Use a fixed-width font like Courier to make your code line up nicely.

As you will learn from experience, you don't just write a program. The development process is an ongoing cycle of writing, testing,
and modifying. So when you think you have finished writing your program, don't close your editing window. Leave it around,
because in all likelihood you will want to make modifications or fix bugs. (Yes, this could happen even to you.)

After a while, you might get a vague sense that life could be better somehow. You might be ready for an IDE, or Integrated
Development Environment. IDEs are products that help you create, maintain, debug, and keep track of Java programs. Many
common operations (such as compiling) are achieved with a single button click. There are lots of IDEs on the market, ranging in
price from free to expensive. It would be inappropriate to recommend one here, but if you type Java + IDE into your favorite Web
search engine, you will get plenty of information.

A good IDE is a good thing, and a great IDE will greatly enhance your productivity. But a word of warning: Your goal right now is
not to create large Java programs efficiently. Your goal is to learn as much as possible about Java. IDEs shield you from repetitive
tasks. Before you start using them, it's a good idea to spend some time learning all the ins and outs and

details of Java, so that you'll know what the IDE is shielding you from. Spend some time with a general-purpose editor before you
move on to an IDE.

The rest of this appendix is about installing Java on Macintosh. If you only have a Windows PC, you can skip the rest. Have fun!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Macintosh
This section will walk you through downloading and installing Java on Macintosh-based computers.

You download Java for Macintosh directly from Apple Computers. You will need three separate pieces:

Mac OSX Developer Tools

Java 1.4.1 Developer Tools Update

Java 1.41. for Mac OS X and QTJava

First you will need to register as an Apple developer. This is free (as are the downloads), but you must do it before you can access
the download sites. Just type this into your browser:
http://connect.apple.com

This will take you to the Apple Developer Connection site. From here, you can log in and download the software you want. If you
are not yet a member, you must become one. Click the Join ADC button on the left side of the page, and answer the questions on
the form. You're granted a user name and password to log in to the download site.

Once you've obtained your membership, go ahead and log in (same site as above). On the resulting page, click the Download
Software link. You see a list of software packages along the left side of the page. Click on the Mac OS X link, and you see a list of
possible items for download. Click the Download button immediately to the right of Dec 2002 Mac OS X Developer Tools.
Downloading commences immediately. This file, Dec2002DevToolsCD.dmg, is 301.2MB and takes a little over an hour to
download over a DSL line. Make a note of where you store the file on your local hard drive.

Now you need to update your Developer Tools. Use the Back button on your browser to return to the list of downloadable items.
This time, choose Java. Click the Download button immediately to the right of Java 1.4.1 Developer Tools Update. Downloading
commences immediately. This file, Java141Developer, is 48.6MB and takes about 20 minutes to download over a DSL line.
Again, make a note of where you store the file on your local hard drive.

Lastly, you need to get the most recent version of Java for the Mac (1.4.1). Use the Back button to return to the list of
downloadable items. Choose Java again. Click the Download button immediately to the right of Java 1.4.1 Update DP102.
Downloading commences immediately. This file, Java141Update1DP102.dmg, is 37.4MB and takes about 15 minutes to
download over a DSL line. Make a note of where you store the file on your local hard drive.

Now it's time to unpack and install the three files you've downloaded. First, the developer tools. Use Finder to navigate to the
folder where you've placed the downloads. Locate the file Dec2002DevToolsCD.dmg, and double-click on its icon. You still need
to be connected to the network during this process, because the .dmg file will attempt to mount the disk image of the Developer's
Tools package for subsequent installation. You also need administrator-level permission to complete the installation. If all goes
well, a small window labeled December 2002 Dev Tools appears. Double-click on the Developer icon and proceed with the
installation as directed. When the installer asks you for a destination, select the default, Normal. When the installation has
finished, you must reboot your computer before proceeding to the next installation.

Next it's time to unpack and install the Java update. Use Finder to navigate to the folder where you've placed the downloads.
Locate the file Java141Update1DP102.dmg and double-click on its icon. A small window labeled Java 1.4.1 Update 1 appears.
Double-click on the Java1.4.1Update1.pkg icon and proceed with the installation as directed. When the installer asks you for a
destination, select the default, Normal. When the update has been unpacked and installed, you're directed to restart your
computer.

Now it's time to unpack and install the Developer Tools update. Use Finder to navigate to the folder where you've placed the
downloads. Locate the file Java141Developer.dmg and double-click on its icon. A small window labeled Java1.4.1 Developer
Update appears. Double-click on the Java1.4.1Developer.mpkg icon and proceed with the installation as directed. When the
installer asks you for a destination, select the default, Normal.

Now all the Java files are in place. Create a directory where you will write Java programs. You can call it whatever you want and
put it wherever you like, but simpler is better. Here we'll assume your programming directory is called ~\MyJavaCode.

The next step is to add two lines to your .login or .cshrc file for setting your path:
set path=(lib:/usr/local/bin:/usr/ucb:/bin:/sbin:/usr/bin:/usr/sbin:/usr/etc:/ ÂDeveloper/Tools)
setenv CLASSPATH .:/AnimatedIllustrations
alias gotoJava 'cd ~/MyJavaCode'

The first line tells the operating system where to look for executable files when you run a program from the command line of a
terminal window. That's how you will run the animated illustrations, and compile and execute your own programs.

The second line sets the CLASSPATH environment variable to the current directory, plus the directory on this book's CD-ROM
where the animated illustration programs are stored. The script assumes you have copied the entire CD-ROM to a directory on
your hard drive called /AnimatedIllustrations. Doing so will make life simpler, because you can run the illustrations without
the CD-ROM. If you don't want to copy the CD-ROM to your hard drive, or if you want to copy it to a different directory, modify the
script accordingly.

The third line of the script is an alias that will take you to your Java work directory.

To test your work, log out and then log in again so that the script will execute. Open a terminal window
(Applications/Utilities/Terminal in the Finder). To make sure your script ran properly, type java -version. You get a message
that tells you which version of Java is running, along with some other obscure, cryptic information that probably means something
important to someone. If you get this message, you have installed Java and your PATH variable is set correctly. If the command
doesn't work, make sure the full pathname of the bin directory in your script is spelled correctly, and that the directory contains
java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.

Now type java welcome.Welcome. You should see a simple welcoming screen. This means that your CLASSPATH variable is
set correctly. If you don't see the welcoming screen, make sure the value assigned to CLASSPATH in your script is spelled
correctly, and that the directory is the AnimatedIllustrations directory from the CD-ROM. If you are running the animated
illustrations directly from the CD-ROM (that is, if you didn't copy the files to your hard drive), make sure the CD-ROM is in the
correct drive.

That takes care of the Java program files. They are all you need until Chapter 12, where you will also need the API pages. These
are a huge number of HTML pages to be viewed with the Web browser of your choice. You download them as a single zip file that
you will have to extract.

You begin the download at http://java.sun.com/j2se/1.4.1/download.html. The page contains a list of several dozen
products that you can download. Near the end of the list is J2SE 1.4.1 Documentation. Click on this item's Download link. After
accepting another license agreement, you come to a page with a link for downloading j2sdk-1_4_1-doc.zip. Click on the link.
You are prompted to specify where you want to put the zip file. Put it in a directory where you can find it easily. We recommend
~/MyJavaFiles.

To extract, use jar to unzip the documents in the j2sdk-1_4_1-doc.zip file. If you haven't done so already, run your batch file
script by typing gotoJava. Unless you have done your own thing, the command to unzip the file is
jar xvf j2sdk-1_4_1-doc.zip

The jar command is one of the useful Java executables. It became usable when you ran the script and added
C:\j2sdk1.4.1_02\bin to your path. Jar stands for JavaArchive. It is like Stuffit-Expander, but you run it from the command
line. Fortunately, the jar file format is compatible with the .zip format, so you can use jar to extract any .zip archive.

Creating Program Files

Congratulations! You are ready to go. Right now you can run any animated illustration in the book. And please do... they are an
essential part of your Ground-Up Java experience.

The other essential part of your experience is writing your own Java programs. You will do this when you work on the "write-a-
program" questions at the end of the chapters, and of course you can write programs that implement your own ideas. We have
already recommended that you do this in a directory called \MyJavaCode, and have your script "cd" in that directory. But now the
question is, how do you create Java code? You will see in Chapter 2 that writing a Java program means creating one or more
files, called source files, in plain text format, with names that end with .java.

There are two ways to create Java source files:

Use a general-purpose editor.

Use an Integrated Development Environment.

You have several general-purpose editors installed on your system, including Notepad and Wordpad. It's a good idea to start with
one of these. They are good enough for small programs. Use a fixed-width font like Courier to make your code line up nicely.

As you will learn from experience, you don't just write a program. The development process is an ongoing cycle of writing, testing,
and modifying. So when you think you have finished writing your program, don't close your editing window. Leave it around,
because in all likelihood you will want to make modifications or fix bugs. (Yes, this could even happen to you.)

After a while, you might get a vague sense that life could be better somehow. You might be ready for an IDE, or Integrated
Development Environment. IDEs are products that help you create, maintain, debug, and keep track of Java programs. Many
common operations (such as compiling) are achieved with a single button click. There are lots of IDEs on the market, ranging in
price from free to expensive. It would be inappropriate to recommend one here, but if you type "Java + IDE" into your favorite Web
search engine, you will get plenty of information.

A good IDE is a good thing, and a great IDE will greatly enhance your productivity. But a word of warning: Your goal right now is
not to create large Java programs efficiently. Your goal is to learn as much as possible about Java. IDEs shield you from repetitive
tasks. Before you use them, it's a good idea to spend some time learning all the ins and outs and details of Java, so that you'll
know what the IDE is shielding you from. Spend some time with a general-purpose editor before you move on to an IDE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B: Solutions to the Exercises

Chapter 1
Exercise 1 A cluster of eight bytes can take on approximately 20 quintillion different values. (One quintillion is a 1 followed by 18
zeroes, or 10 to the 18th power.) Estimate the number of different values that a cluster of 16 bytes can have. Just estimate, do not
count. Can you think of anything that comes in such quantities?

Solution 1 The exact number of values is 2 to the power of the number of bits. This is 2128, or about 3.4 x 1038. We can make a
good estimate by just squaring the number of possibilities for eight bytes, which is given as approximately 20 x 1018. The square
of that is approximately 400 x 1036, or approximately 4 x 1038.

To put this in perspective, there are about 2 x 1011 stars in a typical galaxy, and there are about 1010 galaxies in the universe. So
16 bytes can easily store the number of stars in the universe (2 x 1021).

Exercise 2 The SimCom animated illustration is written in Java. When you run the program, how many virtual machines are at
work?

Solution 2 SimCom is a virtual machine that runs on the Java Virtual Machine that runs on your physical computer. So there are
two virtual machines.

Exercise 3 Write a SimCom program that adds 255 to the value in byte 31 and stores the result in byte 30. Observe the
program's behavior. What do you notice?

Solution 3 The following program adds 255 to the contents of byte 31, and stores the result in byte 30. The program appears in
the solutions on the CD-ROM, in answers/ Ch1/Add255.simcom. In addition to the following code, the program also stores the
number 1 in byte 29:
LOAD 31
ADD 29
STORE 30
HALT

SimCom acts as if adding 255 were the same as subtracting 1. We will look at this in more detail in the next chapter.

Exercise 4 Write a SimCom program that computes the square of the value in byte 31 and stores the result in byte 30. What
happens when you try to compute the square of 254?

Solution 4 The following program squares the contents of byte 31, and stores the result in byte 30. The program appears in the
solutions on the CD-ROM, in answers/Ch1/ Square.simcom:
LOAD 31
STORE 29
LOAD 31
ADD 30
STORE 30
LOAD 29
SUB 28
STORE 29
JUMPZ 10
JUMP 2
HALT

This program is almost the same as the Times5 program that you saw earlier in Chapter 1. The difference is that instead of using
a hard-coded value as the loop counter, the first two lines of this program store the value to be squared in the loop counter.

This program produces 4 as the square of 254.

Exercise 5 What features could be added to SimCom to make it more useful?

Solution 5 This is a subjective issue. It would be reasonable to want more opcodes, especially for multiplying and dividing. More
memory would also be good. But bear in mind that, since SimCom forces you to be aware of all features of the architecture,
adding more features would just give you more to juggle. The benefit of a high-level programming language such as Java is that
you can take advantage of a computer's features without having to think on too low a level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
Exercise 1 According to Table 2.1, the maximum values for the byte and short data types are 127 and 32767, respectively. Use
the Twos-Complement Lab animated illustration to verify this. Which byte and short bit patterns produce the maximum values? In
general, which bit pattern produces the maximum value for a two's complement number of N bits?

Solution 1 The maximum-value byte is 01111111. The maximum-value short is 0111111111111111. The general formula is a
leading 0 followed by all 1s.

Exercise 2 According to Table 2.1, the minimum values for the byte and short data types are -128 and -32768, respectively. Use
the Twos-Complement Lab animated illustration to verify this. What byte and short bit patterns produce the minimum values? In
general, what bit pattern produces the minimum value for a two's complement number of N bits?

Solution 2 The minimum-value byte is 10000000. The minimum-value short is 1000000000000000. The general formula is a
leading 1 followed by all 0s.

Exercise 3 Launch the Twos-Complement Lab animated illustration by typing java TwosCompLab, set the data type to int, and
set all the bits to 1. Then set the three bits on the right to 0. Compute the value. Do the same for the byte and short data types.
What do you observe?

Solution 3 In each case, the result is -8.

Exercise 4 Launch the Floating-Point Lab animated illustration by typing java floating.FloatFrame. Set the rightmost bit to
1 and all other bits to 0. The value represented is 1.4E-45. Try changing various bits' values by clicking on them. Can you create a
value that is smaller than 1.4E-45 but still greater than 0?

Solution 4 1.4E-45 is the smallest possible greater-than-zero float value. Table 2.2 says so. Changing any bits in the exponent
part yields a bigger power of 2. Changing any bits in the fraction part yields a bigger fraction, unless you set all the fraction bits to
0, which represents an overall value of 0.

Exercise 5 Write a Java application that declares and assigns values to three int variables named x, y, and z. Print out all three
values, separated by commas, on a single line.

Solution 5 The following application prints out the values, separated by commas:
public class Ch2Q5
{
 public static void main(String[] args)
 {
 int x, y, z;
 x = 10;
 y = 20;
 z = 30;
 System.out.println(x + "," + y + "," + z);
 }
}

Exercise 6 White space means spaces, tabs, and line-break characters. Type in the VerySimple application from Chapter 2
(reproduced below) and experiment with inserting white space. Does anything change during compilation or execution if you insert
extra spaces between public and class? What if you insert a line break between public and class? Can you find any
adjacent words or symbols such that inserting white space between them changes compilation or execution?
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

Solution 6 White space between words and symbols has no effect on compilation or execution, unless you put the white space
inside a literal string. In that case, of course, the literal string will be changed. This means that you can use white space to make
your source code as readable as possible. This is discussed further in Chapter 3, in the section "White Space and Comments."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Exercise 1 What happens when a comment appears inside a literal string? (Recall from Chapter 2 that a literal string is a run of
text enclosed between double quotes.) What would the following line of code do?
System.out.println("A /* Did this print? */ Z");

Write a program that includes this line. Does the program print the entire literal string, or does it just print "A Z"?

Solution 1 The program prints the entire literal string. A // or /* inside a literal string doesn't signal the start of a comment.

Exercise 2 What is the value of ~100? What is the value of ~-100? First try to figure it out, and then write a program to print out
the values. (Hint: You can figure it out without using pen and paper if you remember something that was discussed in Chapter 2.)

Solution 2 ~100 is -101. ~-100 is 99. Recall from Chapter 2 that to generate the negative of an integer type, invert all its bits and
then add one. In other words, if you use ~ to invert an integer's bits, you have almost generated its negative. Almost, but not quite:
You still have to add 1. So ~ generates the negative of its argument, minus 1.

The following program performs the computations:
public class TildeTest
{
 public static void main(String[] args)
 {
 int n = 100;
 int nTilde = ~n;
 System.out.println("~100 = " + nTilde);
 n = -100;
 nTilde = ~n;
 System.out.println("~-100 = " + nTilde);
 }
}

Exercise 3 Write a program that prints out the following values:
32 << 3
32 >> 3
32 >>> 3
-32 << 3
-32 >> 3
-32 >>> 3

Solution 3 The following program performs the required operations:
public class Shift32By3
{
 public static void main(String[] args)
 {
 int x = 32 << 3;
 System.out.println("32 << 3 = " + x);
 x = 32 >> 3;
 System.out.println("32 >> 3 = " + x);
 x = 32 >>> 3;
 System.out.println("32 >>> 3 = " + x);
 x = -32 << 3;
 System.out.println("-32 << 3 = " + x);
 x = -32 >> 3;
 System.out.println("-32 >> 3 = " + x);
 x = -32 >>> 3;
 System.out.println("-32 >>> 3 = " + x);
 }
}

The output is
32 << 3 = 256
32 >> 3 = 4
32 >>> 3 = 4
-32 << 3 = -256
-32 >> 3 = -4
-32 >>> 3 = 536870908

Exercise 4 What are the values of the following expressions? First do the computations mentally. Then write a program to verify
your answer.
false & ((true^(true&(false|!(true|false))))^true)
true | (true^false^false^true&(false|!(true&true)))

Solution 4 The first expression has the form "false & anything", so its value is false. The second expression has the form "true |
anything", so its value is true. The following program verifies this:
public class AndAnythingOrAnything
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 public static void main(String[] args)
 {
 boolean a = false & ((true^(true&(false|!(true|false))))^true);
 boolean b = true | (true^false^false^true&(false|!(true&true)));
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }
}

Exercise 5 The following expression looks innocent:
boolean b = (x == 0) | (10/x > 3);

You can assume x is an int. Write a program that prints out the value of this expression for the following values of x: 5, 2, 0. What
goes wrong? (You will see a failure message that you might not be familiar with, because we have not introduced it yet. Don't
worry—just try to understand the general concept.) How can you make the code more robust by adding a single character to the
expression?

Solution 5 The following program does what the question requires:
 1. public class Chap3Q5
 2. {
 3. public static void main(String[] args)
 4. {
 5. int x = 5;
 6. boolean b = (x == 0) | (10/x > 3);
 7. System.out.println("x=" + x + ", b=" + b);
 8. x = 2;
 9. b = (x == 0) | (10/x > 3);
10. System.out.println("x=" + x + ", b=" + b);
11. x = 0;
12. b = (x == 0) | (10/x > 3);
13. System.out.println("x=" + x + ", b=" + b);
14. }
15. }

The output from line 7 is "x=5, b=false". The output from line 10 is "x=2, b=true". You don't get any output from line 13.
Instead, the JVM returns an error message. Your message may vary based on your JVM rev, but probably you saw the following:
java.lang.ArithmeticException: / by zero at Chap3Qs.main(Chap3Qs.java:12)

When a program prints out a message like this that includes the word "Exception", you know that something has gone wrong.
Exceptions are Java's mechanism for indicating program trouble or failure. They're covered in Chapter 11, "Exceptions." The stuff
in parentheses at the end of the message says that something went wrong at line 12, so execution was abandoned at that point.
The message and a glance at line 12 tell us that we have tried to divide 10 by zero. This is an illegal operation, because dividing
by zero is undefined.

To fix the program, just change | to ||. At line 12, the "x == 0" comparison will evaluate to true, so the short-circuit operator will
skip the illegal remainder of the expression.

The "Short-Circuit Operators" section of Chapter 3 explained that short-circuit operators let you avoid unnecessary execution of
time-consuming code. This question shows that you can also use them to avoid unnecessary execution of code that would
generate an error.

Exercise 6 The 32-bit float type is wider than the 64-bit long type. How can a 32-bit type be wider than a 64-bit type?

Solution 6 Longs (64 bits) use two's-complement data representation, and floats (32 bits) use floating-point representation. No
matter what data representation is used, there are exactly 2n possible combinations of n bits. The way to think about this problem
is to consider the way that represented numbers are distributed. The long type represents 264 values, evenly distributed along the
number line. In other words, the distance between any two consecutive numbers represented by a long is exactly 1.

With floats, the 232 values are not evenly distributed. If you draw a dot on the number line for every number represented by a
float, you see a dense cluster near zero. The farther you get from zero, the more sparsely the dots appear. Far out near the
extreme positive and negative ends of the range, the dots are very rare indeed. To quantify, the smallest-magnitude float that is
greater than zero—in other words, the first number to the right of zero on the number line—is 1.4 x 10-45. However, the difference
between the largest float and the next-smallest float is about 2 x 1031—a truly astronomical number.

So the 32-bit float type achieves a wider range than the 64-bit long type by distributing its represented values more sparsely.

Exercise 7 Write a program that contains the following two lines:
byte b = 6;
byte b1 = -b;

What happens when you try to compile the program?

Solution 7 The first line (byte b = 6;) is legal. The second line (byte b1 = -b;) is a problem. The result of the unary -
operation is of type int, and the code tries to assign an int to a byte. The compilation will fail. The compiler error may vary
depending on your compiler rev, but probably you will get a message that says this:
…possible loss of precision: int, required: byte…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
Exercise 1 Which of the following are legal method names?

a. $25

b. 25$

c. abc_

d. _ABc

Solution 1 A, C, and D are legal. B is illegal because a method name may not begin with a digit.

Exercise 2 Suppose you want to write a method that returns the diameter of a planet, in millimeters. Since it's your program, you
can choose any name you like for the method. Rank the following method names, from worst to best. Use your own judgment as
to what makes one method name better or worse than another.

a. getPlanetDiameter

b. getSize

c. getPlanetDiameterMm

d. getIt

e. getPlanetSize

Solution 2 Good and bad are subjective. However, a method name that eliminates confusion must be considered better than one
that creates confusion, or only eliminates a little confusion. Here are the method names, ranked by order of how much information
each name conveys:
getIt
getSize
getPlanetSize
getPlanetDiameter
getPlanetDiameterMm

getIt tells you nothing at all about what the method does. It's unfortunate how many programmers use similar names and create
code that is difficult to understand and expand. The other names tell increasingly more about the method's return value.
"Diameter" is better than "Size", because Size might be diameter or radius or mass. "DiameterMM" tells us not only the
quantity but the units.

Of course, there is a limit to how much a method name should say. The goal is not to maximize the information in the name. The
goal is to maximize the usefulness of the name. A name that is too long to read easily, or hard to distinguish from a similar name,
does not contribute. For example, getPlanetDiameterMMAsMeasuredByHubbleOnApril12003 is too informative, and it's
hard to distinguish from getPlanetDiameterMMAsMeasuredByHubbleOnApril112003.

Exercise 3 Suppose a method has the following declaration:
static int abc(int x, short y)

Suppose this method is called as follows:
abc(first, second)

Which of the following are legal types for the variables first and second?
a. int first, int second

b. short first, short second

c. byte first, char second

d. char first, byte second

Solution 3 B and D are legal. A passed argument may be of any type, provided it is the same as, or narrower than, the type
declared by the method. The first argument is declared by the method to be an int, so you can pass a byte, short, char, or int. The
second argument is declared by the method to be a short, so you can pass a byte or a short.

Exercise 4 Consider the following method declaration:
xyz(double d)

Which argument types can a caller pass into this method?

Solution 4 A caller can pass any type that is the same as, or shorter than, the declared type. Since the declared type is double,
the caller can pass a byte, short, char, int, long, float, or double.

Exercise 5 In Chapter 4, you learned that if method iAmVoid is void, you can't say int z = iAmVoid(); because there is no
value to assign to z. What happens if you try? Write a program that does this experiment.

Solution 5 The following application tries to assign a void call to an int:
public class AssignVoid
{
 static void iAmVoid()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 System.out.println("Hello");
 }

 public static void main(String[] args)
 {
 int z = iAmVoid();
 }
}

The compilation fails with the following message: "Incompatible types; found, void, required:int at line 10..." (Your actual message
may vary, depending on where your compiler came from.)

Exercise 6 In Chapter 4, you saw the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The following code prints out "Now z is 10", not "Now z is 30", because the method modifies its own private copy of the argument:
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Write a program that proves this.

Solution 6 The following code proves that the method modifies its own copy, leaving the caller's copy alone:
public class ProveCallByValue
{
 static void print3x(int x)
 {
 x = 3*x;
 System.out.println("3 times x = " + x);
 }

 public static void main(String[] args)
 {
 int z = 10;
 print3x(z);
 System.out.println("Now z is " + z);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
Exercise 1 Rewrite the following code to maximize readability:
switch (x)
{
 case 100:
 System.out.println("x is big");
 break;
 case 101:
 System.out.println("x is big");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case -1000:
 System.out.println("x is negative");
 break;
}

Solution 1 The 100 and 101 cases can be combined, and the cases can be arranged in ascending numerical order, to produce
the following:
switch (x)
{
 case -1000:
 System.out.println("x is negative");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case 100:
 case 101:
 System.out.println("x is big");
 break;
}

Exercise 2 Rewrite the following code to make it cleaner:
boolean flag = false;
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
}
if (!flag)
 z = 1000;

Solution 2 The flag just indicates that the switch has a case that matches its argument. So the "z = 1000" assignment happens
only if there was no case to match the switch argument. We can eliminate the flag and move the "z = 1000" assignment into
the switch's default case:
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
 default:
 z = 1000;
 break;
}

Exercise 3 What happens when the following code is executed with val equal to 10? 100? 1,000? First, decide just by looking at
the source code. Then write a program to verify your answer.
switch (val)
{
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
}

Solution 3 The code doesn't have any break statements, so every case will fall through to the next one. The output for 10 is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 3 The code doesn't have any break statements, so every case will fall through to the next one. The output for 10 is
ten
hundred
thousand

The output for 100 is
hundred
thousand

And the output for 1000, which is handled by the default code, is
thousand

The following program verifies the results. Note the for loop, with multiple action in the update:
public class SwitchTest
{
 public static void main(String[] args)
 {
 int val = 10;
 for (int i=0; i<3; i++, val*=10)
 {
 System.out.println("\nTesting " + val + " ... ");
 switch (val)
 {
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
 }
 }
 }
}

Exercise 4 Run the WhileLab animated illustration by typing java loops.WhileLab. Try changing the value in the condition in
the third line. What do you notice about the final value of a?

Solution 4 The final values of a are always square numbers.

Exercise 5 The description of WhileLab suggests three exercises, which are repeated here. For each desired result, configure
the inputs of WhileLab to produce that result. Then verify your work (and make sure WhileLab is trustworthy) by writing an
application that duplicates each while loop. The loops should generate the following results:

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first 5 odd numbers.

Solution 5 The sum of 1 through 500:
int a = 0;
int b = 1;
while (b <= 500)
{
 a = a+b;
 b = b+1;
}

The sum of the even numbers from 50 through 60, inclusive:
int a = 0;
int b = 50;
while (b <= 60)
{
 a = a+b;
 b = b+2;
}

The product of the first 5 odd numbers (the nth odd number is 2n+1):
int a = 1;
int b = 0;
while (b < 5)
{
 a = a * (2*b+1);
 b = b+1;
}

Exercise 6 There is a number game called Hotpo that can entertain you for a few minutes while you're stuck in traffic, waiting for
a movie to start, or having dinner with someone really boring. Hotpo stands for Half Or Triple Plus One, and it works like this:
Think of an odd number. Now mentally calculate another number, as follows: If the first number was even, the next number is half
the first one; if the first number was odd, the next number is 3 times the first number, plus 1. Now you can forget the first number
and apply the Half Or Triple Plus One formula to your current number. Keep going until the value reaches 1. Let's try this with a
starting number of 5. The series is 5 ® 16 ® 8 ® 4 ® 2 ® 1. Write a program that plays Hotpo. First, initialize a variable called n
to the starting value you're interested in. Then enter a loop that prints out each number in the sequence, along with the current
step number. For example, the output for 3 would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step #1: 10
Step #2: 5
Step #3: 16
Step #4: 8
Step #5: 4
Step #6: 2
Step #7: 1

Should the program use a while loop or a for loop?

Solution 6 Hotpo is an extreme example of a situation that ought to use a while loop. Remember that for loops are better when
you know beforehand how many passes you will make through the loop's body, and while loops are better when you don't know
you're done until you're done. If you've played with various values of n, you may have noticed that there's no way to predict
whether a certain starting value will need a lot of steps or only a few steps to reach 1. Hotpo defies mathematical analysis. There
seems to be no way to predict how many steps a given starting value will require, which means a while loop is ideal. Here is a
solution:
public class HotpoWhile
{
 public static void main(String[] args)
 {
 int n = 3;
 int nSteps = 0;
 while (n != 1)
 {
 n = (n%2 == 0) ? n/2 : 3*n+1;
 nSteps++;
 System.out.println("Step #" + nSteps + ": " + n);
 }
 }
}

Note: If you're ever really bored, try 31.

Exercise 7 What is the value of n after the following code is executed?
int n = 1;
outer: for (int i=2; i<10; i++)
{
 for (int j=1; j<i; j++)
 {
 n *= j;
 if (i*j == 10)
 break outer;
 }
}

Solution 7 The answer is 24, but the real question is: How did you arrive at the answer? The code is only 10 lines long, and four
of those lines are just curly brackets, but the nested loops are intricate enough that working out the answer mentally or on paper is
unreliable. It doesn't take long to just type in the code, let it run, and see what happens.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
Exercise 1 The following two declarations are equivalent as far as the compiler is concerned, but one is considered more
readable than the other. Which is more readable, and why?

a. double dubs[];

b. double[] dubs;

Solution 1 Format B (double[] dubs) is more readable than Format A (double dubs[]) because in B, as with all other
declarations, the data type (double[]) comes first, followed by the variable name (dubs). Format A begins with some, but not all,
of the data type (double). Then comes the variable name, followed by the remainder of the data type ([]). So Format A is less
readable for two reasons: It does not follow the convention of data type followed by variable name, and it splits the data type into
two parts.

Exercise 2 Write a line of code that declares an array of 5 ints and initializes the array to contain the first 5 prime numbers. The
code should be a single statement.

Solution 2 int[] first5Primes = {2, 3, 5, 7, 11};

Exercise 3 Write a method whose single argument is an array of double. The method should return the average (mean) of the
array's components. Write an application that tests the method by passing it an array containing any values you like.

Solution 3 The following code is one possible solution:
public class MeanOfArray
{
 public static void main(String[] args)
 {
 double[] theArray = {1.2, 1.3, 1.4, 1.5, 1.6};
 double average = computeAverage(theArray);
 System.out.println("mean = " + average);
 }

 static double computeAverage(double[] doubles)
 {
 double sum = 0;
 for (int i=0; i<doubles.length; i++)
 sum += doubles[i];
 return sum/doubles.length;
 }
}

Exercise 4 Write a program that uses the array-averaging method of Question 3. The program should compute and print out the
average of an array (you can choose the component values). Then the program should add 100 to each component, and again
compute and print out the average.

Solution 4 The following code is one possible solution. The main method is long enough that comments are in order:
public class Question4
{
 public static void main(String[] args)
 {
 // Create the array.
 double[] theArray = {1.2, 1.3, 1.4, 1.5, 1.6};

 // Compute and print out average.
 double average = computeAverage(theArray);
 System.out.println("mean = " + average);

 // Add 100 to each component.
 for (int i=0; i<theArray.length; i++)
 theArray[i] += 100;

 // Compute and print out new average.
 average = computeAverage(theArray);
 System.out.println("mean = " + average);
 }

 static double computeAverage(double[] doubles)
 {
 double sum = 0;
 for (int i=0; i<doubles.length; i++)
 sum += doubles[i];
 return sum/doubles.length;
 }
}

Exercise 5 Write a program that contains a method that creates and returns an array of int containing the first n square numbers,
where n is the method's argument. Test your method by calling it with n=10. Your program should print out the index and value of
each component, in descending order.

Solution 5 The following code is one possible answer. Note that the loop in main decrements its loop counter down to and
including 0, because of the requirement that the squares should be printed out in descending order:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class DescendingSquares
{
 public static void main(String[] args)
 {
 int[] squares = createArrayOfSquares(10);
 for (int i=squares.length-1; i>=0; i--)
 System.out.println(squares[i]);
 }

 static int[] createArrayOfSquares(int nSquares)
 {
 int[] squares = new int[nSquares];
 for (int i=0; i<nSquares; i++)
 squares[i] = i*i;
 return squares;
 }
}

Exercise 6 Write a method that creates a multiplication table. The method should return a two-dimensional array of N by N ints,
where N is specified by the method's argument. In the array, the component at [row][col] should have a value of row*col.

Solution 6 The following method creates a multiplication table:
static int[][] makeTable(int n)
{
 int[][] table = new int[n][n];
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 table[i][j] = n;
 return table;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
Exercise 1 Name four traits that arrays and objects have in common.

Solution 1 Any four of the following are acceptable answers:

They contain clusters of data.

They are created by invoking the keyword new.

They inhabit inaccessible memory.

They are manipulated indirectly, via references.

They cannot be passed as array method arguments, but references to them can.

They are not destroyed explicitly. They are garbage-collected when they have no more references.

Exercise 2 Name two differences between arrays and objects.

Solution 2 Any two of the following are acceptable answers:

They can contain data of different types.

They can contain methods as well as data.

They are related to classes.

Exercise 3 Objects are not passed as method arguments, but references to objects can be passed. When a reference is passed
into a method, any changes made to the referenced object by the method should be visible to the method's caller. Write an
application to demonstrate this.

Your application will have two classes: Cat and Ager. The Cat class should have a single variable: an int called age. The Ager
class should have a method whose signature is makeOlder(Cat kitty, int nYears). This method should add nYears to
the age of the Cat object referenced by kitty. Your main method should go in the Ager class. It should create one instance of
each class, set the cat's age, and then use the Ager's method to change the age. Your main should then print out the cat's new
age, and verify that it really changed.

Solution 3 In file Cat.java:
public class Cat
{
 int age;
}

In file Ager.java:
public class Ager
{
 void makeOlder(Cat kitty, int nYears)
 {
 kitty.age += nYears;
 }

 public static void main(String[] args)
 {
 Ager myAger = new Ager();
 Cat myCat = new Cat();
 myCat.age = 5;
 System.out.println("Age was " +
 myCat.age);
 myAger.makeOlder(myCat, 2);
 System.out.println("Age became " +
 myCat.age);
 }
}

Exercise 4 What happens if you move the main method of the previous question from the Ager class to the Cat class?

Solution 4 You have to run the program by typing "java Cat" instead of "java Ager". Otherwise the output is the same. The
point of this question is that in a multiple-class application, you have to decide where to put your main method.

Exercise 5 Write an application that causes a "null pointer exception" failure.

Solution 5 The following application causes a "null pointer exception" failure:
public class IFail
{
 int x;

 public static void main(String[] args)
 {
 IFail ref = null;
 ref.x = 10;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This is just one of an infinite number of possible examples. When you write long programs, "null pointer exception" failures are
unavoidable in the course of developing, debugging, and refining your code.

Exercise 6 What does the following application print out?
public class Question
{
 static long x;

 public static void main(String[] args)
 {
 Question q1 = new Question();
 Question q2 = new Question();
 q1.x = 10;
 q2.x = q1.x + 20;
 System.out.println("q1.x = " + q1.x);
 }
}

Solution 6 The code prints out "q1.x = 30". Since x is static,"q1.x" and "q2.x" are both names for the same variable. The
main method could be rewritten as
public static void main(String[] args)
{
 Question q1 = new Question();
 Question q2 = new Question();
 Question.x = 10;
 Question.x = Question.x + 20;
 System.out.println("q1.x = " + q1.x);
}

This question points out that referring to a static variable via the class name is clearer than referring to it via a reference to an
instance of the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8
Exercise 1 Which of the following hierarchies illustrate a good understanding of the difference between classes and objects?
Which ones represent mistaken understanding? The arrows mean "has subclass", so in option A, Shape ® Triangle means "class
Shape has subclass Triangle."

a. Shape ® Triangle ® RightTriangle

b. GreatLiterature ®GreatPoem ®DivineComedy

c. Planet ® Continent

d. Person ® HeadOfState ® Emperor

e. Person ® HeadOfState ® Emperor ® AugustusCaesar

Solution 1 A and D are good examples. "RightTriangle" is a category that falls within the broader category of "Triangle", which
falls within the even broader category of "Shape". Similarly, "Emperor" is a category that falls within the broader category of
"HeadOfState", which falls within the even broader category of "Person".

B starts off well: "GreatPoem" is a category that falls within the broader category of "GreatLiterature". But Dante's Divine Comedy
is not a category. It is an instance of a category. In software, divineComedy should be an instance of class GreatPoem, which
would be a subclass of GreatLiterature.

C isn't even close. Certainly, planets contain continents, and both planets and continents are categories of things, but a continent
is not a more specific kind of planet. It would not be appropriate for class Continent to extend class Planet. (It might be
appropriate for the two classes to exist, but be unrelated in terms of inheritance. In this case, perhaps Continent would have an
array of Planet.)

E is like B. The last item is an instance of a category, not a category. Emperor is a category, but there was only one Augustus
Caesar. So AugustusCaesar could be an instance of class Emperor, which extends class HeadOfState, which extends class
Person.

Exercise 2 Which of the following classes have a no-args constructor?
a. A)

class A { }

b. B)
class B
{
 B() { }
}

c. C)
class C
{
 C(int x) { }
}

d. D)
class D
{
 D(int y) { }
 D() { }
}

Solution 2 There are two ways for a class to get a no-args constructor:

It can define one explicitly.

It can define no constructors at all. In that case, the compiler provides a default no-args constructor.

A has no constructors, so it is given a default no-args constructor. B and D define their own no-args constructors. C defines a
constructor that takes arguments, so it has no no-args constructor.

Exercise 3 Write the code for two classes. The first, called WaterBird, has a float variable called weight. The class has a
single constructor that looks like this:
WaterBird(float w)
{
 weight = w;
}

Compile this class. Now create the second class, called Duck, which extends WaterBird. Duck has no variables or methods, so
it shouldn't take you long to write it. Will Duck compile? First, think about the issues involved. Then try to compile Duck and see if
you were right.

Solution 3 The Duck class looks like this:
public class Duck extends WaterBird { }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Duck extends WaterBird { }

It looks innocent enough, but if you've watched enough cartoons, you know that innocent-looking ducks are not to be trusted. This
class defines no constructors, so it gets a default no-args constructor that does almost nothing. The constructor doesn't initialize
anything (since it contains no code), but it does participate in the chain of construction. Thus, it tries to call the superclass's default
constructor, and there we get into trouble.

The WaterBird superclass defines a constructor that takes an argument. There is no explicit no-args constructor, and there is no
automatic default constructor. So an invisible piece of functionality in an invisible constructor in Duck is trying to call something in
WaterBird that does not exist. When you try to compile Duck, you get an error message. The text of the message may vary
depending on your compiler, but it will say something like this:
Constructor WaterBird() not found in class WaterBird

This kind of trouble is called the constructor trap. To get out of the trap, add a no-args constructor to the superclass.

Exercise 4 Write some code to demonstrate to yourself the chain of construction. Create an inheritance hierarchy of 4 classes.
Give them any names you like. They don't have to have any data or methods, but each one should have a no-args constructor.
These constructors should print out a line identifying the current class (something like "Constructing an instance of WaterBird").
Your main() method should construct a single instance of your lowest-level subclass. What is the output? Does it matter which
class contains the main() method?

Solution 4 Here is one solution:
public class TwoDShape
{
 TwoDShape()
 {
 System.out.println("Constructor for TwoDShape");
 }
}

public class Polygon extends TwoDShape
{
 Polygon()
 {
 System.out.println("Constructor for Polygon");
 }
}

public class Triangle extends Polygon
{
 Triangle()
 {
 System.out.println("Constructor for Triangle");
 }
}

public class RightTriangle extends Triangle
{
 RightTriangle()
 {
 System.out.println("Constructor for RightTriangle");
 }

 public static void main(String[] args)
 {
 new RightTriangle();
 }
}

The output is
Constructor for TwoDShape
Constructor for Polygon
Constructor for Triangle
Constructor for RightTriangle

The application's behavior and output are the same no matter which class owns the main() method. However, it seems cleaner
to put main() in RightTriangle. Anyone who reads the code for the first time will see the call to the RightTriangle
constructor and wonder what class RightTriangle looks like. That person's job is easier if the RightTriangle class is the
one they are already looking at.

In general, in a multiclass application you have some choices as to where to put your main() method. As always, think about
which choice will be the clearest to someone reading the code for the first time.

Exercise 5 Write some code to demonstrate inheritance polymorphism. Create a superclass class with 3 subclasses. The
superclass should have a method that prints out a line identifying the current class (something like "I am a Monster"). Two of the
subclasses should override this method to print out a different message (like "I am a Werewolf"). Give the superclass a main()
method with an array of size 4, typed as the superclass (for example, Monster[] monsters = new Monster[4];). Your
main() should populate the array with references to 4 objects, each with a different class, and then traverse the array, calling
your method on each array component. What is the output? Does it matter which class contains the main() method?

Solution 5 Here is one solution:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Monster
{
 void identify()
 {
 System.out.println("I am a monster.");
 }

 public static void main(String[] args)
 {
 Monster[] monsters = new Monster[4];
 monsters[0] = new Monster();
 monsters[1] = new Dragon();
 monsters[2] = new Werewolf();
 monsters[3] = new Cyclops();
 for (int i=0; i<monsters.length; i++)
 monsters[i].identify();
 }
}

public class Dragon extends Monster
{
 void identify()
 {
 System.out.println("I am a dragon.");
 }
}

public class Werewolf extends Monster
{
 void identify()
 {
 System.out.println("I am a werewolf.");
 }
}

public class Cyclops extends Monster
{
 void identify()
 {
 System.out.println("I am a cyclops.");
 }
}

The output is
I am a monster.
I am a dragon.
I am a werewolf.
I am a cyclops.

Again, programmatically it doesn't matter which class gets the main() method. As for readability, the major piece of data in
main() is an array of Monster, so it makes sense to put main() in Monster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9
Exercise 1 Suppose package superpack contains subpackage subpack. Suppose a source file contains the following line:
import superpack.*;

Will this line import classes in subpack? Write code to support your answer.

Solution 1 Let's start by creating two classes, one in each package:
package superpack;
public class InSuper { }

package superpack.subpack;
public class InSub { }

These classes don't do anything, but they are all you need. You can store them in the same directory and compile by typing
"javac -d . *.java", after which your directory looks like this:

Now you can see what the import line does. Create another class in yet another package:
package testpack;
import superpack.*;
public class TestClass
{
 InSub x;
}

The class declares a variable of type InSub. If the import line doesn't import contents of the subpackage, you should get a
compiler error, because the compiler won't know what an InSub is. When you compile ("javac -d . TestClass.java"), you
indeed get an error. This shows that importing "*" does not import subpackages.

Exercise 2 Create a class that illegally tries to read a private variable of another class. What is the point of this exercise?

Solution 2 First let's create and compile the class that owns the private variable:
class HasPrivate
{
 private int x;
}

Now to try to access x:
class AccessX
{
 void tryIt()
 {
 HasPrivate hp = new HasPrivate();
 hp.x = 10;
 }
}

When you try to compile this class, you get an error message that says something like
x has private access in HasPrivate

The point of this exercise, and the ones that follow, is to learn to recognize error messages that stem from misuse of the concepts
in Chapter 9. This will make it easier to fix bugs when they crop up later on. Meanwhile, you're also getting good practice at
thinking in terms of packages and class inheritance structures.

Exercise 3 Create a class that illegally tries to call a default-access method of another class.

Solution 3 Your first class will be called HasDefMethod:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 3 Your first class will be called HasDefMethod:
package aaaaa;
public class HasDefMethod
{
 void deffy()
 {
 System.out.println("deffy here.");
 }
}

The method may be called by any class in package aaaaa, so any illegal call attempt will have to come from a different package,
like this:
package bbbbb;
import aaaaa.HasDefMethod;

public class BadCall
{
 void tryBadCall()
 {
 HasDefMethod h = new HasDefMethod(); // Ok
 h.deffy(); // Won't compile
 }
}

The compilation error message says something like this:
deffy() is not public in aaaaa.HasDefMethod; cannot be accessed from outside package

Exercise 4 Create a class that illegally tries to write a protected variable of another class.

Solution 4

You need to create a subclass in a different package from its superclass. First, here's the superclass:
package aaaaa;
public class HasProt
{
 protected double d;
} And here's the subclass:
package bbbbb;
import aaaaa.HasProt;

public class BadWrite extends HasProt
{
 void misuse()
 {
 HasProt other = new HasProt();
 other.d = 3.14159; // Won't compile!
 }
}

The compilation error message is
d has protected access in aaaaa.HasProt

Since the subclass is in a different package from the superclass, an instance of the subclass may only access its own copy of a
protected variable. In place of the line that doesn't compile, the following would be legal:
d = 3.14159;

Exercise 5 True or false: If a class has at least one abstract method, the class must be abstract. Write code to support your
answer.

Solution 5 True. A class with any abstract methods must be abstract. The following class will not compile:
class NotAbstract
{
 abstract void abstactMethod();
}

Exercise 6 True or false: If a class is abstract, it must have at least one abstract method. Write code to support your answer.

Solution 6 False. It's okay for an abstract class to have no abstract methods. This isn't stated explicitly in the chapter, but it's
easy enough to prove. The following class, which definitely doesn't contain any abstract methods, compiles without error:
Abstract class IsAbstract
{

}

Exercise 7 Write an application that tries to construct an instance of an abstract class. Can you compile the application? Can you
execute it?

Solution 7 Here is an abstract class:
abstract class Ab { }

Here is an attempt to instantiate it:
class ConstructAbstract
{
 void constructInstanceOfAbstractClass()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Ab theInstance = new Ab();
 }
}

The compilation error message is something like this:
Ab is abstract; cannot be instantiated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10
Exercise 1 Suppose an interface declares three methods. And suppose a class declares that it implements the interface, but in
fact it only implements two out of the three methods. What happens when you try to compile the class? (The way to answer this
question, of course, is to write an interface and a class.)

Solution 1 You get a compilation error that says your class must be declared abstract. This is a perfectly sensible requirement.
The following interface declares three methods:
interface Q1Inter
{
 public void a();
 public void b();
 public void c();
}

The following class does not completely implement the interface:
class Q1Class implements Q1Inter
{
 public void a()
 {
 System.out.println("Method a()");
 }

 public void b()
 {
 System.out.println("Method b()");
 }
}

When you compile, you get the following message or something very similar: "Class Q1Class should be declared abstract; it does
not define method c() in interface Q1Inter."

Exercise 2 If class A implements an interface, any subclasses of A inherit all the methods specified in the interface. Does this
mean that subclasses of A also implement the interface? Write code to discover the answer.

Solution 2 First, let's define the interface:
interface Q2Inter
{
 public void x();
}

Now here's a superclass that implements the interface:
class Q2Superclass implements Q2Inter
{
 public void x()
 {
 System.out.println("Hello from X.");
 }
}

And here's a subclass:
class Q2Subclass extends Q2Superclass
{
}

The subclass does not explicitly declare that it implements the interface, but it inherits an implementation of x() from its parent
class. Does the compiler believe that Q2Subclass implements Q2Inter? Let's add some test code somewhere. We need a
main() method, and we might as well put it in Q2Subclass:
class Q2Subclass extends Q2Superclass
{
 public static void main(String[] args)
 {
 Q2Subclass subby = new Q2Subclass();
 if (subby instanceof Q2Inter)
 System.out.println("It implements.");
 else
 System.out.println("It does not implement.");
 }
}

The application prints out "It implements", indicating that the subclass implicitly implements the interface declared explicitly by the
superclass. In other words, interface implementation is a property that is inherited by subclasses.

Exercise 3 Given the following interface:
interface InterfaceQ3
{
 void printALine();
}

Will the following code compile?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ClassQ3 implements InterfaceQ3
{
 void printALine()
 {
 System.out.println("OK");
 }
}

Solution 3 The code will not compile. The sources don't use explicit access modifiers. In the class code, this means
printALine() has default access. But all methods (and constants) in an interface are public. The error message is something
like this:
Method printALint() in class ClassQ3 cannot implement method printALint() in interface InterfaceQ3 with weaker access privileges, was public…

Exercise 4 Don't worry, the following question requires absolutely no understanding of physics. In fact, it might make you grateful
that you chose computer programming instead. Suppose you have the following interface:
package physics;
interface PhysicsConstants
{
 public static final double ELECTRON_MASS_KG = 9.11e-31;
 public static final double
 STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2 = 5.67e-8;
}

What does the following application print out?
package physics;

public class Q4 implements PhysicsConstants
{
 public static void main(String[] args)
 {
 System.out.println("The value is " +
 STEFAN_BOLTZMAN_CONSTANT_WATTS_PER_M2);
 }
}

Solution 4 Trick question. The code doesn't print out anything, because it does not compile. There are two n's in "Boltzmann",
but in the main() method there is only one.

The point of this question is to show that human eyes aren't the best mechanism for catching typos in long strings. When you try
to compile the application, the compiler immediately finds the typo for you and directs you to the line you need to fix. If you used
literal numerical values instead, you would be typing a much shorter string. "5.67e-8" only has 7 characters, versus 38 in
"STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2", so the odds of a typo are 7/38 what they would be if you used the named
constant. However, if you type "5.67e-8" enough times, you are bound to make a mistake eventually, and the effort of finding the
typo would more than cancel out the time you saved by typing the shorter literal numeric value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11
Exercise 1 What happens when you run a program that creates an array of ints and then sets the value of an array component
whose index is greater than the length of the array?

Solution 1 The following code tries to set component 60 in an array of length 50:
public class Ch11Q1
{
 public static void main(String[] args)
 {
 int[] ints = new int[50];
 ints[60] = 12345;
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang.ArrayIndexOutOfBoundsException at Ch11Q1.main(Ch11Q1.java:6) Exception in thread "main"

Exercise 2 What happens when you run a program that creates an array of ints whose length is less than zero?

Solution 2 The following code tries to set create an array of length -25:
public class Ch11Q2
{
 public static void main(String[] args)
 {
 int[] ints = new int[-25];
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang.NegativeArraySizeException atCh11Q2.main(Ch11Q2.java:5) Exception in thread "main"

Exercise 3 What happens when you run a program that prints out the result of dividing a non-zero int by zero?

Solution 3 The following code tries to divide 39 by 0:
public class Ch11Q3
{
 public static void main(String[] args)
 {
 int and = 39 / 0;
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang. ArithmeticException: / by zero atCh11Q3.main(Ch11Q3.java:5) Exception in thread "main"

Exercise 4 Write a program with a try block that just prints out a message. After the try block, add a catch block that catches
java.io.IOException (which obviously is not thrown by the try block). Does the code compile? If it compiles, what happens
when it runs?

Solution 4 The following code catches an exception type that is never thrown:
public class Ch11Q4
{
 public static void main(String[] args)
 {
 try
 {
 System.out.println("Oye como va");
 }
 catch (java.io.IOException x)
 {
 System.out.println("Caught it.");
 }
 }
}

The Java compiler protects you from writing code that can never be run. Since IOException is not thrown from the try block, the
catch block will never execute. Compilation fails with the following sort of error message:
Exception IOException is never thrown in the corresponding try block

Exercise 5 Suppose a try block throws many different subclasses of IOException (and no other exception types). Suppose you
want to catch a few specific subclass types, such as PrinterIOException or ConnectException. All other exception types
should be caught in a safety-net block. Your safety-net block can catch IOException or Exception. The code will produce the
same behavior either way, but the "Catch Blocks and instanceof" section of Chapter 11 says that it's better to use IOException.
Speculate on why this is true.

Solution 5 Consider a stranger reading your program for the first time. Ask yourself how you can make the source code as easy
as possible to understand. This is always a good thing to do, because one day that stranger might be you. (Even if you're reading
your own code. It's amazing how you can come back to something you wrote only a few months ago, only to find that you don't
remember why you did what you did.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your safety-net code catches IOException, the stranger will conclude, "The try block throws many kinds of IOException."
But if your safety-net code catches Exception, the stranger will think, "The try block might throw anything." So a more specific
safety-net catch block gives the stranger more specific information about what the try block might throw.

Exercise 6 What three decisions do you have to make when creating a custom exception subclass?

Solution 6 You have to decide if you want a checked exception or a runtime exception. You have to choose a name for your
class. And you have to choose a superclass.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12
Exercise 1 In the beginning of Chapter 12, you learned that a good rule of thumb is to use core code when you can and develop
original code when you must. Because Java is an object-oriented language, you have a third option, which combines reusing
existing code with creating your own. You learned about this option in an earlier chapter. What is it?

Solution 1 The third option is to subclass an existing class. The subclass you create combines preexisting features inherited from
the superclass with new features that you implement in the subclass.

Exercise 2 If you write code that calls a deprecated method of one of the core Java classes, what valuable feature of Java can
you no longer rely on?

Solution 2 Backward compatibility.

Exercise 3 Suppose you are reading someone else's code and you come across the following lines:
Stack myStack = new Stack(); // java.util package
myStack.setSize(100);

You decide to look up setSize() in the APIs. The comment kindly tells you that class Stack is in package java.util, so you
click on java.util in the packages frame, and then you click on Stack in the classes frame. You find yourself looking at the class
description. You scroll down to the method summaries, and you don't see setSize anywhere.

How should you proceed?

Solution 3 There are two ways that class Stack can get a setSize() method: it can implement it, or it can inherit it. Clearly
Stack doesn't implement setSize(), so it must inherit it.

Scroll down past the end of the method summary section, to the inherited method section. You will see a list of methods inherited
from java.util.Vector, which is Stack's immediate superclass. There you will see a "setSize" link. Click on it to see the
method description on the java.util.Vector page.

Alternately, you can scroll up to the top of the Stack description page to the inheritance hierarchy. There you will find a link to the
Vector superclass. Scroll down to the method summaries, where you will find setSize().

Exercise 4 In the section on the String class, you learned about the startsWith(String s) method, which returns true if
the executing string object begins with the argument string s. It stands to reason that there should be a similar method that tells
you whether the executing string object ends with a specified string. Look at the API page for java.lang.String and see if
such a method exists.

Solution 4 The method does exist. It is called endsWith().

Exercise 5 What happens when you try to compile and execute the following application?
public class Ch12Q5
{
 public String toString()
 {
 return "I am an instance of Ch12Q5.";
 }
 public static void main(String[] args)
 {
 Ch12Q5 thing = new Ch12Q5();
 System.out.println(thing);
 }
}

Solution 5 The program compiles and executes without error. The call to System.out.println() calls toString() on
thing, so the output is
I am an instance of Ch12Q6.

Exercise 6 What happens when you try to compile and execute the following application?
class Ch12Q6
{
 String toString()
 {
 return "I am an instance of Ch12Q6.";
 }
 public static void main(String[] args)
 {
 Ch12Q6 thing = new Ch12Q6();
 System.out.println(thing);
 }
}

Solution 6 The difference between this application and the one in Exercise 5 is that the "public" modifiers have been removed
from the declarations of the class and the toString() method. Now the code won't compile, because toString() is public in
class Object, which is the superclass of Ch12Q6. If you override a method, as you have done here with toString(), it is illegal
to give the subclass version weaker access than the superclass version.

Exercise 7 Look up the explanation of the equals() method on the API page of class java.lang.Object. The explanation is a bit
wordy, but see if you can figure out what it does. (Focus on the last sentence, just before the "Parameters" section.) What is the
technical term for what the method does? (Hint: It was introduced in Chapter 12.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 7 The method checks for reference equality. This isn't so useful, because equals() is supposed to check for object
equality. No wonder subclasses of Object override equals().

Exercise 8 You're not allowed to construct an instance of the java.lang.Math class. What happens if you try?

Solution 8 If you write a program that contains the line
Math m = new Math();

you will get an error message that says something like
…constructor Math() has private access in class java.lang.Math.

The constructor for the java.lang.Math is private. This means that the constructor can be invoked only from within the class
itself. This is how the class ensures that you and I can never write code that constructs a Math instance.

Exercise 9 The following code models the behavior of a familiar piece of equipment that is used in many games throughout the
world. What is the piece of equipment?
long rand = 1 + Math.round(Math.random() * 5);

Solution 9 The code generates a random int that is >=1 and <=6, so it simulates shaking dice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13
Exercise 1 In Chapter 13, you learned about the following line:
String s = "C:my_backup\temporary\news";

What does the following code print out?
String s = "C:my_backup\temporary\news";
System.out.println("***\n" + s + "***");

What is the moral of this exercise?

Solution 1 The code prints the following bizarre output:

C:my_backup emporary
ews

The backslash-t is interpreted as a tab, and the backslash-n is interpreted as a newline. The moral is that you always have to use
double backslashes in literal strings and chars if you want an actual backslash and not an escape code.

Exercise 2 The code examples in the "Writing and Reading Data" section defined an int called i, a float called f, a double called
d, and so on. But the long was called n, which breaks the pattern. You might have expected the long to be called l. Why do you
think this was not done?

Solution 2 The lowercase letter "ell" looks just like a "one." If you use a lowercase "ell" as a variable name, your code becomes
hard to understand. Uppercase "oh" and lowercase "ell" are the two least readable variable names. (Notice how they are spelled
out here, in order to make sure there is no confusion. It would be less helpful to tell you that O and l are bad variable names.)

Exercise 3 Write a program that creates a file containing 5,000 random doubles that are >= 0 and <200.

Solution 3 The following code creates a file that contains 5,000 random numbers in the required range:
import java.io.*;

public class Ch13Q3
{
 public static void main(String[] args)
 {
 try
 {
 FileOutputStream fos;
 DataOutputStream dos;
 fos = new FileOutputStream("RandomDoubles");
 dos = new DataOutputStream(fos);
 for (int i=0; i<5000; i++)
 {
 double randy = Math.random() * 200;
 dos.writeDouble(randy);
 }
 dos.close();
 fos.close();
 }
 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

Exercise 4 Write a program that verifies the file you created in the previous exercise. Your program should read the 5,000
doubles, making sure that each falls within the proper range. Your program should also make sure the file contains exactly 5,000
longs.

Solution 4 The following code validates the file that was created in Exercise 3:
import java.io.*;

public class Ch13Q4
{
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis =
 new FileInputStream("RandomDoubles");
 DataInputStream dis = new DataInputStream(fis);
 boolean readBad = false;
 for (int i=0; i<5000; i++)
 {
 double randy = dis.readDouble();
 if (randy < 0 || randy > 200)
 {
 readBad = true;
 System.out.println("Read bad double: " +
 randy);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 randy);
 }
 }
 if (!readBad)
 System.out.println("File is valid.");
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

The for loop reads 5,000 doubles from the file and checks their range. If a double is out of range, the "Read bad double" message
is printed out and the variable readBad is set to true. After the loop, readBad is checked. If it never got set to true, the file is
considered valid.

Exercise 5 Look up the API documentation for the java.io.File class. An instance of this class contains information about an
individual file. One of the methods of the class tells you the length in bytes of a file. Use this method to determine the number of
bytes in the file you created in Exercise 3.

Solution 5 The following program uses the File class to read the size of the file created in Exercise 3:
import java.io.*;

public class Ch13Q5
{
 public static void main(String[] args)
 {
 File f = new File("RandomDoubles");
 System.out.println("Length = " + f.length());
 }
}

The code prints out "Length = 40000". This is to be expected. The file contains 500 doubles, and each double is 8 bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14
Exercise 1 The first code example in Chapter 14 used the following code to set a frame's background color:
setBackground(new Color(128, 128, 128));

Describe the color that this line creates.

Solution 1 The color has equal levels of red, green, and blue, so it will be some kind of gray. Since the levels are halfway
between the minimum (0) and the maximum (255), the gray will be about halfway between black and white: a neutral gray, neither
dark nor light.

Exercise 2 Run Color Lab, and adjust the scrollbars so that the displayed color matches something you can see (a piece of
clothing you're wearing, or something on your desk, or anything else you like). Now write an application that displays a frame
whose interior is the color you've chosen.

Solution 2 The following code shows a frame whose interior matches the color of the shirt I was wearing when I wrote this.
import java.awt.*;

 public class EmptyFrame extends Frame
 {
 EmptyFrame()
 {
 setBackground(new Color(0, 217, 255));
 setSize(300, 300);
 }

 public static void main(String[] args)
 {
 EmptyFrame em = new EmptyFrame();
 em.setVisible(true);
 }
 }

Remember that in addition to setting the background color, you have to call setSize() and setVisible(). Otherwise the
frame cannot be seen.

Exercise 3 One of the code examples in Chapter 14 used the getSize() method, which Frame inherits from one of its
superclasses. Use the API to find out which superclass implements the method.

Solution 3
java.awt.Component

Exercise 4 Write a program that draws a five-pointed star. Your frame should be 400 x 400 pixels. The coordinates of the star's
points are (200, 375), (97, 58), (366, 254), (34, 254), and (303, 58). The easy way is to write a paint() method that calls
drawLine() five times. But that approach isn't ideal, because you have to type each x and each y twice. (Each point is the end of
two lines, so it appears in two drawLine() calls.) Typing data, code, or anything else more than once is considered bad style. If
one of the copies has a typo and doesn't match the original precisely, your program won't function correctly. To avoid duplication
of data, your program should have two int arrays, defined as follows:
int[] xs = {200, 97, 366, 34, 303};
int[] ys = {375, 58, 254, 254, 58};

Your paint() method should have a loop that accesses these arrays. drawLine(...) should appear only once in your code,
inside the loop.

Solution 4 The following program uses a loop to draw a five-pointed star:
 1. import java.awt.*;
 2.
 3. public class Supe extends Frame
 4. {
 5. int[] xs = {352, 106, 200, 294, 48};
 6. int[] ys = {151, 329, 40, 329, 151};
 7.
 8. Supe()
 9. {
10. setSize(400, 400);
11. }
12.
13. public void paint(Graphics g)
14. {
15. for (int startPoint=0;
16. startPoint<xs.length;
17. startPoint++)
18. {
19. int endPoint = startPoint + 1;
20. if (endPoint == xs.length)
21. endPoint = 0;
22. g.drawLine(xs[startPoint], ys[startPoint],
23. xs[endPoint], ys[endPoint]);
24. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24. }
25. }
26.
27. public static void main(String[] args)
28. {
29. (new Supe()).setVisible(true);
30. }
31. }

Lines 19-21 can be replaced by the following single line:
Int endPoint = (startPoint+1) % xs.length;

Exercise 5 Write a program that lists all the font families that are available on your computer.

Solution 5 The following program lists all the available font families.
import java.awt.GraphicsEnvironment;

public class ListFonts
{
 public static void main(String[] args)
 {
 GraphicsEnvironment grenv =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] names =
 grenv.getAvailableFontFamilyNames();
 for (int i=0; i<names.length; i++)
 System.out.println(names[i]);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15
Exercise 1 Suppose you use the following code to create a checkbox:
Checkbox cbox = new Checkbox("Ok", true);

What is the checkbox's state after you click on it 20,000 times?

Solution 1 The checkbox's initial state is true. After you click on it an even number of times, it is true again. There are two
ways to get the answer: thinking about it, or doing it. If you chose the second way, you might not be cut out to be a computer
programmer.

Exercise 2 In the "Checkboxes" section of Chapter 15, the Boats application is 30 lines long. The code isolates literal strings in
an array near the top of the listing. You saw how this approach, along with the use of a loop to create the checkboxes, results in
more maintainable code. Rewrite the code to eliminate the loop and the string array. In place of the loop in the constructor, just
create three checkboxes one by one. How many lines of code does your new application have?

Solution 2 Here is the rewritten code:
 1. import java.awt.*;
 2.
 3. class BoatsNoLoop extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7.
 8. BoatsNoLoop()
 9. {
10. setLayout(new FlowLayout());
11.
12. cboxes = new Checkbox[3];
13. cboxes[0] = new Checkbox("a small boat");
14. add(cboxes[0]);
15. cboxes[1] = new Checkbox("a medium boat");
16. add(cboxes[1]);
17. cboxes[2] = new Checkbox("a large boat");
18. add(cboxes[2]);
19. btn = new Button("Add to shopping cart");
20. add(btn);
21.
22. setSize(600, 200);
23. }
24.
25. public static void main(String[] args)
26. {
27. new BoatsNoLoop().setVisible(true);
28. }
29. }

This version is only 29 lines, one line shorter than the original. The point is that a shorter program is not necessarily easier to read
or maintain than a longer version. If you still aren't convinced that the original version is better, try Exercise 3.

Exercise 3 This is an extension of Exercise 2. Suppose you need to change the Boats application so that instead of offering
three sizes (small, medium, and large), it offers ten (rubber duck, sponge, tiny, small, kinda small, medium, kinda large, large,
huge, titanic). How does this affect the size of the code as it appears in the "Checkboxes" section of Chapter 15? How does it
affect the size of the code that you wrote for Exercise 2?

Solution 3 The loop-based code will probably become longer by two lines, because the array of literal strings now has 10
members:
String[] sizes = {"rubber duck", "sponge", "tiny", "small", "kinda small",
"medium", "kinda large", "large", "huge", "titanic"};

The no-loop version grows by two lines for every additional size option (one line to construct a checkbox, another to call add()).
Seven new options were added, so the code grows by 14 lines, or 50%.

Note Programs usually start out small, and gradually grow as they are required to support more and more functionality.
Giving structure to a small program is always worth the effort. The payoff might not be immediately obvious, but it will
become more and more evident as time goes by. In Exercise 2, the well-structured program was actually longer than
the unstructured version. But when the code needed to support more functionality, the unstructured version grew by
50% while the structured version grew by about 7%.

Exercise 4 Write an application that displays a frame with a menu bar. The bar should have the following menus:

An Edit menu with items Copy and Cut.

A File menu with items Close, Exit, and Open.

A Help menu with item Help. Assume that clicking on this item will display a helpful dialog.

A Whatever menu with items Stuff and Nonsense. The Nonsense item should be a submenu with items Ordinary Nonsense
and Extreme Nonsense.

Make sure that your GUI follows the guidelines listed at the end of the "Menus" section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 4 Here is one solution:
import java.awt.*;

class Q4 extends Frame
{
 public Q4()
 {
 MenuBar mbar = new MenuBar();

 Menu fileMenu = new Menu("File");
 fileMenu.add("Open...");
 fileMenu.add("Close");
 fileMenu.add("Exit");
 mbar.add(fileMenu);

 Menu editMenu = new Menu("Edit");
 editMenu.add("Cut");
 editMenu.add("Copy");
 mbar.add(editMenu);

 Menu whateverMenu = new Menu("Whatever");
 whateverMenu.add("Stuff");
 Menu nonsenseMenu = new Menu("Nonsense");
 nonsenseMenu.add("Ordinary Nonsense");
 nonsenseMenu.add("Extreme Nonsense");
 whateverMenu.add(nonsenseMenu);
 mbar.add(whateverMenu);

 Menu helpMenu = new Menu("Help");
 helpMenu.add("Help...");
 mbar.add(helpMenu);

 setMenuBar(mbar);

 setSize(300, 200);
 }

 public static void main(String[] args)
 {
 (new Q4()).setVisible(true);
 }
}

The following illustrations show the four menus, File, Edit, Whatever, and Help:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 5 Write a program that creates a GUI that looks like the following illustration. The text in the text area should be set
programmatically by a single call to the text area's append() method. The call should come directly after the text area is
constructed.

Solution 5 Here is one solution:
 1. import java.awt.*;
 2.
 3. class Q5 extends Frame
 4. {
 5. public Q5()
 6. {
 7. setLayout(new FlowLayout());
 8. TextArea ta = new TextArea(10, 30);
 9. ta.append("Hello\nWorld");
10. add(ta);
11.
12. setSize(550, 220);
13. }
14.
15. public static void main(String[] args)
16. {
17. (new Q5()).setVisible(true);
18. }
19. }

The text is set in line 9. The thing to notice is the newline character, which puts in a line break. It would be wrong to replace line 9
with this:
ta.append("Hello");
ta.append("World");

Line breaks are inserted only when you explicitly append a newline character. So with the substitution, you would see a single line
of text that read "HelloWorld". There wouldn't even be a space between the words.

Exercise 6 Using the API page for java.awt.FlowLayout, determine how to create a flow layout manager that right-justifies
its cluster of components rather than centering it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 6 Use the following constructor:
new FlowLayout(FlowLayout.RIGHT)

Exercise 7 The java.awt.Component class, which is a superclass of java.awt.Button, has a method called setSize(int
width, int height). The method's documentation says that it resizes the component so that its size is width times height.

What do you expect the following code to do? First, read the listing and decide on your answer. Then, type in the code and run it.
Did you see what you expected to see?
import java.awt.*;

class Q7 extends Frame
{
 public Q7()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Abcde");
 btn.setSize(500, 500);
 add(btn);
 setSize(700, 700);
 }

 public static void main(String[] args)
 {
 (new Q7()).setVisible(true);
 }
}

Solution 7 The code seems to create a large (500 x 500) button in a 700 x 700 frame. But actually, the button's size is perfectly
ordinary. The Flow layout manager sets the size of the button to its preferred size.

Exercise 8 This entire chapter has been about components that are installed inside containers. The previous chapter was about
painting. What happens if a frame that contains components also has a paint() method that paints a part of the screen that is
occupied by a component? Write a program that will reveal the answer.

Solution 8 The frame in the following application has a button, as well as a paint() method. The paint() method draws
diagonal blue lines.
import java.awt.*;

class PaintPlusComponent extends Frame
{
 public PaintPlusComponent()
 {
 setLayout(new FlowLayout());
 add(new Button("Apply"));
 setSize(300, 200);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.blue);
 for (int i=0; i<500; i+=10)
 g.drawLine(i, 0, 0, i);
 }

 public static void main(String[] args)
 {
 (new PaintPlusComponent()).setVisible(true);
 }
}

The following illustration shows the GUI. As you can see, the button is superimposed over the painted lines. Whenever a
component and a paint() method are both responsible for the same part of the screen, the component wins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16
Exercise 1 Write a program that displays a frame. The frame's paint() method should draw something simple. The application
should also maintain a count of the number of times paint() is called. This count should be printed out every time paint() is
called. Execute your application, and use it to help determine whether paint() is called when:

The application starts up.

The frame is minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is moved.

The frame is partially covered by another frame.

The frame is uncovered.

Solution 1 The following code prints a message whenever paint() is called:
import java.awt.*;

public class Ch16Q1 extends Frame
{
 int nCallsToPaint;

 Ch16Q1()
 {
 setSize(300, 300);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.cyan);
 g.drawLine(100, 100, 200, 200);
 nCallsToPaint++;
 System.out.println(nCallsToPaint +
 " calls to paint()");
 }

 public static void main(String[] args)
 {
 (new Ch16Q1()).setVisible(true);
 }
}

The paint() method is called when the application starts up, and when it is restored after being minimized/iconified. It is also
called when the frame is uncovered. It is not called when the frame is moved. Depending on your system, it may or may not be
called when the frame is covered.

Exercise 2 Every Java thread is represented by an instance of the java.lang.Thread class. You can get a reference to the
currently running thread by calling the currentThread() static method of the Thread class. Threads have names. The class
has a method called getName(), which returns the name as a string. So you can print out the name of the current thread by
calling
System.out.println(Thread.currentThread().getName());

Write a simple frame application that makes this call in its main() method and in its paint() method. Verify that main()and
paint() are executed in different threads.

Solution 2 The following application prints the name of the current thread in main() and paint():
import java.awt.*;

public class Ch16Q2 extends Frame
{
 Ch16Q2()
 {
 setSize(300, 300);
 }

 public void paint(Graphics g)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void paint(Graphics g)
 {
 g.setColor(Color.cyan);
 g.drawLine(100, 100, 200, 200);
 System.out.println("paint() thread is called:");
 System.out.println(Thread.currentThread().getName());
 }

 public static void main(String[] args)
 {
 System.out.println("main() thread is called:");
 System.out.println(Thread.currentThread().getName());
 (new Ch16Q2()).setVisible(true);
 }
}

Exercise 3 Write an application that adds the same action listener to a button twice. For example, if myButton is the button and
myListener is the action listener, your code would contain the following lines:
myButton.addActionListener(myListener);
myButton.addActionListener(myListener);

Your listener's actionPerformed() method should print out a message to tell you that it got called. If you press the button
once, do you expect the message to be printed out once or twice? Run your application to see if you guessed right.

Of course, in real life there would never be a good reason for doing this. But you might do it by accident. For example, you might
paste the line into your source code twice by accident. So it's good to know in advance what the symptom will be, so that you can
recognize it and fix the problem if it ever comes up.

Solution 3 Here is the listener class:
import java.awt.event.*;

class Aclis implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("actionPerformed() was called.");
 }

And here is the application class:
import java.awt.*;

public class Ch16Q3 extends Frame
{
 Ch16Q3()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 Aclis ac = new Aclis();
 btn.addActionListener(ac);
 btn.addActionListener(ac);
 add(btn);
 setSize(300, 300);
 }

 public static void main(String[] args)
 {
 (new Ch16Q3()).setVisible(true);
 }
}

When you push the button, the message is printed out twice.

Exercise 4 Suppose a class has an actionPerformed() method, as specified by the ActionListener interface, but the
class does not state that it implements the interface. Can an instance of the class be used as a button's action listener?

Solution 4 The following class contains an actionPerformed() method, but it does not declare that it implements the
ActionListener interface:
import java.awt.event.*;

class NotAnActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("actionPerformed() was called.");
 }
}

Since the class has the right kind of method, you might be tempted to use it as an action listener:
. . .
Button btn = new Button("OK");
NotAnActionListener naal = new NotAnActionListener();
btn.addActionListener(naal);
. . .

This code will not compile. For a class to be eligible to be an action listener, it is not enough for it to provide an
actionPerformed() method, because that alone does not mean that it implements the ActionListener interface .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

actionPerformed() method, because that alone does not mean that it implements the ActionListener interface .

Exercise 5 Run Nim Lab by typing java events.NimLab. Select Disable Buttons..... and play the game. This version is the
result of three rounds of improvements made to the original program. What additional improvements can you suggest? Think
about how the game could be modified to make the GUI easier and more natural.

Solution 5 Here are some possible improvements:

Add a Restart button.

Provide notification when a player wins.

Eliminate the buttons. Players would click on a coin to remove it. This would provide direct manipulation of the
coins, rather than the indirect manipulation that the buttons provide.

Do you have any other ideas? E-mail them to groundupjava@sgsware.com, and they might be included in the next revision of
this book (with your name mentioned).

Exercise 6 The various event classes (ActionEvent, ItemEvent, etc.) all inherit the getSource() method from a
superclasss. Use the API pages to determine the name of that superclass.

Solution 6 java.util.EventObject.

Exercise 7 Write an application with a GUI that contains a choice and a text area. When the choice is activated, a message
should be written to the text area, stating the choice's selected index.

Suggested design: Your frame should contain a panel (at North) that contains the choice. The text area should be at South. If you
need a guideline, the TextAreaNim program in the "Improving the GUI" section has a similar structure.

Solution 7 Here's the code:
import java.awt.*;
import java.awt.event.*;

public class Ch16Q7 extends Frame implements ItemListener
{
 private Choice choice;
 private TextArea ta;

 Ch16Q7()
 {
 Panel pan = new Panel();
 choice = new Choice();
 choice.add("Dragons");
 choice.add("Centaurs");
 choice.add("Unicorns");
 choice.add("Manticores");
 choice.addItemListener(this);
 pan.add(choice);
 add(pan, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");

 setSize(300, 200);
 }

 public void itemStateChanged(ItemEvent e)
 {
 ta.append("You chose " +
 choice.getSelectedIndex() +
 "\n");
 }

 public static void main(String[] args)
 {
 (new Ch16Q7()).setVisible(true);
 }
}

The following illustration shows the GUI for Exercise 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 8 Write an application with a GUI that contains a text field and a text area. When the user presses the Enter key in the
text field, the text field's contents should be copied into text area, followed by a newline character.

Your event-handling code will need to retrieve the contents of the text field. You do that by calling the text field's getText()
method, which returns a string.

Suggested design: Your frame should contain a panel at North that contains the text field. The text area should go at Center.

Solution 8 Here's the code:
import java.awt.*;
import java.awt.event.*;

public class Ch16Q8extends Frame implements ActionListener
{
 private TextField tf;
 private TextArea ta;

 Ch16Q8()
 {
 Panel pan = new Panel();
 tf = new TextField("Type Here ");
 tf.addActionListener(this);
 pan.add(tf);
 add(pan, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");

 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 ta.append(tf.getText() + "\n");
 }

 public static void main(String[] args)
 {
 (new Ch16Q8()).setVisible(true);
 }
}

The following illustration shows the GUI for Exercise 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17
Exercise 1 Write a program that creates a frame with a File menu. The menu should have two items, Save... and Exit. When
Save... is selected, the code should display a file dialog box, configured for saving a file. When the user has specified a file via the
dialog box, your code should output the name of the file. All the information you need is on the API page for
java.awt.FileDialog.

Solution 1 Here's the code:
import java.awt.*;
import java.awt.event.*;

class SaverFrame extends Frame implements ActionListener
{
 private MenuItem saveMI, exitMI;

 public SaverFrame()
 {
 // Build menu.
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 saveMI = new MenuItem("Save...");
 saveMI.addActionListener(this);
 fileMenu.add(saveMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);
 setSize(300, 150);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == exitMI)
 System.exit(0);

 FileDialog dia = new FileDialog(this, "Save Your Work",
 FileDialog.SAVE);
 dia.setVisible(true);
 String fileName = dia.getFile();
 if (fileName == null)
 System.out.println("You canceled the dialog.");
 else
 System.out.println("You chose file " + fileName + "
 in " + dia.getDirectory());
 }

 public static void main(String[] args)
 {
 (new SaverFrame()).setVisible(true);
 }
}

The following illustration shows the file dialog, configured for saving.

Exercise 2 The FileDialog class has a setDirectory() method that controls which directory the dialog box will display.
Look up the method description in the API to become familiar with how it works. Modify the final project code so that when the file
dialog box appears, it displays one of the directories on your computer where you have stored some of your own Java source
code. This will make it easier to display your own work.

Solution 2 Let's say you want the dialog to display the directory C:\MyCode\Ch7_Exercises. In actionPerformed(),
change the code that constructs the file dialog, which in its original form looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);

 dialog.setVisible(true); // Modal
 …

Add the setDirectory() call immediately after the dialog is constructed, before it is made visible:
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 {
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);
 dialog.setdirectory("C:\\MyCode\\Ch7_Exercises");

 dialog.setVisible(true); // Modal
 …

Tip Remember that in Java literal strings, single backslashes are escape characters that have special significance. That's
why the argument to the setDirectory() call is C:\\MyCode\\Ch7_Exercises and not
C:\MyCode\Ch7_Exercises.

Exercise 3 Write an application that displays a canvas subclass in a frame, at Center. The frame does not contain any other
components.

Use the following code as the paint() method for the canvas subclass:
1. public void paint(Graphics G)
2. {
3. g.setFont(new Font("Serif", Font.PLAIN, 24));
4. g.setColor(Color.blue);
5. g.drawString("Look at this!", 0, 0);
6. }

Run the program. Do you see what you expected to see? How do you explain the results?

Now change line 5 to this:
g.drawString("A bluejay in a quagmire", 0, 0);

Now do you see what you expected to see? Again, how do you explain the results?

Solution 3 Here's the code:
import java.awt.*;

class TextCanvas extends Canvas
{
 public void paint(Graphics g)
 {
 g.setFont(new Font("Serif", Font.PLAIN, 24));
 g.setColor(Color.blue);
 g.drawString("A bluejay in a quagmire", 0, 0);
 }

 public static void main(String[] args)
 {
 Frame fr = new Frame();
 TextCanvas tc = new TextCanvas();
 fr.add(tc, "Center");
 fr.setSize(250, 250);
 fr.setVisible(true);
 }
}

The y-coordinate argument of the drawString() method of class Graphics specifies the vertical position of the baseline of the
text. If the baseline is 0, you will only see those parts of the text that descend below the baseline. In the string "Look at this!", there
are no descenders. In "A jay in a quagmire", there is one occurrence of each character that descends: j, y, q, and g. The following
illustration shows the GUI with the misplaced baseline. You can see the bottom portions of those letters, hanging down from the
top of the canvas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 4 The FancySrcCanvas class has an array of Java keywords. In that array, throws comes before throw. Otherwise,
the list is alphabetical. Why does throws comes before throw?

Solution 4 The code that looks for keywords checks every position in every source line to see if it begins with a keyword. If it
finds a match, it overpaints the keyword in the appropriate color. If throw came before throws, consider what would happed to
the following line:
void printPaycheck(Employee emp) throws IOException

The code would overpaint throw, but the s would remain black.

Exercise 5 There are several situations in which the project code would improperly draw text in the keyword color. How many of
these situations can you name?

Solution 5 The keyword-finding code ignored line comments—that is, comments beginning with a double slash. But it does
nothing about comments that begin with slash-star (/*) and end with star-slash (/*). Any keyword that appeared in such a
comment would be overpainted in the keyword color. The following line would look especially strange:
/* Let's go forward despite stiff competition. */

The "for" in "forward" and the "if" in "stiff" would appear in the keyword color.

Keywords might coincidentally appear in literal strings, for example:
System.out.println("while I was dreaming …");

Lastly, keywords might be embedded in the names of classes, variables, or methods:
class Republic extends Country { … }

Exercise 6 How would you modify the project code so that null, true, and false are not rendered in the keyword color?

Solution 6 Delete them from the keywords array in FancySrcCanvas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Glossary

A
abstract (keyword)

An abstract method has no body. It may not be instantiated. If a class contains any abstract methods, the class
itself must be declared abstract.

access modifiers
Keywords that set the access level of classes, data, and methods.

accessors
A method that supports data hiding. It has an empty argument list and returns a data value. By common
convention, the name of an accessor method begins with get, followed by the property to be retrieved.

additive primary colors
The primary colors of video screens (red, green, and blue). They combine to form yellow, cyan, and magenta.

allocation
Assigning memory for use as objects or arrays.

analog circuit
Non-digital circuit, where precise voltage values are significant.

application
A Java program that’s executed in a Java Virtual Machine, consisting of one or more classes.

array
A cluster of variables (components) that are all of the same type. The array has a name, but its individual
components do not.

ASCII
An abbreviation for American Standard Code for Information Interchange. ASCII encodes all the characters in
American English, plus punctuation marks, into the range 0-127. The range 128-255 encodes symbols such as
accented vowels, which are used in western European languages, as well as some Greek characters, line-
drawing symbols, and some others.

assembler
Any program that translates assembly code into base-2 instructions.

assembly language
The language of programming with op-codes. Typically, one line of assembly language code corresponds to a
single computer instruction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B
baseline

The imaginary horizontal line on which the bodies of text characters rest.

binary operators
Numeric or boolean operators that take two operands.

bit
The smallest unit of memory, capable of storing 0 or 1. Abbreviation of “binary digit.”

Bitwise operation
Operation in which operands are treated as collections of unrelated individual bits. Only performed on integer data
types.

block
A contiguous piece of code that begins with an open curly bracket and ends with a matching closed curly bracket.

boolean (keyword)
A primitive data type that represents true or false.

bounding box
The smallest rectangle that encloses an oval.

byte (keyword)
An 8-bit signed integer primitive data type.

bytecode
The instruction code for the Java Virtual Machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C
catch block

Block of code, following a try block, that handles exceptions of a single type.

chaining
The technique of connecting data streams together.

chain of constructors
The mechanism whereby all constructors begin by invoking a constructor of the superclass.

class files
Bytecode output files produced by the compiler.

class loader
Mechanism that finds class files, reads them, and translates them into internal representations.

classpath
A list of directories that contain package structures.

comments
Text used by programmers to help readers understand the meaning of the code.

compiled language
A programming language that must be translated into computed binary. Unlike assembly language, generally a
line of source code does not correspond to a single instruction.

component
A GUI device that presents user input to programs and displays program information to users. Standard GUI
components include buttons, text fields, scrollbars, and menus. Also: An array member.

conditional code
Code that’s executed only when a boolean criterion is satisfied.

construction
Creation of an object or array.

constructor
Code that creates and initializes an instance of a class.

container
A component that can contain other components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D
data hiding

The practice of making the data of a class as inaccessible to other classes as possible.

debug code
Code whose purpose is to tell the developer about what is going on inside a program.

declaration
Code that tells the compiler the type of a variable or the return type, argument types, and exception types of a
method.

default access
Mode that grants access to all classes in the same package as the class that defines the default feature.

default constructor
A no-args constructor created by the compiler for any class that does not have ant constructors.

deprecated method
A method that was introduced in an early revision of Java and should not be used.

destination directory
The directory where the compiler will store a package structure.

dialog box
A window, subordinate to its program’s main frame, that is used for brief user interaction.

digital circuit
A circuit where voltages represent 0 or 1.

digital computers
Computers composed of digital circuits.

double (keyword)
64-bit floating-point primitive data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E
ellipsis

Three dots (...). In a GUI component, an ellipsis indicates that activating the component will cause the display of a
new window or dialog.

empty string
An instance of the String class with zero characters.

event-driven program
A program that acts mainly in response to user input.

events
The mechanism by which components inform listeners that they have been activated.

exception
An object that is thrown to indicate an unusual or error state. The throwing of an exception diverts the normal flow
of program control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F
falling through

In switch code, continuing from one case to the next in the absence of a break statement.

field
A data variable in a class.

file separator
The character that appears between elements in a full pathname.

final (keyword)
A final class may not be subclassed. A final method may not be overridden. A final variable may not be modified
after it is initialized.

flag
A boolean variable used to indicate program status.

float (keyword)
A 32-bit floating-point primitive data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G
garbage collection

The automatic recycling of unusable objects.

garbage collection thread
The thread that implements garbage collection.

GUI thread
In applications with GUIs, the thread that paints components and notifies event listeners.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I
immutable

An immutable object’s data cannot be changed.

importing
A means to allow the use of abbreviated class names.

index
A unique identifying integer for a component of an array.

inheritance
The mechanism by which a class has the data and methods of its parent classes.

instance variables
Non-static variables of a class.

integer
Any data type that represents non-fractional numbers.

interface
A list of public method declarations.

interpreted compiled language
A language whose compiled code is executed by a virtual machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

J
Java Virtual Machine

A virtual computer that runs Java programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L
label

A name associated with a loop. Labels may be used with break and continue statements.

layout manager
Objects responsible for setting the location and size of components in a container.

listener
An object that should be notified when a component’s state changes.

literal string
Text enclosed in double quotes.

look and feel
A GUI-based program’s appearance (look) and responses to user input (feel).

loop
A piece of code that’s executed repeatedly. The number of repetitions can be preset, or execution can continue
until a condition is met.

loop counter
A variable that regulates the number of passes through a loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

M
maintenance

The process of fixing bugs and adding features.

main thread
The thread that executes an application’s main() method.

memory
A circuit that stores a digital value.

method caller
The code that calls a method.

modal dialog
A dialog that consumes all mouse and keyboard input.

modulo
An operation that divides the first operand by the second operand and returns the remainder. Its symbol is the %
sign.

multidimensional
A term used to describe an array with components specified by more than one index.

multithreaded
Capable of performing more than one task at a time.

mutator/setter
Method used to support data hiding. It has a void return type and a single argument. By convention, the name of a
mutator begins with set, followed by the property to be modified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

N
namespace

A way of organizing resources (files, classes, etc.) so that name uniqueness has to be maintained only in
relatively small and manageable regions.

nesting
The technique of putting a loop within a loop.

no-args constructor
A constructor with an empty argument list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

O
object equality

An equality criterion that is true if two distinct objects have equal data.

objects
Objects are an individual instance of a class.

one-dimensional
A term used to describe an array with components specified by a single unique index.

operands
The values on which operators operate.

origin
The point with coordinates (0, 0) in a component; the upper-left corner.

overloading
Reuse of a method name in a class.

overriding
Reuse of a method name in an inheritance hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

P
package

A named group of interrelated classes.

pixel
An abbreviation for picture element. A single dot on a computer screen.

precedence
The order of execution when multiple operations are combined into a single statement.

preferred size
The default size of a component, usually derived from its label and font. Layout managers may honor or ignore
preferred size.

primitives
The non-object data types: byte, short, int, long, float, double, char, and boolean.

private access
The most restrictive access mode. A private feature may be accessed only by an instance of the class that
defines the feature.

protected access
An access mode that grants access to classes in the same package as, and subclasses of, the class that defines
the feature.

public access
Completely unrestricted access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

R
radio button

A member of a group, only one of which can be selected at any time.

reader
A class that reads 8-bit text and delivers Unicode characters.

reference
A variable that exists in accessible memory and accesses an object or array in inaccessible memory.

reference equality
An equality criterion that is true if two references point to the same object.

return value
The value returned by a method.

row major
Specification of row followed by column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

S
scalable

Useful and efficient when usage or requirements increase.

scientific notation
A useful representation for expressing very large or very small numbers. The letter E is used as shorthand for
“times ten to the...”.

scope
A variable’s scope is the matching pair of open and closed curly braces that most tightly encloses the variable’s
declaration.

serifs
Small decorations on the tips of letters that improve readability in medium to large fonts.

shifting
One of several operations that move the bits of an integral operand to the left or right by a certain number of
positions.

short-circuit operator
An operator that does not evaluate its second operand if the value of the first operand is enough to determine the
value of the operation.

signed
Supporting both positive and negative integer types.

side effect
A change in program state as a result of a method call.

source code
Code that must be translated into appropriate binary values before it can be executed by a computer.

stack trace
A listing of an application’s method call hierarchy at the moment an exception was thrown.

static
Associated with a class, rather than with an individual instance of a class.

string concatenation
The consecutive joining of strings, one after another.

subclass
A class that extends a superclass, inheriting its data and methods.

subtractive primary colors
The primary colors of paints and dyes (red, yellow, and blue). They combine to form green, orange, and purple.

superclass
A class from which a subclass inherits data and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

T
ternary operator

An operator that takes three operands. Java’s only ternary operator is ?:.

thread
A single task in a multithreaded program.

throw
To interrupt normal program flow by raising an exception.

truncate
To discard the fractional part of a number.

try block
Code following the try keyword, from which exceptions might be thrown.

two’s complement
A format used to represent signed integers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

U
unary operators

Symbols that perform operations on a single operand.

unicode
A standard for associating characters of many alphabets with 16-bit data.

update
The final part of a for loop.

UTF
A standard for converting Unicode strings into bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

V
variable-width font

Font in which different characters have different widths.

virtual computer
An imaginary computer that is simulated on a real computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

W
white space

Blank space in source code, ignored by the compiler but useful in creating code that is more readable.

wrapper
A class whose data is a single primitive value. Java’s eight wrapper classes are in the java.lang package.

writer
A class that reads Unicode characters and delivers 8-bit text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page
numbers indicate illustrations.

