
Oracle9i DBA JumpStart
by Bob Bryla ISBN:0782141897

Sybex © 2003 (347 pages)

Get up to speed for Oracle9i Administration Training
Courses--Fast!

Table of Contents

Oracle9i DBA JumpStart
Introduction
Chapter 1 - Relational Database Concepts
Chapter 2 - SQL*Plus and iSQL*Plus Basics
Chapter 3 - Oracle Database Functions
Chapter 4 - Restricting, Sorting, and Grouping Data
Chapter 5 - Using Multiple Tables
Chapter 6 - Advanced SQL Queries
Chapter 7 - Logical Consistency
Chapter 8 - Installing Oracle and Creating a Database
Chapter 9 - Reporting Techniques
Chapter 10 - Creating and Maintaining Database Objects
Chapter 11 - Users and Security
Chapter 12 - Making Things Run Fast (Enough)
Chapter 13 - Saving Your Stuff (Backups)
Chapter 14 - Troubleshooting
Appendix A - Answers to Review Questions
Appendix B - Glossary
Appendix C - Common Database Platforms
Index
Where Can I Find?
List of Tables
List of Sidebars

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Back Cover
Oracle9i DBA JumpStart gives you the solid grounding you need to approach Oracle certification with
confidence:

Introduction to relational database concepts

Using basic SQL *Plus and iSQL *Plus commands

Understanding Oracle database functions

Using multiple tables

Restricting, sorting, and grouping data

Creating and maintaining a database

Using SQL *Plus reporting techniques

Setting up users and managing security

Configuring optimization

Creating backups

Troubleshooting

About the Author

Bob Bryla, is an Oracle9i Certified Professional with more than ten years of experience in database design,
database application development, training, and database administration. He is currently an internet
database analyst and DBA at Land’s End, Inc. in Dodgeville, Wisconsin.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Oracle9i DBA JumpStart
Bob Bryla

Associate Publisher: Neil Edde

Acquisitions Editor: Elizabeth Hurley Peterson

Developmental Editor: Heather O’Connor

Production Editor: Leslie E.H. Light

Technical Editor: Betty MacEwen

Copyeditor: Marilyn Smith

Compositor: Kate Reber, Happenstance Type-O-Rama

Graphic Illustrator: Jeffery Wilson, Happenstance Type-O-Rama

Proofreaders: Nancy Riddiough, Monique Van Den Berg, and Emily Hsuan

Indexer: Ann Rogers

Book Designer: Maureen Forys, Happenstance Type-O-Rama

Cover Designer: Archer Design

Cover Illustrator/Photographer: Archer Design

Copyright ©2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2002115476

ISBN: 0-7821-4189-7

JumpStart is a trademark of SYBEX Inc.

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved. FullShot is a
trademark of Inbit Incorporated.

Internet screen shot(s) using Microsoft Internet Explorer 6 reprinted by permission from Microsoft Corporation.

SYBEX is an independent entity from Oracle Corporation and is not affiliated with Oracle Corporation in any manner. This
publication may be used in assisting students to prepare for an Oracle Certified Professional exam. Neither Oracle Corporation
nor SYBEX warrants that use of this publication will ensure passing the relevant exam. Oracle is either a registered trademark or a
trademark of Oracle Corporation in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s).
The author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

For MCL and the kids.

Acknowledgments

I couldn’t have written this book without the help of many talented and creative people.

I would like to thank Neil Edde, associate publisher, and Elizabeth Hurley, acquisitions editor, for recognizing the need for an
introductory Oracle DBA text. Many thanks to developmental editor Heather O’Connor for telling me in the nicest possible way
when I was way out in left field, and production editor Leslie Light and copyeditor Marilyn Smith for their valuable advice. Thanks
also to technical editor Betty MacEwen for her attention to detail and helpful suggestions throughout the book.

The nature of this book required a great deal of artwork. Jeffery Wilson and the rest of Happenstance Type-O-Rama did an
excellent job of creating artwork that was appropriate for the book. They say a picture is worth a thousand words, and their art is
an essential part of this book. Somehow they were able to decipher my Microsoft Word cave drawings and turn them into real
graphics.

Many of my professional colleagues at both Lands’ End and Greenbrier & Russel were a source of both inspiration and guidance.
Also, regards to my long lost friend from fourth grade, Janice, who I’m sure is a DBA out there somewhere.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Finally, I want to thank my family for all of their support and patience. I was still able to give the kids a bath and read books at
bedtime, even with the tough deadlines. The journey wouldn’t have been half the fun without them.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Introduction
So, you want to be an Oracle database administrator (DBA), but you’re not sure what the job might be like? Well, this is a good
place to start! This book is intended to bridge the gap for people who are technically oriented but are not quite ready for an Oracle
Certified Associate or Oracle Certified Professional study guide. If you don’t have a lot of direct experience with databases, this
book can get you up to speed on enough of the basics to feel comfortable going into Oracle’s official certification track.

What You Need
Oracle9i DBA JumpStart assumes some minimal level of expertise in using an operating system such as Windows or Unix in a
graphical user interface (GUI) environment. Any experience with a personal database, such as Microsoft Access, is helpful but not
required.

To follow along with the examples in the book, you will need an installation of the Oracle database software version 9.0 or 9.2,
Standard or Enterprise Edition, including the sample schemas provided by Oracle in the installation package, preferably on a
Microsoft Windows platform.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

What This Book Covers
This book provides all the information you need to understand the job of an Oracle DBA. It is organized as follows:

Chapter 1, “Relational Database Concepts” Covers the basics of relational database technology. It defines terms such as
tables, rows, and columns, and it provides an introduction to database design.

Chapter 2, “SQL*Plus and iSQL*Plus Basics” Introduces the various ways to send SQL commands to the database. It explains
the tools available for issuing SQL commands and how to interact with the database.

Chapter 3, “Oracle Database Functions” Focuses on Oracle functions, both built-in and user defined, and how they can make
an application developer’s or DBA’s job easier.

Chapter 4, “Restricting, Sorting, and Grouping Data” Describes how to manage queries by restricting and sorting their results.

Chapter 5, “Using Multiple Tables” Moves from accessing single tables to joining multiple tables in a multitude of ways, with
both the old and new join syntax.

Chapter 6, “Advanced SQL Queries” Covers some of the more advanced functions and explains how to nest a query within
another query to retrieve the results you want.

Chapter 7, “Logical Consistency” Describes how to make sure that the rows entered into the database tables are accurate and
consistent with data in other tables in the database. This chapter discusses how you can validate the data before it is inserted into
a row of a table.

Chapter 8, “Installing Oracle and Creating a Database” Shows you how to install the database software on the server and
create a database using Oracle’s GUI-based tools.

Chapter 9, “Reporting Techniques” Investigates techniques for making reports easier to understand and manage.

Chapter 10, “Creating and Maintaining Database Objects” Explores the different ways to create tables, indexes, views,
sequences, and synonyms. It also describes how to use data dictionary views and dynamic performance views.

Chapter 11, “Users and Security” Focuses on how to prevent unauthorized or unintentional actions in the database. It covers
how to create user accounts, grant and revoke privileges, and keep tabs on who is accessing what kind of object and when.

Chapter 12, “Making Things Run Fast (Enough)” Explores techniques for tuning the database so it will respond to queries as
quickly as possible. This chapter covers how the Oracle optimizer works and how you can use indexes judiciously to make queries
run in a reasonable amount of time.

Chapter 13, “Saving Your Stuff (Backups)” Describes how, by using the right combination of backup and recovery techniques,
the DBA can minimize or even eliminate the possibility of losing any committed data in the database.

Chapter 14, “Troubleshooting” Reviews some of the places to look for error messages, along with some general
troubleshooting techniques.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Understanding Oracle Certification
Why become Oracle certified? The main benefits are that you will have much greater earnings potential and that the Oracle
certification program carries high industry recognition. Certification can be your key to a higher salary, a new job, or both. Once
you make it through this book, you’re ready to prepare for a certification program.

Oracle offers a number of ways to prove your knowledge of Oracle’s core products through three levels of certification. For each
Oracle certification, Sybex offers a solution that can help you pass the exams.

Oracle Certified Associate (OCA) OCA candidates must pass two exams: Introduction to Oracle9i: SQL (1Z0-007) and Oracle9i
Database: Fundamentals I (1Z0-031). The first exam is administered via the Internet or at an authorized Oracle testing center, and
the second one is administered at an authorized Oracle testing center. The OCA candidate may take the exam Introduction to
Oracle: SQL and PL/ SQL (1Z0-001) instead of 1Z0-007, but this exam is only available at an authorized Oracle testing center. To
help you obtain the OCA, Sybex provides the following:

OCA/OCP: Introduction to Oracle9i SQL Study Guide (exam 1Z0-007: Introduction to Oracle9i SQL)

OCA/OCP: Oracle9i DBA Fundamentals I Study Guide (exam 1Z0-031: Oracle9i Database: Fundamentals I)

Oracle Certified Professional (OCP) The Professional level of certification builds on the OCA certification, challenging
candidates to pass two additional exams at an Oracle authorized testing center. The first exam is Oracle9i Database:
Fundamentals II (1Z0-032), and the second is Oracle9i Database: Performance Tuning (1Z0-033). Candidates for the OCP must
also complete an Oracle University course in order to obtain the OCP credential. To help you obtain your OCP, Sybex offers the
following:

OCP: Oracle9i DBA Fundamentals II Study Guide (exam 1Z0-032: Oracle9i Database: Fundamentals II)

OCP: Oracle9i DBA Performance Tuning Study Guide (exam 1Z0-033: Oracle9i Database: Performance Tuning)

Oracle Certified Master (OCM) OCM is Oracle’s most prestigious and challenging certification. To obtain this certification, you
must be an OCP, take two advanced Oracle Education classroom courses, and complete a hands-on, two-day practicum exam at
one of several Oracle University education facilities around the world.

The certification path you choose depends on your area of expertise and your career goals. The latest information on Oracle’s
certification programs can be found at www.oracle.com/education/certification.

Note For more information about the Oracle Study Guides published by Sybex, visit www.sybex.com.

Tips for Taking the OCA/OCP Exams

All of the Oracle exams are divided into two categories: the “easy” questions and the “hard” questions. The candidate will be
required to answer correctly a minimum number of questions in each group to pass the exam.

Each exam has approximately 60 to 90 questions and must be completed in 90 minutes. It’s okay to go back to previous
questions, so answer the questions you know right away and return to the harder ones later, so you don’t run out of time.

There is no negative scoring, so there is no benefit to leaving a question unanswered. Eliminate the obviously wrong answers first,
and if you’re left with just two possible correct answers, your odds of selecting the correct answer are much greater than randomly
choosing between four or five answers. Sometimes, other questions in the exam have information that allow you to eliminate
wrong answers in the question you’re working on.

Scheduling and Taking an Exam

Once you’ve prepared for and are ready to start pursuing Oracle9i certification, you’ll need to sign yourself up to take the proper
exams.

You take the Introduction to Oracle9i SQL exam (1Z0-007) via the Internet. The cost is $90, and you can either pay online or
obtain a voucher from Oracle by mail and specify the voucher number when registering for this exam. To take the exam, a 56Kbps
modem or broadband connection is highly recommended. Your web browser also needs to be up to date; Internet Explorer 5.0 or
Netscape 4.x are the minimum requirements.

Once you think you are ready to take one of the other exams, call Sylvan Prometric Testing Centers at (800) 891-EXAM (891-
3926) or visit www.prometric.com to find the closest testing center and schedule the exam. Before you call, get out your credit
card because each exam costs $125.

You can schedule the exam for a time that is convenient for you. The exams are downloaded to the testing center. You show up
at your scheduled time and take the exam on a computer.

After you complete the exam, you will know right away whether you have passed. At the end of the exam, you will receive a score
report. It will list the areas that you were tested on and how you performed. If you pass the exam, you don’t need to do anything
else—Prometric sends the test results to Oracle. If you don’t pass, it’s another $125 to schedule the exam again, and you must
wait 30 days before retaking the exam. But at least you will know from the score report where you did poorly, so you can study
that particular information more carefully.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Making the Most of This Book
At the beginning of each chapter of Oracle9i DBA JumpStart, you’ll find a list of topics that you can expect to learn about within
that chapter.

To help you absorb new material easily, I’ve highlighted important terms and defined them in the margins of the pages. You’ll
also find three kinds of notes with supplementary material:

Note Notes provide extra information and references to related information.

Tip Tips are insights that help you perform tasks more easily and effectively.

Warning Warnings let you know about things you should do—or shouldn’t do—as you learn more about what an Oracle
DBA’s job is like.

At the end of each chapter, you can test your knowledge of the topics covered by answering the chapter’s review questions. You’ll
find the answers to the review questions in Appendix A. Appendix B is a glossary of all the terms that have been introduced
throughout the book. Appendix C contains a brief overview of other database platforms and how they might fit into an enterprise’s
database infrastructure.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

About the Author
Bob Bryla is an Oracle9i certified professional with more than ten years of database design, database application development,
and database administration experience in a variety of fields. He is currently an Internet database analyst and DBA at Lands’ End,
Inc., in Dodgeville, Wisconsin. Bob can be contacted by e-mail at rjbryla@centurytel.net.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 1: Relational Database Concepts
Every organization has data that needs to be collected, managed, and analyzed. A relational database fulfills these needs. Along
with the powerful features of a relational database come requirements for developing and maintaining the database. Data
analysts, database designers, and database administrators (DBAs) need to be able to translate the data in a database into useful
information for both day-to-day operations and long-term planning.

Relational databases can be a bit intimidating at first, even if you’re a specialist in some other informational technology area, such
as networking, web development, or programming. This chapter will give you a good overview of current relational and object-
relational database concepts. It begins by comparing a database with another tool that most everyone has used—a spreadsheet
(also known as the “poor man’s” database). Then you’ll learn about the basic components of a relational database, the data
modeling process, and object-relational database features.

Are Spreadsheets Like Databases?
Most people are familiar with some kind of spreadsheet, such as Microsoft Excel. Spreadsheets are easy and convenient to use,
and they may be employed by an individual much like a database is used in the enterprise. Let’s look at the features of
spreadsheets to see how good of a database tool they actually are.

Similar to databases, spreadsheets are commonly used to store information in a tabular format. A spreadsheet can store data in
rows and columns, it can link cells on one sheet to those on another sheet, and it can force data to be entered in a specific cell in
a specific format. It’s easy to calculate formulas from groups of cells on the spreadsheet, create charts, and work with data in
other ways. But there are many ways in which a spreadsheet is not like a traditional database table:

Spreadsheet Database

More than one datatype can be stored in a spreadsheet
column.

Usually, only one datatype can be stored in a database
table column.

Cells in a spreadsheet can be defined as a formula, making
the contents variable depending on other cells.

Columns in a database table have a fixed value.

A spreadsheet has only the physical row number to make it
unique, and no built-in way to enforce uniqueness of a
given spreadsheet row.

Single rows of a database table are uniquely identified by a
unique value (typically a primary key, as described later in
this chapter).

Usually, only one user can have write access to the
spreadsheet at any given time; anyone else is locked out,
even if the second user is on a different part of the
spreadsheet.

Multiple users can access a database table at the same
time, with various combinations of read and write
capabilities in different parts of the database.

A spreadsheet does not have any built-in transaction-
control capabilities, such as ensuring that a group of
changes to the sheet is completely applied or not applied at
all. The Save button is about the best a spreadsheet can
do to simulate transaction control.

A database usually has transaction-control capabilities,
making it possible to “roll back” a change if something
happened to prevent it from completing successfully (such
as a power failure).

A corrupt spreadsheet cannot usually be repaired; the
entire spreadsheet must be restored from a backup, which
may have occurred yesterday, last week, or never!

There are many tools for repairing and recovering
databases.

This is not to say that a spreadsheet isn’t a valuable tool in the enterprise for ad-hoc and “what-if” analyses. Furthermore, most
spreadsheet products have some way to connect to an external database as the data source for analysis.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Relational Databases
The relational model is the basis for any relational database management system (RDBMS). A relational model has three core
components: a collection of objects or relations, operators that act on the objects or relations, and data integrity methods. In other
words, it has a place to store the data, a way to create and retrieve the data, and a way to make sure that the data is logically
consistent.

Hierarchical and Network Databases

The relational model was first proposed by Dr. E. F. Codd in 1970. At that time, databases were primarily either of the
hierarchical or network type.

A hierarchical database is similar in nature to a filesystem, with a root or parent node and one or more children referencing
the parent. This makes for a very fast data-access path, but it has the disadvantages of low flexibility, lack of an ad-hoc
query capability, and high application maintenance.

A network database has some advantages over the hierarchical model, including a data definition language, a data
manipulation language, and data integrity. However, like hierarchical databases, network databases suffer from rigidity in
database structure and high application maintenance costs.

Hierarchical and network-based databases are still used for extremely high-volume transaction-processing systems. IBM
claims that 95% of the Fortune 1000 companies in the world still use IMS, a hierarchical database management system that
is also web-enabled.

A relational database uses relations, or two-dimensional tables, to store the information needed to support a business. Let’s go
over the basic components of a traditional relational database system and look at how a relational database is designed. Once
you have a solid understanding of what rows, columns, tables, and relationships are, you’ll be well on your way to leveraging the
power of a relational database.

relational database

A collection of tables that stores data without any assumptions as to how the data is related within the tables or
between the tables.

Note While this book focuses on the Oracle RDBMS for all of its examples and techniques, it’s good to know how Oracle fits
in with other database vendors and platforms. Appendix C, “Common Database Platforms,” has an overview of the
major RDBMS vendors and their products.

Tables, Rows, and Columns

A table in a relational database, alternatively known as a relation, is a two-dimensional structure used to hold related information.
A database consists of one or more related tables.

table

The basic construct of a relational database that contains rows and columns of related data.

relation

A two-dimensional structure used to hold related information, also known as a table.

Note Don’t confuse a relation with relationships. A relation is essentially a table, and a relationship is a way to correlate, join,
or associate the two tables.

A row in a table is a collection or instance of one thing, such as one employee or one line item on an invoice. A column contains
all the information of a single type, and the piece of data at the intersection of a row and a column, a field, is the smallest piece of
information that can be retrieved with the database’s query language. (Oracle’s query language, SQL, is the topic of the next
chapter.) For example, a table with information about employees might have a column called LAST_NAME that contains all of the
employees’ last names. Data is retrieved from a table by filtering on both the row and the column.

row

A group of one or more data elements in a database table that describes a person, place, or thing.

column

The component of a database table that contains all of the data of the same name and type across all rows.

field

The smallest piece of information that can be retrieved by the database query language. A field is found at the
intersection of a row and a column in a database table.

Note SQL, which stands for Structured Query Language, supports the database components in virtually every modern
relational database system. SQL has been refined and improved by the American National Standards Institute (ANSI)
for more than 20 years. As of Oracle9i, Oracle’s SQL engine conforms to the ANSI SQL:1999 (also known as SQL3)
standard, as well as its own proprietary SQL syntax that existed in previous versions of Oracle. Until Oracle9i, only
SQL:1992 (SQL2) syntax was fully supported.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Primary Keys, Datatypes, and Foreign Keys

The examples throughout this book will focus on the hypothetical work of Scott Smith, database developer and entrepreneur. He
just started a new widget company and wants to implement a few of the basic business functions using the Oracle relational
database to manage his Human Resources (HR) department.

Note Most of Scott’s employees were hired away from one of his previous employers, some of whom have over 20 years of
experience in the field. As a hiring incentive, Scott has agreed to keep the new employees’ original hire date in the new
database.

You’ll learn about database design in the following sections, but let’s assume for the moment that the majority of the database
design is completed and some tables need to be implemented. Scott creates the EMP table to hold the basic employee
information, and it looks something like this:

Notice that some fields in the Commission (COMM) and Manager (MGR) columns do not contain a value; they are blank. A relational
database can enforce the rule that fields in a column may or may not be empty. (Chapter 3, "Oracle Database Functions," covers
the concept of empty, or NULL, values.) In this case, it makes sense for an employee who is not in the Sales department to have a
blank Commission field. It also makes sense for the president of the company to have a blank Manager field, since that employee
doesn’t report to anyone.

On the other hand, none of the fields in the Employee Number (EMPNO) column are blank. The company always wants to assign
an employee number to an employee, and that number must be different for each employee. One of the features of a relational
database is that it can ensure that a value is entered into this column and that it is unique. The EMPNO column, in this case, is the
primary key of the table.

primary key

A column (or columns) in a table that makes the row in the table distinguishable from every other row in the
same table.

Notice the different datatypes that are stored in the EMP table: numeric values, character or alphabetic values, and date values.
The Oracle database also supports other variants of these types, plus new types created from these base types. Datatypes are
discussed in more detail throughout the book.

As you might suspect, the DEPTNO column contains the department number for the employee. But how do you know what
department name is associated with what number? Scott created the DEPT table to hold the descriptions for the department codes
in the EMP table.

The DEPTNO column in the EMP table contains the same values as the DEPTNO column in the DEPT table. In this case, the DEPTNO
column in the EMP table is considered a foreign key to the same column in the DEPT table. With this association, Oracle can
enforce the restriction that a DEPTNO value cannot be entered in the EMP table unless it already exists in the DEPT table. A foreign
key enforces the concept of referential integrity in a relational database. The concept of referential integrity not only prevents an
invalid department number from being inserted into the EMP table, but it also prevents a row in the DEPT table from being deleted
if there are employees still assigned to that department.

foreign key

A column (or columns) in a table that draws its values from a primary or unique key column in another table. A
foreign key assists in ensuring the data integrity of a table.

referential integrity

A method employed by a relational database system that enforces one- to-many relationships between tables.

Data Modeling

Before Scott created the actual tables in the database, he went through a design process known as data modeling. In this

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before Scott created the actual tables in the database, he went through a design process known as data modeling. In this
process, the developer conceptualizes and documents all the tables for the database. One of the common methods for modeling
a database is called ERA, which stands for entities, relationships, and attributes. The database designer uses an application that
can maintain entities, their attributes, and their relationships. In general, an entity corresponds to a table in the database, and the
attributes of the entity correspond to columns of the table.

data modeling

A process of defining the entities, attributes, and relationships between the entities in preparation for creating
the physical database.

Note Various data modeling tools are available for database design. Examples include Microsoft Visio
(www.microsoft.com/office/visio) and more robust tools such as Computer Associate’s ERwin
(www3.ca.com/ Solutions/Product.asp?ID=260) and Embarcadero’s ER/Studio
(www.embarcadero.com/products/erstudio/index.asp).

The data-modeling process involves defining the entities, defining the relationships between those entities, and then defining the
attributes for each of the entities. Once a cycle is complete, it is repeated as many times as necessary to ensure that the designer
is capturing what is important enough to go into the database. Let’s take a closer look at each step in the data-modeling process.

Defining the Entities
First, the designer identifies all of the entities within the scope of the database application. The entities are the persons, places, or
things that are important to the organization and need to be tracked in the database. Entities will most likely translate neatly to
database tables. For example, for the first version of Scott’s widget company database, he identifies four entities: employees,
departments, salary grades, and bonuses. These will become the EMP, DEPT, SALGRADE, and BONUS tables.

Defining the Relationships between Entities
Once the entities are defined, the designer can proceed with defining how each of the entities is related. Often, the designer will
pair each entity with every other entity and ask, “Is there a relationship between these two entities?” Some relationships are
obvious; some are not.

In the widget company database, there is most likely a relationship between EMP and DEPT, but depending on the business rules,
it is unlikely that the DEPT and SALGRADE entities are related. If the business rules were to restrict certain salary grades to certain
departments, there would most likely be a new entity that defines the relationship between salary grades and departments. This
entity would be known as an associative or intersection table, and would contain the valid combinations of salary grades and
departments.

associative table

A database table that stores the valid combinations of rows from two other tables and usually enforces a
business rule. An associative table resolves a many-to-many relationship.

intersection table

See associative table.

One-to-many The most common type of relationship is one-to-many. This means that for each occurrence in a given entity, the
parent entity, there may be one or more occurrences in a second entity, the child entity, to which it is related. For example, in the
widget company database, the DEPT entity is a parent entity, and for each department, there could be one or more employees
associated with that department. The relationship between DEPT and EMP is one-to-many.

one-to-many relationship

A relationship type between tables where one row in a given table is related to many other rows in a child table.
The reverse condition, however, is not true. A given row in a child table is related to only one row in the parent
table.

In general, there are three types of relationships in a relational database:

One-to-one In a one-to-one relationship, a row in a table is related to only one or none of the rows in a second table. These
relationships are not as common as one-to-many relationships, because if one entity has an occurrence for a corresponding row
in another entity, in most cases, the attributes from both entities should be in a single entity.

one-to-one relationship

A relationship type between tables where one row in a given table is related to only one or zero rows in a
second table. This relationship type is often used for subtyping. For example, an EMPLOYEE table may hold the
information common to all employees, while the FULLTIME, PARTTIME, and CONTRACTOR tables hold
information unique to full time employees, part time employees and contractors respectively. These entities
would be considered subtypes of an EMPLOYEE and maintain a one-to-one relationship with the EMPLOYEE
table.

Many-to-many In a many-to-many relationship, one row of a table may be related to many rows of another table, and vice versa.
Usually, when this relationship is implemented in the database, a third entity is defined as an intersection table to contain the
associations between the two entities in the relationship. For example, in a database used for school class enrollment, the
STUDENT table has a many-to-many relationship with the CLASS table—one student may take one or more classes, and a given
class may have one or more students. The intersection table STUDENT_CLASS would contain the combinations of STUDENT and
CLASS to track which students are in which class.

many-to-many relationship

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A relationship type between tables in a relational database where one row of a given table may be related to
many rows of another table, and vice versa. Many-to-many relationships are often resolved with an intermediate
associative table.

Assigning Attributes to Entities
Once the designer has defined the entity relationships, the next step is to assign the attributes to each entity. This is physically
implemented using columns, as shown here for the SALGRADE table as derived from the salary grade entity.

Iterate the Process: Are We There Yet?
After the entities, relationships, and attributes have been defined, the designer may iterate the data modeling many more times.
When reviewing relationships, new entities may be discovered. For example, when discussing the widget inventory table and its
relationship to a customer order, the need for a shipping restrictions table may arise.

Once the design process is complete, the physical database tables may be created. This is where the DBA usually steps in,
although the DBA probably has attended some of the design meetings already! It’s important for the DBA to be involved at some
level in the design process to make sure that any concerns about processor speed, disk space, network traffic, and administration
effort can be addressed promptly when it comes time to create the database.

Logical database design sessions should not involve physical implementation issues, but once the design has gone through an
iteration or two, it’s the DBA’s job to bring the designers “down to earth.” As a result, the design may need to be revisited to
balance the ideal database implementation versus realities of budgets and schedules.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Object-Relational Databases
An object-relational database system supports everything a relational database system supports, as well as constructs for
object-oriented development and design techniques. Object-oriented constructs are found in modern programming languages
such as Java and C++. The Oracle9i database fully supports all of the traditional object-oriented constructs and methods.

object-relational database

A relational database that includes additional operations and components to support object- oriented data
structures and methods.

While the full range of object-oriented techniques are beyond the scope of this book, you will get a good idea of some of the
object-oriented capabilities of Oracle, including abstraction, methods, encapsulation, and inheritance. Let’s define those terms
now.

Abstraction

One of the ways in which Oracle supports the object-relational model is by using abstraction. As noted earlier, Oracle has many
built-in datatypes, such as numeric, string, date, and others. Additionally, you can define user-defined objects as an aggregate of
several other datatypes. These new user-defined types are called abstract datatypes.

abstract datatypes

New datatypes, usually user-created, that are based on one or more built-in datatypes and can be treated as a
unit.

For example, when Scott’s widget company grows, there may be other systems where he needs to represent an employee or a
customer, or in more general terms, a person. Scott can define a datatype called PERSON that stores a first name, last name,
middle initial, and a gender. When the new customer tables are being built, Scott just needs to use the new PERSON type in the
table definition, This brings to the table two immediate benefits: reusability and standards. Creating the new table is faster, since
the datatype has already been defined, and it’s less error prone than creating four individual fields. In addition, any developer who
moves from an employee-oriented project to a customer- oriented project at Scott’s company will find familiarity in common
objects and naming conventions.

Methods and Encapsulation

Another way in which object-oriented techniques are reflected in the Oracle object-relational database is through the use of
methods and encapsulation. Methods define which operations can be performed on an object. Encapsulation restricts access to
the object other than via the defined methods.

methods

Operations on an object that are exposed for use by other objects or applications.

encapsulation

An object-oriented technique that may hide, or abstract, the inner workings of an object and expose only the
relevant characteristics and operations on the object to other objects.

Take a simple example of an employee object: it contains characteristics such as the employee name, address, and salary. A
method against an employee object might be to get the name, or change the name. Another method might be to increase the
salary, but never to decrease the salary. The encapsulation of the employee object prevents the direct manipulation of the
characteristics of an employee object other than what the methods, driven by business rules, dictate.

Inheritance

Inheritance allows objects that are derived from other objects to use the methods available in the parent object. If a new object is
created with an existing object as a base, all of the methods available with the existing object will also be available with the new
object.

inheritance

Acquiring the properties of the parent, or base object, in a new object.

For example, if Scott were to implement a new EMPLOYEE type and a new CUSTOMER type using the PERSON type as the base,
then any methods that already exist for PERSON would be available when using one of the two new types. The method
ChangeLastName, defined with the PERSON type only once, can be used with objects defined with the CUSTOMER or EMPLOYEE
type.

Object-Relational Support

Oracle9i provides additional features to ease the transition to an object-oriented database application. Object views allow the
developer to define an object- oriented structure over an existing relational database table. In this way, existing applications do not
need to change immediately, and any new development can use the object-oriented definitions of the table. This makes the
transition from a relational to an object-relational database relatively painless, because object definitions can reference existing
relational components.

object view

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A database construct that overlays an object- oriented structure over an existing relational database table. As a
result, the table can be accessed as a relational table or as an object table and make the transition to a fully
object-oriented environment easier.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Name the most important element of a relational database and its components.

2. Which type of table relationship associates more than one record in a given table with more than one record in
another table?

3. What type of key can be used to enforce referential integrity between two tables in a database?

4. What are some reasons why using a spreadsheet is not a good alternative to using a large-scale database?

5. What are some of the benefits of abstraction in an object-relational database management system?

6. What object-relational feature of Oracle eases the transition between relational and object-relational applications?

7. What are the three steps in the ERA process for database design?

Answers

1. The table is the most important element of a relational database and it consists of rows and columns. A field exists at the
intersection of a row and a column.

2. A many-to-many relationship associates more than one record in a table with more than one record in another table.

3. A foreign key can be used to enforce referential integrity between two tables.

4. Some reasons why a spreadsheet is not a good alternative to a large-scale database are that it’s difficult to use for multiple
users, it does not offer transaction control, the cells in a spreadsheet can contain any type of data, and referential integrity
controls between spreadsheets are difficult to implement efficiently.

5. In an object-relational database management system, new datatypes can be created as aggregates of existing datatypes and
other new datatypes, enhancing standards adherence and reusability.

6. Object views allow the developer to define an object-oriented structure over an existing relational database table, thus easing
the transition between relational and object-relational applications.

7. The three steps in the ERA (entities, relationships, attributes) design process are to define the entities, then define the
relationships between the entities, and then define the attributes of the entities. After one pass through all three steps, one or
more iterations may be necessary.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
abstract datatypes

associative table

column

data modeling

encapsulation

field

foreign key

inheritance

intersection table

many-to-many relationship

methods

object view

object-relational database

one-to-many relationship

one-to-one relationship

primary key

referential integrity

relation

relational database

row

table

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 2: SQL*Plus and iSQL*Plus Basics
This chapter begins with a few formalities and definitions, and then dives right into a discussion of the different ways to run SQL
commands. Then it introduces the basics of SELECT statements and how we can retrieve and display either all columns or only
certain columns of a table.

You will also find out about how to make changes to the rows in a table by using insert, update, and delete statements. In the
remainder of the chapter, you will explore various ways to change the structure of tables in the database as well as control the
permissions on tables.

Some SQL Formalities
A database engine is the part of an RDBMS that actually stores and retrieves data to and from the data files. The database engine
is not very useful unless you can send SQL (Structured Query Language) commands to it and receive the results from those
SQL commands (if any).

SQL (Structured Query Language)

The industry-standard database language used to query and manipulate the data, structures, and permissions
in a relational database.

Note “SQL” is usually pronounced “sequel”, but if you refer to “S-Q-L” in a conversation with other database developers and
DBAs, they will certainly know what you’re talking about!

It is also important to separate the SQL commands from the command processor itself. For example, Oracle’s SQL*Plus client
tool (available on virtually any platform that the Oracle server itself runs on) has a number of other “built-in” commands that look
like SQL commands, but operate only within the SQL*Plus environment; these are called SQL*Plus commands. A SQL*Plus
command may actually send many SQL commands to the Oracle server.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Tools for Running SQL
Most Oracle database environments consist of two, three, or more tiers. In the simplest two-tier scenario, a database developer
might be using SQL*Plus on a Windows PC connecting to an Oracle database on a Linux server. More complex environments
may include a web server, application server, or authentication server on a number of other servers in between the client and the
database server.

tiers

Locations where different components of an enterprise application system reside. In a typical three-tier
environment, the client tier runs a thin application such as a web browser, which connects to a middleware
server that is running a web server. The web server and its related components typically manage the business
rules of the application. The third-tier database platform controls access to the data and manages the data itself.
This approach partitions the application so that it is easier to maintain and segregates the tasks into tiers that
are best equipped to handle a particular function.

Here, we will explore the various client-based tools that can be used to run SQL, including SQL*Plus, iSQL*Plus, SQL*Plus
Worksheet, third-party tools, Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and Oracle Call Interface
(OCI).

SQL*Plus

SQL*Plus has been around as long as the Oracle RDBMS itself. It is the most basic tool available for connecting to the database
and executing queries against the tables in a database. On Unix systems, it can be run in character-based mode, even on a dumb
terminal connected to the Unix system via a serial port.

The “Plus” part of SQL*Plus defines some of the extra functionality available above and beyond executing SQL statements and
returning the results. Some of this functionality is proprietary to SQL*Plus and may not be available in non-Oracle database
environments. Here are some of the things you can do using SQL*Plus:

Define headers and footers for reports

Rename columns in the report output

Prompt users for values to be substituted into the query

Retrieve the structure of a table

Save the results of the query to a file

Copy entire tables between databases using only one command

While many other tools surpass SQL*Plus in functionality as well as in look and feel, those other tools don’t help much when the
database is down and all you have is a character-based terminal emulator connection to your Unix server! No matter which
environment you’re in—Unix, Windows, minicomputer, or mainframe—SQL*Plus will always be there and have the same look and
feel across all of those environments.

Under the various versions of Microsoft Windows, SQL*Plus runs as a Windows application and as a command-line application.
The Windows functionality available in the Windows SQL*Plus session includes those features normally available in a Windows
text-based editor: cutting and pasting text strings, searching for text in the session window, and saving or loading the last
command executed. The Windows version also allows you to change the SQL*Plus environment settings using a GUI dialog box
or through the command line. The GUI dialog box is accessible from SQL*Plus by selecting Options > Environment.

You’ll need to log on with a valid username and password to initiate a SQL*Plus session, as shown below. You’ll also need to
enter a host string value. The host string is an alias to a set of parameters, such as the name, address, protocol type, and port

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


enter a host string value. The host string is an alias to a set of parameters, such as the name, address, protocol type, and port
number of the Oracle database to which you want to connect. The database may be on the same machine that is running the
SQL*Plus client tool, or it may be on a different host machine on the network. For the purposes of this book, all database
connections will use the or92 host string.

host string

A text string that represents a shortcut or reference to a set of parameters that provide the information needed
to connect to a database host from the client application.

Note Your default Oracle installation may not have the user SCOTT enabled, or the password may have been changed from
the default TIGER. Check with your local DBA to see if this is the case.

The user SCOTT owns a number of database tables, including the DEPT table, which contains a list of all the department numbers,
department names, and department locations. As you’ll learn a little later in this chapter, the SQL SELECT statement allows you to
extract information from a database. The example below shows a SELECT statement that retrieves all of the rows in the DEPT
table (select * from dept;) and its results.

Notice that the case of the keywords and column names is important only for readability. In practice, you can enter them in any
case. To enhance this sample query, let’s do the following:

Add a report title of “Department Report” using the TTITLE SQL*Plus command.

Change the headers for each of the columns to make them more readable using the COLUMN SQL*Plus command.

Save the output from the query to a file using the SQL*Plus SPOOL command.

The sequence of SQL*Plus commands, the SQL statement, and the results from the command are as follows:
SQL> ttitle "Department Report"
SQL> column deptno heading "Department|Number"
SQL> column dname heading "Department|Name"
SQL> column loc heading "City|Location"
SQL> spool c:\temp\deptrept.txt
SQL> /

Tue Aug 13                                    page    1
                 Department Report

Department Department     City
    Number Name           Location
---------- -------------- -------------
        10 ACCOUNTING     NEW YORK
        20 RESEARCH       DALLAS
        30 SALES          CHICAGO
        40 OPERATIONS     BOSTON

SQL> spool off
SQL>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SQL>

Notice that we didn’t type in the entire SELECT statement again. Instead, we used the / SQL*Plus command, which reruns the
last complete SQL statement executed.

SQL*Plus commands differ from SQL statements in that they don’t need a semicolon at the end (although SQL*Plus commands
can be terminated with a semicolon without SQL*Plus complaining about it). SQL statements can be written across many lines
without any type of continuation character; they are complete whenever you type a semicolon or use the SQL*Plus / command.
SQL*Plus commands must be contained entirely on one line, unless the - continuation character is used at the end of each line.
The example below shows how the SQL*Plus continuation character is used:
SQL> column deptno heading -
> "Department|Number"
SQL>

iSQL*Plus

With iSQL*Plus, you connect to the database indirectly via a very “lightweight” middle tier. The iSQL*Plus tool is essentially the
web-enabled version of SQL*Plus, with a few restrictions, which we will cover shortly. It is implemented as part of a three-tier
Oracle environment, although iSQL*Plus could very well run on the same machine as either the client or the Oracle server itself.

iSQL*Plus offers a 100% web-enabled, thin client solution. From a DBA’s or network adminstrator’s point of view, the more
clients that need only a web browser to get their work done, the better. No Oracle client software instal-lation is required for
iSQL*Plus!

thin client

A workstation or CPU with relatively low- powered components that can use a web interface (or other application
with a small footprint) to connect to a middleware or a back-end database server where most of the processing
occurs. iSQL*Plus is an example of a web application that runs on a thin client.

To start iSQL*Plus, use your favorite web browser (preferably Microsoft Internet Explorer 5.0 or later or Netscape Navigator 4.7 or
later) and navigate to the URL http://<your_server_name>/isqlplus. The string <your_server_name> is the name of
the middleware server that is running the iSQL*Plus web application.

Note Depending on the configuration of the server, you may need to add a port number to the server name, for example,
http://www.internal.esweb .com:7779/isqlplus. Check with your local system administrator for the URL
that supports iSQL*Plus.

SQL*Plus and iSQL*Plus are similar. In fact, iSQL*Plus requires that the SQL*Plus executable be accessible on the middleware
server that is running the iSQL*Plus service. The iSQL*Plus login screen below shows the user SCOTT logging into the same
server as he did with SQL*Plus earlier in this chapter. In this case, or92 is specified as the connection identifier, rather than the
host string as it is with SQL*Plus; they have different names but mean the same thing.

connection identifier

See host string.

After logging in to iSQL*Plus, here is an example of running the same query that you saw earlier under SQL*Plus.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice that with iSQL*Plus, if only one SQL statement is being run at a time, no semicolon is required. This would be the
equivalent of typing / in a SQL*Plus session after entering a SQL statement without a terminating semicolon. Also notice that the
area where commands are entered is a fixed size, regardless of how many commands you are entering. Rest assured, as in
SQL*Plus, this is easily configurable. Just click the Preferences link in the upper-right corner of the browser to change the
command area size and other iSQL*Plus environment settings.

Note The Apache HTTP web server is used to host iSQL*Plus, as well as any other Oracle web-enabled services on
Microsoft Windows Oracle installations. Apache isn’t just for Unix anymore!

All of the examples later in this chapter and throughout the book will use iSQL*Plus as the tool for executing SQL commands and
reports.

SQL*Plus Worksheet

If Oracle Enterprise Manager (OEM) is installed, another variation of SQL*Plus, called SQL*Plus Worksheet, is available to the
DBA. Here’s the OEM Login dialog box:

Oracle Enterprise Manager (OEM)

A GUI tool that allows access, maintenance, and monitoring of multiple databases or services within a single
application.

SQL*Plus Worksheet supports all the commands that standard SQL*Plus supports, in a two-pane query/result format, as shown
below. It’s a slightly more graphical application; in other words, it needs an operating system such as Microsoft Windows or a
similar GUI client to run. Beyond that, it’s really just SQL*Plus with a slightly better front-end!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Third-Party Tools

Basic network client connectivity is provided during an Oracle client installation. Starting with release 9, Oracle’s network
connectivity package is known as Oracle Net. Third-party developers can leverage this functionality in their own applications to
provide tools customized for a more specific audience and to provide an additional layer of functionality that may not be available
in Oracle’s offerings.

An example of a third-party tool is TOAD, which stands for Tool for Oracle Application Developers. TOAD is not just for
developers; it has a lot of functionality that DBAs can use also. There is both a freeware version (that can even be used as
freeware in a corporate environment) and a licensed version. The licensed version has many more DBA-friendly features and SQL
debugging tools available. (Visit www.toadsoft.com or www.quest.com/toad for more information.) Shown below is the DEPT
table query executed using the freeware version of the TOAD browser. Notice the other database navigational capabilities in this
pane.

ODBC/JDBC

Many tools in the Windows (and Unix) environment can take advantage of a common framework known as ODBC, which stands
for Open Database Connectivity. In a nutshell, ODBC allows applications that are ODBC-compliant to connect to virtually any
database without knowing the details of how to connect directly to the database. All of the details are hidden in the ODBC driver
itself. The driver may be written by the database vendor or by a third-party developer that specializes in ODBC connectivity. Here
is an example of the Oracle ODBC Driver Configuration dialog box for setting up an ODBC connection to a database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ODBC (Open Database Connectivity)

A set of standards that allow applications that are not dependent on any one specific database to process SQL
statements against any database that supports SQL.

ODBC driver

An interface, usually at the operating-system level, that supports the connection of an ODBC-compliant
application to a specific database platform.

After the ODBC connection is made, you can run queries. Shown below are the results of the DEPT table query from a Microsoft
Access session.

Applications that use ODBC are not limited to tools such as Microsoft Access, which also has its own client-based database
engine in addition to the capability to connect to other databases. Spreadsheets, financial applications, and statistical analysis
packages are among the many types of applications that need to connect to a database for their source data. ODBC gives the
end user the freedom to choose which external database to use and frees the application vendor from needing to develop a
special connection routine for every possible database source.

JDBC, which stands for Java Database Connectivity, is very similar to ODBC in that JDBC provides a common set of routines to
allow a Java developer to connect to any SQL-compliant database without knowing the specifics of the target database. The key
difference between ODBC and JDBC is that JDBC is specifically for Java applications and ODBC is application-neutral.

JDBC (Java Database Connectivity)

A set of library routines specific to the Java language that allows a Java application to easily connect to and
process SQL statements against an Oracle database.

OCI

Last, but not least, we have OCI, which stands for Oracle Call Interface. OCI is a set of library routines for C developers (on any
operating system platform) that can provide all the functionality available from a SQL command-line session and more. Below are
some code fragments in the C language that include OCI calls:
text *username = (text *) "SCOTT";
text *password = (text *) "TIGER";
...
text *insert = (text *) "INSERT INTO emp(empno, \
    ename, job, sal, deptno)\
    VALUES (:empno, :ename, :job, :sal, :deptno)";
...
/*
 *  Connect to ORACLE and open two cursors.
 *  Exit on any error.
 */
    if (olog(&lda, (ub1 *)hda, username, -1, password, -1,
             (text *) 0, -1, (ub4)OCI_LM_DEF))
    {
        err_report(&lda);

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        err_report(&lda);
        exit(EXIT_FAILURE);
    }
    printf("Connected to ORACLE as %s\n", username);
...
/* Parse the INSERT statement. */
    if (oparse(&cda1, insert, (sb4) -1, FALSE, (ub4) VERSION_7))
    {
        err_report(&cda1);
        do_exit(EXIT_FAILURE);
    }
...

OCI (Oracle Call Interface)

A set of library routines that allows a C application on virtually any development platform to easily connect to
and process SQL statements against an Oracle database. The OCI routines are called as native C library
functions; therefore, no preprocessor is necessary when compiling a C application using OCI.

For more OCI code samples, check the ORACLE_BASE\ORACLE_HOME\oci directory under Microsoft Windows Oracle
installations.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The Ubiquitous SELECT Statement
In the examples of tools for running SQL, you’ve seen the following simple SELECT statement:
select * from dept;

In its most basic form, the SELECT statement has a list of columns to select from a table, using the SELECT ... FROM syntax.
The * means "all columns." To successfully retrieve rows from a table, the user running the query must either own the table or
have the permissions granted to the user by the owner or a DBA. The most basic SELECT syntax can be described as follows:
 SELECT {* | [DISTINCT] column | expression [alias], ...}
   FROM tablename;

This type of statement representation is typical of what you’ll see in Oracle documentation, and it can be very complex. Here is a
summary of what the elements in the syntax representation mean:

Element Meaning

| Pick one or the other

{ } One within this list is required

[ ] Item is optional

… May repeat

Uppercase Keyword or command

italics Variable

Many more advanced features of the SELECT statement will be explored throughout this book. However, to begin with, let’s look at
some examples of the column, alias, DISTINCT, and expression parts of a SELECT statement.

Column Specification

As you’ve seen, you can use the * character to view all columns in a table. But if the table contains too many columns to view at
once, or your query only needs a small number of the total columns, you can pick the columns you need. For example, suppose
that you want to view some information in the EMP table. How could you find out which columns are in this table without doing a
SELECT * statement? You can use the DESCRIBE command in iSQL*Plus, as shown below.

Now that you know which columns exist in the EMP table, you realize that you really need to see only the employee number, name,
and salary. Therefore, your SELECT statement should be something like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and salary. Therefore, your SELECT statement should be something like this:
select empno, ename, sal from emp;

It produces results similar to the following:
EMPNO      ENAME             SAL
---------- ---------- ----------
      7369 SMITH             800
      7499 ALLEN            1600
      7521 WARD             1250
      7566 JONES            2975
      7654 MARTIN           1250
      7698 BLAKE            2850
      7782 CLARK            2450
      7788 SCOTT            3000
      7839 KING             5000
      7844 TURNER           1500
      7876 ADAMS            1100
      7900 JAMES             950
      7902 FORD             3000
      7934 MILLER           1300

14 rows selected.

Column Renaming

In one of our earlier SQL*Plus examples, we wanted the column headers to be more readable, and we used some of the built-in
features of SQL*Plus to do this. However, if your requirements for readability are fairly simple, you can use SQL’s built-in
capability of column renaming, noted by the [alias] element of the SELECT syntax. Here is an example of providing aliases for
the EMPNO, ENAME, and SAL columns in the EMP table. The alias is the renamed column seen in the results of the query.
select empno "Employee Number", ename "Name", sal "Salary" from emp;

Employee Number Name           Salary
--------------- ---------- ----------
           7369 SMITH             800
           7499 ALLEN            1600
           7521 WARD             1250
           7566 JONES            2975
           7654 MARTIN           1250
           7698 BLAKE            2850
           7782 CLARK            2450
           7788 SCOTT            3000
           7839 KING             5000
           7844 TURNER           1500
           7876 ADAMS            1100
           7900 JAMES             950
           7902 FORD             3000
           7934 MILLER           1300

14 rows selected.

alias

An alternate name for a column, specified right after the column name in a SELECT statement, seen in the
results of the query.

Duplicate Removal

The DISTINCT keyword removes all duplicate rows from the results of a query. For example, what if you wanted to see the
department numbers for the employees in the EMP table? Your query might be something like this:
select deptno from emp;

DEPTNO
----------
        20
        30
        30
        20
        30
        30
        10
        20
        10
        30
        20
        30
        20
        10

14 rows selected.

But what you probably want is one row for each of the departments found in the EMP table. In this case, use the DISTINCT
keyword:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select distinct deptno from emp;

DEPTNO
----------
        10
        20
        30

3 rows selected.

That’s much easier to read. You now know that all of the employees belong to one of three departments. However, there may be
many other departments, which would be listed in the department (DEPT) table. Some departments may not have any employees
right now. In Chapter 5, "Using Multiple Tables," you’ll learn how to execute queries on joined tables to get this kind of information.

Expressions

To finish off our analysis of the SELECT syntax, let’s look at the expression part of the SELECT statement. Let’s say we would
like to see how salaries would look if everyone got a 15% pay increase. All of the information we need to see is still in one table,
the EMP table, but we need to perform some kind of calculation on one of the existing fields. To calculate a 15% pay increase, we
need to not only see the existing salary, but we also need to multiply the SAL column by 1.15:
select empno, ename, sal, sal*1.15 from emp;

EMPNO      ENAME             SAL   SAL*1.15
---------- ---------- ---------- ----------
      7369 SMITH             800        920
      7499 ALLEN            1600       1840
      7521 WARD             1250     1437.5
      7566 JONES            2975    3421.25
      7654 MARTIN           1250     1437.5
      7698 BLAKE            2850     3277.5
      7782 CLARK            2450     2817.5
      7788 SCOTT            3000       3450
      7839 KING             5000       5750
      7844 TURNER           1500       1725
      7876 ADAMS            1100       1265
      7900 JAMES             950     1092.5
      7902 FORD             3000       3450
      7934 MILLER           1300       1495

14 rows selected.

To make the proposed salary column more readable, we could use either a column alias or iSQL*Plus column-formatting
commands. We might also want to show a total for the SAL and SAL*1.15 columns, or show each salary increase to exactly two
decimal places. Some of these more advanced formatting techniques will be covered in Chapter 9, "Reporting Techniques."

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DML for Making Changes
DML stands for Data Manipulation Language. DML commands are the SQL statements that can change the values in database
tables, as opposed to merely reading them, as SELECT statements do.

DML (Data Manipulation Language)

Includes INSERT, UPDATE, DELETE, and MERGE statements that operate specifically on database tables.
Occasionally, SELECT statements are included in the SQL DML category.

Note It could be argued that SELECT statements do technically manipulate data when a query is performed, but in this book,
we will differentiate between reading database tables and changing database tables. DBAs may configure and tune a
mostly read-only database differently than they configure a frequent read-write database. An online transaction
processing (OLTP) database would be considered a mostly read-write database. A decision support system (DSS) or
data warehouse database would be considered a mostly read-only database.

The following sections provide an introduction to the DML statements UPDATE, INSERT, DELETE, and MERGE.

The UPDATE Statement

An UPDATE statement will change one or more rows in a database table. The basic form of an UPDATE statement must specify
which table to update, which column(s) to change, and optionally, whether to change all the rows in the table or just a few. The
syntax is as follows:
UPDATE  tablename SET column = value [ , column = value, ...]
   [WHERE condition];

As with any SQL statements that access a table, the table to be updated must be owned by the user running the query or have the
permissions granted to the user by the owner or a DBA. Chapter 11, “Users and Security,” will cover privileges and permissions in
more detail.

Since a table may have a large number of columns, you don’t necessarily want to update every column. To follow up on an earlier
example, let’s say that the boss has decided to give a 15% salary increase across the board. We can use an UPDATE statement
that looks very similar to the SELECT statement we wrote earlier. Here are what the UPDATE statement and the result of executing
that statement in iSQL*Plus look like:

But wait, you ask, did something actually happen here? The only clue is at the bottom of the screen, where it indicates that 14
rows were updated. DML statements such as UPDATE will perform the action requested (or produce an error message on
occasion), but only SELECT statements will return rows to the user. To see if the rows were updated correctly, the user SCOTT will
need to rerun the SELECT query on the EMP table.

Now that all the employees have been granted their raise, the boss decides that there are still some employees who need an even
bigger raise. For example, employee FORD had a lot more bright ideas last year than the average employee, so he deserves
another 10% raise above and beyond the 15% raise that he already received. Also, the boss notices that the employee file has
not yet been updated with her employee information after the previous boss left late last month. Both of these changes require
UPDATE statements that contain a WHERE clause to narrow down the number of changed records based on the employee name.
Using iSQL*Plus, we can perform these two updates at once. Here are the results of the two UPDATE operations.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Using iSQL*Plus, we can perform these two updates at once. Here are the results of the two UPDATE operations.

Notice that the results of both UPDATE statements appear at the bottom of the iSQL*Plus browser window.

The INSERT Statement

Whenever new employees are hired in Scott’s widget company, new rows must be added to the EMP table. The INSERT
statement does just that. Here’s the basic INSERT syntax:
INSERT INTO tablename [(column1 [, column2 ...])]
   VALUES (value1 [, value2 ... ]);

This format of the INSERT statement inserts only one row at a time. In Scott’s company, the boss realizes that she should
probably leave the old boss’s employee information intact, and just add herself as a new row in the table. To handle this for her,
we need to perform both an UPDATE and an INSERT on the EMP table. The two statements and their results are as follows:
update EMP set ENAME = ‘KING’ where ENAME = ‘QUEEN’;

insert into EMP (EMPNO, ENAME, JOB, MGR, HIREDATE,
    SAL, COMM, DEPTNO)
values (7878, ‘QUEEN’, ‘PRESIDENT’, NULL, ‘15-AUG-2002’,
    7500, NULL, 10);

 
 1 row updated.

 1 row created.

Notice that while the case of the keywords and column names is important only for readability, the text within the single quotation
marks is case sensitive and must represent the exact text to be searched or the exact text to be inserted into the table’s column.

Warning It is technically possible to create a column name with mixed case, but this technique is not recommended. This is
because the column name must be specified with the same exact case in double quotation marks whenever it is
referenced in any SQL command.

What does the NULL value mean? NULL is a special keyword that means literally nothing. It is not the same as a blank or an
empty string. It means that the value inserted for this column in this row is unknown or not applicable. When this value is displayed
as the result of a SELECT statement, it displays with blanks. In the case of the MGR column, the PRESIDENT employee has no
boss, so this column is NULL for the former employee KING and the current employee QUEEN. The format for date columns—in
this case, for the column HIREDATE—will be explained in Chapter 3, "Oracle Database Functions."

The DELETE Statement

As the name implies, the DELETE statement will remove rows from a database table. You can delete all rows or use a WHERE
clause to specify rows, similar to the UPDATE statement. Here’s the syntax:
DELETE [FROM] tablename
   [WHERE condition];

The FROM keyword is optional, but it makes the DELETE statement more readable (otherwise, it looks like you’re deleting the table
itself!). In the case of Scott’s company, all of the employees hired in the last recruitment drive on August 18, 2002 and added to
the EMP table will be working for the company’s subsidiary instead, so they must be deleted from the EMP table. Here’s the
DELETE statement to accomplish this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DELETE statement to accomplish this:

The MERGE Statement

The MERGE statement is new for Oracle9i, and it performs an operation that could be called an "upsert." It combines two
operations that would normally need to be performed separately—an INSERT or an UPDATE—depending on whether the row
already exists in the table.

Combining these two operations not only makes the application developer’s coding more straightforward (by not needing to
perform an explicit compare operation with multiple UPDATE and INSERT statements), but it also reduces the number of
operations performed on the table. These operations are also performed internally to the database, which makes the operation
even more efficient because the additional statement parsing does not need to occur. The syntax is as follows:
MERGE INTO tablename alias
   USING (tablename2 | view | subquery) alias2
   ON (join_condition)
   WHEN MATCHED THEN
      UPDATE SET
         col1 = col1_value [, col2 = col2_value ... ]
   WHEN NOT MATCHED THEN
      INSERT (column_list) VALUES (column_values);

The basic syntax is fairly straightforward and easy to use. When the source table and the target table match on one or more
columns (in the join_condition), the row is updated with an UPDATE statement; otherwise, the row is inserted with an INSERT
statement. Many of the components of the MERGE statement, such as view and subquery, will be covered in later chapters.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DDL for Handling Database Objects
DDL stands for Data Definition Language. This class of statements allows the user or DBA to add, change, or drop database
objects, such as tables, indexes, views, and so forth. While most ordinary users and developers can create their own tables in a
development environment, the DBA must still provide a solid infrastructure for these tables by providing the appropriate location
and disk space allocation parameters. This will ensure that database tables are created efficiently, regardless of who is creating
them.

DDL (Data Definition Language)

Includes statements such as CREATE, ALTER, and DROP to work with objects such as tables. DDL modifies the
structure of the objects in a database instead of the contents of the objects.

The following sections introduce the key DDL statements: CREATE, ALTER, DROP, RENAME, and TRUNCATE. For the ALTER, DROP,
RENAME, and TRUNCATE DDL operations, the table to be modified must either be owned by the user executing the DDL statement
or the user must have the privilege to perform that operation in any schema.

The CREATE Statement

Tables are probably the most frequently created object in the database, second only to indexes (depending on the type of
database, as discussed in Chapter 12, “Making Things Run Fast (Enough)”). The basic CREATE TABLE statement has the
following syntax:
CREATE TABLE [schema.]tablename
   (column1 datatype1 [DEFAULT expression]
      [, ...]);

A schema is a group of related tables and other objects that is owned by a single user, whose username is the same as the
schema name. In the context of the CREATE TABLE statement, if the table itself will not be created in the schema of the user
executing the CREATE TABLE statement, the schema name must be specified. In addition, the user creating the table must have
the correct privileges to create the table in a different schema. (Permissions and privileges are covered in Chapter 11.)

schema

A group of related database objects assigned to a database user. A schema contains tables, views, indexes,
sequences, and SQL code. The schema name can be used to qualify objects that are not owned by the user
referencing the objects.

At the simplest level, a table must have one or more columns, and each of these columns must be of a specified type: a character
string, a numeric type, a date type, a long binary value, and so forth. These columns can all have NULL values, or they can be
specified as being required for every row. If the user does not specify a value for a column in an INSERT statement, a DEFAULT
value can be specified for this column when the table is created.

It turns out that Scott’s company is going to segregate the part-time employees into a new table. The new table will be very similar
to the existing EMP table, except that the new table will have an hourly wage rate instead of a salary and a commission. Starting
with the existing structure of the EMP table, we can construct a new CREATE TABLE statement as follows:
CREATE TABLE EMP_HOURLY (
  EMPNO     NUMBER (4)    NOT NULL,
  ENAME     VARCHAR2 (10),
  JOB       VARCHAR2 (9),
  MGR       NUMBER (4),
  HIREDATE  DATE,
  HOURRATE  NUMBER (5,2)  NOT NULL DEFAULT 6.50,
  DEPTNO    NUMBER (2),
  CONSTRAINT PK_EMP
  PRIMARY KEY ( EMPNO ) );

Notice that only the employee number and the hourly rate are required fields. In addition, the hourly rate defaults to $6.50 an hour
if it is not specified in the INSERT statement. Below are the results of the CREATE TABLE statement in iSQL*Plus, along with a
confirmation of the table structure using the iSQL*Plus DESCRIBE command.

The CONSTRAINT and PRIMARY KEY clauses ensure that every table should have one column, or a combination of columns, that
makes the table’s row unique within the table. This makes the identification of a row much easier and less ambiguous when you’re
doing an UPDATE, a DELETE, or a SELECT operation. You’ll learn more about ensuring unique values in Chapter 10, "Creating and
Maintaining Database Objects."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tip You can also use the CREATE TABLE AS SELECT (CTAS) version of CREATE TABLE to quickly create a new version
of an existing table, with some or all of the rows from the source table. CTAS is covered in Chapter 10.

The ALTER Statement

The ALTER statement allows the user to make some kind of change to some object in the database. The ALTER statement’s full
syntax is very complex. For the purposes of this book, the ALTER statement will be used to add, delete, or change a column in a
table. The ALTER statement syntax can then be simplified to one of three statements:
ALTER TABLE tablename
   ADD (column1 datatype1 [DEFAULT expression] [, ...]);
ALTER TABLE tablename
   MODIFY (column1 datatype1 [DEFAULT expression] [,...]);
ALTER TABLE tablename DROP COLUMN column1;

A new company policy has been implemented at Scott’s company that mandates a new default hourly rate of $7.25. The
EMP_HOURLY table must be modified to reflect this new policy. We can use the second form of the ALTER TABLE statement
shown above to accomplish this task. It also turns out that there is one manager for all hourly employees; therefore, we do not
need a MGR column in the EMP_HOURLY table. We can use the third form of the ALTER TABLE statement shown above to
accomplish this additional task.
ALTER TABLE EMP_HOURLY
  MODIFY (HOURRATE  NUMBER(5,2) DEFAULT 7.25);
ALTER TABLE EMP_HOURLY
  DROP COLUMN MGR;
DESCRIBE EMP_HOURLY;

Table altered.

Table altered.

 Name                         Null?    Type
 ---------------------------- -------- ----------------
 EMPNO                        NOT NULL NUMBER(4)
 ENAME                                 VARCHAR2(10)
 JOB                                   VARCHAR2(9)
 HIREDATE                              DATE
 HOURRATE                     NOT NULL NUMBER(5,2)
 DEPTNO                                NUMBER(2)

If columns are dropped or modified in a table, the values of the other columns in the table, as well as the total number of rows in
the table, remain the same. If a new column is added to a table with existing rows, the value for this column in the existing rows is
NULL, unless the column is required. If the column is required, a DEFAULT value must be specified when the column is added.

The DROP Statement

When a table is no longer needed, it can be dropped. Both the table definition and the rows in the table are dropped, and the
space allocated for the table is made available for other database objects. The syntax for the DROP statement is about as simple
as it gets:
DROP TABLE tablename;

The HR department at Scott’s company was maintaining the list of retirees in an EMP_RETIRED table. Once the new management
came in a couple of months ago, the retiree-tracking function was outsourced, so the EMP_RETIRED table is no longer needed.
Here is how it is dropped:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DROP TABLE EMP_RETIRED;

Table dropped.

As with most other DDL operations, the table to be dropped either must be owned by the user executing the DROP statement or
the user must have the privilege to drop a table in any schema.

The RENAME Statement

The RENAME statement is also very straightforward. A table name can be changed to another name; references by other database
objects, such as indexes that refer to the renamed table, are automatically adjusted. The syntax is as follows:
RENAME old_tablename TO new_tablename;

Scott’s company is changing the employee categorization method to differentiate between temporary part-time workers and
permanent part-time workers. Therefore, a new table, EMP_HOURLY_TEMP, must be created, and the existing EMP_HOURLY table
must be renamed to EMP_HOURLY_PERM:
RENAME EMP_HOURLY TO EMP_HOURLY_PERM;

Table renamed.

Warning Any references to the old table in program code (such as C code using OCI) or in stored SQL scripts must be
changed manually to reflect the new table name.

The TRUNCATE Statement

From the perspective of the user, the TRUNCATE statement is similar to the DELETE statement. Both of the statements will delete
rows from a table. The main difference is that the DELETE can be more selective (in other words, using a WHERE clause). The
TRUNCATE statement simply removes all rows from a table. The TRUNCATE statement will also appear to run faster than a
DELETE in most cases.

From a DBA’s point of view, however, the TRUNCATE and DELETE statements are very different. The TRUNCATE statement will
immediately free any space from the deleted rows. The space from any rows deleted with DELETE will remain allocated to the
table, and it may possibly be reused by future INSERT operations into the table. Also, the TRUNCATE statement is not recoverable;
rows removed with DELETE can be recovered with a ROLLBACK statement. (Rolling back transactions is discussed in Chapter 7,
"Logical Consistency.")

The syntax for TRUNCATE is very straightforward:
TRUNCATE TABLE tablename;

In Scott’s corporate database, one of the developers inadvertently loaded the EMP_HOURLY table with 50,000 rows from the wrong
table. The developer realizes that the DELETE statement would fix this, but that the DBAs would be concerned about the space
that would not be reclaimed. The table didn’t have any rows to begin with, so the developer determines that TRUNCATE would be
the best option. Here is the command to remove all the rows, so that the table is now empty:
TRUNCATE TABLE EMP_HOURLY;

Table truncated.

The table to be truncated must be in the user’s schema or the user must have the privilege to drop a table in another user’s
schema (the same privilege that allows the user to completely drop the table).

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DCL for Handling Privileges
DCL stands for Data Control Language. DCL statements can give or take away privileges to database objects or privileges to
perform certain actions. At a minimum, most users are granted the right to connect to the database. Many users may not need to
create tables, so they are not granted that privilege.

DCL (Data Control Language)

Includes statements such as GRANT and REVOKE to provide or deny users or roles system or object privileges.

Privileges can also be granted to a role. A role is a way to bundle together multiple privileges into a single entity. This makes it
easier to grant a group of privileges to one or more users in one easy step, rather than needing to enumerate each of those
privileges every time you want to grant them to a new user (or to another role). The converse is also true: It’s easier to revoke a
role from a user than to remove the individual privileges that make up the role. System privileges, object privileges, and roles are
discussed in more detail in Chapter 11. The following sections provide an overview of the GRANT and REVOKE statements.

role

A group of related privileges that is referenced by a single name. Privileges can be assigned to a role, and a role
can be assigned to a database user or to another role. Roles ease the maintenance issues with managing
privileges for a large number of users who can be grouped into a relatively small number of categories based on
job function.

The GRANT Statement

The GRANT statement is almost self-explanatory. GRANT will give a privilege (either object or system) to a user, a role, or to all
users. The basic syntax for granting both system and object privileges is as follows:
GRANT sys_privilege [, sys_privilege ...]
   TO user | role | PUBLIC [, user | role | PUBLIC ...];
GRANT obj_privilege [(column_list)] ON object
   TO user | role | PUBLIC
[WITH GRANT OPTION];

Granting object privileges with the [WITH GRANT OPTION] clause allows the user or users granted that role the ability to pass
those rights onto yet another user or role.

Suppose that Scott has acquired additional responsibilities and now must help to maintain the tables in the order-entry system,
specifically the ORDER_ITEMS table owned by the user OE. The DBA grants the rights on this table to user SCOTT using the
following command:
GRANT INSERT, UPDATE, DELETE, SELECT ON
   OE.ORDER_ITEMS TO SCOTT;

Grant succeeded.

Scott can now add, delete, update, and view rows in the OE.ORDER_ITEMS table. He cannot, however, grant these privileges to
other users or roles, since the WITH GRANT OPTION clause was not used by the DBA.

The REVOKE Statement

As you would expect, the REVOKE statement is the opposite of the GRANT statement. Either system privileges or object privileges
can be revoked with the following basic syntax:
REVOKE obj_privilege | ALL [, obj_privilege] ON object
   FROM user | role | PUBLIC [, user | role | PUBLIC ...];
REVOKE sys_privilege | ALL [, sys_privilege ...]
   FROM user | role | PUBLIC [, user | role | PUBLIC ...];

When the DBA granted the rights to SCOTT to work with the ORDER_ITEMS table, he noticed that the user OE had the DBA role
assigned! This was obviously an oversight, so he corrected the situation immediately by using the REVOKE statement to remove
the DBA role from OE:
REVOKE DBA FROM OE;

Revoke succeeded.

The user OE retains all other object and system privileges granted by the DBA and other users.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What are the three types of DML (Data Manipulation Language) statements?

2. If the user SCOTT is granted the privilege to insert records on the OE.WAREHOUSES table using the command
GRANT INSERT ON OE.WAREHOUSES WITH GRANT OPTION, what does the WITH GRANT OPTION clause
allow SCOTT to do?

3. Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

4. What two methods are used to rename a column in the report output of a SQL SELECT statement?

5. ODBC provides what capability to client applications?

6. Which SELECT statement keyword removes duplicate rows from the result of the query?

7. What is the name of the set of library routines that allows a developer to send SQL statements from a C program?

8. What are some of the differences between a DELETE and a TRUNCATE statement?

9. The new MERGE statement combines the functionality of which two other DML statements?

10. What function does the DESCRIBE command perform in SQL*Plus or iSQL*Plus?

Answers

1. The three types of DML statements are INSERT, UPDATE, and DELETE.

2. It allows SCOTT to grant another user, such as HR, the same INSERT privilege on the OE.WAREHOUSES table.

3. iSQL*Plus runs on only the middleware tier where the Apache web server is running. However, Apache can run on the client
with the user who is executing the SQL statements, on its own dedicated server, or on the same server as the Oracle
database.

4. You can rename a column in the report output by using the SQL*Plus or iSQL*Plus column command, or by specifying the
alias name next to the column name in the SQL SELECT statement.

5. ODBC (Open Database Connectivity) provides a client application that supports SQL commands and the capability to
connect to a variety of different database servers without knowing the specific details as to how to connect and interact
directly with the database.

6. The DISTINCT keyword removes duplicate rows. If there is only one column in the result of a SQL query, there will be no
duplicates of that column returned in the query result. If there are two columns in the result of the query, there will be one row
returned for each unique combination of values in the first and the second column.

7. The library routines for sending SQL statements from a C program are called the OCI (Oracle Call Interface).

8. A DELETE statement may be rolled back, whereas a TRUNCATE is implicitly committed. The DELETE statement can
conditionally specify which rows to delete, but a TRUNCATE statement removes the contents of the entire table. A DELETE
statement retains the disk space in the table for future inserts or updates, but a TRUNCATE statement frees the disk space for
other tables or database objects.

9. MERGE combines the functionality of INSERT and UPDATE.

10. The DESCRIBE command displays the structure of a table, including the column name, datatype, and whether the column is
a required field.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
alias

connection identifier

DCL (Data Control Language)

DDL (Data Definition Language)

DML (Data Manipulation Language)

host string

JDBC (Java Database Connectivity)

OCI (Oracle Call Interface)

ODBC (Open Database Connectivity)

ODBC driver

OEM (Oracle Enterprise Manager)

role

schema

SQL (Structured Query Language)

thin client

tiers

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 3: Oracle Database Functions
Every DBA needs to know about built-in functions. Many of the day-to-day tasks of a DBA involve queries, and these queries often
need to transform or summarize information in database tables and views. Many DBAs will also create and maintain a library of
customized functions (also known as user-defined functions) for business areas in the company and help to deploy these user-
defined functions.

This chapter covers the built-in functions and provides an introduction to user-defined functions. However, before we dig into the
functions themselves, we’ll talk about some of the general rules for building queries, including how the DUAL table is used, how
NULL values work, and how numbers and strings are constructed.

Query Basics
In order to use functions, you need to know how to call them and how to construct their arguments. This section begins by
explaining how the DUAL table allows you to use queries that don’t involve a real table. Next, you’ll learn about the ubiquitous
NULL value and how it acts as a double-edged sword at times. Then it covers string literals and how to construct larger strings
from one or more other strings and columns. Finally, you’ll learn about numeric literals and operator precedence.

Once you know how to use the SELECT statement with the DUAL table, along with how string and numeric literals work, you’ll be
ready to explore the built-in functions. You’ll see that they are a potent tool to put into your DBA bag of tricks.

The DUAL Table

Because Oracle SQL is table-centric, most operations performed with SQL must reference some kind of table or view. For
example, consider the following SQL statement:
SELECT NAME;

SELECT NAME
          *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

This returns an error, because the basic syntax of a SELECT statement requires that you select FROM something—in this case, a
table.

But what if you want to use the SELECT statement to perform some calculations or do some other operation that doesn’t involve a
particular table, such as check the system date and time? The DUAL table makes this possible. You reference the DUAL table
when you need a table for syntactical reasons, not necessarily for the data in the table.

DUAL

A special table, owned by the Oracle SYS user, that has one row and one column. It is useful for ad-hoc queries
that don’t require rows from a specific table.

The DUAL table is a real table. It’s owned by the user SYS and has one row. The table has only one column, which is named
DUMMY and has a string with a length of 1. The value of DUMMY in the one and only row is X. You can see the DUAL table’s
structure in the iSQL*Plus output shown below.

It’s true that anyone could create a table like this, with one row, and accomplish the same thing. But it’s good practice to have one
place where you always have one row and you always know the table name.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since DUAL is a real table, you could certainly do something like this:
select sysdate, dummy from dual;

SYSDATE   D
--------- -
31-AUG-02 X

1 row selected.

But you already know what the value of DUMMY is in DUAL, so you really don’t need to include this field on a query with DUAL.

And to make it clear that DUAL is a table just like any other, you could also do something like this:
select sysdate from dept;

SYSDATE
---------
31-AUG-02
31-AUG-02
31-AUG-02
31-AUG-02

4 rows selected.

Since the DEPT table has four rows, you get the SYSDATE four times.

Since you really need only one row, the DUAL table will fill the bill nicely:
select sysdate from dual;

SYSDATE
---------
31-AUG-02

1 row selected.

Note The DUAL table originally had two rows in early versions of Oracle, thus the origin of the table name.

NULLs: What, When, Why, and How

Simply put, a NULL value in an Oracle table is nothing. A NULL is not zero, a blank character, or an empty string. It is no value
whatsoever. NULLs can be the source of much consternation when a query is not returning the expected results.

NULL

A possible value for any Oracle column that indicates the absence of any known value for that column. A NULL
is usually used to represent a value that is unknown, not applicable, or not available.

Using a NULL in an arithmetic expression returns a NULL, regardless of what other operands and operations are in the expression.
As an example, consider the following query:
select 5+8, 5+0, 5+null, null+null from dual;

5+8        5+0        5+NULL     NULL+NULL
---------- ---------- ---------- ----------
        13          5

1 row selected.

NULL values are useful, however, to indicate when a value is unavailable, unknown, or not applicable. For example, the
commission for an employee who is not in the Sales department would be NULL, or the department assigned to a new employee
could be NULL.

Note In certain functions—for example NVL, NVL2, and COALESCE—a NULL value as an argument to the function will return
a non-NULL result. This result is the exception, not the rule.

String Literals and Concatenating Strings

A string literal in a SQL query is a sequence of zero, one, or more characters enclosed in single quotation marks (called quotes
for short). Here are some valid string literals:

‘JOHN SMITH’

‘’

‘123 Main St.’

string literal

A constant that can consist of any string of letters, digits, and special characters enclosed in single quotation
marks.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


String literals may be combined with other string literals or table columns, and they may also be arguments to a function. Note that
a zero-length string is not the same as a NULL string. You may use a NULL string to indicate that a value is missing or not yet
known, and a zero-length string to indicate that the value is blank, but known. For example, a new employee may not have a
middle initial, and therefore their middle initial would be set to a zero-length string. But until we find out that they don’t have a
middle initial, it will temporarily be set to a NULL string.

Concatenation is the process of combining two or more string literals or columns into a single result. The concatenation operator
|| (two vertical bars) is used between the strings or columns to be combined. Alternatively, you can use the built-in string function
CONCAT.

concatenation

The process of combining two or more data elements into a single element. In Oracle SQL, concatenation can
be accomplished by using the concatenation operator (a pair of vertical bars, ||) or the CONCAT function.

The following query demonstrates how string literals and database columns may be concatenated and act as arguments of a
function:
select
   ‘Employee: ‘ || initcap(ename),
   concat(‘Dept: ‘,deptno)
   from emp;

‘EMPLOYEE:’||INITCAP CONCAT(‘DEPT:’,DEPTNO)
-------------------- --------------------------
Employee: Smith      Dept: 20
Employee: Allen      Dept: 30
Employee: Ward       Dept: 30
Employee: Jones      Dept: 20
Employee: Martin     Dept: 30
Employee: Blake      Dept: 30
Employee: Clark      Dept: 10
Employee: Scott      Dept: 20
Employee: King       Dept: 10
Employee: Turner     Dept: 30
Employee: Adams      Dept: 20
Employee: James      Dept: 30
Employee: Ford       Dept: 20
Employee: Miller     Dept: 10

14 rows selected.

In the above query, there are two columns in the output: the string literal ‘Employee: ’ concatenated with the result of a string
function on employee name and the string literal ‘Dept: ’ concatenated with the department number of the employee. Notice
how the case of a string is preserved within the single quotes. This example demonstrates both the concatenation operator ||
and the CONCAT function. Which you use depends on how many strings are to be concatenated, as well as programming style. If
you have more than two or three strings to concatenate, using vertical bars is more readable than using the CONCAT function over
and over. However, if you are dealing with translating your queries from one character set to another on a different platform,
vertical bars may not translate correctly; in this case, using the CONCAT function would be the best option for concatenating any
number of strings.

Numeric Literals

Numeric literals in Oracle are very straightforward and are similar to what is allowed in many programming languages: the digits
0–9, an optional decimal point, an optional sign, and an optional exponent using the letter E with its own optional sign. Here are
some valid numeric literals:

1.456

–.01

00000052

+12.10

–3.774E–16

numeric literal

A constant that can consist of numeric digits, plus the characters +, -, ., and E.

Numbers are stored internally in scientific notation, with up to 20 bytes for the mantissa and 1 byte for the exponent. This results
in a maximum precision of up to 38 digits.

Operators and Operator Precedence

Operator precedence specifies the order in which the operators are applied to the arguments of a mathematical expression when
there is more than one operator in the expression. Think back to your middle school algebra class when you had to answer
questions such as “A man bought 20 chickens and ducks, with a $2 discount per chicken and 50 cent discount per duck…” and
you’ll probably remember a few things about the order in which you had to evaluate an expression, once you figured out why a
man was buying the chickens and ducks.

For example, the expression 5 * 6 + 10 is typically evaluated in most programming languages by multiplying 5 by 6, then
adding 10 to the result. The expression 10 + 5 * 6 is typically evaluated in a similar manner. Because multiplication has a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


adding 10 to the result. The expression 10 + 5 * 6 is typically evaluated in a similar manner. Because multiplication has a
higher precedence than addition, 5 is multiplied by 6 first, then 10 is added to the result. If you want to add 10 to 5 first, then
multiply that result by 6, write the expression with parentheses to override the assumed precedence: (10 + 5) * 6.

For operators that have an equal precedence, such as addition and subtraction or multiplication and division, the expression is
evaluated left to right. The expression 10 / 6 * 5 is evaluated by dividing 10 by 6 first, then multiplying the result by 5. When
two operators have the same precedence, it’s a good idea to use parentheses to eliminate any possible ambiguity: (10 / 6) *
5.

The rules for operator and conditional operator precedence in Oracle SQL are very similar to the rules in other programming
languages such as C++ and Visual Basic. All standard operators have precedence over conditional operators.

Oracle’s standard and conditional operators are presented in Table 3.1, listed in order of precedence (from highest to lowest).

Table 3.1: Standard and Conditional Operators and Precedence

Operator/Conditional Description

+, - (unary), PRIOR Positive, negative, tree traversal

*, / Multiplication, division

+, - (binary), || Addition, subtraction, concatenation

=, !=, <, >, <=, >= Comparison operators

IS [NOT] NULL, LIKE, [NOT] BETWEEN, [NOT] IN,
EXISTS, IS OF

SQL-specific comparison operators

**, NOT Exponentiation, logical negation

AND True if both operands are true

OR True if either operand is true

UNION, UNION ALL, INTERSECT, MINUS Set operators

The use of the standard and conditional operators will be explained throughout the rest of this book.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Built-in Single-Row Functions
The previous sections covered all the basics of a SELECT statement using DUAL and how strings and numbers are constructed,
compared, and combined. Now we can start looking at some of Oracle’s built-in single-row functions that operate on strings and
numbers in database table columns.

In both Oracle SQL and most programming languages, a function is a predefined set of steps that can be accessed using a
common name. A function may include zero, one, or more arguments that are passed to the function, and it may return a result.
For example, the SQRT function calculates the square root of a number and returns a value of 1.414214 when called with an
argument of 2: SQRT(2) = 1.414214.

function

A named set of predefined programming language commands that performs a specific task given zero, one, or
more arguments and returns a value.

Single-row functions are functions that may have zero, one, or more arguments, and will return one result for each row returned
in the query. Functions can be called in the SELECT, WHERE, and ORDER BY clauses of a SELECT statement. (The WHERE and
ORDER BY clauses are used to restrict and organize query output, as explained in the next chapter.)

single-row function

Functions that may have zero, one, or more arguments, and will return one result for each row returned in a
query.

Note All of these functions are available for use in both SQL and PL/SQL (Oracle’s SQL-based programming language). As
of Oracle9i, SQL and PL/SQL share the same core SQL engine.

In this section, we’ll cover the highlights of Oracle’s string functions, numeric functions, date functions, conversion functions, and
general functions that don’t fall neatly into any of the other categories.

String Functions

String functions are functions that perform some kind of transformation on a string literal, a column containing a string, or an
expression consisting of string literals and table columns. String functions will return a string as the result of the transformation.
Table 3.2 briefly describes the built-in string functions.

string function

A function that operates on string literals, columns containing strings, or an expression containing string literals
and table columns, returning a string as the result.

Let’s consider some practical uses for string functions. Now that Scott’s widget company is off the ground, Scott regrets some of
the shortcuts he took when creating the initial version of the database. The users don’t find the reports very readable, and it would
look a lot better if the names were in uppercase and lowercase.

Table 3.2: Built-in String Functions

Function Description

ASCII Returns the decimal equivalent of the first character of a string

CHR Given a decimal number, returns the ASCII equivalent character

CONCAT Concatenates two strings

INITCAP Converts the first letter of each word in a string to uppercase

INSTR Searches a string for an occurrence of another string

LENGTH Returns the length of a string

LOWER Converts all characters in a string to lowercase

LPAD Left-fills a character string with a given character for a specified total length

LTRIM Trims a specific character from the front of a string

REPLACE Replaces occurrences of a specified string within another string

RPAD Right-fills a string with a given character for a specified total length

RTRIM Trims a specific character from the end of a string

SOUNDEX Returns a phonetic equivalent of a string

SUBSTR Returns a specified portion of a string

TRANSLATE Converts single characters to alternate single characters in a string

TRIM Removes leading, trailing, or both leading and trailing characters from a string

UPPER Converts all characters in a string to uppercase

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The INITCAP function offers a quick way to clean up names and addresses that may be in all uppercase, all lowercase, or mixed
case. It will work for a first pass over the data to at least make the names and addresses somewhat readable. Until Scott can
overhaul the database, he can use the INITCAP function and column aliases to make things look a bit better:
select empno "Empl#", initcap(ename) "EmplName" from emp;

     Empl# EmplName
---------- ----------
      7369 Smith
      7499 Allen
      7521 Ward
      7566 Jones
      7654 Martin
      7698 Blake
      7782 Clark
      7788 Scott
      7839 King
      7844 Turner
      7876 Adams
      7900 James
      7902 Ford
      7934 Miller

14 rows selected.

Note The INITCAP function cannot capitalize mixed-case names correctly. For example, if one of the employee names were
McDonald, the INITCAP function would not capitalize that name correctly (unless there was a space between MC and
DONALD, which wouldn’t be right either).

The next day, the Publications department wants to put the employee numbers and names on an intranet web page. The web
page designers would like the employee number left-justified and the employee name right-justified, for a total width of 40
characters. Between the employee number and name must be a series of dots (or periods). To provide the complete 40-character
field, Scott must use the LENGTH and LPAD functions in addition to what he already had from the example above.
select empno || lpad(initcap(ename),40-length(empno),’.’)
"Employee Directory" from emp;

Employee Directory

7369...............................Smith
7499...............................Allen
7521................................Ward
7566...............................Jones
7654..............................Martin
7698...............................Blake
7782...............................Clark
7788...............................Scott
7839................................King
7844..............................Turner
7876...............................Adams
7900...............................James
7902................................Ford
7934..............................Miller

14 rows selected.

This query uses three string functions: two of them are nested within another function, plus a concatenation operation. Let’s break
down the query to clarify how it works.

As you’ve seen, the function call INITCAP(ename) changes the first letter of each word to uppercase. The function call
LENGTH(empno) returns the length of a character string. In this case, there is an implicit conversion of a numeric type to a string
type. An implicit conversion occurs automatically when Oracle evaluates an expression; conversely, an explicit conversion
occurs when the SQL statement makes no assumptions about how Oracle will convert one datatype to another and uses one or
more of the built-in functions to perform the conversion. The column is converted to a character string, and the length of the
converted character string is returned.

implicit conversion

Conversion of one datatype to another that occurs automatically when columns or constants with dissimilar
datatypes appear in an expression.

explicit conversion

Conversion of one datatype to another in an expression using function calls such as TO_CHAR instead of relying
on automatic conversion rules (implicit conversion).

The LPAD function will left-pad a character string to a specified number of characters with the character you specify. Scott wants
to end up with a total of 40 characters, so he subtracts the number of characters that the employee number would take up. Here,
he will left-pad the employee name with periods, less the amount of space taken up by the employee number. Once the LPAD
function is evaluated, he will concatenate the employee number at the front, and once again, he will allow the implicit conversion
of the employee number from numeric to string.

Finally, Scott wants the title for the report to look readable, so he assigns a column alias to the result of the concatenated function
calls. The column alias can act as a report title.

Numeric Functions

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Numeric functions are functions that perform some kind of transformation on a numeric literal, a column containing a number, or
an expression consisting of numeric literals and table columns. Numeric functions will return a number as the result of the
transformation. Table 3.3 briefly describes the built-in numeric functions.

numeric function

A function that operates on numeric literals, columns containing numbers, or an expression containing numeric
literals and table columns, returning a number as the result.

Table 3.3: Built-in Numeric Functions

Function Description

ABS Returns the absolute value of the argument

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

ATAN2 Returns the arc tangent of two values

BITAND Performs a bitwise AND on two arguments

CEIL Returns the next highest integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Raises e (2.718281828…) to the specified power

FLOOR Returns the next lowest integer

LN Returns the natural logarithm (base e)

LOG Returns the base 10 logarithm

MOD Returns the remainder of the first argument divided by the second

POWER Raises a number to an arbitrary power

ROUND Returns a rounded value to an arbitrary precision

SIGN Returns -1 if the argument is negative, 0 if 0, or 1 if positive

SIN Returns the sine

SQRT Returns the square root of the argument

TAN Returns the tangent

TRUNC Truncates a number to an arbitrary precision

Scott’s company has survived its first month and has even turned a small profit. Scott wants to find a way to distribute the first
month’s profits in a fair manner, so he turns to the company mathematician and statistician, Julie. She suggests that the
employees get a one-time bonus that is based on the square root of their current salary. Scott can run the following query to see
what the potential bonuses might be using the SQRT function:
select ename, sal, sqrt(sal) from emp;

ENAME             SAL  SQRT(SAL)
---------- ---------- ----------
SMITH             700 26.4575131
ALLEN            1600         40
WARD             1250 35.3553391
JONES            2975 54.5435606
MARTIN           1250 35.3553391
BLAKE            2850 53.3853913
CLARK            2450 49.4974747
SCOTT            3000 54.7722558
KING             5000 70.7106781
TURNER           1300 36.0555128
ADAMS            1100 33.1662479
JAMES             950   30.82207
FORD             3000 54.7722558
MILLER           1600         40

14 rows selected.

Scott seems to like this idea, since the bonuses for the highest paid workers are not as big of a percentage of their base wage as
they are for the lowest paid workers.

The report is a bit unreadable; Scott wants the bonus rounded to two digits with a better heading for the bonus. The new query
looks something like this, using the ROUND function:
select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

ENAME             SAL      Bonus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ENAME             SAL      Bonus
---------- ---------- ----------
SMITH             700      26.46
ALLEN            1600         40
WARD             1250      35.36
JONES            2975      54.54
MARTIN           1250      35.36
BLAKE            2850      53.39
CLARK            2450       49.5
SCOTT            3000      54.77
KING             5000      70.71
TURNER           1300      36.06
ADAMS            1100      33.17
JAMES             950      30.82
FORD             3000      54.77
MILLER           1600         40

14 rows selected.

The report is looking better, but the Bonus column is still not formatted quite right. We’ll look at ways to fix this in the section on
conversion functions later in this chapter.

Since a lot of employees are on commission, Scott may want to base the bonus on both the salary and commission. We’ll look at
how to do this in the section on general functions.

Date Functions

Date functions are functions that perform some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions will return a date or a string containing a portion of the
date as the result of the transformation. Table 3.4 describes the date-related functions.

date function

A function that performs some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions return a date or a string containing a
portion of the date as the result of the transformation.

Table 3.4: Built-in Date Functions

Function Description

ADD_MONTHS Increments a date value by a number of months

CURRENT_DATE Returns the current date for the session’s time zone

CURRENT_TIMESTAMP Returns the current date and time in the session’s time zone to a particular
precision

DBTIMEZONE Returns the database time zone as an offset in hours and minutes from UTC

EXTRACT Returns a portion of the date and time (e.g., hour, month) from a timestamp value

FROM_TZ Returns a timestamp with time zone for a given combination of an individual
timestamp and time zone

LAST_DAY Returns the last day of the month for a given date

LOCALTIMESTAMP Returns the current date and time in the session’s time zone to a given precision

MONTHS_BETWEEN Returns the numeric number of months between two date arguments

NEW_TIME Returns a date in a second time zone given a date in the first time zone

NEXT_DAY Finds the next occurrence of a specific day of the week given a date

ROUND Rounds a date value to a specific unit of time

SESSIONTIMEZONE Returns the database time zone (DBTIMEZONE) unless altered during the session

SYS_EXTRACT_UTC Returns the UTC for a timestamp with time zone value

SYSDATE Returns the current date and time

SYSTIMESTAMP Returns a timestamp with time zone for the database date and time

TRUNC Truncates a date value to a specified unit of time

TZ_OFFSET Converts a text time zone to a numeric offset

Note Date and time handling has been greatly enhanced in Oracle9i. Not only can the precision of Oracle9i’s new timestamp
datatypes support fractions of a second to nine decimal places, new functions and system parameters have been
added to smooth the process of handling Oracle servers and sessions across multiple time zones. This is handy for
companies with national and international business.

When Scott started his widget company, he hired most of the people away from a competitor. As part of the employment
agreement, he kept the new employees’ original hire date for the new company. He wants to see how many employees have been
working for the company (or competitor) more than 250 months. He can run this query to get the answer:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, hiredate, months_between(sysdate,hiredate)
       "Months" from emp;

ENAME      HIREDATE      Months
---------- --------- ----------
SMITH      17-DEC-80 260.608914
ALLEN      20-FEB-81  258.51214
WARD       22-FEB-81 258.447624
JONES      02-APR-81 257.092785
MARTIN     28-SEP-81 251.254076
BLAKE      01-MAY-81 256.125043
CLARK      09-JUN-81 254.866979
SCOTT      19-APR-87 184.544398
KING       17-NOV-81 249.608914
TURNER     08-SEP-81 251.899237
ADAMS      23-MAY-87 183.415366
JAMES      03-DEC-81 249.060527
FORD       03-DEC-81 249.060527
MILLER     23-JAN-82 247.415366

14 rows selected.

Note that there are two functions being called: SYSDATE and MONTHS_BETWEEN. SYSDATE has no arguments; it merely returns
the current date and time, so the parentheses must be omitted. The MONTHS_BETWEEN function returns the difference between
dates in months. If you wanted to know the number of days instead, you would not need the MONTHS_BETWEEN function and
could use the expression SYSDATE-HIREDATE instead. Date arithmetic returns values in units of days.