A
abstract classes and methods

defined, 468
working with, 182–185, 183

access control, 172–174
abstract modifier, 182–185, 183
default access, 174–176
final modifier, 180–182
with overriding, 178–180, 179
private access, 174–175
protected access, 177–178
public access, 174

access modifiers, 173–174, 468
AccessExample class, 173–174
accessible memory, 109–111, 110
accessors

with data hiding, 173
defined, 468

action listeners, 333–339, 335–339
ActionListener interfaces, 334, 363
actionPerformed method

in ActionListener, 334
in DisablingNim, 350
in FancySrcCanvas, 390–391
in FileDialogPractice, 367–368
in GraphicOutputNim, 347–348
in ListeningFrame, 341
in MenuTest, 364–365
in Simple Event Lab, 339
in SimpleActionListener, 334
in SimpleNim, 342–344
source of, 339–340
in TextAreaNim, 344–345

add method
for border layout managers, 318
for buttons, 294
for choices, 303
for menu items, 307, 355
for panels, 321

ADD opcode, 7
addActionListener method

for buttons, 334–335
for menus, 363
for scrollbars, 355

addAdjustmentListener method, 355
addItemListener method

for check boxes, 352
for choices, 352, 376

addition
basic operator for, 37
increment operator for, 45–46

additive primary colors
combining, 273–274
defined, 468

addresses of bytes, 4, 4
in instructions, 16
vs. names, 26
in opcodes, 7
in SimCom, 9–10, 9
start of, 5, 61
vs. values, 12, 110

addSeparator method, 307
addTextListener method, 353
AdjustmentListener interface, 355

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adjustments, events from, 355–356
adjustmentValueChanged method, 355–356
Advanced Exception Lab, 215, 216–217, 217
ageInNYears method, 126–127, 131
allocating memory

for arrays, 110
defined, 468

American Standard Code for Information Interchange (ASCII)
defined, 468
for file characters, 263

ampersands (&)
for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
as short-circuit operator, 49

analog circuits
defined, 468
uses for, 3

and operators
bitwise, 40–41
boolean, 46–48, 47–48

AnimatedIllustrations directory, 398, 403
anonymous instances, 289
api directory, 224
API pages

downloading, 396, 403
purpose of, 222–223
structure of, 224–228, 224–227

append method
for text areas, 312, 348
in TextArea, 344

Apple Developer Connection site, 401
applications, 468
argument bits, 6, 6
arguments

command-line, 235–236, 235
for methods, 60–64, 62–63
names for, 68

arithmetic operations
basic, 37–38
bitwise, 40–41, 40–41
modulo, 42
precedence in, 38–40, 39
shifting, 42–44, 42–44
unary, 44–46

ArrayIndexOutOfBoundsException class, 205–208
arrays

creating, 103–104, 103
declaring, 102
defined, 468
exercise questions for, 115–116
exercise solutions for, 421–423
garbage collection for, 114–115
indices for, 102, 104, 104, 470
initializing, 103, 105
length of, 104–105
loops for, 105–106
multidimensional, 106–108, 106, 108–109
as objects, 109–112, 110–112
vs. objects, 118–119
passing references to, 112–114, 113

ASCII (American Standard Code for Information Interchange)
defined, 468
for file characters, 263

assemblers
code in, 8, 17
defined, 468

assembly languages
code in, 8, 16, 17
vs. compiled, 17–18, 18
defined, 468

assignment operations, 16
compound, 51

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operator for, 38
process, 27–28

asterisks (*)
for comments, 36
in compound assignment, 51
with import, 171
for multiplication, 37

AWT toolkit, 271

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
background color for frames, 271, 275–276
backslashes (/) in filenames, 249–250
backward compatibility, 228
BarAndTF class, 356
BarAtNorth class, 317
BarChart class, 183, 185
bars (|)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
for short-circuit operator, 49

base-2 code, 17
base-2 notation, 21
baselines

defined, 468
for text, 283, 283

batch files, 398
bin directory, 397, 397
binary operators

defined, 468
symbols for, 37

bits
defined, 468
in memory, 3
opcode and argument, 6, 6

bitwise operations
defined, 468
process, 40–41, 40–41
right-shift, 43–44, 43

BlackLineOnWhite class, 278
blocks

catch. See catch blocks
defined, 468
for if statements, 74
scope in, 68

blue color, 273–274
BlueRect class, 279
Boats class, 297–298
body of methods, 59
bold font style, 284–285
BoolArrayLab animated illustration, 108, 108–109
Boolean class, 226
boolean data type

defined, 468
for if statements, 74
for logical values, 25
wrapper class for, 240

boolean operations
comparison, 50–51
evaluation of, 46–48, 47–48
short-circuit, 49–50

BooleanOps class, 46–47
BoolLab animated illustration, 47–49, 47–48
border layout managers, 313, 317–320, 317–319
bounding boxes

defined, 468
for ovals, 280–281, 281

BoxLayout layout manager, 325
break statements

labeled, 94–97
in loops, 88–89
in switch statements, 79–81

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

breaking out of loops, 88–89
BtnInAFrame class, 294
bugs, finding, 206
buildColorChoice method, 370, 373
Button class, 293
buttons

in flow layout managers, 316
working with, 293–295, 293, 295

byte data type
defined, 468
range of, 21
with result types, 52–53, 53
wrapper class for, 240

bytecode
defined, 468
in JVM, 19

bytes, 3, 3
addresses of, 4, 4, 12
on disks, 248–249

reading, 249, 254–255, 256
writing, 249, 251–252, 253

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
callers for methods, 60, 471
calling methods, 60, 66–67
Canvas class, 377
CardLayout manager, 325
carets (^)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51

Cartesian coordinates, 277, 278
case statements, 79
catch blocks

defined, 469
execution in, 202–203
with instanceof, 212–216, 216
multiple, 210–212
safety net, 213

catching exceptions, 202–203
CboxAndChoice class, 352–353
CboxInnaFrame class, 296
Center region, 317–319, 319
CenteredOval class, 282, 283
chaining

defined, 469
input, 259, 259
output, 256, 257

chains of constructions
defined, 469
in inheritance, 149–152, 149

char data type
with result types, 52–53, 53
for text, 25
wrapper class for, 240

character code for files, 263
characters, 25
charAt method, 233
charIndexToX method, 383, 386
Chart class, 182–185, 183
checkboxes

events from, 351–353, 351
in flow layout managers, 316
working with, 296–300, 296–298, 300

CheckboxGroup class, 299
checked exceptions, 205

with stack traces, 216–217
throwing, 217–220
working with, 208–209

CheckedCbox class, 297
Choice class, 302
choices

events from, 351–353, 353
working with, 301–304, 301–302, 304

ChooseFontByRadios class, 301
circles, 280
clamp method, 75
class definitions, 35, 120
class files

compiler output, 19, 29
defined, 469

class keyword, 119
class loaders

defined, 469

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functions of, 132–133, 170
.class suffix, 19, 29
classes, 119–120, 119

abstract, 182–185, 183
core. See core classes and packages
in packages, 165

classname-dot-staticVariableName syntax, 130
classpath elements, 168–170, 469
CLASSPATH environment variable

for executables
in Macintosh, 402–403
in Windows, 396, 398–399

for packages, 169
-classpath option in javac, 169
close method, 251, 258
closing streams, 251
colons (:)

in classpath elements, 169
for labels, 96
in ternary operator, 77

color
in final project, 368–376, 369, 372, 378–389, 379
for frames, 271, 275–276
for painting, 273–276, 275–276

Color class, 183, 237–238, 274
Color Lab program, 275–276, 275–276
ColorChoice class, 374–375
ColorChoiceTest class, 374–375
ColorTest class, 372–374
columns in text areas, 310
command-line arguments, 235–236, 235
comments

defined, 469
in Frame Lab, 287
painting, 383–384
types of, 36

comparison operators, 50–51
compatibility, backward, 228
compiled languages, 16–17

vs. assembly, 17–18, 18
defined, 469

compiler
downloading, 396
for packages, 166–167, 168, 169
references with, 155

compiling, 206
components, 102, 292, 292

buttons, 293–295, 293, 295
checkboxes

events from, 351–353, 351
in flow layout managers, 316
working with, 296–300, 296–298, 300

choices
events from, 351–353, 353
working with, 301–304, 301–302, 304

defined, 469
events for. See events
exercise questions for, 327–328
exercise solutions for, 448–454
labels, 304–305, 305
layout managers. See layout managers
menus, 305–309, 307–308
scrollbars, 312–313, 313
text areas, 310–312, 311–312
text fields, 309–310, 310

compound assignments, 51
computePixel method, 90
concat method, 233
concatenation of strings, 233, 237–239, 238–239
ConcatLab animated illustration, 238–239, 238–239

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditionals, 74
defined, 469
exercise questions for, 98–99
exercise solutions for, 416–420
in for loops, 87, 87
if statements, 74–76
switch statement, 77–81
ternary operator, 76–77

ConnectException class, 210–211, 213–215, 219
constants

benefits of, 181–182
in interfaces, 193–194

construction
chains of, 149–152, 149
defined, 469
with new, 111

ConstructorLab animated illustration, 150–152
constructors, 146–147

in API pages, 227, 227
default, 148–149
defined, 469
overloading, 147–148

Container class, 313
containers, 469
contexts, graphics, 277
continue statement

labeled, 94–97
purpose of, 89–90

coordinates, 277, 278
core classes and packages, 205, 222–223

API pages for, 222–228, 224–227
exercise questions for, 244–246
exercise solutions for, 440–442
java.lang, 228
java.lang.Integer, 240–241
java.lang.Math, 243–244
java.lang.Object, 236–239, 238–239
java.lang.String, 229–236, 231–232, 234–235
java.lang.System, 241–243

cos method, 243
-cp option in javac, 169
CreateArrayLab animated illusion, 111–113, 113
.cshrc file for paths, 402
curly brackets ({})

for arrays, 105
for constructors, 146
for definitions, 35
for do-while loops, 86
in for loops, 91
for if statements, 74
for interfaces, 188
for method declarations, 59
for scope, 68
for while loops, 82

cycloids, 91–92, 91

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
-d option in package, 166–167
data and data types, 16, 19

boolean, 25
characters, 25
in declarations, 27
declaring and assigning, 26–28
exercise questions for, 30–31
exercise solutions for, 407–409
floating-point, 24–25
integer, 21–24, 22–23
in interfaces, 192–194
for objects, 120–122, 121–122
summary, 26

Data Chain Lab animated illustration, 261, 262
data hiding

defined, 469
in object-oriented programming, 172–173

DataInputStream class, 256, 259
DataLab animated illustration, 122, 122
DataOutputStream class, 256–257
debug code, 469
declarations, 16, 26–28

for arrays, 102
defined, 469
in interfaces, 188–189
for methods, 59

decrement operator, 45–46
default access

defined, 469
purpose of, 174–176

default code, 81
default constructors

defined, 469
purpose of, 148–149

default statements, 79–80
definitions, class, 35, 120
deprecated methods

compatibility of, 228
defined, 469

destination directories
defined, 469
for packages, 167

Developer Tools package, 402
Developer Tools Update, 401–402
dialog boxes

class for, 365–366, 366
defined, 469

differences, 37
digital circuits, 2

vs. analog, 3
defined, 469

digital computers, 2
vs. analog, 3
defined, 470

Dimension class, 282
dimensions for arrays, 106–108, 106, 108–109
directories, 165

for installation files, 397, 403
for packages, 166–167, 166
for programs, 398

disabling components, 349
DisablingNim class, 349–351
disks, 248–249. See also files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

display method, 183–185
division

operator for, 37
truncation with, 40

do-while loops, 85–86
docs directory, 224
Dog class, 120
double data type

defined, 470
range of, 24–25
with result types, 52–53, 53
wrapper class for, 240

double-quotes (“) for literal strings, 30, 229
downloading and installing Java

in Macintosh, 401–404
overview, 396
in Windows, 396–401, 397

drawing, 277, 278. See also painting
circles, 280
filling in, 281–282, 281, 283
frames, 287–289, 287–289
lines, 278, 279
ovals, 280–281, 280–281
rectangles, 279, 279
squares, 280
text, 283–286, 284–286

drawLine method, 278
drawOval method, 280–281
drawRect method, 279–280
drawString method, 283–285
dump method, 129
dumpSalary method, 146

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
E variable, 244
earnsMoreThan method, 175
East region, 317–319, 318–319
Edit menus, guidelines for, 308
editors for source files, 400, 404
ellipsis (...)

for button labels, 336
defined, 470
for dialog boxes, 309

else statement, 74–75
else if statement, 76
Employee class

overriding in, 179, 179
private access in, 174–175
as superclass, 142–143, 143, 145

empty strings, 229, 470
EmptyFrame class, 271–272
environment variable, 169
equal signs (=)

in arithmetic operations, 38
for assignment, 27
for comparisons, 50
for reference equality, 234

equality
object, 234, 234, 236
reference, 234, 234

equals method
in Object, 236
in Point, 236
in String, 233–234

equalsIgnore method, 233
error codes and messages, 27, 198–200
escape codes, 28
EvaluatorLab animated illustration, 39–40, 39
event dispatch threads, 332–333
event-driven programs, 330–332, 331

defined, 470
threads in, 332–333

Event Lab animated illustration, 354–355, 354
events, 330

actions for, 333–339, 335–339
from checkboxes, choices, and items, 351–353, 351, 353
defined, 470
exercise questions for, 357–358
exercise solutions for, 454–460
information from, 339–343, 340, 342
from menus, 355
in Nim game, 342–351, 342–344, 346, 349
from scrollbars and adjustments, 355–356, 356
from text fields and text areas, 353–355, 354–355

Exception class, 200, 205, 215
exceptions, 198

catching, 202–203
checked, 205

with stack traces, 216–217
throwing, 217–220
working with, 208–209

defined, 470
exercise questions for, 220
exercise solutions for, 438–440
families of, 205–206
real world, 203
runtime, 205–208
throwing, 200–201, 217–220

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exclamation points (!)
for comparisons, 50
for inversion, 46–48

exclusive or operators
bitwise, 40–41
boolean, 46–48, 47–48

executing bytes, 5
exit codes, 242
exit method, 242
exponents in scientific notation, 24
expressions in switch statements, 78
extending interfaces, 194–195
extends keyword, 142–143, 194

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
falling through switch statements

bugs from, 81
defined, 470

false value, 25
families of fonts, 205–206, 284
FancyButtonInFrame class, 295
fancysrc package, 389
FancySrcCanvas class, 377–391
FancySrcFrame class, 361–362, 361, 371
fields

in API pages, 227, 227
defined, 470
for objects, 121–122
text fields, 309–310, 310

events from, 353–355, 354–355
in flow layout managers, 316

File menu
in final project, 362–365, 362, 364
guidelines for, 308

file separators
defined, 470
problems with, 249

FileDialog class, 365–366, 366
FileDialogPractice class, 367–368
FileInputStream class, 249, 254
filenames, backslashes in, 249–250
FileNotFoundException class, 251–252
FileOutputStream class, 249, 251
FileReader class, 263, 265
files

character code for, 263
Data Chain Lab for, 261, 262
exercise questions for, 267
exercise solutions for, 443–445
in final project, 365–368, 366
line number readers for, 265, 266
names for, 249–250
new lines in, 264–265
reading, 249

bytes, 254–255, 256
data, 259–261, 259, 262

as sequences of bytes, 248–249
writing, 249

bytes, 251–252, 253
data, 256–259, 257

FileWriter class, 263–264
Filled class, 281
filling in drawing, 281–282, 281, 283
fillRect method, 281
final modifier

defined, 470
working with, 180–182

final project
colors in, 368–376, 369, 372
description of, 360–362, 360–361
exercise questions for, 392–393
exercise solutions for, 461–465
File menu in, 362–365, 362, 364
main display area in, 376–378, 377
painting in, 378–389, 379
parts of

building, 361–362
combining, 389–391

specifying files in, 365–368, 366

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

finding packages, 168–170
Fish class, 177
flags

defined, 470
for program status, 95

float data type
defined, 470
range of, 24–25
with result types, 52–53, 53
wrapper class for, 240

floating-point data types, 24–25
Floating-Point Lab animated illustration, 25
Flow Lab animated illustration, 316, 316
flow layout managers, 313–316, 315–316
FlowLayout class, 294
Font class, 285
Font Lab program, 286, 286
FontAndBaseline class, 283–284
FontChoice class, 303
FontChoiceWithLabels class, 304–305
fonts

choices for, 301–304, 301–302, 304
drawing, 283–286, 284–286

for loops
for arrays, 105–106
structure of, 86–89, 87
variables in, 97

fractions, 24
Frame class, 271
Frame Lab animated illustration, 287–289, 287–289
frames

color for, 271, 275–276
drawing, 287–289, 287–289
in painting, 270–273, 270
text in, 284–285, 284–285

FrameWithSimpleMenu class, 306
FrameWithSubmenu class, 307–308
friendly access, 174

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
garbage collection

defined, 470
purpose of, 114–115
threads for, 332

garbage collection threads
defined, 470
purpose of, 332

getAvailableFontFamilyNames method, 286
getAverageTemp method, 135–136
getColorFromChoice method, 371–373
getDirectory method, 367
getFile method, 367–368
getLineNumber method, 265
getLocalGraphicsEnvironment method, 286
getMass method, 65–66
getMessage method, 201–202, 219
getNumEnvelopesInStock method, 210–211, 218–220
getRainfall method

error codes for, 198–200
exceptions for, 200–203

getSalary method, 174–175
getSelectedColor method, 374–375
getSelectedIndex method, 353, 374
getSize method

in Canvas, 380
in Frame, 282

getSource method
in ActionEvent, 340
in ItemEvent, 352–353

getState method, 353
getters, 173
getvalue method, 355
getWeightKg method, 180–181
getWeightLbs method, 181
graphical user interface (GUI)

classes for, 228
events in. See events
painting in. See painting

GraphicOutputNim class, 346–347
Graphics class, 277–282, 278–281
graphics contexts, 277
graphics objects, 277
GraphicsEnvironment class, 286
greater than signs (>)

for comparisons, 50
in compound assignment, 51
in shifting operations, 42

green color, 273–274
GridBagLayout manager, 325
GridLayout manager, 325
GUI (graphical user interface)

classes for, 228
events in. See events
painting in. See painting

GUI threads
defined, 470
in JVM, 332–333

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
HALT opcode, 8
height

of canvas, 380
of dialog boxes, 367
in text areas, 310

Help menus, guidelines for, 309
-help option in java, 236
hiding data, 173
horizontal scrollbars, 312–313
howBig method, 76

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
IDE (Integrated Development Environment)

in Macintosh, 404
in Windows, 400

if statements, 74–76
immutable classes, 229
immutable objects, 470
implements keyword, 188
import statement, 171–172
importing

defined, 470
packages, 170–172

in variable, 241–242
inaccessible memory, 109–111, 110
increment operator, 45–46
incrementing program counter, 7
indexOf method, 266–267, 382
indices

array, 102, 104, 104
defined, 470

indirect addresses, 7
information from events, 339–343, 340, 342
Inherit Lab animated illustration, 144–145, 144–145
inheritance, 140–142

with constructors, 146–152, 149
defined, 470
example, 145–146
exercise questions for, 160–161
exercise solutions for, 426–431
with interfaces, 189–190, 189
method overriding in, 152–153, 152
polymorphism with, 154–160
from superclasses, 142–145, 144–145

initialization
array, 103, 105
in for loops, 87, 87, 97

input, file. See files
instance variables, 130, 470
instanceof keyword

catch blocks with, 212–216, 216
for references, 191–192

instruction sets, 18
int data type

ranges of, 21
with result types, 52–53, 53
wrapper class for, 240

integers
data types for, 21
defined, 471
two’s complement format for, 21–24 , 22–23

Integrated Development Environment (IDE)
in Macintosh, 404
in Windows, 400

interfaces, 188
data in, 192–194
defined, 471
exercise questions for, 195–196
exercise solutions for, 431–435
extending, 194–195
method declarations in, 188–189
objects and references in, 190–192

interpreted compiled languages
defined, 471
Java as, 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

introductory material
exercise questions for, 13
exercise solutions for, 406–407
memory, 2–4, 3–4
SimCom virtual computer, 5–12, 6, 9

inversion operator, 46–48
invoking methods, 60
IOException class, 214, 218, 251–252
italic font style, 284–285
item events, 351–353
ItemListener interface, 352
itemStateChanged method

in CboxAndChoice, 353
in ColorChoiceTest, 375
in ColorTest, 373–374
in FancySrcFrame, 371
in ItemListener, 351–352

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
jar file

installing, 397–398, 397, 400
running, 403

java.awt package, 228
API pages for, 225
components in, 292, 292

java.awt.Button class, 293
java.awt.Canvas class, 377
java.awt.CheckboxGroup class, 299
java.awt.Choice class, 302
java.awt.Color class, 183, 237–238, 274
java.awt.event.ActionListener interface, 334, 363
java.awt.event.AdjustmentListener interface, 355
java.awt.event.ItemListener interface, 352
java.awt.FileDialog class, 365–366, 366
java.awt.Frame class, 271
java.awt.Graphics class, 277–282, 278–281
java.awt.LayoutManager interface, 325
java.awt.Panel class, 320
java.awt.Point class, 236
java.awt.Scrollbar class, 312
java.io package, 249, 256
java.lang package, 226, 228
java.lang.Boolean class, 226
java.lang.Integer class, 240–241
java.lang.Math class, 243–244
java.lang.Object class, 236–239, 238–239
java.lang.String class, 226, 229–236, 231–232, 234–235
java.lang.System class, 241–243
java.sql package, 228
java.util package, 228
Java Virtual Machine (JVM), 12, 19, 20

class loaders in, 132–133
defined, 471
downloading, 396
initialization in, 132

javac compiler
classpath option in, 169
directory option in, 167
installing, 397–398, 397

javax.swing package, 325
joining strings, 233, 237–239, 238–239
JRE (Java Runtime Environment), 397
JUMP opcode, 7
JUMPZ opcode, 7–8
JVM (Java Virtual Machine), 12, 19, 20

class loaders in, 132–133
defined, 471
downloading, 396
initialization in, 132

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
keywordChoice class, 369
killing frames, 272

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
L for long data type, 54
labels

defined, 471
in flow layout managers, 316
for loops, 94–97
working with, 304–305, 305

Layout Lab animated illustration, 322–324, 322–324, 326, 326
layout managers, 294, 313–314

border, 317–320, 317–319
CardLayout, GridLayout, and GridBagLayout, 325, 326
defined, 471
flow, 314–316, 315–316
lab for, 322–324, 322–324
panels for, 320–324, 320, 322–324

LayoutManager interface, 325
LEFT area, 315
left-shift operation, 42, 42
length

of arrays, 104–105
of strings, 233

length method, 233
less than signs (<)

for comparisons, 50
in compound assignment, 51
in shifting operations, 42

license agreements, 397, 399
LineNumberReader class, 265, 266
lines, drawing, 278, 279
listeners

defined, 471
for events, 333–339, 335–339

ListeningFrame class, 341
literal strings, 30

defined, 471
for string instances, 229

LOAD opcode, 7–8
logical values, 25
.login file, 402
long data type

range of, 21
with result types, 52–53, 53
wrapper class for, 240

look and feel of programs
components for. See components
defined, 471

loop counters, 10
defined, 471
in for loops, 88

loops, 10, 82
for arrays, 105–106
breaking out of, 88–89
continue statement in, 89–90
defined, 471
do-while, 85–86
exercise questions for, 98–99
exercise solutions for, 416–420
for, 86–89, 87
labels for, 94–97
nesting, 90–94, 91–94
scope in, 97
while, 82–86, 84–85

lower case characters, 230–232, 231–232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
Macintosh computers, downloading and installing Java on, 401–404
main display area in final projects, 376–378, 377
main method, 132–134, 133
main threads

defined, 471
purpose of, 332

maintenance
and code duplication, 141
defined, 471

Manager class, 140–141, 143, 143, 151–152
max method, 243
MB prefix, 4
mega prefix, 4
memory, 2–3, 3

for arrays, 109–111, 110
defined, 471
garbage collection for, 114–115
organization of, 4, 4
in SimCom, 6, 6

memory leaks, 114
menu bars, 362
Menu class, 307
menuListener, 355
menus

events from, 355
in final project, 362–365, 362, 364
working with, 305–309, 307–308

MenuTest class, 363–365
method callers, 60, 471
method definitions, 35
MethodLab animated illustration, 61–64, 62
methods, 58

abstract, 182
in API pages, 227, 227
arguments for, 60–64, 62–63
calling, 60, 66–67
deprecated, 228
exercise questions for, 70–71
exercise solutions for, 413–415
final, 180–182
inheritance with, 143
in interfaces, 188–189, 194
main, 132–134, 133
for objects, 126–127, 128
order of execution, 68
overriding, 152–153, 152
polymorphism with, 65–66, 155–156
references to, 112–114, 113
return types for, 60–61, 64–65
scope of, 68–69
static, 130–132
structure of, 58–61

min method, 243
minus signs (-)

in compound assignment, 51
for subtraction, 37
as unary operator, 44

modal dialog boxes
characteristics of, 366
defined, 471

modulo operation
defined, 471
operator for, 42

Monospaced fonts, 285

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multi-line comments, 36
multidimensional arrays

defined, 471
working with, 106–108, 106, 108–109

multiple catch blocks, 210–212
multiple objects, 122–125, 123, 125
multiplication, 37
multithreaded devices

defined, 471
JVM as, 332

mutators
with data hiding, 173
defined, 471

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
\n character, 264–265
n-dimensional arrays, 107
names

for arguments, 68
for classes, 165
for constructors, 146
in declarations, 27
for files, 249–250
for memory locations, 26
for methods, 60
reusing, 154
for variables, 68–69

namespaces
defined, 471
directories for, 165, 165

nCubed method, 67
NEAndW class, 319
negative numbers, 21, 23
NestedLoopLab animated illustration, 91–94, 92–94
nesting

defined, 472
if statements, 75
loops, 90–94, 91–94
menus, 308
parentheses, 39

new keyword, 103
newline characters

in files, 264–265
printing, 242
for text areas, 312

Nim game, 342–351, 342–344, 346, 349
Nim Lab program, 343–351, 343–344, 346, 349
no-args constructors, 148

defined, 472
with superclasses, 150

NoMethods class, 58
North region, 317–319, 318–319
null value

with readline, 266
with references, 112, 135–136

NullLayout class, 326
NumberFormatException class, 241
numeric operations, 52

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
Object class, 236–239, 238–239
object-oriented programming, 119
ObjectLifeCycleLab animated illustration, 133–134, 133–134
ObjectMethodLab animated illustration, 127, 127
objects, 118

vs. arrays, 118–119
arrays as, 109–112, 110–112
classes, 119–120, 119
data for, 120–122, 121–122
defined, 472
equality of, 234, 234, 236, 472
exercise questions for, 136–137
exercise solutions for, 423–426
methods for, 126–127, 128
multiple, 122–125, 123, 125
reference data with, 134–136
references to, 121, 121, 190–192
static data in, 128–130
static methods in, 130–132

odometers, base-2, 21–22, 22
Officer class, 151–153
one-dimensional arrays

characteristics of, 106
defined, 472

opcode bits, 6, 6
opcodes, 6–7
Open... menu item, 362
operands, 37, 472
operation codes, 6, 6
operations, 34

arithmetic
basic, 37–38
bitwise, 40–41, 40–41
modulo, 42
precedence in, 38–40, 39
shifting, 42–44, 42–44
unary, 44–46

boolean
comparison, 50–51
evaluation in, 46–48, 47–48
short-circuit, 49–50

comments, 36
compound assignment, 51
exercise questions for, 55–56
exercise solutions for, 409–412
result types in, 52–54, 53
white space, 34

or operators
bitwise, 40–41
boolean, 46–48, 47–48

order of method execution, 68
origins

defined, 472
in drawing, 277, 278

OS X Developer Tools, 401
out variable, 241–242
output

file. See files
printing, 29–30

Oval class, 133
ovals

drawing, 280–281, 280–281
filled, 281–282, 281

OverlayLayout layout managers, 325

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overloading
constructors, 147–148
defined, 472
methods, 65

overriding
access control with, 178–180, 179
defined, 472
methods, 152–153, 152

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
package access, 174
package keyword, 166–167
packages, 164, 164

access control in. See access control
core. See core classes and packages
creating, 166–167, 166, 168
defined, 472
exercise questions for, 186
exercise solutions for, 435–438
finding, 168–170
importing, 170–172
interfaces in, 188
and namespaces, 165–166, 165

paint method, 276–277
in BlackLineOnWhite, 278
in BlueRect, 279
in CenteredOval, 282
in ColorChoiceTest, 376
in ColorTest, 373–374
in DisablingNim, 350
in FancySrcCanvas, 378, 380, 387
in Filled, 281
in FontAndBaseline, 284
in Frame, 287
in GraphicOutputNim, 347–348
in ThreeOvals, 280
in Xxxx, 331

painting, 270
color for, 273–276, 275–276
drawing shapes. See drawing
exercise questions for, 290
exercise solutions for, 445–448
in final project, 378–389, 379
Frame Lab for, 287–289, 287–289
frames in, 270–273, 270
process, 276–277
text, 283–286, 284–286

paintLines method, 380, 387
paintOneSourceLine method, 382–384, 388–389
paintRegion method

in BarChart, 185
in Chart, 185
in PieChart, 185

paintText method, 380–382, 387–388
Panel class, 320
PanelInFrame class, 320–321
panels, 320–324, 320, 322–324
parabolas, 108, 109
parentheses ()

in arithmetic operations, 38–40, 39
in boolean operations, 47
in do-while loops, 86
in for loops, 87
for if statements, 74
for methods, 60

parseInt method, 241
PartTimer class, 180
PassArrayLab animated illustration, 113–114
passing

arguments, 63, 67–68
references to methods, 112–114, 113

PATH environment variable, 396, 398–399, 403
payEveryone method, 156–159
Paymaster class, 156–159, 180
percent signs (%)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in compound assignment, 51
in modulo operations, 42

periods (.) for object properties, 118
Person class, 120–123, 126–131
PI variable, 244
PieChart class, 183, 185
pixels

defined, 472
for frames, 90, 272

plain font style, 284–285
plus signs (+)

for addition, 37
in compound assignment, 51
for string concatenation, 237–238
as unary operator, 44

PlusPlusMinusMinus class, 45
Point class, 236
Point3D class, 239, 239
polymorphism

with inheritance, 154–160
with methods, 65–66

position
in drawings, 277, 278
of text, 283

post-decrement operator, 46
post-increment operator, 46
PostDec class, 46
pow method, 243
pre-decrement operator, 46
pre-increment operator, 46
precedence

in arithmetic operations, 38–40, 39
in boolean operations, 47
defined, 472
summary, 54–55

preferred size
defined, 472
with layout managers, 314, 317

primary colors, 273–274
primitive data types

defined, 472
summary, 26

print2Cubes method, 66–67
print2Vals method, 66
print3x method, 67
printChars method, 233
printCheck method

in Employee, 142–143, 145–146, 179
in Officer, 153
overriding, 152–153
in PartTimer, 180
in Worker, 140–141

PrinterIOException class, 205, 209, 211, 213–215
printHelpMessage method, 235
printing, 30
println method, 60, 242, 364
printPretty method, 64
printRetAddr method, 208–211
printSomeEnvelopes method, 209–213
printStackTrace method, 216–217
printTriple method, 69
printWeight method, 177–178
private access

defined, 472
working with, 173–175

products, 37
program counters

incrementing, 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

purpose of, 5
program files

for Macintosh installation, 404
for Windows installation, 400–401

properties of objects, 118
protected access, 173

defined, 472
working with, 177–178

public access
defined, 472
working with, 173–174

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QTJava, 401
question marks (?) in ternary operator, 77
quotients, 37

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
\r character, 264–265
radio buttons

defined, 472
working with, 299–300, 300

RadioBoats class, 299–300
RAM, 248–249. See also memory
random method, 243
RandomAreas class, 244
read method, 254
Read10Bytes class, 254–255
readBoolean method, 260
readByte method, 260
Reader class, 263
readers, 263, 264, 472
reading, 249

bytes, 254–255, 256
data, 259–261, 259, 262

readLine method, 265–266
readUTF method, 260, 263
ReadWithChain class, 260
reconfigure method, 377–378, 386–387
Rectangle class, 133
rectangle method, 281
rectangles

drawing, 279, 279
filled, 281, 281

red color, 273–274
redrawing, 276
reference-dot notation, 126
reference variables, 109
references

to arrays, 110–112, 112
with compiler, 155
defined, 472
equality of, 234, 234, 472
to methods, 112–114, 113
to objects, 121, 121, 190–192
passing arguments by, 67
for variables, 134–136

regions in layout managers, 317–319, 318–319
registers, 5, 6
RemoteEnvelopeCountException class, 219
removeActionListener method, 335
removeItemListener method, 352
repaint method

for ColorTest, 374
for main display area, 377–378
in Nim game, 348

result types in operations, 52–54, 53
return character, 264–265
return statement, 64
return types and values

defined, 472
for methods, 60–61, 64–65

ReusesNames class, 69
RIGHT area, 315
right-shift operation, 42–44, 43
row major order

defined, 472

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in text areas, 310
rows in text areas, 310
Run Lightspeed option, 10
runtime exceptions, 205–208
RuntimeException class, 205

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
safety net catch blocks, 213
Sans Serif fonts, 285–286
scalability

defined, 473
of events, 330

scientific notation
defined, 473
purpose of, 24

scope
defined, 473
in loops, 97
of methods, 68–69

scripts, 398
Scrollbar class, 312
scrollbars

creating, 312–313, 313
events from, 355–356, 356
in text areas, 310–312, 311–312

SDK (Software Development Kit), 396–397
semicolons (;)

in classpath elements, 169
in declarations, 27
in do-while loops, 86
in for loops, 87, 91

Serif fonts, 285–286
serifs, 473
setBackground method

in Button, 294
for frames, 271, 275–276

setBounds method, 325
setColor method, 277
setColorScheme method, 183–184
setEnabled method, 349
setFont method, 284–285, 294
setForeground method, 294
setLayout method, 313–314, 325
setLocation method, 325
setNumEnvelopesInStock method, 210–211
setSalary method, 175
setSize method, 272, 282, 325, 367
setters

with data hiding, 173
defined, 471

setTitle method, 271
setValues method, 183–184
setVisible method

for dialog boxes, 367
for frames, 272–273, 289, 333

SeveralObjectsLab animated illustration, 123–125, 125
shifting operations

defined, 473
process, 42–44, 42–44

ShiftLab animated illustration, 43–44, 44
short-circuit operators

in Boolean operations, 49–50
defined, 473

short data type
range of, 21
with result types, 52–53, 53
wrapper class for, 240

ShowButton class, 293

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowMeATrace class, 207
side effects

defined, 473
with methods, 64–65

signed integer types
defined, 473
summary, 21

SimCom computer, 5–8, 6
benefits of, 11–12
working with, 8–11, 9

Simple Base 2 animated illustration, 21–24, 22–23
Simple Event Lab animated illustration, 336–339, 336–339
Simple Exception Lab animated illustration, 203, 204
Simple Input Lab animated illustration, 255, 256
Simple Output Lab animated illustration, 252, 253
SimpleActionListener class, 334
SimpleChoice class, 302
SimpleFlow class, 314–315
SimpleNim class, 342–351, 342–344, 346, 349
sin method, 243
single-line comments, 36
size

of arrays, 103–105
of canvas, 380
of dialog boxes, 367
of fonts, 284
of frames, 272
with layout managers, 314, 317
of strings, 233

slashes (/)
for comments, 36
in compound assignment, 51
for division, 37

Software Development Kit (SDK), 396–397
source code, 16

creating
in Macintosh, 404
in Windows, 400–401

defined, 473
South region, 317–319
specifying files in final project, 365–368, 366
SpringLayout layout manager, 325
square brackets ([]) for arrays, 102
squares, 280
stack traces

checked exceptions with, 216–217
defined, 473
runtime exceptions with, 206–208

startsWith method, 233, 385
statements

declarations, 27
in for loops, 91

static classes, 473
static data, 128–130
static methods, 126–127, 130–132
static modifier, 60
Step Lightspeed option, 10
STORE opcode, 7
storeCubes method, 207–208
storeOneCube method, 207–208
String class, 188

API pages for, 226
for command-line arguments, 235–236, 235
working with, 229–234, 231–232, 234

string concatenation, 233, 237–238
defined, 473
lab for, 238–239, 238–239

StringLab animated illustration, 231–232, 231–232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

styles of fonts, 284–285
SUB opcode, 7
subclasses

defined, 473
inheritance by, 140–142
protected access with, 177

Submarine class, 149–150, 149
subpackages, 165
substring method, 233, 382, 385
subtraction

basic operator for, 37
decrement operator for, 45–46

subtractive primary colors, 273, 473
sums, 37
super keyword, 151–152
supercategories, 142
superclasses, 140–142

defined, 473
inheritance from, 142–145, 144–145

Swing toolkit
for GUI, 271
for layout managers, 325

switch statements, 77–79
break statements in, 79–81
default statements in, 79–80

System class, 241–243
System.exit call, 333, 343

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
TAInnaFrame class, 311
Talker interface, 188
tan method, 243
ternary operator

defined, 473
operation of, 76–77

text
drawing, 283–286, 284–286
in final project, 379, 379

text areas
events from, 353–355, 354–355
working with, 310–312, 311–312

text characters, 25
text fields

events from, 353–355, 354–355
in flow layout managers, 316
working with, 309–310, 310

text files, 263
text listeners, 353
TextAreaNim class, 344–345
TextField constructor, 309
TextListener interface, 353
textValueChanged method, 353
TFs class, 309–310
Thermometer class, 135
this keyword, 131
this-reference notation, 131
threads

defined, 473
in event-driven programs, 332–333

ThreeOvals class, 280
throw keyword, 200, 473
throwing exceptions

checked exceptions, 217–220
process, 200–201

throws keyword, 200
tildes (~) in bitwise operations, 40, 40
toLowerCase method, 230–232, 231–232
toString method, 226

in Object, 236–238
in String, 239

toThe5th method, 59–61
toUpperCase method, 230–232, 231–232
traditional comments, 36
Transport class, 149–150, 149
Triangle class, 133
trim method, 233
trinary operator, 37
true value, 25
truncation

defined, 473
with division, 40

try blocks, 205
defined, 473
working with, 202–203

Tuna class, 177–178
two-dimensional arrays, 106–107, 106
TwoBars class, 312–313
two’s complement format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined, 473
for integer types, 21–23, 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
unary operators, 37

arithmetic, 44–46
defined, 473

Unicode standard, 25
defined, 474
for files, 257, 263

unnamed packages, 176
updates

defined, 474
in for loops, 87, 87

upper case characters, 230–232, 231–232
useColor method, 183–184
UsesListener class, 334–335
UsesMethods class, 59
UTF standard

defined, 474
for files, 257, 263

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
values

vs. addresses, 12, 110
logical, 25
in memory, 110
passing arguments by, 67–68

variable-width fonts
defined, 474
vs. monospaced, 285

variables, 26
for array size, 103
for color, 274
declaring, 27
final, 180
in for loops, 97
inheritance with, 143
instance, 130, 470
for objects, 121–122
polymorphism with, 155–156
references for, 134–136
scope of, 68–69

-verbose option in java, 236
-version option in java, 403
vertical bars (|)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
for short-circuit operator, 49

vertical scrollbars, 312–313
VerySimple class, 28–29, 35
VerySimple2 class, 29–30
virtual computers, 19

defined, 474
JVM. See JVM (Java Virtual Machine)
SimCom, 12

visibility
of dialog boxes, 367
of frames, 272–273

vocalHypotSquared method, 65
voltages, 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
WaterTransport class, 149–150, 149
WeatherStation class, 135
West region, 317–319, 318–319
while loops, 82–86, 84–85
WhileLab animated illustration, 83–86, 84–85
white space

defined, 474
in program code, 34–36

width
of canvas, 380
of dialog boxes, 367
with result types, 52–54, 53
in text areas, 310

Windows computers, downloading and installing Java on, 396–401, 397
Worker class, 140–141

constructors for, 146–147
as subclass, 143, 143, 145–146

wrapper classes, 240
benefits of, 241
defined, 474

write method, 251
Write10Bytes class, 251–252
writeByte method, 257
writeChar method, 257
Writer class, 263
writers, 263, 264, 474
writeShort method, 257
writeUTF method, 257, 263
WriteWithChain class, 258
writing, 249

bytes, 251–252, 253
data, 256–259, 257

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X
X39 class, 241
X39RevB class, 242–243

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Z
Zebra class, 180–182
zeroth array components, 104
zip files, 399

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: An Introduction to Computers That Will Actually Help You in Life
Figure 1.1: A bit

Figure 1.2: A byte

Figure 1.3: Several bytes

Figure 1.4: SimCom architecture

Figure 1.5: Opcode and argument bits

Figure 1.6: SimCom in action

Chapter 2: Data
Figure 2.1: Assembly language

Figure 2.2: Compiled language

Figure 2.3: Evolution of a Java application

Figure 2.4: SimpleBase2Lab

Figure 2.5: A base-2 odometer

Figure 2.6: An example of two's complement

Figure 2.7: Two's complement lab

Chapter 3: Operations
Figure 3.1: EvaluatorLab

Figure 3.2: EvaluatorLab after evaluation

Figure 3.3: The unary bitwise operator ~

Figure 3.4: Bitwise "and"

Figure 3.5: Left-shift: <<

Figure 3.6: Bitwise right-shift: >>>

Figure 3.7: Numeric right-shift: >>

Figure 3.8: ShiftLab

Figure 3.9: ShiftLab after shifting

Figure 3.10: BoolLab: initial screen

Figure 3.11: BoolLab after execution

Figure 3.12: Data type width, not to scale

Figure 3.13: Data type width relationships

Chapter 4: Methods
Figure 4.1: MethodLab

Figure 4.2: MethodLab after animating

Figure 4.3: Numeric type widths

Chapter 5: Conditionals and Loops
Figure 5.1: While Lab: initial display

Figure 5.2: While Lab with modified test expression

Figure 5.3: While Lab after execution

Figure 5.4: A common loop usage

Figure 5.5: A cycloid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.6: NestedLoopLab: initial display

Figure 5.7: NestedLoopLab: 8:15

Figure 5.8: NestedLoopLab with a loop

Figure 5.9: NestedLoopLab with nested loops

Chapter 6: Arrays
Figure 6.1: A new array

Figure 6.2: A used array

Figure 6.3: A two-dimensional array

Figure 6.4: BoolArrayLab

Figure 6.5: BoolArrayLab drawing a parabola

Figure 6.6: Accessible and inaccessible memory

Figure 6.7: An array of bytes in inaccessible memory

Figure 6.8: Reference and array

Figure 6.9: Two references, one array

Figure 6.10: CreateArrayLab

Chapter 7: Introduction to Objects
Figure 7.1: Class as mental category

Figure 7.2: Reference and object

Figure 7.3: DataLab

Figure 7.4: Multiple objects

Figure 7.5: SeveralObjectsLab

Figure 7.6: SeveralObjectsLab reconfigured

Figure 7.7: SeveralObjectsLab reconfigured and executed

Figure 7.8: ObjectMethodLab

Figure 7.9: ObjectLifeCycleLab

Figure 7.10: ObjectLifeCycleLab after running a while

Chapter 8: Inheritance
Figure 8.1: A Simple inheritance hierarchy

Figure 8.2: Inherit Lab

Figure 8.3: Inherit Lab's class-editing dialog box

Figure 8.4: Object layers

Figure 8.5: Inheritance of Officer

Chapter 9: Packages and Access
Figure 9.1: Example package/ directory structure

Figure 9.2: Package as namespace

Figure 9.3: Initial directory structure

Figure 9.4: After compilation

Figure 9.5: After more compilation

Figure 9.6: Polymorphism revisited

Figure 9.7: Chart class and subclasses

Chapter 10: Interfaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: Animal kingdom class inheritance

Chapter 11: Exceptions
Figure 11.1: Simple Exception Lab

Figure 11.2: Simple Exception Lab: final state with normal execution

Figure 11.3: Advanced Exception Lab

Figure 11.4: Choosing an exception type in Advanced Exception Lab

Figure 11.5: Advanced Exception Lab reconfigured

Chapter 12: The Core Java Packages and Classes
Figure 12.1: Structure of the API index

Figure 12.2: Structure of the classes frame

Figure 12.3: Class description

Figure 12.4: Field/constructor/ method summaries

Figure 12.5: StringLab

Figure 12.6: StringLab: uppercase, 2 references

Figure 12.7: StringLab: lowercase, 1 reference

Figure 12.8: String references and objects

Figure 12.9: Command-line arguments

Figure 12.10: ConcatLab

Figure 12.11: ConcatLab's Point3D class

Figure 12.12: ConcatLab's Point3D class

Chapter 13: File Input and Output
Figure 13.1: Simple Output Lab

Figure 13.2: Simple Output Lab in progress

Figure 13.3: Simple Input Lab in progress

Figure 13.4: Output chaining

Figure 13.5: Input chaining

Figure 13.6: Data Chain Lab

Figure 13.7: Data Chain Lab in progress: Text, writers, and readers

Figure 13.8: Readers and writers

Figure 13.9: Line number reader and file reader

Chapter 14: Painting
Figure 14.1: A frame with boring contents

Figure 14.2: Color Lab

Figure 14.3: Color Lab with a predefined color

Figure 14.4: Pixel coordinates

Figure 14.5: A black line on a white background

Figure 14.6: A rectangle

Figure 14.7: Ovals and bounding boxes

Figure 14.8: Three ovals

Figure 14.9: Filled rectangle and ovals

Figure 14.10: Original CenteredOval

Figure 14.11: Resized CenteredOval

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.12: The baseline

Figure 14.13: Text and baseline in a frame

Figure 14.14: Text in a frame

Figure 14.15: Font Lab

Figure 14.16: Font Lab with an exotic font

Figure 14.17: Initial Frame Lab display

Figure 14.18: Frame Lab with custom configuration

Figure 14.19: The result of Figure 14.18

Chapter 15: Components
Figure 15.1: A component sampler

Figure 15.2: A button in a frame

Figure 15.3: A fancy button

Figure 15.4: A simple checkbox

Figure 15.5: A checked checkbox

Figure 15.6: Three checkboxes and a button

Figure 15.7: Checkboxes as radio buttons

Figure 15.8: Multiple checkbox groups

Figure 15.9: A choice

Figure 15.10: An expanded choice

Figure 15.11: Two choices

Figure 15.12: Choices with labels

Figure 15.13: A menu in a menu bar

Figure 15.14: A menu with a separator

Figure 15.15: Hierarchical menus

Figure 15.16: Two text fields

Figure 15.17: A text area

Figure 15.18: Multiple checkbox groups

Figure 15.19: A text area with scroll bars

Figure 15.20: A pair of disappointing scrollbars

Figure 15.21: Flow layout manager

Figure 15.22: Wider

Figure 15.23: Narrower

Figure 15.24: Left-aligned

Figure 15.25: Flow Lab

Figure 15.26: Scrollbar at North

Figure 15.27: North and South occupied

Figure 15.28: North, East, and West occupied

Figure 15.29: North, East, West, and Center occupied

Figure 15.30: A panel in a frame

Figure 15.31: Layout lab

Figure 15.32: Layout lab's frame editing dialog

Figure 15.33: Layout Lab with an added panel

Figure 15.34: A button in a panel in a frame

Figure 15.35: Layout Lab makes it so

Figure 15.36: No layout manager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Events
Figure 16.1: A GUI waiting for events

Figure 16.2: A button that sends events

Figure 16.3: Simple Event Lab: initial screen

Figure 16.4: Simple Event Lab with simulated buttons

Figure 16.5: Simple Event Lab with a listener class

Figure 16.6: Simple Event Lab with a listener object

Figure 16.7: Simple Event Lab continued

Figure 16.8: One listener object for many buttons

Figure 16.9: Simple Nim GUI

Figure 16.10: Nim Lab

Figure 16.11: Nim, with output to a text area

Figure 16.12: Nim with graphical output

Figure 16.13: Nim with graphical output, game in progress

Figure 16.14: Enabled and disabled buttons

Figure 16.15: Nim with disabled buttons

Figure 16.16: Check box and choice

Figure 16.17: Receiving events from a check box and a choice

Figure 16.18: Event Lab

Figure 16.19: Scrollbar and text field

Chapter 17: Final Project
Figure 17.1: Final Project

Figure 17.2: Final Project, with lines

Figure 17.3: Menu schematic

Figure 17.4: Teting the menu's look

Figure 17.5: Window, Frame, and FileDialog

Figure 17.6: File dialog box configured for opening

Figure 17.7: Too many radio buttons

Figure 17.8: Testing color selection

Figure 17.9: GUI layout

Figure 17.10: Positioning text

Appendix A: Downloading and Installing Java
Figure A.1: Windows SDK file layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Tables

Chapter 1: An Introduction to Computers That Will Actually Help You in Life
Table 1.1: Opcodes

Chapter 2: Data
Table 2.1: Java's Integer Data Types

Table 2.2: Java's Floating-Point Data Types

Table 2.3: Java's Primitive Data Types

Table 2.3: Naming Consistency

Chapter 3: Operations
Table 3.1: Binary Bitwise Operations

Table 3.2: Comparison Operators

Table 3.3: Compound Assignment

Table 3.4: Ranges of Numeric Types

Table 3.5: Binary Arithmetic Result Types

Table 3.6: Operator Precedence

Chapter 8: Inheritance
Table 8.1: References, Variables, and Methods

Chapter 9: Packages and Access
Table 9.1: Legal Access Modes for Overriding Methods

Chapter 12: The Core Java Packages and Classes
Table 12.1: String Concatenation Conversion Rules

Table 12.2: Wrapper Class Names

Chapter 13: File Input and Output
Table 13.1: Byte -1 vs. Int -1

Chapter 14: Painting
Table 14.1: Combining Additive Primary Colors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back Cover
This is the first effective Java book for true beginners. Sure, books before now focused on basic concepts
and key techniques, and some even provided working examples on CD. Still, they lacked the power to
transform someone with no programming experience into someone who sees, who really “gets it.”

Working with Ground-Up Java, you will definitely get it. This is due to the clarity of Phil Heller’s
explanations, and the smoothly flowing organization of his instruction. He’s one of the best Java trainers
around.

But what’s really revolutionary are his more than 30 animated illustrations. Each of these small programs,
visual and interactive in nature, vividly demonstrates how its source code works. You can modify it in
different ways, distinctly altering the behavior of the program. As you experiment with these tools—and
you can play with them for hours—you’ll gain both the skills and the fundamental understanding needed to
complete each chapter’s exercises, which steadily increase in sophistication. No other beginning Java book
can take you so far, so quickly, and none will be half as much fun.

About the Author

Philip Heller is a consultant, author, educator, and novelist. He is the lead author for Sybex’s best selling
Java Certification Study Guide and Java Exam Notes as well as a leading educator for Java University and a
well-known speaker on Java topics. Phil helped create the Java programmer and developer exams for Sun
and is their leading certification trainer. Phil is currently writing the second volume in the Grandfather
Dragon series.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ground-Up Java
Philip Heller

Associate Publisher: Joel Fugazzotto
Acquisitions Editor: Denise Santoro Lincoln, Tom Cirtin
Developmental Editor: Tom Cirtin
Production Editor: Dennis Fitzgerald
Technical Editor: Marcus Cuda
Copyeditor: Sean Medlock
Compositor: Maureen Forys, Happenstance Type-O-Rama
Graphic Illustrator: Jeffrey Wilson, Happenstance Type-O-Rama
CD Coordinator: Dan Mummert
CD Technician: Kevin Ly
Proofreaders: Emily Husan, Laurie O’Connell, Nancy Riddiough
Indexer: Ted Laux
Cover Designer/Illustrator: Richard Miller, Calyx Deisgns

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2003110719

ISBN: 0-7821-4190-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved. FullShot is a
trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc. For more information
on Macromedia and Macromedia Director, visit http://www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s).
The author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

To Laura, on whose violin
Are played the songs of spheres and heroes,
Above this world’s mortal din,
Above the plane of ones and zeroes.

Acknowledgements

First and foremost gratitude to Denise Santoro Lincoln, Tom Cirtin, and Steve Cavin. Thanks to Michelle, Ricardo, and everyone
at PB&G Productions for keeping me out dancing when I should have been writing. Thanks always to Simon Roberts, Suzanne
Blackstock, and Kathy Collina. And thanks to all the aces at Sybex: Dennis Fitzgerald, Sean Medlock, Kevin Ly, Dan Mummert,
and Maureen Forys and Jeff Wilson at Happenstance Type-O-Rama.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction

Overview
This book is unique. There’s nothing like it. It is the first of its kind. It’s important that you understand why, so please read on.

For a long time I thought it was impossible to write an introductory Java programming book that could be understood by people
with no programming experience. It would be like a fish writing about water. No one has better knowledge of the subject matter,
but it takes more than that to introduce a topic to a newcomer. Fish are intimately accustomed to water, and they can’t relate to us
land mammals, who need to have everything explained and broken down. A fish might say, “Wiggle your tail fin to swim forward,
and don’t forget to use your gills.” That would be glaringly obvious to another fish, but useless to you and me. It’s hard for a fish to
imagine what life would be like without tail fins or gills. A book about water, even if the wisest fish in the ocean wrote it, would be
full of accurate, but useless, information.

The same is true about Java. Programming is a craft, like playing a musical instrument or glassblowing. And like any other craft, it
has its conventions, jargon, and techniques. For practitioners of the craft, those conventions, jargon, and techniques become
deeply ingrained habits, household language, and the events of everyday life. It’s very difficult to write about one’s own “habitat.”

In the 1970’s, a language called C became popular. In the 1980’s, C was modified to support object-oriented programming. The
modified language was called C++. This is an example of craft jargon. In C, the symbol “++” means, very broadly speaking, “a bit
more.” So C++ means “C and a bit more,” and the meaning is clear to any C programmer.

The 1990’s saw another evolution. C++ is a highly effective language, but it can also be difficult. Moreover, it had no innate
support for recently invented technologies, such as high-resolution multi-color displays, databases, or the World Wide Web. The
new evolution was called Java. The name isn’t a play on words and it isn’t an abbreviation for anything. Java abandoned the parts
of C++ that had proved to be more trouble than they were worth, and it added support for modern technologies. Sometimes
people called it “C++--++”. There’s another symbol, “—”, that roughly means “a bit less.” So “C++--++” means “C++ and a bit less
and then a bit more.”

Java caught on like a midsummer bonfire. A huge portion of the C and C++ programming population switched at once to Java and
never looked back. Why were so many programmers able to make the switch so easily? I was one of them. I had been earning a
living programming in C++. I took a year off to write a novel about some dragons. I ran out of money before I finished the novel.
Luckily, it was a month after Java was introduced. Within weeks I considered myself a competent Java programmer, and within
months I was teaching it and writing about it. The credit goes not to me but to the designers of Java. If you know C and C++, Java
is easy. It’s like learning Portuguese if you already speak Spanish and Italian. Like everyone else who learned Java at that time, I
had years of experience with the concepts, techniques, and jargon that was needed.

But what about people who don’t have any programming experience?

When I was learning Java, there were two books on the subject. Today there are thousands. (I’m responsible for a few of them.)
Not one of them, except the one that you’re holding right now, does a good job of presenting programming concepts from the
ground up. The others are accurate for the most part, but they aren’t helpful.

So I had to ask myself: can I introduce Java from the ground up, concept by concept? Eventually I realized that I could only do it if
I could use something more than words and pictures. Which brings me to why this book is unique. It is unique because …

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Illustrations are Alive!
I realized that what I really wanted was a magic blackboard.

Think of a computer as a huge set of boxes, each box containing a number. The numbers represent text or colors or data, or
whatever else can be modeled by a program. The numbers change over time in complicated ways. Describing the life cycle of a
program is almost impossible if you can only use words and pictures. I wanted to create pictures that would change over time. And
I wanted something beyond animated cartoons that would be the same each time you watched them. I wanted living illustrations
that would respond to your curiosity. I wanted to give you the power to ask “what if …” questions of the illustrations.

I wanted something that can only be done on a computer.

The CD-ROM that comes with this book has more than 30 animated illustrations. These are programs that you run on your
computer. The book gives you complete instructions on how to use them. The illustration on the next page is an example.

This is a screenshot of NestedLoopLab, which appears in Chapter 5, “Conditionals and Loops.” The text in the upper-central part
of the screen (“int color = 5” and so on) is Java code. The swirly image at the bottom is the result of running the code. The
various controls let you vary the code, experimenting with different values until you get a feel for what the program is doing.

The animated illustrations are like training wheels on a bicycle. When you first learn to ride, there are so many things that can go
wrong. Without training wheels you spend a lot of just time crashing and getting back up. Training wheels let you develop the right
sense of balance. The animated illustrations won’t let you create code that crashes. They provide a safe environment in which you
can develop the right sense of balance.

Later, of course, it’s time to take off the training wheels. At the end of each chapter you’ll find a set of exercises that will have you
writing your own code. Suggested solutions to the exercises appear at the back of the book.

To the best of my knowledge, Ground-Up Java is the first book ever to use animated illustrations. So we have no data on how
effective they are as a teaching tool. My guess is that they are worth their weight in gold. Everyone who has seen them has been
very enthusiastic. But you are the most qualified judge. Try them! Please let me know what you think. You can e-mail your
comments to groundupjava@sgsware.com. I’m especially interested in knowing which animated illustrations worked the best
for you, and which ones didn’t. I’d also like to hear any suggestions you might have for more animations to appear in future
revisions of this book. You are invited to be part of the development of animated illustrations as a new technology for learning.

And now…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s Time To Download and Install Java
Before you can start writing or running. Java programs, you need to download some software. (The animated illustrations are Java
programs, so they won’t run if you don’t do the download.)

Downloading is free. After Java is loaded on your hard drive, you have to follow a few steps to install it. These aren’t difficult, but
there’s room for error, so please be careful. Complete instructions are explained in Appendix A, “Downloading and Installing
Java.”

And now you’re ready. Have fun!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1: An Introduction to Computers That Will Actually Help
You in Life

Overview
Java is a programming language that tells computers what to do. This chapter will look at what computes really are, what they can
do, and how we use programming languages to control them.

We will begin by exploding the common myth that computers deal only with 0s and 1s. Once we establish what computers really
process, we will look at the kind of processing they perform.

This is emphatically not an intellectual exercise. Spending a bit of effort here will make your life much easier in the chapters that
follow. Many concepts that appear later in this book, such as data typing, referencing, and virtual machines, will make very little
sense unless you understand the underlying structure of computers. Without this understanding, learning to program can be
confusing and overwhelming. With the right fundamentals, though, it can be enjoyable and stimulating.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory: Not Exactly 0s and 1s
No doubt you've heard that computers only process 0s and 1s. This can't possibly be true. Computers are used to count votes in
elections, so they must be capable of counting past 1. Computers are also used to model the behavior of subatomic particles
whose masses are tiny fractions, so they must be capable of processing fractions as well as whole numbers. They're used for
writing documents, so they must be capable of processing text as well as numbers.

On the most fundamental level, computers do not process 0s and 1s, or whole numbers, or fractions, or text. Computers are
electronic circuits, so all they really process is electricity. Computer components are designed so that their internal voltages are
either approximately zero or approximately 5 or 6 volts. When part of a computer circuit carries a voltage of 5 or 6 volts, we say
that it has a value of 1. When part of a circuit carries zero voltage, we say that it has a value of 0. (Fortunately, this is all the
electronics knowledge you need to become a master programmer.)

It's all a matter of interpretation. Voltages are interpreted as 0s and 1s. As you'll see later in this chapter and in Chapter 2, "Data,"
the 0s and 1s are organized into clusters that are interpreted as numbers. More sophisticated parts of the computer interpret
those numbers as codes that represent fractions, or text, or colors, or images, or any of the other myriad classes of objects that
can be represented in a computer.

A modern computer contains billions of microscopic components, each of which has a value of 0 or 1. Any circuit where we only
care about the approximate values of the voltages is known as a digital circuit. Computers that are made of digital circuitry are
known as digital computers.

Note The opposite of digital is analog. In an analog circuit, we care about the exact voltages of the components. Analog
circuits are ideal for certain applications, such as radios and microwave ovens, but they don't work so well for
computers. Analog computers were used in the 1940s, but they were an evolutionary dead end. All modern computers
are digital.

One simple but useful type of digital circuit is known as memory. A memory circuit just stores a digital value (0 or 1, because we
programmers don't have to think about voltages). A single unit of memory is called a bit, which is an abbreviation for "binary digit."
You can think of a bit as a microscopic box, the contents of which are available to the rest of the computer. From time to time the
computer might change the contents. Bits are usually drawn as shown in Figure 1.1.

Figure 1.1: A bit

Bits are usually organized in groups of eight, known as bytes. Figure 1.2 shows a byte that contains an arbitrary combination of 0s
and 1s.

Figure 1.2: A byte

Note that the individual bits are numbered from right to left, and that the numbering starts from 0. Computer designers always start
numbering things from 0 rather than 1. This is true whether they are numbering bits in a byte, bytes in memory (as we are about to
see), or components in an array (as we will see in Chapter 6).

A byte can contain 256 combinations of bit values: 2 possibilities for bit #0 times 2 possibilities for bit #1 times 2 possibilities for bit
#3, and so on up through bit #7.

If you looked at a computer through a microscope and saw the byte shown in Figure 1.2, you might wonder what value it
contained. You would see the 0s and 1s, but what would they mean? It's a great question that has no good answer. A byte might
represent an integral number, a fraction, part of an integer or fraction, a character in a document, a color in a picture, or an
instruction in a program. It all depends on the byte's context. As a programmer, you are the one who dictates how each byte will
be interpreted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory Organization
Typically, a modern personal computer contains several hundred million bytes of memory. The prefix mega (abbreviated M)
means million, so we could also say that a computer has several hundred megabytes or MB. Programs and programmers need a
way to distinguish one byte from another. This is done by assigning to each byte a unique number, known as the byte's address.
Addresses begin at 0. Figure 1.3 shows 4 bytes.

Figure 1.3: Several bytes

If Figure 1.3 showed 512 MB and was drawn to the same scale, it would be about 2,000 miles high.

A single byte is not very versatile, because its value is limited to 256 possibilities. It doesn't matter whether the byte represents a
number or a letter or anything else—in computer applications, 256 of anything isn't much of a range. For this reason, computers
often use groups of bytes. Two bytes, taken together as a unit, can take on 256 times 256 possible values, or 65,536. Four bytes
can take on 256 times 256 times 256 times 256 values, or 4,294,967,296. This is where it starts to be useful. Eight bytes can take
on approximately 20 quintillion different values.

Memory is usually used in chunks of 1, 2, 4, or 8 bytes. (Later we will see that arrays and objects use chunks of arbitrary size.)
The chunks can represent integral numbers, fractions, text, or any other kind of information. From this perspective, we can see
that the statement "Computers only deal with 0s and 1s" is true only in a very limited sense.

Think of it this way: A computer is a digital circuit, and we think of its components as having values that represent 0s or 1s. But if
we look one level below the digital components, we see only electricity, not numbers. And if we look one level above the digital
components, we see that the bits are organized into chunks of 1 or more bytes that represent many types of information.

In addition to various types of data, memory can also store the instructions that operate on data. In the next section, we will look at
a very simple computer and see how instructions and data interact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Very Simple Computer
This chapter will introduce a very simple computer called SimCom. SimCom is imaginary. Or, to use a more respectable term, it is
virtual. Nobody has ever built a SimCom, but it is simulated in one of the animated illustrations on the CD-ROM.

The processors that power your own computer, the Pentiums, SPARCs, and so on, are not very different qualitatively from
SimCom. Quantitatively, however, there is a huge difference: the real processors have vastly more instructions, speed, and
memory. SimCom is as simple as a computer can be while still being a useful teaching tool.

The point of this section is not to make you a master SimCom programmer. The point is to use SimCom to introduce certain
principles of programming. Later in this book, the same principles will be presented in the context of Java. These principles
include

High-level languages

Loops

Referencing

Two's complement

Virtual machines

In this section, you will see some typical processor elements that are quite low-level. Modern programming languages like Java
deliberately isolate you from having to control these elements. However, it is extremely valuable to know that they exist and what
they do on your behalf.

The architecture of SimCom is very simple. There is a bank of 32 bytes of memory; each byte can be used as an instruction or as
data. There is one extra byte, called the register, which is used like scratch paper. Another component, called the program
counter, keeps track of which instruction is about to be executed. Figure 1.4 shows the architecture of SimCom.

Figure 1.4: SimCom architecture

The arrow in the figure indicates the program counter. The next instruction to be executed will be byte #7. Note that byte
addresses start at 0.

When SimCom starts up, it sets the program counter to 0. It then executes byte 0. (We'll see what this means in a moment.)
Execution may change the register or a byte of memory, and it almost always changes the program counter. Then the whole
process repeats: The instruction indicated by the program counter is executed, and the program counter is modified. This
continues until SimCom is instructed to halt.

Bits 7, 6, and 5 of an instruction byte tell SimCom what to do. They are known as the operation code or opcode bits. Bits 4
through 0 contain additional instructions; they are called the argument bits. This division of bits is shown in Figure 1.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.5: Opcode and argument bits

The SimCom computer has 7 opcodes. They are shown in Table 1.1.

Table 1.1: Opcodes

Opcode Function Abbreviation

000 Load LOAD

001 Store STORE

010 Add ADD

011 Subtract SUB

100 Jump to different current instruction JUMP

101 Jump if register is zero JUMPZ

110 or 111 Halt HALT

The 5 argument bits contain a value that is the base-2 address of a memory byte. The LOAD opcode copies the contents of this
address into the register. For example, suppose the current instruction is 00000011. The opcode is 000 (LOAD), and the
argument is 00011 (which is the base-2 notation for 3). When the instruction is executed, the value in byte #3 is copied into the
register. Note that the value 3 is not copied into the register. The argument is never used directly; it is always an address whose
contents are used.

The STORE opcode copies the contents of the register in the memory byte whose address appears in the argument. For
example, 00100001 causes the register to be copied into byte #1.

The ADD opcode adds two values. One value is the value stored in the byte whose address appears in the argument. The other
value is the contents of the register. The result of the addition is stored in the register. For example, suppose the register contains
00001100, and byte #1 contains 00000011. The instruction 01000001 causes the contents of byte #1 to be added to the contents
of the register, with the result being stored back in the register. Note that the argument (00001) is used indirectly, as an address.
The value 00001 is not added to the register; rather, 00001 is the address of the byte that gets added to the register.

The SUB opcode is like ADD, except that the value addressed by the argument is subtracted from the register. The result is stored
in the register.

After each of these four opcodes is executed, the program counter is incremented by 1. Thus, control flows sequentially through
memory. The remaining three opcodes alter this normal flow of control. The JUMP opcode does not change the register or
memory; it just stores its argument in the program counter. For example, after executing 10000101, the next instruction to be
executed will be the one at byte 00101, which is the base-2 notation for 5.

The JUMPZ opcode inspects the register. If the register contains 00000000, the program counter is set to the instruction's
argument. Otherwise, the program counter is just incremented (that is, increased by 1) and control flows normally. This is a very
powerful opcode, because it enables the computer to be sensitive to its data and to react differently to different conditions.

Finally, the HALT opcode causes the computer to stop processing.

Let's look at a short program:
00000100
01000100
00100100
11000000

The first thing to notice about this program is that it's hard to read. Let's translate it to a friendlier format:
LOAD 4
ADD 4
STORE 4
HALT

The program doubles the value in byte #4. It does this by copying the value into the register, then adding the same value into the
register, and then storing the result back in byte #4.

This example shows that anything is better than programming by manipulating 0s and 1s. These spelled-out opcodes and base-10
numbers are a compromise between the binary language of computers and the highly structured and nuanced language of
humans. The LOAD 4 notation is known as assembly language. In assembly language, a line of code typically corresponds to a
single computer instruction, and the programmer must always be aware of the computer's architecture and state. An assembler is
a program that translates assembly language into binary notation.

Playing with SimCom

Unfortunately we couldn't package a SimCom with every copy of this book, but we have done the next best thing. The first
animated illustration on the book's CD is a simulation of a SimCom in action.

Note If you don't already have Java installed on your computer, now is the time. If you're not sure how, please refer to
Appendix A, "Downloading and Installing Java," which walks you through the entire process. Throughout this book you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A, "Downloading and Installing Java," which walks you through the entire process. Throughout this book you
will be invited to run an animated illustration program, and you will be given a command to type into your machine. It
will all make sense after you go through Appendix A.

To run the SimCom simulation, type the following at your command prompt:
java simcom.SimComFrame

The simulation allows you to load and run preexisting programs or create your own programs. Figure 1.6 shows the simulation in
action.

Figure 1.6: SimCom in action

Each byte of memory is displayed in three formats: base-2, base-10, and opcode-plus-argument. The register is only displayed in
base-2 and base-10; since the register is never executed, there is no value in displaying which instruction would be executed. You
can change any byte in memory by first clicking inside that byte. This will highlight and select the byte for editing. Then, if you click
on the base-10 region, you will get a panel that lets you select a new base-10 value. If you click on the opcode region, you will get
a panel that lets you select a new opcode. To change the argument, first click on the argument region of the selected byte. As you
move the mouse, the closest byte address will light up. When the address you want is highlighted, click on it to set it as the
argument.

Try executing a very simple program. Click File ‚ Scenarios in the File menu, and select Load/Add/Store/. This program adds bytes
10 and 11 (not the numbers 10 and 11, but the contents of the memory bytes whose addresses are 10 and 11), and stores the
result in byte 12. Initially, bytes 10 and 11 both contain zero, so to see interesting results you will have to change their values. To
see the program in action, click the Step button. This executes the current instruction in slow motion. To run continuously, click the
Run button, which plays the animation until a HALT instruction is executed. If you get tired of the slow motion, you can click Step
Lightspeed or Run Lightspeed to get instant results. The Reset button reinitializes memory and sets the program counter to zero.

Try storing relatively large values in bytes 10 and 11. The largest value a byte can store is 255. What happens if you try to add 5 +
255?

Change the program so that byte 11 is subtracted from byte 10. What happens if byte 10 contains 5 and byte 11 contains 6?

When you are ready for a more interesting program, click Scenarios ‚ Times 5 in the File menu. This program multiplies the
contents of byte 31 by 5 and stores the result in byte 30. Experiment with a few values in byte 31 to convince yourself that it
works. Remember to click the Reset button after each run.

This program might seem needlessly complicated. It's too bad the SimCom instruction set doesn't include a multiply opcode, but
since it doesn't, wouldn't the following program be more straightforward?
LOAD 31
ADD 31
ADD 31
ADD 31
ADD 31
STORE 30
HALT

This is definitely more straightforward, but it is also less flexible than the version SimCom uses. That version uses a loop, a
powerful construct that appears in all programming languages. Note that initially, byte 29 contains 5; this byte is a loop counter
that controls how many times the loop will be executed. Lines 0 through 3 add whatever is in byte 31 (the value to be quintupled)
to whatever is in byte 30 (the accumulating result). Then lines 3 through 5 subtract 1 from the loop counter. If the loop counter
reaches zero, line 6 causes a jump to a HALT instruction. If the decremented loop counter has not yet reached zero, line 7 causes
a jump back to line 0, which is the beginning of the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset the Times 5 program. Change the value in byte 29 (the loop counter) from 5 to 6. Put a reasonable value in byte 31 and run
the program. Notice that the program now multiplies

by 6. This is to be expected, because the value in byte 31 has been added one extra time to the accumulated result.

Now you can see how the looping version is more flexible than the repeated-addition version shown earlier. To modify the looping
version so that it multiplies by 10 instead of 5, you just have to change the loop counter in byte 29. In the repeated-addition
version, you have to make sure you add the right number of ADD 31 lines, and then make sure the STORE 30 and HALT lines are
intact. That may not seem unreasonable to you, but what if you want the program to multiply by 30? With the looping version, you
just change the loop counter. With the repeated-addition version, you will run out of memory.

As you experiment with the SimCom simulation, you will probably notice a few things:

Specifying an instruction by selecting an opcode and an argument is much easier than figuring out what the base-
10 value should be.

Even so, SimCom programming isn't very easy.

When you look at any byte, you can't tell if it is supposed to be an instruction or a value. For example, a byte that
contains 100 might mean one hundred, or it might mean SUB 4.

The first two points suggest the need for higher-level programming languages. Hopefully, such languages will support
sophisticated operations like multiplication and looping.

The Lessons of SimCom

The point of presenting SimCom in this chapter was to expose you to certain basic functions of programming. Those were high-
level languages, loops, referencing, two's complement, and virtual machines. Now that you've been exposed, we can look at how
SimCom supports those functions.

Programming with opcodes and arguments is certainly easier than specifying base-10 or (worse yet) base-2 values. But SimCom
still forces you to think on the microscopic level. In the Times5 program, you have to remember that byte 29 is the loop counter
and byte 30 is the accumulated result. You always have to remember what's going on in the register. High-level languages like
Java isolate you from the details of the computer you're programming. (That probably sounds like a good thing, now that you have
suffered through SimCom.)

Loops are basic to all programming. Computers are designed to perform repetitive tasks on large data sets, such as printing a
paycheck for each employee, displaying each character of a document, or rendering each pixel of a scanned photograph. Loops
are difficult to create on SimCom, because everything is hard on SimCom. Java uses simple and powerful looping constructs.

We will cover referencing much later in this book, in Chapter 6, "Arrays." For now, you've had a preview. Remember how SimCom
never directly operated with an instruction's argument? The argument was always used as the address of the value to be loaded,
added, etc. Now you should be used to the difference between the address of a byte and the value in that byte. When you
program in Java, you don't have to worry about the address of your data, but you still have to think about its location. This will
make more sense later on. For now, it's enough to understand the distinction between the value of data and the location of data.

Two's complement is a convention for storing negative numbers. On its surface, SimCom seems to deal only with positive
numbers (and zero, of course). But subtraction is supported, and subtraction can lead to negative numbers. If you did the exercise
where you modified the LoadAddStore program to make it subtract, you noticed that SimCom thinks 5 minus 6 equals 255. In a
way, this is actually correct.

SimCom does not really exist. When you run the animated illustration, there is no actual SimCom computer doing the processing.
The program simulates the computer's activity. Thus, SimCom is an imaginary processor that produces real results. As stated
earlier in this chapter, an imaginary computer that is simulated on a real one is known as a virtual computer. You might have
heard of the JVM, or Java Virtual Machine. Java programs, like SimCom programs, run on a virtual computer.

There is a powerful benefit to this arrangement. When you buy software for your personal computer, you have to check the side of
the box to make sure the product works on your platform. If you own a Windows PC, it is useless to buy Macintosh software, just
as it is useless to buy SPARC software for a Mac. This is because different manufacturers use different kinds of processors. The
binary opcode for addition on one processor type might mean subtract to another type, and might be meaningless to a third type.
Thus, software vendors have needed to create a different product for each computer platform they want to support.

Virtual computers do not have this limitation. No matter what kind of computer you're using, SimCom loads when it executes 000,
stores when it executes 001, and multiplies by 5 when it executes the Times5 program.

The Java Virtual Machine is much more complicated than SimCom, but the same principle applies. Any Java program will run the
same on any hardware. Of course, the JVM itself varies from processor to processor. This is why you had to specify your platform
when you downloaded Java. From the JVM's point of view, your platform is known as the underlying hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note Every chapter in this book ends with exercises that test your understanding of the material and make you think about

issues raised in later chapters. The solutions are in Appendix B.
1. A cluster of eight bytes can take on approximately 20 quintillion different values. (One quintillion is a 1 followed

by 18 zeroes, or 10 to the 18th power.) Estimate the number of different values that a cluster of 16 bytes can
have. Just estimate, do not count. Can you think of anything that comes in such quantities?

2. The SimCom animated illustration is written in Java. When you run the program, how many virtual machines are
at work?

3. Write a SimCom program that adds 255 to the value in byte 31 and stores the result in byte 30. Observe the
program's behavior. What do you notice?

4. Write a SimCom program that computes the square of the value in byte 31 and stores the result in byte 30.
What happens when you try to compute the square of 254?

5. What features could be added to SimCom to make it more useful?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2: Data

Overview
Computers process data—factual information, such as numbers, text, images, and sound—in a form that can be processed by
electronic devices. That is the whole idea of computers. In this chapter, you will see how Java handles data. This chapter will
cover the two most important things a program does with data:

Declaring

Assigning

Declaring and assigning are activities that we perform in the context of a compiled language such as Java. This chapter will begin
by explaining what a compiled language really is. If you are already familiar with this topic, feel free to skip to the next section,
"Data Types."

In the previous chapter, we looked at the SimCom virtual machine and experienced its benefits and drawbacks. SimCom was not
much of a computer, but it was valuable as a learning tool. The drawbacks mostly had to do with scale: SimCom did not have
enough memory or commands to do anything very interesting. In this chapter, we leave SimCom behind and discuss Java itself.

Note Jumping into Java can be difficult if you're learning programming from the ground up. Even the simplest possible Java
program uses many unfamiliar constructs, including classes, methods, arrays, access, and static code. We can't
expect you to learn all these concepts before you look at a Java program. So beginning in this chapter, you will be
asked to accept that certain parts of all Java programs have to be in place in order for the program to work at all.
Eventually, later chapters will present everything you are being asked to accept.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Compiled Languages
The SimCom virtual computer is difficult to program. You have two options for specifying an instruction: You can enter a byte
value, or you can specify an opcode and an address. You've probably found that specifying an opcode and an address is a much
better approach, but it's still not very intuitive.

The language of programming with opcodes is known as assembly language. Every line of an assembly language program
roughly corresponds to a computer instruction in memory. Real computers have much more memory than SimCom, and assembly
programs that make real machines do something useful can be quite long. Such programs are created using a text editor. The
resulting file is known as source code, and it must be translated into the appropriate binary values before it can be executed by a
computer.

Conceivably, this translation could be done by people. In fact, in the very earliest days of programming, that's how it was done.
However, computers can do a much better job of it. Any program that translates assembly code into computer base-2 code is
called an assembler. Figure 2.1 shows the flow from assembly language source code to executable computer code.

Figure 2.1: Assembly language

After a program has been assembled, it must be loaded into memory and the computer must be told to execute it. This is the job
of the operating system.

Assembly programming has many shortcomings, all of which result from being too close to the underlying architecture. When you
are forced to think in terms of the interrelationships among hardware components, it is difficult to also consider the domain of the
problem you are trying to solve. For example, if you want to write a program to model weather patterns, you will be better off
thinking about air currents and water vapor, not about opcodes and registers. To do that, you need a compiled language.

Compiled vs. Assembly Languages

A compiled language is like assembly language in the sense that a source program is created using a text editor, and the source
must be translated into computer binary. The difference is that, unlike assembly code, a line of source code generally does not
correspond to a single instruction. In fact, one great benefit of compiled languages is that you don't need to know anything at all
about the underlying hardware.

Figure 2.2 shows the flow from compiled language source code to executable computer code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.2: Compiled language

Each type of computer (Pentium or SPARC, for example) has its own instruction set and architecture, and hence its own assembly
language. However, a compiled language can run on any target machine, provided there's a compiler that can translate it into the
target machine's instruction set. For example, there are compilers that translate C++ into Pentium code, and other C++ compilers
that produce code for SPARC processors.

Software can be developed much more efficiently with a compiled language than with assembly language. Moreover, in theory a
company only needs to develop one version of a software product. When the product is finished, one compiler can be used to
produce PC code, another compiler can be used to produce Macintosh code, and so on.

That's the theory. In practice it doesn't work so well. Certainly compiled languages are phenomenally more efficient for
development than assembly languages. However, the ideal of developing once and compiling many times is just an ideal. There
are differences among target computers that should be negligible, but are in fact significant. Source code that runs flawlessly on
one platform may require considerable tweaking to run on a different platform. Multiple versions of source code have to be
maintained. The process can get extremely expensive.

The Java Virtual Machine

Java is an interpreted compiled language. This means the compiler does not generate code that is specific to any particular
processor. Instead, the compiler generates code for an imaginary processor: a virtual machine. The compiler does almost all the
work. It checks for grammatical correctness, analyzes the structure of the source code, and breaks the source down into
elementary units. It does everything except create code that can be run by a computer that exists in the physical world. The Java
compiler's output is called bytecode, which is the binary format that is understood by the Java Virtual Machine, or JVM.

The JVM is a program that executes bytecode instructions. Like SimCom in Chapter 1, the JVM's architecture is usually
implemented in software rather than being built from circuit components. The JVM itself runs on physical hardware, so there is
one version for Windows platforms, one for SPARC platforms, one for Mac platforms, and so on.

When you run a Java application, you are really running the JVM, which in turn loads and executes the bytecode for your
application. All JVMs for all platforms execute bytecode in the same way. This means that with Java, you do not have to maintain
different versions of source code for different platforms. One of the Java slogans is, "Write once, run anywhere." And it works.
With Java, a program has exactly one version of source code. The result of compiling the source—the bytecode—will run on any
platform for which a JVM is available.

Figure 2.3 shows the evolution of a Java application from source code through execution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.3: Evolution of a Java application

In Figure 2.3, the source code is the file GreatStuff.java. All Java source files have to end with .java or the compiler won't
touch them. The compiler produces one or more files of bytecode output. The bytecode files, also known as class files, always
end with .class. To run a Java program, you type java classname, where classname is the name of the class file that
contains the starting point of the program. Note that here you omit the .class suffix. java is the name of the JVM program which
will read and execute the bytecode class file.

Now that you've seen how the Java compiler and Virtual Machine fit into the big picture, it's time to get acquainted with a
fundamental concept of Java programming: data types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data Types
Imagine what would happen if SimCom accidentally treated bytes of data as if they were instructions, or instructions as if they
were data. In the first case, the virtual machine would execute a random series of opcodes, producing nothing of value. In the
second case, instructions would likely be modified (added to or subtracted from one another), again producing nothing of value.

The point is that SimCom uses memory for two different purposes, instructions and data, and each memory type must be treated
appropriately. There are no facilities built into SimCom to guarantee appropriate treatment. You just have to be a careful
programmer.

This distinction between memory uses is also found in Java and all other high-level languages. Fortunately, Java makes it
impossible to execute data or do arithmetic on opcodes.

SimCom has no facilities for dealing with fractions, characters, or very large numbers, and negative numbers are mysterious. Java
supports all these different characteristics of numbers. It does this by providing different data types. For now, you can think of a
data type as a way of using memory to represent data. SimCom uses an eight-bit base-2 representation. Java provides several
base-2 representations: two representations for numbers that might contain fractions, one for characters, and one for logical
(true/false) values.

Processing a Java data type as if it were a different type would produce worthless results. Java protects you from this kind of
problem by requiring you to declare all data types; the compiler enforces the integrity of your declarations. Of course, this will
make much more sense later in this chapter, after we discuss declarations. Right now, let's look at Java's data types. Later on,
you'll see how they're used.

Integer Data Types

In the terminology of programming, an integer is a data type that represents non-fractional numbers. In Java, all integer types are
signed, meaning that both positive and negative values are supported (as is zero). Java's four integer types are shown in Table
2.1.

Table 2.1: Java's Integer Data Types

Name Size Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits -32768 32767

int 32 bits -2147483648 2147483647

long 64 bits -9223372036854775808 9223372036854775807

Each data type shown in Table 2.1 has a finite range. Wider ranges are accommodated by data types that require more memory.
No type is unlimited – each has a minimum and a maximum value – but it is difficult to imagine exhausting the capacity of the
long type, which ranges from minus nine quintillion to plus nine quintillion.

Java uses a format known as two's complement to represent negative numbers. In nearly all cases, the details of this
representation are hidden from programmers, so you can go for a long time without having to know about it. However, there are
times when a program will produce baffling results if you don't know about two's complement. Also, there are some arithmetic
operators (discussed in Chapter 3, "Operations") that only make sense if you know how negative numbers are represented.

Two's complement is an evolution of the classical base-2 notation that we all learned in elementary school. If you need a review,
you can run the Simple Base 2 animated illustration on the CD-ROM. First run the Java setup script you created in Appendix A
(assuming you haven't run it already), and type java twoscomp.SimpleBase2Lab. You see a ten-bit number. You can click on
individual bits to change their values. When you're ready, click the Run button to see which number is represented. Figure 2.4
shows SimpleBase2Lab in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.4: SimpleBase2Lab

Straightforward base-2 notation, as shown in the Simple Base 2 animation, is not exactly what computers use to represent
numbers. Two's complement is more sophisticated than regular base-2, because of the way negative numbers are represented.

Imagine a car with an odometer that uses base-2 rather than base-10. There are a lot more digits than usual, and they roll over
more frequently, but otherwise this odometer is like an ordinary odometer. Every time you drive another mile, the displayed
number increases by 1. When the display is showing all 1s, and you drive one more mile, the odometer rolls over and shows all
0s. Thus if you wanted to get imaginative, you could say that in a way a display of all 1s represented -1 mile, because when you
add one more mile, you get zero miles.

What about a display that consists of all 1s except for the rightmost digit, which is zero? (This would be 11111110 on an 8-bit
odometer.) You could make a case that this reading represents -2 miles, because when you drive two more miles you get zero
miles.

Here is another way to make the same case: if you were willing to break the law, you could open the odometer and roll it back
manually. If it initially showed one mile and you rolled it back once, it would show zero miles. If you then rolled it back once more,
it would show 11111111.

Figure 2.5 shows a base-2 odometer.

Figure 2.5: A base-2 odometer

Two's complement works like an odometer. A value of all 1s represents -1. Other values are assigned to ensure consistency. For
example, with an 8-bit byte, a value of 11111110 represents -2. This makes sense, because adding 1 produces the "all 1s"
representation for -1.

The general rules for two's complement are as follows:

A value of all 0s represents zero.

If the leftmost bit is 0, the number is positive. The remaining bits represent the value in base-2.

If the leftmost bit is 1, the number is negative. To compute the magnitude of the value, invert all bits (changing 0s to
1s and 1s to 0s) and then add 1.

Figure 2.6 shows how to compute the value of the 16-bit short 1111111110011001.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.6: An example of two's complement

Figure 2.6 demonstrates that after you invert all the bits and add 1, the magnitude is 103. Thus, the original value of
1111111110011001 must represent -103.

Thinking in two's complement is not intuitive, but fortunately you rarely have to do it. However, it is important to get familiar with
this format. There is an animated illustration on the CD-ROM to make this process more enjoyable. To run it, type java
twoscomp.TwosCompLab. Figure 2.7 shows the program.

Figure 2.7: Two's complement lab

You can select 8-, 16-, or 32-bit data, corresponding to Java's byte, short, and int data types. (The 64-bit long type does not fit on
a screen.) Buttons allow you to set the data to all 0s or all 1s. You can click on an individual bit to change its value. When you are
ready, click on the Go button. The program will animate the steps involved in computing the value represented by the bit pattern.

Compute the value represented by the "all 1s" pattern for the byte, short, and int types.

Floating-Point Data Types

Integer data types cannot represent fractions. If you try to use an integer type to store a number with a fractional part, the
fractional part will just be discarded. For example, if you divide 29 by 10 (as you'll do in the next chapter) and store the result in a
short, you will find that the short contains 2, not 2.9.

Floating-point data types can represent numbers with fractional parts. Java provides two floating-point data types, called float and
double, as shown in Table 2.2.

Table 2.2: Java's Floating-Point Data Types

Name Size Minimum Value Maximum Value Smallest-
Magnitude Positive
Value

float 32 bits -3.4 x 1038 3.4 x 1038 1.4 x 10-45

double 64 bits -1.8 x 10308 1.8 x 10308 4.9 x 10-324

The maximum value for a float is approximately 34 followed by a string of 37 zeros: 340 undecillion. With such magnitudes, the
common ways of naming numbers become impractical. We use scientific notation, as shown in the value columns of Table 2.2.
With scientific notation, a number that would ordinarily have a huge string of zeros is represented by a value between 1 and 10
(always strictly less than 10), multiplied by 10 raised to the appropriate power.

The rightmost column of Table 2.2 shows the smallest positive numbers that the data types can represent. These values contain
long strings of zeros, not because they are very large, but because they are very small. 1.4 x 10-45 is another way of saying
0.0014.

The original computer output devices—terminals and teletypes—only had one font size, so superscripted exponents could not be
displayed. An abbreviation known as scientific notation was developed. In scientific notation, the letter E (which is short for
exponent) is shorthand for "times-ten-to-the." For example, the scientific notation for 3.45 x 10-67 would be 3.45E-67. If you write
code that prints out large numbers or very small fractions, you are likely to see scientific notation.

In the discussion of integer data types, you learned that you must understand two's complement notation to really understand
certain Java operations. Fortunately, you don't need to know how floating-point numbers are represented internally to understand
any Java operations. However, if you are interested in how this is done, you can run the Floating-Point Lab animated illustration by
typing java floating.FloatFrame. The program lets you vary the bits of a 32-bit float number and observe the effect this
has on the value. As you might expect, the fractional and exponent parts of the data are in base 2, and the exponent is a power of
2 rather than 10. You might discover certain bit combinations that result in "special values".

Doubles use 64 bits, twice as many as floats. The extra bits are used to give the data type both more range and more precision.
The name double originates from double precision.

Representing Characters

Java uses a 16-bit data type called char to represent text characters. The data type can accommodate 216 or 65,536 bit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java uses a 16-bit data type called char to represent text characters. The data type can accommodate 216 or 65,536 bit
combinations, so 65,536 characters can be represented. This is more than enough to encode all European-based languages, but
not enough for Chinese, Japanese, Korean, and certain others. The correspondence between characters and bit combinations is
defined by the Unicode standard, which is beautifully described at www.unicode.org.

Representing Logical Values

The integer and floating-point formats represent numerical values. The char data type represents text characters. Java has one
last data type, boolean, which represents logical values. Different JVMs may use different numbers of bytes to store booleans.
Often 4 bytes are used, although this is not always the case.

The numerical and char types can represent many different values, from 256 possible values for byte all the way up to
18446644073709551616 for long. The boolean type can represent only two possible values: true and false. This data type is
useful for controlling conditional execution. For example, a block of code might need to execute only if it's midnight and a certain
database query returns more than 100 records but less than 500. Or a block of code might need to execute if the user has entered
a special request and a password. Java uses logical values to express conditions like these that might be true and might be false
As you will see in Chapter 3, there are special boolean operations that operate on these values.

Logical values and the operations that act upon them were first studied by George Boole, an 18th-century British mathematician.
He is the only person in history whose name has been immortalized as a computer-language concept.

Recap of Java's Data Types

So far this chapter has introduced Java's 8 basic data types. These types are summarized in Table 2.3.

Table 2.3: Java's Primitive Data Types

Data Type # of Bits Used For Internal Format

byte 8 Very small integers 2's complement

short 16 Small integers 2's complement

int 32 Integers 2's complement

long 64 Large integers 2's complement

float 32 Fractions, very large
numbers

Floating-point

double 64 Fractions, huge numbers Floating-point

char 16 Characters Unicode

boolean ?? Logic Unavailable

These data types are collectively called primitives to distinguish them from object-oriented types. (We will begin our study of
objects in Chapter 7.)

We now turn to the question of what you can do with all this data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declaring and Assigning
In a sense, computer programming is the art of assigning the right value to the right data at the right time. In Java, as in many
other languages, you have to declare your data before you use it. Declaring means telling the compiler the types of data you will
be using. In this section you will see how to declare and assign data, and will look at your first complete Java program.

When you programmed SimCom, you had to specify the address of each data operand. That meant you had to remember what
you were using the different memory bytes for. For example, the Times 5 program used byte #29 as a loop counter and byte #30
for storing the result. Yet, when you look at the program for the first time, it's very difficult to tell what's going on.

In Java, you never have to remember which memory location is being used for which purpose. In fact, there is no way to even
know which memory location is being used for which purpose. You pick a name for each memory location you want to use, and
you refer to memory locations by name rather by address. The compiler assigns the addresses. All you have to do is tell the
compiler the names you will be using, and the data type associated with each name.

For example, if you wanted to use a byte as a loop counter, it would be reasonable to choose the name loopCounter. Then you
would declare as follows:
byte loopCounter;

A piece of memory that is declared and named in this way is known as a variable, so we will use that term from here on.

A declaration has three parts: a data type, a name, and a semicolon.

The data type (for now) is one of the eight primitive types: byte, short, int, long, float, double, char, and boolean. Later we will
introduce some other types.

The name has to begin with a letter, an underline (_), or a dollar sign ($). The rest of the name can consist of letters, underlines,
dollar signs, or digits. It is good programming practice to use variable names that begin with lowercase letters. If the name
consists of more than one word, the second word and all subsequent words begin with uppercase letters. This is what we have
done with loopCounter. Later in this book, you will see that there are other entities besides variables for which you will assign
names (including classes and interfaces). These entities use different naming conventions. Following the conventions helps make
source code easy to read.

The semicolon is a vital part of a declaration. A declaration is a kind of statement. A statement is a single instruction. All
statements must end with a semicolon. Otherwise, the compilation will fail and the compiler will print out an error message with the
line number where it ran into trouble.

Be aware that it is inherently impossible to create a compiler that produces consistently helpful error messages. Imagine someone
running along a rough cobblestone road. If his foot slips on a stone, he might stagger for a few steps before falling. Similarly, if the
compiler slips on an ungrammatical line, it might stagger over a few more lines before crashing and printing a message.

For the sake of convenience, you can declare multiple variables in a single statement, as long as the variables are all of the same
type. So the following:
double mass, velocity, energy;

is equivalent to the following:
double mass;
double velocity;
double energy;

After you declare a variable, you can assign values to it. The following two lines declare and assign a variable called velocity:
double velocity;
velocity = 123.456;

Notice that the assignment statement, like the declaration statement, ends with a semicolon. An assignment statement has the
form variable = value semicolon. (In the next chapter, you will see how the value can be a complicated mathematical
formula. For now, the value will be a simple literal number.) Be aware that the equal sign is just a symbol, and its meaning is not
exactly the same as its meaning in a mathematical context. In geometry, when we say Area = πr2, the equal sign means "is,
always has been, and always will be." In Java, the

equal sign means "store the value to the right of the equal sign in the variable to the left of the equal sign."

When you assign to a char variable, the easiest approach is to enclose the value in single quotes, like this:
char ch;
c = 'w';

After execution, the variable ch contains the Unicode representation for the letter w. The single quotes can also contain special
codes, called escape codes, that encode special characters. The most useful of these are

'\n' – Newline

'\t' – Tab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Very Simple Java Program
So far we have seen declaration and assignment lines, but only as code fragments. If you type any of the fragments into a file and
try to compile the file, you will get nothing more than compiler error messages. This is because a well-formed Java program—even
one that does almost nothing—must conform to certain structural rules.

And here we have a problem, which is best illustrated by an example. The following code listing is a complete Java program that
contains a declaration and an assignment.
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

The problem is this: the program contains a number of words and symbols that have not yet been introduced, and that will require
considerable explanation when the time comes. So for now, you just have to accept the mysterious parts of this code as things
that must be done to make the program work.

Type the program into a file called VerySimple.java. Compile it by typing javac VerySimple .java. If you get compiler
error messages, make sure you've typed in the program exactly as it appears here. The compiler output will be a file called
VerySimple.class.

The preceding program appears just as it would in a source file. However, when listings of more than a few lines appear in print, it
is convenient to number the lines:
1. public class VerySimple
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. }
8. }

The line numbers are convenient for referring to features of the code, but they should never appear in source code that is to be
compiled. Here, the line numbers let us point out that the relevant parts of the listing are lines 5 and 6, and all the rest is
mysterious code that will be explained later.

Output

The SimCom virtual machine lets you see all of memory all the time, but Java's memory is hidden. In the VerySimple program,
there is no way to see the value of age. The following program declares and assigns age, and then prints its value to the console:
1. public class VerySimple2
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. System.out.println(age);
8. }
9. }

The new line is #7. To print out any value, you can use the statement System.out .println(theValue);.

Here again, we ask you to accept that the syntax works. The explanation of why it works will come as soon as we have covered all
the underlying concepts. For now, be aware that in order to print the value of any variable, you need to type that variable's name
between the parentheses in a line like #7.

Notice that in line #1, the word following class has been changed from VerySimple to VerySimple2. The name following
class has to match the name of the source file. Therefore, if you want to type in this program, you should store it in a file called
VerySimple2.java. The compiler will generate an output file with the same name, followed by the .class suffix:
VerySimple2.class. This compiler-output file is known as a class file. To run the application, type java VerySimple2. Table
2.3 summarizes this naming consistency.

Table 2.3: Naming Consistency

Name in class line Source filename Class filename Invocation

VerySimple2 VerySimple2.java VerySimple2.class java VerySimple2

Printing out the value of a variable is convenient, but it would be even more convenient to print out a reminder of what the value
represents. "Age is 12.34" is much more informative than "12.34." The following program prints out the more informative line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. public class VerySimple3
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 123.456;
7. System.out.println("Age is " + age);
8. }
9. }

In line #7, the text inside the double quotes is known as a literal string. The plus sign does not indicate addition, since adding text
to a number doesn't really mean anything. In this context, the plus sign just means that the literal string is to be printed out,
followed by the value of age. Within the parentheses of a println statement, you can have any number of alternating literal
strings and variables. So if you wanted to print out the values of variables i, j, and k, separated by commas, you could use the
following line:
System.out.println(i + "," + j + "," + k);

Now that you can declare, assign, and display variables, you are ready for the next step: mathematical operations. That is the
topic of the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. According to Table 2.1, the maximum values for the byte and short data types are 127 and 32767, respectively.
Use the Twos-Complement Lab animated illustration to verify this. Which byte and short bit patterns produce the
maximum values? In general, which bit pattern produces the maximum value for a two's complement number of
N bits?

2. According to Table 2.1, the minimum values for the byte and short data types are -128 and -32768, respectively.
Use the Twos-Complement Lab animated illustration to verify this. What byte and short bit patterns produce the
minimum values? In general, what bit pattern produces the minimum value for a two's complement number of N
bits?

3. Launch the Twos-Complement Lab animated illustration by typing java TwosCompLab, set the data type to int,
and set all the bits to 1. Then set the three bits on the right to 0. Compute the value. Do the same for the byte
and short data types. What do you observe?

4. Launch the Floating-Point Lab animated illustration by typing java floating.FloatFrame. Set the rightmost
bit to 1 and all other bits to 0. The value represented is 1.4E-45. Try changing various bits' values by clicking on
them. Can you create a value that is smaller than 1.4E-45 but still greater than 0?

5. Write a Java application that declares and assigns values to three int variables named x, y, and z. Print out all
three values, separated by commas, on a single line.

6. White space means spaces, tabs, and line-break characters. Type in the VerySimple application from this
chapter (reproduced below) and experiment with inserting white space. Does anything change during
compilation or execution if you insert extra spaces between public and class? What if you insert a line break
between public and class? Can you find any adjacent words or symbols such that inserting white space
between them changes compilation or execution?
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3: Operations
The previous chapter showed you how to declare various types of primitive variables, and how to assign and print out the values
of variables. This chapter will look at the computational operations that you can perform on Java data. For numeric data—that is,
for all primitive types other than boolean—these computations include the familiar arithmetic operations of addition, subtraction,
multiplication, and division, as well as some more exotic operations. Arithmetic operations are not applicable to boolean data,
which has its own group of operations.

Before covering these topics, we will look at two ways to make programs easier to read: white space and comments.

White Space and Comments
This chapter is going to present some techniques for writing long and intricate programs. Before we begin, though, let's look at
how to write programs that are easy to read and understand.

Consider the following lines of code:
int x;
x = 5;

As far as the Java compiler is concerned, this code is identical to the following:
int x; x=5;

These two versions produce exactly the same compiled bytecode. In the preceding line, the gap after the semicolon can be
created by adding a few tabs or a lot of spaces. Either way, it doesn't matter to the compiler.

The compiler ignores any blank space created by using the spacebar or by typing Tab or Enter. Such space is called white space.
You can use white space to make your source code more readable. For example, the following code declares four variables:
 double velocity; boolean b;
 short x;
long

 hotSummer;

If you use this code in a program, someone who is unfamiliar with the program will have a hard time figuring out what your
intention is. (And the person sweating over your source code could be yourself, reviewing your own code long after you originally
wrote it.)

You can make your code more readable to humans by manipulating white space, like this:
double velocity;
boolean b;
short x;
long hotSummer;

Or better yet:
double velocity;
boolean b;
short x;
long hotSummer;

In the first example, some spaces and a return have been removed, and a return has been added, so that all the left edges line
up. In the second example, white space has been added. Now the eye of any reader, including you, will subconsciously arrange
the code into two columns. The words on the left are all data types, and the words on the right are all variable names. The
columns are easily aligned: You just press Tab before each data type and before each variable name. This formatting scheme is
so clear that it is considered correct style by convention. Any other formatting arrangement would be less readable, and would
also be considered sloppy style.

The previous chapter presented the following simple program:
1. public class VerySimple
2. {
3. public static void main(String[] args)
4. {
5. double age;
6. age = 12.34;
7. }
8. }

Note Remember that the line numbers are not part of the source code. They are just included to make it easier to refer to
particular lines.

A Java program consists of one or more class definitions (though we will not discuss class definitions until Chapter 7, "Introduction
to Objects"). For now, be aware that lines 2-8 are the definition of a class named VerySimple. The class definition begins with
an open curly bracket (line 2) and ends with a closed curly bracket (line 8). Since these brackets are vertically aligned in the same
column, our brains notice that they are spatially related, and we subconsciously assume that they must also be functionally
related.

A class definition can contain (among other things) a number of method definitions. Methods will be discussed in detail in Chapter
4, "Methods"; for now, you just need to be aware that lines 4-7 are the definition of something called a method, whose name is
main. The method definition begins with an open curly bracket (line 4) and ends with a closed curly bracket (line 7). Again, the
vertical alignment of the brackets gives us visual information about the structure of the program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice how easy it is to look at lines 3 and 4, which tell us, "the method starts here," and find the end of the method. Within the
method, all the code (lines 5 and 6) is vertically aligned. If you look at the listing with your eyes out of focus, all you see are
several levels of nested blocks of blurry stuff. A Java program is (mostly) a block that contains blocks that contain blocks, etc. It is
extremely important to use white space and indentation to indicate the nesting level of all your lines of code.

In addition to white space, the Java compiler also ignores comments. There are two kinds of comments: single-line and multi-line.

A single-line comment begins with two slashes (//). There can't be anything between the slashes. The compiler ignores everything
from the slashes through the end of the line. This lets you put descriptive text after the slashes. Usually, the text explains what just
happened in the line. For example:
float distance; // Units are microns
double weight; // Units are ounces

Note the use of white space to vertically align the comments.

A multi-line comment, also known as a traditional comment, can span more than one line but doesn't have to. This kind of
comment begins with a slash immediately followed by an asterisk (/*). The comment ends with an asterisk immediately followed by
a slash (*/). For example:
/* Declare and initialize variables that
will later be used for computing
time-distortion effects at relativistic
speeds. All distance units are miles,
not kilometers. */

double speedOfLight;
int numberOfPlanets;

speedOfLight = 186000;
numberOfPlanets = 9;

Note the use of blank lines to separate the multi-line comment from the declarations, and the declarations from the assignments.

Now that you know how to make source code easy to read, we can move on to the main topic of this chapter, which is how to write
a program that makes your computer actually compute something.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arithmetic Operations
Java's arithmetic operations fall into two categories: basic arithmetic (addition, subtraction, multiplication, and division), and some
more exotic operations such as modulo and shifting. We will begin by looking at the simple operations.

Basic Arithmetic

The following code computes and prints out the sum, difference, product, and quotient of two numbers:
public class C3
{
 public static void main(String[] args)
 {
 int x, y; // Inputs
 int sum; // x plus y
 int diff; // x minus y
 int product; // x times y
 int quotient; // x divided by y

 /* First assign initial values to
 the x and y inputs. */
 x = 12;
 y = 3;

 // Now do arithmetic.
 sum = x + y;
 System.out.println("sum = " + sum);
 diff = x - y;
 System.out.println("diff = " + diff);
 product = x * y;
 System.out.println("product = " + product);
 quotient = x / y;
 System.out.println("quotient = " + quotient);
 }
}

Note the use of the asterisk (*) to indicate multiplication. The other three symbols (+, -, and /) are recognizable from standard
arithmetic. These symbols (as well as a few others that we'll see later on in this chapter) are known as binary operators. Here the
word binary indicates that the operators work on two numbers at a time, known as operands. Most Java operators are binary, but
there are several unary operators that each take a single operand. There is even a trinary operator that takes three operands. (We
will postpone discussion of the trinary operator until Chapter 5, "Conditionals and Loops.")

There is nothing surprising about this program's output:
sum = 15
diff = 9
product = 36
quotient = 4

As mentioned in the previous chapter, the meaning of the equal sign (=) here is a bit different from its traditional mathematical
meaning. In Java, the equal sign is called the assignment operator. It tells the computer to compute the value on the right-hand
side of the equal sign (usually abbreviated rhs), and to store the result in the variable that appears on the left-hand side (usually
abbreviated lhs). Until now, the rhs has been a literal value, but as this program shows, the rhs can also be a calculation. The
calculation's arguments can be variables or literals, so the following lines would be valid:
int halfProduct;
halfProduct = product / 2;

Java allows you to declare a variable and assign its initial value, all in a single statement. The preceding code can be rewritten as
int halfProduct = product / 2;

Later you can assign a different value to halfProduct. You can reassign values to variables as often as you like. Just don't
declare the variable more than once, because the second declaration will cause a compiler error.

The lhs of an assignment can appear in its own rhs. Consider the following line:
x = x + 5;

If this were a line of algebra and not a computer-language statement, it would be ridiculous. When you subtract x from both sides,
you get 0 = 5. But in Java, it is perfectly legal because the equal sign means assignment. The line says to add the value of x plus
5 and store the result back in x.

Precedence and Parentheses

Multiple operations can be combined in a single statement. For example, you might use the following code to compute the area of
a circle whose radius is known:
double area = 3.14159 * r * r; // Pi-r-squared

Use caution when combining different operators in a single statement. It would be reasonable to expect the statement to be
evaluated left to right, but Java doesn't do it that way. For example, you might expect that after the following line executes, the
value of x is 502:
int x = 1000 + 4 / 2;

Actually, x is 1002. Java gives multiplication and division higher precedence than addition and subtraction. This means that in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Actually, x is 1002. Java gives multiplication and division higher precedence than addition and subtraction. This means that in a
statement such as the one above, any multiplication or

division is performed before any addition or subtraction, even if the addition and subtraction appear first. So the division happens
first (4/2 = 2), and then the addition (1000+2 = 1002).

Note Java has strict evaluation precedence rules that govern all the operations presented in this chapter. The precedence is
summarized in Table 3.6.

If you don't like a statement's order of evaluation, as dictated by the precedence of its operators, you can use parentheses.
Operations that appear in parentheses have higher precedence than operations that do not. So the following code really does
compute a result of 502:
int x = (1000 + 4) / 2;

Parentheses can be nested, as the following example shows:
int x = 1+(2*(3-4)+(5-6)*(7+8));

The result is -16.

The EvaluatorLab animated illustration will help you get used to parentheses and operator precedence. To launch the program,
type java eval.EvaluatorLab. You will see the display shown in Figure 3.1.

Figure 3.1: EvaluatorLab

Type any arithmetic expression into the text field and press Enter. The arithmetic expression can consist of any combination of
literal integers, parentheses, and the binary operations +, -, *, and /. Click on the Run button to see an animation of the evaluation
of the expression. Click on Step to see an animation of just the next step in the expression's evaluation. The Run Lightspeed and
Step Lightspeed buttons perform the evaluation immediately, without animation. Figure 3.2 shows the program after evaluating the
configuration of Figure 3.2.

Figure 3.2: EvaluatorLab after evaluation

Type the following expressions into EvaluatorLab and observe the results:

1000+4/2

(1000+4)/2

1+(2*(3-4)+(5-6)*(7+8))

The EvaluatorLab only works with integer data. In Java, integer addition, subtraction, and multiplication behave exactly as you
would expect. Division, however, has a problem. Dividing an integer by an integer can produce a non-integer result. Be aware that
when Java divides a byte, short, char, int, or long by a byte, short, char, int, or long, the result is truncated. This means that any
fractional part is discarded. For example, 48 / 10 would be truncated from 4.8 to 4.

Truncation may seem like a problem, but it really isn't. If you are going to be dividing, and you know that the fractional parts of the
results will be important, just use a floating-point data type (float or double) rather than an integer type. A good rule of thumb is to
use integer types for quantities that can be counted, such as the number of employees or grizzly bears, and to use floating-point
types for things that can be measured, such as weight or speed.

Bitwise Operations

A bitwise operation treats its operands as collections of individual unrelated bits, rather than as representations of numbers. You
can only perform bitwise operations on integer data. Floats and doubles are not allowed.

There is one unary bitwise operator. Its symbol is the tilde (~). It toggles all the bits of its operand, changing all 0s to 1s and all 1s
to 0s. Figure 3.3 illustrates the operation ~144.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.3: The unary bitwise operator ~

With a binary bitwise operation, the nth bit of the result is computed from the nth bits of the two operands. The three binary bitwise
operations are and, or, and exclusive or. The operator symbols are &, |, and ^.

The "and" of two bits is 1 if both bits are 1. Otherwise, the result is 0. Another way to say this is that the result is 1 if one argument
bit is 1 and the other argument bit is 1.

The "or" of two bits is 1 if either (or both) of the bits is 1. Otherwise, the result is 0. Another way to say this is that the result is 1 if
one argument bit is 1 or the other argument bit is 1 (or both).

The "exclusive or" of two bits is 1 if either (but not both) of the bits is 1. Otherwise, the result is 0.

Table 3.1 shows the results of the three binary bitwise operations on all possible combinations of operand bits a and b.

Table 3.1: Binary Bitwise Operations

 a&b a|b a^b

a,b = 0,0 0 0 0

a,b = 0,1 0 1 1

a,b = 1,0 0 1 1

a,b = 1,1 1 1 0

As you can see from the table, the only way for & to generate a 1 is if both operands are 1. The only way for | to generate a 0 is if
both operands are 0. ^ generates a 1 if its two operands are different.

In practice, the binary bitwise operators work on integer values, not on integer bits. For example, if you take the "and" of two ints,
bit 0 of the result will be the "and" of the bit 0s of the two operands. Bit 1 of the result will be the "and" of the bit 1s of the two
operands, and so on through bit 31. This is illustrated in Figure 3.4.

Figure 3.4: Bitwise "and"

As you can see, every bit in the result is computed solely from the corresponding bits in the two operands.

Modulo

Java supports some binary arithmetic operations that we don't often encounter outside the realm of computer programming: the
modulo operation and three shift operations.

The symbol for modulo is the percent sign (%). The operation divides the first operand by the second operand and returns the
remainder. So for example, 506 % 100 is 6, 507 % 100 is 7, and so on.

Shifting

Shifting operations move the bits of an integer operand to the left or right by some number of positions. There is one left-shift
operation; its symbol is <<. There are two right-shift operations;their symbols are >> and >>>.

The left-shift operation is straightforward. The first operand is the value to be shifted. The second operand is the number of bit
positions to shift by. Figure 3.5 illustrates 18 << 5.

Figure 3.5: Left-shift: <<

As the figure shows, the high-order bits of the shifting value are discarded. The low-order bits are all set to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result of the shift in base-2 is 1001000000, which is 576. Is there any numerical relationship between 576 and the original
value of 18? Yes, 576 is 18 times 32. Is there anything special about 32? Yes, 32 is 2 raised to the power of 5. In general, left-
shifting x by y is the same as multiplying x by 2y. This is elegant, and it makes good sense. Left-shifting a value by, for example, 3
bit positions is like writing three 0s to the right of the number. In base-10, if you write three 0s to the right of a number, you have
multiplied that number by 103 (that is, by 1000). It is not surprising that something similar happens in base-2.

There are two right-shift operations. One of them is bitwise, and the other is numeric.

The bitwise right-shift (>>>) is just the opposite of the left-shift: bits are moved to the right, any bits that fall off the right end are
lost, and the left end is filled with 0s. This is illustrated in Figure 3.6.

Figure 3.6: Bitwise right-shift: >>>

The original value in the figure has its sign bit set to 1, representing a negative number. The result has a sign bit of 0, since the
>>> operation always shifts 0s into the left portion of the result. You can see that >>> always converts negative numbers to
positive numbers that have no clear relationship to the original values. This is why the >>> shift is called bitwise. All it does is
move bits.

The other shift operation is >>. It is different from >>> in only one respect: The left bits of the result are set to the sign bit of the
original value, instead of being always set to 0. For positive numbers, the original sign bit is 0, so >>> is the same as >>. But for
negative numbers, the result is very different, as Figure 3.7 shows.

Figure 3.7: Numeric right-shift: >>

The sign of the result is always the sign of the original value. Does the result have any numerical relationship to the original? Yes,
although it is hard to see the relationship when you look at Figure 3.7. It turns out that x >> y is the same as x / 2y.

The different right-shift operations can be confusing until you have some experience with them. The ShiftLab animated illustration
will help you get that experience. Launch the program by typing java shift.ShiftLab. The display shows a 32-bit int value to
be shifted, as illustrated in Figure. 3.8.

Figure 3.8: ShiftLab

You can change the value by typing a base-10 number (positive or negative) into the text field, or by clicking on individual bits in
the display. Select the desired shift operation (<<, >>, or >>>) and the desired shift size, and then click on the Go button. The
program will animate the shift that you've specified. Figure 3.9 shows the result of "96 << 3".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.9: ShiftLab after shifting

Try viewing the following shifts:

10 << 10
16384 >> 14
-1 >>> 1
-1 >> 1
-1 >> 20
-2147483648 >>> 31

Unary Arithmetic

The unary arithmetic operators have the symbols + and -. These are the same as the symbols for binary addition and subtraction,
so the compiler has to figure out from context which kind of operation you want. A + or - between two operands is a binary
operator; a + or - with no operand to the left is unary.

The unary - operation just changes the sign of its operand. So for example, the following code prints out y = -5:
int x = 5;
int y = -x;
System.out.println("y = " + y);

The unary + operator maintains the sign of its operand. In other words, it doesn't really do anything.

++ and --

Two of the most common operations in programming are adding or subtracting 1 with a variable, and storing the result back in the
variable. If the variable is called x, these operations can be programmed as follows:
x = x + 1;
x = x - 1;

However, Java provides some convenient abbreviations. The first line can be abbreviated in either of the following ways:
x++;
++x;_

The second line can be abbreviated in either of the following ways:
x--;
--x;

The following program shows these operators in action:
public class PlusPlusMinusMinus
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = x;
 x++;
 y--;
 System.out.println("x=" + x + ", y=" + y);
 }
}

The output is
X=11, y=9

You can see that x has been incremented and y has been decremented.

When the operator appears after the operand, the rhs is first calculated as if the operator were not present. Then the rhs value is
assigned to the lhs. Lastly, the operand of ++ or -- is incremented or decremented. For example:
public class PostDec
{
 public static void main(String[] args)
 {
 int x = 10;
 int y = 1000 + x--;
 System.out.println("x=" + x + ", y=" + y);
 }
}

The output is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

X=9, y=1010

You can see that x, which was originally 10, must have been added to y before being decremented.

When ++ appears before its argument, it is called the pre-increment operator. When it appears after its argument, it is called the
post-increment operator. Similarly, -- before its argument is called the pre-decrement operator, and -- after its argument is called
the post-decrement operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean Operations
So far, all the operations we have looked at have dealt with numbers. Now we turn our attention to operations that work on
boolean data. Some of these operations share symbols with similar numeric operations (|, for example). However, the boolean
versions are essentially different from their numeric counterparts.

Most of Java's boolean operations are binary, and both operands must be of boolean type.

And, Or, Exclusive Or, Inversion

We have already seen these as bitwise arithmetic operations. The symbols for and, or, and exclusive or are, as before, &, |, and ^,
respectively. The symbol for inversion is ! rather than ~.

The following program prints out the results of applying these operators to true values:
public class BooleanOps
{
 public static void main(String[] args)
 {
 boolean a = true;
 boolean b = true;
 boolean x = a & b;
 System.out.println("true&true = " + x);
 x = a | b;
 System.out.println("true|true = " + x);
 x = a ^ b;
 System.out.println("true^true = " + x);
 x = !a;
 System.out.println("!true = " + x);
 }
}

The output is
true&true = true
true|true = true
true^true = false
!true = false

Boolean operations, like arithmetic operations, have precedence. The unary ! operator is evaluated before the binary &, |, and ^.
For example, the value of !false|true is true, because !false is evaluated first. You can override the effects of precedence
by using parentheses. In the current example, if you want the | operator to execute before !, use the expression !(false|true).

The BoolLab animated illustration demonstrates the evaluation of boolean expressions. Launch the program by typing java
bool.BoolLab. Figure 3.10 shows the program just after it starts up.

Figure 3.10: BoolLab: initial screen

You can type into the text field any valid expression composed of the variables a, b, and c, the literals true and false, the
operators &, |, ^, and !, and parentheses. After you enter the expression you want, press Enter. The expression will appear in large
font in the main area of the window. As with EvaluatorLab, you can click on the Run button to see an animation of the expression
being evaluated. Click on Step to see an animation of just the next step in the expression's evaluation. The Run Lightspeed and
Step Lightspeed buttons perform the evaluation immediately, without animation. Figure 3.11 shows the result of running the
configuration of Figure 3.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.11: BoolLab after execution

Try the following expressions in BoolLab:
false | false | false | false | false | true
true & true & false & true & true
false & (((!(true ^true) & (false|true))|false)^false)
true | (((!(false ^ false) & (true | false))| true)^ true)

The first expression shows that when you take the or of a number of values, a single true is enough to make the entire result true.
The second expression shows that when you take the and of a number of values, a single false is enough to make the entire
result false.

Now that you have seen Java's simple boolean operators, let's move on to the short-circuit operators, which shorten the time it
takes to execute an operation. Before you read the next section, can you guess the point of the lengthy third and fourth
expressions in the preceding code?

Short-Circuit Operators

This really happened to me, and perhaps it has happened to you. When I was a little boy, I was allowed to go out and play if I had
made my bed and finished my homework. I didn't mind doing my homework, but I hated making my bed and often I wouldn't do it.
When my mother asked if I had made my bed, I would start to say, "No, but I …" I was going to say that I had done my homework,
but my mother would interrupt me. She was a busy person and she had heard all she needed to hear. Our agreement was that I
would do two chores. As soon as she knew that I had not done one of those chores, there was nothing I could say about the other
chore to convince her that I had lived up to my part of the agreement.

False & anything is false. When you compute x & y, and x is false, you don't have to spend any time at all on y. You already know
the answer.

Consider the following expression, which you were invited to type into BoolLab in the previous section:
false & (((!(true ^true) & (false|true))|false)^false)

At first glance, this expression looks so complicated that you would not want to figure out its value in your head. But at second
glance, once you realize that the expression's form is "false & anything," you don't have to look any further. The value is false, no
matter what comes after the &.

Java provides an alternative to the & operator . It is called the short-circuit & operator, and its symbol is &&. The short-circuit
version stops computing and immediately returns false if its first operand is false. Let's slightly modify the previous example:
false && (((!(true ^true) & (false|true))|false)^false)

Now the first operator is the short-circuit version. This expression evaluates to the same value as the previous version, but the
evaluation takes less time because everything between the outermost parentheses is ignored.

There is also a short-circuit version of the | operator. Its symbol is ||, and it immediately returns true if its first operand is true.

The BoolLab animated illustration supports short-circuit operations. Launch the program again (type java bool.BoolLab), and
see how it evaluates the following expressions:
false && (true|false)
true && (true|false)
false || && (true|false)
true || && (true|false)

Java's short-circuit operators allow you to profit from the principle that false-and-anything is false and true-or-anything is true. The
amount of profit may seem trivial. In this example, the processing time that's saved by using && could not possibly be more than a
microsecond or so. But a short-circuit expression might be executed not once but many times—even many millions or billions of
times—so any time savings will be significant.

You will learn how to execute a single expression multiple times when you look at loops in Chapter 5. Moreover, the second
operand of the short-circuit operator might be a call to a method that takes minutes or hours to execute. In this case, you definitely
do not want to process the second operand unless you really have to. The next chapter will look at methods and method calling.

Now let's look at Java's comparison operators. These are binary operators whose operands can be numeric or boolean. The result
type is always boolean.

Comparison Operations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java's comparison operators always return a boolean value. Most of these operators work on numeric operands, but there are two
that can take numeric or boolean operands. Table 3.2 summarizes the comparison operators.

Table 3.2: Comparison Operators

Operator Meaning Numeric Operands Boolean Operands

== Equals 3 3

!= Does not equal 3 3

> Is greater than 3 no

>= Is greater than or equal to 3 no

< Is less then 3 no

<= Is less than or equal to 3 no

Note that the symbol for the equals comparison operator is a double equal sign (==), to distinguish it from the assignment symbol
(=).

Comparison operators can be combined with other boolean operators. For example, assuming w, x, y, and z are variables of
some numeric type, you might use the following expression:
w == x | y < z

Comparison operators have higher precedence than boolean operators, so the == and < comparisons happen before the | is
evaluated. The example can be rewritten as follows:
(w == x) | (y < z)

The parentheses make the expression clearer without changing the order of computation. Expressions such as this one are most
often seen in flow-control statements, which allow you to execute blocks of code repeatedly, or only if certain desired conditions
are met. We will look at flow-control statements in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound Assignment
A very common practice is to perform an operation on the value of a variable and then store the result back in the variable. For
example, you might want to do the following:
x = x - y;

For situations like this, Java provides an abbreviation called compound assignment. A compound assignment lets you modify a
variable (in certain restricted ways) and store the value back in the variable, all in a single statement. Compound assignments
have the form variable op= expression;, where op is a binary operation symbol that is immediately followed by =.

Table 3.3 summarizes the compound assignment operators. (The table assumes that b is boolean and x is of some numeric type.)

Table 3.3: Compound Assignment

Operator Example Equivalent

+= x += 5; x = x+5;

-= x -= 5; x = x-5;

*= x *= 5; x = x*5;

/= x /= 5; x = x/5;

%= x %= 5; x = x%5;

<<= x <<= 5; x = x<<5;

>>= x >>= 5; x = x>>5;

>>>= x >>>=5; x = x>>>5;

&= b &= false; b = b&false;

|= b |= false; b = b|false

^= b ^= false; b = b^false;

Compound assignments provide no new functionality. They just provide a convenient way to abbreviate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Numeric Result Type
You have now learned about all of Java's unary and binary operators. Before closing this chapter, you need to learn about more
topic: the result type of numeric operations.

Clearly, it would be inconvenient to prohibit operating on mixed types. You may find yourself doing arithmetic on two numbers, one
of which might be an int and the other of which might be a float. The next issue to consider is the data type of the result.

Java's rules for determining the type of the result are based on the concept of width. As you saw in Chapter 2, every numeric type
has a range. This is shown in Table 3.4.

Table 3.4: Ranges of Numeric Types

Name Size Minimum Value Maximum Value

byte 8 bits -128 127

short 16 bits -32768 32767

char 16 bits 0 65535

int 32 bits -2147483648 2147483647

long 64 bits -9223372036854775808 9223372036854775807

float 32 bits -3.4x1038 3.4x1038

double 64 bits -1.8x10308 -1.8x10308

If the range of any type completely contains the range of another type, the first range is considered to be wider than the second
range. If a range is completely contained within another range, the first range is narrower than the second range. Table 3.4 shows
that the byte type is narrower than the short type. Note that some types are neither wider nor narrower than some other types.
Short, for example, is neither wider nor narrower than char.

Figure 3.12 illustrates data type width. Figure 3.12 is definitely not drawn to scale. If the line representing double were scaled to
the line representing byte, the double line would be 5x10275 light years long. I really wanted to print the line to scale, because I
believe accuracy is important, but my editor pointed out that the line would be 3 x 10273 times the diameter of the universe. The
publisher was unwilling to pay for that much ink, and economics won out.

Figure 3.12: Data type width, not to scale

Another way to imagine width is shown in Figure 3.13. A type is wider than another type if you can get from the first type to the
second type by following the arrows. So double is wider than byte, and long is wider than char.

Figure 3.13: Data type width relationships

Figure 3.13 shows that float is wider than long, even though longs are 64 bits and floats are only 32 bits. That might seem
backwards, but you'll see why it's true if you think about the definition of "wider." If you don't feel like thinking about that right now,
you can wait until you get to Exercise 6.

Java's rule for the result data type is this: It's either int or the type of the widest operand, whichever is wider. This means that the
result of any arithmetic operation will never by a byte, short, or char.

This rule applies to unary as well binary operations. For example, if s is a short, -s is an int.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3.5 summarizes the result type combinations for binary operations.

Table 3.5: Binary Arithmetic Result Types

 byte short char int long float double

byte int int int int long float double

short int int int int long float double

char int int int int long float double

int int int int int long float double

long long long long long long float double

float float float float float float float double

double double double double double double double double

It is important to know about arithmetic result types because of another rule: You can only assign a numeric value to a variable
whose type is the same as, or wider than, the type of the numeric value. If you try to do anything else, the compiler will generate
an error. This makes sense, because you might be trying to store a value that the variable cannot represent. For example, you
can't store a long value in a byte variable, because the long value might be greater than 127 or less than -128. So the following
code fragment will generate a compiler error:
long distance = 999999;
long time = 5000;
byte rate = distance / time;

This rule sometimes gets in your way when you just want to initialize a variable with a literal value. Java dictates that all floating-
point literals are doubles, and all integral literals are ints. So 3.14 and 2.5e33 are both doubles, and 1234 is an int.

If you try to assign a value like 3.14 to a float (such as float f = 3.14;), the compiler will complain that you are trying to
assign a double to a float. To fix the problem, append the letter f or F to the end of the literal number. This will tell the compiler
that the literal is really a float:
float f = 3.14f; // Or 3.14F

The situation is a bit stranger if you try to assign a big literal value to a long variable. The following line generates a compiler error:
long timeAgo = 999999999999; // 12 digits

The 12-digit string of 9s is too big to be represented by an int. Even though you innocently want to assign a big number to a long
variable, behind the scenes the compiler is going to try to create an int to store the value 999999999999. This is because the
compiler uses ints to store literal integral numbers. To get around the problem, append the letter l or L to the literal value to
indicate that it's really a long:
long timeAgo = 999999999999L;

You could also use 999999999999l, but a lowercase l looks too much like a 1. The uppercase version is definitely preferable.

What happens when you want to assign a literal value to a byte, short, or char variable? In this case, the compiler gives you a
break. As long as the literal value falls within the variable's range, statements such as these are legal:
byte x = 12;
short y = -22;
char z = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Precedence Summary
This chapter presented 16 Java operations. Their evaluation precedence is shown in Table 3.6. Higher-precedence operators, the
ones that are evaluated first, appear at the top.

Table 3.6: Operator Precedence

Category Operators

Unary + - ! ~ ++ --

Higher-precedence arithmetic * / %

Lower-precedence arithmetic + -

Shift >> << >>>

Bitwise & ^ |

Short circuit && ||

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. What happens when a comment appears inside a literal string? (Recall from Chapter 2 that a literal string is a
run of text enclosed between double quotes.) What would the following line of code do?
System.out.println("A /* Did this print? */ Z");

Write a program that includes this line. Does the program print the entire literal string, or does it just print "A Z"?

2. What is the value of ~100? What is the value of ~-100? First try to figure it out, and then write a program to print
out the values. (Hint: You can figure it out without using pen and paper if you remember something that was
discussed in Chapter 2.)

3. Write a program that prints out the following values:

32 << 3

32 >> 3

32 >>> 3

-32 << 3

-32 >> 3

-32 >>> 3

4. What are the values of the following expressions? First do the computations mentally. Then write a program to
verify your answer.
false & ((true^(true&(false|!(true|false))))^true)
true | (true^false^false^true&(false|!(true&true)))

5. The following expression looks innocent:
boolean b = (x == 0) | (10/x > 3);

You can assume x is an int. Write a program that prints out the value of this expression for the following values
of x: 5, 2, 0. What goes wrong? (You will see a failure message that you might not be familiar with, because we
have not introduced it yet. Don't worry – just try to understand the general concept.) How can you make the code
more robust by adding a single character to the expression?

6. The 32-bit float type is wider than the 64-bit long type. How can a 32-bit type be wider than a 64-bit type?

7. Write a program that contains the following two lines:
byte b = 6;
byte b1 = -b;

What happens when you try to compile the program?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4: Methods

Overview
So far, all of the Java applications we have seen have been linear: The processing has proceeded line by line, from the start
through the end of the block that begins public static void main(String[] args).

Such applications don't really take full advantage of your computer's capability. In fact, with linear code your computer is not much
more than an expensive calculator. The topics in the following two chapters will begin to branch out—and so will the paths of
execution through the programs we will study. Instead of proceeding line by line, we will see how to make the execution path
detour, fork, and loop.

This chapter will look at methods, which are detours in the path of execution. Chapter 5, "Conditionals and Loops," will introduce
statements that redirect the flow of the program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method Structure
The easiest way to introduce methods is with an example. Suppose you want to print out the fifth powers of the numbers 5
through 9. The following code, which doesn't use methods, does the job in a clumsy, inelegant way:
 1. public class NoMethods
 2. {
 3. public static void main(String[] args)
 4. {
 5. int n = 5;
 6. int n5th = n*n*n*n*n;
 7. System.out.println(n + " >=> " + n5th);
 8. n = 6;
 9. n5th = n*n*n*n*n;
10. System.out.println(n + " >=> " + n5th);
11. n = 7;
12. n5th = n*n*n*n*n;
13. System.out.println(n + " >=> " + n5th);
14. n = 8;
15. n5th = n*n*n*n*n;
16. System.out.println(n + " >=> " + n5th);
17. n = 9;
18. n5th = n*n*n*n*n;
19. System.out.println(n + " >=> " + n5th);
20. }
21. }

The application's output is
5 >=> 3125
6 >=> 7776
7 >=> 16807
8 >=> 32768
9 >=> 59049

When you look at the source code, you might get the feeling that life ought to be better than this. The application has a lot of
repetition… and aren't computers supposed to be good at eliminating repetitive tasks? Five of the lines (6, 9, 12, 15, and 18) do
almost the same computation, but not quite. Each of them multiplies something by itself 5 times.

It would be great to have a piece of subordinate code that could compute the 5th power of anything. Of course, there would have
to be a way to tell the subordinate code what number to work with. The following application does just that, using methods:
 1. public class UsesMethods
 2. {
 3. public static void main(String[] args)
 4. {
 5. int n = 5;
 6. int n5th = toThe5th(n);
 7. System.out.println(n + " >=> " + n5th);
 8. n = 6;
 9. n5th = toThe5th(n);
10. System.out.println(n + " >=> " + n5th);
11. n = 7;
12. n5th = toThe5th(n);
13. System.out.println(n + " >=> " + n5th);
14. n = 8;
15. n5th = toThe5th(n);
16. System.out.println(n + " >=> " + n5th);
17. n = 9;
18. n5th = toThe5th(n);
19. System.out.println(n + " >=> " + n5th);
20. }
21.
22. static int toThe5th(int x)
23. {
24. int result = x * x * x * x * x;
25. return result;
26. }
27. }

The application's output is the same as the output from the previous version.

The code from lines 22-26 constitutes a method. Line 22 is called the method's declaration. It tells the compiler that what is about
to follow will be the definition of the method whose name (along with some other information) appears in the declaration line. The
definition, or body, of a method immediately follows the declaration, and it must appear within curly brackets.

The general format of a method declaration is

Optional_modifiers Return_type Name(Optional_ arguments)

The only mandatory parts of a declaration are the return type, the name, and the parentheses. In this example, we have one
modifier (static), the return type is int, the method's name is toThe5th, and there is one argument (int x) that appears inside the
parentheses. Let's look at each of these elements.

You have already been patiently tolerating the unexplained presence of the static modifier in every application we have looked
at in this book. It has appeared in the declaration of main, which is a method that appears in every Java application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at in this book. It has appeared in the declaration of main, which is a method that appears in every Java application.
Understanding static will become much easier after we introduce object-oriented programming in Chapter 7. For now, let's just
say that static means "don't be object-oriented." Other modifiers that might appear in a method declaration include access
modifiers, which will be presented in Chapter 9.

We'll look at the return type in a moment. Let's move now to the method name. The rules for the name are the same as those for
variable names: The first character must be a letter, an underscore, or a dollar sign. The subsequent characters may be any of
these, or they may be digits.

As with variable names, you have a broad choice. You should pick the name that does the best possible job of describing what the
method does. When the name appears outside the method, as in lines 6, 9, 12, 15, and 18 of this example, the path of program
execution detours through the method. This is known as calling or invoking the method, and a line that calls a method is the
method's caller.

Note that in the lines where the method is called, the method call (the name followed by something parenthetical) is used in a
context where you would expect to see a value. Until now, the right-hand side of an assignment has been either a literal, a
variable, or an arithmetic or boolean expression composed of literals, variables, and operators. Now we add something new to the
mix. Anywhere the compiler expects a value, you can use a method call. This is because a method call produces a value, called
the method's return value. When the computer executes a line of code that includes a method call, the computer takes a detour
through the method body in order to compute the return value. When the detour is finished, execution continues where it left off.

The arguments are the method's inputs. In this example, the argument list is int x. This means that the method has one input,
whose type is int. Within the body of the method, that input will be called x. When the method runs, the actual value of x will be
whatever the caller wants. The caller specifies an input value by putting the value in parentheses in the call line. Lines 6, 9, 12, 15,
and 18 all pass n as the method argument, but the value of n is different for each of those lines. In line 6, n is 5, so the call from
line 6 will execute with x set to 5. In line 9, n is 6, so the call from line 9 will execute with x set to 6. And so on. This demonstrates
the flexibility of methods.

The return type in the method declaration tells the type of the return value. The returning of a value happens in line 25, where we
see the return keyword. This causes the path of execution to return to the caller line. The value following return is the return value.
In this example, the return value is result, which is the 5th power of the argument.

Argument Lists

The toThe5th method in the previous example took a single argument, so within the parentheses in the method declaration, we
saw a single type (int) followed by a single name (x). You can create methods with an arbitrarily number of arguments of
arbitrary types. To do this, just write a declaration with the following format:

Mods Ret_type Name(type0 arg0, type1 arg1, type2 arg2 ...)

Note Note that the numbering of the arguments starts at 0, rather than 1. Whenever you see someone do this, you can be
certain that they work in the computer field, where counting from 0 is conventional. We already saw this in Chapter 1,
where SimCom's memory addresses started at 0. We will see it again in Chapter 6, "Arrays." It is important to get into
the habit of counting from 0 as soon as possible, even though there is a slight inconvenience. When you start counting
from 1, the last number you count out is the actual number of things you've counted. When you start from 0, the actual
number is 1 more than the last number you've counted out. So in the preceding declaration format, we have 3
arguments, and the largest index is 2.

The following method takes 2 arguments:
static double hypotSquared(double leg0, double leg1)
{
 return leg0*leg0 + leg1*leg1;
}

Recall that in any arithmetic expression, multiplication takes precedence over addition, so the method really does return the
square of the hypotenuse.

The MethodLab animated illustration demonstrates the passing of arguments and the returning of return values. To run the
program, type java methods.MethodLab. The display presents code that calls a method, as shown in Figure 4.1.

Figure 4.1: MethodLab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click on the Run button to see the animation. The black lines indicate the passing of arguments, which are called a and b in the
caller but x and y in the method. The blue line represents returning the return value. When the animation is finished, click Reset to
start again. Figure 4.2 shows MethodLab after the animation finishes.

Figure 4.2: MethodLab after animating

You can customize MethodLab by typing any integer value you like into the text fields for a and b. You can also enter any numeric
formula for the value of z, which becomes the return value. Try the formula in the preceding example. Since this method's
arguments are called x and y, the formula should be
x*x + y*y

With this formula, try running MethodLab with a = 3 and b = 4. Try again with a = 12 and b = 5. These combinations are the only
small integers that represent triangles with integer hypotenuses.

A method's argument list can be arbitrarily long. At times you might even want a method with no arguments at all. In that case, the
method's declaration has an empty pair of parentheses after the name, and the caller passes nothing at all inside its own
parentheses:
float f = sayHello();
…
static float sayHello()
{
 System.out.println("Hello");
 return 3.14159f;
}

The important thing is that when you call a method, the call should have the same number of arguments as the method
declaration, and the types of the arguments passed by the caller should be compatible with the types in the method declaration.
This is subtly different from saying that the caller's argument types should exactly match the types in the method declaration.
Recall from Chapter 3 that a value can be assigned to a variable of a different type, provided the new type is wider than the old
type. Figure 4.3 (first shown in Chapter 3) shows the width relationships among the numeric primitive types.

Figure 4.3: Numeric type widths

The rule for passing method arguments is similar to the rule for assignment: You can pass an argument whose type is different
from the type declared by the method, provided the type declared by the method is wider than the type that you pass. Recall that
a type is wider than another type if you can get from the first type to the second type by following the arrows in Figure 4.3.

For example, suppose a method has the following declaration:
static char abcde(long wayToGo)

This method can be called with a long argument, or with any argument whose type is narrower than long: byte, short, char, or int.

More on Return Types

At times, you might want to create a method that doesn't return anything. The method might print out a message, display a dialog
box, or store a value in a file. In cases such as these, it is difficult to think of any value that the method could meaningfully return,
and concocting a return value just for the sake of having one would not contribute to the quality of the program. (A basic principle
of writing fiction is that every word should contribute to developing the plot or developing the characters. We can invent a similar
principle for writing software: Every word of source code should contribute to the operation or the readability of the program.)

Suppose you want a method that prints a number along with a message. Since no return value is needed or relevant, replace the
return type in the declaration with the word void:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return type in the declaration with the word void:
static void printPretty(int x)
{
 System.out.println("x = " + x);
}

Note the absence of a return statement. A void method runs until it executes its last line. Then it returns automatically.
Optionally, you can add a return statement with no value at the end of the method:
static void printPretty(int x)
{
 System.out.println("x = " + x);
 return;
}

Here the return statement doesn't contribute to program execution or readability (we already know that the method returns when
it hits bottom), but later we will see cases where explicitly saying return can be useful.

A call to a method with a non-void return type can be used anywhere that a variable or literal of the same type can be used: as the
right-hand side of an assignment, as an operand in an operation, or even as an argument of another method call. By contrast, a
call to a void method has no type. So if method iAmVoid is void, you could not say int z = iAmVoid(); because there would
be no value to assign to z. When you call a void method, you just want it to do its thing, so you make the call all by itself, followed
by a semicolon, like this:
iAmVoid();

If a method changes the state of the program or the computer in any way (other than returning the return value), the change is
called a side effect. Clearly, when you call a void method, you do so because you are interested in a side effect. (In this example,
the side effect was the printing of the message.) Sometimes you might want to call a non-void method, not because you are
interested in the return value, but because you want the side effect. In that case, you can just call the method as if it were void.

For example, the following method both prints out and returns hypotenuse squared:
static int vocalHypotSquared(int a, int b)
{
 int hSquared = a*a + b*b;
 System.out.println("h-squared = " + hSquared);
 return hSquared;
}

If you just wanted to print out the message, you could call the method like this, ignoring the return value:
vocalHypotSquared(5, 12);

Polymorphism

Polymorphism comes from the Greek for "many forms." It is one of several five-syllable words pertaining to object-oriented
programming. In our context, it means that a method can have one name but many forms. In other words, you can define multiple
methods with the same name.

At first, this might seem impossible. How can the system know which of the various methods you had in mind? The rule is that if
two methods have the same name, their argument lists have to be different. That is, the types that appear in lists must differ; the
argument names are not considered here. If a method name appears more than once, we say that the name is overloaded.

For example, the following two methods could appear in the same program:
static int getMass(int n)
{
 …
}
static int getMass(double a, char c)
{
 …
}

Here, getMass() is legitimately overloaded. However, the following two methods could not appear in the same program:
static int getMass(int n)
{
 …
}
static int getMass(int x)
{
 …
}

The argument names are different, but that doesn't help. Both method versions have the same name, and each version takes a
single argument of type int, so the compilation will fail. If the argument types were different (for example, if the argument of
getMass() had type long or byte), the code would compile without error.

Methods That Call Methods

Methods can be called from anywhere – even from other methods. In fact, any complicated program is likely to consist of methods
that call other methods that call other methods, and so on, to many levels of depth. For example, you might have a method that
prints out two values:
static void print2Vals(int val0, int val1)
{
 System.out.println(val0 + " and " + val1);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Now what if you want a method that prints out the cubes of its two arguments? You might do it as follows:
static void print2Cubes(int val0, int val1)
{
 int val0Cubed = val0*val0*val0;
 int val1Cubed = val1*val1*val1;
 System.out.println(val0Cubed + " and " + val1Cubed);
}

Since you already have the print2Vals method, you can rewrite print2Cubes as follows:
static void print2Cubes(int val0, int val1)
{
 int val0Cubed = val0*val0*val0;
 int val1Cubed = val1*val1*val1;
 print2Vals(val0Cubed, val1Cubed);
}

Now you have a method, (print2Cubes) that calls another method (print2Vals). You can rewrite print2Cubes to be even
more terse, as follows:
static void print2Cubes(int val0, int val1)
{
 print2Vals(val0*val0*val0, val1*val1*val1);
}

Since the multiplication is repetitious, you can also introduce a new method:
static int nCubed(int n)
{
 return n*n*n;
}

Now print2Cubes becomes
static void print2Cubes(int val0, int val1)
{
 print2Vals(nCubed(val0), nCubed(val1));
}

Now you have a method, (print2Cubes) that consists of a single call to another method (print2Vals), and that call's
arguments are both expressed as method calls (to nCubed). This kind of structure—calls to calls to calls—is perfectly typical of
programs.

Passing by Value

In formal computer terminology, we say that Java passes by value. This is just another way to say that methods get copies of their
arguments and have no access to the original values. The alternative is called passing by reference, where methods work with the
caller's data and not with copies. The latter is a perfectly valid way to design a language; it's just not the way Java does it.

When a caller calls a method and the flow detours into the method's body, the JVM copies the argument values provided by the
caller and gives the copies to the method. This means that if the method alters its arguments, the alteration has no effect on the
caller.

Consider the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The method triples its argument. You might wonder what happens to the value that the caller passes to the method. For example,
what does the following print out?
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Does this code print "Now z is 10" or "Now z is 30"? If the method has access to the actual data passed in by the caller, the code
should print out "Now z is 30". However, the code actually prints "Now z is 10" because the method triples its own private copy,
not touching the

caller's version. After the method returns, the memory used for storing the method's copy is recycled. The method's copy does not
survive after the method returns.

Order

A program is, in large part, a collection of methods that call other methods. These other methods call still other methods, and so
on.

Within an application, methods can appear in any order. Once again, you are in a situation where your choices can make a
program either easier or harder for others to read. It makes sense to put related methods near one another. It is common practice,
though by no means universal, to put the main method at the very end, just before the final closing curly bracket. From here on,
this book will follow that convention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scope
When you write a method declaration, you can choose almost any argument names you like. Of course, the names have to be
legal (beginning with a letter, underscore, or dollar sign, and continuing with the same plus digits). Moreover, the name should be
indicative of the argument's meaning. But beyond these considerations, you have complete latitude. In particular, you are allowed
to reuse a variable name that has been used elsewhere in your program.

Every Java variable has a scope. A variable's scope is the matching pair of open and closed curly brackets that most tightly
encloses the variable's declaration. Another way to say this is in terms of blocks. A block is a contiguous piece of code that begins
with an open curly and ends with a matching closed curly. Blocks may contain many kinds of code. We have already seen blocks
that contain method bodies. Later in this book, we will see blocks that contain, among other things, other blocks. Those inner
blocks can contain, among other things, still other blocks, and so on, to whatever depth is useful.

Already we have seen blocks that contain other blocks, since every Java application is a block that looks like this:
1. public class ClassName
2. {
3. // Optional other methods.
4. public static void main(String[] args)
5. {
6. …
7. }
8. }

Any variable defined in the main method has a scope that spans from line 5 through line 7, since that is the tightest matched pair
of curlies that would contain the variable's declaration.

The scope of a method argument is the method itself, even though the argument is actually declared just before the open curly
that begins the scope.

Now, here is why it is so important to know about scope: A variable name may not be declared more than once in a single scope.
However, a name that is declared in one scope may be declared and used in any number of other scopes. Each declaration refers
to a different variable; the variables just happen to have the same name. The situation is similar to filenames in directories. Names
must be unique within any particular directory, but a filename that appears in one directory may be used in another directory. The
two files have nothing to do with each other, and the common name is just a coincidence.

Consider the following example:
 1. public class ReusesNames
 2. {
 3. static void printTriple(int x)
 4. {
 5. int i = 3*x;
 6. System.out.println("Triple = " + i);
 7. }
 8.
 9. public static void main(String[] args)
10. {
11. int x = 10;
12. int i = x+5;
13. printTriple(i);
14. }
15. }

Here we have two methods, main and printTriple, each with its own scope. Each method's scope has its own i and its own
x, unrelated to the i and x of the other method. Each method can use and modify its own i and x, but cannot touch the i and x
of the other method.

A convenient effect of Java's scoping rule is that when you write a method, you don't have to worry about whether a variable name
you like is already in use in a different method. This is especially convenient in a long program that might have hundreds of
methods, each with a dozen variables. If it were not for the scoping rule, we would quickly run out of good variable names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Which of the following are legal method names?
1. $25

2. 25$

3. abc_

4. _ABc

2. Suppose you want to write a method that returns the diameter of a planet, in millimeters. Since it's your program,
you can choose any name you like for the method. Rank the following method names, from worst to best. Use
your own judgment as to what makes one method name better or worse than another.

1. getPlanetDiameter

2. getSize

3. getPlanetDiameterMm

4. getIt

5. getPlanetSize

3. Suppose a method has the following declaration:
static int abc(int x, short y)

Suppose this method is called as follows:
abc(first, second)

Which of the following are legal types for the variables first and second?
1. int first, int second

2. short first, short second

3. byte first, char second

4. char first, byte second

4. Consider the following method declaration:
xyz(double d)

Which argument types can a caller pass into this method?

5. Earlier in this chapter, you learned that if method iAmVoid is void, you can't say int z = iAmVoid();
because there is no value to assign to z. What happens if you try? Write a program that does this experiment.

6. Earlier in this chapter, you saw the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The following code prints out "Now z is 10", not "Now z is 30", because the method modifies its own private copy
of the argument:
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Write a program that proves this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5: Conditionals and Loops
The previous chapter showed you how method calls can be used to detour the flow of program execution. This chapter will
introduce two more ways to vary program flow: conditionals and loops. By the end of this chapter, you will be able to write
programs in which control flows in quite intricate patterns.

Conditionals
If a method call is like a detour in the path of execution, then a conditional is like a fork in the road. Conditional code is executed
only if a certain criterion is met, typically when a certain boolean expression evaluates to true.

We will begin with the if statement, which is Java's most basic conditional. We will also look at the more complicated ternary
operator and switch statement.

if

In its simplest form, the if statement looks like this:
if (boolean_expression)
 do_something;

The code immediately following the if keyword must be of boolean type and must be enclosed in parentheses. The code that
follows the parenthetical boolean expression can be either a single statement or a block of statements enclosed in curly brackets.
Let's look at some examples.

The following code fragment prints out a message if x is divisible by 10:
if (x%10 == 0)
 System.out.println("x is divisible by 10.");

In the next example, y and z are both reduced if their product exceeds 1,000:
if (y*z > 1000)
{
 y -= 10;
 z -= 20;
}

Note in the previous example that if the condition is met, the action to be taken consists of two statements. When the conditional
action is longer than a single statement, the multiple statements of the action are enclosed in curly brackets.

if and else
An if statement can be enhanced with the else keyword. You can only use else after the statement or curly bracket-enclosed
block that follows an if. As with if, the code that follows else can be either a single statement or a block of statements within
curly brackets. As you might expect, the code following else is executed if the if statement's boolean expression evaluates to
false.

For example, the following code prints out a message that depends on whether the value of x is even or odd:
if (x%2 == 0)
 System.out.println(x + " is even.");
else
 System.out.println(x + " is odd.");

In the next example, the method "clamps" the value of its z argument. The return value is z, unless z exceeds a lower or upper
limit. If this is the case, the return value is the exceeded limit:
static long clamp(long z, long lowLimit, long highLimit)
{
 if (z < lowLimit)
 return lowLimit;
 else if (z > highLimit)
 return highLimit;
 return z;
}

If curly bracket-enclosed code blocks are used after if or else, those blocks themselves can contain if statements. The
following code fragment uses nested if statements:
if (x > 1000000)
{
 // x is big.
 if (x%2 == 0)
 System.out.println("Big and even.");
 else
 System.out.println("Big and odd.");
}
else
{
 // x is little.
 if (x%2 == 0)
 System.out.println("Small and even.");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.println("Small and even.");
 else
 System.out.println("Small and odd.");
}

Note There is no limit to how deeply you can nest if statements. Of course, if you nest too deeply, your code becomes
difficult to read and understand. See the "Nesting" section later in this chapter for an explanation of this technique.

else if
In the previous section, you learned how to follow an if statement with an else statement. You can also follow an if statement
with an arbitrary number of else if statements. An else if statement is like an else statement, but it is followed by a
parenthetical boolean expression and then by a single statement or curly bracket-enclosed block. As you might expect, the single
statement or curly bracket-enclosed block is executed only if the boolean expression evaluates to true. There is no limit to the
number of else if statements that may follow an if statement, and the last else if statement may be followed by an else
statement.

The following example is a method that prints out one of a number of possible messages, based on the size of the z argument:
static void howBig(double z)
{
 if (z < 0.001)
 System.out.println("Very tiny");
 else if (z < 1)
 System.out.println("Tiny");
 else if (z < 100)
 System.out.println("Medium");
 else if (z < 100000)
 System.out.println("Large");
 else
 System.out.println("Very large");
}

Note that the series of tests on the value of z begins with a straightforward if statement, followed by three else if statements.
The else statement comes at the end, which is the only place where it may appear.

Before we continue, let's take a moment to appreciate the power of the various versions of the if statement. The Java
functionality presented in the previous chapters of this book, while impressive, amounts to using your computer as a very fast
calculator. For instance, a method would always process its arguments in exactly the same way. With the introduction of if
statements, we have programs that can react flexibly. The howBig method, for example, can react flexibly to the value of its z
argument.

Later in this chapter we will examine loops, which introduce an additional level of flexibility. But first, let's look at two more kinds of
conditional execution: the ternary operator and the switch statement.

The Ternary Operator

In Chapter 3, "Operations," we looked at Java's unary and binary operators. Now let's look at the ternary operator. The name
ternary just means that there are three operands. Since there are three, we will need two symbols to separate them: the question
mark (?) and the colon (:). The operator is used like this:
boolean_expression ? value_1 : value_2

The value of the ternary operation depends on the value of the boolean expression. If the boolean expression evaluates to true,
the value of the overall operation is value_1. If the boolean expression evaluates to false, the value of the overall operation is
value_2.

Typically, a ternary operation appears on the right-hand side of an assignment. For example, suppose you want radius to be 10
if mass is less than or equal to 50,000; otherwise, you want radius to be 99. Without the ternary operator, you could do it this
way:
if (mass <= 50000)
 radius = 10;
else
 radius = 99;

You can rewrite this in a single line with the ternary operator:
radius = mass <= 50000 ? 10 : 99;

The boolean expression does not need to appear in parentheses, but the line is more readable like this:
radius = (mass <= 50000) ? 10 : 99;

The ternary operator is a convenient replacement for an if...else expression.

Now let's look at the switch statement, which is a convenient replacement for a sequence of if...else expressions.

switch

In the previous section, you saw how the ternary operator can replace certain if...else structures. We will now look at the
switch statement, which can replace entire chains of if...else if...else if structures.

Suppose you wanted to write some code that takes special actions if the value of a char called theChar is a vowel (a, e, i, o, or
u). The special actions consist of printing a message and setting the value of an int called vowelNum. Using if and else, you
could write the code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (theChar == 'a')
{
 System.out.println("a is a vowel.");
 vowelNum = 0;
}
else if (theChar == 'e')
{
 System.out.println("e is a vowel.");
 vowelNum = 1;
}
else if (theChar == 'i')
{
 System.out.println("i is a vowel.");
 vowelNum = 2;
}
else if (theChar == 'o')
{
 System.out.println("o is a vowel.");
 vowelNum = 3;
}
else if (theChar == 'u')
{
 System.out.println("u is a vowel.");
 vowelNum = 4;
}

This can be rewritten as follows, using a switch statement:
switch (theChar)
{
 case 'a':
 System.out.println("a is a vowel.");
 vowelNum = 0;
 break;
 case 'e':
 System.out.println("e is a vowel.");
 vowelNum = 1;
 break;
 case 'i':
 System.out.println("i is a vowel.");
 vowelNum = 2;
 break;
 case 'o':
 System.out.println("o is a vowel.");
 vowelNum = 3;
 break;
 case 'u':
 System.out.println("u is a vowel.");
 vowelNum = 4;
 break;
}

The value in parentheses just after the switch keyword is called the expression of the switch statement, and it must be of type
byte, short, char, or int. (This example assumes that theChar has been declared to be a char.) When the switch code is
executed, Java searches through the case statements, looking for one that matches the expression's value. If no match is found,
nothing happens; execution continues after the closing curly bracket. If a match is found, control jumps to the first executable line
following the case statement. Then execution proceeds line by line until a break statement is reached. At this point, execution of
the switch code is terminated, and control continues after the closing curly bracket.

switch and default
The keyword default, followed by a colon, can appear in place of a case statement. The code following the default
statement is executed if none of the case statements match the expression. For example, suppose you want to modify your code
so that it prints out "Not a vowel" if theChar is not a vowel. If you couldn't use a switch statement, you would do the following:
if (theChar == 'a')
{
 System.out.println("a is a vowel.");
 vowelNum = 0;
}
else if (theChar == 'e')
{
 System.out.println("e is a vowel.");
 vowelNum = 1;
}
else if (theChar == 'i')
{
 System.out.println("i is a vowel.");
 vowelNum = 2;
}
else if (theChar == 'o')
{
 System.out.println("o is a vowel.");
 vowelNum = 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 vowelNum = 3;
}
else if (theChar == 'u')
{
 System.out.println("u is a vowel.");
 vowelNum = 4;
}
else
 System.out.println("Not a vowel.");

This code is the same as the original solution, but with a final else at the end. The following code uses a switch statement with
a default block to achieve the same result:
switch (theChar)
{
 case 'a':
 System.out.println("a is a vowel.");
 vowelNum = 0;
 break;
 case 'e':
 System.out.println("e is a vowel.");
 vowelNum = 1;
 break;
 case 'i':
 System.out.println("i is a vowel.");
 vowelNum = 2;
 break;
 case 'o':
 System.out.println("o is a vowel.");
 vowelNum = 3;
 break;
 case 'u':
 System.out.println("u is a vowel.");
 vowelNum = 4;
 break;
 default:
 System.out.println("Not a vowel.");
 break;
}

When you look at all four versions of this example, you can see that using a switch statement does not significantly reduce the
number of lines of code (although there is a reduction). The main benefit is readability. The switch versions more clearly tell
readers what is happening.

Omitting the break
Once a case block is found that matches the switch statement's expression, execution continues until a break is reached or
the switch statement's closing curly bracket is reached, whichever comes first. If a case block does not end with a break,
execution continues past the next case statement and into the code for that case block.

In the previous example, suppose the case block for 'e' did not end with a break statement. (Perhaps due to an innocent
oversight. It's only human to forget to type break from time to time.) The code would then look like this:
 . . .
 7. case 'e':
 8. System.out.println("e is a vowel.");
 9. vowelNum = 1;
 10. case 'i':
 11. System.out.println("i is a vowel.");
 12. vowelNum = 2;
 13. break;
 . . .

We've added line numbers for easy reference. The switch statement detects that the expression value ('e') matches the case on
line 7. The message on line 8 is printed out, and then at line 9 vowelNum is set to 1. Since there is no break at line 10, execution
just keeps on going. The case statement at line 10 is ignored, and control flow continues at line 11. The message on line 11 is
printed out, and at line 12 vowelNum is set to 2. At last we have a break, so execution of the switch is finished.

This behavior of continuing from one case to the next in the absence of a break statement is called falling through. Falling
through is a mixed blessing. When it happens because you forgot to type break for a particular case, it's just a bug that might be
hard to find (but easy to fix once it's found).

On the other hand, falling through might be just the behavior that you want. The feature is especially useful when you want to use
the same code to process more than one case. The letters y and w are sometimes considered to be vowels. (Y occasionally, as in
occasionally; w very rarely, as in crwth, a medieval musical instrument, pronounced "crooth.") You might want to print out a special
message if theChar has either of these values. If you were using if...else code, you would insert the following lines:
. . .
else if (theChar == 'y' || theChar == 'w')
 System.out.println("y and w are sometimes vowels.");
. . .

You can incorporate this test into your switch code by inserting the following lines:
. . .
case 'y':
case 'w':
 System.out.println("y and w are sometimes vowels.");
 break;
. . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. . .

Where should these lines be inserted? Strictly speaking, the cases in a switch statement, including the default code, can
appear in any order. However, for readability, it makes the most sense to have the cases appear in their natural order (numerical
or alphabetical), with the default code appearing last.

Now that we have looked at Java's conditional code, we can turn our attention to loops.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loops
You have seen that conditional code is like a fork in the path of program execution. Extending this analogy, a loop is like an eddy
or a whirlpool. No, wait, that can't be right... paths don't have whirlpools. The analogy has broken down. At any rate, a loop is a
piece of code that is executed repeatedly. The number of repetitions can be some preset value, or the loop can run on and on
until a condition is met.

We will begin with while loops, and then move on to for loops. We will also look at several techniques for enhancing loop
behavior: breaking, continuing, and nesting.

While Loops

A while loop is a chunk of code that is executed repeatedly until a certain condition is met. The format for a while loop is
while (expression)
 loop_body

The expression must be of the boolean type. The loop body is the code to be repeated. This can be either a single statement or a
block of code enclosed in curly brackets. Initially the expression is evaluated, and if its value is true, the loop body is executed
once. Then the expression is evaluated again, and if its value is still true, the loop body is executed once again. This happens
again and again and again. Eventually (we hope), the expression evaluates to false. When this happens, the loop body is not
executed anymore. Instead, control jumps to the code immediately after the loop body.

This explanation might seem paradoxical. If the while loop is to be of any use, the expression must initially evaluate to true.
Otherwise, the loop body won't be executed at all. But if the expression is indeed initially true, how can the loop ever terminate?

The answer is that either the expression or the loop body must modify the data from which the expression is calculated. Let's look
at a few examples of how this works.

First, here is a useless loop that prints too many messages:
int x = 23;
while (x > 0)
 System.out.println("Still going!");

This loop runs forever or until you press Ctrl+C to terminate the program, whichever comes first. This example demonstrates the
need to somehow modify the data that constitutes the expression.

The next example is more useful. The following code prints the numbers 1 through 10:
int counter = 1;
while (counter <= 10)
{
 System.out.println("counter = " + counter);
 counter += 1;
}

You can use a pre-increment or post-increment operator to make this code slightly more terse:
int counter = 1;
while (counter <= 10)
{
 System.out.println("counter = " + counter);
 counter++;
}

The next example prints out consecutive square numbers that are less than 1,000:
int counter = 1;
while (counter*counter < 1000)
{
 System.out.println(counter * counter);
 counter++;
}

This example points out a useful feature of while loops: You don't need to know beforehand how many passes you want to make
through the loop body. You could certainly find a calculator, figure out that the square root of 1,000 is 31.6227766..., and write the
following:
int counter = 1;
while (counter <= 31)
{
 System.out.println(counter * counter);
 counter++;
}

This approach works, but it violates the spirit of making the computer compute. If you're programming a computer, you shouldn't
have to reach for a calculator. With the next-to-last version of the example, you take advantage of the fact that you don't have to
know how many passes you're going to make through a while loop. You just have to be able to know when you're done.

While loops are the first of several kinds of loops that we will present in this chapter. Loops are powerful because a few lines of
source code can cause the computer to execute a very large number of instructions.

The WhileLab animated illustration demonstrates while loops. To run the program, type java loops.WhileLab. You see a
display that shows a while loop with two assignment lines in its body, as shown in Figure 5.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.1: While Lab: initial display

The loop uses variables a and b. As the code executes, their values are displayed and updated. Click on the Step button to
animate the next line of code. Click on the Run button to animate the entire loop. You can click on Step Lightspeed or Run
Lightspeed to bypass the animation and just see the result. When the animation is finished, click Reset to start again.

You can type in your own values for the initial values of a and b, for the test expression, and for the new values that are assigned
to a and b within the loop. Figure 5.2 shows While Lab with a slightly modified test expression.

Figure 5.2: While Lab with modified test expression

Figure 5.3 shows the result of executing the configuration shown in Figure 5.2.

Figure 5.3: While Lab after execution

Try typing in different values for b <= ?? in the test expression. (If you enter a large number, the loop will be executed a large
number of times, so you probably want to execute with the Run Lightspeed button rather than the Run button.) As you vary the
limit on b, what do you notice about the final value of a?

Try configuring WhileLab's code display so that the code computes the following results (which can be in either a or b, whichever
you prefer):

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first five odd numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you have some experience with while loops, we can look at a variation on the theme: do-while loops.

Do-While Loops
A while loop always tests its condition before executing its body. There may be times when you want to execute the body first, and
then test. This is done with a do-while loop. The format of a do-while loop is
do
 loop_body
while (expression);

As with ordinary while loops, the loop body can be either a single statement or a curly bracket-enclosed block. Note that the
parenthetical expression must be followed by a semicolon.

When a do-while loop is executed, the loop body is executed. Then the expression is evaluated. If the expression evaluates to
true, the loop body is executed again, the expression is evaluated again, and so on until eventually the expression value is
false. At that point, execution of the loop is finished. As with ordinary while loops, you should write do-while code in such a way
that during execution of the loop, the data constituting the expression changes so that at some point the expression's value can
become false.

The code in the following example prints out the cube of x, and then increments x by 5, until x exceeds 100:
do
{
 System.out.println(x*x*x);
 x += 5;
}
while (x <= 100);

The body of a do-while loop is always executed at least once. In the preceding example, at least one line will be printed out, even
if the initial value of x is greater than 100.

Do-while loops are not very different from while loops. The main difference is that the body of a while loop might not ever be
executed, whereas the body of a do-while loop will always be executed at least once.

Now let's look at for loops, which are useful when you know how many passes through the loop body you want.

For Loops

The following code, which uses a while loop to compute a value and print a message ten times, has a very common structure:
int z = 0;
while (z < 10)
{
 int formula = z*z*z + z*z;
 System.out.println(formula);
 z++;
}

The code first initializes z, and then it enters a while loop. Within the loop body, the first two lines perform the internal business of
the loop, so to speak. The last line (z++) is concerned with updating the only data that changes from pass to pass in the loop.
Figure 5.4 shows the structure of the loop.

Figure 5.4: A common loop usage

This structure (initializing before a loop, incrementing at the end of the loop body) is so common that there is a special kind of loop
to support it. The for loop has the following format:
for (initialization; condition; update)
 body

This for loop is exactly equivalent to
initialization;
while (condition)
{
 body
 update
}

The for keyword must be followed by three items, known as the initialization, the condition, and the update. These are enclosed
in parentheses and separated by semicolons. When the for loop is processed, the initialization is executed once. Then the
condition, whose type must be boolean, is evaluated. If the condition is true, the loop body is executed. Then the condition is
evaluated again, and so on until the condition is false. Notice that no matter how many times the loop body is executed (zero
times, once, or multiple times) the initialization is executed exactly once.

For loops are useful when you know beforehand how many times you want the loop body to be executed. (They are especially
useful when you're processing arrays, which will be presented in the next chapter.) When you don't know beforehand how many
times the body should execute, you are generally better off using a while loop because your code will be less complicated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Usually, the initialization involves setting the value of a single variable, often to zero. The condition is usually a test on the value of
that variable, and the update increments the variable. For example, the following code prints out a message 10 times:
int i;
for (i=0; i<10; i++)
 System.out.println("DANGER!");

In this code, the variable i is used just to regulate the number of passes through the loop body. Since it does not appear in the
body, we could have chosen any name for the variable, but it is conventional to use i (or j if i is in use). A variable used in this
way (regulating the number of passes through the loop body, but otherwise playing little or no role in the body) is called a loop
counter. We could have initialized i to any value, as long as the value in the condition was 10 greater than that, but it is
conventional to start a loop counter at 0. If you follow these conventions, and we strongly recommend that you do so, people who
read your code will have a good chance of understanding your intentions.

The initialization and update portions of a for loop can have multiple parts, separated by commas. For example, the following code
prints out the areas of rectangles whose bases range from 5 to 10 inches, and whose heights are 2 inches more than the base:
int base, height;
for (base=5, height=7; base<=10; base++, height++)
{
 int area = base * height;
 System.out.println(area + " square inches");
}

Here, both the initialization and the update have multiple parts.

Breaking and Continuing

Usually a loop runs until its condition is false. However, there may be times when you want to terminate the loop prematurely.
This is called breaking out of the loop.

As an example of loop breaking, imagine you are writing a payroll program for a small company. The company has 100
employees whose ID numbers are 1001 through 1100. A method called getPayAmount, which takes an employee ID as its
argument, returns the amount of money the employee should be paid. Another method called printCheck, which has an
employee ID and an amount as its arguments, prints the specified employee's paycheck. A variable called balance keeps track
of how much money the company has in the bank.

The following code prints everybody's paycheck and keeps track of the bank balance:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

The problem with this code is that it doesn't take precautions against using up all the money in the bank account. The following
code uses a break statement to terminate the loop as soon as there isn't enough money left to cover the next paycheck:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 if (balance-pay < 0)
 break;
 printCheck(id, pay);
 balance -= pay;
}

The break statement causes immediate termination of the loop. Execution continues with the first line of code following the loop.
You can break out of any kind of loop: do, do-while, and for. Note that this application of break is unrelated to using break to
terminate a case in a switch block. The two situations are very different.

There might be times when you want to terminate not the entire loop, but just the current pass through the loop. You do this with
the continue statement. The following example uses continue in a loop that prints out the square and cube of every number
from 1 through 20, except 8:
int i;
for (i=1; i<=20; i++)
{
 if (i == 8)
 continue;
 int squared = i * i;
 int cubed = squared * i;
 System.out.println(squared + ", " + cubed);
}

The continue statement causes control to jump to the end of the loop body. Then the update (i++) is executed, the condition is
checked, and perhaps more passes are made through the loop body. In other words, the current pass through the loop body is
terminated prematurely. As with break statements, you can use continue statements with do and do-while loops as well as with
for loops.

The continue statement allows you to improve on the preceding paycheck example, which broke out of the loop as soon as you
couldn't afford to pay a salary. This was possibly unfair to the workers who had not yet been paid. After all, the employee who
caused the break might have had the highest salary in the company. Even if there was not enough money to pay that person,
there might still be enough left to pay someone else. So a more fair version of the program would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 if (balance-pay < 0)
 continue;
 printCheck(id, pay);
 balance -= pay;
}

The only difference between this version and the previous one is the replacement of break with continue. Now the loop never
terminates prematurely, although some passes through loop body might do so.

Nesting

The body of a loop can contain any valid Java code, including another loop, which can itself contain any valid Java code, including
another loop, and so on. The technique of putting a loop within a loop is called nesting.

As an example of loop nesting, suppose you are writing code to generate frames for an animated movie. Assume that a frame
consists of a grid of 1000 x 1000 pixels. (Pixel is an abbreviation for picture element. A pixel is a tiny dot of color, almost too small
to see. If you hold a magnifying glass up to your computer screen, you can see the individual pixels.) Assume also that there is a
method called computePixel, which takes as arguments the horizontal and vertical positions of the pixel whose color value is to
be computed. Fortunately, computePixel also stores the color value in the appropriate place, so all you have to worry about
here is calling the method with the right arguments.

The following code uses nested for loops to call computePixel for every pixel position:
1. int x, y; // x = horiz, y = vert
2. for (y=0; y<1000; y++)
3. for (x=0; x<1000; x++)
4. computePixel(x, y);

It is conventional to use x as a variable name for representing horizontal positions, and y for representing vertical positions. Line 2
says that the outer loop body will be executed with y ranging from 0 through 999. The outer loop body is lines 3 and 4. Line 3 says
that the inner loop body, which is line 4, will be executed with x ranging from 0 through 999. So the first value pair passed to
computePixel at line 4 will be (0, 0), followed by (1, 0), and then (2, 0), and then (3, 0), and so on up to (999, 0). Those
thousand calls are the first pass through the outer loop. Then y is incremented from 0 to 1 and compared to 1,000. Since y is
found to be still less than 1,000, the second pass through the outer loop begins: computePixel is called with arguments of (0,
1), (1, 1), through (999, 1). Every pass through the outer loop entails a thousand passes through the inner loop, until finally
computePixel is called with arguments of (999, 999). At this point, the outer loop's condition is false, so the outer loop is
finally done.

The body of the outer loop is two lines long (lines 3 and 4), but due to a technicality, the lines do not have to be enclosed in curly
brackets. This is because, technically speaking, lines 3 and 4 are a single statement: a for loop. Only bodies consisting of multiple
statements need to be enclosed in curly brackets. The precise definition of a statement is extremely intricate, but statements are
easy to recognize because they end with semicolons. So you can get away with omitting curly brackets in this example, although
you should indent responsibly to make it clear to readers that you are using a nested loop. However, it does no harm to add the
curly brackets anyway (it's okay to have a block that contains just a single statement). The curly brackets do not affect execution
speed, and they make the code a bit more readable, as you can see here:
1. int x, y; // x = horiz, y = vert
2. for (y=0; y<1000; y++)
3. {
4. for (x=0; x<1000; x++)
5. {
6. computePixel(x, y);
7. }
8. }

The NestedLoopLab animated illustration lets you use loops to draw cycloids. Cycloids are beautiful, complex geometric shapes. If
you have ever played with a Spirograph, you have already appreciated cycloids. You could create some wonderful images with a
Spirograph by drawing several curves in the same space but varying the curves' orientation or some other feature. If you have
done this, you have performed a repetitive complicated task, varying features from one repetition to the next. In other words, you
have done something that can be modeled with a loop, or possibly with nested loops.

A cycloid is the curve traced out by a point on a circle (the roller) as it rolls without slipping around the inside of a larger circle (the
gasket). The roller always touches the gasket at one point, as shown in Figure 5.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.5: A cycloid

The ratio between the size of the roller and the size of the gasket determines the number of lobes the curve will have. The ratio in
Figure 5.5 is 1:4, so the curve has 4 lobes.

The inset is the distance from the tracing point to the rim of the roller. NestedLoopLab uses arbitrary inset units of 0 through 10,
where 0 is the rim of the roller and 10 is the center. The orientation is the point of initial contact between the roller and the gasket,
measured in clockwise degrees from straight up.

NestedLoopLab lets you select a ratio and color. You also choose a loop style. The default is no loop, but you can choose Loop to
select a loop that varies the inset or the orientation. For really sophisticated images, you can use nested loops that vary the inset
and the orientation, in either order. The Color choice lets you leave the color constant or vary the color in any of the loops

To launch NestedLoopLab, type java loops.NestedLoopLab. You will first see the display shown in Figure 5.6.

Figure 5.6: NestedLoopLab: initial display

Figure 5.7 shows NestedLoopLab with a ratio of 8:15 and a small inset.

Figure 5.7: NestedLoopLab: 8:15

In Figure 5.8, the configuration uses a loop, with the inset ranging from 0–6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.8: NestedLoopLab with a loop

Figure 5.9: NestedLoopLab with nested loops

Now try it for yourself. Enjoy! You can use the File ‚ Gallery menu to view a few sample patterns. If you come up with a really
spectacular image, please e-mail its settings to me at www.sybex.com so we can include it in future revisions of the gallery.

Labeled break and Labeled continue

Breaking out of a hierarchy of nested loops can be difficult. It might happen that code in an inner loop detects a condition that
should cause an outer loop to be terminated. For example, you might use three nested loops to print paychecks for every
employee in every department in every division of a large company. (Each department uses its own set of employee IDs, starting
from zero.) The getPayAmount method now takes three arguments: division, department, and ID. Let's assume another feature
for this method: The if statement will return a negative value if the corporate database that it consults is down. When this
happens, paycheck processing should be terminated at once.

The following code would not be correct:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3.
4. for (divn=0; divn <nDivisions; divn ++)
 5. {
 6. nDepartments = getDepartmentCount(divn);
 7. for (dept=0; dept <nDepartments; dept ++)
 8. {
 9. nEmployees = getEmployeeCount(divn, dept);
10. for (id=0; id<nEmployees; id++)
11. {
12. pay = getPayAmount(divn, dept, id);
13. if (pay < 0)
14. break;
15. printCheck(divn, dept, id, pay);
16. balance -= pay;
17. }
18. }
19. }

The code assumes the presence of methods that return the number of departments in a division (getDepartmentCount) and
the number of employees in a department (getEmployeeCount). It also assumes that nDivisions has been preset to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the number of employees in a department (getEmployeeCount). It also assumes that nDivisions has been preset to the
number of divisions in the company. The variable names nDivisions, nDepartments, and nEmployees mean, of course, the
number of divisions, the number of departments, and the number of employees. This kind of naming convention is common and
useful.

Unfortunately, the code doesn't work. The break keyword breaks out of the immediately enclosing loop, not out of all loops. So
the break at line 14 just breaks out of the innermost loop (lines 10-17). Processing then continues with the next department
because we are still in the middle loop (lines 7-18).

There is a simple but clumsy solution, which is shown in the following code. The innermost loop, when it detects a database
problem, sets a boolean variable to true. The middle and outer loops have to check this variable and do their own break if it is
true. Incidentally, a boolean variable that's used in this way to indicate program status is often called a flag. Here is the correct
but clumsy code:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3. boolean trouble = false;
 4.
 5. for (divn=0; divn <nDivisions; divn ++)
 6. {
 7. nDepartments = getDepartmentCount(divn);
 8. for (dept=0; dept <nDepartments; dept ++)
 9. {
10. nEmployees = getEmployeeCount(divn, dept);
11. for (id=0; id<nEmployees; id++)
12. {
13. pay = getPayAmount(divn, dept, id);
14. if (pay < 0)
15. {
16. trouble = true;
17. break;
18. }
19. printCheck(divn, dept, id, pay);
20. balance -= pay;
21. } // End of inner loop
22. if (trouble)
23. break;
24. } // End of middle loop
25. if (trouble)
26. break;
27. } // End of outer loop

The code is difficult to read, which is a good indicator of code that is needlessly complicated. The solution is Java's labeled break
feature. This feature lets you assign a name, or label, to any for, while, or do-while loop. The label is any valid identifier (so you
just need to follow the same rules that govern variable or method names). The label, followed by a colon, appears just before the
for, while, or do keyword. Now you can break out of the labeled loop, even from code in a loop nested inside the labeled loop,
by adding the loop's label after the break keyword.

The following code elegantly fixes the paycheck program by using a labeled loop and a labeled break:
 1. int divn, dept, nDepartments, nEmployees, id;
 2. float pay;
 3.
 4. bigloop: for (divn=0; divn <nDivisions; divn ++)
 5. {
 6. nDepartments = getDepartmentCount(divn);
 7. for (dept=0; dept <nDepartments; dept ++)
 8. {
 9. nEmployees = getEmployeeCount(divn, dept);
10. for (id=0; id<nEmployees; id++)
11. {
12. pay = getPayAmount(divn, dept, id);
13. if (pay < 0)
14. break bigloop;
15. printCheck(divn, dept, id, pay);
16. balance -= pay;
17. }
18. }
19. }

Now line 14 causes the outermost loop to break.

Java also provides a labeled continue feature. The statement continue label; terminates the current pass through the
labeled loop. If the label were omitted, the current pass through the innermost loop would terminate instead.

Loops and Scope

The previous chapter introduced the concept of scope. As a reminder, a variable's scope is the block (inside curly brackets) that
most tightly encloses the variable's declaration. The variable has definition only within its scope. Outside the scope, the variable's
name may be reused, but the name refers to a different piece of data with its own scope.

With the introduction of loops, you begin to use code that can consist of blocks nested in blocks nested in blocks, and so on. This
raises the issue of where variables should be declared. A good rule of thumb is that a variable's scope should be as small as
possible. This means that if a variable is used only in a loop, it should be declared inside the loop.

For example, in the paycheck code of the previous section, you declared float pay outside the outermost loop, even though it
is only used in the innermost loop. A clear approach would be to eliminate the declaration on line 2 and change the innermost loop
to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (id=0; id<nEmployees; id++)
 {
 float pay = getPayAmount(divn, dept, id);
 if (pay < 0)
 break bigloop;
 printCheck(divn, dept, id, pay);
 balance -= pay;
 }

Now anyone who reads the code and wonders where pay is used only has to think about five lines.

You are allowed to declare a variable in the initialization statement of a for loop. Thus, the following is allowed (and, in fact, is
encouraged):
for (int i=0; i<10; i++)
{
 // Loop body
 // More loop body
}

The scope of i is the body of the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Rewrite the following code to maximize readability:
switch (x)
{
 case 100:
 System.out.println("x is big");
 break;
 case 101:
 System.out.println("x is big");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case -1000:
 System.out.println("x is negative");
 break;
}

2. Rewrite the following code to make it cleaner:
boolean flag = false;
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
}
if (!flag)
 z = 1000;

3. What happens when the following code is executed with val equal to 10? 100? 1,000? First, decide just by
looking at the source code. Then write a program to verify your answer.
switch (val)
{
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
}

4. Run the WhileLab animated illustration by typing java loops.WhileLab. Try changing the value in the
condition in the third line. What do you notice about the final value of a?

5. The description of WhileLab suggests three exercises, which are repeated here. For each desired result,
configure the inputs of WhileLab to produce that result. Then verify your work (and make sure WhileLab is
trustworthy) by writing an application that duplicates each while loop. The loops should generate the following
results:

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first 5 odd numbers.

6. There is a number game called Hotpo that can entertain you for a few minutes while you're stuck in traffic,
waiting for a movie to start, or having dinner with someone really boring. Hotpo stands for Half Or Triple Plus
One, and it works like this: Think of an odd number. Now mentally calculate another number, as follows: If the
first number was even, the next number is half the first one; if the first number was odd, the next number is 3
times the first number, plus 1. Now you can forget the first number and apply the Half Or Triple Plus One
formula to your current number. Keep going until the value reaches 1. Let's try this with a starting number of 5.
The series is 5 ® 16 ® 8 ® 4 ® 2 ® 1.

Write a program that plays Hotpo. First, initialize a variable called n to the starting value you're interested in.
Then enter a loop that prints out each number in the sequence, along with the current step number. For
example, the output for 3 would be
Step #1: 10
Step #2: 5
Step #3: 16
Step #4: 8
Step #5: 4
Step #6: 2
Step #7: 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step #7: 1

Should the program use a while loop or a for loop?

7. What is the value of n after the following code is executed?
int n = 1;
outer: for (int i=2; i<10; i++)
{
 for (int j=1; j<i; j++)
 {
 n *= j;
 if (i*j == 10)
 break outer;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6: Arrays

Overview
All of the data types presented so far in this book have represented single units of information. The char type represents a single
character, while the other types represent numbers with various formats and ranges.

This chapter will introduce arrays, which are clusters of data. You will learn how to create arrays and how to use them in
programs, especially in the context of loops.

Arrays are extremely basic examples of objects. We can't claim that when you master arrays, you will have mastered object-
oriented programming. However, in the course of this chapter, you will learn a number of concepts that will make it easy for you to
master objects when they are presented in the next several chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clusters of Data
An array is a cluster of variables, called components, all of the same type. The array has a name, but the individual variables
within the array do not. Each of the components has a unique identifying integer, called an index. The plural of index is indices,
which proves that someone was paying attention in Latin class. The indices range from 0 through n-1, where n is the number of
components in the array.

Before you use an array, you have to declare its type and create it. You have already seen type declarations in the context of
primitive data types, and array declaration is quite similar. Creation is a new concept, and we will discuss it in some depth.

Declaring Arrays

Array declaration, like primitive declaration, associates a variable name with a data type. There are two ways to declare an array.
The preferable format is
Component_type[] name;

Note the square brackets after the component type. An example of this format is
float[] temperaturesCelsius;

This declaration says that temperaturesCelsius is the name of an array whose components are all of type float. The number
of components will be specified later, when the array is created. Note the plural in the name, indicating that the variable relates to
more than one temperature.

The alternative format for array declaration is
Component_type name[];

The only difference is that the empty square brackets now come after the name, rather than after the component type. This format
is included as a holdover from older programming languages (C and C++). It is considered less readable than the first format, and
we will not use it in this book.

Creating Arrays

At some point after you declare an array, you need to create it. This is new. With primitives, all you had to do was declare a
variable's type, and the variable came into existence. Arrays, as well as all other kinds of objects, are different: You have to create
them explicitly. This is done with the keyword new.

The format of an array creation statement is
name = new component_type[number_of_components];

In the previous section, you declared a variable named temperaturesCelsius to be an array whose components have float
type. From this point on, we will say this more briefly: temperaturesCelsius is an array of floats. When you want to create the
array, you first have to decide how many components it will have. If you want 10 components, for example, you would create the
array like this:
temperaturesCelsius = new float[10];

The array size does not have to be a literal int. A variable is acceptable. Suppose you have a method called
getNTempReadings, which returns the number of temperatures available to the program. Then you might do the following:
int nTemps = getNTempReadings();
temperaturesCelsius = new float[nTemps];

You could even get more terse:
temperaturesCelsius = new float[getNTempReadings()];

When an array of primitives is created, all of its components are given an initial value. Numeric arrays (that is, arrays of byte,
short, int, long, float, and double) have all components initialized to 0. Boolean arrays have all components initialized to false.
Char arrays have all components initialized to the null character, which is a non-printing, do-nothing zero value that indicates "no
character at all."

It is convenient to represent an array as shown in Figure 6.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.1: A new array

Figure 6.1 shows the array after it has been created but before any of its components have been modified. Now is the perfect time
to learn how to modify the components.

Using Array Components

The components of an array of n components have indices from 0 through n-1. The names of those components are
arrayName[0], arrayName[1], and so on, through arrayName[n-1]. Thus, in this example, you could use the following code
to set the first and last components to -10 and 10, respectively:
temperaturesCelsius[0] = -10;
temperaturesCelsius[9] = 10;

Sometimes the first component is called the zeroth component, so that the adjective will match the index. The term eliminates
confusion, because one could reasonably (but wrongly) believe that the first component is temperaturesCelsius[1].

Figure 6.2 shows the array after the preceding code has been executed.

Figure 6.2: A used array

Of course, you can also read the value of an array component. The following code sets a component to the average of two other
components:
temperaturesCelsius[5] =
 (temperaturesCelsius[6]+ temperaturesCelsius[7]) / 2;

You can see that an individual array component can be used in any context where a primitive variable of the same type can be
used.

Array Length

When you create an array, you specify the number of components. Subsequently, the array knows its component count. You can
read the number of components with the expression arrayName.length. For example, if you have an array called
employeeNames, the following code sets an int called nEmployees to be the length of the array:
nEmployees = employeeNames.length;

The array's length is permanently fixed at creation time, so you can't modify it. The following code would cause a compilation
error:
employeeNames.length = 5000;

Array Initialization

We have already said that when an array is created, its components are initialized to zero for numeric types, or to false or the
null character for booleans and chars. If you want the array to start life with different contents, you can set the values of the
components you want to change one by one, such as follows:
char[] chars = new char[10];
chars[3] = 'L';
chars[4] = 'C';

If you want to specify a value for all the components of the new array, a more compact syntax is available:
name = new type[] {value0, value1, … };

The compiler determines the array length by counting the values in the curly brackets. The array components are initialized to
those values. For example, the following code creates and initializes an array of 4 bytes:
byte[] bytes = new byte[] { 3, 5, 7, 99};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arrays and Loops
Loops, and especially for loops, are ideal for processing arrays. No matter what you want to do to the array, you typically use a for
loop with a loop counter that ranges from 0 through array-length-minus-1. Within the loop's body you perform whatever processing
you want, using the loop counter as an array index.

For example, the following code computes the product of all the values in an array called measurements:
double product = 1;
for (int i=0; i<measurements.length; i++)
 product *= measurements[i];

Note that this code works on arrays of all sizes, because it reads the array size from measurements.length.

For another example, let's revisit the paycheck-printing code from the previous chapter. Here is one of the several versions of that
code:
int id;
for (id=1001; id<=1100; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

The code is a bit unrealistic, because in a company with 100 employees, people are going to join or leave the company. The
number of employees and their individual IDs are going to change. However, it is reasonable to assume that there could be a
method called getIDsFromDatabase, which queries the corporate database and returns an array of int containing the ID of
every employee who should get a paycheck. Then the preceding code would be modified as follows:
int[] ids = getIDsFromDatabase();
for (int id=0; id<ids.length; id++)
{
 float pay = getPayAmount(id);
 printCheck(id, pay);
 balance -= pay;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multi-Dimensional Arrays
The arrays we have looked at so far have been one-dimensional. This means that each component is specified by a single unique
index. Java also supports multi-dimensional arrays, in which each component is specified by a unique sequence of indices. The
number of indices in the sequence is the array's dimension. In a two-dimensional array, for example, each component has two
indices. Figures 6.1 and 6.2 portrayed some one-dimensional arrays as columns of boxes. We can portray a two-dimensional
array as a lattice or matrix, where each component is identified by its row and column, as in Figure 6.3.

Figure 6.3: A two-dimensional array

If the array in Figure 6.3 were called twoDimInts, it would be declared as
int[][] twoDimInts;

The array is now declared but has not been created yet. When you create an n-dimensional array, you have to specify n sizes:
one size for each dimension. To create a two-dimensional array of 3 rows and 2 columns, as in Figure 6.3, use the following code:
twoDimInts = new int[3][2];

Now the array has been created. At creation time, every component is initialized, as with one-dimensional arrays. To access an
individual component, you use the array name followed by both indices, with each index in square brackets. For example, the
following code initializes every component of twoDimInts to 39:
 for (int i=0; i<3; i++)
 for (int j=0; j<2; j++)
 twoDimInts[i][j] = 39;

Suppose you have 50 weather stations, each of which takes a temperature reading every hour throughout one day. You might
store the data in a two-dimensional float array called temps, where temps[t][s] is the temperature at time t recorded by
station s.

The following code could be used to print the average temperature over all stations, hour by hour:
for (int hour=0; hour<24; hour++)
{
 float tempTotal = 0;
 for (int stn=0; stn<50; stn++)
 tempTotal += temps[hour][stn];
 float tempAvg = tempTotal / 50;
 System.out.println("Average temp at time " + hour +
 " = " + tempAvg);
}

On the other hand, you might want the average temperature over the entire day for each station. For that, you would use the
following code:
for (int stn=0; stn<50; stn++)
{
 float tempTotal = 0;
 for (int hour=0; hour <24; hour++)
 tempTotal += temps[hour][stn];
 float tempAvg = tempTotal / 24;
 System.out.println("Average temp at station " + stn +
 " = " + tempAvg);
}

These examples show that processing a two-dimensional array generally requires a two-deep nested loop. In general, processing
an N-dimensional array requires an N-deep nested loop.

The BoolArrayLab animated illustration uses a two-deep nested loop to let you set the values in a 200-by-200 boolean array. The
array contents are illustrated by a grid of 200 by 200 pixels. A blue pixel represents a value of true; a black pixel represents
false. (You probably can't see the individual pixels unless you use a magnifying glass.) To run the program, type java
arrays.BoolArrayLab. The code looks like this:
boolean[][] bools = new boolean[200][200];
for (int y=0; y<200; y++)
 for (int x=0; x<200; x++)
 bools[x][y] = ________________________ ;

You supply the formula in the last line. The formula can be any valid boolean expression. Initially, the program comes up with the
following formula:
 bools[x][y] = x>y;

Figure 6.4 shows BoolArrayLab's initial screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.4: BoolArrayLab

The File ‚ Gallery menu offers 7 sample formulas, and you are encouraged to try your own or modify the ones provided. Figure 6.5
shows a parabola.

Figure 6.5: BoolArrayLab drawing a parabola

The lower portion of the display renders the contents of the array. Since 200 x 200 is fairly large, the display uses a rectangular
grid of 200 x 200 pixels. An array component with a value of true is represented by a blue pixel, while a false value is
represented by a black pixel.

Before you launch the program, can you guess what sort of image is produced by the initial formula bools[x][y] = x>y;? If
you discover a formula that produces an interesting display, please email it to www.sybex.com. I will use it and mention your
name in the next edition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arrays as Objects
Now you know enough about arrays to write some very useful code. At this point, we will stop discussing the syntax and use of
array code. It's time to look at what you might think of as array anatomy. This material is extremely important, because nearly
everything you'll learn about array anatomy also applies to the anatomy of full-blown objects. If you understand the material in the
remainder of this chapter, you will have a good solid foundation for learning about object-oriented programming in Java.

You have already seen that declaring an array is different from declaring a primitive. When you declare a primitive, the variable is
right there for you. But when you declare an array, you still have to create it. This is a clue that there is more going on with arrays
than with primitives.

You can think of memory as being divided into two parts: accessible and inaccessible. (This is unofficial terminology, but it is very
useful and will be used throughout this book.) Primitives exist in accessible memory; arrays exist in inaccessible memory. Figure
6.6 shows memory divided into its two parts, populated with a few primitives and arrays.

Figure 6.6: Accessible and inaccessible memory

Any variable on the left side of the figure – that is, in accessible memory – can have its values read and written. Accessible
memory is for primitive variables, and for a kind of variable that you have already used without knowing it. This kind of variable is
called a reference. References are used for all access to arrays. When you declare an array, what gets created is just a reference.
(Remember, the array is not created until you say new.) The reference exists in accessible memory. No matter what kind of array
you declare – no matter what type, size, or number of dimensions it has – the reference is 32 bits wide.

When you create an array by invoking the keyword new, space for the array is reserved (or allocated) in inaccessible memory. For
example, the code int[][] ages = new int[3][2]; would cause allocation of 24 bytes (3 times 2 ints, times 4 bytes per
int), as shown in Figure 6.7.

Figure 6.7: An array of bytes in inaccessible memory

Invoking new is a bit like invoking a method: The code returns a value. The value returned by new is almost – but not quite – the
address in inaccessible memory of the freshly created array. If you are at all unclear about the distinction between memory
address and memory contents, you might want to return to Chapter 1 and play with the SimCom animated illustration.

Actually, it doesn't matter if the value returned by new is exactly the address of the array, or almost-but-not-quite the address, or
only vaguely related to the address. The details of the relationship are a hidden part of the Java Virtual Machine, and they may
even vary from one implementation of the JVM to another. For this reason, the value is called a reference to the array. Reference
implies that the value uniquely identifies the array in a way that is hidden from us.

Now we can look at what really happens when the following code is executed:
int[][] ages; // Allocation
ages = new int[3][2]; // Construction & ref assignment

The allocation line creates a reference named ages in accessible memory. Then the creation line causes space for the array to
be allocated in inaccessible memory. The invocation of new returns a reference to the array; this reference is the right-hand side
of the = assignment. The reference is then stored in the variable whose name appears on the left side of the = assignment,
namely ages. This situation is illustrated in Figure 6.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.8: Reference and array

Notice that the comment on the second line of code above says Construction rather than Creation. Construction is the
technical name for creating something in inaccessible memory by invoking new.

Why does this matter? So far, the array code we have presented has made sense without burdening you with all this reference
stuff. But there are certain very useful operations you can do with arrays that only make sense if you understand references.
These are operations that you have already seen in the context of primitives: assignment, and argument passing.

Suppose ages and otherAges are declared to be arrays of the same type. What does it mean to say the following?
ages = otherAges;

Contrary to reasonable expectation, this code emphatically does not create a new array whose components have the same values
as the original array. Remember that ages and otherAges are really references. So ages = otherAges; just copies the 32-
bit pattern from one reference to the other. The result is a second reference that (in some sense) points to the same thing the first
reference pointed to: the array. You now have two references to the same array, as shown in Figure 6.9.

Figure 6.9: Two references, one array

The CreateArrayLab animated illustration dynamically illustrates the following code:
double d = 1.23;
double e = d;
d = 3003;
double[] doubleArray = new double[4];
double[] theCopy = doubleArray;
doubleArray[1] = 98.6;
e = theCopy[1];

Start the program by typing java arrays.CreateArrayLab. You will see the display shown in Figure 6.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.10: CreateArrayLab

Click on the Go button to see the animation. When the animation finishes and you want to watch it again, you can click on Reset
to return the display to its original state.

References usually point to arrays (or to objects, as we will see later). However, there is a special value that can be assigned to
any reference. The value is null, and it indicates that the reference does not point to anything. For example, you might make the
following declaration and assignment:
double[] doubles;
doubles = null;

The null reference value is only slightly useful at the moment, but you will see a use for it in the section on garbage collection
later in this chapter. You will also make extensive use of null in later chapters, in the context of objects.

Passing References to Methods

Now you understand what really happens in code like the following:
float[] floatArray = new float[4];
float[] theCopy = floatArray;

Are you likely to encounter this situation? Are you likely to make a copy of a reference, when you already have a perfectly good
one, given the confusion that a copy might create? Actually, yes. Within a single method, there isn't really any good reason for
copying a reference. However, you might want to pass an array as a method argument.

Remember that when you pass a primitive as an argument to a method, the method actually gets a copy of the primitive. Thus,
the method can modify the copy, and the caller will never be aware of the modification because the caller has no access to the
modified copy.

With arrays and methods, the situation is a bit different. You don't actually pass an array into a method. You pass a reference to
the array. The method receives a copy of the reference. The caller's original reference and the method's copy are identical 32-bit
patterns, so they both (in some sense) point to the same object in inaccessible memory: the array. So when you pass an array
reference as a method argument, the method can use the reference to modify the array, and the modifications will be visible to the
caller.

The PassArrayLab animated illustration animates the following code:
int[] intarray = new int[3];
setInts(theArray);
 . . .
static void setInts(int[] ints)
{
 for (int n=0; n<ints.length; n++)
 ints[n] = 22;
 return;
}

The return statement isn't really required, since the method's type is void and it would return anyway after executing its last line.
The return is just there to make the animation more clear. When a method returns, all variables that were declared within the
scope of the method cease to exist. This includes the method's arguments (ints in this example). The space in accessible
memory that was allocated for the variables is reclaimed by the system. Conceivably, the next variable to be declared could
occupy the same bytes that used to constitute the ints argument. But all is not lost. Although the ints argument ceases to exist,
the array it references continues to exist.

Invoke PassArrayLab by typing java arrays.PassArrayLab. The Go and Reset buttons start the animation and reset the
display. Run the animation a few times, until you are confident that you understand that what gets passed to the method is a
reference and not an array. That way, changes made to the array are permanent and visible to the caller.

Garbage Collection

Garbage collection is a mundane term for a very important feature.

You have seen that arrays are created by invoking the keyword new. Surely there must be a way to recycle an array's memory
after the array is no longer needed. Something like this happens to the arguments and local data in a method, when the method
returns. But in that case, the recycled data consists of primitives and references. In other words, it's data in accessible memory
that was reserved by declaring arguments or variables. In the case of arrays, we are concerned with data in inaccessible memory
that was reserved by invoking new.

Java's precursor languages, and in particular C and C++, required the programmer to explicitly free up memory that was no longer
needed. This was the only way that the memory could become available for reuse. This led to problems. One such problem is
called a memory leak bug. If a bug causes a method to neglect to free up a few hundred bytes, that's not much of a problem. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

called a memory leak bug. If a bug causes a method to neglect to free up a few hundred bytes, that's not much of a problem. The
program is probably running on a system with at least several million bytes of available memory, so if a few hundred become
unavailable, there is still plenty left. But if the method is called in a loop that executes 1,000 times, a few hundred thousand bytes
become unavailable. That might have an impact. If the loop executes 1,000 times every hour, eventually there will be no more
memory available for allocating new arrays, and the program will crash. The problem is called a memory leak because the pool of
available memory gradually diminishes.

Java makes memory leaks highly unlikely, because in Java the programmer never decides when to recycle unneeded arrays and
objects. The JVM decides when memory is no longer needed, and such memory is automatically recycled. The JVM uses the
following logic to decide when to recycle memory:

When an array (and, as we'll see later, an object) is created, inaccessible memory is created and a reference is returned. The
JVM keeps track of how many references are pointing to an array or other object. Your program might make copies of a reference,
and might pass the reference as a method argument. As long as there is at least one reference to something, there is a chance
that you might want to use that particular something, so its memory will not be recycled. However, when the last reference to an
object ceases to exist, suddenly there is no way to read or write the object, or to use it in any way. You can't talk about something
if you have no name for it. Since the unreferenced object can no longer play any role in your program, its memory will be
automatically recycled. Such automatic recycling of unneeded memory is called garbage collection.

Consider the following method:
1. void useAnArray(int size)
2. {
3. int[] theArray = new int[size];
4. int[] aRefCopy = theArray;
5. int[] anotherCopy = theArray;
6. }

Line 3 constructs an array of ints and stores the returned reference in theArray. Line 4 copies the reference, so after line 4 there
are 2 references to the array. After line 5, there are 3 references to the array, but only briefly. Immediately after line 5, the method
returns, so all its variables are recycled. Suddenly, instead of 3 references to the array, there are none at all. Now the program no
longer has any way to access the array, which will be recycled shortly.

If you have an array that you no longer need, there is no explicit way to recycle its memory. However, you can usually set all
references to the array to null, which will cause garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. The following two declarations are equivalent as far as the compiler is concerned, but one is considered more
readable than the other. Which is more readable, and why?

1. double dubs[];

2. double[] dubs;

2. Write a line of code that declares an array of 5 ints and initializes the array to contain the first 5 prime numbers.
The code should be a single statement.

3. Write a method whose single argument is an array of double. The method should return the average (mean) of
the array's components. Write an application that tests the method by passing it an array containing any values
you like.

4. Write a program that uses the array-averaging method of Question 3. The program should compute and print
out the average of an array (you can choose the component values). Then the program should add 100 to each
component, and again compute and print out the average.

5. Write a program that contains a method that creates and returns an array of int containing the first n square
numbers, where n is the method's argument. Test your method by calling it with n=10. Your program should
print out the index and value of each component, in descending order.

6. Write a method that creates a multiplication table. The method should return a two-dimensional array of N by N
ints, where N is specified by the method's argument. In the array, the component at [row][col] should have a
value of row*col.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7: Introduction to Objects
The previous chapter presented arrays, which are Java's simplest kinds of objects. Arrays are much less sophisticated than other
kinds of objects. Usually when people say "object," they mean it in a casual sense that excludes arrays. A program whose only
objects are arrays can hardly be called object-oriented. However, in learning about arrays, you have learned a number of concepts
that are vital to your mastery of full-fledged objects. You are now ready to enter the world of object-oriented programming,
perhaps never to return.

The animated illustrations for this chapter provide visual reinforcement for the concepts that will be presented here. Please be
sure to run them and take the time to play with them when the text invites you to do so.

Arrays Versus Objects
Before we begin, let's agree on some terminology. In the most formal sense, an array is a kind of object. However, we are about to
compare arrays and other objects, and we need to avoid cumbersome language. It would be useful to say, for example, "objects
have data and methods, rather than, "objects that aren't arrays have data and methods." So for the remainder of this book, unless
it will cause confusion, "object" will mean "object but not array."

You already know a lot about objects from your study of arrays. Here are some similarities between arrays and objects:

Objects contain clusters of data.

Objects are created by invoking the keyword new.

Objects inhabit inaccessible memory.