Conversion Functions

As the name implies, conversion functions convert between numbers, strings, and date values. The common conversion functions
are described in Table 3.5.

Table 3.5: Built-in Conversion Functions

Function Description

ASCIISTR Converts non-ASCII characters to ASCII

CAST Converts one datatype to another

NUMTODSINTERVAL Converts a number and a character string representing a unit of time to an
INTERVAL DAY TO SECOND type

NUMTOYMINTERVAL Converts a number and a character string representing a unit of time to an
INTERVAL YEAR TO MONTH type

TO_CHAR Converts a date or a number to character format

TO_DATE Converts a character format date to a DATE datatype

TO_DSINTERVAL Converts a character string to an INTERVAL DAY TO SECOND datatype

TO_NUMBER Converts a character string to an internal numeric format

TO_YMINTERVAL Converts a character string to an INTERVAL YEAR TO MONTH datatype

Scott knows he can improve on the query he used to see which employees have been with the company more than 250 months.
Rather than see the number of months since the original hire date, he wants to see the dates when the employee will reach or has
reached the 250-month mark. For this result, he will use the NUMTOYMINTERVAL function to add 250 months to the hire date.
select ename, hiredate, hiredate +
       numtoyminterval(250,’month’) "250 Months" from emp;

ENAME      HIREDATE  250 Month
---------- --------- ---------
SMITH      17-DEC-80 17-OCT-01
ALLEN      20-FEB-81 20-DEC-01
WARD       22-FEB-81 22-DEC-01
JONES      02-APR-81 02-FEB-02
MARTIN     28-SEP-81 28-JUL-02
BLAKE      01-MAY-81 01-MAR-02
CLARK      09-JUN-81 09-APR-02
SCOTT      19-APR-87 19-FEB-08
KING       17-NOV-81 17-SEP-02
TURNER     08-SEP-81 08-JUL-02
ADAMS      23-MAY-87 23-MAR-08
JAMES      03-DEC-81 03-OCT-02
FORD       03-DEC-81 03-OCT-02
MILLER     23-JAN-82 23-NOV-02

14 rows selected.

Scott could have used the function TO_YMINTERVAL(‘20-10’) to add 20 years and 10 months (250 months total) to the hire
date. Whether to use one method or another depends on how you want to specify the format—as a discrete number of months or
years or as a combination of months and years.

Now that Scott knows more about the conversion functions, he wants to revisit one of the queries he wrote previously:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

The problem with this query was that the default numeric formatting didn’t look good, even after applying the ROUND function.
Scott can apply another function here, TO_CHAR, to force the bonus to have two decimal places, even if the bonus does not have
any significance beyond the first decimal point. The TO_CHAR function specifies the value to be formatted and the desired format,
and it can be used to format both numbers and date values. Here, Scott wants to fix that rounded number:
select ename, sal, to_char(round(sqrt(sal),2),’9999.99’)
       "Bonus" from emp;

ENAME             SAL Bonus
---------- ---------- --------
SMITH             700    26.46
ALLEN            1600    40.00
WARD             1250    35.36
JONES            2975    54.54
MARTIN           1250    35.36
BLAKE            2850    53.39
CLARK            2450    49.50
SCOTT            3000    54.77
KING             5000    70.71
TURNER           1300    36.06
ADAMS            1100    33.17
JAMES             950    30.82
FORD             3000    54.77
MILLER           1600    40.00

14 rows selected.

In addition to the ‘9’ digit in the format, you can use ‘0’ to force leading zeros, a ‘$’ to show dollar amounts, a ‘-’ for leading
or trailing signs, commas to make large numbers more readable, or even roman numerals. Table 3.6 shows a few sample numeric
formats and how the value 7322.8 would look in that format.

Table 3.6: Numeric Format Examples Using TO_CHAR

Format Result

99999.99 7322.80

$999.999 #########

00999.90 07322.80

99,999.99 7,322.80

S9999 +7323

9.9999EEEE 7.3228E+03

Notice that when a number will not fit into the format provided, it is displayed as all #s. Notice also that rounding will automatically
occur if there are not enough positions to the right of the decimal to accommodate the entire number.

General Functions

The category of general functions covers all of the functions that don’t fit neatly into a single category. Many of them are shortcuts
that allow the DBA or developer to avoid needing to use PL/SQL for certain types of processing, such as a conditional operation
that would normally require more than one statement. Table 3.7 briefly describes the general functions.

Table 3.7: Built-in General Functions

Function Description

CASE Allows embedded IF-THEN-ELSE logic in a SQL statement

COALESCE Returns the first non-NULL value from a list of values

DECODE Compares an expression to a list of possible values and returns a specified
corresponding return value

DUMP Displays the internal value of an Oracle datatype

GREATEST Returns the highest value in a list of values given the sort order

LEAST Returns the lowest value in a list of values given the sort order

NULLIF Given two expressions, returns NULL if they are equal

NVL Given two expressions, returns the second if the first one is NULL
NVL2 Given three expressions, returns the third if the first one is NULL, and returns the

second if the first one is not NULL

Scott is continuing to analyze the profitability versus expenses in his widget company by looking at the total compensation for
each employee. Most employees are salaried, but a few are salaried with a commission. Scott’s first attempt at a total
compensation calculation is something like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, sal+comm from emp;

ENAME        SAL+COMM
---------- ----------
SMITH
ALLEN            1900
WARD             1750
JONES
MARTIN           2650
BLAKE
CLARK
SCOTT
KING
TURNER           1300
ADAMS
JAMES
FORD
MILLER

14 rows selected.

Wait a minute, what happened to the salaries for the other employees? As noted earlier in the chapter, NULL values provide a
great benefit in that they can indicate that a value is unknown, unavailable, or not applicable. However, when combined in some
kind of calculation with non-NULL values, the result will always be NULL. For example, adding 15 to an unknown value will result in
a new value that is also unknown.

In the case of the employee salaries and commissions, however, Scott wants to treat the commissions as zero if they are NULL for
the purpose of calculating total compensation. For this, he will use the NVL function. NVL takes two arguments. The first argument
is compared to NULL, and if it is NULL, it returns the second argument; otherwise, it returns the first argument. Scott’s query can
be modified with the NVL function to produce the correct results:
select ename, sal+nvl(comm,0) from emp;

ENAME      SAL+NVL(COMM,0)
---------- ---------------
SMITH                  700
ALLEN                 1900
WARD                  1750
JONES                 2975
MARTIN                2650
BLAKE                 2850
CLARK                 2450
SCOTT                 3000
KING                  5000
TURNER                1300
ADAMS                 1100
JAMES                  950
FORD                  3000
MILLER                1600

14 rows selected.

That looks a lot better. Other, more esoteric functions such as VSIZE are more often used by DBAs to determine how much
space a particular column for a particular row is using, in bytes:
select ename, vsize(ename), sal, vsize(sal) from emp;

ENAME      VSIZE(ENAME)        SAL VSIZE(SAL)
---------- ------------ ---------- ----------
SMITH                 5        700          2
ALLEN                 5       1600          2
WARD                  4       1250          3
JONES                 5       2975          3
MARTIN                6       1250          3
BLAKE                 5       2850          3
CLARK                 5       2450          3
SCOTT                 5       3000          2
KING                  4       5000          2
TURNER                6       1300          2
ADAMS                 5       1100          2
JAMES                 5        950          3
FORD                  4       3000          2
MILLER                6       1600          2

14 rows selected.

The lengths for the employee names make sense, but why would a salary of 3000 take up less space than a salary of 2450? This
is because all numbers are stored internally in scientific notation. Only the 3 from the 3000 salary needs to be stored with an
exponent of 3, whereas the salary 2450 is stored as 2.45 with an exponent of 3. More digits of precision require more storage
space in Oracle’s variable internal numeric format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User-Defined Functions
Even though many functions come prewritten and packaged with the default installation of the Oracle software, sometimes you
need some functionality that cannot be provided by those built-in functions. Oracle’s programming language, PL/SQL, which
stands for Programming Language SQL, can come to the rescue.

The advanced techniques on how functions, procedures, and packages are constructed and used are beyond the scope of this
book. Here, you’ll get an introduction to user-defined functions, including a look at how you could write a custom function that’s
available to all database users.

user-defined function

A function that is written by an analyst, user, or database adminstrator and does not come as part of the default
installation of the Oracle server software.

Using PL/SQL, a database analyst, database user, or a database administrator can construct a user-defined function. A user-
defined function has the same characteristics as a built-in function. It will take zero, one, or more values and return a single value
as its result. Functions in Oracle, whether they are built-in or written by a developer or DBA, are often known as stored functions,
since the source code and the compiled code are both stored in the database.

stored function

A sequence of PL/SQL variable declarations and statements that can be called as a unit, passing zero or more
arguments and returning a single value of a specified datatype. Built-in stored functions are created when the
database software is installed. Customized or user-defined functions are defined by application developers or
DBAs.

As an example, let’s once again consider Scott’s burgeoning widget company. Since the company is still small, Scott must
perform the duties of both an application developer and a DBA. The HR department appears to frequently run queries that
combine the employee name, job, and department into a formatted string for display on both web pages and corporate
documents. To standardize the format of this string throughout the organization, Scott wrote a function called FORMAT_EMP that
can be used by any department to display the employee name, job, and department, as follows:
Department: 10     Employee: Smith     Title: Shipping

Scott creates his stored function like this:
create or replace function
  FORMAT_EMP (DeptNo IN number,
              EmpName IN varchar2,
              Title IN varchar2) return varchar2
is
  concat_rslt   varchar2(100);
begin
  concat_rslt :=
    ‘Department: ‘ || to_char(DeptNo) ||
    ‘   Employee: ‘ || initcap(EmpName) ||
    ‘   Title: ‘ || initcap(Title);
  return (concat_rslt);
end;

The first line of this command will create the function if it doesn’t exist or replace it if it already exists. The next three lines define
what kinds of values are going to be provided as input to the function, as well as what kind of value will be returned. In this
example, Scott will provide the FORMAT_EMP function with a number and two strings, and he expects a string to be returned. He
needs to create the function only once. By default, only the user who created the function can use it.

Line 6 declares a local variable called concat_rslt, which will temporarily hold the formatted string result. In a stored procedure
or function, all of the actual processing occurs between the begin and the end keywords. In lines 8 to 11, the variable
concat_rslt is assigned the formatted value using some of the Oracle built-in functions. Finally, in line 12, the function returns
the result to the calling program, which, in this case, is a SQL statement similar to the following:
select format_emp(deptno,ename,job) from emp;

Department: 20   Employee: Smith   Title: Clerk
Department: 30   Employee: Allen   Title: Salesman
Department: 30   Employee: Ward   Title: Salesman
Department: 20   Employee: Jones   Title: Manager
Department: 30   Employee: Martin   Title: Salesman
Department: 30   Employee: Blake   Title: Manager
Department: 10   Employee: Clark   Title: Manager
Department: 20   Employee: Scott   Title: Analyst
Department: 10   Employee: King   Title: President
Department: 30   Employee: Turner   Title: Salesman
Department: 20   Employee: Adams   Title: Clerk
Department: 30   Employee: James   Title: Clerk
Department: 20   Employee: Ford   Title: Analyst
Department: 10   Employee: Miller   Title: Clerk

14 rows selected.

Note that the names you give for the parameters in the function need not be the same as the names of the columns in the table
you’re using. In fact, you could use this function just as well with some values that aren’t even in a table:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select format_emp(189,’JOHNSEN’,’OP MGR’) from dual;

Department: 189   Employee: Johnsen   Title: Op Mgr

1 row selected.

Notice how you can use objects such as stored functions for standardization within an organization. An Accounting department
employee does not need to remember how to format the employee information, because the formatting is kept in a common
location via the stored function.

Scott can grant rights for other departments to use this function also. As an added bonus for the DBA, only a single copy of this
function is stored in the shared pool for use by an unlimited number of users. This reduces the overall memory requirements for
the database and can improve the response time for a query.

shared pool

An area of memory within the total amount of memory allocated for the Oracle database that can hold recently
executed SQL statements, PL/SQL procedures and packages, as well as cached information from the system
tables.

Note It’s important for the DBA to keep track of how many stored procedures and functions are running during the course of
a business day, because there are memory and performance implications for the objects that share space in the
database’s shared pool. If there are too many other SQL statements and frequent accesses to database control
structures, then the stored functions and procedures may be temporarily removed from the shared pool, thus affecting
the response time the next time the user calls the stored function or procedure because it must be re-read from disk.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What is another way to write the following SQL statement by using another function?

select empno || lpad(initcap(ename),
40-length(empno),’.’)
"Employee Directory" from emp;

2. Which function would you use to perform an explicit conversion from a number to a string?

3. How can you rewrite the function call NUMTOYMINTERVAL(17,’year’) using the function TOYMINTERVAL?

4. What is the result of a number added to a NULL value?

5. What is the result of formatting the number -232.6 using the format mask ‘9999.99S’?

6. Rank the following operators or conditionals based on priority, from highest to lowest: *, OR, ||, >=

7. The DUAL table has how many rows and how many columns?

8. True or false: Strings and numbers can be concatenated.

9. Write a SELECT statement with a built-in function or functions that will format the string ‘Queen’ with the ‘!’
character padded for a total of 20 characters on the left side, and with the ‘?’ character padded for a total of 30
characters on the right. (Hint: Use nested functions.)

10. What functionality does the new Oracle TIMESTAMP datatype have over the DATE datatype?

Answers

1. You can rewrite the statement using the CONCAT function:
select concat(empno, lpad(initcap(ename),
40-length(empno),’.’) "Employee Directory" from emp;

2. You can use the TOCHAR function to convert a number to a string.

3. You can rewrite the function call as TOYMINTERVAL(‘17-00’).

4. The result of a number added to a NULL is NULL.

5. The resulting format is 232.60-.

6. *, ||, >=, OR

7. The DUAL table has one row and one column. The column is named DUMMY and has a value of ‘X’.

8. True, before the number is concatenated with the string, it is implicitly converted to a string.

9. select rpad(lpad(‘Queen’,20,’!’),30,’?’) from dual;
RPAD(LPAD(‘QUEEN’,20,’!’),30,’
------------------------------
!!!!!!!!!!!!!!!Queen??????????

10. The TIMESTAMP datatype stores the time in seconds to up to nine digits of precision.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
concatenation

date function

DUAL

explicit conversion

function

implicit conversion

NULL

numeric function

numeric literal

shared pool

single-row function

stored function

string function

string literal

user-defined function

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 4: Restricting, Sorting, and Grouping Data
Unless your database tables are very small, or your data reporting needs are very limited, you will want to restrict the rows
returned from your queries. In cases where you want to see the results of the queries in a particular order, you will want to sort the
results. Grouping the data—for example, grouping sales figures by month, salary totals by department, and so forth—can be done
in conjunction with restricting and sorting the data in a SQL statement.

Scott’s widget company has been growing by leaps and bounds over the past few months, and it has expanded to international
locations. While Scott has enjoyed being the data analyst and DBA, he has turned over these roles to Janice. The employee-
related database tables have been redesigned and turned over to the HR department. All of our examples from this point on will
use the HR schema, which contains the following tables: COUNTRIES, DEPARTMENTS, EMPLOYEES, JOBS, JOB_HISTORY,
LOCATIONS, and REGIONS. The names of these tables should be self-explanatory.

The WHERE Clause
A lot happens in the WHERE clause. This is the place where the rows (with columns both actual and derived) from the list specified
in the SELECT clause _are trimmed down to only the results you need to see. Starting with the syntax described in Chapter 2,
"SQL*Plus and iSQL*Plus Basics," we can expand the SELECT statement syntax as follows:
SELECT * | {[DISTINCT] column | expression [alias], ...}
   FROM tablename
[WHERE condition ... ];

The WHERE clause may have one or more conditions, separated by AND and OR and optionally grouped in parentheses to override
the default precedence.

From the perspective of the table, the SELECT clause slices a table vertically, and the WHERE clause slices it horizontally.

Comparison Conditions

A WHERE clause will often compare one column’s value to a constant or compare two of the columns to each other in some way.
Table 4.1 lists the comparison operators that are valid within a WHERE clause.

Table 4.1: Comparison Operators

Comparison Operator Definition

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<>, !=, ^= Not equal to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In Chapter 3, “Oracle Database Functions,” you learned about operator precedence. The comparison operators are lower in
precedence only to the arithmetic operators *, /, +, and – and the concatenation operator ||. This makes a lot of sense when
you consider how expressions are typically used in WHERE clauses: Some kind of arithmetic operation is performed on one or
more columns or constants, and that result is compared to another constant, column, or arithmetic operation on one or more
columns or constants. For instance, consider this WHERE clause:
where salary * 1.10 > 24000

This example will evaluate SALARY * 1.10 first, and then do the comparison _to 24000.

In Scott’s widget company, another corporate shakeup has occurred, and King is once again the president of the company.
Janice, in her analyst role, is running some reports against the EMPLOYEES table for King, whose first task is to do a thorough
salary review for all employees who have salaries that are within $10,000 of his salary. Janice knows that King’s salary is $24,000,
so she will specify this numeric literal in the query, along with the $10,000 for the difference in salary:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where salary + 10000 > 24000;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       100 King                           24000
       101 Kochhar                        17000
       102 De Haan                        17000

3 rows selected.

A few things come to mind right away. First, King himself is in the list. You will learn how to remove his name in the next section.
Janice could have also written the WHERE clause the other way around:
where 24000 < salary + 10000;

and the results of the query would be the same. Janice could have also saved a bit of processing time by calculating the salary
cutoff number before writing the query:
where salary > 14000;

How you write your WHERE clause may be about style, readability, and documentation more than it is about processing speeds,
which is why the first version of the WHERE clause might be the best choice.

Note Column aliases are not allowed in the WHERE clause. The actual column names must be used.

AND, OR, and NOT

The WHERE clause using comparison operators is really powerful, but in reality, you usually have more than one condition for
selecting rows. Sometimes you need all of the conditions to be true, sometimes you need only one of the conditions to be true,
and sometimes you want to specify what you don’t need. You can accomplish this by using AND, OR, and NOT in your WHERE
clauses.

Using an AND between two comparison conditions will give you rows from the table that satisfy both conditions. In one of the
queries above, Janice noticed that King’s name was returned in the query that was looking for other employees that had salaries
close to King’s. There is no need to include King in this query. Since Janice knows King’s employee ID, she can remove him from
the results of those queries by adding an AND condition, as follows:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where salary + 10000 > 24000
    and employee_id != 100;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       101 Kochhar                        17000
       102 De Haan                        17000

2 rows selected.

The rules of precedence tell us that AND is very low on the list, and therefore the AND operation is performed last in the WHERE
clause. However, for clarity, it doesn’t hurt to add parentheses to make the conditional expressions more obvious:
where (salary + 10000 > 24000)
    and (employee_id != 100);

There are other ways to remove King from the query. We’ll discuss some of these methods in Chapter 6, “Advanced SQL
Queries.”

Now King decides that he wants to include anyone who works in the IT department, in addition to those whose salaries are close
to his. Janice recognizes that this is a job for the OR operator. She modifies the query to include those employees who are in the
IT department, using the JOB_ID column:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where (salary + 10000 > 24000)
    and (employee_id != 100)
    or job_id = ‘IT_PROG’;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       101 Kochhar                        17000
       102 De Haan                        17000
       103 Hunold                          9000

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       103 Hunold                          9000
       104 Ernst                           6000
       105 Austin                          4800
       106 Pataballa                       4800
       107 Lorentz                         4200

7 rows selected.

Since the AND has a higher priority than the OR, the salary and employee ID comparisons are evaluated to see if they are both
true; if so, the row is returned. If either one or the other is not true, the row might still be returned if the employee is in the IT
department. Janice can make this WHERE clause more readable by putting in the parentheses, even if they’re not needed:
where ((salary + 10000 > 24000)
and (employee_id != 100))
or (job_id = ‘IT_PROG’);

Tip When in doubt about operator precedence, use parentheses. Extra parentheses add a negligible amount of processing
time and provide additional documentation benefits.

Janice expects that the other shoe will drop in a month or two, when King will ask for a report that has everyone else in it. This is a
good place to use NOT. Janice can use this operator to negate the entire set of conditions that gave the first set of rows, thus
returning the rest of the rows:
select employee_id "Emp ID", last_name "Last Name",
   salary "Salary" from employees
   where not
   (
      (salary + 10000 > 24000)
      and (employee_id != 100)
      or job_id = ‘IT_PROG’
   )
;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       100 King                           24000
       108 Greenberg                      12000
       109 Faviet                          9000
       110 Chen                            8200
...
       203 Mavris                          6500
       204 Baer                           10000
       205 Higgins                        12000
       206 Gietz                           8300

100 rows selected.

Note how Janice merely put the entire previous WHERE clause into parentheses and added a NOT in the front. One query returns a
given set of rows, and a second query returns everything but the given set of rows. So, between the two queries, she has covered
the entire table. Janice will have this report ready for King when he asks for it.

BETWEEN, IN, and LIKE

The BETWEEN, IN, and LIKE operators provide more ways to trim down the number of rows returned from a query. BETWEEN
gives you an easy way to check for a value that falls within a certain range. The IN operator can help you find values in a list.
LIKE can help you find character strings that match a certain pattern. Adding NOT to these will give you just the opposite set of
rows.

BETWEEN a Rock and a Hard Place
The BETWEEN operator in a WHERE clause will limit the rows to a range that is specified by a beginning value and an ending value;
the range is inclusive. The values can be dates, numbers, or character strings. The column values to be compared will be
converted to the datatypes of the values in the BETWEEN operator as needed.

Each quarter at Scott’s widget company, employees are recognized for years of service to the company. Janice is in charge of
generating the report that lists the employees who have their anniversary within the next three months. Her query will use one of
the functions mentioned in the previous chapter, EXTRACT, which returns one of the individual components of a DATE datatype.
select employee_id "Emp ID", department_id "Dept ID",
   hire_date "Hire Date",
   last_name || ‘, ‘ || first_name "Name" from employees
   /* Oct to Dec */  
   where extract(month from hire_date) between 10 and 12;

    Emp ID    Dept ID Hire Date Name
---------- ---------- --------- ----------------------
       113        100 07-DEC-99 Popp, Luis
       114         30 07-DEC-94 Raphaely, Den
       116         30 24-DEC-97 Baida, Shelli
       118         30 15-NOV-98 Himuro, Guy
       123         50 10-OCT-97 Jasper, Susan Abigail
       124         50 16-NOV-99 Mourgos, Kevin
       130         50 30-OCT-97 Atkinson, Mozhe
       135         50 12-DEC-99 Gee, Ki
       138         50 26-OCT-97 Stiles, Stephen
       141         50 17-OCT-95 Rajs, Trenna
       145         80 01-OCT-96 Russell, John
       148         80 15-OCT-99 Cambrault, Gerald
       154         80 09-DEC-98 Cambrault, Nanette

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       154         80 09-DEC-98 Cambrault, Nanette
       155         80 23-NOV-99 Tuvault, Oliver
       160         80 15-DEC-97 Doran, Louise
       161         80 03-NOV-98 Sewall, Sarath
       162         80 11-NOV-97 Vishney, Clara
       191         50 19-DEC-99 Perkins, Randall

18 rows selected.

There is a lot going on in this query. First, notice that the columns are all aliased to make the output much more readable.

Janice also uses the concatenation operator || to make the output more readable. She could have used the CONCAT function
here, although she would need to use it twice to get the same results.

There is also something else new in this example: the /* and */. These characters denote a comment in Oracle SQL. A
comment is used to help document the SQL code that you’re writing. Documenting your SQL code is good not only for other
developers who may need to modify your code in the future, but also for you when, months from now, you can’t quite remember
why you used a particular table or function!

comment

Documentation for SQL statements. Comments are specified by using the pair /* and */ or by using --.

Alternatively, you can use -- to specify a comment, like this:
select * from employees -- All columns needed for finance

The main difference between using /* */ and -- is that the latter form treats everything to the end of the line as a comment,
whereas the former treats everything as a comment until the closing */ is reached, which may be on the same line or several
lines later.

Note Although both /* */ and -- can almost be used interchangeably, the /* */ form must be used after the SELECT
keyword when specifying optimizer hints. See Chapter 12, "Making Things Run Fast (Enough)," for details on how to
specify hints to the optimizer.

Last, but not least, the query has the BETWEEN operator. The EXTRACT function will return a value from 1 to 12, and if this value
falls in the range of 10 to 12, then the row is returned from the query.

What happens if you change the BETWEEN operator slightly and reverse the order of the months?
where extract(MONTH from HIRE_DATE) between 12 and 10;

Your intuition might tell you that this form of the WHERE clause would work, since 11 would still be between 12 and 10, just as 11 is
between 10 and 12. But it doesn’t work. This is because of how Oracle’s SQL engine translates the arguments of the BETWEEN
operator. When processing the query, Oracle changes BETWEEN to a pair of comparisons joined with an AND, as follows:
where extract(MONTH from HIRE_DATE) >= 12 and
      extract(MONTH from HIRE_DATE) <= 10;

Since no number can be at the same time greater than or equal to 12 and less than or equal to 10, no rows will be returned from a
query with this WHERE clause.

IN the Thick of Things
The IN operator makes it easy to specify a list of values to search for in a WHERE clause. The IN clause contains a list of one or
more values, separated by commas and enclosed in parentheses:
IN (value1, value2, ...)

It is ideal for situations where the values to be selected aren’t in a range that the BETWEEN operator (or a pair of comparisons
with an AND) can easily handle.

At Scott’s widget company, one of the vice presidents, one of the store managers, and one of the purchasing managers will be
temporarily moving to Chicago to open a new branch office. The employees who report to them will also move. The manager IDs
for these positions are 102, 114, and 121. Janice writes a query to identify the people who are moving along with their managers:
select employee_id "Emp ID", manager_id "Mgr ID",
   last_name || ‘, ‘ || first_name "Name" from employees
   where manager_id in (102, 114, 121);

    Emp ID     Mgr ID Name
---------- ---------- ----------------------------
       103        102 Hunold, Alexander
       115        114 Khoo, Alexander
       116        114 Baida, Shelli
       117        114 Tobias, Sigal
       118        114 Himuro, Guy
       119        114 Colmenares, Karen
       129        121 Bissot, Laura
       130        121 Atkinson, Mozhe
       131        121 Marlow, James
       132        121 Olson, TJ
       184        121 Sarchand, Nandita
       185        121 Bull, Alexis
       186        121 Dellinger, Julia
       187        121 Cabrio, Anthony

14 rows selected.

The IN operator could be rewritten with a series of OR conditions, but once you need to use more than two or three values, the
advantages of using IN become apparent.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


advantages of using IN become apparent.

Note The Oracle SQL engine converts the IN operator to a series of OR conditions at runtime.

As you might expect, NOT IN is also valid. If the query you want to write sounds something like, "I want all the values except for
these two or three…," then NOT IN is probably a good choice.

What’s Not to Like about LIKE?
The LIKE operator lets you do pattern matching in a query. You know how to search for exact strings and numbers, but in some
cases, you know only a few digits of the number or a portion of the string you need to find.

pattern matching

Comparing a string in a database column to a string containing wildcard characters. These wildcard characters
can represent zero, one, or more characters in the database column string.

The LIKE operator can be used interchangeably with an equal sign, except that the string specified with LIKE can contain
wildcard characters. The wildcard characters allowed in LIKE are %, which represents zero or more characters, and _, which
represents exactly one character.

For example, the pattern ‘Sm_th%’ will match ‘Smith’ and ‘Smythe’, but not ‘Smooth’. The pattern ‘%o%o%’ will match any
string that contains at least two lowercase o characters.

Janice is writing an ad-hoc query for Employee Services that will retrieve the job titles that have the word “Manager” somewhere in
the title. She uses the LIKE operator:
select job_id, job_title from jobs
   where job_title like ‘%Manager%’;

JOB_ID     JOB_TITLE
---------- -----------------------------------
FI_MGR     Finance Manager
AC_MGR     Accounting Manager
SA_MAN     Sales Manager
PU_MAN     Purchasing Manager
ST_MAN     Stock Manager
MK_MAN     Marketing Manager

6 rows selected.

Note When numbers or dates are used with the LIKE operator, they are converted to character strings using the default
conversion rules before comparing to the LIKE string.

What happens when you want to search for the _ or % characters themselves? The job IDs in Scott’s corporate database use
underscores, so Janice would get erroneous results if she specified ‘ST_’ in the LIKE string to find store-related jobs. This would
also return jobs that had ‘ASSISTANT’ or ‘COSTMGR’ in the job ID. To solve this problem, she uses the ESCAPE option of the
LIKE clause. The ESCAPE option lets you define a special character—one that you don’t expect to find in your strings—to use
before _ or % to indicate that you’re actually looking for a _ or % character. To find all the job descriptions for jobs that are store-
related, and therefore begin with ‘ST_’, Janice uses the following query:
select job_id, job_title from jobs
where job_id like ‘ST\_%’ escape ‘\’;

JOB_ID     JOB_TITLE
---------- -----------------------------------
ST_MAN     Stock Manager
ST_CLERK   Stock Clerk

2 rows selected.

The ESCAPE option is used only with LIKE, and it tells the SQL engine to treat the character that follows literally instead of as a
wildcard character. Notice in the above example that the underscore is "escaped," but the % acts as it normally does and specifies
that zero or more characters follow.

Warning DBAs should keep an eye out for queries that use LIKE extensively. While this operator is very easy and intuitive
for the user, queries with LIKE will scan the entire table, rather than use an index, unless there are no wildcards at
the beginning of the string in the LIKE operator.

IS NULL and IS NOT NULL

As mentioned in previous chapters, NULLs can be very useful in the database for saving disk space and for identifying values that
are unknown, as opposed to being blank or zero. The key to understanding NULLs is to know that they are not equal to anything.
Therefore, NULLs won’t work with the standard comparison operators, such as +, /, >, =, and so forth. Janice learned this the
hard way when she wanted to identify employees who made a commission of less than 15% or no commission at all. Here is the
query she used:
select employee_id "Emp ID", last_name "Name", commission_pct "Comm%"
from employees where commission_pct < 0.15;

    Emp ID Name                           Comm%
---------- ------------------------- ----------
       164 Marvins                           .1
       165 Lee                               .1
       166 Ande                              .1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       166 Ande                              .1

       167 Banda                             .1
       173 Kumar                             .1
       179 Johnson                           .1

6 rows selected.

This list appears to be way too short. That is because the rows in the EMPLOYEES table with NULL values for the commission do
not pass the criteria of being less than 0.15; they don’t compare to any value because they are unknown.

This is where the IS NULL and IS NOT NULL operators come to the rescue. These two operators are the only ones that can do
a direct comparison to values that are NULL in a database row. For Janice to fix her query, she needs to add an IS NULL
condition to her WHERE clause:
select employee_id "Emp ID",
      last_name "Name", commission_pct "Comm%"
from employees
      where commission_pct < 0.15
      or commission_pct is null;

    Emp ID Name                           Comm%
---------- ------------------------- ----------
       100 King
       101 Kochhar
       102 De Haan
...
       164 Marvins                           .1
       165 Lee                               .1
       166 Ande                              .1
       167 Banda                             .1
       173 Kumar                             .1
       179 Johnson                           .1
       180 Taylor
...
       205 Higgins
       206 Gietz

78 rows selected.

Warning Be careful when constructing queries that operate on columns that can contain NULL values. A NULL is not the
same as FALSE; it is the absence of a known value. This is a by-product of three-valued logic, where we have not
just TRUE and FALSE, but TRUE, FALSE, and UNKNOWN.

You’ll see in the section on GROUP BY how multirow functions handle NULL values in a reasonable and expected way.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The ORDER BY Clause
You often need to see the results of a query in some kind of order; in other words, sorted by the values in one or more columns,
either in ascending order or descending order. By default, columns are sorted in ascending order, but for completeness, you can
use the ASC keyword. You use the DESC keyword to specify that a column should be sorted in descending order.

The syntax diagram for SELECT is expanded for ORDER BY as follows:
SELECT * | {[DISTINCT] column | expression [alias], ...}
  FROM tablename
  [WHERE condition ... ]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

The Web Intranet group has requested that the list of employees from HR arrive sorted in ascending order. Janice is able to
produce this report quickly by adding an ORDER BY to the existing query.
select employee_id || lpad(last_name,40-length(employee_id),’.’)
"Employee Directory" from employees
order by last_name;

Employee Directory

174.................................Abel
166.................................Ande
130.............................Atkinson
105...............................Austin
204.................................Baer
116................................Baida
167................................Banda
172................................Bates
...
155..............................Tuvault
112................................Urman
144...............................Vargas
162..............................Vishney
196................................Walsh
120................................Weiss
200...............................Whalen
149..............................Zlotkey

107 rows selected.

The column or columns to be sorted don’t necessarily need to be in the SELECT clause. If there are NULL values in a column to
be sorted, they will appear at the end if the sort is ascending, and they will appear first if the sort is descending.

As you might expect, you can combine both ascending and descending sorts in the same ORDER BY clause. The president, King,
needs a monthly report that shows the salaries for each department, in ascending order of department number but in descending
order for the salary amount. Janice comes up with the following query for King:
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
order by department_id asc, salary desc;

 Dept Employee                           Salary
----- ------------------------------ ----------
   10 Whalen, Jennifer                     4400
   20 Hartstein, Michael                  13000
   20 Fay, Pat                             6000
   30 Raphaely, Den                       11000
   30 Khoo, Alexander                      3100
   30 Baida, Shelli                        2900
   30 Tobias, Sigal                        2800
   30 Himuro, Guy                          2600
   30 Colmenares, Karen                    2500
   40 Mavris, Susan                        6500
...
   90 King, Steven                        24000
   90 Kochhar, Neena                      17000
   90 De Haan, Lex                        17000
  100 Greenberg, Nancy                    12000
  100 Faviet, Daniel                       9000
  100 Chen, John                           8200
  100 Urman, Jose Manuel                   7800
  100 Sciarra, Ismael                      7700
  100 Popp, Luis                           6900
  110 Higgins, Shelley                    12000
  110 Gietz, William                       8300
      Grant, Kimberely                     7000

107 rows selected.

Tip Unlike a WHERE clause, an ORDER BY clause can contain a column alias.

The ASC keyword is not required, but it is specified here for clarity. Notice also how an employee with a NULL department number

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The ASC keyword is not required, but it is specified here for clarity. Notice also how an employee with a NULL department number
will end up at the bottom of the list in an ascending sort.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Group Functions and the GROUP BY Clause
This section explains how you can group rows together and perform some kind of aggregate operation on them. For example,
you may want to count the rows for a given condition, calculate averages of numeric columns, or find the highest or lowest value
for a given column in a query result.

aggregate

A type of function in Oracle SQL that performs a calculation or transformation across multiple rows in a table,
rather than just on a single row.

The GROUP BY clause fits into the SELECT statement as follows:
SELECT * | {[DISTINCT] column | expression [alias]

         | group_function(column), ...}
  FROM tablename
  [WHERE condition ... ]
  [GROUP BY group_expression, group_expression ...]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

All group functions ignore NULLs by default. If you wanted to calculate the average commission across employees, you would
most likely not want to consider employees who are not in the sales area (and therefore have a NULL commission value). On the
other hand, you might want to treat NULL values numerically in other situations. You will see later in this chapter how you can
convert NULL values with the NVL function.

Group Functions

Table 4.2 lists some of the most commonly used group functions in SQL statements. The COUNT function is the only aggregate
function that will count rows with NULL values in any column when * is used as an argument.

Table 4.2: Common Group Functions

Function Description

COUNT Counts the number of rows, either all rows or for non-NULL column values

AVG Calculates the average value of a column

SUM Returns the sum of values for a column

MIN Returns the minimum value for all column values

MAX Returns the maximum value for all column values

STDDEV Calculates the standard deviation for a specified column

All of the functions listed in Table 4.2 have a calling sequence as follows:
function([DISTINCT | ALL] expression)

As mentioned earlier, the COUNT function allows for * as its only argument, to specify that rows are to be counted, whether or not
they have NULL values. The COUNT, MIN, and MAX functions apply to date and string expressions in addition to numeric
expressions; the rest must have numeric arguments only.

The DISTINCT keyword indicates that duplicates are to be removed before the aggregate calculation is done. For example,
calculating AVG(SALARY) versus AVG(DISTINCT SALARY) would be quite different if most of the employees are at one end of
the pay scale. ALL is the default.

The boss, King, wants to get more information on salary distribution by department, so he asks Janice to give him the count of
employees and the average salary and commission for his department, which has a department ID of 90. Janice runs the following
query:
select count(*), avg(salary),
  avg(commission_pct) from employees
  where department_id = 90;

  COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
---------- ----------- -------------------
         3  19333.3333

1 row selected.

Notice that the average commission in this case is not zero, but NULL; there were no employees in department 90 with a
commission. The result would have been non-NULL, if there were at least one employee who worked on a commission for part of
their salary.

The next morning, the boss asks the same question for department 80, which has the bulk of the commissioned employees.
Janice gets the answer with this query:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select count(*), avg(salary),
  avg(commission_pct) from employees
  where department_id = 80;

  COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
---------- ----------- -------------------
        34  8955.88235                .225

1 row selected.

Janice hears rumors that King is going to ask for a breakdown of the number of employees, how many are on commission, and
how many distinct commission percentages there are. She comes up with this query:
select count(*), count(commission_pct) "Comm Count",
  count(distinct commission_pct) "Distinct Comm"
  from employees;

  COUNT(*) Comm Count Distinct Comm
---------- ---------- -------------
       107         35             7

1 row selected.

What does this tell King? The total number of employees is 107, regardless of whether there are any NULL values in any of the
columns. Of those employees, 35 are on commission (have a non-NULL value for COMMISSION_PCT), and out of those 35, there
are seven different commission levels in force at the company.

Janice also suspects that King will be asking for some statistics for other departments. Rather than run the same query for
different department numbers, she decides that it might be worthwhile to use the GROUP BY function to give King all the
information he needs in a single query.

The GROUP BY Clause

The GROUP BY clause is used to break down the results of a query based on a column or columns. Once the rows are subdivided
into groups, the aggregate functions described earlier in this chapter can be applied to these groups. Note the following rules
about using the GROUP BY clause:

All columns in a SELECT statement that are not in the GROUP BY clause must be part of an aggregate function.

The WHERE clause can be used to filter rows from the result before the grouping functions are applied.

The GROUP BY clause also specifies the sort order; this can be overridden with an ORDER BY clause.

Column aliases cannot be used in the GROUP BY clause.

Janice has been busy preparing a report for King that will break down the salary and commission information by department. Her
first query looks like this:
select department_id "Dept", count(*), avg(salary),
  avg(commission_pct) from employees
  group by department_id;

 Dept   COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ----------- -------------------
   10          1        4400
   20          2        9500
   30          6        4150
   40          1        6500
   50         45  3475.55556
   60          5        5760
   70          1       10000
   80         34  8955.88235                .225
   90          3  19333.3333
  100          6        8600
  110          2       10150
               1        7000                 .15

12 rows selected.

This gives King a breakdown, by department, of the employee count, the average salary, and the average commission. NULLs are
not included in the calculation for commission or salary. King likes this report, but Janice suspects that he will be asking for
something different tomorrow.

One of the departments has a NULL value. There is one employee who has not yet been assigned to a department, but this
employee does have a salary and a commission.

As expected, King calls the next day with another request. He wants to see how the salaries and commissions break out within
department by job function. Janice realizes that all she needs to do is to add the job ID to the query in both the SELECT clause
and the GROUP BY clause:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and the GROUP BY clause:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
  group by department_id, job_id;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
      SA_REP              1        7000                 .15
   10 AD_ASST             1        4400
   20 MK_MAN              1       13000
   20 MK_REP              1        6000
   30 PU_MAN              1       11000
   30 PU_CLERK            5        2780
   40 HR_REP              1        6500
   50 ST_MAN              5        7280
   50 SH_CLERK           20        3215
   50 ST_CLERK           20        2785
   60 IT_PROG             5        5760
   70 PR_REP              1       10000
   80 SA_MAN              5       12200                  .3
   80 SA_REP             29  8396.55172          .212068966
   90 AD_VP               2       17000
   90 AD_PRES             1       24000
  100 FI_MGR              1       12000
  100 FI_ACCOUNT          5        7920
  110 AC_MGR              1       12000
  110 AC_ACCOUNT          1        8300

20 rows selected.

As a side benefit, this also gives King the breakdown of jobs within each department.

Using NVL with Group Functions

As mentioned earlier in this chapter, group functions will ignore NULL values in their calculations. In most cases, this makes a lot
of sense. For example, if only a small handful of employees worked on commission, and you calculated the average commission
with the assumption that a NULL commission was essentially a zero commission, then the average commission would be quite
low!

How you should interpret NULL values in a column depends on the business rules of the company and what NULL values
represent. An average commission is usually based on only those employees who work on commission, and, in this case, the
default behavior of Oracle’s grouping functions makes sense.

However, there may be times when it makes sense to convert NULL values to something that can be aggregated. Let’s assume for
the moment that there is a column called COMMISSION_AMT in the EMPLOYEES table that records the latest monthly commission
received by that employee. Just as with the COMMISSION_PCT column, the COMMISSION_AMT field is NULL for all employees
except those in the Sales department. If King wanted a report of the average salary and commission (if any) by department, the
expression
avg(salary + commission_amt)

in the SELECT clause would give results for only those rows with non-NULL commissions. That would not be what King was
looking for. Janice would need to essentially convert any NULL values to zero. This is what NVL will do, and the expression above
can be rewritten as:
avg(salary + nvl(commission_amt,0))

For each row, if the COMMISSION_AMT is NULL, it is converted to zero (or any other amount you want) and added to SALARY, and
the average is returned after all rows have been read.

The HAVING Clause

The HAVING clause is analogous to the WHERE clause, except that the HAVING clause applies to aggregate functions instead of
individual columns or single-row function results. A query with a HAVING clause still returns aggregate values, but those
aggregated summary rows are filtered from the query output based on the conditions in the HAVING clause.

The HAVING clause fits into the SELECT syntax as follows:
SELECT * | {[DISTINCT] column | expression [alias]

  | group_function(column), ...}
  FROM tablename
  [WHERE condition ... ]
  [GROUP BY group_expression, group_expression ...]
  [HAVING group_condition, ...]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

The queries that Janice wrote for King have the information he needs, but his time is limited and he only wants to see the
breakdowns for the department and job combinations that have average salaries over $10,000. Janice takes the original query
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
group by department_id, job_id;

and adds a HAVING clause that removes the lower average salaries:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and adds a HAVING clause that removes the lower average salaries:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
group by department_id, job_id
having avg(salary) > 10000;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
   20 MK_MAN              1       13000
   30 PU_MAN              1       11000
   80 SA_MAN              5       12200                  .3
   90 AD_VP               2       17000
   90 AD_PRES             1       24000
  100 FI_MGR              1       12000
  110 AC_MGR              1       12000

7 rows selected.

Janice becomes proactive again, and she anticipates that King will want to see only certain jobs in the report. She can easily add
a WHERE clause to select only administrative and sales positions. She uses the LIKE clause to select these job functions:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
where job_id like ‘AD%’ or job_id like ‘SA%’
group by department_id, job_id
having avg(salary) > 10000;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
   80 SA_MAN              5       12200                  .3
   90 AD_VP               2       17000
   90 AD_PRES             1       24000

3 rows selected.

The order of the WHERE, GROUP, and HAVING clauses does not change how the query is run or the results; however, the ordering
shown here is indicative of how the SQL engine processes the command. If an ORDER BY clause was needed in the above query,
it could be placed anywhere after the SELECT clause, but would most logically belong at the end of the query.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Rewrite the following expression using the CONCAT function.

last_name || ‘, ‘ || first_name

2. What are two ways that you can indicate a comment in a SQL command?

3. The SQL engine converts the IN operator to a series of .

4. Rewrite the following WHERE clause to be case-insensitive.
where job_title like ‘%Manager%’;

5. What is the only group function that counts NULL values in its calculation without using NVL or other special
processing?

6. The query results from using aggregate functions with a GROUP BY clause can be filtered or restricted by using
what clause?

7. Identify the two special characters used with the LIKE operator and describe what they do.

8. Name two aggregate functions that work only on numeric columns or expressions, and two other aggregate
functions that work on numeric, character, and date columns.

9. Put the clauses of a SQL SELECT statement in the order in which they are processed.

10. Which operator can do valid comparisons to columns with NULL values?

11. The SQL engine converts the BETWEEN operator to .

12. Where do NULL values end up in a sort operation?

Answers

1. The expression is rewritten as:
concat(concat(last_name, ‘, ‘),first_name)

2. You can indicate a comment in a SQL command by using /* and */ or by using --.

3. The SQL engine converts the IN operator to a series of OR operations.

4. Use the UPPER function to convert the job title to uppercase:
where UPPER(job_title) like ‘%MANAGER%’;

5. The COUNT group function using the syntax COUNT(*) counts NULL values without using NVL.

6. The HAVING clause filters or restricts the query results of the GROUP BY clause.

7. The % character matches zero or more characters, and the character matches exactly one character.

8. AVG and SUM work only on numeric columns; MIN and MAX work on all datatypes.

9. The proper order is: SELECT, WHERE, GROUP BY, HAVING, ORDER BY.

10. The operator is IS NULL.

11. The SQL engine converts the BETWEEN operator to two logical comparisons using >= and <=, connected by an AND
operation.

12. For ascending sorts, the NULL values are at the end; for descending sorts, the NULL values are at the beginning.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
aggregate

comment

pattern matching

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 5: Using Multiple Tables
So far, we have been dealing with only one table at a time in our SQL query examples. But typically the information needed to
satisfy a user query requires more than one table. For example, the EMPLOYEES table has a column with a department number,
but not a department name; the department name must be retrieved from the DEPARTMENTS table. You can get this information
by joining the two tables together on a common column, in this case, the DEPARTMENT_ID column. Two or more tables can also
be joined in situations where the columns may not be equal.

The boss at Scott’s widget company has realized that data can be pulled from more than one table at a time. Now the application
developer and DBA, Janice, has been busy trying to keep up with his requests for reports. Each of the join types will be discussed
in this chapter, as we follow Janice’s work.

Join Syntax: Out with the Old and In with the New (SQL:1999)
Not only can you join two or more tables in a number of different ways, but you can also use two different syntax forms to perform
these joins. As of Oracle9i, the full ANSI SQL:1999 standard for join syntax is supported. Prior to Oracle9i, Oracle used a
proprietary syntax that wasn’t always compatible with the ANSI standard.

join

To combine two or more tables in a query to produce rows as a result of a comparison between columns in the
tables.

Oracle’s proprietary syntax, which is still supported in the current release for backward compatibility with existing code, put all of
the join conditions in the SELECT statement’s WHERE clause. It also relied on relatively obscure methods to indicate certain types
of join operations. The newer syntax relies more heavily on concise yet descriptive keywords to clearly indicate what operation is
being performed. We’ll cover both the old and new syntax in this chapter; as a DBA or developer, you’ll most likely see new
applications using the new syntax, and plenty of existing applications that use the old syntax.

Tip All new SQL code should use the SQL:1999 standard syntax for readability and cross-platform compatibility.

There is no performance benefit to using one syntax over the other; the same kind of join using either syntax will translate into the
same internal SQL engine operation. One of the biggest benefits is the ease in which the new syntax can be written and
understood. The join conditions are now separated from the WHERE clause and placed in the FROM clause. The WHERE clause, if
one even exists, ends up being much cleaner, because it’s used only for filtering the rows being returned from the query, instead
of being intertwined with table join conditions.

In each section of this chapter, you’ll see how the database analyst, Janice, uses both formats for each new query she develops
for the boss.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Equijoins
Equijoins are also commonly known as simple joins or inner joins. Given two or more tables, an equijoin will return the results of
these tables where a common column between any given pair of tables has the same value (an equal value). Equijoins are
typically joins between foreign keys in one table to a primary key in another table.

equijoin

A join between two tables where rows are returned if one or more columns in common between the two tables
are equal and not NULL.

inner join

See equijoin.

Pre-Oracle9i Equijoin Syntax

The boss, King, gets his employee report with only the department ID on it, because the query used for the report is based on only
the EMPLOYEES table. When the company was smaller, he knew automatically that department 100 was the Finance department,
and so on. But now, with almost 30 departments in the company, he needs to see the department name in the report. That
information is in the DEPARTMENTS table. Janice will join the two tables on the common column, DEPARTMENT_ID, and produce a
report that is much more readable.
select employee_id "Emp ID", last_name || ‘, ‘ ||
    first_name "Name", department_name "Dept"
from employees e, departments d
where e.department_id = d.department_id;

    Emp ID Name                      Dept
---------- ------------------------- --------------------
       100 King, Steven              Executive
       101 Kochhar, Neena            Executive
       102 De Haan, Lex              Executive
       103 Hunold, Alexander         IT
       104 Ernst, Janice             IT
       105 Austin, David             IT
...
       201 Hartstein, Michael        Marketing
       202 Fay, Pat                  Marketing
       203 Mavris, Susan             Human Resources
       204 Baer, Hermann             Public Relations
       205 Higgins, Shelley          Accounting
       206 Gietz, William            Accounting

106 rows selected.

Notice that table aliases are used. You’ve already seen quite a few column aliases in previous examples, and tables can be
aliased also, either for clarity or for performance reasons. In this case, the aliases are necessary to identify which columns in
which table are to be compared in this query. Typically, the column names match, but that is not a requirement for columns that
are matched in a WHERE clause.

King tells Janice that the report looks good, but he also wants to see the full job description for each employee. Janice adds
another table to the query, and expands the WHERE clause. She also adds an ORDER BY clause to ensure that the report stays in
employee ID order.
select employee_id "Emp ID",
  last_name "Name", department_name "Dept",
  job_title "Job"
from employees e, departments d, jobs j
where e.department_id = d.department_id
  and e.job_id = j.job_id
order by employee_id;

Emp ID Name       Dept       Job
------ ---------- ---------- -----------------------------
   100 King       Executive  President
   101 Kochhar    Executive  Administration Vice President
   102 De Haan    Executive  Administration Vice President
   103 Hunold     IT         Programmer
   104 Ernst      IT         Programmer
   105 Austin     IT         Programmer
   106 Pataballa  IT         Programmer
...
   205 Higgins    Accounting Accounting Manager
   206 Gietz      Accounting Public Accountant

106 rows selected.

Tip To join together n tables, you need at least n-1 join conditions to avoid undesired Cartesian products, resulting from
combining every row of one table with every row of one or more other tables. Cartesian products are discussed later in
this chapter.

King is still not satisfied with the report, because it’s too long. He wants to see only information about the Finance and Purchasing
department people on a regular basis. Janice updates the query one more time to add another WHERE condition to the query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


department people on a regular basis. Janice updates the query one more time to add another WHERE condition to the query.
select e.employee_id "Emp ID",
  e.last_name "Name", d.department_name "Dept",
  j.job_title "Job"
from employees e, departments d, jobs j
where e.department_id = d.department_id
  and e.job_id = j.job_id
  and e.department_id in (30, 100)
order by e.employee_id;

 Emp ID Name         Dept         Job
------- ------------ ------------ --------------------
    108 Greenberg    Finance      Finance Manager
    109 Faviet       Finance      Accountant
    110 Chen         Finance      Accountant
    111 Sciarra      Finance      Accountant
    112 Urman        Finance      Accountant
    113 Popp         Finance      Accountant
    114 Raphaely     Purchasing   Purchasing Manager
    115 Khoo         Purchasing   Purchasing Clerk
    116 Baida        Purchasing   Purchasing Clerk
    117 Tobias       Purchasing   Purchasing Clerk
    118 Himuro       Purchasing   Purchasing Clerk
    119 Colmenares   Purchasing   Purchasing Clerk

12 rows selected.

Janice already knew the department numbers to use with the IN operator.

Oracle9i Equijoin Syntax

The query that Janice wrote in the previous section works great. However, with all of the conditions specified in the WHERE clause,
including both the table joins and the result filter, it gets cluttered fast. Most of the new options available in the Oracle9i syntax for
joins will help make the query look cleaner, so that it is easier to read and understand. Equijoins can be constructed using the
syntax NATURAL JOIN, JOIN USING, and JOIN ON.

Natural Join
Janice is quickly figuring out how to use the new Oracle9i syntax. She rewrites one of the first queries she wrote in this chapter,
joining just the EMPLOYEES and DEPARTMENTS tables. She uses the NATURAL JOIN clause, since this method will implicitly join
the two tables on columns with the same name:
select employee_id "Emp ID", last_name || ‘, ‘ ||
    first_name "Name", department_name "Dept"
from employees natural join departments;

    Emp ID Name                 Dept
---------- -------------------- --------------------
       101 Kochhar, Neena       Executive
       102 De Haan, Lex         Executive
       104 Ernst, Janice        IT
       105 Austin, David        IT
       106 Pataballa, Valli     IT
       107 Lorentz, Diana       IT
       109 Faviet, Daniel       Finance
...
       155 Tuvault, Oliver      Sales
       184 Sarchand, Nandita    Shipping
       185 Bull, Alexis         Shipping
       186 Dellinger, Julia     Shipping
       187 Cabrio, Anthony      Shipping
       202 Fay, Pat             Marketing
       206 Gietz, William       Accounting

32 rows selected.

Janice is scratching her head, because her first query returned 106 rows, while this one returns only 32. She realizes that the
simplicity of the NATURAL JOIN method is a double-edged sword. NATURAL JOIN matches on all columns that have the same
name and datatype between the tables. On closer inspection, it turns out that the EMPLOYEES and the DEPARTMENTS tables have
both the DEPARTMENT_ID and MANAGER_ID columns in common. The query she wrote is effectively the same as writing this
query in Oracle8i:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e, departments d
where e.manager_id = d.manager_id and
  e.department_id = d.department_id;

This is clearly not what she is looking for. It doesn’t make much sense to join on the MANAGER_ID column because the
MANAGER_ID column in the EMPLOYEES table is the MANAGER_ID of the employee, whereas the MANAGER_ID column in the
DEPARTMENTS table is the manager of the department itself. The query does return the employees whose manager is a
department manager, but this is not what King requested (yet!).

Warning Use NATURAL JOIN only for ad hoc queries where you are very familiar with the column names of both tables.
Adding a new column to a table that happens to have the same name as a column in another table will cause
unexpected side effects with existing queries that use both tables in a NATURAL JOIN.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Join Using
Janice decides to scale back a bit and use another form of the Oracle9i join syntax that still saves some typing but is more explicit
on which columns to join: JOIN ... USING. This form of an equijoin specifies the two tables to be joined and the column that is
common between the tables. Janice’s new query looks like this:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees join departments using (department_id);

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
       104 Ernst, Janice              IT
       105 Austin, David              IT
       106 Pataballa, Valli           IT
...
       201 Hartstein, Michael         Marketing
       202 Fay, Pat                   Marketing
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting

106 rows selected.

Join On
This particular form of an equijoin appears to be a good compromise between simplicity and accuracy, but Janice knows that she’ll
sooner or later use another form of an equijoin, the JOIN ... ON syntax. She rewrites the query once more as follows:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e join departments d
  on e.department_id = d.department_id;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
...
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting

106 rows selected.

Tip The JOIN ... ON clause is the only SQL:1999 equijoin clause that supports joining columns with different names.

Join Using with Three Tables
Later in the afternoon, one more request comes in from King: He wants to see a list of employees similar to the query Janice just
ran, but instead of departments, he wants to see the city where the employee is working, and only employees in department 40,
Human Resources. Looking at the EMPLOYEES table, the DEPARTMENTS table, and the LOCATIONS table, you can see that there
is no direct route from EMPLOYEES to LOCATIONS. Janice must "go through" the DEPARTMENTS table to fulfill King’s request. She
must take the following route to get from EMPLOYEES to LOCATIONS:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the join will use common column names between each pair of tables, Janice’s query uses the JOIN ... USING clause as
follows:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", city "City"
from employees
      join departments using (department_id)
            join locations using (location_id)
where department_id = 40;

    Emp ID Name                       City
---------- -------------------------- --------------------
       203 Mavris, Susan              London

1 row selected.

The EMPLOYEES table is joined to DEPARTMENTS on the DEPARTMENT_ID column, then the result of that join is joined with the
LOCATIONS table on the LOCATION_ID column. The result is filtered so that only the employees in department 40 are on the
report.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Non-equijoins
When joining two or more tables, you usually are joining on columns that have the same value, such as department number or job
ID. On occasion, however, you might join two tables where the common columns are not equal. More specifically, a column’s
value in one table may fall within a range of values in another table.

There is a table in the HR schema called JOBS, which lists each job in Scott’s company, along with the salary ranges for a given
job. Janice will query this table using both the pre-Oracle9i syntax and the Oracle9i syntax. The JOBS table is structured as
follows:
Name                       Null?    Type
-------------------------- -------- -------------
JOB_ID                     NOT NULL VARCHAR2(10)
JOB_TITLE                  NOT NULL VARCHAR2(35)
MIN_SALARY                          NUMBER(6)
MAX_SALARY                          NUMBER(6)

Pre-Oracle9i Non-equijoin Syntax

Janice knows that the EMPLOYEES table has a salary column and a job ID column. She wants to make sure that the salary for a
given employee falls within the range specified for the job assigned to that employee. The first employee she checks is the boss’s
daughter, Janette King, who has an employee ID of 156. The query below does a non-equijoin on the EMPLOYEES and JOBS
tables to accomplish the salary range comparison:
select e.job_id "Empl Job", e.salary, j.job_id "Job",
  j.min_salary, j.max_salary
from employees e, jobs j
where e.salary between j.min_salary and j.max_salary
and e.employee_id = 156;

Empl Job       SALARY Job        MIN_SALARY MAX_SALARY
---------- ---------- ---------- ---------- ----------
SA_REP          10000 FI_MGR           8200      16000
SA_REP          10000 AC_MGR           8200      16000
SA_REP          10000 SA_MAN          10000      20000
SA_REP          10000 SA_REP           6000      12000
SA_REP          10000 PU_MAN           8000      15000
SA_REP          10000 IT_PROG          4000      10000
SA_REP          10000 MK_MAN           9000      15000
SA_REP          10000 PR_REP           4500      10500

8 rows selected.

What does this query output tell Janice? First of all, it appears that there is no nepotism going on at the company, as Janette’s
salary falls within the normal range for a sales representative, albeit near the high end of the range. It also is apparent that her
salary is in the range for seven other positions at the company.

Oracle9i Non-equijoin Syntax

Janice wants to see if the non-equijoin query is any easier to perform using the newer Oracle9i syntax. She realizes that since she
is doing a non-equijoin, she is not able to use the NATURAL JOIN or the JOIN ... USING syntax, since both of those formats
assume equality between the implicit or explicit columns. It seems like the JOIN ... ON syntax will work, though, since she can
specify a condition between two columns in that syntax. The query looks very similar to the previous query, but as with all Oracle9i
joins, the join conditions are moved from the WHERE clause to the FROM clause:
select e.job_id "Empl Job", e.salary, j.job_id "Job",
  j.min_salary, j.max_salary
from employees e
join jobs j on
  e.salary between j.min_salary and j.max_salary
where employee_id = 156;

Empl Job       SALARY Job        MIN_SALARY MAX_SALARY
---------- ---------- ---------- ---------- ----------
SA_REP          10000 FI_MGR           8200      16000
SA_REP          10000 AC_MGR           8200      16000
SA_REP          10000 SA_MAN          10000      20000
SA_REP          10000 SA_REP           6000      12000
SA_REP          10000 PU_MAN           8000      15000
SA_REP          10000 IT_PROG          4000      10000
SA_REP          10000 MK_MAN           9000      15000
SA_REP          10000 PR_REP           4500      10500

8 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Outer Joins
Sometimes you want to join two tables and return all the rows in one table whether or not the second table contains a match on
the join condition. This is known as performing an outer join between two tables. To illustrate why you would want to join two
tables in this way, consider the EMPLOYEES and DEPARTMENTS tables for Scott’s widget company. The EMPLOYEES table has a
column called DEPARTMENT_ID, which can contain NULL values. If you were to join the two tables on the DEPARTMENT_ID
column, the query would not return all employees. Conversely, if you had departments that did not have any employees, you
would not see all of the departments represented in the query results either.

outer join

A join between two or more tables returning all the rows in one table whether or not the second table contains a
match on the join condition.

In some cases, you want to see all records in both tables, regardless of how many match on the join condition. This is known as a
full outer join.

Let’s look at how to perform these types of outer joins using the pre-Oracle9i syntax and the Oracle9i syntax.

Pre-Oracle9i Outer Join Syntax

The key component of the outer join syntax for previous Oracle versions is a plus sign enclosed in parentheses: (+). In an outer
join, this outer join operator is placed next to the table that may not have rows that satisfy the join condition between two tables.
We’ll look at some examples in the next few sections, as Janice prepares some new reports.

Outer Join
King wants Janice to produce a report listing the sales representatives and the departments in which they reside. Janice knows
that at any given time, there might be employees who aren’t assigned to a department. She constructs the query assuming that
there might be some missing or incorrect department numbers in the EMPLOYEES table:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"

from employees e,departments d
where e.department_id = d.department_id(+)
and e.job_id = ‘SA_REP’;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       179 Johnson, Charles           Sales
       177 Livingston, Jack           Sales
       176 Taylor, Jonathon           Sales
       175 Hutton, Alyssa             Sales
       174 Abel, Ellen                Sales
...
       152 Hall, Peter                Sales
       151 Bernstein, David           Sales
       150 Tucker, Peter              Sales
       178 Grant, Kimberely

30 rows selected.

It appears that all of the employees who have a sales position are assigned to the Sales department, except for Kimberely Grant.
She has a NULL value for her department ID, and therefore does not match any row in the DEPARTMENTS table.

Janice could also find out which departments don’t have any employees by changing the outer join to specify the EMPLOYEES
table as the table that might not have any rows corresponding to a DEPARTMENTS table row, like this:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
...     
       202 Fay, Pat                   Marketing
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting
           ,                          NOC
           ,                          Manufacturing
           ,                          Government Sales
           ,                          IT Support

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


           ,                          IT Support
           ,                          Benefits
           ,                          Shareholder Services
           ,                          Retail Sales
           ,                          Control And Credit
           ,                          Recruiting
           ,                          Operations
           ,                          Treasury
           ,                          Payroll
           ,                          Corporate Tax
           ,                          Construction
           ,                          Contracting
           ,                          IT Helpdesk

122 rows selected.

The report includes all departments, but leaves out any employees that have an invalid department number or have no
department number assigned to them. Janice will be addressing this issue in the next section.

Tip When you’re not sure where the outer join operator (+) goes, place it next to the table that is missing rows. In other
words, rows need to be "added" to this table for the join to succeed in a regular equijoin.

Full Outer Join
King has asked Janice to somehow combine both of the reports she just created into a single report that lists all employees and all
departments, regardless of whether an employee is assigned a department or a department has any employees. To accomplish
this using the pre-Oracle9i syntax, Janice must use the UNION operator to combine two outer join queries. The UNION operator
will combine the results of two outer join queries, removing duplicates found between the two queries. Her query looks like this:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id
union
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+);

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
       104 Ernst, Janice              IT
       105 Austin, David              IT
       106 Pataballa, Valli           IT
...
       176 Taylor, Jonathon           Sales
       177 Livingston, Jack           Sales
       178 Grant, Kimberely
       179 Johnson, Charles           Sales
       180 Taylor, Winston            Shipping
       181 Fleaur, Jean               Shipping
...
           ,                          Payroll
           ,                          Recruiting
           ,                          Retail Sales
           ,                          Shareholder Services
           ,                          Treasury

123 rows selected.

Notice that this query returns a total of 123 rows, one more than the previous version of this query that performed an outer join
with the DEPARTMENTS table as the primary table. This version picked up the extra row containing Kimberely Grant from the outer
join between EMPLOYEES and DEPARTMENTS in the first half of the query above.

While the query does provide the desired results, the maintenance costs are higher on a query of this type, since any changes to
the first SELECT statement most likely must be reflected in the second SELECT statement. The new outer join syntax in Oracle9i
addresses this problem.

Oracle9i Outer Join Syntax

As with the equijoin syntax, the outer join syntax in Oracle9i moves the join logic from the WHERE clause to the FROM clause.
Rather than using the slightly unintuitive (+) outer join operator to specify an outer join, Oracle9i uses LEFT OUTER JOIN ...
ON or RIGHT OUTER JOIN ... ON between the two tables to be joined. The LEFT or RIGHT specifies which table has all rows
retrieved, regardless of whether there is a match in the other table.

Left Outer Join
Janice is rewriting some of the queries she wrote back when their shop was running Oracle8i. Now that they’re using Oracle9i, she
wants to make sure she is leveraging the full power of Oracle9i’s new features, not to mention the added benefits of more intuitive
syntax. She starts with one of the queries for King that retrieved employees and corresponding departments:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+)
and e.job_id = ‘SA_REP’;

She rewrites the query using a LEFT OUTER JOIN, since the EMPLOYEES table is already on the "left" side of the FROM clause:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e
    left outer join
    departments d
    on e.department_id = d.department_id
where e.job_id = ‘SA_REP’;

 Emp ID Name                      Dept
------- ------------------------- ----------------------
    179 Johnson, Charles          Sales
    177 Livingston, Jack          Sales
    176 Taylor, Jonathon          Sales
    175 Hutton, Alyssa            Sales
    174 Abel, Ellen               Sales
...
    152 Hall, Peter               Sales
    151 Bernstein, David          Sales
    150 Tucker, Peter             Sales
    178 Grant, Kimberely

30 rows selected.

Not surprisingly, she gets the same results as she did when the query used the pre-Oracle9i syntax. However, this form of the
query is much cleaner because the join syntax is separate from the filter criterion (employees that are sales representatives). The
query is also much easier to read.

Right Outer Join
Any left outer join can be turned into a right outer join by changing the order of the tables and changing LEFT OUTER JOIN to
RIGHT OUTER JOIN. The query in the previous section can be rewritten as a RIGHT OUTER JOIN as follows:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from departments d
    right outer join
    employees e
    on e.department_id = d.department_id
where e.job_id = ‘SA_REP’;

Emp ID Name                      Dept
------- ------------------------- ----------------------
    179 Johnson, Charles          Sales
    177 Livingston, Jack          Sales
    176 Taylor, Jonathon          Sales
    175 Hutton, Alyssa            Sales
    174 Abel, Ellen               Sales
...
    152 Hall, Peter               Sales
    151 Bernstein, David          Sales
    150 Tucker, Peter             Sales
    178 Grant, Kimberely

30 rows selected.

Many times, whether to use a LEFT OUTER JOIN or a RIGHT OUTER JOIN is simply a matter of style. As you can see, the two
previous queries read differently but produce the same results.

Full Outer Join
Speaking of style and readability, the syntax for a full outer join in Oracle9i is greatly simplified compared to how a full outer join is
performed in previous versions of Oracle. Rather than performing a UNION operation between two distinct queries, the FULL
OUTER JOIN clause is specified between the two tables to be joined.

Janice is cleaning up the rest of her queries to take advantage of the new syntax, and starts with the UNION query she wrote to
display all employees and all departments in a single query. Here is the original query:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id
union
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+);

In its new format, it ends up looking a lot shorter and a lot more readable:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  e.first_name "Name", d.department_name "Dept"
from employees e
     full outer join
     departments d
     on e.department_id = d.department_id;

 Emp ID Name                      Dept
------- ------------------------- ----------------------
    200 Whalen, Jennifer          Administration
    202 Fay, Pat                  Marketing
    201 Hartstein, Michael        Marketing
 ...
        ,                         Corporate Tax
        ,                         Construction
        ,                         Contracting
        ,                         IT Helpdesk

123 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Self-Joins
You now know that you can join tables to other tables, but can you join a table to itself, producing a self-join? The answer is a
resounding, but qualified, yes. Typically, a table will join to itself when the table is designed in a hierarchical manner; that is,
when one particular row in a table is somehow related to another row in the table in a parent-child relationship.

self-join

A join of a table to itself where a non-primary key column in the table is related to the primary key column of
another row in the same table.

hierarchical

A table design where one of the foreign keys in the table references the primary key of the same table in a
parent-child relationship.

At Scott’s widget company, the EMPLOYEES table has a column that contains the employee number of the employee
(EMPLOYEE_ID) in addition to a column that contains the employee number of the employee’s immediate supervisor
(MANAGER_ID). Janice will use this information to produce some new reports for the boss that essentially join the EMPLOYEES
table to itself.

Pre-Oracle9i Self-Join Syntax

Since the EMPLOYEES table contains the employee’s manager number, Janice decides to become proactive and generate a report
of all employees and their managers. Her SELECT query references the EMPLOYEES table twice: once as an EMPLOYEES table
and once as a MANAGERS table, since all of the managers are employees themselves. The EMPLOYEES table can be related to
itself.

The query that Janice writes displays the employees that have managers:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       m.employee_id "Mgr ID", m.last_name "Mgr Name"
from employees e, employees m
where e.manager_id = m.employee_id;

    Emp ID Emp Name            Mgr ID Mgr Name
---------- --------------- ---------- ---------------
       201 Hartstein              100 King
       149 Zlotkey                100 King
       148 Cambrault              100 King
...
       177 Livingston             149 Zlotkey
       176 Taylor                 149 Zlotkey

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       176 Taylor                 149 Zlotkey
       175 Hutton                 149 Zlotkey
       174 Abel                   149 Zlotkey
       202 Fay                    201 Hartstein
       206 Gietz                  205 Higgins

106 rows selected.

Notice that King is not in the list. Since the row in the EMPLOYEES table for King does not have an entry for a manager (he has no
manager since he is the president of the company), his row does not match any rows in the other copy of the EMPLOYEES table,
and therefore does not show up as a row in the query output.

Oracle9i Self-Join Syntax

The Oracle9i syntax not only moves the join condition to the FROM clause, it also uses the familiar syntax you saw earlier for
joining two different tables—the JOIN ... ON syntax. Janice rewrites the manager query using the Oracle9i syntax as follows:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       m.employee_id "Mgr ID", m.last_name "Mgr Name"
from employees e
     join employees m
     on e.manager_id = m.employee_id;

    Emp ID Emp Name            Mgr ID Mgr Name
---------- --------------- ---------- ---------------
       201 Hartstein              100 King
       149 Zlotkey                100 King
       148 Cambrault              100 King
...
       177 Livingston             149 Zlotkey
       176 Taylor                 149 Zlotkey
       175 Hutton                 149 Zlotkey
       174 Abel                   149 Zlotkey
       202 Fay                    201 Hartstein
       206 Gietz                  205 Higgins

106 rows selected.

Not unexpectedly, she gets the same results as she did with the pre-Oracle9i version of the query.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Cartesian Products: The Black Sheep of the Family
What if you were joining two tables, or even three tables, and you left off the join conditions? The result would be a Cartesian
product. Every row of each table in the FROM clause would be joined with every row of the other tables. If one table had 15 rows,
and a second table had 21 rows, a Cartesian product of those two tables would produce 315 rows in the result set of the query.
Needless to say, it can be a big problem when you have three or more tables with no join conditions specified.

Cartesian product

A join between two tables where no join condition is specified, and as a result, every row in the first table is
joined with every row in the second table.

Note Partial Cartesian products are produced when a query with n tables has less than n-1 join conditions between tables.

Needless to say, Cartesian products are used quite infrequently in SELECT statements, but they can be useful in very specific
situations. For example, a Cartesian product of the EMPLOYEES table and the COUNTRIES table could give Janice a way to
produce a checklist in a spreadsheet to note when a particular employee has visited one of the countries where Scott’s widget
company has a field office or distribution center. If employee visits to other offices were tallied in another table, then the Cartesian
product could be joined to the new table as a running total of visits by employees to other offices.

Pre-Oracle9i Cartesian Product Syntax

Janice decides that the employee/country visit idea has some merit, and experiments with some queries to generate the
combinations of employees and countries using a Cartesian product query:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       c.country_id "Cntry ID", c.country_name "Cntry Name"
from employees e, countries c;

    Emp ID Emp Name        Cn Cntry Name
---------- --------------- -- --------------------
       100 King            AR Argentina
       101 Kochhar         AR Argentina
       102 De Haan         AR Argentina
       103 Hunold          AR Argentina
...
       201 Hartstein       ZW Zimbabwe
       202 Fay             ZW Zimbabwe
       203 Mavris          ZW Zimbabwe
       204 Baer            ZW Zimbabwe
       205 Higgins         ZW Zimbabwe
       206 Gietz           ZW Zimbabwe

2675 rows selected.

Oracle9i Cartesian Product Syntax

The same query using the Oracle9i syntax is similar, except that CROSS JOIN is used to separate the two tables that are queried
to produce a Cartesian product. Janice changes the previous query to use the Oracle9i version:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       c.country_id "Cntry ID", c.country_name "Cntry Name"
from employees e cross join countries c;

Emp ID Emp Name        Cn Cntry Name
---------- --------------- -- --------------------
       100 King            AR Argentina
       101 Kochhar         AR Argentina
       102 De Haan         AR Argentina
       103 Hunold          AR Argentina
...
       201 Hartstein       ZW Zimbabwe
       202 Fay             ZW Zimbabwe
       203 Mavris          ZW Zimbabwe
       204 Baer            ZW Zimbabwe
       205 Higgins         ZW Zimbabwe
       206 Gietz           ZW Zimbabwe

2675 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Add a clause to the WHERE condition to make the following query return only the department names without

employees:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

2. A type of query that has either too few or no join conditions is known as a query.

3. Name three kinds of equijoins.

4. A natural join makes what assumption between the columns of two or more tables to be joined?

5. The Oracle9i syntax moves the join conditions from the clause to the clause in a SELECT statement.

6. To avoid a Cartesian product, a query with four tables must have at least how many join conditions between
tables?

7. To return all the rows in one table regardless of whether any rows in another table match on the join condition, you
would use what kind of a join?

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

10. A primary key in one table would frequently be joined to what in a second table?

Answers

1. The following clause added to the WHERE condition makes the query return only department names without employees:
and employee_id is null

2. Cartesian product

3. Inner joins, self-joins, left outer joins, right outer joins, and full outer joins are all examples of equijoins.

4. A natural join assumes that the tables are to be joined on the columns that have the same names and datatypes.

5. WHERE, FROM

6. A query with four tables must have at least three join conditions to avoid a Cartesian product.

7. An outer join returns all rows in one table regardless of whether any rows in another table match on the join condition.

8. A (+) is used to signify an outer join in a pre-Oracle9i query.

9. A full outer join uses the UNION set operator in a pre-Oracle9i query.

10. A primary key in one table would frequently be joined to a foreign key in a second table.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
Cartesian product

equijoin

hierarchical

inner join

join

outer join

self-join

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 6: Advanced SQL Queries
In the previous chapter, you saw how you can write queries that retrieve information from multiple tables. This chapter looks at
more advanced types of queries. We will begin with relatively simple subqueries, which allow you to put one query inside another,
rather than running two individual queries. Subqueries can be tied even more closely to the main query using a correlated
subquery, where columns in the WHERE clause of the subquery directly reference columns in the main query.

Sometimes, you need to get similar information from more than one query, and there is some overlap between the results. You
might not want to see the duplicates, or you might want to see only the results that two queries have in common. As you’ll learn
here, you can use UNION and INTERSECT to accomplish these tasks. You’ll also learn how to use ROLLUP and CUBE to
summarize table information.

Subqueries
A subquery places one query inside another one. The second query resides somewhere within the WHERE clause of a SELECT
statement. One or more values returned by the subquery are used by the main query to return the results to the user.

subquery

A query that is embedded in a main, or parent, query and used to assist in filtering the result set from a query.

The types of operators allowed in the WHERE clause depend on whether the subquery returns one row or more than one row. If
only a single row is returned from a query, the comparison operators =, !=, <, >, >=, <=, and so forth are valid. If more than one
row is returned from a subquery, operators such as IN, NOT IN, ANY, and ALL are valid.

Single-Row Subqueries

The boss, King, wants to do his quarterly salary analysis. He would like to see which employees in the IT department are earning
more than the average salary across all employees. Janice, the database analyst and DBA, realizes that this could be written as
two queries, and decides to take that approach first before using a subquery. The average salary for an employee in the company
is retrieved by a query you’ve seen in previous chapters:
select avg(salary) from employees;

AVG(SALARY)
-----------
 6461.68224

1 row selected.

Using this information as a starting point, Janice writes a second query to see which employees in the IT department (department
60) have a higher salary than the average. She must cut and paste the number returned from the previous query into this new
query:
select employee_id, last_name, first_name, salary
from employees
where salary > 6461.68224
and department_id = 60;

EMPLOYEE_ID LAST_NAME     FIRST_NAME            SALARY
----------- ------------- ----------------- ----------
        103 Hunold        Alexander               9000

1 row selected.

The only employee in the IT department making more than the company average salary is Alexander Hunold, who happens to be
the manager of that department.

Janice wants to streamline this reporting function for King. She realizes that this can easily be written as a single-row subquery.
She will embed the query she used to calculate the average into the second query, replacing the constant value as follows:
select employee_id, last_name, first_name, salary
from employees
where salary > (select avg(salary) from employees)
and department_id = 60;

EMPLOYEE_ID LAST_NAME     FIRST_NAME                 SALARY
----------- ------------- ---------------------- ----------
        103 Hunold        Alexander                    9000

1 row selected.

single-row subquery

A subquery that returns a single row and is compared to a single value in the parent query.

Not only is the query more readable and easier to maintain than the version with two queries, but it also will be processed much
more efficiently by the Oracle server.

Tip As a general rule, a query, enclosed in parentheses, can take the place of a table name in the FROM clause or a column
name in the SELECT or WHERE clause of a query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


name in the SELECT or WHERE clause of a query.

King is starting to realize that the IT department may need some pay increases in the next fiscal year.

Multiple-Row Subqueries

Sometimes, you want to compare a column in a table to a list of results from a subquery, not just a single result. This is where a
multiple-row subquery comes in handy. For example, King is following up on his analysis of employee salaries in the IT
department, and he wants to see who else in the company is making the same salary as anyone in the IT department.

multiple-row subquery

A subquery that can return more than one row for comparison to the main, or parent, query using operators
such as IN.

Janice starts out with the subquery to make sure that she starts with the right set of results to use for the main query. She wants to
get the salaries for the employees in the IT department (department 60):
select salary
from employees
where department_id = 60;

SALARY
----------
      9000
      6000
      4800
      4800
      4200

5 rows selected.

So far, so good. She takes this query and makes is a subquery in the query that compares the salaries of all employees to this list
by using the IN clause:
select employee_id, last_name, first_name, salary
from employees
where salary in (select salary from employees
                 where department_id = 60);

EMPLOYEE_ID LAST_NAME     FIRST_NAME             SALARY
----------- ------------- ------------------ ----------
        158 McEwen        Allan                    9000
        152 Hall          Peter                    9000
        109 Faviet        Daniel                   9000
        103 Hunold        Alexander                9000
        202 Fay           Pat                      6000
        104 Ernst         Janice                   6000
        106 Pataballa     Valli                    4800
        105 Austin        David                    4800
        184 Sarchand      Nandita                  4200
        107 Lorentz       Diana                    4200

10 rows selected.

But wait, something is not quite right here. King did not want to see the IT employees in this list; he wanted to include everyone
but the IT employees. So Janice makes a slight change as follows, removing employees whose job title is not an IT job title:
select employee_id, last_name, first_name, salary
from employees
where salary in (select salary from employees
                 where department_id = 60)
      and job_id not like ‘IT_%’;

EMPLOYEE_ID LAST_NAME     FIRST_NAME             SALARY
----------- ------------- ------------------ ----------
        158 McEwen        Allan                    9000
        152 Hall          Peter                    9000
        109 Faviet        Daniel                   9000
        202 Fay           Pat                      6000
        184 Sarchand      Nandita                  4200

5 rows selected.

Note that Janice also could have checked for a department ID other than 60, as you have seen in previous queries.

Correlated Subqueries

A correlated subquery looks very much like a garden-variety subquery, with one important difference: The correlated subquery
references a column in the main query as part of the qualification process to see if a given row will be returned by the query. For
each row in the parent query, the subquery is evaluated to see if the row will be returned. In Janice’s situation, the salary of each
individual employee is compared to the average salary for that employee’s department. The checkmarked rows in the parent
query are returned.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


correlated subquery

A subquery that contains a reference to a column in the main, or parent, query.

Janice knows that King will be asking for more queries regarding salaries, so she comes up with a fairly generic query that will
identify employees who are making more than the average salary for their department. As a first step, she builds the subquery that
retrieves the average salary for a department:
select avg(salary) from employees
    where department_id = 60;

AVG(SALARY)
-----------
       5760

1 row selected.

That query returns the average salary for department 60. In the correlated subquery, she will need to generalize it so that it will
correlate with any department in the parent query. Next, she builds the parent query that compares a given employee’s salary to
the average she just calculated:
select employee_id, last_name, salary
  from employees
  where department_id = 60 and
    salary > 5760;

EMPLOYEE_ID LAST_NAME              SALARY
----------- ------------------ ----------
        103 Hunold                   9000
        104 Ernst                    6000

2 rows selected.

Notice that there are two queries that can now be linked together into a correlated subquery to return all employees that earn
more than the average for their department across all departments. If you’re not sure how to link these two queries, the hint is in
the column names. Janice joins the two queries using the DEPARTMENT_ID column:
select employee_id, last_name, department_id, salary
  from employees emp
  where
    salary > (select avg(salary) from employees
              where department_id = emp.department_id);

EMPLOYEE_ID LAST_NAME          DEPARTMENT_ID     SALARY
----------- ------------------ ------------- ----------
        100 King                          90      24000
        103 Hunold                        60       9000
        104 Ernst                         60       6000
        108 Greenberg                    100      12000
        109 Faviet                       100       9000
...       
        193 Everett                       50       3900
        201 Hartstein                     20      13000
        205 Higgins                      110      12000

38 rows selected.

As Janice expected, this query still shows that Hunold and Ernst make more than the average salary for department 60.

Multiple-Column Subqueries

There are times when you need to use a subquery that compares more than just one column between the parent query and the
subquery. This is known as a multiple-column subquery. Typically, the IN clause is used to compare the outer query’s columns
to the columns of the subquery.

multiple-column subquery

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A subquery in which more than one column is selected for comparison to the main query using the same
number of columns.

Note Multiple-column subqueries can be rewritten as a compound WHERE clause with multiple logical operators. However,
this approach is not as readable or maintainable as a multiple-column subquery.

The boss, King, wants to be able to identify employees that make the same salaries as other employees with the same job. He
wants to specify an employee number and have the query return the other employees that have the same job title and make the
same salary. Janice immediately realizes that this could be written as a multiple-column subquery. She decides to try out the
query on one of the stock clerks, Hazel Philtanker, who has an employee number of 136:
select employee_id, last_name, job_id, salary
  from employees
  where (job_id, salary) in
        (select job_id, salary from employees
         where employee_id = 136);

EMPLOYEE_ID LAST_NAME       JOB_ID         SALARY
----------- --------------- ---------- ----------
        128 Markle          ST_CLERK         2200
        136 Philtanker      ST_CLERK         2200

2 rows selected.

The query looks good, except that Hazel is included in the results. If King decides he doesn’t want to see the selected employee in
the results, Janice can modify the query slightly and change it into a correlated multiple-column subquery:
select employee_id, last_name, job_id, salary
  from employees emp
  where (job_id, salary) in
        (select job_id, salary from employees
         where employee_id = 136
         and employee_id != emp.employee_id);

EMPLOYEE_ID LAST_NAME       JOB_ID         SALARY
----------- --------------- ---------- ----------
        128 Markle          ST_CLERK         2200

1 row selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Set Operators
Set operators combine the results of two or more queries into a single query result. The set operators in Oracle are UNION, UNION
ALL, INTERSECT, and MINUS.

All of the set operators have the same precedence. To override the default left-to-right evaluation, use parentheses to group
SELECT statements that you want evaluated first.

UNION and UNION ALL

The UNION operator will combine two query result sets into a single result set, sorted by the first column of the SELECT clause for
both queries. The syntax for using UNION is very straightforward: Two queries that can otherwise stand alone are combined with
the keyword UNION. The first query does not need a semicolon; the entire SQL statement is terminated by a single semicolon,
after the second query.

There are a few rules in force when writing a compound query using UNION. The number of columns in both queries must match,
and the corresponding columns must also have the same datatypes. The names of the columns need not match though; the query
result will use the column names from the first query.

A compound query using UNION removes duplicates by using a sort operation before returning the results of the query. The
values of all columns must be equal for one of the rows to be removed from the query result. This is one of the few cases where a
NULL value in one of the queries is considered to be equal to a corresponding NULL value in the other query.

UNION ALL operates in much the same way as UNION, except that duplicates are not removed. A row that exists in both queries
will show up twice in the results. Because a UNION ALL does not need to remove duplicates, a sort operation does not occur.
Therefore, a UNION ALL will usually return results faster than a UNION with the same queries. If you know ahead of time that the
two queries do not have duplicates, use UNION ALL.

At Scott’s widget company, the database not only keeps track of an employee’s current information in the EMPLOYEES table, but it
also keeps track of what jobs the employees have held in the past in the JOB_HISTORY table. The boss, King, wants to get a
report that includes both the current and previous positions held by employees in the company, along with the beginning and
ending dates for when the employee held that position. Janice realizes that she’ll need a UNION or UNION ALL operation, plus a
sort operation. She is not sure how she will retrieve the employee names from the JOB_HISTORY table, since it has only the
employee’s ID number.

Her first attempt at a query tries to combine the job history information with the current employment information, as follows:
select employee_id, last_name, hire_date, job_id, department_id
from employees
union
select employee_id, start_date, end_date, job_id, department_id
from job_history;

select employee_id, last_name, hire_date, job_id, department_id
                    *
ERROR at line 1:
ORA-01790: expression must have same datatype as
     corresponding expression

The two queries have the same number of columns, but the datatypes of the corresponding columns don’t match. This is because
the employee data doesn’t have an ending date, and the JOB_HISTORY table doesn’t have a column to store the employee name.
To fix this problem, Janice changes the first query to include a NULL value for an ending date (since the EMPLOYEES file has only
active employees):
select employee_id emp#, last_name, hire_date,
   NULL end_date, job_id, department_id dept#
from employees

She changes the second query to include a constant of an empty string to be a placeholder to match the name in the other query:
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history;

The resultant query using the UNION operator looks like this:
select employee_id emp#, last_name, hire_date,
   NULL end_date, job_id, department_id dept#
from employees
union
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


from job_history;

 EMP# LAST_NAME     HIRE_DATE END_DATE  JOB_ID      DEPT#
----- ------------- --------- --------- ---------- ------
  100 King          17-JUN-87           AD_PRES        90
  101 Kochhar       21-SEP-89           AD_VP          90
  101               21-SEP-89 27-OCT-93 AC_ACCOUNT    110
  101               28-OCT-93 15-MAR-97 AC_MGR        110
  102 De Haan       13-JAN-93           AD_VP          90
  102               13-JAN-93 24-JUL-98 IT_PROG        60
  103 Hunold        03-JAN-90           IT_PROG        60
...
  201 Hartstein     17-FEB-96           MK_MAN         20
  201               17-FEB-96 19-DEC-99 MK_REP         20
  202 Fay           17-AUG-97           MK_REP         20
  203 Mavris        07-JUN-94           HR_REP         40
  204 Baer          07-JUN-94           PR_REP         70
  205 Higgins       07-JUN-94           AC_MGR        110
  206 Gietz         07-JUN-94           AC_ACCOUNT    110

117 rows selected.

Since the UNION of the two queries will result in adjacent employee IDs due to the default sort behavior of the UNION operator, the
report makes sense to King. From this report, he can see that Kochhar was employed as both an account representative and
account manager, before becoming a vice president in her current position.

Also worth noting in this report is that the columns EMPLOYEE_ID and DEPARTMENT_ID were assigned column aliases in the first
query, and so those aliases applied to the entire result.

But, of course, Janice is not satisfied with the results of the report. The HIRE_DATE column should really be a starting date for the
employee in that department, but for the rows in the EMPLOYEE table, it is the employee’s starting date at the company. To make
the column more accurate, Janice changes the column alias for the first query to STRT_DATE and makes it a correlated subquery,
so that the date is actually the date the employees started in their current department:
select employee_id emp#, last_name,
     coalesce(
     (select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id),
      hire_date) strt_date,
   NULL end_date, job_id, department_id dept#
from employees emp
union
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history
order by emp# asc, strt_date desc;

 EMP# LAST_NAME     STRT_DATE END_DATE  JOB_ID      DEPT#
----- ------------- --------- --------- ---------- ------
  100 King          17-JUN-87           AD_PRES        90
  101 Kochhar       16-MAR-97           AD_VP          90
  101               28-OCT-93 15-MAR-97 AC_MGR        110
  101               21-SEP-89 27-OCT-93 AC_ACCOUNT    110
  102 De Haan       25-JUL-98           AD_VP          90
  102               13-JAN-93 24-JUL-98 IT_PROG        60
  103 Hunold        03-JAN-90           IT_PROG        60
...
  201 Hartstein     20-DEC-99           MK_MAN         20
  201               17-FEB-96 19-DEC-99 MK_REP         20
  202 Fay           17-AUG-97           MK_REP         20
  203 Mavris        07-JUN-94           HR_REP         40
  204 Baer          07-JUN-94           PR_REP         70
  205 Higgins       07-JUN-94           AC_MGR        110
  206 Gietz         07-JUN-94           AC_ACCOUNT    110

117 rows selected.

There are two differences between this query and the previous one. A minor difference is that the query result is sorted by
employee number in ascending order and by the starting date in descending order. King wants to see the employee’s most recent
job first.

The second difference is a bit more complex. Janice’s goal was to find out if the employee had any previous jobs, and if so, return
the ending date for the last job that employee had. Remember that you can have the SQL text (in parentheses) of a correlated
subquery in the SELECT, FROM, or WHERE clause of the parent query. In this case, the correlated subquery is as follows:
(select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id)

For each row in the EMPLOYEE table, this subquery will find the last date that the employee worked in any department and adds
one day, resulting in the first date that the employee started in their current position. But if the employee has never switched
departments, there will be no rows in the JOB_HISTORY table, and therefore the subquery will return a NULL result. The solution is
to wrap the COALESCE function around the query.

The COALESCE function will return the first non-NULL argument in the argument list. The HIRE_DATE column is specified as the
second argument to COALESCE, so if the employee has never switched departments, the original hire date will be returned from
this function:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


coalesce(
     (select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id),
      hire_date) strt_date,

To reiterate, the above section of SQL evaluates to either the first day employees started in their current department or their hiring
date, if they have never switched departments. The column alias STRT_DATE is assigned to this derived column.

The next morning, Janice realizes that she could have used UNION ALL instead of UNION in this query. There will never be any
duplicate records between the two queries in this compound query, mainly because the database does not store the employee’s
current job position and starting date in the JOB_HISTORY table.