Objects are manipulated indirectly, via references.

Object references can be passed as method arguments; objects cannot.

Objects are not explicitly destroyed; they are garbage-collected when they have no more references.

Another recognizable feature of objects is the use of the period as a symbol to denote "property of" when it follows the name of an
array or object. With arrays, the syntax arrayReference.length gave you the number of components in the array. With
objects, the syntax objectReference.something gives you access to the extensive power and features of an object. You will
see how this works in great detail later in this chapter.

Objects have many features that go far beyond what arrays can do. Here are some unique features of objects:

They can contain data of different types.

They can contain methods as well as data.

They are related to classes.

Classes are among the most important concepts in object-oriented programming. They are actually quite simple to understand, as
you will see in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Classes
Plato would have approved of the concept of classes.

The easiest way to learn about classes is to step outside the domain of object-oriented programming for a moment and look at the
real world. (Plato might not have approved of calling it "real.") We experience things in the world, and we create categories in our
minds so that we can think about those things collectively. Figure 7.1 illustrates this mental process.

Figure 7.1: Class as mental category

As another example, "dog" is a category. In daily life, when dealing with the external world, we don't really experience the category
"dog." We experience individual dogs, such as Harley or Sumo or Rover. So "dog" is a class or category, and the individual dogs
Harley and Sumo and Rover are individual instances of that class.

Now back to object-oriented programming. In Java, a class is a piece of code that describes a category of thing that you want to
represent in software. In fact, a Java program is just a bunch of interacting class definitions. You might have suspected as much,
since every complete application listing we have seen so far has contained the mysterious keyword class. On the other hand,
you might not have suspected as much. So far we have put a lot of effort into concealing the object-oriented nature of class code,
because it was not yet time to talk about objects and classes. Well, now the time has come.

Suppose you want to write a program to model the behavior of Harley, Sumo, and Rover. First you spend some time thinking
about what these three have in common. Eventually you realize that they are all dogs, so you decide to create a class called Dog.
(In Java, a class name can be any valid identifier, but by convention we capitalize the first letter.) You create the class by writing a
source file that looks like this:
public class Dog
{
 . . .
}

This is called a class definition. The code that goes between the curly brackets is the body of the class definition. Bodies can be
as short as a few lines of code, for very simple classes. There is no upper limit on the size of the body, but typical large class
bodies can be hundreds or even thousands of lines long. Of course, you don't yet know how to write a class body, but that is what
the rest of this book is all about.

A class definition should appear in a file whose name matches the class name. So the Dog class should appear in a file called
Dog.java. Compiling this file will result in a file called Dog.class. Now that you know what a class is, the .class filename
extension makes sense. This is not an absolute rule, but explaining when you do and don't have to apply it would require
presenting a number of concepts that are out of place here. If you are curious, please wait until Chapter 9, "Packages and
Access."

So a class is something that you define when you write your source code. What about objects? An object is an individual instance
of a class. Objects are created when your program is executed. More specifically, an object, like an array, is created by an
invocation of the keyword new. The syntax for object creation is a bit different from the syntax for array creation, as you will see in
the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objects and Their Data
You have already learned that objects, like arrays, contain clusters of data. You have also learned that the data in an object,
unlike the data in an array, can be of differing types. The number, types, and names of an object's data elements are all defined in
the object's class definition.

Let's look at a very simple example. Here is a very simple class definition:
public class Person
{
 int age;
 short weight;
}

This is our first example of a class that does not contain a method called main. In fact, this class definition has no methods at all.
The class just defines a bundle of data. The bundle contains an int called age and a short called weight.

To create an individual instance of this class, you would use the following code:
Person keara;
keara = new Person();

The first line is a declaration. Like all other declarations, it tells the compiler that you will be using a variable called keara and it
will be of a certain type. At first glance, it appears that the type of keara will be Person; this is almost true, but not quite. Actually,
the declaration says keara will be a reference to an object, and that object will be an instance of the Person class. If the
distinction seems subtle, it is also very important.

The situation is similar to what we saw in the previous chapter, in the context of arrays. The declaration int[] temperatures;
says that temperatures will be a reference (in accessible memory) to an array (in inaccessible memory). Similarly, the
declaration Person keara; says that keara will be a reference (in accessible memory) to an array (in inaccessible memory). In
both cases, the declaration does not cause construction of the array or object. Nothing gets constructed until new is executed.

When the second line (keara = new Person();) executes, an object is constructed, using the class definition as a kind of
stencil or cookie cutter. The JVM knows which class definition to use (remember, a Java application can consist of many class
files) because the class name appears after new and before the empty parentheses. As with arrays, the invocation of new
constructs an object in inaccessible memory and returns a reference to that object. The reference is stored in the variable keara,
so keara now refers to the newly created object. At this point, the situation is as shown in Figure 7.2.

Figure 7.2: Reference and object

The figure shows that the object contains its own set of data variables, with names and types as specified in the class definition
source file. When an object is constructed, its data variables (called fields) are initialized in the same way array components are
initialized. Numeric fields are initialized to 0, char fields are initialized to the null character, and boolean fields are initialized to
false.

Now you can use the reference keara to manipulate the object's fields. The following code writes and reads the fields of an
object, using a new notation:
keara.age = 8;
short f = keara.weight;

In both lines, you use the following syntax to refer to an object's field:
Object_reference.field_name

The period is pronounced "dot." So if you were reading the first code line out loud, you would say, "Keara dot age equals eight."

The DataLab animated illustration shows the construction of an object and the use of a reference to access fields of that object.
Please take a moment now to run the animation by typing java objects.DataLab. Figure 7.3 shows DataLab's initial display.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.3: DataLab

Press the "Run" button to view the animation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multiple Objects
You have learned that a class is a kind of stencil or cookie cutter for creating objects. Cookie cutters are especially useful if you're
going to make lots of cookies. Similarly, classes are really useful because you can use a class to make multiple instances of that
class. Different cookies made from the same cutter have the same outline, but they can be frosted or decorated differently.
Similarly, different instances of the same class can have different data values.

Figure 7.4 shows three instances of the Person class. Each instance is referred to by a different reference.

Figure 7.4: Multiple objects

The data values inside an object can be manipulated in all the same ways you can manipulate ordinary variables. For example, if
curly and larry are references to Person objects, you might write the following:
curly.age = larry.age + 12;

The SeveralObjectsLab animated illustration lets you play with multiple instances of the Person class. Start the program by typing
java objects.SeveralObjectsLab. You will see the display shown in Figure 7.5.

Figure 7.5: SeveralObjectsLab

SeveralObjectsLab initially displays the following code:
Person reference1 = new Person();
Person reference2 = new Person();
Person reference3 = new Person();
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;
reference1.age = 30;

The reference variable names aren't very imaginative. Also, it isn't very useful to have five lines that all set the same field in the
same object to the same value.

That's where you come in. Type better names into the text fields in the declaration lines. Use the choices to reference different
fields in different objects. Use the text fields in the assignment lines to assign any value you like to the fields you have chosen.
The assignment values can be literals or expressions, and the expressions can include fields in any of the objects. Figure 7.6
shows SeveralObjectsLab after reconfiguring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.6: SeveralObjectsLab reconfigured

Figure 7.7 shows the result of executing Figure 7.7.

Figure 7.7: SeveralObjectsLab reconfigured and executed

Try configuring SeveralObjectsLab to execute the following code:
Person simon = new Person();
Person emily = new Person();
Person bethan = new Person();
simon.age = 30;
emily.age = simon.age - 20;
simon.weight = 150;
bethan.weight = simon.weight / 3;
bethan.age = bethan.weight / 5;

The program demonstrates construction of the objects and references, followed by assignment to the various fields. Try
configuring different values. Hopefully, the results will not be surprising.

The point of SeveralObjectsLab is to get you to think of objects as bundles of data. Objects are similar to other instances of the
same class, to the extent that all such objects contain similar clusters of data. That is, each cluster has the same number of
variables, and those variables have the same types and names, as defined in the class definition file. However, each object is
distinct and has its own version of each variable defined by the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objects and Their Methods
In addition to containing data, objects can also contain methods. You might have suspected as much, because all the application
classes presented in this book have contained at least one method (public static void main(String[] args), and
sometimes more than one. All those methods have had the keyword static in their declarations. Later in this chapter you will
see that static means, in a sense, "not object-oriented." The methods had to be static because we had not yet introduced
objects. Now it is time to present genuinely object- oriented methods.

Let's add a method to the Person class:
public class Person
{
 int age;
 short weight;

 int ageInNYears(int n)
 {
 return age + n;
 }
}

The method computes how old the person will be in n years. It has a lot in common with the methods you have already seen. It
has a declaration that specifies the method's return type, name, and argument list. It has a body enclosed in curly brackets, and it
returns a value.

There are two major differences between this method and the ones you have looked at in previous chapters:

There is no static in the declaration.

The method refers to a field (age) of the class where the method is defined.

To call a method of an object, you again use the "reference-dot" notation. The following code shows how this is done:
1. Person ed = new Person();
2. ed.age = 62;
3. ed.weight = 220;
4. int n = ed.ageInNYears(3);
5. System.out.println("Ed will be " + n +
 " in 3 years.");

Note in line 4 that the method call looks like the method calls you are used to, except that it is preceded by an object reference
and a dot. This syntax says, "Call the ageInNYears method of the object referenced by ed."

This brings up an important point about object-oriented programming. Until this chapter, all the methods presented in this book
have contained in their declarations the mysterious keyword static. We will explain static in detail in the next section. For
now, let's just say that a static method is one that is not object-oriented and does not belong to an individual object. It has been
useful to present only static methods for six chapters, because the non-static approach allowed us to introduce a great many
foundational concepts without the added complication of presenting objects. But in realistic Java programming, very few methods
are static. Most methods are non-static, which means they are associated with objects. Thus, most method calls involve not just
invoking a method, but invoking a method on an object.

Let's look again at the Person class, with line numbers:
 1. public class Person
 2. {
 3. int age;
 4. short weight;
 5.
 6. int ageInNYears(int n)
 7. {
 8. return age + n;
 9. }
10. }

The ageInNYears method makes use of the age variable. But which age variable? Every instance of the Person class has its
own version of age (and of weight). You may have already guessed correctly: The version of age that gets used is the one
belonging to the object on which the method call was made. So in the line int n = ed.ageInNYears(3);, the version of age
that gets used is the one belonging to the object referenced by ed.

The ObjectMethodLab animated illustration demonstrates a class called Square. Start the program by typing java
objects.SeveralObjectsLab. You will see the display shown in Figure 7.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.8: ObjectMethodLab

The class contains one variable, an int called side. The class also has one method, called dump, which outputs a message
followed by a value. The output appears in the text area at the bottom of the window. Initially, the method dumps out side = ,
followed by side itself. Of course, this is the version of side that is owned by the object on which the method was called. The
code creates two objects and gives them distinct values for side. These values are 10 and 20, but you can change them by
typing different numbers into the text fields.

Try configuring the code so that the method dumps the perimeter of the square. Configure again so that the method dumps the
area of the square. Observe how, when you call dump on an object, the method uses that object's version of side.

The next section will look deeper into how objects contain interacting data and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Truth About static
The time has come to show you how classes, objects, static code, and non-static code all work together to create a complete
object-oriented Java application program. To understand what's going on in an application, you need to be clear on the difference
between static and non-static parts of a class. You have already learned that methods can be either static or not, and that most
methods in most programs are non-static. Data, as well as methods, can be either static or not. Let's look at this distinction.

Static Data

The previous section explained that when a class defines data members, each instance of the class gets its own version of each
data member. This is true for ordinary non-static data. If you add static to the declaration of a variable in a class, you defeat this
one-version-per-instance mechanism. Instead of getting one version of the variable for each instance, you just get one version of
the variable, period.

Here's a version of the Person class that has a static variable:
 1. public class Person
 2. {
3. static int rev = 3;
 4. int age;
 5. short weight;
 6.
 7. int ageInNYears(int n)
 8. {
 9. return age + n;
10. }
11.
12. void dump()
13. {
14. System.out.println("rev " + rev +
15. " age = " + age);
16. }
17. }

Static variables have limited uses. One possible use is to keep track of the current revision of the class source. Here you set the
rev to 3. (As with any other variable declaration, you can initialize a static class variable in the same line where you declare it.) The
rev is 3 because version 1 from earlier in this chapter just had data, rev 2 from the previous section had data and a method, and
that brings us to rev 3.

When the dump method executes, the version of age that gets printed out is of course the version belonging to whatever Person
object is executing the method. The version of rev that gets printed out is... well, there is only one version, because the variable is
static. Consider the following example:
Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
thelma.dump();
louise.dump();

The output of this code is
rev 3 age = 28
rev 3 age = 38

The (static) rev does not change but the (non-static) age does.

Now consider the following code, which uses static data to get into trouble:
Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
thelma.rev = 999; // Change thelma's rev
louise.dump();

Now the output is
rev 999 age = 38

If you didn't know that rev was static, you would be surprised by the output. The code seems to change the rev of thelma, not
of louise. Of course, since rev is static, it doesn't belong to an individual object, so it isn't really meaningful to talk about the
rev "of thelma" or "of louise." There is just the rev.

Java offers you a way to refer to static variables without risking the confusion of the previous example. Instead of saying
thelma.rev or louise.rev, you can say Person.rev. In other words, instead of the reference-dot-staticVariableName
syntax, you can use classname-dot-staticVariableName. This makes static variable usage more conspicuous, because typical
class names begin with capital letters, while reference names begin with lowercase letters. (This is not a requirement of the
language; it is a style convention. There is no benefit to violating this convention.)

Using the new syntax, the previous example can be rewritten as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Person thelma = new Person();
thelma.age = 28;
Person louise = new Person();
louise.age = 38;
Person.rev = 999;
louise.dump();

The change makes it clear that the thing that's getting set to 999 is a static variable, so the output should now be no surprise to
anyone. The classname-dot-staticVariableName notation reinforces the fact that the variable does not belong to any instance. It is
convenient to think of statics as belonging to the class as a whole, rather than to an individual instance. By contrast, non-static
variables are sometimes called instance variables.

We can now move from static data to the more subtle concept of static methods.

Static Methods

You have just seen that a static variable is not associated with an individual object. Similarly, a static method can be thought of as
acting in a way that is not associated with an object.

In an instance method (that is, a non-static method), access to an instance variable meant access to the version of the variable
owned by the currently executing object. Thus, in the Person class, the ageInNYears method used the age variable. Calling the
method on thelma meant that the method would use thelma's age. Calling the method on louise meant that the method would
use louise's age. In all cases, the method used the current object's version of the variable.

In a static method, there is no current object, so it would be meaningless for a static method to use a non-static variable. (Which
object's version of that variable should be used? There's no good answer.) A static method is not allowed to read or write the non-
static data of its class. Also, a static method may not call the non-static methods of its class.

Sort of.

To really understand what static code can and cannot do, you need to know about a useful Java feature called the this-reference
notation.

Earlier in this chapter, you learned about the reference-dot-variableName and reference-dot-methodName notations. These
constitute the grammar that lets Java be object-oriented. In object-oriented programming, you specify not only what data or
method you want to access, but the object that owns the data or method. But within the instance methods we have seen, instance
variables have been accessed without the reference-dot notation. The ageInNYears method returned age + n, and there is no
reference-dot notation there.

In an instance method, any use of a variable without a reference-dot prefix is something like an abbreviation. For example, the
method
int ageInNYears(int n)
{
 return age + n;
}

can be thought of as an abbreviation of
int ageInNYears(int n)
{
 return this.age + n;
}

The keyword this, also known as the this-reference, is a reference to the current object. So if you called
thelma.ageInNYears(20), within the method, this would reference the same object thelma referenced.

A static method has no this-reference, so it cannot use the abbreviated notation enjoyed by non-static methods. A static method
can indeed access non-static data and methods of its own class, or of any other class, but the method must explicitly provide a
reference to the intended object. So the following would be perfectly legal:
static void printLouisesAge(Person louise)
{
 System.out.println("Louise is " +
 louise.age);
}

We can summarize all this static/non-static information as follows:

A non-static method may use non-static data and methods of its class without using the reference-dot notation. The
current object is implied.

A static method must use the reference-dot notation. There is no current object.

A static method has no this-pointer.

Now at last, we can tie everything together and explain the role of the static main method.

The main Method

You have seen that static features of a class are a way of getting around the object-oriented requirement that data must live inside
objects and methods must be called on objects. Ideally, an object-oriented program would be a federation of objects of many
different classes that make method calls on one another, creating new objects as needed and allowing old ones to be garbage-
collected when no longer needed. This image is fine once the application is up and running, but how does the process get
started? If objects are constructed by other objects invoking new, how does the first object get created?

In Java, everything starts with the main method. Through the end of the last chapter, you patiently tolerated the presence of
static in the main method's declaration. Now you know what it means: main is not called on any individual object. It is static, so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static in the main method's declaration. Now you know what it means: main is not called on any individual object. It is static, so
it is just called. Within main, objects can be created and non-static calls can be made, so the object interactions quickly become
highly object-oriented.

Every application is invoked by typing
java ApplicationClassName

(The animated illustration programs require a prefix and a dot before the class name. We will explain that notation in Chapter 9.)
When you start up an application, a program called java is executed. This is the Java Virtual Machine. The JVM does not create
an instance of the application class. It could have been designed to do so, but the creators of Java decided to let us programmers
decide when and how to create objects.

After the JVM initializes itself, it makes use of one of its parts, called the class loader. The class loader is code that finds, reads,
and interprets .class files. After the class loader processes a .class file, the JVM is changed in two ways:

The class defined in the file can be used by the JVM.

Any static data declared in the class is allocated and initialized.

Initially, the JVM uses the class loader to load the class specified in the command line. Later on, during the course of execution,
any class used in the code that has not been loaded already is loaded as needed. Since the class loader allocates and initializes
static data before any instances of the class are constructed, you can access a class's static data, and even call its static
methods, even if no instances of the class exist.

That's good news, because the next thing the JVM does is call a static method of the class it just loaded. Of course, this is the
main method. Presumably, main constructs objects that construct objects that construct objects, and the program enters its
object-oriented phase. Static data and methods can still be used, but typically most accesses are non-static.

The ObjectLifeCycleLab animated illustration demonstrates how static code starts the chain of object-oriented interactions. Start
the program by typing java objects.ObjectLifeCycleLab. At first the display only shows a star, representing the static
main method of an application. This initial state is shown in Figure 7.9.

Figure 7.9: ObjectLifeCycleLab

When you click the Run button, the static code constructs an object that is an instance of one of three classes: Triangle,
Rectangle, and Oval. Each object contains its own data and methods. The static code makes a method call on the object,
represented by an expanding arrow. The colored dots near the arrowhead represent method arguments.

Now the code in the first object's method constructs a second object, on which a method call is made. The call is returned (that
colored dot near the shrinking arrowhead represents a return value), and the life cycle goes on and on and on. Sometimes objects
vanish; this represents garbage collection. Figure 7.10 shows ObjectLifeCycleLab after running for several minutes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.10: ObjectLifeCycleLab after running a while

Of course, ObjectLifeCycleLab is just a symbolic cartoon, but it illustrates several very important concepts. Watch the program
until you observe the following behaviors:

Everything starts with static code, all alone.

At any moment, the static code or a single object is current (recognizable by a highlighted background and flashing
data).

An object only gets garbage-collected if it is not in use.

Reference Data

Variables in a class don't have to be primitive. Classes may define variables that are references to objects or to arrays. Moreover,
arrays may contain references rather than primitives. When an object with reference data is constructed, the references are all
initialized to the null value, indicating that they do not yet point to any objects.

For example, suppose you are writing a Java program to control a weather station that has electronic access to a number of
remote thermometers. You might model this situation with two classes, WeatherStation and Thermometer.

Writing the code that would enable the Thermometer class to read input from a physical device is far beyond the scope of this
book. Let's just assume that somehow the class has a method called connect, which takes care of the connection, and another
method called readTemp, which returns a float.

The WeatherStation class would include the following data declarations:
Thermometer[] therms;

As with any other array, the declaration does not create the array. You would create the array in a method, with a line like the
following (assuming there are 20 thermometers):
therms = new Thermometer[20];

Now the array exists, and all its components are null. You now have to construct and connect each Thermometer object, as
follows:
for (int i=0; i<therms.length; i++)
{
 therms[i] = new Thermometer();
 therms[i].connect();
}

Now you can write a method to compute the average temperature:
float getAverageTemp()
{
 float totalTemp = 0;
 for (int i=0; i<therms.length; i++)
 totalTemp += therms[i].readTemp();
 return totalTemp / therms.length;
}

Let's refine the connect method to illustrate the use of null. Sometimes hardware fails. Let's assume that connect can detect
a failure of the thermometer belonging to the executing object. This failure will be indicated by the method's return value: true will
mean connection was successful, and false will mean there was some kind of failure. You can rewrite the array initialization
code like this:
for (int i=0; i<therms.length; i++)
{
 therms[i] = new Thermometer();
 if (therms[i].connect() == false)
 therms[i] = null;
}

Now you need to refine the getAverageTemp method so that it ignores all broken thermometers:
float getAverageTemp()
{
 float totalTemp = 0;
 int nWorkingThermometers;
 for (int i=0; i<therms.length; i++)
 {
 if (therms[i] != null)
 {
 totalTemp += therms[i].readTemp();
 nWorkingThermometers++;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nWorkingThermometers++;
 }
 }
 return totalTemp / nWorkingThermometers;
}

You use the variable nWorkingThermometers to count Thermometer objects that actually contributed to the average.

A reference whose value is null may not be used for accessing an object. (After all, null means that there is no object pointed
to by this reference.) For example, the following is illegal:
Thermometer thermo = null;
Float temp = thermo.readTemp();

When the second line is executed, the program is terminated abruptly with an error message about a null pointer exception. You
have already seen exceptions, but we will not discuss them in detail until Chapter 11, "Exceptions." The name "null pointer" is a
throwback. Java's predecessor languages, C and C++, use pointers, which are like references but less secure. It isn't clear why
the exception was named "null pointer exception" rather than "null reference exception."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Name four traits that arrays and objects have in common.

2. Name two differences between arrays and objects.

3. Objects are not passed as method arguments, but references to objects can be passed. When a reference is
passed into a method, any changes made to the referenced object by the method should be visible to the
method's caller. Write an application to demonstrate this.

Your application will have two classes: Cat and Ager. The Cat class should have a single variable: an int
called age. The Ager class should have a method whose signature is makeOlder(Cat kitty, int
nYears). This method should add nYears to the age of the Cat object referenced by kitty. Your main
method should go in the Ager class. It should create one instance of each class, set the cat's age, and then use
the Ager's method to change the age. Your main should then print out the cat's new age, and verify that it really
changed.

4. What happens if you move the main method of the previous question from the Ager class to the Cat class?

5. Write an application that causes a "null pointer exception" failure.

6. What does the following application print out?
public class Question
{
 static long x;

 public static void main(String[] args)
 {
 Question q1 = new Question();
 Question q2 = new Question();
 q1.x = 10;
 q2.x = q1.x + 20;
 System.out.println("q1.x = " + q1.x);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8: Inheritance
In the last chapter, you learned that objects are instances of classes, containing data and methods defined by the class. This
chapter will present two object-oriented concepts that will greatly enhance what you can do with objects. At first glance,
inheritance and constructors do not seem to have much to do with each other. However, by the end of this chapter, you will see
that a class's constructors are intimately related to that class's inheritance hierarchy.

Superclasses and Subclasses
You already know that a class has data and methods. You provide a class with these features by writing the code that defines the
class. Now it's time to learn another way that a class can get data and methods: inheritance.

Inheritance is how a class can get data and methods that are defined in a different class. For this mechanism to work, the two
classes must have a special relationship with each other: one must be a superclass of the other, which must be a subclass of the
first. In this section, you'll learn what this relationship means.

Let's start with an example. Suppose you are writing a Java program to support the personnel department of the company. You
decide that you should create two classes to represent the employees: Worker and Manager. These classes have some
similarities and some differences. Here are some of the similarities:

Workers and managers both have employee identification numbers, so both classes have an int called id.

Workers and managers both need to get paid, so both classes have a float called salary and a method called
printCheck. (The details of creating a method that prints checks are beyond the scope of this book, but it seems
only fair that everybody should get a check.)

Now here are some of the differences:

Managers have workers who report to them, so the Manager class has an array of Worker objects called
workers. Workers don't need this, because nobody reports to them.

Workers might or might not be eligible for overtime pay, so the Worker class has a boolean called getsOvertime.
Managers are never eligible for overtime, so the Manager class does not need this data field.

Of course, a realistic program would have many more data fields and methods in each class, but this is enough to demonstrate
the power and usefulness of inheritance. The Worker class looks like this:
public class Worker
{
 int id;
 float salary;
 boolean getsOvertime;

 void printCheck()
 {
 // Lots of intricate
 // check-printing code
 // goes here.
 }
}

And the Manager class looks like this:
public class Manager
{
 int id;
 float salary;
 Worker[] workers;

 void printCheck()
 {
 // Same intricate
 // check-printing code
 // goes here.
 }
}

Despite their differences, these classes have a lot in common. The most worrisome common feature is the printCheck()
method.

Note Notice the empty parentheses after the method name. This is a common practice when writing about a method. It
specifies that you're talking about a method rather than a variable or a class.

printcheck() is worrisome because it appears in identical forms in two places. Duplication of code should be avoided, because
code is never frozen in time. Code evolves. Over the lifetime of a program, bugs are found and new features are required. The
process of fixing bugs and adding features is called maintenance, and every program requires it. If a method appears in identical
forms in two places, every change must be made twice, and the risk of introducing errors rises dramatically.

It is not surprising that workers and managers share some common features. They are both categories of employees. And here
we find a simple but profound truth about the way we humans observe our world.

The previous chapter presented classes as programmatic representations of mental categories, such as "triangle" or "dog."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The previous chapter presented classes as programmatic representations of mental categories, such as "triangle" or "dog."
Object-oriented programming is a very human approach to writing software, because our minds are good at creating categories for
the things we experience in daily life. No doubt all animal species do this to some extent, with categories like "food" and "threat"
and "safe place to sleep." People do it best of all.

People are so good at creating mental categories that we take the process one step further. We don't just imagine categories of
things. With our talent for abstract thinking, we can imagine categories of categories! So the "triangle" category is one member of
a larger mental concept that we might call "shapes." Other members of this supercategory are "squares" and "rectangles."
Similarly, the "dog" category belongs to the supercategory "mammals," which in turn belongs to its own supercategory: "animals."

The Swedish philosopher Carl Linnaeus organized all living species into a hierarchy of supercategories with seven levels. This
organization is still in use among biologists. If you've ever had to memorize "kingdom, phylum, class, family, order, genus,
species" for a biology class, you were studying Linnaeus' hierarchy. His structure was more detailed than our "animal, mammal,
dog" hierarchy. You can't really say that either hierarchy is more or less correct, though. Each one is appropriate for certain tasks.

Well, enough philosophy. The point is that it's natural to think about hierarchies of categories, and Java supports this way of
thinking. Let's see how this is done.

Inheritance from Superclasses

In Java, a category is represented by a class. A supercategory (if you will continue to permit the use of this made-up word) is
represented by a superclass. Superclass is a real word, and so is its opposite: subclass. Every class can have one superclass.
That superclass in turn can have its own superclass, and so on. A class may not have multiple superclasses, but multiple
subclasses are allowed.

The extends keyword is used to denote the superclass/subclass relationship. To see how this works, let's continue the personnel
example from the previous chapter. Right before the philosophical digression, you learned that workers and managers are both
categories of employees. You will now create an Employee class that will contain all the shared functionality of workers and
managers.

In Java, every class is capable of being a superclass, and you don't have to do anything special in the class definition of a class
that will have subclasses. (The special work, as you'll soon see, comes when you define the subclasses.) So the superclass looks
like this:
public class Employee
{
 int id;
 float salary;

 void printCheck()
 {
 // The same intricate
 // check-printing code
 // goes here.
 }
}

Now let's create the Worker subclass:
public class Worker extends Employee
{
 boolean getsOvertime;
}

The class name is followed by the extends keyword, which is followed by the class's superclass. That's all we need to do! This
works because in Java, there are two ways for a class to have a variable or method:

The variable or method can be defined in the class.

The variable or method can be defined in the class's superclass.

This very simple Worker class just defines a single variable. But its superclass (Employee) defines the variables id and salary,
as well as the method printCheck(), so Worker also has those variables and that method. We say that Worker inherits id,
salary, and printCheck() from its superclass.

The Manager class is also simple:
public class Manager extends Employee
{
 Worker[] workers;
}

Again, Manager inherits id, salary, and printCheck() from its superclass. The situation is diagrammed in Figure 8.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.1: A Simple inheritance hierarchy

Figure 8.1 shows that Employee is the superclass of both Worker and Manager. Employee itself does not seem to have a
superclass, but in Java, every class you define has a superclass, even if you don't explicitly declare one with the extends
keyword. Java provides a class named Object, which is the ultimate ancestor of every class. A class that does not explicitly
extend something else extends Object.

The Inherit Lab animated illustration lets you create your own class hierarchy diagrams, so that you can see how variables and
methods are inherited. To run the program, type java inherit.InheritLab. You will see a display that shows a three-level
class hierarchy, as shown in Figure 8.2.

Figure 8.2: Inherit Lab

At the top of the diagram is the Object class. Object has two subclasses, called Class1 and Class4. Each of those classes
has two subclasses. The classes are color-coded based on their level in the hierarchy.

At first the classes are boring. Their names don't mean anything, and they don't have any data or methods. But if you left-click on
any class, you'll get a pop-up menu that lets you add a subclass, delete the class, or edit the class. (You can't delete or edit
Object, since its definition is beyond your control.) First, try adding and deleting classes. Then try editing a class. When you
select Edit in the pop-up menu, you get a dialog box that lets you change the name of the class, or add or delete data and
methods. The dialog box is shown in Figure 8.3.

Figure 8.3: Inherit Lab's class-editing dialog box

Try adding a variable to one of the classes in the blue level, just below Object. Type a name into the Add Data text field, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try adding a variable to one of the classes in the blue level, just below Object. Type a name into the Add Data text field, and
then click the Add Data button. Then click Apply. The edit dialog box will go away so that you can see the inheritance diagram.
The variable you've added will be seen in the box for the class you edited, and also in all of that class's subclasses, illustrating
inheritance of data. You can do the same with methods. Notice that data and methods are color-coded to tell you which class they
were defined in.

In the File menu, click on Scenarios. Then look at the two canned hierarchies, which represent animals and transportation. In the
Transportation scenario, the bottom-level classes (Car, Bicycle, etc.) inherit from two levels of superclass, as well as from
Object. Sophisticated object-oriented programs can have fairly deep hierarchies.

In each scenario, add a subclass at the bottom level and observe the inherited data and methods. Try creating a hierarchy from
scratch. If you create something interesting, send us a screenshot or a verbal description at GroundUpJava@sgsware.com. We
might include it in the next edition. If so, we'll give you credit.

An Inheritance Example

Let's look at an example of inheritance, expanding on the Worker class from the previous section. Worker is a subclass of
Employee, which looks like this:
public class Employee
{
 int id;
 float salary;

 void printCheck()
 {
 // Whatever.
 }
}

Let's add a slightly expanded Worker subclass:
 1. public class Worker extends Employee
 2. {
 3. boolean getsOvertime;
 4.
5. void dumpSalary()
 6. {
 7. System.out.println("Salary = " + salary);
 8. }
 9.
10. public static void main(String[] args)
11. {
12. Worker dagwood = new Worker();
13. dagwood.salary = 44444.44f;
14. dagwood.dumpSalary();
15. dagwood.printCheck();
16. }
17. }

Line 7 of the dumpSalary() method and line 13 of the main() method both act as if salary were an ordinary variable of the
Worker class... and they're right. The inherited variables of a class are just like its declared variables. The same is true for
inherited methods. Line 15 calls dagwood's printCheck() method, which is inherited.

We will return to this example later on in this chapter. First, it's time to learn what really happens when, as on line 12, an object is
constructed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Construction and Constructors
When you invoke new to construct a new instance of a class, automatically a call is made to a piece of code in that class, called
its constructor. This may come as a surprise, because for the past two chapters you have constructed objects without ever writing
constructors, or even knowing about them. In a moment you will see how this works out.

A constructor looks like a method. In fact, there are only two differences between a constructor and a method:

A constructor has no return type.

The constructor's name is the same as the class's name.

Like a method, a constructor has a body, enclosed in curly brackets. The code in the body can initialize the newborn object. In
fact, this initialization is the basic job of constructors. A constructor can always assume that the object's variables and methods
(whether declared in the class or inherited) exist and are accessible for reading, writing, and calling.

Let's add a constructor to the Worker class. Assume that all workers in the company have the same salary: $34,567.89. The
Worker class (with a different main() method) becomes the following:
 1. public class Worker extends Employee
2. {
 3. boolean getsOvertime;
 4.
 5. Worker()
 6. {
 7. salary = 34567.89f;
 8. }
 9.
10. void dumpSalary ()
11. {
12. System.out.println("Salary = " + salary);
13. }
14.
15. public static void main(String[] args)
16. {
17. Worker dagwood = new Worker();
18. dagwood.dumpSalary();
19. }
20. }

The constructor is lines 5-8. Constructors, variables, and methods can appear in any order in the body of a class definition.
However, it is common practice to have variables come first, followed by constructors, followed by methods. Usually, the main()
method comes at the end. When this application is run, line 17 constructs a new instance of Worker. First, space for all variables
is allocated. Then the constructor code is called. Line 7 of the constructor initializes salary to 34567.89, so the call to
printSalarydumpSalary() prints out Salary = 34567.89.

Overloading Constructors

It is not especially realistic to expect every worker in a company to have the same salary. Fortunately, you can pass arguments
into a constructor the same way you pass them into a method. As with a method, you can put an argument list inside the
parentheses that follow the constructor name. Those arguments are accessible within the method. The next version of Worker
has a constructor that accepts an argument.
 1. public class Worker extends Employee
 2. {
 3. boolean getsOvertime;
 4.
 5. Worker(float sal)
 6. {
 7. salary = sal;
 8. }
 9.
10. void dumpSalary ()
11. {
12. System.out.println("Salary = " + salary);
13. }
14.
15. public static void main(String[] args)
16. {
17. Worker dagwood = new Worker(55555.55f);
18. dagwood.dumpSalary();
19. }
20. }

The constructor now takes a float argument, and the invocation on line 17 passes a float. The output is Salary = 34567.89.

In Chapter 4, "Methods," you learned that methods are polymorphic. That is, different methods within a class may share a
common name, as long as their argument lists are different. The practice of reusing a method name in a class is called
overloading. (The term has a negative connotation in real life. When people or bridges are overloaded, that's bad. But in
programming, there is nothing bad about overloading.) You can also overload a class's constructor so that the class has multiple
constructors, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Manager extends Employee
{
 Worker[] workers;

 Manager(int nWorkers)
 {
 workers = new Worker[nWorkers];
 }

 Manager(float sal, int nWorkers)
 {
 salary = sal;
 workers = new Worker[nWorkers];
 }
}

This class has two constructors. In both versions, you specify the number of workers. In the second version, you also specify the
manager's salary.

Default Constructors

This section answers an important question: In the previous chapter and the first part of this one, how was it possible to construct
objects in classes that didn't have any constructors? To understand the answer, you have to know what a no-args constructor is.
It's just a constructor with an empty argument list.

When you create a class with no constructors, the compiler creates a no-args constructor automatically. A no-args constructor that
is created automatically is called a default constructor. You only get a default constructor if your class does not explicitly have any
constructors. If your class has constructors, no matter how many, no-args or otherwise, no default constructor is created for you.

This mechanism assures that every class has at least one constructor, even if the class was written by someone who has never
heard of constructors!

A default constructor does almost nothing. It contains no initialization code, because it contains no code at all. All it does is
participate in the constructor chain mechanism, which is discussed in the next section.

The Chain of Constructions

Objects are like onions. They consist of layers within layers within layers. Consider the Submarine class from InheritLab's
Transport scenario. This class extends WaterTransport, which extends Transport, which extends Object. One way to
visualize an instance of Submarine is as an instance of Object forming an inner core. Around this core is a layer consisting of
the data and methods of an instance of Transport. In turn, this layer is surrounded by a WaterTransport layer, which is
surrounded by a Submarine layer. The layered structure is shown in Figure 8.4.

Figure 8.4: Object layers

When a Submarine instance is constructed, each layer's constructor is called in turn, starting with Object (the innermost layer)
and moving outward. This mechanism doesn't have an official name, but we'll call it the chain of constructors.

The ConstructorLab animated illustration shows the chain of constructors in action. Start the program by typing java
inherit.ConstructorLab. At first glance, the program looks just like the InheritLab program that you already saw earlier in
this chapter. But when you click on an object, the pop-up menu has an extra Construct... item. If you make this selection, you see
an animation of the layer-by-layer construction of the class you've selected. Try it with the Submarine class from the Transport
scenario.

Here's how the chain-of-constructors mechanism works: When a constructor is called, but before any of its code is executed, a
call is made to the no-args constructor of the superclass. If the superclass is not Object, before any of its own constructor code
is executed, a call is made to its own superclass's no-args constructor. This chain of calls continues up the inheritance hierarchy
until it reaches Object, which has no superclass.

So when you call a constructor for Submarine, the first thing that happens is a call to the no-args constructor for
WaterTransport. Within that constructor, the first thing that happens is a call to the no-args constructor for Transport. Finally,
within Transport's no-args constructor, a call is made to the Object no-args constructor. At this point, the chain ends.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

within Transport's no-args constructor, a call is made to the Object no-args constructor. At this point, the chain ends.

Why does Java do this? Consider the benefits if you are the person who writes the Submarine class code. Your constructors
might need to access the data of the WaterTransport superclass, which might be initialized by WaterTransport's constructor.
That constructor might need to access the data of its own superclass, and so on. The chain-of-constructors mechanism
guarantees that by the time a class's constructor code begins to execute, the superclass portion of the class is intact and valid.

Note Bear in mind that the mechanism operates without your having to do anything at all. You don't have to make it happen.
As a matter of fact, you can't avoid it. But you can slightly alter its behavior.

As you know, constructor invocation begins with an automatic call to the superclass's no-args constructor. Recall that constructors
can be overloaded so that alternate superclass constructors could be available. There are two reasons why you might want to
invoke a different superclass constructor:

There is no superclass no-args constructor. This happens if you explicitly give the superclass one or more constructors that
take arguments. Now you don't get an automatic default constructor, so unless you explicitly coded a no-args constructor for
the superclass, there won't be one.

The superclass has a no-args constructor that doesn't do what you want. But there's another constructor that does exactly
what you want.

In either of these situations, you still want the construction chain to happen. You just want to invoke a different version of the
superclass constructor. This is done with the super keyword.

To see how super works, let's extend the Manager class from earlier in this chapter. The class looks like this:
public class Manager extends Employee
{
 Worker[] workers;

 Manager(int nWorkers)
 {
 workers = new Worker[nWorkers];
 }

 Manager(float sal, int nWorkers)
 {
 salary = sal;
 workers = new Worker[nWorkers];
 }
}

This class provides its own constructors, so there is no default constructor provided by the compiler. Neither is there an
explicitly coded no-args constructor, so any subclass of Manager will have to modify the construction chain to avoid
invocation of a constructor that doesn't exist.

Let's create a subclass called Officer. An officer is a high-ranking manager who may or may not serve on the board of
directors. The subclass will have an int variable called nYrsOnBoard, which tells how many years (if any) this officer has
served on the board. There will also be a single constructor whose arguments are the number of workers reporting to this
officer and the initial value for nYrsOnBoard. Officer salaries are $850,000.00. Nice work if you can get it. The Officer
code looks like this:

 1. public class Officer extends Manager
 2. {
 3. int nYrsOnBoard;
 4.
 5. Officer(int nWorkers, int initialNYrs)
 6. {
 7. super(850000f, nWorkers);
 8. nYrsOnBoard = initialNYrs;
 9. }
10. }

The line to notice is line 7, which introduces the super keyword. It looks like a call to a method called super(). In fact, the
code in the parentheses is an argument list, but you aren't allowed to create a method with that name. Instead, super is a
signal that you are modifying the construction chain by requesting a call to a different superclass constructor (that is, one that
isn't the no-args version). This use of super may only appear as the first executable code in a constructor (so if you
reversed lines 7 and 8, you would get a compiler error).

Line 7 invokes an alternative superclass constructor, but which one? This is determined by the argument list inside the
parentheses that follow super. Here there are two values: a float followed by an int. So the Manager constructor that gets
invoked will be the version that takes two arguments: a float and int. If you look at the Manager constructor, you'll see that
this corresponds to the second of its constructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overriding
You have already seen method overloading, where a method name is reused in a class definition. Java also supports method
overriding, which looks like it ought to be similar to overloading because the spellings are so similar. In fact, overriding is indeed a
kind of method name reuse. In this case, the reuse is within an inheritance hierarchy.

To continue this ongoing example, the Officer class is the bottom member of a three-level hierarchy. This is shown in Figure
8.5.

Figure 8.5: Inheritance of Officer

In the original version of Employee, you imagined a printCheck() method. This method is inherited by Worker, Manager,
Officer, and any other subclasses of Employee, immediate or indirect, that you might create in the future.

But what happens if a class inherits a method that is not appropriate to that class's operation? For example, printCheck()
might print checks on a monochrome printer that is loaded with low-cost blank check forms. That's fine for ordinary workers, and
even for managers, but officers need to have their checks printed by a special color printer, on high-grade fancy paper. So the
inherited version of printCheck() just won't do.

The solution is to override Officer's inherited version of printCheck(). You do this simply by putting into the Officer code a
version of printCheck() that does what you want it to do. The code looks like this:
 1. public class Officer extends Manager
 2. {
 3. int nYrsOnBoard;
 4.
 5. Officer(int nWorkers, int initialNYrs)
 6. {
 7. super(850000f, nWorkers);
 8. nYrsOnBoard = initialNYrs;
 9. }
10.
11. void printCheck()
12. {
13. // Whatever, and make it fancy.
14. }
15.
16. public static void main(String[] args)
17. {
18. Officer julius = new Officer(25, 50);
19. julius.printCheck(); // Fancy
20. Worker dagwood = new Worker(44444.44f);
21. dagwood.printCheck(); // Plain
22. }
23. }

Again, we've left out the details of how to print a check. The import point is line 11, where you have a declaration of
printCheck() that looks just like the version in Employee. The declarations are the same, but the bodies are different. Look at
the main() code. On line 19, you call printCheck() on an officer. The overriding (fancy) version of the method will be called.
On line 21, you call printCheck() on a worker. Since Worker does not override the method, the inherited (plain) version is
called.

In order for one method to override another, the superclass version and the subclass version must have identical return types,
method names, and argument list types. It is illegal for the return types to be different if the method names and argument list types
match. If the names or argument lists are different, that's legal but it isn't overriding.

Overriding allows you to use a very powerful kind of polymorphism, which will be explained in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Polymorphism Revisited
Recall from Chapter 4 that polymorphism means "many forms," implying "one name, many forms." In Chapter 4, you saw
polymorphism involving method overloading (reusing a method name within a class). The previous section presented overriding,
which is polymorphism of a different kind: name reuse in an inheritance hierarchy.

This section will present a powerful technique involving overriding polymorphism. Let's begin by exploring the difference between
the class of an object and the type of a reference.

The only way to create an object is to call a constructor. Not surprisingly, an object's class is the class whose constructor was
called when the object was created. So new Officer(50, 3); creates an object whose class is Officer.

A reference is not an object. You have already seen that a reference is a configuration of 32 bits that uniquely identifies an object.
References, not objects, are passed as method arguments. References, not objects, are declared as variables. The type of a
reference variable is the type that appears in the variable's declaration. So Worker dagwood; declares that dagwood is a
reference of type Worker.

So far, this should be glaringly obvious. Almost always, when a reference points to an object, the type of the reference is the same
as the class of the object. This happens, for example, in the line Worker dagwood = new Worker(22222.22f);.

But sometimes the reference type and the object class are not the same. Let's introduce this idea with an analogy to something
you already know about. In Chapter 3, "Operations," you learned that you can assign a numeric value to a variable whose type is
the same as, or wider than, the type of the numeric value. So you can assign a byte to a float, or an int to a double, as shown
here:
byte b = 12;
float f = b;
int i = 54321;
double d = i;

The new type (on the lhs of the assignment) must have enough capacity to encompass the value. Any extra capacity is no
problem. The same rule holds when you're passing an argument to a method. If the method expects an argument of a certain
type, you can pass data of any type, provided the type declared in the method is the same as, or wider than, the type you actually
pass.

A similar principle applies when you're assigning references. Consider this code:
newRef = oldRef;

It is legal for newRef and oldRef to have different types, as long as the type of newRef is above the type of oldRef in the
inheritance hierarchy. So the following is legal:
1. Worker dagwood;
2. Employee emp;
3.
4. dagwood = new Worker(22222.22f);
5. emp = dagwood;

Here you have one object with two references. Clearly the class of the object is Worker, because it is Worker's constructor that is
called on line 4. On line 5, the type of reference emp is Employee, which is the immediate superclass of reference dagwood.
Thus, the rule is obeyed, and line 5 is legal. You could also pass dagwood as an argument to a method that declared it took an
Employee argument.

So now you know that the type of a reference can be different from the class of the object the reference points to. This puts a
subtle but very important restriction on the Java compiler. You and I can look at lines 4 and 5 and say to ourselves, I know emp
has type Employee, but really it points to a Worker. We can do that, but the compiler can't.

This isn't a shortcoming on the part of the people who wrote the compiler. In fact, the developers of the Java compiler are some of
the smartest programmers in the world. But there are fundamental theoretical limits on what a compiler can do. No car designer,
no matter how brilliant, can make a race car that goes faster than light. Similarly, nobody can create a compiler that, in the general
case, can look at a reference and know what the class of the reference's target will be when the code is executed.

To put this more succinctly: At compile time, the compiler only knows the types of references. It does not know the classes of
objects. This means that a reference's type dictates the variables and methods you can access via that reference. You may only
access variables and methods that are the same type as the reference. To return to our example, the reference emp has type
Employee, so by using emp, you can read and write variables and call methods of Employee. (The data and methods can be
implemented in the Employee class, or they can be inherited from a superclass.) Using the reference dagwood (whose type is
Worker), you can access the data and methods (whether directly implemented or inherited) of Worker. This is shown in Table
8.1:

Table 8.1: References, Variables, and Methods

Variables via emp Variables via dagwood Methods via emp methods via dagwood

Id Id printCheck() printCheck()

salary salary dumpSalary()
 getsOvertime

Given the information in Table 8.1, the previous code example might be baffling. Here is the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Worker dagwood;
2. Employee emp;
3.
4. dagwood = new Worker(22222.22f);
5. emp = dagwood;

The table clearly shows that the reference dagwood gives you access to all the data and variables you can get to via emp, and
more. Even though line 5 is legal, why would you ever do it? Line 5 just trades a perfectly good reference for one that is less
powerful. There must be some compensating benefit to doing this, or nobody in their right mind would ever want to.

In fact, there is a very valuable compensating benefit, as you will see in the next section.

Inheritance Polymorphism

Let's continue our code example just a bit further. No doubt, there must be a piece of code somewhere in the program that
periodically prints a paycheck for everybody who works at the company. Let's suppose there's a class called Paymaster that
knows who all the employees are. Paymaster might look something like this:
public class Paymaster
{
 Worker[] workers;
 Manager[] managers;
 Officer[] officers;

 void payEveryone()
 {
 for (int i=0; i<workers.length; i++)
 {
 Worker wor = workers[i];
 wor.printCheck();
 }
 for (int i=0; i<managers.length; i++)
 {
 Manager man = managers[i];
 man.printCheck();
 }
 for (int i=0; i<workers.length; i++)
 {
 Officer off = officers[i];
 off.printCheck();
 }
 }
}

In reality, the Paymaster class would need a lot more code, including a constructor to set up the three arrays. In fact, there would
be a lot more arrays. Companies don't just have workers, managers, and officers. They have presidents, vice presidents,
directors, part-timers, and possibly many others. There could be lots of categories of people who need to get paid, and if there
had to be one array for each category, that would make for a lot of arrays.

Just to hammer the point home, let's suppose there are classes called President, VP, Director, and PartTimer, each of
which extends Employee. We won't show the code for these classes, but here is the monster that Paymaster has become:
public class Paymaster
{
 Worker[] workers;
 Manager[] managers;
 Officer[] officers;
 President prez; // No array: there's only 1 president
 VP[] vps;
 Director[] directors;
 PartTimer[] partTimers;

 void payEveryone()
 {
 for (int i=0; i<workers.length; i++)
 {
 Worker wor = workers[i];
 wor.printCheck();
 }
 for (int i=0; i<managers.length; i++)
 {
 Manager man = managers[i];
 man.printCheck();
 }
 for (int i=0; i<workers.length; i++)
 {
 Officer off = officers[i];
 off.printCheck();
 }
 prez.printCheck();
 for (int i=0; i<vps.length; i++)
 {
 VP veep = vps[i];
 veep.printCheck();
 }
 for (int i=0; i< directors.length; i++)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Director dir = directors[i];
 dir.printCheck();
 }
 for (int i=0; i<partTimers.length; i++)
 {
 PartTimer pt = partTimers[i];
 pt.printCheck();
 }
 }
}

Let's see how much you can simplify this code, using inheritance polymorphism. The first thing to do is eliminate all those arrays
and replace them with a single array, called employees:
public class Paymaster
{
 Employee[] employees;
 . . .

The components of the new array aren't really employees. That is, employees is an array of references whose types really are
Employee, but the classes of the objects pointed to by those references are really Worker, Manager, Officer, and so on. The
array is initialized by a lot of code along the following lines, which might appear in Paymaster's constructor:
. . .
Worker dagwood;
Manager julius;
President preston;
Director deirdre, dirwood;

. . .

employees[1154] = dagwood; // Employee <- Worker
employees[1155] = julius; // Employee <- Manager
employees[1156] = preston; // Employee <- President
employees[1157] = deirdre; // Employee <- Director
employees[1158] = dirwood; // Employee <- Director

. . .

The employees array is a cluster of references, all of type Employee. Each of the 5 commented assignment lines stores a
reference in a component of the array, and not one of those references is actually of type Employee. That's okay. The rhs
references are all of types that are subclasses of Employee, so the "up-the-inheritance-hierarchy" assignment rule is obeyed.

Now let's return to Paymaster's payEveryone() method. Here is all you have to do:
 void payEveryone()
 {
 for (int i=0; i<employees.length; i++)
 {
 Employee emp = employees[i];
 emp.printCheck();
 }
 }

That's all! All the references to all the people are now living peacefully together in one diverse community... er, array of references,
where the classes of the objects pointed to are unknown and mixed. But you do know that every class is a subclass of Employee
(or is Employee itself). So every object has a printCheck() method. This method might be the version inherited from
Employee, or it might be an overriding version.

What happens when the payEveryone() loop pays an officer? Recall that the Officer class overrides printCheck() to use
a fancy printer with fancy paper. You have a reference (some component of the employees array) of type Employee, pointing to
an object of class Officer. Each has its own version of printCheck(). Which one wins?

The answer, and this is crucially important, is that the type of the reference is ignored. The class of the object being called
determines which version of an overridden method will be called. So in this example, all the officers will get their checks printed in
fancy paper, and any other classes that override printCheck() will have the appropriate version called.

In case this is overwhelming you, let's look at a very simple example that illustrates the same principle:
public class FlyingMachine
{
 void whoAreYou()
 {
 System.out.println("I am a flying machine.");
 }
}

Subclass FlyingMachine like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subclass FlyingMachine like this:
public class Helicopter extends FlyingMachine
{
 void whoAreYou()
 {
 System.out.println("I am a helicopter.");
 }

 public static void main(String[] args)
 {
 FlyingMachine fm = new Helicopter();
 fm.whoAreYou();
 }
}

When the application runs, the output is "I am a helicopter." This proves that the class of the object, not the type of the reference,
determines the method version that gets called.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Which of the following hierarchies illustrate a good understanding of the difference between classes and
objects? Which ones represent mistaken understanding? The arrows mean "has subclass", so in option A,
Shape ® Triangle means "class Shape has subclass Triangle".

1. Shape ® Triangle ® RightTriangle

2. GreatLiterature ® GreatPoem ® DivineComedy

3. Planet ® Continent

4. Person ® HeadOfState ® Emperor

5. Person ® HeadOfState ® Emperor ® AugustusCaesar

2. Which of the following classes have a no-args constructor?
1. A)

class A { }

2. B)
class B
{
 B() { }
}

3. C)
class C
{
 C(int x) { }
}

4. D)
class D
{
 D(int y) { }
 D() { }
}

3. Write the code for two classes. The first, called WaterBird, has a float variable called weight. The class has a
single constructor that looks like this:
WaterBird(float w)
{
 weight = w;
}

Compile this class. Now create the second class, called Duck, which extends WaterBird. Duck has no
variables or methods, so it shouldn't take you long to write it. Will Duck compile? First, think about the issues
involved. Then try to compile Duck and see if you were right.

4. Write some code to demonstrate to yourself the chain of construction. Create an inheritance hierarchy of 4
classes. Give them any names you like. They don't have to have any data or methods, but each one should
have a no-args constructor. These constructors should print out a line identifying the current class (something
like "Constructing an instance of WaterBird"). Your main() method should construct a single instance of your
lowest-level subclass. What is the output? Does it matter which class contains the main() method?

5. Write some code to demonstrate inheritance polymorphism. Create a superclass class with 3 subclasses. The
superclass should have a method that prints out a line identifying the current class (something like "I am a
Monster"). Two of the subclasses should override this method to print out a different message (like "I am a
Werewolf"). Give the superclass a main() method with an array of size 4, typed as the superclass (for example,
Monster[] monsters = new Monster[4];). Your main() should populate the array with references to 4
objects, each with a different class, and then traverse the array, calling your method on each array component.
What is the output? Does it matter which class contains the main() method?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9: Packages and Access

Overview
Congratulations! At this point, you know almost all there is to know about Java's classes. The remainder of this book will look at
how classes interact, and it will present many of the core Java classes that the system provides to make your life easier. To make
an analogy with the life sciences, we are pretty much done with class anatomy (the analysis of the internal structure of a class)
and are ready to tackle class sociology (the study of how classes interact).

This chapter will first look at packages, which are organizations of interrelated classes. Once you understand packages, you will
have a good foundation for understanding access. Java has several keywords that control access, including public. This means
that by the time you finish this chapter, you will know why your application classes and your main methods have been marked as
public.

By the way, in this edition of this book, this chapter has no animated illustrations. The information presented here doesn't benefit
from the animated illustration model. However, if you can think of a concept from this chapter that would look good as an
animation, please send us your idea in detail at groundupjava@sgsware.com. If we use your idea in the next edition, we will
give you a credit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Packages
A package is a named group of classes. Generally, the classes of a package are collected together into a directory. It is possible
for package classes to appear in more than one directory, but it's hard to imagine when this would be helpful. So a package looks
a lot like a directory, even though they aren't exactly the same thing.

There is another similarity: Just as a directory can contain files and subdirectories, a package can contain classes and
subpackages. For example, a package called acmeproducts might contain two classes named Database and Connection. The
package might also contain a subpackage called utilities, which contains three classes named ThreadPool, Mailbox, and
UserProfile. Your package structure would most likely appear in the directory structure shown in Figure 9.1.

Figure 9.1: Example package/ directory structure

It's important to realize that the directory and the subdirectory shown in Figure 9.1 are not the actual package and subpackage.
They are just the places where the classes of the package and subpackage are found. Soon you'll learn how to put your own
classes in packages, and why you might want to do so. For now, be aware that there is more to it than just creating the right
directory structure and storing the class files appropriately.

When a class is part of a package, the class has a long, formal, official name. It's important to understand this long name, even
though it's rarely used. The official name of a class consists of its package structure, from top to bottom, followed by the class
name as defined in the source file. All these elements are separated by periods. For example, the Mailbox class in Figure 9.1
would be defined in a file called Mailbox.java. Its full name is acmeproducts.utilities .Mailbox, because it lives in
subpackage utilities, which lives in package acmeproducts. (Note that the package name is all lowercase. You are allowed to use
uppercase in package names, but by convention, nobody does.)

There is yet another parallel between directories and subpackages. Even a modest laptop can have tens of thousands of files on
its hard drive. If every file on the drive had to have a unique name, keeping track of which names were still available would be a
horrendous task. Thanks to directories, you only have to maintain name uniqueness within directories. So you might have a
directory called photos, with a subdirectory called NewYearsParty, which contains a file called JulieAndRich.jpg. If you had a
housewarming party, you could create a subdirectory of photos called housewarming, and if you took a picture of Julie and Rich at
the housewarming, you could store it in the housewarming subdirectory under the name JulieAndRich.jpg.

We say that a directory structure provides a namespace. A namespace is a way of organizing resources (files, classes, etc.) so
that name uniqueness only has to be maintained in relatively small and manageable regions.

Packages are also namespaces. Within a package, all class names must be unique. However, names may be reused in different
packages without restriction. Figure 9.2 shows a package structure that might be used by a fictional company called Stained Glass
Software. This company has two product lines: database products and ray-tracing software.

Figure 9.2: Package as namespace

Stained Glass Software has dozens of programmers, working in two divisions on opposite sides of the world. Life would be
impossible if every programmer had to check with every other programmer before creating a new class, just to make sure the
class name wasn't already in use. As you can see from Figure 9.2, both divisions have created a class called User. Fortunately
this isn't a problem, because the two classes are in different packages, and packages are namespaces. To put this another way,
one class is really called sgsware.db.User, and the other is really called sgsware.raytracing.User. You can see that packages
support collision-safe naming. In the real world, a package might be developed and maintained by several workgroups, by a single
workgroup, by a few individuals, or by a single person.

Creating Your Own Package

By now, we hope you're convinced that packages are a good thing. Here's how to create your own packaged classes.

You need to do two things:

Use the package keyword in your class source code.

Compile with the -d flag.

It's interesting to think about what isn't in this list. Here's what you don't have to do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a package.

Create the package directory structure.

Move the class files into the directory structure.

Let's suppose you are the founder of Stained Glass Software. You have a new computer, fresh out of the box, and you are ready
to write the sgsware.raytracing.Object3D class. This is the company's first class, so no structure has been created yet.

The first step is to create a directory where the package structure will go. Let's say you decide to put it in /products/revA. (You
might be using the kind of computer that uses the backslash as a file path separator, but for simplicity we'll use forward slashes
throughout this book.) After making sure that /products/revA exists, you create a directory to hold your source code. We'll call it
/products/source/ray. So initially, your directory structure looks like Figure 9.3.

Figure 9.3: Initial directory structure

When you write your source code, you have to tell the compiler that the class belongs to the sgsware.raytracing package. To do
this, you use the package keyword. Besides comments, the package declaration must be the first code in your source file:
// This class belongs to a package.
package sgsware.raytracing;

public class Object3D
{
 . . .
}

When you compile, use the -d command line option. This should come after javac, and it should be followed by a space. After the
space comes the directory where the package structure is to be stored. Since you're putting your package of classes in
/products/revA (known as the destination directory), you would compile like this:
javac -d /products/revA Object3D.java

The destination directory must exist before the command is typed. The compiler realizes that the class file should be
/products/revA/sgsware/raytracing/Object3D. The compiler will create any required subdirectories in the destination directory, and
it will place the class file it generates in the appropriate place. So after compilation, your directory structure would look like the one
shown in Figure 9.4.

Figure 9.4: After compilation

When you want to create a second raytracing class, you can put your source file anywhere you like. However, if you put the
source file anywhere other than /products/source/ray, it will only make life more baffling for yourself and others. Again, your source
should declare that it belongs to the sgsware.raytracing package:
package sgsware.raytracing;

public class User
{
 . . .
}

When you compile, you again use the -d flag:
javac -d /products/revA User.java

This time, the compiler does not have to create a subdirectory for storing the generated class file, since that subdirectory already
exists. After compilation, your directory structure looks like Figure 9.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.5: After more compilation

Now that you know how to create your own packages, let's look at how to use them.

Finding Packages: classpath

The designers of Java assumed that you would be working in an environment where you would be using lots of different
packages. This was a safe assumption, since Java itself comes with lots of different packages that support functions like string
manipulation, file I/O, and GUI components. Moreover, you are likely to be using other packages that you've created yourself, that
are standard for your company, or that were bought from a third party. You might be developing code that uses classes from many
different packages. When you compile and execute, the compiler and JVM need to know where in your file system these custom
packages are located. You do this with the classpath.

The classpath is a list of directories, or classpath elements, that contain package structures. The classpath elements can be
specified in two places:

The CLASSPATH environment variable

The -classpath or -cp argument of the javac or java command line

An environment variable is a variable whose scope is your computing session, rather than the interior of an program. Individual
programs can read environment variables and take action accordingly. The CLASSPATH variable, which is read by both the Java
compiler and JVM programs, is a list of classpath elements, separated by semicolons (;) for Windows machines and by colons (:)
for other systems.

You can set CLASSPATH either by typing a command or by running a script. Running a script is easier (after you create the
script). Some people prefer to set CLASSPATH in their boot or login scripts (or whatever the equivalent is on their own machines).
Appendix A, "Installing Java" shows how to write a script that sets CLASSPATH to ".", which is the current working directory.
Different operating systems use different commands to set an environment variable, as detailed in the appendix.

The other way to specify classpath elements is to type them into your compilation and execution command lines. You do this after
the javac or java command: type -classpath, then a space, then the classpath elements you want to specify. As with
CLASSPATH, if you have more than one element, they should be separated by semicolons (;) for Windows machines and by
colons (:) for other kinds of machines.

Suppose you are using a Windows machine, and you have acquired and built lots of custom packages. These packages are
stored in three different directories: \a\b, \c\d, and \e\f. There might be more than one package in any of these directories. The
names aren't very creative, and three is an inconveniently large number of classpath elements, but it makes for a nice clear
example.

Now suppose that, for some reason, you want to specify \a\b and \c\d in CLASSPATH, while specifying \e\f on the command line.
You would start by setting CLASSPATH (either manually or in a script) as follows:
SET CLASSPATH=\a\b;\c\d

Then you would compile source like this:
javac -d \my\destination -classpath \e\f MyThing.java

If MyThing is your application class, and it lives in package sgsware.db, you would execute your application like this:
java -classpath \my\destination;\e\f sgsware.db.MyThing

The application class, as well as any other classes used at any time in the application, must appear in one of the classpath
elements. So the MyThing.class file must be in one of the following directories:

\a\b\sgsware\db

\c\d\sgsware\db

\e\f\sgsware\db

Note that each of these directories consists of a classpath element, followed by a package structure.

The Java compiler and the JVM use a piece of code called a class loader. The class loader finds class files, reads them, and
translates them into internal representations. The first step in the process is to find files. The class loader does this by looking in
each classpath directory in turn. In each directory, it looks for a subdir that corresponds to the package of the class being loaded.
So when the class loader looks for MyThing.class, it looks in each of the directories listed in the preceding bulleted list.

Now you know how to create, store, and use packages. But there is still a problem, which will be presented and solved in the next
section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Importing

You have seen that a class name is really a list of package elements, separated by periods and ending with the (short) name of
the class. Packages provide a convenient way to organize software and reduce naming headaches, but there seems to be a
tradeoff with what happens in your source code.

In the previous section, you considered a class called MyThing in a package called sgsware.db. The true name of class MyThing
is sgsware.db.MyThing. That doesn't seem so bad until you realize that the following line of source code is not allowed:
MyThing m = new MyThing();

This line won't compile, because it doesn't use the true name of the class. The line ought to be
sgsware.db.MyThing m = new sgsware.db.MyThing();

Programming wouldn't be very much fun if you had to use full class names everywhere. Imagine what a burden it would be, if you
had to do so much typing. You would soon find yourself wishing for a way to abbreviate: "I wish I could tell the compiler that every
time I type MyThing, I really mean sgsware.db.MyThing." This wish is granted by Java's import feature.

Importing is a very useful feature with an unusual name. The name comes from earlier object-oriented languages, in which the
functionality was a kind of symbolic importation. Now the keyword continues to be used in Java, but the functionality has more to
do with abbreviation than with importation. The syntax of import is
import full.class.Name;

You can have as many import statements as you like in a source file. Imports must appear before the class declaration, as shown
in the following code. It assumes that you want to use the Employee and Manager classes of a package called biz:
 1. package sgsware.raytracing;
 2. import biz.Employee;
 3. import biz.Manager;
 4.
 5. public class User
 6. {
 7. Employee dagwood;
 8. Manager dithers;
 9.
10. . . .
11. }

Thanks to the imports on lines 2 and 3, you can use abbreviated class names on lines 7 and 8 (and everywhere else in this source
file). Without the imports, lines 7 and 8 would have to be
 7. biz.Employee dagwood;
 8. biz.Manager dithers;

Sometimes a source file might need to use many or all of the classes in a large package. It would be cumbersome to type in the
names of all those classes, one per import line. In the spirit of supporting abbreviation, you are allowed to use an asterisk (*) in
place of a class name. This causes all classes in the package to be imported. So the preceding code could be slightly shortened
as follows:
 1. package sgsware.raytracing;
 2. import biz.*;
 3.
 4. public class User
 5. {
 6. Employee dagwood;
 7. Manager dithers;
 8.
 9. . . .
10. }

One last note on importing: A class imports all the other classes in its package automatically. So you never have to do the
following:
package mypackage;
import mypackage.*;
. . .

Now that you understand how packages work, you have a foundation for learning about Java's various access modes. These will
be presented in the next section. You also have a basis for understanding Java's core classes. These will be introduced in
Chapter 12, "The Core Java Packages and Classes," and will be presented throughout the remainder of the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Access
Java's access control is based on the idea that certain features of a class should not be usable by other classes. Before you learn
the details of access control, let's look at why this idea is sound.

One of the fundamental concepts of object-oriented programming is data hiding. This is the practice of making a class's data as
inaccessible as possible to other classes. Why would this be beneficial?

Often there are many valid ways to represent information. A temperature might be stored as degrees Kelvin, Celsius, or
Fahrenheit. A price might be listed in various currencies. A color might be represented as a name, as red/green/blue levels, as
red/yellow/blue levels, or as hue/ saturation/brightness levels. Maintenance considerations might force class code to be rewritten
so as to change the internal representation. For example, if an Italian company bought a company in the United States, money
representation might be converted from dollars to euros, and temperature representation might be converted from Fahrenheit to
Celsius.

Even if data representation does not change, it makes sense to localize the code that knows about representation inside a single
class. It is wasteful to make all classes know how data is represented internally, and it creates the risk of bugs (if the other classes
misinterpret the internal representation).

Imagine a class called Thermometer, which somehow reads a physical thermometer device. A very clean design is to give the
class a getTempCelsius() method. The method name leaves no room for confusion as to the units of the return value. There
could also be getTempFahrenheit() and getTempKelvin() methods, so that nobody ever has to look up the conversion
formulas. Moreover, nobody ever needs to know how temperature is represented within the class. It might be Fahrenheit, Celsius,
or Kelvin. It might change from one rev of the class software to another. The benefit to those of us who use the Thermometer
class is enormous: We never have to worry about the internal representation.

The general principle of data hiding is that an object's data should never be accessed directly from outside the object. Instead, the
object's class should provide methods for reading and setting the data. These methods are officially called accessors and
mutators, but they are often called by their nicknames: getters and setters. An accessor/getter has an empty argument list and
returns a data value. A mutator/setter has a void return type and a single argument. By common convention, the name of an
accessor method begins with get, followed by the property to be retrieved. The name of a mutator begins with set, followed by the
property to be modified.

To support this data-hiding approach, object-oriented languages provide facilities to let you restrict access to a class's data and
methods. In Java, this is done with access modifier keywords. Java has three access modifiers:

public

private

protected

These keywords appear before the declarations of the data or methods they apply to. The public modifier may also appear
before a class definition. Before we define what the various access modes mean, let's look at an example to clarify the syntax:
public class AccessExample
{
 public int x;
 private double d;
 protected static float f;
 char c;

 public int getX()
 {
 return x;
 }

 private void printC()
 {
 System.out.println("c = " + c);
 }

 protected void setD(double newD)
 {
 d = newD;
 }

 void bumpX()
 {
 x++;
 }

}

Access modifiers cannot apply to data defined within a method. (Since such data ceases to exist after the method returns, we
don't need to think about which outside classes may use it.) Notice the declaration of f, which is both protected and static. Access
modifiers can be freely combined with non-access modifiers such as static. Modifier order is unrestricted, so you could
equivalently say static protected float f;. For the sake of readability, it's good practice to align the first character of your
variable names on a tab stop, as the preceding example shows.

Java has three access modifier keywords, but four access modes. The fourth access mode is what you get if you don't specify
public, private, or protected. This fourth mode is called default, although you might also sometimes see it called package
or friendly. In the preceding example, variable c and method bumpX() both have default access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or friendly. In the preceding example, variable c and method bumpX() both have default access.

Now let's look at what the different access modes do.

Public Access

Public access is completely unrestricted. Classes, data, and methods can be designated public. A public class can be used by any
other class. Public data can be read and written by any code (violating the spirit of data hiding). Public methods can be called from
any code.

When you run an application, the Java Virtual Machine creates a class loader, which loads your application class. The class
loader is itself a class, and your application class must be public so that the loader can load it.

Private Access

The most restrictive access mode is private. Data and methods can be designated private, but not classes. (There is a kind of
class called an inner class that can be private or protected, but inner classes are beyond the scope of this book.) A private
variable can be written or read only by an instance of the class that defines the variable. A private method can be called only by
an instance of the class that defines the variable.

Private access may not be quite as private as you expect. Let's look at an example:
 1. public class Employee
 2. {
 3. private float salary;
 4.
 5. public float getSalary()
 6. {
7. return salary;
 8. }
 9.
10. public void setSalary(float newSalary)
11. {
12. salary = newSalary;
13. }
14.
15. public boolean earnsMoreThan(Employee other)
16. {
17. if (salary > other.salary)
18. return true;
19. else
20. return false;
21. }
22.
23. . . .
24. }

On line 3, salary is declared private. This makes sense, because one's salary should be kept private. The getSalary() and
setSalary() methods are in the spirit of data hiding. Public methods get and set private data, and there are no surprises. But
look at line 17, where the code compares the current employee object's salary to the salary of a different employee. Any object
that executes line 17 reads a private variable of a different object.

That's just how private access works. Any instance of Employee can read and write not just its own private data, but the private
data of any instance. Similarly, any instance of Employee can call any private method on any instance of Employee.

Default Access

Default access is all about packages. Fortunately, you have just learned all about packages, so you're in great shape to learn
about default access.

Default access does not correspond to a modifier keyword. Instead, it's the access mode you get when you don't mark a class,
variable, or method as public, private, or protected. A default-access class can be used by any instance of any class that's in the
same package. A default-access variable can be read or written only by an instance of a class in the same package as the class
that owns the default-access variable. A default-access method can be called only by an instance of a class in the same package
as the class that owns the default-access variable. In other words, anything with default access can be used by anything in the
same package, and it cannot be used from outside the package.

Default access is useful in this common situation: You sell a package of classes that solve a particular problem. A few of the
classes are for direct use by your customers. These are public and thoroughly documented (you'll see how this is done in Chapter
11). The rest of the classes in the package perform purely secondary roles. They are never used directly by your customers, and
are used only by the public classes to help in their internal workings.

There is no need for your customers to know about these secondary classes. In fact, everybody is better off if nobody but you
knows about them. This is true not just for classes, but for data and methods as well. Some classes, data, and methods are part
of your package's publicly visible interface, while others are nobody's business but your own.

We can draw a parallel between private features in a class and default-access features in a package. In a class, private data and
methods are only for the internal working of the class. In a package, default-access classes, data, and methods are only for the
internal working of the package.

You have already seen packages with default-access features, although you may not have realized it. When a JVM is executed, it
builds a package called the unnamed package. This consists of all classes in the current working directory that do not explicitly
contain package declarations. Consider the example classes you used in the previous chapter: Employee and its subclasses
Worker, Manager, and so on. Those classes didn't use packages, so the obvious way to proceed would be to put them all in the
same directory, and to compile with a command like javac *.java. Eventually, all the class files would exist in the current
working directory. Assuming one of those classes had a main() method, a JVM could run that application. Then all the classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

working directory. Assuming one of those classes had a main() method, a JVM could run that application. Then all the classes
would be considered to be in the no-name package. None of the data or methods in those classes had access modifiers (since
access modifiers weren't introduced until this chapter), so they got default access invisibly. And everything could work smoothly.
Any instance of any class could use any data, and call any method, of any instance of any class.

The no-name package allows your code organization to evolve as your understanding becomes more sophisticated. At first, you
don't know about packages or access. Related source files live together in a directory, along with the corresponding class files.
Everything can access everything. Later on, you learn about packages and access. You have several reasonable choices for
organizing your source code. All source files can be together in the same directory, or the source can be organized into
subdirectories that reflect the package structure, or you can use some other scheme. No matter how you organize your source
code, your class files are organized automatically (by the compiler, when you use the -d option) into directories that reflect the
package structure.

If you are developing code that involves more than just a few classes, it's a good idea to use packages. For smaller projects, it's
fine to use a single directory and take advantage of the no-name package. In this book, the code examples are as simple as
possible. Example classes have package declarations only when using a package is relevant to the topic of the example.

Protected Access

Protected access is default access plus a little bit more. Only data and methods may be protected; classes may not. (Actually,
inner classes may be protected, but they are beyond the scope of this book.)

Protected access is useful in a certain interesting situation. You already saw that default access comes into play when you are
sharing a package of interrelated classes, some of which will be directly used by your customers. Protected access comes into
play when you are sharing a package of interrelated classes, some of which will be subclassed by your customers.

It makes sense for your customers to leave your package intact. You certainly don't want dozens of different evolutions of your
package out there in the world, one evolution per customer. It is cleaner for everyone if the various subclasses created by your
various customers are in separate packages. But the subclasses might want access to non-public data or methods of their
superclasses. Even if those desirable variables and methods had default access, they still wouldn't be useful because they would
be in a different package. So protected access grants access to subclasses of the class that owns the protected features, even if
the subclasses live in different packages.

A protected method may be overridden in any subclass of the class that owns the method, even if the subclass is in a different
package. A protected method may be called by any instance of any subclass of the class that owns the method, even if the
subclass is in a different package.

Protected data is more complicated than protected methods. If a variable is protected, it is not accessible by just any instance of
any other-package subclass. It can be accessed only by the instance of the other-package subclass that owns the data.

Let's look at some simple examples. Here's a superclass:
package mystuff;
public class Fish
{
 protected float weight;
}

Here's a subclass in a different package that makes appropriate use of the protected variable:
import mystuff.Fish;

package yourstuff; // Different package!
public class Tuna extends Fish
{
 void printWeight()
 {
 System.out.println("I weigh: " + weight);
 }
}

The code is legal because any instance of Tuna that executes printWeight() is accessing its own version of the protected
variable weight.

Now here's an example that won't compile, to show you what protected access does not mean:
Import mystuff.Fish;

package yourstuff; // Different package!
public class Tuna extends Fish
{
 void printSomeonesWeight(Fish someone)
 {
 System.out.println("Someone weighs: " +
 someone.weight);
 }
}

This code is illegal, because protected access doesn't mean that any Tuna may access any other Tuna's protected data.
Protected access is different from private access in this regard.

Bear in mind that this restrictive meaning of "protected" only matters in a different-package subclass. The following code is
perfectly legal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package mystuff; // Same package as superclass
public class Snapper extends Fish
{
 void printSomeonesWeight(Fish someone)
 {
 System.out.println("Someone weighs: " +
 someone.weight);
 }
}

Here the situation is different, because the subclass and the superclass are in the same package. Remember that protected
access is default access plus a little more. Even if weight were default instead of protected, it could be accessed by any class in
the same package, independent of any superclass-subclass relationships.

Access and Overriding

Java has a rule that seems strange at first glance: When you override a method, the subclass's version may not have a more
restrictive access mode than the superclass's version. This is shown in Table 9.1:

Table 9.1: Legal Access Modes for Overriding Methods

Superclass Version Access Subclass Version Access

Public public

Protected public, protected

Default public, protected, default

Private public, protected, default, private

This rule seems arbitrarily restrictive, but on closer inspection, it is absolutely necessary. The previous chapter discussed
polymorphism, and you saw what a powerful tool it can be. It turns out that polymorphism is only possible if you have the
access/overriding rule. Let's see why this is.

Chapter 8 presented the Employee class, which had a printCheck() method. Employee had a subclass called Manager,
which had a subclass called Officer. The Officer class overrode printCheck(). You saw that you could have an array,
typed as Employee[], that contained references to objects of a variety of classes. Either Employee itself or any of its subclasses
were allowed, as shown in Figure 9.6.

Figure 9.6: Polymorphism revisited

You could then traverse the array as follows:
for (int i=0; i<employees.length; i++)
 employees[i].printCheck();

Each object would use its own class's version of the printCheck() method. This is especially useful if some subclasses
override the method.

The clean polymorphic system breaks down if a subclass is allowed to override a method so that the method's access becomes
more restricted. To see why this is so, let's assume that the check-printing loop is in some method in a class called Paymaster.
Let's create a new subclass of Employee, called PartTimer:
class PartTimer extends Employee
{
 private void printCheck()
 {
 // Whatever
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This class won't compile. That's good. If the class were allowed to override printCheck() as shown (making its access more
restricted, thus violating the rule), it would not be possible for an instance of Paymaster to call printCheck() on an instance of
PartTimer. A private method can be called only by an instance of the owning class, so a PartTimer's printCheck() could be
called only by an instance of PartTimer.

Consider what would happen in the absence of this rule. The polymorphic loop in Paymaster would work its way through the
array, calling printCheck() on workers, managers, and officers. Eventually, it would need to make an illegal call to
printCheck() on a PartTimer. This situation must be avoided, and the designers of Java had several options for preventing it.
The no-restrictive-overriding rule is sometimes an inconvenience, but actually it is an excellent solution because it gives priority to
clean polymorphism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Final and Abstract
This section will look at two more modifiers: final and abstract. They aren't access modifiers, but this is still a good place to
present them.

Final

Classes, methods, and data may be designated final. A final class may not be subclassed. A final method may not be overridden.
A final variable may not be modified after it is initialized.

Final data is useful for providing constants. For example, you might have a Zebra class that provides the zebra's weight in
pounds or kilograms:
class Zebra extends Mammal
{
 private double weightKg;

 public double getWeightKg()
 {
 return weightKg;
 }

 public double getWeightLbs()
 {
 return weightKg * 2.2;
 }
}

This class uses appropriate data hiding. A zebra's weight is stored in kilos (the variable name leaves no doubt there), but users of
the class never need to know that. Let's assume that eventually the class will have many methods that convert back and forth
between kilos and pounds. There will be a lot of multiplying and dividing by 2.2. The standard approach to this situation is to
declare a constant:
class Zebra extends Mammal
{
 static private final double KGS_TO_LBS = 2.2;

 private double weightKg;

 public double getWeightKg()
 {
 return weightKg;
 }

 public double getWeightLbs()
 {
 return weightKg * KGS_TO_LBS;
 }
}

The constant is called KGS_TO_LBS. It is static because its value is the always going to be the same for all instances of the class,
so there is no benefit in giving each instance its own non-static copy. It is private because it is only for use inside the class. It is
final because its value should never change under any circumstances. Constants require a little extra typing, but they are well
worth the effort for three reasons:

They explain what they do. Someone reading the code, especially someone who doesn't recognize 2.2 as the
kilogram-to-pounds conversion factor, will instantly understand the intention of a constant named KGS_TO_LBS.

They eliminate the need to look up or memorize conversion factors and similar values.

They provide protection against typos.

The third point requires an example. Suppose you aren't using constants, and it's late at night, and you're tired. Somewhere in the
Zebra source code, which is now thousands of lines in length, your finger slips and you accidentally type 3.3 instead of 2.2. It
could take a long time for the error to manifest itself, and when it does, you will have to soft through thousands of lines of code to
find the problem.

On the other hand, suppose you are committed to using the constant. It is still late at night, and your finger slips, and you
accidentally multiply by KGS_TO_LBX instead of KGS_TO_LBS. The next time you compile your code, the compiler will complain
that variable KGS_TO_LBX does not exist. When you use constants, the compiler finds your typos for you.

Abstract

Classes and methods may be designated abstract; data may not.

An abstract method has no method body. All the code from the opening curly bracket through the closing curly bracket is gone,
replaced with a single semicolon (;). Here is an example of an abstract method:
abstract protected double getAverage(double[] values);

The abstract keyword may be combined with the public and protected access modifiers. Here you see a method that is
both abstract and protected. There is nothing unusual about the declaration part of the method. It only gets strange after the
parenthesis that closes the argument list. Where you would expect to find the method body, there is only a semicolon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a class has an abstract method, that method's implementation will be found in the class's subclasses. In a moment you'll
see an example, but first let's cover a few rules governing abstract classes and methods.

An abstract class may not be instantiated. That is, you are not allowed to call any constructor of any abstract class. Also, if a class
contains any abstract methods, the class itself must be abstract. You might say that an abstract class is one that is incomplete: It
lacks one or more method implementations.

Suppose you want to create several classes, all of which share some functionality and model similar real-world things. This
strongly indicates that the classes should extend a common superclass, which should contain the shared functionality. Every
subclass will inherit the common methods, so this is a good object-oriented design. It would not be unusual at this point to realize
that there is some functionality that every subclass must have, but that every subclass should do in its own unique way.

For example, you might be writing classes to draw charts. (We won't cover graphics programming until Chapter 14, "Painting." For
now, the important point is the structure, not the content, of the code.) You might decide to create a Chart superclass with
subclasses, as shown in Figure 9.7.

Figure 9.7: Chart class and subclasses

The class will have an array of floats, called values, whose values are the values to be charted. The class will also need an array
of colors, called colors, since the color scheme should be flexible according to the user's taste. Java actually provides you with a
class called Color. Again, you won't see this class in detail until Chapter 14. For now, you only need to know that the class exists.
Its package is java.awt, so the code examples that follow all import java.awt.Color.

The most important superclass method will be display(), whose argument is an array of float values to be charted. An auxiliary
method will be setColorScheme(), whose argument is an array of colors. Another auxiliary method will be useColor(), which
has an int argument. The argument is an index into the color scheme array. Anything subsequently drawn on the screen, until the
next call to useColor(), will appear in the specified color.

So far the superclass looks like this:
package graphics;
import java.awt.Color;

public class Chart
{
 private float[] values; // Chart these values
 private Color[] colors;

 public void setValues(float[] vals)
 {
 values = values;
 }

 public void setColorScheme(Color[] newColors)
 {
 colors = newColors;
 display(values);
 }

 private void useColor(int colorIndex)
 {
 // Never mind how this works.
 // You'll see in chapter 14.
 }

 public void display(float[] values)
 {
 for (int i=0; i<values.length; i++)
 {
 useColor(i);
 // ??? Now what ??
 }
 }
}

The useColor() method is private, since it is for use inside this class only. The other methods are public, since any user might
want to call them. The problem is the "??? Now what ??" line in display(). It's obvious that for each value to be charted, you
should set the appropriate color and then draw a region. You know how to set the color. Ignoring for the moment that you won't
learn how to draw on the screen until later in the book, we have a deeper problem. A bar chart and a pie chart draw value regions
in different ways. The object-oriented approach tells us that the individual subclasses should encapsulate the knowledge of how to
draw appropriately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's convert Chart to an abstract class:
package graphics;

public abstract class Chart
{
 private float[] values; // Chart these values
 private Color[] colors;

 public void setValues(float[] vals)
 {
 values = values;
 }

 public void setColorScheme(Color[] newColors)
 {
 colors = newColors;
 display(values);
 }

 private void useColor(int colorIndex)
 {
 // Never mind how this works.
 // You'll see in chapter 15.
 }

 public void display(float[] values)
 {
 for (int i=0; i<values.length; i++)
 {
 useColor(i);
 paintRegion(i, values[i]);
 }
 }

 protected abstract void paintRegion(int n, float value);
}

You have added an abstract method: paintRegion(). Since the class now contains an abstract method, the class itself must be
abstract. Any subclass that doesn't want to be abstract will have to provide an implementation of paintRegion(). Since only a
non-abstract class can be constructed, the display() method in this superclass can trust that it can safely call paintRegion().
The true class of the executing object will never be Chart. It will be BarChart, or PieChart, or perhaps some other class to be
written in the future. (In the last case, the new class might not be in the same package as the superclass. That's why
paintRegion() is protected.)

The non-abstract subclasses won't look very interesting, because all their functionality is graphical. Graphical code won't make
any sense to you for another few chapters, so here you're just going to see the skeletons of the classes. Here is PieChart:
package graphics;

public class PieChart extends Chart
{
 protected void paint region (int n, float value)
 {
 // Details not shown. Paint a pie wedge.
 }
}

And here is BarChart:
package graphics;

public class BarChart extends Chart
{
 protected void paint region (int n, float value)
 {
 // Details not shown. Paint a bar.
 }
}

Abstract superclasses provide an elegant structure for partitioning shared and unique functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose package superpack contains subpackage subpack. Suppose a source file contains the following line:
import superpack.*;

Will this line import classes in subpack? Write code to support your answer.

2. Create a class that illegally tries to read a private variable of another class. What is the point of this exercise?

3. Create a class that illegally tries to call a default-access method of another class.

4. Create a class that illegally tries to write a protected variable of another class.

5. True or false: If a class has at least one abstract method, the class must be abstract. Write code to support your
answer.

6. True or false: If a class is abstract, it must have at least one abstract method. Write code to support your
answer.

7. Write an application that tries to construct an instance of an abstract class. Can you compile the application?
Can you execute it?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10: Interfaces
The previous chapter showed you how an abstract class is a class where something is missing. This chapter will present
interfaces. An interface is not actually a class, but it's like a class where nearly everything is missing.

A List of Method Declarations
An interface is mostly a list of public method declarations. The source code for an interface is similar to the source for a class in
several ways. In particular, an interface definition goes in its own source file, and the source file name should be the interface
name, plus .java at the end. When the code is compiled, the output file name is the interface name plus .class.

Here is an example of an interface. It should appear in source file Talker.java, and compilation will produce Talker.class:
package nature;
public interface Talker
{
 void say(String sayThis);
 void repeat(String repeatThis, int nTimes);
}

This interface is in a package called nature. Like a class, an interface can belong to a package. It is designated public, so it can
be used by any code anywhere. If it were not public, it could be used with the nature package only. Interfaces cannot be private
or protected.

Before we proceed, it's time to say a little about the String class, which appears in the argument list of both methods (and as an
array in the argument list of every main() method). This is one of many useful utility classes that come with Java. You'll learn
about them in Chapter 12, "The Core Java Packages and Classes". For now, be aware that an instance of the String class
encapsulates a "run" or "string" of text. The data and methods of String won't be used in this chapter.

The list of method declarations appears between the curly brackets that follow the interface name. These declarations are much
like abstract method declarations. The return types, method names, and argument lists are present, but the method body is
absent, replaced by a semicolon. Unlike abstract methods, the methods declared in an interface are all public. You can declare
them as public explicitly if you like, but you may not declare them private or protected. Omitting the access modifier results in
public, rather than default, access.

Any class can declare that it implements any interface. This declaration occurs in the class's definition file. The class name is
followed by the keyword implements, followed by the interface name. For example:
package nature;
class Parrot extends Bird implements Talker
{
 . . .
}

When a class declares that it implements an interface, the class is saying that it contains an implementation for each of the
methods in the interface. (If this is not the case, the class will not compile.) So if the Parrot class compiles, you know that it
contains a method called say() and another method called repeat(), with argument lists as specified in the interface.

A class is allowed to implement multiple interfaces. To do this, just provide a comma-separated list of interfaces after the
implements keyword. So if Flyer and BugEater are interfaces of the nature package, you could have the following class:
package nature;
class Mynah extends Bird
 implements Talker, Flyer, BugEater
{
 . . .
}

This class would have to provide implementations for the methods of all three interfaces.

Using Interfaces

To see why interfaces are useful, consider the class inheritance hierarchy shown in Figure 10.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: Animal kingdom class inheritance

Figure 10.1 would be a very natural way to organize your work if you were creating an extensive library of classes to model the
behavior of different kinds of animals. You can imagine behavior such as live birth, cold-bloodedness, and flight being
implemented by methods in the Mammal, Reptile, and Bird classes, respectively, and inherited by their respective subclasses.
However, there is some behavior that does not fit into the inheritance model.

The three shaded classes in Figure 10.1 share somewhat related behavior. All three species are capable of speech, although the
nature of that speech varies greatly from species to species. We humans speak out loud, and we understand what others say.
Gorillas can't speak out loud because they don't have the right kind of vocal cords, but they can be taught to use and respond to
sign language. (See www.gorilla.org for more information.) Parrots can speak out loud (and do so long after the charm has worn
thin), but they do it without comprehension.

A good computer model of the animal kingdom should include speech, so it would make sense to give each of the Human,
Gorilla, and Parrot classes its own version of the say() and repeat() methods described in the previous section. But in
that case, the three classes can declare that they implement the interface. For example, Gorilla might look like this:
package nature;
public class Gorilla extends Primate implements Talker
{
 public void say(String sayThis)
 {
 // Complicated code to produce sign language.
 }

 public void repeat(String repeatThis, int nTimes)
 {
 for (int i=0; i<nTimes; i++)
 say(repeatThis);
 }

 . . .
}

So far we have not mentioned any benefit associated with declaring that a class implements an interface. To understand the
benefit, let's revisit the issue of objects and references.

Objects and References

You have already seen that a reference is something that uniquely identifies an object. In Java, you don't have variables that are
objects. Instead, you have variables that are references to objects. In Chapter 8, "Inheritance," you saw that the type of a
reference can be different from the class of the object it refers to. This point is important enough that we make a distinction
between the type of a reference and the class of an object. A reference's type is what appears in the declaration of the reference
variable; an object's class is the class of the constructor that was invoked when the object was created.

You have already seen that when a reference points to an object, the type of the reference can be exactly the class of the object,
or it can be any superclass of the class of the object. Interfaces provide an even wider range of reference types, because
reference variable types can be interfaces as well as classes. An interface-type reference can legally point to an object if that
object's class implements the interface. So in our ongoing example, the following code would be perfectly legal:
Parrot polly = new Parrot();
Talker aTalker = polly;

Or even:
Talker aTalker = new Parrot();

With an interface-type reference, you can call only the methods of the interface. This may seem limiting, but the benefit is huge.
Consider the following method:
singHappyBirthday(Talker t, String forWhom)
{
 t.repeat("Happy birthday to you.", 2);
 t.say("Happy birthday, dear");
 t.say(forWhom);
 t.say("Happy birthday to you.");
}

This method has a talker recite the song, no matter what the class of the talker. A human will sing, a gorilla will sign, a parrot will
squawk. This is another example of polymorphism: A single method name (say, and also repeat) appears in many different
forms.

instanceof
Java has a keyword, instanceof, that tests the relationship between an object and a reference type. The syntax is
<reference> instanceof <type>

The reference can be any reference. The type can be the name of any class or interface. The value of an instanceof
expression is boolean. It is true if a reference of the given type legally can point to the object pointed to by the given reference. For
example, this code will print out the message:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Duck daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

So will the following:
Bird daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

And so will the following:
Object daffy = new Duck();
if (daffy instanceof Bird)
{
 System.out.println("Yes, Daffy is a bird.");
}

The instanceof keyword doesn't care about the type of the variable (that is, the word that comes before instanceof. What
matters is the class of the object to which the variable points, and in all three examples the class is Duck. When the second
argument of instanceof is a class, as in this example, the value is true if the object's class is the same as, or a subclass of, the
second argument. Here is an example of instanceof where the second argument is an interface:
Duck daffy = new Duck();
if (daffy instanceof Talker)
{
 System.out.println("Yes, Daffy is a bird.");
}

When the second argument is an interface, the value of an instanceof expression is true if the object's class implements the
interface. Here, the object's class is Duck, which does not implement Talker, so the value is false. In the following code, the
value is true:
Gorilla ndume = new Gorilla();
if (ndume instanceof Talker)
{
 System.out.println("Yes, Ndume can talk.");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data in Interfaces
An interface is allowed to contain data, provided the data is public, final, and static. This provides an easy way to define constant
data.

In Chapter 9, "Packages and Access," you looked at static data within a class with the following example:
class Zebra extends Mammal
{
 static private final double KGS_TO_LBS = 2.2;
 . . .
}

The variable KGS_TO_LBS can be used anywhere within the Zebra class. If other classes in the same package want to use the
constant, you can declare KGS_TO_LBS to have default access (or even protected access, in which case the other-package
subclasses can also use it). The other classes can refer to the constant as Zebra.KGS_TO_LBS. Sometimes this is fine, but in
our example it seems to imply that converting from kilograms to pounds has something to do with zebras. If a constant is more
properly associated with a package in general, rather than with any individual class, generally it is better to put it in an interface.

For example, you might be creating a package of classes that model the physics of various mutually interacting heavenly bodies.
Your package would be called astro, and the classes would be Planet, Star, BlackHole, Comet, and so on. (Their official
names would be astro .Planet, astro.Star, astro.BlackHole, and astro.Comet.) The classes probably would all need
to use certain fundamental constants, such as the speed of light and the mass of a proton. Let's look at the various options for
implementing these.

First, you can avoid the use of constants altogether. Wherever you need the speed of light, use 3.0e8; wherever you need the
mass of a proton, use 1.67e-27. As you saw in Chapter 9, this approach is risky. If you type a wrong digit, you'll introduce a bug
that can be very hard to find. Moreover, readers of your code might not recognize the significance of 3.0e8 or 1.67e-27 (would
you?), so they would not understand the formulas you were implementing.

The next step is to put constants in one of your classes. You might pick Star, arbitrarily, and insert the following lines:
final static double LIGHT_SPEED = 3.0e8;
final static double PROTON_MASS = 1.67e-27;

By convention, constants are in all capital letters, with words separated by underscores. Recall that with constants, a typing error
results in a variable name that the compiler will not recognize, so you recruit the compiler to help you find typos.

Before we go further, notice that the constant names can be improved on. As they stand, they are truthful but not entirely helpful.
1.66e-27 whats? 3.0e8 whats per what? For optimum clarity, it's best to put the units in the constant names:
final static double LIGHT_SPEED_M_PER_SEC = 3.0e8;
final static double PROTON_MASS_KG = 1.67e-27;

That takes a little more typing, but now nobody will ever think the speed of light is expressed in miles per second, or proton mass
in micrograms. Within the Star class, you can refer to the constants by name. Elsewhere in the astro package, you can refer to
them as Star.LIGHT_SPEED_M_PER_SEC and Star.PROTON_MASS_KG.

This is certainly better than typing literal constants, but it implies that the constants are somehow naturally associated with the
class they appear in. You can go one step further by creating an interface for your constants:
package astro;

interface AstroConstants
{
 final static double LIGHT_SPEED_M_PER_SEC = 3.0e8;
 final static double PROTON_MASS_KG = 1.67e-27;
}

You can also put method declarations in the interface code, but you don't have to. An interface can declare any number of
methods, including zero. Now classes in the astro package can refer to AstroConstants.LIGHT_SPEED_M_PER_SEC and
AstroConstants.PROTON_MASS_KG. You don't have to pick a class arbitrarily to put your universal constants in.

You can go one step further, because of the following rule: A class that implements an interface can use the constants of that
interface by name, without prefixing the interface name. So your BlackHole class could use the following declaration:
package astro;

class BlackHole implements AstroConstants
{
 . . .
}

You don't have to do any work to ensure that BlackHole implements all the methods of the interface, because there are no
methods in the interface! And now, anywhere within the BlackHole code, and within the code of any other class that implements
AstroConstants, you can refer simply to LIGHT_SPEED_M_PER_SEC and PROTON_MASS_KG.

Warning Beware of a subtlety concerning interfaces. All methods and constants in an interface are public. You can use the
public keyword explicitly for clarity, but if you omit it, the interface's features are still public. They do not have
default access, which is what you get if you omit an access modifier in the source code for a class. In an earlier
example, when you put the constants in class Planet, you didn't use an access modifier. So the constants had
default access and could be used anywhere within the astro package, but nowhere else. When you moved the
constants to the interface, they were forced to be public. Hence, they were accessible from any code regardless of
package.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extending Interfaces
An interface is allowed to extend another interface. The syntax is
interface <interface_name> extends <parent_interface>
{
 // Declarations and data
}

The new interface consists of all the methods and data defined in the parent interface. For example, you might define the
following:
package nature;

interface SingingTalker extends Talker
{
 public void sing(String song);
}

This interface consists of the two methods defined in Talker (say() and repeat()), as well as sing(). A class that wants to
implement this interface must use all three methods.

A class can extend only a single parent class, but an interface can extend multiple parent interfaces. For example, if InterA,
InterB, and InterC are all interfaces, the following is legal:
interface ManyParents extends InterA, InterB, InterC
{
 public int anotherMethod(double d, char ch);
}

This interface consists of all the constants and methods of all three parents, plus the method defined explicitly in the source code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose an interface declares three methods. And suppose a class declares that it implements the interface,
but in fact it only implements two out of the three methods. What happens when you try to compile the class?
(The way to answer this question, of course, is to write an interface and a class.)

2. If class A implements an interface, any subclasses of A inherit all the methods specified in the interface. Does
this mean that subclasses of A also implement the interface? Write code to discover the answer.

3. Given the following interface:
interface InterfaceQ3
{
 void printALine();
}

Will the following code compile?
class ClassQ3 implements InterfaceQ3
{
 void printALine()
 {
 System.out.println("OK");
 }
}

4. Don't worry, the following question requires absolutely no understanding of physics. In fact, it might make you
grateful that you chose computer programming instead. Suppose you have the following interface:
package physics;
interface PhysicsConstants
{
 public static final double ELECTRON_MASS_KG = 9.11e-31;
 public static final double
 STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2 = 5.67e-8;
}

What does the following application print out?
package physics;

public class Q4 implements PhysicsConstants
{
 public static void main(String[] args)
 {
 System.out.println("The value is " +
 STEFAN_BOLTZMAN_CONSTANT_WATTS_PER_M2);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11: Exceptions

Overview
At several points in this book, you have seen how certain program features alter the usual linear flow of program execution. You
saw that loops are like whirlpools, conditional statements are like forks in the road, and method calls are like detours.

Extending this analogy, exceptions are like jumping through hyperspace. With exceptions, you can instantly end up far from where
you began, with no prospect of getting back. Of course, jumping through hyperspace is an unusual way to travel. And as you
might expect, exceptions are to be used only in unusual programming circumstances.

This chapter will show you how to use exceptions to indicate unusual conditions in the state of your programs. It will take a careful
approach to this topic, because exceptions are complicated. It would not be helpful to overwhelm you with information. First you'll
look at some of the basic concepts of exceptions. Then you'll learn how exceptions are used in real life.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions Oversimplified
This chapter will begin with an explanation of why exceptions are important. Then it will look at an extended example that uses
exceptions. Please bear in mind that the example code here is intended to demonstrate concepts, not to stand as an example of
good programming. Later on, once you understand how exceptions affect program flow, you'll see more realistic code examples.

The Trouble with Error Codes

First, let's look at why Java needs a feature to support unusual program status. Imagine a remote database that stores daily
rainfall reports for various weather stations. (A remote database is one where the data is stored on a different computer from the
one you are using. The two machines are connected by a network.) Without going into the details of how to get data from a
remote database into a Java program, imagine a class with a method that somehow retrieves rainfall numbers. The method might
be called
float getRainfall(int station, int year,
 int month, int day)

For example, to get the rainfall for station #7 for July 8, 2001, you would call
getRainfall(7, 2001, 7, 8);

You can imagine the method doing network connection stuff, database login/password stuff, database query stuff, network
disconnection stuff, and finally returning a value. The problem is, what happens if something goes wrong with the database? Here
are a few things that could go wrong:

The database computer could be turned off.

The network cables could break.

The database could be deleted.

The database management code could crash.

The database password could be changed.

All of these possibilities are beyond the control of the programmer who is writing the getRainfall() method. They are not bugs.
A bug is when you write code that doesn't do what you want it to do. Bugs can be avoided by intelligent design and programming,
but no amount of programming forethought on your part can prevent someone from walking up to a remote computer and turning
it off.

Your code has no straightforward way to deal with these unusual circumstances. There is no straightforward way to tell the
method's caller that the database computer was turned off or the password didn't work. Before the invention of exceptions (which
predate Java), the only reasonable option was to designate certain special return values, called error codes, to indicate that
something unusual happened.

In this example, you might reserve large return values as error codes. You might decide that 10,000 means the password didn't
work, 20,000 means the network was unresponsive, and so on. After all, if it ever rains 10,000 inches in a single day anywhere on
Earth, we'll all have more pressing problems than data processing to worry about.

What is wrong with this approach? The problem is that anyone, anywhere, who calls getRainfall() has to remember to deal
with all the error codes:
float rainfall = getRainfall(7, 2001, 7, 8);
if (rainfall < 1000)
{
 // Process normally.
}
else if (rainfall == 1000)
{
 // Deal with password problem.
}
else if (rainfall == 20000)
{
 // Deal with unresponsive net.
}

The error-processing code might display a message, or it might be more sophisticated. The password-handling code might try a
different password. The network-handling code might retry the query at one-second intervals, or it might page a system
administrator. But no matter how the errors are handled, anyone who calls the method has to check all return values to see if an
error code was returned. To do this, they need good documentation that describes each code and its meaning. The programming
language can do nothing to support error handling, because from the compiler's point of view, an error code is just an ordinary
value returned by a method.

Special problems are introduced when the method is revised, if the new revision introduces new error codes. Now all the old
documentation is incomplete. It's even worse if the new rev of the method changes the significance of an existing code.

Things can get worse yet. What if you realize that your error codes actually represent legitimate return values? Certainly, there's
nowhere on Earth where it rains 10,000 inches in a day. But on other planets, with active atmospheres and extremely long days
(Mercury, for example), 10,000 is common.

Less imaginatively, the data might be gathered automatically into the database by electronic rain gauges. If the electronics fail, a
gauge could erroneously report a measurement of 10,000. Then, when getRainfall() returned the value, the error-handling
code might page a system administrator, who would be paid overtime for rushing to the office at 4:30 in the morning. The
administrator would spend hours determining that the network was healthy, and would probably be grouchy for the rest of the day.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have probably realized that rainfall can never be less than zero, so you should have reserved negative error codes, rather
than large ones. That would make your method interplanetary, but the other problems would remain. Still, unless you use
exceptions, error codes are the only option. By the time you finish this chapter, you should be an enthusiastic user of exceptions.

Throwing Exceptions

In this section, you will meet two new Java keywords: throw and throws. They look almost identical, but throw only appears in
executable code, while throws only appears in method declarations. You will also meet the Exception class. By now, you are
aware that Java uses a number of classes that are provided for you by the system. The Object class is an obvious example, and
you have also seen a little bit of the String class. In Chapter 12, "The Core Java Packages and Classes," you will learn about
more of these classes. They are too numerous to describe in detail, but you will also learn where to find out about provided
classes as needed. But in order to learn that, you first have to understand exceptions.

To see exceptions in action, let's change the getRainfall() example. For now, let's suppose that only one unusual condition is
recognized by the code: a crashed database. To detect this condition, assume you have a boolean method called databaseOk()
that returns true if the database is healthy and false if it has crashed. If you were to use the error-code approach, you might write
the following:
1. float getRainfall(int station, int year,
2. int month, int day)
3. {
4. if (databaseOk() == false)
5. return -1;
6.
7. // Get & return rainfall from db
8. }

You use -1 as an error code to indicate a crashed database. Now here is the same method, rewritten to use an exception:
 1. float getRainfall(int station, int year,
 2. int month, int day) throws Exception
 3. {
 4. if (databaseOk() == false)
 5. {
 6. Exception x = new Exception("The db crashed.");
 7. throw x;
 8. }
 9. // Get & return rainfall from db
10. }

This changes the code in 3 ways:

It adds throws Exception to the declaration on line 1.

It creates an instance of the Exception class on line 6.

It throws the exception (whatever that means) on line 7.

The addition of throws Exception to the declaration announces that this method now might throw an exception. Any particular
call to the method might or might not throw, but any code that calls the method must be prepared to deal with the possibility.

Line 6 is just an ordinary constructor call. Until they are thrown, exceptions are just ordinary objects. There are two commonly
used versions of the Exception constructor: a no-args version, and the version used here, which takes a string of text as an
argument. The text can be retrieved later by calling the exception's getMessage() method. Later on, you will see how this is
useful when processing exceptions.

Line 7 is the big idea. The throw keyword must be followed by an exception. (Strictly speaking, a few other things can follow
throw, but they are beyond the scope of this book.) When the throw statement is executed, the current execution of the current
method is abandoned immediately. Execution jumps (as if through hyperspace!) to the appropriate exception-handling code for
the particular exception that was thrown. The exception handler uses the catch keyword, which is presented in the next section.

Catching Exceptions

It stands to reason that things that are thrown ought to be caught. This is true for balls, Frisbees, kisses, and exceptions.

When you call a method that declares that it throws an exception, the calling code can't just call the method. For example, the
following code will not work:
float rainfall = getRainfall(7, 2001, 7, 8);

This call used to be fine, but now getRainfall() throws an exception, which any calling code must be prepared to catch. The
call has to look something like this:
 1. try
 2. {
 3. float rainfall = getRainfall(7, 2001, 7, 8);
 4. System.out.println("rainfall was " + rainfall");
 5. }
 6. catch (Exception x)
 7. {
 8. System.out.println("getRainfall() failed.");
 9. System.out.println("Message is: " + x.getMessage();
10. }
11. System.out.println("And life goes on.");

The code on lines 2-5 (in the curly brackets immediately after try) is called a try block. There are two rules to know about try
blocks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any code that throws an exception must appear in a try block. (For now. Later you'll learn how to get around this
rule.)

At least one statement in the try block must throw an exception.

The code on lines 7-10 (in the curly brackets immediately after the catch line) is a catch block. When a statement in a try block is
executed and causes an exception to be thrown, the current pass through the try block is abandoned immediately. Execution
jumps to the first line of the catch block.

Note the code in parentheses on line 6, after catch. It looks like a variable declaration, and indeed it is. When an exception is
thrown, the JVM makes the exception object accessible to the catch block. When you declare Exception x, you are saying that
you want to use the variable name x as the name of your reference to the exception. This variable has scope (that is, valid
meaning) only within the catch block.

Notice line 9, which makes a method call on x. Recall that you can pass a message into the Exception constructor. The
message is stored in the exception object, and the getMessage() call retrieves it. Recall from the previous section that
getRainfall() stored a message that said, "The db crashed."

Note If you are at all uncomfortable with the way line 9 adds literal text to a method call, please be patient. All will be
explained in the next chapter. For now, just be aware that it works.

What happens if the try block runs in its entirety, with no exception being thrown? In this case, the catch block is ignored.
Execution jumps around the catch block, from line 4 to line 11. If this is the case, and if the rainfall value is 1.45 inches, the code
will produce the following output:
Rainfall was 1.45
And life goes on.

On the other hand, if the call to getRainfall() throws an exception, the output will be
getRainfall() failed.
Message is: The db crashed.

The Simple Exception Lab animated illustration demonstrates the flow of execution through code, which is almost identical to this
example. To run the program, type java exceptions.SimpleExceptionLab. You will see the display shown in Figure 11.1.

Figure 11.1: Simple Exception Lab

You will see the code for a method that calls another method to retrieve a rainfall measurement from an imaginary remote
database. (There isn't really a remote database, and your computer doesn't have to be connected to a network for the animated
illustration to work.) You can use the checkbox to control whether the imaginary database is working or not. As Figure 11.1 shows,
the DB (database) is initially okay. If you uncheck the checkbox, the second method will throw an exception that will be caught by
the first method. The text area to the left of the display will show all output from the println statements. Try running the program
once with the DB is Ok checkbox checked, to simulate normal execution. Figure 11.2 shows the final state.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.2: Simple Exception Lab: final state with normal execution

Think about what the code would print out if the database wasn't okay. Run it again with the checkbox unchecked to observe the
error-handling behavior. Was the output what you expected?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions in the Real World
So far, the point of this chapter has been to familiarize you with exceptions, and especially with trying, throwing, and catching.
Now that you understand these concepts, it is time to tell you that the situation is actually a lot more complicated. There are many
kinds of exceptions, each one indicating a different kind of problem, and each one capable of being handled separately.

The remainder of this chapter will show you how to deal with the multitude of real-world exceptions.

Two Families of Exceptions

The Exception class has more than 100 subclasses in the core Java packages. (The core packages are the ones that you get
along with the JVM and the Java compiler. You can think of them as the infrastructure of Java, providing classes that are essential
to the operation of the JVM, the compiler, and your own applications.)

The two families are

Checked exceptions

Runtime exceptions

The Exception class has a subclass called RuntimeException. The family of runtime exceptions consists of the
RuntimeException class and all its subclasses. The family of checked exceptions consists of all other exception classes,
including Exception itself. (Note that there is no CheckedException class.)

Generally, exception classes have long and descriptive names, such as PrinterIOException and
ArrayIndexOutOfBoundsException. Usually, the class name tells you very specifically what went wrong. Let's use these two
classes to look at the difference between checked and runtime exceptions.

PrinterIOException is a checked exception. It's thrown by methods that interact with a printer. If a printer is jammed,
unavailable, or in some other failure state, the method throws PrinterIOException. ArrayIndexOutOfBoundsException
is a runtime exception. As you can guess from the name, it is thrown when an array index is >= the length of the array, or when
the index is negative.

What's the difference between these two situations? It all comes down to who is responsible for creating the problem. In the case
of PrinterIOException, you can't really say it's anyone's fault. Printers jam up or fail in other ways that are familiar to all
owners of printers. That's an environmental hazard. It's unavoidable, like bad weather. On the other hand, with
ArrayIndexOutOfBoundsException, it's easy to assign blame. The programmer who wrote the line of code that used the
illegitimate array index should have done a better job. After all, it would be ridiculous to tell you to turn to page 1,963 in this book…
or worse yet, to page -47. Similarly, you shouldn't refer to an array element that doesn't exist.

To generalize from these examples: All checked exceptions represent situations that are unavoidable. All runtime exceptions
represent situations that can be avoided by better programming. This implies that your Java programs might sometimes throw
checked exceptions, but they should never throw runtime exceptions.

The proper way to deal with checked exceptions is with the try/catch mechanism described earlier in this chapter. The proper way
to deal with runtime exceptions is… well, you should never have to deal with them, because your code should never throw them.
Of course, code is never perfect the first time you write it. Whenever you write a long piece of code, your first job is getting it to
compile. Once you do that, you're only halfway finished. The next step is to make your code run correctly by finding and
eliminating bugs. During this phase of development, you are likely to encounter runtime exceptions, and your job is to eliminate
them. So your finished, polished, ready-for-market code should never throw runtime exceptions. During development, runtime
exceptions are signposts that point to code that needs fixing.

Runtime exceptions should not be caught in catch blocks. But how can this be? Earlier in this chapter, you learned that if code
might throw an exception, the code has to appear in a try block and the exception has to be caught in a corresponding catch
block. Well, that was an oversimplification to avoid giving you too much information all at once. Now that you're half an expert on
exceptions, you can learn the whole story.

Code that throws checked exceptions must appear in a try block, with the exception caught in a catch block. But this rule does not
apply to code that throws runtime exceptions. Such code may appear in a try/catch structure, but it doesn't have to, and usually it
should not. Instead, the code that would throw the runtime exception should be fixed so that it no longer throws.

Runtime Exceptions and Stack Traces

Now you know that you should not catch runtime exceptions. But then what happens when one is thrown?

When any kind of exception is thrown, the JVM stores some very useful information in the exception. This information is called the
stack trace, and often it's all you need to find the source of the problem. The stack trace tells you what line of code threw the
exception, as well as the name of the method that contains the line. The stack trace also tells you what line of code called that
method, and so on. It goes back and back until you get the line in your main() method that called the method that called the
method that called the method that owned the line that threw the exception. It's like This Is the House That Jack Built, only it's
about a Java program instead of a house:

This is the program that you built.

This is the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

This is the line that threw the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

This is the method that owns the line that threw the ArrayIndexOutOfBoundsException that was thrown from the
program that you built.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the line that calls the method that owns the line that threw the ArrayIndexOutOfBoundsException that was
thrown from the program that you built.

This is the method that owns the line that calls the method that owns the line that threw the
ArrayIndexOutOfBoundsException that was thrown from the program that you built.

…

This is the main() method that owns the line that calls the method that owns the line that calls the method that owns the
line… that threw the ArrayIndexOutOfBoundsException that was thrown from the program that you built.

Let's look at a practical example. Suppose you have the following application:
 1. public class ShowMeATrace
 2. {
 3. public static void main(String[] args)
 4. {
 5. int[] cubes = new int[10];
 6. storeCubes(cubes);
 7. }
 8.
 9. private static void storeCubes(int[] intArr)
10. {
11. for (int i=0; i<=10; i++)
12. storeOneCube(intArr, i);
13. }
14.
15. private static void storeOneCube(int[] ints,
16. int index)
17. {
18. ints[index] = index*index*index;
19. }
20. }

The main() method creates an array that's passed to storeCubes(). The storeCubes() method loads each array
component with the cube of its index. It does this by calling storeOneCube() once for each component. When you run this
application, you get the following output:

java.lang.ArrayIndexOutOfBoundsException

 at ShowMeATrace.storeOneCube(ShowMeATrace:18)

 at ShowMeATrace.storeCubes(ShowMeATrace:12)

 at ShowMeATrace.main(ShowMeATrace:6)

 Exception in thread "main"

This output is a stack trace. Reading from top to bottom, you find that an ArrayIndexOutOfBoundsException was
thrown from line 18 in the storeOneCube() method. The offending call to storeOneCube() was made on line 12 in
storeCubes(), which was called from line 6 in main(). (By the way, notice that the first line of the trace implies that
ArrayIndexOutOfBoundsException belongs to the java.lang package. The core Java classes belong to a package
called java, which contains many subpackages. The most important subpackage is java.lang, which contains a large
number of vital infrastructure classes. You will look at some of these classes in the next chapter.)

So the stack trace tells you to pay attention to lines 18, 12, and 6. Usually your best strategy is to look at lines in the order
they appear in the trace. Line 18 seems innocent, as long as index is reasonable. But index is supplied by the method's
caller, so you look at line 12. You see that index in storeOneCube() corresponds to i in storeCubes(). The maximum
value of i is 10, but the array only has 10 components, so the maximum legal index is 9. You have found the problem.

There are two ways to fix the bug. The lazy way would be to change line 11 like this:
for (int i=0; i<10; i++)

That would solve the problem at hand, but if the array size (in main()) ever changes, you will have to remember to change
line 11. The safe way, which is better style in all cases, is to use the following for line 11:

for (int i=0; i<intArr.length; i++)

If you have a program that uses an array, it is very likely that eventually you will create a for loop to do some kind of
processing on each array component. If you use the kind of for loop shown here, you will always be sure to process every
component while avoiding ArrayIndexOutOfBoundsException.

Warning Be aware that some versions of the JVM do not provide stack traces when exceptions are thrown. This usually
happens because the JVM performs some kind of optimization that makes it impossible to piece together the stack
trace information. When these machines throw an exception, you just get a message that tells you the class of the
exception.

Checked Exceptions

In the previous section, you saw that you should not catch runtime exceptions, even though the language allows you to. However,
when you call a method that throws a checked exception, you have no choice but to use the try/catch mechanism. If you don't,
your code will not compile.

Suppose you have a method, called printRetAddr(), that prints your return address on an envelope. Assume you have the
kind of printer that can detect whether it is loaded with paper or envelopes. If it is not loaded with envelopes, the method throws
PrinterIOException, which is a checked exception. If you want to call the method, your code might do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrinterIOException, which is a checked exception. If you want to call the method, your code might do the following:
void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
}

Simple enough, but it won't compile. Your compiler error will be something like this:
PrinterIOException must be caught or declared to be thrown at line xx, column xxx.

This tells you that you have two options. Your first option is to put the call to printRetAddr() inside a try block:
void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 {
 try
 {
 printRetAddr();
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 }
 }
}

Earlier in this chapter, you saw code that catches Exception. Here you see that any subclass of Exception may be caught (as
long as it really is thrown in the try block; see Exercise 4 at the end of this chapter). The catch block will be executed if the try
block causes a PrinterIOException to be thrown.

You have a second option. If you don't want to use try/catch, you can simply declare that printSomeEnvelopes() throws
PrinterIOException:
void printSomeEnvelopes(int nEnvelopes)
 throws PrinterIOException
{
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
}

Now any method that calls printSomeEnvelopes() must either use try/catch or declare that it too throws
PrinterIOException.

Multiple Catch Blocks

Typically, code in a try block can throw more than one kind of exception. To illustrate this, let's look at another type of checked
exception: ConnectException. This is usually thrown by code that attempts to connect to a machine on the network, such as a
Web server. If the remote machine does not respond (because it has been turned off, or is undergoing maintenance, or has
burned up), the code that detects the lack of response should throw a ConnectException. (You will look at network connections
in detail in Chapter 13, "File Input and Output." For now, the point is that now you know about two checked exception types.)

To extend this example, let's make printSomeEnvelopes() more responsible. Suppose you have two utility methods at your
disposal:

getNumEnvelopesInStock() Returns the number of envelopes left, not counting the ones you just printed. This value is
retrieved from a remote database.

setNumEnvelopesInStock() Updates the number of envelopes left. This value is stored on the remote database.

Both methods throw ConnectException if the machine where the remote database resides cannot be contacted. Now
printSomeEnvelopes() can be written like this:

void printSomeEnvelopes(int nEnvelopes)
{
 for (int i=0; i<nEnvelopes; i++)
 {
 try
 {
 printRetAddr();
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 return;
 }
 }

 try
 {
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 }
 catch (ConnectException conx)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 System.out.println("Couldn't connect.");
 }

 System.out.println("printSomeEnvelopes() done.");
}

The second try block updates the remote database, taking into account the number of envelopes that were just printed.
When printSomeEnvelopes() is called, there are four possibilities:

The code could run normally, with no exceptions being thrown. Neither catch block is executed. The method prints the
"done" message and then returns.

A PrinterIOException is thrown from printRetAddr(). Execution jumps to the first catch block, which prints the
"Please load…" message and then returns. (It returns because no envelopes were used, so the number in the database
shouldn't be decremented. If the catch block did not return, the second try block would be executed.)

A ConnectException is thrown from getNumEnvelopesInStock(). Execution jumps to the second catch block, which
prints the "Couldn't connect" message. Then execution continues after the catch block. The "done" message is printed, and
then the method returns.

A ConnectException is thrown from setNumEnvelopesInStock(). Just as in the previous case, execution jumps to the
second catch block, which prints the "Couldn't connect" message. Then the "done" message is printed and the method
returns.

This code can be simplified. A single try block is allowed to throw multiple exception types, provided there is a catch block for each
type. This might require multiple catch blocks for the try block:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 }
 catch (PrinterIOException piox)
 {
 System.out.println("Please load printer " +
 "with envelopes.");
 }
 catch (ConnectException cx)
 {
 System.out.println("Couldn't connect.");
 }
 System.out.println("printSomeEnvelopes() done.");
}

The work has been consolidated into the single try block. There are two catch blocks. If the try block threw five or 50 exception
types, there could be five or 50 catch blocks.

When the JVM detects a thrown exception in the try block, it scans the various catch blocks. The current pass through the try
block is abandoned, and execution continues in the first catch block that is appropriate to the type of thrown exception. This
version of the method behaves exactly like the previous version, but it's easier to read because all the normal execution code
appears in the try block, while problems are handled in the various catch blocks. No matter how many catch blocks there
are, a single thrown exception is only handled by one catch block. After the catch block runs (and it doesn't contain a
return statement), execution continues after the last catch block.

Catch Blocks and instanceof

The previous section introduced multiple catch blocks. You learned that execution continues in the first catch block that is
appropriate to the type of thrown exception. But what makes a catch block appropriate? You might think that the type declared in
parentheses after catch must match the class of the exception that was thrown. But this is not the whole story. The whole story
involves instanceof.

Recall from Chapter 10, "Interfaces", that the syntax for instanceof is
<reference> instanceof <type>

If the type is a class name, and the reference points to an object whose class is either the type or a subclass of the type,
instanceof evaluates to true.

When the JVM looks for a catch block to handle an exception, it uses instanceof to determine whether or not a particular catch
block is appropriate. To illustrate, let's blur the printSomeEnvelopes() example:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 // STUFF
 }
 catch (PrinterIOException piox)
 {
 // STUFF
 }
 catch (ConnectException cx)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch (ConnectException cx)
 {
 // STUFF
 }
 System.out.println("printSomeEnvelopes() succeeded.");
}

If the try block throws, the JVM asks if the exception is an instanceof PrinterIOException. If so, the first catch block is
executed. Otherwise, the next catch block is tested. The JVM asks if the exception is an instanceof ConnectException. If
so, the second catch block is executed. In either case, only the one catch block is executed; the other is ignored. If the executing
catch block does not return, execution then proceeds at the first statement following the last catch block.

If no exception is thrown, the try block runs to completion and both catch blocks are skipped.

Sometimes you can take advantage of how the JVM determines the appropriate catch block. In the last revision of our example,
the two different kinds of exceptions were handled differently, but this might not always be the case. Suppose you decide that no
matter what kind of trouble crops up, printSomeEnvelopes() should just print a message that says "Could not print" and then
return. If there is no trouble, the method should print "Succeeded."

Both PrinterIOException and ConnectException are subclasses of a common superclass called IOException. So
printSomeEnvelopes() can be rewritten like this:
void printSomeEnvelopes(int nEnvelopes)
{
 try
 {
 for (int i=0; i<nEnvelopes; i++)
 printRetAddr();
 int nEnvelopesLeft = getNumEnvelopesInStock();
 nEnvelopesLeft -= nEnvelopes;
 setNumEnvelopesInStock(nEnvelopesLeft);
 System.out.println("Succeeded");
 }
 catch (IOException iox)
 {
 System.out.println("Could not print");
 }
}

Now, any kind of exception that the try block might throw will pass the instanceof IOException test, so execution will end up
in the single catch block.

You can get even more sophisticated. There is a kind of catch block that is informally called a safety net catch block. This is not
official Java terminology, but it's very commonly used. You might have a try block that throws many subclasses of IOException,
including PrinterIOException and ConnectException. Suppose those two types require individual handling, but all other
types can be handled the same. You could do the following:
try
{
 // Lots
 // and
 // lots
 // and
 // lots
 // of code that throws
 // lots
 // and
 // lots
 // and
 // lots
 // of subclasses of IOException
}
catch (PrinterIOException piox)
{
 // Special PrinterIOException handling
}
catch (ConnectException cx)
{
 // Special ConnectException handling
}
catch (IOException iox)
{
 // General IOException handling
}

If either PrinterIOException or ConnectException is thrown, the appropriate specific catch block will be executed. If a
different type of IOException is thrown, the JVM will first check if the exception is an instanceof PrinterIOException. It
isn't, so next the JVM will check if it is an instanceof ConnectException. Again, it isn't, so the JVM checks if it is an
instanceof IOException. And it is, because subclasses pass the instanceof test, so the last catch block is executed. You
can see how the last catch block is a kind of safety net, catching all IOExceptions that aren't caught by the two specific catch
blocks.

The safety net block could have caught Exception instead of IOException. The code would have identical behavior, but the
safety net is overly general and is considered bad coding style. The exception type caught by a safety net should be the lowest-
level subclass that gets the job done. See Exercise 5 at the end of this chapter to find out why.

When you use a safety net, be careful about the order of appearance of your catch blocks. Don't do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

try
{
 // Something
}
catch (IOException iox)
{
 // General IOException handling
}
catch (PrinterIOException piox)
{
 // Special PrinterIOException handling
}
catch (ConnectException cx)
{
 // Special ConnectException handling
}

The second and third catch blocks can never be executed, because both PrinterIOException and ConnectException pass
the instanceof IOException test. The compiler will not allow this code. You will get a compiler message that says something
like, "Catch is unreachable at line xxx."

The Advanced Exception Lab animated illustration shows exception handling in situations where the try block can throw multiple
exception types from any of several lines. To start the program, type java exceptions.AdvancedExceptionLab. You will
see the display shown in Figure 11.3.

Figure 11.3: Advanced Exception Lab

You get to choose the type of exception that will be thrown. Click on the Choose Type… button and you will see a dialog that lets
you choose from four checked types, as shown in Figure 11.4.

Figure 11.4: Choosing an exception type in Advanced Exception Lab

You can click on any of the exception types except the Exception superclass. You can also choose which line throws the
exception by clicking on the checkbox on the line of your choice on the main screen. The lab lets you choose one of five code
configurations (via the File?Configurations menu). In each configuration, a method called top() calls a method called middle(),
which calls a method called bottom(). The bottom method has a try block from which an exception is thrown. Different
configurations handle the exception differently. Figure 11.5 shows the Spread Around configuration, with an AWTException
thrown from method ccc().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.5: Advanced Exception Lab reconfigured

Try all the configurations, and be sure that the exception handling makes sense to you in all cases.

Checked Exceptions and Stack Traces

You have already looked at stack traces in the context of runtime exceptions. Checked exceptions also have stack traces.
However, you usually don't see the trace because you have to catch checked exceptions. If you want to see a stack trace from a
checked exception, you can call the printStackTrace() method:
try
{
 getNumEnvelopesInStock();
}
catch (ConnectException cx)
{
 System.out.println("Stress!");
 cx.printStackTrace();
}

If an exception is thrown, this code will print the "Stress" message, followed by the exception's stack trace. This is extremely
useful during development. However, before you ship your code to paying customers, you might want to delete the
printStackTrace() calls. Paying customers might not want that much information.

Throwing Checked Exceptions

If you're writing a method that throws exceptions, you have to decide which exception type to throw. You have three options:

Throw Exception, as in the examples in the first half of this chapter.

Throw a subclass of Exception from the core Java classes.

Throw your own custom subclass.

The first option is not realistic. Your code will work, but throwing Exception doesn't tell anybody else who reads your code
anything about the nature of the exceptional condition. Also, you may need to call your method in a try block that calls other
methods that throw. If your method throws Exception, it may be difficult or impossible to write a decent set of catch blocks. This
is especially true if the try block calls more than one method that throws Exception when it could have thrown a more specific
type. Your code is always most robust when you throw exceptions that are as specific as possible.

Your second option is to throw a preexisting exception type chosen from the core Java classes. This is easy when you know how
to explore the core Java packages and discover the names and behaviors of the many classes they provide. You will learn how to
do this in the next chapter. For now, be aware that it's important to choose the most accurate and informative exception name you
can find. Most existing types have very long and informative names.

Unfortunately, a lot of programmers always throw IOException, even when the problem has nothing to do with Input/Output.
This is a bad habit. The rationale seems to be that, out of all the checked subclasses of Exception, IOException has the
shortest name. Please don't yield to this temptation.

Once you decide on an exception type, you construct and throw just as you saw earlier in this chapter, when you constructed and
threw Exception (which, as you now understand, you should never do). All exception subclasses in the core Java packages
have two forms of constructors: a no-arguments version, and a version that takes a text message as an argument. It is always
better to use the second form. Be sure to compose a message that is both accurate and helpful.

For example, earlier in this chapter you saw code that called a hypothetical method called getNumEnvelopesInStock(), which
threw ConnectException. Put yourself in the shoes of the person who wrote that method. He might have done something like
the following, assuming he had a method called connectionOK() that returned true if the connection to the database server
was sound:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public int getNumEnvelopesInStock()
 throws ConnectException
{
 if (connectionOK() == false)
 throw new ConnectException();

 // Get & return # of envelopes remaining.
 . . .
}

However, it would be more informative to include a message in the exception. You might pass something like the following into the
constructor: "Couldn't get # of envelopes from remote db." Then any catch block that caught your exception could call
getMessage() on it, printing out the result if appropriate.

What should you do if there's no appropriately named exception subclass in the core packages? You have to fall back on your
third option, which is to create your own class. To do this, first decide if you should create a checked exception or a runtime
exception. In other words, does your exception represent an unavoidable hazard of existence, or is it a programming error that
should be fixed? Most often you will create a checked exception. Next, choose a name. The name should end with Exception,
because that's what other people expect. For example, you might decide that if the getNumEnvelopesInStock() method can't
connect to its remote database, it should throw a custom exception type. A plausible name would be
RemoteEnvelopeCountException. The name says that the class is definitely an exception, and that both remote access and
the envelope count are involved.

Having chosen a name, next you have to decide on a superclass. A checked exception should extend Exception,
IOException, or some other checked exception type. In general, extend IOException or one of its many subclasses if the
exceptional condition you want to represent involves input or output. Otherwise, extend Exception. In the rare case when you
want to create a runtime exception, extend RuntimeException. In this example, RemoteEnvelopeCountException will be a
subclass of ConnecException, since the problem stems from an inability to connect to the remote machine that owns the
database.

Your custom class does not need any data or methods. It will inherit everything it needs. All you have to do is create constructors.
A custom exception should have both constructor versions. Here is the source for RemoteEnvelopeCountException, in its
entirety:
import java.net.*;

class RemoteEnvelopeCountException
 extends ConnectException
{
 RemoteEnvelopeCountException() { }

 RemoteEnvelopeCountException(String s)
 {
 super(s);
 }
}

The import line is required because the ConnectException superclass lives in the java.net package, which is one of the core
Java packages that you'll see in the next chapter. The first constructor is a no-arguments constructor that seems to do nothing
(but remember the chain of construction from Chapter 8, "Inheritance"). The second constructor takes a text message, which is
passed to the superclass constructor.

Custom exceptions are thrown and caught just like standard types, so you could call getNumEnvelopesInStock() like this:
try
{
 int n = getNumEnvelopesInStock();
 System.out.println(n + " envelopes remaining in stock.");
}
catch (RemoteEnvelopeCountException recx)
{
 System.out.println("Stress!");
 System.out.println(recx.getMessage());
}

Generally, it's better to use an existing exception type if you can find one whose name accurately and helpfully describes the
exceptional condition. However, if no such class exists, creating a custom class is good programming style.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. What happens when you run a program that creates an array of ints and then sets the value of an array
component whose index is greater than the length of the array?

2. What happens when you run a program that creates an array of ints whose length is less than zero?

3. What happens when you run a program that prints out the result of dividing a non-zero int by zero?

4. Write a program with a try block that just prints out a message. After the try block, add a catch block that
catches java.io.IOException (which obviously is not thrown by the try block). Does the code compile? If it
compiles, what happens when it runs?

5. Suppose a try block throws many different subclasses of IOException (and no other exception types).
Suppose you want to catch a few specific subclass types, such as PrinterIOException or
ConnectException. All other exception types should be caught in a safety-net block. Your safety-net block
can catch IOException or Exception. The code will produce the same behavior either way, but the "Catch
Blocks and instanceof" section of this chapter says that it's better to use IOException. Speculate on why this
is true.

6. What three decisions do you have to make when creating a custom exception subclass?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12: The Core Java Packages and Classes

Overview
At this point in your Java education, you have a solid foundation in the essential language. There are some Java features that
have not been presented in this book, and won't be, but for the most part you know what you need to know to create programs
consisting of classes and interfaces.

The remainder of this book will look at a large number of classes that have been written on your behalf and that you can
incorporate into your code. You can use them freely. Moreover, since they are downloaded (along with the compiler and the JVM)
whenever anyone downloads Java, you already have them, and you can safely assume that anyone who uses your code has the
same set of classes.

We cannot possibly present them all in this book. There are well over a thousand core classes and interfaces, and many of them
have specialized functionality that is of interest only to people with the same specialization. Instead of providing an exhaustive
survey, we will just introduce the most important classes. Then we will show you how to learn all about the more specialized
classes and interfaces. By the end of this chapter, you will have the same fundamental tools as any other Java programmer:

An understanding of the language.

A knowledge of certain core classes and interfaces.

The ability to learn other core classes and interfaces as needed.

The ability to create your own classes and interfaces, when the supplied ones don't address your needs.

The last item implies that you should use existing code wherever possible. This approach has several powerful benefits:

The code in the core packages has been thoroughly tested.

The code in the core packages is available immediately.

The code in the core packages was developed at somebody else's cost (both time and money).

These benefits are offset by the principle that using an existing class to achieve an inappropriate result is generally more
expensive than developing appropriate code from scratch. So a good rule of thumb is: Use core code when you can, and develop
when you must.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The API Pages
There are more than 1,000 core Java classes, and every one of them has been described in detail by the Java creators. Unlike a
lot of manufacturers' technical specifications, these descriptions are well-written, accurate, and helpful. They are provided as a set
of interconnected HTML pages that you can download to your hard drive and view with the Web browser of your choice. Like Java
itself, they are freely downloadable. If you have not already done so, please download them before continuing with this chapter.
You can find instructions on how to do this in Appendix A.

The API pages do a fine job of presenting each class in detail. In fact, they do such a good job that there is no need to duplicate
their effort in this chapter. Instead, we will begin by showing you how to use the API pages. After that, we will mostly give you just
an overview of the classes and methods, while encouraging you to use your new API skills to look up details when you need them.

Digression: A Personal Anecdote

Quite a while ago, before the birth of the World Wide Web, I worked for a company that made computers. These computers used
a programming language that was a bit like C, but it was object-oriented. In addition to the language, there were a number of
classes that supported I/O, graphical user interfaces, math, and so on. If you saw it today, you would probably be reminded of
Java, but with fewer supplied classes.

There were several dozen of these classes. Their documentation consisted of two manuals that listed the classes in alphabetical
order. For each class, the manuals listed the inheritance hierarchy, the data, and the methods.

Those of us who wrote programs for this system each had our own copy of the manuals. You could tell how long someone had
been working there by the shape their manuals were in. Those books took a beating. We were always flipping back and forth. If I
wanted to remind myself what a certain method of a certain class did, I might find that the method wasn't explained where I
expected an explanation, because the class I was reading about inherited the method from its superclass. So I would look up the
superclass (which might be in the other volume), and I would see that it returned an object reference, and I would have to look up
that object's explanation because I hadn't seen it before.

I flipped a lot of pages because a lot of information for one class was (quite rightly) presented in the description of a different
class. For example:

The class's superclass

The type of a non-primitive variable

The type of a non-primitive method argument

The type of a non-primitive method return value

Any class, method, or variable mentioned for any reason in the description I was reading

A set of HTML documents would have eliminated all that page-turning. The only problem was, this was 1988 and there was no
HTML. The Web was just a glimmer in the eyes of a few people in Switzerland, and hypertext was an idea that wasn't discussed
much outside of universities. We programmers would often wonder, "Couldn't we fix it so I could read all this on my screen, and
somehow click on names of classes and data and methods to read their explanations?" But we didn't invent the World Wide Web.

Fast-forward to right now. We don't have a few dozen classes; we have more than a thousand. If you printed their explanations in
books, how many yards of shelf space would be required? How long would it take to look something up? Fortunately, it's all in
HTML files, and fortunately, someone invented the Web. But it wasn't me.

Starting at the Top

To get the most out of this section, read it in front of your computer. You will be invited to look at various API pages. If you haven't
yet downloaded and installed them, do it now!

Appendix A suggested that you download the Java documentation into j2sdk1.4.1_02\docs (depending on your operating
system, the path separator might be a forward slash). In the docs directory, there is a directory called api. Display the contents of
that directory. Double-click on the icon for index.html. Your browser will appear, displaying a fairly large page with 3 frames.
This is the index. It is your entry point into the dozens of millions of bytes of information that are your electronic documentation.

The API pages are copyrighted, so we can't show you a picture of the index. Its structure is shown in Figure 12.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.1: Structure of the API index

The index has 3 frames:

The packages frame

The classes frame

The details frame

Look at the packages frame in the upper-left corner of your browser. It is a list of all the core Java packages. Subpackages are
also listed. Notice that the 2nd package in the list is java.awt, which is followed by its 10 subpackages.

The remainder of the left edge of the page is occupied by the classes frame. Initially, all the classes of all the core packages are
displayed. When you click on an individual package in the packages frame, the classes frame displays the contents of the
selected package. Figure 12.2 shows the structure of the classes frame.

Figure 12.2: Structure of the classes frame

The classes frame shows all the interfaces, classes, exceptions, and errors of the selected package. (If you haven't yet selected a
package, or if you select All Classes in the packages frame, you see everything for all packages.) Each interface, class, exception,
and error is a link.

We haven't discussed errors in this book. They are like exceptions, but they indicate something deeply wrong with a program. As
a programmer, you should avoid throwing or catching errors. So for the remainder of this book, we will continue to ignore their
existence.

Try it. In the packages frame, click on java.awt. (We will spend the last three chapters of this book learning how to use this
package.) The classes frame shows that java.awt has a large number of interfaces, a very large number of classes, a few
exceptions, and one error.

Now go back to the packages frame, scroll down a bit, and click on java.lang. Click on the link for the Boolean class, which is
the first link in the list of classes. The details frame displays a complete explanation of the class.

The class description is quite long, even for a simple class like java.lang.Boolean. It is divided into 3 sections, as shown in
Figure 12.3.

Figure 12.3: Class description

The class overview presents the class name, its inheritance hierarchy, and a text description. All elements of the inheritance
hierarchy are links, so it's easy to look up a class's superclass.

The field, constructor, and method summaries are the really useful part of this frame. Figure 12.4 shows their structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.4: Field/constructor/ method summaries

Each field, constructor, and method is listed alphabetically, along with a brief description. To see a more detailed description, click
on the name of the field, constructor, or method. The name is a link to the position, further down on the same page, of the detailed
description. Any class name in the detailed description is a link to the API page for that class. Try it. In the method summary
section, click on the link for toString(). You see an explanation that is somewhat deeper than that brief one that appeared in
the summary. Any exceptions thrown by any constructor or method are listed in the detailed description.

Any field, constructor, method, or class mentioned anywhere in the details frame is itself a link. The return type of the
toString() method is String. Click on one of the occurrences of this word. The details frame displays the description of the
java.lang.String class.

Between the summary and detail sections is a short section that lists all the methods that the class inherits from all its parent
superclasses.

Typically, a session with the API pages goes like this. You want to look up a particular method of a particular class, for any of the
same reasons you would look up a word in a dictionary. You want to know:

How to spell it.

How to use it.

What it means.

For a method, you probably want to know one of the following:

Its spelling.

Its return type.

Its argument list.

What it does.

What exceptions it throws.

You begin your session by scrolling through the packages frame until you find the right package. You click on it, so that the
classes frame displays the contents of the package. You scroll through the classes frame until you find the class you want. You
click on the class link to make the details frame display the class description.

Now you scroll through the alphabetical list of methods until you find the one you want. The summary information might be
enough. If not, you click on the method name to view the detailed description.

If you're looking for the method's return type or argument list, you might find yourself looking at the name of a class that you don't
recognize. No problem. Click on the class name (it's a link) and read its API page.

The API pages contain more information than is presented here, but this is enough to get you going. If you are curious about the
additional API information, a good place to start is the very top of any class description page. Click on the Use, Tree, or Index link.

Deprecated Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Occasionally, an API page might tell you that a certain method is deprecated. A deprecated method is one that was introduced in
an early revision of Java, and since then has been replaced with something more robust, modern, bug-free, or trustworthy. You
are strongly cautioned not to use anything that is deprecated. Sun reserves the right to remove anything deprecated from future
revisions.

Ordinarily, Java is backward-compatible. This means that if you write Java code that compiles successfully and runs correctly with
the current revision of Java, your code will still compile successfully and run with the same behavior as before in any future
revision of Java. But if you use deprecated methods, you no longer get backward-compatibility. If one of the methods you call has
been removed, your code will no longer work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The java.lang Package
The core Java classes fall into three broad categories. There are classes that support specific tasks, such as database access or
graphical user interface (GUI) creation. These classes are organized into packages. For example, database support is in the
java.sql package, while GUI infrastructure is in the java.awt package and its many subpackages. Another category is classes
that are generally useful, no matter what kind of program you are writing. Most of these appear in the java.util package. The
third category is classes that are essential to the operation of any program. These are to be found in the java.lang package.
Let's begin with a look at a few of them.

The classes and interfaces in java.lang are so important that they are imported in all source code automatically. It is as if the
compiler inserted the following line into any source:
import java.lang.*;

We will not be looking at all the classes in java.lang. Again, the purpose of this book is not to tell you everything there is to
know about every class in the package. Instead, we will just look at a few of the most important classes. Since you know how to
read API pages, you know how to find out about the others.

The java.lang.String Class

We will start with String. You have been aware of this class ever since Chapter 2, when you first looked at applications and saw
the following:
public static void main(String[] args)
{
. . .
}

Now you know that this is a method declaration, and no doubt you've guessed that the method takes a single argument whose
type is an array of something called String.

The String class contains an ordered sequence of characters, representing a piece of text. The text that an instance contains is
specified as a constructor argument. The class is immutable. This means that after an instance is constructed, its contents cannot
be changed. So if an instance of String initially contains the text "Click here to select a color", it will contain that text throughout
its lifetime.

This class is unique, in that there are two ways to create an instance. One way, of course, is to call a constructor. The second
way, which is unique to the String class, is to use a literal string. A literal string is text enclosed in double-quotes, like this:
"I am a literal string."

When the compiler encounters a literal string, it generates code that creates an instance of String to represent the text in
quotes. (Actually, the situation is a bit more complicated than that, but we don't need to go into detail here.) We have often used
code with the following format:
System.out.println("value is " + x);

Now you know that the text between the quotes is a literal string. Later in this chapter, you will see what is really going on when
the literal string is added to x. For now, you know that whatever else might be happening in the line of code, execution involves
the creation of an instance of String that represents the text in quotes.

The shortest literal string is
""

This string has zero characters, but it is still an object that exists, and you can call any methods of the String class on it. It is
called the empty string.

The easiest way to create a String instance that contains a particular run of text is like this:
String s;
s = "To be, or not to be";

Or simply:
String s = "To be, or not to be";

There are 11 different versions of the String constructor. Here we will only look at one of them. (Later in this chapter you will
learn how to look for information about the rest, so you will be able to choose the best one for any situation.) The simplest
constructor is
public String(String s)

This constructor takes a single argument, which is a reference to another string. The new object is an exact replica of the
argument. Even though this is the simplest form of the String constructor, it isn't often used because you have the option of
using a literal string instead. For example, the following two lines are (almost) equivalent:
String s = new String("abcde");
String s = "abcde";

The second version is obviously easier to type.

The String class has a large number of methods. Here we will present a few of the more interesting ones. We start with
toUpperCase() and toLowerCase(). The toUpperCase() method converts all lowercase characters in a string to
uppercase. The toLowerCase () method converts all uppercase characters in a string to lowercase. Here is an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uppercase. The toLowerCase () method converts all uppercase characters in a string to lowercase. Here is an example:
String s = "Mm";
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println(upper);
System.out.println(lower);

The output of this code is
MM
Mm

These methods, and indeed all String methods that seem to modify a string, do not change the original string. That would be
impossible, because strings are immutable. After they are constructed, they cannot be changed. Instead, toUpperCase() and
toLowerCase() create and return a new string object. To prove this, you can modify the code example:
String s = "Mm";
String upper = s.toUpperCase();
String lower = s.toLowerCase();
System.out.println(upper);
System.out.println(lower);
System.out.println(s);

The output of this code is
MM
mm
Mm

Notice the last line, which prints out the unscathed original string.

The situation can get confusing when a single reference is reassigned, as in the following example:
String s = new String("UPPER : lower");
System.out.println("BEFORE: " + s);
s = s.toUpperCase();
System.out.println("AFTER: " + s);

Here the single reference s refers first to the original string, and a little later to the new uppercase string. It looks like there is only
a single string object involved, especially when you look at the output:
BEFORE: UPPER : lower
AFTER: UPPER : LOWER

But there are actually two objects, although there is only one reference. When the reference is reassigned (s =
s.toUpperCase()), the original string object might get garbage- collected. This would happen if there were no other references
to the original object.

This might seem overly complicated when all you wanted to do was convert a string to upper- or lowercase, but it is always
important to bear in mind the difference between references and objects, and to know exactly what references are pointing to
what objects at every point in your code.

The StringLab animated illustration demonstrates strings in moving pictures. To run the animation, type java
strings.StringLab. You see a window with two code statements, as shown in Figure 12.5.

Figure 12.5: StringLab

The first statement creates a new instance of String. You can type anything you like to provide the text. The second statement
calls a method, toUpperCase() or toLowerCase(), on the string. Use the controls at the top of the window to choose the
method that will be called. You can also use the controls to choose between using two references or reassigning a single
reference. (Notice how the code in the main window changes when you change this option.) As usual, click Run to see the
animation, or click Run Lightspeed to skip the animation and see the final result. Be sure to watch the full animation with Reassign
Old Reference selected so you can see the original string being garbage-collected.

Figure 12.6 shows the result of converting to uppercase and using two references. Figure 12.7 shows the result of converting to
lowercase and reassigning the reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.6: StringLab: uppercase, 2 references

Figure 12.7: StringLab: lowercase, 1 reference

Now that you understand strings and methods, we can move quickly through a list of other String methods:

trim() Removes blank spaces from the start and end (but not the middle) of the executing string object.

substring(int n) Returns a portion of the executing string object. The substring consists of the run of characters
beginning at position n (where 0 is the first character) and ending at the end of the executing string object.

concat(String s) Appends s to the executing string object.

The return types are all String. These descriptions are deliberately brief. Detailed explanations are available to you in the
API pages.

Here are some String methods that return information about the executing string object. The return types vary, so they are
included in the list:

boolean equals(String s) Returns true if s and the executing string object contain identical text.

boolean equalsIgnoreCase(String s) Returns true if s and the executing string object contain identical text,
ignoring uppercase and lowercase distinctions.

char charAt(int n) Returns the nth character in the executing string object.

int length() Returns the length of the executing string object.

boolean startsWith(String s) Returns true if the executing string object begins with string s.

Here is a method whose argument is a string. The method prints out every character of the argument on its own line:
 void printChars(String s)
 {
 int length = s.length();
 for (int i=0; i<length; i++)
 {
 char c = s.charAt(i);
 System.out.println("Char #" + i + " is " + c);
 }
 }

Note the use of the length() and charAt() methods. Here is the output when the method is called with argument Alligator:
Char #0 is A
Char #1 is l
Char #2 is l
Char #3 is i
Char #4 is g
Char #5 is a
Char #6 is t
Char #7 is o
Char #8 is r

The only tricky method presented here is equals(). It is easy to understand what it does, provided you don't get misled by
the name. The equals()method does not check if the argument and the executing string object are the same object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the name. The equals()method does not check if the argument and the executing string object are the same object.
Instead, it checks whether the two objects both represent identical sequences of characters. To check if the argument and
the executing string are the same object, use the == operator, as demonstrated in the following example:

String s1 = new String("aa");
String s2 = new String("aa");
String s3 = s2;
if (s1.equals(s2))
 System.out.println("s1.equals(s2): YES");
if (s1 == s2)
 System.out.println("s1 == s2: YES");
if (s2 == s3)
 System.out.println("s2 == s3: YES");

The output is
s1.equals(s2): YES
s2 == s3: YES

Figure 12.8 shows the references and objects of this example.

Figure 12.8: String references and objects

We say that the == operator checks for reference equality, which means it checks if two references point to the same object.
The equals() method checks for object equality, which means it checks if two objects contain equal data. This distinction is
very important in object-oriented programming.

Command-Line Arguments
Every Java application has a main method that begins like this:
public static void main(String[] args) . . .

Of course, you can call the method argument anything you like, but args is the conventional name. The array contains the
application's command-line arguments. These are everything the user has typed into the command line that invoked the
application, except for the following:

java

The application class name

Any arguments for the JVM

So if you have an application class called database.Backup, and you run it by typing java database.Backup network
local greebo 1234, the args array will look like Figure 12.9.

Figure 12.9: Command-line arguments

Note that the last component in the array is a string. It is not a number, even though it looks like one because it consists entirely of
digit characters. Later you will learn how to convert an all-digit string into an int.

One job of the main() method is to check the command-line arguments and take appropriate action. For example, a main()
method might have the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public static void main(String[] args)
{
 for (int i=0; i< args.length; i++)
 {
 if (args [i].equals("help"))
 {
 printHelpMessage();
 break;
 }
 }
}

We assume the existence of a printHelpMessage() method that prints out an explanatory message on how to use the
program. The code scans the args array. If the array contains any occurrence of "help" (that is, if someone typed "help"
anywhere on the command line), the explanatory message is printed.

Some command-line arguments are intended for the JVM and do not get passed into the application. To see a list of JVM
arguments, type java -help. One such argument is -verbose. When you run a program with this argument, you get output
from the JVM about such activities as class loading. If you invoke an application by typing java -verbose database
.Backup network local greebo 1234, the -verbose argument will be consumed by the JVM and won't be passed on to
the application. So the application's args array will still be as shown in Figure 12.9, but the output will include the verbose
messages from the JVM.

The java.lang.Object Class

The Object class is the ultimate superclass of all other Java classes. It has about a dozen methods, many of which support
advanced functionality that is beyond the scope of this book. But it does have two methods that everyone should know about:
equals() and toString(). Since every other class extends Object (directly or indirectly), every other class inherits these
methods. You are not likely to create instances of Object, but you are very likely to use the equals() and toString()
methods that other classes inherit or override.

The first method we will look at is equals(). You already know about the implementation provided by the String class, and that
it checks for object equality and not reference equality. This distinction is maintained throughout the core Java classes: Any
implementation of equals() in any core class checks for object equality rather than reference equality. So
thisRef.equals(thatRef) will return true if the two references point to objects that contain equal variables. (Of course, if
the two references point to the same object, the call will also return true.)

For example, the java.awt.Point class represents a point in two-dimensional space. It has variables called x and y, which
hold the horizontal and vertical location of the point. If p1 and p2 are both references to instances of this class, you can check for
object equality by calling either
if (p1.equals(p2)) …

or
if (p2.equals(p1)) …

The equals() method of class Point returns true if p1.x equals p2.x and p1.y equals p2.y.

Not all core classes provide their own implementations of equals(). If you want to know if a class you are interested in provides
an implementation, you should look at the class's API page. Beware of classes whose API pages do not document an equals()
method. The class might inherit the method from Object, and that version is not very useful.

Now we will turn to the extremely useful toString() method. It is public, it returns a String, and it has no arguments, so its
declaration looks like this:
public String toString()

This method is intended to print out a useful message that includes information about the values of the executing object's
variables. The version provided by the Object class isn't very informative. In fact, it's downright cryptic. But every one of the core
Java classes overrides toString() with a version that provides useful information.

For example, there is a class called java.awt.Color that represents a color. The class has int variables called red, green,
and blue, which contain the amounts of red, green, and blue light that make up the represented color. Their values can range
from 0 through 255, and they are specified in the class's constructor.

Suppose you have a long intricate program with an instance of Color, referenced by variable foreground, that doesn't look
right. (Colors are used extensively in visual programming, which we will look at in the last 3 chapters of this book.) It would be
helpful if you knew exactly what the red, green, and blue components of the problematic color are. That information might lead
you to the source of the trouble. Thanks to toString(), you can easily create a line of debug code that tells you what is going
on inside your program. Always delete debug code after it has served your purpose. Otherwise it will accumulate, and your
program will emit lots of information that is no longer helpful.
Here is a debug line that prints out the puzzling color:
System.out.println("Weird color is " +
 foreground.toString());

The output looks something like this:
Weird color is java.awt.Color[r=100,g=255,b=0]

The output uses abbreviations instead of red, green, and blue, but it's clear what their values are. Now you can determine
which of them are wrong and look at the code that calculates the corresponding value that is passed into the Color constructor.

There is an easier way to print the toString value of the color, or of any other object. This brings us to the topic of string
concatenation. "Concatenation" is another of those five-syllable words. It just means joining strings consecutively, one after
another (after another, after another...). You have already used concatenation extensively, whenever you did something like

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.out.println("size is " + size +
 "and weight is " + weight);

Now it's time to see what's really going on between those parentheses. Look at those plus signs. Obviously they mean something
other than addition. In Java, plus signs have a double meaning:

When both items next to a plus sign are numeric, the plus sign means addition.

When one or both items next to a plus sign are references to strings, the plus sign means string concatenation.

In the second context, if one of the items next to the plus sign is a string, the other item can be anything! It can be a primitive,
another string reference, or a reference to an object of any other class. The other item is converted to a string according to the
rules shown in Table 12.1.

Table 12.1: String Concatenation Conversion Rules

Type Conversion Rule

boolean "true" or "false"

Primitive other than boolean A reasonable string representation

String The string

Object reference other than String Call toString() on the reference

The last entry in the table means that the line
System.out.println("Weird color is " +
 foreground.toString());

is equivalent to
System.out.println("Weird color is " +
 foreground);

In other words, when you're doing concatenation, you never need to type .toString().

The ConcatLab animated illustration shows concatenation in action. Run the program by typing java concat.ConcatLab. You
will see a window with three lines of code, as shown in Figure 12.10.

Figure 12.10: ConcatLab

The first statement creates an instance of java.awt.Color. The constructor's arguments are the three primary color values
(red/green/blue) that constitute the color. They must be in the range 0-255. You can type in any valid values. Later on, you will see
the color they represent.

The second statement creates an instance of a class called Point3D, which is not part of the core Java classes. To see the (very
simple) source for Point3D, click on the Edit Point3D button. You will see the display shown in Figure 12.11.

Figure 12.11: ConcatLab's Point3D class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The class represents a point in 3-D space, with x, y, and z coordinates. You will see a version of toString() that returns a
reasonable string representation. You can edit this code. Type any text you want into the text fields. When you're finished, click on
OK.

The third statement on the main window says
String s = "c is " + c + " and p is " + p;

Click on the Run button to run the animation, which shows how the four parts of the concatenated string are made. Figure 12.12
shows the result of running the animation, after some custom configuration.

Figure 12.12: ConcatLab's Point3D class

The java.lang.Integer Class, and other Wrappers

The java.lang package has eight very simple classes called wrappers. A wrapper is a class whose data is a single primitive
value. In other words, the primitive is "wrapped up" inside an object. The wrapper classes have names that are very similar to the
corresponding primitive names. In some cases, the names are identical except for the first letter, which is always uppercase for
class names and lowercase for primitive names. Table 12.2 shows the wrapper class names.

Table 12.2: Wrapper Class Names

Primitive Wrapper

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

The wrapper classes are immutable. This means that, just as with strings, the data contained in an instance doesn't change after
the instance is created. The contained data is passed into the constructor, as shown below:
Boolean boo = new Boolean(true);
Character cha = new Character('L');

byte b = 5;
Byte bye = new Byte(b);
short s = 10;
Short sho = new Short(s);
int i = 9999;
Integer inty = new Integer(i);
long n = 2222222;
Long lonny = new Long(n);
float f = 3.14159f;
Float flo = new Float(f);
double d = 1.2e200;
Double dubby = new Double(d);

It might not be clear why these classes would ever be useful. You'll find out why when you learn about the java.util class a
little later on. But for now, be aware that the wrapper classes all have static methods that are useful for translating strings into
primitives. For example, class Integer has a parseInt(String s) method that translates a string to an int. If the string does
not represent a number, the method throws NumberFormatException.

The following code is an application that translates its first classes to an int, multiplies that value by 39, and then prints out the
result:
public class X39
{
 public static void main(String[] args)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if (args.length == 0)
 {
 System.out.println("Please supply a number.");
 }
 else
 {
 try
 {
 int n = Integer.parseInt(args[0]);
 int times39 = n * 39;
 System.out.println(args[0] + " * 39 = " +
 times39);
 }
 catch (NumberFormatException x)
 {
 System.out.println("That's not a number!");
 }
 }
 }
}

Note that this code doesn't create an instance of Integer. Instead, it calls a static method of Integer (in the first line of the try
block) to convert the string in args[0] to an int. Code like this is frequently seen near the beginning of main() methods.
Generally, an application that has numeric command-line arguments can't get very far until it converts the argument strings to
numeric primitives.

The java.lang.System Class

The java.lang.System class contains a hodgepodge of methods, most of which involve advanced functionality related to the
JVM. This brief section will only cover one of the class's methods. First, let's take a moment to look at two of its static variables:
out and in.

You have already used System.out extensively. Whenever you used
System.out.println(…);

You were making a call to the println() method of the System.out object.

The println() method is heavily overloaded. All of the versions of the method take a single argument. One version, which you
have been using throughout this book, takes a string argument. The string is printed out, followed by a newline character. The
newline character is not displayed. Instead, it moves the cursor position to the beginning of the next line.

Other versions of println() take args that are bytes, shorts, booleans, and so on. These versions convert their arguments to
strings and then print them out, followed by a newline character.

Perhaps the most commonly used method of java.lang.System is exit(). This method causes the JVM to terminate, thus
ending the current application immediately. The method takes an int argument called the exit code. Typically, 0 is used to indicate
a normal termination, while a non-zero value indicates that termination was caused by an error condition.

Some operating systems are able to run sequences of programs, where the exit code of one program is used to control the
operation of the next program. This is highly system-dependent and not relevant to an introductory Java book, but you need to
know what exit status codes are because you need to pass an argument into every System.exit() call. You won't go wrong if
you use 0 to mean normal termination and a small non-zero value to mean abnormal termination.

The following code is a rewrite of the previous example, using System.exit() to terminate execution.
public class X39RevB
{
 public static void main(String[] args)
 {
 if (args.length == 0)
 {
 System.out.println("Please supply a number.");
 System.exit(1); // Non-zero exit code
 }
 else
 {
 try
 {
 int n = Integer.parseInt(args[0]);
 int times39 = n * 39;
 System.out.println(args[0] + " * 39 = " +
 times39);
 System.exit(0);
 }
 catch (NumberFormatException x)
 {
 System.out.println("That's not a number!");
 System.exit(2);
 }
 }
 }
}

The System.exit(0) call at the end of the try block isn't actually necessary. When main() finishes, the JVM shuts down
anyway, with an exit code of 0.

The java.lang.Math Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The java.lang.Math class is the least object-oriented of all the core Java classes. All of its methods are static, so you never
need to create an instance. In fact, you aren't allowed to create an instance (see Exercise 3 for details).

The class has dozens of methods. Instead of listing them all, here's a short sampler. Consult the API page for the complete list.

int min(int a, int b) Returns the lesser of a and b

int max(int a, int b) Returns the greater of a and b

double sin(double angle) Computes the sine of an angle

double cos(double angle) Computes the cosine of an angle

double tan(double angle) Computes the tangent of an angle

double pow(double a, double b) Returns a raised to the power of b

double random() Returns a random number that is >=0 and <1

And so on. All trigonometry methods use radians, not degrees, for expressing angles. All methods that do intense calculation
have return types of double.

The random() method can be used to generate a random double in any range. For example, to generate a random double
that is >=0 and <30, just use 30 * Math.random(). To generate a random double that is >=10 and <40, just use 10 +
(30*Math.random()).

The following code generates 100 random numbers that are >=0 and <50. Then it computes the area of a circle whose radius is
the random number. The code keeps track of, and prints out, the largest area:
public class RandomAreas
{
 public static void main(String[] args)
 {
 double maxArea = 0;
 for (int i=0; i<100; i++)
 {
 double radius = 50 * Math.random();
 double area = 3.24159 * radius * radius;
 if (area > maxArea)
 maxArea = area;
 }
 System.out.println("Biggest area = " + maxArea);
 }
}

The lang class defines two public final static double variables, PI and E. They contain very precise values for these
mathematical constants, accurate to 20 digits to the right of the decimal point. So you never need to memorize, look up, or
type in either of these values. That's a good thing, because you might accidentally type in a wrong value that could throw off
all your subsequent calculations. In fact, that's what happened in this example. In the line that begins double area =, the
2 should be a 1. A better line would be

double area = Math.PI * radius * radius;

You can make the code a little shorter by replacing these lines:
if (area > maxArea)
 maxArea = area;

With this single line:
maxArea = Math.max(area, maxArea);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. In the beginning of this chapter you learned that a good rule of thumb is to use core code when you can and
develop original code when you must. Because Java is an object-oriented language, you have a third option,
which combines reusing existing code with creating your own. You learned about this option in an earlier
chapter. What is it?

2. If you write code that calls a deprecated method of one of the core Java classes, what valuable feature of Java
can you no longer rely on?

3. Suppose you are reading someone else's code and you come across the following lines:
Stack myStack = new Stack(); // java.util package
myStack.setSize(100);

You decide to look up setSize() in the APIs. The comment kindly tells you that class Stack is in package
java.util, so you click on java.util in the packages frame, and then you click on Stack in the classes frame.
You find yourself looking at the class description. You scroll down to the method summaries, and you don't see
setSize anywhere.

How should you proceed?

4. In the section on the String class, you learned about the startsWith(String s) method, which returns
true if the executing string object begins with the argument string s. It stands to reason that there should be a
similar method that tells you whether the executing string object ends with a specified string. Look at the API
page for java.lang.String and see if such a method exists.

5. What happens when you try to compile and execute the following application?
public class Ch12Q5
{
 public String toString()
 {
 return "I am an instance of Ch12Q5.";
 }
 public static void main(String[] args)
 {
 Ch12Q5 thing = new Ch12Q5();
 System.out.println(thing);
 }
}

6. What happens when you try to compile and execute the following application?
class Ch12Q6
{
 String toString()
 {
 return "I am an instance of Ch12Q6.";
 }
 public static void main(String[] args)
 {
 Ch12Q6 thing = new Ch12Q6();
 System.out.println(thing);
 }
}

7. Look up the explanation of the equals() method on the API page of class java.lang.Object. The explanation is
a bit wordy, but see if you can figure out what it does. (Focus on the last sentence, just before the "Parameters"
section.) What is the technical term for what the method does? (Hint: It was introduced in this chapter.)

8. You're not allowed to construct an instance of the java.lang.Math class. What happens if you try?

9. The following code models the behavior of a familiar piece of equipment that is used in many games throughout
the world. What is the piece of equipment?
long rand = 1 + Math.round(Math.random() * 5);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13: File Input and Output
In Chapter 12, you saw a few of the core Java packages and classes. You also learned that creating successful Java programs
involves both writing your own code and using preexisting classes. This chapter will cover the fundamentals of reading and writing
disk files. It will take advantage of several core classes in the java.io package. This will be your first look at making extensive
use of core classes.

Files As Sequences of Bytes
In Chapter 1, you saw that a computer's memory is a clump of tiny circuits in which voltages represent 0s and 1s. It doesn't take a
degree in electrical engineering to know that when you turn off a circuit's power, the voltages go away. No more 0s, no more 1s.

Disks are like computer memory in the following sense: A disk is a collection of tiny "somethings" that can be in one of two
possible states. The surrounding electronics, and the software that controls the surrounding electronics, interpret the two states as
representing 0 or 1. With a hard disk, the states are microscopic magnetic fields that can point in either of two directions. With a
CD-ROM or DVD, the medium is filled with microscopic regions that either do or do not block light. Aside from the underlying
physics, the main difference between disks and memory is that disks remember what is stored in them, even after the power goes
off.

To make the rest of this discussion more clear, let's use the term RAM to mean ordinary computer memory, as distinct from disks,
which are also a kind of memory. RAM is an acronym for Random Access Memory. It's a cool-sounding acronym, but you may be
wondering what's so random about RAM. "Random" relates (distantly) to the amount of time it takes to read data out of memory or
to write data into memory. It takes exactly the same amount of time (less than one millionth of a second) to read any byte in the
circuit. Writing might take slightly longer than reading, but writing any byte takes exactly the same amount of time as writing any
other byte. So you can pick any two bytes at random, and they can be read in the same amount of time, or written in the same
amount of time, as each other.

Disks are not random access devices. At any moment, some parts of the disk data can be read more quickly than others. This is
because the disk is rotating. If you want to read some data, you have to wait until it has rotated into position next to the disk's
reading or writing hardware, which does not rotate. It you're lucky, the data will be just about rotated into position. If you're out of
luck, the data will have just rotated out of position, and you will have to wait until the disk makes another revolution.

So you see that RAM and disks have very different mechanical and physical properties, but they both can be treated as storing
ordered sequences of 0s and 1s.

As with RAM, you think of disks as being organized into bytes, each byte having a unique position. As with RAM, you would find it
impossibly limiting if you had to think exclusively in terms of bytes. As with RAM, you use groups of disk bytes to encode higher-
level multi-byte information. But unlike RAM, the first step in learning how to do disk input and output is to learn how to read and
write pure bytes. That is where we will begin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing and Reading Bytes
Document files don't really contain text. Image files don't really contain pictures. MP3 files don't really contain music, and MPEG
files don't really contain movies. They all contain bytes, because all files just contain bytes. The bytes encode information; they
are decoded by software appropriate to the encoded content. This is why filename extensions are so important. They tell the
computer what decoding software to use. If you take an image file that encodes a really beautiful picture and you change filename
extension to .mp3, it's probably going to sound terrible.

All files are sequences of bytes. Before we look at decoding and encoding the information represented by the files, you need to
learn how to write and read plain ordinary bytes. You will make extensive use of two of the classes in the java.io package:

FileOutputStream

FileInputStream

A file output stream writes bytes to a file; a file input stream reads bytes from a file. Our purpose here is not to present both
classes in their entirety. Here you will learn more than enough to be able to use them well. Whenever you want to complete your
understanding, you can refer to the API documentation.

Both classes have constructors with String arguments, where the string specifies the name of the file. On Windows machines,
the file separator (the character that goes between elements in a full pathname) is a backslash, and that can lead to problems. So
let's begin with a digression on dealing with backslashes.

Backslashes in Filenames

If you want to write bytes to a file in the current working directory called xyz, you can construct a file output stream like this:
FileOutputStream fos;
fos = new FileOutputStream("xyz");

Of course, you can create a file output stream in a similar way. Ignoring for the moment the issue of what you can actually do with
those streams, you have to deal with the question of what happens when you want to specify a full pathname on a Windows
system. For example, what if you want to write to a file whose full pathname is C:my_files\photos\abc? The following code
will not do what you want:
FileOutputStream fos;
fos = new FileOutputStream("C:my_files\photos\abc");

Surprisingly, this code will not compile! The compiler error says that there is an invalid escape character, whatever that means.

Actually, the problem has nothing to do with file output streams. It has to do with backslashes in literal strings. You would get the
same compilation error if you tried the following:
String s = "C:my_files\photos\abc";

In Chapter 2, "Data," you saw that certain characters (most notably the newline and tab characters) are represented by escape
codes, \n for newline and \t for tab. Those codes can also be embedded in literal strings. For example, the following code prints
some numbers, separated by tabs, on two lines:
String s = "123\t456\t789\n987\t654\t432";
System.out.println(s);

You can see that the backslash character has special meaning to the Java compiler. In literal strings and chars, backslash means,
"Ignore me and treat the next character as a special code." If you just want a simple ordinary backslash in a literal string or char,
you have to use a double backslash. For example, to print out the word "hello" followed by a backslash, you have to do the
following:
System.out.println("Hello\\");

Note the second backslash. Only one backslash is printed.

So you can see that
String s = "C:my_files\photos\abc";

won't compile, because \p and a are not valid escape codes. It's a good thing they aren't. The following code compiles, but with
an unexpected result:
String s = "C:my_backup\temporary\news";

So if you are writing file access code for a Windows machine, you always have to remember to use double backslashes for file
separators, like this:
FileOutputStream fos;
fos = new FileOutputStream("C:my_files\\photos\\abc");

Now that you know how to specify filenames, we can move on to writing to files.

Writing Bytes

To create a file full of bytes, you have to do three things:
1. Construct an instance of FileOutputStream.

2. Write the bytes.

3. Close the stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following application creates a file called "xyz" in the current directory, writes 10 bytes, and then closes the file:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. FileOutputStream fos;
 8. fos = new FileOutputStream("xyz");
 9. for (int i=0; i<10; i++)
10. fos.write(i);
11. fos.close();
12. }
13. }

Line 8 constructs the output stream. Line 10, which executes 10 times in the for loop, writes the bytes. It looks like line 10
actually writes ints, because i is an int, but the write() method actually only writes the low-order 8 bits of its argument. Line 11
"closes" the stream. Closing releases certain hidden operating system resources that the stream needs in order to access the
disk. After a stream is closed, it can't be written to.

Our code example will not compile, because lines 8, 10, and 11 throw exceptions. The constructor on line 8 throws
FileNotFoundException. The write() call on line 10 and the close() call on line 11 throw IOException. So the code can
be improved as follows:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. try
 8. {
 9. FileOutputStream fos;
10. fos = new FileOutputStream("xyz");
11. for (int i=0; i<10; i++)
12. fos.write(i);
13. fos.close();
14. }
15. catch (FileNotFoundException x)
16. {
17. System.out.println("Caught FileNotFoundEx");
18. }
19. catch (IOException x)
20. {
21. System.out.println("Caught IOExn");
22. }
23. }
24. }

This code compiles, and it executes correctly. But it can be simplified a bit. FileNotFoundException is a subclass of
IOException. So we can eliminate lines 13-16:
 1. import java.io.*;
 2.
 3. public class Write10Bytes
 4. {
 5. public static void main(String[] args_
 6. {
 7. try
 8. {
 9. FileOutputStream fos;
10. fos = new FileOutputStream("xyz");
11. for (int i=0; i<10; i++)
12. fos.write(i);
13. fos.close();
14. }
15. catch (IOException x)
16. {
17. System.out.println("Caught IOExn");
18. }
19. }
20. }

After this application runs, the current directory contains a 10-byte file named "xyz".

The Simple Output Lab animated illustration demonstrates an application that writes several bytes to a file. To run the program,
type "java io.SimpleOutputLab". The initial display is shown in Figure 13.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.1: Simple Output Lab

The animation is very simple, but it will give you a good graphical image of the relationships between the data, the output stream,
and the file. Figure 13.2 shows the animation in progress.

Figure 13.2: Simple Output Lab in progress

Reading Bytes

Reading bytes is almost exactly like writing bytes. You still have to do three things:
1. Construct an instance of FileInputStream.

2. Read the bytes.

3. Close the stream.

The following application reads back the file that was created in the previous section:
 1. import java.io.*;
 2.
 3. public class Read10Bytes
 4. {
 5. public static void main(String[] args)
 6. {
 7. try
 8. {
 9. FileInputStream fis;
10. fis = new FileInputStream ("xyz");
11. for (int i=0; i<10; i++)
12. {
13. int theByte = fis.read();
14. System.out.println(theByte);
15. }
16. fis.close();
17. }
18. catch (IOException x)
19. {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19. {
20. System.out.println("Caught IOExn");
21. }
22. }
23. }

Line 8 creates the input stream, line 12 reads the bytes, and line 14 closes the stream. Line 12 prints out the bytes that were read,
each one on its own line.

Note the strange variable on line 11. It is called theByte, but it is an int. The read() method of class FileInputStream reads
a byte from the disk, but returns an int. Usually, the high-order 24 bits of the returned int are all 0s; the low-order 8 bits are the
byte that was read from the disk. However, if the input stream has already read all the bytes in its file, the next read() call will
return the int value -1. Recall that this value consists of 32 1's. This is distinct from the byte value of -1, which consists of eight 1's.
If a file input stream reads such a byte from its file, the return value will have 1s in its low-order eight bits, and 0s in its high-order
24 bits. So there is no danger of confusing a byte read from the file whose value happens to be -1 with the int that signals that
there is no more data in the file. Table 13.1 makes this clear.

Table 13.1: Byte -1 vs. Int -1

byte -1, returned as an int int -1, signaling end of file

00000000 00000000 00000000 11111111 11111111 11111111 11111111 11111111

You can use the special return value when you don't know the length of the file you are reading. In this example, suppose you
don't know that the file contains 10 bytes. As you learned in Chapter 5, when you don't know how many times the loop will
execute, it's time to use a while loop:
import java.io.*;

 public class Read10Bytes
 {
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis;
 fis = new FileInputStream ("xyz");
 while (true)
 {
 int theByte = fis.read();
 if (theByte == -1)
 break;
 System.out.println(theByte);
 }
 fis.close();
}
 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
 }

This application generates exactly the same output as the previous version, but this time there is no need to know the size of the
file. This version can handle a file of any size.

The Simple Input Lab animated illustration demonstrates an application that reads several bytes from a file. To run the program,
type "java io.SimpleInputLab". The animation is very simple, but like SimpleOutputLab, it will give you a good graphical
image of the relationships between the data, the input stream, and the file. Figure 13.3 shows the animation in progress.

Figure 13.3: Simple Input Lab in progress

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing and Reading Data
At this point, you might be asking yourself, "When would I ever want to write or read bytes?" After all, one of the huge
disadvantages of SimCom, as compared to the JVM, is that it deals only in bytes, while Java supports eight primitive data types
and limitless class types.

The answer, fortunately, is that you never have to write or read bytes if you don't want to. You still have to create file input and
output streams, and you still have to close them when you're done using them, but you don't have to write to them or read from
them. Not directly, anyway. The writing and reading can be done by two very useful classes in the java.io package:

DataOutputStream

DataInputStream

The constructor for DataOutputStream takes a single argument. This argument is not the name of a file. Instead, it is a
reference to a file output stream. Data written to a data output stream gets chopped up into bytes, which the data output stream
passes to its file output stream. The technique of connecting streams together is called chaining. Figure 13.4 shows a data output
stream chained onto a file output stream.

Figure 13.4: Output chaining

DataOutputStream has a large number of methods that chop up data and deliver bytes to the next stream in the chain. Here we
will discuss nine of these methods:

writeBoolean(boolean boo)

writeByte(int b)

writeShort(int s)

writeChar(int c)

writeInt(int i)

writeLong(long n)

writeFloat(float f)

writeDouble(double d)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writeDouble(double d)

writeUTF(String s)

It is obvious what the first eight methods do: They convert their primitive arguments into bytes. (It's surprising that writeByte(),
writeShort(), and writeChar() take int args rather than the corresponding primitive types. That's just how it is.) What about
UTF? Recall that Java's char type uses Unicode encoding. So a Java string is a run of Unicode characters. UTF is a standard for
converting Unicode strings into bytes. Thanks to the writeUTF() method, you can use a data output stream to write any of
Java's eight primitives, as well as any string. This is illustrated in the following application.

The following code chains a data output stream onto a file output stream, and then it writes one of each primitive type as well as
one string:
import java.io.*;

public class WriteWithChain
{
 public static void main(String[] args)
 {
 boolean boo = true;
 byte b = 12;
 short sh = 12345;
 char c = 'M';
 int i = -654321;
 long n = 12341234;
 float f = 15;
 double d = 1.23e88;
 String s = "Where the devil did that dragon come from?";

 try
 {
 FileOutputStream fos;
 DataOutputStream dos;

 fos = new FileOutputStream("abc");
 dos = new DataOutputStream(fos);
 dos.writeBoolean(boo);
 dos.writeByte(b);
 dos.writeShort(sh);
 dos.writeChar(c);
 dos.writeInt(i);
 dos.writeLong(n);
 dos.writeFloat(f);
 dos.writeDouble(d);
 dos.writeUTF(s);
 dos.close();
 fos.close();
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

Note the two close() calls at the end of the try block. Every input and output stream should be closed after use. A good rule of
thumb is to close chained streams in the opposite

order from their creation. Since the file output stream was constructed before the data output stream, close the data output stream
first and the file output stream second.

Now you know how to write data to a file, so it is time to learn how to read data from a file. Again, you will chain a high-level
stream onto a stream that communicates with a file. But this time, you will chain a data input stream onto a file input stream.
Figure 13.5 shows this arrangement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.5: Input chaining

The DataInputStream class reads bytes from a lower-level stream, such as a file input stream has nine reading methods that
correspond to the nine writing methods of DataOutputStream:

readBoolean()

readByte()

readShort()

readChar()

readInt()

readLong()

readFloat()

readDouble()

readUTF()

These methods take no arguments. Their return types correspond to their names: boolean for readBoolean(), byte for
readByte(), and so on. readUTF() returns a string. When any of these calls are made, the data input stream gets the
appropriate number of bytes from its lower-level stream and assembles them to create the appropriate return value.

Now you can read the file by chaining a data input stream onto a file input stream:
import java.io.*;

public class ReadWithChain
{
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis;
 DataInputStream dis;

 fis = new FileInputStream("abc");
 dis = new DataInputStream(fis);
 boolean boo = dis.readBoolean();
 System.out.println("Read boolean: " + boo);
 byte b = dis.readByte();
 System.out.println("Read byte: " + b);
 short sh = dis.readShort();
 System.out.println("Read short: " + sh);
 char c = dis.readChar();
 System.out.println("Read char: " + c);
 int i = dis.readInt();
 System.out.println("Read int: " + i);
 long n = dis.readLong();
 System.out.println("Read long: " + n);
 float f = dis.readFloat();
 System.out.println("Read float: " + f);
 double d = dis.readDouble();
 System.out.println("Read double: " + d);
 String s = dis.readUTF();
 System.out.println("Read string: " + s);
 dis.close();
 fis.close();
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This application's output is
Read boolean: true
Read byte: 12
Read short: 12345
Read char: M
Read int: -654321
Read long: 12341234
Read float: 15.0
Read double: 1.23E88
Read string: Where the devil did that dragon come from?

Obviously, this output reflects the data that was originally written to the file in the previous example. The two applications work
together because the reading code reads exactly the same types, in exactly the same order, as were written by the writing code.
Whenever you read from a file that was created with a data output stream, your read calls have to correspond exactly to the write
calls that created the file. Otherwise, your data will be garbled beyond all recognition.

For example, suppose you mistakenly called readLong() instead of readInt(). The data input stream would grab the next
eight bytes so that it could build a long. Those eight bytes would be the four-byte int (which is the next item of data in the file), and
the first four bytes of the eight-byte long (which follows the int in the file).

The Data Chain Lab animated illustration demonstrates code that first writes three pieces of data to a file, and then reads them
back. To run the application, type "java io.DataChainLab". Figure 13.6 shows the display.

Figure 13.6: Data Chain Lab

In the three lines that write data, you will see pull-down choices for configuring which data type to write out. You can choose from
any of the seven methods that write numerical types. You can also choose the values to be written. When you change the type
being written, the corresponding reading code changes as well. This is in keeping with the rule that the type that is written must
match the type that is read.

When you're ready, click the "Run" button to view the animation. If you want to run it again, perhaps with different output methods
or values, first click "Reset". Then choose new methods and values, and click "Run" again.

Figure 13.7 shows Data Chain Lab in progress. It has been configured to write and then read a byte, a long, and a double.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.7: Data Chain Lab in progress: Text, writers, and readers

File output streams and file input streams are used for files that contain raw bytes. Data output streams and data input streams
are used for files whose bytes represent multibyte data. There is a third kind of file, whose bytes represent text. For access to text
files, Java provides classes called readers and writers.

Before presenting readers and writers, we should take a moment to explain what is meant by "text file". Recall that Java uses the
modern Unicode scheme to represent text, using two bytes per character. This means there are 65,536 possible characters that
can be represented. That's more than enough to represent every character of every language on the planet... until you consider
Chinese, Japanese, and Korean. These non-phonetic alphabets have huge numbers of characters, enough to consume all 65,536
bit combinations. The international Unicode Consortium decides which characters of which languages will be represented by
which bit combinations.

Well, that's the modern way to represent characters. It doesn't seem quite modern enough when you think about those Chinese,
Japanese, and Korean symbols that get left out, but it's better than what we had before. The old way of doing things, from the
invention of computers through the introduction of Unicode, was to use 8-bit characters. Every language group was on its own to
decide which of the 256 possible bit combinations would represent which character. Most files created during that time used an
encoding called ASCII, which stands for "American Standard Code for Information Interchange". ASCII encodes all the characters
in American English, plus punctuation marks, into the range 0-127. The range 128-255 encodes symbols such as accented
vowels, which are used in western European languages, as well as some Greek characters, line-drawing symbols, and some
others. All of the characters that are represented in ASCII are represented in Unicode.

So here's the situation today: Within the JVM, characters are represented by Unicode. But in the world in general, there are
millions of text files that use ASCII or other 8-bit representations. So Java needs a way to read those files and present their
contents as Unicode strings. Also, Java needs a way to write ASCII files (as well as other 8-bit formats), because files can be read
by non-Java programs that don't know about Unicode. Note that the problem cannot be solved by using data input and output
streams that do lots of readUTF() and writeUTF() calls, because UTF is compressed Unicode, not ASCII.

Readers and writers solve the problem of translating between 16-bit characters within a JVM and 8-bit characters in text files.
Figure 13.8 illustrates the roles of readers and writers.

Figure 13.8: Readers and writers

Reader is an abstract class that reads 8-bit text and delivers Unicode chars. Writer is an abstract class that reads Unicode
chars and delivers 8-bit text. For our purposes, the two most important subclasses of these two classes are FileReader and
FileWriter, which read and write 8-bit text files.

A FileWriter is a lot like a FileOutputStream. You construct one, passing as an argument the name of the file you want to
make. Then you write, and when you have finished, you close the FileWriter. This all must happen in a try block, because the
code can throw IOException and some of its subclasses. The following code writes two lines of text to a file called abc.txt:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\n");
5. fw.write("Goodbye\n");
6. fw.close();
7. }
8. catch (IOException x) {}

Line 4 writes "Hello", followed by a newline character. Line 5 writes "Goodbye", followed by a newline character. Note that the
newline is not automatic (as it is in the System.out.println() call, for example). If you want multiple lines of text, you have to
indicate the line breaks yourself. So the following code creates an identical file:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\nGoodbye\n");
5. fw.close();
6. }
7. catch (IOException x) {}

There are three common ways to indicate that a line has ended and a new line has begun:

A return character ('\r')

A newline character ('\n')

A return character followed by a newline character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Which should you use? It depends on which other programs will be reading the file you create. Programs that run on Windows
platforms expect a return character followed by a newline character. If you are creating files for Windows, you should do
something like the following:
1. try
2. {
3. FileWriter fw = new FileWriter("abc.txt");
4. fw.write("Hello\r\nGoodbye\r\n");
5. fw.close();
6. }
7. catch (IOException x) {}

If you run this code on a Windows machine and then double-click on the icon for the abc.txt file, Windows will open a Notepad
window that displays (and lets you edit) the file. You can also open the file with any other program that reads text files, including
Word.

You can read text files with the FileReader class, but this class is a bit limited. It is much easier to use the LineNumberReader
class, where the readLine() method reads lines of text and returns strings. (This assumes that your text file has multiple lines,
and that reading line by line will be useful to you. This is a safe assumption.) A call to readLine() reads one line from the input
file. A line is a run of text, terminated by either a return character, a newline character, or a return character followed by a newline
character. The line-termination characters are not part of the returned string.

A line number reader does not directly read from the input file. Rather, it is chained onto a file reader, in the same way a data
input stream is chained onto a file input stream. Figure 13.9 shows the relationship between a line number reader and a file
reader.

Figure 13.9: Line number reader and file reader

The following code reads and prints out the first two line of a character file:
try
{
 FileReader fr = new FileReader("zzz.txt");
 LineNumberReader lnr = new LineNumberReader(fr);
 System.out.println(lnr.readLine());
 System.out.println(lnr.readLine());
 lnr.close();
 fr.close();
}
catch (IOException x) { }

The LineNumberReader class keeps track of the number of lines it has read. You can retrieve the current line number by calling
getLineNumber().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The readline() method returns null if the end of the input file has been reached. So the following code prints out the line
number of all lines in file input.txt that contain the word "purple":
 1. try
 2. {
 3. FileReader fr = new FileReader("input.txt");
 4. LineNumberReader lnr = new LineNumberReader(fr);
 5. String s = "";
 6. while (s != null)
 7. {
 8. s = lnr.readLine();
 9. if (s != null && s.indexOf("purple") != -1)
10. System.out.println("Found \"purple\" at line " +
11. lnr.getLineNumber());
12. }
13. lnr.close();
14. fr.close();
15. }
16. catch (IOException x) { }

The while loop runs as long as s is not null (that is, as long as the end of the file has not been reached). So s has to be
initialized to anything besides null so that the loop will not immediately terminate. Line 9 calls indexOf() on the string returned
by the line number reader. This method returns the position (in the string on which the method was called) of the string that is the
method's argument. For example, if s in line 9 is "A ferocious purple dragon", the indexOf() call will return 12. If the argument
string does not appear at all, indexOf() returns -1. So the condition in line 9 evaluates to true when the reader has not yet
reached the end of the file, and the string just read contains "purple".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. In this chapter, you learned about the following line:
String s = "C:my_backup\temporary\news";

What does the following code print out?
String s = "C:my_backup\temporary\news";
System.out.println("***\n" + s + "***");

What is the moral of this exercise?

2. The code examples in the "Writing and Reading Data" section defined an int called i, a float called f, a double
called d, and so on. But the long was called n, which breaks the pattern. You might have expected the long to be
called l. Why do you think this was not done?

3. Write a program that creates a file containing 5,000 random doubles that are >= 0 and <200.

4. Write a program that verifies the file you created in the previous exercise. Your program should read the 5,000
doubles, making sure that each falls within the proper range. Your program should also make sure the file
contains exactly 5,000 longs.

5. Look up the API documentation for the java.io.File class. An instance of this class contains information
about an individual file. One of the methods of the class tells you the length in bytes of a file. Use this method to
determine the number of bytes in the file you created in Exercise 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14: Painting
We now begin a series of three chapters about visual programming. Up until now, all your applications have produced text output.
In Chapter 11, "Exceptions", you learned how to provide text input via command-line arguments. Text input and output are fine, up
to a point, but the mouse and the GUI provide a much richer environment for communicating a user's ideas to a program, and for
communicating a program's results to a user.

Graphical user interface is usually abbreviated GUI. (Yes, it's pronounced "gooey.") The java.awt package contains dozens of
classes that support GUI concepts like windows, colors, lines, squares, fonts, buttons, and check boxes. This chapter will show
you how to display a window on your screen and paint basic shapes in it. That isn't spectacular, but this chapter will also prepare
you for Chapters 15, "Components," and 16, "Events," where you will learn how to populate your GUIs with buttons, scrollbars,
labels, and other standard controls. This chapter will end with an extended example program whose GUI combines custom
painting with standard components.

Frames
A frame is a window on a computer screen, plus the "decoration" that makes it look like an independent window, plus the
underlying programmatic behavior that lets you move windows around on your screen, resize them, iconify them, and so on.
Figure 14.1 shows a frame whose contents are gray.

Figure 14.1: A frame with boring contents

The figure shows a Windows frame that was created by a Java program running on a Windows platform. Windows users will
recognize the Minimize, Maximize, and Close buttons in the upper-right corner, as well as the decorations that give the outline its
3-D beveled appearance. On a different platform, the same program would create a frame whose controls and decorations looked
slightly different, appropriate to the platform's windowing software.

So on any platform, a frame created by a Java program looks exactly like any other frame. This happens because the classes of
the java.awt package do not directly draw components onto the screen. Instead, they instruct the underlying system's
windowing software to do the work.

Note Java provides two alternative toolkits for creating GUIs. The simpler one is called AWT, which stands for Another
Windowing Toolkit. The more complicated toolkit is called Swing, which doesn't stand for anything and is not discussed
in this book. Swing does not use the underlying windowing software to draw components.

Here is the application that created the frame in Figure 14.1:
 1. import java.awt.*;
 2.
 3. public class EmptyFrame extends Frame
 4. {
 5. EmptyFrame()
 6. {
 7. setTitle("A bleak empty gray frame");
 8. setBackground(new Color(128, 128, 128));
 9. setSize(300, 220);
10. }
11.
12. public static void main(String[] args)
13. {
14. EmptyFrame em = new EmptyFrame();
15. em.setVisible(true);
16. }
17. }

The application class extends java.awt.Frame. The superclass provides all the generic functionality of a frame. When you
create a subclass of java.awt.Frame, you only have to provide the non-generic, application-specific behavior. In this example,
the subclass does four things:

Puts a message in the frame's title bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the frame's background color.

Sets the frame's size.

Makes the frame visible.

Line 7 sets the message in the title bar. The setTitle() method is inherited from the superclass; it takes a string argument.

Line 8 sets the frame's background color. Whenever the frame needs to be drawn on the screen, all of its pixels are set to the
background color (except for the decoration pixels, of course). Then any application-specific drawing is performed. In this
example, there is no application-specific drawing, so all you see in the frame's interior is uniform gray. The setBackground()
method takes an argument of type java.awt.Color. We will look more deeply at this class in the next section, "Colors."

Line 9 uses the setSize() method to set the frame's size. The method's arguments are the desired width and height, in pixels.
(A pixel, or picture element, is a dot on a display screen.) It's important to set a frame's size, because the default size is zero
pixels wide by zero pixels high. So if you neglect to call setSize(), your frame will be too small to see.

Line 14 makes the frame visible. Before a frame executes setVisible(true), it's just a lot of bytes somewhere in memory, like
any other object. The first time setVisible() is executed, the frame establishes communication with the windowing software on
the underlying system, and the windowing software draws the frame on the screen. The process is quite complicated, but it all
happens automatically. You only need to remember to call both setSize() and setVisible(). Otherwise, your frame will not
be seen.

Notice that the title bar message, foreground color, and size are set in the EmptyFrame constructor, while setVisible()is
called in main(), after the frame has been constructed. The program would function the same if any of the calls on lines 7-9 were
moved into main(). For example, the following code sets the background color and size in main():
 1. import java.awt.*;
 2.
 3. public class EmptyFrame extends Frame
 4. {
 5. EmptyFrame()
 6. {
 7. setTitle("A bleak empty gray frame");
 8. }
 9.
10. public static void main(String[] args)
11. {
12. EmptyFrame em = new EmptyFrame();
13. em.setBackground(new Color(128, 128, 128));
14. em.setSize(300, 220);
15. em.setVisible(true);
16. }
17. }

This version produces an identical frame, but the previous version is considered better design. In the previous version, the
constructor was responsible for setting the properties of the subclass instance, but it did not make the frame visible. This is clean
design, because code that uses the class might want to create the object but not display it for a while. In general, constructors
should set up the internal properties of an object without dictating when and how the object is to be used.

Note A frame that you create in Java does not automatically disappear when you click the "Close" button in its upper-right
corner. The frame only sends an event to its listeners, using the mechanism that will be explained in Chapter 16. To kill
a frame, you can always type CONTROL-C in the console window where you started the program.

The code examples throughout the remainder of this book will feature frame subclasses whose constructors do everything except
call setVisible(). Making the frame visible is the job of the code that uses the frame subclass. For us, this will always happen
in main(), immediately after the subclass is created.

Now you know how to create a frame with boring uniform contents. Now it's time to learn how to put interesting things inside the
frame. These things can be seen only if their colors are different from the frame's background color, so let's begin by looking at
how Java handles colors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colors
Computer screens, like television screens, consist of rows and columns of tiny dots. It's difficult to see the dots with your unaided
eye, but they are easy to see through a magnifying glass. The screen's electronics control each dot's color, under the direction of
the computer's software or the TV's signal.

If you look closely at a pixel, you'll see that it consists of a red region, a green region, and a blue region. These are the pixel's
primary colors.

This might contradict your childhood experiences. When you first started drawing or painting, you probably noticed that certain
colors combine to make other colors. Mix red and blue to make purple. Red and yellow make orange, and blue and yellow make
green. Other combinations aren't as pleasing: Red and green make an especially unpleasant brown. No doubt, someone
explained to you that red, yellow, and blue are the primary colors that can be combined to make all other colors.

That isn't exactly true (there's no way to make white), but it pretty much explains the world of color. That is, until you stare too
closely at a screen or start learning about computer colors. Then it seems that the primary colors are not red, yellow, and blue, but
rather red, green, and blue.

Which trio is the real set of primary colors? It depends on your situation. When you mix paints, the pigments in the paints absorb
certain colors from the ambient light. The remaining colors get reflected back into your eyes. Red, yellow, and blue (the primary
colors of painting) are called subtractive primary colors because they are primary when light reflects off the absorbing pigment.
Red, green, and blue (the primary colors of screens) are called additive primary colors because they are primary when different
colors of light combine without pigment to absorb any hues. With additive primary colors, red plus green makes yellow, and red
plus green plus blue makes white. You might have seen additive primaries in theaters or other venues that use colored spotlights.
Where a red and green spotlight overlap, the light is yellow. Where red, green, and blue spotlights overlap, the light is white.

So when you control colors in a Java program, you have to think in terms of additive, not subtractive, primary colors. Table 14.1
summarizes additive color mixing.

Table 14.1: Combining Additive Primary Colors

Primary Colors Result

Red + green Yellow

Red + blue Magenta

Green + blue Cyan

Red + green + blue White

In Java, colors are represented by the java.awt.Color class. The constructor for this class has three arguments, which
represent the amount of red, green, and blue that make up the color. The arguments range from a minimum of 0 through a
maximum of 255. If all three arguments are 0, the color is black. If all three are 255, the color is white. As you can see from Table
14.1, if red and blue are 255 while green is 0, the color is magenta. If red is 200, blue is 255, and green is 0, the color is a
somewhat bluer magenta (because it contains less red).

The Color class has 13 predefined colors. These are public final static variables of type Color. (It may seem convoluted for a
class to contain data of the same type as the class. That's just how it is.) The names of these variables are

Color.BLACK

Color.WHITE

Color.RED

Color.GREEN

Color.BLUE

Color.YELLOW

Color.CYAN

Color.MAGENTA

Color.ORANGE

Color.PINK

Color.LIGHT_GRAY

Color.GRAY

Color.DARK_GRAY

If you want to use one of these colors, you don't have to create a new instance. For example, to set a frame's background color to
orange, you can call setBackground(Color.orange). If the 13 predefined colors don't give you what you want, you need to
construct your own. You might find that Color.orange isn't intense enough. Its green level is 200, which tends to wash out the
brilliance of the red. A nice intense orange is created by calling new Color(255, 200, 0). You can make this the background
color of a frame by calling setBackground(new Color(255, 200, 0)).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color of a frame by calling setBackground(new Color(255, 200, 0)).