Tip DBAs should be on the lookout for queries that use UNION when UNION ALL would produce the same desired results.
Because UNION does a sort while removing duplicates, many UNION queries will have a much more noticeable
performance impact on the system than the same queries that use UNION ALL.

INTERSECT

There are times when you need to know which rows two tables or queries have in common. The INTERSECT operator provides
this functionality. As with the UNION operator, the number and types of the columns in the two queries to be compared must be
the same, but the column names can be different. Rows are returned from an INTERSECT operation only if all columns in the two
queries match.

In Scott’s widget database, the current employment information is kept in the EMPLOYEES table, and the previous employment
information (when employees have changed jobs) is kept in the JOB_HISTORY table. The boss wants to find out which employees
have changed departments multiple times and have come back to work in the department they worked in previously, with the
same job title. Janice knows that she needs to use the EMPLOYEES and JOB_HISTORY tables, and decides to use the
INTERSECT operator to see if there are current employees in a particular department and job title that are also in the
JOB_HISTORY table. Janice realizes that a multicolumn join in a WHERE clause may produce similar results, but she thinks that the
INTERSECT method is more straightforward and easier to use and maintain. Her first query looks like this:
select employee_id, job_id, department_id from employees
intersect
select employee_id, job_id, department_id from job_history;

EMPLOYEE_ID JOB_ID     DEPARTMENT_ID
----------- ---------- -------------
        176 SA_REP                80

1 row selected.

King looks at this report and thinks that something is amiss. He is sure that there was another employee besides employee
number 176 who has changed job titles and came back to work with her original job title. Janice realizes that she is comparing too
many columns, and she rewrites her query as follows:
select employee_id, job_id from employees
intersect
select employee_id, job_id from job_history;

EMPLOYEE_ID JOB_ID
----------- ----------
        176 SA_REP
        200 AD_ASST

2 rows selected.

As King suspected, employee number 200 is back working with her old job title, after previously switching departments. Because
one of the three columns was different in the previous query, employee number 200 did not show up in the results.

Now that Janice has the result set that King was looking for, she decides that it would be more readable if the employee’s last
name and first name were in the report also. The problem is, she can’t add it to the EMPLOYEES query with the INTERSECT
operator, since the JOB_HISTORY table does not have the employee last name, and as a result the compound INTERSECT query
would not return any rows. Instead, she treats the last query as a subquery and joins it back to the EMPLOYEES table:
select e.employee_id, e.last_name, e.first_name,
   e.job_id from employees e inner join
    (select employee_id, job_id from employees
     intersect
     select employee_id, job_id from job_history) i
on e.employee_id = i.employee_id;

EMPLOYEE_ID LAST_NAME         FIRST_NAME     JOB_ID
----------- ----------------- -------------- ----------
        176 Taylor            Jonathon       SA_REP
        200 Whalen            Jennifer       AD_ASST

2 rows selected.

Notice that Janice is using Oracle9i’s new INNER JOIN syntax. The query in parentheses is treated just as if it were another table
being joined in the new query.

MINUS

The MINUS compound-query operator returns rows from the first query only if they are not in a second query. In other words, the
second query is subtracted from the first query. Any rows in the second query that are not in the first query are ignored and do not
affect the results of the entire compound query. As with the UNION operator, the number and types of the columns in the two

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


affect the results of the entire compound query. As with the UNION operator, the number and types of the columns in the two
queries to be compared must be the same, but the column names can be different.

The boss wants to make sure that the company’s expansion plans are going well, and he wants to know which countries don’t yet
have a department located in that country. Janice realizes that a MINUS operator might do the trick here. She can subtract the
countries with departments from a query with the COUNTRIES table. The first part of her query is straightforward. It is a SELECT
from the COUNTRIES table:
select country_id, country_name from countries;

CO COUNTRY_NAME
-- ----------------------------------------
AR Argentina
AU Australia
BE Belgium
BR Brazil
CA Canada
CH Switzerland
CN China
DE Germany
DK Denmark
EG Egypt
FR France
HK HongKong
IL Israel
IN India
IT Italy
JP Japan
KW Kuwait
MX Mexico
NG Nigeria
NL Netherlands
SG Singapore
UK United Kingdom
US United States of America
ZM Zambia
ZW Zimbabwe

25 rows selected.

The second part is a bit trickier. She needs to subtract the countries in which the departments reside. The DEPARTMENTS table
does not have a COUNTRY_ID column, but it does have a LOCATION_ID column. The LOCATIONS table has a COUNTRY_ID
column, so Janice will need to join the DEPARTMENTS and LOCATIONS table to get the list of countries with departments:
select distinct country_id
from departments d, locations l
where d.location_id = l.location_id;

CO
--
CA
DE
UK
US

4 rows selected.

Janice realizes that she will also need the country name in the query for the INTERSECT operation to work, so this query needs to
have the COUNTRIES table as part of the join:
select distinct c.country_id, country_name
from departments d, locations l, countries c
where d.location_id = l.location_id
  and c.country_id = l.country_id;

CO COUNTRY_NAME
-- ----------------------------------------
CA Canada
DE Germany
UK United Kingdom
US United States of America

4 rows selected.

Janice can now bring it all together by using the MINUS operator to subtract this query from the first query against the COUNTRIES
table:
select country_id, country_name from countries
minus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


minus
select distinct c.country_id, country_name
from departments d, locations l, countries c
where d.location_id = l.location_id
  and c.country_id = l.country_id;

CO COUNTRY_NAME
-- ----------------------------------------
AR Argentina
AU Australia
BE Belgium
BR Brazil
CH Switzerland
CN China
DK Denmark
EG Egypt
FR France
HK HongKong
IL Israel
IN India
IT Italy
JP Japan
KW Kuwait
MX Mexico
NG Nigeria
NL Netherlands
SG Singapore
ZM Zambia
ZW Zimbabwe

21 rows selected.

King now realizes that the company is a long way from having a significant presence in all of the countries where there are
company employees.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

ROLLUP and CUBE
Sometimes, a simple GROUP BY clause just isn’t enough in a query. Once you generate a report of, let’s say, average salary by
department or the standard deviation of sick days by job title, you often must run a second query that calculates the average
salary or standard deviation across the entire set of employees. It gets even more complex when you break down the average
salary by more than one factor, such as department and job title. In this case, you would need to run two or more additional
queries to produce the average salary just by department or for the entire workforce.

Tip The results from both CUBE and ROLLUP can be produced by multiple queries, but this requires multiple passes over the
rows in the table. CUBE and ROLLUP need only one pass.

The ROLLUP operator provides rollups of aggregate functions in one direction across the fields that are aggregated. For each
ROLLUP operation that uses n columns, the result set has aggregates for each combination of columns and n+1 groupings.

The CUBE operator takes the ROLLUP operator a step further and provides rollups of aggregate functions in both directions across
the fields that are to be aggregated. For each CUBE operation that uses n columns, the result set has aggregates for each
combination of columns plus 2n groupings.

ROLLUP

The boss asks Janice to give him a report that breaks down average salary by both department and job function for departments
10 through 90. Janice wants to save time writing the query, and she knows by now that King will want to see some subtotals and
grand totals. She will use ROLLUP to accomplish the task in a single query, as follows:
select department_id "Dept", job_id "Job",
       avg(salary) "Avg Sal"
from employees
where department_id between 10 and 90
group by rollup(department_id, job_id);

  Dept Job           Avg Sal
------ ---------- ----------
    10 AD_ASST          4400
    10                  4400
    20 MK_MAN          13000
    20 MK_REP           6000
    20                  9500
    30 PU_MAN          11000
    30 PU_CLERK         2780
    30                  4150
    40 HR_REP           6500
    40                  6500
    50 ST_MAN           7280
    50 SH_CLERK         3215
    50 ST_CLERK         2785
    50            3475.55556
    60 IT_PROG          5760
    60                  5760
    70 PR_REP          10000
    70                 10000
    80 SA_MAN          12200
    80 SA_REP     8396.55172
    80            8955.88235
    90 AD_VP           17000
    90 AD_PRES         24000
    90            19333.3333
                        6250

25 rows selected.

Notice that because Janice has two columns listed in her ROLLUP clause, she will have three (two plus one) types of groupings in
the query output:

Combinations of departments and jobs (for example, 30 and PU_CLERK, with an average salary of 2780)

Summaries by departments (for example, 20 and a NULL job title, with an average salary of 9500)

A grand total (NULL department number and NULL job title, with an average salary for all employees in all
departments of 6250)

CUBE

The report that Janice wrote for King using the ROLLUP was fine—until he wanted to know summaries by job title also. Janice
realized that she should have given him the version of the query using CUBE to begin with, so she changes her previous query,
substituting the keyword CUBE for ROLLUP:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


substituting the keyword CUBE for ROLLUP:
select department_id "Dept", job_id "Job",
       avg(salary) "Avg Sal"
from employees
where department_id between 10 and 90
group by cube(department_id, job_id);

  Dept Job           Avg Sal
------ ---------- ----------
                        6250
       AD_VP           17000
       HR_REP           6500
       MK_MAN          13000
       MK_REP           6000
       PR_REP          10000
       PU_MAN          11000
       SA_MAN          12200
       SA_REP     8396.55172
       ST_MAN           7280
       AD_ASST          4400
       AD_PRES         24000
       IT_PROG          5760
       PU_CLERK         2780
       SH_CLERK         3215
       ST_CLERK         2785
    10                  4400
    10 AD_ASST          4400
    20                  9500
    20 MK_MAN          13000
    20 MK_REP           6000
    30                  4150
    30 PU_MAN          11000
    30 PU_CLERK         2780
    40                  6500
    40 HR_REP           6500
    50            3475.55556
    50 ST_MAN           7280
    50 SH_CLERK         3215
    50 ST_CLERK         2785
    60                  5760
    60 IT_PROG          5760
    70                 10000
    70 PR_REP          10000
    80            8955.88235
    80 SA_MAN          12200
    80 SA_REP     8396.55172
    90            19333.3333
    90 AD_VP           17000
    90 AD_PRES         24000

40 rows selected.

Using CUBE, she has two columns listed in our ROLLUP clause, and therefore will have four (two squared) types of groupings in
the query output:

Combinations of departments and jobs (for example, 30 and PU_CLERK, with an average salary of 2780)

Summaries by jobs (for example, MK_REP having an average salary of 6000)

Summaries by departments (for example, 20 and a NULL job title, with an average salary of 9500)

A grand total (NULL department number and NULL job title, with an average salary for all employees in all
departments of 6250)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A subquery is allowed in which parts of a SQL SELECT statement?

2. True or false: A correlated subquery references a table in the SELECT clause.

3. Which set operator will not remove duplicate rows from the result of a compound query?

4. What characteristics of the columns in a compound query using INTERSECT must match?

5. How are NULL values handled using set operators in a compound UNION query?

6. Why are ROLLUP and CUBE the preferred method for generating subtotals and grand totals for an aggregate
query?

7. Which operators can be used to compare a column to a single-row subquery?

8. A compound query that needs to find only the rows that are the same between the two queries should use the set
operator.

9. True or false: The IN operator cannot be used with a single-row subquery.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of precedence.

11. What can be used to change the precedence of a pair of queries in a compound query with more than two
queries?

Answers

1. A subquery is allowed in the SELECT clause, the FROM clause, and the WHERE clause.

2. False, the correlated subquery references a column in the main query.

3. UNION ALL will not remove duplicate rows from the result of a compound query.

4. The number of columns and their datatypes must match in a compound query using INTERSECT. The lengths of the
columns and the names do not need to match.

5. NULL values in one query are considered equal to NULL values in the other query, for the purposes of eliminating duplicates
in a UNION.

6. ROLLUP and CUBE need to make only one pass over the source table(s). Other methods, such as using a UNION between
two similar queries, will make more than one pass.

7. The following operators can be used to compare a column to a single-row subquery: =, !=, >, <, >=, and <=.

8. INTERSECT

9. False, using IN with a single-row subquery would be equivalent to using =.

10. All of those operators have equal precedence and are evaluated left to right in a compound query.

11. As with any other part of a SQL query, parentheses may be used to change the evaluation order of the set operators.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
correlated subquery

multiple-column subquery

multiple-row subquery

single-row subquery

subquery

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 7: Logical Consistency
A key strength of any modern relational database is its ability to validate the information stored in the database. One way the
database itself can perform validation is by the use of constraints on a column or columns in a table. A constraint on a table
column restricts the type of information in the column. A constraint can ensure that data is not omitted from a column, is within a
certain range, is unique within the table, or exists in another table.

A second way to maintain the logical consistency in a database is the ability to “group” several SQL statements together in a
transaction, where either all of these SQL statements succeed or all of them fail. This group of SQL statements is considered a
logical unit of work. You can control transaction processing by using the COMMIT and ROLLBACK statements.

Constraints
Constraints are a way to validate the data in a column or columns of a table. The Oracle database has five distinct types of
constraints that can be defined on a column or columns in a table: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, and FOREIGN
KEY. Only the FOREIGN KEY constraint, as its name implies, does its validation in reference to another table within the database.

constraint

A condition defined against a column or columns on a table in the database to enforce business rules or
relationships between tables in the database.

Note The end-user application frequently validates the data entered into the database, even before an INSERT or UPDATE
operation occurs, and this might be the best way to implement complex business rules. The ways in which business
rules are implemented in applications can be varied and complex. For more information about data validation through
the use of business rules in applications, see the book Business Rules Applied: Building Better Systems Using the
Business Rules Approach by Barbara Von Halle. Oracle separates the business rules enforcement from both the client
and the server with its Business Components for Java (BC4J) product. More information on BC4J can be found at
http://otn.oracle.com/products/ jdev/htdocs/bc4j9irc_datasheet.html.

Constraints, like many other database objects, can be defined when the table is defined or added to the table later. You can also
remove, disable, or enable existing constraints.

Any constraint can have a name assigned to it when it is created. If you do not explicitly assign a name, Oracle will give the
constraint a system-assigned name.

The NULL constraint can be defined only at the column level. All other constraints can be defined at the column level or at the
table level. Some constraints, such as a constraint that compares the values of two columns must necessarily be defined at the
table level.

NOT NULL

The NOT NULL constraint is the most straightforward of all the constraints. It specifies that a column will not allow NULL values,
regardless of its datatype. The syntax for a NOT NULL constraint is as follows:
[CONSTRAINT <constraint name>] [NOT] NULL

NOT NULL constraint

A constraint that prevents NULL values from being entered into a column of a table.

In Scott’s widget database, the HR table JOBS contains the job identifier, the job description, and the minimum and maximum
salary for the job. The table structure is shown here with a DESCRIBE command:
desc jobs

Name                         Null?    Type
---------------------------- -------- -----------------
JOB_ID                       NOT NULL VARCHAR2(10)
JOB_TITLE                    NOT NULL VARCHAR2(35)
MIN_SALARY                            NUMBER(6)
MAX_SALARY                            NUMBER(6)

When a new job is added or an existing job is modified, the columns for the job identifier and the job title must contain a value.
The salary range columns, however, can remain undefined—either explicitly by assigning NULL values to them or implicitly by not
specifying those two column names in an INSERT statement.

The boss, King, wants to make sure that when a new job is created, a minimum salary is always entered for the job. Janice, the
DBA, changes the structure of the JOBS table with the ALTER TABLE command, as follows:
alter table jobs modify (min_salary not null);

Table altered.

The next time someone from HR tries to add a new JOBS table row without a minimum salary, here is what happens:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next time someone from HR tries to add a new JOBS table row without a minimum salary, here is what happens:
insert into jobs (job_id, job_title)
     values(‘IT_DBDES’, ‘Database Designer’);

insert into jobs (job_id, job_title)
*
ERROR at line 1:
ORA-01400: cannot insert NULL into
    ("HR"."JOBS"."MIN_SALARY")

The MIN_SALARY field must be entered with some value, even if it is zero:
insert into jobs (job_id, job_title, min_salary)
     values(‘IT_DBDES’, ‘Database Designer’, 12500);

1 row created.

At some point, the HR department may want to update this row in the JOBS table to indicate an upper range for the salary for this
job position. However, it would not be unreasonable to expect that some job positions may not have any upper value, and
therefore a NULL value in the MAX_SALARY field could reflect the business rule that there is no maximum salary in force for a
particular position.

CHECK

A CHECK constraint can apply directly to a specific column, or it can apply at the table level if the constraint must reference more
than one column. CHECK constraints are useful if you need to keep values of a column within a certain range or within a list of
specific values, such as ensuring that a gender column contains either M or F.

CHECK constraint

A constraint that evaluates the condition defined in the constraint and permits the INSERT or UPDATE of the row
in the table if the condition is satisfied.

The CONSTRAINT clause can be specified at either the column level or at the table level. The constraint can be specified at the
column level if the constraint refers only to that column. The format of the CONSTRAINT clause is as follows:
[CONSTRAINT <constraint name>] CHECK (<condition>)

The HR department members are still having some problems with the JOBS table. They sometimes enter the lower and upper
ranges for the salary amount backwards. As usual, Janice is tasked with finding a way to fix this problem. She considers changing
the data-entry screens to check the salary amounts before they are inserted, but this might not be the best solution, since some of
the people in the HR department use the INSERT command against the database, bypassing any business logic that might be in
the application that supports the data-entry screen.

Janice decides to add a CHECK constraint to the JOBS table to make sure the salaries are entered in the correct order:
alter table jobs
     add constraint ck1_jobs
        check (max_salary > min_salary);

Table altered.

Tip It’s good practice to name your constraints with a reference to both the type of constraint and the table it references. This
helps both DBAs and developers when tracking down which table is causing a constraint violation in an application that
might have hundreds of tables.

Now if the order of the salaries were inadvertently reversed in the INSERT statement, the INSERT would not be allowed, due to
the new CHECK constraint:
insert into jobs
     (job_id, job_title, min_salary, max_salary)
     values
     (‘IT_TECHLD’, ‘Technical Lead’, 17500, 10000);

insert into jobs
(job_id, job_title, min_salary, max_salary)
*
ERROR at line 1:
ORA-02290: check constraint (HR.CK1_JOBS) violated

The HR department decides that the new technical lead position has an open-ended upper salary, so the addition is made with
the following INSERT command:
insert into jobs (job_id, job_title, min_salary)
     values(‘IT_TECHLD’, ‘Technical Lead’, 10000);

1 row created.

Even though no maximum salary is specified, this INSERT operation still works. A CHECK constraint condition will allow the record
to be inserted if the CHECK condition expression evaluates to either true or unknown. In this INSERT statement, the MAX_SALARY
column is NULL, and therefore the CHECK condition expression (max_salary > min_salary) is (NULL > 10000), which
evaluates to NULL (unknown). Therefore, the CHECK condition will not prevent this row from being inserted. However, explicit
NULL checking can be performed in a CHECK constraint by using the IS NULL or IS NOT NULL operator.

Later in the week, Janice learns that the business rule for minimum and maximum salary in the JOBS table has changed; if a
minimum salary is specified, then a maximum salary must also be specified. Therefore, either both salaries are NULL or both
salaries are NOT NULL. Janice decides that a new CHECK constraint is needed to enforce this business rule, so her first step is to
drop the existing constraint on the table:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter table jobs drop constraint ck1_jobs;

Table altered.

The new check constraint will compare min_salary and max_salary only if both values are NOT NULL, otherwise both values
must be NULL to pass the CHECK constraint:
alter table jobs add constraint ck1_jobs
    check ((max_salary is not null and
            min_salary is not null and
            max_salary > min_salary)
           or
           (max_salary is null and min_salary is null)
          );

Table altered.

In rare circumstances, there is an exception to this business rule. Occasionally, the boss still wants to enter a minimum salary
without a maximum salary. Janice can temporarily disable the constraint:
alter table jobs disable constraint ck1_jobs;

Table altered.

insert into jobs (job_id, job_title, min_salary)
     values(‘IT_RSRCH’, ‘IT Research and Development’,
               25000);

1 row created.

By default, if Janice re-enables the constraint, this new row in the JOBS table will fail the constraint check, so she must use the
NOVALIDATE option when re-enabling the constraint:
alter table jobs enable novalidate constraint ck1_jobs;

Table altered.

Using NOVALIDATE doesn’t check to see if any existing rows violate the CHECK constraint; only new or updated rows are checked.
As you’d expect, the default is VALIDATE when re-enabling a constraint. When a constraint is re-enabled with VALIDATE, the
data in every row is checked to make sure it passes the CHECK constraint.

UNIQUE

The UNIQUE constraint can be applied at the column level or at the table level. It ensures that no two rows contain the same
value for the column or columns that have the UNIQUE constraint.

UNIQUE constraint

A constraint that prevents duplicate values from being specified in a column or combination of columns in a
table. NULL values may be specified for columns that have a UNIQUE constraint defined, as long as the column
itself does not have a NOT NULL constraint.

The syntax for a UNIQUE constraint clause is as follows:
[CONSTRAINT <constraint name>]
     UNIQUE [(<column>, <column>, ...)]

For ensuring that a combination of two or more columns is unique within the table, the optional column specification portion of the
above syntax is used at the table level.

To more easily report salaries and bonuses to the IRS, King has asked Janice, the DBA, to add a social security number column
to the EMPLOYEES table. Since no two employees should have the same social security number, Janice uses a UNIQUE constraint
when she adds this column to the EMPLOYEES table:
alter table employees
     add (ssn varchar2(11)
           constraint uk1_employees unique);

Table altered.

Janice is doing two things in one statement: adding the SSN column and adding the named constraint. The column will still allow
NULL values, but when it is populated for an employee, it must not duplicate any other SSN value in the EMPLOYEES table.

When the HR department tries to update two records with the same social security number, the constraint prevents the second
UPDATE command from completing successfully:
update employees
     set ssn = ‘987-65-4321’
     where employee_id = 116;

1 row updated.
    
update employees
     set ssn = ‘987-65-4321’
     where employee_id = 117;

update employees
*
ERROR at line 1:
ORA-00001: unique constraint (HR.UK1_EMPLOYEES) violated

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ORA-00001: unique constraint (HR.UK1_EMPLOYEES) violated

PRIMARY KEY

A PRIMARY KEY constraint is similar to a UNIQUE constraint, with two exceptions: a PRIMARY KEY constraint will not allow
NULL values, and only one PRIMARY KEY constraint is allowed on a table. A PRIMARY KEY constraint can be defined at either
the column level or the table level. A PRIMARY KEY constraint is important when you want to find a way to uniquely reference a
row in the table with the primary key in another table. The syntax for a PRIMARY KEY constraint is similar to that of the UNIQUE
constraint:
[CONSTRAINT <constraint name>]
     PRIMARY KEY [(<column>, <column>, ...)]

PRIMARY KEY constraint

A constraint that uniquely defines each row of a table and prevents NULL values from being specified in the
column or combination of columns. Only one PRIMARY KEY constraint may be defined on a table.

If the PRIMARY KEY constraint is applied at the table level (usually due to the primary key of the table consisting of more than one
column), the optional column specification portion of the above syntax is used.

Because of tighter budgets and layoffs, many employees at Scott’s widget company are performing duties in other departments,
but the structure of the EMPLOYEES table supports an employee assigned to only one department at a time. Janice, the DBA, has
been tasked with creating a new table that can reflect the new business rule that an employee can be working in more than one
department at a time.

She decides to create a table that has three columns: an employee number, a department number, and the starting date for the
employee in that department. What should the primary key be? She can’t use just the employee number (EMPLOYEE_ID), since
this column won’t be unique in this table; an employee may be associated with more than one department. The same holds true
for the department number column (DEPARTMENT_ID); a department will most likely have more than one employee assigned to it.
Janice realizes that the combination of the two columns in this table will always be unique, and not NULL, and therefore this will be
the primary key. The table definition for this new table is as follows:
create table employees_departments
(employee_id   number(6),
 department_id number(4),
 start_date    date,
 constraint pk_empdept
      primary key (employee_id, department_id)
);

Table created.

The names for the employee number and department number columns do not need to be identical to the names given in the
EMPLOYEES and DEPARTMENTS tables, but it is good design practice to make them the same if the columns will hold the same
type of information as the corresponding EMPLOYEES and DEPARTMENTS table columns.

The HR department staff performs the following INSERT operations on the new table:
insert into employees_departments
     (employee_id, department_id, start_date)
     values (103, 60, ‘15-sep-2002’);

1 row created.
    
insert into employees_departments
     (employee_id, department_id, start_date)
     values (104, 60, ‘12-sep-2002’);

1 row created.

insert into employees_departments
     (employee_id, department_id, start_date)
     values (104, 50, ‘15-sep-2002’);

1 row created.

insert into employees_departments
     (employee_id, department_id, start_date)
     values (103, 60, ‘19-sep-2002’);

insert into employees_departments
*
ERROR at line 1:
ORA-00001: unique constraint (HR.PK_EMPDEPT) violated

The fourth row is not allowed in the table, because the same combination of employee number and department number is already
in the table. The PRIMARY KEY constraint of the table prevented the INSERT operation from completing successfully.

As a result of the three successful INSERT operations, employee number 103 (Hunold) is only working in department number 60
(IT), but employee number 104 (Ernst) is working in department number 60 (IT) and department number 50 (Shipping).

FOREIGN KEY

A FOREIGN KEY constraint helps maintain the data integrity between a parent table and a child table. It allows you to define a
column in the child table that exists as a primary key or a unique key in the parent table. When a value is entered into a column
with a FOREIGN KEY constraint, the value is checked against the primary key or unique value in the parent table to make sure it
exists there; if not, the row cannot be inserted.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FOREIGN KEY constraint

A constraint that establishes a parent-child relationship between two tables via one or more common columns.
The foreign key in the child table refers to a primary or unique key in the parent table.

The syntax for specifying a FOREIGN KEY constraint is as follows:
[CONSTRAINT <constraint name>]
     REFERENCES [<schema>.]<table>
            [(<column>, <column>, ...)]
     [ON DELETE {CASCADE | SET NULL}]

As the syntax indicates, a different user can own the parent table that contains the primary or unique key referenced, and
therefore the parent table name referenced must be qualified with the owner name. The column list can be omitted if the
referenced key is a primary key.

The last part of the syntax, [ON DELETE {CASCADE | SET NULL}], specifies what happens when the row in the parent table
is deleted. If this clause is omitted, the row in the parent table cannot be removed until all the rows containing foreign key
references in all child tables are either removed or the foreign key column is set to NULL. If ON DELETE CASCADE is specified
and the parent table’s row is deleted, all rows in the child table that contain the primary key of the parent table’s row are deleted. If
ON DELETE SET NULL is specified, a much more benign action occurs: If a parent table row is deleted, the foreign key column in
all child table rows that contain the parent row’s primary key value is set to NULL.

For about a month now, the HR department has been using the new SSN column in the EMPLOYEES table. Now the boss decides
that this is not a good idea, because of privacy concerns. Other departments use the EMPLOYEES table, and the social security
information should not be visible to the other departments.

Janice needs to create an entirely new table to hold the social security number values for the employees and remove the SSN
column from the EMPLOYEES table. The new table must be linked to the EMPLOYEES table, so she wants to have a column with
the employee number that is a foreign key to the EMPLOYEES table. She also needs the SSN column itself. She’ll put in a date field
to hold the date that the social security number was entered into this table. No other columns are necessary now (columns can
always be added later).

What should be the primary key of this new table? The SSN column looks like a suitable candidate for a primary key, since it is
unique and not empty. Rows will not be inserted into this table until the social security number is known. Janice creates the new
table, EMPLOYEES_SSN, as follows:
create table employees_ssn
(ssn           varchar2(11),
 employee_id   number(6)
     constraint fk_empl_ssn
         references employees (employee_id),
 add_date      date,
 constraint pk_empl_ssn primary key (ssn)
);

Table created.

This new table has two constraints: a column constraint (the FOREIGN KEY constraint on the EMPLOYEE_ID column) and a table
constraint (the PRIMARY KEY constraint on the SSN column, which could have also been defined as a column constraint since the
primary key is only one column).

The HR department inserts the first few rows into this new table, as follows:
insert into employees_ssn (ssn, employee_id, add_date)
     values(‘987-65-4321’, 101, ‘13-sep-02’);

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘123-45-6789’, 102, ‘13-sep-02’);

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘222-44-6666’, 303, ‘13-sep-02’);

insert into employees_ssn (ssn, employee_id, add_date)
*
ERROR at line 1:
ORA-02291: integrity constraint (HR.FK_EMPL_SSN)
       violated - parent key not found

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘999-99-9999’, 104, ‘13-sep-02’);

1 row created.

The third INSERT operation failed due to the FOREIGN KEY constraint on the table. The employee number specified (303) does
not exist in the EMPLOYEES table; therefore, the row is not inserted into the EMPLOYEES_SSN table.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


not exist in the EMPLOYEES table; therefore, the row is not inserted into the EMPLOYEES_SSN table.

Once all of the social security numbers and employee numbers have been entered into the EMPLOYEES_SSN table, the SSN
column in EMPLOYEES can be dropped.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Transaction Processing
As you’ve learned, constraints created on columns of a table help you to maintain integrity and consistency in the database at the
statement level. Transactions go beyond individual INSERT or UPDATE statements and allow you to ensure that multiple DML
statements against the database either all succeed or all fail.

transaction

A logical unit of work consisting of one or more SQL statements that must all succeed or all fail to keep the
database in a logically consistent state. A transfer of funds from one bank account is a logical transaction, in
that both the withdrawal from one account and the deposit to another account must both succeed for the
transaction to succeed.

From a DBA’s perspective, the transaction concept is important to understand when allocating disk space. The more activity that
occurs within a transaction, the greater the need for disk space to maintain read consistency in the database. If a user initiates a
long-running SELECT statement, the table data seen by the user will appear to be unchanged, even if other users are
subsequently making changes to the same rows while the SELECT statement is executing. As a result, additional disk space
(known as undo or rollback space) must be allocated to hold both the old and new versions of the rows being read by one user
and written to by another user.

read consistency

A feature of the Oracle database that ensures a database reader (in a SELECT statement) will see the same
data in a table regardless of changes made to the table by database writers that were initiated after the reader
initiated the SELECT statement.

Transactions begin with a single DML statement and end (successfully or unsuccessfully) when one of the following events
occurs:

Either a COMMIT or ROLLBACK statement is executed. A COMMIT statement makes the changes to the table
permanent, while the ROLLBACK undoes the changes to the table.

The user exits SQL*Plus or iSQL*Plus normally (automatic COMMIT).

A DDL (Data Definition Language) or DCL (Data Control Language) statement is executed (automatic COMMIT).

The database crashes (automatic ROLLBACK).

The SQL*Plus or iSQL*Plus session crashes (automatic ROLLBACK).

Additionally, you can use SAVEPOINT to further subdivide the DML statements within a transaction before the final COMMIT of all
DML statements within the transaction. SAVEPOINT essentially allows partial rollbacks within a transaction.

The COMMIT Statement

There are many situations when you want a given set of DML statements—a transaction—to fail or succeed, ensuring data
integrity.

Suppose that the boss decides that to keep the salary budget the same next year, all employees that get raises must be offset by
employees that get pay cuts. When the updates are made to the database, it is important that the total salary paid out every
month remains constant; therefore, pay increases and cuts must either all succeed or all fail.

In the iSQL*Plus example shown here, Janice performs two pay cuts and one pay increase in a single transaction. If the second
SELECT statement had not generated the total the boss wanted, she could have either executed additional UPDATE statements
before doing a COMMIT or performed a ROLLBACK to undo the updates and start over again.

If the database had crashed after the second UPDATE statement, the results from all statements in the transaction would be
removed from the database. The following statement in the example ensures that the total of the monthly salaries are the same
before and after the updates:
select sum(salary) from employees;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The ROLLBACK Statement

The ROLLBACK statement allows you to change your mind about a transaction. It brings back the state of the tables to the state as
of the last COMMIT statement or the beginning of the current transaction.

Janice is nearing the end of a busy day. She decides to perform one more task for the boss before leaving. She wants to remove
some order detail items from the OE.ORDER_ITEMS table that are more than five years old, since the ORDERS table was recently
purged of all orders more than five years old. She runs the DELETE statement as follows:
DELETE FROM OE.ORDER_ITEMS;

665 rows deleted.

Janice realizes that she forgot the WHERE clause in the DELETE, so she needs to get back the rows she accidentally deleted:
ROLLBACK;

Rollback complete.

Another disaster averted. Now she won’t need to restore the OE.ORDER_ITEMS table from a backup.

The SAVEPOINT Statement

The SAVEPOINT statement allows you to discard a subset of the DML statements within a transaction since the SAVEPOINT was
issued. The SAVEPOINT itself is named, and it can be referenced in the ROLLBACK statement, as follows:
ROLLBACK TO SAVEPOINT savepoint_name;

Regardless of how many savepoints exist within a transaction, a ROLLBACK statement without a savepoint reference will
automatically roll back the entire transaction. The following example shows Janice using a savepoint to conditionally undo the
DML statements since the savepoint was issued:
insert into regions (region_id, region_name)
   values (5, ‘Arctic’);

1 row created.

savepoint region_5;

Savepoint created.

insert into regions (region_id, region_name)
   values (6, ‘Antarctic’);

1 row created.

savepoint region_6;

Savepoint created.

rollback to region_5;

Rollback complete.

commit;

Commit complete.

Only the REGIONS row with a region_id of 5 is saved in the table after the COMMIT.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A COMMIT occurs under which three conditions within a transaction?

2. Under what circumstances can a foreign key column not match the defined primary key value in the parent table?

3. True or false: A CHECK constraint cannot check for NULL values.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List two ways.

5. What are the three conditions that may be specified, either implicitly or explicitly, on a foreign key column when the
primary key column in the parent table is deleted?

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more than MIN_SALARY.

7. What statement will allow a partial rollback of certain DML statements within a transaction?

8. True or false: A NOT NULL constraint can be defined at the table level or at the column level.

Answers

1. A COMMIT occurs from an explicit COMMIT command, after a DDL or DCL command is executed, or when a SQL*Plus or
iSQL*Plus session is exited normally.

2. A foreign key column may not match the defined primary key value in the parent table when the foreign key column allows
NULL values and is NULL.

3. False, a CHECK constraint can use IS NULL and IS NOT NULL to check for the existence of NULL values in one or more
columns of the table.

4. PRIMARY KEY constraints do not allow NULL values, and there can be only one primary key per table.

5. By default, the row in the parent table will not be deleted if rows exist in the child table that have a foreign key referencing the
parent table’s primary or unique key. Alternatively, the child table’s foreign key may be set to NULL (SET NULL), or the entire
row in the child table may be deleted if a parent row is deleted (CASCADE).

6. This constraint ensures MAX_SALARY is at least 10,000 more than MIN_SALARY:

7. The ROLLBACK TO SAVEPOINT <savepoint>; statement will allow a partial rollback of certain DML statements.

8. False, a NOT NULL constraint can be defined only at the column level.
check (max_salary - 10000 > min_salary)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
CHECK constraint

constraint

FOREIGN KEY constraint

NOT NULL constraint

PRIMARY KEY constraint

read consistency

transaction

UNIQUE constraint

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 8: Installing Oracle and Creating a Database

Overview
When you install Oracle and create a database, you are setting up all of the facilities and components for running Oracle. These
components include logical, physical, and memory structures. Every DBA needs to be intimately familiar with how Oracle’s
memory structures are allocated and managed. This chapter begins with a discussion of the basic components that make up
Oracle’s memory structures.

While the Oracle software itself is most likely already installed on one of your servers, we’ll go over the basics of installing Oracle
on the Microsoft Windows platform to see how the Oracle Universal Installer (OUI) does its magic and leads you through the
installation process.

After you have the Oracle software in place, you can create the Oracle database itself using Oracle’s Database Configuration
Assistant (DBCA). You will see how a single installation of the Oracle software can support more than one copy of a database on
a particular server.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Oracle Components Overview
An Oracle server consists of both a database and an instance. In Oracle terminology, database refers to only the physical files on
disk. These are the files that store the data itself, the database state information in the control file, and the changes made to the
data in the redo log files. The term instance refers to the Oracle processes and memory structures that reside in the server’s
memory and access an Oracle database on disk. One of the reasons for separating the concepts of a database and an instance is
that a database may be shared by two or more different Oracle instances as part of an Oracle configuration that enhances the
scalability, performance, and reliability of the Oracle server.

database

The collection of all physical files on disk that are associated with a single Oracle instance.

instance

The collection of memory structures and Oracle background processes that operates against an Oracle
database.

It’s also important to differentiate between the logical and physical structures of the database. The logical structures represent
components such as tables—what you normally see from a user’s point of view. The physical structures are the underlying
storage methods on disk—the physical files that compose the database.

Logical Storage Structures

The Oracle database is divided into increasingly smaller logical units to manage, store, and retrieve data efficiently and quickly.
The illustration below shows the relationships between the logical structures of the database: tablespaces, segments, extents,
and blocks.

logical structures

Structures in an Oracle database that a database user would see, such as a table, as opposed to the underlying
physical structures at the datafile level.

The logical storage management of the database’s data is independent of the physical storage of the database’s physical files on
disk. This makes it possible for changes to the physical structures to be transparent to the database user at the logical level.

Tablespaces
A tablespace is the highest level of logical objects in the database. A database consists of one or more tablespaces. A
tablespace will frequently group together similar objects, such as tables, for a specific business area or a specific function. A
particular tablespace can be reorganized, backed up, and so forth with minimal impact to other users whose data may be in other
tablespaces.

tablespace

A logical grouping of database objects, usually to facilitate security, performance, or the availability of database
objects such as tables and indexes. A tablespace is composed of one or more datafiles on disk.

All Oracle databases must have at least one tablespace: the SYSTEM tablespace. Having more than one tablespace is highly

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


All Oracle databases must have at least one tablespace: the SYSTEM tablespace. Having more than one tablespace is highly
recommended when creating a database. In the illustration of logical structures, you can see the SYSTEM tablespace and two
others. Oracle’s Database Configuration Assistant, discussed later in this chapter, creates a total of 11 tablespaces for a default
installation of Oracle9i.

Segments
A tablespace is further broken down into segments. A database segment is a type of object that a user typically sees, such as a
table. Tablespace 1 in the logical structure illustration consists of three segments, which could be tables, indexes, and so forth. It’s
important to note that this is the logical representation of these objects; the physical representation of these objects in the
operating system files will most likely not resemble the logical representation.

segment

A set of extents allocated for a single type of object, such as a table.

Extents
The next lowest logical grouping in a database is the extent. A segment groups one or more extents allocated for a specific type
of object in the database. Segment 2 in the logical structure illustration consists of two extents. Note that an extent cannot be
shared between two segments. Also, a segment, and subsequently an extent, cannot cross a tablespace boundary.

extent

A contiguous group of blocks allocated for use as part of a table, index, and so forth.

Database Blocks
At the other end of the spectrum of logical objects is the database block (also known as an Oracle block), the smallest unit of
storage in an Oracle database. Every database block in a tablespace has the same number of bytes. As of Oracle9i, different
tablespaces within a database can have database blocks with different sizes. Typically, one or more rows of a table will reside in a
database block, although very long rows may span several database blocks.

database block

The smallest unit of allocation in an Oracle database. One or more database blocks compose a database
extent.

Oracle block

See database block.

Extents group together logically contiguous database blocks in a tablespace. All database blocks within a single extent will store
the same kind of information.

A database block can have a size of 2KB, 4KB, 8KB, 16KB, or 32KB. Once any tablespace, including the SYSTEM tablespace, is
created with a given block size, it cannot be changed. If you want the tablespace to have a larger or smaller block size, you need
to create a new tablespace with the new block size, move the objects from the old tablespace to the new tablespace, and then
drop the old tablespace.

Schema
A schema is another logical structure that can classify or group database objects. A schema has a one-to-one correspondence
with a user account in the Oracle database, although some schemas may be designed to hold only objects that may be
referenced by other database users. For instance, in the logical structure illustration, Segments 1 and 3 may be owned by the HR
schema, while Segment 2 may be owned by the SCOTT schema.

schema

A named group of objects associated with a particular user account, such as tables, indexes, functions, and so
forth.

A schema is not directly related to a tablespace or any other logical storage structure; the objects that belong to a schema may be
in many different tablespaces. Conversely, a tablespace may hold objects for many different schemas. A schema is a good way to
group objects in the database for purposes of security and access control.

Physical Storage Structures

From the perspective of building queries and running reports, regular users don’t need to know much about the underlying
physical structure of the database on disk. However, DBAs do need to understand these database components.

The physical structure of the Oracle database consists of datafiles, redo log files, and control files. On a day-to-day basis, the
DBA will deal most often with the datafiles, since this is where all of the user and system objects, such as tables and indexes, are
stored. The illustration below shows the physical structure and its relationship to the Oracle memory structures and logical storage
structures.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


physical structures

Structures of an Oracle database, such as datafiles on disk, that are not directly manipulated by users of the
database. Physical structures exist at the operating system level.

Datafiles
The datafiles in a database contain all of the database data that the users of the database save and retrieve. A single datafile is
an operating system file on the server’s disk. Each datafile belongs to only one tablespace; a tablespace can have many datafiles
associated with it.

datafiles

Files that contain all of the database data that the users of the database save and retrieve using SELECT and
other DML statements. A tablespace comprises one or more datafiles.

There are four physical datafiles in the database in the physical structure illustration: one is used for the SYSTEM tablespace, two
datafiles are assigned to Tablespace 1, and the fourth datafile is assigned to Tablespace 2.

Redo Log Files
The redo log files facilitate the Oracle mechanism to recover from an instance failure or a media failure. When any changes are
made to the database, such as updates to data or creating or dropping database objects, the changes are recorded to the redo
log files first. A database has at least two redo log files, and it is recommended that multiple copies of the redo log files be stored
on different disks. (Oracle automatically keeps the multiple copies in synch.) If the instance fails, any changed database blocks
that were not yet written to the datafiles are retrieved from the redo log files and written to the datafiles when the instance is
started again.

redo log files

Files that contain a record of all changes made to both the data in tables and indexes, as well as changes to the
database structures themselves. These files are used to recover changed data that was in memory at the time
of a crash.

Control Files
The control file maintains information about the physical structure of the entire database. It stores the name of the database, the
names and locations of the tablespaces in the database, the locations of the redo log files, information about the last backup of
each tablespace in the database, and much more. Because of the importance of this file, it is recommended that a copy of the
control file reside on at least three different physical disks. As with the redo log files, Oracle keeps all copies of the control file in
synch automatically.

control file

A file that records the physical structure of a database, the database name, and the names and locations of
datafiles and redo log files.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The control file and redo log file contents do not map directly to any database objects, but their contents and status are available
to the DBA by accessing virtual tables called data dictionary views, which are owned by the SYS schema.

Oracle Memory Structures

The memory allocated to Oracle includes the following types of data:

Data from user reading and writing activity

Information about database objects

SQL commands

Stored procedures and functions

Transaction information

Oracle program executables

This information is stored in three major areas: the System Global Area (SGA), the Program Global Area (PGA), and the Software
Code Area.

The overall memory allocated to Oracle can be divided into two categories: shared memory and nonshared memory. The SGA
and the Software Code Area are shared among all database users. The PGA is considered nonshared. There is one dedicated
PGA area allocated for each user connected to the database.

System Global Area
The System Global Area (SGA) is the memory area that is shared by all connected users of the database. The SGA is broken
down into many areas. We will discuss the areas that hold cached data blocks from database tables, recently executed SQL
statements, and information on recent structural and data changes in the database. These areas are known as the database
buffer cache, the shared pool, and the redo log buffer, respectively.

System Global Area (SGA)

A group of shared memory structures for a single Oracle instance.

Database Buffer Cache

The database buffer cache holds copies of database blocks that have been recently read from or written to the database
datafiles. The data cached here primarily includes table and index data, along with data that supports ROLLBACK statements.

database buffer cache

The memory structure in the SGA that holds the most recently used or written blocks of data.

Any database block can be in one of three states: dirty, free, or pinned.

Dirty buffers A dirty buffer contains data from a database block that has been changed or added due to an INSERT, an UPDATE,
or a DELETE statement, but has not yet been written to disk. This buffer cannot be reused until it has been successfully written to
disk.

Free buffers These buffers either never contained any data or have data that matches their corresponding database block on
disk. Free buffers are available to be overwritten by another read operation from disk at any time. Oracle employs an LRU (least
recently used) algorithm in the buffer cache; the longer a buffer has not been used, the more likely it is that it will be reused by a
new database block read from disk.

LRU (least recently used) algorithm

An algorithm used to determine when to reuse buffers in the database buffer cache that are not dirty or pinned.
The less frequently a block is used, the more likely it is to be replaced with a new database block read from disk.

Pinned buffers These buffers are currently in use by DML statements or are explicitly saved for future use, and therefore they
cannot be reused.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Shared Pool

The shared pool contains recently used SQL and PL/SQL statements (stored procedures and functions). It also contains data
from system tables (the data dictionary tables), such as character set information and security information. Because objects such
as PL/SQL stored functions can be cached in the shared pool, another user or process that needs the same stored functions can
benefit from the performance improvement due to the stored function already being in memory.

shared pool

An area in the SGA that contains cached SQL and PL/SQL statements and cached tables owned by SYS.

Redo Log Buffer

The redo log buffer keeps the most recent information regarding changes to the database due to SQL statements. The blocks in
this buffer are eventually written to the online redo log files, which are used to recover, or redo, all recent changes to the database
after a failure.

redo log buffer

A buffer in the SGA that contains information pertaining to changes in the database.

Program Global Area
The Program Global Area (PGA) belongs to one user process or connection to the database and is therefore considered
nonsharable. It contains information specific to the session, and it can include sort space and information on the state of any SQL
or PL/SQL statements that are currently active by the connection.

Program Global Area (PGA)

A nonshared area of memory used for storing all connection information, including SQL statement information,
in a dedicated server configuration for a user who is connected to the database. In a shared server
configuration, a large portion of the memory for each connection is stored in the SGA instead of the PGA.

Software Code Area
The Software Code Area is a shared area containing the Oracle program code or executables against the database. It can be
shared by multiple database instances running against the same or different databases, and as a result, it saves a significant
amount of memory on the server.

Software Code Area

A location in memory where the Oracle application software resides. The Software Code Area can be shared
among several Oracle instances.

Background Processes

A process on a server is a section of a computer program in memory that performs a specific task. When the Oracle server starts,
multiple processes are started on the server to perform various functions as part of the Oracle instance. While a detailed
discussion of all Oracle background processes is beyond the scope of this book, we will discuss a few of the key processes:
Database Writer (DBWn), Log Writer (LGWR), and System Monitor (SMON). These processes communicate with various areas of
the SGA, such as the database buffer cache and the redo log buffer, as indicated in the earlier illustration.

process

An executing computer program in memory that performs a specific task.

Database Writer (DBWn)
There may be anywhere from one to ten copies (DBW0 through DBW9) of the Database Writer process running in an Oracle
instance. As noted earlier in the section on the SGA, new and modified data is stored in buffers in the database buffer cache,
which are marked as dirty buffers. At some point (for example, when the number of free buffers is low), these buffers need to be
written out to disk, which is what the DBWn process does, allowing subsequent SELECT statements and other DML statements
access to those buffers in the buffer cache.

If there is enough memory and the demand on the system is high, more than one copy of this process may dramatically improve
the performance and reduce the response time when a query or DML statement is run.

Log Writer (LGWR)
The Log Writer process writes the buffers in the SGA’s redo log buffer out to disk to the redo log files. The Log Writer process
must be able to write redo log buffers fast enough to make sure that there is room in the redo log buffer for entries from new
transactions. By writing all changes to the database to the redo log files, the changes made to the database can be recovered by
reissuing the commands in the logs if an instance failure occurs.

Log Writer writes under a variety of conditions: when a user issues a COMMIT, when the redo log buffer is one-third full, when
DBWn writes dirty buffers, or every three seconds.

System Monitor (SMON)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SMON performs a number of different functions in the database. If there is a system crash, the SMON process will apply the
changes in the redo log files (saved to disk previously by the LGWR process) to the datafiles the next time the instance is started.
This ensures that no committed transactions are lost due to the system crash. (SMON also performs a number of other tasks that
are beyond the scope of this book.)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Installing Oracle Software
Now that you have an understanding of how the Oracle database components are structured and interoperate, you can install the
software that will create and control the components.

To install Oracle9i, you can use the Oracle Universal Installer (OUI), a GUI-based Java tool that has the same look and feel,
regardless of which software platform you are using to install the software. As part of most Oracle installations, you can also install
the Oracle Enterprise Manager (OEM) toolset, which is a graphical system management tool that allows a DBA to manage and
administer more than one Oracle instance from a single application.

Oracle Universal Installer (OUI)

A GUI-based tool used to install or uninstall Oracle software components and tools.

Oracle Enterprise Manager (OEM)

A GUI-based tool used to manage one or more Oracle database instances.

Here, we’ll go through a basic installation of the Oracle server and review some of the key features of the OEM console.

Using the Oracle Universal Installer

One of the key concepts to understand when Oracle is installed on a server is the Oracle Home. An Oracle Home is simply a
single directory location in the filesystem that contains all of the installed Oracle products and options for a specific version of the
Oracle software. Each Oracle Home has a name assigned to it, and the value of this name is stored in the Windows Registry.

Oracle Home

A common directory location used to store the associated program files for a specific release of the Oracle
database software.

At Scott’s widget company, the DBA, Janice, needs to install a second Oracle server on a Microsoft Windows platform. She runs
the program setup.exe from the first installation CD. The first OUI screen past the Welcome screen appears, as shown below,
prompting Janice for the file locations where the Oracle software should be installed. The source for the install is already specified
as the CD containing setup.exe, on drive G:.

If there are previous installations of Oracle on this server, the pathnames are shown in the Destination section of this OUI screen.
In this example, there is an existing installation of Oracle in the directory d:\oracle\ora91. Janice wants to install the newer
Oracle software into the directory e:\oracle\ora92, so she changes the entry in the Path text box to e:\oracle\ora92,
changes the name in the Oracle Home text box to OraHome92, and clicks the Next button.

On nearly all of the screens in an installation using OUI, there is a button labeled Installed Products, which allows the DBA to view
and uninstall other products already installed on this server.

After the product list is retrieved from the CD in drive G:, OUI displays the available products that can be installed from the CD.
Janice chooses to install the Oracle9i database and clicks the Next button.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen asks Janice which type of Oracle database to install. Scott’s widget company is licensed to use every edition of
Oracle, so Janice leaves the default choice of Enterprise Edition and clicks the Next button.

The next decision Janice must make is what kind of database she wants to have installed, or whether to only have the software
installed. OUI comes with several preconfigured databases, each optimized for different environments. Since none of these
preconfigured databases suits Janice’s needs exactly, she will install only the software now and create a database manually using
the Database Configuration Assistant, discussed later in this chapter. Janice selects the Software Only option.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A summary screen gives Janice one more chance to change the installation options or cancel the entire installation.

Janice clicks on the Install button to begin the installation of the Oracle software. The final OUI screen shows the installation was
successful.

Using the Oracle Enterprise Manager and Tools

One of the tools available with Oracle9i Enterprise Edition is OEM, which allows you to manage Oracle components and to control
and configure one or more Oracle databases from one console.

The OEM console has two panes. The Navigator pane on the left provides a hierarchical view of all of the databases and other
Oracle-related services on the network. Clicking one of the nodes in the Navigator pane brings up the status and contents of that
node in the pane on the right. Using OEM, you can easily browse objects and characteristics of the database, such as
tablespaces, user accounts, datafiles, and configuration parameters of the instance.

Janice, the DBA, wants to get a quick overview of the tablespaces that exist in the database that has a connect descriptor of
or92. She starts OEM under Microsoft Windows by selecting Start > All Programs > Oracle - OraHome 92 > Enterprise Manager
Console. She enters her username, her password, and the connect descriptor.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen shows the different kinds of functionality available to Janice in the Navigator pane of OEM. She expands the
Storage branch with a double-click and then clicks Tablespaces. She notices that the EXAMPLE tablespace is at full capacity,
which is fine, since it is used for training and will not have any new objects. However, she does need to look into expanding the
size of the SYSTEM tablespace, since it is 98.94% full.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating an Oracle Database
Once the Oracle software is installed on a server, you can create one or more database instances using a single copy of the
Oracle software. The Database Configuration Assistant (DBCA) is Oracle’s GUI tool for creating, modifying, and deleting
databases.

Database Configuration Assistant (DBCA)

A multiplatform GUI tool that allows a DBA to easily create, modify, and delete databases, as well as manage
database templates.

Disk and Memory Requirements

While the software code is shared among instances, the instances themselves each must have a minimum amount of system
memory and disk space for adequate performance.

For the Microsoft Windows platform, each Oracle instance requires at least 128MB of memory, plus 8GB of disk space for a fairly
complete installation of Oracle Enterprise Edition. Oracle strongly recommends at least 256MB of memory. The amount of disk
space needed for the datafiles depends on the application’s data needs, but one of Oracle’s starter databases uses approximately
1.4GB of disk space.

Using the Database Configuration Assistant

The DBA, Janice, has two big tasks ahead of her for the week. Now that the widget company is over a year old, the boss, King,
wants to offload some of the analysis tasks to a second database to minimize the impact on the primary database. He suggests
that this new database be designed for data warehouse use. Janice will use the Oracle DBCA to create a new instance to support
the data warehousing effort.

To create a new database instance, Janice starts up DBCA by selecting Start > All Programs > Oracle - OraHome 92 >
Configuration and Migration Tools > Database Configuration Assistant. The Welcome screen is shown below.

Janice clicks Next. DBCA asks for the type of operation to perform. Janice selects the first option, Create a Database, and clicks
Next.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the boss wants a database to be used as a data warehouse, she leaves the default value selected in the Database
Templates screen, which appears next, and clicks Next.

In the next step, Janice needs to label the instance. Janice gets the Global Database Name’s suffix from the system administrator,
but she specifies the SID as wh92. The SID, or system identifier, is a unique name for the Oracle instance. This is the same as
the connect descriptor that a database user uses when connecting to the database with SQL*Plus. When Janice types in the fully
qualified name of the database, wh92.widgetsRus.com, the SID is automatically extracted from the Global Database Name
and placed in the SID text box.

SID

A system identifier, which is a unique name assigned to an Oracle instance. A user must supply a SID to
connect to an Oracle instance.

Oracle can accept connections in one of two modes: Dedicated or Shared. Dedicated mode gives the best response time for
users who run queries constantly, and Shared mode works best for users who run infrequent queries on a server that may have
limited memory resources. Only a handful of users will be using this data warehouse, so Janice selects the Dedicated server
mode.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen allows Janice to further refine the memory parameters that Oracle suggests in a data warehouse environment
given the server resources, but she accepts the defaults for now. She will perform some advanced tuning once the data
warehouse queries have been designed and tested. She does decrease the percentage of memory allocated for this instance
from 70% down to 30%, however, since there is already another instance on this server.

After clicking Next, Janice has the option to tweak the datafile names and locations, but she once again chooses the defaults for
all file locations.

The next screen gives Janice two options. She can either create the database immediately or save everything up to this point as a
template. If Janice thought that she might create many databases with identical or very similar characteristics to this one, then she
would save these settings as a template for future DBCA sessions. In this case, she decides that there will not be any other
databases like this one, so she leaves the default Create Database checked and clicks Finish to start the process of creating the
database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One more summary screen is displayed before the actual database creation begins. It allows a final review of the parameters, with
the added option of saving the entire set of database characteristics as an HTML file for documentation purposes. Janice clicks
OK to continue.

At the end of the database creation operation, Janice is prompted to enter the passwords for the SYS and SYSTEM accounts. SYS
is the user who owns all of the internal database tables, and SYSTEM is the account that the DBA uses to create other DBA
accounts in addition to owning other tables used by various Oracle tools.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Janice clicks Exit when she is done setting the passwords, and the database creation process completes. The database is ready
to use.

In the future, Janice can use OEM to manage both Oracle instances within the same Navigation pane. As shown here, Janice’s
new OEM session shows connections to both the or92 and wh92 database instances.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What are the four functions of the Database Creation Assistant (DBCA)?

2. What is the Oracle background process that writes modified data blocks to disk?

3. What is the difference between a database and an instance?

4. An extent is composed of one or more .

5. True or false: The control file contains important system tables.

6. What is the GUI-based Oracle tool that can manage and monitor one or more Oracle instances?

7. DBCA can save the specified database parameters in what kind of file?

8. Which Oracle background process will apply the data in the redo log files to the datafiles in the event of a system
crash?

9. A database schema is closely associated with which other database object?

10. A segment consists of one or more .

Answers

1. DBCA can create, delete, and modify databases. It can also create a template that can be used to create a database.

2. The DBWn process writes modified data blocks to disk.

3. A database is a set of files on disk that is managed by an instance, which is a collection of processes and memory structures
that operate against the datafiles on disk.

4. Database blocks

5. False, the control file contains information about the physical structure of the entire database.

6. The Oracle Enterprise Manager (OEM) can manage and monitor one or more Oracle instances.

7. DBCA can save the database parameters as an HTML file.

8. The SMON process will apply the data in the redo log files to the datafiles in the event of a system crash.

9. A schema is associated 1:1 with a user account in the database.

10. Extents

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
control file

database

database block

database buffer cache

Database Configuration Assistant (DBCA)

datafiles

extent

instance

LRU (least recently used) algorithm

logical structures

Oracle block

Oracle Enterprise Manager (OEM)

Oracle Home

Oracle Universal Installer (OUI)

physical structures

process

Program Global Area (PGA)

redo log buffer

redo log files

schema

segment

shared pool

SID

Software Code Area

System Global Area (SGA)

tablespace

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 9: Reporting Techniques

Overview
It’s important that the data returned from a query be presented in a manner that is easy to interpret. The reporting features of
iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet make it easy to give columns more meaningful names, as well as provide report
headers and footers so that the contents of the report are clear.

In fact, changing how reports are formatted and displayed is one way that you can customize the iSQL*Plus environment to suit
your needs. You can also change how the interface appears and change an account’s password.

Along with formatting, another way to improve a report is by using substitution variables, which prompt the user to enter portions of
the query at runtime. For example, instead of including a department number in a SELECT statement, a query can ask the user to
enter a department number. Finally, after you’ve come up with a set of commands that you’ll want to reuse, you can save them in
a file and run them later.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

iSQL*Plus Configuration
After you’ve logged in to an Oracle database using the iSQL*Plus login screen, you can make changes to your environment using
the Preferences link in the upper-right area of the browser.

From the Preferences screen (see the figure at the top of the next page), you can do one of three things:

Change how the iSQL*Plus environment appears with the Set interface options link.

Change how reports are formatted and displayed using the Set system variables link.

Change your account’s password with the Change your password link.

Interface Options

The Interface Options page (see the figure at the bottom of the next page) allows you to adjust how big a window you need to
enter your SQL statements. It also allows you to specify how the output from the SQL statements will be displayed: within the
same page, on its own page, or saved to an operating system file. The History option sets how many sets of previous commands,
called scripts, are saved in an internal buffer for possible re-execution later. A script is a set of one or more SQL or iSQL*Plus
commands that is executed as a group. Scripts are saved in the history buffer during an iSQL*Plus session, or can be saved to an
operating system file to be retrieved later and executed during the same or a new iSQL*Plus or SQL*Plus session.

script

A set of one or more SQL or iSQL*Plus commands that is executed as a group. Scripts may be retrieved from
within an iSQL*Plus session, or saved to an operating system file and retrieved later in another session.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After you’ve adjusted the settings as desired, click OK to return to the Preferences page.

System Variables

A system variable in iSQL*Plus is similar to a variable in any programming language. Like a column in a row of a table, a system
variable can hold a string or a number. The string or number in the system variable controls some aspect of how iSQL*Plus will
display the results of a query or a DML statement.

system variable

A variable maintained in the iSQL*Plus, SQL*Plus, or SQL*Plus Worksheet environment that holds a status or a
setting for a particular feature in that environment. PAGESIZE is an example of a system variable in iSQL*Plus.

Note All of the system variables that can be set in the iSQL*Plus System Variables page are also available for customization
in the iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet environments by using the command SET
<system_variable> <value>.

The iSQL*Plus environment contains more than 40 variables. The drop-down list at the top of the System Variables page makes it
easy to jump directly to a particular variable without scrolling.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The following sections discuss a few of the key system variables used in iSQL*Plus: PAGESIZE, LINESIZE, HEADING, HEADSEP,
and FEEDBACK.

PAGESIZE
The PAGESIZE system variable specifies how many lines are displayed in a query result before the column headings are
repeated. Setting the PAGESIZE to zero produces the first set of column headings in iSQL*Plus and no column headings in
SQL*Plus.

LINESIZE
The LINESIZE system variable specifies how many characters will be displayed on each row of output. Any characters beyond
this limit will wrap to the next line. LINESIZE has no effect in iSQL*Plus.

HEADING
The value for HEADING can either be On or Off, and it specifies whether column headings should appear in query output. Using
SQL*Plus, the following command turns query headings off:
set heading off

Turning the column headings off may be useful, for example, when sending the output of a SQL query to a file for processing by
another program that may not need to have the column headings.

HEADSEP
The HEADSEP variable allows column headings to appear on multiple lines in the output. A single character, which is the vertical
bar ( | ) by default, divides the heading onto multiple lines. You can set the HEADSEP variable to either specify the separator
character or turn on or off the HEADSEP feature. We’ll talk more about HEADSEP later in this chapter, in conjunction with the
COLUMN command.

FEEDBACK
By default, if a query returns six or more rows, iSQL*Plus returns a summary of the number of rows returned from a query, as in
this example.
select * from countries;

CO COUNTRY_NAME                       REGION_ID
-- --------------------------------- ----------
AR Argentina                                  2
AU Australia                                  3
BE Belgium                                    1
BR Brazil                                     2
CA Canada                                     2
...
UK United Kingdom                             1
US United States of America                   2
ZM Zambia                                     4
ZW Zimbabwe                                   4

25 rows selected.
You can set the FEEDBACK variable to either change the number of rows that will trigger the row count or turn off this feedback
entirely.

Change Password

The Change Password page allows you to change your Oracle login password. Changing your password on a regular basis
reduces the risk of someone obtaining your password and gaining unauthorized access to your account. You must specify your
username, old password, and your new password (twice). In SQL*Plus, you can change your password by using the SQL*Plus
PASSWORD command, or by using the following SQL DCL command:
ALTER USER <username> IDENTIFIED BY <new password>;

The PASSWORD command will prompt you for the old and new password. The ALTER USER command does not prompt you for the
old password.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Report Formatting
While a DBA or an application developer who is familiar with the data can interpret terse column names such as MGR_NO and
ST_ID, these column names may not be very intuitive for employees in the Accounting department. Similarly, consider a query
like this:
select last_name from employees
    where department_id = 80;

Its output does not make it clear that the query output is only for the Sales department, unless you have all the department
numbers memorized!

Reports generated from SQL queries are much more readable and understandable when you use descriptive column names and
report headers and footers. The added features of the iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet environment provide this
functionality.

In this section, you’ll learn how to add headers and footers. You’ll also find another way to create descriptive column names. In
previous chapters, the examples used column aliases to change column names in the SQL query output. Using the COLUMN
command, you can provide the column alias function along with other formatting. Next, you’ll see how the BREAK command can
suppress the output of duplicate column values, making a report much more readable. Finally, you’ll learn how the COMPUTE
command gives totals in a report.

Defining column aliases, changing system variables, and computing totals stays in effect only for the duration of the iSQL*Plus,
SQL*Plus or SQL*Plus Worksheet session. You’ll see how to save and retrieve some of these settings later in this chapter in the
“Saving and Running Scripts” section.

Note Unless specified otherwise in this chapter, all command formats and options are valid in all three environments:
iSQL*Plus, SQL*Plus, and SQL*Plus. However, the examples throughout the chapter focus on the iSQL*Plus
environment.

Headers and Footers

The TTITLE and BTITLE commands provide a flexible way to generate report headers and footers. In addition to specifying text
to appear in the header and footer, this text can be centered, left-justified, or right-justified. Header and footer text can also extend
to two or more lines.

Using TTITLE
The syntax of the TTITLE command is as follows:
TTI[TLE] [option [text] ...] [ON|OFF]

The option part of the TTITLE command specifies what you’re doing with the header, such as justifying the text. The text part
of the command is where you specify the text to be placed in the header. You can specify ON or OFF to turn the header on or off.
Even if you temporarily turn off the header, the values you specified with the TTITLE command will be retained and will be back in
effect the next time you turn the header back on.

At Scott’s widget company, Janice, the application developer and DBA, has been reviewing some of her old queries to see if she
can use some of the reporting capabilities to better advantage when she generates reports for King, the boss. Janice digs up the
query that produces the salary report by department, sorted by descending salary within department:
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
order by department_id asc, salary desc;

 Dept Employee                           Salary
----- ------------------------------ ----------
   10 Whalen, Jennifer                     4400
   20 Hartstein, Michael                  13000
   20 Fay, Pat                             6000
   30 Raphaely, Den                       11000
   30 Khoo, Alexander                      3100
   30 Baida, Shelli                        2900
   30 Tobias, Sigal                        2800
   30 Himuro, Guy                          2600
   30 Colmenares, Karen                    2500
   40 Mavris, Susan                        6500
...
  100 Chen, John                           8200
  100 Urman, Jose Manuel                   7800
  100 Sciarra, Ismael                      7700
  100 Popp, Luis                           6900
  110 Higgins, Shelley                    12000
  110 Gietz, William                       8300
      Grant, Kimberely                     7000

107 rows selected.

Janice wants to make the report more readable by using some of the reporting features of iSQL*Plus. She also knows that King
usually wants to see only departments 30 and 60 in the report. She adds an IN clause to the query plus a left-justified report title:
ttitle left ‘Department Salary Report’

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ttitle left ‘Department Salary Report’
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

The LEFT option in the TTITLE command left-justified the header above the report. Notice also that there is no semicolon after
the TTITLE command; since TTITLE is an iSQL*Plus command, it is terminated automatically at the end of a line, unless the -
continuation character is specified.

Using BTITLE
The BTITLE command has the same syntax as the TTITLE command. It specifies the text to appear at the end of an iSQL*Plus
report. Janice adds a report footer to the report she has been so diligently revising for the boss, in addition to removing the
feedback returned from the SELECT query:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

In the BTITLE command, notice how Janice not only splits the iSQL*Plus command to a second line, but also specifies more than
one line in the report footer by using the SKIP n option to skip to the next line. In other words, the report output will skip to the
next line before displaying additional text in the report footer. The BTITLE command would also work just fine if it were all on one
line. Janice split it up so that the report specification was more readable to whomever may modify this report in the future.

Column Formatting

The COLUMN command in iSQL*Plus has the following syntax:
COL[UMN] [{column|expr} [option ...]]

You can specify aliases for column headings in a query when an alias specified as part of a SELECT statement itself is not
sufficient. For example, you might want the column alias to appear on two lines above the column’s data instead of on just one.
The column values themselves can be formatted as left-justified, right-justified, or centered. Numeric values that represent dollar
amounts can be formatted with the dollar sign character ($).

Janice makes some additional changes in the iSQL*Plus report she has been working on all morning. She adds two COLUMN
commands: one to specify a new column alias for the department number column and the other to format the salary amounts with
a dollar sign.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

In the first COLUMN command, Janice is using a heading separator. When iSQL*Plus formats this column heading, the heading
separator splits the heading so it appears on multiple lines. The default heading separator is the vertical bar character (|), but you
can change this on the System Variables page in iSQL*Plus or by using the SET HEADSEP command in iSQL*Plus, SQL*Plus, or
SQL*Plus Worksheet. Notice that the heading separator character does not appear in the output.

heading separator

A single character embedded in an iSQL*Plus column alias that indicates where the alias is split to appear on
multiple lines in the output. The heading separator itself does not appear in the output.

Note that the iSQL*Plus column alias operation is being applied to the alias in the SELECT statement itself ("Dept"). The COLUMN
command does not care if the column heading coming from the SELECT statement is the actual column name or an alias applied
by the SELECT statement; it will substitute its own new alias to matching column names from the SELECT statement.

The second COLUMN statement applies a numeric format to the "Salary" column, displaying it as a dollar amount.

BREAK Processing

The values in a particular column may repeat, for example, in a report containing employees with their department numbers. To
make the report more readable, it’s often desirable to suppress duplicate values in columns like these until the value in this
column changes. The iSQL*Plus BREAK command facilitates the suppression of duplicate values for a given column in a report.
The syntax for the BREAK command is as follows:
BRE[AK] [ON report_element]

Tip BREAK commands are almost always applied to columns that are sorted.

Janice knows that there is always room for improvement. She also knows that, at some point, the boss will be asking her to make
it clearer when the department number changes on her most recent iSQL*Plus report. To remove the extra department numbers,
she adds a BREAK command, as follows:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


order by department_id asc, salary desc;

The report is significantly more readable, and the boss can easily spot where the rows for department 60 begin in the report.

Summary Operations (Totals)

iSQL*Plus provides the capability to provide running and final totals to any report by using the COMPUTE command. The COMPUTE
command has the following format:
COMP[UTE] [function [LAB[EL] text] ...
   OF {expr|column|alias} ...
   ON {expr|column|alias|REPORT|ROW} ...]

You can attach specific labels to each subtotal by using the LABEL subclause. The function clause can be any of a number of
aggregate functions, such as SUM, AVG, MIN, MAX, and so forth. The summary operation can occur when a column value changes
or at the end of the report.

Janice is anticipating the next request from her boss, and decides to modify her report further to provide the sum of salaries by
department and across all departments specified in the report. She will need two new COMPUTE statements and a change to the
BREAK statement:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

The on Report clause was added to the BREAK command so that totals would be generated by the COMPUTE statement that
follows it. Janice only "breaks" on the report once, but she still needs to specify it, because the COMPUTE statement performs the
aggregate operation only at a BREAK in a report. The COMPUTE statements in Janice’s revised report perform a sum of the salary
amounts and provide a custom label when the department salary sum is displayed on the report.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Substitution Variables
Another way to make an iSQL*Plus report more flexible is by using substitution variables. A substitution variable is a string
preceded by either an ampersand (&) or a double ampersand (&&) in an iSQL*Plus script that will prompt the user for its value
when the script is run.

substitution variable

A string literal with no embedded spaces, preceded by & or &&, that will prompt the user for a value when an
iSQL*Plus script containing one of these variables is executed. A substitution variable preceded by & will not
prompt the user for a value if the same substitution variable, preceded by &&, exists earlier in the script.

A substitution variable preceded by a single ampersand will prompt for a value every time it is encountered in a script. A
substitution variable preceded by a double ampersand will prompt for a value once and will save that value. Once saved, if the
same substitution variable preceded by a single ampersand is encountered, it will use the value saved when the substitution
variable with the double ampersand was encountered.

Janice is reviewing the script she has been working on all day, and realizes that sooner or later, the boss will want to run that
script for any list of departments, not just departments 30 and 60. She realizes that substitution variables would be useful in this
situation, and she changes her script as follows to allow iSQL*Plus to prompt for the department numbers before the query runs:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (&DeptList)
order by department_id asc, salary desc;

The only change is the replacement of the specific department numbers in the original script with the substitution variable
DeptList. When Janice clicks the Execute button in iSQL*Plus, she is prompted for the value of DeptList.

The script runs as before, except this time, a different group of departments is returned from the query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice that iSQL*Plus, by default, will show the substitutions that occurred before presenting the results. This can be turned off
with the SET VERIFY OFF command.

As you may have noticed, Janice is somewhat of a perfectionist, and she thinks that the report would look even better if the report
header contained the list of departments in the report. This gives Janice a good opportunity to use the double ampersand in her
substitution variable, so that she will not need to enter the department list twice when she runs the script. Her revised script now
looks like this:
set feedback off
ttitle left -
   ‘Department Salary Report, Departments: &&DeptList’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (&DeptList)
order by department_id asc, salary desc;

She changed the TTITLE command to include the substitution variable &&DeptList. When this script is run, the prompt for
DeptList occurs only once.

However, the substitution is performed twice. The first substitution variable &&DeptList has a double ampersand, and therefore
its value is retained when &DeptList is encountered later in the script.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Saving and Running Scripts
If a set of SQL or iSQL*Plus commands will be used over and over again, it makes sense to save it as a script in a central location
and retrieve it when it needs to be run. iSQL*Plus makes it easy to save and retrieve scripts.

Janice decides that the iSQL*Plus script she wrote for displaying salaries by department will be used by every department
manager, so she will save it on a network disk drive that is accessible to all of the managers. She clicks the Save Script button at
the bottom of the Work Screen.

This brings up the Save As dialog box. Janice saves the contents of the Work Screen to the directory I:\Common\SQLScripts.

To retrieve a script, Janice clicks the Browse button on the Work Screen and navigates to the directory containing the script. She
double-clicks the filename to be retrieved, and it is placed in the File or URL text box. She clicks the Load Script button to bring
the script into the Work Screen. If Janice knew the full pathname ahead of time, she could also type that directly into the File or
URL text box, without needing to use the Browse function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

2. Identify the two iSQL*Plus commands that define the header and footer for a report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus window where you enter your iSQL*Plus
commands or SQL statements?

4. Write an iSQL*Plus footer command to display the text Page 22, right-justified on the line.

5. Sums and averages can be displayed on an iSQL*Plus report using which iSQL*Plus command?

6. Write a single iSQL*Plus COLUMN command to format the Salary column with a total of six digits, four to the left of
the decimal point and two to the right. In the same COLUMN command, define the header to be Monthly Salary,
with the words appearing on different lines in the column header.

7. Which iSQL*Plus command controls the row count display after a SELECT statement is executed?

8. Which iSQL*Plus command controls how duplicate column values are displayed on a report?

9. The iSQL*Plus BREAK command is almost always specified in conjunction with what SQL SELECT statement
clause?

10. In both the TTITLE and BTITLE commands, what option must be used to specify more than one line in the
header or footer?

Answers

1. An iSQL*Plus substitution variable is preceded by either one or two ampersands (& or &&).

2. The TTITLE and BTITLE commands define the header and footer for an iSQL*Plus report.

3. The size of the iSQL*Plus Work Screen window can be adjusted on the Interface Options page.

4. This iSQL*Plus command will display the text Page 22, right-justified on the footer line of the report:
btitle right ‘Page 22’

5. Sums and averages can be displayed on an iSQL*Plus report by using the COMPUTE iSQL*Plus command.

6. The following iSQL*Plus command will format the Salary column with six digits, four to the left of the decimal point and two to
the right. In addition, the header will be defined as Monthly Salary, with the words appearing on different lines in the column
header:
column Salary format 9999.99 heading ‘Monthly|Salary’

7. The FEEDBACK command controls the row count display after a SELECT statement is executed. By default, the row count
from a query is displayed if there are six or more rows in the query output.

8. The BREAK command will suppress duplicate values in a report for a specified column.

9. The BREAK command is almost always specified on a column that is in the ORDER BY clause of a SQL SELECT statement.

10. The SKIP option must be used in a BTITLE or TTITLE command to specify more than one line in the header or footer.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
heading separator

script

substitution variable

system variable

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 10: Creating and Maintaining Database Objects

Overview
As both a DBA and a developer, you will be responsible for creating and maintaining a variety of database objects. First and
foremost, you will be creating tables. You will also need to know how to create indexes and views.

To keep track of tables, indexes, and other database objects, you can use data dictionary views, which allow you to retrieve
various kinds of statistics about tables and other database objects.

Two other useful database objects covered here are sequences and synonyms. Sequences make it easy to generate a series of
unique numbers that are typically used for the primary key of a table. Synonyms facilitate a consistent naming convention for
database objects that may exist in the user’s schema or in another schema of the same database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Tables
The table is the most basic and most important object you will create in a database. Essentially, you could do without every other
database object in a database except for tables. Without tables, you cannot store anything in a database.

You can create tables with the CREATE TABLE statement or "on the fly" with a method known as Create Table As Select, or
CTAS.

Once you know that you need to create a table, you must decide what kind of table you want. In this section, we’ll cover the most
common types of tables:

Relational tables

Tables created directly from the result of a query

Tables whose data resides outside the database

Tables with a definition that is available to all sessions but whose data is local to the session that created the data

Relational Tables

A relational table is the most common form of a table in the Oracle database. It is created with the CREATE TABLE statement, its
data is stored in the database, and it can be partitioned. When you partition a table, the data for the table is internally stored in two
or more pieces to potentially improve performance and to make the table easier for the DBA to manage if the table has many
rows. Partitioning tables is covered in more detail in Chapter 12, "Making Things Run Fast (Enough)."

relational table

The most common form of a table in the Oracle database; the default type created with the CREATE TABLE
statement. A relational table is permanent and can be partitioned.

The basic syntax for the CREATE TABLE statement is as follows:
CREATE TABLE [schema.]tablename
   (column1 datatype1 [DEFAULT expression]
      [, ...]);

The table that Scott, the company founder, created back in Chapter 2 was built with this statement:
create table emp_hourly (
  empno      number(4)    not null,
  ename      varchar2(10),
  job        varchar2(9),
  mgr        number(4),
  hiredate   date,
  hourrate   number(5,2)  not null default 6.50,
  deptno     number(2),
  constraint pk_emp
primary key ( empno ) ) ;

Now, the HR schema is used to manage employee information. Therefore, Janice, the DBA and senior developer, must re-create
the table to match the datatypes and name of the EMPLOYEES table in the HR schema, as follows:
create table employees_hourly (
  employee_id     number(6)    not null,
  first_name      varchar2(20),
  last_name       varchar2(25) not null,
  email           varchar2(25) not null,
  phone_number    varchar2(20),
  job_id          varchar2(10) not null,
  manager_id      number(6),
  hire_date       date not null,
  hourly_rate     number(5,2) default 6.50 not null,
  department_id   number(4),
  ssn             varchar2(11),
  constraint pk_employees_hourly
              primary key( employee_id ) ) ;

Because of the PRIMARY KEY constraint on the EMPLOYEE_ID column, the values in the EMPLOYEE_ID column must be unique
within the table.

Create Table As Select (CTAS)

If you want to base the contents of a new table on the results of a query of one or more other tables, you can use the statement
CREATE TABLE ... AS SELECT, otherwise known as CTAS. It’s shorthand for two or more individual statements: the traditional
CREATE TABLE statement and one or more INSERT statements. Using CTAS, you can create a table and populate it in one easy
step.

CTAS

Also known as Create Table As Select, a method for creating a table in the database by using the results from a
subquery to both populate the data and specify the datatypes of the columns in the new table.

The syntax for CTAS varies from the basic syntax of a CREATE TABLE statement as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The syntax for CTAS varies from the basic syntax of a CREATE TABLE statement as follows:
CREATE TABLE [schema.]tablename
   AS SELECT <select_clauses>;

Notice that with CTAS you cannot specify the datatypes of the new columns; the column datatypes of the original columns, along
with any NOT NULL constraints, are derived from the columns in the SELECT query. Any other constraints or indexes may be
added to the table later. Column aliases in the SELECT query are used as the column names in the new table.

At Scott’s widget company, the Order Entry department frequently sends out mailings to nonadministrative staff, but the mailing
list is becoming outdated. The manager in the Order Entry department asks Janice to grant the developers in the group the rights
to access the EMPLOYEES table. However, the EMPLOYEES table contains sensitive personal information about employees, such
as their salary. So, instead of granting access to the EMPLOYEES table, Janice decides to give the Order Entry department
developers their own table with a limited number of columns. Using CTAS, her CREATE TABLE statement extracts the name and
e-mail address for the Order Entry department as follows:
create table oe.non_admin_employees
    as select employee_id, last_name, first_name, email
    from hr.employees e where e.job_id not like ‘AD_%’;

Notice that Janice is copying some of the rows with only a few of the columns from the EMPLOYEES table in the HR schema, and
she is creating a new table named NON_ADMIN_EMPLOYEES in the OE schema. To confirm her work, Janice checks the new
table:
describe oe.non_admin_employees

 Name                         Null?    Type
 ---------------------------- -------- ---------------
 EMPLOYEE_ID                           NUMBER(6)
 LAST_NAME                    NOT NULL VARCHAR2(25)
 FIRST_NAME                            VARCHAR2(20)
 EMAIL                        NOT NULL VARCHAR2(25)

select * from oe.non_admin_employees;

EMPLOYEE_ID LAST_NAME          FIRST_NAME       EMAIL
----------- ------------------ ---------------- -----------
        103 Hunold             Alexander        AHUNOLD
        104 Ernst              Janice           JERNST
        105 Austin             David            DAUSTIN
        106 Pataballa          Valli            VPATABAL
        107 Lorentz            Diana            DLORENTZ
        108 Greenberg          Nancy            NGREENBE
...
        195 Jones              Vance            VJONES
        196 Walsh              Alana            AWALSH
        197 Feeney             Kevin            KFEENEY
        198 OConnell           Donald           DOCONNEL
        199 Grant              Douglas          DGRANT
        201 Hartstein          Michael          MHARTSTE
        202 Fay                Pat              PFAY
        203 Mavris             Susan            SMAVRIS
        204 Baer               Hermann          HBAER
        205 Higgins            Shelley          SHIGGINS
        206 Gietz              William          WGIETZ

103 rows selected.

Everyone in the EMPLOYEES table is in the new NON_ADMIN_EMPLOYEES table, except for the four administrative employees
whose job ID begins with AD_.

Janice makes sure to re-create the table in the OE schema every time employees are added, deleted, or changed in HR’s
EMPLOYEE table. If the Order Entry department wants any other constraints or indexes other than the NOT NULL constraint on
columns in the new table, Janice will need to create them manually.

External Tables

Sometimes you want to access data that resides outside the database, but you want to use it as if it were another table within the
database. An external table is a read-only table whose definition is stored within the database but whose data stays external to
the database itself.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


external table

A table whose definition is stored in the database but whose data is stored externally to the database.

You may ask, “Why not use one of Oracle’s utilities to load the external data into an internal table, and then use the internal
table?” While this is an option, there are many reasons why this may not be the best solution. One reason is that you can use the
functionality of Oracle SQL against the external table to more easily load the data into other tables. Also, if the external data
source is maintained by another business area in a text format, the internal copy of the data most likely will be out of synch until
the next time you import it. If you treat the external data as a table, it will always be up to date every time you access it as an
external table.

There are a few drawbacks to using external tables. External tables are read-only; changes cannot be made to the external data
source with UPDATE statements. Also, external tables cannot be indexed. Therefore, if you need to access only a small fraction of
the rows in the external table, an internal table with an index might be a better solution.

Janice, the DBA, has been assigned the task of making the customer feedback files maintained by the Customer Service group
accessible from within the database. Currently, the Customer Service group receives customer feedback, which is entered on a
daily basis into a text file on the shared network drive I:\Common\CustomerComments with a filename of feedback.txt.

The first step Janice must perform is to define an Oracle object known as a directory. An Oracle directory is an Oracle object that
contains an alias to a directory path on the operating system’s filesystem. Once defined in this manner, the Oracle directory object
can be used to refer to the location on the filesystem in subsequent Oracle commands, such as the CREATE TABLE ...
ORGANIZATION EXTERNAL command. You need to run the CREATE DIRECTORY command only once for each filesystem
pathname you want to access. Janice’s command for creating this directory object is as follows:
create directory comment_dir as
        ‘I:\Common\CustomerComments’;

Directory created.

directory

A database object that stores a reference to a directory on the host operating system’s filesystem.

The file that contains the data for the external table, feedback.txt, looks like this:
154,Helpful and Friendly.
150,Took the time to help me buy the widgets I really needed.
156,Didn’t really seem too enthusiastic.
152,The Best experience I’ve had with Widgets-R-Us.

The external table will have two columns: The first field is the employee number, and the second field is the text of the comments
from the customer. A comma separates the employee number from the comment. Janice uses the following CREATE TABLE
statement to create the external table:
create table cust_comments (
  employee_id   number,
  comments      varchar2(100))
organization external
 (default directory comment_dir
  access parameters
  (records delimited by newline
   fields terminated by ‘,’
    (employee_id char, comments char))
   location(‘feedback.txt’));

Table created.

The first part of the CREATE TABLE statement looks familiar. It contains two columns: EMPLOYEE_ID and COMMENTS. The
ORGANIZATION EXTERNAL clause specifies this table to be an external table. The operating system file is located in the directory
defined by the directory object comment_dir. Each line of data corresponds to one row in the table, and each column in the
external file is separated by a comma. Both of the fields are character strings in the external file, so we define those fields as
CHAR. Finally, we specify the name of the external file itself with the LOCATION clause.

Janice, as well as anyone else who can access tables in the HR schema, can use the CUST_COMMENTS table in a query as easily
as using any of the internal tables:
select * from cust_comments;

EMPLOYEE_ID COMMENTS
----------- ------------------------------------------
        154 Helpful and Friendly.
        150 Took the time to help me buy the widgets
               I really needed.
        156 Didn’t really seem too enthusiastic.
        152 The Best experience I’ve had with
               Widgets-R-Us.

4 rows selected.

To produce a report that is more readable for the boss, Janice joins the external table with the internal EMPLOYEES table:
select employee_id "EmpID",
    last_name || ‘, ‘ || first_name "Name", comments

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    last_name || ‘, ‘ || first_name "Name", comments
from employees join cust_comments using (employee_id);

 EmpID Name                 COMMENTS
------ -------------------- -------------------------
   154 Cambrault, Nanette   Helpful and Friendly.
   150 Tucker, Peter        Took the time to help me
                            buy the widgets I really
                            needed.
   156 King, Janette        Didn’t really seem too
                            enthusiastic.
   152 Hall, Peter          The Best experience I’ve
                            had with Widgets-R-Us.

4 rows selected.

The CUST_COMMENTS table is indistinguishable in usage from any other table in the database, as long as you don’t try to perform
any INSERT, UPDATE, or DELETE statements on the external table.

Temporary Tables

A temporary table is a table whose definition is available to all sessions in the database, but whose rows are available only to the
session that added the rows to the table. Once the transaction is committed or the session is terminated, the data created during
that session is removed from the temporary table. To create a temporary table, you use the familiar CREATE TABLE syntax with
the addition of the GLOBAL TEMPORARY clause. An additional clause, ON COMMIT PRESERVE ROWS, retains the rows added to
the table until the end of the session; otherwise, the rows are removed after each COMMIT.

temporary table

A table whose definition is persistent and shared by all database users but whose data is local to the session
that created the data. When the transaction or session is completed, the data is truncated from the temporary
table.

A temporary table might be useful in an application that uses a table for its session data and is used by hundreds of users; the
table needs to be created only once, with the proper permissions so that all application users can access it.

Janice, the DBA, is installing a travel itinerary application that employees use to plan their business trips. The application needs a
table that temporarily holds the travel destinations and costs for the employee. Janice realizes a temporary table is perfect for this
purpose. Her CREATE TABLE statement looks like this:
create global temporary table travel_dest
   (employee_id      number(6),
    destination_id   number(4),
    airfare          number(7,2),
    hotel            number(6,2))
on commit preserve rows;

Table created.

Once the travel itinerary application is terminated and the user disconnects from the database, any rows placed in this table by the
user are automatically removed.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Indexes
The purpose of indexes can be summarized in one word: performance. An index is a database structure designed to reduce the
amount of time necessary to retrieve one or more rows from a table. Indexes can also enforce uniqueness on one or more
columns of a table.

index

A database object designed to reduce the amount of time it takes to retrieve rows from a table. An index is
created based on one or more columns in the table.

Any number of indexes may be created on a table. An index may also be built against a combination of columns in a table; this
type of index is known as a composite index.

composite index

An index that is created on two or more columns in a table.

Indexes are maintained automatically. When new rows are added to the table, new entries are recorded in the indexes. When
rows are deleted from the table, the corresponding index entries are also deleted.

Warning Be cautious when creating indexes in an environment with frequent update, insert, and delete operations. The
overhead of keeping the indexes up to date can have a performance impact on the database and potentially
increase the response time for users.

Indexes can be either unique or nonunique. A unique index prevents duplicate values from being inserted into a table column with
a unique index. For example, an employee table might have a column with a social security number. Since no two employees will
have the same social security number, a unique index can be created on the column. If a primary key is defined for a table, a
unique index is automatically created to enforce the uniqueness of the primary key.

Nonunique indexes, by definition, will not enforce uniqueness, but can still speed processing by narrowing down the range of
blocks where the desired rows of a table can be found. For example, a nonunique index on a column with a last name would likely
have many entries for Smith. Each of the index entries for Smith would point to a row in the table where the last name was
Smith. Using this nonunique index to find all the Smith entries will typically take much less time than scanning the entire table for
Smith directly.

An index on a database table column corresponds closely to the real-world analogy of an index in a book. A topic in a book can be
located much more quickly if the topic’s title is located in the book’s index with the corresponding page number. Without the index,
you might need to search through each page of the book to locate the topic you want.

The simplest form of the CREATE INDEX statement looks like this:
CREATE INDEX index_name
ON table_name (column1[, column2]...);

The columns column1, column2, and so forth are the columns to be indexed on the table table_name. The index name
index_name must be unique across all objects within the same schema.

Janice has been receiving complaints that the queries against the COUNTRIES table have been slow. She knows that there is
already an index on the COUNTRY_ID column, so she is surprised that the response time would be poor when selecting a row
from the COUNTRIES table. After further investigation, she discovers that a lot of users are trying to find the two-letter country code
given the name of the country—the users are searching the table using a WHERE clause on the COUNTRY_NAME column. She
decides that an index on the COUNTRY_NAME column might improve the response time. To create the index, she uses the
following command:
create index countries_ie1 on countries(country_name);

Index created.

The index did not necessarily need the name of the table in its name. However, Janice realizes that it’s good practice to include
the table name, so that she can easily avoid duplicate index names in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating and Using Views
In this section, we’ll talk about views that users can create themselves, and then we’ll cover views owned by SYS that contain
important information about the objects in the database.

User-Defined Views

Views are database objects that look like tables, but are instead derived from a SELECT statement performed on one or more
tables. In other words, a view is a subset of data from one or more tables. A view does not contain its own data; the contents of a
view are dynamically retrieved from the tables on which it is based. A view is sometimes referred to as a stored query.

view

A database object that is based on a SELECT statement against one or more tables or other views in the
database. A regular view does not store any data in the database; only the definition is stored. Views are also
known as stored queries.

Views can enhance the usability of the database by making complex queries appear to be simple. For example, users may
frequently join together two or more tables in the same way. A view will make the users’ lives a bit easier, allowing them to write a
query against a single view instead of needing to rewrite a complex query over and over.

Views can also be used to restrict access to certain rows or columns of a table. For example, the DBA can create a view against
the EMPLOYEES table that excludes the SALARY column and make this view available to those departments that need to see
employee information but should not see salary information.

The CREATE VIEW statement looks like this:
CREATE VIEW view_name (alias1[, alias2] ...)
   AS subquery;

The subquery clause is a SELECT statement that may join more than one table and may also have a WHERE clause. Column
aliases can be specified for the resulting columns from the subquery.

After reviewing some of the SELECT statements that the users are writing, Janice, the DBA and application developer, notices that
there are frequent joins between the EMPLOYEES table and the DEPARTMENTS table, similar to the following:
select employee_id, last_name, first_name,
       department_id, department_name
from employees join departments using(department_id);

Creating a view based on this query might help the users who typically don’t use SQL to join tables but need to see the associated
department information for each employee. Janice creates the view using the sample query above as the subquery in a CREATE
VIEW statement:
create view
      emp_dept(emp_id, lname, fname, dept_id, dname) as
select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

View created.

Notice that Janice has supplied column aliases so that the original column names are not visible to the users of the view. For all
intents and purposes, the EMP_DEPT view looks and operates in the same way as a single table, as demonstrated below with the
DESCRIBE and SELECT statements:
describe emp_dept;
 Name                               Null?    Type
 ---------------------------------- -------- ------------
 EMP_ID                             NOT NULL NUMBER(6)
 LNAME                              NOT NULL VARCHAR2(25)
 FNAME                                       VARCHAR2(20)
 DEPT_ID                            NOT NULL NUMBER(4)
 DNAME                              NOT NULL VARCHAR2(30)

select * from emp_dept;

 EMP_ID LNAME         FNAME       DEPT_ID DNAME
------- ------------- ----------- ------- ----------------
    100 King          Steven           90 Executive
    101 Kochhar       Neena            90 Executive
    102 De Haan       Lex              90 Executive
    103 Hunold        Alexander        60 IT
    104 Ernst         Janice           60 IT
    105 Austin        David            60 IT
    106 Pataballa     Valli            60 IT
    107 Lorentz       Diana            60 IT
    108 Greenberg     Nancy           100 Finance

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    108 Greenberg     Nancy           100 Finance
    109 Faviet        Daniel          100 Finance
    110 Chen          John            100 Finance
...
    203 Mavris        Susan            40 Human Resources
    204 Baer          Hermann          70 Public Relations
    205 Higgins       Shelley         110 Accounting
    206 Gietz         William         110 Accounting

106 rows selected.

The EMP_DEPT view can be used in the same way as any database table. The users can add a WHERE clause to the SELECT
statement above. Also, the EMP_DEPT view can be joined with a table in another query if so desired.

Data Dictionary Views

Data dictionary views are predefined views that contain a variety of information about tables, users, and various other objects in
the database. Like other views, data dictionary views are based on one or more tables. The main differences between data
dictionary views and user-created views are that data dictionary views are owned by the user SYS and the views themselves may
appear to have different results depending on who is accessing them.

data dictionary views

Read-only views owned by the user SYS that are created when the database is created and contain information
about users, security, and database structures, as well as other persistent information about the database.

Data Dictionary View Types
Data dictionary views have one of three prefixes:

USER_ These views show information about the structures owned by the user (in the user’s schema). They are accessible to all
users and do not have an OWNER column.

ALL_  These views show information about all objects that the user has access to, including objects owned by the user and
objects that other users have granted the user access to. These views are accessible to all users. Each view has an OWNER
column, since some of the objects may reside in other users’ schemas.

DBA_  These views have information about all structures in the database—they show what is in all users’ schemas. Accessible to
the DBA, they provide information on all the objects in the database and have an OWNER column as well.

Common Data Dictionary Views
Some data dictionary views are commonly used by both developers and DBAs to retrieve information about tables, table columns,
indexes, and other objects in the database. The following descriptions refer to the ALL_ version of each of the views.

ALL_TABLES

The ALL_TABLES view contains information about all database tables to which the user has access. The following query, run by
the user HR, identifies the table and owner of all tables that HR can access:
select table_name, owner from all_tables;

TABLE_NAME                     OWNER
------------------------------ ------
DUAL                           SYS
SYSTEM_PRIVILEGE_MAP           SYS
TABLE_PRIVILEGE_MAP            SYS
STMT_AUDIT_OPTION_MAP          SYS
AUDIT_ACTIONS                  SYS
...
REGIONS                        HR
COUNTRIES                      HR
LOCATIONS                      HR
DEPARTMENTS                    HR
JOBS                           HR
EMPLOYEES                      HR
JOB_HISTORY                    HR
EMP                            SCOTT
SALGRADE                       SCOTT
EMPLOYEES_DEPARTMENTS          HR
EMPLOYEES_SSN                  HR
CUST_COMMENTS                  HR
EMPTY_CUST_COMMENTS            HR

44 rows selected.

Many of the tables visible to HR are tables owned by SYS and SYSTEM, such as the DUAL table. The user HR can also access the
EMP and SALGRADE tables owned by SCOTT.

ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view contains information about the columns in all tables accessible to the user. If the user HR wanted to
find out the columns and datatypes in the COUNTRIES table, the query would be written as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


find out the columns and datatypes in the COUNTRIES table, the query would be written as follows:
select column_name, data_type from all_tab_columns
where table_name = ‘COUNTRIES’;

COLUMN_NAME               DATA_TYPE
------------------------- ------------
COUNTRY_ID                CHAR
COUNTRY_NAME              VARCHAR2
REGION_ID                 NUMBER

3 rows selected.

ALL_INDEXES

The ALL_INDEXES view contains information about the indexes accessible to the user. If the HR user wanted to find out the
indexes that were created against the COUNTRIES table and whether the indexes were unique, the query would look like this:
select table_name, index_name, uniqueness from all_indexes
where table_name = ‘COUNTRIES’;

TABLE_NAME               INDEX_NAME           UNIQUENES
------------------------ -------------------- ---------
COUNTRIES                COUNTRY_C_ID_PK      UNIQUE
COUNTRIES                COUNTRIES_IE1        NONUNIQUE

2 rows selected.

The COUNTRIES table has two indexes, one of which is a unique index.

ALL_IND_COLUMNS

The ALL_IND_COLUMNS view contains information about the columns indexed by an index on a table. Following the previous
example, the HR user can use the INDEX_NAME to help identify the indexed column or columns on the table.
select table_name, column_name from  all_ind_columns
where index_name = ‘COUNTRY_C_ID_PK’;

TABLE_NAME     COLUMN_NAME
-----------    -----------------
COUNTRIES      COUNTRY_ID

1 row selected.

The index COUNTRY_C_ID_PK indexes the COUNTRY_ID column in the COUNTRIES table.

ALL_OBJECTS

The ALL_OBJECTS view combines all types of Oracle structures into one view. This view comes in handy when you want a
summary of all database objects using one query, or you have the name of the object and want to find out what kind of object it is.
The following query retrieves all the objects accessible to HR and owned by either the HR or JANICE schema:
select owner, object_name, object_type, temporary
   from all_objects
   where owner in (‘HR’,’JANICE’);

OWNER      OBJECT_NAME                OBJECT_TYPE        T
---------- -------------------------- ------------------ -
JANICE     TRAVEL_DEST                TABLE              Y
HR         ADD_JOB_HISTORY            PROCEDURE          N
HR         COUNTRIES                  TABLE              N
HR         COUNTRIES_IE1              INDEX              N
HR         COUNTRY_C_ID_PK            INDEX              N
HR         CUST_COMMENTS              TABLE              N
HR         DEPARTMENTS                TABLE              N
HR         DEPARTMENTS_SE             SEQUENCE           N
HR         DEPT_ID_PK                 INDEX              N
...
HR         PK_EMPL_SSN                INDEX              N
HR         REGIONS                    TABLE              N
HR         REG_ID_PK                  INDEX              N
HR         SECURE_DML                 PROCEDURE          N
HR         SECURE_EMPLOYEES           TRIGGER            N
HR         UK1_EMPLOYEES              INDEX              N
HR         UPDATE_JOB_HISTORY         TRIGGER            N

43 rows selected.

The TEMPORARY (T) column in the ALL_OBJECTS view indicates whether the object is temporary. The temporary table
TRAVEL_DEST, created and owned by JANICE but accessible to all users, is indicated correctly as being a temporary table in the
query results.

Data Dictionary View Shorthand

Because of how frequently some of the data dictionary views are used by a typical database user, a number of short
synonyms exist for these views. Here are some examples of shortened view names:

TABS is a synonym for USER_TABLES.

IND is a synonym for USER_INDEXES.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IND is a synonym for USER_INDEXES.

OBJ is a synonym for USER_OBJECTS.

Dynamic Performance Views

Dynamic performance views are similar in nature to data dictionary views, with one important difference: Dynamic performance
views are continuously updated while the database is open and in use; they are re-created when the database is shut down and
restarted. In other words, the contents of these views are not retained when the database is restarted. The contents of dynamic
performance views primarily relate to the performance of the database.

dynamic performance views

Data dictionary views owned by the user SYS that are continuously updated while a database is open and in use
and whose contents relate primarily to performance. These views have the prefix V$ and their contents are lost
when the database is shut down.

The names of the dynamic performance views begin with V$. Two common dynamic performance views include V$SESSION and
V$INSTANCE.

V$SESSION
The dynamic performance view V$SESSION contains information about each connected user or process in the database. To find
out what programs the user HR is using to connect to the database, you can query the PROGRAM column of V$SESSION:
select sid, serial#, username, program from v$session
where username = ‘HR’;

       SID    SERIAL# USERNAME           PROGRAM
---------- ---------- ------------------ ----------------
        16       6921 HR                 Toad.exe
        19         18 HR                 jrew.exe
        20         39 HR                 sqlplusw.exe
        21       6932 HR                 Toad.exe

4 rows selected.

In this case, the user HR has four connections open in the database using three different programs. The SID and SERIAL#
columns together uniquely identify a session. This information is needed by the DBA if, for some reason, one of the sessions must
be terminated.

V$INSTANCE
The V$INSTANCE view provides one row of statistics for each Oracle instance running against the database. Multiple instances
running against a single database can greatly enhance the scalability of the Oracle database by spreading out the CPU resource
usage over multiple servers. The following query finds out the version of the Oracle software and how long the instance has been
up since the last restart, along with other instance information.
select instance_name, host_name, version,
   startup_time, round(sysdate-startup_time) "Days Up",
   status from v$instance;

INSTANCE_NAME HOST_NAME VERSION   STARTUP_T Days Up STATUS
------------- --------- --------- --------- ------- ------
or92          ATH1800   9.2.0.1.0 13-OCT-02       7 OPEN

1 row selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Sequences and Synonyms
Various other database objects are needed to support the main objects in the database (such as tables). Two such objects are
sequences and synonyms.

Sequences

An Oracle sequence is a named sequential number generator. A sequence is often used to generate a unique key for the primary
key of a table. A sequence object is owned by a single schema, but it can be used by other database users if the proper
permissions are granted to the users.

sequence

A database structure that generates a series of numbers typically used to assign primary key values to database
tables.

Sequences can begin and end with any value, can be ascending or descending, and can skip (increment) a specified number
between each value in the sequence. The basic syntax for CREATE SEQUENCE is as follows:
CREATE SEQUENCE sequence_name
   [START WITH starting_value]
   [INCREMENT BY increment_value];

If all optional parameters are omitted, the sequence starts with one and increments by one, with no upper boundary.

Sequences are referenced in DML statements by using the syntax sequence_name.currval or sequence_name.nextval.
The qualifier nextval retrieves the next value. The qualifier currval retrieves the most recent number generated without
incrementing the counter. For example, here are some sample SELECT statements that access the sequence used for employee
numbers, EMPLOYEES_SEQ:
select employees_seq.nextval from dual;

NEXTVAL
----------
       211

1 row selected.

select employees_seq.nextval from dual;

NEXTVAL
----------
       212

1 row selected.

select employees_seq.currval from dual;

CURRVAL
----------
       212

1 row selected.

The HR department has asked the DBA, Janice, to re-create the sequence for the EMPLOYEES table to start at 501 and increment
by 10. Janice drops the old sequence and re-creates it:
drop sequence hr.employees_seq;

Sequence dropped.

create sequence hr.employees_seq
   start with 501
   increment by 10;

Sequence created.

After the sequence has been created, the user HR inserts a record into the EMPLOYEES table as follows:
insert into employees
   (employee_id, last_name, first_name, email,
    hire_date, job_id)
values
   (employees_seq.nextval, ‘JUNDT’, ‘SUSAN’, ‘SJUNDT’,
    ‘15-oct-02’,’ST_MAN’);

1 row created.

select employee_id from employees
where last_name = ‘JUNDT’;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


where last_name = ‘JUNDT’;

EMPLOYEE_ID
-----------
        501

1 row selected.

The next time the employees_sesequence is used, the value returned will be 511.

Synonyms

A synonym is an alias for another database object, such as a table, sequence, or view. Synonyms provide easier access to
database objects outside the user’s schema.

synonym

An alias assigned to a table, view, or other database structure. Synonyms can be either available to all users
(public) or available only to one schema owner (private).

There are two kinds of synonyms: public and private. Public synonyms are available to all database users. A private synonym is
available only in the session of the schema owner who created it.

Synonyms are useful in providing a common name to a database object, regardless of which username is logged in to the
database. The temporary table created by Janice, the DBA, called TRAVEL_DEST must be qualified with the schema name if
anyone other than Janice wants to access it. For example, if the user HR is connected to the database and no synonym has been
specified, the table must be fully qualified:
insert into janice.travel_dest
   values(101, 1201, 320.50, 988.00);

The syntax for creating a synonym is as follows:
CREATE [PUBLIC] SYNONYM synonym_name
   FOR [schema.]object_name;

To facilitate easy access to the table TRAVEL_DEST, Janice creates a public synonym for the table:
create public synonym travel_dest for travel_dest;

Synonym created.

What happens if a user has a private synonym called TRAVEL_DEST, or worse yet, his or her own table is called TRAVEL_DEST?
Unqualified object references (object references that aren’t prefixed with a schema name) are resolved in the following order:

1. A real object with the specified name

2. A private synonym owned by the current user

3. A public synonym

Private synonyms can be useful in a development environment when you have a copy of a table with a different name. A private
synonym can be created to refer to the copy of the production table with the same name as the production table. During testing,
the developer’s private synonym points to the copy and does not impact the production table. When development is complete, the
developer can remove the private synonym and move the new SQL code into a production environment, without changing any
table names in the SQL code.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. The data dictionary view IND has the same definition as what other data dictionary view?

2. The most common form of a table in the Oracle database is a(n) table.

3. What clause do you add to the CREATE TABLE statement to create a temporary table?

4. What tables are displayed if a user accesses the ALL_TABLES data dictionary view?

5. Name two ways in which external tables are different from relational tables.

6. True or false: Oracle resolves object references by checking for private synonyms first.

7. What are two reasons for creating a view against one or more tables?

8. What database object type can be used to generate a series of sequential numbers?

9. True or false: Data dictionary tables retain their contents even after the database has been shut down and
restarted.

10. An index created on more than one column is known as what kind of index?

Answers

1. The data dictionary view IND is equivalent to the data dictionary view USER_INDEXES.

2. Relational

3. You add the clause GLOBAL TEMPORARY to the CREATE TABLE statement to create a temporary table.

4. The ALL_TABLES data dictionary view contains a row for each table in the user’s schema plus a row for each table that the
user has access to in other schemas of the database.

5. External tables cannot be updated, and external tables cannot have indexes created on them.

6. False, Oracle resolves object references by checking for a real object owned by the user, then checks for a private synonym,
and then checks for a public synonym.

7. A view can be created to hide the complexity of a table join from the user. A view can also be created to restrict the rows or
columns seen by users of the view.

8. A sequence can be used to generate a series of sequential numbers.

9. True, data dictionary tables retain their contents even after the database has been restarted. Dynamic performance views,
however, lose their contents when the database is shut down and restarted.

10. An index based on more than one column is known as a composite index.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
composite index

CTAS

data dictionary views

directory

dynamic performance views

external table

index

relational table

sequence

synonym

temporary table

view

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 11: Users and Security
If a company has more than one employee who needs access to the Oracle database, then the security of the database is a prime
concern for the DBA. The data integrity of the database and the level of security in the database are maintained, in part, by
preventing unauthorized or unintentional actions in the database.

Database security can be divided into roughly two areas: data security and system security. Data security includes monitoring and
assigning users permissions to the various objects in the database. System security covers the user login process, how much disk
space is assigned to each user, and what kinds of actions each user can perform.

Creating User Accounts
To connect to the Oracle database, a user must have an Oracle database account, also known as a username. When you create
the username, you can specify various other characteristics of the account, including a password, a profile, default tablespaces,
and disk space quotas.

username

An Oracle database account identifier that, along with a password, allows a user to connect to the database.

The basic syntax to create a username is as follows:
CREATE USER user <other options>;

At a minimum, you should assign a password to the account. Passwords and the other user account options are discussed in the
following sections.

Assigning Passwords

The password for the user account is typically assigned at the time the account is created, and then changed after the user logs in
for the first time. Janice, the DBA, creates an account for one of the new stocking managers with an initial password of
BLINKIE6:
create user jsmith identified by blinkie6;

User created.

Passwords are not case sensitive; for example, BlinKIe6 or blinkIe6 would both be stored as BLINKIE6 in the database. To
ensure that the password won’t be easy to guess, it’s important to use a mixture of letters, numbers, and punctuation characters in
the password. The DBA can define additional rules for allowable passwords by the use of a special stored function owned by the
SYS schema. For example, the DBA may require that certain sensitive accounts such as HR have a password that is longer than
the password for any other accounts.

The DBA or user can use the ALTER USER command to change the password:
alter user jsmith identified by spinner40;

User altered.

To change a password from an iSQL*Plus session, the user can use the Preferences link in the upper-right area of the browser.
From within SQL*Plus, the user can change the password using the SQL*Plus PASSWORD command. The advantage to these last
two methods is that the old and new passwords are not echoed to the screen:
SQL> password
Changing password for JSMITH
Old password: *********
New password: ********
Retype new password: ********
Password changed
SQL>

Creating and Assigning Profiles

Each username in the database has a profile associated with it. A profile is a set of predefined resource parameters that can be
used to monitor and control various database resources. The following are some examples of resources that can be controlled in
a profile:

Concurrent connections to the database

Maximum failed login attempts before the account is locked

Elapsed time connected

Continuous idle time connected

CPU time used

Disk reads performed

How often a password needs to be changed

profile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A set of predefined resource parameters that can be used to monitor and control various database resources,
such as CPU time and number of disk reads against the database.

When an account is created, a profile can be specified; otherwise, Oracle assigns a default profile. Not surprisingly, this profile is
called DEFAULT. The initial values of the DEFAULT profile allow for unlimited use of all resources.

At Scott’s widget company, the users in the stocking department are notorious for leaving their sessions connected to the
database and forgetting to log off when they are finished. This consumes valuable memory resources, so Janice, the DBA,
decides to create a new profile in the database to make sure that users are disconnected from the database after 15 minutes of
idle time:
create profile st_user limit
   idle_time 15;

Profile created.

In the new ST_USER profile just created, all resources are set to UNLIMITED except for the IDLE_TIME resource, which has been
set to 15 minutes. The DBA modifies the recently created user to use the newly created profile:
alter user jsmith profile st_user;

User altered.

For JSMITH’s subsequent sessions, the session will be disconnected if the session remains idle for 15 minutes.

Assigning Default Tablespaces and Quotas

When a user creates some type of object—a table, an index, a sequence, or another object—that object uses space in one of the
database’s tablespaces. In addition, a user may need temporary space for sorting and other operations. Each user has a default
tablespace for permanent objects and a default tablespace for temporary objects, although a user may explicitly create objects in
a different tablespace if the user has the proper permissions.

If a default permanent tablespace is not specified when the user account is created, the SYSTEM tablespace is used. It is generally
not a good idea to leave SYSTEM as the default tablespace. Since the SYSTEM tablespace contains all of the data dictionary
objects, there is a high level of contention in the SYSTEM tablespace already, so any new user objects in the SYSTEM tablespace
might have a negative impact on overall system performance.

Janice, the DBA, remedies this situation with the new user account and changes the default tablespace:
alter user jsmith default tablespace users;

User altered.

Janice double-checks her work by querying the DBA_USERS data dictionary view:
select username, default_tablespace,
   temporary_tablespace from dba_users
where username = ‘JSMITH’;

USERNAME     DEFAULT_TABLESPACE   TEMPORARY_TABLESPACE
------------ -------------------- --------------------
JSMITH       USERS                TEMP

1 row selected.

Janice makes a mental note to use the GUI-based Oracle Enterprise Manager (OEM) tool next time. Its Create User facility,
shown below, is not only easier to use, but it also automatically specifies the USER tablespace as the default tablespace for new
users, among other defaults.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although disk space gets cheaper every day, you may also want to limit how much disk space each user can allocate in each
tablespace. The limit on the amount of disk space in a tablespace is called a quota. Even though each username is assigned a
default tablespace when the username is created, the quota defaults to zero. Therefore, you must assign a quota to the user
before that user can create objects in the tablespace.

quota

A numeric limit on the amount of disk space that a user can allocate within a tablespace. The quota can also be
specified as UNLIMITED.

Since the new user, JSMITH, is expected to create tables for other people in the stocking department, Janice allocates 15MB of
disk space in the USERS tablespace for JSMITH:
alter user jsmith quota 15M on users;

User altered.

If Janice specified UNLIMITED instead of 15M, JSMITH would not have any limits on how much space she can use in the USERS
tablespace for database objects.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Granting and Revoking Privileges
Privileges are rights to execute specific SQL statements. The DBA grants privileges to user accounts to control what users can
do in the database. There are two kinds of privileges: system privileges and object privileges. The GRANT command allocates
system and object privileges to a user. The REVOKE command removes privileges from a user.

privileges

The right to perform a specific action in the database, granted by the DBA or other database users.

Roles provide an easy way to group privileges together and assign them to one or more users in the database.

System Privileges

System privileges allow users to perform a specific action on one or more database objects or users in the database. There are
more than 100 system privileges available in the Oracle9i database. Typically, system privileges will fall into two general
categories: DBA privileges and user privileges. There is no distinction at the database level between these two types of system
privileges.

system privileges

Privileges that allow users to perform a specific action on one or more database objects or users in the
database.

In general, system privileges that can affect the database as a whole are generally considered to be DBA privileges. The following
are typical DBA privileges:

Privilege Description

CREATE USER Create a new database user

DROP USER Remove a database user

CREATE ANY TABLE Create a new table in any schema

CREATE TABLESPACE Create a new tablespace

AUDIT ANY Turn on or off database auditing

DROP ANY INDEX Drop an index in any schema

System privileges that allow users to perform specific tasks within a single schema are considered to be user privileges. The
typical user privileges are generally a bit more innocuous than the DBA privileges, as you can see by the following examples:

Privilege Description

CREATE SESSION Establish a connection to the database

CREATE TABLE Create a table in the user’s schema

CREATE PROCEDURE Create a stored function or procedure

System privileges are granted with the GRANT command, which has the following syntax:
GRANT sys_privilege [, sys_privilege ...]
       TO user [, user, role, PUBLIC ...];

Notice that the syntax makes it easy to grant a group of privileges all at once to one user or to many users. Also, a privilege may
be granted to a special class of users called PUBLIC. When a privilege is granted to PUBLIC, all current and future users will have
that privilege.

The CREATE SESSION privilege is important because a user cannot log in to the database without this privilege. Janice, the DBA,
realizes that the new user account she created did not have this privilege. In addition, the new user will be creating new tables, so
she needs the CREATE TABLE privilege. Janice applies both of these privileges to JSMITH using the GRANT command.
grant create session,
      create table to jsmith;

Grant succeeded.

The user JSMITH can now log in and create tables in the database within the JSMITH schema.

The questions you may be asking are, “Why isn’t the CREATE SESSION privilege automatic? Don’t we want everyone to be able
to log in? Why would we create a user who couldn’t log in?"

In some database application environments, it is beneficial to keep all of the tables within a single schema for ease of
maintenance, quota, and backups. You might not, however, allow the schema owner to log in. In this way, the application users
can be tracked to know who used what table in the application’s schema. If only the application’s username were used, you would
not know which user performed what action against the database. The DBA can set up the proper permissions and synonyms for
other users to access this new schema, without the need for the application schema’s owner to ever log in to the database.

Object Privileges

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object privileges allow users to manipulate the contents of database objects in other schemas. Object privileges are granted on
schema objects such as tables, directories, and stored procedures. They are granted to a username in a different schema. In
other words, the owner of an object in a schema has all privileges on the object and can grant privileges on the object to another
user.

object privileges

Privileges that allow users to manipulate the contents of database objects in other schemas.

Typical object privileges include the following:

Privilege Description

SELECT Read (query) access on a table

UPDATE Update (change) rows in a table or view

DELETE Delete rows from a table or view

INSERT Add rows to a table or view

EXECUTE Run (execute) a stored procedure or function

INDEX Create an index on a table

In addition to the ability of the user to grant privileges on objects to other users, a user can grant the privilege for the grantee to
subsequently grant the same privilege to yet another user.

Object privileges are granted with a GRANT statement similar to that for granting system privileges:
GRANT obj_privilege [(column_list)]
   [, obj_privilege ...] ON object
   TO user [, user, role, PUBLIC ...]
   [WITH GRANT OPTION];

The column_list parameter is used if the object is a table and only certain columns of the table are made available for updating
by other users. The WITH GRANT OPTION clause allows the grantee to pass the privilege on to yet another user.

The HR department at Scott’s widget company frequently receives requests to update the EMPLOYEES table. The department
asks Janice, the DBA, to make some of the columns of the table available to all employees, so that they can make changes to
their phone number and e-mail address. The GRANT statement is as follows:
grant update (email, phone_number) on employees to public;

Now employees can update their records if they know their employee ID. One of the new employees uses the following SQL
command to change his e-mail address:
update hr.employees set email=’RSMITH’
where employee_id = 502;

1 row updated.

However, trying to update a different column in the table is not permitted:
update hr.employees set salary=25000
where employee_id = 502;

update hr.employees set salary=25000
          *
ERROR at line 1:
ORA-01031: insufficient privileges

In fact, even selecting rows from the table is disallowed:
select * from hr.employees
where employee_id = 502;

select * from hr.employees
                 *
ERROR at line 1:
ORA-01031: insufficient privileges

Any user other than HR has only the object privilege on EMPLOYEES to update the EMAIL and PHONE_NUMBER columns.

After a month or so, the HR department has decided that granting the privileges on the two columns in the EMPLOYEES table was
not a very good idea. Employees were using the wrong employee number to update the EMPLOYEES table, and they inadvertently
updated the wrong e-mail and phone number information. To solve the problem, Janice revokes the privileges on the EMPLOYEES
table, as follows:
revoke update on employees from public;

Revoke succeeded.

Notice that the REVOKE statement did not specify any columns in the EMPLOYEES table. When revoking UPDATE privileges on a
table, columns cannot be specified. If the HR department wanted to continue to allow access to one of the columns, a new GRANT
statement specifying the desired column would be issued after the REVOKE statement.

Creating and Assigning Roles

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A role is a named group of privileges. Using roles makes it easy for the DBA to grant groups of privileges to users. Granting a role
takes a lot fewer steps than granting individual privileges. For example, if several users all require the same 15 privileges, it’s a lot
easier to assign those 15 privileges to a role first, and then assign the role to each user who needs it.

role

A named group of privileges created to ease the administration of system and object privileges.

The privileges granted to the role can be a combination of system and object privileges. A user may be granted more than one
role in addition to any system or object privileges granted directly. Roles are created with the CREATE ROLE statement. The basic
syntax for CREATE ROLE is as follows:
CREATE ROLE <rolename> [IDENTIFIED BY <role_password>];

As the syntax indicates, a role may have a password. If a role requires a password, a user granted this role must use the SET
ROLE command to use the privileges granted to the role.

The Order Entry department at Scott’s widget company wants to give employees in certain departments an additional discount on
orders placed. To identify a customer as an employee, the Order Entry department will need access to the EMPLOYEES and
DEPARTMENTS tables in the HR schema. Janice, the DBA, decides that using a role might be the best way to provide this access,
since other departments may be asking for this same functionality in the future.

The first step is to create a role to hold the privileges. Janice creates the role as follows:
create role hr_emp_dept;

Role created.

Next, the privileges on the tables must be added to the roles:
grant select on hr.employees to hr_emp_dept;

Grant succeeded.

grant select on hr.departments to hr_emp_dept;

Grant succeeded.

Finally, the role itself is granted to the user OE:
grant hr_emp_dept to oe;

Grant succeeded.

Now the user OE can read the contents of the EMPLOYEES and DEPARTMENTS tables in the HR schema. In the future, to provide
the same access to the HR tables to other departments, only the last GRANT statement needs to be executed.

To check the roles granted to the OE user, Janice runs the following query against the DBA_ROLE_PRIVS data dictionary view:
select grantee, granted_role from dba_role_privs
where grantee = ‘OE’;

GRANTEE                   GRANTED_ROLE
------------------------- ------------
OE                        CONNECT
OE                        RESOURCE
OE                        HR_EMP_DEPT

3 rows selected.

To find out which privileges are assigned to the role HR_EMP_DEPT, Janice runs another query against the ROLE_TAB_PRIVS
data dictionary view:
select role, owner, table_name, privilege from
   role_tab_privs where role=’HR_EMP_DEPT’;

ROLE              OWNER    TABLE_NAME           PRIVILEGE
----------------- -------- -------------------- ---------
HR_EMP_DEPT       HR       EMPLOYEES            SELECT
HR_EMP_DEPT       HR       DEPARTMENTS          SELECT

2 rows selected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2 rows selected.

The role HR_EMP_DEPT has SELECT privileges against two tables in the HR schema: EMPLOYEES and DEPARTMENTS.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Auditing
Auditing in the Oracle database stores information about database activities. The activities to be audited are specified by the
DBA. Once enabled, auditing records the activity in the AUD$ table, owned by SYS.

auditing

Storing information about activities in the database in the SYS.AUD$ table. Auditing is controlled by the DBA.

Auditing can be fine-tuned in a number of ways. It can be restricted to particular objects, to specific users, or based on whether
the action is successful or unsuccessful. In other words, you might not care if users who are granted rights to a table access the
table, but you might want to know when users without rights to a table try to access that table.

The types of auditing can be divided into two broad categories: statement auditing and object auditing. The general syntax for
AUDIT is as follows:
AUDIT {statement_clause | object_clause}
   [BY SESSION | BY ACCESS]
   [WHENEVER [NOT] SUCCESSFUL];

The statement_clause allows you to specify not only the SQL statement to audit, but also, optionally, the username that will be
running the SQL statement. The object_clause allows you to specify a particular object to audit.

The BY SESSION clause means that an audit record is written to SYS.AUD$ only once in the session that triggered the audit,
regardless of how many times the action was performed. BY ACCESS will record all occurrences of the specified action.

The NOAUDIT command turns off auditing and has the same syntax as AUDIT, except that BY SESSION or BY ACCESS is not
specified when using NOAUDIT.

Statement Auditing

Statement auditing allows the DBA to trigger audit records in SYS.AUD$ when a given SQL statement is executed, either for all
users or a particular group of users.

Recently, Janice, the DBA, created a new user JSMITH and granted the CREATE TABLE privilege to JSMITH. Janice is
concerned that the new user is having trouble creating tables, so she decides to turn on auditing to see how often the new user’s
CREATE TABLE statements are failing:
audit create table by jsmith
   whenever not successful;

Audit succeeded.

In the next few days, the user JSMITH runs a variety of CREATE TABLE statements, such as the following:
create table temp_emp
   (employee_id number(6),
    email       varchar2(25));

Table created.

create table temp_emp
   (employee_id number(6),
    email       varchar2(25));

ERROR at line 1:
ORA-00955: name is already used by an existing object

The user’s second attempt failed because the table already exists.

Janice could review the SYS.AUD$ table, but she knows that the data dictionary view called DBA_AUDIT_TRAIL formats the
records from SYS.AUD$ into a more readable format. She checks that view:
select username, obj_name, timestamp, action_name from
dba_audit_trail;

USERNAME      OBJ_NAME     TIMESTAMP ACTION_NAME
------------- ------------ --------- ------------
JSMITH        TEMP_EMP     26-OCT-02 CREATE TABLE

1 row selected.

The OBJ_NAME column contains the name of the object affected by the statement, and the ACTION_NAME column contains the
type of statement executed. Because Janice is auditing only unsuccessful uses of the CREATE TABLE statement, there is only
one row inserted into SYS.AUD$, even though two CREATE TABLE statements were executed.

The following week, Janice turns off the CREATE TABLE auditing with the following command:
noaudit create table by jsmith;

Noaudit succeeded.

Rows in the SYS.AUD$ table (and as a result, the DBA_AUDIT_TRAIL view) remain there until they are removed by the DBA.

Object Auditing

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object auditing allows the DBA to monitor access to specific objects in the database, along with the operations performed on
those objects. For example, the DBA may want to see how often SELECT statements occur on a particular table in a certain period
of time versus how many UPDATE statements occur against that same table. As with statement auditing, object auditing can also
be further refined to audit only successful or only unsuccessful statements against the object.

Janice, the DBA, wants to find out how often the EMPLOYEES table in the HR schema is being accessed by SELECT, INSERT,
UPDATE, and DELETE statements, and by whom. She decides that auditing the table for a few hours one day would give her the
information that she needs. The AUDIT statement she runs looks like this:
audit select, insert, update, delete
   on hr.employees;

Audit succeeded.

After a few hours, she reviews the data dictionary view DBA_AUDIT_TRAIL to see what kind of activity has been performed
against the EMPLOYEES table:
select username, obj_name,
to_char(timestamp,’dd-mon-yy hh:miPM’) "Date/Time" from
dba_audit_trail where obj_name = ‘EMPLOYEES’;

USERNAME        OBJ_NAME        Date/Time
--------------- --------------- ------------------
HR              EMPLOYEES       27-oct-02 08:53AM
HR              EMPLOYEES       27-oct-02 08:59AM
HR              EMPLOYEES       27-oct-02 10:23AM
HR              EMPLOYEES       27-oct-02 10:56AM
OE              EMPLOYEES       27-oct-02 11:59AM

5 rows selected.

From this query, she sees that the activity so far has been very light, with four accesses by HR and one by OE, all in the morning.
Janice turns off the EMPLOYEE table auditing using the NOAUDIT command:
noaudit select, insert, update, delete
   on hr.employees;

Noaudit succeeded.

As with statement auditing, the records in SYS.AUD$ remain there until they are removed by the DBA.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Privileges can be grouped and assigned as a unit by using what database object?

2. When granting privileges with the GRANT statement, what does the clause WITH GRANT OPTION do?

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

4. What is the name of the table, owned by the user SYS, that contains all audit records?

5. Write a SQL statement that will create audit records when UPDATE statements fail against the HR.EMPLOYEES
table.

6. Which system privilege allows a user to make a connection to the database?

7. In addition to assigning a default tablespace to a user, what else must be assigned to a user before that user can
create objects in the tablespace?

8. Which tablespace is assigned to a user for the user’s permanent objects if one is not explicitly assigned in the
CREATE USER statement?

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

10. A profile controls which kinds of database resources?

11. Which keyword can be used in a GRANT command to assign one or more privileges to every user in the database?

Answers

1. A role can be used to group system and object privileges and assign them as a unit to database users.

2. The WITH GRANT OPTION clause allows the grantee to pass on the privilege to another database user.

3. DROP USER and CREATE SESSION are examples of system privileges.

4. The table SYS.AUD$ contains all audit records.

5. The following SQL statement will create audit records when UPDATE statements fail against the HR.EMPLOYEES table:
audit update on hr.employees whenever not successful;

6. The CREATE SESSION system privilege allows a user to make a connection to the database.

7. A quota must be assigned to a user before that user can create objects in the tablespace.

8. The SYSTEM tablespace is assigned to a user for permanent objects if no tablespace is explicitly assigned in the CREATE
USER statement.

9. DELETE, INSERT, and EXECUTE are examples of object privileges.

10. A profile controls things such as concurrent connections to the database, CPU time used, continuous idle time, disk reads
performed, failed login attempts, how often a password needs to be changed, and elapsed time connected.

11. The PUBLIC keyword can be used instead of an individual username or role in a GRANT command to assign one or more
privileges to every user in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
auditing

object privileges

privileges

profile

quota

role

system privileges

username

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 12: Making Things Run Fast (Enough)
Tuning a database is an ongoing job for the busy DBA. Users never seem to stop complaining about queries running slowly. And
once you think that everything is at peak performance, a new application is added to the mix, a new server is added to the server
pool, the volume of orders for widgets doubles mysteriously, or a data warehouse is using up more and more of the server’s
resources.

In this chapter, we’ll talk about several ways to optimize the performance of the database, beginning with Oracle’s Tuning
Methodology. Then we’ll cover indexes, data design tuning, application tuning, and memory tuning.

Oracle’s Tuning Methodology
When tuning a newly developed database system or a system that has experienced major changes, you can follow Oracle’s
Tuning Methodology. This methodology prioritizes the steps to take when optimizing a database system:

Priority Tuning Focus

1 Data design

2 Application design

3 Memory allocation

4 I/O and physical structures

5 Resource contention

6 Underlying platform

Oracle’s Tuning Methodology

A tuning method recommended by Oracle Corporation that prioritizes areas in tuning database performance.
The six areas, in order of priority, are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

The tuning focus areas are as follows:

Data design This step focuses on what kinds of indexes to create and on which tables, using views and other variations on the
basic table to achieve better performance, and similar considerations.

Application design This area is somewhat intertwined with data design, especially when analyzing the SQL statements that run
against the tables and indexes. Application design focuses on how to use Oracle tools to write effective and efficient SQL SELECT
and other DDL statements against the database tables.

Memory allocation This step is concerned with making sure that you not only have enough system memory overall, but also are
dividing that memory judiciously among the main Oracle memory structures. It is possible to allocate too much memory for one
Oracle memory structure and potentially have an adverse performance impact on another Oracle memory structure.

I/O and physical structures This step tunes the communication between the memory structures and disk structures to reduce
the amount of time it takes to retrieve data blocks from disk or to avoid disk I/O completely.

Resource contention This area analyzes the Oracle structures that control concurrent access to the various Oracle structures
directly and indirectly accessible by the user. At the table level, this means locking rows versus locking the entire table, for
example. At the block level, this means allowing more than one user to insert or update row data concurrently.

Underlying platform This step deals primarily with placing Oracle file objects on the appropriate physical disk devices, as well as
taking advantage of multiple CPUs on a server for improving the overall throughput of queries and data loads.

Ninety percent or more of all tuning issues fall within the first three areas—data design, application design, and memory allocation
—and they are the focus of this chapter.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Indexes
Indexes are used to significantly boost the performance of queries by reducing the amount of time needed to retrieve rows from a
table. However, too many indexes on a table can be just as bad as not enough indexes.

Once you decide to create an index, you need to choose which type of index will work best. After you’ve created an index, you
may need to change or drop it. Before dropping an index, you may want to monitor it to see how often it is used over a given time
span. Finally, you can use data dictionary views to see the structure of the indexes in the database.

When to Create Indexes

In an environment where there are frequent insert, update, and delete operations on a table, it’s wise to minimize the number of
indexes on that table. For each row that is inserted, updated, or deleted, all indexes on that table must be updated also, which can
increase the response time for the user and raise the load on the Oracle server.

An index on a table column makes sense when the column is frequently referenced in a WHERE clause of a SELECT statement or
in a join condition. If the table is large and the query is expected to return a small percentage of the rows, an index makes sense
there, too. Although there is some overhead when traversing an index looking for a column value, the overhead is far less than the
time it would take to search the table itself for the value in question. Oracle’s general guideline is that an index on a column makes
sense if most queries on the table are expected to retrieve less than about 4% of the rows.

NULL values are not included in an index, so an index is recommended if the table is large and a column contains a lot of NULL
values. Any queries on non-NULL column values will likely use the index, while queries on NULL values in the column will not.

Index Types

Indexes can be divided into two general categories: b-tree and bitmap. They both serve the same purpose: to reduce the amount
of time a query takes to retrieve rows from a table. However, they are constructed completely differently and are chosen based on
the expected type and distribution of the data in the column to be indexed.

B-tree Indexes
A b-tree index looks like an inverted tree with branch blocks and leaf blocks. B-tree stands for balanced-tree, because the
search of the tree for a given table column’s key value always traverses the same number of levels in the tree to find the leaf block
containing the address of the desired row. B-tree indexes are the most common type of index, and are created by default. The
following illustrates how a b-tree index works.

b-tree index

A type of index structure that resembles an inverted tree. The branches of a b-tree index are balanced.
Traversing the tree for any index value reads the same number of blocks.

branch blocks

Index blocks in the traversal path of a b-tree index that either point to branch blocks at the next level or point to
leaf blocks.

leaf blocks

Index blocks at the bottom of a b-tree index that contain ROWIDs to the rows in the table containing the desired
index value.

In this example, the EMPLOYEE_ID column of the EMPLOYEES table is indexed. The b-tree has a depth of three, and each block
has up to three entries. Each of the branch blocks at levels one and two contains entries that further subdivide the search and
point to successive branch blocks, until the search reaches a leaf block. If the value is in a leaf block, the entry in that leaf block
contains the address of the row in the table; this is called a ROWID and is unique across the entire database.

ROWID

A unique identifier for a row in a table, maintained automatically in the table by the Oracle server. ROWIDs are
unique throughout the database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Pseudo-column ROWID

The pseudo-column ROWID exists for every row of every table in the database, and is unique across the entire database. It is
represented externally by an 18-character string of uppercase and lowercase letters and numbers.

select dummy, rowid from dual;

D ROWID
- ------------------
X AAAADeAABAAAAZSAAA

1 row selected.

Notice that the leaf blocks are also linked horizontally. Sometimes, examining only the leaf blocks for a match, rather than starting
at the root of the tree, is a more efficient way to conduct the index search.

B-tree indexes are good for columns with high cardinality, which are columns that have many distinct values. For example, a
column containing last names and a column containing zip codes have high cardinality; a column containing a gender code has
low cardinality.

cardinality

The number of distinct values in a column of a table.

A b-tree index can be created with a few different options:

Unique or nonunique In a unique index, there are no duplicate values. An error is returned if you try to insert two rows into a
table with the same index column values. By default, an index is nonunique.

unique index

A b-tree index whose keys are not duplicated.

Keys stored in reverse order A reverse key index stores the key values in reverse order. For example, if an indexed column
contains the value 40589, the value would be stored as 98504 in a reverse key index. In applications that insert rows in the
ascending order of the indexed column, a reverse key index may improve the performance of applications by reducing the
contention (concurrent access by several users) on a particular leaf block.

reverse key index

A b-tree index whose keys have their byte-order reversed to improve the performance of an application by
spreading out the key values for adjacent index values to different leaf blocks.

Function-based An index created on some kind of transformation of one or more columns in the table is known as a function-
based index. This type of index is created on an expression, instead of on a column of the database. For example, if the
database users frequently search on the fourth and successive characters of the JOB_ID column, an index based solely on the
JOB_ID column would not be useful to locate a row in the table. However, a function-based index on the expression
substr(job_id,4) would help speed queries searching on the fourth and successive characters of the JOB_ID column.

function-based index

A b-tree index that is created based on an expression involving the columns of a table, instead of on a single
column or columns in the table.

Index-organized table An index-organized table (IOT) is a specialized form of a b-tree index that stores both the data and the
index in the same database segment. An IOT has advantages for tables that are primarily lookup tables. For example, a state
code table, where the access of the table is primarily via the primary key, would be a good IOT candidate. When a state code
lookup occurs (for example, WI), the state name (Wisconsin) resides in the index block itself, saving an extra disk I/O of a block
in a standard table.

index-organized table (IOT)

A b-tree index that stores both the data and the index in the same segment.

Bitmap Indexes
Bitmap indexes are the other major type of index. As the name implies, a bitmap index uses a string of binary ones and zeros to
represent the existence or nonexistence of a particular column value. For each distinct value of a column, a string of binary digits
with a length equal to the number of rows in the table is stored. Therefore, bitmap indexes are recommended for indexing low-
cardinality columns. Using bitmap indexes makes multiple AND and OR operations against several table columns very efficient in
a query. The following illustrates how a bitmap index works.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bitmap index

An index that maintains a binary string of ones and zeros for each distinct value of a column within the index.

In the example, the GENDER column has a cardinality of two, and therefore it is a good candidate for a bitmap index. Two bitmaps
are maintained in the bitmap index, each with a length equal to the number of rows in the table.

Creating bitmap indexes on high-cardinality columns makes the index significantly more expensive to maintain during row
insertions and deletions. Bitmap indexes for high-cardinality columns are not recommended.

Tip There are exceptions to every rule. If you suspect a bitmap index might work better than a b-tree index, even on a high-
cardinality column, create both types of indexes on the column in question (but not at the same time!). Using the tools
discussed later in this chapter, measure the resource consumption for a typical query using the indexed column in the
WHERE clause, and see which type of index provides the lowest resource usage and response time.

Bitmap indexes are common in data warehouse environments, where many low-cardinality columns exist, DML is done in bulk,
and query conditions against combinations of these columns are used frequently.

Creating, Dropping, and Maintaining Indexes

The CREATE INDEX command is used to create a b-tree or bitmap index. The basic syntax for CREATE INDEX is as follows:
CREATE [BITMAP | UNIQUE] INDEX indexname
     ON tablename (column1, column2, ...) [REVERSE];

If BITMAP is not specified, a b-tree index is assumed. The UNIQUE keyword ensures that the indexed column or columns are
unique within the table; the REVERSE keyword creates a reverse key index. The name of the index must be unique within the
schema that owns the index. Indexes can be dropped with the DROP INDEX command:
DROP INDEX indexname;

At Scott’s widget company, Janice, the DBA and senior developer, has been asked to add a GENDER column to the EMPLOYEES
table. She modifies the table and adds the new column using the following ALTER TABLE statement:
alter table employees
add (gender  char(1));

Table altered.

Over the next week or two, the HR department populates the new GENDER column with either an M or an F. As other departments
start running queries against the EMPLOYEES table using the new GENDER column, they start complaining that the queries are
running slower than when they run queries against an indexed column, such as EMPLOYEE_ID or DEPARTMENT_ID. Janice also
knows that a copy of the EMPLOYEES table will be used in a data warehouse environment, so she decides that a bitmap index
might be appropriate in this situation. She uses the BITMAP option of the CREATE INDEX statement, as follows:
create bitmap index
bm_employees_gender on employees(gender);

Index created.

The users also tell Janice that they don’t use the index on the employee’s name, so she drops the index on the last and first name
columns:
drop index emp_name_ix;

Index dropped.

Two days later, she gets a call from the HR department, requesting that the employee name index be re-created:
create index emp_name_ix on
  employees(last_name, first_name);

Index created.

In the next section, you’ll learn how to monitor the usage of an index to get an indication of how often an index is actually being
used.

As her last task for the day, Janice thinks that the primary key of the EMPLOYEES table might work better as a reverse key index,
so she rebuilds the index to re-create it:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter index emp_emp_id_pk rebuild reverse;

Index altered.

Note In addition to converting the index type, the ALTER INDEX statement can also allow the table to remain available
during the rebuild operation by using the ONLINE option. Note that more space is required in the database’s temporary
tablespace for this operation.

Monitoring Indexes

As Janice just discovered, she can’t always rely on the user community to portray an accurate picture of what indexes are actually
being used. Oracle9i has a new feature that can monitor an index and set a flag in the dynamic performance view
V$OBJECT_USAGE. To turn on the monitoring process, you use the MONITORING USAGE clause of the ALTER INDEX statement.

Janice wants to see if the EMP_NAME_IX index is going to be used in the next eight hours. At 9 a.m., she turns on the monitoring
process with this statement:
alter index hr.emp_name_ix monitoring usage;

Index altered.

She immediately checks V$OBJECT_USAGE to make sure the index is being monitored:
select index_name, table_name, monitoring, used, start_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME       MON USE START_MONITORING
------------- ---------------- --- --- -------------------
EMP_NAME_IX   EMPLOYEES        YES NO  11/02/2002 08:57:44

1 row selected.

During the day, one of the HR employees runs this query:
select employee_id from employees
where last_name = ‘King’;

EMPLOYEE_ID
-----------
        100
        156

2 rows selected.

At around 5 p.m., Janice checks V$OBJECT_USAGE again to see if the index was used:
select index_name, table_name, monitoring, used, start_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME       MON USE START_MONITORING
------------- ---------------- --- --- -------------------
EMP_NAME_IX   EMPLOYEES        YES YES 11/02/2002 08:57:44

1 row selected.

Janice has decided that the index should stay, since it was used at least once during the day. She turns off monitoring with the
NOMONITORING USAGE clause and checks the V$OBJECT_USAGE view one more time to verify this.
alter index hr.emp_name_ix nomonitoring usage;

Index altered.

select index_name, table_name, monitoring, used, end_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME   TABLE_NAME        MON USE END_MONITORING
------------ ----------------- --- --- -------------------
EMP_NAME_IX  EMPLOYEES         NO  YES 11/02/2002 17:00:40

1 row selected.

Note Because V$OBJECT_USAGE is a dynamic performance view, the contents will not be retained in the view once the
database is shut down and restarted.

Data Dictionary Index Information

As you’ve learned, data dictionary views can provide you with information about all database objects. The two key data dictionary
views relating to indexes that every DBA should know about are DBA_INDEXES and DBA_ IND_COLUMNS, which contain the
names of the indexes and the names of the indexed columns, respectively.

DBA_INDEXES
To find out the owners, tablespace names, and index type for all indexes on the EMPLOYEES table, Janice constructs a query
against the DBA_INDEXES data dictionary view, as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


against the DBA_INDEXES data dictionary view, as follows:
select owner, index_name, index_type, tablespace_name from
dba_indexes where table_name = ‘EMPLOYEES’;

OWNER   INDEX_NAME           INDEX_TYPE    TABLESPACE_NAME
------- -------------------- ------------- ---------------
HR      EMP_EMAIL_UK         NORMAL        EXAMPLE
HR      EMP_EMP_ID_PK        NORMAL/REV    EXAMPLE
HR      EMP_DEPARTMENT_IX    NORMAL        EXAMPLE
HR      EMP_JOB_IX           NORMAL        EXAMPLE
HR      EMP_MANAGER_IX       NORMAL        EXAMPLE
HR      UK1_EMPLOYEES        NORMAL        EXAMPLE
HR      BM_EMPLOYEES_GENDER  BITMAP        EXAMPLE
HR      EMP_NAME_IX          NORMAL        EXAMPLE

8 rows selected.

All of the indexes on the EMPLOYEES table are normal b-tree indexes, except that the primary key index EMP_EMP_ID_PK is a
reverse key b-tree index, and the new BM_EMPLOYEES_GENDER index is a bitmap index.

DBA_IND_COLUMNS
To further drill down into the details of the indexes on the EMPLOYEES table, Janice queries the DBA_IND_COLUMNS table to find
out which columns are in the EMP_NAME_IX index:
select index_name, table_name,
        column_name, column_position from
dba_ind_columns where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME   COLUMN_NAME   COLUMN_POSITION
------------- ------------ ------------- ---------------
EMP_NAME_IX   EMPLOYEES    LAST_NAME                   1
EMP_NAME_IX   EMPLOYEES    FIRST_NAME                  2

2 rows selected.

From this output, Janice can determine that EMP_NAME_IX is a composite index consisting of two columns: LAST_NAME and
FIRST_NAME.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Data Design Tuning
Oracle has a number of solutions to improve performance from a data design perspective. We will cover two techniques in this
section: partitioned tables and materialized views.

Partitioned Tables

When tables grow very large, it becomes advantageous to use partitioned tables to divide the rows of a table into more
manageable pieces based on the values of one or more columns. Because the data is subdivided into smaller pieces, it makes
the DBA’s job easier when doing backups; each partition of a partitioned table may be backed up or restored separately. One
partition of a table can be in the process of being repaired, while the rest of the partitions are available to the database users,
increasing the overall availability of the table.

partitioned table

A table that stores its rows into smaller and more manageable pieces based on the values of one or more
columns of the table.

Partitioned tables can have a performance benefit for database users. In many cases, a query may need to retrieve rows from
only a subset of the partitions of a partitioned table. As a result, either index accesses or direct table accesses are reduced
because the partition key automatically limits the partitions that need to be searched for the rows requested by the query.

There are four different ways to partition a table:

Range partitioning With this type, the partition keys are in a range. For example, each partition can hold sales data by quarter or
for a given month date range.

Hash partitioning When the sizes of each partition may vary widely or you do not know how much data will end up in a partition,
hash partitioning is useful. This type of partitioning uses an algorithm on the partition key column to automatically balance the
number of rows that end up in each partition.

List partitioning If you know the values that will divide the data into partitions, but they are not necessarily sequential either
numerically or alphabetically, list partitioning is useful. For example, it may be desirable to store all rows with state codes by region
into separate partitions. Rows with state codes of WI, IL, IA, IN, and MN would reside in the MIDWEST partition.

Composite partitioning This is a hybrid method that uses the range partition method for partitions and the hash method for
subpartitions.

Creating a partitioned table is very similar to creating a nonpartitioned table, with the addition of the PARTITION BY clause:
CREATE TABLE ...
PARTITION BY {RANGE | LIST | HASH} (column1, column2, ...)
     [SUBPARTITION BY {HASH | LIST} (column1, column2, ...)
        SUBPARTITIONS n]

Note that the SUBPARTITION BY HASH or LIST clause is only valid if the primary partitioning is BY RANGE. Also, specifying
multiple columns in the PARTITION BY clause is only valid for HASH and RANGE partitioning, since LIST partitioning assigns rows
to a partition based on the value of a single column.

The Order Entry department has asked Janice, the DBA, to look into improving the performance of the OE.ORDERS table.
Response time against this table has been increasing, and the customer service representatives have reported that the web
customers are waiting too long for their orders to be confirmed after clicking the Place My Order button on the checkout page.

Janice decides that since the ORDERS table now has hundreds of thousands of rows, she will partition the table by month.
Partitioning by a date range makes sense, since rows from the ORDERS table are rarely accessed across more than one month.
Janice retrieves the DDL for the original CREATE TABLE statement:
create table orders (
  order_id      number (12)   not null,
  order_date    date
         constraint order_date_nn not null,
  order_mode    varchar2 (8),
  customer_id   number (6)
         constraint order_customer_id_nn not null,
  order_status  number (2),
  order_total   number (8,2),
  sales_rep_id  number (6),
  promotion_id  number (6),
   constraint order_mode_lov
         check (order_mode in (‘direct’,’online’)) ,
   constraint order_total_min
         check (order_total >= 0),
   constraint order_pk primary key ( order_id ) ) ;

Janice creates a new version of the table for testing on the development server by adding partition-related options to the CREATE
TABLE statement:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TABLE statement:
create table new_orders (
  order_id      number (12)   not null,
  order_date    date
         constraint new_order_date_nn not null,
  order_mode    varchar2 (8),
  customer_id   number (6)
         constraint new_order_customer_id_nn not null,
  order_status  number (2),
  order_total   number (8,2),
  sales_rep_id  number (6),
  promotion_id  number (6),
   constraint new_order_mode_lov
         check (order_mode in (‘direct’,’online’)) ,
   constraint new_order_total_min
         check (order_total >= 0),
   constraint new_order_pk primary key ( order_id ) )
   partition by range (order_date)
    (partition FY2002_07 values less than
      (to_date(‘08012002’,’MMDDYYYY’)),
     partition FY2002_08 values less than
      (to_date(‘09012002’,’MMDDYYYY’)),
     partition FY2002_09 values less than
      (to_date(‘10012002’,’MMDDYYYY’)),
     partition FY2002_10 values less than
      (to_date(‘11012002’,’MMDDYYYY’)),
     partition FY2002_11 values less than
      (to_date(‘12012002’,’MMDDYYYY’)),
     partition FY2002_12 values less than
      (to_date(‘01012003’,’MMDDYYYY’)),
     partition FY9999 values less than (maxvalue)
    );
In the new table NEW_ORDERS, all orders before August 1, 2002, will end up in the first partition, FY2002_07. At the other end are
partitions defined for the rest of 2002. It is assumed that for 2003, the DBA will create additional partitions on this table to
accommodate orders placed in 2003. In the meantime, any orders with a date mistakenly keyed in as 2003 or later will be stored
in the partition FY9999. If this partition were not created, any INSERT statement containing a date value outside the range of any
partition would return an error.

Materialized Views

A materialized view can help speed queries by storing data in a previously joined or summarized format. Unlike a traditional view,
which stores only the query and runs that query every time the view is accessed, a materialized view stores the results of the
query in addition to the SQL statements of the view itself. Because the materialized view already contains the results of the view’s
underlying query, using a materialized view can be as fast as accessing a single table.

materialized view

A view that stores the results of the query the view is based on, in addition to the SQL join statement of the view
itself. Materialized views may be refreshed manually (on demand), on a regular basis, or when there is a change
in the underlying tables on which that view is based.

But what if the underlying tables of the materialized view change? A materialized view can be refreshed either manually or
automatically. If the refresh is automatic, it can occur as a scheduled event, such as every day at 2 a.m., or the materialized view
can be refreshed automatically whenever the underlying tables of the view change. Materialized views can be refreshed manually
by using the REFRESH procedure in the system package DBMS_MVIEW.

To further enhance the performance of a materialized view, it can be indexed and partitioned in the same way as any standard
table.

Another key performance enhancement related to materialized views is the QUERY REWRITE feature. If a materialized view is
created with the QUERY REWRITE option, any user SQL statements that use tables and columns similar to those found in the
materialized view’s query are automatically rewritten to use the materialized view directly. In other words, the database user does
not need to know about the existence of the materialized view to take advantage of the pre-joined result of the materialized view.

The syntax for creating a materialized view is similar to that of the CREATE VIEW command from Chapter 10, "Creating and
Maintaining Database Objects":
CREATE MATERIALIZED VIEW materialized_view_name
   [ENABLE QUERY REWRITE] AS subquery;

At Scott’s widget company, Janice has been helping some of the users in the HR department with their queries. She notices that
they often use the view she created for them earlier with this statement:
create view
      emp_dept(emp_id, lname, fname, dept_id, dname) as
select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

In its present form, this view must perform the join every time it is accessed. Janice thinks that rewriting this view as a materialized
view will not only improve the performance of the view, but may also improve the performance of other queries that join the
EMPLOYEES and DEPARTMENTS table using Oracle9i’s QUERY REWRITE feature. Janice creates the materialized view as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


EMPLOYEES and DEPARTMENTS table using Oracle9i’s QUERY REWRITE feature. Janice creates the materialized view as follows:
create materialized view emp_dept
   enable query rewrite
as select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

Materialized view created.

The new materialized view looks like any table or regular view:
describe emp_dept

 Name                         Null?    Type
 ---------------------------- -------- --------------
 EMP_ID                       NOT NULL NUMBER(6)
 LNAME                        NOT NULL VARCHAR2(25)
 FNAME                                 VARCHAR2(20)
 DEPT_ID                      NOT NULL NUMBER(4)
 DNAME                        NOT NULL VARCHAR2(30)

The ENABLE QUERY REWRITE clause directs Oracle to use the materialized view instead of the EMPLOYEES and DEPARTMENTS
table when a user writes a query similar to the one used to create the materialized view.

To manually refresh the view, Janice uses the DBMS_MVIEW package:
exec dbms_mview.refresh(‘emp_dept’);

PL/SQL procedure successfully completed.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

SQL Application Tuning
After you’ve created the optimal tables, indexes, and other database objects, the next step in your quest to improve the
performance of the database is to review the users’ SQL commands. You can use some of Oracle’s GUI-based tools, such as Top
SQL and Explain Plan, to identify and analyze the SQL commands that are not only frequently executed but also use the most
resources. Also, you can help the Oracle optimizer do its job of deciding the best way to run a specific query.

Top SQL Tool

The Top SQL tool can identify SQL statements that may be causing performance problems in the database, such as by using too
much CPU or reading blocks from disk instead of from the cache. Even if the SQL command itself does not use many resources,
it may still be a candidate for tuning if it is executed hundreds of times an hour!

Top SQL tool

A GUI-based Oracle tool that can identify SQL statements that may be consuming too many system resources
and therefore may be good candidates for tuning.

The Top SQL tool is available through the Oracle Enterprise Manager (OEM) console, via the Diagnostics Pack pull-out, as shown
below.

The Top SQL tool shows a number of statistics for each SQL command executed, such as disk reads, buffer reads (data is
already available in the buffer cache and does not need a read from disk), CPU time used, and the number of executions. The
following illustration shows an example of a Top SQL window.

In this example, the SQL statement that joins the EMPLOYEES and DEPARTMENTS table has a high number of executions relative

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this example, the SQL statement that joins the EMPLOYEES and DEPARTMENTS table has a high number of executions relative
to the other user and system SQL statements. It may be a good candidate for analysis, even though all of the data the query
needed was already in memory, as indicated by the Disk Reads Per Execution statistic.

Explain Plan Graphical Tool

The Explain Plan tool can be launched directly or from the Top SQL tool. It shows in a step-by-step fashion how a SQL
statement is processed and how each of the tables in the query is accessed—for example, by an index or by reading the entire
table. With the statement in question highlighted in the Top SQL window, select Drilldown > Explain Plan to bring up the Explain
Plan analysis window, as shown on the next page.

Explain Plan tool

A GUI-based Oracle tool that details the steps in which a SQL statement is executed, as well as what method
Oracle used to access the tables in the query.

The Explain Plan window is divided into three horizontal sections. The SQL statement itself is displayed in the top third of the
window. The steps that Oracle uses to execute the statement are in the middle third of the window. As each step is selected, a
brief explanation of what occurs in that step is detailed in the bottom third of the window.

In the case of the join between the EMPLOYEES and DEPARTMENTS table in this example, both tables are accessed with a full
table scan instead of an index. This make sense because the query retrieves most, if not all, of the rows in both tables. If there
were a limiting condition in a WHERE clause, and the tables were still accessed by a full table scan, then it might indicate that you
are missing an index on one or both of the tables.

The Oracle Optimizer

As the old saying goes, “All roads lead to Rome.” In the case of a SQL query, there are many different ways that a query—even a
query on a single table—can be processed. It’s the job of the Oracle optimizer to choose the best way to run a query.

Oracle has two optimizer modes: rule-based and cost-based. We’ll talk about the differences between those two modes, as well
as two different ways to assist the optimizer in finding the best way to run a query.

Rule-Based Optimization
The older rule-based optimizer mode uses a fairly simple set of guidelines to decide how a query is run. It will use an index,
regardless of the size of the table. Also, it ignores the cardinality of the columns being accessed, even if the cardinality would
otherwise indicate that most of the table will be scanned for the results anyway.

rule-based optimizer

An Oracle optimizer methodology that relies on a fixed set of rules to determine the method used to run a query,
ignoring the cardinality and distribution of data in the column being queried.

Why would you use the rule-based optimizer? Some older Oracle applications might run better since they were written to
specifically exploit some of the behaviors of the rule-based optimizer. Otherwise, Oracle strongly recommends that cost-based
optimization be used in all new development environments.

You can set the optimizer mode to rule-based for the session with the ALTER SESSION command:
alter session set optimizer_mode=rule;

Session altered.

Cost-Based Optimization
The cost-based optimizer is much more sophisticated than the rule-based optimizer. It takes into consideration the cardinality of
the columns being searched, the potential I/O cost, estimated CPU cost, and sorting cost. The cost-based optimizer will ultimately
use the method that has the lowest overall cost, even if it means not using an index on one or more of the columns being
searched.

cost-based optimizer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An Oracle optimizer methodology that relies on the characteristics of the tables being queried to determine the
method used to run the query. A cost is calculated for estimated CPU, I/O, and sorting for the possible
execution paths. The path with the lowest overall cost is used to perform the query.

You can tell Oracle to pick which optimizer mode to use for the session with the ALTER SESSION command:
alter session set optimizer_mode=choose;

Session altered.

The CHOOSE keyword means that Oracle will decide whether to use the rule-based optimizer or the cost-based optimizer. When
analyzing a SQL statement, the optimizer may use a rule-based approach for calculating the CPU cost, but may use the cost-
based approach for all other calculations. Notice that you cannot specify optimizer_mode=cost: the optimizer will always use
cost-based optimization if at least one of the tables in the query has statistics and the optimizer mode is set to choose. The
optimizer will estimate statistics on-the-fly for any tables in the query that don’t already have them. A table’s statistics are a set of
predetermined characteristics stored in the data dictionary, such as those mentioned above: the cardinality of the indexed
columns in the table, the number of rows in the table, the distribution of values in an indexed column, and so forth. Calculating
statistics for some or all of the tables in the query will have the same effect as forcing cost-based optimization.

statistics

Information about tables and indexes stored in the data dictionary used to assist the cost-based optimizer when
deciding how to run a given query.

Therefore, to effectively use the cost-based optimizer, it is important to have statistics calculated on the tables present in the SQL
statement. We will talk about statistics gathering in the next section.

Gathering Statistics
The cost-based optimizer relies on the cardinality of columns in the table, the size of the table, the number of rows in the table, the
length of each row in the table, and other statistics. By default, these statistics are not stored anywhere in the database. You can
use the ANALYZE command to store these statistics in the data dictionary for use by the cost-based optimizer.

In general, it is recommended that you analyze all rows of a table and its indexes, but if the table is very large, you might analyze
the indexes separately. Alternatively, you can calculate statistics on a subset of the rows in the table by using the ESTIMATE
STATISTICS option of the ANALYZE command. ESTIMATE STATISTICS will use about 1,000 rows to calculate its statistics, and
in many cases, it is nearly as accurate as scanning the entire table.

To gather the statistics for the EMPLOYEES table and all of its indexes using a sample of all rows, use the following command:
analyze table employees estimate statistics;

Table analyzed.

Statistics are not automatically refreshed when rows are inserted or updated; however, unless the table dramatically changes in
size or in the cardinality of the indexed columns, the statistics are still useful to the cost-based optimizer. However, statistics
gathering should be scheduled to run on a regular basis in order to provide the cost-based optimizer with the best information
available.

Optimizer Hints
As good as the Oracle optimizer is, it is not perfect. For example, even with the best statistics, the optimizer may not choose an
index; however, your experience tells you that the types of queries users are running recently may use a very narrow range in the
index, so using the index has an advantage over a full table scan. In this case, it is prudent to override the optimizer and provide a
hint as part of the query.

hint

A directive placed between /*+ and */ in a query that overrides an execution method that the Oracle optimizer
would normally choose.

Insert the hint after the SELECT keyword, between the character strings /*+ and */. There are more than 40 hints available in
Oracle. Common hints include the INDEX hint to specify that a particular index is used in a query and the REWRITE hint to force a
materialized view to be used to resolve the join condition in the query instead of using the base tables.

Warning If the hint is misspelled or otherwise incorrect, it is ignored. Therefore, it is important to double-check the syntax of
any hint you provide in a SQL statement.

To force the optimizer to use the index EMP_NAME_IX on the EMPLOYEES table, use the INDEX hint, as follows:
select /*+ index(employees emp_name_ix) */ employee_id from employees
where last_name = ‘King’;

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Memory Tuning
Some of the memory structures used by Oracle include the database buffer cache, the shared pool, and the redo log buffer
cache, as shown below. (These memory structures were discussed in Chapter 8, “Installing Oracle and Creating a Database.”)
While increasing the memory allocated for any of these structures will usually help, how much is enough? How much is too much?

You can adjust the amount of memory allocated to each of these areas by changing the value of a parameter in the parameter file
used by Oracle, called a PFILE. A PFILE is a text file containing the parameters and their values for configuring the database and
instance.

PFILE

A text file containing the parameters and their values for configuring the database and instance at startup.

Oracle9i supports a more flexible version of a PFILE called an SPFILE. An SPFILE is stored in a binary format. A change to a
parameter in an SPFILE can be for the current running instance only, can take effect only after the next restart of the instance, or
both.

SPFILE

A parameter file stored in a binary format that gives the DBA more flexibility when changing parameters.
Parameters can be changed for the current instance only, can take effect only after the next restart of the
instance, or both.

The sizing of the database buffer cache is usually the most problematic, since blocks from all tables read from and written to
reside in this cache. A buffer cache that is too small will hurt performance by obtaining blocks from disk instead of from the buffer
cache. A buffer cache that is too big will waste memory that can otherwise be used for other memory areas.

Oracle9i has a feature called the buffer cache advisory, which can help the DBA decide how big to make the buffer cache. The
first step in monitoring the size of the buffer cache is to turn on the buffer cache advisory feature by setting the
DB_CACHE_ADVICE parameter. You can do this either by editing the PFILE and restarting the database or by using an SPFILE
and changing the value using the ALTER SYSTEM command.

buffer cache advisory

A feature of the Oracle9i database that can assist the DBA in determining how large to make the buffer cache.
This feature collects statistics on how often a requested database block is found in the buffer cache. The
system initialization parameter DB_CACHE_ADVICE controls whether these statistics are collected, and the data
dictionary view V$DB_CACHE_ ADVICE contains the estimated number of physical reads that would occur given
a number of different cache sizes.

Janice, the DBA at Scott’s widget company, is determined to put off asking for a memory upgrade on the server until she makes
the best use of what’s already there. First, she will find out if the buffer cache needs to be larger. She changes the value of
DB_CACHE_ADVICE, as follows:
alter system set db_cache_advice=ON;

System altered.

To verify that the parameter is set correctly, she checks the value of that parameter in the V$PARAMETER dynamic performance
view, along with the current value for the buffer cache size:
select name, value, isdefault, ismodified from v$parameter
where name =’db_cache_advice’ or name =’db_cache_size’;

NAME                      VALUE      ISDEFAULT ISMODIFIED
------------------------- ---------- --------- ----------
db_cache_size             25165824   FALSE     FALSE
db_cache_advice           ON         TRUE      SYSTEM_MOD

2 rows selected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2 rows selected.

The value is set correctly, but Janice notices that ON is the default value for this parameter. After this tuning exercise is completed,
Janice will remember to change this value back to OFF to eliminate any overhead generated by the monitoring process. It also
looks like the value for DB_CACHE_SIZE is currently about 25MB.

After the system has been running for a day or two with the DB_CACHE_ADVICE parameter turned on, Janice reviews the dynamic
performance view V$DB_CACHE_ADVICE:
select size_for_estimate, estd_physical_reads
from v$db_cache_advice;

SIZE_FOR_ESTIMATE ESTD_PHYSICAL_READS
----------------- -------------------
                4             1158418
                8              213691
               12              100625
               16               44844
               20               37598
               24               35000
               28               34727
               32               34590
               36               34590
               40               34590
               44               34590
               48               34590
               52               34590
               56               34590
               60               34590
               64               34590
               68               34590
               72               34590
               76               34590
               80               34590

20 rows selected.

The first column, SIZE_FOR_ESTIMATE, is the proposed size for the buffer pool in megabytes. The second column,
ESTD_PHYSICAL_READS, is the number of reads from disk that would occur with the corresponding buffer cache size, given the
recent activity level. From this report, Janice sees that her buffer cache of 25MB is sized optimally. Increasing the buffer cache
size to 28MB, for example, would only reduce the physical I/O slightly, and it probably would not justify a memory upgrade at this
time. At 32MB and higher, the additional memory allocated to the buffer cache would not reduce the reads from disk at all. It
appears that Janice will not need a memory upgrade on the server for the foreseeable future.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What GUI tool analyzes a SQL statement and identifies the steps used to process the query?

2. The two general categories of indexes are indexes and indexes.

3. Which type of index is best for columns with a low cardinality?

4. Which dynamic performance view can assist the DBA in sizing the buffer cache appropriately?

5. Which type of table divides the contents of a very large table into more manageable chunks, both improving the
manageability of the table for the DBA and potentially increasing the performance of queries on the table?

6. Which data dictionary views contain information about table indexes and the table columns indexed?

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

8. Which feature associated with materialized views rewrites a query to use the materialized view instead of using
the tables that are the source for the materialized view?

9. What is the name of the pseudo-column that exists for every row of every table in the database and is unique
across the entire database?

10. Name the two different optimizer modes and identify which one uses statistics from tables and indexes to derive
an execution plan.

Answers

1. The Explain Plan GUI tool analyzes a SQL statement and identifies the steps used to process the query.

2. B-tree, bitmap

3. A bitmap index is best for columns with a low cardinality.

4. The dynamic performance view V$DB_CACHE_ADVICE can assist the DBA in sizing the buffer cache appropriately.

5. A partitioned table divides the contents of a very large table into more manageable chunks.

6. The data dictionary views DBA_INDEXES and DBA_IND_COLUMNS contain information about table indexes and the table
columns indexed.

7. The six steps in Oracle’s Tuning Methodology are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

8. The QUERY REWRITE feature rewrites a query to use the materialized view instead of using the tables that are the source for
the materialized view.

9. The pseudo-column ROWID exists for every row of every table in the database and is unique across the entire database.

10. The two different optimizer modes are rule-based and cost-based. The cost-based method uses statistics from tables and
indexes to derive an execution plan.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
bitmap index

branch blocks

b-tree index

buffer cache advisory

cardinality

cost-based optimizer

Explain Plan tool

function-based index

hint

index-organized table (IOT)

leaf blocks

materialized view

Oracle’s Tuning Methodology

partitioned table

PFILE

reverse key index

ROWID

rule-based optimizer

SPFILE

statistics

Top SQL tool

unique index

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 13: Saving Your Stuff (Backups)

Overview
Sooner or later, you’ll lose some data in the database. As a user, you may delete some rows in a table that you really didn’t want
to delete. As a DBA, you may have a server crash or one of the server’s hard disks may fail, resulting in loss of data.

Oracle provides a number of tools for both users and DBAs to minimize data loss in these situations. Some of the tools are
primarily for use by the DBA; other tools are primarily used by the database user.

This chapter begins with descriptions of the types of failures possible in the database, and then discusses the different ways that
you can back up and restore data.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Database Failures
Database failures can be divided into two general categories: media failures and nonmedia failures.

Media failures, the more serious type, occur when a server hardware component fails and the contents of one or more disk files
are either unreadable or corrupted. The DBA is solely responsible for recovering from this type of failure by restoring the
unreadable or corrupted file from a tape or disk backup. The DBA can perform the recovery process using one of the tools
described in this chapter.

media failure

A type of database failure where a server hardware component fails and the contents of one or more disk files
are either unreadable or corrupted.

Nonmedia failures are all other types of failures, including the following:

nonmedia failure

A type of database failure that is not related to a server disk-related hardware component and is one of several
types: statement failure, process failure, instance failure, or user error.

Statement failure The SQL statement being executed has a syntax error or the user executing the statement has the wrong
permissions. Recovery from a statement failure is generally simple: Rerun the SQL statement with the right syntax or obtain the
proper permissions on the objects in the query, and then rerun the query.

Process failure The user may be disconnected from the database due to a network problem or because a resource limit was
exceeded. One of the Oracle background processes automatically cleans up the terminated process by freeing the memory used
by the process.

Instance failure The entire database instance fails due to a power outage, a server memory problem, or a bug in the Oracle
software. When the database instance is restarted, Oracle uses the redo log files to make sure that all committed transactions are
recorded properly in the database datafiles.

User error A user may drop a table or delete rows from a table unintentionally.

In the following sections, we’ll cover the processes used by DBAs and users to recover from the two types of errors that Oracle
cannot handle automatically: media failures and user errors.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User Backup and Recovery Methods
There are a number of methods that database users and developers can use to back up and restore the data in their tables. While
a good DBA has a comprehensive database backup and restore plan in place, there are a couple of reasons why database users
might make their own backups:

The DBA is typically very busy, and may not be able to respond to a user’s request to restore data in a timely
manner.

The type of backup a DBA typically performs is at an enterprise level—entire tablespaces rather than individual user
objects—making it difficult to accommodate requests to restore individual objects.

In this section, we’ll talk about two ways that database users can back up and restore the objects they own or objects that are
accessible to them in the database: by using the Export and Import utilities and by running flashback queries.

Export and Import for Users

The Export and Import utilities save and retrieve objects stored in an operating system file external to the database. They work
with database table objects, along with their associated indexes, constraints, and permissions. These commands are similar in
their syntax and are executed outside the database at an operating system prompt.

The Export (EXP) Utility
The Export utility (EXP) connects to the database and performs a SELECT statement on the table or tables specified in the EXP
command. It places the results of the SELECT statement, along with the DDL statements required to create the tables and their
associated indexes, into a single binary dump file. Subsequently, this dump file can be used to restore the tables in case of data
loss. In addition, the dump file can be used to copy the table to another database. The format of the EXP command is as follows:
EXP username/password KEYWORD=(value1, value2, ...)

Export utility (EXP)

An Oracle utility that copies the contents of one or more tables to a binary dump file, along with the DDL needed
to create the table and its associated indexes, permissions, and constraints.

If the EXP command is executed without specifying any parameters, Export prompts the user for the parameters in an interactive
mode. The username and password belong to the user who owns the objects to be exported. The TABLES keyword specifies the
tables that are to be exported to the dump file, which defaults to the filename EXPDAT.DMP. Running EXP -HELP displays all of
the Export options. The most common keywords are listed below.

Keyword Description

FILE Destination for the dump file; defaults to EXPDAT.DMP
TABLES List of table names

ROWS Export rows of the table; defaults to Y

INDEXES Export indexes; defaults to Y

CONSTRAINTS Export table constraints; defaults to Y

GRANTS Export privileges granted on tables; defaults to Y

COMPRESS Create a single extent for each table in the CREATE TABLE statement generated by
EXP; defaults to Y

Tip While the default for the COMPRESS parameter of Export is Y, it should almost always be set to N to avoid wasting disk
space when new extents are allocated for the imported version of the table.

At Scott’s widget company, one of the developers, Gary, is working on a project to provide customers with customized widgets,
made to order. He is working on the order entry part of the system, and he has a copy of the Order Entry department’s ORDER and
ORDER_ITEM tables in his own schema:
select table_name from all_tables
where owner=’GARY’;

TABLE_NAME
--------------------
ORDERS
ORDER_ITEMS

2 rows selected.

Gary decides to use Export to save a copy of these tables to a binary dump file on a local PC’s hard drive, just in case one of the
tables is inadvertently dropped:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


E:\TEMP>exp gary/castiron
         tables=(orders, order_items) file=exp_oe.dmp

Export: Release 9.2.0.1.0 -
      Production on Sat Nov 9 08:45:43 2002

Copyright (c) 1982, 2002, Oracle Corporation.
      All rights reserved.

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table       ORDERS        105 rows exported
. . exporting table       ORDER_ITEMS   665 rows exported
Export terminated successfully without warnings.

E:\TEMP>

The operating system file E:\temp\exp_oe.dmp contains the definitions of the two tables and their contents, along with any
indexes, constraints, and permissions defined on the tables.

The Import (IMP) Utility
The Import utility (IMP) reads a binary dump file produced by the Export utility and restores the tables and any associated
indexes, constraints, and permissions saved in the dump file. The format of the IMP command is as follows:
IMP username/password KEYWORD=(value1, value2, ...)

Import utility (IMP)

An Oracle utility that takes as input a binary dump file created by the Export utility and restores one or more
database tables, along with any associated indexes, permissions, and constraints.

If the IMP command is executed without specifying any parameters, Import can prompt the user for the parameters in an
interactive mode. The username and password belong to the user who owns the objects to be imported. The TABLES keyword
lists the tables that are to be imported from the dump file, which defaults to a name of EXPDAT.DMP. Running IMP -HELP lists all
of the Import options. The most common keywords are listed below.

Keyword Description

FILE Dump file to restore from; defaults to EXPDAT.DMP
TABLES List of table names to restore

ROWS Import rows of the table; defaults to Y

INDEXES Import indexes; defaults to Y

CONSTRAINTS Import table constraints; defaults to Y

GRANTS Import privileges granted on tables; defaults to Y

SHOW Show just the file contents and do not perform the restore; defaults to N

Later in the week, Gary, the database developer, inadvertently drops the ORDER_ ITEMS table that he was using to test his
custom widgets application. He remembers using Export earlier in the week to create a backup to the file exp_oe.dmp, but is not
sure of its contents. He uses the SHOW option of the IMP command to query the contents of the dump file:
E:\TEMP>imp file=exp_oe.dmp show=y

Import: Release 9.2.0.1.0 - Production on Sat Nov 9 09:22:47 2002

Copyright (c) 1982, 2002, Oracle Corporation.  All rights reserved.

Username: gary
Password:

Connected to: Oracle9i Enterprise Edition Release
     9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing GARY’s objects into GARY

 "CREATE TABLE "ORDERS"
     ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE,"ORDER_DAT"
 "E" TIMESTAMP (6) WITH LOCAL TIME ZONE
     CONSTRAINT "ORDER_DATE_NN" NOT NULL E"
...

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


...
"CREATE TABLE "ORDER_ITEMS"
     ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE, "LINE"
...
Import terminated successfully without warnings.

E:\TEMP>

Since the SHOW=Y option was specified, the tables were not actually restored to the database, even though the output from IMP
seems to indicate that the restore took place. Since this file has the table that Gary wants, he performs the import and specifies
the file he dropped:
E:\TEMP>imp file=exp_oe.dmp tables=order_items

Import: Release 9.2.0.1.0 - Production on Sat Nov 9 09:31:35 2002

Copyright (c) 1982, 2002, Oracle Corporation.  All rights reserved.

Username: gary
Password:

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining
     options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing GARY’s objects into GARY
. . importing table    "ORDER_ITEMS"     665 rows imported
Import terminated successfully without warnings.

E:\TEMP>

Gary’s ORDER_ITEMS table is now restored. Any changes made to the table since the export was performed are lost. Those
changes will need to be manually restored by rerunning the INSERT, DELETE, and UPDATE statements than ran since the last
export. To minimize data loss, you should export the table after any major changes are made to the table.

Flashback Query

One of the features new to Oracle9i is called flashback query. It allows a user to “go back in time” and view the contents of a
table as it existed at some point in the recent past. A flashback query looks a lot like a standard SQL SELECT statement, with the
addition of the AS OF TIMESTAMP clause.

flashback query

A feature of the Oracle database that allows a user to view the contents of a table as of a user-specified point in
time in the past. How far in the past a flashback query can retrieve rows depends on the size of the undo
tablespace and on the setting of the UNDO_RETENTION system parameter.

Before users can take advantage of the flashback query feature, the DBA must perform two tasks:

The DBA must make sure that there is an undo tablespace in the database that is large enough to retain changes
made by all users for a specified period of time. This is the same tablespace that is used to support COMMIT and
ROLLBACK functionality (discussed in Chapter 7, "Logical Consistency").

The DBA must specify how long the undo information will be retained for use by flashback queries by using the
initialization parameter UNDO_ RETENTION. This parameter is specified in seconds; therefore, if the DBA specifies
UNDO_RETENTION=172800, the undo information for flashback queries will be available for two days.

At Scott’s widget company, an error in the Accounting department added $2,000 to two orders placed yesterday:
update orders
set order_total = order_total+2000
where order_id in (2367,2361);

2 rows updated.

select order_id, customer_id, order_total
from orders where order_id in (2367,2361);

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    122131.3
      2367         148    146054.8

2 rows selected.

Today, the customer with customer ID 108 called to complain that his bill from his last order (order number 2361) is $2,000 higher
than expected. Sharon, one of the order-entry clerks, retrieves the row from the ORDERS table with the information for order
number 2361:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select order_id, customer_id, order_total
from orders where order_id = 2361;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    122131.3

1 row selected.

Before calling back the customer, Sharon finds out from the Accounting department that a day ago, two of the orders were
incorrectly modified with an additional surcharge. To confirm whether this particular order was affected by the accounting error,
she uses a flashback query to see if this order had a different order total two days ago:
select order_id, customer_id, order_total from orders
as of timestamp (sysdate - 2)
where order_id = 2361;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    120131.3

1 row selected.

This flashback query confirms that the order total for this order was $2,000 less two days ago. The AS OF TIMESTAMP clause
specifies how far back in the past you want to view the contents of this table. In this case, (sysdate - 2) evaluates to today’s
date minus two days—in other words, two days ago. Sharon concludes that at some point in the past two days, this was one of
the orders that was incorrectly modified. To find all of the orders that have the incorrect surcharge, she uses another flashback
query as a nested query to compare the order totals:
select o.order_id, o.customer_id,
  o.order_total "CURR_TOTAL", oo.order_total "ORIG_TOTAL"
from orders o,
      (select order_id, order_total from orders
       as of timestamp (sysdate - .2)) oo
where o.order_id = oo.order_id and
      o.order_total != oo.order_total;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL ORIG_TOTAL
---------- ----------- ----------- ----------
      2361         108    122131.3   120131.3
      2367         148    146054.8   144054.8

2 rows selected.

In this query, Sharon is comparing the entire contents of the current ORDERS table to the entire contents of the ORDERS table as it
was two days ago and selecting records where the order totals don’t match. She now knows which records must be updated with
the correct order total amount.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DBA Backup and Recovery Methods
The DBA has a number of additional tools for performing backup and recovery, with capabilities for working at a much larger scale
than the methods previously discussed. Instead of a couple of tables being dropped by a user, the DBA may need to handle a
disk drive failure, resulting in the loss of an entire tablespace.

In addition to using Export and Import to back up database objects, the DBA can perform cold backups or hot backups for an
entire tablespace or an entire database. Other tools available to the DBA include Log Miner and RMAN.

Export and Import for DBAs

Earlier in this chapter, you learned about the Export (EXP) and Import (IMP) utilities that a user can use to save and restore
database objects. The DBA can use additional features of these utilities for backing up all user objects in the database or to copy
a tablespace to another database. The tablespace copy feature, new to Oracle9i, is known as transportable tablespaces. It is a
very convenient way to copy all objects in a tablespace to another database, without needing to specify individual objects in the
tablespace.

transportable tablespace

A feature of Oracle’s Import and Export utilities that allows a tablespace to be copied to another database. All
objects within the tablespace to be copied must be self-contained; in other words, a table in a tablespace to be
copied must have its associated indexes in the same tablespace.

At Scott’s widget company, there are two primary databases:

The OLTP database (OR92), which contains the online widget order system and the HR tables. It has the
EMPLOYEES, DEPARTMENTS, and other tables.

The data warehouse database (WH92), which contains summaries of orders processed on the online system.
Analysts use this summarized information to do "what-if" analyses to predict sales for the upcoming fiscal year.

On a weekly basis, Janice, the DBA, needs to copy the transactions from the online database to the data warehouse database.
She decides that using transportable tablespaces is the most convenient and efficient way to move this data, as there are
hundreds of tables in several different schemas that need to be merged into the data warehouse.

In the online database, Janice reviews the available tablespaces:
connect janice/janice@or92;

Connected.

select tablespace_name, status, contents from dba_tablespaces;

TABLESPACE_NAME                STATUS    CONTENTS
------------------------------ --------- ---------
SYSTEM                         ONLINE    PERMANENT
UNDOTBS1                       ONLINE    UNDO
TEMP                           ONLINE    TEMPORARY
CWMLITE                        ONLINE    PERMANENT
DRSYS                          ONLINE    PERMANENT
EXAMPLE                        ONLINE    PERMANENT
INDX                           ONLINE    PERMANENT
ODM                            ONLINE    PERMANENT
TOOLS                          ONLINE    PERMANENT
USERS                          ONLINE    PERMANENT
XDB                            ONLINE    PERMANENT
TO_DATAMART                    ONLINE    PERMANENT

12 rows selected.

The TO_DATAMART tablespace contains the tables that need to go to the data warehouse database. The first step in copying a
tablespace to another database is to make it read-only:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter tablespace to_datamart read only;

Tablespace altered.

Next, Janice uses Export (EXP) to save the characteristics of the tablespace to a dump file. Note that the contents of the
tablespace are not saved to the dump file; only the information about the objects in the tablespace is saved. She will use the
datafiles that make up the tablespace to copy the data. In the following EXP command, Janice creates the dump file for the
TO_DATAMART tablespace:
E:\TEMP>exp transport_tablespace=y
          tablespaces=to_datamart file=exp_mart.dmp

Export: Release 9.2.0.1.0 - Production on
   Sat Nov 9 18:47:15 2002

Copyright (c) 1982, 2002, Oracle Corporation.
    All rights reserved.

Username: janice as sysdba
Password:

Connected to: Oracle9i Enterprise Edition
      Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
Note: table data (rows) will not be exported
About to export transportable tablespace metadata...
For tablespace TO_DATAMART ...
. exporting cluster definitions
. exporting table definitions
. . exporting table                    INVENTORIES
. . exporting table                    SALES001
. . exporting table                    SALES002
...
. . exporting table                    SALES226
. . exporting table                    CUSTOMERS
. exporting referential integrity constraints
. exporting triggers
. end transportable tablespace metadata export
Export terminated successfully without warnings.

E:\TEMP>

In the next step, Janice copies the datafiles that compose the TO_DATAMART tablespace to the directory location where the rest of
the data warehouse datafiles reside. Janice uses the data dictionary views V$TABLESPACE and V$DATAFILE to determine the
operating system files that compose the TO_DATAMART tablespace:
select d.name "Filenames"
from v$tablespace t, v$datafile d
where t.ts# = d.ts#
and t.name = ‘TO_DATAMART’;

Filenames
---------------------------------------
D:\ORACLE\ORADATA\OR92\TO_DATAMART.ORA

1 row selected.

Janice uses a standard operating system copy command to make a copy of the tablespace in the new database:
D:\> copy d:\oracle\oradata\or92\to_datamart.ora
        d:\oracle\oradata\wh92

        1 file(s) copied.

D:\>

Back in the online database, Janice changes the source tablespace back to read-write:
connect janice/janice@or92;

Connected.

alter tablespace to_datamart read write;

Tablespace altered.

At this point, the source database is back to its original state, the information about the TO_DATAMART tablespace has been saved
to a dump file, and a copy of the TO_DATAMART tablespace datafile is ready to attach to the data warehouse database. Janice will
run Import (IMP) to attach the tablespace to the data warehouse database, using many of the same options she used with Export
to create the tablespace dump file:
E:\TEMP>imp transport_tablespace=y file=exp_mart.dmp
   datafiles=(‘d:\oracle\oradata\wh92\to_datamart.ora’)
   tablespaces=to_datamart

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   tablespaces=to_datamart

Import: Release 9.2.0.1.0 - Production
     on Sun Nov 10 08:55:26 2002

Copyright (c) 1982, 2002, Oracle Corporation.
     All rights reserved.

Username: janice as sysdba
Password:

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path

About to import transportable tablespace(s) metadata...
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing SYS’s objects into SYS
. importing RJB’s objects into RJB
. . importing table                  "INVENTORIES"
. . importing table                  "SALES001"
. . importing table                  "SALES002"
...
. . importing table                  "SALES226"
. . importing table                  "CUSTOMERS"

Import terminated successfully without warnings.

E:\TEMP>

A copy of the TO_DATAMART tablespace is now attached to the data warehouse database and ready for use by the marketing
analysts:
connect janice/janice@wh92;

Connected.

select tablespace_name, status, contents
     from dba_tablespaces
     where tablespace_name = ‘TO_DATAMART’;

TABLESPACE_NAME                STATUS    CONTENTS
------------------------------ --------- ---------
TO_DATAMART                    READ ONLY PERMANENT

1 row selected.

Before the tablespace can be imported again into the data warehouse database, it must be taken offline and dropped. It is
assumed that any objects in the TO_ DATAMART tablespace are copied to other tablespaces shortly after the TO_DATAMART
tablespace is imported.

Cold Backups

A database cold backup is most likely the simplest way to make a backup of a database. A cold backup consists of making
copies of the datafiles, the control files, and the initialization parameter files while the database is shut down. A cold backup is
also known as a closed backup.

cold backup

A database backup performed while the database is shut down. Also known as a closed backup.

closed backup

See cold backup.