Looking at colors is better than reading about them. The Color Lab program lets you practice mixing primaries, and it also shows
you all 13 predefined colors. To run the program, type java visual.ColorLab. Figure 14.2 shows the initial display.

Figure 14.2: Color Lab

The control panel contains three scrollbars, with a text field showing the value of each scrollbar, as well as a pull-down menu.
When you choose Custom from the pull-down menu, as shown in Figure 14.2, the scrollbars are enabled. You can set them to
any value from 0 through 255, and the display area to the right of the control panel will show the color you've specified. You can
also type numbers into the text fields. Press Enter to make your entry take effect.

In addition to Custom, the pull-down menu lets you choose any of the 13 predefined colors of the Color class. When one of
these is selected, the scrollbars and text fields are disabled. They display the red/green/blue levels of the selected color, but you
can't use them for input. Figure 14.3 shows Color Lab displaying a predefined color.

Figure 14.3: Color Lab with a predefined color

Notice that the sliders have no bubbles, and the numbers in the text fields are gray, indicating that those components are not
enabled to receive user input.

Set the Color Lab inputs to display yellow. You can do this by selecting YELLOW, or by selecting Custom and manipulating the
scrollbars. Now look at the yellow area of the screen through a magnifying glass. Observe the separate red and green areas of the
individual pixels. Have a friend hold the magnifying glass steady, and move slowly backwards until the red and green seem to
coalesce into yellow. How far from the screen are you when this begins to happen? You are invited to e-mail the distance to us at
groundupjava@sgsware.com. We will compile the statistics and publish them on our website.

Now you know how to use Java's predefined colors, and how to construct a custom color when you need one. Now let's move on
to using colors to draw shapes inside a frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Painting
There are many reasons why a frame's contents may need to be redrawn:

The frame has become visible for the first time.

The contents have changed due to user input (as when you moved a scrollbar in Color Lab).

The frame has deiconified.

The frame has moved to the front of the desktop, after having been covered or partially covered by another frame.

When any of these occur, the underlying windowing software notifies the frame, and a call is made to the frame's paint()
method. The great thing about this arrangement is that you never have to detect these changes to the frame. The environment
takes care of all that for you. All you have to do is subclass Frame and provide a paint() method that draws the frame's interior.
In other words, you have to think about what to paint, but you don't have to think about when to paint.

When the environment decides that a frame needs painting, the frame's interior is cleared to its background color. By default, the
background color is white. But as you saw in the previous section, you can call setBackground() to set any background color
you like. After that, the environment calls the frame's paint() method. The paint() version inherited from Frame does nothing
at all. You are about to learn how to override paint() so that it does interesting things.

The argument of paint() is an instance of java.awt.Graphics. You might hear people call this object a graphics context, but
it's more correct to call it a graphics object, and that is the name we will use. The graphics object is like an artist with a paintbrush,
ready to paint the interior of a frame. It isn't a very talented artist (it only knows how to draw a few shapes), but it's very accurate.
And as you'll see, it has excellent penmanship. You never have to construct an instance of Graphics; that's done for you by the
environment. You just have to tell it what to paint.

An artist at work dips his brush in paint, brushes the paint onto paper, dips, brushes, and so on. The color that goes on the paper
is, of course, the last color that the brush was dipped into. A graphics object works the same way. It has a method called
setColor(), whose argument is a Color. It also has methods that draw shapes, including lines, rectangles, circles, and text
messages. The shapes appear in the color that was the argument of the most recent setColor() call. So you can see that
calling setColor() is like dipping your paintbrush into new paint. Another way to think of it is this: When you call setColor(),
you set the color of all shapes to be drawn until the next setColor() call.

Now let's take a look at the different shapes that a graphics object can paint.

Drawing and Filling with a Graphics Object

The shapes that you can draw with the Graphics class include the following:

Lines

Squares and rectangles

Circles and ovals

There are also methods that fill the interior of a square, rectangle, circle, or oval. All drawing happens in the color of the most
recent setColor() method, as you saw in the previous section. The methods have varying arguments that specify the size and
location of the shape. All arrays are in units of pixels, not inches or millimeters. Horizontal positions are always called x, and are
measured from the left edge of the frame. Vertical positions are called y, and are measured from the top of the frame. The
location of a point is denoted by (x, y), as shown in Figure 14.4.

Figure 14.4: Pixel coordinates

The point at (0, 0) is called the origin. A frame's origin is its top-left pixel. Note that x increases from left to right, and y increases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The point at (0, 0) is called the origin. A frame's origin is its top-left pixel. Note that x increases from left to right, and y increases
from top to bottom. This is different from the Cartesian coordinates that you may have learned about in school, where y increases
upward. The y-increases-downward scheme is standard in graphical programming, and it often causes confusion until people get
used to it. It probably got its start in word-processing software, where line numbers increase from the top to the bottom of a
document. Whatever its derivation might be, the scheme is here to stay.

To draw a line from (x0, y0) to (x1, y1), call the following on your graphics object:
drawLine(x0, y0, x1, y1);

The following code displays a frame with a black line on a white background:
1. import java.awt.*;
 2.
 3. public class BlackLineOnWhite extends Frame
 4. {
 5. BlackLineOnWhite()
 6. {
 7. setSize(150, 180);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.drawLine(60, 115, 120, 70);
14. }
15.
16. public static void main(String[] args)
17. {
18. BlackLineOnWhite blonw = new BlackLineOnWhite();
19. blonw.setVisible(true);
20. }
21. }

Figure 14.5 shows the frame.

Figure 14.5: A black line on a white background

The constructor just sets the frame's size. There's no need to set the background color explicitly, since you want the white default.
Line 12 actually isn't required, because when paint() is called, the graphics object is set up to draw in black automatically.

To draw a rectangle, call the drawRect() method. Its four arguments are the x, y, width, and height of the rectangle, where (x, y)
is the location of the rectangle's upper-left corner. The following code draws a blue rectangle that is 100 pixels wide by 35 pixels
high, with its upper-left corner at (25, 50):
 1. import java.awt.*;
 2.
 3. public class BlueRect extends Frame
 4. {
 5. BlueRect ()
 6. {
 7. setSize(150, 180);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.blue);
13. g.drawRect(25, 50, 100, 35);
14. }
15.
16. public static void main(String[] args)
17. {
18. BlueRect br = new BlueRect();
19. br.setVisible(true);
20. }
21. }

Figure 14.6 shows the frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.6: A rectangle

There is no separate method for drawing a square. You just call drawRect() with equal values for the width and height.

To draw an oval, you call drawOval() and specify the oval's bounding box. A bounding box is the smallest rectangle that
encloses the oval. Figure 14.7 shows several ovals and their bounding boxes.

Figure 14.7: Ovals and bounding boxes

Notice that one of the shapes in Figure 14.7 looks like a circle, not an oval. Actually, a circle is a kind of oval whose bounding box
is a square.

The following code draws three ovals (shown in Figure 14.8), one of which is a circle:
 1. import java.awt.*;
 2.
 3. public class ThreeOvals extends Frame
 4. {
 5. ThreeOvals ()
 6. {
 7. setSize(150, 220);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.drawOval(20, 40, 100, 35);
14. g.drawOval(20, 85, 50, 60);
15. g.drawOval(90, 105, 25, 25);
16. }
17.
18. public static void main(String[] args)
19. {
20. ThreeOvals throv = new ThreeOvals ();
21. throv.setVisible(true);
22. }
23. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.8: Three ovals

In the drawOval() calls, the arguments are the x, y, width, and height of the bounding box. Notice that in line 15, which draws
the circle, the width and height are the same.

The fillRect() method draws a rectangle and fills its interior. The fillOval() method draws an oval and fills its interior. The
following code displays two filled ovals and a filled rectangle:
 1. import java.awt.*;
 2.
 3. public class Filled extends Frame
 4. {
 5. Filled ()
 6. {
 7. setSize(200, 150);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. g.fillOval(20, 50, 50, 20);
14. g.fillRect(90, 40, 20, 70);
15. g.fillOval(130, 50, 50, 20);
16. }
17.
18. public static void main(String[] args)
19. {
20. Filled f = new Filled();
21. f.setVisible(true);
22. }
23. }

The result is shown in Figure 14.9.

Figure 14.9: Filled rectangle and ovals

Our last example in this section draws a filled oval that is centered in its frame. The oval is half as high and half as wide as the
frame. The code uses the frame's getSize() method, which is inherited from one of the superclasses of java.awt.Frame.
This method returns an instance of Dimension, which is a tiny class with two public ints called width and height:
 1. import java.awt.*;
 2.
 3. public class CenteredOval extends Frame
 4. {
 5. CenteredOval ()
 6. {
 7. setSize(200, 150);
 8. }
 9.
10. public void paint(Graphics g)
11. {
12. g.setColor(Color.black);
13. Dimension size = getSize();
14. g.fillOval(size.width/4, size.height/4,
15. size.width/2, size.height/2);
16. }
17.
18. public static void main(String[] args)
19. {
20. CenteredOval cenOv = new CenteredOval ();
21. cenOv.setVisible(true);
22. }
23. }

Figure 14.10 shows the frame in its original size.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.10: Original CenteredOval

If you replace line 7 with setSize(400, 300);, you get Figure 14.11.

Figure 14.11: Resized CenteredOval

No matter what size is assigned to the frame in line 7, the paint() method always draws an oval with the correct proportions.

Now you know how to use a graphics object to do the following:

Draw lines.

Draw rectangles, including squares.

Fill rectangles, including squares.

Draw ovals, including circles.

Fill ovals, including circles.

In the next section, you'll learn how to draw text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text and Fonts
To draw text in a frame, call the graphics object's drawString() method. The method's arguments are the string to be drawn
followed by its x and y position. The x position is the leftmost pixel of the first character in the string. The y position is the location
of the baseline. The baseline of a string is the bottom of all characters except g, j, p, q, and y, which descend below the baseline.
When you write on lined paper, the lines are baselines. Figure 14.12 shows a string containing two characters that descend below
the baseline.

Figure 14.12: The baseline

The following code draws a string that contains six descending characters. It also draws the baseline in light gray:
 1. import java.awt.*;
 2.
 3. public class FontAndBaseline extends Frame
 4. {
 5. FontAndBaseline()
 6. {
 7. setSize(200, 150);
 8. }
9.
10. public void paint(Graphics g)
11. {
12. int x = 25;
13. int yBaseline = 100;
14. g.setColor(Color.lightGray);
15. g.drawLine(x, yBaseline, 125, yBaseline);
16. g.setColor(Color.black);
17. g.drawString("just a gaping quay", x, yBaseline);
18. }
19.
20.
21. public static void main(String[] args)
22. {
23. FontAndBaseline fabl = new FontAndBaseline();
24. fabl.setVisible(true);
25. }
26. }

The drawstring() call is on line 17. Figure 14.13 shows the frame.

Figure 14.13: Text and baseline in a frame

You can use the graphics object's setFont() method to control the font in which text is displayed. Calling setFont() before
calling drawString() is a bit like calling setColor() before drawing or filling a shape. The setFont() call determines the font
of all subsequent drawString() calls, until the next setFont() call.

A font has three properties:

Style

Size

Family

The style can be either plain, bold, italic, or bold- italic. The size is in pixel units.

The font families that are available to you vary from one machine to the next, but there are three that you can always count on:

Monospaced

Serif

Sans Serif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Monospaced font, all characters are spaced equally. The spacing is determined by the font's size. It's difficult to read a dense
block of text in Monospaced font, but it's ideal for source code. All the code listings in this book appear in Monospaced font.

Serif is a variable-width font, which means that characters have different widths. For example, i is narrower than m. This book is
printed in a variable-width font. Notice how iiiiiiiiii is much narrower than mmmmmmmmmm, even though both are 10 letters long.
Variable-width fonts are designed for easy reading of dense text, such as you see in a book or newspaper. This font uses serifs,
which are small decorations on the tips of letters. Serifs improve readability in medium to large fonts, but are annoying in small
fonts.

Sans Serif is a variable-width font that does not use serifs. ("Sans" is French for "without".) This font works best when the font is
small enough that serifs would interfere with readability.

To use a font in Java, you must first construct an instance of the java.awt.Font class. The constructor takes three arguments:
the family, the style, and the size. The family is a string; the style and size are ints. For these three families, the strings are
Monospaced, Serif, and SansSerif. For plain, bold, and italic, the Font class provides public final static ints named Font.PLAIN,
Font.BOLD, and Font.ITALIC. For bold-italic style, use Font.BOLD + Font.ITALIC.

After you construct an instance of Font, you can pass it into the setFont() method of a graphics object. The following code sets
a 36-point bold-italic Serif font:
Font f = new Font("Serif", Font.PLAIN+Font.BOLD, 36);
g.setFont(f);

When these lines are inserted between lines 16 and 17 in the previous example (that is, just before the drawString() call), the
result is as shown in Figure 14.14.

Figure 14.14: Text in a frame

Your computer probably has dozens of fonts in addition to the three standard ones. Many of them may be more interesting and
playful than Monospaced, Serif, and Sans Serif. The more stylized fonts tend to be appropriate in more limited situations.

When you use a non-standard font in a Java application, be aware that you're taking a risk. It's possible that the font won't be
available on all computers that will be running your application. When this happens, all characters will appear on the screen as
small empty rectangles.

The GraphicsEnvironment class contains information about a computer's graphics system, including the names of all available
fonts. The class has a static method called getLocalGraphicsEnvironment(),which returns an instance of the class with all
the data fields set to reflect the capabilities of the underlying computer. Another call is getAvailableFontFamilyNames(),
which is not static. It returns the font families as an array of strings. So, to retrieve the array, you can do something like the
following:
GraphicsEnvironment grenv =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] names = grenv.getAvailableFontFamilyNames();

The Font Lab program lets you see all the fonts that are available on your computer. To run it, type java visual.FontLab. You
will see the GUI shown in Figure 14.15.

Figure 14.15: Font Lab

The pull-down menu in Font Lab's control panel lets you choose from among all of the fonts on your machine, as detected by
getAvailableFontFamilyNames(). You can change the family, style, and size. Some families do not support all styles. Some
have only plain and italic, and others have only plain. Figure 14.16 shows one of the more exotic fonts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.16: Font Lab with an exotic font

Play around with the various fonts. Find one that seems serious and one that seems playful. How do their shapes differ? Select
16-point plain Serif. Reduce the size one point at a time until the font becomes hard to read. Do the same for SansSerif. You will
probably find that SansSerif remains readable down to a slightly smaller size than Serif.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frame Lab
The Frame Lab animated illustration lets you practice setting colors, drawing shapes, setting fonts, and drawing text. To run the
program, type java visual.FrameLab. The initial display is shown in Figure 14.17.

Figure 14.17: Initial Frame Lab display

The animated illustration simulates a subclass of Frame, with a paint() method that you can configure. You can enter any class
name you like in the first text field. (Notice that the lines that declare and call the constructor change as you change the name.) If
you want your constructor to set the background color, make sure the check box in the setBackground line of the constructor is
checked, and select a color from the pull-down menu. The constructor sets the frame's size to 450 by 450, but you can enter any
number you want.

The body of the paint() method consists of ten lines, each controlled by its own pull-down menu that lets you select a method to
call on the graphics object. You can set the color or the font, or you can call any of the drawing methods that were presented in
this chapter. You can also select a comment (/********/), which indicates that you don't want the line to do anything. No matter what
you select, the line will present you with controls for entering the arguments of the method you've chosen.

When you're ready to simulate execution of the code you've set up, click either Run or Run Lightspeed to view either an animation
or an instant result. If you want to run again, click Reset, adjust the controls, and again click either Run or Run Lightspeed. Figure
14.18 shows one possible Frame Lab configuration.

Figure 14.18: Frame Lab with custom configuration

The resulting frame is shown in Figure 14.19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.19: The result of Figure 14.18

Try configuring Frame Lab to paint the following:

A line of text, in any font you like, with the baseline visible.

A line of text centered in a filled oval.

Three concentric circles.

Now draw anything you like. If you create any interesting results that you would like to share, please email them to us at
groundupjava@sgsware.com. In the next edition of this book, Frame Lab will include a gallery of the best pictures submitted,
along with the artists' names.

Take a look at the main() method in Frame Lab. So far in this chapter, all your main() methods have been two lines long, like
this:
public static void main(String[] args)
{
 FontAndBaseline fabl = new FontAndBaseline();
 fabl.setVisible(true);
}

In Frame Lab, vertical space is a valuable commodity. That's why the open curly brackets appear at the ends of lines, rather than
on their own lines. Frame Lab's main() is only one line long:
(new FancyFrame()).setVisible(true);

This is just a shorter equivalent of the following:
FancyFrame ff = new FancyFrame();
ff.setVisible(true);

In the single-line version, there is no reference to the instance of FancyFrame that gets constructed. If you want to make another
call on the instance after setVisible(), you're out of luck. The instance is anonymous. "Anonymous" means "without a name,"
and a reference is like an object's name. The single-line version of the constructor is considered better style, because there is no
need for the reference except in the setVisible() call. For the rest of this book, the Frame subclass instances will be
anonymous.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. The first code example in this chapter used the following code to set a frame's background color:
setBackground(new Color(128, 128, 128));

Describe the color that this line creates.

2. Run Color Lab, and adjust the scrollbars so that the displayed color matches something you can see (a piece of
clothing you're wearing, or something on your desk, or anything else you like). Now write an application that
displays a frame whose interior is the color you've chosen.

3. One of the code examples in this chapter used the getSize() method, which Frame inherits from one of its
superclasses. Use the API to find out which superclass implements the method.

4. Write a program that draws a five-pointed star. Your frame should be 400 x 400 pixels. The coordinates of the
star's points are (200, 375), (97, 58), (366, 254), (34, 254), and (303, 58). The easy way is to write a paint()
method that calls drawLine() five times. But that approach isn't ideal, because you have to type each x and
each y twice. (Each point is the end of two lines, so it appears in two drawLine() calls.) Typing data, code, or
anything else more than once is considered bad style. If one of the copies has a typo and doesn't match the
original precisely, your program won't function correctly. To avoid duplication of data, your program should have
two int arrays, defined as follows:
int[] xs = {200, 97, 366, 34, 303};
int[] ys = {375, 58, 254, 254, 58};

Your paint() method should have a loop that accesses these arrays. drawLine(…) should appear only once
in your code, inside the loop.

5. Write a program that lists all the font families that are available on your computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15: Components
A component is a GUI device that presents user input to programs and displays program information to users. Standard GUI
components include buttons, text fields, scrollbars, and menus. Java's awt package provides a rich suite of components, all of
which are reasonably easy to use. A program's GUI can combine custom drawing, which you learned about in the previous
chapter, with standard components, which you will learn about here and in the next chapter.

You have probably heard the expression "look and feel." For example, several years ago there was a major lawsuit between Apple
and Microsoft; one company alleged that the other had plagiarized their look and feel. A program's look and feel consists of its
appearance (look) plus its responses to user input (feel). This chapter will focus on look; feel will be covered in Chapter 16,
"Events."

A Survey of Components
In this section, you will learn about some of the most useful components of the awt package:

Buttons

Checkboxes

Choices

Labels

Menus

Text fields

Text areas

Scrollbars

You have probably encountered all of these component types in the course of using your computer. As a reminder, Figure 15.1
shows one of each component type listed.

Figure 15.1: A component sampler

Now let's jump in and learn about each of these components.

Buttons

Buttons are perhaps the most familiar of all component types. We are so accustomed to them that we take for granted statements
like, "Click on the OK button on your screen to confirm your purchase." Of course, there isn't really a button on the screen; it's just
a picture of a button. "Press the OK button" really means, "Move your mouse until the arrow on the screen is over the picture of
the button. Then press and release the button on your mouse."

Figure 15.2 shows a button in a frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.2: A button in a frame

In Java, buttons are represented by the java.awt.Button class. Here is the code that created Figure 15.2:
 1. import java.awt.*;
 2.
 3. class ShowButton
 4. {
 5. public static void main(String[] args)
 6. {
 7. Frame f = new Frame("Simple Button");
 8. LayoutManager lom = new FlowLayout();
 9. f.setLayout(lom);
10. Button btn = new Button("Hello");
11. f.add(btn);
12. f.setSize(200, 200);
13. f.setVisible(true);
14. }
15. }

Line 10 illustrates the most common Button constructor, which takes a string argument. The string appears as the button's text
label.

Something in this code is conspicuously absent, and something else in conspicuously mysterious. Look at Figure 15.2. The button
is a reasonable size. It's big enough to encompass its text, and not much bigger. It's near the top of the frame, and it's horizontally
centered. Conspicuously absent is the code that sets the button's size and location.

The mysterious code is lines 8 and 9, which construct and use an instance of FlowLayout. The FlowLayout class is a kind of
layout manager. Layout managers are responsible for setting the location and size of components. We will visit them in detail in
the second half of this chapter; you will find them much easier to understand after you know about components. For now, be
aware that the button's reasonable size and location were set by the layout manager. The call to add() on line 11 puts the button
in the frame. The method uses the layout manager to work out the details.

The example code is not very object-oriented. Here is a version that extends Frame:
 1. import java.awt.*;
 2.
 3. class BtnInAFrame extends Frame
 4. {
 5. public BtnInAFrame()
 6. {
 7. setLayout(new FlowLayout());
 8. Button btn = new Button("Hello");
 9. add(btn);
10. setSize(200, 200);
11. }
12.
13. public static void main(String[] args)
14. {
15. (new BtnInAFrame()).setVisible(true);
16. }
17. }

The GUI that this code produces is identical to the previous example. Notice that construction and use of the layout manager have
now been combined into a single line (line 7) so as to be less obtrusive.

In the previous chapter, you learned about fonts and colors. The Button class has three methods that let you control the font and
color of a button:

setFont(Font f)

setForeground(Color c)

setBackground(Color c)

Actually, Button inherits these methods from its superclass, java.awt.Component. All the component classes you will learn
about in this chapter extend java.awt.Component, so they all implement these three methods.

setFont() sets the font of any text that the component displays. setForeground() sets the color of the component's text, and
setBackground() sets the component's background color. The following code displays a button with a large yellow serif font on
a blue background:
import java.awt.*;

class FancyButtonInFrame extends Frame
{
 public FancyButtonInFrame()
 {
 LayoutManager lom = new FlowLayout();
 setLayout(lom);
 Button btn = new Button("Hello");
 Font font = new Font("Serif", Font.ITALIC, 36);
 btn.setFont(font);
 btn.setForeground(Color.yellow);
 btn.setBackground(Color.blue);
 add(btn);
 setSize(200, 200);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 FancyButtonInFrame b = new FancyButtonInFrame();
 b.setVisible(true);
 }
}

Figure 15.3 shows the button in the frame. The black-and-white screen shot does not do justice to the colors, but you can clearly
see the enlarged italic font.

Figure 15.3: A fancy button

Notice that the button is still large enough to encompass its text, even though the text is now considerably larger. We have the
mysterious layout manager to thank for that.

Buttons are for clicking. If you run any of the code in this section, you will find that the buttons do the right thing when you click on
them: They look like they're indented into the screen until you release the main mouse button. However, nothing happens within
the program. This should be expected, since there is no code in any of the programs that appears to deal with listening for button
input. Listening for input is a function of feel, not look, so it will be presented in the next chapter.

Checkboxes

A checkbox is a little box that can be either checked or not checked. The checked/not checked state changes whenever the user
clicks on the component. The two most useful constructors are

Checkbox(String s)

Checkbox(String s, boolean state)

The string is the checkbox's text. The boolean in the second form is the checkbox's initial state. The following code builds and
displays a simple unchecked checkbox:
import java.awt.*;

class CboxInnaFrame extends Frame
{
 public CboxInnaFrame ()
 {
 setLayout(new FlowLayout());
 Checkbox cbox = new Checkbox("Check Me");
 add(cbox);
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 (new CboxInnaFrame ()).setVisible(true);
 }
}

The result is shown in Figure 15.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.4: A simple checkbox

The figure just shows the initial state of the GUI. If someone clicks on the box, it will be checked.

The following code displays a checkbox that is checked if the application was invoked with "yes" as its first command-line
argument.
import java.awt.*;

class CheckedCbox extends Frame
{
 public CheckedCbox(boolean b)
 {
 setLayout(new FlowLayout());
 Checkbox cbox = new Checkbox("Check Me", b);
 add(cbox);
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 boolean state = false;
 if (args.length > 0 && args[0].equals("yes"))
 state = true;
 (new CheckedCbox(state)).setVisible(true);
 }
}

Figure 15.5 shows the result when the application is invoked by typing java CheckedCbox yes.

Figure 15.5: A checked checkbox

Now it's time to display several components together. The following code creates three checkboxes and a button:
 1. import java.awt.*;
 2.
 3. class Boats extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7. String[] sizes = { "small", "medum", "large" };
 8.
 9. Boats()
10. {
11. setLayout(new FlowLayout());
12.
13. cboxes = new Checkbox[sizes.length];
14. for (int i=0; i<sizes.length; i++)
15. {
16. String s = "a " + sizes[i] + " boat";
17. cboxes[i] = new Checkbox(s);
18. add(cboxes[i]);
19. }
20. btn = new Button("Add to shopping cart");
21. add(btn);
22.
23. setSize(600, 200);
24. }
25.
26. public static void main(String[] args)
27. {
28. new Boats().setVisible(true);
29. }
30. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30. }

This application is slightly longer than any of our previous GUI code examples. It is long enough to warrant some structure. Note
that the three checkboxes, which could have been constructed one by one, are constructed in a loop. Line 16 generates the text
for each checkbox, based on the appropriate string from the sizes array on line 7. A nice benefit of this structure is the visual
isolation of the literal strings. They are easy to find, up near the top of the code listing.

Did you notice that "medium" was misspelled? Would you have noticed so easily if the literal strings were in the middle of the
code? Imagine the difficulty in correcting a spelling error if the strings were scattered over a 300-line constructor. When you
misspell a keyword (like "for" or "new"), the compiler tells you the line number where the error occurs. But when you misspell a
literal string, the compiler can't help you. You have to go hunting for the string.

Another benefit of this program's structure is the ease with which it can be modified. If you want to add or delete some sizes,
changing the array on line 7 is the only change you need to make. Exercises 2 and 3 show this in action.

Figure 15.6 shows the example program's GUI. (The spelling error has been fixed.)

Figure 15.6: Three checkboxes and a button

In the figure, the user has checked both "a small boat" and "a large boat". This is suspicious. A GUI should capture the user's
precise intention. Moreover, a well-designed GUI should make it impossible for a user to enter invalid data. Figure 15.6 gives the
impression that the user is supposed to check only one of the three checkboxes. If the checkboxes represent mutually exclusive
alternatives, the GUI should be changed to discourage (or, better yet, prevent) selection of more than one boat size.

There are two ways to change the GUI:

Insert text that tells the user to check only one box.

Insert code that automatically unchecks a box whenever the user makes a new selection.

The first option puts all the responsibility on the user. The GUI still permits invalid input, and the user gets all the blame when
something goes wrong. This approach is unforgivable. It's also distressingly common: Every Web user has experienced an
extreme version of it. Think of the last time you typed your credit card number or phone number into a Web page, only to be told
that you should have (or should not have) used spaces or hyphens. Then you have to wait for the page to reload, you have to
reenter your credit card or phone number, and if the page designer was especially inept, you have to reenter your name and
address as well.

The second option makes it impossible for any user to select more than one option. The result is a GUI that is free from blame.
This is the approach we will take.

Java's checkboxes can act as radio buttons. A radio button is a member of a group, only one of which can be selected at any
time. The term comes from the station-selection buttons on a car radio. To give radio-button behavior to a group of checkboxes,
you first create an instance of the class java.awt.CheckboxGroup:
CheckboxGroup cbg = new CheckboxGroup();

When you construct your checkboxes, use one of the following constructors:
Checkbox(String s, boolean state,
 CheckboxGroup cbg)

or
Checkbox(String s, CheckboxGroup cbg,
 boolean state)

Here is the previous example, rewritten to use a checkbox group:
 1. import java.awt.*;
 2.
 3. class RadioBoats extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7. String[] sizes = { "small", "medium", "large" };
 8.
9. RadioBoats()
10. {
11. setLayout(new FlowLayout());
12.
13. cboxes = new Checkbox[sizes.length];
14. CheckboxGroup cbg = new CheckboxGroup();
15. for (int i=0; i<sizes.length; i++)
16. {
17. String s = "a " + sizes[i] + " boat";
18. boolean state = (i == 0);
19. cboxes[i] = new Checkbox(s, state, cbg);
20. add(cboxes[i]);
21. }
22. btn = new Button("Add to shopping cart");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22. btn = new Button("Add to shopping cart");
23. add(btn);
24.
25. setSize(600, 200);
26. }
27.
28. public static void main(String[] args)
29. {
30. new RadioBoats().setVisible(true);
31. }
32. }

Line 18 creates a boolean whose value is true in the first pass through the loop. Thus, the first checkbox is checked and the rest
are not. Figure 15.7 shows the GUI after the "a large boat" box has been selected.

Figure 15.7: Checkboxes as radio buttons

Notice the appearance of the checkboxes. There are no check marks, and there are no boxes. The circular buttons are a standard
visual cue that the components have radio behavior. This cue is standard not just in Java, but in all current windowing toolkits.

When you create a GUI that has multiple checkboxes, ask yourself if the checkboxes can be selected independently, or if only one
should be selected at any moment. If they are independent, use plain checkboxes. If they are exclusive, give them radio behavior
by creating a checkbox group for them.

Choices

Suppose you want to create a GUI for specifying a font. Suppose also that you want your users to choose one of the three
standard font families, and also to choose a size from among a small set of options. You might use the following code:
import java.awt.*;

class ChooseFontByRadios extends Frame
{
 String[] families = {"Monospaced", "Serif", "SansSerif"};
 int[] sizes = {16, 24, 32, 64};

 public ChooseFontByRadios()
 {
 setLayout(new FlowLayout());

 CheckboxGroup familyCBG = new CheckboxGroup();
 for (int i=0; i<families.length; i++)
 add (new Checkbox(families[i], (i==0), familyCBG));

 CheckboxGroup sizeCBG = new CheckboxGroup();
 for (int i=0; i<sizes.length; i++)
 add (new Checkbox(""+sizes[i], (i==0), sizeCBG));

 setSize(500, 200);
 }

 public static void main(String[] args)
 {
 (new ChooseFontByRadios ()).setVisible(true);
 }
}

This code creates two checkbox groups. The result, as you can see in Figure 15.8, is less than brilliant.

Figure 15.8: Multiple checkbox groups

The problem with the GUI is that there are no visual cues to tell you that there are two independent groups of checkboxes. This
brings us to an important principle of GUI design: Components that are functionally related should also be visually related. To
create a sensation of visual relationship among a group of components, you need to do two things:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Place the components near one another.

Isolate them from other nearby components.

In Figure 5.8, the components that control the font family are certainly near one another, but they are not isolated from the
components that control size.

The java.awt.Choice component class offers an alternative to groups of checkboxes. A choice is a single component that lets
the user make a one-of-many selection. Figure 15.9 shows a simple choice.

Figure 15.9: A choice

Choices are like pull-down menus. When you click on the component, the entire set of options is displayed, as shown in Figure
15.10.

Figure 15.10: An expanded choice

Here is the code that created the GUIs in Figures 15.9 and 15.10:
 1. import java.awt.*;
 2.
 3. class SimpleChoice extends Frame
 4. {
 5. String[] families = {"Monospaced", "Serif",
 6. "SansSerif"};
 7.
 8. public SimpleChoice()
9. {
10. setLayout(new FlowLayout());
11. Choice c = new Choice();
12. for (int i=0; i<families.length; i++)
13. c.add(families[i]);
14. add(c);
15. setSize(200, 200);
16. }
17.
18. public static void main(String[] args)
19. {
20. (new SimpleChoice()).setVisible(true);
21. }
22. }

The choice is created in line 11. Notice that there are no constructor arguments. Line 13 calls the choice's add() method to add
more options; the method's argument is a string. After the choice is constructed and populated, it is added to the GUI at line 14.
Notice that line 14 uses the add() method of the frame to add the choice component to the frame. This is a different method from
the add() in line 13, which adds options to the choice.

The following application uses choices to support selection of a font family and size:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class FontChoice extends Frame
 4. {
 5.
 6. String[] families = {"Monospaced", "Serif",
 7. "SansSerif"};
 8. int[] sizes = {16, 24, 32, 64};
 9.
10. public FontChoice()
11. {
12. setLayout(new FlowLayout());
13. Choice c = new Choice();
14. for (int i=0; i<families.length; i++)
15. c.add(families[i]);
16. add(c);
17. c = new Choice();
18. for (int i=0; i<sizes.length; i++)
19. c.add(""+sizes[i]);
20. add(c);
21. setSize(200, 200);
22. }
23.
24. public static void main(String[] args)
25. {
26. (new FontChoice()).setVisible(true);
27. }
28. }

The resulting GUI is shown in Figure 15.11.

Figure 15.11: Two choices

You can see that the choice component does an excellent job of isolating its parts visually.

Labels

Labels are by far the simplest Java components. They are the only components that cannot be used to gather user input. They
just sit there. Often labels appear next to scrollbars, text fields, choices, or other components that do not have their own labels.

A label looks like text on a screen, exactly as if it had been painted there by the drawString() method of the Graphics class,
which you saw in the previous chapter. The following code adds labels to the GUI of the last example in the previous section:
 1. import java.awt.*;
 2.
 3. class FontChoiceWithLabels extends Frame
 4. {
 5. String[] families = {"Monospaced", "Serif",
 6. "SansSerif"};
 7. int[] sizes = { 16, 24, 32, 64 };
 8.
 9. public FontChoiceWithLabels()
10. {
11. setLayout(new FlowLayout());
12. Label familyLabel = new Label("Font family:");
13. add(familyLabel);
14. Choice c = new Choice();
15. for (int i=0; i<families.length; i++)
16. c.add(families[i]);
17. add(c);
18. Label sizeLabel = new Label("Font size:");
19. add(sizeLabel);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19. add(sizeLabel);
20. c = new Choice();
21. for (int i=0; i<sizes.length; i++)
22. c.add(""+sizes[i]);
23. add(c);
24. setSize(350, 200);
25. }
26.
27. public static void main(String[] args)
28. {
29. (new FontChoiceWithLabels()).setVisible(true);
30. }
31. }

Lines 12 and 18 construct labels. The constructor takes a single argument, which is the label's text. Figure 15.12 shows this
code's GUI.

Figure 15.12: Choices with labels

The figure shows a typical use of labels. They rarely appear in isolation. Most often, they are used to give information or
instructions about adjacent components.

Menus

Menus have a lot in common with choices:

They drop down to reveal options.

The options are arranged vertically.

They roll back up after a selection is made.

There are also some important differences:

Menus are attached to a frame's boundary, whereas choices occupy the interior.

Menus are hierarchical. They can contain submenus, which can contain sub-submenus, and so on. Choices are
linear.

Commercial-grade sites are expected to have menus, which are expected to follow certain conventions. There are
no such expectations or conventions for choices.

To insert menus into a frame, follow these steps:
1. Create a menu bar.

2. Create the menus.

3. Attach the menus to the menu bar.

4. Attach the menu bar to the frame.

These steps are all straightforward. The following code creates a frame with a single menu, labeled File. The menu contains three
options: Open..., Close, and Exit.
 1. import java.awt.*;
 2.
 3. class FrameWithSimpleMenu extends Frame
 4. {
 5. String[] options = { "Open...", "Close", "Exit" };
 6.
 7. public FrameWithSimpleMenu()
 8. {
 9. // Create the menu bar.
10. MenuBar mbar = new MenuBar();
11.
12. // Create the file menu.
13. Menu fileMenu = new Menu("File");
14. for (int i=0; i<options.length; i++)
15. fileMenu.add(options[i]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15. fileMenu.add(options[i]);
16.
17. // Populate the menu bar.
18. mbar.add(fileMenu);
19.
20. // Attach the menu bar to the frame.
21. setMenuBar(mbar);
22.
23. setSize(200, 200);
24. }
25.
26. public static void main(String[] args)
27. {
28. (new FrameWithSimpleMenu()).setVisible(true);
29. }
30. }

Line 10 creates a menu bar. In Java, a frame may have at most one menu bar, to which all menus must be attached. Line 13
creates a File menu. The string passed to the Menu constructor appears in the menu bar. Line 15 adds options to the menu. Line
18 attaches the menu to the menu bar. Menus appear on the bar in the order of attachment, from left to right. Finally, line 21
attaches the menu bar to the frame. The result is shown in Figure 15.13.

Figure 15.13: A menu in a menu bar

The Menu class has a method called addSeparator(), which inserts a horizontal separator bar. You can rewrite the loop at lines
14-15 in the previous example, adding a separator bar between the Close and Exit items:
for (int i=0; i<options.length; i++)
{
 fileMenu.add(options[i]);
 if (i == 1)
 fileMenu.addSeparator();
}

The result is shown in Figure 15.14.

Figure 15.14: A menu with a separator

In this example, you've created a menu and added items to it using the add() method, passing strings as method arguments. To
create a hierarchical menu, add a menu instead of a string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class FrameWithSubmenu extends Frame
 4. {
 5. public FrameWithSubmenu()
 6. {
 7. MenuBar mbar = new MenuBar();
 8.
 9. Menu subSubMenu = new Menu("Subsub");
10. subSubMenu.add("This");
11. subSubMenu.add("That");
12. Menu subMenu = new Menu("Sub");
13. subMenu.add("Here");
14. subMenu.add("There");
15. subMenu.add(subSubMenu);
16. Menu fileMenu = new Menu("File");
17. fileMenu.add("Open...");
18. fileMenu.add("Close");
19. fileMenu.add(subMenu);
20.
21. mbar.add(fileMenu);
22. setMenuBar(mbar);
23.
24. setSize(200, 200);
25. }
26.
27. public static void main(String[] args)
28. {
29. (new FrameWithSubmenu()).setVisible(true);
30. }
31. }

The GUI appears in Figure 15.15.

Figure 15.15: Hierarchical menus

You can nest menus within menus within menus as much as you want, but don't get carried away. The more complicated your
menu structure is, the more difficult it will be for users to find important menu items.

There are many industry-standard conventions that govern the use of menus in GUIs. These are the result of extensive
psychological research, as well as many years of practical usage. Here are a few guidelines that are easy to follow:

There should always be a File menu, and it should occupy the leftmost position in the menu bar. The items New,
Open..., and Close should, if present, appear in that order. New should be the first item in the File menu. The Exit
item should always be present and should be the last item in the File menu.

If the application has an Edit menu, it should immediately follow the File menu. The Edit menu should support
functions such as Cut, Copy, and Paste.

If a Help menu is present, it should occupy the rightmost position menu bar.

Any menu item that causes a new frame or dialog box to be displayed should have three dots following its label.
This explains why Open menu items, which typically display file selection dialogs, appear as Open... The three-dots
notation is called an ellipsis.

These guidelines should be followed in appropriate situations. It isn't necessary to follow them when you're writing code to solve
exercises, but keep them in mind whenever you are writing code that is at least moderately complicated and will be used by other
people. This book's animated illustrations are all moderately complicated. They are much bigger than exercises and much smaller
than commercial applications. They all follow these guidelines.

Text Fields

A text field is a component that displays a single line of text. Unlike labels, text fields respond to keyboard input. To create a text
field, use one of the following constructors:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextField(String contents)

TextField(int numColumns)

TextField(String contents, int numColumns)

The first version creates a text field that is just wide enough to accommodate its contents, which are specified by the string
argument. The second version creates a blank text field that is wide enough to accommodate a string of numColumns characters.
The width is only approximate, since most characters have varying widths when rendered in most fonts. The third version is like
the second version, but the text field's contents are initialized to contents.

The following application creates two text fields for entering a first and last name. The Last Name text field uses a large non-
default font:
import java.awt.*;

class TFs extends Frame
{
 public TFs()
 {
 setLayout(new FlowLayout());

 add(new Label("First Name: "));
 TextField tf = new TextField("Livia", 10);
 add(tf);
 add(new Label("Last Name: "));
 tf = new TextField("Soprano", 12);
 Font font = new Font("Monospaced", Font.PLAIN, 24);
 tf.setFont(font);
 add(tf);

 setSize(550, 200);
 }

 public static void main(String[] args)
 {
 (new TFs()).setVisible(true);
 }
}

Figure 15.16 shows the GUI.

Figure 15.16: Two text fields

As you can see from the figure, there is something dissonant about having two related text fields with two unrelated fonts. The
GUI would be much improved if both fields used the same font, but it illustrates an important point: Text fields can grow to
accommodate their fonts. For the moment, we will simply attribute this behavior to the mysterious layout manager, with a promise
of a full explanation in the second half of this chapter.

Text Areas

A text area is like a text field, but it can display multiple lines of text. If its contents exceed its height, it can automatically display
scrollbars.

The most useful TextArea constructor is
TextArea(int numRows, int numColumns)

The constructor creates a text area with numRows rows and numColumns columns. Caution: The order of the constructor's
arguments might seem backwards. Generally, we are used to specifying first a width and then a height (for example, in the various
drawing methods of the Graphics class). But numRows is a specification of height, and numColumns is a specification of width. If
you get confused about which comes first, you might try to create a tall, narrow text area and end up with a short, broad one. We
say that the dimensions of the text area are specified in row major order, which just means that the number of rows comes first.

Here is a very simple program that creates a text area:
import java.awt.*;

class TAInnaFrame extends Frame
{
 public TAInnaFrame()
 {
 setLayout(new FlowLayout());
 TextArea ta = new TextArea(10, 30);
 add(ta);
 setSize(550, 220);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setSize(550, 220);
 }

 public static void main(String[] args)
 {
 (new TAInnaFrame()).setVisible(true);
 }
}

The code is simple, but the text area is not. All we did was create a 10-by-30 text area, as shown in Figure 15.17.

Figure 15.17: A text area

The text area's contents can be changed, either under program control or by user input. A little bit of typing results in Figure 15.18.

Figure 15.18: Multiple checkbox groups

As more text is entered, the contents become taller than the component. When this happens, the text area automatically installs
scroll bars, as shown in Figure 15.19.

Figure 15.19: A text area with scroll bars

To add text to a text area programatically, use the append() method, which takes a string argument. The string is added to the
end of the component's contents. Caution: Text areas do not automatically word-wrap. If you want to add text on a new line, your
new text should start with a newline character (\n).

Scrollbars

A checkbox has two states, true and false. A choice has several states, one state for each item that might be selected. Both
component types are good for situations where users have a limited range of choices. Scrollbars are input devices that come into
play when the range of choices is broad. They are most commonly seen in word processors and Web browsers, where they are
used to specify the vertical position of a document.

The java.awt.Scrollbar class has two main constructors:

Scrollbar()

Scrollbar(int orientation)

The first version creates a vertical scrollbar. The second version creates a scrollbar that is either horizontal or vertical, depending
on the value of the orientation argument. The class defines two static ints, called Scrollbar.HORIZONTAL and
Scrollbar.VERTICAL. So to construct a horizontal scrollbar, you would call new Scrollbar(Scrollbar.HORIZONTAL).

The following code creates two scrollbars, one in each orientation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.awt.*;

class TwoBars extends Frame
{
 public TwoBars()
 {
 setLayout(new FlowLayout());
 add(new Scrollbar()); // Vertical
 add(new Scrollbar(Scrollbar.HORIZONTAL));
 setSize(200, 200);
 }

 public static void main(String[] args)
 {
 (new TwoBars()).setVisible(true);
 }
}

There is nothing very exciting about this code. Unfortunately, there is also nothing very exciting about the GUI it creates, as you
can see from Figure 15.20.

Figure 15.20: A pair of disappointing scrollbars

Neither of the scrollbars is long enough to be useful. A decent vertical scrollbar should be taller, and a decent horizontal scrollbar
should be wider. You can't be effective at setting a component's height or width unless you know about layout managers.
Fortunately, we have completed our survey of components, so let's move on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layout Managers
The java.awt package contains a very useful class called Container. Generally, you don't instantiate this class directly.
Rather, you instantiate its various subclasses, which include Frame. All containers have the following properties:

They are rectangular.

They can contain other components, including other containers.

They use layout managers to determine the locations and positions of the components they contain.

The great thing about layout managers is that you don't have to think about the details of component layout. Each layout manager
class imposes a different layout policy on the container it manages. All you have to do is become familiar with the various layout
policies available to you. The layout manager will take care of the details.

To change a container's layout policy, you construct an instance of the desired layout manager class. Then you call the
container's setLayout() method, passing in the layout manager. All the code examples in this chapter have used frames, and
the layout manager for a frame is something called a border layout manager. The border layout policy is completely inappropriate
to what we wanted to do, but a different manager, the flow layout manager, is perfect.

This explains why every example constructed an instance of FlowLayout and then passed the instance into a setLayout()
call. Usually this was done in a single line:
setLayout(new FlowLayout());

To understand layout policies, and therefore to understand why we used flow layout so extensively, you have to understand the
concept of preferred size. Every component has a preferred size, which a layout manager can either honor or ignore. For
components that have text, such as buttons and checkboxes, the preferred size is just large enough to accommodate the
component's text. For components without text, the preferred size is arbitrary, which usually is not very good. The preferred size of
a scrollbar, for example, is 15x50 pixels.

The Flow Layout Manager

The flow layout manager always honors the preferred size of its container's components. Every component in every figure in this
chapter has been its preferred size, because every frame has used a flow layout manager.

When a container uses a flow layout manager, its contained components appear from left to right in the order they were added to
the container. There is a gap of five pixels between adjacent components. The cluster of components appears at the top of the
container and is centered horizontally. (Horizontal centering is the default. There are other options. See Exercise 6.)

The following code creates three components and uses a flow layout manager to position them in a frame:
import java.awt.*;

class SimpleFlow extends Frame
{
 public SimpleFlow()
 {
 setLayout(new FlowLayout());
 add(new Label("ABCDEFGH"));
 add(new Button("Hello"));
 Font f = new Font("SansSerif", Font.BOLD, 24);
 Button btn = new Button("Goodbye");
 btn.setFont(f);
 add(btn);
 setSize(300, 200);
 }

 public static void main(String[] args)
 {
 (new SimpleFlow()).setVisible(true);
 }
}

Figure 15.21 shows the code's GUI. Notice how the components are spaced evenly and centered horizontally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.21: Flow layout manager

Figure 15.22 shows the same GUI, after the frame has been made wider. The cluster is still centered.

Figure 15.22: Wider

And Figure 15.23 shows the GUI one last time. Now the frame is too narrow to fit all three components. When this happens, the
flow layout manager makes another row. If the frame were even narrower, there would be yet another row.

Figure 15.23: Narrower

You can configure flow layout managers to place their clusters at the left or right of their containers, rather than in the center. You
do this by passing an int into the FlowLayout constructor. If the int is FlowLayout.LEFT, the cluster will appear at the left; if the
int is FlowLayout.RIGHT, the cluster will appear at the right. Figure 15.24 shows the three-component GUI of the current
example, with the setLayout() line changed to
setLayout(new FlowLayout(FlowLayout.LEFT));

Figure 15.24: Left-aligned

The Flow Lab animated illustration lets you experiment with components that are managed by a flow layout manager. To start the
application, type java flow.FlowLab. Figure 15.25 shows the initial screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.25: Flow Lab

Flow Lab lets you select a left-, center-, or right-aligning layout manager. You can add buttons, checkboxes, text fields, and labels.
Experiment with Flow Lab until you have a good feel for how the layout manager arranges its components. Select left alignment.
Add components of a uniform size until the top row is full and a second row is created. How many components are in the top row?
Does the number of components in the top row change when you select center or right alignment?

Notice that your selection of layout alignment affects only the main region of the display; the two control panels at the top of the
display are not affected. It seems the layout manager you selected is only responsible for part, not all, of the frame. You will see
how this is done a little later, in the "Panels" section. But first you have another layout manager to learn about.

The Border Layout Manager

The border layout policy is bizarre at first glance. It only makes sense after you learn what it's good for. So if your reaction to the
next few paragraphs is, "This is weird," congratulations. You're right on track.

A border layout manager partially honors and partially ignores the preferred size of its container's components. A preferred size
consists of two dimensions: width and height. A border layout manager might ignore one of a component's preferred dimensions
while honoring the other. Or both preferred dimensions might be ignored. They are never both honored.

A container that uses a border layout manager may not contain more than five components. The layout manager divides the
container into five regions, named North, South, East, West, and Center. Each region may be occupied by zero or one
components.

The component in the North region is placed at the top of its container. The component's height is its preferred height; its width is
the entire width of the container. Figure 15.26 shows a horizontal scrollbar in the North region of a frame.

Figure 15.26: Scrollbar at North

Here is the code that produced Figure 15.26:
 1. import java.awt.*;
 2.
 3. class BarAtNorth extends Frame
 4. {
 5. public BarAtNorth()
 6. {
 7. Scrollbar bar=new Scrollbar(Scrollbar.HORIZONTAL);
 8. add(bar, "North");
 9. setSize(200, 100);
10. }
11.
12. public static void main(String[] args)
13. {
14. (new BarAtNorth()).setVisible(true);
15. }
16. }

The constructor does not call setLayout(), because you want to use a border layout manager, which is the default for a frame.
In other words, the right kind of layout manager is already there.

Look at line 8. When you add components to a container that uses a border layout manager, you have to pass a second argument
to the add() method. This is a string that must be North, South, East, West, or Center.

The component at South is attached to the bottom of the container. Otherwise, it is treated like the component at North. Its
preferred height is honored, and its width is the entire width of the container.

Figure 15.27 shows a frame with a horizontal scrollbar at North and a text field at South.

Figure 15.27: North and South occupied

The code that produced Figure 15.27 is almost identical to the code that produced Figure 15.26. The difference is that this code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code that produced Figure 15.27 is almost identical to the code that produced Figure 15.26. The difference is that this code
has the following lines before the setSize() call:
TextField tf = new TextField("Hello");
add(tf, "South");

As you might guess, the components at East and West are attached to the right and left edges of their container, respectively.
Their preferred widths are honored. Their heights are the height of the container... almost. They extend all the way up to the top of
the container, unless there is a component at North. In that case, they only extend to the bottom of the North component.
Similarly, if there is no component at South, the East and West components can extend all the way down to the bottom of the
container. But if there is a component at South, the East and West components extend down just to the top of the South
component.

There are many combinations of the presence or absence of North or South or East or West components, but Figure 15.28 should
make things clear. In the figure, there are components at North, East, and West.

Figure 15.28: North, East, and West occupied

There is no component at South, so the two buttons extend down all the way to the bottom of the container. Since the scrollbar
occupies North, the buttons do not extend all the way to the top of the container. They defer to North, extending up to the bottom
of the scrollbar. Notice how the buttons have different preferred widths as a result of their different fonts.

So much for North, South, East, and West. The component at Center, if there is one, occupies all the territory that is left over after
all other components have been sized and positioned. The white region in Figure 15.28 is the area where there are no
components, so the white background of the frame is visible. If the frame had a component at Center, that component would fill
the white region exactly. In Figure 15.29, a text area has been added at Center.

Figure 15.29: North, East, West, and Center occupied

Here is the code that produced Figure 15.29:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. import java.awt.*;
 2.
 3. class NEAndW extends Frame
 4. {
 5.
 6. public NEAndW()
 7. {
 8. Scrollbar bar=new Scrollbar(Scrollbar.HORIZONTAL);
 9. add(bar, "North");
10. Button btn = new Button("Me West");
11. add(btn, "West");
12. btn = new Button("Me East");
13. btn.setFont(new Font("Serif", Font.PLAIN, 50));
14. add(btn, "East");
15. TextArea ta = new TextArea();
16. add(ta, "Center");
17. setSize(600, 400);
18. }
19.
20. public static void main(String[] args)
21. {
22. (new NEAndW()).setVisible(true);
23. }
24. }

Notice the TextArea constructor on line 15. This version is different from the one you were introduced to, where you passed in
arguments to specify the number of rows and columns. The no-args version used here is for situations where the text area's size
will be determined by the layout manager, so there is no need for you to specify a size.

Panels

Panels are components that divide containers into regions that are smaller and more manageable. The java.awt.Panel class
extends java.awt.Container, so every panel has its own layout manager. You can think of panels as rectangular components
that can contain other components, including panels. These in turn can include panels, and so on, so it is possible to create a
complex layered hierarchical GUI.

Figure 15.30 shows a frame whose South component is a panel containing three buttons. The panel's only other component is a
text area at Center.

Figure 15.30: A panel in a frame

Here is the code that created Figure 15.30:
 1. import java.awt.*;
 2.
 3. class PanelInFrame extends Frame
 4. {
 5. public PanelInFrame()
 6. {
 7. Panel pan = new Panel();
8. pan.add(new Button("OK"));
 9. pan.add(new Button("Cancel"));
10. pan.add(new Button("Help"));
11. add(pan, "South");
12. TextArea ta = new TextArea();
13. add(ta, "Center");
14. setSize(400, 250);
15. }
16.
17. public static void main(String[] args)
18. {
19. (new PanelInFrame()).setVisible(true);
20. }
21. }

When you use panels, you make a lot of calls to the add() method of various containers. It's important to keep track of what is
being added to what. On lines 8-10, the buttons are added to the panel. On line 11, the panel is added to the frame. On line 13,
the text area is added to the frame.

The code has no setLayout() calls. The default layout manager for panels is flow. This is confusing, because the default
manager for frames is border layout. You have to remember which container type defaults to which layout policy. But in practice,
the defaults are usually what you want, so you don't often have to call setLayout().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the defaults are usually what you want, so you don't often have to call setLayout().

The flow layout manager makes more sense when you know about panels. Most GUI-based applications consist of a frame that
contains a control area and a work area. For example, all Web browsers have a control panel at the top of the display with buttons
for going forward, back, home, and so on. Below the control panel is the Web page viewing area. Generally, at the bottom is a
status message. When you enlarge the browser, you don't want more space for the controls or the status message; you want a
bigger Web page viewing area. The same holds true for most word processors, painting programs, and indeed most programs in
general. When the user resizes, it is the main work area below the control area that should do most of the growing.

This is exactly the behavior that you get when you use a frame with a panel at North and some kind of work area at Center. The
panel is attached to the top of the frame, and is as wide as the frame. It is a tall as it needs to be to accommodate the
components it contains. (That's how the preferred height of a panel is defined.) When the frame becomes wider or narrower, the
panel's components are repositioned automatically. When the frame becomes higher or shorter, it is the work area and not the
panel that grows or shrinks. At the end of the next chapter, after you have learned how to detect input activity from components,
you will work through a final project whose GUI consists of a panel at North and a work area at South.

The Layout Lab animated illustration lets you experiment with hierarchical combinations of containers, layout managers, and
components. Layout Lab is designed to let you play with layout ideas without going through the effort of writing code to implement
your ideas. To start the program, type java layout.LayoutLab. You will see the display shown in Figure 15.31.

Figure 15.31: Layout lab

Initially, the display displays a representation of a frame named Frame0. If you want to change the frame's properties, including its
layout manager, click on the Frame0 button. You will see the dialog box shown in Figure 15.32.

Figure 15.32: Layout lab's frame editing dialog

Make sure the frame's layout manager is set to Border. Then dismiss the edit dialog by clicking its Apply button. Now add a
component to the frame. Click on the + button. You will see a small dialog that lets you choose a button, a scrollbar, a checkbox, a
text field, or a panel. Select Panel, and then click the Apply button. The main window will now look like Figure 15.33.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.33: Layout Lab with an added panel

Now click on the Pan0 button to edit the properties of the new panel. Since the panel is inside the frame, which uses a border
layout manager, one of the panel's properties is its region within the frame (North, South, East, West, or Center). Select South
and then click the Apply button.

Now it's time to put a few buttons in the panel. In the main screen, click on the + button. When the little component-chooser dialog
appears, select Button and then click Apply. Now the main window will look like Figure 15.34.

Figure 15.34: A button in a panel in a frame

Edit the button by clicking on Btn0 in the main window. You will see a dialog box that lets you edit the button's location, position,
font, and text. Set both X and Y to 500. Set the font to something conspicuously non-default, like SansSerif 36-point bold italic.
Set the label to whatever text you like, and click the Apply button.

Now you have created a description of a slightly complicated hierarchical GUI: a button in a panel at the South of a frame. To see
what the GUI really looks like, click the Make It So button. You will see a frame that looks like Figure 15.35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.35: Layout Lab makes it so

The button is definitely not 500x500 pixels in size. Is the button's property dialog broken? No. Remember that the panel is using a
flow layout manager, which honors the button's preferred size. As you can see in Figure 15.34, the button's preferred size is much
smaller than 500x500. In fact, it is just large enough to accommodate the button's text.

Now experiment with layout lab. Try adding more buttons, or other kinds of components, to the panel. Add a panel to the frame's
Center. Choose a layout manager for the new panel, add components, including a panel, and add components to that. If you want
to get rid of a component, click on its X button in the main display. (If the component is a panel, all its contents will be deleted as
well. You aren't allowed to delete the frame.) You can click the ^ and v buttons to change the ordering of components in their
container.

Play with Layout Lab until you feel comfortable with the idea of components inside a panel that is inside a panel that is inside a
frame.

Other Layout Managers

Before we leave the topic of layout managers, it is appropriate to mention that there are other options besides flow and border.
The java.awt package provides three other managers, called CardLayout, GridLayout, and GridBagLayout. All three are
beyond the scope of an introductory book, but you should know that they exist so that you can investigate them if you ever decide
you need them.

CardLayout allows only one component to be seen at any time. GridLayout organizes its container into a grid of rows and
columns; each component occupies a single grid location. GridBagLayout also creates rows and columns, but it provides many
more options than GridLayout does.

Several other layout managers (BoxLayout, OverlayLayout, and SpringLayout) are part of the javax.swing package.
Swing is an alternative to the AWT toolkit. Its components are much more sophisticated than those of AWT.

You can create your own layout manager class. To do this, you implement the java.awt.LayoutManager interface. It isn't
especially hard once you get the hang of it. The interface only has five methods, and several of them are trivial. Many of this
book's animated illustrations display Java source code that is mostly text, with a few scattered text fields or choices that allow you
to configure the source code. The data chain lab in Chapter 13 did this. This kind of layout cannot be achieved with any of the
standard layout managers, so a new layout manager class was created.

There is one last layout manager option, and it is offered with caution. You can call setLayout(null) to operate with no layout
manager at all. Then it is your responsibility to set the size and location of every component. You do this by calling the following
methods on the components:

void setLocation(int x, int y) Sets the component's location (upper-left corner) to (x, y).

void setSize(int width, int height) Sets the component's size to width-by-height.

void setBounds(int x, int y, int width, int height) Sets the component's location to (x, y) and its size to
width-by-height.

The following code uses no layout manager. It creates a 300-by-300 button and positions it at (40, 40):
import java.awt.*;

class NullLayout extends Frame
{

 public NullLayout()
 {
 setLayout(null);
 Button btn = new Button("Cancel");
 btn.setSize(300, 300);
 btn.setLocation(40, 40);
 add(btn);
 setSize(400, 400);
 }

 public static void main(String[] args)
 {
 (new NullLayout()).setVisible(true);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Figure 15.36 shows the GUI.

Figure 15.36: No layout manager

The Layout Lab animated illustration lets you set any container's layout manager to None. Do this to the frame, and add two
buttons labeled OK and Cancel. Edit each button's position and size until you like what you see. Get a feel for the ease or difficulty
of this task.

The no-layout-manager strategy should be used with caution. As Figure 15.36 shows, it is easy to create a GUI with
components of inappropriate size or location. Moreover, when your container has more than a very few components, it is
unlikely to look good when the user resizes it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Suppose you use the following code to create a checkbox:
Checkbox cbox = new Checkbox("Ok", true);

What is the checkbox's state after you click on it 20,000 times?

2. In the "Checkboxes" section of this chapter, the Boats application is 30 lines long. The code isolates literal
strings in an array near the top of the listing. You saw how this approach, along with the use of a loop to create
the checkboxes, results in more maintainable code. Rewrite the code to eliminate the loop and the string array.
In place of the loop in the constructor, just create three checkboxes one by one. How many lines of code does
your new application have?

3. This is an extension of Exercise 2. Suppose you need to change the Boats application so that instead of
offering three sizes (small, medium, and large), it offers ten (rubber duck, sponge, tiny, small, kinda small,
medium, kinda large, large, huge, titanic). How does this affect the size of the code as it appears in the
"Checkboxes" section of this chapter? How does it affect the size of the code that you wrote for Exercise 2?

4. Write an application that displays a frame with a menu bar. The bar should have the following menus:

An Edit menu with items Copy and Cut.

A File menu with items Close, Exit, and Open.

A Help menu with item Help. Assume that clicking on this item will display a helpful dialog.

A Whatever menu with items Stuff and Nonsense. The Nonsense item should be a submenu with items Ordinary
Nonsense and Extreme Nonsense.

Make sure that your GUI follows the guidelines listed at the end of the "Menus" section.

5. Write a program that creates a GUI that looks like the following illustration. The text in the text area should be
set programmatically by a single call to the text area's append() method. The call should come directly after the
text area is constructed.

6. Using the API page for java.awt.FlowLayout, determine how to create a flow layout manager that right-
justifies its cluster of components rather than centering it.

7. The java.awt.Component class, which is a superclass of java.awt.Button, has a method called
setSize(int width, int height). The method's documentation says that it resizes the component so
that its size is width times height.

What do you expect the following code to do? First, read the listing and decide on your answer. Then, type in
the code and run it. Did you see what you expected to see?
import java.awt.*;

class Q7 extends Frame
{
 public Q7()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Abcde");
 btn.setSize(500, 500);
 add(btn);
 setSize(700, 700);
 }

 public static void main(String[] args)
 {
 (new Q7()).setVisible(true);
 }
}

8. This entire chapter has been about components that are installed inside containers. The previous chapter was
about painting. What happens if a frame that contains components also has a paint() method that paints a
part of the screen that is occupied by a component? Write a program that will reveal the answer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Events

Overview
Now you know how to create components and lay them out in a GUI. The next step is to learn about events, which are the
mechanism by which components inform us that they have been used.

A component that does not send events is like a doorbell that does not ring. It looks okay, but it can't make anything happen. It
has look but no feel. In this chapter, you will learn how to make components responsive. This will prepare you for Chapter 17,
"Final Project," where you will observe in detail a Java application that uses painting, components, events, and all the other
programming techniques presented in this book.

Java's original event mechanism was quite limited. It was designed back when it was believed that Java would mostly be used to
create applets on Web pages, where space would be limited and GUIs would be simple. It soon became evident, however, that
Java was an excellent programming language for domains that had nothing to do with Web pages. As non-Web-based Java
applications propagated, GUIs became more complicated, and the current event mechanism was introduced in release 1.1.

The new mechanism is scalable, which means it is useful and efficient over a broad range of complexity, from very elementary
GUIs to extremely intricate ones. This comes at a price. The event mechanism is not simple. It isn't horribly complicated, but it
does consist of several interacting pieces, and it might not make sense until you have seen all the pieces. But hang in there. It will
all make sense soon, and when it does, you will have a powerful tool for creating full-fledged GUIs that have both look and feel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event-Driven Programs
GUI-based programs are fundamentally different from the applications you saw and wrote prior to Chapter 14 ("Painting"). The
earlier programs began execution at the beginning of the main() method, ran through the end of main(), and that was that.
When main() was finished, the program was finished. The Java Virtual Machine ceased to exist, and you saw a new prompt in
your console window.

Now consider the behavior of an application with a GUI. The following code creates a frame that contains a button and displays a
blue circle:
import java.awt.*;

public class Xxxx extends Frame
{
 Xxxx()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 add(btn);
 setSize(300, 300);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.blue);
 g.fillOval(100, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 (new Xxxx()).setVisible(true);
 }
}

Figure 16.1 shows the GUI.

Figure 16.1: A GUI waiting for events

There is something mysterious about this code's behavior, and indeed about the behavior of all the GUI-based applications you
saw in Chapters 14 and 15. In fact, there are two mysteries, and perhaps you have already wondered about them.

The main() method consists of a single line. After the instance of class Xxxx has been constructed and made
visible, one would expect the program to terminate. This is not the case. The JVM continues to run (but doing
what?) until someone types Ctrl+C into the console window. It is only then that the frame vanishes and the console
is ready to accept a new command.

The application does not call paint() anywhere. The method is implemented but never invoked. But something
somewhere must have called it, because the circle is right there in the middle of the frame. Who called paint()?

Something within the Java Virtual Machine seems to be keeping an eye on things on our behalf, calling paint() at the right time
and keeping the GUI alive after main() finishes. You could almost say the JVM has multiple personalities: One personality to run
main(), and one to take care of the mysterious GUI behavior.

In fact, the JVM has the computer equivalent of multiple-personality disorder. Don't worry! For computers it's a good thing,
because the personalities function together harmoniously. We say that the JVM is multithreaded, which means it is capable of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the personalities function together harmoniously. We say that the JVM is multithreaded, which means it is capable of
performing more than one task at a time. Each task is called a thread. Java's threading capabilities are powerful and intricate. You
can write applications that create several or many threads, each performing its own task. Creating your own threads and
maintaining harmony among them is far beyond the scope of this book. In order to understand GUI event processing, you don't
need to know any details about creating or managing threads. But you do need to know a little bit about what threads are. As you'll
see in the next section, my own exposure to threads began many years ago in a barbershop.

Threads

I was eight years old. I was waiting my turn to get my hair cut, and I was reading a Superman comic book. The Man of Steel was
entertaining some kids at an orphanage by playing ping-pong against himself. He would serve the ball, and then run at super-
speed to the other side of the table to return the ball. Then he would run back to the original side, and so on. Each time he
changed sides, he ran so fast that nobody could see him, and he ended up exactly where he had been before. This created the
illusion of two identical Supermen.

Computers do something similar. They create the illusion of doing several things simultaneously by rapidly switching from one task
to another, many times each second, like Superman running from one side of the ping-pong table to the other. The individual
tasks are called threads.

Thread support is built into the Java language and the JVM. When you run an application, even a very simple one that just prints
out a message from main(), there are actually two threads the work. One of these is called the main thread. Its job is to execute
your main() method. Until you began working with GUIs, all behavior of all the applications you wrote came from the main
thread.

The second thread is called the garbage collection thread. Recall from Chapter 6, "Arrays," that Java's garbage-collection feature
recycles memory from objects and arrays when they can be used no longer. This recycling happens while your program is
executing. In other words, the main thread and the garbage collection thread operate simultaneously. You don't have to do
anything special to make the garbage collection thread work; it is created automatically by the JVM.

Another thread that is created automatically as part of the JVM infrastructure is the event dispatch thread, also known as the GUI
thread. It is not present in all applications; it appears only in applications with GUIs. The Event dispatch thread knows when the
display needs to be redrawn and calls paint() at the appropriate moment. As you will see later in this chapter, it is the Event
dispatch thread that knows when components have been activated and calls the appropriate methods in the appropriate objects.

The presence of an Event dispatch thread affects the life cycle of the JVM. If an application has no GUI, the JVM terminates when
the main thread finishes its work. However, if an Event dispatch thread is present, the JVM continues to run after the main thread
is done. The JVM remains in existence until the Event dispatch thread terminates. Typically, this happens when the Event
dispatch thread executes a System.exit() call.

It is easy to imagine what the JVM is doing while the main thread is alive. Mostly, the JVM is executing the application's bytecode,
but now and then the garbage collection thread recycles some memory. But what about a GUI application, where main() calls
the constructor of a Frame subclass, calls setVisible() on the constructed object, and then is done? At this point the frame is
on the screen, just sitting there. You saw this in numerous examples in the previous chapter. If the frame is doing nothing, and
main() has terminated, what is the JVM doing?

The answer is: Absolutely nothing! The Event dispatch thread is lurking in the background, waiting for the user to do something
that requires attention. For example, if the frame becomes covered by another frame and is subsequently uncovered, the Event
dispatch thread will call paint() so that the screen can be updated. It is also the job of the Event dispatch thread to notice when
user input has occurred, and to respond appropriately by making certain method calls to certain objects.

We say that Java GUI programs are event-driven. This means that after some initialization, the programs only act in response to
user input. An event is a single unit of user input. In the next section, you will learn about Java's simplest type of event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Action Listeners and Action Events
Java uses many types of events. The simplest is the action event, which is used by buttons and several other components to
indicate that simple user input activity has occurred. The other event types are slightly more complicated than action events, but
they are used in analogous ways. The nice thing about Java's event mechanism is that once you've learned how to handle one
kind of event, it's easy to handle the other kinds.

Every button has a list of objects that are interested in being notified when the button is pushed. These objects are the button's
action listeners. In general, a listener is an object that should be notified when a component is stimulated in some way.

Not all objects are eligible to be a button's action listener. An action listener must implement the
java.awt.event.ActionListener interface. Note that this interface lives in the java.awt.event package, along with all
the other classes and interfaces that make up Java's event mechanism. So a GUI application is likely to use the following two
import lines:
import java.awt.*;
import java.awt.event.*;

The first line imports all the component classes; the second imports the event-related classes and interfaces.

The java.awt.event.ActionListener interface defines a single method:
public void actionPerformed(ActionEvent e);

When a button is pressed, the Event dispatch thread constructs an instance of java.awt .event.ActionEvent. This is a very
simple class that contains a small amount of information about the button activity. Then the Event dispatch thread calls the
actionPerformed() method of each of the button's action listeners, passing the instance of ActionEvent as the method
call's argument.

When a button is constructed, its list of action listeners is empty. This explains why none of the buttons created in the example
code in the previous chapter actually caused anything to happen. To add an action listener to a button's list, call the button's
addActionListener() method, passing as an argument the listener to be added. The listener must implement the
ActionListener interface.

Here is a class that implements the interface, and so is eligible to be a button's action listener:
import java.awt.event.*;

class SimpleActionListener implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("The button was pushed.");
 }
}

The following code creates a button that uses an instance of SimpleActionListener as its action listener:
import java.awt.*;

public class UsesListener extends Frame
{
 UsesListener ()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 SimpleActionListener sal = new SimpleActionListener();
 btn.addActionListener(sal);
 add(btn);
 setSize(300, 100);
 }

 public static void main(String[] args)
 {
 (new UsesListener ()).setVisible(true);
 }
}

Figure 16.2 shows the GUI.

Figure 16.2: A button that sends events

The important thing to notice about Figure 16.2 is that there is nothing important to notice. The button looks perfectly ordinary.
There is nothing to tell us that it has feel as well as look. But when you push it, the following message appears in your console:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The button was pushed.

Congratulations! You have now seen your first example of a GUI that has both look and feel.

In addition to the addActionListener() method, the Button class also has a removeActionListener() method, which
can be called when a listener no longer wants to get called when the button is pushed.

Note In practice, buttons rarely have multiple action listeners, and removeActionListener() is rarely called. In most
cases, a button has a single action listener that is added just after the button is constructed and is never removed.

The procedure for writing code with a button that responds to user input can be summarized as follows:
1. Construct a button.

2. Create a listener class that implements the ActionListener interface.

3. Construct an instance of your listener class.

4. Call the button's addActionListener() method, passing in the instance of your listener class.

The Simple Event Lab animated illustration lets you experiment with buttons and listeners without writing code. Start the program
by typing java events.SimpleEventLab. You will see the display shown in Figure 16.3.

Figure 16.3: Simple Event Lab: initial screen

The program lets you create simulated buttons and listener classes. You can create simulated instances of the simulated listener
classes, click on the buttons, and observe how calls are made to the listeners.

Begin by creating some buttons. Click on Add Button three times. You will see things that look somewhat like buttons, as shown in
Figure 16.4.

Figure 16.4: Simple Event Lab with simulated buttons

Now create a (simulated) listener class. In real life, you would do this by writing a class that implements ActionListener. In
Simple Event Lab, you do it by clicking on Create Listener Class... in the lower part of the frame. The button label ends with dot-
dot-dot (officially called ellipsis). As you learned in the previous chapter, this means that the button causes a new frame or dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dot-dot (officially called ellipsis). As you learned in the previous chapter, this means that the button causes a new frame or dialog
box to appear. Indeed, clicking the button brings up a dialog box that lets you choose the name of the class. After you dismiss the
dialog, a picture of the class appears at the bottom of the screen, as shown in Figure 16.5.

Figure 16.5: Simple Event Lab with a listener class

The figure shows that a listener class called GoodListener has been created. Create your own class, choosing any name you
like.

Now it's time to create an instance of the listener class. Click on the picture of the class. You will see a pop-up menu that lets you
instantiate the class or delete it. Choose Construct Instance. A simulated instance of the class will appear below the simulated
buttons in the main screen, as you can see in Figure 16.6.

Figure 16.6: Simple Event Lab with a listener object

You can click on the picture of the listener object to change its name or to delete it.

Up to this point, you have simulated the first three steps listed earlier in this section. You have created buttons, you have created
a listener class, and you have constructed an instance of the listener class. Now it's time to register the listener object as an action
listener of one of the buttons.

Click on one of the simulated buttons. You will see a pop-up menu that invites you to add an action listener or delete the
component. Choose Add Action Listener. The cursor will turn into crosshairs. As you move the mouse over the listener object, the
object's outline will be highlighted, indicating that you are over a valid listener for the button. Click on the listener. You will see a
line connecting the button to the listener.

Now the fun begins. Click the Run button at the top of the screen. The simulated buttons will turn into real buttons, as shown in
Figure 16.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.7: Simple Event Lab continued

Now click the button that you connected to the action listener object. The program will show a call being made to the listener's
actionPerformed() method. The yellow ball represents the ActionEvent object.

Click on the Clear button to remove all simulated components, listener classes, and listener objects. Now that you have a clean
slate, see if you can repeat the process of connecting a button to a listener without looking at this page.

Experiment with multiple listener classes and multiple listener objects. Can a single listener object be an action listener for more
than one button? Can a button have more than one action listener? What does the Show Code... button do?

Getting Information from an Action Event

In the previous section, you were asked to use Simple Event Lab to determine whether a single listener object can be an action
listener for more than one button. The answer is yes, as shown in Figure 16.8.

Figure 16.8: One listener object for many buttons

But now there is a problem. Obviously, the code needs to respond differently to different buttons. How does the listener's
actionPerformed() method know which button was clicked?

The answer is found inside the method's argument. The ActionEvent class has a getSource() method that returns
the button that was clicked. Many actionPerformed() methods have a structure that is similar to the following:
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == okButton)
 doOkStuff();
 else if (e.getSource() == cancelButton)
 doCancelStuff();
 else if (e.getSource() == applyButton)
 doApplyStuff();
}

The method determines which button was used and responds accordingly. For this to work, the method has to have access to
references to the three buttons. The simplest way to make this happen is to put actionPerformed() in the frame subclass that
creates the buttons. Make sure the frame subclass declares that it implements ActionListener (no problem, since it has an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creates the buttons. Make sure the frame subclass declares that it implements ActionListener (no problem, since it has an
actionPerformed() method). Finally, when the buttons are created, the frame subclass itself is registered as their action
listener. It looks like this:
 1. import java.awt.*;
2. import java.awt.event.*;
 3.
 4. public class ListeningFrame extends Frame
 5. implements ActionListener
 6. {
 7. private Button okButton, cancelButton, applyButton;
 8.
 9. ListeningFrame()
10. {
11. setLayout(new FlowLayout());
12. okButton = new Button("Ok");
13. okButton.addActionListener(this);
14. add(okButton);
15. cancelButton = new Button("Cancel");
16. cancelButton.addActionListener(this);
17. add(cancelButton);
18. applyButton = new Button("Apply");
19. applyButton.addActionListener(this);
20. add(applyButton);
21. setSize(300, 100);
22. }
23.
24. public void actionPerformed(ActionEvent e)
25. {
26. if (e.getSource() == okButton)
27. doOkStuff();
28. else if (e.getSource() == cancelButton)
29. doCancelStuff();
30. else if (e.getSource() == applyButton)
31. doApplyStuff();
32. }
33.
34. public static void main(String[] args)
35. {
36. (new ListeningFrame()).setVisible(true);
37. }
38. }

The implements ActionListener statement makes the ListeningFrame class eligible to be an action listener for buttons.
Lines 13, 16, and 19 register this as each button's listener. Recall that this is a reference to an object that owns the code being
executed. In other words, it's the instance of ListeningFrame that is being constructed. The doOkStuff(),
doCancelStuff(), and doApplyStuff() methods are omitted.

Here is another example that uses the same design structure. The program plays a version of the game Nim. This game is played
by placing 10 coins in a pile. Each player in turn takes one, two, or three coins. The player who takes the last coin is the winner.
The GUI consists of four buttons: Take 1, Take 2, Take 3, and Quit. As each player takes a coin, the code prints out the number
of remaining coins. Figure 16.9 shows the GUI.

Figure 16.9: Simple Nim GUI

Here's the code:
import java.awt.*;
import java.awt.event.*;

public class SimpleNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 SimpleNim()
 {
 nCoins = 10;
 setLayout(new FlowLayout());
 btn1 = new Button("Take 1");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 add(quitBtn);
 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 System.out.println(nCoins + " left.");
 }

 public static void main(String[] args)
 {
 (new SimpleNim()).setVisible(true);
 }
}

The actionPerformed() method first determines if the event source was the Quit button. If so, System.exit() is called to
terminate the program. In event-driven programming, calling System.exit() in response to user input is the appropriate way to
end a program. If the event came from one of the Take buttons, the coin count nCoins is decremented and the remaining value is
printed out.

This application works as an example of how to process events, but it is certainly no improvement over a pile of coins. (Unless you
don't have 10 coins. But if you don't have 10 coins, you probably can't afford a computer.) The situation points out an important
principle of GUI design, which is violated all to often on the World Wide Web: Only create a GUI if it makes life better.

In the next section, you will see the last example improved on in several ways. You might not think the final version is better than a
pile of coins, but you will certainly find it an improvement over the original version. And, more importantly, you will learn some
important techniques for creating useful GUIs.

Improving the GUI

In this section, the SimpleNim application will be improved in three stages. To keep life simple, the Nim Lab program on your CD-
ROM gives you easy access to all four versions (the original and the three improvements). To run Nim Lab, type java
events.NimLab. You will see the display shown in Figure 16.10.

Figure 16.10: Nim Lab

Each improvement will illustrate a general principle of GUI design. The first principle is that the results of user input activity should
appear near where the activity happened. In this way, cause and effect are visually related. (The cause is the input, and the effect
is the resulting change to the screen.) In the SimpleNim version, you clicked buttons in the GUI, but your output appeared at the
console from which you ran the program. This is inconvenient, because you have to keep moving your eyes back and forth.

It would be better if the output could happen in the GUI. For this, you will use a text area. The TextArea class has a method
called append() that appends text the component's contents, so let's modify the actionPerformed() method so that it calls
append() rather than System.out.println().

Figure 16.11 shows the GUI after a game has been played.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.11: Nim, with output to a text area

Here is the code:
import java.awt.*;
import java.awt.event.*;

public class TextAreaNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private TextArea ta;
 private int nCoins;

 TextAreaNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");
 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 ta.append(nCoins + " left.\n");
 }

 public static void main(String[] args)
 {
 (new TextAreaNim()).setVisible(true);
 }
}

The frame uses a border layout manager. There is a panel (controls) at North containing the buttons. The text area is at
Center. Thus, when you make the frame bigger (try it!), most of the new space goes to the text area.

The original line
System.out.println(nCoins + " left.");

has been replaced by
ta.append(nCoins + " left.\n");

Notice the newline character (\n) in the new version. When you call System.out.println(), a newline is printed
automatically. This does not happen when you call append() on a text area, so you have to provide your own newline.

This version is definitely an improvement. You no longer have to look up to do input and look down to read output. But the output
is pure text.

The next principle of GUI design that we will apply is this: Show me, don't tell me. Our next improvement will be to draw coins on
the screen, rather than displaying text that merely tells you about coins. This is not a book on graphic design, so the coins will just
be filled circles. But the code will show what you could do if you were working with a graphics designer who provided you with
code for painting exquisitely detailed coins.

Figure 16.12 shows the initial state of the new version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.12: Nim with graphical output

Figure 16.13 shows the GUI after a few coins have been taken.

Figure 16.13: Nim with graphical output, game in progress

Figures 16.12 and 16.13 dramatically show that pictures are better than words. Here's the code:
import java.awt.*;
import java.awt.event.*;

public class GraphicOutputNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 GraphicOutputNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");
 setSize(350, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;
 repaint();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void paint(Graphics g)
 {
 int x = 25;
 int y = 85;

 g.setColor(Color.blue);
 for (int i=0; i<nCoins; i++)
 {
 g.fillOval(x, y, 20, 20);
 x += 30;
 }
 }

 public static void main(String[] args)
 {
 (new GraphicOutputNim ()).setVisible(true);
 }
}

The text area is gone. The line at the end of actionPerformed(), which originally called System.out.println() and then
called the text area's append() method, is now the following:
repaint();

The repaint() method causes two things to happen:
1. The frame's interior is cleared to its background color. (Components contained in the frame are not affected.)

2. A call is made to the frame's paint() method.

Whenever you want a display to be refreshed in response to GUI input, calling repaint() is the best approach. It would be
beyond the scope of this book to explain why. Here is an oversimplified explanation: When you call repaint(), eventually your
paint() method will be called, at an appropriate time, with an appropriate Graphics argument. You never need to call
paint() directly. You are always better off calling repaint() and letting the environment call paint().

The paint() method uses a loop to draw the appropriate number of blue-filled circles, based on the value of nCoins. The
variable x determines the horizontal position of each circle's bounding box. It is increased by 30 each time a circle is drawn. To
see the program in action, run Nim Lab and select Graphical Output....

Now let's make one last improvement to enforce what is perhaps the most important GUI principle of all. If you pay attention to the
other principles, you might create a great GUI. But if you ignore the most important principle, you will certainly create a poor GUI.

Here's the most important principle: A GUI should never let a user perform illegal input.

The latest Nim version violates this rule. To see this, run Nim Lab and select Graphical Output.... Click the Take 3 button three
times. Now there is only one coin left, but the GUI will let you take two or three coins. This should not be allowed. You also should
not be allowed to take three coins if there are two coins left.

There are two ways to make illegal input impossible. At the appropriate time, the buttons can be either removed or disabled.
Removing the buttons may sound like a good idea (after all, you can't push a button that isn't there), but extensive research has
shown that users are uncomfortable with GUIs whose components pop in and out of existence. This approach creates too much
movement in the peripheral field of vision. The commonly accepted technique is to disable components that should not be used.
The components are still visible, but they are unresponsive. A disabled component has a slightly different appearance. It is
somewhat grayer than its enabled counterpart. Figure 16.14 shows two buttons. The first is enabled, the second is disabled.

Figure 16.14: Enabled and disabled buttons

In the previous version of the Nim GUI, the Take buttons are enabled only if there are enough coins left. Figure 16.15 shows the
program when one coin remains.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.15: Nim with disabled buttons

Notice that the Take 2 and Take 3 buttons are disabled. To enable or disable any component, call its setEnabled() method.
The method takes a boolean argument: true to enable, false to disable. Here's the code:
import java.awt.*;
import java.awt.event.*;

public class DisablingNim extends Frame
 implements ActionListener
{
 private Button btn1, btn2, btn3, quitBtn;
 private int nCoins;

 DisablingNim()
 {
 nCoins = 10;

 Panel controls = new Panel();
 btn1 = new Button("Take 1");
 btn1.addActionListener(this);
 controls.add(btn1);
 btn2 = new Button("Take 2");
 btn2.addActionListener(this);
 controls.add(btn2);
 btn3 = new Button("Take 3");
 btn3.addActionListener(this);
 controls.add(btn3);
 quitBtn = new Button("Quit");
 quitBtn.addActionListener(this);
 controls.add(quitBtn);
 add(controls, "North");
 setSize(350, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == quitBtn)
 System.exit(0);

 if (e.getSource() == btn1)
 nCoins -= 1;
 else if (e.getSource() == btn2)
 nCoins -= 2;
 else if (e.getSource() == btn3)
 nCoins -= 3;

 if (nCoins < 3)
 btn3.setEnabled(false);
 if (nCoins < 2)
 btn2.setEnabled(false);
 if (nCoins < 1)
 btn1.setEnabled(false);

 repaint();
 }

 public void paint(Graphics g)
 {
 int x = 25;
 int y = 85;

 g.setColor(Color.blue);
 for (int i=0; i<nCoins; i++)
 {
 g.fillOval(x, y, 20, 20);
 x += 30;
 }
 }

 public static void main(String[] args)
 {
 (new DisablingNim()).setVisible(true);
 }
}

The new code appears at the end of actionPerformed():
 if (nCoins < 3)
 btn3.setEnabled(false);
 if (nCoins < 2)
 btn2.setEnabled(false);
 if (nCoins < 1)
 btn1.setEnabled(false);

Further improvements to the GUI are possible. (See Exercise 5 at the end of this chapter.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But enough about Nim. At this point, you know how to respond to GUI input from buttons. It will be easy to move on to responding
to other component types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events from other Components
In Chapter 15, you learned how to create a variety of component types:

Buttons

Check boxes

Choices

Labels

Menus and menu items

Scrollbars

Text areas

Text fields

Now you will learn how to respond to user input activity on each type of component. You already know how to respond to buttons.
Labels do not send events. In the rest of this chapter, you will learn how to detect events from the other component types.

Check Boxes, Choices, and Item Events

In this section, you'll learn how to respond to activity from check boxes and choices. As a reminder, Figure 16.16 shows a check
box and a choice.

Figure 16.16: Check box and choice

Check boxes and choices don't have action listeners, but they have something similar: item listeners. An object that wants to be
notified when activity happens in a check box or a choice must implement the java.awt.event.ItemListener interface. This
interface defines one method:
public void itemStateChanged(ItemEvent e);

When a check box or choice is activated, an itemStateChanged() call is made to each of its item listeners. You can call
addItemListener(ItemListener x) to add an item listener to a check box's or choice's list. You can call
removeItemListener(ItemListener x) to remove an item listener from a check box's or choice's list.

Within an itemStateChanged() method, you can determine which component was activated by calling the ItemEvent's
getSource() method, just as you would call getSource() on an ActionEvent in an actionPerformed() method. (In fact,
ActionEvent, ItemEvent, and the other event classes you will learn about in this chapter all inherit getSource() from a
superclass that they all extend.)

The following code builds a GUI that contains a check box, a choice, and a text field. When the check box or the choice are
activated, the text field displays an appropriate message.
import java.awt.*;
import java.awt.event.*;

public class CboxAndChoice extends Frame
 implements ItemListener
{
 private Checkbox cbox;
 private Choice ch;
 private TextField tf;

 CboxAndChoice()
 {
 setLayout(new FlowLayout());
 cbox = new Checkbox("Click here");
 cbox.addItemListener(this);
 add(cbox);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ch = new Choice();
 ch.add("Red");
 ch.add("Yellow");
 ch.add("Blue");
 ch.add("Plaid");
 ch.add("Paisley");
 ch.addItemListener(this);
 add(ch);

 tf = new TextField(25);
 add(tf);

 setSize(475, 75);
 }

 public void itemStateChanged(ItemEvent e)
 {
 if (e.getSource() == cbox)
 tf.setText("Checkbox: " + cbox.getState());
 else
 tf.setText("Choice: " + ch.getSelectedIndex());
 }

 public static void main(String[] args)
 {
 (new CboxAndChoice()).setVisible(true);
 }
}

The itemStateChanged() method calls the event's getSource() method to determine which component was activated. The
getState() method of Checkbox returns true if the component is checked, and false if it is not checked. The
getSelectedIndex() method of Choice returns the position (counting from 0) of the component's selected item.

Figure 16.17 shows the GUI.

Figure 16.17: Receiving events from a check box and a choice

By now, you probably get the feel of it. Components have lists of listeners. When the components are activated, method calls are
made to the listeners.

That's about it. You'll probably have an easy time with the next several sections.

Text Fields and Text Areas

Text fields and text areas both send text events to text listeners. The events are sent each time a user types a keystroke. The
TextListener interface defines one method:
public void textValueChanged(TextEvent e);

To add an object to a text field's or text area's list of text listeners, call the component's addTextListener() method, passing in
the listener object.

Text fields (but not text areas) can also send action events to action listeners. This happens when the user presses the Enter key.

We won't work through a detailed code example, because if you understand how to handle action and item events, handling text
events should be obvious. Instead, let's step back for a moment and look at the big picture.

A Java GUI consists of a number of components of various types. Each component may have zero, one, or multiple listeners for
each event type that the component supports. When a component is activated, the Event dispatch thread calls the appropriate
method of each listener.

The Event Lab animated illustration lets you experiment with multiple component, listener, and event types, without writing any
code. Event Lab is an extension of Simple Event Lab. In addition to buttons, you can create check boxes, choices, and text fields.
When you create a listener class, you select which listener interfaces it will implement. (Your choices are ActionListener,
ItemListener, and TextListener. Remember that classes are allowed to implement more than one interface, so listener
classes are allowed to implement more than one listener interface.)

Start the program by typing java events.EventLab. You control the program just as you did Simple Event Lab. Figure 16.18
shows Event Lab with a fairly complicated configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.18: Event Lab

Configure Event Lab with your own complicated setup. Then click the Run button. The simulated components will become real.
Activate your buttons, check boxes, choices, and text fields until you have a good feel for how various component types send
various event types to various listeners in an event-driven GUI program.

Events from Menus

In Chapter 15, you saw the simplest way to populate menus. It looked something like this:
Menu fileMenu = new Menu("File");
fileMenu.add("Open…");
fileMenu.add("Close");
...

The add() calls created individual menu items. That approach was good for showing you what Java menus look like, but there is
a better way if you want to receive event notification from the menu items. The preceding code can be rewritten as follows:
Menu fileMenu = new Menu("File");
MenuItem openMI = new MenuItem("Open…");
fileMenu.add(openMI);
MenuItem closeMI = new MenuItem("Close");
fileMenu.add(closeMI);
...

Like buttons, menu items send action events to action listeners. So to add menuListener to openMI's list of action listeners, you
would call
openMI.addActionListener(menuListener);

There's no need to present a detailed example, because the code is so similar to the code you've already seen that handles
action events from buttons.

Scrollbars and Adjustment Events

Scrollbars send adjustment events to adjustment listeners. Adjustment listeners implement the
java.awt.event.AdjustmentListener interface. Once again, we have a listener interface that defines a single method:
public void adjustmentValueChanged(AdjustmentEvent e);

An object gets added to a scrollbar's listener list via a call to the addAdjustmentListener() method. The following code
receives adjustment notification from a scrollbar, and reports the scrollbar's value to a text field. The code uses the getvalue()
method of the Scrollbar class. The return type is int:
import java.awt.*;
import java.awt.event.*;

public class BarAndTF extends Frame
 implements AdjustmentListener
{
 private Scrollbar bar;
 private TextField tf;

 BarAndTF()
 {
 bar = new Scrollbar(Scrollbar.HORIZONTAL);
 bar.addAdjustmentListener(this);
 add(bar, "North");
 Panel pan = new Panel();
 tf = new TextField(" ");
 pan.add(tf);
 add(pan, "South");

 setSize(300, 100);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void adjustmentValueChanged(AdjustmentEvent e)
 {
 tf.setText("Value = " + bar.getValue());
 }

 public static void main(String[] args)
 {
 (new BarAndTF()).setVisible(true);
 }
}

The GUI is shown in Figure 16.19.

Figure 16.19: Scrollbar and text field

Now you know how to respond to events from all the component types you learned about in Chapter 15. In the next chapter, which
finishes this book, you will work through a detailed final project that draws from everything you have learned so far, from Chapter 1
through the period at the end of this sentence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Write a program that displays a frame. The frame's paint() method should draw something simple. The
application should also maintain a count of the number of times paint() is called. This count should be printed
out every time paint() is called. Execute your application, and use it to help determine whether paint() is
called when:

The application starts up.

The frame is minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is moved.

The frame is partially covered by another frame.

The frame is uncovered.

2. Every Java thread is represented by an instance of the java.lang.Thread class. You can get a reference to
the currently running thread by calling the currentThread() static method of the Thread class. Threads have
names. The class has a method called getName(), which returns the name as a string. So you can print out the
name of the current thread by calling
System.out.println(Thread.currentThread().getName());

Write a simple frame application that makes this call in its main() method and in its paint() method. Verify
that main()and paint() are executed in different threads.

3. Write an application that adds the same action listener to a button twice. For example, if myButton is the button
and myListener is the action listener, your code would contain the following lines:
myButton.addActionListener(myListener);
myButton.addActionListener(myListener);

Your listener's actionPerformed() method should print out a message to tell you that it got called. If you
press the button once, do you expect the message to be printed out once or twice? Run your application to see
if you guessed right.

Of course, in real life there would never be a good reason for doing this. But you might do it by accident. For
example, you might paste the line into your source code twice by accident. So it's good to know in advance what
the symptom will be, so that you can recognize it and fix the problem if it ever comes up.

4. Suppose a class has an actionPerformed() method, as specified by the ActionListener interface, but
the class does not state that it implements the interface. Can an instance of the class be used as a button's
action listener?

5. Run Nim Lab by typing java events.NimLab. Select Disable Buttons... and play the game. This version is the
result of three rounds of improvements made to the original program. What additional improvements can you
suggest? Think about how the game could be modified to make the GUI easier and more natural.

6. The various event classes (ActionEvent, ItemEvent, etc.) all inherit the getSource() method from a
superclasss. Use the API pages to determine the name of that superclass.

7. Write an application with a GUI that contains a choice and a text area. When the choice is activated, a message
should be written to the text area, stating the choice's selected index.

Suggested design: Your frame should contain a panel (at North) that contains the choice. The text area should
be at South. If you need a guideline, the TextAreaNim program in the "Improving the GUI" section has a similar
structure.

8. Write an application with a GUI that contains a text field and a text area. When the user presses the Enter key in
the text field, the text field's contents should be copied into text area, followed by a newline character.

Your event-handling code will need to retrieve the contents of the text field. You do that by calling the text field's
getText() method, which returns a string.

Suggested design: Your frame should contain a panel at North that contains the text field. The text area should
go at Center.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17: Final Project
You made it! With the presentation on event handling in the previous chapter, you have finished your from-the-ground-up
introduction to the Java programming language. You now know a lot about Java, and in this chapter you'll prove it. You will
observe the development of a substantial programming project, and it will all make sense. The project will draw on the information
you learned in every other chapter of this book. It includes a GUI that paints, uses components, and sends out events. Classes
will be extended and interfaces will be implemented. Exceptions will be thrown and caught.

This chapter doesn't just walk you through a finished, polished program. That would be like dissecting an animal in high-school
biology class. Seeing something grow and develop is better than studying something that's dead. So for each piece of the project,
you will see not just the final product, but also the living process that culminates in the finished, polished program.

Description of the Project
We will create a GUI that displays Java source code in an easy-to-read format. The user will be able to choose any .java file. Most
of the code will appear in black letters, but line comments and Java keywords will appear in different colors, to be specified by the
user.

Figure 17.1 shows the application in action. It is displaying one of the source files of the project.

Figure 17.1: Final Project

The Show lines check box draws horizontal lines to make the text more readable. Figure 17.2 is the same code, with lines.

Figure 17.2: Final Project, with lines

The black-and-white figures don't communicate the dramatic effect of multicolored source code.

Now is a good time to run the actual project code, so you can get familiar with what you'll be doing in the rest of this chapter. Type
java fancysrc.FancySrcFrame. You'll see the GUI controls shown in the figures, above a blank display area. To display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java fancysrc.FancySrcFrame. You'll see the GUI controls shown in the figures, above a blank display area. To display
some code, select Open… in the File menu. You will see a file chooser. Use the chooser to select one of the source files on the
CD-ROM, or one of your own Java source files.

Now let's get to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building the Pieces
The overall structure of the project code will be familiar to you. We will create a subclass of java.awt.Frame, called
FancySrcFrame, in package fancysrc. The frame will have a panel at North, containing various components. The
FancySrcFrame class will be the event listener for all events from all components.

We will divide the work into five pieces. We will develop each piece in turn before assembling everything into the final product.
The five pieces are:

The menu

The file-specification code

The color-specification code

The display area

The painting code

Each piece of the project is discussed in its own section.

The File Menu

Over the years, the software industry has created a substantial number of conventions for interacting with GUI-based programs.
Every GUI is different, but they can all be approached in the same way, with the same reasonable expectations. This is
enormously beneficial to the community of software users (that's us), because it reduces the amount of time we have to spend
learning to use a new program.

The automobile industry is in a similar situation. If you know how to drive a car, you pretty much know how to drive every car. If
this were not the case, car rental would be even more stressful than it already is.