Cold backups are easy to do, but they have several disadvantages. The database is unavailable to users during a cold backup, so
any database that must be available 24 hours a day is not a good candidate for a cold backup. In addition, a database media
failure will result in some loss of data—any transactions that are recorded to the database since the last cold backup are lost.

Hot Backups

A hot backup is similar to a cold backup, except that the backup is performed while the database is open and available to users.
A hot backup is also known as an open backup.

hot backup

A database backup performed while the database is open and available to users. Also known as an open
backup.

open backup

See hot backup.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hot backups are performed on one tablespace at a time. They are better than cold backups in that the database is always
available to users, even while the backup is in progress.

To perform a hot backup, you must know the names of the datafiles that belong to the tablespace you are backing up. Janice, the
DBA, needs to back up the USERS tablespace while the database is open, so she uses the V$TABLESPACE and V$DATAFILE
views to find out the datafile names for the USERS tablespace:
select d.name "Filenames"
from v$tablespace t, v$datafile d
where t.ts# = d.ts#
and t.name = ‘USERS’;

Filenames
-----------------------------------
D:\ORACLE\ORADATA\OR92\USERS01.DBF

1 row selected.

Before Janice initiates the backup, she marks the tablespace as being in a backup state:
alter tablespace users begin backup;

Tablespace altered.

Now any transactions occurring against the tablespace while the backup is in progress will be correctly applied to the objects in
the tablespace when the backup is complete.

In the next step, Janice performs a copy operation at the operating system command prompt, similar to the copy she performed
when transporting a tablespace:
D:\> copy d:\oracle\oradata\or92\users01.dbf d:\backup
        1 file(s) copied.

D:\>

To finish the hot backup, Janice takes the tablespace out of backup mode:
alter tablespace users end backup;

Tablespace altered.

During the time the tablespace was in backup mode, all objects in the tablespace were still available to users.

Log Miner

Oracle Log Miner is another tool the DBA can use to view past activity in the database. The Log Miner tool can help the DBA find
changed records in redo log files by using a set of PL/SQL procedures and functions. Log Miner extracts all DDL and DML activity
from the redo log files for viewing by a DBA via the dynamic performance view V$LOGMNR_CONTENTS. In addition to extracting the
DDL and DML statements used to change the database, the V$LOGMNR_CONTENTS view also contains the DML or DDL
statements needed to reverse the change made to the database. This is a good tool for not only pinpointing when changes were
made to a table, but also for automatically generating the SQL statements needed to reverse those changes.

Log Miner works differently from Oracle’s flashback query feature. The flashback query feature allows a user to see the contents
of a table at a specified time in the past; Log Miner can search a time period for all DDL against the table. A flashback query uses
the undo information stored in the undo tablespace; Log Miner uses redo logs. Both of these tools can be useful for tracking down
how and when changes to database objects took place.

Log Miner may be configured and used either from a SQL command line or via a GUI-based interface within Oracle Enterprise
Manager (OEM) by selecting Tools > Database Applications > Logminer Viewer, as shown here.

This Log Miner session initiated through OEM shows a sequence of DML statements executed by GARY against the ORDERS

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This Log Miner session initiated through OEM shows a sequence of DML statements executed by GARY against the ORDERS
table. The SQL Redo column shows the DML statement used to change the ORDERS table, and the SQL Undo column shows how
to reverse the change made by the DML statement in the SQL Redo column. Double-clicking a row in the report brings up a
second window that shows the complete text of both the SQL Undo and SQL Redo columns, as shown on the next page.

Recovery Manager

The Recovery Manager (RMAN) tool is an extensive and comprehensive set of tools that can streamline the backup and recovery
of a database. It can be accessed via either a command line or a GUI interface through OEM by selecting Tools > Database Tools
> Backup Management > Backup. Using RMAN can reduce errors by automating many of the tasks that a DBA would otherwise
need to perform manually, such as checking a backup set for completeness or logging the results of a backup operation.

Recovery Manager (RMAN)

A comprehensive set of backup and recovery tools that can streamline the backup and recovery of a database.

RMAN can perform the following tasks:

Back up all database objects. RMAN can back up every individual type of database or filesystem object, or the entire database.
It can back up tablespaces, datafiles, control files, and log files.

Log all backup operations. RMAN automatically logs the status of the backup as it occurs and when it completes.

Catalog backup information. Information about what database objects were backed up on what days is kept in an Oracle
database.

Perform incremental backups. Only the changes to database objects are backed up in an RMAN incremental backup. This
saves time and space. A full backup can occur weekly, with incremental backups performed during the week.

Create a duplicate of a database. A copy of an entire database can be made for testing a new release of a software application
or testing an upgrade to a new release of the Oracle database software.

Test the recovery process. RMAN can review the contents of backups to validate that the database can be restored successfully
in case of a catastrophic failure of the database.

The GUI version of RMAN includes a wizard, as shown below. This interface can help the DBA choose which objects are included
in a backup, choose a backup strategy, and automate the backup process through OEM.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A cold database backup occurs when a database is , and a hot database backup occurs when a database is .

2. The failure of a disk drive containing database datafiles would be considered what kind of a failure?

3. What clause in a SELECT statement specifies the time and date for an Oracle flashback query?

4. The flashback query tool uses what Oracle structure to retrieve information on how a table appeared at some
specified point in the past?

5. True or false: Flashback query can retrieve the DDL statement needed to undo a change made to a table in the
past.

6. An abnormal termination of the Oracle server software would be considered what type of database failure?

7. Which Oracle utilities can be used by a database user to back up and restore a table and by a DBA to move a
tablespace from one database to another?

8. What Oracle structure allows the automatic recovery of the Oracle database after an instance failure?

9. What option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without
executing those DDL commands?

10. What is the name of the feature of Oracle’s Export and Import utilities that allows a DBA to move or copy an entire
tablespace from one database to another?

Answers

1. Closed and unavailable to users, open and available to users.

2. The failure of a disk drive containing database datafiles would be considered a media failure.

3. The AS OF TIMESTAMP clause in a SELECT statement specifies the time and date for an Oracle flashback query.

4. The undo tablespace contains information that is used to reconstruct how a table appeared at some specified point in the
past.

5. False, the flashback query feature does not provide the DDL for undoing changes. Log Miner is the tool that can retrieve the
DDL statement needed to undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered an instance failure, and therefore a nonmedia
failure.

7. The Import (IMP) and Export (EXP) utilities can be used by a database user to back up and restore a table and by a DBA to
move a tablespace from one database to another.

8. The redo log files ensure that all committed transactions are applied to the database in the event of an instance failure.

9. The SHOW=Y option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without executing
those DDL commands.

10. The transportable tablespace feature of Oracle’s Export and Import utilities allows a DBA to move or copy an entire
tablespace from one database to another.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
closed backup

cold backup

Export utility (EXP)

flashback query

hot backup

Import utility (IMP)

media failure

nonmedia failure

open backup

Recovery Manager (RMAN)

transportable tablespace

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 14: Troubleshooting

Overview
When trouble strikes in your Oracle database, there are many places to turn for clues about what is causing the problem. The
approach you take to troubleshooting the database will depend, in part, on whether a few users complain or you get hundreds of
phone calls and e-mail messages from irate users.

The alert log file can give you clues about global database errors, and the system trace files can tell you about problems with the
background processes. When individual users are having problems with their sessions, and the error messages they are receiving
in their SQL*Plus session aren’t very descriptive, the user trace files may provide additional clues to the problem.

You can also use the Event Manager in Oracle Enterprise Manager (OEM) to automatically notify you of problems or potential
problems, such as when disk space is close to running out.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The Alert Log File
The alert log file is a grab bag of messages about the state of the database instance. It contains entries about significant
database events, such as database startup and shutdown, nondefault initialization parameters, ALTER SYSTEM commands, and
various errors.

alert log file

A text file that contains entries about significant database events, such as database startup and shutdown,
nondefault initialization parameters, and various errors. The alert log file is stored in the directory specified by
the system parameter BACKGROUND_DUMP_DEST.

Locating the Alert Log File

At Scott’s widget company, Janice, the DBA, doesn’t remember when she made the changes to the redo log files. She wanted to
increase the redundancy of the redo log files, so she added a second set of redo logs on a different disk. She can find information
about the redo logs in the alert log file.

Janice’s first step is to locate the alert log file itself. This log file is a text file in the directory specified by the system parameter
BACKGROUND_DUMP_DEST:
show parameter background_dump_dest

NAME                  TYPE       VALUE
--------------------- ---------- --------------------------
background_dump_dest  string     d:\oracle\admin\or92\bdump

From an operating system command-line session, Janice locates the alert log file:
C:\TEMP>d:

D:\>cd oracle\admin\or92\bdump

D:\ORACLE\ADMIN\OR92\BDUMP>dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/10/2002  02:24 AM    <DIR>          .
11/10/2002  02:24 AM    <DIR>          ..
11/13/2002  08:53 PM            26,708 alert_or92.log
11/13/2002  08:53 PM               885 or92_arc0_2172.trc
11/13/2002  08:53 PM               949 or92_arc1_1420.trc
11/07/2002  09:05 PM               597 or92_lgwr_2084.trc
11/07/2002  08:58 PM               597 or92_lgwr_2944.trc
11/07/2002  09:10 PM               597 or92_lgwr_3280.trc
11/07/2002  08:49 PM               597 or92_lgwr_3636.trc
               7 File(s)         30,930 bytes
               2 Dir(s)  39,615,973,888 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>notepad alert_or92.log

The alert log file’s name on Windows is alert_, followed by the instance’s connection identifier and an extension of .log.

Viewing the Alert Log File

Now that Janice knows where to find the alert log file, she opens it using the Windows Notepad text editor:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


It appears that the new redo logs were created on November 13, 2002, at about 8:49 p.m. You can also see that the new redo log
files were created via OEM, since OEM puts a special comment with a timestamp into the alert log file to indicate operations
performed via OEM.

Maintaining the Alert Log File

The alert log file grows in size slowly, but without limit. After a few weeks, it can become cumbersome to review the file, so it’s a
good idea to archive or delete the file on a periodic basis.

The alert log file can be safely renamed or deleted, even when the database is up and running. The next time an entry needs to
be written to the alert log file and the alert log file is not there, a new one is created.

Janice, the DBA, reviews the alert log file every Friday and renames it with a name containing the date it was renamed:
D:\> cd \oracle\admin\or92\bdump

D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/10/2002  02:24 AM    <DIR>          .
11/10/2002  02:24 AM    <DIR>          ..
11/15/2002  03:16 AM       27,239 alert_or92.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/13/2002  08:53 PM          949 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
               7 File(s)         31,523 bytes
               2 Dir(s)  41,803,294,208 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP> rename alert_or92.log
     alert_or92_2002-11-15.log

D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/15/2002  08:35 PM    <DIR>          .
11/15/2002  08:35 PM    <DIR>          ..
11/15/2002  03:16 AM       27,239 alert_or92_2002-11-15.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/13/2002  08:53 PM          949 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
               7 File(s)         31,523 bytes
               2 Dir(s)  41,803,294,208 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

OEM’s Event Manager
OEM can automatically alert the DBA, through an e-mail message or page, to error conditions or conditions that may signal an
impending error. Using OEM’s Event Manager, accessible as one of the nodes in the OEM Navigator pane, the DBA can monitor
a variety of error conditions, such as an abnormal termination of the Oracle instance or a tablespace running low on space. Even
events that would not technically be considered an error condition can be monitored. For example, you could tell Event Manager
to notify you when users are performing too many table scans within a certain period of time, as shown here.

Creating a new event is straightforward. From OEM’s toolbar at the top, select Event > Create Event. On the Tests tab in the
Create Event window, you can select from a long list of available tests. In this example, the DBA will be notified when any
tablespace’s used space exceeds a specified threshold percentage or the number of full table scans performed each second
exceeds a specified threshold amount. The Parameters tab in the Create Event window is used to specify these thresholds. For
the Tablespace Full test, an alert will be sent to the DBA via pager or e-mail whenever any tablespace is 80% full or higher, as
shown below.

For the Table Scans Per Second test, the DBA will be notified with a warning message if the number of full table scans exceeds
10 per second at least three times, or with a critical error if the number of full table scans exceeds 25 per second at least three
times, as shown below.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


These tests can be performed on the database automatically on a regular schedule, specified on the Schedule tab of the Create
Event window:

In this example, when the event is saved, the tests in the event will run immediately and then every 15 minutes thereafter.

The DBA can also specify a script to run automatically when event conditions are detected. This is helpful when the DBA is on
vacation or not able to receive e-mail or pager messages for some other reason. You can select a script through the Fixit Jobs tab
of the Create Event window.

In many cases, a fixit job can repair the problem without any intervention by the DBA at all. The fixit job can, for example,
temporarily allocate more disk space on a spare disk volume for the tablespace that is about to run out of space. A fixit job can be
a series of predefined actions to be performed when the event occurs, such as shutting down and restarting the database, or a
fixit job may call a customized SQL script written by the DBA, or any combination of predefined actions and customized scripts.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

System Trace Files
An Oracle instance’s system trace files are stored in the same directory as the alert log file, in the directory specified by the
system parameter BACKGROUND_ DUMP_DEST. The system trace files contain debugging, status, and error messages for each of
the background processes, such as SMON, PMON, DBWx, LGWR, and so forth.

system trace file

A text file that pertains to a single background process and contains status, debugging, or error information
about that background process. System trace files are stored in the directory specified by the system parameter
BACKGROUND_DUMP_DEST.

Janice, the DBA, notices that there are quite a few system trace files in the BACKGROUND_DUMP_DEST directory:
D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/16/2002  02:09 PM    <DIR>          .
11/16/2002  02:09 PM    <DIR>          ..
11/16/2002  02:14 PM        5,378 alert_or92.log
11/15/2002  03:16 AM       27,239 alert_or92_2002-11-15.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/16/2002  09:36 AM        1,011 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
11/16/2002  02:09 PM          597 or92_lgwr_3856.trc
               9 File(s)         37,560 bytes
               2 Dir(s)  40,448,815,616 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>

She sees quite a few files for the LGWR (log writer) background process, so she is concerned that there might be a problem with
LGWR. She opens the most recent LGWR trace file, or92_lgwr_3856.trc, to see what the problem might be.

She looks at the date stamp and realizes that the time the LGWR process was shutting down was the same time that the
database was restarted that day:
select instance_name,
   to_char(startup_time,’yyyy-mm-dd hh:miPM’)
   from v$instance;

INSTANCE_NAME    TO_CHAR(STARTUP_TI
---------------- ------------------
or92             2002-11-16 02:13PM

1 row selected.

As a result, the trace file is merely informational in this case, and there appears to be nothing wrong with the LGWR.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User Trace Files
User trace files, as the name implies, contain information pertaining to any error conditions triggered by a command in an
individual user’s session. User trace files can also help the DBA to optimize the performance of SQL statements by producing
statistics for each SQL statement in a user session. The location for user trace files is specified by the system parameter
USER_DUMP_DEST.

user trace file

A text file that contains information pertaining to any error conditions triggered by a command in an individual
user’s session or SQL statement information for the purposes of tuning and optimization. User trace files are
stored in the directory specified by the system parameter USER_DUMP_ DEST.

Enabling Tracing

The users in the HR department want to optimize some of their queries, so they decide to use user trace files to save the statistics
in the USER_DUMP_DEST directory. The first step is to turn on tracing:
alter session set sql_trace = true;

Session altered.

One of the users in the HR department runs a typical query joining the EMPLOYEES and the DEPARTMENTS table, then
immediately turns off the tracing:
select employee_id emp_id, last_name, first_name,
   department_id dept_id, department_name
from hr.employees join hr.departments
   using(department_id);

  EMP_ID LAST_NAME   FIRST_NAME  DEPT_ID DEPARTMENT_NAME
-------- ----------- ----------- ------- ---------------
     100 King        Steven           90 Executive
     101 Kochhar     Neena            90 Executive
     102 De Haan     Lex              90 Executive
...
     205 Higgins     Shelley         110 Accounting
     206 Gietz       William         110 Accounting

106 rows selected.

alter session set sql_trace = false;

Session altered.

Locating the User Trace Files

Janice, the DBA, has agreed to help out the HR department by analyzing the user trace file. First, she needs to find out where the
user trace file is stored:
show parameter user_dump_dest;

NAME                  TYPE      VALUE
--------------------- --------- --------------------------
user_dump_dest        string    d:\oracle\admin\or92\udump

From an operating system command-line session, Janice locates the trace file:
D:\>cd oracle\admin\or92\udump

D:\ORACLE\ADMIN\OR92\UDUMP>dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\UDUMP

11/16/2002  10:48 PM    <DIR>          .
11/16/2002  10:48 PM    <DIR>          ..
11/16/2002  02:14 PM               740 or92_ora_180.trc
11/10/2002  02:36 PM               609 or92_ora_18660.trc
11/07/2002  09:11 PM               628 or92_ora_2076.trc
11/10/2002  02:33 PM               609 or92_ora_21776.trc
11/16/2002  10:38 PM             1,247 or92_ora_2348.trc
11/07/2002  08:59 PM               713 or92_ora_2788.trc
11/07/2002  09:13 PM               743 or92_ora_2924.trc
11/07/2002  09:05 PM               713 or92_ora_3160.trc
11/07/2002  08:59 PM               629 or92_ora_3224.trc
11/07/2002  08:50 PM               628 or92_ora_3344.trc
11/07/2002  08:50 PM               712 or92_ora_3784.trc
11/07/2002  09:05 PM               629 or92_ora_4060.trc
11/16/2002  02:09 PM               633 or92_ora_56600.trc
11/16/2002  10:49 PM             2,522 or92_ora_5996.trc
              14 File(s)         11,755 bytes
               2 Dir(s)  40,448,329,216 bytes free

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               2 Dir(s)  40,448,329,216 bytes free

Which trace file is the right one? Janice must join the V$PROCESS and V$SESSION dynamic performance views to retrieve the
operating system process number, which Oracle uses in the trace filename:
select spid from v$process v, v$session s
   where v.addr = s.paddr and s.username = ‘HR’;

SPID
------------
5996

1 row selected.

Given the operating system process number of 5996, Janice knows that she needs to analyze the user trace file
or92_ora_5996.trc. However, when she opens this trace file in Notepad, it is not very readable:

Converting the Trace File

To convert the trace file into something more readable, Janice uses the Oracle utility TKPROF:
D:\ORACLE\ADMIN\OR92\UDUMP>tkprof or92_ora_5996.trc
     or92_ora_5996.txt

TKPROF: Release 9.2.0.1.0 - Production
     on Sat Nov 16 23:24:55 2002

Copyright (c) 1982, 2002, Oracle Corporation. 
     All rights reserved.

D:\ORACLE\ADMIN\OR92\UDUMP>

TKPROF

An Oracle utility that reformats a user trace file containing SQL statement statistics into a readable format.

Janice reviews the file or92_ora_5996.txt and finds that the output is much easier to interpret. A sample of the output is
shown below.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Using statistics from the trace file such as CPU time and elapsed time can help Janice focus on which of the HR department’s
SQL statements need tuning.

Tip Oracle provides two websites that can assist the DBA when trouble strikes. Metalink, Oracle’s trouble reporting site at
http://metalink.oracle.com, is a subscription service that allows DBAs to submit problem reports (either online or
by phone) and search the knowledge base of all other problems submitted to Oracle support staff. Oracle’s technology
network, http://technet.oracle.com, is a free service, although user registration is required to access the site.
Technet contains searchable product documentation, trial versions of most of Oracle’s software, discussion forums,
sample code, white papers, and more.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. System trace files can be found in the directory identified by which initialization parameter?

2. What Oracle tool can the DBA use to monitor the size of a tablespace and notify the DBA when the tablespace is
running out of space?

3. True or false: The alert log file records both successful and unsuccessful logins to the database.

4. The alert log file can be found in the directory identified by which initialization parameter?

5. What does the Oracle utility TKPROF do?

Answers

1. System trace files can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

2. OEM’s Event Manager tool can be used to monitor space conditions in database tablespaces.

3. False, the alert log file records database startup and shutdown, but not user logins.

4. The alert log file can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

5. The Oracle utility TKPROF formats a user trace file containing SQL statement statistics into a readable format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
alert log file

system trace file

TKPROF

user trace file

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix A: Answers to Review Questions

Chapter 1
1. Name the most important element of a relational database and its components.

2. Which type of table relationship associates more than one record in a given table with more than one record in
another table?

3. What type of key can be used to enforce referential integrity between two tables in a database?

4. What are some reasons why using a spreadsheet is not a good alternative to using a large-scale database?

5. What are some of the benefits of abstraction in an object-relational database management system?

6. What object-relational feature of Oracle eases the transition between relational and object-relational applications?

7. What are the three steps in the ERA process for database design?

Answers

1. The table is the most important element of a relational database and it consists of rows and columns. A field exists at the
intersection of a row and a column.

2. A many-to-many relationship associates more than one record in a table with more than one record in another table.

3. A foreign key can be used to enforce referential integrity between two tables.

4. Some reasons why a spreadsheet is not a good alternative to a large-scale database are that it’s difficult to use for multiple
users, it does not offer transaction control, the cells in a spreadsheet can contain any type of data, and referential integrity
controls between spreadsheets are difficult to implement efficiently.

5. In an object-relational database management system, new datatypes can be created as aggregates of existing datatypes and
other new datatypes, enhancing standards adherence and reusability.

6. Object views allow the developer to define an object-oriented structure over an existing relational database table, thus easing
the transition between relational and object-relational applications.

7. The three steps in the ERA (entities, relationships, attributes) design process are to define the entities, then define the
relationships between the entities, and then define the attributes of the entities. After one pass through all three steps, one or
more iterations may be necessary.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 2
1. What are the three types of DML (Data Manipulation Language) statements?

2. If the user SCOTT is granted the privilege to insert records on the OE.WAREHOUSES table using the command
GRANT INSERT ON OE.WAREHOUSES WITH GRANT OPTION, what does the WITH GRANT OPTION clause
allow SCOTT to do?

3. Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

4. What two methods are used to rename a column in the report output of a SQL SELECT statement?

5. ODBC provides what capability to client applications?

6. Which SELECT statement keyword removes duplicate rows from the result of the query?

7. What is the name of the set of library routines that allows a developer to send SQL statements from a C program?

8. What are some of the differences between a DELETE and a TRUNCATE statement?

9. The new MERGE statement combines the functionality of which two other DML statements?

10. What function does the DESCRIBE command perform in SQL*Plus or iSQL*Plus?

Answers

1. The three types of DML statements are INSERT, UPDATE, and DELETE.

2. It allows SCOTT to grant another user, such as HR, the same INSERT privilege on the OE.WAREHOUSES table.

3. iSQL*Plus runs on only the middleware tier where the Apache web server is running. However, Apache can run on the client
with the user who is executing the SQL statements, on its own dedicated server, or on the same server as the Oracle
database.

4. You can rename a column in the report output by using the SQL*Plus or iSQL*Plus column command, or by specifying the
alias name next to the column name in the SQL SELECT statement.

5. ODBC (Open Database Connectivity) provides a client application that supports SQL commands and the capability to
connect to a variety of different database servers without knowing the specific details as to how to connect and interact
directly with the database.

6. The DISTINCT keyword removes duplicate rows. If there is only one column in the result of a SQL query, there will be no
duplicates of that column returned in the query result. If there are two columns in the result of the query, there will be one row
returned for each unique combination of values in the first and the second column.

7. The library routines for sending SQL statements from a C program are called the OCI (Oracle Call Interface).

8. A DELETE statement may be rolled back, whereas a TRUNCATE is implicitly committed. The DELETE statement can
conditionally specify which rows to delete, but a TRUNCATE statement removes the contents of the entire table. A DELETE
statement retains the disk space in the table for future inserts or updates, but a TRUNCATE statement frees the disk space for
other tables or database objects.

9. MERGE combines the functionality of INSERT and UPDATE.

10. The DESCRIBE command displays the structure of a table, including the column name, datatype, and whether the column is
a required field.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 3
1. What is another way to write the following SQL statement by using another function?

select empno || lpad(initcap(ename),
40-length(empno),’.’)
"Employee Directory" from emp;

2. Which function would you use to perform an explicit conversion from a number to a string?

3. How can you rewrite the function call NUMTOYMINTERVAL(17,’year’) using the function TOYMINTERVAL?

4. What is the result of a number added to a NULL value?

5. What is the result of formatting the number -232.6 using the format mask ‘9999.99S’?

6. Rank the following operators or conditionals based on priority, from highest to lowest: *, OR, ||, >=

7. The DUAL table has how many rows and how many columns?

8. True or false: Strings and numbers can be concatenated.

9. Write a SELECT statement with a built-in function or functions that will format the string ‘Queen’ with the ‘!’
character padded for a total of 20 characters on the left side, and with the ‘?’ character padded for a total of 30
characters on the right. (Hint: Use nested functions.)

10. What functionality does the new Oracle TIMESTAMP datatype have over the DATE datatype?

Answers

1. You can rewrite the statement using the CONCAT function:
select concat(empno, lpad(initcap(ename),
40-length(empno),’.’) "Employee Directory" from emp;

2. You can use the TOCHAR function to convert a number to a string.

3. You can rewrite the function call as TOYMINTERVAL(‘17-00’).

4. The result of a number added to a NULL is NULL.

5. The resulting format is 232.60-.

6. *, ||, >=, OR

7. The DUAL table has one row and one column. The column is named DUMMY and has a value of ‘X’.

8. True, before the number is concatenated with the string, it is implicitly converted to a string.

9. select rpad(lpad(‘Queen’,20,’!’),30,’?’) from dual;
RPAD(LPAD(‘QUEEN’,20,’!’),30,’
------------------------------
!!!!!!!!!!!!!!!Queen??????????

10. The TIMESTAMP datatype stores the time in seconds to up to nine digits of precision.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 4
1. Rewrite the following expression using the CONCAT function.

last_name || ‘, ‘ || first_name

2. What are two ways that you can indicate a comment in a SQL command?

3. The SQL engine converts the IN operator to a series of .

4. Rewrite the following WHERE clause to be case-insensitive.
where job_title like ‘%Manager%’;

5. What is the only group function that counts NULL values in its calculation without using NVL or other special
processing?

6. The query results from using aggregate functions with a GROUP BY clause can be filtered or restricted by using
what clause?

7. Identify the two special characters used with the LIKE operator and describe what they do.

8. Name two aggregate functions that work only on numeric columns or expressions, and two other aggregate
functions that work on numeric, character, and date columns.

9. Put the clauses of a SQL SELECT statement in the order in which they are processed.

10. Which operator can do valid comparisons to columns with NULL values?

11. The SQL engine converts the BETWEEN operator to .

12. Where do NULL values end up in a sort operation?

Answers

1. The expression is rewritten as:
concat(concat(last_name, ‘, ‘),first_name)

2. You can indicate a comment in a SQL command by using /* and */ or by using --.

3. The SQL engine converts the IN operator to a series of OR operations.

4. Use the UPPER function to convert the job title to uppercase:
where UPPER(job_title) like ‘%MANAGER%’;

5. The COUNT group function using the syntax COUNT(*) counts NULL values without using NVL.

6. The HAVING clause filters or restricts the query results of the GROUP BY clause.

7. The % character matches zero or more characters, and the character matches exactly one character.

8. AVG and SUM work only on numeric columns; MIN and MAX work on all datatypes.

9. The proper order is: SELECT, WHERE, GROUP BY, HAVING, ORDER BY.

10. The operator is IS NULL.

11. The SQL engine converts the BETWEEN operator to two logical comparisons using >= and <=, connected by an AND
operation.

12. For ascending sorts, the NULL values are at the end; for descending sorts, the NULL values are at the beginning.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 5
1. Add a clause to the WHERE condition to make the following query return only the department names without

employees:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

2. A type of query that has either too few or no join conditions is known as a query.

3. Name three kinds of equijoins.

4. A natural join makes what assumption between the columns of two or more tables to be joined?

5. The Oracle9i syntax moves the join conditions from the clause to the clause in a SELECT statement.

6. To avoid a Cartesian product, a query with four tables must have at least how many join conditions between
tables?

7. To return all the rows in one table regardless of whether any rows in another table match on the join condition, you
would use what kind of a join?

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

10. A primary key in one table would frequently be joined to what in a second table?

Answers

1. The following clause added to the WHERE condition makes the query return only department names without employees:
and employee_id is null

2. Cartesian product

3. Inner joins, self-joins, left outer joins, right outer joins, and full outer joins are all examples of equijoins.

4. A natural join assumes that the tables are to be joined on the columns that have the same names and datatypes.

5. WHERE, FROM

6. A query with four tables must have at least three join conditions to avoid a Cartesian product.

7. An outer join returns all rows in one table regardless of whether any rows in another table match on the join condition.

8. A (+) is used to signify an outer join in a pre-Oracle9i query.

9. A full outer join uses the UNION set operator in a pre-Oracle9i query.

10. A primary key in one table would frequently be joined to a foreign key in a second table.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 6
1. A subquery is allowed in which parts of a SQL SELECT statement?

2. True or false: A correlated subquery references a table in the SELECT clause.

3. Which set operator will not remove duplicate rows from the result of a compound query?

4. What characteristics of the columns in a compound query using INTERSECT must match?

5. How are NULL values handled using set operators in a compound UNION query?

6. Why are ROLLUP and CUBE the preferred method for generating subtotals and grand totals for an aggregate
query?

7. Which operators can be used to compare a column to a single-row subquery?

8. A compound query that needs to find only the rows that are the same between the two queries should use the set
operator.

9. True or false: The IN operator cannot be used with a single-row subquery.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of precedence.

11. What can be used to change the precedence of a pair of queries in a compound query with more than two
queries?

Answers

1. A subquery is allowed in the SELECT clause, the FROM clause, and the WHERE clause.

2. False, the correlated subquery references a column in the main query.

3. UNION ALL will not remove duplicate rows from the result of a compound query.

4. The number of columns and their datatypes must match in a compound query using INTERSECT. The lengths of the
columns and the names do not need to match.

5. NULL values in one query are considered equal to NULL values in the other query, for the purposes of eliminating duplicates
in a UNION.

6. ROLLUP and CUBE need to make only one pass over the source table(s). Other methods, such as using a UNION between
two similar queries, will make more than one pass.

7. The following operators can be used to compare a column to a single-row subquery: =, !=, >, <, >=, and <=.

8. INTERSECT

9. False, using IN with a single-row subquery would be equivalent to using =.

10. All of those operators have equal precedence and are evaluated left to right in a compound query.

11. As with any other part of a SQL query, parentheses may be used to change the evaluation order of the set operators.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 7
1. A COMMIT occurs under which three conditions within a transaction?

2. Under what circumstances can a foreign key column not match the defined primary key value in the parent table?

3. True or false: A CHECK constraint cannot check for NULL values.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List two ways.

5. What are the three conditions that may be specified, either implicitly or explicitly, on a foreign key column when the
primary key column in the parent table is deleted?

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more than MIN_SALARY.

7. What statement will allow a partial rollback of certain DML statements within a transaction?

8. True or false: A NOT NULL constraint can be defined at the table level or at the column level.

Answers

1. A COMMIT occurs from an explicit COMMIT command, after a DDL or DCL command is executed, or when a SQL*Plus or
iSQL*Plus session is exited normally.

2. A foreign key column may not match the defined primary key value in the parent table when the foreign key column allows
NULL values and is NULL.

3. False, a CHECK constraint can use IS NULL and IS NOT NULL to check for the existence of NULL values in one or more
columns of the table.

4. PRIMARY KEY constraints do not allow NULL values, and there can be only one primary key per table.

5. By default, the row in the parent table will not be deleted if rows exist in the child table that have a foreign key referencing the
parent table’s primary or unique key. Alternatively, the child table’s foreign key may be set to NULL (SET NULL), or the entire
row in the child table may be deleted if a parent row is deleted (CASCADE).

6. This constraint ensures MAX_SALARY is at least 10,000 more than MIN_SALARY:

7. The ROLLBACK TO SAVEPOINT <savepoint>; statement will allow a partial rollback of certain DML statements.

8. False, a NOT NULL constraint can be defined only at the column level.
check (max_salary - 10000 > min_salary)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 8
1. What are the four functions of the Database Creation Assistant (DBCA)?

2. What is the Oracle background process that writes modified data blocks to disk?

3. What is the difference between a database and an instance?

4. An extent is composed of one or more .

5. True or false: The control file contains important system tables.

6. What is the GUI-based Oracle tool that can manage and monitor one or more Oracle instances?

7. DBCA can save the specified database parameters in what kind of file?

8. Which Oracle background process will apply the data in the redo log files to the datafiles in the event of a system
crash?

9. A database schema is closely associated with which other database object?

10. A segment consists of one or more .

Answers

1. DBCA can create, delete, and modify databases. It can also create a template that can be used to create a database.

2. The DBWn process writes modified data blocks to disk.

3. A database is a set of files on disk that is managed by an instance, which is a collection of processes and memory structures
that operate against the datafiles on disk.

4. Database blocks

5. False, the control file contains information about the physical structure of the entire database.

6. The Oracle Enterprise Manager (OEM) can manage and monitor one or more Oracle instances.

7. DBCA can save the database parameters as an HTML file.

8. The SMON process will apply the data in the redo log files to the datafiles in the event of a system crash.

9. A schema is associated 1:1 with a user account in the database.

10. Extents

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 9
1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

2. Identify the two iSQL*Plus commands that define the header and footer for a report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus window where you enter your iSQL*Plus
commands or SQL statements?

4. Write an iSQL*Plus footer command to display the text Page 22, right-justified on the line.

5. Sums and averages can be displayed on an iSQL*Plus report using which iSQL*Plus command?

6. Write a single iSQL*Plus COLUMN command to format the Salary column with a total of six digits, four to the left of
the decimal point and two to the right. In the same COLUMN command, define the header to be Monthly Salary,
with the words appearing on different lines in the column header.

7. Which iSQL*Plus command controls the row count display after a SELECT statement is executed?

8. Which iSQL*Plus command controls how duplicate column values are displayed on a report?

9. The iSQL*Plus BREAK command is almost always specified in conjunction with what SQL SELECT statement
clause?

10. In both the TTITLE and BTITLE commands, what option must be used to specify more than one line in the
header or footer?

Answers

1. An iSQL*Plus substitution variable is preceded by either one or two ampersands (& or &&).

2. The TTITLE and BTITLE commands define the header and footer for an iSQL*Plus report.

3. The size of the iSQL*Plus Work Screen window can be adjusted on the Interface Options page.

4. This iSQL*Plus command will display the text Page 22, right-justified on the footer line of the report:
btitle right ‘Page 22’

5. Sums and averages can be displayed on an iSQL*Plus report by using the COMPUTE iSQL*Plus command.

6. The following iSQL*Plus command will format the Salary column with six digits, four to the left of the decimal point and two to
the right. In addition, the header will be defined as Monthly Salary, with the words appearing on different lines in the column
header:
column Salary format 9999.99 heading ‘Monthly|Salary’

7. The FEEDBACK command controls the row count display after a SELECT statement is executed. By default, the row count
from a query is displayed if there are six or more rows in the query output.

8. The BREAK command will suppress duplicate values in a report for a specified column.

9. The BREAK command is almost always specified on a column that is in the ORDER BY clause of a SQL SELECT statement.

10. The SKIP option must be used in a BTITLE or TTITLE command to specify more than one line in the header or footer.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 10
1. The data dictionary view IND has the same definition as what other data dictionary view?

2. The most common form of a table in the Oracle database is a(n) table.

3. What clause do you add to the CREATE TABLE statement to create a temporary table?

4. What tables are displayed if a user accesses the ALL_TABLES data dictionary view?

5. Name two ways in which external tables are different from relational tables.

6. True or false: Oracle resolves object references by checking for private synonyms first.

7. What are two reasons for creating a view against one or more tables?

8. What database object type can be used to generate a series of sequential numbers?

9. True or false: Data dictionary tables retain their contents even after the database has been shut down and
restarted.

10. An index created on more than one column is known as what kind of index?

Answers

1. The data dictionary view IND is equivalent to the data dictionary view USER_INDEXES.

2. Relational

3. You add the clause GLOBAL TEMPORARY to the CREATE TABLE statement to create a temporary table.

4. The ALL_TABLES data dictionary view contains a row for each table in the user’s schema plus a row for each table that the
user has access to in other schemas of the database.

5. External tables cannot be updated, and external tables cannot have indexes created on them.

6. False, Oracle resolves object references by checking for a real object owned by the user, then checks for a private synonym,
and then checks for a public synonym.

7. A view can be created to hide the complexity of a table join from the user. A view can also be created to restrict the rows or
columns seen by users of the view.

8. A sequence can be used to generate a series of sequential numbers.

9. True, data dictionary tables retain their contents even after the database has been restarted. Dynamic performance views,
however, lose their contents when the database is shut down and restarted.

10. An index based on more than one column is known as a composite index.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 11
1. Privileges can be grouped and assigned as a unit by using what database object?

2. When granting privileges with the GRANT statement, what does the clause WITH GRANT OPTION do?

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

4. What is the name of the table, owned by the user SYS, that contains all audit records?

5. Write a SQL statement that will create audit records when UPDATE statements fail against the HR.EMPLOYEES
table.

6. Which system privilege allows a user to make a connection to the database?

7. In addition to assigning a default tablespace to a user, what else must be assigned to a user before that user can
create objects in the tablespace?

8. Which tablespace is assigned to a user for the user’s permanent objects if one is not explicitly assigned in the
CREATE USER statement?

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

10. A profile controls which kinds of database resources?

11. Which keyword can be used in a GRANT command to assign one or more privileges to every user in the database?

Answers

1. A role can be used to group system and object privileges and assign them as a unit to database users.

2. The WITH GRANT OPTION clause allows the grantee to pass on the privilege to another database user.

3. DROP USER and CREATE SESSION are examples of system privileges.

4. The table SYS.AUD$ contains all audit records.

5. The following SQL statement will create audit records when UPDATE statements fail against the HR.EMPLOYEES table:
audit update on hr.employees whenever not successful;

6. The CREATE SESSION system privilege allows a user to make a connection to the database.

7. A quota must be assigned to a user before that user can create objects in the tablespace.

8. The SYSTEM tablespace is assigned to a user for permanent objects if no tablespace is explicitly assigned in the CREATE
USER statement.

9. DELETE, INSERT, and EXECUTE are examples of object privileges.

10. A profile controls things such as concurrent connections to the database, CPU time used, continuous idle time, disk reads
performed, failed login attempts, how often a password needs to be changed, and elapsed time connected.

11. The PUBLIC keyword can be used instead of an individual username or role in a GRANT command to assign one or more
privileges to every user in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 12
1. What GUI tool analyzes a SQL statement and identifies the steps used to process the query?

2. The two general categories of indexes are indexes and indexes.

3. Which type of index is best for columns with a low cardinality?

4. Which dynamic performance view can assist the DBA in sizing the buffer cache appropriately?

5. Which type of table divides the contents of a very large table into more manageable chunks, both improving the
manageability of the table for the DBA and potentially increasing the performance of queries on the table?

6. Which data dictionary views contain information about table indexes and the table columns indexed?

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

8. Which feature associated with materialized views rewrites a query to use the materialized view instead of using
the tables that are the source for the materialized view?

9. What is the name of the pseudo-column that exists for every row of every table in the database and is unique
across the entire database?

10. Name the two different optimizer modes and identify which one uses statistics from tables and indexes to derive
an execution plan.

Answers

1. The Explain Plan GUI tool analyzes a SQL statement and identifies the steps used to process the query.

2. B-tree, bitmap

3. A bitmap index is best for columns with a low cardinality.

4. The dynamic performance view V$DB_CACHE_ADVICE can assist the DBA in sizing the buffer cache appropriately.

5. A partitioned table divides the contents of a very large table into more manageable chunks.

6. The data dictionary views DBA_INDEXES and DBA_IND_COLUMNS contain information about table indexes and the table
columns indexed.

7. The six steps in Oracle’s Tuning Methodology are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

8. The QUERY REWRITE feature rewrites a query to use the materialized view instead of using the tables that are the source for
the materialized view.

9. The pseudo-column ROWID exists for every row of every table in the database and is unique across the entire database.

10. The two different optimizer modes are rule-based and cost-based. The cost-based method uses statistics from tables and
indexes to derive an execution plan.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 13
1. A cold database backup occurs when a database is , and a hot database backup occurs when a database is .

2. The failure of a disk drive containing database datafiles would be considered what kind of a failure?

3. What clause in a SELECT statement specifies the time and date for an Oracle flashback query?

4. The flashback query tool uses what Oracle structure to retrieve information on how a table appeared at some
specified point in the past?

5. True or false: Flashback query can retrieve the DDL statement needed to undo a change made to a table in the
past.

6. An abnormal termination of the Oracle server software would be considered what type of database failure?

7. Which Oracle utilities can be used by a database user to back up and restore a table and by a DBA to move a
tablespace from one database to another?

8. What Oracle structure allows the automatic recovery of the Oracle database after an instance failure?

9. What option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without
executing those DDL commands?

10. What is the name of the feature of Oracle’s Export and Import utilities that allows a DBA to move or copy an entire
tablespace from one database to another?

Answers

1. Closed and unavailable to users, open and available to users.

2. The failure of a disk drive containing database datafiles would be considered a media failure.

3. The AS OF TIMESTAMP clause in a SELECT statement specifies the time and date for an Oracle flashback query.

4. The undo tablespace contains information that is used to reconstruct how a table appeared at some specified point in the
past.

5. False, the flashback query feature does not provide the DDL for undoing changes. Log Miner is the tool that can retrieve the
DDL statement needed to undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered an instance failure, and therefore a nonmedia
failure.

7. The Import (IMP) and Export (EXP) utilities can be used by a database user to back up and restore a table and by a DBA to
move a tablespace from one database to another.

8. The redo log files ensure that all committed transactions are applied to the database in the event of an instance failure.

9. The SHOW=Y option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without executing
those DDL commands.

10. The transportable tablespace feature of Oracle’s Export and Import utilities allows a DBA to move or copy an entire
tablespace from one database to another.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 14
1. System trace files can be found in the directory identified by which initialization parameter?

2. What Oracle tool can the DBA use to monitor the size of a tablespace and notify the DBA when the tablespace is
running out of space?

3. True or false: The alert log file records both successful and unsuccessful logins to the database.

4. The alert log file can be found in the directory identified by which initialization parameter?

5. What does the Oracle utility TKPROF do?

Answers

1. System trace files can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

2. OEM’s Event Manager tool can be used to monitor space conditions in database tablespaces.

3. False, the alert log file records database startup and shutdown, but not user logins.

4. The alert log file can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

5. The Oracle utility TKPROF formats a user trace file containing SQL statement statistics into a readable format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix B: Glossary
abstract datatypes

New datatypes, usually user-created, that are based on one or more built-in datatypes and can be treated as a
unit.

aggregate
A type of function in Oracle SQL that performs a calculation or transformation across multiple rows in a table,
rather than just on a single row.

alert log file
A text file that contains entries about significant database events, such as database startup and shutdown,
nondefault initialization parameters, and various errors. The alert log file is stored in the directory specified by the
system parameter BACKGROUND_DUMP_DEST.

alias
An alternate name for a column, specified right after the column name in a SELECT statement, seen in the results
of the query.

associative table
A database table that stores the valid combinations of rows from two other tables and usually enforces a business
rule. An associative table resolves a many-to-many relationship.

auditing
Storing information about activities in the database in the SYS.AUD$ table. Auditing is controlled by the DBA.

bitmap index
An index that maintains a binary string of ones and zeros for each distinct value of a column within the index.

branch blocks
Index blocks in the traversal path of a b-tree index that either point to branch blocks at the next level or point to
leaf blocks.

b-tree index
A type of index structure that resembles an inverted tree. The branches of a b-tree index are balanced. Traversing
the tree for any index value reads the same number of blocks.

buffer cache advisory
A feature of the Oracle9i database that can assist the DBA in determining how large to make the buffer cache.
This feature collects statistics on how often a requested database block is found in the buffer cache. The system
initialization parameter DB_CACHE_ADVICE controls whether these statistics are collected, and the data
dictionary view V$DB_CACHE_ ADVICE contains the estimated number of physical reads that would occur given
a number of different cache sizes.

cardinality
The number of distinct values in a column of a table.

Cartesian product
A join between two tables where no join condition is specified, and as a result, every row in the first table is joined
with every row in the second table.

CHECK constraint
A constraint that evaluates the condition defined in the constraint and permits the INSERT or UPDATE of the row
in the table if the condition is satisfied.

closed backup
See cold backup.

cold backup
A database backup performed while the database is shut down. Also known as a closed backup.

column
The component of a database table that contains all of the data of the same name and type across all rows.

comment
Documentation for SQL statements. Comments are specified by using the pair /* and */ or by using —.

composite index
An index that is created on two or more columns in a table.

concatenation
The process of combining two or more data elements into a single element. In Oracle SQL, concatenation can be
accomplished by using the concatenation operator (a pair of vertical bars, ||) or the CONCAT function.

connection identifier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


See host string.

constraint
A condition defined against a column or columns on a table in the database to enforce business rules or
relationships between tables in the database.

control file
A file that records the physical structure of a database, the database name, and the names and locations of
datafiles and redo log files.

correlated subquery
A subquery that contains a reference to a column in the main, or parent, query.

cost-based optimizer
An Oracle optimizer methodology that relies on the characteristics of the tables being queried to determine the
method used to run the query. A cost is calculated for estimated CPU, I/O, and sorting for the possible execution
paths. The path with the lowest overall cost is used to perform the query.

CTAS
Also known as Create Table As Select, a method for creating a table in the database by using the results from a
subquery to both populate the data and specify the datatypes of the columns in the new table.

data dictionary views
Read-only views owned by the user SYS that are created when the database is created and contain information
about users, security, and database structures, as well as other persistent information about the database.

data modeling
A process of defining the entities, attributes, and relationships between the entities in preparation for creating the
physical database.

database
The collection of all physical files on disk that are associated with a single Oracle instance.

database block
The smallest unit of allocation in an Oracle database. One or more database blocks compose a database extent.

database buffer cache
The memory structure in the SGA that holds the most recently used or written blocks of data.

Database Configuration Assistant (DBCA)
A multiplatform GUI tool that allows a DBA to easily create, modify, and delete databases, as well as manage
database templates.

datafiles
Files that contain all of the database data that the users of the database save and retrieve using SELECT and
other DML statements. A tablespace comprises one or more datafiles.

date function
A function that performs some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions return a date or a string containing a
portion of the date as the result of the transformation.

DCL (Data Control Language)
Includes statements such as GRANT and REVOKE to provide or deny users or roles system or object privileges.

DDL (Data Definition Language)
Includes statements such as CREATE, ALTER, and DROP to work with objects such as tables. DDL modifies the
structure of the objects in a database instead of the contents of the objects.

directory
A database object that stores a reference to a directory on the host operating system’s filesystem.

DML (Data Manipulation Language)
Includes INSERT, UPDATE, DELETE, and MERGE statements that operate specifically on database tables.
Occasionally, SELECT statements are included in the SQL DML category.

DUAL
A special table, owned by the Oracle SYS user, that has one row and one column. It is useful for ad-hoc queries
that don’t require rows from a specific table.

dynamic performance views
Data dictionary views owned by the user SYS that are continuously updated while a database is open and in use
and whose contents relate primarily to performance. These views have the prefix V$ and their contents are lost
when the database is shut down.

encapsulation
An object-oriented technique that may hide, or abstract, the inner workings of an object and expose only the
relevant characteristics and operations on the object to other objects.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


equijoin
A join between two tables where rows are returned if one or more columns in common between the two tables are
equal and not NULL.

Explain Plan tool
A GUI-based Oracle tool that details the steps in which a SQL statement is executed, as well as what method
Oracle used to access the tables in the query.

explicit conversion
Conversion of one datatype to another in an expression using function calls such as TO_CHAR instead of relying
on automatic conversion rules (See implicit conversion).

Export utility (EXP)
An Oracle utility that copies the contents of one or more tables to a binary dump file, along with the DDL needed
to create the table and its associated indexes, permissions, and constraints.

extent
A contiguous group of blocks allocated for use as part of a table, index, and so forth.

external table
A table whose definition is stored in the database but whose data is stored externally to the database.

field
The smallest piece of information that can be retrieved by the database query language. A field is found at the
intersection of a row and a column in a database table.

flashback query
A feature of the Oracle database that allows a user to view the contents of a table as of a user-specified point in
time in the past. How far in the past a flashback query can retrieve rows depends on the size of the undo
tablespace and on the setting of the UNDO_RETENTION system parameter.

foreign key
A column (or columns) in a table that draws its values from a primary or unique key column in another table. A
foreign key assists in ensuring the data integrity of a table.

FOREIGN KEY constraint
A constraint that establishes a parent-child relationship between two tables via one or more common columns.
The foreign key in the child table refers to a primary or unique key in the parent table.

function
A named set of predefined programming language commands that performs a specific task given zero, one, or
more arguments and returns a value.

function-based index
A b-tree index that is created based on an expression involving the columns of a table, instead of on a single
column or columns in the table.

heading separator
A single character embedded in an iSQL*Plus column alias that indicates where the alias is split to appear on
multiple lines in the output. The heading separator itself does not appear in the output.

hierarchical
A table design where one of the foreign keys in the table references the primary key of the same table in a parent-
child relationship.

hint
A directive placed between /*+ and */ in a query that overrides an execution method that the Oracle optimizer
would normally choose.

host string
A text string that represents a shortcut or reference to a set of parameters that provide the information needed to
connect to a database host from the client application.

hot backup
A database backup performed while the database is open and available to users. Also known as an open backup.

implicit conversion
Conversion of one datatype to another that occurs automatically when columns or constants with dissimilar
datatypes appear in an expression.

Import utility (IMP)
An Oracle utility that takes as input a binary dump file created by the Export utility and restores one or more
database tables, along with any associated indexes, permissions, and constraints.

index
A database object designed to reduce the amount of time it takes to retrieve rows from a table. An index is
created based on one or more columns in the table.

index-organized table (IOT)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A b-tree index that stores both the data and the index in the same segment.

inheritance
Acquiring the properties of the parent, or base object, in a new object.

inner join
See equijoin.

instance
The collection of memory structures and Oracle background processes that operates against an Oracle database.

intersection table
See associative table.

JDBC (Java Database Connectivity)
A set of library routines specific to the Java language that allows a Java application to easily connect to and
process SQL statements against an Oracle database.

join
To combine two or more tables in a query to produce rows as a result of a comparison between columns in the
tables.

leaf blocks
Index blocks at the bottom of a b-tree index that contain ROWIDs to the rows in the table containing the desired
index value.

logical structures
Structures in an Oracle database that a database user would see, such as a table, as opposed to the underlying
physical structures at the datafile level.

LRU (least recently used) algorithm
An algorithm used to determine when to reuse buffers in the database buffer cache that are not dirty or pinned.
The less frequently a block is used, the more likely it is to be replaced with a new database block read from disk.

many-to-many relationship
A relationship type between tables in a relational database where one row of a given table may be related to
many rows of another table, and vice versa. Many-to-many relationships are often resolved with an intermediate
associative table.

materialized view
A view that stores the results of the query the view is based on, in addition to the SQL join statement of the view
itself. Materialized views may be refreshed manually (on demand), on a regular basis, or when there is a change
in the underlying tables on which that view is based.

media failure
A type of database failure where a server hardware component fails and the contents of one or more disk files are
either unreadable or corrupted.

methods
Operations on an object that are exposed for use by other objects or applications.

multiple-column subquery
A subquery in which more than one column is selected for comparison to the main query using the same number
of columns.

multiple-row subquery
A subquery that can return more than one row for comparison to the main, or parent, query using operators such
as IN.

nonmedia failure
A type of database failure that is not related to a server disk-related hardware component and is one of several
types: statement failure, process failure, instance failure, or user error.

NOT NULL constraint
A constraint that prevents NULL values from being entered into a column of a table.

NULL
A possible value for any Oracle column that indicates the absence of any known value for that column. A NULL is
usually used to represent a value that is unknown, not applicable, or not available.

numeric function
A function that operates on numeric literals, columns containing numbers, or an expression containing numeric
literals and table columns, returning a number as the result.

numeric literal
A constant that can consist of numeric digits, plus the characters +, -, ., and E.

object privileges

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Privileges that allow users to manipulate the contents of database objects in other schemas.

object view
A database construct that overlays an object-oriented structure over an existing relational database table. As a
result, the table can be accessed as a relational table or as an object table and make the transition to a fully
object-oriented environment easier.

object-relational database
A relational database that includes additional operations and components to support object-oriented data
structures and methods.

OCI (Oracle Call Interface)
A set of library routines that allows a C application on virtually any development platform to easily connect to and
process SQL statements against an Oracle database. The OCI routines are called as native C library functions;
therefore, no preprocessor is necessary when compiling a C application using OCI.

ODBC (Open Database Connectivity)
A set of standards that allow applications that are not dependent on any one specific database to process SQL
statements against any database that supports SQL.

ODBC driver
An interface, usually at the operating-system level, that supports the connection of an ODBC-compliant
application to a specific database platform.

one-to-many relationship
A relationship type between tables where one row in a given table is related to many other rows in a child table.
The reverse condition, however, is not true. A given row in a child table is related to only one row in the parent
table.

one-to-one relationship
A relationship type between tables where one row in a given table is related to only one or zero rows in a second
table. This relationship type is often used for subtyping. For example, an EMPLOYEE table may hold the
information common to all employees, while the FULLTIME, PARTTIME, and CONTRACTOR tables hold
information unique to full time employees, part time employees and contractors respectively. These entities would
be considered subtypes of an EMPLOYEE and maintain a one-to-one relationship with the EMPLOYEE table.

open backup
See hot backup.

Oracle block
See database block.

Oracle Enterprise Manager (OEM)
A GUI tool that allows access, maintenance, and monitoring of multiple databases or services within a single
application.

Oracle Home
A common directory location used to store the associated program files for a specific release of the Oracle
database software.

Oracle Universal Installer (OUI)
A GUI-based tool used to install or uninstall Oracle software components and tools.

Oracle’s Tuning Methodology
A tuning method recommended by Oracle Corporation that prioritizes areas in tuning database performance. The
six areas, in order of priority, are data design, application design, memory allocation, I/O and physical structures,
resource contention, and underlying platform.

outer join
A join between two or more tables returning all the rows in one table whether or not the second table contains a
match on the join condition.

partitioned table
A table that stores its rows into smaller and more manageable pieces based on the values of one or more
columns of the table.

pattern matching
Comparing a string in a database column to a string containing wildcard characters. These wildcard characters
can represent zero, one, or more characters in the database column string.

PFILE
A text file containing the parameters and their values for configuring the database and instance at startup.

physical structures
Structures of an Oracle database, such as datafiles on disk, that are not directly manipulated by users of the
database. Physical structures exist at the operating system level.

primary key

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A column (or columns) in a table that makes the row in the table distinguishable from every other row in the same
table.

PRIMARY KEY constraint
A constraint that uniquely defines each row of a table and prevents NULL values from being specified in the
column or combination of columns. Only one PRIMARY KEY constraint may be defined on a table.

privileges
The right to perform a specific action in the database, granted by the DBA or other database users.

process
An executing computer program in memory that performs a specific task.

profile
A set of predefined resource parameters that can be used to monitor and control various database resources,
such as CPU time and number of disk reads against the database.

Program Global Area (PGA)
A nonshared area of memory used for storing all connection information, including SQL statement information, in
a dedicated server configuration for a user who is connected to the database. In a shared server configuration, a
large portion of the memory for each connection is stored in the SGA instead of the PGA.

quota
A numeric limit on the amount of disk space that a user can allocate within a tablespace. The quota can also be
specified as UNLIMITED.

read consistency
A feature of the Oracle database that ensures a database reader (in a SELECT statement) will see the same data
in a table regardless of changes made to the table by database writers that were initiated after the reader initiated
the SELECT statement.

Recovery Manager (RMAN)
A comprehensive set of backup and recovery tools that can streamline the backup and recovery of a database.

redo log buffer
A buffer in the SGA that contains information pertaining to changes in the database.

redo log files
Files that contain a record of all changes made to both the data in tables and indexes, as well as changes to the
database structures themselves. These files are used to recover changed data that was in memory at the time of
a crash.

referential integrity
A method employed by a relational database system that enforces one-to-many relationships between tables.

relation
A two-dimensional structure used to hold related information, also known as a table.

relational database
A collection of tables that stores data without any assumptions as to how the data is related within the tables or
between the tables.

relational table
The most common form of a table in the Oracle database; the default type created with the CREATE TABLE
statement. A relational table is permanent and can be partitioned.

reverse key index
A b-tree index whose keys have their byte-order reversed to improve the performance of an application by
spreading out the key values for adjacent index values to different leaf blocks.

role
A group of related privileges that is referenced by a single name. Privileges can be assigned to a role, and a role
can be assigned to a database user or to another role. Roles ease the maintenance issues with managing
privileges for a large number of users who can be grouped into a relatively small number of categories based on
job function.

row
A group of one or more data elements in a database table that describes a person, place, or thing.

ROWID
A unique identifier for a row in a table, maintained automatically in the table by the Oracle server. ROWIDs are
unique throughout the database.

rule-based optimizer
An Oracle optimizer methodology that relies on a fixed set of rules to determine the method used to run a query,
ignoring the cardinality and distribution of data in the column being queried.

schema

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A group of related database objects assigned to a database user. A schema contains tables, views, indexes,
sequences, and SQL code. The schema name can be used to qualify objects that are not owned by the user
referencing the objects.

script
A set of one or more SQL or iSQL*Plus commands that is executed as a group. Scripts may be retrieved from
within an iSQL*Plus session, or saved to an operating system file and retrieved later in another session.

segment
A set of extents allocated for a single type of object, such as a table.

self-join
A join of a table to itself where a non-primary key column in the table is related to the primary key column of
another row in the same table.

sequence
A database structure that generates a series of numbers typically used to assign primary key values to database
tables.

shared pool
An area of memory within the total amount of memory allocated for the Oracle database that can hold recently
executed SQL statements, PL/SQL procedures and packages, as well as cached information from the system
tables.

SID
A system identifier, which is a unique name assigned to an Oracle instance. A user must supply a SID to connect
to an Oracle instance.

single-row function
Functions that may have zero, one, or more arguments, and will return one result for each row returned in a
query.

single-row subquery
A subquery that returns a single row and is compared to a single value in the parent query.

Software Code Area
A location in memory where the Oracle application software resides. The Software Code Area can be shared
among several Oracle instances.

SPFILE
A parameter file stored in a binary format that gives the DBA more flexibility when changing parameters.
Parameters can be changed for the current instance only, can take effect only after the next restart of the
instance, or both.

SQL (Structured Query Language)
The industry-standard database language used to query and manipulate the data, structures, and permissions in
a relational database.

statistics
Information about tables and indexes stored in the data dictionary used to assist the cost-based optimizer when
deciding how to run a given query.

stored function
A sequence of PL/SQL variable declarations and statements that can be called as a unit, passing zero or more
arguments and returning a single value of a specified datatype. Built-in stored functions are created when the
database software is installed. Customized or user-defined functions are defined by application developers or
DBAs.

string function
A function that operates on string literals, columns containing strings, or an expression containing string literals
and table columns, returning a string as the result.

string literal
A constant that can consist of any string of letters, digits, and special characters enclosed in single quotation
marks.

subquery
A query that is embedded in a main, or parent, query and used to assist in filtering the result set from a query.

substitution variable
A string literal with no embedded spaces, preceded by & or &&, that will prompt the user for a value when an
iSQL*Plus script containing one of these variables is executed. A substitution variable preceded by & will not
prompt the user for a value if the same substitution variable, preceded by &&, exists earlier in the script.

synonym
An alias assigned to a table, view, or other database structure. Synonyms can be either available to all users
(public) or available only to one schema owner (private).

System Global Area (SGA)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A group of shared memory structures for a single Oracle instance.

system privileges
Privileges that allow users to perform a specific action on one or more database objects or users in the database.

system trace file
A text file that pertains to a single background process and contains status, debugging, or error information about
that background process. System trace files are stored in the directory specified by the system parameter
BACKGROUND_DUMP_DEST.

system variable
A variable maintained in the iSQL*Plus, SQL*Plus, or SQL*Plus Worksheet environment that holds a status or a
setting for a particular feature in that environment. PAGESIZE is an example of a system variable in iSQL*Plus.

table
The basic construct of a relational database that contains rows and columns of related data.

tablespace
A logical grouping of database objects, usually to facilitate security, performance, or the availability of database
objects such as tables and indexes. A tablespace is composed of one or more datafiles on disk.

temporary table
A table whose definition is persistent and shared by all database users but whose data is local to the session that
created the data. When the transaction or session is completed, the data is truncated from the temporary table.

thin client
A workstation or CPU with relatively low-powered components that can use a web interface (or other application
with a small footprint) to connect to a middleware or a back-end database server where most of the processing
occurs. iSQL*Plus is an example of a web application that runs on a thin client.

tiers
Locations where different components of an enterprise application system reside. In a typical three-tier
environment, the client tier runs a thin application such as a web browser, which connects to a middleware server
that is running a web server. The web server and its related components typically manage the business rules of
the application. The third-tier database platform controls access to the data and manages the data itself. This
approach partitions the application so that it is easier to maintain and segregates the tasks into tiers that are best
equipped to handle a particular function.

TKPROF
An Oracle utility that reformats a user trace file containing SQL statement statistics into a readable format.

Top SQL tool
A GUI-based Oracle tool that can identify SQL statements that may be consuming too many system resources
and therefore may be good candidates for tuning.

transaction
A logical unit of work consisting of one or more SQL statements that must all succeed or all fail to keep the
database in a logically consistent state. A transfer of funds from one bank account is a logical transaction, in that
both the withdrawal from one account and the deposit to another account must both succeed for the transaction
to succeed.

transportable tablespace
A feature of Oracle’s Import and Export utilities that allows a tablespace to be copied to another database. All
objects within the tablespace to be copied must be self-contained; in other words, a table in a tablespace to be
copied must have its associated indexes in the same tablespace.

UNIQUE constraint
A constraint that prevents duplicate values from being specified in a column or combination of columns in a table.
NULL values may be specified for columns that have a UNIQUE constraint defined, as long as the column itself
does not have a NOT NULL constraint.

unique index
A b-tree index whose keys are not duplicated.

user trace file
A text file that contains information pertaining to any error conditions triggered by a command in an individual
user’s session or SQL statement information for the purposes of tuning and optimization. User trace files are
stored in the directory specified by the system parameter USER_DUMP_DEST.

user-defined function
A function that is written by an analyst, user, or database adminstrator and does not come as part of the default
installation of the Oracle server software.

username
An Oracle database account identifier that, along with a password, allows a user to connect to the database.

view

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A database object that is based on a SELECT statement against one or more tables or other views in the
database. A regular view does not store any data in the database; only the definition is stored. Views are also
known as stored queries.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix C: Common Database Platforms
This appendix offers an overview of some common database platforms for enterprise and “personal” use. Most popular databases
today can be considered relational or object-relational in nature, and they support SQL. When choosing a database platform,
price, market sector, interoperability, and scalability are sometimes the deciding factors over features.

Enterprise Databases
There are a few heavy-hitters in the database world, including the key players in the enterprise relational database management
system (RDBMS) market listed here. The following list of vendors is not intended to be comprehensive, but to give an overview of
the various approaches to solving the problems of a large, distributed enterprise.

Oracle

Historically, Oracle is the granddaddy of them all. In 1979, Oracle Corporation released the first commercially viable RDBMS,
based on the work of Dr. E. F. Codd. In 1983, however, the true power and cross-platform capabilities of Oracle were evident
when the source code for Oracle was rewritten in the C language, making Oracle extremely portable across any hardware and
software platform that has a C compiler.

As a database, Oracle9i has become “unbreakable.” All market hype aside, so much redundancy and failover capability has been
built into the product that Oracle has a written guarantee that your database won’t go down!

What really distinguishes Oracle from many of its competitors is its availability on so many operating systems and hardware
platforms. Products like Microsoft SQL Server run strictly on Windows operating systems with Intel hardware, and many of the
other potential contenders run on only Windows or Linux or a combination of the two.

Many independent benchmark tests of Oracle versus its competitors, such as the March 26, 2002, PC Magazine review of SQL
databases, show Oracle to be one of the key market leaders.

More information about Oracle9i can be found at http://oracle.com/ip/deploy/database/oracle9i/index.html.

IBM DB2/UDB

IBM DB2/UDB had its humble beginnings as a mainframe database, but has now grown to be implemented on almost as many
hardware and software platforms as Oracle. The strengths of DB2 lie in its strong text-search capabilities, on par with the Oracle
Text product. The integration with its WebSphere middleware product also makes it a good all-in-one enterprise solution, although
the WebSphere product can be used with an Oracle database as the back-end.

More information about DB2/UDB can be found at http://www-3.ibm.com/software/data/db2/udb.

Sybase

Sybase’s Adaptive Server Enterprise finds its strengths in its financial application suites, but it is also on par, feature for feature,
with similar products from IBM and Oracle. The SQLAnywhere product suite is crafted for small workgroups as well as embedded
and mobile applications.

More information on Sybase products can be found at http://www.sybase.com/products.

Microsoft SQL Server

Microsoft SQL Server picked up where Sybase left off at version 6, when Microsoft and Sybase broke their development ties,
although SQL Server has diverged quite a bit from Sybase’s products. SQL Server’s dependence on the Windows operating
system and Intel hardware as a host rule it out as a choice for enterprises that rely on Unix and non-Intel hardware for their base
infrastructure.

More information about Microsoft SQL Server can be found at http://www.microsoft.com/sqlserver.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Personal and Freeware Databases
The term personal may be interpreted two ways: by cost and by the size of the target end-user audience. What further muddies
the water are vendors from the “big list” in the previous section who have designed their products to run on anything from a cell
phone up to large network clusters. When you get down to the cell phone level, however, it’s a sure bet that there is some
powerful middleware in the mix, and a very thin client on the cell phone!

Two examples of personal database platforms are presented here. This list is not intended to be comprehensive, but to give an
overview of various approaches to solving the problems of an individual or a small workgroup that needs more than a spreadsheet
to manage corporate data.

Microsoft Access

Microsoft Access is not an easy product to categorize. It is part of the Microsoft Office suite for data management. This self-
contained database has powerful query facilities, yet lacks the recovery and robust multiple-user support that Oracle and SQL
Server have. It can link to any external database that has an ODBC-compliant driver under Windows, which makes it a good
cross-platform choice for the individual analyst or small workgroups that don’t need 24 x 7 availability or highly flexible recovery
options.

More information on Microsoft Access can be found at http://www.microsoft.com/office.

MySQL

MySQL is billed as “the world’s most popular open source database.” This product is free under the GNU General Public License
(GPL), with technical support being an added cost option. It runs under almost any operating system, including all flavors of Unix
and Windows. It is somewhat lacking in some of the features common to commercial databases, such as multiple CPU support,
stored procedures, transaction processing, graphical administration tools, and XML support. However, it is highly extensible and
customizable. Its lack of features is offset by its high performance and reliability.

More information about MySQL can be found at http://www.mysql.com/products/index.html.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page
numbers indicate illustrations.

Symbols
—, for comments, 78
!= comparison operator, 51, 73, 120
( ), and operator precedence, 75
**, NOT operator, 51
*,/ operator, 51
+ outer join operator, 107
+,- (unary), PRIOR operator, 51
. . . in syntax, 25
/* and */ comments, 78
< comparison operator, 51, 73, 120
<= comparison operator, 51, 73, 120
= comparison operator, 51, 73, 120
> comparison operator, 51, 73, 120
>= comparison operator, 51, 73, 120
[ ] in syntax, 25
{ } in syntax, 25
| (vertical bar)

in syntax, 25
HEADSEP and, 183

^= comparison operator, 73

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

A
abstraction, 9
Access

basics of, 330
ODBC and, 23, 23

aggregate operations, defined, 85
alert log files, 290–293, 291
aliases

column renaming and, 27
defined, 27
table aliases, 97

ALL_ data dictionary view, 212
ALL_IND_COLUMNS view, 214
ALL_INDEXES view, 214
ALL_OBJECTS view, 214–215
ALL_TAB_COLUMNS view, 213–214
ALL_TABLES view, 213
ALTER INDEX statement, 248, 249
ALTER statement, 37–38
AND operator

precedence, 51
WHERE clause and, 74–75

Apache, and hosting iSQL*Plus, 20
application design, and Oracle’s Tuning Methodology, 242
application tuning, SQL, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

ASC keyword, 84
associative tables, 7
attributes, assigning, 8
auditing

basics of, 234
object auditing, 236–237
statement auditing, 234–236

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

B
b-tree indexes, 244–246, 244
Backup Wizard, 285, 285
backups, 267–287

database failures, 268
DBA backup and recovery methods, 276–285

cold backups, 281
export and import, 276–281, 277
hot backups, 281–282
Log Miner, 282–284, 283–284
Recovery Manager (RMAN), 284–285, 285

user backup and recovery methods, 268–275
Export utility (EXP), 269–271
flashback query, 273–275
Import utility (IMP), 271–273

BETWEEN operator, and WHERE clause, 76–78
bitmap indexes, 246–247, 246
branch blocks, defined, 244, 244
BREAK command, 189–191
BTITLE command, 187–188
buffer cache

basics of, 163–164, 163
buffer cache advisories, 262–263

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

C
C language

OCI and, 24
Oracle and, 328

cardinality
b-tree indexes and, 245
bitmap indexes and, 246–247
defined, 245

Cartesian products, 114–115
case sensitivity, and passwords, 224
Change Password, 184
CHECK constraints, 144–146
closed backups, 281
COALESCE function, 129–130
Codd, Dr. E. F., 3, 328
code samples, OCI, 24
cold backups, 281
columns

formatting for reports, 188–189
multiple-column subqueries, 125–126
relational databases and, 4
SELECT statement and, 25–27, 26
updating, 30–31, 30–31
validating data in. See constraints

comments, defined, 78
COMMIT statements, 152–153, 153
comparison conditions, and WHERE clause, 72–74
comparison operators, 73, 120
components, 158–166

background processes, 165–166
logical storage structures, 158–160, 158
memory structures, 162–165, 163
physical storage structures, 160–162, 161

composite indexes, defined, 208
composite partitioning, 252
connection identifiers, 16, 16
constraints, 141, 142–151

basics of, 142
CHECK, 144–146
FOREIGN KEY, 149–151
naming, 144
NOT NULL, 142–143
PRIMARY KEY, 147–149
UNIQUE, 146–147

control files, 161, 162
conversion functions, built-in, 60–62
correlated subqueries, 123–124, 123
cost-based optimizer, 259
COUNT group function, 85–86
CREATE DIRECTORY command, 206
CREATE INDEX statement, 209, 247–248
CREATE MATERIALIZED VIEW command, 255
CREATE ROLE statement, 232
CREATE SEQUENCE statement, 217
CREATE statement, 35–37, 36
CREATE TABLE statement, 202, 203, 208, 234–236, 253
CREATE VIEW statement, 210, 211
CTAS (Create Table As Select), 203–205
CUBE operator, 135, 136–137

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

D
data, 71–93

group functions and, 85–91
basics of, 85–87
GROUP BY clause, 87–89
HAVING clause, 90–91
NVL and, 89

ORDER BY clause and, 83–84
@Index2:validating in columns. See constraints
Where clause and, 72–82

BETWEEN, 76–78
IN, 79–80
AND, OR, and NOT, 74–76
comparison conditions, 72–74
IS NULL and IS NOT NULL, 81–82
LIKE, 80–81
@Index1:Data Control Language (DCL), 40–41

GRANT statement, 40
REVOKE statement, 41

Data Definition Language (DDL), 34–39
ALTER statement, 37–38
CREATE statement, 35–37, 36
DROP statement, 38
RENAME statement, 38–39
TRUNCATE statement, 39

data design tuning, 251–255
materialized views and, 254–255
Oracle’s Tuning Methodology and, 242
partitioned tables and, 251–254

data dictionary views
basics of, 212–215
index information, 250–251

Data Manipulation Language (DML), 29–34
DELETE statement, 33, 33
INSERT statement, 32–33
MERGE statement, 34
UPDATE statement, 30–31, 30–31

data modeling, and relational databases, 6–9
database administrators. See DBAs
Database Configuration Assistant (DBCA)

basics of, 171–176, 171–176
tablespaces and, 159

database objects, 201–221
auditing, 236–237
backing up, RMAN, 284
indexes, creating, 208–210
object views, defined, 10
privileges, 229–231
sequences, creating, 217–218
synonyms, creating, 219
tables, creating, 202–210

Create Table As Select (CTAS), 203–205
external tables, 205–207
relational tables, 202–203
temporary tables, 208

views, 10, 210–217
data dictionary, 212–215
dynamic performance, 215–217
user-defined, 210–212

Database Writer (DBWn), 163, 165
databases, 1–11. See also Oracle database functions; Oracle database installation and creation

blocks, 160
buffer cache, 163, 163
duplicating, and RMAN, 285
failures, 268
history of Oracle, 328
object-relational databases, 9–10
platforms, 328–330

enterprise databases, 328–329

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


personal and freeware databases, 330
relational databases, 3–4

data modeling, 6–9
primary keys, datatypes and foreign keys, 5–6
tables, rows and columns, 4

spreadsheets vs., 2–3
datafiles, 161, 161
datatypes

abstract, 9
relational databases and, 5–6

date functions, built-in, 58–60
DBA_ data dictionary views, 212
DBA_IND_COLUMNS, 251
DBA_INDEXES data dictionary views, 250–251
DBAs

backup and recovery methods, 276–285
cold backups, 281
Export and Import utilities, 276–281, 277
hot backups, 281–282
Log Miner, 282–284, 283–284
Recovery Manager (RMAN), 284–285, 285

DBA privileges, listed, 228
DBCA (Database Configuration Assistant)

basics of, 171–176, 171–176
tablespaces and, 159

DBWn (Database Writer), 163, 165
DCL (Data Control Language), 40–41

GRANT statement, 40
REVOKE statement, 41

DDL. See Data Definition Language (DDL)
default tablespaces, assigning, 226–227
DELETE statement

DML and, 33, 33
vs. TRUNCATE statement, 39

DESCRIBE statement, 211
directories, defined, 206
dirty buffers, 163–164
disk and memory requirements, 171
DISTINCT keyword, 27–28, 86
DML. See Data Manipulation Language (DML)
DROP statement, 38
DUAL tables, 46–48, 47
dynamic performance views, 215–217

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

E
encapsulation, 10
entities

assigning attributes to, 8
defining, 7

equijoins, 96–103
defined, 96
join on, 101–102
join using, 100–101, 102–103
natural joins, 99–100
pre-Oracle9i, 97–99

ERA, 6
ESCAPE option, 81
Event Manager, OEM, 293–296, 293–295
events, creating, 293–295, 294–295
EXP. See Export utility (EXP)
Explain Plan tool, 257–258, 258
explicit conversion, defined, 55
Export utility (EXP)

DBAs and, 276–281, 277
users and, 269–271

expressions, and SELECT statement, 28–29
extents, 158, 159
external tables, creating, 205–207, 205

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

F
FALSE values, vs. NULL values, 82
FEEDBACK system variable, 184
fields

blank, 5–6
defined, 4

files. See also trace files
alert log files, 290–293, 291
control files, 161, 162
datafiles, 161, 161
locations for installation, 166–167, 167, 174, 174
redo log files, 161, 162

flashback query
basics of, 273–275
vs. Log Miner, 283

footers, formatting, 185–188
FOREIGN KEY constraints, 149–151, 151
foreign keys, 5–6
free buffers, 164
full outer joins, 107–108, 110–111
function-based indexes, 245
functions

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

defined, 52
group functions, 85–91

basics of, 85–87
GROUP BY clause, 87–89
HAVING clause, 90–91
NVL and, 89

stored functions, defined, 65, 67
user-defined functions, 65–67

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

G
GRANT statement

DCL and, 40
privileges and, 229, 230

GROUP BY clause, 87–89

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

H
hash partitioning, 252
HAVING clause, 90–91
headers, formatting, 185–188
heading separators, defined, 189
HEADING system variable, 183
HEADSEP system variable, 183
hierarchical databases, 3
hierarchical tables, defined, 111
hints, 260–261
host strings, 16, 16
hot backups, 281–282

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

I
I/O, and Oracle’s Tuning Methodology, 242
IBM DB2/UDB, 329
identifiers for accounts, 224
IMP. See Import utility (IMP)
implicit conversion, defined, 55
Import utility (IMP)

DBAs and, 276–281, 277
users and, 271–273

IMS, 3
IN operator

Import utility (IMP) and, 79–80
WHERE clause and, 76, 120

incremental backups, RMAN, 284
index-organized tables (IOTs), 246
indexes, 243–251

creating, dropping and maintaining, 208–210, 247–248
data dictionary index information, 250–251
defined, 208
monitoring, 248–250
types of, 244–247, 244, 246
when to create, 243

inheritance, 10
INITCAP function, 53, 54
inner joins, and INTERSECT operator, 132
INSERT statement, 32–33
instances

creating, 171–172, 171–172
defined, 158
failures of, 268
naming, 172, 172–173
OEM and, 176, 176

interface options for reporting, 180–181, 181
INTERSECT set operator, 130–132
intersection tables, 7
IOTs (index-organized tables), 246
IS NULL and IS NOT NULL, 81–82
iSQL*Plus

basics of, 18–20, 19–20
configuration for reporting, 180–184, 180

Change Password, 184
interface options, 180–181, 181
system variables, 182–184, 182

vs. SQL*Plus, 19–20, 19–20
italics in syntax, 24

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

J
JDBC (Java Database Connectivity), 24
joins, 95–117

basics of, 96
Cartesian products, 114–115
defined, 96
equijoins, 96–103

join on, 101–102
join using, 100–101, 102–103
natural joins, 99–100
pre-Oracle9i, 97–99

non-equijoins, 103–105
outer joins, 105–111

full outer joins, 110–111
left outer joins, 109
pre-Oracle9i, 105–108
right outer joins, 110

self-joins, 111–113
Oracle9i, 113
pre-Oracle9i, 112–113

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

K
keywords

ASC keyword, 84
DISTINCT keyword, 27–28, 86
most common, listed

EXP, 270
IMP, 271

NULL keyword, 32
TABLES keyword, 269, 270
UNION keyword, 126

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

L
leaf blocks, defined, 244, 244
least recently used (LRU) algorithm, 164
left outer joins, 109
LGWR. See Log Writer (LGWR)
Like operator, and WHERE clause, 76, 80–81
LINESIZE system variable, 183
list partitioning, 252
Log Miner, 282–284, 283–284
Log Writer (LGWR), 163, 165–166
logical consistency, 141–155

constraints, 141, 142–151
basics of, 142
CHECK, 144–146
FOREIGN KEY, 149–151
NOT NULL, 142–143
PRIMARY KEY, 147–149
UNIQUE, 146–147

transaction processing, 151–154
COMMIT statement, 152–153, 153
ROLLBACK statement, 153–154
SAVEPOINT statement, 154

logical storage structures, 158–160, 158, 161
LRU (least recently used) algorithm, 164

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

M
many-to-many relationships, 8
materialized views, and data design tuning, 254–255
media failures, 268
memory

allocation, 242
Oracle memory structures, 161, 162–165, 163
Oracle requirements, 171
tuning, 261–263, 261

MERGE statement, 34
Metalink Web site, 301
methods, defined, 10
Microsoft Access

basics of, 330
ODBC and, 23, 23

Microsoft SQL Server
basics of, 329
vs. Oracle database platforms, 328

Microsoft Windows, and running SQL*Plus, 15
MINUS set operator, 132–134
multiple-column subqueries, 125–126
multiple-row subqueries, 121–123
MySQL, 330

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

N
natural joins, 99–100
network databases, 3
non-equijoins, 103–105
nonmedia failures, 268
nonunique indexes, 209, 245
NOT NULL constraints, 142–143
NOT operator, and WHERE clause, 76
NULL keyword, 32
NULL values

defined, 32
vs. FALSE values, 82
group functions and, 85, 86, 89
queries and, 48

numeric functions
built-in, 55–58
numeric formatting, 61–62

numeric literals, 50
NVL, 89

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

O
object-relational databases, 9–10
objects. See database objects
OCI (Oracle Call Interface), 24
ODBC. See Open Database Connectivity (ODBC)
OEM. See Oracle Enterprise Manager (OEM)
one-to-many relationships, 7–8
one-to-one relationships, 8
open backups, 281–282
Open Database Connectivity (ODBC)

basics of, 22–24, 23
ODBC drivers, defined, 23

operators. See also specific operators
comparison operators, listed, 73
operator precedence, 50–51
set operators, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

optimizers, Oracle, 258–261
OR operator

IN operator and, 79
precedence, 51
WHERE clause and, 75

Oracle Call Interface (OCI), 24
Oracle database account identifiers, 224
Oracle database functions

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

queries, 46–51
concatenating strings and, 49–50
DUAL tables and, 46–48, 47
NULL values and, 48
numeric literals and, 50
operator precedence and, 50–51
string literals and, 49–50

user-defined functions, 65–67
Oracle database installation and creation, 157–177

components, 158–166
background processes, 165–166
logical storage structures, 158–160, 158
Oracle memory structures, 162–165, 163
physical storage structures, 160–162, 161

database creation, 171–176
DBCA, 171–176, 171–176
disk and memory requirements, 171

database, defined, 158
software installation, 166–170

OEM, 169–170, 170
OUI, 166–169, 167–169

Oracle databases. See also databases
history of, 328
Oracle blocks, 160
vs. other database platforms, 328–329

Oracle Enterprise Manager (OEM)
defined, 21, 166
Event Manager, 293–296, 293–295
installing Oracle, 169–170, 170
SQL*Plus Worksheet and, 21, 21

Oracle Home, 166
Oracle optimizer, 258–261
Oracle Universal Installer (OUI), 166–169, 167–169

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Oracle’s Tuning Methodology, 242–243
ORDER BY clause, 83–84
OUI. See Oracle Universal Installer (OUI)
outer join operator +, 107
outer joins, 105–111

defined, 105
full outer joins, 107–108, 110–111
left outer joins, 109
pre-Oracle9i, 105–108
right outer joins, 110

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

P
PAGESIZE system variable, 183
parameters. See predefined resource parameters
parentheses ( ), and operator precedence, 75
partitioned tables, 251–254
passwords

assigning, 224–225
Change Password, 184

pattern matching, defined, 80
performance, optimizing, 241–265

data design tuning, 251–255
materialized views, 254–255
partitioned tables, 251–254

indexes and, 243–251
creating, dropping and maintaining, 247–248
data dictionary index information, 250–251
monitoring, 248–250
types of, 244–247, 244, 246
when to create, 243

memory tuning, 261–263, 261
Oracle’s Tuning Methodology, 242–243
SQL application tuning, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

personal databases, defined, 330
PFILEs, 261–262
PGA (Program Global Area), 163, 164
physical storage structures, 158, 161

basics of, 160–162
Oracle’s Tuning Methodology and, 242

pinned buffers, 164
predefined resource parameters, 225
PRIMARY KEY constraints, 147–149
primary keys, 5–6
private synonyms, 219
privileges, 227–234

DBA privileges, 228
DCL for handling, 40–41
object privileges, 229–231
roles, 232–234, 232
system privileges, 228–229

processes
defined, 163, 165
process failures, 268

profiles, creating and assigning, 225–226
Program Global Area (PGA), 163, 164
public synonyms, 219

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

Q
queries, 46–51

concatenating strings and, 49–50
DUAL tables and, 46–48, 47
multiple vs. CUBE and ROLLUP and, 135
NULL values and, 48
numeric literals and, 50
operator precedence and, 50–51
string literals and, 49–50

queries, advanced SQL, 119–139
CUBE, 135, 136–137
ROLLUP, 134–136
set operators, 126–130, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

subqueries, 120–126
correlated, 123–124
multiple-column, 125–126
multiple-row, 121–123
single-row, 120–121

quotas, defined, 227

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

R
range partitioning, 252
read consistency, 151
Recovery Manager (RMAN), 284–285, 285
redo log buffer, 163, 164
redo log files, 161, 162
referential integrity, 6
relational databases

basics of, 3–4
data modeling, 6–9
primary keys, datatypes and foreign keys, 5–6
tables, rows and columns, 4

relational tables, 202–203
relations, defined, 4
relationships, defined, 4
RENAME statement, 38–39
reporting techniques, 179–199

formatting, 184–192
basics of, 184–185
BREAK processing, 189–191
column formatting, 188–189
headers and footers, 185–188
totals, 191–192

iSQL*Plus configuration, 180–184, 180
Change Password, 184
interface options, 180–181, 181
system variables, 182–184, 182

scripts, 195–198, 196–197
substitution variables, 192–195, 193–194

resource contention, and Oracle’s Tuning Methodology, 242
resource parameters, 225
reverse key indexes, 245
review questions and answers

advanced SQL queries, 138–139, 307–308
backups, 286–287, 312–313
data, restricting, sorting and grouping, 92–93, 306
database basics, 11, 304
database creation, 177, 309
database functions, 68–69, 305–306
database objects, 220–221, 310–311
joins, 116–117
logical consistency, 155, 308
multiple tables, using, 116–117, 307
performance optimizing, 264–265, 312
reporting, 198–199, 309–310
SQL*Plus and iSQL*Plus, 42–43, 304–305
troubleshooting, 302, 313
users and security, 238–239, 311

REVOKE statement
DCL and, 41
privileges and, 230

right outer joins, 110
RMAN (Recovery Manager), 284–285, 285
roles

creating and assigning, 232–234, 232
defined, 40, 232

ROLLBACK statements, 153–154
ROLLUP operator, 134–136
ROWIDs, 244–245
rows

DELETE statement and, 33, 33
INSERT statement and, 32–33
relational databases and, 4
removing duplicate, 27–28
subqueries and

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


multiple-row subqueries, 121–123
single-row subqueries, 120–121

TRUNCATE statement and, 39
UPDATE statement and, 30–31, 30–31

rule-based optimizer, 258–259

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

S
SAVEPOINT statements, 152, 154
schema, defined, 35, 160
scripts

defined, 180
reporting and, 195–198, 196–197

security, 223–239
auditing, 234–237

object auditing, 236–237
statement auditing, 234–236

Change Password and, 184
creating user accounts and, 224–227

assigning passwords, 224–225
default tablespaces and quotas, 226–227, 227
profiles, 225–226

privileges, 227–234
object privileges, 229–231
roles, 232–234, 232
system privileges, 228–229

segments, 158, 159
SELECT clause, vs. WHERE clause, 72
SELECT statement, 25–29

column renaming and, 27
column specification and, 25–27, 26
duplicate removal and, 27–28
expressions and, 28–29
retrieval of rows and, 17–18, 18
user-defined views and, 211–212

self-joins, 111–113
sequences, creating, 217–218
set operators, 126–130, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

SGA (System Global Area), 163, 163
shared pool, defined, 67, 164
SIDs (system identifiers), defined, 172
single-row subqueries, 120–121
SMON (System Monitor), 163, 166
Software Code Area, 165
software, installing Oracle, 166–170

OEM and, 169–170, 170
OUI and, 166–169, 167–169

SPFILEs, 262
spreadsheets vs. databases, 2–3
SQL. See Structured Query Language (SQL)
SQL Server

basics of, 329
vs. Oracle database platforms, 328

SQL*Plus
basics of, 15–18, 16–17
vs. iSQL*Plus, 19–20
system variables, defined, 182

SQL*Plus Worksheet
basics of, 21, 21
system variables, defined, 182

statements
auditing, 234–236
failures of, 268

statistics, and cost-based optimizer, 259–260
storage

logical storage structures, 158–160, 158
physical storage structures, 160–162, 161

stored functions, defined, 65, 67

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strings
concatenating, 49–50
string functions, built-in, 52–55
string literals, 49–50

Structured Query Language (SQL), 4, 13–43
application tuning, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

DCL, 40–41
GRANT statement, 40
REVOKE statement, 41

DDL, 34–39
ALTER statement, 37–38
CREATE statement, 35–37, 36
DROP statement, 38
RENAME statement, 38–39
TRUNCATE statement, 39

defined, 14
DML, 29–34

DELETE statement, 33, 33
INSERT statement, 32–33
MERGE statement, 34
UPDATE statement, 30–31, 30–31

SELECT statement, 25–29
column renaming, 27
column specification, 25–27, 26
duplicate removal, 27–28
expressions, 28–29

tools for running, 14–24
iSQL*Plus, 18–20, 19–20
OCI, 24
ODBC/JDBC, 22–24, 23
SQL*Plus, 15–18, 16–17
SQL*Plus Worksheet, 21, 21
third-party tools, 21

subqueries, 120–126
correlated, 123–124
multiple-column, 125–126
multiple-row, 121–123
single-row, 120–121

substitution variables, and reporting, 192–195, 193–194
summary operations, and report formatting, 191–192
Sybase’s Adaptive Server Enterprise, 329
synonyms

creating, 219
for data dictionary views, 215

syntax
for CTAS, 203
italics in, 24
uppercase in, 24

System Global Area (SGA), 163, 163
system identifiers (SIDs), defined, 172
System Monitor (SMON), 163, 166
system privileges, 228–229
system trace files, 296–297, 297
system variables, and reporting, 182–184

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

T
tables. See also columns; rows

creating, 202–210
CREATE statement and, 35–37, 36
Create Table As Select (CTAS), 203–205
CREATE TABLE statement and, 202, 203, 208, 234–236, 253
external tables, 205–207, 205
relational tables, 202–203
temporary tables, 208

data integrity between parent and child tables. See FOREIGN KEY constraints
DUAL tables, 46–48, 47
eliminating, with DROP statement, 38
relational databases and, 4
renaming, with RENAME statement, 38–39
using multiple. See joins

TABLES keyword, 269, 270
tablespaces

basics of, 158, 159, 161
checking, 170, 170
transportable, 276–280, 277

Technet Web site, 301
temporary tables, creating, 208
thin clients, defined, 18
tiers, 14
TKPROF, 300–301, 301
TOAD. See Tool for Oracle Application Developers (TOAD)
TO_CHAR numeric formatting, 62
Tool for Oracle Application Developers (TOAD), 22, 22
Top SQL tool, 256–257, 256–257
totals, and report formatting, 191–192
trace files

system trace files, 296–297, 297
user trace files, 297–301

converting trace files, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

transaction processing, 151–154
COMMIT statement and, 152–153, 153
read consistency, defined, 151
ROLLBACK statement and, 153–154
SAVEPOINT statement and, 154
transactions, defined, 151

transportable tablespaces, 276–280, 277
troubleshooting, 289–302

alert log files and, 290–293, 291
OEM’s Event Manager and, 293–296, 293–295
system trace files and, 296–297, 297
user trace files and, 297–301

converting, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

TRUNCATE statement, 39
TTITLE command, 186–187

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

U
underlying platform, and Oracle’s Tuning Methodology, 243
UNION ALL set operator, 126–130
UNION keyword, 126
UNION set operator, 126–130
UNIQUE constraints, 146–147
unique indexes, 209, 245
UNKNOWN values, 82
UPDATE statement, 30–31, 30–31
uppercase in syntax, 24
user accounts, creating, 224–227

assigning passwords and, 224–225
default tablespaces and quotas and, 226–227, 227
profiles and, 225–226

USER_ data dictionary views, 212
user-defined functions, 65–67
user-defined views, 210–212
user trace files, 297–301

converting, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

username, defined, 224
users

backup and recovery methods for, 268–275
Export utility (EXP), 269–271
flashback query, 273–275
Import utility (IMP), 271–273

object privileges, 229–231
user errors, 268
user privileges, 228

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

V
views, 210–217

data dictionary, 212–215
dynamic performance, 215–217
user-defined, 210–212

V$INSTANCE, 216–217
V$OBJECT_USAGE clause, 249–250
V$SESSION, 216

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

W
Web sites

for data modeling tools, 7
IBM DB2/UDB, 329
Microsoft Access information, 330
Microsoft SQL Server information, 329
MySQL information, 330
Oracle information, 329
Sybase products, 329
for troubleshooting assistance with Metalink, 301
for troubleshooting assistance with Technet, 301

WebSphere, 329
WHERE clause, 72–82, 72

BETWEEN operator and, 76–78
IN operator and, 79–80
AND, OR, and NOT operators and, 74–76
comparison conditions and, 72–74
IS NULL and IS NOT NULL and, 81–82
LIKE operator and, 80–81

wildcard characters, and LIKE operator, 80
Windows, and running SQL*Plus, 15
wizards. See Backup Wizard

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Where Can I Find?
Aggregating data Chapter 4

Alert log file Chapter 14

Application tuning Chapter 12

Auditing Chapter 11

Backups Chapter 13

Built-in functions Chapter 3

Cartesian products Chapter 5

Configuring iSQL*Plus Chapter 9

Constraints Chapter 7

Correlated subqueries Chapter 6

Creating a database Chapter 8

Creating external tables Chapter 10

Creating relational tables Chapter 10

CUBE operator Chapter 6

Data dictionary views Chapter 10

Data modeling Chapter 1

Database failure types Chapter 13

DCL commands Chapter 2

DDL commands Chapter 2

Disk and memory structures Chapter 8

DML commands Chapter 2

Dynamic performance views Chapter 10

Equijoins Chapter 5

Export utility Chapter 13

Flashback queries Chapter 13

Formatting reports Chapter 9

Functions Chapter 3

Granting privileges Chapter 11

GROUP BY clause Chapter 4

Grouping functions Chapter 4

HAVING clause Chapter 4

Import utility Chapter 13

Indexes Chapters 10 and 12

Inner joins Chapter 5

Installing Oracle software Chapter 8

INTERSECT operator Chapter 6

iSQL*Plus Chapter 2

Log Miner Chapter 13

Materialized views Chapter 12

Memory tuning Chapter 12

MINUS operator Chapter 6

Monitoring events Chapter 14

Multiple-column subqueries Chapter 6

Non-equijoins Chapter 5

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object privileges Chapter 11

Optimizer modes Chapter 12

Oracle Enterprise Manager Chapter 8

ORDER BY clause Chapter 4

Outer joins Chapter 5

Partitioned tables Chapter 12

Performance tuning Chapter 12

Privileges Chapter 11

Profiles Chapter 11

Query operators Chapter 3

Recovery Manager Chapter 13

Revoking privileges Chapter 11

Roles Chapter 11

ROLLUP operator Chapter 6

Scripts Chapter 9

SELECT statements Chapter 2

Self-joins Chapter 5

Sequences Chapter 10

Set operators Chapter 6

Sorting rows Chapter 4

SQL*Plus Chapter 2

SQL99 standard Chapter 5

Subqueries Chapter 6

Substitution variables Chapter 9

Synonyms Chapter 10

System privileges Chapter 11

System trace files Chapter 14

Transaction processing Chapter 7

UNION operator Chapter 6

User accounts Chapter 11

User trace files Chapter 14

User-defined functions Chapter 3

Views Chapter 10

WHERE clause Chapter 4

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

List of Tables

Chapter 3: Oracle Database Functions
Table 3.1: Standard and Conditional Operators and Precedence

Table 3.2: Built-in String Functions

Table 3.3: Built-in Numeric Functions

Table 3.4: Built-in Date Functions

Table 3.5: Built-in Conversion Functions

Table 3.6: Numeric Format Examples Using TO_CHAR

Table 3.7: Built-in General Functions

Chapter 4: Restricting, Sorting, and Grouping Data
Table 4.1: Comparison Operators

Table 4.2: Common Group Functions

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


List of Sidebars

Chapter 1: Relational Database Concepts
Hierarchical and Network Databases

Chapter 10: Creating and Maintaining Database Objects
Data Dictionary View Shorthand

Chapter 12: Making Things Run Fast (Enough)
The Pseudo-column ROWID

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Back Cover
Oracle9i DBA JumpStart gives you the solid grounding you need to approach Oracle certification with
confidence:

Introduction to relational database concepts

Using basic SQL *Plus and iSQL *Plus commands

Understanding Oracle database functions

Using multiple tables

Restricting, sorting, and grouping data

Creating and maintaining a database

Using SQL *Plus reporting techniques

Setting up users and managing security

Configuring optimization

Creating backups

Troubleshooting

About the Author

Bob Bryla, is an Oracle9i Certified Professional with more than ten years of experience in database design,
database application development, training, and database administration. He is currently an internet
database analyst and DBA at Land’s End, Inc. in Dodgeville, Wisconsin.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Oracle9i DBA JumpStart
Bob Bryla

Associate Publisher: Neil Edde

Acquisitions Editor: Elizabeth Hurley Peterson

Developmental Editor: Heather O’Connor

Production Editor: Leslie E.H. Light

Technical Editor: Betty MacEwen

Copyeditor: Marilyn Smith

Compositor: Kate Reber, Happenstance Type-O-Rama

Graphic Illustrator: Jeffery Wilson, Happenstance Type-O-Rama

Proofreaders: Nancy Riddiough, Monique Van Den Berg, and Emily Hsuan

Indexer: Ann Rogers

Book Designer: Maureen Forys, Happenstance Type-O-Rama

Cover Designer: Archer Design

Cover Illustrator/Photographer: Archer Design

Copyright ©2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2002115476

ISBN: 0-7821-4189-7

JumpStart is a trademark of SYBEX Inc.

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved. FullShot is a
trademark of Inbit Incorporated.

Internet screen shot(s) using Microsoft Internet Explorer 6 reprinted by permission from Microsoft Corporation.

SYBEX is an independent entity from Oracle Corporation and is not affiliated with Oracle Corporation in any manner. This
publication may be used in assisting students to prepare for an Oracle Certified Professional exam. Neither Oracle Corporation
nor SYBEX warrants that use of this publication will ensure passing the relevant exam. Oracle is either a registered trademark or a
trademark of Oracle Corporation in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s).
The author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any
particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

For MCL and the kids.

Acknowledgments

I couldn’t have written this book without the help of many talented and creative people.

I would like to thank Neil Edde, associate publisher, and Elizabeth Hurley, acquisitions editor, for recognizing the need for an
introductory Oracle DBA text. Many thanks to developmental editor Heather O’Connor for telling me in the nicest possible way
when I was way out in left field, and production editor Leslie Light and copyeditor Marilyn Smith for their valuable advice. Thanks
also to technical editor Betty MacEwen for her attention to detail and helpful suggestions throughout the book.

The nature of this book required a great deal of artwork. Jeffery Wilson and the rest of Happenstance Type-O-Rama did an
excellent job of creating artwork that was appropriate for the book. They say a picture is worth a thousand words, and their art is
an essential part of this book. Somehow they were able to decipher my Microsoft Word cave drawings and turn them into real
graphics.

Many of my professional colleagues at both Lands’ End and Greenbrier & Russel were a source of both inspiration and guidance.
Also, regards to my long lost friend from fourth grade, Janice, who I’m sure is a DBA out there somewhere.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Finally, I want to thank my family for all of their support and patience. I was still able to give the kids a bath and read books at
bedtime, even with the tough deadlines. The journey wouldn’t have been half the fun without them.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Introduction
So, you want to be an Oracle database administrator (DBA), but you’re not sure what the job might be like? Well, this is a good
place to start! This book is intended to bridge the gap for people who are technically oriented but are not quite ready for an Oracle
Certified Associate or Oracle Certified Professional study guide. If you don’t have a lot of direct experience with databases, this
book can get you up to speed on enough of the basics to feel comfortable going into Oracle’s official certification track.

What You Need
Oracle9i DBA JumpStart assumes some minimal level of expertise in using an operating system such as Windows or Unix in a
graphical user interface (GUI) environment. Any experience with a personal database, such as Microsoft Access, is helpful but not
required.

To follow along with the examples in the book, you will need an installation of the Oracle database software version 9.0 or 9.2,
Standard or Enterprise Edition, including the sample schemas provided by Oracle in the installation package, preferably on a
Microsoft Windows platform.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

What This Book Covers
This book provides all the information you need to understand the job of an Oracle DBA. It is organized as follows:

Chapter 1, “Relational Database Concepts” Covers the basics of relational database technology. It defines terms such as
tables, rows, and columns, and it provides an introduction to database design.

Chapter 2, “SQL*Plus and iSQL*Plus Basics” Introduces the various ways to send SQL commands to the database. It explains
the tools available for issuing SQL commands and how to interact with the database.

Chapter 3, “Oracle Database Functions” Focuses on Oracle functions, both built-in and user defined, and how they can make
an application developer’s or DBA’s job easier.

Chapter 4, “Restricting, Sorting, and Grouping Data” Describes how to manage queries by restricting and sorting their results.

Chapter 5, “Using Multiple Tables” Moves from accessing single tables to joining multiple tables in a multitude of ways, with
both the old and new join syntax.

Chapter 6, “Advanced SQL Queries” Covers some of the more advanced functions and explains how to nest a query within
another query to retrieve the results you want.

Chapter 7, “Logical Consistency” Describes how to make sure that the rows entered into the database tables are accurate and
consistent with data in other tables in the database. This chapter discusses how you can validate the data before it is inserted into
a row of a table.

Chapter 8, “Installing Oracle and Creating a Database” Shows you how to install the database software on the server and
create a database using Oracle’s GUI-based tools.

Chapter 9, “Reporting Techniques” Investigates techniques for making reports easier to understand and manage.

Chapter 10, “Creating and Maintaining Database Objects” Explores the different ways to create tables, indexes, views,
sequences, and synonyms. It also describes how to use data dictionary views and dynamic performance views.

Chapter 11, “Users and Security” Focuses on how to prevent unauthorized or unintentional actions in the database. It covers
how to create user accounts, grant and revoke privileges, and keep tabs on who is accessing what kind of object and when.

Chapter 12, “Making Things Run Fast (Enough)” Explores techniques for tuning the database so it will respond to queries as
quickly as possible. This chapter covers how the Oracle optimizer works and how you can use indexes judiciously to make queries
run in a reasonable amount of time.

Chapter 13, “Saving Your Stuff (Backups)” Describes how, by using the right combination of backup and recovery techniques,
the DBA can minimize or even eliminate the possibility of losing any committed data in the database.

Chapter 14, “Troubleshooting” Reviews some of the places to look for error messages, along with some general
troubleshooting techniques.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Understanding Oracle Certification
Why become Oracle certified? The main benefits are that you will have much greater earnings potential and that the Oracle
certification program carries high industry recognition. Certification can be your key to a higher salary, a new job, or both. Once
you make it through this book, you’re ready to prepare for a certification program.

Oracle offers a number of ways to prove your knowledge of Oracle’s core products through three levels of certification. For each
Oracle certification, Sybex offers a solution that can help you pass the exams.

Oracle Certified Associate (OCA) OCA candidates must pass two exams: Introduction to Oracle9i: SQL (1Z0-007) and Oracle9i
Database: Fundamentals I (1Z0-031). The first exam is administered via the Internet or at an authorized Oracle testing center, and
the second one is administered at an authorized Oracle testing center. The OCA candidate may take the exam Introduction to
Oracle: SQL and PL/ SQL (1Z0-001) instead of 1Z0-007, but this exam is only available at an authorized Oracle testing center. To
help you obtain the OCA, Sybex provides the following:

OCA/OCP: Introduction to Oracle9i SQL Study Guide (exam 1Z0-007: Introduction to Oracle9i SQL)

OCA/OCP: Oracle9i DBA Fundamentals I Study Guide (exam 1Z0-031: Oracle9i Database: Fundamentals I)

Oracle Certified Professional (OCP) The Professional level of certification builds on the OCA certification, challenging
candidates to pass two additional exams at an Oracle authorized testing center. The first exam is Oracle9i Database:
Fundamentals II (1Z0-032), and the second is Oracle9i Database: Performance Tuning (1Z0-033). Candidates for the OCP must
also complete an Oracle University course in order to obtain the OCP credential. To help you obtain your OCP, Sybex offers the
following:

OCP: Oracle9i DBA Fundamentals II Study Guide (exam 1Z0-032: Oracle9i Database: Fundamentals II)

OCP: Oracle9i DBA Performance Tuning Study Guide (exam 1Z0-033: Oracle9i Database: Performance Tuning)

Oracle Certified Master (OCM) OCM is Oracle’s most prestigious and challenging certification. To obtain this certification, you
must be an OCP, take two advanced Oracle Education classroom courses, and complete a hands-on, two-day practicum exam at
one of several Oracle University education facilities around the world.

The certification path you choose depends on your area of expertise and your career goals. The latest information on Oracle’s
certification programs can be found at www.oracle.com/education/certification.

Note For more information about the Oracle Study Guides published by Sybex, visit www.sybex.com.

Tips for Taking the OCA/OCP Exams

All of the Oracle exams are divided into two categories: the “easy” questions and the “hard” questions. The candidate will be
required to answer correctly a minimum number of questions in each group to pass the exam.

Each exam has approximately 60 to 90 questions and must be completed in 90 minutes. It’s okay to go back to previous
questions, so answer the questions you know right away and return to the harder ones later, so you don’t run out of time.

There is no negative scoring, so there is no benefit to leaving a question unanswered. Eliminate the obviously wrong answers first,
and if you’re left with just two possible correct answers, your odds of selecting the correct answer are much greater than randomly
choosing between four or five answers. Sometimes, other questions in the exam have information that allow you to eliminate
wrong answers in the question you’re working on.

Scheduling and Taking an Exam

Once you’ve prepared for and are ready to start pursuing Oracle9i certification, you’ll need to sign yourself up to take the proper
exams.

You take the Introduction to Oracle9i SQL exam (1Z0-007) via the Internet. The cost is $90, and you can either pay online or
obtain a voucher from Oracle by mail and specify the voucher number when registering for this exam. To take the exam, a 56Kbps
modem or broadband connection is highly recommended. Your web browser also needs to be up to date; Internet Explorer 5.0 or
Netscape 4.x are the minimum requirements.

Once you think you are ready to take one of the other exams, call Sylvan Prometric Testing Centers at (800) 891-EXAM (891-
3926) or visit www.prometric.com to find the closest testing center and schedule the exam. Before you call, get out your credit
card because each exam costs $125.

You can schedule the exam for a time that is convenient for you. The exams are downloaded to the testing center. You show up
at your scheduled time and take the exam on a computer.

After you complete the exam, you will know right away whether you have passed. At the end of the exam, you will receive a score
report. It will list the areas that you were tested on and how you performed. If you pass the exam, you don’t need to do anything
else—Prometric sends the test results to Oracle. If you don’t pass, it’s another $125 to schedule the exam again, and you must
wait 30 days before retaking the exam. But at least you will know from the score report where you did poorly, so you can study
that particular information more carefully.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Making the Most of This Book
At the beginning of each chapter of Oracle9i DBA JumpStart, you’ll find a list of topics that you can expect to learn about within
that chapter.

To help you absorb new material easily, I’ve highlighted important terms and defined them in the margins of the pages. You’ll
also find three kinds of notes with supplementary material:

Note Notes provide extra information and references to related information.

Tip Tips are insights that help you perform tasks more easily and effectively.

Warning Warnings let you know about things you should do—or shouldn’t do—as you learn more about what an Oracle
DBA’s job is like.

At the end of each chapter, you can test your knowledge of the topics covered by answering the chapter’s review questions. You’ll
find the answers to the review questions in Appendix A. Appendix B is a glossary of all the terms that have been introduced
throughout the book. Appendix C contains a brief overview of other database platforms and how they might fit into an enterprise’s
database infrastructure.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

About the Author
Bob Bryla is an Oracle9i certified professional with more than ten years of database design, database application development,
and database administration experience in a variety of fields. He is currently an Internet database analyst and DBA at Lands’ End,
Inc., in Dodgeville, Wisconsin. Bob can be contacted by e-mail at rjbryla@centurytel.net.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 1: Relational Database Concepts
Every organization has data that needs to be collected, managed, and analyzed. A relational database fulfills these needs. Along
with the powerful features of a relational database come requirements for developing and maintaining the database. Data
analysts, database designers, and database administrators (DBAs) need to be able to translate the data in a database into useful
information for both day-to-day operations and long-term planning.

Relational databases can be a bit intimidating at first, even if you’re a specialist in some other informational technology area, such
as networking, web development, or programming. This chapter will give you a good overview of current relational and object-
relational database concepts. It begins by comparing a database with another tool that most everyone has used—a spreadsheet
(also known as the “poor man’s” database). Then you’ll learn about the basic components of a relational database, the data
modeling process, and object-relational database features.

Are Spreadsheets Like Databases?
Most people are familiar with some kind of spreadsheet, such as Microsoft Excel. Spreadsheets are easy and convenient to use,
and they may be employed by an individual much like a database is used in the enterprise. Let’s look at the features of
spreadsheets to see how good of a database tool they actually are.

Similar to databases, spreadsheets are commonly used to store information in a tabular format. A spreadsheet can store data in
rows and columns, it can link cells on one sheet to those on another sheet, and it can force data to be entered in a specific cell in
a specific format. It’s easy to calculate formulas from groups of cells on the spreadsheet, create charts, and work with data in
other ways. But there are many ways in which a spreadsheet is not like a traditional database table:

Spreadsheet Database

More than one datatype can be stored in a spreadsheet
column.

Usually, only one datatype can be stored in a database
table column.

Cells in a spreadsheet can be defined as a formula, making
the contents variable depending on other cells.

Columns in a database table have a fixed value.

A spreadsheet has only the physical row number to make it
unique, and no built-in way to enforce uniqueness of a
given spreadsheet row.

Single rows of a database table are uniquely identified by a
unique value (typically a primary key, as described later in
this chapter).

Usually, only one user can have write access to the
spreadsheet at any given time; anyone else is locked out,
even if the second user is on a different part of the
spreadsheet.

Multiple users can access a database table at the same
time, with various combinations of read and write
capabilities in different parts of the database.

A spreadsheet does not have any built-in transaction-
control capabilities, such as ensuring that a group of
changes to the sheet is completely applied or not applied at
all. The Save button is about the best a spreadsheet can
do to simulate transaction control.

A database usually has transaction-control capabilities,
making it possible to “roll back” a change if something
happened to prevent it from completing successfully (such
as a power failure).

A corrupt spreadsheet cannot usually be repaired; the
entire spreadsheet must be restored from a backup, which
may have occurred yesterday, last week, or never!

There are many tools for repairing and recovering
databases.

This is not to say that a spreadsheet isn’t a valuable tool in the enterprise for ad-hoc and “what-if” analyses. Furthermore, most
spreadsheet products have some way to connect to an external database as the data source for analysis.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Relational Databases
The relational model is the basis for any relational database management system (RDBMS). A relational model has three core
components: a collection of objects or relations, operators that act on the objects or relations, and data integrity methods. In other
words, it has a place to store the data, a way to create and retrieve the data, and a way to make sure that the data is logically
consistent.

Hierarchical and Network Databases

The relational model was first proposed by Dr. E. F. Codd in 1970. At that time, databases were primarily either of the
hierarchical or network type.

A hierarchical database is similar in nature to a filesystem, with a root or parent node and one or more children referencing
the parent. This makes for a very fast data-access path, but it has the disadvantages of low flexibility, lack of an ad-hoc
query capability, and high application maintenance.

A network database has some advantages over the hierarchical model, including a data definition language, a data
manipulation language, and data integrity. However, like hierarchical databases, network databases suffer from rigidity in
database structure and high application maintenance costs.

Hierarchical and network-based databases are still used for extremely high-volume transaction-processing systems. IBM
claims that 95% of the Fortune 1000 companies in the world still use IMS, a hierarchical database management system that
is also web-enabled.

A relational database uses relations, or two-dimensional tables, to store the information needed to support a business. Let’s go
over the basic components of a traditional relational database system and look at how a relational database is designed. Once
you have a solid understanding of what rows, columns, tables, and relationships are, you’ll be well on your way to leveraging the
power of a relational database.

relational database

A collection of tables that stores data without any assumptions as to how the data is related within the tables or
between the tables.

Note While this book focuses on the Oracle RDBMS for all of its examples and techniques, it’s good to know how Oracle fits
in with other database vendors and platforms. Appendix C, “Common Database Platforms,” has an overview of the
major RDBMS vendors and their products.

Tables, Rows, and Columns

A table in a relational database, alternatively known as a relation, is a two-dimensional structure used to hold related information.
A database consists of one or more related tables.

table

The basic construct of a relational database that contains rows and columns of related data.

relation

A two-dimensional structure used to hold related information, also known as a table.

Note Don’t confuse a relation with relationships. A relation is essentially a table, and a relationship is a way to correlate, join,
or associate the two tables.

A row in a table is a collection or instance of one thing, such as one employee or one line item on an invoice. A column contains
all the information of a single type, and the piece of data at the intersection of a row and a column, a field, is the smallest piece of
information that can be retrieved with the database’s query language. (Oracle’s query language, SQL, is the topic of the next
chapter.) For example, a table with information about employees might have a column called LAST_NAME that contains all of the
employees’ last names. Data is retrieved from a table by filtering on both the row and the column.

row

A group of one or more data elements in a database table that describes a person, place, or thing.

column

The component of a database table that contains all of the data of the same name and type across all rows.

field

The smallest piece of information that can be retrieved by the database query language. A field is found at the
intersection of a row and a column in a database table.

Note SQL, which stands for Structured Query Language, supports the database components in virtually every modern
relational database system. SQL has been refined and improved by the American National Standards Institute (ANSI)
for more than 20 years. As of Oracle9i, Oracle’s SQL engine conforms to the ANSI SQL:1999 (also known as SQL3)
standard, as well as its own proprietary SQL syntax that existed in previous versions of Oracle. Until Oracle9i, only
SQL:1992 (SQL2) syntax was fully supported.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Primary Keys, Datatypes, and Foreign Keys

The examples throughout this book will focus on the hypothetical work of Scott Smith, database developer and entrepreneur. He
just started a new widget company and wants to implement a few of the basic business functions using the Oracle relational
database to manage his Human Resources (HR) department.

Note Most of Scott’s employees were hired away from one of his previous employers, some of whom have over 20 years of
experience in the field. As a hiring incentive, Scott has agreed to keep the new employees’ original hire date in the new
database.

You’ll learn about database design in the following sections, but let’s assume for the moment that the majority of the database
design is completed and some tables need to be implemented. Scott creates the EMP table to hold the basic employee
information, and it looks something like this:

Notice that some fields in the Commission (COMM) and Manager (MGR) columns do not contain a value; they are blank. A relational
database can enforce the rule that fields in a column may or may not be empty. (Chapter 3, "Oracle Database Functions," covers
the concept of empty, or NULL, values.) In this case, it makes sense for an employee who is not in the Sales department to have a
blank Commission field. It also makes sense for the president of the company to have a blank Manager field, since that employee
doesn’t report to anyone.

On the other hand, none of the fields in the Employee Number (EMPNO) column are blank. The company always wants to assign
an employee number to an employee, and that number must be different for each employee. One of the features of a relational
database is that it can ensure that a value is entered into this column and that it is unique. The EMPNO column, in this case, is the
primary key of the table.

primary key

A column (or columns) in a table that makes the row in the table distinguishable from every other row in the
same table.

Notice the different datatypes that are stored in the EMP table: numeric values, character or alphabetic values, and date values.
The Oracle database also supports other variants of these types, plus new types created from these base types. Datatypes are
discussed in more detail throughout the book.

As you might suspect, the DEPTNO column contains the department number for the employee. But how do you know what
department name is associated with what number? Scott created the DEPT table to hold the descriptions for the department codes
in the EMP table.

The DEPTNO column in the EMP table contains the same values as the DEPTNO column in the DEPT table. In this case, the DEPTNO
column in the EMP table is considered a foreign key to the same column in the DEPT table. With this association, Oracle can
enforce the restriction that a DEPTNO value cannot be entered in the EMP table unless it already exists in the DEPT table. A foreign
key enforces the concept of referential integrity in a relational database. The concept of referential integrity not only prevents an
invalid department number from being inserted into the EMP table, but it also prevents a row in the DEPT table from being deleted
if there are employees still assigned to that department.

foreign key

A column (or columns) in a table that draws its values from a primary or unique key column in another table. A
foreign key assists in ensuring the data integrity of a table.

referential integrity

A method employed by a relational database system that enforces one- to-many relationships between tables.

Data Modeling

Before Scott created the actual tables in the database, he went through a design process known as data modeling. In this

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Before Scott created the actual tables in the database, he went through a design process known as data modeling. In this
process, the developer conceptualizes and documents all the tables for the database. One of the common methods for modeling
a database is called ERA, which stands for entities, relationships, and attributes. The database designer uses an application that
can maintain entities, their attributes, and their relationships. In general, an entity corresponds to a table in the database, and the
attributes of the entity correspond to columns of the table.

data modeling

A process of defining the entities, attributes, and relationships between the entities in preparation for creating
the physical database.

Note Various data modeling tools are available for database design. Examples include Microsoft Visio
(www.microsoft.com/office/visio) and more robust tools such as Computer Associate’s ERwin
(www3.ca.com/ Solutions/Product.asp?ID=260) and Embarcadero’s ER/Studio
(www.embarcadero.com/products/erstudio/index.asp).

The data-modeling process involves defining the entities, defining the relationships between those entities, and then defining the
attributes for each of the entities. Once a cycle is complete, it is repeated as many times as necessary to ensure that the designer
is capturing what is important enough to go into the database. Let’s take a closer look at each step in the data-modeling process.

Defining the Entities
First, the designer identifies all of the entities within the scope of the database application. The entities are the persons, places, or
things that are important to the organization and need to be tracked in the database. Entities will most likely translate neatly to
database tables. For example, for the first version of Scott’s widget company database, he identifies four entities: employees,
departments, salary grades, and bonuses. These will become the EMP, DEPT, SALGRADE, and BONUS tables.

Defining the Relationships between Entities
Once the entities are defined, the designer can proceed with defining how each of the entities is related. Often, the designer will
pair each entity with every other entity and ask, “Is there a relationship between these two entities?” Some relationships are
obvious; some are not.

In the widget company database, there is most likely a relationship between EMP and DEPT, but depending on the business rules,
it is unlikely that the DEPT and SALGRADE entities are related. If the business rules were to restrict certain salary grades to certain
departments, there would most likely be a new entity that defines the relationship between salary grades and departments. This
entity would be known as an associative or intersection table, and would contain the valid combinations of salary grades and
departments.

associative table

A database table that stores the valid combinations of rows from two other tables and usually enforces a
business rule. An associative table resolves a many-to-many relationship.

intersection table

See associative table.

One-to-many The most common type of relationship is one-to-many. This means that for each occurrence in a given entity, the
parent entity, there may be one or more occurrences in a second entity, the child entity, to which it is related. For example, in the
widget company database, the DEPT entity is a parent entity, and for each department, there could be one or more employees
associated with that department. The relationship between DEPT and EMP is one-to-many.

one-to-many relationship

A relationship type between tables where one row in a given table is related to many other rows in a child table.
The reverse condition, however, is not true. A given row in a child table is related to only one row in the parent
table.

In general, there are three types of relationships in a relational database:

One-to-one In a one-to-one relationship, a row in a table is related to only one or none of the rows in a second table. These
relationships are not as common as one-to-many relationships, because if one entity has an occurrence for a corresponding row
in another entity, in most cases, the attributes from both entities should be in a single entity.

one-to-one relationship

A relationship type between tables where one row in a given table is related to only one or zero rows in a
second table. This relationship type is often used for subtyping. For example, an EMPLOYEE table may hold the
information common to all employees, while the FULLTIME, PARTTIME, and CONTRACTOR tables hold
information unique to full time employees, part time employees and contractors respectively. These entities
would be considered subtypes of an EMPLOYEE and maintain a one-to-one relationship with the EMPLOYEE
table.

Many-to-many In a many-to-many relationship, one row of a table may be related to many rows of another table, and vice versa.
Usually, when this relationship is implemented in the database, a third entity is defined as an intersection table to contain the
associations between the two entities in the relationship. For example, in a database used for school class enrollment, the
STUDENT table has a many-to-many relationship with the CLASS table—one student may take one or more classes, and a given
class may have one or more students. The intersection table STUDENT_CLASS would contain the combinations of STUDENT and
CLASS to track which students are in which class.

many-to-many relationship

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A relationship type between tables in a relational database where one row of a given table may be related to
many rows of another table, and vice versa. Many-to-many relationships are often resolved with an intermediate
associative table.

Assigning Attributes to Entities
Once the designer has defined the entity relationships, the next step is to assign the attributes to each entity. This is physically
implemented using columns, as shown here for the SALGRADE table as derived from the salary grade entity.

Iterate the Process: Are We There Yet?
After the entities, relationships, and attributes have been defined, the designer may iterate the data modeling many more times.
When reviewing relationships, new entities may be discovered. For example, when discussing the widget inventory table and its
relationship to a customer order, the need for a shipping restrictions table may arise.

Once the design process is complete, the physical database tables may be created. This is where the DBA usually steps in,
although the DBA probably has attended some of the design meetings already! It’s important for the DBA to be involved at some
level in the design process to make sure that any concerns about processor speed, disk space, network traffic, and administration
effort can be addressed promptly when it comes time to create the database.

Logical database design sessions should not involve physical implementation issues, but once the design has gone through an
iteration or two, it’s the DBA’s job to bring the designers “down to earth.” As a result, the design may need to be revisited to
balance the ideal database implementation versus realities of budgets and schedules.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Object-Relational Databases
An object-relational database system supports everything a relational database system supports, as well as constructs for
object-oriented development and design techniques. Object-oriented constructs are found in modern programming languages
such as Java and C++. The Oracle9i database fully supports all of the traditional object-oriented constructs and methods.

object-relational database

A relational database that includes additional operations and components to support object- oriented data
structures and methods.

While the full range of object-oriented techniques are beyond the scope of this book, you will get a good idea of some of the
object-oriented capabilities of Oracle, including abstraction, methods, encapsulation, and inheritance. Let’s define those terms
now.

Abstraction

One of the ways in which Oracle supports the object-relational model is by using abstraction. As noted earlier, Oracle has many
built-in datatypes, such as numeric, string, date, and others. Additionally, you can define user-defined objects as an aggregate of
several other datatypes. These new user-defined types are called abstract datatypes.

abstract datatypes

New datatypes, usually user-created, that are based on one or more built-in datatypes and can be treated as a
unit.

For example, when Scott’s widget company grows, there may be other systems where he needs to represent an employee or a
customer, or in more general terms, a person. Scott can define a datatype called PERSON that stores a first name, last name,
middle initial, and a gender. When the new customer tables are being built, Scott just needs to use the new PERSON type in the
table definition, This brings to the table two immediate benefits: reusability and standards. Creating the new table is faster, since
the datatype has already been defined, and it’s less error prone than creating four individual fields. In addition, any developer who
moves from an employee-oriented project to a customer- oriented project at Scott’s company will find familiarity in common
objects and naming conventions.

Methods and Encapsulation

Another way in which object-oriented techniques are reflected in the Oracle object-relational database is through the use of
methods and encapsulation. Methods define which operations can be performed on an object. Encapsulation restricts access to
the object other than via the defined methods.

methods

Operations on an object that are exposed for use by other objects or applications.

encapsulation

An object-oriented technique that may hide, or abstract, the inner workings of an object and expose only the
relevant characteristics and operations on the object to other objects.

Take a simple example of an employee object: it contains characteristics such as the employee name, address, and salary. A
method against an employee object might be to get the name, or change the name. Another method might be to increase the
salary, but never to decrease the salary. The encapsulation of the employee object prevents the direct manipulation of the
characteristics of an employee object other than what the methods, driven by business rules, dictate.

Inheritance

Inheritance allows objects that are derived from other objects to use the methods available in the parent object. If a new object is
created with an existing object as a base, all of the methods available with the existing object will also be available with the new
object.

inheritance

Acquiring the properties of the parent, or base object, in a new object.

For example, if Scott were to implement a new EMPLOYEE type and a new CUSTOMER type using the PERSON type as the base,
then any methods that already exist for PERSON would be available when using one of the two new types. The method
ChangeLastName, defined with the PERSON type only once, can be used with objects defined with the CUSTOMER or EMPLOYEE
type.

Object-Relational Support

Oracle9i provides additional features to ease the transition to an object-oriented database application. Object views allow the
developer to define an object- oriented structure over an existing relational database table. In this way, existing applications do not
need to change immediately, and any new development can use the object-oriented definitions of the table. This makes the
transition from a relational to an object-relational database relatively painless, because object definitions can reference existing
relational components.

object view

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A database construct that overlays an object- oriented structure over an existing relational database table. As a
result, the table can be accessed as a relational table or as an object table and make the transition to a fully
object-oriented environment easier.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Name the most important element of a relational database and its components.

2. Which type of table relationship associates more than one record in a given table with more than one record in
another table?

3. What type of key can be used to enforce referential integrity between two tables in a database?

4. What are some reasons why using a spreadsheet is not a good alternative to using a large-scale database?

5. What are some of the benefits of abstraction in an object-relational database management system?

6. What object-relational feature of Oracle eases the transition between relational and object-relational applications?

7. What are the three steps in the ERA process for database design?

Answers

1. The table is the most important element of a relational database and it consists of rows and columns. A field exists at the
intersection of a row and a column.

2. A many-to-many relationship associates more than one record in a table with more than one record in another table.

3. A foreign key can be used to enforce referential integrity between two tables.

4. Some reasons why a spreadsheet is not a good alternative to a large-scale database are that it’s difficult to use for multiple
users, it does not offer transaction control, the cells in a spreadsheet can contain any type of data, and referential integrity
controls between spreadsheets are difficult to implement efficiently.

5. In an object-relational database management system, new datatypes can be created as aggregates of existing datatypes and
other new datatypes, enhancing standards adherence and reusability.

6. Object views allow the developer to define an object-oriented structure over an existing relational database table, thus easing
the transition between relational and object-relational applications.

7. The three steps in the ERA (entities, relationships, attributes) design process are to define the entities, then define the
relationships between the entities, and then define the attributes of the entities. After one pass through all three steps, one or
more iterations may be necessary.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
abstract datatypes

associative table

column

data modeling

encapsulation

field

foreign key

inheritance

intersection table

many-to-many relationship

methods

object view

object-relational database

one-to-many relationship

one-to-one relationship

primary key

referential integrity

relation

relational database

row

table

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 2: SQL*Plus and iSQL*Plus Basics
This chapter begins with a few formalities and definitions, and then dives right into a discussion of the different ways to run SQL
commands. Then it introduces the basics of SELECT statements and how we can retrieve and display either all columns or only
certain columns of a table.

You will also find out about how to make changes to the rows in a table by using insert, update, and delete statements. In the
remainder of the chapter, you will explore various ways to change the structure of tables in the database as well as control the
permissions on tables.

Some SQL Formalities
A database engine is the part of an RDBMS that actually stores and retrieves data to and from the data files. The database engine
is not very useful unless you can send SQL (Structured Query Language) commands to it and receive the results from those
SQL commands (if any).

SQL (Structured Query Language)

The industry-standard database language used to query and manipulate the data, structures, and permissions
in a relational database.

Note “SQL” is usually pronounced “sequel”, but if you refer to “S-Q-L” in a conversation with other database developers and
DBAs, they will certainly know what you’re talking about!

It is also important to separate the SQL commands from the command processor itself. For example, Oracle’s SQL*Plus client
tool (available on virtually any platform that the Oracle server itself runs on) has a number of other “built-in” commands that look
like SQL commands, but operate only within the SQL*Plus environment; these are called SQL*Plus commands. A SQL*Plus
command may actually send many SQL commands to the Oracle server.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Tools for Running SQL
Most Oracle database environments consist of two, three, or more tiers. In the simplest two-tier scenario, a database developer
might be using SQL*Plus on a Windows PC connecting to an Oracle database on a Linux server. More complex environments
may include a web server, application server, or authentication server on a number of other servers in between the client and the
database server.

tiers

Locations where different components of an enterprise application system reside. In a typical three-tier
environment, the client tier runs a thin application such as a web browser, which connects to a middleware
server that is running a web server. The web server and its related components typically manage the business
rules of the application. The third-tier database platform controls access to the data and manages the data itself.
This approach partitions the application so that it is easier to maintain and segregates the tasks into tiers that
are best equipped to handle a particular function.

Here, we will explore the various client-based tools that can be used to run SQL, including SQL*Plus, iSQL*Plus, SQL*Plus
Worksheet, third-party tools, Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and Oracle Call Interface
(OCI).

SQL*Plus

SQL*Plus has been around as long as the Oracle RDBMS itself. It is the most basic tool available for connecting to the database
and executing queries against the tables in a database. On Unix systems, it can be run in character-based mode, even on a dumb
terminal connected to the Unix system via a serial port.

The “Plus” part of SQL*Plus defines some of the extra functionality available above and beyond executing SQL statements and
returning the results. Some of this functionality is proprietary to SQL*Plus and may not be available in non-Oracle database
environments. Here are some of the things you can do using SQL*Plus:

Define headers and footers for reports

Rename columns in the report output

Prompt users for values to be substituted into the query

Retrieve the structure of a table

Save the results of the query to a file

Copy entire tables between databases using only one command

While many other tools surpass SQL*Plus in functionality as well as in look and feel, those other tools don’t help much when the
database is down and all you have is a character-based terminal emulator connection to your Unix server! No matter which
environment you’re in—Unix, Windows, minicomputer, or mainframe—SQL*Plus will always be there and have the same look and
feel across all of those environments.

Under the various versions of Microsoft Windows, SQL*Plus runs as a Windows application and as a command-line application.
The Windows functionality available in the Windows SQL*Plus session includes those features normally available in a Windows
text-based editor: cutting and pasting text strings, searching for text in the session window, and saving or loading the last
command executed. The Windows version also allows you to change the SQL*Plus environment settings using a GUI dialog box
or through the command line. The GUI dialog box is accessible from SQL*Plus by selecting Options > Environment.

You’ll need to log on with a valid username and password to initiate a SQL*Plus session, as shown below. You’ll also need to
enter a host string value. The host string is an alias to a set of parameters, such as the name, address, protocol type, and port

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


enter a host string value. The host string is an alias to a set of parameters, such as the name, address, protocol type, and port
number of the Oracle database to which you want to connect. The database may be on the same machine that is running the
SQL*Plus client tool, or it may be on a different host machine on the network. For the purposes of this book, all database
connections will use the or92 host string.

host string

A text string that represents a shortcut or reference to a set of parameters that provide the information needed
to connect to a database host from the client application.

Note Your default Oracle installation may not have the user SCOTT enabled, or the password may have been changed from
the default TIGER. Check with your local DBA to see if this is the case.

The user SCOTT owns a number of database tables, including the DEPT table, which contains a list of all the department numbers,
department names, and department locations. As you’ll learn a little later in this chapter, the SQL SELECT statement allows you to
extract information from a database. The example below shows a SELECT statement that retrieves all of the rows in the DEPT
table (select * from dept;) and its results.

Notice that the case of the keywords and column names is important only for readability. In practice, you can enter them in any
case. To enhance this sample query, let’s do the following:

Add a report title of “Department Report” using the TTITLE SQL*Plus command.

Change the headers for each of the columns to make them more readable using the COLUMN SQL*Plus command.

Save the output from the query to a file using the SQL*Plus SPOOL command.

The sequence of SQL*Plus commands, the SQL statement, and the results from the command are as follows:
SQL> ttitle "Department Report"
SQL> column deptno heading "Department|Number"
SQL> column dname heading "Department|Name"
SQL> column loc heading "City|Location"
SQL> spool c:\temp\deptrept.txt
SQL> /

Tue Aug 13                                    page    1
                 Department Report

Department Department     City
    Number Name           Location
---------- -------------- -------------
        10 ACCOUNTING     NEW YORK
        20 RESEARCH       DALLAS
        30 SALES          CHICAGO
        40 OPERATIONS     BOSTON

SQL> spool off
SQL>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SQL>

Notice that we didn’t type in the entire SELECT statement again. Instead, we used the / SQL*Plus command, which reruns the
last complete SQL statement executed.

SQL*Plus commands differ from SQL statements in that they don’t need a semicolon at the end (although SQL*Plus commands
can be terminated with a semicolon without SQL*Plus complaining about it). SQL statements can be written across many lines
without any type of continuation character; they are complete whenever you type a semicolon or use the SQL*Plus / command.
SQL*Plus commands must be contained entirely on one line, unless the - continuation character is used at the end of each line.
The example below shows how the SQL*Plus continuation character is used:
SQL> column deptno heading -
> "Department|Number"
SQL>

iSQL*Plus

With iSQL*Plus, you connect to the database indirectly via a very “lightweight” middle tier. The iSQL*Plus tool is essentially the
web-enabled version of SQL*Plus, with a few restrictions, which we will cover shortly. It is implemented as part of a three-tier
Oracle environment, although iSQL*Plus could very well run on the same machine as either the client or the Oracle server itself.

iSQL*Plus offers a 100% web-enabled, thin client solution. From a DBA’s or network adminstrator’s point of view, the more
clients that need only a web browser to get their work done, the better. No Oracle client software instal-lation is required for
iSQL*Plus!

thin client

A workstation or CPU with relatively low- powered components that can use a web interface (or other application
with a small footprint) to connect to a middleware or a back-end database server where most of the processing
occurs. iSQL*Plus is an example of a web application that runs on a thin client.

To start iSQL*Plus, use your favorite web browser (preferably Microsoft Internet Explorer 5.0 or later or Netscape Navigator 4.7 or
later) and navigate to the URL http://<your_server_name>/isqlplus. The string <your_server_name> is the name of
the middleware server that is running the iSQL*Plus web application.

Note Depending on the configuration of the server, you may need to add a port number to the server name, for example,
http://www.internal.esweb .com:7779/isqlplus. Check with your local system administrator for the URL
that supports iSQL*Plus.

SQL*Plus and iSQL*Plus are similar. In fact, iSQL*Plus requires that the SQL*Plus executable be accessible on the middleware
server that is running the iSQL*Plus service. The iSQL*Plus login screen below shows the user SCOTT logging into the same
server as he did with SQL*Plus earlier in this chapter. In this case, or92 is specified as the connection identifier, rather than the
host string as it is with SQL*Plus; they have different names but mean the same thing.

connection identifier

See host string.

After logging in to iSQL*Plus, here is an example of running the same query that you saw earlier under SQL*Plus.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice that with iSQL*Plus, if only one SQL statement is being run at a time, no semicolon is required. This would be the
equivalent of typing / in a SQL*Plus session after entering a SQL statement without a terminating semicolon. Also notice that the
area where commands are entered is a fixed size, regardless of how many commands you are entering. Rest assured, as in
SQL*Plus, this is easily configurable. Just click the Preferences link in the upper-right corner of the browser to change the
command area size and other iSQL*Plus environment settings.

Note The Apache HTTP web server is used to host iSQL*Plus, as well as any other Oracle web-enabled services on
Microsoft Windows Oracle installations. Apache isn’t just for Unix anymore!

All of the examples later in this chapter and throughout the book will use iSQL*Plus as the tool for executing SQL commands and
reports.

SQL*Plus Worksheet

If Oracle Enterprise Manager (OEM) is installed, another variation of SQL*Plus, called SQL*Plus Worksheet, is available to the
DBA. Here’s the OEM Login dialog box:

Oracle Enterprise Manager (OEM)

A GUI tool that allows access, maintenance, and monitoring of multiple databases or services within a single
application.

SQL*Plus Worksheet supports all the commands that standard SQL*Plus supports, in a two-pane query/result format, as shown
below. It’s a slightly more graphical application; in other words, it needs an operating system such as Microsoft Windows or a
similar GUI client to run. Beyond that, it’s really just SQL*Plus with a slightly better front-end!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Third-Party Tools

Basic network client connectivity is provided during an Oracle client installation. Starting with release 9, Oracle’s network
connectivity package is known as Oracle Net. Third-party developers can leverage this functionality in their own applications to
provide tools customized for a more specific audience and to provide an additional layer of functionality that may not be available
in Oracle’s offerings.

An example of a third-party tool is TOAD, which stands for Tool for Oracle Application Developers. TOAD is not just for
developers; it has a lot of functionality that DBAs can use also. There is both a freeware version (that can even be used as
freeware in a corporate environment) and a licensed version. The licensed version has many more DBA-friendly features and SQL
debugging tools available. (Visit www.toadsoft.com or www.quest.com/toad for more information.) Shown below is the DEPT
table query executed using the freeware version of the TOAD browser. Notice the other database navigational capabilities in this
pane.

ODBC/JDBC

Many tools in the Windows (and Unix) environment can take advantage of a common framework known as ODBC, which stands
for Open Database Connectivity. In a nutshell, ODBC allows applications that are ODBC-compliant to connect to virtually any
database without knowing the details of how to connect directly to the database. All of the details are hidden in the ODBC driver
itself. The driver may be written by the database vendor or by a third-party developer that specializes in ODBC connectivity. Here
is an example of the Oracle ODBC Driver Configuration dialog box for setting up an ODBC connection to a database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ODBC (Open Database Connectivity)

A set of standards that allow applications that are not dependent on any one specific database to process SQL
statements against any database that supports SQL.

ODBC driver

An interface, usually at the operating-system level, that supports the connection of an ODBC-compliant
application to a specific database platform.

After the ODBC connection is made, you can run queries. Shown below are the results of the DEPT table query from a Microsoft
Access session.

Applications that use ODBC are not limited to tools such as Microsoft Access, which also has its own client-based database
engine in addition to the capability to connect to other databases. Spreadsheets, financial applications, and statistical analysis
packages are among the many types of applications that need to connect to a database for their source data. ODBC gives the
end user the freedom to choose which external database to use and frees the application vendor from needing to develop a
special connection routine for every possible database source.

JDBC, which stands for Java Database Connectivity, is very similar to ODBC in that JDBC provides a common set of routines to
allow a Java developer to connect to any SQL-compliant database without knowing the specifics of the target database. The key
difference between ODBC and JDBC is that JDBC is specifically for Java applications and ODBC is application-neutral.

JDBC (Java Database Connectivity)

A set of library routines specific to the Java language that allows a Java application to easily connect to and
process SQL statements against an Oracle database.

OCI

Last, but not least, we have OCI, which stands for Oracle Call Interface. OCI is a set of library routines for C developers (on any
operating system platform) that can provide all the functionality available from a SQL command-line session and more. Below are
some code fragments in the C language that include OCI calls:
text *username = (text *) "SCOTT";
text *password = (text *) "TIGER";
...
text *insert = (text *) "INSERT INTO emp(empno, \
    ename, job, sal, deptno)\
    VALUES (:empno, :ename, :job, :sal, :deptno)";
...
/*
 *  Connect to ORACLE and open two cursors.
 *  Exit on any error.
 */
    if (olog(&lda, (ub1 *)hda, username, -1, password, -1,
             (text *) 0, -1, (ub4)OCI_LM_DEF))
    {
        err_report(&lda);

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        err_report(&lda);
        exit(EXIT_FAILURE);
    }
    printf("Connected to ORACLE as %s\n", username);
...
/* Parse the INSERT statement. */
    if (oparse(&cda1, insert, (sb4) -1, FALSE, (ub4) VERSION_7))
    {
        err_report(&cda1);
        do_exit(EXIT_FAILURE);
    }
...

OCI (Oracle Call Interface)

A set of library routines that allows a C application on virtually any development platform to easily connect to
and process SQL statements against an Oracle database. The OCI routines are called as native C library
functions; therefore, no preprocessor is necessary when compiling a C application using OCI.

For more OCI code samples, check the ORACLE_BASE\ORACLE_HOME\oci directory under Microsoft Windows Oracle
installations.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The Ubiquitous SELECT Statement
In the examples of tools for running SQL, you’ve seen the following simple SELECT statement:
select * from dept;

In its most basic form, the SELECT statement has a list of columns to select from a table, using the SELECT ... FROM syntax.
The * means "all columns." To successfully retrieve rows from a table, the user running the query must either own the table or
have the permissions granted to the user by the owner or a DBA. The most basic SELECT syntax can be described as follows:
 SELECT {* | [DISTINCT] column | expression [alias], ...}
   FROM tablename;

This type of statement representation is typical of what you’ll see in Oracle documentation, and it can be very complex. Here is a
summary of what the elements in the syntax representation mean:

Element Meaning

| Pick one or the other

{ } One within this list is required

[ ] Item is optional

… May repeat

Uppercase Keyword or command

italics Variable

Many more advanced features of the SELECT statement will be explored throughout this book. However, to begin with, let’s look at
some examples of the column, alias, DISTINCT, and expression parts of a SELECT statement.

Column Specification

As you’ve seen, you can use the * character to view all columns in a table. But if the table contains too many columns to view at
once, or your query only needs a small number of the total columns, you can pick the columns you need. For example, suppose
that you want to view some information in the EMP table. How could you find out which columns are in this table without doing a
SELECT * statement? You can use the DESCRIBE command in iSQL*Plus, as shown below.

Now that you know which columns exist in the EMP table, you realize that you really need to see only the employee number, name,
and salary. Therefore, your SELECT statement should be something like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and salary. Therefore, your SELECT statement should be something like this:
select empno, ename, sal from emp;

It produces results similar to the following:
EMPNO      ENAME             SAL
---------- ---------- ----------
      7369 SMITH             800
      7499 ALLEN            1600
      7521 WARD             1250
      7566 JONES            2975
      7654 MARTIN           1250
      7698 BLAKE            2850
      7782 CLARK            2450
      7788 SCOTT            3000
      7839 KING             5000
      7844 TURNER           1500
      7876 ADAMS            1100
      7900 JAMES             950
      7902 FORD             3000
      7934 MILLER           1300

14 rows selected.

Column Renaming

In one of our earlier SQL*Plus examples, we wanted the column headers to be more readable, and we used some of the built-in
features of SQL*Plus to do this. However, if your requirements for readability are fairly simple, you can use SQL’s built-in
capability of column renaming, noted by the [alias] element of the SELECT syntax. Here is an example of providing aliases for
the EMPNO, ENAME, and SAL columns in the EMP table. The alias is the renamed column seen in the results of the query.
select empno "Employee Number", ename "Name", sal "Salary" from emp;

Employee Number Name           Salary
--------------- ---------- ----------
           7369 SMITH             800
           7499 ALLEN            1600
           7521 WARD             1250
           7566 JONES            2975
           7654 MARTIN           1250
           7698 BLAKE            2850
           7782 CLARK            2450
           7788 SCOTT            3000
           7839 KING             5000
           7844 TURNER           1500
           7876 ADAMS            1100
           7900 JAMES             950
           7902 FORD             3000
           7934 MILLER           1300

14 rows selected.

alias

An alternate name for a column, specified right after the column name in a SELECT statement, seen in the
results of the query.

Duplicate Removal

The DISTINCT keyword removes all duplicate rows from the results of a query. For example, what if you wanted to see the
department numbers for the employees in the EMP table? Your query might be something like this:
select deptno from emp;

DEPTNO
----------
        20
        30
        30
        20
        30
        30
        10
        20
        10
        30
        20
        30
        20
        10

14 rows selected.

But what you probably want is one row for each of the departments found in the EMP table. In this case, use the DISTINCT
keyword:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select distinct deptno from emp;

DEPTNO
----------
        10
        20
        30

3 rows selected.

That’s much easier to read. You now know that all of the employees belong to one of three departments. However, there may be
many other departments, which would be listed in the department (DEPT) table. Some departments may not have any employees
right now. In Chapter 5, "Using Multiple Tables," you’ll learn how to execute queries on joined tables to get this kind of information.

Expressions

To finish off our analysis of the SELECT syntax, let’s look at the expression part of the SELECT statement. Let’s say we would
like to see how salaries would look if everyone got a 15% pay increase. All of the information we need to see is still in one table,
the EMP table, but we need to perform some kind of calculation on one of the existing fields. To calculate a 15% pay increase, we
need to not only see the existing salary, but we also need to multiply the SAL column by 1.15:
select empno, ename, sal, sal*1.15 from emp;

EMPNO      ENAME             SAL   SAL*1.15
---------- ---------- ---------- ----------
      7369 SMITH             800        920
      7499 ALLEN            1600       1840
      7521 WARD             1250     1437.5
      7566 JONES            2975    3421.25
      7654 MARTIN           1250     1437.5
      7698 BLAKE            2850     3277.5
      7782 CLARK            2450     2817.5
      7788 SCOTT            3000       3450
      7839 KING             5000       5750
      7844 TURNER           1500       1725
      7876 ADAMS            1100       1265
      7900 JAMES             950     1092.5
      7902 FORD             3000       3450
      7934 MILLER           1300       1495

14 rows selected.

To make the proposed salary column more readable, we could use either a column alias or iSQL*Plus column-formatting
commands. We might also want to show a total for the SAL and SAL*1.15 columns, or show each salary increase to exactly two
decimal places. Some of these more advanced formatting techniques will be covered in Chapter 9, "Reporting Techniques."

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DML for Making Changes
DML stands for Data Manipulation Language. DML commands are the SQL statements that can change the values in database
tables, as opposed to merely reading them, as SELECT statements do.

DML (Data Manipulation Language)

Includes INSERT, UPDATE, DELETE, and MERGE statements that operate specifically on database tables.
Occasionally, SELECT statements are included in the SQL DML category.

Note It could be argued that SELECT statements do technically manipulate data when a query is performed, but in this book,
we will differentiate between reading database tables and changing database tables. DBAs may configure and tune a
mostly read-only database differently than they configure a frequent read-write database. An online transaction
processing (OLTP) database would be considered a mostly read-write database. A decision support system (DSS) or
data warehouse database would be considered a mostly read-only database.

The following sections provide an introduction to the DML statements UPDATE, INSERT, DELETE, and MERGE.

The UPDATE Statement

An UPDATE statement will change one or more rows in a database table. The basic form of an UPDATE statement must specify
which table to update, which column(s) to change, and optionally, whether to change all the rows in the table or just a few. The
syntax is as follows:
UPDATE  tablename SET column = value [ , column = value, ...]
   [WHERE condition];

As with any SQL statements that access a table, the table to be updated must be owned by the user running the query or have the
permissions granted to the user by the owner or a DBA. Chapter 11, “Users and Security,” will cover privileges and permissions in
more detail.

Since a table may have a large number of columns, you don’t necessarily want to update every column. To follow up on an earlier
example, let’s say that the boss has decided to give a 15% salary increase across the board. We can use an UPDATE statement
that looks very similar to the SELECT statement we wrote earlier. Here are what the UPDATE statement and the result of executing
that statement in iSQL*Plus look like:

But wait, you ask, did something actually happen here? The only clue is at the bottom of the screen, where it indicates that 14
rows were updated. DML statements such as UPDATE will perform the action requested (or produce an error message on
occasion), but only SELECT statements will return rows to the user. To see if the rows were updated correctly, the user SCOTT will
need to rerun the SELECT query on the EMP table.

Now that all the employees have been granted their raise, the boss decides that there are still some employees who need an even
bigger raise. For example, employee FORD had a lot more bright ideas last year than the average employee, so he deserves
another 10% raise above and beyond the 15% raise that he already received. Also, the boss notices that the employee file has
not yet been updated with her employee information after the previous boss left late last month. Both of these changes require
UPDATE statements that contain a WHERE clause to narrow down the number of changed records based on the employee name.
Using iSQL*Plus, we can perform these two updates at once. Here are the results of the two UPDATE operations.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Using iSQL*Plus, we can perform these two updates at once. Here are the results of the two UPDATE operations.

Notice that the results of both UPDATE statements appear at the bottom of the iSQL*Plus browser window.

The INSERT Statement

Whenever new employees are hired in Scott’s widget company, new rows must be added to the EMP table. The INSERT
statement does just that. Here’s the basic INSERT syntax:
INSERT INTO tablename [(column1 [, column2 ...])]
   VALUES (value1 [, value2 ... ]);

This format of the INSERT statement inserts only one row at a time. In Scott’s company, the boss realizes that she should
probably leave the old boss’s employee information intact, and just add herself as a new row in the table. To handle this for her,
we need to perform both an UPDATE and an INSERT on the EMP table. The two statements and their results are as follows:
update EMP set ENAME = ‘KING’ where ENAME = ‘QUEEN’;

insert into EMP (EMPNO, ENAME, JOB, MGR, HIREDATE,
    SAL, COMM, DEPTNO)
values (7878, ‘QUEEN’, ‘PRESIDENT’, NULL, ‘15-AUG-2002’,
    7500, NULL, 10);

 
 1 row updated.

 1 row created.

Notice that while the case of the keywords and column names is important only for readability, the text within the single quotation
marks is case sensitive and must represent the exact text to be searched or the exact text to be inserted into the table’s column.

Warning It is technically possible to create a column name with mixed case, but this technique is not recommended. This is
because the column name must be specified with the same exact case in double quotation marks whenever it is
referenced in any SQL command.

What does the NULL value mean? NULL is a special keyword that means literally nothing. It is not the same as a blank or an
empty string. It means that the value inserted for this column in this row is unknown or not applicable. When this value is displayed
as the result of a SELECT statement, it displays with blanks. In the case of the MGR column, the PRESIDENT employee has no
boss, so this column is NULL for the former employee KING and the current employee QUEEN. The format for date columns—in
this case, for the column HIREDATE—will be explained in Chapter 3, "Oracle Database Functions."

The DELETE Statement

As the name implies, the DELETE statement will remove rows from a database table. You can delete all rows or use a WHERE
clause to specify rows, similar to the UPDATE statement. Here’s the syntax:
DELETE [FROM] tablename
   [WHERE condition];

The FROM keyword is optional, but it makes the DELETE statement more readable (otherwise, it looks like you’re deleting the table
itself!). In the case of Scott’s company, all of the employees hired in the last recruitment drive on August 18, 2002 and added to
the EMP table will be working for the company’s subsidiary instead, so they must be deleted from the EMP table. Here’s the
DELETE statement to accomplish this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DELETE statement to accomplish this:

The MERGE Statement

The MERGE statement is new for Oracle9i, and it performs an operation that could be called an "upsert." It combines two
operations that would normally need to be performed separately—an INSERT or an UPDATE—depending on whether the row
already exists in the table.

Combining these two operations not only makes the application developer’s coding more straightforward (by not needing to
perform an explicit compare operation with multiple UPDATE and INSERT statements), but it also reduces the number of
operations performed on the table. These operations are also performed internally to the database, which makes the operation
even more efficient because the additional statement parsing does not need to occur. The syntax is as follows:
MERGE INTO tablename alias
   USING (tablename2 | view | subquery) alias2
   ON (join_condition)
   WHEN MATCHED THEN
      UPDATE SET
         col1 = col1_value [, col2 = col2_value ... ]
   WHEN NOT MATCHED THEN
      INSERT (column_list) VALUES (column_values);

The basic syntax is fairly straightforward and easy to use. When the source table and the target table match on one or more
columns (in the join_condition), the row is updated with an UPDATE statement; otherwise, the row is inserted with an INSERT
statement. Many of the components of the MERGE statement, such as view and subquery, will be covered in later chapters.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DDL for Handling Database Objects
DDL stands for Data Definition Language. This class of statements allows the user or DBA to add, change, or drop database
objects, such as tables, indexes, views, and so forth. While most ordinary users and developers can create their own tables in a
development environment, the DBA must still provide a solid infrastructure for these tables by providing the appropriate location
and disk space allocation parameters. This will ensure that database tables are created efficiently, regardless of who is creating
them.

DDL (Data Definition Language)

Includes statements such as CREATE, ALTER, and DROP to work with objects such as tables. DDL modifies the
structure of the objects in a database instead of the contents of the objects.

The following sections introduce the key DDL statements: CREATE, ALTER, DROP, RENAME, and TRUNCATE. For the ALTER, DROP,
RENAME, and TRUNCATE DDL operations, the table to be modified must either be owned by the user executing the DDL statement
or the user must have the privilege to perform that operation in any schema.

The CREATE Statement

Tables are probably the most frequently created object in the database, second only to indexes (depending on the type of
database, as discussed in Chapter 12, “Making Things Run Fast (Enough)”). The basic CREATE TABLE statement has the
following syntax:
CREATE TABLE [schema.]tablename
   (column1 datatype1 [DEFAULT expression]
      [, ...]);

A schema is a group of related tables and other objects that is owned by a single user, whose username is the same as the
schema name. In the context of the CREATE TABLE statement, if the table itself will not be created in the schema of the user
executing the CREATE TABLE statement, the schema name must be specified. In addition, the user creating the table must have
the correct privileges to create the table in a different schema. (Permissions and privileges are covered in Chapter 11.)

schema

A group of related database objects assigned to a database user. A schema contains tables, views, indexes,
sequences, and SQL code. The schema name can be used to qualify objects that are not owned by the user
referencing the objects.

At the simplest level, a table must have one or more columns, and each of these columns must be of a specified type: a character
string, a numeric type, a date type, a long binary value, and so forth. These columns can all have NULL values, or they can be
specified as being required for every row. If the user does not specify a value for a column in an INSERT statement, a DEFAULT
value can be specified for this column when the table is created.

It turns out that Scott’s company is going to segregate the part-time employees into a new table. The new table will be very similar
to the existing EMP table, except that the new table will have an hourly wage rate instead of a salary and a commission. Starting
with the existing structure of the EMP table, we can construct a new CREATE TABLE statement as follows:
CREATE TABLE EMP_HOURLY (
  EMPNO     NUMBER (4)    NOT NULL,
  ENAME     VARCHAR2 (10),
  JOB       VARCHAR2 (9),
  MGR       NUMBER (4),
  HIREDATE  DATE,
  HOURRATE  NUMBER (5,2)  NOT NULL DEFAULT 6.50,
  DEPTNO    NUMBER (2),
  CONSTRAINT PK_EMP
  PRIMARY KEY ( EMPNO ) );

Notice that only the employee number and the hourly rate are required fields. In addition, the hourly rate defaults to $6.50 an hour
if it is not specified in the INSERT statement. Below are the results of the CREATE TABLE statement in iSQL*Plus, along with a
confirmation of the table structure using the iSQL*Plus DESCRIBE command.

The CONSTRAINT and PRIMARY KEY clauses ensure that every table should have one column, or a combination of columns, that
makes the table’s row unique within the table. This makes the identification of a row much easier and less ambiguous when you’re
doing an UPDATE, a DELETE, or a SELECT operation. You’ll learn more about ensuring unique values in Chapter 10, "Creating and
Maintaining Database Objects."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tip You can also use the CREATE TABLE AS SELECT (CTAS) version of CREATE TABLE to quickly create a new version
of an existing table, with some or all of the rows from the source table. CTAS is covered in Chapter 10.

The ALTER Statement

The ALTER statement allows the user to make some kind of change to some object in the database. The ALTER statement’s full
syntax is very complex. For the purposes of this book, the ALTER statement will be used to add, delete, or change a column in a
table. The ALTER statement syntax can then be simplified to one of three statements:
ALTER TABLE tablename
   ADD (column1 datatype1 [DEFAULT expression] [, ...]);
ALTER TABLE tablename
   MODIFY (column1 datatype1 [DEFAULT expression] [,...]);
ALTER TABLE tablename DROP COLUMN column1;

A new company policy has been implemented at Scott’s company that mandates a new default hourly rate of $7.25. The
EMP_HOURLY table must be modified to reflect this new policy. We can use the second form of the ALTER TABLE statement
shown above to accomplish this task. It also turns out that there is one manager for all hourly employees; therefore, we do not
need a MGR column in the EMP_HOURLY table. We can use the third form of the ALTER TABLE statement shown above to
accomplish this additional task.
ALTER TABLE EMP_HOURLY
  MODIFY (HOURRATE  NUMBER(5,2) DEFAULT 7.25);
ALTER TABLE EMP_HOURLY
  DROP COLUMN MGR;
DESCRIBE EMP_HOURLY;

Table altered.

Table altered.

 Name                         Null?    Type
 ---------------------------- -------- ----------------
 EMPNO                        NOT NULL NUMBER(4)
 ENAME                                 VARCHAR2(10)
 JOB                                   VARCHAR2(9)
 HIREDATE                              DATE
 HOURRATE                     NOT NULL NUMBER(5,2)
 DEPTNO                                NUMBER(2)

If columns are dropped or modified in a table, the values of the other columns in the table, as well as the total number of rows in
the table, remain the same. If a new column is added to a table with existing rows, the value for this column in the existing rows is
NULL, unless the column is required. If the column is required, a DEFAULT value must be specified when the column is added.

The DROP Statement

When a table is no longer needed, it can be dropped. Both the table definition and the rows in the table are dropped, and the
space allocated for the table is made available for other database objects. The syntax for the DROP statement is about as simple
as it gets:
DROP TABLE tablename;

The HR department at Scott’s company was maintaining the list of retirees in an EMP_RETIRED table. Once the new management
came in a couple of months ago, the retiree-tracking function was outsourced, so the EMP_RETIRED table is no longer needed.
Here is how it is dropped:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DROP TABLE EMP_RETIRED;

Table dropped.

As with most other DDL operations, the table to be dropped either must be owned by the user executing the DROP statement or
the user must have the privilege to drop a table in any schema.

The RENAME Statement

The RENAME statement is also very straightforward. A table name can be changed to another name; references by other database
objects, such as indexes that refer to the renamed table, are automatically adjusted. The syntax is as follows:
RENAME old_tablename TO new_tablename;

Scott’s company is changing the employee categorization method to differentiate between temporary part-time workers and
permanent part-time workers. Therefore, a new table, EMP_HOURLY_TEMP, must be created, and the existing EMP_HOURLY table
must be renamed to EMP_HOURLY_PERM:
RENAME EMP_HOURLY TO EMP_HOURLY_PERM;

Table renamed.

Warning Any references to the old table in program code (such as C code using OCI) or in stored SQL scripts must be
changed manually to reflect the new table name.

The TRUNCATE Statement

From the perspective of the user, the TRUNCATE statement is similar to the DELETE statement. Both of the statements will delete
rows from a table. The main difference is that the DELETE can be more selective (in other words, using a WHERE clause). The
TRUNCATE statement simply removes all rows from a table. The TRUNCATE statement will also appear to run faster than a
DELETE in most cases.

From a DBA’s point of view, however, the TRUNCATE and DELETE statements are very different. The TRUNCATE statement will
immediately free any space from the deleted rows. The space from any rows deleted with DELETE will remain allocated to the
table, and it may possibly be reused by future INSERT operations into the table. Also, the TRUNCATE statement is not recoverable;
rows removed with DELETE can be recovered with a ROLLBACK statement. (Rolling back transactions is discussed in Chapter 7,
"Logical Consistency.")

The syntax for TRUNCATE is very straightforward:
TRUNCATE TABLE tablename;

In Scott’s corporate database, one of the developers inadvertently loaded the EMP_HOURLY table with 50,000 rows from the wrong
table. The developer realizes that the DELETE statement would fix this, but that the DBAs would be concerned about the space
that would not be reclaimed. The table didn’t have any rows to begin with, so the developer determines that TRUNCATE would be
the best option. Here is the command to remove all the rows, so that the table is now empty:
TRUNCATE TABLE EMP_HOURLY;

Table truncated.

The table to be truncated must be in the user’s schema or the user must have the privilege to drop a table in another user’s
schema (the same privilege that allows the user to completely drop the table).

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DCL for Handling Privileges
DCL stands for Data Control Language. DCL statements can give or take away privileges to database objects or privileges to
perform certain actions. At a minimum, most users are granted the right to connect to the database. Many users may not need to
create tables, so they are not granted that privilege.

DCL (Data Control Language)

Includes statements such as GRANT and REVOKE to provide or deny users or roles system or object privileges.

Privileges can also be granted to a role. A role is a way to bundle together multiple privileges into a single entity. This makes it
easier to grant a group of privileges to one or more users in one easy step, rather than needing to enumerate each of those
privileges every time you want to grant them to a new user (or to another role). The converse is also true: It’s easier to revoke a
role from a user than to remove the individual privileges that make up the role. System privileges, object privileges, and roles are
discussed in more detail in Chapter 11. The following sections provide an overview of the GRANT and REVOKE statements.

role

A group of related privileges that is referenced by a single name. Privileges can be assigned to a role, and a role
can be assigned to a database user or to another role. Roles ease the maintenance issues with managing
privileges for a large number of users who can be grouped into a relatively small number of categories based on
job function.

The GRANT Statement

The GRANT statement is almost self-explanatory. GRANT will give a privilege (either object or system) to a user, a role, or to all
users. The basic syntax for granting both system and object privileges is as follows:
GRANT sys_privilege [, sys_privilege ...]
   TO user | role | PUBLIC [, user | role | PUBLIC ...];
GRANT obj_privilege [(column_list)] ON object
   TO user | role | PUBLIC
[WITH GRANT OPTION];

Granting object privileges with the [WITH GRANT OPTION] clause allows the user or users granted that role the ability to pass
those rights onto yet another user or role.

Suppose that Scott has acquired additional responsibilities and now must help to maintain the tables in the order-entry system,
specifically the ORDER_ITEMS table owned by the user OE. The DBA grants the rights on this table to user SCOTT using the
following command:
GRANT INSERT, UPDATE, DELETE, SELECT ON
   OE.ORDER_ITEMS TO SCOTT;

Grant succeeded.

Scott can now add, delete, update, and view rows in the OE.ORDER_ITEMS table. He cannot, however, grant these privileges to
other users or roles, since the WITH GRANT OPTION clause was not used by the DBA.

The REVOKE Statement

As you would expect, the REVOKE statement is the opposite of the GRANT statement. Either system privileges or object privileges
can be revoked with the following basic syntax:
REVOKE obj_privilege | ALL [, obj_privilege] ON object
   FROM user | role | PUBLIC [, user | role | PUBLIC ...];
REVOKE sys_privilege | ALL [, sys_privilege ...]
   FROM user | role | PUBLIC [, user | role | PUBLIC ...];

When the DBA granted the rights to SCOTT to work with the ORDER_ITEMS table, he noticed that the user OE had the DBA role
assigned! This was obviously an oversight, so he corrected the situation immediately by using the REVOKE statement to remove
the DBA role from OE:
REVOKE DBA FROM OE;

Revoke succeeded.

The user OE retains all other object and system privileges granted by the DBA and other users.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What are the three types of DML (Data Manipulation Language) statements?

2. If the user SCOTT is granted the privilege to insert records on the OE.WAREHOUSES table using the command
GRANT INSERT ON OE.WAREHOUSES WITH GRANT OPTION, what does the WITH GRANT OPTION clause
allow SCOTT to do?

3. Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

4. What two methods are used to rename a column in the report output of a SQL SELECT statement?

5. ODBC provides what capability to client applications?

6. Which SELECT statement keyword removes duplicate rows from the result of the query?

7. What is the name of the set of library routines that allows a developer to send SQL statements from a C program?

8. What are some of the differences between a DELETE and a TRUNCATE statement?

9. The new MERGE statement combines the functionality of which two other DML statements?

10. What function does the DESCRIBE command perform in SQL*Plus or iSQL*Plus?

Answers

1. The three types of DML statements are INSERT, UPDATE, and DELETE.

2. It allows SCOTT to grant another user, such as HR, the same INSERT privilege on the OE.WAREHOUSES table.

3. iSQL*Plus runs on only the middleware tier where the Apache web server is running. However, Apache can run on the client
with the user who is executing the SQL statements, on its own dedicated server, or on the same server as the Oracle
database.

4. You can rename a column in the report output by using the SQL*Plus or iSQL*Plus column command, or by specifying the
alias name next to the column name in the SQL SELECT statement.

5. ODBC (Open Database Connectivity) provides a client application that supports SQL commands and the capability to
connect to a variety of different database servers without knowing the specific details as to how to connect and interact
directly with the database.

6. The DISTINCT keyword removes duplicate rows. If there is only one column in the result of a SQL query, there will be no
duplicates of that column returned in the query result. If there are two columns in the result of the query, there will be one row
returned for each unique combination of values in the first and the second column.

7. The library routines for sending SQL statements from a C program are called the OCI (Oracle Call Interface).

8. A DELETE statement may be rolled back, whereas a TRUNCATE is implicitly committed. The DELETE statement can
conditionally specify which rows to delete, but a TRUNCATE statement removes the contents of the entire table. A DELETE
statement retains the disk space in the table for future inserts or updates, but a TRUNCATE statement frees the disk space for
other tables or database objects.

9. MERGE combines the functionality of INSERT and UPDATE.

10. The DESCRIBE command displays the structure of a table, including the column name, datatype, and whether the column is
a required field.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
alias

connection identifier

DCL (Data Control Language)

DDL (Data Definition Language)

DML (Data Manipulation Language)

host string

JDBC (Java Database Connectivity)

OCI (Oracle Call Interface)

ODBC (Open Database Connectivity)

ODBC driver

OEM (Oracle Enterprise Manager)

role

schema

SQL (Structured Query Language)

thin client

tiers

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 3: Oracle Database Functions
Every DBA needs to know about built-in functions. Many of the day-to-day tasks of a DBA involve queries, and these queries often
need to transform or summarize information in database tables and views. Many DBAs will also create and maintain a library of
customized functions (also known as user-defined functions) for business areas in the company and help to deploy these user-
defined functions.

This chapter covers the built-in functions and provides an introduction to user-defined functions. However, before we dig into the
functions themselves, we’ll talk about some of the general rules for building queries, including how the DUAL table is used, how
NULL values work, and how numbers and strings are constructed.

Query Basics
In order to use functions, you need to know how to call them and how to construct their arguments. This section begins by
explaining how the DUAL table allows you to use queries that don’t involve a real table. Next, you’ll learn about the ubiquitous
NULL value and how it acts as a double-edged sword at times. Then it covers string literals and how to construct larger strings
from one or more other strings and columns. Finally, you’ll learn about numeric literals and operator precedence.

Once you know how to use the SELECT statement with the DUAL table, along with how string and numeric literals work, you’ll be
ready to explore the built-in functions. You’ll see that they are a potent tool to put into your DBA bag of tricks.

The DUAL Table

Because Oracle SQL is table-centric, most operations performed with SQL must reference some kind of table or view. For
example, consider the following SQL statement:
SELECT NAME;

SELECT NAME
          *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

This returns an error, because the basic syntax of a SELECT statement requires that you select FROM something—in this case, a
table.

But what if you want to use the SELECT statement to perform some calculations or do some other operation that doesn’t involve a
particular table, such as check the system date and time? The DUAL table makes this possible. You reference the DUAL table
when you need a table for syntactical reasons, not necessarily for the data in the table.

DUAL

A special table, owned by the Oracle SYS user, that has one row and one column. It is useful for ad-hoc queries
that don’t require rows from a specific table.

The DUAL table is a real table. It’s owned by the user SYS and has one row. The table has only one column, which is named
DUMMY and has a string with a length of 1. The value of DUMMY in the one and only row is X. You can see the DUAL table’s
structure in the iSQL*Plus output shown below.

It’s true that anyone could create a table like this, with one row, and accomplish the same thing. But it’s good practice to have one
place where you always have one row and you always know the table name.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since DUAL is a real table, you could certainly do something like this:
select sysdate, dummy from dual;

SYSDATE   D
--------- -
31-AUG-02 X

1 row selected.

But you already know what the value of DUMMY is in DUAL, so you really don’t need to include this field on a query with DUAL.

And to make it clear that DUAL is a table just like any other, you could also do something like this:
select sysdate from dept;

SYSDATE
---------
31-AUG-02
31-AUG-02
31-AUG-02
31-AUG-02

4 rows selected.

Since the DEPT table has four rows, you get the SYSDATE four times.

Since you really need only one row, the DUAL table will fill the bill nicely:
select sysdate from dual;

SYSDATE
---------
31-AUG-02

1 row selected.

Note The DUAL table originally had two rows in early versions of Oracle, thus the origin of the table name.

NULLs: What, When, Why, and How

Simply put, a NULL value in an Oracle table is nothing. A NULL is not zero, a blank character, or an empty string. It is no value
whatsoever. NULLs can be the source of much consternation when a query is not returning the expected results.

NULL

A possible value for any Oracle column that indicates the absence of any known value for that column. A NULL
is usually used to represent a value that is unknown, not applicable, or not available.

Using a NULL in an arithmetic expression returns a NULL, regardless of what other operands and operations are in the expression.
As an example, consider the following query:
select 5+8, 5+0, 5+null, null+null from dual;

5+8        5+0        5+NULL     NULL+NULL
---------- ---------- ---------- ----------
        13          5

1 row selected.

NULL values are useful, however, to indicate when a value is unavailable, unknown, or not applicable. For example, the
commission for an employee who is not in the Sales department would be NULL, or the department assigned to a new employee
could be NULL.

Note In certain functions—for example NVL, NVL2, and COALESCE—a NULL value as an argument to the function will return
a non-NULL result. This result is the exception, not the rule.

String Literals and Concatenating Strings

A string literal in a SQL query is a sequence of zero, one, or more characters enclosed in single quotation marks (called quotes
for short). Here are some valid string literals:

‘JOHN SMITH’

‘’

‘123 Main St.’

string literal

A constant that can consist of any string of letters, digits, and special characters enclosed in single quotation
marks.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


String literals may be combined with other string literals or table columns, and they may also be arguments to a function. Note that
a zero-length string is not the same as a NULL string. You may use a NULL string to indicate that a value is missing or not yet
known, and a zero-length string to indicate that the value is blank, but known. For example, a new employee may not have a
middle initial, and therefore their middle initial would be set to a zero-length string. But until we find out that they don’t have a
middle initial, it will temporarily be set to a NULL string.

Concatenation is the process of combining two or more string literals or columns into a single result. The concatenation operator
|| (two vertical bars) is used between the strings or columns to be combined. Alternatively, you can use the built-in string function
CONCAT.

concatenation

The process of combining two or more data elements into a single element. In Oracle SQL, concatenation can
be accomplished by using the concatenation operator (a pair of vertical bars, ||) or the CONCAT function.

The following query demonstrates how string literals and database columns may be concatenated and act as arguments of a
function:
select
   ‘Employee: ‘ || initcap(ename),
   concat(‘Dept: ‘,deptno)
   from emp;

‘EMPLOYEE:’||INITCAP CONCAT(‘DEPT:’,DEPTNO)
-------------------- --------------------------
Employee: Smith      Dept: 20
Employee: Allen      Dept: 30
Employee: Ward       Dept: 30
Employee: Jones      Dept: 20
Employee: Martin     Dept: 30
Employee: Blake      Dept: 30
Employee: Clark      Dept: 10
Employee: Scott      Dept: 20
Employee: King       Dept: 10
Employee: Turner     Dept: 30
Employee: Adams      Dept: 20
Employee: James      Dept: 30
Employee: Ford       Dept: 20
Employee: Miller     Dept: 10

14 rows selected.

In the above query, there are two columns in the output: the string literal ‘Employee: ’ concatenated with the result of a string
function on employee name and the string literal ‘Dept: ’ concatenated with the department number of the employee. Notice
how the case of a string is preserved within the single quotes. This example demonstrates both the concatenation operator ||
and the CONCAT function. Which you use depends on how many strings are to be concatenated, as well as programming style. If
you have more than two or three strings to concatenate, using vertical bars is more readable than using the CONCAT function over
and over. However, if you are dealing with translating your queries from one character set to another on a different platform,
vertical bars may not translate correctly; in this case, using the CONCAT function would be the best option for concatenating any
number of strings.

Numeric Literals

Numeric literals in Oracle are very straightforward and are similar to what is allowed in many programming languages: the digits
0–9, an optional decimal point, an optional sign, and an optional exponent using the letter E with its own optional sign. Here are
some valid numeric literals:

1.456

–.01

00000052

+12.10

–3.774E–16

numeric literal

A constant that can consist of numeric digits, plus the characters +, -, ., and E.

Numbers are stored internally in scientific notation, with up to 20 bytes for the mantissa and 1 byte for the exponent. This results
in a maximum precision of up to 38 digits.

Operators and Operator Precedence

Operator precedence specifies the order in which the operators are applied to the arguments of a mathematical expression when
there is more than one operator in the expression. Think back to your middle school algebra class when you had to answer
questions such as “A man bought 20 chickens and ducks, with a $2 discount per chicken and 50 cent discount per duck…” and
you’ll probably remember a few things about the order in which you had to evaluate an expression, once you figured out why a
man was buying the chickens and ducks.

For example, the expression 5 * 6 + 10 is typically evaluated in most programming languages by multiplying 5 by 6, then
adding 10 to the result. The expression 10 + 5 * 6 is typically evaluated in a similar manner. Because multiplication has a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


adding 10 to the result. The expression 10 + 5 * 6 is typically evaluated in a similar manner. Because multiplication has a
higher precedence than addition, 5 is multiplied by 6 first, then 10 is added to the result. If you want to add 10 to 5 first, then
multiply that result by 6, write the expression with parentheses to override the assumed precedence: (10 + 5) * 6.

For operators that have an equal precedence, such as addition and subtraction or multiplication and division, the expression is
evaluated left to right. The expression 10 / 6 * 5 is evaluated by dividing 10 by 6 first, then multiplying the result by 5. When
two operators have the same precedence, it’s a good idea to use parentheses to eliminate any possible ambiguity: (10 / 6) *
5.

The rules for operator and conditional operator precedence in Oracle SQL are very similar to the rules in other programming
languages such as C++ and Visual Basic. All standard operators have precedence over conditional operators.

Oracle’s standard and conditional operators are presented in Table 3.1, listed in order of precedence (from highest to lowest).

Table 3.1: Standard and Conditional Operators and Precedence

Operator/Conditional Description

+, - (unary), PRIOR Positive, negative, tree traversal

*, / Multiplication, division

+, - (binary), || Addition, subtraction, concatenation

=, !=, <, >, <=, >= Comparison operators

IS [NOT] NULL, LIKE, [NOT] BETWEEN, [NOT] IN,
EXISTS, IS OF

SQL-specific comparison operators

**, NOT Exponentiation, logical negation

AND True if both operands are true

OR True if either operand is true

UNION, UNION ALL, INTERSECT, MINUS Set operators

The use of the standard and conditional operators will be explained throughout the rest of this book.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Built-in Single-Row Functions
The previous sections covered all the basics of a SELECT statement using DUAL and how strings and numbers are constructed,
compared, and combined. Now we can start looking at some of Oracle’s built-in single-row functions that operate on strings and
numbers in database table columns.

In both Oracle SQL and most programming languages, a function is a predefined set of steps that can be accessed using a
common name. A function may include zero, one, or more arguments that are passed to the function, and it may return a result.
For example, the SQRT function calculates the square root of a number and returns a value of 1.414214 when called with an
argument of 2: SQRT(2) = 1.414214.

function

A named set of predefined programming language commands that performs a specific task given zero, one, or
more arguments and returns a value.

Single-row functions are functions that may have zero, one, or more arguments, and will return one result for each row returned
in the query. Functions can be called in the SELECT, WHERE, and ORDER BY clauses of a SELECT statement. (The WHERE and
ORDER BY clauses are used to restrict and organize query output, as explained in the next chapter.)

single-row function

Functions that may have zero, one, or more arguments, and will return one result for each row returned in a
query.

Note All of these functions are available for use in both SQL and PL/SQL (Oracle’s SQL-based programming language). As
of Oracle9i, SQL and PL/SQL share the same core SQL engine.

In this section, we’ll cover the highlights of Oracle’s string functions, numeric functions, date functions, conversion functions, and
general functions that don’t fall neatly into any of the other categories.

String Functions

String functions are functions that perform some kind of transformation on a string literal, a column containing a string, or an
expression consisting of string literals and table columns. String functions will return a string as the result of the transformation.
Table 3.2 briefly describes the built-in string functions.

string function

A function that operates on string literals, columns containing strings, or an expression containing string literals
and table columns, returning a string as the result.

Let’s consider some practical uses for string functions. Now that Scott’s widget company is off the ground, Scott regrets some of
the shortcuts he took when creating the initial version of the database. The users don’t find the reports very readable, and it would
look a lot better if the names were in uppercase and lowercase.

Table 3.2: Built-in String Functions

Function Description

ASCII Returns the decimal equivalent of the first character of a string

CHR Given a decimal number, returns the ASCII equivalent character

CONCAT Concatenates two strings

INITCAP Converts the first letter of each word in a string to uppercase

INSTR Searches a string for an occurrence of another string

LENGTH Returns the length of a string

LOWER Converts all characters in a string to lowercase

LPAD Left-fills a character string with a given character for a specified total length

LTRIM Trims a specific character from the front of a string

REPLACE Replaces occurrences of a specified string within another string

RPAD Right-fills a string with a given character for a specified total length

RTRIM Trims a specific character from the end of a string

SOUNDEX Returns a phonetic equivalent of a string

SUBSTR Returns a specified portion of a string

TRANSLATE Converts single characters to alternate single characters in a string

TRIM Removes leading, trailing, or both leading and trailing characters from a string

UPPER Converts all characters in a string to uppercase

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The INITCAP function offers a quick way to clean up names and addresses that may be in all uppercase, all lowercase, or mixed
case. It will work for a first pass over the data to at least make the names and addresses somewhat readable. Until Scott can
overhaul the database, he can use the INITCAP function and column aliases to make things look a bit better:
select empno "Empl#", initcap(ename) "EmplName" from emp;

     Empl# EmplName
---------- ----------
      7369 Smith
      7499 Allen
      7521 Ward
      7566 Jones
      7654 Martin
      7698 Blake
      7782 Clark
      7788 Scott
      7839 King
      7844 Turner
      7876 Adams
      7900 James
      7902 Ford
      7934 Miller

14 rows selected.

Note The INITCAP function cannot capitalize mixed-case names correctly. For example, if one of the employee names were
McDonald, the INITCAP function would not capitalize that name correctly (unless there was a space between MC and
DONALD, which wouldn’t be right either).

The next day, the Publications department wants to put the employee numbers and names on an intranet web page. The web
page designers would like the employee number left-justified and the employee name right-justified, for a total width of 40
characters. Between the employee number and name must be a series of dots (or periods). To provide the complete 40-character
field, Scott must use the LENGTH and LPAD functions in addition to what he already had from the example above.
select empno || lpad(initcap(ename),40-length(empno),’.’)
"Employee Directory" from emp;

Employee Directory

7369...............................Smith
7499...............................Allen
7521................................Ward
7566...............................Jones
7654..............................Martin
7698...............................Blake
7782...............................Clark
7788...............................Scott
7839................................King
7844..............................Turner
7876...............................Adams
7900...............................James
7902................................Ford
7934..............................Miller

14 rows selected.

This query uses three string functions: two of them are nested within another function, plus a concatenation operation. Let’s break
down the query to clarify how it works.

As you’ve seen, the function call INITCAP(ename) changes the first letter of each word to uppercase. The function call
LENGTH(empno) returns the length of a character string. In this case, there is an implicit conversion of a numeric type to a string
type. An implicit conversion occurs automatically when Oracle evaluates an expression; conversely, an explicit conversion
occurs when the SQL statement makes no assumptions about how Oracle will convert one datatype to another and uses one or
more of the built-in functions to perform the conversion. The column is converted to a character string, and the length of the
converted character string is returned.

implicit conversion

Conversion of one datatype to another that occurs automatically when columns or constants with dissimilar
datatypes appear in an expression.

explicit conversion

Conversion of one datatype to another in an expression using function calls such as TO_CHAR instead of relying
on automatic conversion rules (implicit conversion).

The LPAD function will left-pad a character string to a specified number of characters with the character you specify. Scott wants
to end up with a total of 40 characters, so he subtracts the number of characters that the employee number would take up. Here,
he will left-pad the employee name with periods, less the amount of space taken up by the employee number. Once the LPAD
function is evaluated, he will concatenate the employee number at the front, and once again, he will allow the implicit conversion
of the employee number from numeric to string.

Finally, Scott wants the title for the report to look readable, so he assigns a column alias to the result of the concatenated function
calls. The column alias can act as a report title.

Numeric Functions

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Numeric functions are functions that perform some kind of transformation on a numeric literal, a column containing a number, or
an expression consisting of numeric literals and table columns. Numeric functions will return a number as the result of the
transformation. Table 3.3 briefly describes the built-in numeric functions.

numeric function

A function that operates on numeric literals, columns containing numbers, or an expression containing numeric
literals and table columns, returning a number as the result.

Table 3.3: Built-in Numeric Functions

Function Description

ABS Returns the absolute value of the argument

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

ATAN2 Returns the arc tangent of two values

BITAND Performs a bitwise AND on two arguments

CEIL Returns the next highest integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Raises e (2.718281828…) to the specified power

FLOOR Returns the next lowest integer

LN Returns the natural logarithm (base e)

LOG Returns the base 10 logarithm

MOD Returns the remainder of the first argument divided by the second

POWER Raises a number to an arbitrary power

ROUND Returns a rounded value to an arbitrary precision

SIGN Returns -1 if the argument is negative, 0 if 0, or 1 if positive

SIN Returns the sine

SQRT Returns the square root of the argument

TAN Returns the tangent

TRUNC Truncates a number to an arbitrary precision

Scott’s company has survived its first month and has even turned a small profit. Scott wants to find a way to distribute the first
month’s profits in a fair manner, so he turns to the company mathematician and statistician, Julie. She suggests that the
employees get a one-time bonus that is based on the square root of their current salary. Scott can run the following query to see
what the potential bonuses might be using the SQRT function:
select ename, sal, sqrt(sal) from emp;

ENAME             SAL  SQRT(SAL)
---------- ---------- ----------
SMITH             700 26.4575131
ALLEN            1600         40
WARD             1250 35.3553391
JONES            2975 54.5435606
MARTIN           1250 35.3553391
BLAKE            2850 53.3853913
CLARK            2450 49.4974747
SCOTT            3000 54.7722558
KING             5000 70.7106781
TURNER           1300 36.0555128
ADAMS            1100 33.1662479
JAMES             950   30.82207
FORD             3000 54.7722558
MILLER           1600         40

14 rows selected.

Scott seems to like this idea, since the bonuses for the highest paid workers are not as big of a percentage of their base wage as
they are for the lowest paid workers.

The report is a bit unreadable; Scott wants the bonus rounded to two digits with a better heading for the bonus. The new query
looks something like this, using the ROUND function:
select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

ENAME             SAL      Bonus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ENAME             SAL      Bonus
---------- ---------- ----------
SMITH             700      26.46
ALLEN            1600         40
WARD             1250      35.36
JONES            2975      54.54
MARTIN           1250      35.36
BLAKE            2850      53.39
CLARK            2450       49.5
SCOTT            3000      54.77
KING             5000      70.71
TURNER           1300      36.06
ADAMS            1100      33.17
JAMES             950      30.82
FORD             3000      54.77
MILLER           1600         40

14 rows selected.