One of the standard GUI practices is to install a menu bar in every program's main frame. The leftmost menu is a File menu,
whose last item is Exit. In our case, the File menu will have an Open… item. Here we won't worry about how to actually open a
file. That's covered in the next section, "Specifying a File." For the moment, our concern is to construct a menu bar with a File
menu.

Building and responding to a menu requires techniques that were presented in Chapters 15, "Components," and 16, "Events." The
constructor for our main application class (FancySrcFrame, in package fancysrc) will build the menu.

When you write code that builds menus, you might find it helpful to draw a diagram like the one in Figure 17.3.

Figure 17.3: Menu schematic

A menu schematic might be trivial for the project at hand, but it makes life much easier if you are creating complicated menu bars,
with many menus and submenus. After you write your menu code, you can test all the menus to make sure they match your
schematic.

Chapter 15 presented a list of steps for building a menu structure:
1. Create a menu bar.

2. Create the menus.

3. Attach the menus to the menu bar.

4. Attach the menu bar to the frame.

Here is some code that builds the menu structure:
 1. MenuBar mbar = new MenuBar();
 2. Menu fileMenu = new Menu("File");
 3. openMI = new MenuItem("Open…");
 4. openMI.addActionListener(this);
 5. fileMenu.add(openMI);
 6. exitMI = new MenuItem("Exit");
 7. exitMI.addActionListener(this);
 8. fileMenu.add(exitMI);
 9. mbar.add(fileMenu);
10. setMenuBar(mbar);

Line 1 creates a menu bar. Lines 2-8 create a menu. Line 9 attaches the menu to the menu bar, and line 10 attaches the menu
bar to the frame. Assume the current class implements the java.awt.event.ActionListener interface, so this is a legal
argument to the addActionListener() calls in lines 4 and 7.

The variables mbar and fileMenu are declared within the constructor. (Remember, all the preceding code goes in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The variables mbar and fileMenu are declared within the constructor. (Remember, all the preceding code goes in the
FancySrcFrame constructor.) However, openMI and exitMI will be declared as variables of the FancySrcFrame class. You'll
see why shortly. Meanwhile, can you guess? (Hint: It has something to do with event handling.)

Now that we have a small chunk of code, let's test it. We'll embed it in a test class called MenuTest. This class implements
ActionListener, so that lines 4 and 7 will compile. If the code works, we can later copy it verbatim from the test program into
our final project code.

Here is the source for MenuTest:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class MenuTest extends Frame implements ActionListener
{
 private MenuItem openMI, exitMI;

 MenuTest()
 {
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 openMI = new MenuItem("Open…");
 openMI.addActionListener(this);
 fileMenu.add(openMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);
 setSize(250, 100);
 }

 public void actionPerformed(ActionEvent e)
 {

 }

 public static void main(String[] args)
 {
 (new MenuTest()).setVisible(true);
 }
}

The actionPerformed() method doesn't do anything, because for now we just want to check the structure of the menu. We
are testing look, not feel. If you want to run MenuTest, it's on your CD-ROM. Just type java fancysrc.MenuTest. It looks like
Figure 17.4.

Figure 17.4: Teting the menu's look

The figure matches the menu schematic from Figure 17.3, so apparently the code is good.

Now let's add code to respond to menu activation, so we can test feel as well as look. We just need to put some println() calls
in the actionPerformed() method. Later we'll replace the calls with code that actually opens a file or exits the program.

Here's the new version of actionPerformed():
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 System.out.println("OPEN Menu item");
 else
 // Must be the "Exit" menu item.
 System.out.println("EXIT Menu item");
}

When the test program is run and the two menu items are activated one after another, the output is
OPEN Menu item
EXIT Menu item

The output shows that the menu item action events are being handled correctly.

Implementing the exiting code is trivial. We just insert a call to System.exit():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implementing the exiting code is trivial. We just insert a call to System.exit():
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 System.out.println("OPEN Menu item");
 else
 // Must be the "Exit" menu item.
 System.exit(0);
}

The test code is on your CD-ROM. If you want to run it, type java fancysrc .MenuEventTest. At this point the menu looks
right, and its events are being handled properly, so we can move on to the question of how to open a file.

Specifying a File

Most computer programs modify data stored in files. This accounts for the prominent position of the File menu. Selecting a file for
a program to process is a very common activity. You would expect file selection to be standardized in some way, and this is
indeed the case.

Java provides a class called java.awt.FileDialog, which supports all the functionality needed to help users specify a file. The
class is easy to use. As the name implies, it creates a dialog box. A dialog box is a window that is subordinate to its program's
main frame, used for brief user interaction. When you delete a file or exit a program, and a box pops up to ask you if you're sure,
you are looking at a dialog box.

Many dialog boxes are modal. A modal dialog box consumes all mouse and keyboard input to the program. This implies that you
can't continue using the program until you have dealt with the dialog box and dismissed it. Most "Are you sure?" dialog boxes are
modal. Java's file dialog box is also modal.

The FileDialog class shares a lot of behavior with the Frame class. This is not surprising, since the classes have a common
superclass called Window, as shown in Figure 17.5.

A glance at the API shows that FileDialog class has three constructors:
FileDialog(Frame parent)
FileDialog(Frame parent, String title)
FileDialog(Frame parent, String title,
 int mode)

Figure 17.5: Window, Frame, and FileDialog

The parent argument is the frame over which the dialog box will appear. The title string determines what appears in the
dialog box's title bar. The mode specifies whether the dialog box will be used for opening or saving a file. Opening is the default,
so you don't have to worry about specifying the mode. (But see Exercise 1 at the end of this chapter.)

Figure 17.6 shows a file dialog box, configured for opening:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17.6: File dialog box configured for opening

Unlike frames, file dialog boxes are created with non-zero width and height, so you don't have to call setSize() on them.
However, like frames, they are not visible until you call setVisible(true) on them. When you make this call, the dialog box
appears, and the rest of the program's GUI refuses to accept mouse or keyboard input. Moreover, execution of your program
pauses. Eventually, the user deals with and dismisses the dialog box. At this point, the rest of the GUI once more accepts input,
and execution of your program continues from the line immediately following the setVisible(true) call.

The functionality is complicated, but using file dialog boxes is actually very simple. You construct your dialog box and, at the right
moment, call setVisible(true) on it. The next line of code will not execute until a file has been specified (or the user has
selected Cancel). There are two useful calls that you can then make on your dialog box, and both methods return strings:

getFile() The getFile() method returns the name of the file the user chose, or null if the dialog box was canceled.

getDirectory() The getDirectory() method returns the name of the chosen directory.

Whenever you learn about a new Java class, it's a good idea to write a practice program that creates an instance of the class and
uses it in a way similar to the way you will later be using it in your program. That way you can experiment freely, and there is no
danger that you will break your project accidentally by deleting or changing perfectly good code.

Here is a practice program that creates a file dialog box when a button is clicked:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class FileDialogPractice extends Frame implements ActionListener
{

 public FileDialogPractice()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Show me…");
 btn.addActionListener(this);
 add(btn);
 setSize(200, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 FileDialog dia = new FileDialog(this);
 dia.setVisible(true);
 String fileName = dia.getFile();
 if (fileName == null)
 System.out.println("You canceled the dialog.");
 else
 System.out.println("Your chose file " + fileName + "
 in " + dia.getDirectory());
 }

 public static void main(String[] args)
 {
 (new FileDialogPractice()).setVisible(true);
 }
}

Notice the code in actionPerformed():
1. FileDialog dia = new FileDialog(this);
2. dia.setVisible(true);
3. String fileName = dia.getFile();
 …

After line 1 executes, processing does not move on to line 2 until the user has dismissed the dialog box. The getFile()
call on line 3 returns null if the dialog box was canceled. If you want to try the test program, it's on your CD-ROM. To run it,
type java fancysrc.FileDialogPractice.

What should the code do after the file has been specified? We don't know yet, but we will figure it out in good time. At this point,
we have code to capture the user's desired input file. Before we worry about processing and displaying the file, let's turn our
attention to the remaining GUI-related piece of the puzzle.

Specifying Colors

This section will look at the portion of the GUI that supports color selection. First you'll see a perfectly reasonable design:
straightforward, but nothing fancy. Then the design will be improved in stages, ending with code that is elegant and reusable.

Let's start with what we know. We want to users to select from among a small number of colors. The colors must be dark enough
that they can be read easily on a white background. That rules out yellow, pink, and several others. Let's settle on these:

Black

Blue

Green

Red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cyan

Magenta

Cyan and magenta are marginal. For now, we'll include them. We can throw them out later on if they don't look good. If throwing
them out proves to be difficult, that's an indication that our design wasn't very flexible.

Our users will have to select from these six colors… twice. Once for the keyword color, and once for the comment color. Of the
components that you learned about in Chapter 15, there are two that support making an exclusive selection from a small set of
options: choices and radio buttons. We can rule out radio buttons because we would need 12 of them, compared to only two
choices. If we used radio buttons, they would dominate the GUI, forcing the control area to be much larger than it needs to be, as
shown in Figure 17.7.

Figure 17.7: Too many radio buttons

For this situation, choices are much cleaner. Let's assume that our main application class will be called FancySrcFrame and will
extend Frame. The class code will include the following declarations:
private Choice keywordChoice, commentChoice;

The choice components should be built in the FancySrcFrame constructor. One way to build them would be like this:
keywordChoice = new Choice();
keywordChoice.add("BLACK");
keywordChoice.add("BLUE");
keywordChoice.add("GREEN");
keywordChoice.add("RED");
keywordChoice.add("CYAN");
keywordChoice.add("MAGENTA");
commentChoice = new Choice();
commentChoice.add("BLUE");
commentChoice.add("BLACK");
commentChoice.add("GREEN");
commentChoice.add("RED");
commentChoice.add("CYAN");
commentChoice.add("MAGENTA");

This code can be improved, because every call appears twice. Whenever code is duplicated, consider the alternative of creating a
method. The following code is much easier to read and more reliable:
keywordChoice = buildColorChoice();
commentChoice = buildColorChoice();
…
private Choice buildColorChoice()
{
 Choice c = new Choice();
 c.add("BLACK");
 c.add("BLUE");
 c.add("GREEN");
 c.add("RED");
 c.add("CYAN");
 c.add("MAGENTA");
 return c;
}

The new version is 13 lines long, compared to 14 in the original. That's not much of a difference, but later you might want to add a
third color choice, and perhaps a fourth. In the old version, each additional color choice required seven lines, compared to only
one line in the new version. Moreover, all choice components created by the buildColorChoice() method will be identical.
With the original approach, each time you type the seven repeated lines, you introduce the possibility of a transcription error. Did
you notice that in the first block of code, the second choice reverses the order of BLACK and BLUE?

An even cleaner approach uses an array of color names. The following would appear along with the other variables of the
FancySrcFrame class:
private String[] colorNames =
{
 "BLACK", "BLUE", "GREEN", "RED", "CYAN", "MAGENTA"
};

Now the buildColorChoice() method is just the following:
private Choice buildColorChoice()
{
 Choice c = new Choice();
 for (int i=0; i<colorNames.length; i++)
 c.add(colorNames[i]);
 return c;
}

If you want to add or remove colors from the set of options, you just edit the contents of colorNames.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to add or remove colors from the set of options, you just edit the contents of colorNames.

The choices will need an item listener. The logical candidate is the FancySrcFrame class. The itemStateChanged() method
should cause the display to be repainted, using the new keyword or comment color. Somewhere (we don't need to decide where
right now), some code will have to figure out which colors to use, based on the settings of the two choices. One way to do this
would be to have a method that returns an instance of Color:
private Color getColorFromChoice(Choice c)
{
 int index = c.getSelectedIndex();
 if (index == 0)
 return Color.BLACK;
 else if (index == 1)
 return Color.BLUE;
 else if (index == 2)
 return Color.GREEN;
 else if (index == 3)
 return Color.RED;
 else if (index == 4)
 return Color.CYAN;
 else
 return Color.MAGENTA;
}

That certainly works, but there is a much cleaner way. First, we'll create an array of colors. For maximum readability, it should
appear next to the colorNames array:
private Color[] colors =
{
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
};

To determine the color indicated by a choice component, use the choice's selected index as an index into the colors array:
private Color getColorFromChoice(Choice c)
{
 int index = c.getSelectedIndex();
 return colors[index];
}

We have now worked out one piece of our design. We could go on to work out all our other design decisions, but before we blaze
ahead, let's test what we have so far. If it doesn't work, we need to try again. If it works, we aren't committed to it. We reserve the
right to improve on our color-specifying design later on.

Since color specification is the first code we will develop, our test will be simple. We don't yet know how we will select the file to be
read, or paint lines on the screen, or paint source code on the screen in appropriate colors. So we'll create a program that just
implements the color-specifying part of the GUI. To verify that the right colors are being returned from getColorFromChoice(),
we'll just draw two squares in the frame. The square on the left will be the keyword color. The square on the right will be the
comment color. Figure 17.8 shows the GUI.

Figure 17.8: Testing color selection

Here's the code:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class ColorTest extends Frame implements ItemListener
{
 private String[] colorNames =
 {
 "BLACK", "BLUE", "GREEN",
 "RED", "CYAN", "MAGENTA"
 };

 private Color[] colors =
 {
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Choice keywordChoice, commentChoice;

 public ColorTest()
 {
 setLayout(new FlowLayout());
 add(new Label("Keyword Color:"));
 keywordChoice = buildColorChoice();
 keywordChoice.addItemListener(this);
 add(keywordChoice);
 add(new Label("Comment Color:"));
 commentChoice = buildColorChoice();
 commentChoice.addItemListener(this);
 add(commentChoice);
 setSize(500, 300);
 }

 private Choice buildColorChoice()
 {
 Choice c = new Choice();
 for (int i=0; i<colorNames.length; i++)
 c.add(colorNames[i]);
 return c;
 }

 private Color getColorFromChoice(Choice c)
 {
 int index = c.getSelectedIndex();
 return colors[index];
 }

 public void itemStateChanged(ItemEvent e)
 {
 repaint();
 }

 public void paint(Graphics g)
 {
 Color keywordColor = getColorFromChoice(keywordChoice);
 g.setColor(keywordColor);
 g.fillRect(100, 100, 100, 100);
 Color commentColor = getColorFromChoice(commentChoice);
 g.setColor(commentColor);
 g.fillRect(300, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 new ColorTest().setVisible(true);
 }
}

The class code begins with the arrays colorNames and colors. Notice how each name is aligned vertically with its
corresponding color. It's a small touch that creates a visual relationship between the functionally related items.

The itemstateChanged() method just calls repaint(). Remember from Chapter 16 that when you want to paint your display
in reaction to user input, you shouldn't directly call paint(). Rather, you should call repaint(), which clears the display and
then calls paint(). Our paint() method draws the two squares.

It works. If you want to try it, the code is on your CD-ROM. Just type java fancysrc .ColorTest.

We can't rest on our laurels yet. The code works, ColorTest proves it, but it isn't very object-oriented. The software that supports
a single function (color selection) is spread throughout the class. The great thing about object-oriented programming is that it
allows you to encapsulate related functionality. Let's see how to encapsulate color selection.

Think about the Choice class. Its getSelectedIndex() method returns an int. A lot of the code in ColorTest is devoted to
converting that int to the corresponding color. Life would be a lot easier if Choice had a method called getSelectedColor().
Of course, no such method exists, because Choice is a general-purpose class intended for specifying colors, fonts, font sizes,
names, countries, languages, or anything else that any programmer might think of. But we can subclass Choice to create a
special-purpose class that does exactly what we want.

We will create a subclass called ColorChoice. The constructor will populate the component with the appropriate strings. The
colorNames and colors arrays will go inside the new class, since no other code will need them. We will provide a
getSelectedColor() method. The new class looks like this:
package fancysrc;

import java.awt.*;

public class ColorChoice extends Choice
{
 private static String[] colorNames =
 {
 "BLACK", "BLUE", "GREEN",
 "RED", "CYAN", "MAGENTA"
 };

 private static Color[] colors =
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Color.BLACK, Color.BLUE, Color.GREEN,
 Color.RED, Color.CYAN, Color.MAGENTA
 };

 public ColorChoice()
 {
 for (int i=0; i<colorNames.length; i++)
 add(colorNames[i]);
 }

 public Color getSelectedColor()
 {
 return colors[getSelectedIndex()];
 }
}

Notice that the two arrays have been declared as static. Remember that if a variable is static, there is only one copy of it,
shared by all instances of the class. We know that there will be two instances of ColorChoice. There is no need to create two
identical versions of the arrays, which is what would happen if they were not static. Each instance would have its own version. If
the GUI changed later so that there were 25 color choices, there would be 25 identical versions of each array. Duplication of data
is always something to be avoided. Here we avoid it by making the arrays static.

Testing the code is much easier. The complicated stuff is now in the ColorChoice class. The test code becomes the following:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

class ColorChoiceTest extends Frame implements ItemListener
{
 private ColorChoice keywordChoice, commentChoice;

 public ColorChoiceTest()
 {
 setLayout(new FlowLayout());
 add(new Label("Keyword Color:"));
 keywordChoice = new ColorChoice();
 keywordChoice.addItemListener(this);
 add(keywordChoice);
 add(new Label("Comment Color:"));
 commentChoice = new ColorChoice();
 commentChoice.addItemListener(this);
 add(commentChoice);
 setSize(500, 300);
 }

 public void itemStateChanged(ItemEvent e)
 {
 repaint();
 }

 public void paint(Graphics g)
 {
 Color keywordColor = keywordChoice.getSelectedColor();
 g.setColor(keywordColor);
 g.fillRect(100, 100, 100, 100);
 Color commentColor = commentChoice.getSelectedColor();
 g.setColor(commentColor);
 g.fillRect(300, 100, 100, 100);
 }

 public static void main(String[] args)
 {
 new ColorChoiceTest().setVisible(true);
 }
}

The arrays are gone. The variables keywordChoice and commentChoice are now declared as type ColorChoice. We can
call addItemListener() on them, just as if they were instances of Choice, because they inherit all the event-processing
functionality of Choice. If you want to run the code, type java fancysrc.ColorChoiceTest. The GUI looks just like the
earlier test GUI, so there's no need for a screenshot.

Now we can rest on our laurels! The source for class ColorChoice is less than 30 lines long, and look at what it can do:

Look good.

Behave exactly like a standard Choice.

Be manipulated by a layout manager.

Send out item events when activated.

Report the selected color.

That's not a bad resume for such a small class. But we can't rest on our laurels all day. It's time to develop the rest of the code.

The Main Display Area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most of the GUI work is now complete. We still have to create the check box that requests lines, but we'll get to that a bit later.
Now we're going to step back and look at the big picture.

Our display will be involved a lot of painting. The painting examples you saw in Chapter 14 all involved painting a frame. You saw
subclasses of java.awt.Frame with specialized versions of the paint() method. Later you saw that when user input makes it
necessary to revise the display, you should call your frame's repaint() method, which causes the screen to be cleared and the
paint() method to be called.

As it happens, the repaint() mechanism works for certain other component types in addition to frames. There is a class called
java.awt.Canvas that has no inherent appearance at all. If you construct a canvas and install it in a GUI, you won't see
anything worth mentioning. That's okay, because you never actually put a canvas in a GUI. You create a subclass of Canvas, with
a paint() method that draws whatever you want, and it is the subclass that you use in your GUI.

We will use a Canvas subclass, called FancySrcCanvas, for our main display area. The frame that contains everything will use
its default Border layout manager. The control components (the Show lines check box and the two color choices) will go in a panel
at North, and the canvas will be at Center, as shown in Figure 17.9.

Figure 17.9: GUI layout

The FancySrcCanvas will need to redisplay itself whenever the user changes the file, the Show lines preference, or the keyword
or comment color. The GUI code will detect all these changes. The FancySrcCanvas class needs a method that the GUI can call
when it's time to redisplay. Let's call this method reconfigure(). It will need four arguments:

A string representing the name of the new source file.

A boolean that controls whether or not lines should be displayed.

Colors for keywords.

Colors for comments.

The method should not paint directly to the screen, because painting is always relegated to the paint() method. Our
reconfigure() method will simply record its four arguments and then call repaint(). This will trigger a behind-the-scenes
chain of events that will clear the canvas and call paint(). When paint() runs, it will know what to do (what file to read, what
colors to use, whether it should underline), because it will read the values stored by reconfigure().

We can now write the skeleton of FancySrcCanvas:
public class FancySrcCanvas extends Canvas
{
 private String fileName;
 private boolean showLines;
 private Color keywordColor, commentColor;

 FancySrcCanvas()
 {
 // To do
 }

 void reconfigure(String file, boolean line,
 Color kColor, Color cColor)
 {
 fileName = file;
 showLines = line;
 keywordColor = kColor;
 commentColor = cColor;
 repaint();
 }

 public void paint(Graphics g)
 {
 // To do
 }
}

The body of the constructor and the paint() method have been left for later. The constructor will be trivial, but paint(), as you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The body of the constructor and the paint() method have been left for later. The constructor will be trivial, but paint(), as you
might expect, will be substantial.

Once again, as you saw with the ColorChoice class, subclassing allows us to create clean, encapsulated code. If we did not use
a canvas subclass, the painting would happen in the paint() method of the main frame subclass. This painting code would be
jumbled in along with all the other code. With subclassing, we know that all the painting code, and nothing except the painting
code, is to be found in FancySrcCanvas.

Painting Colored Code

Now we have a workable concept for the FancySrcCanvas class, so we can fill in the details. The boring details go in the
constructor. The interesting ones go in the paint() method.

Let's dispense with the boring details first. We need to choose a font and make some decisions about how to lay out the lines of
text. The values we'll use here are somewhat arbitrary. We need to decide on a y coordinate for the topmost line of code.
(Remember, when you paint text, you specify the text's baseline, not the top of the text). We need to decide how much vertical
space to leave between consecutive lines of code, and we need to choose an x coordinate for the text. Figure 17.10 shows how
text will be positioned.

Figure 17.10: Positioning text

We'll use a plain monospaced 16-point font. (Remember, monospaced fonts are always best for displaying source code.) The
topmost baseline will be at 20. Every line of text will be 18 pixels below the previous line. The x-coordinate of all text will be 9.
These values were arrived at after a fair amount of boring experimentation. The result is the following constructor for
FancySrcCanvas:
FancySrcCanvas()
{
 font = new Font("Monospaced", Font.PLAIN, 16);
 topBaseline = 20;
 leftMargin = 9;
 verticalSpace = 18;
}

With the font we have chosen, each character is 10 pixels wide. This number will be extremely useful later on. For now, can you
guess why it's important?

There is a riddle that brings a knowing gleam to the eyes of experienced programmers, even though it isn't very funny. How do
you fit five elephants into a Volkswagen Beetle? Answer: two in the front, three in the back. It isn't a good riddle, but it's a good
example of top-down development, where you begin with an overall design idea, breaking each piece down into successively
more refined designs until there is nothing left to do but implement your solution. Of course, if the design doesn't work, it's not the
fault of the elephants.

We will take a top-down approach to developing the paint() method of FancySrcCanvas, starting with what we know. We
know that the horizontal lines must be painted if showLines is true. We also know that the text must be painted if a source file
has been specified. That is, if fileName, which is initialized to null, is no longer null. That's all we know, but it's enough to
start. Here's our paint() method:
public void paint(Graphics g)
{
 if (showLines)
 paintLines(g);
 if (fileName != null)
 paintText(g);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Now we have to create the paintLines() and paintText() methods. paintLines() seems easy. Starting from the topmost
baseline, horizontal lines must be drawn across the entire width of the canvas. Lines must be drawn verticalSpace pixels
apart, down to the bottom of the canvas. It would all be simple, if only we knew how wide and tall the canvas is.

Fortunately, Canvas has a getSize() method that returns an instance of java.awt.Dimension. This very simple class has
variables width and height. So the code can use getSize().width and getSize().height to determine the size of the
canvas.

Here is the paintLines() code:
private void paintLines(Graphics g)
{
 g.setColor(Color.lightGray);
 int height = getSize().height;
 int width = getSize().width;
 for (int y=topBaseline; y<height; y+=verticalSpace)
 g.drawLine(0, y, width, y);
}

Now it's time to write paintText(). We don't yet know how we're going to draw text in three colors, but we don't have to know.
This is top-down development. Let's stay with what we do know. There's a Java source file whose name is found in the variable
fileName. We know that paintText() will need to read each line in turn from that file and paint the line. So here is the method,
with the issue of painting multicolored text deferred for later consideration:
 1. private void paintText(Graphics g)
 2. {
 3. g.setFont(font);
 4.
 5. try
 6. {
 7. // Create the readers.
 8. FileReader fr = new FileReader(fileName);
 9. LineNumberReader lnr = new LineNumberReader(fr);
10.
11. // Read & display.
12. String s = "xx"; // Anything but null
13. int y = topBaseline;
14. while (s != null)
15. {
16. s = lnr.readLine();
17. if (s == null)
18. break;
19. paintOneSourceLine(g, s, y);
20. y += verticalSpace;
21. }
22.
23. // Close the readers.
24. lnr.close();
25. fr.close();
26. }
27.
28. catch (IOException x)
29. {
30. System.out.println("Trouble!" + x.getMessage());
31. }
32. }

The method uses a file reader chained to a line number reader. You were introduced to readers in Chapter 13, "File Input and
Output." The while loop in lines 14-21 reads lines of text from the file until the readLine() call on line 16 returns null,
indicating that the end of the file has been reached. (On line 12, s has to be initialized to any non-null string, so that the loop
won't terminate the first time through.)

The variable y determines the baseline of the next line of text to be painted. On line 13, y is initialized to topBaseline. Every
pass through the loop, it is incremented by verticalSpace (line 20).

Text is painted on line 19, where a call is made to paintOneSourceLine(). We'll write this method shortly. Its arguments are
the Graphics object, the string to be painted (s), and the y-coordinate of the text (y).

We have deferred thinking about how to paint multicolored source text until we could create a good structure for the paint()
method of FancySrcCanvas. That structure is now in place, so it's time to decide how to paint the code. Here's the skeleton of
paintOneSourceLine():
private void paintOneSourceLine(Graphics g,
 String srcLine,
 int y)
 {
 …
 }

Here's the strategy. First, the method will paint the entire text line in black, whether or not it contains any keywords or comments.
Then the line will be inspected to see if contains any keywords or comments. If so, part of the text will be painted again, in the
appropriate color. As you will see, there are methods in the String class that make this easy.

Let's start by painting the entire line in black. We don't have to call setFont() because that call was made already, in
paintText():
// First paint entire line in black.
g.setColor(Color.black);
g.drawString(srcLine, leftMargin, y);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

g.drawString(srcLine, leftMargin, y);

That was easy. Now to detect and render comments. Comments begin with a double slash (//) and continue through the end of
the line. So the code needs to answer the following questions:

Does the string contain a double slash?

If so, where is the double slash?

If the answer to the first question is "no," there is no comment to paint.

Fortunately, class String has a method called indexOf(). Its argument is another string. If the argument string appears
anywhere in the executing object string, the method returns the position of the argument string within the executing object
string. For example, if s1 is whether and s2 is the, s1.indexOf(s2) is 3. If the argument string does not appear in the
executing object string, indexOf() returns -1. For example, if s1 is whether and s2 is heather, s1.indexOf(s2) is -1.

The comment-painting code uses another method of the String class: substring(). You were introduced to this method
in Chapter 12, "The Core Java Packages and Classes." When called with a single int argument, it returns the portion of the
string beginning at the argument position. For example, if s1 is whether, s1.substring(2) is ether.

Here is the code that paints comments:
1. // Paint comment (if any).
2. int commentIndex = srcLine.indexOf("//");
3. if (commentIndex >= 0)
4. {
5. g.setColor(commentColor);
6. String comment = srcLine.substring(commentIndex);
7. int x = charIndexToX(commentIndex);
8. g.drawString(comment, x, y);
9. }

To illustrate how this code works, consider what happens when srcLine is
height += 25; // Increment height

The comment begins at character position 14, so commentIndex is 14. On line 6, comment is //increment height.
This is the string that is overpainted in the comment color, at line 8.

Line 7 makes a call to charIndexToX(), which returns the x-coordinate where the comment will be painted. This value
must be calculated exactly, so that the new text will exactly overwrite the black text. This method is

private int charIndexToX(int charIndex)
{
 return leftMargin + 10*charIndex;
}

Earlier in this section, you read that in a 16-point monospaced font, each char is 10 pixels wide. This implies that, for
example, the 18th character in any line is 180 pixels to the right of the 0th character. And the 0th character is always painted
at leftMargin. So the x-coordinate of the nth character is leftMargin + 10*n. This is the formula used by
charIndexToX().

So far our paintOneSourceLine() code is
private void paintOneSourceLine(Graphics g,
 String srcLine,
 int y)
{
 // First paint entire line in black.
 g.setColor(Color.black);
 g.drawString(srcLine, leftMargin, y);

 // Paint comment (if any).
 int commentIndex = srcLine.indexOf("//");
 if (commentIndex >= 0)
 {
 g.setColor(commentColor);
 String comment = srcLine.substring(commentIndex);
 int x = charIndexToX(commentIndex);
 g.drawString(comment, x, y);
 }

 …

We are ready to deal with keywords, but we have to be careful. If we just search for keywords and overwrite them in the right
color, we could get confounded by a line like this:
x = 16; // try to while away the time

The code contains no Java keywords, but the comment does. When the line is being searched for keywords, the search should
not include the comment. This will not guarantee that the code will never erroneously color non-keyword text, but it guards against
one common situation. (Making the keyword search 100% foolproof would be a daunting task. It would overwhelm the code and
would seriously reduce the learning value of the project. Not searching comments will be enough for our purposes. Exercise 5 at
the end of this chapter invites you to think more about the problem.)

If the software is going to search for keywords, it needs to know which strings are keywords. The FancySrcCanvas class
needs an array of strings that are Java keywords. Here it is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private String[] keywords =
{
 "abstract", "boolean", "break", "byte", "case", "catch",
 "char", "class", "continue", "default", "double", "do",
 "else", "extends", "false", "final", "float", "for",
 "if", "implements", "import", "instanceof", "int",
 "interface", "long", "new", "null", "package", "private",
 "protected", "public", "return", "short", "static",
 "super", "switch", "this", "throws", "throw", "true",
 "try", "void", "while"
};

Actually, the list is incomplete. It only includes Java keywords that were introduced in this book. There are a handful of
others. Strictly speaking, null, true, and false are not keywords, but something similar.

Here is the skeleton of the remainder of the paintOneSourceLine() code:
// Search every position in string, through comment,
// for any keyword.
g.setColor(keywordColor);
int lastCharPosition = srcLine.length()-1;
if (commentIndex >= 0)
 lastCharPosition = commentIndex - 1;
for (int index=0; index<=lastCharPosition; index++)
{
 …
}

The for loop will search every position in the line of code, through lastCharPosition, to see if it begins with any entry in
the keywords array. If the line does not contain a double-slash comment, lastCharPosition is set to the last character
position in the line. If a double- slash comment is present, lastCharPosition is set to the last character position before
the comment. For example, suppose the source line is

x = new Line();// Construct a line

The for loop will check each of the following substrings:
x = new Line();
 = new Line();
= new Line();
 new Line();
new Line();
ew Line();
w Line();
 Line();
Line();
ine();
ne();
e();
();
);
;

Each of the substrings will be compared against each entry in the keywords array. The code will use two methods of
String that were presented in Chapter 12, substring() and startsWith(). The substring() method takes an int
argument. It returns the portion of t he original string beginning at the specified index. For example, if s1 is Meryl Streep,
s1 .substring(9) is eep. The startsWith() method takes a string argument. It returns true if the original string
starts with the argument string. For example, if s1 is Meryl Streep and s2 is Me, s1.startsWith(s2) is true.

Now the body of the for loop can be filled in:
 1. for (int index=0; index<=lastCharPosition; index++)
 2. {
 3. // Search at this position for every keyword.
 4. String sub = srcLine.substring(index);
 5. for (int i=0; i<keywords.length; i++)
 6. {
 7. if (sub.startsWith(keywords[i]))
 8. {
 9. int x = charIndexToX(index);
10. g.drawString(keywords[i], x, y);
11. break; // Can't be any more keywords here
12. }
13. }
14. }

Recall that the Graphics object has already had its color set to the keyword color. Line 9 makes use of the
charIndexToX() method, which was written for the comment-painting code, to compute where to overdraw the keyword
string.

That's all for the FancySrcCanvas class. Here is the whole class listing, all in one place:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's all for the FancySrcCanvas class. Here is the whole class listing, all in one place:
package fancysrc;

import java.io.*;
import java.awt.*;

class FancySrcCanvas extends Canvas
{
 private String[] keywords =
 {
 "abstract", "boolean", "break", "byte", "case", "catch",
 "char", "class", "continue", "default", "do", "double",
 "else", "extends", "false", "final", "float", "for",
 "if", "implements", "import", "instanceof", "int",
 "interface", "long", "new", "null", "package", "private",
 "protected", "public", "return", "short", "static",
 "super", "switch", "this", "throws", "throw", "true",
 "try", "void", "while"
 };

 private Font font;
 private int topBaseline;
 private int leftMargin;
 private int verticalSpace;
 private String fileName;
 private boolean showLines;
 private Color keywordColor, commentColor;

 FancySrcCanvas()
 {
 font = new Font("Monospaced", Font.PLAIN, 16);
 topBaseline = 20;
 leftMargin = 9;
 verticalSpace = 18;
 }

 void reconfigure(String file, boolean line,
 Color kColor, Color cColor)
 {
 fileName = file;
 showLines = line;
 keywordColor = kColor;
 commentColor = cColor;
 repaint();
 }

 public void paint(Graphics g)
 {
 if (fileName == null)
 return;

 if (showLines)
 paintLines(g);

 paintText(g);
 }

 private void paintLines(Graphics g)
 {
 g.setColor(Color.lightGray);
 int height = getSize().height;
 int width = getSize().width;
 for (int y=topBaseline; y<height; y+=verticalSpace)
 g.drawLine(0, y, width, y);
 }

 private void paintText(Graphics g)
 {
 g.setFont(font);

 try
 {
 // Create the readers.
 FileReader fr = new FileReader(fileName);
 LineNumberReader lnr = new LineNumberReader(fr);

 // Read & display.
 String s = ""; // Anything but null
 int y = topBaseline;
 while (s != null)
 {
 s = lnr.readLine();
 if (s == null)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (s == null)
 break;
 paintOneSourceLine(g, s, y);
 y += verticalSpace;
 }

 // Close the readers.
 lnr.close();
 fr.close();
 }

 catch (IOException x)
 {
 System.out.println("Trouble! " + x.getMessage());
 }
 }

 private void paintOneSourceLine(Graphics g,
 String srcLine, int y)
 {
 // First paint entire line in black.
 g.setColor(Color.black);
 g.drawString(srcLine, leftMargin, y);

 // Paint comment (if any).
 int commentIndex = srcLine.indexOf("//");
 if (commentIndex >= 0)
 {
 g.setColor(commentColor);
 String comment = srcLine.substring(commentIndex);
 int x = charIndexToX(commentIndex);
 g.drawString(comment, x, y);
 }

 // Search every position in string, through comment,
 // for any keyword.
 g.setColor(keywordColor);
 int lastCharPosition = srcLine.length();
 if (commentIndex >= 0)
 lastCharPosition = commentIndex - 1;
 for (int index=0; index<=lastCharPosition; index++)
 {
 // Search at this position for every keyword.
 String sub = srcLine.substring(index);
 for (int i=0; i<keywords.length; i++)
 {
 if (sub.startsWith(keywords[i]))
 {
 int x = charIndexToX(index);
 g.drawString(keywords[i], x, y);
 break; // Can't be any more keywords here
 }
 }
 }
 }

 private int charIndexToX(int charIndex)
 {
 return leftMargin + 10*charIndex;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Putting It All Together
The previous section presented the entire listing for FancySrcCanvas, which is the longest of the project's three source files. You
already saw ColorChoice in the "Specifying Colors" Section. That leaves only FancySrcFrame, which follows. You have seen
its important pieces, but they were in pieces. Here it is, all in one place:
package fancysrc;

import java.awt.*;
import java.awt.event.*;

public class FancySrcFrame extends Frame implements
 ActionListener, ItemListener
{
 private MenuItem openMI, exitMI;
 private String fileName;
 private Checkbox showLinesBox;
 private ColorChoice keywordChoice, commentChoice;
 private FancySrcCanvas srcCanvas;
 private FileDialog dialog;

 FancySrcFrame()
 {
 // Build menu.
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 openMI = new MenuItem("Open…");
 openMI.addActionListener(this);
 fileMenu.add(openMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);

 // Build control panel.
 Panel panel = new Panel(); // Uses flow layout
 showLinesBox = new Checkbox("Show lines");
 showLinesBox.addItemListener(this);
 panel.add(showLinesBox);
 keywordChoice = new ColorChoice();
 keywordChoice.addItemListener(this);
 keywordChoice.select(1);
 panel.add(new Label("Keyword color"));
 panel.add(keywordChoice);
 commentChoice = new ColorChoice();
 commentChoice.addItemListener(this);
 commentChoice.select(2);
 panel.add(new Label("Comment color"));
 panel.add(commentChoice);
 add(panel, BorderLayout.NORTH);

 // Build text display panel.
 srcCanvas = new FancySrcCanvas();
 add(srcCanvas, BorderLayout.CENTER);

 // Set to a reasonable size.
 setSize(720, 550);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);
 dialog.setVisible(true); // Modal
 if (dialog.getFile() == null)
 return; // Canceled
 fileName = dialog.getDirectory() + dialog.getFile();
 boolean underline = showLinesBox.getState();
 Color keywordColor =
 keywordChoice.getSelectedColor();
 Color commentColor =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Color commentColor =
 commentChoice.getSelectedColor();
 srcCanvas.reconfigure(fileName, underline,
 keywordColor, commentColor);
 }

 else // Must be "Exit" menu item
 System.exit(0);
 }

 // Called if user activity in checkbox or
 // either choice.
 public void itemStateChanged(ItemEvent e)
 {
 boolean underline = showLinesBox.getState();
 Color keywordColor = keywordChoice.getSelectedColor();
 Color commentColor = commentChoice.getSelectedColor();
 srcCanvas.reconfigure(fileName, underline,
 keywordColor, commentColor);
 }

 public static void main(String[] args)
 {
 (new FancySrcFrame()).setVisible(true);
 }
}

The only part of this code that has not been explained already is the itemStateChanged() method. This is called when the user
checks the Show lines check box or either color choice. There is no need to call getSource() and figure out which component
caused the method call, because the response is the same in any case: A call is made to the reconfigure() method of the
FancySrcCanvas.

Note The complete source to this project is on your CD-ROM, in the FinalProjectSource directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Goodbye! Don't Forget to Write!
Please take a moment to appreciate what happened in this chapter. You observed the development of a multisource application
involving several hundred lines of code:

The program uses awt components for input and paints graphics for its output.

Each of the three source modules defines a subclass.

One of the classes implements not just one interface, but two.

There are loops and conditional statements, and an array.

There are calls to methods that throw exceptions.

And it all made sense. You saw how it fit together. You deserve sincere congratulations for the work you had to do in Chapters 1
through 16. Without that foundation, this chapter would make no sense at all. You are well on your way toward mastery of the
Java language.

This book is by no means a complete introduction. There is a lot more to be said about the language, the core classes, and
programming techniques. With your strong foundation, you're now qualified to learn it all.

Were the animated illustrations beneficial? As far as I know, and as far as anybody at Sybex knows, this is the first computer book
to use them. If you have any suggestions for how they can be improved, or ideas for new ones, please e-mail them to
groundupjava@sgsware.com.

Are you interested in learning more about Java? Would you like to see another volume, picking up where this one leaves off, also
based on animated illustrations? Please write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Note The solutions to these exercises are in Appendix B.

1. Write a program that creates a frame with a File menu. The menu should have two items, Save… and Exit.
When Save… is selected, the code should display a file dialog box, configured for saving a file. When the user
has specified a file via the dialog box, your code should output the name of the file. All the information you need
is on the API page for java.awt.FileDialog.

2. The FileDialog class has a setDirectory() method that controls which directory the dialog box will
display. Look up the method description in the API to become familiar with how it works. Modify the final project
code so that when the file dialog box appears, it displays one of the directories on your computer where you
have stored some of your own Java source code. This will make it easier to display your own work.

3. Write an application that displays a canvas subclass in a frame, at Center. The frame does not contain any other
components.

Use the following code as the paint() method for the canvas subclass:
1. public void paint(Graphics G)
2. {
3. g.setFont(new Font("Serif", Font.PLAIN, 24));
4. g.setColor(Color.blue);
5. g.drawString("Look at this!", 0, 0);
6. }

Run the program. Do you see what you expected to see? How do you explain the results?

Now change line 5 to this:
g.drawString("A bluejay in a quagmire", 0, 0);

Now do you see what you expected to see? Again, how do you explain the results?

4. The FancySrcCanvas class has an array of Java keywords. In that array, throws comes before throw.
Otherwise, the list is alphabetical. Why does throws comes before throw?

5. There are several situations in which the project code would improperly draw text in the keyword color. How
many of these situations can you name?

6. How would you modify the project code so that null, true, and false are not rendered in the keyword color?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A: Downloading and Installing Java
This is the most important part of this book. Java is not a spectator sport. The best way to learn and enjoy it is to use it. Every
chapter of this book except Chapter 1 has programming assignments. You can't do them if your computer doesn't have Java.
Equally important, the animated illustrations are all Java programs, and you can't run them without Java. So take the time right
now to download and install it. You will be richly rewarded for your effort. Java is an educational tool that will keep you fascinated
for the rest of your life.

Overview of the Process
We'll start these instructions with a brief overview of what is involved in downloading and installing. Then you should follow
whichever one of the brand-specific sections corresponds to your own computer.

You're going to go to a Javasoft Web page and download two very large files (tens of megabytes). If you have fast Internet
access, congratulations. If you don't, each download could take several hours. If that's the case, consider starting one download at
the end of the day. The file will be there for you in the morning. That evening, do the same with the second file.

The first file is Java itself. It is an archive containing the Java compiler, the Java Virtual Machine, and various other helpful
programs. (If you don't know what a compiler or Java Virtual Machine are, they're discussed in Chapter 2.) The official name for
this download is the SDK, or Software Developer's Kit. The second file contains the API pages, a huge collection of HTML pages
that describe the core Java packages and classes. You won't need the API pages until Chapter 12, but you might as well
download them as soon as possible.

Before you run any Java program (including the compiler, which is itself a Java program), you have to add the location of Java's
executables to your PATH environment variable. You may also need to set the CLASSPATH environment variable. There are many
ways to set these values. The approach presented here involves creating a script to be run manually when you are ready to view
the animated illustrations or play with Java. Avoid modifying boot-time or login scripts, because a small typing error can get you
into a lot of trouble. Also, manual scripts are easier to undo.

The following section is about installing Java in Windows. If you use a Macintosh, please skip to the "Macintosh" section later in
this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows
This section will walk you through downloading and installing Java on Windows-based computers.

You download Java for Windows from http://java.sun.com/j2se/1.4/download.html. This page contains a list of
platforms for which the current version of Java is available. For most of these platforms, you can download a JRE (Java Runtime
Environment) or an SDK (Software Developer's Kit). You want the SDK, not the JRE. At or near the top of the list, you will find
Windows (U.S. English only) and Windows (all languages, including English). Click on the link for Windows (all languages,
including English).

This opens a page for specifying optional personal information. Then you move on to a license agreement page. If you do not
accept the license, you will not be allowed to proceed. The next page allows you to download the file you want. The file has a
complicated name, something like j2sdk-1_4_1_02-windows-i586.exe.

Click on the link to start the download. If your browser asks you to choose between running the program from its current location
or saving it to disk, save it to disk. You can save it anywhere you like, and you can delete it after you run it. You might as well save
it in the \ directory of your C disk.

Execute the file by clicking on its icon in Windows Explorer. The installation wizard begins by asking you to accept the license
policy (again). Then you're asked where you want the Java files to be placed. Put them in the \ directory of your C disk. We'll
assume that you use the default. The default name is something complicated, like j2sdk1.4.1_02.

Next, you're asked to choose which parts of installation you want. You must select the program files. You don't need any of the
other parts, but if you have the disk space, you might be interested in the demos.

Then the installation wizard finishes its work. When it's done, your disk contains a new structure that looks something like Figure
A.1.

Figure A.1: Windows SDK file layout

The figure shows the three most important files in the bin subdirectory: the Java Virtual Machine (java.exe), the Java compiler
(javac.exe), and the jar archive tool (jar.exe). Throughout this book, you will need the Java Virtual Machine and the compiler.
You may need the archive tool shortly.

All the Java files are in place. Now create a directory where you will write Java programs. Again, you can call it whatever you want
and put it wherever you like, but simpler is better. Here we'll assume your programming directory is called C:\MyJavaCode.

The next step is to create a batch file for setting your PATH and CLASSPATH environment variables. The PATH variable tells the
operating system where to look for executable files when you run a program from the command line of a Command Prompt
window. (And that is how you will run the animated illustrations and compile and execute your own programs.) The CLASSPATH
variable tells Java where to look for class files. (That won't make sense unless you've read Chapter 8.) You can call your script
anything you like, and you can store it anywhere you like. The whole point of a batch file is to simplify things and reduce typing, so
call it something simple and save it somewhere easy to remember. We will call it \ja.bat. It looks like this:
SET PATH=$PATH$;C:\j2sdk1.4.1_02\bin
SET CLASSPATH=.;D:\AnimatedIllustrations
CD C:\MyJavaCode

You don't have to use exactly this script, but if you like it there's a copy on the CD-ROM, in the ExampleScripts\Windows
subdirectory. If you want to use it as-is, just copy it to the root directory of your primary disk drive. You might want to copy it
anyway and use a text editor such as Notepad to edit it, rather than typing in your version from scratch.

The first line of the script appends Java's bin directory to your PATH environment variable, so that you will be able to run
programs like java, javac, and jar. Remember that you will be running them by typing command lines into a Command Prompt
window, not by double-clicking on icons.

The second line sets the CLASSPATH environment variable to the current directory, plus the directory on this book's CD-ROM
where the animated illustration programs are stored. (If your CD-ROM drive letter is something other than D, substitute the
appropriate letter. Alternately, you can copy the AnimatedIllustrations directory to your hard drive. That way you don't have
to make sure the CD-ROM is loaded whenever you want to run an animated illustration. If you copy the
AnimatedIllustrations directory to your hard drive, replace D:\ AnimatedIllustrations in the script with the full path,
including drive letter, of the copied version of the AnimatedIllustrations directory.)

The third line of the script takes you into the directory where you will create and store the Java programs that you will write, in
answer to some of the questions at the end of each chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To test your work, open a Command Prompt window. Run your batch file script by typing \ja. The script runs. Note that it only
affects the one Command Prompt window you are working in. If you close that window, you will have to open another one and
then run the batch file again.

To make sure your script ran properly, type java -version. You get a message that tells you which version of Java is running,
along with some other obscure, cryptic information that probably means something important to someone. This message means
that you have installed Java and your PATH variable is set correctly. If the command doesn't work, make sure the full pathname of
the bin directory in your script is spelled correctly, and that the directory contains java.exe.

Now type java welcome.Welcome. You should see a simple welcoming screen. This means that your CLASSPATH variable is
set correctly. If you don't see the welcoming screen, make sure the value assigned to CLASSPATH in your script is spelled
correctly, and that the directory is the AnimatedIllustrations directory from the CD-ROM. If you are running the animated
illustrations directly from the CD-ROM (that is, if you didn't copy the files to your hard drive), make sure the CD-ROM is in the
correct drive.

That takes care of the Java program files. They are all you need until Chapter 12, where you will also need the API pages. These
are a huge number of HTML pages to be viewed with the Web browser of your choice. You download them as a single zip file that
you will have to extract.

You begin the download at the same page you visited before: http://java.sun.com/j2se/1.4/download.html. This page
contains a list of several dozen products that you can download. Near the end of the list, you see J2SE 1.4.1 Documentation.
Click on this item's Download link. After accepting another license agreement, you see a page with a link for downloading j2sdk-
1_4_1-doc.zip. Click on the link. You're prompted to specify where you want to put the zip file. Put it in the directory where you
stored your Java files. We recommend C:\j2sdk1.4.1_02.

Now you might have to extract the zip file. Some versions of Windows present a zip file as if it were a directory, extracting files
only as needed. This saves a lot of space. If your system does this for you and it's satisfactory, you're done. To find out, open a
Windows Explorer window and have it display your C:\j2sdk1.4.1_02 directory. If j2sdk-1_4_1-doc.zip looks like a
directory rather than a single file, you don't need to extract if you don't want to. Otherwise, you need to extract.

To extract, you could double-click on the j2sdk-1_4_1-doc.zip icon and use Winzip to unpack the archive. But you might not
have Winzip. Besides, there is a slicker way. If you haven't done so already, run your batch file script by typing \ja. Next, type cd
into the directory that contains the j2sdk-1_4_1-doc.zip file. Unless you have done your own thing, the command to do so is
cd C:\j2sdk1.4.1_02

Now type the following command:
jar xvf j2sdk-1_4_1-doc.zip

The jar command is one of the useful Java executables. It became usable when you ran the script and added
C:\j2sdk1.4.1_02\bin to your path. Jar stands for JavaArchive. It is like Winzip, but you run it from the command line.
Fortunately, the jar file format is compatible with the .zip format, so you can use jar to extract any .zip archive.

Creating Program Files

Congratulations! You are ready to go. Right now you can run any animated illustration in the book. And please do... they are an
essential part of your Ground-Up Java experience.

The other essential part of your experience is writing your own Java programs. You will do this when you work on the "write-a-
program" questions at the end of the chapters, and of course you can write programs that implement your own ideas. We have
already recommended that you do this in a directory called \MyJavaCode, and have your script "cd" in that directory. But now the
question is, how do you create Java code? Chapter 2 explained that writing a Java program means creating one or more files,
called source files, in plain text format, with names that end with .java.

There are two ways to create Java source files:

Use a general-purpose editor.

Use an Integrated Development Environment (IDE).

You have several general-purpose editors installed on your system, including Notepad and Wordpad. It's a good idea to start with
one of these; they are good enough for small programs. Use a fixed-width font like Courier to make your code line up nicely.

As you will learn from experience, you don't just write a program. The development process is an ongoing cycle of writing, testing,
and modifying. So when you think you have finished writing your program, don't close your editing window. Leave it around,
because in all likelihood you will want to make modifications or fix bugs. (Yes, this could happen even to you.)

After a while, you might get a vague sense that life could be better somehow. You might be ready for an IDE, or Integrated
Development Environment. IDEs are products that help you create, maintain, debug, and keep track of Java programs. Many
common operations (such as compiling) are achieved with a single button click. There are lots of IDEs on the market, ranging in
price from free to expensive. It would be inappropriate to recommend one here, but if you type Java + IDE into your favorite Web
search engine, you will get plenty of information.

A good IDE is a good thing, and a great IDE will greatly enhance your productivity. But a word of warning: Your goal right now is
not to create large Java programs efficiently. Your goal is to learn as much as possible about Java. IDEs shield you from repetitive
tasks. Before you start using them, it's a good idea to spend some time learning all the ins and outs and

details of Java, so that you'll know what the IDE is shielding you from. Spend some time with a general-purpose editor before you
move on to an IDE.

The rest of this appendix is about installing Java on Macintosh. If you only have a Windows PC, you can skip the rest. Have fun!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Macintosh
This section will walk you through downloading and installing Java on Macintosh-based computers.

You download Java for Macintosh directly from Apple Computers. You will need three separate pieces:

Mac OSX Developer Tools

Java 1.4.1 Developer Tools Update

Java 1.41. for Mac OS X and QTJava

First you will need to register as an Apple developer. This is free (as are the downloads), but you must do it before you can access
the download sites. Just type this into your browser:
http://connect.apple.com

This will take you to the Apple Developer Connection site. From here, you can log in and download the software you want. If you
are not yet a member, you must become one. Click the Join ADC button on the left side of the page, and answer the questions on
the form. You're granted a user name and password to log in to the download site.

Once you've obtained your membership, go ahead and log in (same site as above). On the resulting page, click the Download
Software link. You see a list of software packages along the left side of the page. Click on the Mac OS X link, and you see a list of
possible items for download. Click the Download button immediately to the right of Dec 2002 Mac OS X Developer Tools.
Downloading commences immediately. This file, Dec2002DevToolsCD.dmg, is 301.2MB and takes a little over an hour to
download over a DSL line. Make a note of where you store the file on your local hard drive.

Now you need to update your Developer Tools. Use the Back button on your browser to return to the list of downloadable items.
This time, choose Java. Click the Download button immediately to the right of Java 1.4.1 Developer Tools Update. Downloading
commences immediately. This file, Java141Developer, is 48.6MB and takes about 20 minutes to download over a DSL line.
Again, make a note of where you store the file on your local hard drive.

Lastly, you need to get the most recent version of Java for the Mac (1.4.1). Use the Back button to return to the list of
downloadable items. Choose Java again. Click the Download button immediately to the right of Java 1.4.1 Update DP102.
Downloading commences immediately. This file, Java141Update1DP102.dmg, is 37.4MB and takes about 15 minutes to
download over a DSL line. Make a note of where you store the file on your local hard drive.

Now it's time to unpack and install the three files you've downloaded. First, the developer tools. Use Finder to navigate to the
folder where you've placed the downloads. Locate the file Dec2002DevToolsCD.dmg, and double-click on its icon. You still need
to be connected to the network during this process, because the .dmg file will attempt to mount the disk image of the Developer's
Tools package for subsequent installation. You also need administrator-level permission to complete the installation. If all goes
well, a small window labeled December 2002 Dev Tools appears. Double-click on the Developer icon and proceed with the
installation as directed. When the installer asks you for a destination, select the default, Normal. When the installation has
finished, you must reboot your computer before proceeding to the next installation.

Next it's time to unpack and install the Java update. Use Finder to navigate to the folder where you've placed the downloads.
Locate the file Java141Update1DP102.dmg and double-click on its icon. A small window labeled Java 1.4.1 Update 1 appears.
Double-click on the Java1.4.1Update1.pkg icon and proceed with the installation as directed. When the installer asks you for a
destination, select the default, Normal. When the update has been unpacked and installed, you're directed to restart your
computer.

Now it's time to unpack and install the Developer Tools update. Use Finder to navigate to the folder where you've placed the
downloads. Locate the file Java141Developer.dmg and double-click on its icon. A small window labeled Java1.4.1 Developer
Update appears. Double-click on the Java1.4.1Developer.mpkg icon and proceed with the installation as directed. When the
installer asks you for a destination, select the default, Normal.

Now all the Java files are in place. Create a directory where you will write Java programs. You can call it whatever you want and
put it wherever you like, but simpler is better. Here we'll assume your programming directory is called ~\MyJavaCode.

The next step is to add two lines to your .login or .cshrc file for setting your path:
set path=(lib:/usr/local/bin:/usr/ucb:/bin:/sbin:/usr/bin:/usr/sbin:/usr/etc:/ ÂDeveloper/Tools)
setenv CLASSPATH .:/AnimatedIllustrations
alias gotoJava 'cd ~/MyJavaCode'

The first line tells the operating system where to look for executable files when you run a program from the command line of a
terminal window. That's how you will run the animated illustrations, and compile and execute your own programs.

The second line sets the CLASSPATH environment variable to the current directory, plus the directory on this book's CD-ROM
where the animated illustration programs are stored. The script assumes you have copied the entire CD-ROM to a directory on
your hard drive called /AnimatedIllustrations. Doing so will make life simpler, because you can run the illustrations without
the CD-ROM. If you don't want to copy the CD-ROM to your hard drive, or if you want to copy it to a different directory, modify the
script accordingly.

The third line of the script is an alias that will take you to your Java work directory.

To test your work, log out and then log in again so that the script will execute. Open a terminal window
(Applications/Utilities/Terminal in the Finder). To make sure your script ran properly, type java -version. You get a message
that tells you which version of Java is running, along with some other obscure, cryptic information that probably means something
important to someone. If you get this message, you have installed Java and your PATH variable is set correctly. If the command
doesn't work, make sure the full pathname of the bin directory in your script is spelled correctly, and that the directory contains
java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.

Now type java welcome.Welcome. You should see a simple welcoming screen. This means that your CLASSPATH variable is
set correctly. If you don't see the welcoming screen, make sure the value assigned to CLASSPATH in your script is spelled
correctly, and that the directory is the AnimatedIllustrations directory from the CD-ROM. If you are running the animated
illustrations directly from the CD-ROM (that is, if you didn't copy the files to your hard drive), make sure the CD-ROM is in the
correct drive.

That takes care of the Java program files. They are all you need until Chapter 12, where you will also need the API pages. These
are a huge number of HTML pages to be viewed with the Web browser of your choice. You download them as a single zip file that
you will have to extract.

You begin the download at http://java.sun.com/j2se/1.4.1/download.html. The page contains a list of several dozen
products that you can download. Near the end of the list is J2SE 1.4.1 Documentation. Click on this item's Download link. After
accepting another license agreement, you come to a page with a link for downloading j2sdk-1_4_1-doc.zip. Click on the link.
You are prompted to specify where you want to put the zip file. Put it in a directory where you can find it easily. We recommend
~/MyJavaFiles.

To extract, use jar to unzip the documents in the j2sdk-1_4_1-doc.zip file. If you haven't done so already, run your batch file
script by typing gotoJava. Unless you have done your own thing, the command to unzip the file is
jar xvf j2sdk-1_4_1-doc.zip

The jar command is one of the useful Java executables. It became usable when you ran the script and added
C:\j2sdk1.4.1_02\bin to your path. Jar stands for JavaArchive. It is like Stuffit-Expander, but you run it from the command
line. Fortunately, the jar file format is compatible with the .zip format, so you can use jar to extract any .zip archive.

Creating Program Files

Congratulations! You are ready to go. Right now you can run any animated illustration in the book. And please do... they are an
essential part of your Ground-Up Java experience.

The other essential part of your experience is writing your own Java programs. You will do this when you work on the "write-a-
program" questions at the end of the chapters, and of course you can write programs that implement your own ideas. We have
already recommended that you do this in a directory called \MyJavaCode, and have your script "cd" in that directory. But now the
question is, how do you create Java code? You will see in Chapter 2 that writing a Java program means creating one or more
files, called source files, in plain text format, with names that end with .java.

There are two ways to create Java source files:

Use a general-purpose editor.

Use an Integrated Development Environment.

You have several general-purpose editors installed on your system, including Notepad and Wordpad. It's a good idea to start with
one of these. They are good enough for small programs. Use a fixed-width font like Courier to make your code line up nicely.

As you will learn from experience, you don't just write a program. The development process is an ongoing cycle of writing, testing,
and modifying. So when you think you have finished writing your program, don't close your editing window. Leave it around,
because in all likelihood you will want to make modifications or fix bugs. (Yes, this could even happen to you.)

After a while, you might get a vague sense that life could be better somehow. You might be ready for an IDE, or Integrated
Development Environment. IDEs are products that help you create, maintain, debug, and keep track of Java programs. Many
common operations (such as compiling) are achieved with a single button click. There are lots of IDEs on the market, ranging in
price from free to expensive. It would be inappropriate to recommend one here, but if you type "Java + IDE" into your favorite Web
search engine, you will get plenty of information.

A good IDE is a good thing, and a great IDE will greatly enhance your productivity. But a word of warning: Your goal right now is
not to create large Java programs efficiently. Your goal is to learn as much as possible about Java. IDEs shield you from repetitive
tasks. Before you use them, it's a good idea to spend some time learning all the ins and outs and details of Java, so that you'll
know what the IDE is shielding you from. Spend some time with a general-purpose editor before you move on to an IDE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B: Solutions to the Exercises

Chapter 1
Exercise 1 A cluster of eight bytes can take on approximately 20 quintillion different values. (One quintillion is a 1 followed by 18
zeroes, or 10 to the 18th power.) Estimate the number of different values that a cluster of 16 bytes can have. Just estimate, do not
count. Can you think of anything that comes in such quantities?

Solution 1 The exact number of values is 2 to the power of the number of bits. This is 2128, or about 3.4 x 1038. We can make a
good estimate by just squaring the number of possibilities for eight bytes, which is given as approximately 20 x 1018. The square
of that is approximately 400 x 1036, or approximately 4 x 1038.

To put this in perspective, there are about 2 x 1011 stars in a typical galaxy, and there are about 1010 galaxies in the universe. So
16 bytes can easily store the number of stars in the universe (2 x 1021).

Exercise 2 The SimCom animated illustration is written in Java. When you run the program, how many virtual machines are at
work?

Solution 2 SimCom is a virtual machine that runs on the Java Virtual Machine that runs on your physical computer. So there are
two virtual machines.

Exercise 3 Write a SimCom program that adds 255 to the value in byte 31 and stores the result in byte 30. Observe the
program's behavior. What do you notice?

Solution 3 The following program adds 255 to the contents of byte 31, and stores the result in byte 30. The program appears in
the solutions on the CD-ROM, in answers/ Ch1/Add255.simcom. In addition to the following code, the program also stores the
number 1 in byte 29:
LOAD 31
ADD 29
STORE 30
HALT

SimCom acts as if adding 255 were the same as subtracting 1. We will look at this in more detail in the next chapter.

Exercise 4 Write a SimCom program that computes the square of the value in byte 31 and stores the result in byte 30. What
happens when you try to compute the square of 254?

Solution 4 The following program squares the contents of byte 31, and stores the result in byte 30. The program appears in the
solutions on the CD-ROM, in answers/Ch1/ Square.simcom:
LOAD 31
STORE 29
LOAD 31
ADD 30
STORE 30
LOAD 29
SUB 28
STORE 29
JUMPZ 10
JUMP 2
HALT

This program is almost the same as the Times5 program that you saw earlier in Chapter 1. The difference is that instead of using
a hard-coded value as the loop counter, the first two lines of this program store the value to be squared in the loop counter.

This program produces 4 as the square of 254.

Exercise 5 What features could be added to SimCom to make it more useful?

Solution 5 This is a subjective issue. It would be reasonable to want more opcodes, especially for multiplying and dividing. More
memory would also be good. But bear in mind that, since SimCom forces you to be aware of all features of the architecture,
adding more features would just give you more to juggle. The benefit of a high-level programming language such as Java is that
you can take advantage of a computer's features without having to think on too low a level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
Exercise 1 According to Table 2.1, the maximum values for the byte and short data types are 127 and 32767, respectively. Use
the Twos-Complement Lab animated illustration to verify this. Which byte and short bit patterns produce the maximum values? In
general, which bit pattern produces the maximum value for a two's complement number of N bits?

Solution 1 The maximum-value byte is 01111111. The maximum-value short is 0111111111111111. The general formula is a
leading 0 followed by all 1s.

Exercise 2 According to Table 2.1, the minimum values for the byte and short data types are -128 and -32768, respectively. Use
the Twos-Complement Lab animated illustration to verify this. What byte and short bit patterns produce the minimum values? In
general, what bit pattern produces the minimum value for a two's complement number of N bits?

Solution 2 The minimum-value byte is 10000000. The minimum-value short is 1000000000000000. The general formula is a
leading 1 followed by all 0s.

Exercise 3 Launch the Twos-Complement Lab animated illustration by typing java TwosCompLab, set the data type to int, and
set all the bits to 1. Then set the three bits on the right to 0. Compute the value. Do the same for the byte and short data types.
What do you observe?

Solution 3 In each case, the result is -8.

Exercise 4 Launch the Floating-Point Lab animated illustration by typing java floating.FloatFrame. Set the rightmost bit to
1 and all other bits to 0. The value represented is 1.4E-45. Try changing various bits' values by clicking on them. Can you create a
value that is smaller than 1.4E-45 but still greater than 0?

Solution 4 1.4E-45 is the smallest possible greater-than-zero float value. Table 2.2 says so. Changing any bits in the exponent
part yields a bigger power of 2. Changing any bits in the fraction part yields a bigger fraction, unless you set all the fraction bits to
0, which represents an overall value of 0.

Exercise 5 Write a Java application that declares and assigns values to three int variables named x, y, and z. Print out all three
values, separated by commas, on a single line.

Solution 5 The following application prints out the values, separated by commas:
public class Ch2Q5
{
 public static void main(String[] args)
 {
 int x, y, z;
 x = 10;
 y = 20;
 z = 30;
 System.out.println(x + "," + y + "," + z);
 }
}

Exercise 6 White space means spaces, tabs, and line-break characters. Type in the VerySimple application from Chapter 2
(reproduced below) and experiment with inserting white space. Does anything change during compilation or execution if you insert
extra spaces between public and class? What if you insert a line break between public and class? Can you find any
adjacent words or symbols such that inserting white space between them changes compilation or execution?
public class VerySimple
{
 public static void main(String[] args)
 {
 double age;
 age = 123.456;
 }
}

Solution 6 White space between words and symbols has no effect on compilation or execution, unless you put the white space
inside a literal string. In that case, of course, the literal string will be changed. This means that you can use white space to make
your source code as readable as possible. This is discussed further in Chapter 3, in the section "White Space and Comments."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Exercise 1 What happens when a comment appears inside a literal string? (Recall from Chapter 2 that a literal string is a run of
text enclosed between double quotes.) What would the following line of code do?
System.out.println("A /* Did this print? */ Z");

Write a program that includes this line. Does the program print the entire literal string, or does it just print "A Z"?

Solution 1 The program prints the entire literal string. A // or /* inside a literal string doesn't signal the start of a comment.

Exercise 2 What is the value of ~100? What is the value of ~-100? First try to figure it out, and then write a program to print out
the values. (Hint: You can figure it out without using pen and paper if you remember something that was discussed in Chapter 2.)

Solution 2 ~100 is -101. ~-100 is 99. Recall from Chapter 2 that to generate the negative of an integer type, invert all its bits and
then add one. In other words, if you use ~ to invert an integer's bits, you have almost generated its negative. Almost, but not quite:
You still have to add 1. So ~ generates the negative of its argument, minus 1.

The following program performs the computations:
public class TildeTest
{
 public static void main(String[] args)
 {
 int n = 100;
 int nTilde = ~n;
 System.out.println("~100 = " + nTilde);
 n = -100;
 nTilde = ~n;
 System.out.println("~-100 = " + nTilde);
 }
}

Exercise 3 Write a program that prints out the following values:
32 << 3
32 >> 3
32 >>> 3
-32 << 3
-32 >> 3
-32 >>> 3

Solution 3 The following program performs the required operations:
public class Shift32By3
{
 public static void main(String[] args)
 {
 int x = 32 << 3;
 System.out.println("32 << 3 = " + x);
 x = 32 >> 3;
 System.out.println("32 >> 3 = " + x);
 x = 32 >>> 3;
 System.out.println("32 >>> 3 = " + x);
 x = -32 << 3;
 System.out.println("-32 << 3 = " + x);
 x = -32 >> 3;
 System.out.println("-32 >> 3 = " + x);
 x = -32 >>> 3;
 System.out.println("-32 >>> 3 = " + x);
 }
}

The output is
32 << 3 = 256
32 >> 3 = 4
32 >>> 3 = 4
-32 << 3 = -256
-32 >> 3 = -4
-32 >>> 3 = 536870908

Exercise 4 What are the values of the following expressions? First do the computations mentally. Then write a program to verify
your answer.
false & ((true^(true&(false|!(true|false))))^true)
true | (true^false^false^true&(false|!(true&true)))

Solution 4 The first expression has the form "false & anything", so its value is false. The second expression has the form "true |
anything", so its value is true. The following program verifies this:
public class AndAnythingOrAnything
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 public static void main(String[] args)
 {
 boolean a = false & ((true^(true&(false|!(true|false))))^true);
 boolean b = true | (true^false^false^true&(false|!(true&true)));
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }
}

Exercise 5 The following expression looks innocent:
boolean b = (x == 0) | (10/x > 3);

You can assume x is an int. Write a program that prints out the value of this expression for the following values of x: 5, 2, 0. What
goes wrong? (You will see a failure message that you might not be familiar with, because we have not introduced it yet. Don't
worry—just try to understand the general concept.) How can you make the code more robust by adding a single character to the
expression?

Solution 5 The following program does what the question requires:
 1. public class Chap3Q5
 2. {
 3. public static void main(String[] args)
 4. {
 5. int x = 5;
 6. boolean b = (x == 0) | (10/x > 3);
 7. System.out.println("x=" + x + ", b=" + b);
 8. x = 2;
 9. b = (x == 0) | (10/x > 3);
10. System.out.println("x=" + x + ", b=" + b);
11. x = 0;
12. b = (x == 0) | (10/x > 3);
13. System.out.println("x=" + x + ", b=" + b);
14. }
15. }

The output from line 7 is "x=5, b=false". The output from line 10 is "x=2, b=true". You don't get any output from line 13.
Instead, the JVM returns an error message. Your message may vary based on your JVM rev, but probably you saw the following:
java.lang.ArithmeticException: / by zero at Chap3Qs.main(Chap3Qs.java:12)

When a program prints out a message like this that includes the word "Exception", you know that something has gone wrong.
Exceptions are Java's mechanism for indicating program trouble or failure. They're covered in Chapter 11, "Exceptions." The stuff
in parentheses at the end of the message says that something went wrong at line 12, so execution was abandoned at that point.
The message and a glance at line 12 tell us that we have tried to divide 10 by zero. This is an illegal operation, because dividing
by zero is undefined.

To fix the program, just change | to ||. At line 12, the "x == 0" comparison will evaluate to true, so the short-circuit operator will
skip the illegal remainder of the expression.

The "Short-Circuit Operators" section of Chapter 3 explained that short-circuit operators let you avoid unnecessary execution of
time-consuming code. This question shows that you can also use them to avoid unnecessary execution of code that would
generate an error.

Exercise 6 The 32-bit float type is wider than the 64-bit long type. How can a 32-bit type be wider than a 64-bit type?

Solution 6 Longs (64 bits) use two's-complement data representation, and floats (32 bits) use floating-point representation. No
matter what data representation is used, there are exactly 2n possible combinations of n bits. The way to think about this problem
is to consider the way that represented numbers are distributed. The long type represents 264 values, evenly distributed along the
number line. In other words, the distance between any two consecutive numbers represented by a long is exactly 1.

With floats, the 232 values are not evenly distributed. If you draw a dot on the number line for every number represented by a
float, you see a dense cluster near zero. The farther you get from zero, the more sparsely the dots appear. Far out near the
extreme positive and negative ends of the range, the dots are very rare indeed. To quantify, the smallest-magnitude float that is
greater than zero—in other words, the first number to the right of zero on the number line—is 1.4 x 10-45. However, the difference
between the largest float and the next-smallest float is about 2 x 1031—a truly astronomical number.

So the 32-bit float type achieves a wider range than the 64-bit long type by distributing its represented values more sparsely.

Exercise 7 Write a program that contains the following two lines:
byte b = 6;
byte b1 = -b;

What happens when you try to compile the program?

Solution 7 The first line (byte b = 6;) is legal. The second line (byte b1 = -b;) is a problem. The result of the unary -
operation is of type int, and the code tries to assign an int to a byte. The compilation will fail. The compiler error may vary
depending on your compiler rev, but probably you will get a message that says this:
…possible loss of precision: int, required: byte…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
Exercise 1 Which of the following are legal method names?

a. $25

b. 25$

c. abc_

d. _ABc

Solution 1 A, C, and D are legal. B is illegal because a method name may not begin with a digit.

Exercise 2 Suppose you want to write a method that returns the diameter of a planet, in millimeters. Since it's your program, you
can choose any name you like for the method. Rank the following method names, from worst to best. Use your own judgment as
to what makes one method name better or worse than another.

a. getPlanetDiameter

b. getSize

c. getPlanetDiameterMm

d. getIt

e. getPlanetSize

Solution 2 Good and bad are subjective. However, a method name that eliminates confusion must be considered better than one
that creates confusion, or only eliminates a little confusion. Here are the method names, ranked by order of how much information
each name conveys:
getIt
getSize
getPlanetSize
getPlanetDiameter
getPlanetDiameterMm

getIt tells you nothing at all about what the method does. It's unfortunate how many programmers use similar names and create
code that is difficult to understand and expand. The other names tell increasingly more about the method's return value.
"Diameter" is better than "Size", because Size might be diameter or radius or mass. "DiameterMM" tells us not only the
quantity but the units.

Of course, there is a limit to how much a method name should say. The goal is not to maximize the information in the name. The
goal is to maximize the usefulness of the name. A name that is too long to read easily, or hard to distinguish from a similar name,
does not contribute. For example, getPlanetDiameterMMAsMeasuredByHubbleOnApril12003 is too informative, and it's
hard to distinguish from getPlanetDiameterMMAsMeasuredByHubbleOnApril112003.

Exercise 3 Suppose a method has the following declaration:
static int abc(int x, short y)

Suppose this method is called as follows:
abc(first, second)

Which of the following are legal types for the variables first and second?
a. int first, int second

b. short first, short second

c. byte first, char second

d. char first, byte second

Solution 3 B and D are legal. A passed argument may be of any type, provided it is the same as, or narrower than, the type
declared by the method. The first argument is declared by the method to be an int, so you can pass a byte, short, char, or int. The
second argument is declared by the method to be a short, so you can pass a byte or a short.

Exercise 4 Consider the following method declaration:
xyz(double d)

Which argument types can a caller pass into this method?

Solution 4 A caller can pass any type that is the same as, or shorter than, the declared type. Since the declared type is double,
the caller can pass a byte, short, char, int, long, float, or double.

Exercise 5 In Chapter 4, you learned that if method iAmVoid is void, you can't say int z = iAmVoid(); because there is no
value to assign to z. What happens if you try? Write a program that does this experiment.

Solution 5 The following application tries to assign a void call to an int:
public class AssignVoid
{
 static void iAmVoid()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 System.out.println("Hello");
 }

 public static void main(String[] args)
 {
 int z = iAmVoid();
 }
}

The compilation fails with the following message: "Incompatible types; found, void, required:int at line 10..." (Your actual message
may vary, depending on where your compiler came from.)

Exercise 6 In Chapter 4, you saw the following method:
static void print3x(int x)
{
 x = 3*x;
 System.out.println("3 times x = " + x);
}

The following code prints out "Now z is 10", not "Now z is 30", because the method modifies its own private copy of the argument:
int z = 10;
print3x(z);
System.out.println("Now z is " + z);

Write a program that proves this.

Solution 6 The following code proves that the method modifies its own copy, leaving the caller's copy alone:
public class ProveCallByValue
{
 static void print3x(int x)
 {
 x = 3*x;
 System.out.println("3 times x = " + x);
 }

 public static void main(String[] args)
 {
 int z = 10;
 print3x(z);
 System.out.println("Now z is " + z);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
Exercise 1 Rewrite the following code to maximize readability:
switch (x)
{
 case 100:
 System.out.println("x is big");
 break;
 case 101:
 System.out.println("x is big");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case -1000:
 System.out.println("x is negative");
 break;
}

Solution 1 The 100 and 101 cases can be combined, and the cases can be arranged in ascending numerical order, to produce
the following:
switch (x)
{
 case -1000:
 System.out.println("x is negative");
 break;
 case 10:
 System.out.println("x is medium");
 break;
 case 100:
 case 101:
 System.out.println("x is big");
 break;
}

Exercise 2 Rewrite the following code to make it cleaner:
boolean flag = false;
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
}
if (!flag)
 z = 1000;

Solution 2 The flag just indicates that the switch has a case that matches its argument. So the "z = 1000" assignment happens
only if there was no case to match the switch argument. We can eliminate the flag and move the "z = 1000" assignment into
the switch's default case:
switch (a)
{
 case 1:
 x = 1000;
 flag = true;
 break;
 case 30:
 y = 1000;
 flag = true;
 break;
 default:
 z = 1000;
 break;
}

Exercise 3 What happens when the following code is executed with val equal to 10? 100? 1,000? First, decide just by looking at
the source code. Then write a program to verify your answer.
switch (val)
{
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
}

Solution 3 The code doesn't have any break statements, so every case will fall through to the next one. The output for 10 is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 3 The code doesn't have any break statements, so every case will fall through to the next one. The output for 10 is
ten
hundred
thousand

The output for 100 is
hundred
thousand

And the output for 1000, which is handled by the default code, is
thousand

The following program verifies the results. Note the for loop, with multiple action in the update:
public class SwitchTest
{
 public static void main(String[] args)
 {
 int val = 10;
 for (int i=0; i<3; i++, val*=10)
 {
 System.out.println("\nTesting " + val + " ... ");
 switch (val)
 {
 case 10:
 System.out.println("ten");
 case 100:
 System.out.println("hundred");
 default:
 System.out.println("thousand");
 }
 }
 }
}

Exercise 4 Run the WhileLab animated illustration by typing java loops.WhileLab. Try changing the value in the condition in
the third line. What do you notice about the final value of a?

Solution 4 The final values of a are always square numbers.

Exercise 5 The description of WhileLab suggests three exercises, which are repeated here. For each desired result, configure
the inputs of WhileLab to produce that result. Then verify your work (and make sure WhileLab is trustworthy) by writing an
application that duplicates each while loop. The loops should generate the following results:

The sum of the numbers 1 through 500, inclusive.

The sum of the even numbers from 50 through 60, inclusive.

The product of the first 5 odd numbers.

Solution 5 The sum of 1 through 500:
int a = 0;
int b = 1;
while (b <= 500)
{
 a = a+b;
 b = b+1;
}

The sum of the even numbers from 50 through 60, inclusive:
int a = 0;
int b = 50;
while (b <= 60)
{
 a = a+b;
 b = b+2;
}

The product of the first 5 odd numbers (the nth odd number is 2n+1):
int a = 1;
int b = 0;
while (b < 5)
{
 a = a * (2*b+1);
 b = b+1;
}

Exercise 6 There is a number game called Hotpo that can entertain you for a few minutes while you're stuck in traffic, waiting for
a movie to start, or having dinner with someone really boring. Hotpo stands for Half Or Triple Plus One, and it works like this:
Think of an odd number. Now mentally calculate another number, as follows: If the first number was even, the next number is half
the first one; if the first number was odd, the next number is 3 times the first number, plus 1. Now you can forget the first number
and apply the Half Or Triple Plus One formula to your current number. Keep going until the value reaches 1. Let's try this with a
starting number of 5. The series is 5 ® 16 ® 8 ® 4 ® 2 ® 1. Write a program that plays Hotpo. First, initialize a variable called n
to the starting value you're interested in. Then enter a loop that prints out each number in the sequence, along with the current
step number. For example, the output for 3 would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step #1: 10
Step #2: 5
Step #3: 16
Step #4: 8
Step #5: 4
Step #6: 2
Step #7: 1

Should the program use a while loop or a for loop?

Solution 6 Hotpo is an extreme example of a situation that ought to use a while loop. Remember that for loops are better when
you know beforehand how many passes you will make through the loop's body, and while loops are better when you don't know
you're done until you're done. If you've played with various values of n, you may have noticed that there's no way to predict
whether a certain starting value will need a lot of steps or only a few steps to reach 1. Hotpo defies mathematical analysis. There
seems to be no way to predict how many steps a given starting value will require, which means a while loop is ideal. Here is a
solution:
public class HotpoWhile
{
 public static void main(String[] args)
 {
 int n = 3;
 int nSteps = 0;
 while (n != 1)
 {
 n = (n%2 == 0) ? n/2 : 3*n+1;
 nSteps++;
 System.out.println("Step #" + nSteps + ": " + n);
 }
 }
}

Note: If you're ever really bored, try 31.

Exercise 7 What is the value of n after the following code is executed?
int n = 1;
outer: for (int i=2; i<10; i++)
{
 for (int j=1; j<i; j++)
 {
 n *= j;
 if (i*j == 10)
 break outer;
 }
}

Solution 7 The answer is 24, but the real question is: How did you arrive at the answer? The code is only 10 lines long, and four
of those lines are just curly brackets, but the nested loops are intricate enough that working out the answer mentally or on paper is
unreliable. It doesn't take long to just type in the code, let it run, and see what happens.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
Exercise 1 The following two declarations are equivalent as far as the compiler is concerned, but one is considered more
readable than the other. Which is more readable, and why?

a. double dubs[];

b. double[] dubs;

Solution 1 Format B (double[] dubs) is more readable than Format A (double dubs[]) because in B, as with all other
declarations, the data type (double[]) comes first, followed by the variable name (dubs). Format A begins with some, but not all,
of the data type (double). Then comes the variable name, followed by the remainder of the data type ([]). So Format A is less
readable for two reasons: It does not follow the convention of data type followed by variable name, and it splits the data type into
two parts.

Exercise 2 Write a line of code that declares an array of 5 ints and initializes the array to contain the first 5 prime numbers. The
code should be a single statement.

Solution 2 int[] first5Primes = {2, 3, 5, 7, 11};

Exercise 3 Write a method whose single argument is an array of double. The method should return the average (mean) of the
array's components. Write an application that tests the method by passing it an array containing any values you like.

Solution 3 The following code is one possible solution:
public class MeanOfArray
{
 public static void main(String[] args)
 {
 double[] theArray = {1.2, 1.3, 1.4, 1.5, 1.6};
 double average = computeAverage(theArray);
 System.out.println("mean = " + average);
 }

 static double computeAverage(double[] doubles)
 {
 double sum = 0;
 for (int i=0; i<doubles.length; i++)
 sum += doubles[i];
 return sum/doubles.length;
 }
}

Exercise 4 Write a program that uses the array-averaging method of Question 3. The program should compute and print out the
average of an array (you can choose the component values). Then the program should add 100 to each component, and again
compute and print out the average.

Solution 4 The following code is one possible solution. The main method is long enough that comments are in order:
public class Question4
{
 public static void main(String[] args)
 {
 // Create the array.
 double[] theArray = {1.2, 1.3, 1.4, 1.5, 1.6};

 // Compute and print out average.
 double average = computeAverage(theArray);
 System.out.println("mean = " + average);

 // Add 100 to each component.
 for (int i=0; i<theArray.length; i++)
 theArray[i] += 100;

 // Compute and print out new average.
 average = computeAverage(theArray);
 System.out.println("mean = " + average);
 }

 static double computeAverage(double[] doubles)
 {
 double sum = 0;
 for (int i=0; i<doubles.length; i++)
 sum += doubles[i];
 return sum/doubles.length;
 }
}

Exercise 5 Write a program that contains a method that creates and returns an array of int containing the first n square numbers,
where n is the method's argument. Test your method by calling it with n=10. Your program should print out the index and value of
each component, in descending order.

Solution 5 The following code is one possible answer. Note that the loop in main decrements its loop counter down to and
including 0, because of the requirement that the squares should be printed out in descending order:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class DescendingSquares
{
 public static void main(String[] args)
 {
 int[] squares = createArrayOfSquares(10);
 for (int i=squares.length-1; i>=0; i--)
 System.out.println(squares[i]);
 }

 static int[] createArrayOfSquares(int nSquares)
 {
 int[] squares = new int[nSquares];
 for (int i=0; i<nSquares; i++)
 squares[i] = i*i;
 return squares;
 }
}

Exercise 6 Write a method that creates a multiplication table. The method should return a two-dimensional array of N by N ints,
where N is specified by the method's argument. In the array, the component at [row][col] should have a value of row*col.

Solution 6 The following method creates a multiplication table:
static int[][] makeTable(int n)
{
 int[][] table = new int[n][n];
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 table[i][j] = n;
 return table;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
Exercise 1 Name four traits that arrays and objects have in common.

Solution 1 Any four of the following are acceptable answers:

They contain clusters of data.

They are created by invoking the keyword new.

They inhabit inaccessible memory.

They are manipulated indirectly, via references.

They cannot be passed as array method arguments, but references to them can.

They are not destroyed explicitly. They are garbage-collected when they have no more references.

Exercise 2 Name two differences between arrays and objects.

Solution 2 Any two of the following are acceptable answers:

They can contain data of different types.

They can contain methods as well as data.

They are related to classes.

Exercise 3 Objects are not passed as method arguments, but references to objects can be passed. When a reference is passed
into a method, any changes made to the referenced object by the method should be visible to the method's caller. Write an
application to demonstrate this.

Your application will have two classes: Cat and Ager. The Cat class should have a single variable: an int called age. The Ager
class should have a method whose signature is makeOlder(Cat kitty, int nYears). This method should add nYears to
the age of the Cat object referenced by kitty. Your main method should go in the Ager class. It should create one instance of
each class, set the cat's age, and then use the Ager's method to change the age. Your main should then print out the cat's new
age, and verify that it really changed.

Solution 3 In file Cat.java:
public class Cat
{
 int age;
}

In file Ager.java:
public class Ager
{
 void makeOlder(Cat kitty, int nYears)
 {
 kitty.age += nYears;
 }

 public static void main(String[] args)
 {
 Ager myAger = new Ager();
 Cat myCat = new Cat();
 myCat.age = 5;
 System.out.println("Age was " +
 myCat.age);
 myAger.makeOlder(myCat, 2);
 System.out.println("Age became " +
 myCat.age);
 }
}

Exercise 4 What happens if you move the main method of the previous question from the Ager class to the Cat class?

Solution 4 You have to run the program by typing "java Cat" instead of "java Ager". Otherwise the output is the same. The
point of this question is that in a multiple-class application, you have to decide where to put your main method.

Exercise 5 Write an application that causes a "null pointer exception" failure.

Solution 5 The following application causes a "null pointer exception" failure:
public class IFail
{
 int x;

 public static void main(String[] args)
 {
 IFail ref = null;
 ref.x = 10;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This is just one of an infinite number of possible examples. When you write long programs, "null pointer exception" failures are
unavoidable in the course of developing, debugging, and refining your code.

Exercise 6 What does the following application print out?
public class Question
{
 static long x;

 public static void main(String[] args)
 {
 Question q1 = new Question();
 Question q2 = new Question();
 q1.x = 10;
 q2.x = q1.x + 20;
 System.out.println("q1.x = " + q1.x);
 }
}

Solution 6 The code prints out "q1.x = 30". Since x is static,"q1.x" and "q2.x" are both names for the same variable. The
main method could be rewritten as
public static void main(String[] args)
{
 Question q1 = new Question();
 Question q2 = new Question();
 Question.x = 10;
 Question.x = Question.x + 20;
 System.out.println("q1.x = " + q1.x);
}

This question points out that referring to a static variable via the class name is clearer than referring to it via a reference to an
instance of the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8
Exercise 1 Which of the following hierarchies illustrate a good understanding of the difference between classes and objects?
Which ones represent mistaken understanding? The arrows mean "has subclass", so in option A, Shape ® Triangle means "class
Shape has subclass Triangle."

a. Shape ® Triangle ® RightTriangle

b. GreatLiterature ®GreatPoem ®DivineComedy

c. Planet ® Continent

d. Person ® HeadOfState ® Emperor

e. Person ® HeadOfState ® Emperor ® AugustusCaesar

Solution 1 A and D are good examples. "RightTriangle" is a category that falls within the broader category of "Triangle", which
falls within the even broader category of "Shape". Similarly, "Emperor" is a category that falls within the broader category of
"HeadOfState", which falls within the even broader category of "Person".

B starts off well: "GreatPoem" is a category that falls within the broader category of "GreatLiterature". But Dante's Divine Comedy
is not a category. It is an instance of a category. In software, divineComedy should be an instance of class GreatPoem, which
would be a subclass of GreatLiterature.

C isn't even close. Certainly, planets contain continents, and both planets and continents are categories of things, but a continent
is not a more specific kind of planet. It would not be appropriate for class Continent to extend class Planet. (It might be
appropriate for the two classes to exist, but be unrelated in terms of inheritance. In this case, perhaps Continent would have an
array of Planet.)

E is like B. The last item is an instance of a category, not a category. Emperor is a category, but there was only one Augustus
Caesar. So AugustusCaesar could be an instance of class Emperor, which extends class HeadOfState, which extends class
Person.

Exercise 2 Which of the following classes have a no-args constructor?
a. A)

class A { }

b. B)
class B
{
 B() { }
}

c. C)
class C
{
 C(int x) { }
}

d. D)
class D
{
 D(int y) { }
 D() { }
}

Solution 2 There are two ways for a class to get a no-args constructor:

It can define one explicitly.

It can define no constructors at all. In that case, the compiler provides a default no-args constructor.

A has no constructors, so it is given a default no-args constructor. B and D define their own no-args constructors. C defines a
constructor that takes arguments, so it has no no-args constructor.

Exercise 3 Write the code for two classes. The first, called WaterBird, has a float variable called weight. The class has a
single constructor that looks like this:
WaterBird(float w)
{
 weight = w;
}

Compile this class. Now create the second class, called Duck, which extends WaterBird. Duck has no variables or methods, so
it shouldn't take you long to write it. Will Duck compile? First, think about the issues involved. Then try to compile Duck and see if
you were right.

Solution 3 The Duck class looks like this:
public class Duck extends WaterBird { }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Duck extends WaterBird { }

It looks innocent enough, but if you've watched enough cartoons, you know that innocent-looking ducks are not to be trusted. This
class defines no constructors, so it gets a default no-args constructor that does almost nothing. The constructor doesn't initialize
anything (since it contains no code), but it does participate in the chain of construction. Thus, it tries to call the superclass's default
constructor, and there we get into trouble.

The WaterBird superclass defines a constructor that takes an argument. There is no explicit no-args constructor, and there is no
automatic default constructor. So an invisible piece of functionality in an invisible constructor in Duck is trying to call something in
WaterBird that does not exist. When you try to compile Duck, you get an error message. The text of the message may vary
depending on your compiler, but it will say something like this:
Constructor WaterBird() not found in class WaterBird

This kind of trouble is called the constructor trap. To get out of the trap, add a no-args constructor to the superclass.

Exercise 4 Write some code to demonstrate to yourself the chain of construction. Create an inheritance hierarchy of 4 classes.
Give them any names you like. They don't have to have any data or methods, but each one should have a no-args constructor.
These constructors should print out a line identifying the current class (something like "Constructing an instance of WaterBird").
Your main() method should construct a single instance of your lowest-level subclass. What is the output? Does it matter which
class contains the main() method?

Solution 4 Here is one solution:
public class TwoDShape
{
 TwoDShape()
 {
 System.out.println("Constructor for TwoDShape");
 }
}

public class Polygon extends TwoDShape
{
 Polygon()
 {
 System.out.println("Constructor for Polygon");
 }
}

public class Triangle extends Polygon
{
 Triangle()
 {
 System.out.println("Constructor for Triangle");
 }
}

public class RightTriangle extends Triangle
{
 RightTriangle()
 {
 System.out.println("Constructor for RightTriangle");
 }

 public static void main(String[] args)
 {
 new RightTriangle();
 }
}

The output is
Constructor for TwoDShape
Constructor for Polygon
Constructor for Triangle
Constructor for RightTriangle

The application's behavior and output are the same no matter which class owns the main() method. However, it seems cleaner
to put main() in RightTriangle. Anyone who reads the code for the first time will see the call to the RightTriangle
constructor and wonder what class RightTriangle looks like. That person's job is easier if the RightTriangle class is the
one they are already looking at.

In general, in a multiclass application you have some choices as to where to put your main() method. As always, think about
which choice will be the clearest to someone reading the code for the first time.

Exercise 5 Write some code to demonstrate inheritance polymorphism. Create a superclass class with 3 subclasses. The
superclass should have a method that prints out a line identifying the current class (something like "I am a Monster"). Two of the
subclasses should override this method to print out a different message (like "I am a Werewolf"). Give the superclass a main()
method with an array of size 4, typed as the superclass (for example, Monster[] monsters = new Monster[4];). Your
main() should populate the array with references to 4 objects, each with a different class, and then traverse the array, calling
your method on each array component. What is the output? Does it matter which class contains the main() method?

Solution 5 Here is one solution:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public class Monster
{
 void identify()
 {
 System.out.println("I am a monster.");
 }

 public static void main(String[] args)
 {
 Monster[] monsters = new Monster[4];
 monsters[0] = new Monster();
 monsters[1] = new Dragon();
 monsters[2] = new Werewolf();
 monsters[3] = new Cyclops();
 for (int i=0; i<monsters.length; i++)
 monsters[i].identify();
 }
}

public class Dragon extends Monster
{
 void identify()
 {
 System.out.println("I am a dragon.");
 }
}

public class Werewolf extends Monster
{
 void identify()
 {
 System.out.println("I am a werewolf.");
 }
}

public class Cyclops extends Monster
{
 void identify()
 {
 System.out.println("I am a cyclops.");
 }
}

The output is
I am a monster.
I am a dragon.
I am a werewolf.
I am a cyclops.

Again, programmatically it doesn't matter which class gets the main() method. As for readability, the major piece of data in
main() is an array of Monster, so it makes sense to put main() in Monster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9
Exercise 1 Suppose package superpack contains subpackage subpack. Suppose a source file contains the following line:
import superpack.*;

Will this line import classes in subpack? Write code to support your answer.

Solution 1 Let's start by creating two classes, one in each package:
package superpack;
public class InSuper { }

package superpack.subpack;
public class InSub { }

These classes don't do anything, but they are all you need. You can store them in the same directory and compile by typing
"javac -d . *.java", after which your directory looks like this:

Now you can see what the import line does. Create another class in yet another package:
package testpack;
import superpack.*;
public class TestClass
{
 InSub x;
}

The class declares a variable of type InSub. If the import line doesn't import contents of the subpackage, you should get a
compiler error, because the compiler won't know what an InSub is. When you compile ("javac -d . TestClass.java"), you
indeed get an error. This shows that importing "*" does not import subpackages.

Exercise 2 Create a class that illegally tries to read a private variable of another class. What is the point of this exercise?

Solution 2 First let's create and compile the class that owns the private variable:
class HasPrivate
{
 private int x;
}

Now to try to access x:
class AccessX
{
 void tryIt()
 {
 HasPrivate hp = new HasPrivate();
 hp.x = 10;
 }
}

When you try to compile this class, you get an error message that says something like
x has private access in HasPrivate

The point of this exercise, and the ones that follow, is to learn to recognize error messages that stem from misuse of the concepts
in Chapter 9. This will make it easier to fix bugs when they crop up later on. Meanwhile, you're also getting good practice at
thinking in terms of packages and class inheritance structures.

Exercise 3 Create a class that illegally tries to call a default-access method of another class.

Solution 3 Your first class will be called HasDefMethod:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 3 Your first class will be called HasDefMethod:
package aaaaa;
public class HasDefMethod
{
 void deffy()
 {
 System.out.println("deffy here.");
 }
}

The method may be called by any class in package aaaaa, so any illegal call attempt will have to come from a different package,
like this:
package bbbbb;
import aaaaa.HasDefMethod;

public class BadCall
{
 void tryBadCall()
 {
 HasDefMethod h = new HasDefMethod(); // Ok
 h.deffy(); // Won't compile
 }
}

The compilation error message says something like this:
deffy() is not public in aaaaa.HasDefMethod; cannot be accessed from outside package

Exercise 4 Create a class that illegally tries to write a protected variable of another class.

Solution 4

You need to create a subclass in a different package from its superclass. First, here's the superclass:
package aaaaa;
public class HasProt
{
 protected double d;
} And here's the subclass:
package bbbbb;
import aaaaa.HasProt;

public class BadWrite extends HasProt
{
 void misuse()
 {
 HasProt other = new HasProt();
 other.d = 3.14159; // Won't compile!
 }
}

The compilation error message is
d has protected access in aaaaa.HasProt

Since the subclass is in a different package from the superclass, an instance of the subclass may only access its own copy of a
protected variable. In place of the line that doesn't compile, the following would be legal:
d = 3.14159;

Exercise 5 True or false: If a class has at least one abstract method, the class must be abstract. Write code to support your
answer.

Solution 5 True. A class with any abstract methods must be abstract. The following class will not compile:
class NotAbstract
{
 abstract void abstactMethod();
}

Exercise 6 True or false: If a class is abstract, it must have at least one abstract method. Write code to support your answer.

Solution 6 False. It's okay for an abstract class to have no abstract methods. This isn't stated explicitly in the chapter, but it's
easy enough to prove. The following class, which definitely doesn't contain any abstract methods, compiles without error:
Abstract class IsAbstract
{

}

Exercise 7 Write an application that tries to construct an instance of an abstract class. Can you compile the application? Can you
execute it?

Solution 7 Here is an abstract class:
abstract class Ab { }

Here is an attempt to instantiate it:
class ConstructAbstract
{
 void constructInstanceOfAbstractClass()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Ab theInstance = new Ab();
 }
}

The compilation error message is something like this:
Ab is abstract; cannot be instantiated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10
Exercise 1 Suppose an interface declares three methods. And suppose a class declares that it implements the interface, but in
fact it only implements two out of the three methods. What happens when you try to compile the class? (The way to answer this
question, of course, is to write an interface and a class.)

Solution 1 You get a compilation error that says your class must be declared abstract. This is a perfectly sensible requirement.
The following interface declares three methods:
interface Q1Inter
{
 public void a();
 public void b();
 public void c();
}

The following class does not completely implement the interface:
class Q1Class implements Q1Inter
{
 public void a()
 {
 System.out.println("Method a()");
 }

 public void b()
 {
 System.out.println("Method b()");
 }
}

When you compile, you get the following message or something very similar: "Class Q1Class should be declared abstract; it does
not define method c() in interface Q1Inter."