The report is looking better, but the Bonus column is still not formatted quite right. We’ll look at ways to fix this in the section on
conversion functions later in this chapter.

Since a lot of employees are on commission, Scott may want to base the bonus on both the salary and commission. We’ll look at
how to do this in the section on general functions.

Date Functions

Date functions are functions that perform some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions will return a date or a string containing a portion of the
date as the result of the transformation. Table 3.4 describes the date-related functions.

date function

A function that performs some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions return a date or a string containing a
portion of the date as the result of the transformation.

Table 3.4: Built-in Date Functions

Function Description

ADD_MONTHS Increments a date value by a number of months

CURRENT_DATE Returns the current date for the session’s time zone

CURRENT_TIMESTAMP Returns the current date and time in the session’s time zone to a particular
precision

DBTIMEZONE Returns the database time zone as an offset in hours and minutes from UTC

EXTRACT Returns a portion of the date and time (e.g., hour, month) from a timestamp value

FROM_TZ Returns a timestamp with time zone for a given combination of an individual
timestamp and time zone

LAST_DAY Returns the last day of the month for a given date

LOCALTIMESTAMP Returns the current date and time in the session’s time zone to a given precision

MONTHS_BETWEEN Returns the numeric number of months between two date arguments

NEW_TIME Returns a date in a second time zone given a date in the first time zone

NEXT_DAY Finds the next occurrence of a specific day of the week given a date

ROUND Rounds a date value to a specific unit of time

SESSIONTIMEZONE Returns the database time zone (DBTIMEZONE) unless altered during the session

SYS_EXTRACT_UTC Returns the UTC for a timestamp with time zone value

SYSDATE Returns the current date and time

SYSTIMESTAMP Returns a timestamp with time zone for the database date and time

TRUNC Truncates a date value to a specified unit of time

TZ_OFFSET Converts a text time zone to a numeric offset

Note Date and time handling has been greatly enhanced in Oracle9i. Not only can the precision of Oracle9i’s new timestamp
datatypes support fractions of a second to nine decimal places, new functions and system parameters have been
added to smooth the process of handling Oracle servers and sessions across multiple time zones. This is handy for
companies with national and international business.

When Scott started his widget company, he hired most of the people away from a competitor. As part of the employment
agreement, he kept the new employees’ original hire date for the new company. He wants to see how many employees have been
working for the company (or competitor) more than 250 months. He can run this query to get the answer:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, hiredate, months_between(sysdate,hiredate)
       "Months" from emp;

ENAME      HIREDATE      Months
---------- --------- ----------
SMITH      17-DEC-80 260.608914
ALLEN      20-FEB-81  258.51214
WARD       22-FEB-81 258.447624
JONES      02-APR-81 257.092785
MARTIN     28-SEP-81 251.254076
BLAKE      01-MAY-81 256.125043
CLARK      09-JUN-81 254.866979
SCOTT      19-APR-87 184.544398
KING       17-NOV-81 249.608914
TURNER     08-SEP-81 251.899237
ADAMS      23-MAY-87 183.415366
JAMES      03-DEC-81 249.060527
FORD       03-DEC-81 249.060527
MILLER     23-JAN-82 247.415366

14 rows selected.

Note that there are two functions being called: SYSDATE and MONTHS_BETWEEN. SYSDATE has no arguments; it merely returns
the current date and time, so the parentheses must be omitted. The MONTHS_BETWEEN function returns the difference between
dates in months. If you wanted to know the number of days instead, you would not need the MONTHS_BETWEEN function and
could use the expression SYSDATE-HIREDATE instead. Date arithmetic returns values in units of days.

Conversion Functions

As the name implies, conversion functions convert between numbers, strings, and date values. The common conversion functions
are described in Table 3.5.

Table 3.5: Built-in Conversion Functions

Function Description

ASCIISTR Converts non-ASCII characters to ASCII

CAST Converts one datatype to another

NUMTODSINTERVAL Converts a number and a character string representing a unit of time to an
INTERVAL DAY TO SECOND type

NUMTOYMINTERVAL Converts a number and a character string representing a unit of time to an
INTERVAL YEAR TO MONTH type

TO_CHAR Converts a date or a number to character format

TO_DATE Converts a character format date to a DATE datatype

TO_DSINTERVAL Converts a character string to an INTERVAL DAY TO SECOND datatype

TO_NUMBER Converts a character string to an internal numeric format

TO_YMINTERVAL Converts a character string to an INTERVAL YEAR TO MONTH datatype

Scott knows he can improve on the query he used to see which employees have been with the company more than 250 months.
Rather than see the number of months since the original hire date, he wants to see the dates when the employee will reach or has
reached the 250-month mark. For this result, he will use the NUMTOYMINTERVAL function to add 250 months to the hire date.
select ename, hiredate, hiredate +
       numtoyminterval(250,’month’) "250 Months" from emp;

ENAME      HIREDATE  250 Month
---------- --------- ---------
SMITH      17-DEC-80 17-OCT-01
ALLEN      20-FEB-81 20-DEC-01
WARD       22-FEB-81 22-DEC-01
JONES      02-APR-81 02-FEB-02
MARTIN     28-SEP-81 28-JUL-02
BLAKE      01-MAY-81 01-MAR-02
CLARK      09-JUN-81 09-APR-02
SCOTT      19-APR-87 19-FEB-08
KING       17-NOV-81 17-SEP-02
TURNER     08-SEP-81 08-JUL-02
ADAMS      23-MAY-87 23-MAR-08
JAMES      03-DEC-81 03-OCT-02
FORD       03-DEC-81 03-OCT-02
MILLER     23-JAN-82 23-NOV-02

14 rows selected.

Scott could have used the function TO_YMINTERVAL(‘20-10’) to add 20 years and 10 months (250 months total) to the hire
date. Whether to use one method or another depends on how you want to specify the format—as a discrete number of months or
years or as a combination of months and years.

Now that Scott knows more about the conversion functions, he wants to revisit one of the queries he wrote previously:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

The problem with this query was that the default numeric formatting didn’t look good, even after applying the ROUND function.
Scott can apply another function here, TO_CHAR, to force the bonus to have two decimal places, even if the bonus does not have
any significance beyond the first decimal point. The TO_CHAR function specifies the value to be formatted and the desired format,
and it can be used to format both numbers and date values. Here, Scott wants to fix that rounded number:
select ename, sal, to_char(round(sqrt(sal),2),’9999.99’)
       "Bonus" from emp;

ENAME             SAL Bonus
---------- ---------- --------
SMITH             700    26.46
ALLEN            1600    40.00
WARD             1250    35.36
JONES            2975    54.54
MARTIN           1250    35.36
BLAKE            2850    53.39
CLARK            2450    49.50
SCOTT            3000    54.77
KING             5000    70.71
TURNER           1300    36.06
ADAMS            1100    33.17
JAMES             950    30.82
FORD             3000    54.77
MILLER           1600    40.00

14 rows selected.

In addition to the ‘9’ digit in the format, you can use ‘0’ to force leading zeros, a ‘$’ to show dollar amounts, a ‘-’ for leading
or trailing signs, commas to make large numbers more readable, or even roman numerals. Table 3.6 shows a few sample numeric
formats and how the value 7322.8 would look in that format.

Table 3.6: Numeric Format Examples Using TO_CHAR

Format Result

99999.99 7322.80

$999.999 #########

00999.90 07322.80

99,999.99 7,322.80

S9999 +7323

9.9999EEEE 7.3228E+03

Notice that when a number will not fit into the format provided, it is displayed as all #s. Notice also that rounding will automatically
occur if there are not enough positions to the right of the decimal to accommodate the entire number.

General Functions

The category of general functions covers all of the functions that don’t fit neatly into a single category. Many of them are shortcuts
that allow the DBA or developer to avoid needing to use PL/SQL for certain types of processing, such as a conditional operation
that would normally require more than one statement. Table 3.7 briefly describes the general functions.

Table 3.7: Built-in General Functions

Function Description

CASE Allows embedded IF-THEN-ELSE logic in a SQL statement

COALESCE Returns the first non-NULL value from a list of values

DECODE Compares an expression to a list of possible values and returns a specified
corresponding return value

DUMP Displays the internal value of an Oracle datatype

GREATEST Returns the highest value in a list of values given the sort order

LEAST Returns the lowest value in a list of values given the sort order

NULLIF Given two expressions, returns NULL if they are equal

NVL Given two expressions, returns the second if the first one is NULL
NVL2 Given three expressions, returns the third if the first one is NULL, and returns the

second if the first one is not NULL

Scott is continuing to analyze the profitability versus expenses in his widget company by looking at the total compensation for
each employee. Most employees are salaried, but a few are salaried with a commission. Scott’s first attempt at a total
compensation calculation is something like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select ename, sal+comm from emp;

ENAME        SAL+COMM
---------- ----------
SMITH
ALLEN            1900
WARD             1750
JONES
MARTIN           2650
BLAKE
CLARK
SCOTT
KING
TURNER           1300
ADAMS
JAMES
FORD
MILLER

14 rows selected.

Wait a minute, what happened to the salaries for the other employees? As noted earlier in the chapter, NULL values provide a
great benefit in that they can indicate that a value is unknown, unavailable, or not applicable. However, when combined in some
kind of calculation with non-NULL values, the result will always be NULL. For example, adding 15 to an unknown value will result in
a new value that is also unknown.

In the case of the employee salaries and commissions, however, Scott wants to treat the commissions as zero if they are NULL for
the purpose of calculating total compensation. For this, he will use the NVL function. NVL takes two arguments. The first argument
is compared to NULL, and if it is NULL, it returns the second argument; otherwise, it returns the first argument. Scott’s query can
be modified with the NVL function to produce the correct results:
select ename, sal+nvl(comm,0) from emp;

ENAME      SAL+NVL(COMM,0)
---------- ---------------
SMITH                  700
ALLEN                 1900
WARD                  1750
JONES                 2975
MARTIN                2650
BLAKE                 2850
CLARK                 2450
SCOTT                 3000
KING                  5000
TURNER                1300
ADAMS                 1100
JAMES                  950
FORD                  3000
MILLER                1600

14 rows selected.

That looks a lot better. Other, more esoteric functions such as VSIZE are more often used by DBAs to determine how much
space a particular column for a particular row is using, in bytes:
select ename, vsize(ename), sal, vsize(sal) from emp;

ENAME      VSIZE(ENAME)        SAL VSIZE(SAL)
---------- ------------ ---------- ----------
SMITH                 5        700          2
ALLEN                 5       1600          2
WARD                  4       1250          3
JONES                 5       2975          3
MARTIN                6       1250          3
BLAKE                 5       2850          3
CLARK                 5       2450          3
SCOTT                 5       3000          2
KING                  4       5000          2
TURNER                6       1300          2
ADAMS                 5       1100          2
JAMES                 5        950          3
FORD                  4       3000          2
MILLER                6       1600          2

14 rows selected.

The lengths for the employee names make sense, but why would a salary of 3000 take up less space than a salary of 2450? This
is because all numbers are stored internally in scientific notation. Only the 3 from the 3000 salary needs to be stored with an
exponent of 3, whereas the salary 2450 is stored as 2.45 with an exponent of 3. More digits of precision require more storage
space in Oracle’s variable internal numeric format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User-Defined Functions
Even though many functions come prewritten and packaged with the default installation of the Oracle software, sometimes you
need some functionality that cannot be provided by those built-in functions. Oracle’s programming language, PL/SQL, which
stands for Programming Language SQL, can come to the rescue.

The advanced techniques on how functions, procedures, and packages are constructed and used are beyond the scope of this
book. Here, you’ll get an introduction to user-defined functions, including a look at how you could write a custom function that’s
available to all database users.

user-defined function

A function that is written by an analyst, user, or database adminstrator and does not come as part of the default
installation of the Oracle server software.

Using PL/SQL, a database analyst, database user, or a database administrator can construct a user-defined function. A user-
defined function has the same characteristics as a built-in function. It will take zero, one, or more values and return a single value
as its result. Functions in Oracle, whether they are built-in or written by a developer or DBA, are often known as stored functions,
since the source code and the compiled code are both stored in the database.

stored function

A sequence of PL/SQL variable declarations and statements that can be called as a unit, passing zero or more
arguments and returning a single value of a specified datatype. Built-in stored functions are created when the
database software is installed. Customized or user-defined functions are defined by application developers or
DBAs.

As an example, let’s once again consider Scott’s burgeoning widget company. Since the company is still small, Scott must
perform the duties of both an application developer and a DBA. The HR department appears to frequently run queries that
combine the employee name, job, and department into a formatted string for display on both web pages and corporate
documents. To standardize the format of this string throughout the organization, Scott wrote a function called FORMAT_EMP that
can be used by any department to display the employee name, job, and department, as follows:
Department: 10     Employee: Smith     Title: Shipping

Scott creates his stored function like this:
create or replace function
  FORMAT_EMP (DeptNo IN number,
              EmpName IN varchar2,
              Title IN varchar2) return varchar2
is
  concat_rslt   varchar2(100);
begin
  concat_rslt :=
    ‘Department: ‘ || to_char(DeptNo) ||
    ‘   Employee: ‘ || initcap(EmpName) ||
    ‘   Title: ‘ || initcap(Title);
  return (concat_rslt);
end;

The first line of this command will create the function if it doesn’t exist or replace it if it already exists. The next three lines define
what kinds of values are going to be provided as input to the function, as well as what kind of value will be returned. In this
example, Scott will provide the FORMAT_EMP function with a number and two strings, and he expects a string to be returned. He
needs to create the function only once. By default, only the user who created the function can use it.

Line 6 declares a local variable called concat_rslt, which will temporarily hold the formatted string result. In a stored procedure
or function, all of the actual processing occurs between the begin and the end keywords. In lines 8 to 11, the variable
concat_rslt is assigned the formatted value using some of the Oracle built-in functions. Finally, in line 12, the function returns
the result to the calling program, which, in this case, is a SQL statement similar to the following:
select format_emp(deptno,ename,job) from emp;

Department: 20   Employee: Smith   Title: Clerk
Department: 30   Employee: Allen   Title: Salesman
Department: 30   Employee: Ward   Title: Salesman
Department: 20   Employee: Jones   Title: Manager
Department: 30   Employee: Martin   Title: Salesman
Department: 30   Employee: Blake   Title: Manager
Department: 10   Employee: Clark   Title: Manager
Department: 20   Employee: Scott   Title: Analyst
Department: 10   Employee: King   Title: President
Department: 30   Employee: Turner   Title: Salesman
Department: 20   Employee: Adams   Title: Clerk
Department: 30   Employee: James   Title: Clerk
Department: 20   Employee: Ford   Title: Analyst
Department: 10   Employee: Miller   Title: Clerk

14 rows selected.

Note that the names you give for the parameters in the function need not be the same as the names of the columns in the table
you’re using. In fact, you could use this function just as well with some values that aren’t even in a table:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select format_emp(189,’JOHNSEN’,’OP MGR’) from dual;

Department: 189   Employee: Johnsen   Title: Op Mgr

1 row selected.

Notice how you can use objects such as stored functions for standardization within an organization. An Accounting department
employee does not need to remember how to format the employee information, because the formatting is kept in a common
location via the stored function.

Scott can grant rights for other departments to use this function also. As an added bonus for the DBA, only a single copy of this
function is stored in the shared pool for use by an unlimited number of users. This reduces the overall memory requirements for
the database and can improve the response time for a query.

shared pool

An area of memory within the total amount of memory allocated for the Oracle database that can hold recently
executed SQL statements, PL/SQL procedures and packages, as well as cached information from the system
tables.

Note It’s important for the DBA to keep track of how many stored procedures and functions are running during the course of
a business day, because there are memory and performance implications for the objects that share space in the
database’s shared pool. If there are too many other SQL statements and frequent accesses to database control
structures, then the stored functions and procedures may be temporarily removed from the shared pool, thus affecting
the response time the next time the user calls the stored function or procedure because it must be re-read from disk.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What is another way to write the following SQL statement by using another function?

select empno || lpad(initcap(ename),
40-length(empno),’.’)
"Employee Directory" from emp;

2. Which function would you use to perform an explicit conversion from a number to a string?

3. How can you rewrite the function call NUMTOYMINTERVAL(17,’year’) using the function TOYMINTERVAL?

4. What is the result of a number added to a NULL value?

5. What is the result of formatting the number -232.6 using the format mask ‘9999.99S’?

6. Rank the following operators or conditionals based on priority, from highest to lowest: *, OR, ||, >=

7. The DUAL table has how many rows and how many columns?

8. True or false: Strings and numbers can be concatenated.

9. Write a SELECT statement with a built-in function or functions that will format the string ‘Queen’ with the ‘!’
character padded for a total of 20 characters on the left side, and with the ‘?’ character padded for a total of 30
characters on the right. (Hint: Use nested functions.)

10. What functionality does the new Oracle TIMESTAMP datatype have over the DATE datatype?

Answers

1. You can rewrite the statement using the CONCAT function:
select concat(empno, lpad(initcap(ename),
40-length(empno),’.’) "Employee Directory" from emp;

2. You can use the TOCHAR function to convert a number to a string.

3. You can rewrite the function call as TOYMINTERVAL(‘17-00’).

4. The result of a number added to a NULL is NULL.

5. The resulting format is 232.60-.

6. *, ||, >=, OR

7. The DUAL table has one row and one column. The column is named DUMMY and has a value of ‘X’.

8. True, before the number is concatenated with the string, it is implicitly converted to a string.

9. select rpad(lpad(‘Queen’,20,’!’),30,’?’) from dual;
RPAD(LPAD(‘QUEEN’,20,’!’),30,’
------------------------------
!!!!!!!!!!!!!!!Queen??????????

10. The TIMESTAMP datatype stores the time in seconds to up to nine digits of precision.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
concatenation

date function

DUAL

explicit conversion

function

implicit conversion

NULL

numeric function

numeric literal

shared pool

single-row function

stored function

string function

string literal

user-defined function

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 4: Restricting, Sorting, and Grouping Data
Unless your database tables are very small, or your data reporting needs are very limited, you will want to restrict the rows
returned from your queries. In cases where you want to see the results of the queries in a particular order, you will want to sort the
results. Grouping the data—for example, grouping sales figures by month, salary totals by department, and so forth—can be done
in conjunction with restricting and sorting the data in a SQL statement.

Scott’s widget company has been growing by leaps and bounds over the past few months, and it has expanded to international
locations. While Scott has enjoyed being the data analyst and DBA, he has turned over these roles to Janice. The employee-
related database tables have been redesigned and turned over to the HR department. All of our examples from this point on will
use the HR schema, which contains the following tables: COUNTRIES, DEPARTMENTS, EMPLOYEES, JOBS, JOB_HISTORY,
LOCATIONS, and REGIONS. The names of these tables should be self-explanatory.

The WHERE Clause
A lot happens in the WHERE clause. This is the place where the rows (with columns both actual and derived) from the list specified
in the SELECT clause _are trimmed down to only the results you need to see. Starting with the syntax described in Chapter 2,
"SQL*Plus and iSQL*Plus Basics," we can expand the SELECT statement syntax as follows:
SELECT * | {[DISTINCT] column | expression [alias], ...}
   FROM tablename
[WHERE condition ... ];

The WHERE clause may have one or more conditions, separated by AND and OR and optionally grouped in parentheses to override
the default precedence.

From the perspective of the table, the SELECT clause slices a table vertically, and the WHERE clause slices it horizontally.

Comparison Conditions

A WHERE clause will often compare one column’s value to a constant or compare two of the columns to each other in some way.
Table 4.1 lists the comparison operators that are valid within a WHERE clause.

Table 4.1: Comparison Operators

Comparison Operator Definition

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<>, !=, ^= Not equal to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In Chapter 3, “Oracle Database Functions,” you learned about operator precedence. The comparison operators are lower in
precedence only to the arithmetic operators *, /, +, and – and the concatenation operator ||. This makes a lot of sense when
you consider how expressions are typically used in WHERE clauses: Some kind of arithmetic operation is performed on one or
more columns or constants, and that result is compared to another constant, column, or arithmetic operation on one or more
columns or constants. For instance, consider this WHERE clause:
where salary * 1.10 > 24000

This example will evaluate SALARY * 1.10 first, and then do the comparison _to 24000.

In Scott’s widget company, another corporate shakeup has occurred, and King is once again the president of the company.
Janice, in her analyst role, is running some reports against the EMPLOYEES table for King, whose first task is to do a thorough
salary review for all employees who have salaries that are within $10,000 of his salary. Janice knows that King’s salary is $24,000,
so she will specify this numeric literal in the query, along with the $10,000 for the difference in salary:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where salary + 10000 > 24000;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       100 King                           24000
       101 Kochhar                        17000
       102 De Haan                        17000

3 rows selected.

A few things come to mind right away. First, King himself is in the list. You will learn how to remove his name in the next section.
Janice could have also written the WHERE clause the other way around:
where 24000 < salary + 10000;

and the results of the query would be the same. Janice could have also saved a bit of processing time by calculating the salary
cutoff number before writing the query:
where salary > 14000;

How you write your WHERE clause may be about style, readability, and documentation more than it is about processing speeds,
which is why the first version of the WHERE clause might be the best choice.

Note Column aliases are not allowed in the WHERE clause. The actual column names must be used.

AND, OR, and NOT

The WHERE clause using comparison operators is really powerful, but in reality, you usually have more than one condition for
selecting rows. Sometimes you need all of the conditions to be true, sometimes you need only one of the conditions to be true,
and sometimes you want to specify what you don’t need. You can accomplish this by using AND, OR, and NOT in your WHERE
clauses.

Using an AND between two comparison conditions will give you rows from the table that satisfy both conditions. In one of the
queries above, Janice noticed that King’s name was returned in the query that was looking for other employees that had salaries
close to King’s. There is no need to include King in this query. Since Janice knows King’s employee ID, she can remove him from
the results of those queries by adding an AND condition, as follows:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where salary + 10000 > 24000
    and employee_id != 100;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       101 Kochhar                        17000
       102 De Haan                        17000

2 rows selected.

The rules of precedence tell us that AND is very low on the list, and therefore the AND operation is performed last in the WHERE
clause. However, for clarity, it doesn’t hurt to add parentheses to make the conditional expressions more obvious:
where (salary + 10000 > 24000)
    and (employee_id != 100);

There are other ways to remove King from the query. We’ll discuss some of these methods in Chapter 6, “Advanced SQL
Queries.”

Now King decides that he wants to include anyone who works in the IT department, in addition to those whose salaries are close
to his. Janice recognizes that this is a job for the OR operator. She modifies the query to include those employees who are in the
IT department, using the JOB_ID column:
select employee_id "Emp ID", last_name "Last Name",
    salary "Salary" from employees
    where (salary + 10000 > 24000)
    and (employee_id != 100)
    or job_id = ‘IT_PROG’;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       101 Kochhar                        17000
       102 De Haan                        17000
       103 Hunold                          9000

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       103 Hunold                          9000
       104 Ernst                           6000
       105 Austin                          4800
       106 Pataballa                       4800
       107 Lorentz                         4200

7 rows selected.

Since the AND has a higher priority than the OR, the salary and employee ID comparisons are evaluated to see if they are both
true; if so, the row is returned. If either one or the other is not true, the row might still be returned if the employee is in the IT
department. Janice can make this WHERE clause more readable by putting in the parentheses, even if they’re not needed:
where ((salary + 10000 > 24000)
and (employee_id != 100))
or (job_id = ‘IT_PROG’);

Tip When in doubt about operator precedence, use parentheses. Extra parentheses add a negligible amount of processing
time and provide additional documentation benefits.

Janice expects that the other shoe will drop in a month or two, when King will ask for a report that has everyone else in it. This is a
good place to use NOT. Janice can use this operator to negate the entire set of conditions that gave the first set of rows, thus
returning the rest of the rows:
select employee_id "Emp ID", last_name "Last Name",
   salary "Salary" from employees
   where not
   (
      (salary + 10000 > 24000)
      and (employee_id != 100)
      or job_id = ‘IT_PROG’
   )
;

    Emp ID Last Name                     Salary
---------- ------------------------- ----------
       100 King                           24000
       108 Greenberg                      12000
       109 Faviet                          9000
       110 Chen                            8200
...
       203 Mavris                          6500
       204 Baer                           10000
       205 Higgins                        12000
       206 Gietz                           8300

100 rows selected.

Note how Janice merely put the entire previous WHERE clause into parentheses and added a NOT in the front. One query returns a
given set of rows, and a second query returns everything but the given set of rows. So, between the two queries, she has covered
the entire table. Janice will have this report ready for King when he asks for it.

BETWEEN, IN, and LIKE

The BETWEEN, IN, and LIKE operators provide more ways to trim down the number of rows returned from a query. BETWEEN
gives you an easy way to check for a value that falls within a certain range. The IN operator can help you find values in a list.
LIKE can help you find character strings that match a certain pattern. Adding NOT to these will give you just the opposite set of
rows.

BETWEEN a Rock and a Hard Place
The BETWEEN operator in a WHERE clause will limit the rows to a range that is specified by a beginning value and an ending value;
the range is inclusive. The values can be dates, numbers, or character strings. The column values to be compared will be
converted to the datatypes of the values in the BETWEEN operator as needed.

Each quarter at Scott’s widget company, employees are recognized for years of service to the company. Janice is in charge of
generating the report that lists the employees who have their anniversary within the next three months. Her query will use one of
the functions mentioned in the previous chapter, EXTRACT, which returns one of the individual components of a DATE datatype.
select employee_id "Emp ID", department_id "Dept ID",
   hire_date "Hire Date",
   last_name || ‘, ‘ || first_name "Name" from employees
   /* Oct to Dec */  
   where extract(month from hire_date) between 10 and 12;

    Emp ID    Dept ID Hire Date Name
---------- ---------- --------- ----------------------
       113        100 07-DEC-99 Popp, Luis
       114         30 07-DEC-94 Raphaely, Den
       116         30 24-DEC-97 Baida, Shelli
       118         30 15-NOV-98 Himuro, Guy
       123         50 10-OCT-97 Jasper, Susan Abigail
       124         50 16-NOV-99 Mourgos, Kevin
       130         50 30-OCT-97 Atkinson, Mozhe
       135         50 12-DEC-99 Gee, Ki
       138         50 26-OCT-97 Stiles, Stephen
       141         50 17-OCT-95 Rajs, Trenna
       145         80 01-OCT-96 Russell, John
       148         80 15-OCT-99 Cambrault, Gerald
       154         80 09-DEC-98 Cambrault, Nanette

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       154         80 09-DEC-98 Cambrault, Nanette
       155         80 23-NOV-99 Tuvault, Oliver
       160         80 15-DEC-97 Doran, Louise
       161         80 03-NOV-98 Sewall, Sarath
       162         80 11-NOV-97 Vishney, Clara
       191         50 19-DEC-99 Perkins, Randall

18 rows selected.

There is a lot going on in this query. First, notice that the columns are all aliased to make the output much more readable.

Janice also uses the concatenation operator || to make the output more readable. She could have used the CONCAT function
here, although she would need to use it twice to get the same results.

There is also something else new in this example: the /* and */. These characters denote a comment in Oracle SQL. A
comment is used to help document the SQL code that you’re writing. Documenting your SQL code is good not only for other
developers who may need to modify your code in the future, but also for you when, months from now, you can’t quite remember
why you used a particular table or function!

comment

Documentation for SQL statements. Comments are specified by using the pair /* and */ or by using --.

Alternatively, you can use -- to specify a comment, like this:
select * from employees -- All columns needed for finance

The main difference between using /* */ and -- is that the latter form treats everything to the end of the line as a comment,
whereas the former treats everything as a comment until the closing */ is reached, which may be on the same line or several
lines later.

Note Although both /* */ and -- can almost be used interchangeably, the /* */ form must be used after the SELECT
keyword when specifying optimizer hints. See Chapter 12, "Making Things Run Fast (Enough)," for details on how to
specify hints to the optimizer.

Last, but not least, the query has the BETWEEN operator. The EXTRACT function will return a value from 1 to 12, and if this value
falls in the range of 10 to 12, then the row is returned from the query.

What happens if you change the BETWEEN operator slightly and reverse the order of the months?
where extract(MONTH from HIRE_DATE) between 12 and 10;

Your intuition might tell you that this form of the WHERE clause would work, since 11 would still be between 12 and 10, just as 11 is
between 10 and 12. But it doesn’t work. This is because of how Oracle’s SQL engine translates the arguments of the BETWEEN
operator. When processing the query, Oracle changes BETWEEN to a pair of comparisons joined with an AND, as follows:
where extract(MONTH from HIRE_DATE) >= 12 and
      extract(MONTH from HIRE_DATE) <= 10;

Since no number can be at the same time greater than or equal to 12 and less than or equal to 10, no rows will be returned from a
query with this WHERE clause.

IN the Thick of Things
The IN operator makes it easy to specify a list of values to search for in a WHERE clause. The IN clause contains a list of one or
more values, separated by commas and enclosed in parentheses:
IN (value1, value2, ...)

It is ideal for situations where the values to be selected aren’t in a range that the BETWEEN operator (or a pair of comparisons
with an AND) can easily handle.

At Scott’s widget company, one of the vice presidents, one of the store managers, and one of the purchasing managers will be
temporarily moving to Chicago to open a new branch office. The employees who report to them will also move. The manager IDs
for these positions are 102, 114, and 121. Janice writes a query to identify the people who are moving along with their managers:
select employee_id "Emp ID", manager_id "Mgr ID",
   last_name || ‘, ‘ || first_name "Name" from employees
   where manager_id in (102, 114, 121);

    Emp ID     Mgr ID Name
---------- ---------- ----------------------------
       103        102 Hunold, Alexander
       115        114 Khoo, Alexander
       116        114 Baida, Shelli
       117        114 Tobias, Sigal
       118        114 Himuro, Guy
       119        114 Colmenares, Karen
       129        121 Bissot, Laura
       130        121 Atkinson, Mozhe
       131        121 Marlow, James
       132        121 Olson, TJ
       184        121 Sarchand, Nandita
       185        121 Bull, Alexis
       186        121 Dellinger, Julia
       187        121 Cabrio, Anthony

14 rows selected.

The IN operator could be rewritten with a series of OR conditions, but once you need to use more than two or three values, the
advantages of using IN become apparent.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


advantages of using IN become apparent.

Note The Oracle SQL engine converts the IN operator to a series of OR conditions at runtime.

As you might expect, NOT IN is also valid. If the query you want to write sounds something like, "I want all the values except for
these two or three…," then NOT IN is probably a good choice.

What’s Not to Like about LIKE?
The LIKE operator lets you do pattern matching in a query. You know how to search for exact strings and numbers, but in some
cases, you know only a few digits of the number or a portion of the string you need to find.

pattern matching

Comparing a string in a database column to a string containing wildcard characters. These wildcard characters
can represent zero, one, or more characters in the database column string.

The LIKE operator can be used interchangeably with an equal sign, except that the string specified with LIKE can contain
wildcard characters. The wildcard characters allowed in LIKE are %, which represents zero or more characters, and _, which
represents exactly one character.

For example, the pattern ‘Sm_th%’ will match ‘Smith’ and ‘Smythe’, but not ‘Smooth’. The pattern ‘%o%o%’ will match any
string that contains at least two lowercase o characters.

Janice is writing an ad-hoc query for Employee Services that will retrieve the job titles that have the word “Manager” somewhere in
the title. She uses the LIKE operator:
select job_id, job_title from jobs
   where job_title like ‘%Manager%’;

JOB_ID     JOB_TITLE
---------- -----------------------------------
FI_MGR     Finance Manager
AC_MGR     Accounting Manager
SA_MAN     Sales Manager
PU_MAN     Purchasing Manager
ST_MAN     Stock Manager
MK_MAN     Marketing Manager

6 rows selected.

Note When numbers or dates are used with the LIKE operator, they are converted to character strings using the default
conversion rules before comparing to the LIKE string.

What happens when you want to search for the _ or % characters themselves? The job IDs in Scott’s corporate database use
underscores, so Janice would get erroneous results if she specified ‘ST_’ in the LIKE string to find store-related jobs. This would
also return jobs that had ‘ASSISTANT’ or ‘COSTMGR’ in the job ID. To solve this problem, she uses the ESCAPE option of the
LIKE clause. The ESCAPE option lets you define a special character—one that you don’t expect to find in your strings—to use
before _ or % to indicate that you’re actually looking for a _ or % character. To find all the job descriptions for jobs that are store-
related, and therefore begin with ‘ST_’, Janice uses the following query:
select job_id, job_title from jobs
where job_id like ‘ST\_%’ escape ‘\’;

JOB_ID     JOB_TITLE
---------- -----------------------------------
ST_MAN     Stock Manager
ST_CLERK   Stock Clerk

2 rows selected.

The ESCAPE option is used only with LIKE, and it tells the SQL engine to treat the character that follows literally instead of as a
wildcard character. Notice in the above example that the underscore is "escaped," but the % acts as it normally does and specifies
that zero or more characters follow.

Warning DBAs should keep an eye out for queries that use LIKE extensively. While this operator is very easy and intuitive
for the user, queries with LIKE will scan the entire table, rather than use an index, unless there are no wildcards at
the beginning of the string in the LIKE operator.

IS NULL and IS NOT NULL

As mentioned in previous chapters, NULLs can be very useful in the database for saving disk space and for identifying values that
are unknown, as opposed to being blank or zero. The key to understanding NULLs is to know that they are not equal to anything.
Therefore, NULLs won’t work with the standard comparison operators, such as +, /, >, =, and so forth. Janice learned this the
hard way when she wanted to identify employees who made a commission of less than 15% or no commission at all. Here is the
query she used:
select employee_id "Emp ID", last_name "Name", commission_pct "Comm%"
from employees where commission_pct < 0.15;

    Emp ID Name                           Comm%
---------- ------------------------- ----------
       164 Marvins                           .1
       165 Lee                               .1
       166 Ande                              .1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       166 Ande                              .1

       167 Banda                             .1
       173 Kumar                             .1
       179 Johnson                           .1

6 rows selected.

This list appears to be way too short. That is because the rows in the EMPLOYEES table with NULL values for the commission do
not pass the criteria of being less than 0.15; they don’t compare to any value because they are unknown.

This is where the IS NULL and IS NOT NULL operators come to the rescue. These two operators are the only ones that can do
a direct comparison to values that are NULL in a database row. For Janice to fix her query, she needs to add an IS NULL
condition to her WHERE clause:
select employee_id "Emp ID",
      last_name "Name", commission_pct "Comm%"
from employees
      where commission_pct < 0.15
      or commission_pct is null;

    Emp ID Name                           Comm%
---------- ------------------------- ----------
       100 King
       101 Kochhar
       102 De Haan
...
       164 Marvins                           .1
       165 Lee                               .1
       166 Ande                              .1
       167 Banda                             .1
       173 Kumar                             .1
       179 Johnson                           .1
       180 Taylor
...
       205 Higgins
       206 Gietz

78 rows selected.

Warning Be careful when constructing queries that operate on columns that can contain NULL values. A NULL is not the
same as FALSE; it is the absence of a known value. This is a by-product of three-valued logic, where we have not
just TRUE and FALSE, but TRUE, FALSE, and UNKNOWN.

You’ll see in the section on GROUP BY how multirow functions handle NULL values in a reasonable and expected way.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The ORDER BY Clause
You often need to see the results of a query in some kind of order; in other words, sorted by the values in one or more columns,
either in ascending order or descending order. By default, columns are sorted in ascending order, but for completeness, you can
use the ASC keyword. You use the DESC keyword to specify that a column should be sorted in descending order.

The syntax diagram for SELECT is expanded for ORDER BY as follows:
SELECT * | {[DISTINCT] column | expression [alias], ...}
  FROM tablename
  [WHERE condition ... ]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

The Web Intranet group has requested that the list of employees from HR arrive sorted in ascending order. Janice is able to
produce this report quickly by adding an ORDER BY to the existing query.
select employee_id || lpad(last_name,40-length(employee_id),’.’)
"Employee Directory" from employees
order by last_name;

Employee Directory

174.................................Abel
166.................................Ande
130.............................Atkinson
105...............................Austin
204.................................Baer
116................................Baida
167................................Banda
172................................Bates
...
155..............................Tuvault
112................................Urman
144...............................Vargas
162..............................Vishney
196................................Walsh
120................................Weiss
200...............................Whalen
149..............................Zlotkey

107 rows selected.

The column or columns to be sorted don’t necessarily need to be in the SELECT clause. If there are NULL values in a column to
be sorted, they will appear at the end if the sort is ascending, and they will appear first if the sort is descending.

As you might expect, you can combine both ascending and descending sorts in the same ORDER BY clause. The president, King,
needs a monthly report that shows the salaries for each department, in ascending order of department number but in descending
order for the salary amount. Janice comes up with the following query for King:
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
order by department_id asc, salary desc;

 Dept Employee                           Salary
----- ------------------------------ ----------
   10 Whalen, Jennifer                     4400
   20 Hartstein, Michael                  13000
   20 Fay, Pat                             6000
   30 Raphaely, Den                       11000
   30 Khoo, Alexander                      3100
   30 Baida, Shelli                        2900
   30 Tobias, Sigal                        2800
   30 Himuro, Guy                          2600
   30 Colmenares, Karen                    2500
   40 Mavris, Susan                        6500
...
   90 King, Steven                        24000
   90 Kochhar, Neena                      17000
   90 De Haan, Lex                        17000
  100 Greenberg, Nancy                    12000
  100 Faviet, Daniel                       9000
  100 Chen, John                           8200
  100 Urman, Jose Manuel                   7800
  100 Sciarra, Ismael                      7700
  100 Popp, Luis                           6900
  110 Higgins, Shelley                    12000
  110 Gietz, William                       8300
      Grant, Kimberely                     7000

107 rows selected.

Tip Unlike a WHERE clause, an ORDER BY clause can contain a column alias.

The ASC keyword is not required, but it is specified here for clarity. Notice also how an employee with a NULL department number

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The ASC keyword is not required, but it is specified here for clarity. Notice also how an employee with a NULL department number
will end up at the bottom of the list in an ascending sort.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Group Functions and the GROUP BY Clause
This section explains how you can group rows together and perform some kind of aggregate operation on them. For example,
you may want to count the rows for a given condition, calculate averages of numeric columns, or find the highest or lowest value
for a given column in a query result.

aggregate

A type of function in Oracle SQL that performs a calculation or transformation across multiple rows in a table,
rather than just on a single row.

The GROUP BY clause fits into the SELECT statement as follows:
SELECT * | {[DISTINCT] column | expression [alias]

         | group_function(column), ...}
  FROM tablename
  [WHERE condition ... ]
  [GROUP BY group_expression, group_expression ...]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

All group functions ignore NULLs by default. If you wanted to calculate the average commission across employees, you would
most likely not want to consider employees who are not in the sales area (and therefore have a NULL commission value). On the
other hand, you might want to treat NULL values numerically in other situations. You will see later in this chapter how you can
convert NULL values with the NVL function.

Group Functions

Table 4.2 lists some of the most commonly used group functions in SQL statements. The COUNT function is the only aggregate
function that will count rows with NULL values in any column when * is used as an argument.

Table 4.2: Common Group Functions

Function Description

COUNT Counts the number of rows, either all rows or for non-NULL column values

AVG Calculates the average value of a column

SUM Returns the sum of values for a column

MIN Returns the minimum value for all column values

MAX Returns the maximum value for all column values

STDDEV Calculates the standard deviation for a specified column

All of the functions listed in Table 4.2 have a calling sequence as follows:
function([DISTINCT | ALL] expression)

As mentioned earlier, the COUNT function allows for * as its only argument, to specify that rows are to be counted, whether or not
they have NULL values. The COUNT, MIN, and MAX functions apply to date and string expressions in addition to numeric
expressions; the rest must have numeric arguments only.

The DISTINCT keyword indicates that duplicates are to be removed before the aggregate calculation is done. For example,
calculating AVG(SALARY) versus AVG(DISTINCT SALARY) would be quite different if most of the employees are at one end of
the pay scale. ALL is the default.

The boss, King, wants to get more information on salary distribution by department, so he asks Janice to give him the count of
employees and the average salary and commission for his department, which has a department ID of 90. Janice runs the following
query:
select count(*), avg(salary),
  avg(commission_pct) from employees
  where department_id = 90;

  COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
---------- ----------- -------------------
         3  19333.3333

1 row selected.

Notice that the average commission in this case is not zero, but NULL; there were no employees in department 90 with a
commission. The result would have been non-NULL, if there were at least one employee who worked on a commission for part of
their salary.

The next morning, the boss asks the same question for department 80, which has the bulk of the commissioned employees.
Janice gets the answer with this query:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select count(*), avg(salary),
  avg(commission_pct) from employees
  where department_id = 80;

  COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
---------- ----------- -------------------
        34  8955.88235                .225

1 row selected.

Janice hears rumors that King is going to ask for a breakdown of the number of employees, how many are on commission, and
how many distinct commission percentages there are. She comes up with this query:
select count(*), count(commission_pct) "Comm Count",
  count(distinct commission_pct) "Distinct Comm"
  from employees;

  COUNT(*) Comm Count Distinct Comm
---------- ---------- -------------
       107         35             7

1 row selected.

What does this tell King? The total number of employees is 107, regardless of whether there are any NULL values in any of the
columns. Of those employees, 35 are on commission (have a non-NULL value for COMMISSION_PCT), and out of those 35, there
are seven different commission levels in force at the company.

Janice also suspects that King will be asking for some statistics for other departments. Rather than run the same query for
different department numbers, she decides that it might be worthwhile to use the GROUP BY function to give King all the
information he needs in a single query.

The GROUP BY Clause

The GROUP BY clause is used to break down the results of a query based on a column or columns. Once the rows are subdivided
into groups, the aggregate functions described earlier in this chapter can be applied to these groups. Note the following rules
about using the GROUP BY clause:

All columns in a SELECT statement that are not in the GROUP BY clause must be part of an aggregate function.

The WHERE clause can be used to filter rows from the result before the grouping functions are applied.

The GROUP BY clause also specifies the sort order; this can be overridden with an ORDER BY clause.

Column aliases cannot be used in the GROUP BY clause.

Janice has been busy preparing a report for King that will break down the salary and commission information by department. Her
first query looks like this:
select department_id "Dept", count(*), avg(salary),
  avg(commission_pct) from employees
  group by department_id;

 Dept   COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ----------- -------------------
   10          1        4400
   20          2        9500
   30          6        4150
   40          1        6500
   50         45  3475.55556
   60          5        5760
   70          1       10000
   80         34  8955.88235                .225
   90          3  19333.3333
  100          6        8600
  110          2       10150
               1        7000                 .15

12 rows selected.

This gives King a breakdown, by department, of the employee count, the average salary, and the average commission. NULLs are
not included in the calculation for commission or salary. King likes this report, but Janice suspects that he will be asking for
something different tomorrow.

One of the departments has a NULL value. There is one employee who has not yet been assigned to a department, but this
employee does have a salary and a commission.

As expected, King calls the next day with another request. He wants to see how the salaries and commissions break out within
department by job function. Janice realizes that all she needs to do is to add the job ID to the query in both the SELECT clause
and the GROUP BY clause:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and the GROUP BY clause:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
  group by department_id, job_id;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
      SA_REP              1        7000                 .15
   10 AD_ASST             1        4400
   20 MK_MAN              1       13000
   20 MK_REP              1        6000
   30 PU_MAN              1       11000
   30 PU_CLERK            5        2780
   40 HR_REP              1        6500
   50 ST_MAN              5        7280
   50 SH_CLERK           20        3215
   50 ST_CLERK           20        2785
   60 IT_PROG             5        5760
   70 PR_REP              1       10000
   80 SA_MAN              5       12200                  .3
   80 SA_REP             29  8396.55172          .212068966
   90 AD_VP               2       17000
   90 AD_PRES             1       24000
  100 FI_MGR              1       12000
  100 FI_ACCOUNT          5        7920
  110 AC_MGR              1       12000
  110 AC_ACCOUNT          1        8300

20 rows selected.

As a side benefit, this also gives King the breakdown of jobs within each department.

Using NVL with Group Functions

As mentioned earlier in this chapter, group functions will ignore NULL values in their calculations. In most cases, this makes a lot
of sense. For example, if only a small handful of employees worked on commission, and you calculated the average commission
with the assumption that a NULL commission was essentially a zero commission, then the average commission would be quite
low!

How you should interpret NULL values in a column depends on the business rules of the company and what NULL values
represent. An average commission is usually based on only those employees who work on commission, and, in this case, the
default behavior of Oracle’s grouping functions makes sense.

However, there may be times when it makes sense to convert NULL values to something that can be aggregated. Let’s assume for
the moment that there is a column called COMMISSION_AMT in the EMPLOYEES table that records the latest monthly commission
received by that employee. Just as with the COMMISSION_PCT column, the COMMISSION_AMT field is NULL for all employees
except those in the Sales department. If King wanted a report of the average salary and commission (if any) by department, the
expression
avg(salary + commission_amt)

in the SELECT clause would give results for only those rows with non-NULL commissions. That would not be what King was
looking for. Janice would need to essentially convert any NULL values to zero. This is what NVL will do, and the expression above
can be rewritten as:
avg(salary + nvl(commission_amt,0))

For each row, if the COMMISSION_AMT is NULL, it is converted to zero (or any other amount you want) and added to SALARY, and
the average is returned after all rows have been read.

The HAVING Clause

The HAVING clause is analogous to the WHERE clause, except that the HAVING clause applies to aggregate functions instead of
individual columns or single-row function results. A query with a HAVING clause still returns aggregate values, but those
aggregated summary rows are filtered from the query output based on the conditions in the HAVING clause.

The HAVING clause fits into the SELECT syntax as follows:
SELECT * | {[DISTINCT] column | expression [alias]

  | group_function(column), ...}
  FROM tablename
  [WHERE condition ... ]
  [GROUP BY group_expression, group_expression ...]
  [HAVING group_condition, ...]
  [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

The queries that Janice wrote for King have the information he needs, but his time is limited and he only wants to see the
breakdowns for the department and job combinations that have average salaries over $10,000. Janice takes the original query
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
group by department_id, job_id;

and adds a HAVING clause that removes the lower average salaries:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and adds a HAVING clause that removes the lower average salaries:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
group by department_id, job_id
having avg(salary) > 10000;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
   20 MK_MAN              1       13000
   30 PU_MAN              1       11000
   80 SA_MAN              5       12200                  .3
   90 AD_VP               2       17000
   90 AD_PRES             1       24000
  100 FI_MGR              1       12000
  110 AC_MGR              1       12000

7 rows selected.

Janice becomes proactive again, and she anticipates that King will want to see only certain jobs in the report. She can easily add
a WHERE clause to select only administrative and sales positions. She uses the LIKE clause to select these job functions:
select department_id "Dept", job_id "Job", count(*),
  avg(salary), avg(commission_pct) from employees
where job_id like ‘AD%’ or job_id like ‘SA%’
group by department_id, job_id
having avg(salary) > 10000;

 Dept Job          COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)
----- ---------- ---------- ----------- -------------------
   80 SA_MAN              5       12200                  .3
   90 AD_VP               2       17000
   90 AD_PRES             1       24000

3 rows selected.

The order of the WHERE, GROUP, and HAVING clauses does not change how the query is run or the results; however, the ordering
shown here is indicative of how the SQL engine processes the command. If an ORDER BY clause was needed in the above query,
it could be placed anywhere after the SELECT clause, but would most logically belong at the end of the query.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Rewrite the following expression using the CONCAT function.

last_name || ‘, ‘ || first_name

2. What are two ways that you can indicate a comment in a SQL command?

3. The SQL engine converts the IN operator to a series of .

4. Rewrite the following WHERE clause to be case-insensitive.
where job_title like ‘%Manager%’;

5. What is the only group function that counts NULL values in its calculation without using NVL or other special
processing?

6. The query results from using aggregate functions with a GROUP BY clause can be filtered or restricted by using
what clause?

7. Identify the two special characters used with the LIKE operator and describe what they do.

8. Name two aggregate functions that work only on numeric columns or expressions, and two other aggregate
functions that work on numeric, character, and date columns.

9. Put the clauses of a SQL SELECT statement in the order in which they are processed.

10. Which operator can do valid comparisons to columns with NULL values?

11. The SQL engine converts the BETWEEN operator to .

12. Where do NULL values end up in a sort operation?

Answers

1. The expression is rewritten as:
concat(concat(last_name, ‘, ‘),first_name)

2. You can indicate a comment in a SQL command by using /* and */ or by using --.

3. The SQL engine converts the IN operator to a series of OR operations.

4. Use the UPPER function to convert the job title to uppercase:
where UPPER(job_title) like ‘%MANAGER%’;

5. The COUNT group function using the syntax COUNT(*) counts NULL values without using NVL.

6. The HAVING clause filters or restricts the query results of the GROUP BY clause.

7. The % character matches zero or more characters, and the character matches exactly one character.

8. AVG and SUM work only on numeric columns; MIN and MAX work on all datatypes.

9. The proper order is: SELECT, WHERE, GROUP BY, HAVING, ORDER BY.

10. The operator is IS NULL.

11. The SQL engine converts the BETWEEN operator to two logical comparisons using >= and <=, connected by an AND
operation.

12. For ascending sorts, the NULL values are at the end; for descending sorts, the NULL values are at the beginning.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
aggregate

comment

pattern matching

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 5: Using Multiple Tables
So far, we have been dealing with only one table at a time in our SQL query examples. But typically the information needed to
satisfy a user query requires more than one table. For example, the EMPLOYEES table has a column with a department number,
but not a department name; the department name must be retrieved from the DEPARTMENTS table. You can get this information
by joining the two tables together on a common column, in this case, the DEPARTMENT_ID column. Two or more tables can also
be joined in situations where the columns may not be equal.

The boss at Scott’s widget company has realized that data can be pulled from more than one table at a time. Now the application
developer and DBA, Janice, has been busy trying to keep up with his requests for reports. Each of the join types will be discussed
in this chapter, as we follow Janice’s work.

Join Syntax: Out with the Old and In with the New (SQL:1999)
Not only can you join two or more tables in a number of different ways, but you can also use two different syntax forms to perform
these joins. As of Oracle9i, the full ANSI SQL:1999 standard for join syntax is supported. Prior to Oracle9i, Oracle used a
proprietary syntax that wasn’t always compatible with the ANSI standard.

join

To combine two or more tables in a query to produce rows as a result of a comparison between columns in the
tables.

Oracle’s proprietary syntax, which is still supported in the current release for backward compatibility with existing code, put all of
the join conditions in the SELECT statement’s WHERE clause. It also relied on relatively obscure methods to indicate certain types
of join operations. The newer syntax relies more heavily on concise yet descriptive keywords to clearly indicate what operation is
being performed. We’ll cover both the old and new syntax in this chapter; as a DBA or developer, you’ll most likely see new
applications using the new syntax, and plenty of existing applications that use the old syntax.

Tip All new SQL code should use the SQL:1999 standard syntax for readability and cross-platform compatibility.

There is no performance benefit to using one syntax over the other; the same kind of join using either syntax will translate into the
same internal SQL engine operation. One of the biggest benefits is the ease in which the new syntax can be written and
understood. The join conditions are now separated from the WHERE clause and placed in the FROM clause. The WHERE clause, if
one even exists, ends up being much cleaner, because it’s used only for filtering the rows being returned from the query, instead
of being intertwined with table join conditions.

In each section of this chapter, you’ll see how the database analyst, Janice, uses both formats for each new query she develops
for the boss.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Equijoins
Equijoins are also commonly known as simple joins or inner joins. Given two or more tables, an equijoin will return the results of
these tables where a common column between any given pair of tables has the same value (an equal value). Equijoins are
typically joins between foreign keys in one table to a primary key in another table.

equijoin

A join between two tables where rows are returned if one or more columns in common between the two tables
are equal and not NULL.

inner join

See equijoin.

Pre-Oracle9i Equijoin Syntax

The boss, King, gets his employee report with only the department ID on it, because the query used for the report is based on only
the EMPLOYEES table. When the company was smaller, he knew automatically that department 100 was the Finance department,
and so on. But now, with almost 30 departments in the company, he needs to see the department name in the report. That
information is in the DEPARTMENTS table. Janice will join the two tables on the common column, DEPARTMENT_ID, and produce a
report that is much more readable.
select employee_id "Emp ID", last_name || ‘, ‘ ||
    first_name "Name", department_name "Dept"
from employees e, departments d
where e.department_id = d.department_id;

    Emp ID Name                      Dept
---------- ------------------------- --------------------
       100 King, Steven              Executive
       101 Kochhar, Neena            Executive
       102 De Haan, Lex              Executive
       103 Hunold, Alexander         IT
       104 Ernst, Janice             IT
       105 Austin, David             IT
...
       201 Hartstein, Michael        Marketing
       202 Fay, Pat                  Marketing
       203 Mavris, Susan             Human Resources
       204 Baer, Hermann             Public Relations
       205 Higgins, Shelley          Accounting
       206 Gietz, William            Accounting

106 rows selected.

Notice that table aliases are used. You’ve already seen quite a few column aliases in previous examples, and tables can be
aliased also, either for clarity or for performance reasons. In this case, the aliases are necessary to identify which columns in
which table are to be compared in this query. Typically, the column names match, but that is not a requirement for columns that
are matched in a WHERE clause.

King tells Janice that the report looks good, but he also wants to see the full job description for each employee. Janice adds
another table to the query, and expands the WHERE clause. She also adds an ORDER BY clause to ensure that the report stays in
employee ID order.
select employee_id "Emp ID",
  last_name "Name", department_name "Dept",
  job_title "Job"
from employees e, departments d, jobs j
where e.department_id = d.department_id
  and e.job_id = j.job_id
order by employee_id;

Emp ID Name       Dept       Job
------ ---------- ---------- -----------------------------
   100 King       Executive  President
   101 Kochhar    Executive  Administration Vice President
   102 De Haan    Executive  Administration Vice President
   103 Hunold     IT         Programmer
   104 Ernst      IT         Programmer
   105 Austin     IT         Programmer
   106 Pataballa  IT         Programmer
...
   205 Higgins    Accounting Accounting Manager
   206 Gietz      Accounting Public Accountant

106 rows selected.

Tip To join together n tables, you need at least n-1 join conditions to avoid undesired Cartesian products, resulting from
combining every row of one table with every row of one or more other tables. Cartesian products are discussed later in
this chapter.

King is still not satisfied with the report, because it’s too long. He wants to see only information about the Finance and Purchasing
department people on a regular basis. Janice updates the query one more time to add another WHERE condition to the query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


department people on a regular basis. Janice updates the query one more time to add another WHERE condition to the query.
select e.employee_id "Emp ID",
  e.last_name "Name", d.department_name "Dept",
  j.job_title "Job"
from employees e, departments d, jobs j
where e.department_id = d.department_id
  and e.job_id = j.job_id
  and e.department_id in (30, 100)
order by e.employee_id;

 Emp ID Name         Dept         Job
------- ------------ ------------ --------------------
    108 Greenberg    Finance      Finance Manager
    109 Faviet       Finance      Accountant
    110 Chen         Finance      Accountant
    111 Sciarra      Finance      Accountant
    112 Urman        Finance      Accountant
    113 Popp         Finance      Accountant
    114 Raphaely     Purchasing   Purchasing Manager
    115 Khoo         Purchasing   Purchasing Clerk
    116 Baida        Purchasing   Purchasing Clerk
    117 Tobias       Purchasing   Purchasing Clerk
    118 Himuro       Purchasing   Purchasing Clerk
    119 Colmenares   Purchasing   Purchasing Clerk

12 rows selected.

Janice already knew the department numbers to use with the IN operator.

Oracle9i Equijoin Syntax

The query that Janice wrote in the previous section works great. However, with all of the conditions specified in the WHERE clause,
including both the table joins and the result filter, it gets cluttered fast. Most of the new options available in the Oracle9i syntax for
joins will help make the query look cleaner, so that it is easier to read and understand. Equijoins can be constructed using the
syntax NATURAL JOIN, JOIN USING, and JOIN ON.

Natural Join
Janice is quickly figuring out how to use the new Oracle9i syntax. She rewrites one of the first queries she wrote in this chapter,
joining just the EMPLOYEES and DEPARTMENTS tables. She uses the NATURAL JOIN clause, since this method will implicitly join
the two tables on columns with the same name:
select employee_id "Emp ID", last_name || ‘, ‘ ||
    first_name "Name", department_name "Dept"
from employees natural join departments;

    Emp ID Name                 Dept
---------- -------------------- --------------------
       101 Kochhar, Neena       Executive
       102 De Haan, Lex         Executive
       104 Ernst, Janice        IT
       105 Austin, David        IT
       106 Pataballa, Valli     IT
       107 Lorentz, Diana       IT
       109 Faviet, Daniel       Finance
...
       155 Tuvault, Oliver      Sales
       184 Sarchand, Nandita    Shipping
       185 Bull, Alexis         Shipping
       186 Dellinger, Julia     Shipping
       187 Cabrio, Anthony      Shipping
       202 Fay, Pat             Marketing
       206 Gietz, William       Accounting

32 rows selected.

Janice is scratching her head, because her first query returned 106 rows, while this one returns only 32. She realizes that the
simplicity of the NATURAL JOIN method is a double-edged sword. NATURAL JOIN matches on all columns that have the same
name and datatype between the tables. On closer inspection, it turns out that the EMPLOYEES and the DEPARTMENTS tables have
both the DEPARTMENT_ID and MANAGER_ID columns in common. The query she wrote is effectively the same as writing this
query in Oracle8i:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e, departments d
where e.manager_id = d.manager_id and
  e.department_id = d.department_id;

This is clearly not what she is looking for. It doesn’t make much sense to join on the MANAGER_ID column because the
MANAGER_ID column in the EMPLOYEES table is the MANAGER_ID of the employee, whereas the MANAGER_ID column in the
DEPARTMENTS table is the manager of the department itself. The query does return the employees whose manager is a
department manager, but this is not what King requested (yet!).

Warning Use NATURAL JOIN only for ad hoc queries where you are very familiar with the column names of both tables.
Adding a new column to a table that happens to have the same name as a column in another table will cause
unexpected side effects with existing queries that use both tables in a NATURAL JOIN.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Join Using
Janice decides to scale back a bit and use another form of the Oracle9i join syntax that still saves some typing but is more explicit
on which columns to join: JOIN ... USING. This form of an equijoin specifies the two tables to be joined and the column that is
common between the tables. Janice’s new query looks like this:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees join departments using (department_id);

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
       104 Ernst, Janice              IT
       105 Austin, David              IT
       106 Pataballa, Valli           IT
...
       201 Hartstein, Michael         Marketing
       202 Fay, Pat                   Marketing
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting

106 rows selected.

Join On
This particular form of an equijoin appears to be a good compromise between simplicity and accuracy, but Janice knows that she’ll
sooner or later use another form of an equijoin, the JOIN ... ON syntax. She rewrites the query once more as follows:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e join departments d
  on e.department_id = d.department_id;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
...
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting

106 rows selected.

Tip The JOIN ... ON clause is the only SQL:1999 equijoin clause that supports joining columns with different names.

Join Using with Three Tables
Later in the afternoon, one more request comes in from King: He wants to see a list of employees similar to the query Janice just
ran, but instead of departments, he wants to see the city where the employee is working, and only employees in department 40,
Human Resources. Looking at the EMPLOYEES table, the DEPARTMENTS table, and the LOCATIONS table, you can see that there
is no direct route from EMPLOYEES to LOCATIONS. Janice must "go through" the DEPARTMENTS table to fulfill King’s request. She
must take the following route to get from EMPLOYEES to LOCATIONS:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the join will use common column names between each pair of tables, Janice’s query uses the JOIN ... USING clause as
follows:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", city "City"
from employees
      join departments using (department_id)
            join locations using (location_id)
where department_id = 40;

    Emp ID Name                       City
---------- -------------------------- --------------------
       203 Mavris, Susan              London

1 row selected.

The EMPLOYEES table is joined to DEPARTMENTS on the DEPARTMENT_ID column, then the result of that join is joined with the
LOCATIONS table on the LOCATION_ID column. The result is filtered so that only the employees in department 40 are on the
report.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Non-equijoins
When joining two or more tables, you usually are joining on columns that have the same value, such as department number or job
ID. On occasion, however, you might join two tables where the common columns are not equal. More specifically, a column’s
value in one table may fall within a range of values in another table.

There is a table in the HR schema called JOBS, which lists each job in Scott’s company, along with the salary ranges for a given
job. Janice will query this table using both the pre-Oracle9i syntax and the Oracle9i syntax. The JOBS table is structured as
follows:
Name                       Null?    Type
-------------------------- -------- -------------
JOB_ID                     NOT NULL VARCHAR2(10)
JOB_TITLE                  NOT NULL VARCHAR2(35)
MIN_SALARY                          NUMBER(6)
MAX_SALARY                          NUMBER(6)

Pre-Oracle9i Non-equijoin Syntax

Janice knows that the EMPLOYEES table has a salary column and a job ID column. She wants to make sure that the salary for a
given employee falls within the range specified for the job assigned to that employee. The first employee she checks is the boss’s
daughter, Janette King, who has an employee ID of 156. The query below does a non-equijoin on the EMPLOYEES and JOBS
tables to accomplish the salary range comparison:
select e.job_id "Empl Job", e.salary, j.job_id "Job",
  j.min_salary, j.max_salary
from employees e, jobs j
where e.salary between j.min_salary and j.max_salary
and e.employee_id = 156;

Empl Job       SALARY Job        MIN_SALARY MAX_SALARY
---------- ---------- ---------- ---------- ----------
SA_REP          10000 FI_MGR           8200      16000
SA_REP          10000 AC_MGR           8200      16000
SA_REP          10000 SA_MAN          10000      20000
SA_REP          10000 SA_REP           6000      12000
SA_REP          10000 PU_MAN           8000      15000
SA_REP          10000 IT_PROG          4000      10000
SA_REP          10000 MK_MAN           9000      15000
SA_REP          10000 PR_REP           4500      10500

8 rows selected.

What does this query output tell Janice? First of all, it appears that there is no nepotism going on at the company, as Janette’s
salary falls within the normal range for a sales representative, albeit near the high end of the range. It also is apparent that her
salary is in the range for seven other positions at the company.

Oracle9i Non-equijoin Syntax

Janice wants to see if the non-equijoin query is any easier to perform using the newer Oracle9i syntax. She realizes that since she
is doing a non-equijoin, she is not able to use the NATURAL JOIN or the JOIN ... USING syntax, since both of those formats
assume equality between the implicit or explicit columns. It seems like the JOIN ... ON syntax will work, though, since she can
specify a condition between two columns in that syntax. The query looks very similar to the previous query, but as with all Oracle9i
joins, the join conditions are moved from the WHERE clause to the FROM clause:
select e.job_id "Empl Job", e.salary, j.job_id "Job",
  j.min_salary, j.max_salary
from employees e
join jobs j on
  e.salary between j.min_salary and j.max_salary
where employee_id = 156;

Empl Job       SALARY Job        MIN_SALARY MAX_SALARY
---------- ---------- ---------- ---------- ----------
SA_REP          10000 FI_MGR           8200      16000
SA_REP          10000 AC_MGR           8200      16000
SA_REP          10000 SA_MAN          10000      20000
SA_REP          10000 SA_REP           6000      12000
SA_REP          10000 PU_MAN           8000      15000
SA_REP          10000 IT_PROG          4000      10000
SA_REP          10000 MK_MAN           9000      15000
SA_REP          10000 PR_REP           4500      10500

8 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Outer Joins
Sometimes you want to join two tables and return all the rows in one table whether or not the second table contains a match on
the join condition. This is known as performing an outer join between two tables. To illustrate why you would want to join two
tables in this way, consider the EMPLOYEES and DEPARTMENTS tables for Scott’s widget company. The EMPLOYEES table has a
column called DEPARTMENT_ID, which can contain NULL values. If you were to join the two tables on the DEPARTMENT_ID
column, the query would not return all employees. Conversely, if you had departments that did not have any employees, you
would not see all of the departments represented in the query results either.

outer join

A join between two or more tables returning all the rows in one table whether or not the second table contains a
match on the join condition.

In some cases, you want to see all records in both tables, regardless of how many match on the join condition. This is known as a
full outer join.

Let’s look at how to perform these types of outer joins using the pre-Oracle9i syntax and the Oracle9i syntax.

Pre-Oracle9i Outer Join Syntax

The key component of the outer join syntax for previous Oracle versions is a plus sign enclosed in parentheses: (+). In an outer
join, this outer join operator is placed next to the table that may not have rows that satisfy the join condition between two tables.
We’ll look at some examples in the next few sections, as Janice prepares some new reports.

Outer Join
King wants Janice to produce a report listing the sales representatives and the departments in which they reside. Janice knows
that at any given time, there might be employees who aren’t assigned to a department. She constructs the query assuming that
there might be some missing or incorrect department numbers in the EMPLOYEES table:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"

from employees e,departments d
where e.department_id = d.department_id(+)
and e.job_id = ‘SA_REP’;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       179 Johnson, Charles           Sales
       177 Livingston, Jack           Sales
       176 Taylor, Jonathon           Sales
       175 Hutton, Alyssa             Sales
       174 Abel, Ellen                Sales
...
       152 Hall, Peter                Sales
       151 Bernstein, David           Sales
       150 Tucker, Peter              Sales
       178 Grant, Kimberely

30 rows selected.

It appears that all of the employees who have a sales position are assigned to the Sales department, except for Kimberely Grant.
She has a NULL value for her department ID, and therefore does not match any row in the DEPARTMENTS table.

Janice could also find out which departments don’t have any employees by changing the outer join to specify the EMPLOYEES
table as the table that might not have any rows corresponding to a DEPARTMENTS table row, like this:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
...     
       202 Fay, Pat                   Marketing
       203 Mavris, Susan              Human Resources
       204 Baer, Hermann              Public Relations
       205 Higgins, Shelley           Accounting
       206 Gietz, William             Accounting
           ,                          NOC
           ,                          Manufacturing
           ,                          Government Sales
           ,                          IT Support

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


           ,                          IT Support
           ,                          Benefits
           ,                          Shareholder Services
           ,                          Retail Sales
           ,                          Control And Credit
           ,                          Recruiting
           ,                          Operations
           ,                          Treasury
           ,                          Payroll
           ,                          Corporate Tax
           ,                          Construction
           ,                          Contracting
           ,                          IT Helpdesk

122 rows selected.

The report includes all departments, but leaves out any employees that have an invalid department number or have no
department number assigned to them. Janice will be addressing this issue in the next section.

Tip When you’re not sure where the outer join operator (+) goes, place it next to the table that is missing rows. In other
words, rows need to be "added" to this table for the join to succeed in a regular equijoin.

Full Outer Join
King has asked Janice to somehow combine both of the reports she just created into a single report that lists all employees and all
departments, regardless of whether an employee is assigned a department or a department has any employees. To accomplish
this using the pre-Oracle9i syntax, Janice must use the UNION operator to combine two outer join queries. The UNION operator
will combine the results of two outer join queries, removing duplicates found between the two queries. Her query looks like this:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id
union
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+);

    Emp ID Name                       Dept
---------- -------------------------- --------------------
       100 King, Steven               Executive
       101 Kochhar, Neena             Executive
       102 De Haan, Lex               Executive
       103 Hunold, Alexander          IT
       104 Ernst, Janice              IT
       105 Austin, David              IT
       106 Pataballa, Valli           IT
...
       176 Taylor, Jonathon           Sales
       177 Livingston, Jack           Sales
       178 Grant, Kimberely
       179 Johnson, Charles           Sales
       180 Taylor, Winston            Shipping
       181 Fleaur, Jean               Shipping
...
           ,                          Payroll
           ,                          Recruiting
           ,                          Retail Sales
           ,                          Shareholder Services
           ,                          Treasury

123 rows selected.

Notice that this query returns a total of 123 rows, one more than the previous version of this query that performed an outer join
with the DEPARTMENTS table as the primary table. This version picked up the extra row containing Kimberely Grant from the outer
join between EMPLOYEES and DEPARTMENTS in the first half of the query above.

While the query does provide the desired results, the maintenance costs are higher on a query of this type, since any changes to
the first SELECT statement most likely must be reflected in the second SELECT statement. The new outer join syntax in Oracle9i
addresses this problem.

Oracle9i Outer Join Syntax

As with the equijoin syntax, the outer join syntax in Oracle9i moves the join logic from the WHERE clause to the FROM clause.
Rather than using the slightly unintuitive (+) outer join operator to specify an outer join, Oracle9i uses LEFT OUTER JOIN ...
ON or RIGHT OUTER JOIN ... ON between the two tables to be joined. The LEFT or RIGHT specifies which table has all rows
retrieved, regardless of whether there is a match in the other table.

Left Outer Join
Janice is rewriting some of the queries she wrote back when their shop was running Oracle8i. Now that they’re using Oracle9i, she
wants to make sure she is leveraging the full power of Oracle9i’s new features, not to mention the added benefits of more intuitive
syntax. She starts with one of the queries for King that retrieved employees and corresponding departments:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+)
and e.job_id = ‘SA_REP’;

She rewrites the query using a LEFT OUTER JOIN, since the EMPLOYEES table is already on the "left" side of the FROM clause:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e
    left outer join
    departments d
    on e.department_id = d.department_id
where e.job_id = ‘SA_REP’;

 Emp ID Name                      Dept
------- ------------------------- ----------------------
    179 Johnson, Charles          Sales
    177 Livingston, Jack          Sales
    176 Taylor, Jonathon          Sales
    175 Hutton, Alyssa            Sales
    174 Abel, Ellen               Sales
...
    152 Hall, Peter               Sales
    151 Bernstein, David          Sales
    150 Tucker, Peter             Sales
    178 Grant, Kimberely

30 rows selected.

Not surprisingly, she gets the same results as she did when the query used the pre-Oracle9i syntax. However, this form of the
query is much cleaner because the join syntax is separate from the filter criterion (employees that are sales representatives). The
query is also much easier to read.

Right Outer Join
Any left outer join can be turned into a right outer join by changing the order of the tables and changing LEFT OUTER JOIN to
RIGHT OUTER JOIN. The query in the previous section can be rewritten as a RIGHT OUTER JOIN as follows:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from departments d
    right outer join
    employees e
    on e.department_id = d.department_id
where e.job_id = ‘SA_REP’;

Emp ID Name                      Dept
------- ------------------------- ----------------------
    179 Johnson, Charles          Sales
    177 Livingston, Jack          Sales
    176 Taylor, Jonathon          Sales
    175 Hutton, Alyssa            Sales
    174 Abel, Ellen               Sales
...
    152 Hall, Peter               Sales
    151 Bernstein, David          Sales
    150 Tucker, Peter             Sales
    178 Grant, Kimberely

30 rows selected.

Many times, whether to use a LEFT OUTER JOIN or a RIGHT OUTER JOIN is simply a matter of style. As you can see, the two
previous queries read differently but produce the same results.

Full Outer Join
Speaking of style and readability, the syntax for a full outer join in Oracle9i is greatly simplified compared to how a full outer join is
performed in previous versions of Oracle. Rather than performing a UNION operation between two distinct queries, the FULL
OUTER JOIN clause is specified between the two tables to be joined.

Janice is cleaning up the rest of her queries to take advantage of the new syntax, and starts with the UNION query she wrote to
display all employees and all departments in a single query. Here is the original query:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id
union
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"
from employees e,departments d
where e.department_id = d.department_id(+);

In its new format, it ends up looking a lot shorter and a lot more readable:
select e.employee_id "Emp ID", e.last_name || ‘, ‘ ||
  e.first_name "Name", d.department_name "Dept"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  e.first_name "Name", d.department_name "Dept"
from employees e
     full outer join
     departments d
     on e.department_id = d.department_id;

 Emp ID Name                      Dept
------- ------------------------- ----------------------
    200 Whalen, Jennifer          Administration
    202 Fay, Pat                  Marketing
    201 Hartstein, Michael        Marketing
 ...
        ,                         Corporate Tax
        ,                         Construction
        ,                         Contracting
        ,                         IT Helpdesk

123 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Self-Joins
You now know that you can join tables to other tables, but can you join a table to itself, producing a self-join? The answer is a
resounding, but qualified, yes. Typically, a table will join to itself when the table is designed in a hierarchical manner; that is,
when one particular row in a table is somehow related to another row in the table in a parent-child relationship.

self-join

A join of a table to itself where a non-primary key column in the table is related to the primary key column of
another row in the same table.

hierarchical

A table design where one of the foreign keys in the table references the primary key of the same table in a
parent-child relationship.

At Scott’s widget company, the EMPLOYEES table has a column that contains the employee number of the employee
(EMPLOYEE_ID) in addition to a column that contains the employee number of the employee’s immediate supervisor
(MANAGER_ID). Janice will use this information to produce some new reports for the boss that essentially join the EMPLOYEES
table to itself.

Pre-Oracle9i Self-Join Syntax

Since the EMPLOYEES table contains the employee’s manager number, Janice decides to become proactive and generate a report
of all employees and their managers. Her SELECT query references the EMPLOYEES table twice: once as an EMPLOYEES table
and once as a MANAGERS table, since all of the managers are employees themselves. The EMPLOYEES table can be related to
itself.

The query that Janice writes displays the employees that have managers:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       m.employee_id "Mgr ID", m.last_name "Mgr Name"
from employees e, employees m
where e.manager_id = m.employee_id;

    Emp ID Emp Name            Mgr ID Mgr Name
---------- --------------- ---------- ---------------
       201 Hartstein              100 King
       149 Zlotkey                100 King
       148 Cambrault              100 King
...
       177 Livingston             149 Zlotkey
       176 Taylor                 149 Zlotkey

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


       176 Taylor                 149 Zlotkey
       175 Hutton                 149 Zlotkey
       174 Abel                   149 Zlotkey
       202 Fay                    201 Hartstein
       206 Gietz                  205 Higgins

106 rows selected.

Notice that King is not in the list. Since the row in the EMPLOYEES table for King does not have an entry for a manager (he has no
manager since he is the president of the company), his row does not match any rows in the other copy of the EMPLOYEES table,
and therefore does not show up as a row in the query output.

Oracle9i Self-Join Syntax

The Oracle9i syntax not only moves the join condition to the FROM clause, it also uses the familiar syntax you saw earlier for
joining two different tables—the JOIN ... ON syntax. Janice rewrites the manager query using the Oracle9i syntax as follows:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       m.employee_id "Mgr ID", m.last_name "Mgr Name"
from employees e
     join employees m
     on e.manager_id = m.employee_id;

    Emp ID Emp Name            Mgr ID Mgr Name
---------- --------------- ---------- ---------------
       201 Hartstein              100 King
       149 Zlotkey                100 King
       148 Cambrault              100 King
...
       177 Livingston             149 Zlotkey
       176 Taylor                 149 Zlotkey
       175 Hutton                 149 Zlotkey
       174 Abel                   149 Zlotkey
       202 Fay                    201 Hartstein
       206 Gietz                  205 Higgins

106 rows selected.

Not unexpectedly, she gets the same results as she did with the pre-Oracle9i version of the query.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Cartesian Products: The Black Sheep of the Family
What if you were joining two tables, or even three tables, and you left off the join conditions? The result would be a Cartesian
product. Every row of each table in the FROM clause would be joined with every row of the other tables. If one table had 15 rows,
and a second table had 21 rows, a Cartesian product of those two tables would produce 315 rows in the result set of the query.
Needless to say, it can be a big problem when you have three or more tables with no join conditions specified.

Cartesian product

A join between two tables where no join condition is specified, and as a result, every row in the first table is
joined with every row in the second table.

Note Partial Cartesian products are produced when a query with n tables has less than n-1 join conditions between tables.

Needless to say, Cartesian products are used quite infrequently in SELECT statements, but they can be useful in very specific
situations. For example, a Cartesian product of the EMPLOYEES table and the COUNTRIES table could give Janice a way to
produce a checklist in a spreadsheet to note when a particular employee has visited one of the countries where Scott’s widget
company has a field office or distribution center. If employee visits to other offices were tallied in another table, then the Cartesian
product could be joined to the new table as a running total of visits by employees to other offices.

Pre-Oracle9i Cartesian Product Syntax

Janice decides that the employee/country visit idea has some merit, and experiments with some queries to generate the
combinations of employees and countries using a Cartesian product query:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       c.country_id "Cntry ID", c.country_name "Cntry Name"
from employees e, countries c;

    Emp ID Emp Name        Cn Cntry Name
---------- --------------- -- --------------------
       100 King            AR Argentina
       101 Kochhar         AR Argentina
       102 De Haan         AR Argentina
       103 Hunold          AR Argentina
...
       201 Hartstein       ZW Zimbabwe
       202 Fay             ZW Zimbabwe
       203 Mavris          ZW Zimbabwe
       204 Baer            ZW Zimbabwe
       205 Higgins         ZW Zimbabwe
       206 Gietz           ZW Zimbabwe

2675 rows selected.

Oracle9i Cartesian Product Syntax

The same query using the Oracle9i syntax is similar, except that CROSS JOIN is used to separate the two tables that are queried
to produce a Cartesian product. Janice changes the previous query to use the Oracle9i version:
select e.employee_id "Emp ID", e.last_name "Emp Name",
       c.country_id "Cntry ID", c.country_name "Cntry Name"
from employees e cross join countries c;

Emp ID Emp Name        Cn Cntry Name
---------- --------------- -- --------------------
       100 King            AR Argentina
       101 Kochhar         AR Argentina
       102 De Haan         AR Argentina
       103 Hunold          AR Argentina
...
       201 Hartstein       ZW Zimbabwe
       202 Fay             ZW Zimbabwe
       203 Mavris          ZW Zimbabwe
       204 Baer            ZW Zimbabwe
       205 Higgins         ZW Zimbabwe
       206 Gietz           ZW Zimbabwe

2675 rows selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Add a clause to the WHERE condition to make the following query return only the department names without

employees:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

2. A type of query that has either too few or no join conditions is known as a query.

3. Name three kinds of equijoins.

4. A natural join makes what assumption between the columns of two or more tables to be joined?

5. The Oracle9i syntax moves the join conditions from the clause to the clause in a SELECT statement.

6. To avoid a Cartesian product, a query with four tables must have at least how many join conditions between
tables?

7. To return all the rows in one table regardless of whether any rows in another table match on the join condition, you
would use what kind of a join?

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

10. A primary key in one table would frequently be joined to what in a second table?

Answers

1. The following clause added to the WHERE condition makes the query return only department names without employees:
and employee_id is null

2. Cartesian product

3. Inner joins, self-joins, left outer joins, right outer joins, and full outer joins are all examples of equijoins.

4. A natural join assumes that the tables are to be joined on the columns that have the same names and datatypes.

5. WHERE, FROM

6. A query with four tables must have at least three join conditions to avoid a Cartesian product.

7. An outer join returns all rows in one table regardless of whether any rows in another table match on the join condition.

8. A (+) is used to signify an outer join in a pre-Oracle9i query.

9. A full outer join uses the UNION set operator in a pre-Oracle9i query.

10. A primary key in one table would frequently be joined to a foreign key in a second table.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
Cartesian product

equijoin

hierarchical

inner join

join

outer join

self-join

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 6: Advanced SQL Queries
In the previous chapter, you saw how you can write queries that retrieve information from multiple tables. This chapter looks at
more advanced types of queries. We will begin with relatively simple subqueries, which allow you to put one query inside another,
rather than running two individual queries. Subqueries can be tied even more closely to the main query using a correlated
subquery, where columns in the WHERE clause of the subquery directly reference columns in the main query.

Sometimes, you need to get similar information from more than one query, and there is some overlap between the results. You
might not want to see the duplicates, or you might want to see only the results that two queries have in common. As you’ll learn
here, you can use UNION and INTERSECT to accomplish these tasks. You’ll also learn how to use ROLLUP and CUBE to
summarize table information.

Subqueries
A subquery places one query inside another one. The second query resides somewhere within the WHERE clause of a SELECT
statement. One or more values returned by the subquery are used by the main query to return the results to the user.

subquery

A query that is embedded in a main, or parent, query and used to assist in filtering the result set from a query.

The types of operators allowed in the WHERE clause depend on whether the subquery returns one row or more than one row. If
only a single row is returned from a query, the comparison operators =, !=, <, >, >=, <=, and so forth are valid. If more than one
row is returned from a subquery, operators such as IN, NOT IN, ANY, and ALL are valid.

Single-Row Subqueries

The boss, King, wants to do his quarterly salary analysis. He would like to see which employees in the IT department are earning
more than the average salary across all employees. Janice, the database analyst and DBA, realizes that this could be written as
two queries, and decides to take that approach first before using a subquery. The average salary for an employee in the company
is retrieved by a query you’ve seen in previous chapters:
select avg(salary) from employees;

AVG(SALARY)
-----------
 6461.68224

1 row selected.

Using this information as a starting point, Janice writes a second query to see which employees in the IT department (department
60) have a higher salary than the average. She must cut and paste the number returned from the previous query into this new
query:
select employee_id, last_name, first_name, salary
from employees
where salary > 6461.68224
and department_id = 60;

EMPLOYEE_ID LAST_NAME     FIRST_NAME            SALARY
----------- ------------- ----------------- ----------
        103 Hunold        Alexander               9000

1 row selected.

The only employee in the IT department making more than the company average salary is Alexander Hunold, who happens to be
the manager of that department.

Janice wants to streamline this reporting function for King. She realizes that this can easily be written as a single-row subquery.
She will embed the query she used to calculate the average into the second query, replacing the constant value as follows:
select employee_id, last_name, first_name, salary
from employees
where salary > (select avg(salary) from employees)
and department_id = 60;

EMPLOYEE_ID LAST_NAME     FIRST_NAME                 SALARY
----------- ------------- ---------------------- ----------
        103 Hunold        Alexander                    9000

1 row selected.

single-row subquery

A subquery that returns a single row and is compared to a single value in the parent query.

Not only is the query more readable and easier to maintain than the version with two queries, but it also will be processed much
more efficiently by the Oracle server.

Tip As a general rule, a query, enclosed in parentheses, can take the place of a table name in the FROM clause or a column
name in the SELECT or WHERE clause of a query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


name in the SELECT or WHERE clause of a query.

King is starting to realize that the IT department may need some pay increases in the next fiscal year.

Multiple-Row Subqueries

Sometimes, you want to compare a column in a table to a list of results from a subquery, not just a single result. This is where a
multiple-row subquery comes in handy. For example, King is following up on his analysis of employee salaries in the IT
department, and he wants to see who else in the company is making the same salary as anyone in the IT department.

multiple-row subquery

A subquery that can return more than one row for comparison to the main, or parent, query using operators
such as IN.

Janice starts out with the subquery to make sure that she starts with the right set of results to use for the main query. She wants to
get the salaries for the employees in the IT department (department 60):
select salary
from employees
where department_id = 60;

SALARY
----------
      9000
      6000
      4800
      4800
      4200

5 rows selected.

So far, so good. She takes this query and makes is a subquery in the query that compares the salaries of all employees to this list
by using the IN clause:
select employee_id, last_name, first_name, salary
from employees
where salary in (select salary from employees
                 where department_id = 60);

EMPLOYEE_ID LAST_NAME     FIRST_NAME             SALARY
----------- ------------- ------------------ ----------
        158 McEwen        Allan                    9000
        152 Hall          Peter                    9000
        109 Faviet        Daniel                   9000
        103 Hunold        Alexander                9000
        202 Fay           Pat                      6000
        104 Ernst         Janice                   6000
        106 Pataballa     Valli                    4800
        105 Austin        David                    4800
        184 Sarchand      Nandita                  4200
        107 Lorentz       Diana                    4200

10 rows selected.

But wait, something is not quite right here. King did not want to see the IT employees in this list; he wanted to include everyone
but the IT employees. So Janice makes a slight change as follows, removing employees whose job title is not an IT job title:
select employee_id, last_name, first_name, salary
from employees
where salary in (select salary from employees
                 where department_id = 60)
      and job_id not like ‘IT_%’;

EMPLOYEE_ID LAST_NAME     FIRST_NAME             SALARY
----------- ------------- ------------------ ----------
        158 McEwen        Allan                    9000
        152 Hall          Peter                    9000
        109 Faviet        Daniel                   9000
        202 Fay           Pat                      6000
        184 Sarchand      Nandita                  4200

5 rows selected.

Note that Janice also could have checked for a department ID other than 60, as you have seen in previous queries.

Correlated Subqueries

A correlated subquery looks very much like a garden-variety subquery, with one important difference: The correlated subquery
references a column in the main query as part of the qualification process to see if a given row will be returned by the query. For
each row in the parent query, the subquery is evaluated to see if the row will be returned. In Janice’s situation, the salary of each
individual employee is compared to the average salary for that employee’s department. The checkmarked rows in the parent
query are returned.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


correlated subquery

A subquery that contains a reference to a column in the main, or parent, query.

Janice knows that King will be asking for more queries regarding salaries, so she comes up with a fairly generic query that will
identify employees who are making more than the average salary for their department. As a first step, she builds the subquery that
retrieves the average salary for a department:
select avg(salary) from employees
    where department_id = 60;

AVG(SALARY)
-----------
       5760

1 row selected.

That query returns the average salary for department 60. In the correlated subquery, she will need to generalize it so that it will
correlate with any department in the parent query. Next, she builds the parent query that compares a given employee’s salary to
the average she just calculated:
select employee_id, last_name, salary
  from employees
  where department_id = 60 and
    salary > 5760;

EMPLOYEE_ID LAST_NAME              SALARY
----------- ------------------ ----------
        103 Hunold                   9000
        104 Ernst                    6000

2 rows selected.

Notice that there are two queries that can now be linked together into a correlated subquery to return all employees that earn
more than the average for their department across all departments. If you’re not sure how to link these two queries, the hint is in
the column names. Janice joins the two queries using the DEPARTMENT_ID column:
select employee_id, last_name, department_id, salary
  from employees emp
  where
    salary > (select avg(salary) from employees
              where department_id = emp.department_id);

EMPLOYEE_ID LAST_NAME          DEPARTMENT_ID     SALARY
----------- ------------------ ------------- ----------
        100 King                          90      24000
        103 Hunold                        60       9000
        104 Ernst                         60       6000
        108 Greenberg                    100      12000
        109 Faviet                       100       9000
...       
        193 Everett                       50       3900
        201 Hartstein                     20      13000
        205 Higgins                      110      12000

38 rows selected.

As Janice expected, this query still shows that Hunold and Ernst make more than the average salary for department 60.

Multiple-Column Subqueries

There are times when you need to use a subquery that compares more than just one column between the parent query and the
subquery. This is known as a multiple-column subquery. Typically, the IN clause is used to compare the outer query’s columns
to the columns of the subquery.

multiple-column subquery

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A subquery in which more than one column is selected for comparison to the main query using the same
number of columns.

Note Multiple-column subqueries can be rewritten as a compound WHERE clause with multiple logical operators. However,
this approach is not as readable or maintainable as a multiple-column subquery.

The boss, King, wants to be able to identify employees that make the same salaries as other employees with the same job. He
wants to specify an employee number and have the query return the other employees that have the same job title and make the
same salary. Janice immediately realizes that this could be written as a multiple-column subquery. She decides to try out the
query on one of the stock clerks, Hazel Philtanker, who has an employee number of 136:
select employee_id, last_name, job_id, salary
  from employees
  where (job_id, salary) in
        (select job_id, salary from employees
         where employee_id = 136);

EMPLOYEE_ID LAST_NAME       JOB_ID         SALARY
----------- --------------- ---------- ----------
        128 Markle          ST_CLERK         2200
        136 Philtanker      ST_CLERK         2200

2 rows selected.

The query looks good, except that Hazel is included in the results. If King decides he doesn’t want to see the selected employee in
the results, Janice can modify the query slightly and change it into a correlated multiple-column subquery:
select employee_id, last_name, job_id, salary
  from employees emp
  where (job_id, salary) in
        (select job_id, salary from employees
         where employee_id = 136
         and employee_id != emp.employee_id);

EMPLOYEE_ID LAST_NAME       JOB_ID         SALARY
----------- --------------- ---------- ----------
        128 Markle          ST_CLERK         2200

1 row selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Set Operators
Set operators combine the results of two or more queries into a single query result. The set operators in Oracle are UNION, UNION
ALL, INTERSECT, and MINUS.

All of the set operators have the same precedence. To override the default left-to-right evaluation, use parentheses to group
SELECT statements that you want evaluated first.

UNION and UNION ALL

The UNION operator will combine two query result sets into a single result set, sorted by the first column of the SELECT clause for
both queries. The syntax for using UNION is very straightforward: Two queries that can otherwise stand alone are combined with
the keyword UNION. The first query does not need a semicolon; the entire SQL statement is terminated by a single semicolon,
after the second query.

There are a few rules in force when writing a compound query using UNION. The number of columns in both queries must match,
and the corresponding columns must also have the same datatypes. The names of the columns need not match though; the query
result will use the column names from the first query.

A compound query using UNION removes duplicates by using a sort operation before returning the results of the query. The
values of all columns must be equal for one of the rows to be removed from the query result. This is one of the few cases where a
NULL value in one of the queries is considered to be equal to a corresponding NULL value in the other query.

UNION ALL operates in much the same way as UNION, except that duplicates are not removed. A row that exists in both queries
will show up twice in the results. Because a UNION ALL does not need to remove duplicates, a sort operation does not occur.
Therefore, a UNION ALL will usually return results faster than a UNION with the same queries. If you know ahead of time that the
two queries do not have duplicates, use UNION ALL.

At Scott’s widget company, the database not only keeps track of an employee’s current information in the EMPLOYEES table, but it
also keeps track of what jobs the employees have held in the past in the JOB_HISTORY table. The boss, King, wants to get a
report that includes both the current and previous positions held by employees in the company, along with the beginning and
ending dates for when the employee held that position. Janice realizes that she’ll need a UNION or UNION ALL operation, plus a
sort operation. She is not sure how she will retrieve the employee names from the JOB_HISTORY table, since it has only the
employee’s ID number.