Exercise 2 If class A implements an interface, any subclasses of A inherit all the methods specified in the interface. Does this
mean that subclasses of A also implement the interface? Write code to discover the answer.

Solution 2 First, let's define the interface:
interface Q2Inter
{
 public void x();
}

Now here's a superclass that implements the interface:
class Q2Superclass implements Q2Inter
{
 public void x()
 {
 System.out.println("Hello from X.");
 }
}

And here's a subclass:
class Q2Subclass extends Q2Superclass
{
}

The subclass does not explicitly declare that it implements the interface, but it inherits an implementation of x() from its parent
class. Does the compiler believe that Q2Subclass implements Q2Inter? Let's add some test code somewhere. We need a
main() method, and we might as well put it in Q2Subclass:
class Q2Subclass extends Q2Superclass
{
 public static void main(String[] args)
 {
 Q2Subclass subby = new Q2Subclass();
 if (subby instanceof Q2Inter)
 System.out.println("It implements.");
 else
 System.out.println("It does not implement.");
 }
}

The application prints out "It implements", indicating that the subclass implicitly implements the interface declared explicitly by the
superclass. In other words, interface implementation is a property that is inherited by subclasses.

Exercise 3 Given the following interface:
interface InterfaceQ3
{
 void printALine();
}

Will the following code compile?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ClassQ3 implements InterfaceQ3
{
 void printALine()
 {
 System.out.println("OK");
 }
}

Solution 3 The code will not compile. The sources don't use explicit access modifiers. In the class code, this means
printALine() has default access. But all methods (and constants) in an interface are public. The error message is something
like this:
Method printALint() in class ClassQ3 cannot implement method printALint() in interface InterfaceQ3 with weaker access privileges, was public…

Exercise 4 Don't worry, the following question requires absolutely no understanding of physics. In fact, it might make you grateful
that you chose computer programming instead. Suppose you have the following interface:
package physics;
interface PhysicsConstants
{
 public static final double ELECTRON_MASS_KG = 9.11e-31;
 public static final double
 STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2 = 5.67e-8;
}

What does the following application print out?
package physics;

public class Q4 implements PhysicsConstants
{
 public static void main(String[] args)
 {
 System.out.println("The value is " +
 STEFAN_BOLTZMAN_CONSTANT_WATTS_PER_M2);
 }
}

Solution 4 Trick question. The code doesn't print out anything, because it does not compile. There are two n's in "Boltzmann",
but in the main() method there is only one.

The point of this question is to show that human eyes aren't the best mechanism for catching typos in long strings. When you try
to compile the application, the compiler immediately finds the typo for you and directs you to the line you need to fix. If you used
literal numerical values instead, you would be typing a much shorter string. "5.67e-8" only has 7 characters, versus 38 in
"STEFAN_BOLTZMANN_CONSTANT_WATTS_PER_M2", so the odds of a typo are 7/38 what they would be if you used the named
constant. However, if you type "5.67e-8" enough times, you are bound to make a mistake eventually, and the effort of finding the
typo would more than cancel out the time you saved by typing the shorter literal numeric value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11
Exercise 1 What happens when you run a program that creates an array of ints and then sets the value of an array component
whose index is greater than the length of the array?

Solution 1 The following code tries to set component 60 in an array of length 50:
public class Ch11Q1
{
 public static void main(String[] args)
 {
 int[] ints = new int[50];
 ints[60] = 12345;
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang.ArrayIndexOutOfBoundsException at Ch11Q1.main(Ch11Q1.java:6) Exception in thread "main"

Exercise 2 What happens when you run a program that creates an array of ints whose length is less than zero?

Solution 2 The following code tries to set create an array of length -25:
public class Ch11Q2
{
 public static void main(String[] args)
 {
 int[] ints = new int[-25];
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang.NegativeArraySizeException atCh11Q2.main(Ch11Q2.java:5) Exception in thread "main"

Exercise 3 What happens when you run a program that prints out the result of dividing a non-zero int by zero?

Solution 3 The following code tries to divide 39 by 0:
public class Ch11Q3
{
 public static void main(String[] args)
 {
 int and = 39 / 0;
 }
}

The code compiles but throws an exception when executed. The exact message may vary, but the following is typical:
java.lang. ArithmeticException: / by zero atCh11Q3.main(Ch11Q3.java:5) Exception in thread "main"

Exercise 4 Write a program with a try block that just prints out a message. After the try block, add a catch block that catches
java.io.IOException (which obviously is not thrown by the try block). Does the code compile? If it compiles, what happens
when it runs?

Solution 4 The following code catches an exception type that is never thrown:
public class Ch11Q4
{
 public static void main(String[] args)
 {
 try
 {
 System.out.println("Oye como va");
 }
 catch (java.io.IOException x)
 {
 System.out.println("Caught it.");
 }
 }
}

The Java compiler protects you from writing code that can never be run. Since IOException is not thrown from the try block, the
catch block will never execute. Compilation fails with the following sort of error message:
Exception IOException is never thrown in the corresponding try block

Exercise 5 Suppose a try block throws many different subclasses of IOException (and no other exception types). Suppose you
want to catch a few specific subclass types, such as PrinterIOException or ConnectException. All other exception types
should be caught in a safety-net block. Your safety-net block can catch IOException or Exception. The code will produce the
same behavior either way, but the "Catch Blocks and instanceof" section of Chapter 11 says that it's better to use IOException.
Speculate on why this is true.

Solution 5 Consider a stranger reading your program for the first time. Ask yourself how you can make the source code as easy
as possible to understand. This is always a good thing to do, because one day that stranger might be you. (Even if you're reading
your own code. It's amazing how you can come back to something you wrote only a few months ago, only to find that you don't
remember why you did what you did.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your safety-net code catches IOException, the stranger will conclude, "The try block throws many kinds of IOException."
But if your safety-net code catches Exception, the stranger will think, "The try block might throw anything." So a more specific
safety-net catch block gives the stranger more specific information about what the try block might throw.

Exercise 6 What three decisions do you have to make when creating a custom exception subclass?

Solution 6 You have to decide if you want a checked exception or a runtime exception. You have to choose a name for your
class. And you have to choose a superclass.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12
Exercise 1 In the beginning of Chapter 12, you learned that a good rule of thumb is to use core code when you can and develop
original code when you must. Because Java is an object-oriented language, you have a third option, which combines reusing
existing code with creating your own. You learned about this option in an earlier chapter. What is it?

Solution 1 The third option is to subclass an existing class. The subclass you create combines preexisting features inherited from
the superclass with new features that you implement in the subclass.

Exercise 2 If you write code that calls a deprecated method of one of the core Java classes, what valuable feature of Java can
you no longer rely on?

Solution 2 Backward compatibility.

Exercise 3 Suppose you are reading someone else's code and you come across the following lines:
Stack myStack = new Stack(); // java.util package
myStack.setSize(100);

You decide to look up setSize() in the APIs. The comment kindly tells you that class Stack is in package java.util, so you
click on java.util in the packages frame, and then you click on Stack in the classes frame. You find yourself looking at the class
description. You scroll down to the method summaries, and you don't see setSize anywhere.

How should you proceed?

Solution 3 There are two ways that class Stack can get a setSize() method: it can implement it, or it can inherit it. Clearly
Stack doesn't implement setSize(), so it must inherit it.

Scroll down past the end of the method summary section, to the inherited method section. You will see a list of methods inherited
from java.util.Vector, which is Stack's immediate superclass. There you will see a "setSize" link. Click on it to see the
method description on the java.util.Vector page.

Alternately, you can scroll up to the top of the Stack description page to the inheritance hierarchy. There you will find a link to the
Vector superclass. Scroll down to the method summaries, where you will find setSize().

Exercise 4 In the section on the String class, you learned about the startsWith(String s) method, which returns true if
the executing string object begins with the argument string s. It stands to reason that there should be a similar method that tells
you whether the executing string object ends with a specified string. Look at the API page for java.lang.String and see if
such a method exists.

Solution 4 The method does exist. It is called endsWith().

Exercise 5 What happens when you try to compile and execute the following application?
public class Ch12Q5
{
 public String toString()
 {
 return "I am an instance of Ch12Q5.";
 }
 public static void main(String[] args)
 {
 Ch12Q5 thing = new Ch12Q5();
 System.out.println(thing);
 }
}

Solution 5 The program compiles and executes without error. The call to System.out.println() calls toString() on
thing, so the output is
I am an instance of Ch12Q6.

Exercise 6 What happens when you try to compile and execute the following application?
class Ch12Q6
{
 String toString()
 {
 return "I am an instance of Ch12Q6.";
 }
 public static void main(String[] args)
 {
 Ch12Q6 thing = new Ch12Q6();
 System.out.println(thing);
 }
}

Solution 6 The difference between this application and the one in Exercise 5 is that the "public" modifiers have been removed
from the declarations of the class and the toString() method. Now the code won't compile, because toString() is public in
class Object, which is the superclass of Ch12Q6. If you override a method, as you have done here with toString(), it is illegal
to give the subclass version weaker access than the superclass version.

Exercise 7 Look up the explanation of the equals() method on the API page of class java.lang.Object. The explanation is a bit
wordy, but see if you can figure out what it does. (Focus on the last sentence, just before the "Parameters" section.) What is the
technical term for what the method does? (Hint: It was introduced in Chapter 12.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 7 The method checks for reference equality. This isn't so useful, because equals() is supposed to check for object
equality. No wonder subclasses of Object override equals().

Exercise 8 You're not allowed to construct an instance of the java.lang.Math class. What happens if you try?

Solution 8 If you write a program that contains the line
Math m = new Math();

you will get an error message that says something like
…constructor Math() has private access in class java.lang.Math.

The constructor for the java.lang.Math is private. This means that the constructor can be invoked only from within the class
itself. This is how the class ensures that you and I can never write code that constructs a Math instance.

Exercise 9 The following code models the behavior of a familiar piece of equipment that is used in many games throughout the
world. What is the piece of equipment?
long rand = 1 + Math.round(Math.random() * 5);

Solution 9 The code generates a random int that is >=1 and <=6, so it simulates shaking dice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13
Exercise 1 In Chapter 13, you learned about the following line:
String s = "C:my_backup\temporary\news";

What does the following code print out?
String s = "C:my_backup\temporary\news";
System.out.println("***\n" + s + "***");

What is the moral of this exercise?

Solution 1 The code prints the following bizarre output:

C:my_backup emporary
ews

The backslash-t is interpreted as a tab, and the backslash-n is interpreted as a newline. The moral is that you always have to use
double backslashes in literal strings and chars if you want an actual backslash and not an escape code.

Exercise 2 The code examples in the "Writing and Reading Data" section defined an int called i, a float called f, a double called
d, and so on. But the long was called n, which breaks the pattern. You might have expected the long to be called l. Why do you
think this was not done?

Solution 2 The lowercase letter "ell" looks just like a "one." If you use a lowercase "ell" as a variable name, your code becomes
hard to understand. Uppercase "oh" and lowercase "ell" are the two least readable variable names. (Notice how they are spelled
out here, in order to make sure there is no confusion. It would be less helpful to tell you that O and l are bad variable names.)

Exercise 3 Write a program that creates a file containing 5,000 random doubles that are >= 0 and <200.

Solution 3 The following code creates a file that contains 5,000 random numbers in the required range:
import java.io.*;

public class Ch13Q3
{
 public static void main(String[] args)
 {
 try
 {
 FileOutputStream fos;
 DataOutputStream dos;
 fos = new FileOutputStream("RandomDoubles");
 dos = new DataOutputStream(fos);
 for (int i=0; i<5000; i++)
 {
 double randy = Math.random() * 200;
 dos.writeDouble(randy);
 }
 dos.close();
 fos.close();
 }
 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

Exercise 4 Write a program that verifies the file you created in the previous exercise. Your program should read the 5,000
doubles, making sure that each falls within the proper range. Your program should also make sure the file contains exactly 5,000
longs.

Solution 4 The following code validates the file that was created in Exercise 3:
import java.io.*;

public class Ch13Q4
{
 public static void main(String[] args)
 {
 try
 {
 FileInputStream fis =
 new FileInputStream("RandomDoubles");
 DataInputStream dis = new DataInputStream(fis);
 boolean readBad = false;
 for (int i=0; i<5000; i++)
 {
 double randy = dis.readDouble();
 if (randy < 0 || randy > 200)
 {
 readBad = true;
 System.out.println("Read bad double: " +
 randy);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 randy);
 }
 }
 if (!readBad)
 System.out.println("File is valid.");
 }

 catch (IOException x)
 {
 System.out.println("Caught IOException");
 }
 }
}

The for loop reads 5,000 doubles from the file and checks their range. If a double is out of range, the "Read bad double" message
is printed out and the variable readBad is set to true. After the loop, readBad is checked. If it never got set to true, the file is
considered valid.

Exercise 5 Look up the API documentation for the java.io.File class. An instance of this class contains information about an
individual file. One of the methods of the class tells you the length in bytes of a file. Use this method to determine the number of
bytes in the file you created in Exercise 3.

Solution 5 The following program uses the File class to read the size of the file created in Exercise 3:
import java.io.*;

public class Ch13Q5
{
 public static void main(String[] args)
 {
 File f = new File("RandomDoubles");
 System.out.println("Length = " + f.length());
 }
}

The code prints out "Length = 40000". This is to be expected. The file contains 500 doubles, and each double is 8 bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14
Exercise 1 The first code example in Chapter 14 used the following code to set a frame's background color:
setBackground(new Color(128, 128, 128));

Describe the color that this line creates.

Solution 1 The color has equal levels of red, green, and blue, so it will be some kind of gray. Since the levels are halfway
between the minimum (0) and the maximum (255), the gray will be about halfway between black and white: a neutral gray, neither
dark nor light.

Exercise 2 Run Color Lab, and adjust the scrollbars so that the displayed color matches something you can see (a piece of
clothing you're wearing, or something on your desk, or anything else you like). Now write an application that displays a frame
whose interior is the color you've chosen.

Solution 2 The following code shows a frame whose interior matches the color of the shirt I was wearing when I wrote this.
import java.awt.*;

 public class EmptyFrame extends Frame
 {
 EmptyFrame()
 {
 setBackground(new Color(0, 217, 255));
 setSize(300, 300);
 }

 public static void main(String[] args)
 {
 EmptyFrame em = new EmptyFrame();
 em.setVisible(true);
 }
 }

Remember that in addition to setting the background color, you have to call setSize() and setVisible(). Otherwise the
frame cannot be seen.

Exercise 3 One of the code examples in Chapter 14 used the getSize() method, which Frame inherits from one of its
superclasses. Use the API to find out which superclass implements the method.

Solution 3
java.awt.Component

Exercise 4 Write a program that draws a five-pointed star. Your frame should be 400 x 400 pixels. The coordinates of the star's
points are (200, 375), (97, 58), (366, 254), (34, 254), and (303, 58). The easy way is to write a paint() method that calls
drawLine() five times. But that approach isn't ideal, because you have to type each x and each y twice. (Each point is the end of
two lines, so it appears in two drawLine() calls.) Typing data, code, or anything else more than once is considered bad style. If
one of the copies has a typo and doesn't match the original precisely, your program won't function correctly. To avoid duplication
of data, your program should have two int arrays, defined as follows:
int[] xs = {200, 97, 366, 34, 303};
int[] ys = {375, 58, 254, 254, 58};

Your paint() method should have a loop that accesses these arrays. drawLine(...) should appear only once in your code,
inside the loop.

Solution 4 The following program uses a loop to draw a five-pointed star:
 1. import java.awt.*;
 2.
 3. public class Supe extends Frame
 4. {
 5. int[] xs = {352, 106, 200, 294, 48};
 6. int[] ys = {151, 329, 40, 329, 151};
 7.
 8. Supe()
 9. {
10. setSize(400, 400);
11. }
12.
13. public void paint(Graphics g)
14. {
15. for (int startPoint=0;
16. startPoint<xs.length;
17. startPoint++)
18. {
19. int endPoint = startPoint + 1;
20. if (endPoint == xs.length)
21. endPoint = 0;
22. g.drawLine(xs[startPoint], ys[startPoint],
23. xs[endPoint], ys[endPoint]);
24. }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24. }
25. }
26.
27. public static void main(String[] args)
28. {
29. (new Supe()).setVisible(true);
30. }
31. }

Lines 19-21 can be replaced by the following single line:
Int endPoint = (startPoint+1) % xs.length;

Exercise 5 Write a program that lists all the font families that are available on your computer.

Solution 5 The following program lists all the available font families.
import java.awt.GraphicsEnvironment;

public class ListFonts
{
 public static void main(String[] args)
 {
 GraphicsEnvironment grenv =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 String[] names =
 grenv.getAvailableFontFamilyNames();
 for (int i=0; i<names.length; i++)
 System.out.println(names[i]);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15
Exercise 1 Suppose you use the following code to create a checkbox:
Checkbox cbox = new Checkbox("Ok", true);

What is the checkbox's state after you click on it 20,000 times?

Solution 1 The checkbox's initial state is true. After you click on it an even number of times, it is true again. There are two
ways to get the answer: thinking about it, or doing it. If you chose the second way, you might not be cut out to be a computer
programmer.

Exercise 2 In the "Checkboxes" section of Chapter 15, the Boats application is 30 lines long. The code isolates literal strings in
an array near the top of the listing. You saw how this approach, along with the use of a loop to create the checkboxes, results in
more maintainable code. Rewrite the code to eliminate the loop and the string array. In place of the loop in the constructor, just
create three checkboxes one by one. How many lines of code does your new application have?

Solution 2 Here is the rewritten code:
 1. import java.awt.*;
 2.
 3. class BoatsNoLoop extends Frame
 4. {
 5. Checkbox[] cboxes;
 6. Button btn;
 7.
 8. BoatsNoLoop()
 9. {
10. setLayout(new FlowLayout());
11.
12. cboxes = new Checkbox[3];
13. cboxes[0] = new Checkbox("a small boat");
14. add(cboxes[0]);
15. cboxes[1] = new Checkbox("a medium boat");
16. add(cboxes[1]);
17. cboxes[2] = new Checkbox("a large boat");
18. add(cboxes[2]);
19. btn = new Button("Add to shopping cart");
20. add(btn);
21.
22. setSize(600, 200);
23. }
24.
25. public static void main(String[] args)
26. {
27. new BoatsNoLoop().setVisible(true);
28. }
29. }

This version is only 29 lines, one line shorter than the original. The point is that a shorter program is not necessarily easier to read
or maintain than a longer version. If you still aren't convinced that the original version is better, try Exercise 3.

Exercise 3 This is an extension of Exercise 2. Suppose you need to change the Boats application so that instead of offering
three sizes (small, medium, and large), it offers ten (rubber duck, sponge, tiny, small, kinda small, medium, kinda large, large,
huge, titanic). How does this affect the size of the code as it appears in the "Checkboxes" section of Chapter 15? How does it
affect the size of the code that you wrote for Exercise 2?

Solution 3 The loop-based code will probably become longer by two lines, because the array of literal strings now has 10
members:
String[] sizes = {"rubber duck", "sponge", "tiny", "small", "kinda small",
"medium", "kinda large", "large", "huge", "titanic"};

The no-loop version grows by two lines for every additional size option (one line to construct a checkbox, another to call add()).
Seven new options were added, so the code grows by 14 lines, or 50%.

Note Programs usually start out small, and gradually grow as they are required to support more and more functionality.
Giving structure to a small program is always worth the effort. The payoff might not be immediately obvious, but it will
become more and more evident as time goes by. In Exercise 2, the well-structured program was actually longer than
the unstructured version. But when the code needed to support more functionality, the unstructured version grew by
50% while the structured version grew by about 7%.

Exercise 4 Write an application that displays a frame with a menu bar. The bar should have the following menus:

An Edit menu with items Copy and Cut.

A File menu with items Close, Exit, and Open.

A Help menu with item Help. Assume that clicking on this item will display a helpful dialog.

A Whatever menu with items Stuff and Nonsense. The Nonsense item should be a submenu with items Ordinary Nonsense
and Extreme Nonsense.

Make sure that your GUI follows the guidelines listed at the end of the "Menus" section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 4 Here is one solution:
import java.awt.*;

class Q4 extends Frame
{
 public Q4()
 {
 MenuBar mbar = new MenuBar();

 Menu fileMenu = new Menu("File");
 fileMenu.add("Open...");
 fileMenu.add("Close");
 fileMenu.add("Exit");
 mbar.add(fileMenu);

 Menu editMenu = new Menu("Edit");
 editMenu.add("Cut");
 editMenu.add("Copy");
 mbar.add(editMenu);

 Menu whateverMenu = new Menu("Whatever");
 whateverMenu.add("Stuff");
 Menu nonsenseMenu = new Menu("Nonsense");
 nonsenseMenu.add("Ordinary Nonsense");
 nonsenseMenu.add("Extreme Nonsense");
 whateverMenu.add(nonsenseMenu);
 mbar.add(whateverMenu);

 Menu helpMenu = new Menu("Help");
 helpMenu.add("Help...");
 mbar.add(helpMenu);

 setMenuBar(mbar);

 setSize(300, 200);
 }

 public static void main(String[] args)
 {
 (new Q4()).setVisible(true);
 }
}

The following illustrations show the four menus, File, Edit, Whatever, and Help:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 5 Write a program that creates a GUI that looks like the following illustration. The text in the text area should be set
programmatically by a single call to the text area's append() method. The call should come directly after the text area is
constructed.

Solution 5 Here is one solution:
 1. import java.awt.*;
 2.
 3. class Q5 extends Frame
 4. {
 5. public Q5()
 6. {
 7. setLayout(new FlowLayout());
 8. TextArea ta = new TextArea(10, 30);
 9. ta.append("Hello\nWorld");
10. add(ta);
11.
12. setSize(550, 220);
13. }
14.
15. public static void main(String[] args)
16. {
17. (new Q5()).setVisible(true);
18. }
19. }

The text is set in line 9. The thing to notice is the newline character, which puts in a line break. It would be wrong to replace line 9
with this:
ta.append("Hello");
ta.append("World");

Line breaks are inserted only when you explicitly append a newline character. So with the substitution, you would see a single line
of text that read "HelloWorld". There wouldn't even be a space between the words.

Exercise 6 Using the API page for java.awt.FlowLayout, determine how to create a flow layout manager that right-justifies
its cluster of components rather than centering it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution 6 Use the following constructor:
new FlowLayout(FlowLayout.RIGHT)

Exercise 7 The java.awt.Component class, which is a superclass of java.awt.Button, has a method called setSize(int
width, int height). The method's documentation says that it resizes the component so that its size is width times height.

What do you expect the following code to do? First, read the listing and decide on your answer. Then, type in the code and run it.
Did you see what you expected to see?
import java.awt.*;

class Q7 extends Frame
{
 public Q7()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Abcde");
 btn.setSize(500, 500);
 add(btn);
 setSize(700, 700);
 }

 public static void main(String[] args)
 {
 (new Q7()).setVisible(true);
 }
}

Solution 7 The code seems to create a large (500 x 500) button in a 700 x 700 frame. But actually, the button's size is perfectly
ordinary. The Flow layout manager sets the size of the button to its preferred size.

Exercise 8 This entire chapter has been about components that are installed inside containers. The previous chapter was about
painting. What happens if a frame that contains components also has a paint() method that paints a part of the screen that is
occupied by a component? Write a program that will reveal the answer.

Solution 8 The frame in the following application has a button, as well as a paint() method. The paint() method draws
diagonal blue lines.
import java.awt.*;

class PaintPlusComponent extends Frame
{
 public PaintPlusComponent()
 {
 setLayout(new FlowLayout());
 add(new Button("Apply"));
 setSize(300, 200);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.blue);
 for (int i=0; i<500; i+=10)
 g.drawLine(i, 0, 0, i);
 }

 public static void main(String[] args)
 {
 (new PaintPlusComponent()).setVisible(true);
 }
}

The following illustration shows the GUI. As you can see, the button is superimposed over the painted lines. Whenever a
component and a paint() method are both responsible for the same part of the screen, the component wins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16
Exercise 1 Write a program that displays a frame. The frame's paint() method should draw something simple. The application
should also maintain a count of the number of times paint() is called. This count should be printed out every time paint() is
called. Execute your application, and use it to help determine whether paint() is called when:

The application starts up.

The frame is minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is restored to normal size after being minimized/iconified.

The frame is moved.

The frame is partially covered by another frame.

The frame is uncovered.

Solution 1 The following code prints a message whenever paint() is called:
import java.awt.*;

public class Ch16Q1 extends Frame
{
 int nCallsToPaint;

 Ch16Q1()
 {
 setSize(300, 300);
 }

 public void paint(Graphics g)
 {
 g.setColor(Color.cyan);
 g.drawLine(100, 100, 200, 200);
 nCallsToPaint++;
 System.out.println(nCallsToPaint +
 " calls to paint()");
 }

 public static void main(String[] args)
 {
 (new Ch16Q1()).setVisible(true);
 }
}

The paint() method is called when the application starts up, and when it is restored after being minimized/iconified. It is also
called when the frame is uncovered. It is not called when the frame is moved. Depending on your system, it may or may not be
called when the frame is covered.

Exercise 2 Every Java thread is represented by an instance of the java.lang.Thread class. You can get a reference to the
currently running thread by calling the currentThread() static method of the Thread class. Threads have names. The class
has a method called getName(), which returns the name as a string. So you can print out the name of the current thread by
calling
System.out.println(Thread.currentThread().getName());

Write a simple frame application that makes this call in its main() method and in its paint() method. Verify that main()and
paint() are executed in different threads.

Solution 2 The following application prints the name of the current thread in main() and paint():
import java.awt.*;

public class Ch16Q2 extends Frame
{
 Ch16Q2()
 {
 setSize(300, 300);
 }

 public void paint(Graphics g)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void paint(Graphics g)
 {
 g.setColor(Color.cyan);
 g.drawLine(100, 100, 200, 200);
 System.out.println("paint() thread is called:");
 System.out.println(Thread.currentThread().getName());
 }

 public static void main(String[] args)
 {
 System.out.println("main() thread is called:");
 System.out.println(Thread.currentThread().getName());
 (new Ch16Q2()).setVisible(true);
 }
}

Exercise 3 Write an application that adds the same action listener to a button twice. For example, if myButton is the button and
myListener is the action listener, your code would contain the following lines:
myButton.addActionListener(myListener);
myButton.addActionListener(myListener);

Your listener's actionPerformed() method should print out a message to tell you that it got called. If you press the button
once, do you expect the message to be printed out once or twice? Run your application to see if you guessed right.

Of course, in real life there would never be a good reason for doing this. But you might do it by accident. For example, you might
paste the line into your source code twice by accident. So it's good to know in advance what the symptom will be, so that you can
recognize it and fix the problem if it ever comes up.

Solution 3 Here is the listener class:
import java.awt.event.*;

class Aclis implements ActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("actionPerformed() was called.");
 }

And here is the application class:
import java.awt.*;

public class Ch16Q3 extends Frame
{
 Ch16Q3()
 {
 setLayout(new FlowLayout());
 Button btn = new Button("Push Me");
 Aclis ac = new Aclis();
 btn.addActionListener(ac);
 btn.addActionListener(ac);
 add(btn);
 setSize(300, 300);
 }

 public static void main(String[] args)
 {
 (new Ch16Q3()).setVisible(true);
 }
}

When you push the button, the message is printed out twice.

Exercise 4 Suppose a class has an actionPerformed() method, as specified by the ActionListener interface, but the
class does not state that it implements the interface. Can an instance of the class be used as a button's action listener?

Solution 4 The following class contains an actionPerformed() method, but it does not declare that it implements the
ActionListener interface:
import java.awt.event.*;

class NotAnActionListener
{
 public void actionPerformed(ActionEvent e)
 {
 System.out.println("actionPerformed() was called.");
 }
}

Since the class has the right kind of method, you might be tempted to use it as an action listener:
. . .
Button btn = new Button("OK");
NotAnActionListener naal = new NotAnActionListener();
btn.addActionListener(naal);
. . .

This code will not compile. For a class to be eligible to be an action listener, it is not enough for it to provide an
actionPerformed() method, because that alone does not mean that it implements the ActionListener interface .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

actionPerformed() method, because that alone does not mean that it implements the ActionListener interface .

Exercise 5 Run Nim Lab by typing java events.NimLab. Select Disable Buttons..... and play the game. This version is the
result of three rounds of improvements made to the original program. What additional improvements can you suggest? Think
about how the game could be modified to make the GUI easier and more natural.

Solution 5 Here are some possible improvements:

Add a Restart button.

Provide notification when a player wins.

Eliminate the buttons. Players would click on a coin to remove it. This would provide direct manipulation of the
coins, rather than the indirect manipulation that the buttons provide.

Do you have any other ideas? E-mail them to groundupjava@sgsware.com, and they might be included in the next revision of
this book (with your name mentioned).

Exercise 6 The various event classes (ActionEvent, ItemEvent, etc.) all inherit the getSource() method from a
superclasss. Use the API pages to determine the name of that superclass.

Solution 6 java.util.EventObject.

Exercise 7 Write an application with a GUI that contains a choice and a text area. When the choice is activated, a message
should be written to the text area, stating the choice's selected index.

Suggested design: Your frame should contain a panel (at North) that contains the choice. The text area should be at South. If you
need a guideline, the TextAreaNim program in the "Improving the GUI" section has a similar structure.

Solution 7 Here's the code:
import java.awt.*;
import java.awt.event.*;

public class Ch16Q7 extends Frame implements ItemListener
{
 private Choice choice;
 private TextArea ta;

 Ch16Q7()
 {
 Panel pan = new Panel();
 choice = new Choice();
 choice.add("Dragons");
 choice.add("Centaurs");
 choice.add("Unicorns");
 choice.add("Manticores");
 choice.addItemListener(this);
 pan.add(choice);
 add(pan, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");

 setSize(300, 200);
 }

 public void itemStateChanged(ItemEvent e)
 {
 ta.append("You chose " +
 choice.getSelectedIndex() +
 "\n");
 }

 public static void main(String[] args)
 {
 (new Ch16Q7()).setVisible(true);
 }
}

The following illustration shows the GUI for Exercise 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 8 Write an application with a GUI that contains a text field and a text area. When the user presses the Enter key in the
text field, the text field's contents should be copied into text area, followed by a newline character.

Your event-handling code will need to retrieve the contents of the text field. You do that by calling the text field's getText()
method, which returns a string.

Suggested design: Your frame should contain a panel at North that contains the text field. The text area should go at Center.

Solution 8 Here's the code:
import java.awt.*;
import java.awt.event.*;

public class Ch16Q8extends Frame implements ActionListener
{
 private TextField tf;
 private TextArea ta;

 Ch16Q8()
 {
 Panel pan = new Panel();
 tf = new TextField("Type Here ");
 tf.addActionListener(this);
 pan.add(tf);
 add(pan, "North");

 ta = new TextArea(40, 20);
 add(ta, "Center");

 setSize(300, 200);
 }

 public void actionPerformed(ActionEvent e)
 {
 ta.append(tf.getText() + "\n");
 }

 public static void main(String[] args)
 {
 (new Ch16Q8()).setVisible(true);
 }
}

The following illustration shows the GUI for Exercise 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17
Exercise 1 Write a program that creates a frame with a File menu. The menu should have two items, Save... and Exit. When
Save... is selected, the code should display a file dialog box, configured for saving a file. When the user has specified a file via the
dialog box, your code should output the name of the file. All the information you need is on the API page for
java.awt.FileDialog.

Solution 1 Here's the code:
import java.awt.*;
import java.awt.event.*;

class SaverFrame extends Frame implements ActionListener
{
 private MenuItem saveMI, exitMI;

 public SaverFrame()
 {
 // Build menu.
 MenuBar mbar = new MenuBar();
 Menu fileMenu = new Menu("File");
 saveMI = new MenuItem("Save...");
 saveMI.addActionListener(this);
 fileMenu.add(saveMI);
 exitMI = new MenuItem("Exit");
 exitMI.addActionListener(this);
 fileMenu.add(exitMI);
 mbar.add(fileMenu);
 setMenuBar(mbar);
 setSize(300, 150);
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource() == exitMI)
 System.exit(0);

 FileDialog dia = new FileDialog(this, "Save Your Work",
 FileDialog.SAVE);
 dia.setVisible(true);
 String fileName = dia.getFile();
 if (fileName == null)
 System.out.println("You canceled the dialog.");
 else
 System.out.println("You chose file " + fileName + "
 in " + dia.getDirectory());
 }

 public static void main(String[] args)
 {
 (new SaverFrame()).setVisible(true);
 }
}

The following illustration shows the file dialog, configured for saving.

Exercise 2 The FileDialog class has a setDirectory() method that controls which directory the dialog box will display.
Look up the method description in the API to become familiar with how it works. Modify the final project code so that when the file
dialog box appears, it displays one of the directories on your computer where you have stored some of your own Java source
code. This will make it easier to display your own work.

Solution 2 Let's say you want the dialog to display the directory C:\MyCode\Ch7_Exercises. In actionPerformed(),
change the code that constructs the file dialog, which in its original form looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);

 dialog.setVisible(true); // Modal
 …

Add the setDirectory() call immediately after the dialog is constructed, before it is made visible:
public void actionPerformed(ActionEvent e)
{
 if (e.getSource() == openMI)
 {
 if (dialog == null)
 {
 dialog = new FileDialog(this, "Source File",
 FileDialog.LOAD);
 dialog.setdirectory("C:\\MyCode\\Ch7_Exercises");

 dialog.setVisible(true); // Modal
 …

Tip Remember that in Java literal strings, single backslashes are escape characters that have special significance. That's
why the argument to the setDirectory() call is C:\\MyCode\\Ch7_Exercises and not
C:\MyCode\Ch7_Exercises.

Exercise 3 Write an application that displays a canvas subclass in a frame, at Center. The frame does not contain any other
components.

Use the following code as the paint() method for the canvas subclass:
1. public void paint(Graphics G)
2. {
3. g.setFont(new Font("Serif", Font.PLAIN, 24));
4. g.setColor(Color.blue);
5. g.drawString("Look at this!", 0, 0);
6. }

Run the program. Do you see what you expected to see? How do you explain the results?

Now change line 5 to this:
g.drawString("A bluejay in a quagmire", 0, 0);

Now do you see what you expected to see? Again, how do you explain the results?

Solution 3 Here's the code:
import java.awt.*;

class TextCanvas extends Canvas
{
 public void paint(Graphics g)
 {
 g.setFont(new Font("Serif", Font.PLAIN, 24));
 g.setColor(Color.blue);
 g.drawString("A bluejay in a quagmire", 0, 0);
 }

 public static void main(String[] args)
 {
 Frame fr = new Frame();
 TextCanvas tc = new TextCanvas();
 fr.add(tc, "Center");
 fr.setSize(250, 250);
 fr.setVisible(true);
 }
}

The y-coordinate argument of the drawString() method of class Graphics specifies the vertical position of the baseline of the
text. If the baseline is 0, you will only see those parts of the text that descend below the baseline. In the string "Look at this!", there
are no descenders. In "A jay in a quagmire", there is one occurrence of each character that descends: j, y, q, and g. The following
illustration shows the GUI with the misplaced baseline. You can see the bottom portions of those letters, hanging down from the
top of the canvas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 4 The FancySrcCanvas class has an array of Java keywords. In that array, throws comes before throw. Otherwise,
the list is alphabetical. Why does throws comes before throw?

Solution 4 The code that looks for keywords checks every position in every source line to see if it begins with a keyword. If it
finds a match, it overpaints the keyword in the appropriate color. If throw came before throws, consider what would happed to
the following line:
void printPaycheck(Employee emp) throws IOException

The code would overpaint throw, but the s would remain black.

Exercise 5 There are several situations in which the project code would improperly draw text in the keyword color. How many of
these situations can you name?

Solution 5 The keyword-finding code ignored line comments—that is, comments beginning with a double slash. But it does
nothing about comments that begin with slash-star (/*) and end with star-slash (/*). Any keyword that appeared in such a
comment would be overpainted in the keyword color. The following line would look especially strange:
/* Let's go forward despite stiff competition. */

The "for" in "forward" and the "if" in "stiff" would appear in the keyword color.

Keywords might coincidentally appear in literal strings, for example:
System.out.println("while I was dreaming …");

Lastly, keywords might be embedded in the names of classes, variables, or methods:
class Republic extends Country { … }

Exercise 6 How would you modify the project code so that null, true, and false are not rendered in the keyword color?

Solution 6 Delete them from the keywords array in FancySrcCanvas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Glossary

A
abstract (keyword)

An abstract method has no body. It may not be instantiated. If a class contains any abstract methods, the class
itself must be declared abstract.

access modifiers
Keywords that set the access level of classes, data, and methods.

accessors
A method that supports data hiding. It has an empty argument list and returns a data value. By common
convention, the name of an accessor method begins with get, followed by the property to be retrieved.

additive primary colors
The primary colors of video screens (red, green, and blue). They combine to form yellow, cyan, and magenta.

allocation
Assigning memory for use as objects or arrays.

analog circuit
Non-digital circuit, where precise voltage values are significant.

application
A Java program that’s executed in a Java Virtual Machine, consisting of one or more classes.

array
A cluster of variables (components) that are all of the same type. The array has a name, but its individual
components do not.

ASCII
An abbreviation for American Standard Code for Information Interchange. ASCII encodes all the characters in
American English, plus punctuation marks, into the range 0-127. The range 128-255 encodes symbols such as
accented vowels, which are used in western European languages, as well as some Greek characters, line-
drawing symbols, and some others.

assembler
Any program that translates assembly code into base-2 instructions.

assembly language
The language of programming with op-codes. Typically, one line of assembly language code corresponds to a
single computer instruction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B
baseline

The imaginary horizontal line on which the bodies of text characters rest.

binary operators
Numeric or boolean operators that take two operands.

bit
The smallest unit of memory, capable of storing 0 or 1. Abbreviation of “binary digit.”

Bitwise operation
Operation in which operands are treated as collections of unrelated individual bits. Only performed on integer data
types.

block
A contiguous piece of code that begins with an open curly bracket and ends with a matching closed curly bracket.

boolean (keyword)
A primitive data type that represents true or false.

bounding box
The smallest rectangle that encloses an oval.

byte (keyword)
An 8-bit signed integer primitive data type.

bytecode
The instruction code for the Java Virtual Machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C
catch block

Block of code, following a try block, that handles exceptions of a single type.

chaining
The technique of connecting data streams together.

chain of constructors
The mechanism whereby all constructors begin by invoking a constructor of the superclass.

class files
Bytecode output files produced by the compiler.

class loader
Mechanism that finds class files, reads them, and translates them into internal representations.

classpath
A list of directories that contain package structures.

comments
Text used by programmers to help readers understand the meaning of the code.

compiled language
A programming language that must be translated into computed binary. Unlike assembly language, generally a
line of source code does not correspond to a single instruction.

component
A GUI device that presents user input to programs and displays program information to users. Standard GUI
components include buttons, text fields, scrollbars, and menus. Also: An array member.

conditional code
Code that’s executed only when a boolean criterion is satisfied.

construction
Creation of an object or array.

constructor
Code that creates and initializes an instance of a class.

container
A component that can contain other components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D
data hiding

The practice of making the data of a class as inaccessible to other classes as possible.

debug code
Code whose purpose is to tell the developer about what is going on inside a program.

declaration
Code that tells the compiler the type of a variable or the return type, argument types, and exception types of a
method.

default access
Mode that grants access to all classes in the same package as the class that defines the default feature.

default constructor
A no-args constructor created by the compiler for any class that does not have ant constructors.

deprecated method
A method that was introduced in an early revision of Java and should not be used.

destination directory
The directory where the compiler will store a package structure.

dialog box
A window, subordinate to its program’s main frame, that is used for brief user interaction.

digital circuit
A circuit where voltages represent 0 or 1.

digital computers
Computers composed of digital circuits.

double (keyword)
64-bit floating-point primitive data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E
ellipsis

Three dots (...). In a GUI component, an ellipsis indicates that activating the component will cause the display of a
new window or dialog.

empty string
An instance of the String class with zero characters.

event-driven program
A program that acts mainly in response to user input.

events
The mechanism by which components inform listeners that they have been activated.

exception
An object that is thrown to indicate an unusual or error state. The throwing of an exception diverts the normal flow
of program control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F
falling through

In switch code, continuing from one case to the next in the absence of a break statement.

field
A data variable in a class.

file separator
The character that appears between elements in a full pathname.

final (keyword)
A final class may not be subclassed. A final method may not be overridden. A final variable may not be modified
after it is initialized.

flag
A boolean variable used to indicate program status.

float (keyword)
A 32-bit floating-point primitive data type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G
garbage collection

The automatic recycling of unusable objects.

garbage collection thread
The thread that implements garbage collection.

GUI thread
In applications with GUIs, the thread that paints components and notifies event listeners.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I
immutable

An immutable object’s data cannot be changed.

importing
A means to allow the use of abbreviated class names.

index
A unique identifying integer for a component of an array.

inheritance
The mechanism by which a class has the data and methods of its parent classes.

instance variables
Non-static variables of a class.

integer
Any data type that represents non-fractional numbers.

interface
A list of public method declarations.

interpreted compiled language
A language whose compiled code is executed by a virtual machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

J
Java Virtual Machine

A virtual computer that runs Java programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L
label

A name associated with a loop. Labels may be used with break and continue statements.

layout manager
Objects responsible for setting the location and size of components in a container.

listener
An object that should be notified when a component’s state changes.

literal string
Text enclosed in double quotes.

look and feel
A GUI-based program’s appearance (look) and responses to user input (feel).

loop
A piece of code that’s executed repeatedly. The number of repetitions can be preset, or execution can continue
until a condition is met.

loop counter
A variable that regulates the number of passes through a loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

M
maintenance

The process of fixing bugs and adding features.

main thread
The thread that executes an application’s main() method.

memory
A circuit that stores a digital value.

method caller
The code that calls a method.

modal dialog
A dialog that consumes all mouse and keyboard input.

modulo
An operation that divides the first operand by the second operand and returns the remainder. Its symbol is the %
sign.

multidimensional
A term used to describe an array with components specified by more than one index.

multithreaded
Capable of performing more than one task at a time.

mutator/setter
Method used to support data hiding. It has a void return type and a single argument. By convention, the name of a
mutator begins with set, followed by the property to be modified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

N
namespace

A way of organizing resources (files, classes, etc.) so that name uniqueness has to be maintained only in
relatively small and manageable regions.

nesting
The technique of putting a loop within a loop.

no-args constructor
A constructor with an empty argument list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

O
object equality

An equality criterion that is true if two distinct objects have equal data.

objects
Objects are an individual instance of a class.

one-dimensional
A term used to describe an array with components specified by a single unique index.

operands
The values on which operators operate.

origin
The point with coordinates (0, 0) in a component; the upper-left corner.

overloading
Reuse of a method name in a class.

overriding
Reuse of a method name in an inheritance hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

P
package

A named group of interrelated classes.

pixel
An abbreviation for picture element. A single dot on a computer screen.

precedence
The order of execution when multiple operations are combined into a single statement.

preferred size
The default size of a component, usually derived from its label and font. Layout managers may honor or ignore
preferred size.

primitives
The non-object data types: byte, short, int, long, float, double, char, and boolean.

private access
The most restrictive access mode. A private feature may be accessed only by an instance of the class that
defines the feature.

protected access
An access mode that grants access to classes in the same package as, and subclasses of, the class that defines
the feature.

public access
Completely unrestricted access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

R
radio button

A member of a group, only one of which can be selected at any time.

reader
A class that reads 8-bit text and delivers Unicode characters.

reference
A variable that exists in accessible memory and accesses an object or array in inaccessible memory.

reference equality
An equality criterion that is true if two references point to the same object.

return value
The value returned by a method.

row major
Specification of row followed by column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

S
scalable

Useful and efficient when usage or requirements increase.

scientific notation
A useful representation for expressing very large or very small numbers. The letter E is used as shorthand for
“times ten to the...”.

scope
A variable’s scope is the matching pair of open and closed curly braces that most tightly encloses the variable’s
declaration.

serifs
Small decorations on the tips of letters that improve readability in medium to large fonts.

shifting
One of several operations that move the bits of an integral operand to the left or right by a certain number of
positions.

short-circuit operator
An operator that does not evaluate its second operand if the value of the first operand is enough to determine the
value of the operation.

signed
Supporting both positive and negative integer types.

side effect
A change in program state as a result of a method call.

source code
Code that must be translated into appropriate binary values before it can be executed by a computer.

stack trace
A listing of an application’s method call hierarchy at the moment an exception was thrown.

static
Associated with a class, rather than with an individual instance of a class.

string concatenation
The consecutive joining of strings, one after another.

subclass
A class that extends a superclass, inheriting its data and methods.

subtractive primary colors
The primary colors of paints and dyes (red, yellow, and blue). They combine to form green, orange, and purple.

superclass
A class from which a subclass inherits data and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

T
ternary operator

An operator that takes three operands. Java’s only ternary operator is ?:.

thread
A single task in a multithreaded program.

throw
To interrupt normal program flow by raising an exception.

truncate
To discard the fractional part of a number.

try block
Code following the try keyword, from which exceptions might be thrown.

two’s complement
A format used to represent signed integers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

U
unary operators

Symbols that perform operations on a single operand.

unicode
A standard for associating characters of many alphabets with 16-bit data.

update
The final part of a for loop.

UTF
A standard for converting Unicode strings into bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

V
variable-width font

Font in which different characters have different widths.

virtual computer
An imaginary computer that is simulated on a real computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

W
white space

Blank space in source code, ignored by the compiler but useful in creating code that is more readable.

wrapper
A class whose data is a single primitive value. Java’s eight wrapper classes are in the java.lang package.

writer
A class that reads Unicode characters and delivers 8-bit text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page
numbers indicate illustrations.

A
abstract classes and methods

defined, 468
working with, 182–185, 183

access control, 172–174
abstract modifier, 182–185, 183
default access, 174–176
final modifier, 180–182
with overriding, 178–180, 179
private access, 174–175
protected access, 177–178
public access, 174

access modifiers, 173–174, 468
AccessExample class, 173–174
accessible memory, 109–111, 110
accessors

with data hiding, 173
defined, 468

action listeners, 333–339, 335–339
ActionListener interfaces, 334, 363
actionPerformed method

in ActionListener, 334
in DisablingNim, 350
in FancySrcCanvas, 390–391
in FileDialogPractice, 367–368
in GraphicOutputNim, 347–348
in ListeningFrame, 341
in MenuTest, 364–365
in Simple Event Lab, 339
in SimpleActionListener, 334
in SimpleNim, 342–344
source of, 339–340
in TextAreaNim, 344–345

add method
for border layout managers, 318
for buttons, 294
for choices, 303
for menu items, 307, 355
for panels, 321

ADD opcode, 7
addActionListener method

for buttons, 334–335
for menus, 363
for scrollbars, 355

addAdjustmentListener method, 355
addItemListener method

for check boxes, 352
for choices, 352, 376

addition
basic operator for, 37
increment operator for, 45–46

additive primary colors
combining, 273–274
defined, 468

addresses of bytes, 4, 4
in instructions, 16
vs. names, 26
in opcodes, 7
in SimCom, 9–10, 9
start of, 5, 61
vs. values, 12, 110

addSeparator method, 307
addTextListener method, 353
AdjustmentListener interface, 355

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adjustments, events from, 355–356
adjustmentValueChanged method, 355–356
Advanced Exception Lab, 215, 216–217, 217
ageInNYears method, 126–127, 131
allocating memory

for arrays, 110
defined, 468

American Standard Code for Information Interchange (ASCII)
defined, 468
for file characters, 263

ampersands (&)
for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
as short-circuit operator, 49

analog circuits
defined, 468
uses for, 3

and operators
bitwise, 40–41
boolean, 46–48, 47–48

AnimatedIllustrations directory, 398, 403
anonymous instances, 289
api directory, 224
API pages

downloading, 396, 403
purpose of, 222–223
structure of, 224–228, 224–227

append method
for text areas, 312, 348
in TextArea, 344

Apple Developer Connection site, 401
applications, 468
argument bits, 6, 6
arguments

command-line, 235–236, 235
for methods, 60–64, 62–63
names for, 68

arithmetic operations
basic, 37–38
bitwise, 40–41, 40–41
modulo, 42
precedence in, 38–40, 39
shifting, 42–44, 42–44
unary, 44–46

ArrayIndexOutOfBoundsException class, 205–208
arrays

creating, 103–104, 103
declaring, 102
defined, 468
exercise questions for, 115–116
exercise solutions for, 421–423
garbage collection for, 114–115
indices for, 102, 104, 104, 470
initializing, 103, 105
length of, 104–105
loops for, 105–106
multidimensional, 106–108, 106, 108–109
as objects, 109–112, 110–112
vs. objects, 118–119
passing references to, 112–114, 113

ASCII (American Standard Code for Information Interchange)
defined, 468
for file characters, 263

assemblers
code in, 8, 17
defined, 468

assembly languages
code in, 8, 16, 17
vs. compiled, 17–18, 18
defined, 468

assignment operations, 16
compound, 51

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operator for, 38
process, 27–28

asterisks (*)
for comments, 36
in compound assignment, 51
with import, 171
for multiplication, 37

AWT toolkit, 271

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

B
background color for frames, 271, 275–276
backslashes (/) in filenames, 249–250
backward compatibility, 228
BarAndTF class, 356
BarAtNorth class, 317
BarChart class, 183, 185
bars (|)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
for short-circuit operator, 49

base-2 code, 17
base-2 notation, 21
baselines

defined, 468
for text, 283, 283

batch files, 398
bin directory, 397, 397
binary operators

defined, 468
symbols for, 37

bits
defined, 468
in memory, 3
opcode and argument, 6, 6

bitwise operations
defined, 468
process, 40–41, 40–41
right-shift, 43–44, 43

BlackLineOnWhite class, 278
blocks

catch. See catch blocks
defined, 468
for if statements, 74
scope in, 68

blue color, 273–274
BlueRect class, 279
Boats class, 297–298
body of methods, 59
bold font style, 284–285
BoolArrayLab animated illustration, 108, 108–109
Boolean class, 226
boolean data type

defined, 468
for if statements, 74
for logical values, 25
wrapper class for, 240

boolean operations
comparison, 50–51
evaluation of, 46–48, 47–48
short-circuit, 49–50

BooleanOps class, 46–47
BoolLab animated illustration, 47–49, 47–48
border layout managers, 313, 317–320, 317–319
bounding boxes

defined, 468
for ovals, 280–281, 281

BoxLayout layout manager, 325
break statements

labeled, 94–97
in loops, 88–89
in switch statements, 79–81

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

breaking out of loops, 88–89
BtnInAFrame class, 294
bugs, finding, 206
buildColorChoice method, 370, 373
Button class, 293
buttons

in flow layout managers, 316
working with, 293–295, 293, 295

byte data type
defined, 468
range of, 21
with result types, 52–53, 53
wrapper class for, 240

bytecode
defined, 468
in JVM, 19

bytes, 3, 3
addresses of, 4, 4, 12
on disks, 248–249

reading, 249, 254–255, 256
writing, 249, 251–252, 253

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

C
callers for methods, 60, 471
calling methods, 60, 66–67
Canvas class, 377
CardLayout manager, 325
carets (^)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51

Cartesian coordinates, 277, 278
case statements, 79
catch blocks

defined, 469
execution in, 202–203
with instanceof, 212–216, 216
multiple, 210–212
safety net, 213

catching exceptions, 202–203
CboxAndChoice class, 352–353
CboxInnaFrame class, 296
Center region, 317–319, 319
CenteredOval class, 282, 283
chaining

defined, 469
input, 259, 259
output, 256, 257

chains of constructions
defined, 469
in inheritance, 149–152, 149

char data type
with result types, 52–53, 53
for text, 25
wrapper class for, 240

character code for files, 263
characters, 25
charAt method, 233
charIndexToX method, 383, 386
Chart class, 182–185, 183
checkboxes

events from, 351–353, 351
in flow layout managers, 316
working with, 296–300, 296–298, 300

CheckboxGroup class, 299
checked exceptions, 205

with stack traces, 216–217
throwing, 217–220
working with, 208–209

CheckedCbox class, 297
Choice class, 302
choices

events from, 351–353, 353
working with, 301–304, 301–302, 304

ChooseFontByRadios class, 301
circles, 280
clamp method, 75
class definitions, 35, 120
class files

compiler output, 19, 29
defined, 469

class keyword, 119
class loaders

defined, 469

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functions of, 132–133, 170
.class suffix, 19, 29
classes, 119–120, 119

abstract, 182–185, 183
core. See core classes and packages
in packages, 165

classname-dot-staticVariableName syntax, 130
classpath elements, 168–170, 469
CLASSPATH environment variable

for executables
in Macintosh, 402–403
in Windows, 396, 398–399

for packages, 169
-classpath option in javac, 169
close method, 251, 258
closing streams, 251
colons (:)

in classpath elements, 169
for labels, 96
in ternary operator, 77

color
in final project, 368–376, 369, 372, 378–389, 379
for frames, 271, 275–276
for painting, 273–276, 275–276

Color class, 183, 237–238, 274
Color Lab program, 275–276, 275–276
ColorChoice class, 374–375
ColorChoiceTest class, 374–375
ColorTest class, 372–374
columns in text areas, 310
command-line arguments, 235–236, 235
comments

defined, 469
in Frame Lab, 287
painting, 383–384
types of, 36

comparison operators, 50–51
compatibility, backward, 228
compiled languages, 16–17

vs. assembly, 17–18, 18
defined, 469

compiler
downloading, 396
for packages, 166–167, 168, 169
references with, 155

compiling, 206
components, 102, 292, 292

buttons, 293–295, 293, 295
checkboxes

events from, 351–353, 351
in flow layout managers, 316
working with, 296–300, 296–298, 300

choices
events from, 351–353, 353
working with, 301–304, 301–302, 304

defined, 469
events for. See events
exercise questions for, 327–328
exercise solutions for, 448–454
labels, 304–305, 305
layout managers. See layout managers
menus, 305–309, 307–308
scrollbars, 312–313, 313
text areas, 310–312, 311–312
text fields, 309–310, 310

compound assignments, 51
computePixel method, 90
concat method, 233
concatenation of strings, 233, 237–239, 238–239
ConcatLab animated illustration, 238–239, 238–239

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditionals, 74
defined, 469
exercise questions for, 98–99
exercise solutions for, 416–420
in for loops, 87, 87
if statements, 74–76
switch statement, 77–81
ternary operator, 76–77

ConnectException class, 210–211, 213–215, 219
constants

benefits of, 181–182
in interfaces, 193–194

construction
chains of, 149–152, 149
defined, 469
with new, 111

ConstructorLab animated illustration, 150–152
constructors, 146–147

in API pages, 227, 227
default, 148–149
defined, 469
overloading, 147–148

Container class, 313
containers, 469
contexts, graphics, 277
continue statement

labeled, 94–97
purpose of, 89–90

coordinates, 277, 278
core classes and packages, 205, 222–223

API pages for, 222–228, 224–227
exercise questions for, 244–246
exercise solutions for, 440–442
java.lang, 228
java.lang.Integer, 240–241
java.lang.Math, 243–244
java.lang.Object, 236–239, 238–239
java.lang.String, 229–236, 231–232, 234–235
java.lang.System, 241–243

cos method, 243
-cp option in javac, 169
CreateArrayLab animated illusion, 111–113, 113
.cshrc file for paths, 402
curly brackets ({})

for arrays, 105
for constructors, 146
for definitions, 35
for do-while loops, 86
in for loops, 91
for if statements, 74
for interfaces, 188
for method declarations, 59
for scope, 68
for while loops, 82

cycloids, 91–92, 91

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

D
-d option in package, 166–167
data and data types, 16, 19

boolean, 25
characters, 25
in declarations, 27
declaring and assigning, 26–28
exercise questions for, 30–31
exercise solutions for, 407–409
floating-point, 24–25
integer, 21–24, 22–23
in interfaces, 192–194
for objects, 120–122, 121–122
summary, 26

Data Chain Lab animated illustration, 261, 262
data hiding

defined, 469
in object-oriented programming, 172–173

DataInputStream class, 256, 259
DataLab animated illustration, 122, 122
DataOutputStream class, 256–257
debug code, 469
declarations, 16, 26–28

for arrays, 102
defined, 469
in interfaces, 188–189
for methods, 59

decrement operator, 45–46
default access

defined, 469
purpose of, 174–176

default code, 81
default constructors

defined, 469
purpose of, 148–149

default statements, 79–80
definitions, class, 35, 120
deprecated methods

compatibility of, 228
defined, 469

destination directories
defined, 469
for packages, 167

Developer Tools package, 402
Developer Tools Update, 401–402
dialog boxes

class for, 365–366, 366
defined, 469

differences, 37
digital circuits, 2

vs. analog, 3
defined, 469

digital computers, 2
vs. analog, 3
defined, 470

Dimension class, 282
dimensions for arrays, 106–108, 106, 108–109
directories, 165

for installation files, 397, 403
for packages, 166–167, 166
for programs, 398

disabling components, 349
DisablingNim class, 349–351
disks, 248–249. See also files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

display method, 183–185
division

operator for, 37
truncation with, 40

do-while loops, 85–86
docs directory, 224
Dog class, 120
double data type

defined, 470
range of, 24–25
with result types, 52–53, 53
wrapper class for, 240

double-quotes (“) for literal strings, 30, 229
downloading and installing Java

in Macintosh, 401–404
overview, 396
in Windows, 396–401, 397

drawing, 277, 278. See also painting
circles, 280
filling in, 281–282, 281, 283
frames, 287–289, 287–289
lines, 278, 279
ovals, 280–281, 280–281
rectangles, 279, 279
squares, 280
text, 283–286, 284–286

drawLine method, 278
drawOval method, 280–281
drawRect method, 279–280
drawString method, 283–285
dump method, 129
dumpSalary method, 146

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

E
E variable, 244
earnsMoreThan method, 175
East region, 317–319, 318–319
Edit menus, guidelines for, 308
editors for source files, 400, 404
ellipsis (...)

for button labels, 336
defined, 470
for dialog boxes, 309

else statement, 74–75
else if statement, 76
Employee class

overriding in, 179, 179
private access in, 174–175
as superclass, 142–143, 143, 145

empty strings, 229, 470
EmptyFrame class, 271–272
environment variable, 169
equal signs (=)

in arithmetic operations, 38
for assignment, 27
for comparisons, 50
for reference equality, 234

equality
object, 234, 234, 236
reference, 234, 234

equals method
in Object, 236
in Point, 236
in String, 233–234

equalsIgnore method, 233
error codes and messages, 27, 198–200
escape codes, 28
EvaluatorLab animated illustration, 39–40, 39
event dispatch threads, 332–333
event-driven programs, 330–332, 331

defined, 470
threads in, 332–333

Event Lab animated illustration, 354–355, 354
events, 330

actions for, 333–339, 335–339
from checkboxes, choices, and items, 351–353, 351, 353
defined, 470
exercise questions for, 357–358
exercise solutions for, 454–460
information from, 339–343, 340, 342
from menus, 355
in Nim game, 342–351, 342–344, 346, 349
from scrollbars and adjustments, 355–356, 356
from text fields and text areas, 353–355, 354–355

Exception class, 200, 205, 215
exceptions, 198

catching, 202–203
checked, 205

with stack traces, 216–217
throwing, 217–220
working with, 208–209

defined, 470
exercise questions for, 220
exercise solutions for, 438–440
families of, 205–206
real world, 203
runtime, 205–208
throwing, 200–201, 217–220

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exclamation points (!)
for comparisons, 50
for inversion, 46–48

exclusive or operators
bitwise, 40–41
boolean, 46–48, 47–48

executing bytes, 5
exit codes, 242
exit method, 242
exponents in scientific notation, 24
expressions in switch statements, 78
extending interfaces, 194–195
extends keyword, 142–143, 194

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

F
falling through switch statements

bugs from, 81
defined, 470

false value, 25
families of fonts, 205–206, 284
FancyButtonInFrame class, 295
fancysrc package, 389
FancySrcCanvas class, 377–391
FancySrcFrame class, 361–362, 361, 371
fields

in API pages, 227, 227
defined, 470
for objects, 121–122
text fields, 309–310, 310

events from, 353–355, 354–355
in flow layout managers, 316

File menu
in final project, 362–365, 362, 364
guidelines for, 308

file separators
defined, 470
problems with, 249

FileDialog class, 365–366, 366
FileDialogPractice class, 367–368
FileInputStream class, 249, 254
filenames, backslashes in, 249–250
FileNotFoundException class, 251–252
FileOutputStream class, 249, 251
FileReader class, 263, 265
files

character code for, 263
Data Chain Lab for, 261, 262
exercise questions for, 267
exercise solutions for, 443–445
in final project, 365–368, 366
line number readers for, 265, 266
names for, 249–250
new lines in, 264–265
reading, 249

bytes, 254–255, 256
data, 259–261, 259, 262

as sequences of bytes, 248–249
writing, 249

bytes, 251–252, 253
data, 256–259, 257

FileWriter class, 263–264
Filled class, 281
filling in drawing, 281–282, 281, 283
fillRect method, 281
final modifier

defined, 470
working with, 180–182

final project
colors in, 368–376, 369, 372
description of, 360–362, 360–361
exercise questions for, 392–393
exercise solutions for, 461–465
File menu in, 362–365, 362, 364
main display area in, 376–378, 377
painting in, 378–389, 379
parts of

building, 361–362
combining, 389–391

specifying files in, 365–368, 366

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

finding packages, 168–170
Fish class, 177
flags

defined, 470
for program status, 95

float data type
defined, 470
range of, 24–25
with result types, 52–53, 53
wrapper class for, 240

floating-point data types, 24–25
Floating-Point Lab animated illustration, 25
Flow Lab animated illustration, 316, 316
flow layout managers, 313–316, 315–316
FlowLayout class, 294
Font class, 285
Font Lab program, 286, 286
FontAndBaseline class, 283–284
FontChoice class, 303
FontChoiceWithLabels class, 304–305
fonts

choices for, 301–304, 301–302, 304
drawing, 283–286, 284–286

for loops
for arrays, 105–106
structure of, 86–89, 87
variables in, 97

fractions, 24
Frame class, 271
Frame Lab animated illustration, 287–289, 287–289
frames

color for, 271, 275–276
drawing, 287–289, 287–289
in painting, 270–273, 270
text in, 284–285, 284–285

FrameWithSimpleMenu class, 306
FrameWithSubmenu class, 307–308
friendly access, 174

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

G
garbage collection

defined, 470
purpose of, 114–115
threads for, 332

garbage collection threads
defined, 470
purpose of, 332

getAvailableFontFamilyNames method, 286
getAverageTemp method, 135–136
getColorFromChoice method, 371–373
getDirectory method, 367
getFile method, 367–368
getLineNumber method, 265
getLocalGraphicsEnvironment method, 286
getMass method, 65–66
getMessage method, 201–202, 219
getNumEnvelopesInStock method, 210–211, 218–220
getRainfall method

error codes for, 198–200
exceptions for, 200–203

getSalary method, 174–175
getSelectedColor method, 374–375
getSelectedIndex method, 353, 374
getSize method

in Canvas, 380
in Frame, 282

getSource method
in ActionEvent, 340
in ItemEvent, 352–353

getState method, 353
getters, 173
getvalue method, 355
getWeightKg method, 180–181
getWeightLbs method, 181
graphical user interface (GUI)

classes for, 228
events in. See events
painting in. See painting

GraphicOutputNim class, 346–347
Graphics class, 277–282, 278–281
graphics contexts, 277
graphics objects, 277
GraphicsEnvironment class, 286
greater than signs (>)

for comparisons, 50
in compound assignment, 51
in shifting operations, 42

green color, 273–274
GridBagLayout manager, 325
GridLayout manager, 325
GUI (graphical user interface)

classes for, 228
events in. See events
painting in. See painting

GUI threads
defined, 470
in JVM, 332–333

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

H
HALT opcode, 8
height

of canvas, 380
of dialog boxes, 367
in text areas, 310

Help menus, guidelines for, 309
-help option in java, 236
hiding data, 173
horizontal scrollbars, 312–313
howBig method, 76

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

I
IDE (Integrated Development Environment)

in Macintosh, 404
in Windows, 400

if statements, 74–76
immutable classes, 229
immutable objects, 470
implements keyword, 188
import statement, 171–172
importing

defined, 470
packages, 170–172

in variable, 241–242
inaccessible memory, 109–111, 110
increment operator, 45–46
incrementing program counter, 7
indexOf method, 266–267, 382
indices

array, 102, 104, 104
defined, 470

indirect addresses, 7
information from events, 339–343, 340, 342
Inherit Lab animated illustration, 144–145, 144–145
inheritance, 140–142

with constructors, 146–152, 149
defined, 470
example, 145–146
exercise questions for, 160–161
exercise solutions for, 426–431
with interfaces, 189–190, 189
method overriding in, 152–153, 152
polymorphism with, 154–160
from superclasses, 142–145, 144–145

initialization
array, 103, 105
in for loops, 87, 87, 97

input, file. See files
instance variables, 130, 470
instanceof keyword

catch blocks with, 212–216, 216
for references, 191–192

instruction sets, 18
int data type

ranges of, 21
with result types, 52–53, 53
wrapper class for, 240

integers
data types for, 21
defined, 471
two’s complement format for, 21–24 , 22–23

Integrated Development Environment (IDE)
in Macintosh, 404
in Windows, 400

interfaces, 188
data in, 192–194
defined, 471
exercise questions for, 195–196
exercise solutions for, 431–435
extending, 194–195
method declarations in, 188–189
objects and references in, 190–192

interpreted compiled languages
defined, 471
Java as, 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

introductory material
exercise questions for, 13
exercise solutions for, 406–407
memory, 2–4, 3–4
SimCom virtual computer, 5–12, 6, 9

inversion operator, 46–48
invoking methods, 60
IOException class, 214, 218, 251–252
italic font style, 284–285
item events, 351–353
ItemListener interface, 352
itemStateChanged method

in CboxAndChoice, 353
in ColorChoiceTest, 375
in ColorTest, 373–374
in FancySrcFrame, 371
in ItemListener, 351–352

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

J
jar file

installing, 397–398, 397, 400
running, 403

java.awt package, 228
API pages for, 225
components in, 292, 292

java.awt.Button class, 293
java.awt.Canvas class, 377
java.awt.CheckboxGroup class, 299
java.awt.Choice class, 302
java.awt.Color class, 183, 237–238, 274
java.awt.event.ActionListener interface, 334, 363
java.awt.event.AdjustmentListener interface, 355
java.awt.event.ItemListener interface, 352
java.awt.FileDialog class, 365–366, 366
java.awt.Frame class, 271
java.awt.Graphics class, 277–282, 278–281
java.awt.LayoutManager interface, 325
java.awt.Panel class, 320
java.awt.Point class, 236
java.awt.Scrollbar class, 312
java.io package, 249, 256
java.lang package, 226, 228
java.lang.Boolean class, 226
java.lang.Integer class, 240–241
java.lang.Math class, 243–244
java.lang.Object class, 236–239, 238–239
java.lang.String class, 226, 229–236, 231–232, 234–235
java.lang.System class, 241–243
java.sql package, 228
java.util package, 228
Java Virtual Machine (JVM), 12, 19, 20

class loaders in, 132–133
defined, 471
downloading, 396
initialization in, 132

javac compiler
classpath option in, 169
directory option in, 167
installing, 397–398, 397

javax.swing package, 325
joining strings, 233, 237–239, 238–239
JRE (Java Runtime Environment), 397
JUMP opcode, 7
JUMPZ opcode, 7–8
JVM (Java Virtual Machine), 12, 19, 20

class loaders in, 132–133
defined, 471
downloading, 396
initialization in, 132

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

K
keywordChoice class, 369
killing frames, 272

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

L
L for long data type, 54
labels

defined, 471
in flow layout managers, 316
for loops, 94–97
working with, 304–305, 305

Layout Lab animated illustration, 322–324, 322–324, 326, 326
layout managers, 294, 313–314

border, 317–320, 317–319
CardLayout, GridLayout, and GridBagLayout, 325, 326
defined, 471
flow, 314–316, 315–316
lab for, 322–324, 322–324
panels for, 320–324, 320, 322–324

LayoutManager interface, 325
LEFT area, 315
left-shift operation, 42, 42
length

of arrays, 104–105
of strings, 233

length method, 233
less than signs (<)

for comparisons, 50
in compound assignment, 51
in shifting operations, 42

license agreements, 397, 399
LineNumberReader class, 265, 266
lines, drawing, 278, 279
listeners

defined, 471
for events, 333–339, 335–339

ListeningFrame class, 341
literal strings, 30

defined, 471
for string instances, 229

LOAD opcode, 7–8
logical values, 25
.login file, 402
long data type

range of, 21
with result types, 52–53, 53
wrapper class for, 240

look and feel of programs
components for. See components
defined, 471

loop counters, 10
defined, 471
in for loops, 88

loops, 10, 82
for arrays, 105–106
breaking out of, 88–89
continue statement in, 89–90
defined, 471
do-while, 85–86
exercise questions for, 98–99
exercise solutions for, 416–420
for, 86–89, 87
labels for, 94–97
nesting, 90–94, 91–94
scope in, 97
while, 82–86, 84–85

lower case characters, 230–232, 231–232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

M
Macintosh computers, downloading and installing Java on, 401–404
main display area in final projects, 376–378, 377
main method, 132–134, 133
main threads

defined, 471
purpose of, 332

maintenance
and code duplication, 141
defined, 471

Manager class, 140–141, 143, 143, 151–152
max method, 243
MB prefix, 4
mega prefix, 4
memory, 2–3, 3

for arrays, 109–111, 110
defined, 471
garbage collection for, 114–115
organization of, 4, 4
in SimCom, 6, 6

memory leaks, 114
menu bars, 362
Menu class, 307
menuListener, 355
menus

events from, 355
in final project, 362–365, 362, 364
working with, 305–309, 307–308

MenuTest class, 363–365
method callers, 60, 471
method definitions, 35
MethodLab animated illustration, 61–64, 62
methods, 58

abstract, 182
in API pages, 227, 227
arguments for, 60–64, 62–63
calling, 60, 66–67
deprecated, 228
exercise questions for, 70–71
exercise solutions for, 413–415
final, 180–182
inheritance with, 143
in interfaces, 188–189, 194
main, 132–134, 133
for objects, 126–127, 128
order of execution, 68
overriding, 152–153, 152
polymorphism with, 65–66, 155–156
references to, 112–114, 113
return types for, 60–61, 64–65
scope of, 68–69
static, 130–132
structure of, 58–61

min method, 243
minus signs (-)

in compound assignment, 51
for subtraction, 37
as unary operator, 44

modal dialog boxes
characteristics of, 366
defined, 471

modulo operation
defined, 471
operator for, 42

Monospaced fonts, 285

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multi-line comments, 36
multidimensional arrays

defined, 471
working with, 106–108, 106, 108–109

multiple catch blocks, 210–212
multiple objects, 122–125, 123, 125
multiplication, 37
multithreaded devices

defined, 471
JVM as, 332

mutators
with data hiding, 173
defined, 471

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

N
\n character, 264–265
n-dimensional arrays, 107
names

for arguments, 68
for classes, 165
for constructors, 146
in declarations, 27
for files, 249–250
for memory locations, 26
for methods, 60
reusing, 154
for variables, 68–69

namespaces
defined, 471
directories for, 165, 165

nCubed method, 67
NEAndW class, 319
negative numbers, 21, 23
NestedLoopLab animated illustration, 91–94, 92–94
nesting

defined, 472
if statements, 75
loops, 90–94, 91–94
menus, 308
parentheses, 39

new keyword, 103
newline characters

in files, 264–265
printing, 242
for text areas, 312

Nim game, 342–351, 342–344, 346, 349
Nim Lab program, 343–351, 343–344, 346, 349
no-args constructors, 148

defined, 472
with superclasses, 150

NoMethods class, 58
North region, 317–319, 318–319
null value

with readline, 266
with references, 112, 135–136

NullLayout class, 326
NumberFormatException class, 241
numeric operations, 52

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

O
Object class, 236–239, 238–239
object-oriented programming, 119
ObjectLifeCycleLab animated illustration, 133–134, 133–134
ObjectMethodLab animated illustration, 127, 127
objects, 118

vs. arrays, 118–119
arrays as, 109–112, 110–112
classes, 119–120, 119
data for, 120–122, 121–122
defined, 472
equality of, 234, 234, 236, 472
exercise questions for, 136–137
exercise solutions for, 423–426
methods for, 126–127, 128
multiple, 122–125, 123, 125
reference data with, 134–136
references to, 121, 121, 190–192
static data in, 128–130
static methods in, 130–132

odometers, base-2, 21–22, 22
Officer class, 151–153
one-dimensional arrays

characteristics of, 106
defined, 472

opcode bits, 6, 6
opcodes, 6–7
Open... menu item, 362
operands, 37, 472
operation codes, 6, 6
operations, 34

arithmetic
basic, 37–38
bitwise, 40–41, 40–41
modulo, 42
precedence in, 38–40, 39
shifting, 42–44, 42–44
unary, 44–46

boolean
comparison, 50–51
evaluation in, 46–48, 47–48
short-circuit, 49–50

comments, 36
compound assignment, 51
exercise questions for, 55–56
exercise solutions for, 409–412
result types in, 52–54, 53
white space, 34

or operators
bitwise, 40–41
boolean, 46–48, 47–48

order of method execution, 68
origins

defined, 472
in drawing, 277, 278

OS X Developer Tools, 401
out variable, 241–242
output

file. See files
printing, 29–30

Oval class, 133
ovals

drawing, 280–281, 280–281
filled, 281–282, 281

OverlayLayout layout managers, 325

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overloading
constructors, 147–148
defined, 472
methods, 65

overriding
access control with, 178–180, 179
defined, 472
methods, 152–153, 152

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

P
package access, 174
package keyword, 166–167
packages, 164, 164

access control in. See access control
core. See core classes and packages
creating, 166–167, 166, 168
defined, 472
exercise questions for, 186
exercise solutions for, 435–438
finding, 168–170
importing, 170–172
interfaces in, 188
and namespaces, 165–166, 165

paint method, 276–277
in BlackLineOnWhite, 278
in BlueRect, 279
in CenteredOval, 282
in ColorChoiceTest, 376
in ColorTest, 373–374
in DisablingNim, 350
in FancySrcCanvas, 378, 380, 387
in Filled, 281
in FontAndBaseline, 284
in Frame, 287
in GraphicOutputNim, 347–348
in ThreeOvals, 280
in Xxxx, 331

painting, 270
color for, 273–276, 275–276
drawing shapes. See drawing
exercise questions for, 290
exercise solutions for, 445–448
in final project, 378–389, 379
Frame Lab for, 287–289, 287–289
frames in, 270–273, 270
process, 276–277
text, 283–286, 284–286

paintLines method, 380, 387
paintOneSourceLine method, 382–384, 388–389
paintRegion method

in BarChart, 185
in Chart, 185
in PieChart, 185

paintText method, 380–382, 387–388
Panel class, 320
PanelInFrame class, 320–321
panels, 320–324, 320, 322–324
parabolas, 108, 109
parentheses ()

in arithmetic operations, 38–40, 39
in boolean operations, 47
in do-while loops, 86
in for loops, 87
for if statements, 74
for methods, 60

parseInt method, 241
PartTimer class, 180
PassArrayLab animated illustration, 113–114
passing

arguments, 63, 67–68
references to methods, 112–114, 113

PATH environment variable, 396, 398–399, 403
payEveryone method, 156–159
Paymaster class, 156–159, 180
percent signs (%)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in compound assignment, 51
in modulo operations, 42

periods (.) for object properties, 118
Person class, 120–123, 126–131
PI variable, 244
PieChart class, 183, 185
pixels

defined, 472
for frames, 90, 272

plain font style, 284–285
plus signs (+)

for addition, 37
in compound assignment, 51
for string concatenation, 237–238
as unary operator, 44

PlusPlusMinusMinus class, 45
Point class, 236
Point3D class, 239, 239
polymorphism

with inheritance, 154–160
with methods, 65–66

position
in drawings, 277, 278
of text, 283

post-decrement operator, 46
post-increment operator, 46
PostDec class, 46
pow method, 243
pre-decrement operator, 46
pre-increment operator, 46
precedence

in arithmetic operations, 38–40, 39
in boolean operations, 47
defined, 472
summary, 54–55

preferred size
defined, 472
with layout managers, 314, 317

primary colors, 273–274
primitive data types

defined, 472
summary, 26

print2Cubes method, 66–67
print2Vals method, 66
print3x method, 67
printChars method, 233
printCheck method

in Employee, 142–143, 145–146, 179
in Officer, 153
overriding, 152–153
in PartTimer, 180
in Worker, 140–141

PrinterIOException class, 205, 209, 211, 213–215
printHelpMessage method, 235
printing, 30
println method, 60, 242, 364
printPretty method, 64
printRetAddr method, 208–211
printSomeEnvelopes method, 209–213
printStackTrace method, 216–217
printTriple method, 69
printWeight method, 177–178
private access

defined, 472
working with, 173–175

products, 37
program counters

incrementing, 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

purpose of, 5
program files

for Macintosh installation, 404
for Windows installation, 400–401

properties of objects, 118
protected access, 173

defined, 472
working with, 177–178

public access
defined, 472
working with, 173–174

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Q
QTJava, 401
question marks (?) in ternary operator, 77
quotients, 37

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

R
\r character, 264–265
radio buttons

defined, 472
working with, 299–300, 300

RadioBoats class, 299–300
RAM, 248–249. See also memory
random method, 243
RandomAreas class, 244
read method, 254
Read10Bytes class, 254–255
readBoolean method, 260
readByte method, 260
Reader class, 263
readers, 263, 264, 472
reading, 249

bytes, 254–255, 256
data, 259–261, 259, 262

readLine method, 265–266
readUTF method, 260, 263
ReadWithChain class, 260
reconfigure method, 377–378, 386–387
Rectangle class, 133
rectangle method, 281
rectangles

drawing, 279, 279
filled, 281, 281

red color, 273–274
redrawing, 276
reference-dot notation, 126
reference variables, 109
references

to arrays, 110–112, 112
with compiler, 155
defined, 472
equality of, 234, 234, 472
to methods, 112–114, 113
to objects, 121, 121, 190–192
passing arguments by, 67
for variables, 134–136

regions in layout managers, 317–319, 318–319
registers, 5, 6
RemoteEnvelopeCountException class, 219
removeActionListener method, 335
removeItemListener method, 352
repaint method

for ColorTest, 374
for main display area, 377–378
in Nim game, 348

result types in operations, 52–54, 53
return character, 264–265
return statement, 64
return types and values

defined, 472
for methods, 60–61, 64–65

ReusesNames class, 69
RIGHT area, 315
right-shift operation, 42–44, 43
row major order

defined, 472

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in text areas, 310
rows in text areas, 310
Run Lightspeed option, 10
runtime exceptions, 205–208
RuntimeException class, 205

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

S
safety net catch blocks, 213
Sans Serif fonts, 285–286
scalability

defined, 473
of events, 330

scientific notation
defined, 473
purpose of, 24

scope
defined, 473
in loops, 97
of methods, 68–69

scripts, 398
Scrollbar class, 312
scrollbars

creating, 312–313, 313
events from, 355–356, 356
in text areas, 310–312, 311–312

SDK (Software Development Kit), 396–397
semicolons (;)

in classpath elements, 169
in declarations, 27
in do-while loops, 86
in for loops, 87, 91

Serif fonts, 285–286
serifs, 473
setBackground method

in Button, 294
for frames, 271, 275–276

setBounds method, 325
setColor method, 277
setColorScheme method, 183–184
setEnabled method, 349
setFont method, 284–285, 294
setForeground method, 294
setLayout method, 313–314, 325
setLocation method, 325
setNumEnvelopesInStock method, 210–211
setSalary method, 175
setSize method, 272, 282, 325, 367
setters

with data hiding, 173
defined, 471

setTitle method, 271
setValues method, 183–184
setVisible method

for dialog boxes, 367
for frames, 272–273, 289, 333

SeveralObjectsLab animated illustration, 123–125, 125
shifting operations

defined, 473
process, 42–44, 42–44

ShiftLab animated illustration, 43–44, 44
short-circuit operators

in Boolean operations, 49–50
defined, 473

short data type
range of, 21
with result types, 52–53, 53
wrapper class for, 240

ShowButton class, 293

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowMeATrace class, 207
side effects

defined, 473
with methods, 64–65

signed integer types
defined, 473
summary, 21

SimCom computer, 5–8, 6
benefits of, 11–12
working with, 8–11, 9

Simple Base 2 animated illustration, 21–24, 22–23
Simple Event Lab animated illustration, 336–339, 336–339
Simple Exception Lab animated illustration, 203, 204
Simple Input Lab animated illustration, 255, 256
Simple Output Lab animated illustration, 252, 253
SimpleActionListener class, 334
SimpleChoice class, 302
SimpleFlow class, 314–315
SimpleNim class, 342–351, 342–344, 346, 349
sin method, 243
single-line comments, 36
size

of arrays, 103–105
of canvas, 380
of dialog boxes, 367
of fonts, 284
of frames, 272
with layout managers, 314, 317
of strings, 233

slashes (/)
for comments, 36
in compound assignment, 51
for division, 37

Software Development Kit (SDK), 396–397
source code, 16

creating
in Macintosh, 404
in Windows, 400–401

defined, 473
South region, 317–319
specifying files in final project, 365–368, 366
SpringLayout layout manager, 325
square brackets ([]) for arrays, 102
squares, 280
stack traces

checked exceptions with, 216–217
defined, 473
runtime exceptions with, 206–208

startsWith method, 233, 385
statements

declarations, 27
in for loops, 91

static classes, 473
static data, 128–130
static methods, 126–127, 130–132
static modifier, 60
Step Lightspeed option, 10
STORE opcode, 7
storeCubes method, 207–208
storeOneCube method, 207–208
String class, 188

API pages for, 226
for command-line arguments, 235–236, 235
working with, 229–234, 231–232, 234

string concatenation, 233, 237–238
defined, 473
lab for, 238–239, 238–239

StringLab animated illustration, 231–232, 231–232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

styles of fonts, 284–285
SUB opcode, 7
subclasses

defined, 473
inheritance by, 140–142
protected access with, 177

Submarine class, 149–150, 149
subpackages, 165
substring method, 233, 382, 385
subtraction

basic operator for, 37
decrement operator for, 45–46

subtractive primary colors, 273, 473
sums, 37
super keyword, 151–152
supercategories, 142
superclasses, 140–142

defined, 473
inheritance from, 142–145, 144–145

Swing toolkit
for GUI, 271
for layout managers, 325

switch statements, 77–79
break statements in, 79–81
default statements in, 79–80

System class, 241–243
System.exit call, 333, 343

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

T
TAInnaFrame class, 311
Talker interface, 188
tan method, 243
ternary operator

defined, 473
operation of, 76–77

text
drawing, 283–286, 284–286
in final project, 379, 379

text areas
events from, 353–355, 354–355
working with, 310–312, 311–312

text characters, 25
text fields

events from, 353–355, 354–355
in flow layout managers, 316
working with, 309–310, 310

text files, 263
text listeners, 353
TextAreaNim class, 344–345
TextField constructor, 309
TextListener interface, 353
textValueChanged method, 353
TFs class, 309–310
Thermometer class, 135
this keyword, 131
this-reference notation, 131
threads

defined, 473
in event-driven programs, 332–333

ThreeOvals class, 280
throw keyword, 200, 473
throwing exceptions

checked exceptions, 217–220
process, 200–201

throws keyword, 200
tildes (~) in bitwise operations, 40, 40
toLowerCase method, 230–232, 231–232
toString method, 226

in Object, 236–238
in String, 239

toThe5th method, 59–61
toUpperCase method, 230–232, 231–232
traditional comments, 36
Transport class, 149–150, 149
Triangle class, 133
trim method, 233
trinary operator, 37
true value, 25
truncation

defined, 473
with division, 40

try blocks, 205
defined, 473
working with, 202–203

Tuna class, 177–178
two-dimensional arrays, 106–107, 106
TwoBars class, 312–313
two’s complement format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined, 473
for integer types, 21–23, 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

U
unary operators, 37

arithmetic, 44–46
defined, 473

Unicode standard, 25
defined, 474
for files, 257, 263

unnamed packages, 176
updates

defined, 474
in for loops, 87, 87

upper case characters, 230–232, 231–232
useColor method, 183–184
UsesListener class, 334–335
UsesMethods class, 59
UTF standard

defined, 474
for files, 257, 263

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

V
values

vs. addresses, 12, 110
logical, 25
in memory, 110
passing arguments by, 67–68

variable-width fonts
defined, 474
vs. monospaced, 285

variables, 26
for array size, 103
for color, 274
declaring, 27
final, 180
in for loops, 97
inheritance with, 143
instance, 130, 470
for objects, 121–122
polymorphism with, 155–156
references for, 134–136
scope of, 68–69

-verbose option in java, 236
-version option in java, 403
vertical bars (|)

for bitwise operator, 40–41
for boolean operator, 46–48
in compound assignment, 51
for short-circuit operator, 49

vertical scrollbars, 312–313
VerySimple class, 28–29, 35
VerySimple2 class, 29–30
virtual computers, 19

defined, 474
JVM. See JVM (Java Virtual Machine)
SimCom, 12

visibility
of dialog boxes, 367
of frames, 272–273

vocalHypotSquared method, 65
voltages, 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

W
WaterTransport class, 149–150, 149
WeatherStation class, 135
West region, 317–319, 318–319
while loops, 82–86, 84–85
WhileLab animated illustration, 83–86, 84–85
white space

defined, 474
in program code, 34–36

width
of canvas, 380
of dialog boxes, 367
with result types, 52–54, 53
in text areas, 310

Windows computers, downloading and installing Java on, 396–401, 397
Worker class, 140–141

constructors for, 146–147
as subclass, 143, 143, 145–146

wrapper classes, 240
benefits of, 241
defined, 474

write method, 251
Write10Bytes class, 251–252
writeByte method, 257
writeChar method, 257
Writer class, 263
writers, 263, 264, 474
writeShort method, 257
writeUTF method, 257, 263
WriteWithChain class, 258
writing, 249

bytes, 251–252, 253
data, 256–259, 257

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

X
X39 class, 241
X39RevB class, 242–243

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

Z
Zebra class, 180–182
zeroth array components, 104
zip files, 399

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Figures

Chapter 1: An Introduction to Computers That Will Actually Help You in Life
Figure 1.1: A bit

Figure 1.2: A byte

Figure 1.3: Several bytes

Figure 1.4: SimCom architecture

Figure 1.5: Opcode and argument bits

Figure 1.6: SimCom in action

Chapter 2: Data
Figure 2.1: Assembly language

Figure 2.2: Compiled language

Figure 2.3: Evolution of a Java application

Figure 2.4: SimpleBase2Lab

Figure 2.5: A base-2 odometer

Figure 2.6: An example of two's complement

Figure 2.7: Two's complement lab

Chapter 3: Operations
Figure 3.1: EvaluatorLab

Figure 3.2: EvaluatorLab after evaluation

Figure 3.3: The unary bitwise operator ~

Figure 3.4: Bitwise "and"

Figure 3.5: Left-shift: <<

Figure 3.6: Bitwise right-shift: >>>

Figure 3.7: Numeric right-shift: >>

Figure 3.8: ShiftLab

Figure 3.9: ShiftLab after shifting

Figure 3.10: BoolLab: initial screen

Figure 3.11: BoolLab after execution

Figure 3.12: Data type width, not to scale

Figure 3.13: Data type width relationships

Chapter 4: Methods
Figure 4.1: MethodLab

Figure 4.2: MethodLab after animating

Figure 4.3: Numeric type widths

Chapter 5: Conditionals and Loops
Figure 5.1: While Lab: initial display

Figure 5.2: While Lab with modified test expression

Figure 5.3: While Lab after execution

Figure 5.4: A common loop usage

Figure 5.5: A cycloid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.6: NestedLoopLab: initial display

Figure 5.7: NestedLoopLab: 8:15

Figure 5.8: NestedLoopLab with a loop

Figure 5.9: NestedLoopLab with nested loops

Chapter 6: Arrays
Figure 6.1: A new array

Figure 6.2: A used array

Figure 6.3: A two-dimensional array

Figure 6.4: BoolArrayLab

Figure 6.5: BoolArrayLab drawing a parabola

Figure 6.6: Accessible and inaccessible memory

Figure 6.7: An array of bytes in inaccessible memory

Figure 6.8: Reference and array

Figure 6.9: Two references, one array

Figure 6.10: CreateArrayLab

Chapter 7: Introduction to Objects
Figure 7.1: Class as mental category

Figure 7.2: Reference and object

Figure 7.3: DataLab

Figure 7.4: Multiple objects

Figure 7.5: SeveralObjectsLab

Figure 7.6: SeveralObjectsLab reconfigured

Figure 7.7: SeveralObjectsLab reconfigured and executed

Figure 7.8: ObjectMethodLab

Figure 7.9: ObjectLifeCycleLab

Figure 7.10: ObjectLifeCycleLab after running a while

Chapter 8: Inheritance
Figure 8.1: A Simple inheritance hierarchy

Figure 8.2: Inherit Lab

Figure 8.3: Inherit Lab's class-editing dialog box

Figure 8.4: Object layers

Figure 8.5: Inheritance of Officer

Chapter 9: Packages and Access
Figure 9.1: Example package/ directory structure

Figure 9.2: Package as namespace

Figure 9.3: Initial directory structure

Figure 9.4: After compilation

Figure 9.5: After more compilation

Figure 9.6: Polymorphism revisited

Figure 9.7: Chart class and subclasses

Chapter 10: Interfaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.1: Animal kingdom class inheritance

Chapter 11: Exceptions
Figure 11.1: Simple Exception Lab

Figure 11.2: Simple Exception Lab: final state with normal execution

Figure 11.3: Advanced Exception Lab

Figure 11.4: Choosing an exception type in Advanced Exception Lab

Figure 11.5: Advanced Exception Lab reconfigured

Chapter 12: The Core Java Packages and Classes
Figure 12.1: Structure of the API index

Figure 12.2: Structure of the classes frame

Figure 12.3: Class description

Figure 12.4: Field/constructor/ method summaries

Figure 12.5: StringLab

Figure 12.6: StringLab: uppercase, 2 references

Figure 12.7: StringLab: lowercase, 1 reference

Figure 12.8: String references and objects

Figure 12.9: Command-line arguments

Figure 12.10: ConcatLab

Figure 12.11: ConcatLab's Point3D class

Figure 12.12: ConcatLab's Point3D class

Chapter 13: File Input and Output
Figure 13.1: Simple Output Lab

Figure 13.2: Simple Output Lab in progress

Figure 13.3: Simple Input Lab in progress

Figure 13.4: Output chaining

Figure 13.5: Input chaining

Figure 13.6: Data Chain Lab

Figure 13.7: Data Chain Lab in progress: Text, writers, and readers

Figure 13.8: Readers and writers

Figure 13.9: Line number reader and file reader

Chapter 14: Painting
Figure 14.1: A frame with boring contents

Figure 14.2: Color Lab

Figure 14.3: Color Lab with a predefined color

Figure 14.4: Pixel coordinates

Figure 14.5: A black line on a white background

Figure 14.6: A rectangle

Figure 14.7: Ovals and bounding boxes

Figure 14.8: Three ovals

Figure 14.9: Filled rectangle and ovals

Figure 14.10: Original CenteredOval

Figure 14.11: Resized CenteredOval

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.12: The baseline

Figure 14.13: Text and baseline in a frame

Figure 14.14: Text in a frame

Figure 14.15: Font Lab

Figure 14.16: Font Lab with an exotic font

Figure 14.17: Initial Frame Lab display

Figure 14.18: Frame Lab with custom configuration

Figure 14.19: The result of Figure 14.18

Chapter 15: Components
Figure 15.1: A component sampler

Figure 15.2: A button in a frame

Figure 15.3: A fancy button

Figure 15.4: A simple checkbox

Figure 15.5: A checked checkbox

Figure 15.6: Three checkboxes and a button

Figure 15.7: Checkboxes as radio buttons

Figure 15.8: Multiple checkbox groups

Figure 15.9: A choice

Figure 15.10: An expanded choice

Figure 15.11: Two choices

Figure 15.12: Choices with labels

Figure 15.13: A menu in a menu bar

Figure 15.14: A menu with a separator

Figure 15.15: Hierarchical menus

Figure 15.16: Two text fields

Figure 15.17: A text area

Figure 15.18: Multiple checkbox groups

Figure 15.19: A text area with scroll bars

Figure 15.20: A pair of disappointing scrollbars

Figure 15.21: Flow layout manager

Figure 15.22: Wider

Figure 15.23: Narrower

Figure 15.24: Left-aligned

Figure 15.25: Flow Lab

Figure 15.26: Scrollbar at North

Figure 15.27: North and South occupied

Figure 15.28: North, East, and West occupied

Figure 15.29: North, East, West, and Center occupied

Figure 15.30: A panel in a frame

Figure 15.31: Layout lab

Figure 15.32: Layout lab's frame editing dialog

Figure 15.33: Layout Lab with an added panel

Figure 15.34: A button in a panel in a frame

Figure 15.35: Layout Lab makes it so

Figure 15.36: No layout manager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16: Events
Figure 16.1: A GUI waiting for events

Figure 16.2: A button that sends events

Figure 16.3: Simple Event Lab: initial screen

Figure 16.4: Simple Event Lab with simulated buttons

Figure 16.5: Simple Event Lab with a listener class

Figure 16.6: Simple Event Lab with a listener object

Figure 16.7: Simple Event Lab continued

Figure 16.8: One listener object for many buttons

Figure 16.9: Simple Nim GUI

Figure 16.10: Nim Lab

Figure 16.11: Nim, with output to a text area

Figure 16.12: Nim with graphical output

Figure 16.13: Nim with graphical output, game in progress

Figure 16.14: Enabled and disabled buttons

Figure 16.15: Nim with disabled buttons

Figure 16.16: Check box and choice

Figure 16.17: Receiving events from a check box and a choice

Figure 16.18: Event Lab

Figure 16.19: Scrollbar and text field

Chapter 17: Final Project
Figure 17.1: Final Project

Figure 17.2: Final Project, with lines

Figure 17.3: Menu schematic

Figure 17.4: Teting the menu's look

Figure 17.5: Window, Frame, and FileDialog

Figure 17.6: File dialog box configured for opening

Figure 17.7: Too many radio buttons

Figure 17.8: Testing color selection

Figure 17.9: GUI layout

Figure 17.10: Positioning text

Appendix A: Downloading and Installing Java
Figure A.1: Windows SDK file layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

List of Tables

Chapter 1: An Introduction to Computers That Will Actually Help You in Life
Table 1.1: Opcodes

Chapter 2: Data
Table 2.1: Java's Integer Data Types

Table 2.2: Java's Floating-Point Data Types

Table 2.3: Java's Primitive Data Types

Table 2.3: Naming Consistency

Chapter 3: Operations
Table 3.1: Binary Bitwise Operations

Table 3.2: Comparison Operators

Table 3.3: Compound Assignment

Table 3.4: Ranges of Numeric Types

Table 3.5: Binary Arithmetic Result Types

Table 3.6: Operator Precedence

Chapter 8: Inheritance
Table 8.1: References, Variables, and Methods

Chapter 9: Packages and Access
Table 9.1: Legal Access Modes for Overriding Methods

Chapter 12: The Core Java Packages and Classes
Table 12.1: String Concatenation Conversion Rules

Table 12.2: Wrapper Class Names

Chapter 13: File Input and Output
Table 13.1: Byte -1 vs. Int -1

Chapter 14: Painting
Table 14.1: Combining Additive Primary Colors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ground-Up Java
by Philip Heller ISBN:0782141900

Sybex © 2003 (488 pages)

In addition to learning the core Java language, you will also
acquire a broad understanding of vital programming
concepts, including variables, control, memory, indirection,
compilation, and calling.

Table of Contents

Ground-Up Java
Introduction
Chapter 1 - An Introduction to Computers That Will Actually Help You in Life
Chapter 2 - Data
Chapter 3 - Operations
Chapter 4 - Methods
Chapter 5 - Conditionals and Loops
Chapter 6 - Arrays
Chapter 7 - Introduction to Objects
Chapter 8 - Inheritance
Chapter 9 - Packages and Access
Chapter 10 - Interfaces
Chapter 11 - Exceptions
Chapter 12 - The Core Java Packages and Classes
Chapter 13 - File Input and Output
Chapter 14 - Painting
Chapter 15 - Components
Chapter 16 - Events
Chapter 17 - Final Project
Appendix A - Downloading and Installing Java
Appendix B - Solutions to the Exercises
Glossary
Index
List of Figures
List of Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