Her first attempt at a query tries to combine the job history information with the current employment information, as follows:
select employee_id, last_name, hire_date, job_id, department_id
from employees
union
select employee_id, start_date, end_date, job_id, department_id
from job_history;

select employee_id, last_name, hire_date, job_id, department_id
                    *
ERROR at line 1:
ORA-01790: expression must have same datatype as
     corresponding expression

The two queries have the same number of columns, but the datatypes of the corresponding columns don’t match. This is because
the employee data doesn’t have an ending date, and the JOB_HISTORY table doesn’t have a column to store the employee name.
To fix this problem, Janice changes the first query to include a NULL value for an ending date (since the EMPLOYEES file has only
active employees):
select employee_id emp#, last_name, hire_date,
   NULL end_date, job_id, department_id dept#
from employees

She changes the second query to include a constant of an empty string to be a placeholder to match the name in the other query:
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history;

The resultant query using the UNION operator looks like this:
select employee_id emp#, last_name, hire_date,
   NULL end_date, job_id, department_id dept#
from employees
union
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


from job_history;

 EMP# LAST_NAME     HIRE_DATE END_DATE  JOB_ID      DEPT#
----- ------------- --------- --------- ---------- ------
  100 King          17-JUN-87           AD_PRES        90
  101 Kochhar       21-SEP-89           AD_VP          90
  101               21-SEP-89 27-OCT-93 AC_ACCOUNT    110
  101               28-OCT-93 15-MAR-97 AC_MGR        110
  102 De Haan       13-JAN-93           AD_VP          90
  102               13-JAN-93 24-JUL-98 IT_PROG        60
  103 Hunold        03-JAN-90           IT_PROG        60
...
  201 Hartstein     17-FEB-96           MK_MAN         20
  201               17-FEB-96 19-DEC-99 MK_REP         20
  202 Fay           17-AUG-97           MK_REP         20
  203 Mavris        07-JUN-94           HR_REP         40
  204 Baer          07-JUN-94           PR_REP         70
  205 Higgins       07-JUN-94           AC_MGR        110
  206 Gietz         07-JUN-94           AC_ACCOUNT    110

117 rows selected.

Since the UNION of the two queries will result in adjacent employee IDs due to the default sort behavior of the UNION operator, the
report makes sense to King. From this report, he can see that Kochhar was employed as both an account representative and
account manager, before becoming a vice president in her current position.

Also worth noting in this report is that the columns EMPLOYEE_ID and DEPARTMENT_ID were assigned column aliases in the first
query, and so those aliases applied to the entire result.

But, of course, Janice is not satisfied with the results of the report. The HIRE_DATE column should really be a starting date for the
employee in that department, but for the rows in the EMPLOYEE table, it is the employee’s starting date at the company. To make
the column more accurate, Janice changes the column alias for the first query to STRT_DATE and makes it a correlated subquery,
so that the date is actually the date the employees started in their current department:
select employee_id emp#, last_name,
     coalesce(
     (select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id),
      hire_date) strt_date,
   NULL end_date, job_id, department_id dept#
from employees emp
union
select employee_id, ‘’, start_date,
   end_date, job_id, department_id
from job_history
order by emp# asc, strt_date desc;

 EMP# LAST_NAME     STRT_DATE END_DATE  JOB_ID      DEPT#
----- ------------- --------- --------- ---------- ------
  100 King          17-JUN-87           AD_PRES        90
  101 Kochhar       16-MAR-97           AD_VP          90
  101               28-OCT-93 15-MAR-97 AC_MGR        110
  101               21-SEP-89 27-OCT-93 AC_ACCOUNT    110
  102 De Haan       25-JUL-98           AD_VP          90
  102               13-JAN-93 24-JUL-98 IT_PROG        60
  103 Hunold        03-JAN-90           IT_PROG        60
...
  201 Hartstein     20-DEC-99           MK_MAN         20
  201               17-FEB-96 19-DEC-99 MK_REP         20
  202 Fay           17-AUG-97           MK_REP         20
  203 Mavris        07-JUN-94           HR_REP         40
  204 Baer          07-JUN-94           PR_REP         70
  205 Higgins       07-JUN-94           AC_MGR        110
  206 Gietz         07-JUN-94           AC_ACCOUNT    110

117 rows selected.

There are two differences between this query and the previous one. A minor difference is that the query result is sorted by
employee number in ascending order and by the starting date in descending order. King wants to see the employee’s most recent
job first.

The second difference is a bit more complex. Janice’s goal was to find out if the employee had any previous jobs, and if so, return
the ending date for the last job that employee had. Remember that you can have the SQL text (in parentheses) of a correlated
subquery in the SELECT, FROM, or WHERE clause of the parent query. In this case, the correlated subquery is as follows:
(select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id)

For each row in the EMPLOYEE table, this subquery will find the last date that the employee worked in any department and adds
one day, resulting in the first date that the employee started in their current position. But if the employee has never switched
departments, there will be no rows in the JOB_HISTORY table, and therefore the subquery will return a NULL result. The solution is
to wrap the COALESCE function around the query.

The COALESCE function will return the first non-NULL argument in the argument list. The HIRE_DATE column is specified as the
second argument to COALESCE, so if the employee has never switched departments, the original hire date will be returned from
this function:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


coalesce(
     (select max(end_date)+1
      from job_history
      where employee_id = emp.employee_id),
      hire_date) strt_date,

To reiterate, the above section of SQL evaluates to either the first day employees started in their current department or their hiring
date, if they have never switched departments. The column alias STRT_DATE is assigned to this derived column.

The next morning, Janice realizes that she could have used UNION ALL instead of UNION in this query. There will never be any
duplicate records between the two queries in this compound query, mainly because the database does not store the employee’s
current job position and starting date in the JOB_HISTORY table.

Tip DBAs should be on the lookout for queries that use UNION when UNION ALL would produce the same desired results.
Because UNION does a sort while removing duplicates, many UNION queries will have a much more noticeable
performance impact on the system than the same queries that use UNION ALL.

INTERSECT

There are times when you need to know which rows two tables or queries have in common. The INTERSECT operator provides
this functionality. As with the UNION operator, the number and types of the columns in the two queries to be compared must be
the same, but the column names can be different. Rows are returned from an INTERSECT operation only if all columns in the two
queries match.

In Scott’s widget database, the current employment information is kept in the EMPLOYEES table, and the previous employment
information (when employees have changed jobs) is kept in the JOB_HISTORY table. The boss wants to find out which employees
have changed departments multiple times and have come back to work in the department they worked in previously, with the
same job title. Janice knows that she needs to use the EMPLOYEES and JOB_HISTORY tables, and decides to use the
INTERSECT operator to see if there are current employees in a particular department and job title that are also in the
JOB_HISTORY table. Janice realizes that a multicolumn join in a WHERE clause may produce similar results, but she thinks that the
INTERSECT method is more straightforward and easier to use and maintain. Her first query looks like this:
select employee_id, job_id, department_id from employees
intersect
select employee_id, job_id, department_id from job_history;

EMPLOYEE_ID JOB_ID     DEPARTMENT_ID
----------- ---------- -------------
        176 SA_REP                80

1 row selected.

King looks at this report and thinks that something is amiss. He is sure that there was another employee besides employee
number 176 who has changed job titles and came back to work with her original job title. Janice realizes that she is comparing too
many columns, and she rewrites her query as follows:
select employee_id, job_id from employees
intersect
select employee_id, job_id from job_history;

EMPLOYEE_ID JOB_ID
----------- ----------
        176 SA_REP
        200 AD_ASST

2 rows selected.

As King suspected, employee number 200 is back working with her old job title, after previously switching departments. Because
one of the three columns was different in the previous query, employee number 200 did not show up in the results.

Now that Janice has the result set that King was looking for, she decides that it would be more readable if the employee’s last
name and first name were in the report also. The problem is, she can’t add it to the EMPLOYEES query with the INTERSECT
operator, since the JOB_HISTORY table does not have the employee last name, and as a result the compound INTERSECT query
would not return any rows. Instead, she treats the last query as a subquery and joins it back to the EMPLOYEES table:
select e.employee_id, e.last_name, e.first_name,
   e.job_id from employees e inner join
    (select employee_id, job_id from employees
     intersect
     select employee_id, job_id from job_history) i
on e.employee_id = i.employee_id;

EMPLOYEE_ID LAST_NAME         FIRST_NAME     JOB_ID
----------- ----------------- -------------- ----------
        176 Taylor            Jonathon       SA_REP
        200 Whalen            Jennifer       AD_ASST

2 rows selected.

Notice that Janice is using Oracle9i’s new INNER JOIN syntax. The query in parentheses is treated just as if it were another table
being joined in the new query.

MINUS

The MINUS compound-query operator returns rows from the first query only if they are not in a second query. In other words, the
second query is subtracted from the first query. Any rows in the second query that are not in the first query are ignored and do not
affect the results of the entire compound query. As with the UNION operator, the number and types of the columns in the two

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


affect the results of the entire compound query. As with the UNION operator, the number and types of the columns in the two
queries to be compared must be the same, but the column names can be different.

The boss wants to make sure that the company’s expansion plans are going well, and he wants to know which countries don’t yet
have a department located in that country. Janice realizes that a MINUS operator might do the trick here. She can subtract the
countries with departments from a query with the COUNTRIES table. The first part of her query is straightforward. It is a SELECT
from the COUNTRIES table:
select country_id, country_name from countries;

CO COUNTRY_NAME
-- ----------------------------------------
AR Argentina
AU Australia
BE Belgium
BR Brazil
CA Canada
CH Switzerland
CN China
DE Germany
DK Denmark
EG Egypt
FR France
HK HongKong
IL Israel
IN India
IT Italy
JP Japan
KW Kuwait
MX Mexico
NG Nigeria
NL Netherlands
SG Singapore
UK United Kingdom
US United States of America
ZM Zambia
ZW Zimbabwe

25 rows selected.

The second part is a bit trickier. She needs to subtract the countries in which the departments reside. The DEPARTMENTS table
does not have a COUNTRY_ID column, but it does have a LOCATION_ID column. The LOCATIONS table has a COUNTRY_ID
column, so Janice will need to join the DEPARTMENTS and LOCATIONS table to get the list of countries with departments:
select distinct country_id
from departments d, locations l
where d.location_id = l.location_id;

CO
--
CA
DE
UK
US

4 rows selected.

Janice realizes that she will also need the country name in the query for the INTERSECT operation to work, so this query needs to
have the COUNTRIES table as part of the join:
select distinct c.country_id, country_name
from departments d, locations l, countries c
where d.location_id = l.location_id
  and c.country_id = l.country_id;

CO COUNTRY_NAME
-- ----------------------------------------
CA Canada
DE Germany
UK United Kingdom
US United States of America

4 rows selected.

Janice can now bring it all together by using the MINUS operator to subtract this query from the first query against the COUNTRIES
table:
select country_id, country_name from countries
minus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


minus
select distinct c.country_id, country_name
from departments d, locations l, countries c
where d.location_id = l.location_id
  and c.country_id = l.country_id;

CO COUNTRY_NAME
-- ----------------------------------------
AR Argentina
AU Australia
BE Belgium
BR Brazil
CH Switzerland
CN China
DK Denmark
EG Egypt
FR France
HK HongKong
IL Israel
IN India
IT Italy
JP Japan
KW Kuwait
MX Mexico
NG Nigeria
NL Netherlands
SG Singapore
ZM Zambia
ZW Zimbabwe

21 rows selected.

King now realizes that the company is a long way from having a significant presence in all of the countries where there are
company employees.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

ROLLUP and CUBE
Sometimes, a simple GROUP BY clause just isn’t enough in a query. Once you generate a report of, let’s say, average salary by
department or the standard deviation of sick days by job title, you often must run a second query that calculates the average
salary or standard deviation across the entire set of employees. It gets even more complex when you break down the average
salary by more than one factor, such as department and job title. In this case, you would need to run two or more additional
queries to produce the average salary just by department or for the entire workforce.

Tip The results from both CUBE and ROLLUP can be produced by multiple queries, but this requires multiple passes over the
rows in the table. CUBE and ROLLUP need only one pass.

The ROLLUP operator provides rollups of aggregate functions in one direction across the fields that are aggregated. For each
ROLLUP operation that uses n columns, the result set has aggregates for each combination of columns and n+1 groupings.

The CUBE operator takes the ROLLUP operator a step further and provides rollups of aggregate functions in both directions across
the fields that are to be aggregated. For each CUBE operation that uses n columns, the result set has aggregates for each
combination of columns plus 2n groupings.

ROLLUP

The boss asks Janice to give him a report that breaks down average salary by both department and job function for departments
10 through 90. Janice wants to save time writing the query, and she knows by now that King will want to see some subtotals and
grand totals. She will use ROLLUP to accomplish the task in a single query, as follows:
select department_id "Dept", job_id "Job",
       avg(salary) "Avg Sal"
from employees
where department_id between 10 and 90
group by rollup(department_id, job_id);

  Dept Job           Avg Sal
------ ---------- ----------
    10 AD_ASST          4400
    10                  4400
    20 MK_MAN          13000
    20 MK_REP           6000
    20                  9500
    30 PU_MAN          11000
    30 PU_CLERK         2780
    30                  4150
    40 HR_REP           6500
    40                  6500
    50 ST_MAN           7280
    50 SH_CLERK         3215
    50 ST_CLERK         2785
    50            3475.55556
    60 IT_PROG          5760
    60                  5760
    70 PR_REP          10000
    70                 10000
    80 SA_MAN          12200
    80 SA_REP     8396.55172
    80            8955.88235
    90 AD_VP           17000
    90 AD_PRES         24000
    90            19333.3333
                        6250

25 rows selected.

Notice that because Janice has two columns listed in her ROLLUP clause, she will have three (two plus one) types of groupings in
the query output:

Combinations of departments and jobs (for example, 30 and PU_CLERK, with an average salary of 2780)

Summaries by departments (for example, 20 and a NULL job title, with an average salary of 9500)

A grand total (NULL department number and NULL job title, with an average salary for all employees in all
departments of 6250)

CUBE

The report that Janice wrote for King using the ROLLUP was fine—until he wanted to know summaries by job title also. Janice
realized that she should have given him the version of the query using CUBE to begin with, so she changes her previous query,
substituting the keyword CUBE for ROLLUP:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


substituting the keyword CUBE for ROLLUP:
select department_id "Dept", job_id "Job",
       avg(salary) "Avg Sal"
from employees
where department_id between 10 and 90
group by cube(department_id, job_id);

  Dept Job           Avg Sal
------ ---------- ----------
                        6250
       AD_VP           17000
       HR_REP           6500
       MK_MAN          13000
       MK_REP           6000
       PR_REP          10000
       PU_MAN          11000
       SA_MAN          12200
       SA_REP     8396.55172
       ST_MAN           7280
       AD_ASST          4400
       AD_PRES         24000
       IT_PROG          5760
       PU_CLERK         2780
       SH_CLERK         3215
       ST_CLERK         2785
    10                  4400
    10 AD_ASST          4400
    20                  9500
    20 MK_MAN          13000
    20 MK_REP           6000
    30                  4150
    30 PU_MAN          11000
    30 PU_CLERK         2780
    40                  6500
    40 HR_REP           6500
    50            3475.55556
    50 ST_MAN           7280
    50 SH_CLERK         3215
    50 ST_CLERK         2785
    60                  5760
    60 IT_PROG          5760
    70                 10000
    70 PR_REP          10000
    80            8955.88235
    80 SA_MAN          12200
    80 SA_REP     8396.55172
    90            19333.3333
    90 AD_VP           17000
    90 AD_PRES         24000

40 rows selected.

Using CUBE, she has two columns listed in our ROLLUP clause, and therefore will have four (two squared) types of groupings in
the query output:

Combinations of departments and jobs (for example, 30 and PU_CLERK, with an average salary of 2780)

Summaries by jobs (for example, MK_REP having an average salary of 6000)

Summaries by departments (for example, 20 and a NULL job title, with an average salary of 9500)

A grand total (NULL department number and NULL job title, with an average salary for all employees in all
departments of 6250)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A subquery is allowed in which parts of a SQL SELECT statement?

2. True or false: A correlated subquery references a table in the SELECT clause.

3. Which set operator will not remove duplicate rows from the result of a compound query?

4. What characteristics of the columns in a compound query using INTERSECT must match?

5. How are NULL values handled using set operators in a compound UNION query?

6. Why are ROLLUP and CUBE the preferred method for generating subtotals and grand totals for an aggregate
query?

7. Which operators can be used to compare a column to a single-row subquery?

8. A compound query that needs to find only the rows that are the same between the two queries should use the set
operator.

9. True or false: The IN operator cannot be used with a single-row subquery.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of precedence.

11. What can be used to change the precedence of a pair of queries in a compound query with more than two
queries?

Answers

1. A subquery is allowed in the SELECT clause, the FROM clause, and the WHERE clause.

2. False, the correlated subquery references a column in the main query.

3. UNION ALL will not remove duplicate rows from the result of a compound query.

4. The number of columns and their datatypes must match in a compound query using INTERSECT. The lengths of the
columns and the names do not need to match.

5. NULL values in one query are considered equal to NULL values in the other query, for the purposes of eliminating duplicates
in a UNION.

6. ROLLUP and CUBE need to make only one pass over the source table(s). Other methods, such as using a UNION between
two similar queries, will make more than one pass.

7. The following operators can be used to compare a column to a single-row subquery: =, !=, >, <, >=, and <=.

8. INTERSECT

9. False, using IN with a single-row subquery would be equivalent to using =.

10. All of those operators have equal precedence and are evaluated left to right in a compound query.

11. As with any other part of a SQL query, parentheses may be used to change the evaluation order of the set operators.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
correlated subquery

multiple-column subquery

multiple-row subquery

single-row subquery

subquery

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 7: Logical Consistency
A key strength of any modern relational database is its ability to validate the information stored in the database. One way the
database itself can perform validation is by the use of constraints on a column or columns in a table. A constraint on a table
column restricts the type of information in the column. A constraint can ensure that data is not omitted from a column, is within a
certain range, is unique within the table, or exists in another table.

A second way to maintain the logical consistency in a database is the ability to “group” several SQL statements together in a
transaction, where either all of these SQL statements succeed or all of them fail. This group of SQL statements is considered a
logical unit of work. You can control transaction processing by using the COMMIT and ROLLBACK statements.

Constraints
Constraints are a way to validate the data in a column or columns of a table. The Oracle database has five distinct types of
constraints that can be defined on a column or columns in a table: NOT NULL, CHECK, UNIQUE, PRIMARY KEY, and FOREIGN
KEY. Only the FOREIGN KEY constraint, as its name implies, does its validation in reference to another table within the database.

constraint

A condition defined against a column or columns on a table in the database to enforce business rules or
relationships between tables in the database.

Note The end-user application frequently validates the data entered into the database, even before an INSERT or UPDATE
operation occurs, and this might be the best way to implement complex business rules. The ways in which business
rules are implemented in applications can be varied and complex. For more information about data validation through
the use of business rules in applications, see the book Business Rules Applied: Building Better Systems Using the
Business Rules Approach by Barbara Von Halle. Oracle separates the business rules enforcement from both the client
and the server with its Business Components for Java (BC4J) product. More information on BC4J can be found at
http://otn.oracle.com/products/ jdev/htdocs/bc4j9irc_datasheet.html.

Constraints, like many other database objects, can be defined when the table is defined or added to the table later. You can also
remove, disable, or enable existing constraints.

Any constraint can have a name assigned to it when it is created. If you do not explicitly assign a name, Oracle will give the
constraint a system-assigned name.

The NULL constraint can be defined only at the column level. All other constraints can be defined at the column level or at the
table level. Some constraints, such as a constraint that compares the values of two columns must necessarily be defined at the
table level.

NOT NULL

The NOT NULL constraint is the most straightforward of all the constraints. It specifies that a column will not allow NULL values,
regardless of its datatype. The syntax for a NOT NULL constraint is as follows:
[CONSTRAINT <constraint name>] [NOT] NULL

NOT NULL constraint

A constraint that prevents NULL values from being entered into a column of a table.

In Scott’s widget database, the HR table JOBS contains the job identifier, the job description, and the minimum and maximum
salary for the job. The table structure is shown here with a DESCRIBE command:
desc jobs

Name                         Null?    Type
---------------------------- -------- -----------------
JOB_ID                       NOT NULL VARCHAR2(10)
JOB_TITLE                    NOT NULL VARCHAR2(35)
MIN_SALARY                            NUMBER(6)
MAX_SALARY                            NUMBER(6)

When a new job is added or an existing job is modified, the columns for the job identifier and the job title must contain a value.
The salary range columns, however, can remain undefined—either explicitly by assigning NULL values to them or implicitly by not
specifying those two column names in an INSERT statement.

The boss, King, wants to make sure that when a new job is created, a minimum salary is always entered for the job. Janice, the
DBA, changes the structure of the JOBS table with the ALTER TABLE command, as follows:
alter table jobs modify (min_salary not null);

Table altered.

The next time someone from HR tries to add a new JOBS table row without a minimum salary, here is what happens:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next time someone from HR tries to add a new JOBS table row without a minimum salary, here is what happens:
insert into jobs (job_id, job_title)
     values(‘IT_DBDES’, ‘Database Designer’);

insert into jobs (job_id, job_title)
*
ERROR at line 1:
ORA-01400: cannot insert NULL into
    ("HR"."JOBS"."MIN_SALARY")

The MIN_SALARY field must be entered with some value, even if it is zero:
insert into jobs (job_id, job_title, min_salary)
     values(‘IT_DBDES’, ‘Database Designer’, 12500);

1 row created.

At some point, the HR department may want to update this row in the JOBS table to indicate an upper range for the salary for this
job position. However, it would not be unreasonable to expect that some job positions may not have any upper value, and
therefore a NULL value in the MAX_SALARY field could reflect the business rule that there is no maximum salary in force for a
particular position.

CHECK

A CHECK constraint can apply directly to a specific column, or it can apply at the table level if the constraint must reference more
than one column. CHECK constraints are useful if you need to keep values of a column within a certain range or within a list of
specific values, such as ensuring that a gender column contains either M or F.

CHECK constraint

A constraint that evaluates the condition defined in the constraint and permits the INSERT or UPDATE of the row
in the table if the condition is satisfied.

The CONSTRAINT clause can be specified at either the column level or at the table level. The constraint can be specified at the
column level if the constraint refers only to that column. The format of the CONSTRAINT clause is as follows:
[CONSTRAINT <constraint name>] CHECK (<condition>)

The HR department members are still having some problems with the JOBS table. They sometimes enter the lower and upper
ranges for the salary amount backwards. As usual, Janice is tasked with finding a way to fix this problem. She considers changing
the data-entry screens to check the salary amounts before they are inserted, but this might not be the best solution, since some of
the people in the HR department use the INSERT command against the database, bypassing any business logic that might be in
the application that supports the data-entry screen.

Janice decides to add a CHECK constraint to the JOBS table to make sure the salaries are entered in the correct order:
alter table jobs
     add constraint ck1_jobs
        check (max_salary > min_salary);

Table altered.

Tip It’s good practice to name your constraints with a reference to both the type of constraint and the table it references. This
helps both DBAs and developers when tracking down which table is causing a constraint violation in an application that
might have hundreds of tables.

Now if the order of the salaries were inadvertently reversed in the INSERT statement, the INSERT would not be allowed, due to
the new CHECK constraint:
insert into jobs
     (job_id, job_title, min_salary, max_salary)
     values
     (‘IT_TECHLD’, ‘Technical Lead’, 17500, 10000);

insert into jobs
(job_id, job_title, min_salary, max_salary)
*
ERROR at line 1:
ORA-02290: check constraint (HR.CK1_JOBS) violated

The HR department decides that the new technical lead position has an open-ended upper salary, so the addition is made with
the following INSERT command:
insert into jobs (job_id, job_title, min_salary)
     values(‘IT_TECHLD’, ‘Technical Lead’, 10000);

1 row created.

Even though no maximum salary is specified, this INSERT operation still works. A CHECK constraint condition will allow the record
to be inserted if the CHECK condition expression evaluates to either true or unknown. In this INSERT statement, the MAX_SALARY
column is NULL, and therefore the CHECK condition expression (max_salary > min_salary) is (NULL > 10000), which
evaluates to NULL (unknown). Therefore, the CHECK condition will not prevent this row from being inserted. However, explicit
NULL checking can be performed in a CHECK constraint by using the IS NULL or IS NOT NULL operator.

Later in the week, Janice learns that the business rule for minimum and maximum salary in the JOBS table has changed; if a
minimum salary is specified, then a maximum salary must also be specified. Therefore, either both salaries are NULL or both
salaries are NOT NULL. Janice decides that a new CHECK constraint is needed to enforce this business rule, so her first step is to
drop the existing constraint on the table:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter table jobs drop constraint ck1_jobs;

Table altered.

The new check constraint will compare min_salary and max_salary only if both values are NOT NULL, otherwise both values
must be NULL to pass the CHECK constraint:
alter table jobs add constraint ck1_jobs
    check ((max_salary is not null and
            min_salary is not null and
            max_salary > min_salary)
           or
           (max_salary is null and min_salary is null)
          );

Table altered.

In rare circumstances, there is an exception to this business rule. Occasionally, the boss still wants to enter a minimum salary
without a maximum salary. Janice can temporarily disable the constraint:
alter table jobs disable constraint ck1_jobs;

Table altered.

insert into jobs (job_id, job_title, min_salary)
     values(‘IT_RSRCH’, ‘IT Research and Development’,
               25000);

1 row created.

By default, if Janice re-enables the constraint, this new row in the JOBS table will fail the constraint check, so she must use the
NOVALIDATE option when re-enabling the constraint:
alter table jobs enable novalidate constraint ck1_jobs;

Table altered.

Using NOVALIDATE doesn’t check to see if any existing rows violate the CHECK constraint; only new or updated rows are checked.
As you’d expect, the default is VALIDATE when re-enabling a constraint. When a constraint is re-enabled with VALIDATE, the
data in every row is checked to make sure it passes the CHECK constraint.

UNIQUE

The UNIQUE constraint can be applied at the column level or at the table level. It ensures that no two rows contain the same
value for the column or columns that have the UNIQUE constraint.

UNIQUE constraint

A constraint that prevents duplicate values from being specified in a column or combination of columns in a
table. NULL values may be specified for columns that have a UNIQUE constraint defined, as long as the column
itself does not have a NOT NULL constraint.

The syntax for a UNIQUE constraint clause is as follows:
[CONSTRAINT <constraint name>]
     UNIQUE [(<column>, <column>, ...)]

For ensuring that a combination of two or more columns is unique within the table, the optional column specification portion of the
above syntax is used at the table level.

To more easily report salaries and bonuses to the IRS, King has asked Janice, the DBA, to add a social security number column
to the EMPLOYEES table. Since no two employees should have the same social security number, Janice uses a UNIQUE constraint
when she adds this column to the EMPLOYEES table:
alter table employees
     add (ssn varchar2(11)
           constraint uk1_employees unique);

Table altered.

Janice is doing two things in one statement: adding the SSN column and adding the named constraint. The column will still allow
NULL values, but when it is populated for an employee, it must not duplicate any other SSN value in the EMPLOYEES table.

When the HR department tries to update two records with the same social security number, the constraint prevents the second
UPDATE command from completing successfully:
update employees
     set ssn = ‘987-65-4321’
     where employee_id = 116;

1 row updated.
    
update employees
     set ssn = ‘987-65-4321’
     where employee_id = 117;

update employees
*
ERROR at line 1:
ORA-00001: unique constraint (HR.UK1_EMPLOYEES) violated

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ORA-00001: unique constraint (HR.UK1_EMPLOYEES) violated

PRIMARY KEY

A PRIMARY KEY constraint is similar to a UNIQUE constraint, with two exceptions: a PRIMARY KEY constraint will not allow
NULL values, and only one PRIMARY KEY constraint is allowed on a table. A PRIMARY KEY constraint can be defined at either
the column level or the table level. A PRIMARY KEY constraint is important when you want to find a way to uniquely reference a
row in the table with the primary key in another table. The syntax for a PRIMARY KEY constraint is similar to that of the UNIQUE
constraint:
[CONSTRAINT <constraint name>]
     PRIMARY KEY [(<column>, <column>, ...)]

PRIMARY KEY constraint

A constraint that uniquely defines each row of a table and prevents NULL values from being specified in the
column or combination of columns. Only one PRIMARY KEY constraint may be defined on a table.

If the PRIMARY KEY constraint is applied at the table level (usually due to the primary key of the table consisting of more than one
column), the optional column specification portion of the above syntax is used.

Because of tighter budgets and layoffs, many employees at Scott’s widget company are performing duties in other departments,
but the structure of the EMPLOYEES table supports an employee assigned to only one department at a time. Janice, the DBA, has
been tasked with creating a new table that can reflect the new business rule that an employee can be working in more than one
department at a time.

She decides to create a table that has three columns: an employee number, a department number, and the starting date for the
employee in that department. What should the primary key be? She can’t use just the employee number (EMPLOYEE_ID), since
this column won’t be unique in this table; an employee may be associated with more than one department. The same holds true
for the department number column (DEPARTMENT_ID); a department will most likely have more than one employee assigned to it.
Janice realizes that the combination of the two columns in this table will always be unique, and not NULL, and therefore this will be
the primary key. The table definition for this new table is as follows:
create table employees_departments
(employee_id   number(6),
 department_id number(4),
 start_date    date,
 constraint pk_empdept
      primary key (employee_id, department_id)
);

Table created.

The names for the employee number and department number columns do not need to be identical to the names given in the
EMPLOYEES and DEPARTMENTS tables, but it is good design practice to make them the same if the columns will hold the same
type of information as the corresponding EMPLOYEES and DEPARTMENTS table columns.

The HR department staff performs the following INSERT operations on the new table:
insert into employees_departments
     (employee_id, department_id, start_date)
     values (103, 60, ‘15-sep-2002’);

1 row created.
    
insert into employees_departments
     (employee_id, department_id, start_date)
     values (104, 60, ‘12-sep-2002’);

1 row created.

insert into employees_departments
     (employee_id, department_id, start_date)
     values (104, 50, ‘15-sep-2002’);

1 row created.

insert into employees_departments
     (employee_id, department_id, start_date)
     values (103, 60, ‘19-sep-2002’);

insert into employees_departments
*
ERROR at line 1:
ORA-00001: unique constraint (HR.PK_EMPDEPT) violated

The fourth row is not allowed in the table, because the same combination of employee number and department number is already
in the table. The PRIMARY KEY constraint of the table prevented the INSERT operation from completing successfully.

As a result of the three successful INSERT operations, employee number 103 (Hunold) is only working in department number 60
(IT), but employee number 104 (Ernst) is working in department number 60 (IT) and department number 50 (Shipping).

FOREIGN KEY

A FOREIGN KEY constraint helps maintain the data integrity between a parent table and a child table. It allows you to define a
column in the child table that exists as a primary key or a unique key in the parent table. When a value is entered into a column
with a FOREIGN KEY constraint, the value is checked against the primary key or unique value in the parent table to make sure it
exists there; if not, the row cannot be inserted.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FOREIGN KEY constraint

A constraint that establishes a parent-child relationship between two tables via one or more common columns.
The foreign key in the child table refers to a primary or unique key in the parent table.

The syntax for specifying a FOREIGN KEY constraint is as follows:
[CONSTRAINT <constraint name>]
     REFERENCES [<schema>.]<table>
            [(<column>, <column>, ...)]
     [ON DELETE {CASCADE | SET NULL}]

As the syntax indicates, a different user can own the parent table that contains the primary or unique key referenced, and
therefore the parent table name referenced must be qualified with the owner name. The column list can be omitted if the
referenced key is a primary key.

The last part of the syntax, [ON DELETE {CASCADE | SET NULL}], specifies what happens when the row in the parent table
is deleted. If this clause is omitted, the row in the parent table cannot be removed until all the rows containing foreign key
references in all child tables are either removed or the foreign key column is set to NULL. If ON DELETE CASCADE is specified
and the parent table’s row is deleted, all rows in the child table that contain the primary key of the parent table’s row are deleted. If
ON DELETE SET NULL is specified, a much more benign action occurs: If a parent table row is deleted, the foreign key column in
all child table rows that contain the parent row’s primary key value is set to NULL.

For about a month now, the HR department has been using the new SSN column in the EMPLOYEES table. Now the boss decides
that this is not a good idea, because of privacy concerns. Other departments use the EMPLOYEES table, and the social security
information should not be visible to the other departments.

Janice needs to create an entirely new table to hold the social security number values for the employees and remove the SSN
column from the EMPLOYEES table. The new table must be linked to the EMPLOYEES table, so she wants to have a column with
the employee number that is a foreign key to the EMPLOYEES table. She also needs the SSN column itself. She’ll put in a date field
to hold the date that the social security number was entered into this table. No other columns are necessary now (columns can
always be added later).

What should be the primary key of this new table? The SSN column looks like a suitable candidate for a primary key, since it is
unique and not empty. Rows will not be inserted into this table until the social security number is known. Janice creates the new
table, EMPLOYEES_SSN, as follows:
create table employees_ssn
(ssn           varchar2(11),
 employee_id   number(6)
     constraint fk_empl_ssn
         references employees (employee_id),
 add_date      date,
 constraint pk_empl_ssn primary key (ssn)
);

Table created.

This new table has two constraints: a column constraint (the FOREIGN KEY constraint on the EMPLOYEE_ID column) and a table
constraint (the PRIMARY KEY constraint on the SSN column, which could have also been defined as a column constraint since the
primary key is only one column).

The HR department inserts the first few rows into this new table, as follows:
insert into employees_ssn (ssn, employee_id, add_date)
     values(‘987-65-4321’, 101, ‘13-sep-02’);

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘123-45-6789’, 102, ‘13-sep-02’);

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘222-44-6666’, 303, ‘13-sep-02’);

insert into employees_ssn (ssn, employee_id, add_date)
*
ERROR at line 1:
ORA-02291: integrity constraint (HR.FK_EMPL_SSN)
       violated - parent key not found

insert into employees_ssn (ssn, employee_id, add_date)
     values(‘999-99-9999’, 104, ‘13-sep-02’);

1 row created.

The third INSERT operation failed due to the FOREIGN KEY constraint on the table. The employee number specified (303) does
not exist in the EMPLOYEES table; therefore, the row is not inserted into the EMPLOYEES_SSN table.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


not exist in the EMPLOYEES table; therefore, the row is not inserted into the EMPLOYEES_SSN table.

Once all of the social security numbers and employee numbers have been entered into the EMPLOYEES_SSN table, the SSN
column in EMPLOYEES can be dropped.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Transaction Processing
As you’ve learned, constraints created on columns of a table help you to maintain integrity and consistency in the database at the
statement level. Transactions go beyond individual INSERT or UPDATE statements and allow you to ensure that multiple DML
statements against the database either all succeed or all fail.

transaction

A logical unit of work consisting of one or more SQL statements that must all succeed or all fail to keep the
database in a logically consistent state. A transfer of funds from one bank account is a logical transaction, in
that both the withdrawal from one account and the deposit to another account must both succeed for the
transaction to succeed.

From a DBA’s perspective, the transaction concept is important to understand when allocating disk space. The more activity that
occurs within a transaction, the greater the need for disk space to maintain read consistency in the database. If a user initiates a
long-running SELECT statement, the table data seen by the user will appear to be unchanged, even if other users are
subsequently making changes to the same rows while the SELECT statement is executing. As a result, additional disk space
(known as undo or rollback space) must be allocated to hold both the old and new versions of the rows being read by one user
and written to by another user.

read consistency

A feature of the Oracle database that ensures a database reader (in a SELECT statement) will see the same
data in a table regardless of changes made to the table by database writers that were initiated after the reader
initiated the SELECT statement.

Transactions begin with a single DML statement and end (successfully or unsuccessfully) when one of the following events
occurs:

Either a COMMIT or ROLLBACK statement is executed. A COMMIT statement makes the changes to the table
permanent, while the ROLLBACK undoes the changes to the table.

The user exits SQL*Plus or iSQL*Plus normally (automatic COMMIT).

A DDL (Data Definition Language) or DCL (Data Control Language) statement is executed (automatic COMMIT).

The database crashes (automatic ROLLBACK).

The SQL*Plus or iSQL*Plus session crashes (automatic ROLLBACK).

Additionally, you can use SAVEPOINT to further subdivide the DML statements within a transaction before the final COMMIT of all
DML statements within the transaction. SAVEPOINT essentially allows partial rollbacks within a transaction.

The COMMIT Statement

There are many situations when you want a given set of DML statements—a transaction—to fail or succeed, ensuring data
integrity.

Suppose that the boss decides that to keep the salary budget the same next year, all employees that get raises must be offset by
employees that get pay cuts. When the updates are made to the database, it is important that the total salary paid out every
month remains constant; therefore, pay increases and cuts must either all succeed or all fail.

In the iSQL*Plus example shown here, Janice performs two pay cuts and one pay increase in a single transaction. If the second
SELECT statement had not generated the total the boss wanted, she could have either executed additional UPDATE statements
before doing a COMMIT or performed a ROLLBACK to undo the updates and start over again.

If the database had crashed after the second UPDATE statement, the results from all statements in the transaction would be
removed from the database. The following statement in the example ensures that the total of the monthly salaries are the same
before and after the updates:
select sum(salary) from employees;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The ROLLBACK Statement

The ROLLBACK statement allows you to change your mind about a transaction. It brings back the state of the tables to the state as
of the last COMMIT statement or the beginning of the current transaction.

Janice is nearing the end of a busy day. She decides to perform one more task for the boss before leaving. She wants to remove
some order detail items from the OE.ORDER_ITEMS table that are more than five years old, since the ORDERS table was recently
purged of all orders more than five years old. She runs the DELETE statement as follows:
DELETE FROM OE.ORDER_ITEMS;

665 rows deleted.

Janice realizes that she forgot the WHERE clause in the DELETE, so she needs to get back the rows she accidentally deleted:
ROLLBACK;

Rollback complete.

Another disaster averted. Now she won’t need to restore the OE.ORDER_ITEMS table from a backup.

The SAVEPOINT Statement

The SAVEPOINT statement allows you to discard a subset of the DML statements within a transaction since the SAVEPOINT was
issued. The SAVEPOINT itself is named, and it can be referenced in the ROLLBACK statement, as follows:
ROLLBACK TO SAVEPOINT savepoint_name;

Regardless of how many savepoints exist within a transaction, a ROLLBACK statement without a savepoint reference will
automatically roll back the entire transaction. The following example shows Janice using a savepoint to conditionally undo the
DML statements since the savepoint was issued:
insert into regions (region_id, region_name)
   values (5, ‘Arctic’);

1 row created.

savepoint region_5;

Savepoint created.

insert into regions (region_id, region_name)
   values (6, ‘Antarctic’);

1 row created.

savepoint region_6;

Savepoint created.

rollback to region_5;

Rollback complete.

commit;

Commit complete.

Only the REGIONS row with a region_id of 5 is saved in the table after the COMMIT.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A COMMIT occurs under which three conditions within a transaction?

2. Under what circumstances can a foreign key column not match the defined primary key value in the parent table?

3. True or false: A CHECK constraint cannot check for NULL values.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List two ways.

5. What are the three conditions that may be specified, either implicitly or explicitly, on a foreign key column when the
primary key column in the parent table is deleted?

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more than MIN_SALARY.

7. What statement will allow a partial rollback of certain DML statements within a transaction?

8. True or false: A NOT NULL constraint can be defined at the table level or at the column level.

Answers

1. A COMMIT occurs from an explicit COMMIT command, after a DDL or DCL command is executed, or when a SQL*Plus or
iSQL*Plus session is exited normally.

2. A foreign key column may not match the defined primary key value in the parent table when the foreign key column allows
NULL values and is NULL.

3. False, a CHECK constraint can use IS NULL and IS NOT NULL to check for the existence of NULL values in one or more
columns of the table.

4. PRIMARY KEY constraints do not allow NULL values, and there can be only one primary key per table.

5. By default, the row in the parent table will not be deleted if rows exist in the child table that have a foreign key referencing the
parent table’s primary or unique key. Alternatively, the child table’s foreign key may be set to NULL (SET NULL), or the entire
row in the child table may be deleted if a parent row is deleted (CASCADE).

6. This constraint ensures MAX_SALARY is at least 10,000 more than MIN_SALARY:

7. The ROLLBACK TO SAVEPOINT <savepoint>; statement will allow a partial rollback of certain DML statements.

8. False, a NOT NULL constraint can be defined only at the column level.
check (max_salary - 10000 > min_salary)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
CHECK constraint

constraint

FOREIGN KEY constraint

NOT NULL constraint

PRIMARY KEY constraint

read consistency

transaction

UNIQUE constraint

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 8: Installing Oracle and Creating a Database

Overview
When you install Oracle and create a database, you are setting up all of the facilities and components for running Oracle. These
components include logical, physical, and memory structures. Every DBA needs to be intimately familiar with how Oracle’s
memory structures are allocated and managed. This chapter begins with a discussion of the basic components that make up
Oracle’s memory structures.

While the Oracle software itself is most likely already installed on one of your servers, we’ll go over the basics of installing Oracle
on the Microsoft Windows platform to see how the Oracle Universal Installer (OUI) does its magic and leads you through the
installation process.

After you have the Oracle software in place, you can create the Oracle database itself using Oracle’s Database Configuration
Assistant (DBCA). You will see how a single installation of the Oracle software can support more than one copy of a database on
a particular server.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Oracle Components Overview
An Oracle server consists of both a database and an instance. In Oracle terminology, database refers to only the physical files on
disk. These are the files that store the data itself, the database state information in the control file, and the changes made to the
data in the redo log files. The term instance refers to the Oracle processes and memory structures that reside in the server’s
memory and access an Oracle database on disk. One of the reasons for separating the concepts of a database and an instance is
that a database may be shared by two or more different Oracle instances as part of an Oracle configuration that enhances the
scalability, performance, and reliability of the Oracle server.

database

The collection of all physical files on disk that are associated with a single Oracle instance.

instance

The collection of memory structures and Oracle background processes that operates against an Oracle
database.

It’s also important to differentiate between the logical and physical structures of the database. The logical structures represent
components such as tables—what you normally see from a user’s point of view. The physical structures are the underlying
storage methods on disk—the physical files that compose the database.

Logical Storage Structures

The Oracle database is divided into increasingly smaller logical units to manage, store, and retrieve data efficiently and quickly.
The illustration below shows the relationships between the logical structures of the database: tablespaces, segments, extents,
and blocks.

logical structures

Structures in an Oracle database that a database user would see, such as a table, as opposed to the underlying
physical structures at the datafile level.

The logical storage management of the database’s data is independent of the physical storage of the database’s physical files on
disk. This makes it possible for changes to the physical structures to be transparent to the database user at the logical level.

Tablespaces
A tablespace is the highest level of logical objects in the database. A database consists of one or more tablespaces. A
tablespace will frequently group together similar objects, such as tables, for a specific business area or a specific function. A
particular tablespace can be reorganized, backed up, and so forth with minimal impact to other users whose data may be in other
tablespaces.

tablespace

A logical grouping of database objects, usually to facilitate security, performance, or the availability of database
objects such as tables and indexes. A tablespace is composed of one or more datafiles on disk.

All Oracle databases must have at least one tablespace: the SYSTEM tablespace. Having more than one tablespace is highly

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


All Oracle databases must have at least one tablespace: the SYSTEM tablespace. Having more than one tablespace is highly
recommended when creating a database. In the illustration of logical structures, you can see the SYSTEM tablespace and two
others. Oracle’s Database Configuration Assistant, discussed later in this chapter, creates a total of 11 tablespaces for a default
installation of Oracle9i.

Segments
A tablespace is further broken down into segments. A database segment is a type of object that a user typically sees, such as a
table. Tablespace 1 in the logical structure illustration consists of three segments, which could be tables, indexes, and so forth. It’s
important to note that this is the logical representation of these objects; the physical representation of these objects in the
operating system files will most likely not resemble the logical representation.

segment

A set of extents allocated for a single type of object, such as a table.

Extents
The next lowest logical grouping in a database is the extent. A segment groups one or more extents allocated for a specific type
of object in the database. Segment 2 in the logical structure illustration consists of two extents. Note that an extent cannot be
shared between two segments. Also, a segment, and subsequently an extent, cannot cross a tablespace boundary.

extent

A contiguous group of blocks allocated for use as part of a table, index, and so forth.

Database Blocks
At the other end of the spectrum of logical objects is the database block (also known as an Oracle block), the smallest unit of
storage in an Oracle database. Every database block in a tablespace has the same number of bytes. As of Oracle9i, different
tablespaces within a database can have database blocks with different sizes. Typically, one or more rows of a table will reside in a
database block, although very long rows may span several database blocks.

database block

The smallest unit of allocation in an Oracle database. One or more database blocks compose a database
extent.

Oracle block

See database block.

Extents group together logically contiguous database blocks in a tablespace. All database blocks within a single extent will store
the same kind of information.

A database block can have a size of 2KB, 4KB, 8KB, 16KB, or 32KB. Once any tablespace, including the SYSTEM tablespace, is
created with a given block size, it cannot be changed. If you want the tablespace to have a larger or smaller block size, you need
to create a new tablespace with the new block size, move the objects from the old tablespace to the new tablespace, and then
drop the old tablespace.

Schema
A schema is another logical structure that can classify or group database objects. A schema has a one-to-one correspondence
with a user account in the Oracle database, although some schemas may be designed to hold only objects that may be
referenced by other database users. For instance, in the logical structure illustration, Segments 1 and 3 may be owned by the HR
schema, while Segment 2 may be owned by the SCOTT schema.

schema

A named group of objects associated with a particular user account, such as tables, indexes, functions, and so
forth.

A schema is not directly related to a tablespace or any other logical storage structure; the objects that belong to a schema may be
in many different tablespaces. Conversely, a tablespace may hold objects for many different schemas. A schema is a good way to
group objects in the database for purposes of security and access control.

Physical Storage Structures

From the perspective of building queries and running reports, regular users don’t need to know much about the underlying
physical structure of the database on disk. However, DBAs do need to understand these database components.

The physical structure of the Oracle database consists of datafiles, redo log files, and control files. On a day-to-day basis, the
DBA will deal most often with the datafiles, since this is where all of the user and system objects, such as tables and indexes, are
stored. The illustration below shows the physical structure and its relationship to the Oracle memory structures and logical storage
structures.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


physical structures

Structures of an Oracle database, such as datafiles on disk, that are not directly manipulated by users of the
database. Physical structures exist at the operating system level.

Datafiles
The datafiles in a database contain all of the database data that the users of the database save and retrieve. A single datafile is
an operating system file on the server’s disk. Each datafile belongs to only one tablespace; a tablespace can have many datafiles
associated with it.

datafiles

Files that contain all of the database data that the users of the database save and retrieve using SELECT and
other DML statements. A tablespace comprises one or more datafiles.

There are four physical datafiles in the database in the physical structure illustration: one is used for the SYSTEM tablespace, two
datafiles are assigned to Tablespace 1, and the fourth datafile is assigned to Tablespace 2.

Redo Log Files
The redo log files facilitate the Oracle mechanism to recover from an instance failure or a media failure. When any changes are
made to the database, such as updates to data or creating or dropping database objects, the changes are recorded to the redo
log files first. A database has at least two redo log files, and it is recommended that multiple copies of the redo log files be stored
on different disks. (Oracle automatically keeps the multiple copies in synch.) If the instance fails, any changed database blocks
that were not yet written to the datafiles are retrieved from the redo log files and written to the datafiles when the instance is
started again.

redo log files

Files that contain a record of all changes made to both the data in tables and indexes, as well as changes to the
database structures themselves. These files are used to recover changed data that was in memory at the time
of a crash.

Control Files
The control file maintains information about the physical structure of the entire database. It stores the name of the database, the
names and locations of the tablespaces in the database, the locations of the redo log files, information about the last backup of
each tablespace in the database, and much more. Because of the importance of this file, it is recommended that a copy of the
control file reside on at least three different physical disks. As with the redo log files, Oracle keeps all copies of the control file in
synch automatically.

control file

A file that records the physical structure of a database, the database name, and the names and locations of
datafiles and redo log files.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The control file and redo log file contents do not map directly to any database objects, but their contents and status are available
to the DBA by accessing virtual tables called data dictionary views, which are owned by the SYS schema.

Oracle Memory Structures

The memory allocated to Oracle includes the following types of data:

Data from user reading and writing activity

Information about database objects

SQL commands

Stored procedures and functions

Transaction information

Oracle program executables

This information is stored in three major areas: the System Global Area (SGA), the Program Global Area (PGA), and the Software
Code Area.

The overall memory allocated to Oracle can be divided into two categories: shared memory and nonshared memory. The SGA
and the Software Code Area are shared among all database users. The PGA is considered nonshared. There is one dedicated
PGA area allocated for each user connected to the database.

System Global Area
The System Global Area (SGA) is the memory area that is shared by all connected users of the database. The SGA is broken
down into many areas. We will discuss the areas that hold cached data blocks from database tables, recently executed SQL
statements, and information on recent structural and data changes in the database. These areas are known as the database
buffer cache, the shared pool, and the redo log buffer, respectively.

System Global Area (SGA)

A group of shared memory structures for a single Oracle instance.

Database Buffer Cache

The database buffer cache holds copies of database blocks that have been recently read from or written to the database
datafiles. The data cached here primarily includes table and index data, along with data that supports ROLLBACK statements.

database buffer cache

The memory structure in the SGA that holds the most recently used or written blocks of data.

Any database block can be in one of three states: dirty, free, or pinned.

Dirty buffers A dirty buffer contains data from a database block that has been changed or added due to an INSERT, an UPDATE,
or a DELETE statement, but has not yet been written to disk. This buffer cannot be reused until it has been successfully written to
disk.

Free buffers These buffers either never contained any data or have data that matches their corresponding database block on
disk. Free buffers are available to be overwritten by another read operation from disk at any time. Oracle employs an LRU (least
recently used) algorithm in the buffer cache; the longer a buffer has not been used, the more likely it is that it will be reused by a
new database block read from disk.

LRU (least recently used) algorithm

An algorithm used to determine when to reuse buffers in the database buffer cache that are not dirty or pinned.
The less frequently a block is used, the more likely it is to be replaced with a new database block read from disk.

Pinned buffers These buffers are currently in use by DML statements or are explicitly saved for future use, and therefore they
cannot be reused.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Shared Pool

The shared pool contains recently used SQL and PL/SQL statements (stored procedures and functions). It also contains data
from system tables (the data dictionary tables), such as character set information and security information. Because objects such
as PL/SQL stored functions can be cached in the shared pool, another user or process that needs the same stored functions can
benefit from the performance improvement due to the stored function already being in memory.

shared pool

An area in the SGA that contains cached SQL and PL/SQL statements and cached tables owned by SYS.

Redo Log Buffer

The redo log buffer keeps the most recent information regarding changes to the database due to SQL statements. The blocks in
this buffer are eventually written to the online redo log files, which are used to recover, or redo, all recent changes to the database
after a failure.

redo log buffer

A buffer in the SGA that contains information pertaining to changes in the database.

Program Global Area
The Program Global Area (PGA) belongs to one user process or connection to the database and is therefore considered
nonsharable. It contains information specific to the session, and it can include sort space and information on the state of any SQL
or PL/SQL statements that are currently active by the connection.

Program Global Area (PGA)

A nonshared area of memory used for storing all connection information, including SQL statement information,
in a dedicated server configuration for a user who is connected to the database. In a shared server
configuration, a large portion of the memory for each connection is stored in the SGA instead of the PGA.

Software Code Area
The Software Code Area is a shared area containing the Oracle program code or executables against the database. It can be
shared by multiple database instances running against the same or different databases, and as a result, it saves a significant
amount of memory on the server.

Software Code Area

A location in memory where the Oracle application software resides. The Software Code Area can be shared
among several Oracle instances.

Background Processes

A process on a server is a section of a computer program in memory that performs a specific task. When the Oracle server starts,
multiple processes are started on the server to perform various functions as part of the Oracle instance. While a detailed
discussion of all Oracle background processes is beyond the scope of this book, we will discuss a few of the key processes:
Database Writer (DBWn), Log Writer (LGWR), and System Monitor (SMON). These processes communicate with various areas of
the SGA, such as the database buffer cache and the redo log buffer, as indicated in the earlier illustration.

process

An executing computer program in memory that performs a specific task.

Database Writer (DBWn)
There may be anywhere from one to ten copies (DBW0 through DBW9) of the Database Writer process running in an Oracle
instance. As noted earlier in the section on the SGA, new and modified data is stored in buffers in the database buffer cache,
which are marked as dirty buffers. At some point (for example, when the number of free buffers is low), these buffers need to be
written out to disk, which is what the DBWn process does, allowing subsequent SELECT statements and other DML statements
access to those buffers in the buffer cache.

If there is enough memory and the demand on the system is high, more than one copy of this process may dramatically improve
the performance and reduce the response time when a query or DML statement is run.

Log Writer (LGWR)
The Log Writer process writes the buffers in the SGA’s redo log buffer out to disk to the redo log files. The Log Writer process
must be able to write redo log buffers fast enough to make sure that there is room in the redo log buffer for entries from new
transactions. By writing all changes to the database to the redo log files, the changes made to the database can be recovered by
reissuing the commands in the logs if an instance failure occurs.

Log Writer writes under a variety of conditions: when a user issues a COMMIT, when the redo log buffer is one-third full, when
DBWn writes dirty buffers, or every three seconds.

System Monitor (SMON)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SMON performs a number of different functions in the database. If there is a system crash, the SMON process will apply the
changes in the redo log files (saved to disk previously by the LGWR process) to the datafiles the next time the instance is started.
This ensures that no committed transactions are lost due to the system crash. (SMON also performs a number of other tasks that
are beyond the scope of this book.)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Installing Oracle Software
Now that you have an understanding of how the Oracle database components are structured and interoperate, you can install the
software that will create and control the components.

To install Oracle9i, you can use the Oracle Universal Installer (OUI), a GUI-based Java tool that has the same look and feel,
regardless of which software platform you are using to install the software. As part of most Oracle installations, you can also install
the Oracle Enterprise Manager (OEM) toolset, which is a graphical system management tool that allows a DBA to manage and
administer more than one Oracle instance from a single application.

Oracle Universal Installer (OUI)

A GUI-based tool used to install or uninstall Oracle software components and tools.

Oracle Enterprise Manager (OEM)

A GUI-based tool used to manage one or more Oracle database instances.

Here, we’ll go through a basic installation of the Oracle server and review some of the key features of the OEM console.

Using the Oracle Universal Installer

One of the key concepts to understand when Oracle is installed on a server is the Oracle Home. An Oracle Home is simply a
single directory location in the filesystem that contains all of the installed Oracle products and options for a specific version of the
Oracle software. Each Oracle Home has a name assigned to it, and the value of this name is stored in the Windows Registry.

Oracle Home

A common directory location used to store the associated program files for a specific release of the Oracle
database software.

At Scott’s widget company, the DBA, Janice, needs to install a second Oracle server on a Microsoft Windows platform. She runs
the program setup.exe from the first installation CD. The first OUI screen past the Welcome screen appears, as shown below,
prompting Janice for the file locations where the Oracle software should be installed. The source for the install is already specified
as the CD containing setup.exe, on drive G:.

If there are previous installations of Oracle on this server, the pathnames are shown in the Destination section of this OUI screen.
In this example, there is an existing installation of Oracle in the directory d:\oracle\ora91. Janice wants to install the newer
Oracle software into the directory e:\oracle\ora92, so she changes the entry in the Path text box to e:\oracle\ora92,
changes the name in the Oracle Home text box to OraHome92, and clicks the Next button.

On nearly all of the screens in an installation using OUI, there is a button labeled Installed Products, which allows the DBA to view
and uninstall other products already installed on this server.

After the product list is retrieved from the CD in drive G:, OUI displays the available products that can be installed from the CD.
Janice chooses to install the Oracle9i database and clicks the Next button.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen asks Janice which type of Oracle database to install. Scott’s widget company is licensed to use every edition of
Oracle, so Janice leaves the default choice of Enterprise Edition and clicks the Next button.

The next decision Janice must make is what kind of database she wants to have installed, or whether to only have the software
installed. OUI comes with several preconfigured databases, each optimized for different environments. Since none of these
preconfigured databases suits Janice’s needs exactly, she will install only the software now and create a database manually using
the Database Configuration Assistant, discussed later in this chapter. Janice selects the Software Only option.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A summary screen gives Janice one more chance to change the installation options or cancel the entire installation.

Janice clicks on the Install button to begin the installation of the Oracle software. The final OUI screen shows the installation was
successful.

Using the Oracle Enterprise Manager and Tools

One of the tools available with Oracle9i Enterprise Edition is OEM, which allows you to manage Oracle components and to control
and configure one or more Oracle databases from one console.

The OEM console has two panes. The Navigator pane on the left provides a hierarchical view of all of the databases and other
Oracle-related services on the network. Clicking one of the nodes in the Navigator pane brings up the status and contents of that
node in the pane on the right. Using OEM, you can easily browse objects and characteristics of the database, such as
tablespaces, user accounts, datafiles, and configuration parameters of the instance.

Janice, the DBA, wants to get a quick overview of the tablespaces that exist in the database that has a connect descriptor of
or92. She starts OEM under Microsoft Windows by selecting Start > All Programs > Oracle - OraHome 92 > Enterprise Manager
Console. She enters her username, her password, and the connect descriptor.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen shows the different kinds of functionality available to Janice in the Navigator pane of OEM. She expands the
Storage branch with a double-click and then clicks Tablespaces. She notices that the EXAMPLE tablespace is at full capacity,
which is fine, since it is used for training and will not have any new objects. However, she does need to look into expanding the
size of the SYSTEM tablespace, since it is 98.94% full.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating an Oracle Database
Once the Oracle software is installed on a server, you can create one or more database instances using a single copy of the
Oracle software. The Database Configuration Assistant (DBCA) is Oracle’s GUI tool for creating, modifying, and deleting
databases.

Database Configuration Assistant (DBCA)

A multiplatform GUI tool that allows a DBA to easily create, modify, and delete databases, as well as manage
database templates.

Disk and Memory Requirements

While the software code is shared among instances, the instances themselves each must have a minimum amount of system
memory and disk space for adequate performance.

For the Microsoft Windows platform, each Oracle instance requires at least 128MB of memory, plus 8GB of disk space for a fairly
complete installation of Oracle Enterprise Edition. Oracle strongly recommends at least 256MB of memory. The amount of disk
space needed for the datafiles depends on the application’s data needs, but one of Oracle’s starter databases uses approximately
1.4GB of disk space.

Using the Database Configuration Assistant

The DBA, Janice, has two big tasks ahead of her for the week. Now that the widget company is over a year old, the boss, King,
wants to offload some of the analysis tasks to a second database to minimize the impact on the primary database. He suggests
that this new database be designed for data warehouse use. Janice will use the Oracle DBCA to create a new instance to support
the data warehousing effort.

To create a new database instance, Janice starts up DBCA by selecting Start > All Programs > Oracle - OraHome 92 >
Configuration and Migration Tools > Database Configuration Assistant. The Welcome screen is shown below.

Janice clicks Next. DBCA asks for the type of operation to perform. Janice selects the first option, Create a Database, and clicks
Next.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Since the boss wants a database to be used as a data warehouse, she leaves the default value selected in the Database
Templates screen, which appears next, and clicks Next.

In the next step, Janice needs to label the instance. Janice gets the Global Database Name’s suffix from the system administrator,
but she specifies the SID as wh92. The SID, or system identifier, is a unique name for the Oracle instance. This is the same as
the connect descriptor that a database user uses when connecting to the database with SQL*Plus. When Janice types in the fully
qualified name of the database, wh92.widgetsRus.com, the SID is automatically extracted from the Global Database Name
and placed in the SID text box.

SID

A system identifier, which is a unique name assigned to an Oracle instance. A user must supply a SID to
connect to an Oracle instance.

Oracle can accept connections in one of two modes: Dedicated or Shared. Dedicated mode gives the best response time for
users who run queries constantly, and Shared mode works best for users who run infrequent queries on a server that may have
limited memory resources. Only a handful of users will be using this data warehouse, so Janice selects the Dedicated server
mode.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The next screen allows Janice to further refine the memory parameters that Oracle suggests in a data warehouse environment
given the server resources, but she accepts the defaults for now. She will perform some advanced tuning once the data
warehouse queries have been designed and tested. She does decrease the percentage of memory allocated for this instance
from 70% down to 30%, however, since there is already another instance on this server.

After clicking Next, Janice has the option to tweak the datafile names and locations, but she once again chooses the defaults for
all file locations.

The next screen gives Janice two options. She can either create the database immediately or save everything up to this point as a
template. If Janice thought that she might create many databases with identical or very similar characteristics to this one, then she
would save these settings as a template for future DBCA sessions. In this case, she decides that there will not be any other
databases like this one, so she leaves the default Create Database checked and clicks Finish to start the process of creating the
database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One more summary screen is displayed before the actual database creation begins. It allows a final review of the parameters, with
the added option of saving the entire set of database characteristics as an HTML file for documentation purposes. Janice clicks
OK to continue.

At the end of the database creation operation, Janice is prompted to enter the passwords for the SYS and SYSTEM accounts. SYS
is the user who owns all of the internal database tables, and SYSTEM is the account that the DBA uses to create other DBA
accounts in addition to owning other tables used by various Oracle tools.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Janice clicks Exit when she is done setting the passwords, and the database creation process completes. The database is ready
to use.

In the future, Janice can use OEM to manage both Oracle instances within the same Navigation pane. As shown here, Janice’s
new OEM session shows connections to both the or92 and wh92 database instances.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What are the four functions of the Database Creation Assistant (DBCA)?

2. What is the Oracle background process that writes modified data blocks to disk?

3. What is the difference between a database and an instance?

4. An extent is composed of one or more .

5. True or false: The control file contains important system tables.

6. What is the GUI-based Oracle tool that can manage and monitor one or more Oracle instances?

7. DBCA can save the specified database parameters in what kind of file?

8. Which Oracle background process will apply the data in the redo log files to the datafiles in the event of a system
crash?

9. A database schema is closely associated with which other database object?

10. A segment consists of one or more .

Answers

1. DBCA can create, delete, and modify databases. It can also create a template that can be used to create a database.

2. The DBWn process writes modified data blocks to disk.

3. A database is a set of files on disk that is managed by an instance, which is a collection of processes and memory structures
that operate against the datafiles on disk.

4. Database blocks

5. False, the control file contains information about the physical structure of the entire database.

6. The Oracle Enterprise Manager (OEM) can manage and monitor one or more Oracle instances.

7. DBCA can save the database parameters as an HTML file.

8. The SMON process will apply the data in the redo log files to the datafiles in the event of a system crash.

9. A schema is associated 1:1 with a user account in the database.

10. Extents

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
control file

database

database block

database buffer cache

Database Configuration Assistant (DBCA)

datafiles

extent

instance

LRU (least recently used) algorithm

logical structures

Oracle block

Oracle Enterprise Manager (OEM)

Oracle Home

Oracle Universal Installer (OUI)

physical structures

process

Program Global Area (PGA)

redo log buffer

redo log files

schema

segment

shared pool

SID

Software Code Area

System Global Area (SGA)

tablespace

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 9: Reporting Techniques

Overview
It’s important that the data returned from a query be presented in a manner that is easy to interpret. The reporting features of
iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet make it easy to give columns more meaningful names, as well as provide report
headers and footers so that the contents of the report are clear.

In fact, changing how reports are formatted and displayed is one way that you can customize the iSQL*Plus environment to suit
your needs. You can also change how the interface appears and change an account’s password.

Along with formatting, another way to improve a report is by using substitution variables, which prompt the user to enter portions of
the query at runtime. For example, instead of including a department number in a SELECT statement, a query can ask the user to
enter a department number. Finally, after you’ve come up with a set of commands that you’ll want to reuse, you can save them in
a file and run them later.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

iSQL*Plus Configuration
After you’ve logged in to an Oracle database using the iSQL*Plus login screen, you can make changes to your environment using
the Preferences link in the upper-right area of the browser.

From the Preferences screen (see the figure at the top of the next page), you can do one of three things:

Change how the iSQL*Plus environment appears with the Set interface options link.

Change how reports are formatted and displayed using the Set system variables link.

Change your account’s password with the Change your password link.

Interface Options

The Interface Options page (see the figure at the bottom of the next page) allows you to adjust how big a window you need to
enter your SQL statements. It also allows you to specify how the output from the SQL statements will be displayed: within the
same page, on its own page, or saved to an operating system file. The History option sets how many sets of previous commands,
called scripts, are saved in an internal buffer for possible re-execution later. A script is a set of one or more SQL or iSQL*Plus
commands that is executed as a group. Scripts are saved in the history buffer during an iSQL*Plus session, or can be saved to an
operating system file to be retrieved later and executed during the same or a new iSQL*Plus or SQL*Plus session.

script

A set of one or more SQL or iSQL*Plus commands that is executed as a group. Scripts may be retrieved from
within an iSQL*Plus session, or saved to an operating system file and retrieved later in another session.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After you’ve adjusted the settings as desired, click OK to return to the Preferences page.

System Variables

A system variable in iSQL*Plus is similar to a variable in any programming language. Like a column in a row of a table, a system
variable can hold a string or a number. The string or number in the system variable controls some aspect of how iSQL*Plus will
display the results of a query or a DML statement.

system variable

A variable maintained in the iSQL*Plus, SQL*Plus, or SQL*Plus Worksheet environment that holds a status or a
setting for a particular feature in that environment. PAGESIZE is an example of a system variable in iSQL*Plus.

Note All of the system variables that can be set in the iSQL*Plus System Variables page are also available for customization
in the iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet environments by using the command SET
<system_variable> <value>.

The iSQL*Plus environment contains more than 40 variables. The drop-down list at the top of the System Variables page makes it
easy to jump directly to a particular variable without scrolling.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The following sections discuss a few of the key system variables used in iSQL*Plus: PAGESIZE, LINESIZE, HEADING, HEADSEP,
and FEEDBACK.

PAGESIZE
The PAGESIZE system variable specifies how many lines are displayed in a query result before the column headings are
repeated. Setting the PAGESIZE to zero produces the first set of column headings in iSQL*Plus and no column headings in
SQL*Plus.

LINESIZE
The LINESIZE system variable specifies how many characters will be displayed on each row of output. Any characters beyond
this limit will wrap to the next line. LINESIZE has no effect in iSQL*Plus.

HEADING
The value for HEADING can either be On or Off, and it specifies whether column headings should appear in query output. Using
SQL*Plus, the following command turns query headings off:
set heading off

Turning the column headings off may be useful, for example, when sending the output of a SQL query to a file for processing by
another program that may not need to have the column headings.

HEADSEP
The HEADSEP variable allows column headings to appear on multiple lines in the output. A single character, which is the vertical
bar ( | ) by default, divides the heading onto multiple lines. You can set the HEADSEP variable to either specify the separator
character or turn on or off the HEADSEP feature. We’ll talk more about HEADSEP later in this chapter, in conjunction with the
COLUMN command.

FEEDBACK
By default, if a query returns six or more rows, iSQL*Plus returns a summary of the number of rows returned from a query, as in
this example.
select * from countries;

CO COUNTRY_NAME                       REGION_ID
-- --------------------------------- ----------
AR Argentina                                  2
AU Australia                                  3
BE Belgium                                    1
BR Brazil                                     2
CA Canada                                     2
...
UK United Kingdom                             1
US United States of America                   2
ZM Zambia                                     4
ZW Zimbabwe                                   4

25 rows selected.
You can set the FEEDBACK variable to either change the number of rows that will trigger the row count or turn off this feedback
entirely.

Change Password

The Change Password page allows you to change your Oracle login password. Changing your password on a regular basis
reduces the risk of someone obtaining your password and gaining unauthorized access to your account. You must specify your
username, old password, and your new password (twice). In SQL*Plus, you can change your password by using the SQL*Plus
PASSWORD command, or by using the following SQL DCL command:
ALTER USER <username> IDENTIFIED BY <new password>;

The PASSWORD command will prompt you for the old and new password. The ALTER USER command does not prompt you for the
old password.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Report Formatting
While a DBA or an application developer who is familiar with the data can interpret terse column names such as MGR_NO and
ST_ID, these column names may not be very intuitive for employees in the Accounting department. Similarly, consider a query
like this:
select last_name from employees
    where department_id = 80;

Its output does not make it clear that the query output is only for the Sales department, unless you have all the department
numbers memorized!

Reports generated from SQL queries are much more readable and understandable when you use descriptive column names and
report headers and footers. The added features of the iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet environment provide this
functionality.

In this section, you’ll learn how to add headers and footers. You’ll also find another way to create descriptive column names. In
previous chapters, the examples used column aliases to change column names in the SQL query output. Using the COLUMN
command, you can provide the column alias function along with other formatting. Next, you’ll see how the BREAK command can
suppress the output of duplicate column values, making a report much more readable. Finally, you’ll learn how the COMPUTE
command gives totals in a report.

Defining column aliases, changing system variables, and computing totals stays in effect only for the duration of the iSQL*Plus,
SQL*Plus or SQL*Plus Worksheet session. You’ll see how to save and retrieve some of these settings later in this chapter in the
“Saving and Running Scripts” section.

Note Unless specified otherwise in this chapter, all command formats and options are valid in all three environments:
iSQL*Plus, SQL*Plus, and SQL*Plus. However, the examples throughout the chapter focus on the iSQL*Plus
environment.

Headers and Footers

The TTITLE and BTITLE commands provide a flexible way to generate report headers and footers. In addition to specifying text
to appear in the header and footer, this text can be centered, left-justified, or right-justified. Header and footer text can also extend
to two or more lines.

Using TTITLE
The syntax of the TTITLE command is as follows:
TTI[TLE] [option [text] ...] [ON|OFF]

The option part of the TTITLE command specifies what you’re doing with the header, such as justifying the text. The text part
of the command is where you specify the text to be placed in the header. You can specify ON or OFF to turn the header on or off.
Even if you temporarily turn off the header, the values you specified with the TTITLE command will be retained and will be back in
effect the next time you turn the header back on.

At Scott’s widget company, Janice, the application developer and DBA, has been reviewing some of her old queries to see if she
can use some of the reporting capabilities to better advantage when she generates reports for King, the boss. Janice digs up the
query that produces the salary report by department, sorted by descending salary within department:
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
order by department_id asc, salary desc;

 Dept Employee                           Salary
----- ------------------------------ ----------
   10 Whalen, Jennifer                     4400
   20 Hartstein, Michael                  13000
   20 Fay, Pat                             6000
   30 Raphaely, Den                       11000
   30 Khoo, Alexander                      3100
   30 Baida, Shelli                        2900
   30 Tobias, Sigal                        2800
   30 Himuro, Guy                          2600
   30 Colmenares, Karen                    2500
   40 Mavris, Susan                        6500
...
  100 Chen, John                           8200
  100 Urman, Jose Manuel                   7800
  100 Sciarra, Ismael                      7700
  100 Popp, Luis                           6900
  110 Higgins, Shelley                    12000
  110 Gietz, William                       8300
      Grant, Kimberely                     7000

107 rows selected.

Janice wants to make the report more readable by using some of the reporting features of iSQL*Plus. She also knows that King
usually wants to see only departments 30 and 60 in the report. She adds an IN clause to the query plus a left-justified report title:
ttitle left ‘Department Salary Report’

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ttitle left ‘Department Salary Report’
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

The LEFT option in the TTITLE command left-justified the header above the report. Notice also that there is no semicolon after
the TTITLE command; since TTITLE is an iSQL*Plus command, it is terminated automatically at the end of a line, unless the -
continuation character is specified.

Using BTITLE
The BTITLE command has the same syntax as the TTITLE command. It specifies the text to appear at the end of an iSQL*Plus
report. Janice adds a report footer to the report she has been so diligently revising for the boss, in addition to removing the
feedback returned from the SELECT query:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

In the BTITLE command, notice how Janice not only splits the iSQL*Plus command to a second line, but also specifies more than
one line in the report footer by using the SKIP n option to skip to the next line. In other words, the report output will skip to the
next line before displaying additional text in the report footer. The BTITLE command would also work just fine if it were all on one
line. Janice split it up so that the report specification was more readable to whomever may modify this report in the future.

Column Formatting

The COLUMN command in iSQL*Plus has the following syntax:
COL[UMN] [{column|expr} [option ...]]

You can specify aliases for column headings in a query when an alias specified as part of a SELECT statement itself is not
sufficient. For example, you might want the column alias to appear on two lines above the column’s data instead of on just one.
The column values themselves can be formatted as left-justified, right-justified, or centered. Numeric values that represent dollar
amounts can be formatted with the dollar sign character ($).

Janice makes some additional changes in the iSQL*Plus report she has been working on all morning. She adds two COLUMN
commands: one to specify a new column alias for the department number column and the other to format the salary amounts with
a dollar sign.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

In the first COLUMN command, Janice is using a heading separator. When iSQL*Plus formats this column heading, the heading
separator splits the heading so it appears on multiple lines. The default heading separator is the vertical bar character (|), but you
can change this on the System Variables page in iSQL*Plus or by using the SET HEADSEP command in iSQL*Plus, SQL*Plus, or
SQL*Plus Worksheet. Notice that the heading separator character does not appear in the output.

heading separator

A single character embedded in an iSQL*Plus column alias that indicates where the alias is split to appear on
multiple lines in the output. The heading separator itself does not appear in the output.

Note that the iSQL*Plus column alias operation is being applied to the alias in the SELECT statement itself ("Dept"). The COLUMN
command does not care if the column heading coming from the SELECT statement is the actual column name or an alias applied
by the SELECT statement; it will substitute its own new alias to matching column names from the SELECT statement.

The second COLUMN statement applies a numeric format to the "Salary" column, displaying it as a dollar amount.

BREAK Processing

The values in a particular column may repeat, for example, in a report containing employees with their department numbers. To
make the report more readable, it’s often desirable to suppress duplicate values in columns like these until the value in this
column changes. The iSQL*Plus BREAK command facilitates the suppression of duplicate values for a given column in a report.
The syntax for the BREAK command is as follows:
BRE[AK] [ON report_element]

Tip BREAK commands are almost always applied to columns that are sorted.

Janice knows that there is always room for improvement. She also knows that, at some point, the boss will be asking her to make
it clearer when the department number changes on her most recent iSQL*Plus report. To remove the extra department numbers,
she adds a BREAK command, as follows:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


order by department_id asc, salary desc;

The report is significantly more readable, and the boss can easily spot where the rows for department 60 begin in the report.

Summary Operations (Totals)

iSQL*Plus provides the capability to provide running and final totals to any report by using the COMPUTE command. The COMPUTE
command has the following format:
COMP[UTE] [function [LAB[EL] text] ...
   OF {expr|column|alias} ...
   ON {expr|column|alias|REPORT|ROW} ...]

You can attach specific labels to each subtotal by using the LABEL subclause. The function clause can be any of a number of
aggregate functions, such as SUM, AVG, MIN, MAX, and so forth. The summary operation can occur when a column value changes
or at the end of the report.

Janice is anticipating the next request from her boss, and decides to modify her report further to provide the sum of salaries by
department and across all departments specified in the report. She will need two new COMPUTE statements and a change to the
BREAK statement:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (30,60)
order by department_id asc, salary desc;

The on Report clause was added to the BREAK command so that totals would be generated by the COMPUTE statement that
follows it. Janice only "breaks" on the report once, but she still needs to specify it, because the COMPUTE statement performs the
aggregate operation only at a BREAK in a report. The COMPUTE statements in Janice’s revised report perform a sum of the salary
amounts and provide a custom label when the department salary sum is displayed on the report.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Substitution Variables
Another way to make an iSQL*Plus report more flexible is by using substitution variables. A substitution variable is a string
preceded by either an ampersand (&) or a double ampersand (&&) in an iSQL*Plus script that will prompt the user for its value
when the script is run.

substitution variable

A string literal with no embedded spaces, preceded by & or &&, that will prompt the user for a value when an
iSQL*Plus script containing one of these variables is executed. A substitution variable preceded by & will not
prompt the user for a value if the same substitution variable, preceded by &&, exists earlier in the script.

A substitution variable preceded by a single ampersand will prompt for a value every time it is encountered in a script. A
substitution variable preceded by a double ampersand will prompt for a value once and will save that value. Once saved, if the
same substitution variable preceded by a single ampersand is encountered, it will use the value saved when the substitution
variable with the double ampersand was encountered.

Janice is reviewing the script she has been working on all day, and realizes that sooner or later, the boss will want to run that
script for any list of departments, not just departments 30 and 60. She realizes that substitution variables would be useful in this
situation, and she changes her script as follows to allow iSQL*Plus to prompt for the department numbers before the query runs:
set feedback off
ttitle left ‘Department Salary Report’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (&DeptList)
order by department_id asc, salary desc;

The only change is the replacement of the specific department numbers in the original script with the substitution variable
DeptList. When Janice clicks the Execute button in iSQL*Plus, she is prompted for the value of DeptList.

The script runs as before, except this time, a different group of departments is returned from the query.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Notice that iSQL*Plus, by default, will show the substitutions that occurred before presenting the results. This can be turned off
with the SET VERIFY OFF command.

As you may have noticed, Janice is somewhat of a perfectionist, and she thinks that the report would look even better if the report
header contained the list of departments in the report. This gives Janice a good opportunity to use the double ampersand in her
substitution variable, so that she will not need to enter the department list twice when she runs the script. Her revised script now
looks like this:
set feedback off
ttitle left -
   ‘Department Salary Report, Departments: &&DeptList’
btitle left ‘End Salary Report’ skip 1 -
   left ‘Widgets-R-Us, Inc.’
column Dept heading ‘Dept|Number’
column salary format $999,999.99
break on Dept on Report
compute sum label ‘Dept Total’ -
   of salary on Dept
compute sum label ‘All Depts’ -
   of salary on Report
select department_id "Dept",
  last_name || ‘, ‘ || first_name "Employee",
  salary "Salary" from employees
where department_id in (&DeptList)
order by department_id asc, salary desc;

She changed the TTITLE command to include the substitution variable &&DeptList. When this script is run, the prompt for
DeptList occurs only once.

However, the substitution is performed twice. The first substitution variable &&DeptList has a double ampersand, and therefore
its value is retained when &DeptList is encountered later in the script.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Saving and Running Scripts
If a set of SQL or iSQL*Plus commands will be used over and over again, it makes sense to save it as a script in a central location
and retrieve it when it needs to be run. iSQL*Plus makes it easy to save and retrieve scripts.

Janice decides that the iSQL*Plus script she wrote for displaying salaries by department will be used by every department
manager, so she will save it on a network disk drive that is accessible to all of the managers. She clicks the Save Script button at
the bottom of the Work Screen.

This brings up the Save As dialog box. Janice saves the contents of the Work Screen to the directory I:\Common\SQLScripts.

To retrieve a script, Janice clicks the Browse button on the Work Screen and navigates to the directory containing the script. She
double-clicks the filename to be retrieved, and it is placed in the File or URL text box. She clicks the Load Script button to bring
the script into the Work Screen. If Janice knew the full pathname ahead of time, she could also type that directly into the File or
URL text box, without needing to use the Browse function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

2. Identify the two iSQL*Plus commands that define the header and footer for a report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus window where you enter your iSQL*Plus
commands or SQL statements?

4. Write an iSQL*Plus footer command to display the text Page 22, right-justified on the line.

5. Sums and averages can be displayed on an iSQL*Plus report using which iSQL*Plus command?

6. Write a single iSQL*Plus COLUMN command to format the Salary column with a total of six digits, four to the left of
the decimal point and two to the right. In the same COLUMN command, define the header to be Monthly Salary,
with the words appearing on different lines in the column header.

7. Which iSQL*Plus command controls the row count display after a SELECT statement is executed?

8. Which iSQL*Plus command controls how duplicate column values are displayed on a report?

9. The iSQL*Plus BREAK command is almost always specified in conjunction with what SQL SELECT statement
clause?

10. In both the TTITLE and BTITLE commands, what option must be used to specify more than one line in the
header or footer?

Answers

1. An iSQL*Plus substitution variable is preceded by either one or two ampersands (& or &&).

2. The TTITLE and BTITLE commands define the header and footer for an iSQL*Plus report.

3. The size of the iSQL*Plus Work Screen window can be adjusted on the Interface Options page.

4. This iSQL*Plus command will display the text Page 22, right-justified on the footer line of the report:
btitle right ‘Page 22’

5. Sums and averages can be displayed on an iSQL*Plus report by using the COMPUTE iSQL*Plus command.

6. The following iSQL*Plus command will format the Salary column with six digits, four to the left of the decimal point and two to
the right. In addition, the header will be defined as Monthly Salary, with the words appearing on different lines in the column
header:
column Salary format 9999.99 heading ‘Monthly|Salary’

7. The FEEDBACK command controls the row count display after a SELECT statement is executed. By default, the row count
from a query is displayed if there are six or more rows in the query output.

8. The BREAK command will suppress duplicate values in a report for a specified column.

9. The BREAK command is almost always specified on a column that is in the ORDER BY clause of a SQL SELECT statement.

10. The SKIP option must be used in a BTITLE or TTITLE command to specify more than one line in the header or footer.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
heading separator

script

substitution variable

system variable

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 10: Creating and Maintaining Database Objects

Overview
As both a DBA and a developer, you will be responsible for creating and maintaining a variety of database objects. First and
foremost, you will be creating tables. You will also need to know how to create indexes and views.

To keep track of tables, indexes, and other database objects, you can use data dictionary views, which allow you to retrieve
various kinds of statistics about tables and other database objects.

Two other useful database objects covered here are sequences and synonyms. Sequences make it easy to generate a series of
unique numbers that are typically used for the primary key of a table. Synonyms facilitate a consistent naming convention for
database objects that may exist in the user’s schema or in another schema of the same database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Tables
The table is the most basic and most important object you will create in a database. Essentially, you could do without every other
database object in a database except for tables. Without tables, you cannot store anything in a database.

You can create tables with the CREATE TABLE statement or "on the fly" with a method known as Create Table As Select, or
CTAS.

Once you know that you need to create a table, you must decide what kind of table you want. In this section, we’ll cover the most
common types of tables:

Relational tables

Tables created directly from the result of a query

Tables whose data resides outside the database

Tables with a definition that is available to all sessions but whose data is local to the session that created the data

Relational Tables

A relational table is the most common form of a table in the Oracle database. It is created with the CREATE TABLE statement, its
data is stored in the database, and it can be partitioned. When you partition a table, the data for the table is internally stored in two
or more pieces to potentially improve performance and to make the table easier for the DBA to manage if the table has many
rows. Partitioning tables is covered in more detail in Chapter 12, "Making Things Run Fast (Enough)."

relational table

The most common form of a table in the Oracle database; the default type created with the CREATE TABLE
statement. A relational table is permanent and can be partitioned.

The basic syntax for the CREATE TABLE statement is as follows:
CREATE TABLE [schema.]tablename
   (column1 datatype1 [DEFAULT expression]
      [, ...]);

The table that Scott, the company founder, created back in Chapter 2 was built with this statement:
create table emp_hourly (
  empno      number(4)    not null,
  ename      varchar2(10),
  job        varchar2(9),
  mgr        number(4),
  hiredate   date,
  hourrate   number(5,2)  not null default 6.50,
  deptno     number(2),
  constraint pk_emp
primary key ( empno ) ) ;

Now, the HR schema is used to manage employee information. Therefore, Janice, the DBA and senior developer, must re-create
the table to match the datatypes and name of the EMPLOYEES table in the HR schema, as follows:
create table employees_hourly (
  employee_id     number(6)    not null,
  first_name      varchar2(20),
  last_name       varchar2(25) not null,
  email           varchar2(25) not null,
  phone_number    varchar2(20),
  job_id          varchar2(10) not null,
  manager_id      number(6),
  hire_date       date not null,
  hourly_rate     number(5,2) default 6.50 not null,
  department_id   number(4),
  ssn             varchar2(11),
  constraint pk_employees_hourly
              primary key( employee_id ) ) ;

Because of the PRIMARY KEY constraint on the EMPLOYEE_ID column, the values in the EMPLOYEE_ID column must be unique
within the table.

Create Table As Select (CTAS)

If you want to base the contents of a new table on the results of a query of one or more other tables, you can use the statement
CREATE TABLE ... AS SELECT, otherwise known as CTAS. It’s shorthand for two or more individual statements: the traditional
CREATE TABLE statement and one or more INSERT statements. Using CTAS, you can create a table and populate it in one easy
step.

CTAS

Also known as Create Table As Select, a method for creating a table in the database by using the results from a
subquery to both populate the data and specify the datatypes of the columns in the new table.

The syntax for CTAS varies from the basic syntax of a CREATE TABLE statement as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The syntax for CTAS varies from the basic syntax of a CREATE TABLE statement as follows:
CREATE TABLE [schema.]tablename
   AS SELECT <select_clauses>;

Notice that with CTAS you cannot specify the datatypes of the new columns; the column datatypes of the original columns, along
with any NOT NULL constraints, are derived from the columns in the SELECT query. Any other constraints or indexes may be
added to the table later. Column aliases in the SELECT query are used as the column names in the new table.

At Scott’s widget company, the Order Entry department frequently sends out mailings to nonadministrative staff, but the mailing
list is becoming outdated. The manager in the Order Entry department asks Janice to grant the developers in the group the rights
to access the EMPLOYEES table. However, the EMPLOYEES table contains sensitive personal information about employees, such
as their salary. So, instead of granting access to the EMPLOYEES table, Janice decides to give the Order Entry department
developers their own table with a limited number of columns. Using CTAS, her CREATE TABLE statement extracts the name and
e-mail address for the Order Entry department as follows:
create table oe.non_admin_employees
    as select employee_id, last_name, first_name, email
    from hr.employees e where e.job_id not like ‘AD_%’;

Notice that Janice is copying some of the rows with only a few of the columns from the EMPLOYEES table in the HR schema, and
she is creating a new table named NON_ADMIN_EMPLOYEES in the OE schema. To confirm her work, Janice checks the new
table:
describe oe.non_admin_employees

 Name                         Null?    Type
 ---------------------------- -------- ---------------
 EMPLOYEE_ID                           NUMBER(6)
 LAST_NAME                    NOT NULL VARCHAR2(25)
 FIRST_NAME                            VARCHAR2(20)
 EMAIL                        NOT NULL VARCHAR2(25)

select * from oe.non_admin_employees;

EMPLOYEE_ID LAST_NAME          FIRST_NAME       EMAIL
----------- ------------------ ---------------- -----------
        103 Hunold             Alexander        AHUNOLD
        104 Ernst              Janice           JERNST
        105 Austin             David            DAUSTIN
        106 Pataballa          Valli            VPATABAL
        107 Lorentz            Diana            DLORENTZ
        108 Greenberg          Nancy            NGREENBE
...
        195 Jones              Vance            VJONES
        196 Walsh              Alana            AWALSH
        197 Feeney             Kevin            KFEENEY
        198 OConnell           Donald           DOCONNEL
        199 Grant              Douglas          DGRANT
        201 Hartstein          Michael          MHARTSTE
        202 Fay                Pat              PFAY
        203 Mavris             Susan            SMAVRIS
        204 Baer               Hermann          HBAER
        205 Higgins            Shelley          SHIGGINS
        206 Gietz              William          WGIETZ

103 rows selected.

Everyone in the EMPLOYEES table is in the new NON_ADMIN_EMPLOYEES table, except for the four administrative employees
whose job ID begins with AD_.

Janice makes sure to re-create the table in the OE schema every time employees are added, deleted, or changed in HR’s
EMPLOYEE table. If the Order Entry department wants any other constraints or indexes other than the NOT NULL constraint on
columns in the new table, Janice will need to create them manually.

External Tables

Sometimes you want to access data that resides outside the database, but you want to use it as if it were another table within the
database. An external table is a read-only table whose definition is stored within the database but whose data stays external to
the database itself.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


external table

A table whose definition is stored in the database but whose data is stored externally to the database.

You may ask, “Why not use one of Oracle’s utilities to load the external data into an internal table, and then use the internal
table?” While this is an option, there are many reasons why this may not be the best solution. One reason is that you can use the
functionality of Oracle SQL against the external table to more easily load the data into other tables. Also, if the external data
source is maintained by another business area in a text format, the internal copy of the data most likely will be out of synch until
the next time you import it. If you treat the external data as a table, it will always be up to date every time you access it as an
external table.

There are a few drawbacks to using external tables. External tables are read-only; changes cannot be made to the external data
source with UPDATE statements. Also, external tables cannot be indexed. Therefore, if you need to access only a small fraction of
the rows in the external table, an internal table with an index might be a better solution.

Janice, the DBA, has been assigned the task of making the customer feedback files maintained by the Customer Service group
accessible from within the database. Currently, the Customer Service group receives customer feedback, which is entered on a
daily basis into a text file on the shared network drive I:\Common\CustomerComments with a filename of feedback.txt.

The first step Janice must perform is to define an Oracle object known as a directory. An Oracle directory is an Oracle object that
contains an alias to a directory path on the operating system’s filesystem. Once defined in this manner, the Oracle directory object
can be used to refer to the location on the filesystem in subsequent Oracle commands, such as the CREATE TABLE ...
ORGANIZATION EXTERNAL command. You need to run the CREATE DIRECTORY command only once for each filesystem
pathname you want to access. Janice’s command for creating this directory object is as follows:
create directory comment_dir as
        ‘I:\Common\CustomerComments’;

Directory created.

directory

A database object that stores a reference to a directory on the host operating system’s filesystem.

The file that contains the data for the external table, feedback.txt, looks like this:
154,Helpful and Friendly.
150,Took the time to help me buy the widgets I really needed.
156,Didn’t really seem too enthusiastic.
152,The Best experience I’ve had with Widgets-R-Us.

The external table will have two columns: The first field is the employee number, and the second field is the text of the comments
from the customer. A comma separates the employee number from the comment. Janice uses the following CREATE TABLE
statement to create the external table:
create table cust_comments (
  employee_id   number,
  comments      varchar2(100))
organization external
 (default directory comment_dir
  access parameters
  (records delimited by newline
   fields terminated by ‘,’
    (employee_id char, comments char))
   location(‘feedback.txt’));

Table created.

The first part of the CREATE TABLE statement looks familiar. It contains two columns: EMPLOYEE_ID and COMMENTS. The
ORGANIZATION EXTERNAL clause specifies this table to be an external table. The operating system file is located in the directory
defined by the directory object comment_dir. Each line of data corresponds to one row in the table, and each column in the
external file is separated by a comma. Both of the fields are character strings in the external file, so we define those fields as
CHAR. Finally, we specify the name of the external file itself with the LOCATION clause.

Janice, as well as anyone else who can access tables in the HR schema, can use the CUST_COMMENTS table in a query as easily
as using any of the internal tables:
select * from cust_comments;

EMPLOYEE_ID COMMENTS
----------- ------------------------------------------
        154 Helpful and Friendly.
        150 Took the time to help me buy the widgets
               I really needed.
        156 Didn’t really seem too enthusiastic.
        152 The Best experience I’ve had with
               Widgets-R-Us.

4 rows selected.

To produce a report that is more readable for the boss, Janice joins the external table with the internal EMPLOYEES table:
select employee_id "EmpID",
    last_name || ‘, ‘ || first_name "Name", comments

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    last_name || ‘, ‘ || first_name "Name", comments
from employees join cust_comments using (employee_id);

 EmpID Name                 COMMENTS
------ -------------------- -------------------------
   154 Cambrault, Nanette   Helpful and Friendly.
   150 Tucker, Peter        Took the time to help me
                            buy the widgets I really
                            needed.
   156 King, Janette        Didn’t really seem too
                            enthusiastic.
   152 Hall, Peter          The Best experience I’ve
                            had with Widgets-R-Us.

4 rows selected.

The CUST_COMMENTS table is indistinguishable in usage from any other table in the database, as long as you don’t try to perform
any INSERT, UPDATE, or DELETE statements on the external table.

Temporary Tables

A temporary table is a table whose definition is available to all sessions in the database, but whose rows are available only to the
session that added the rows to the table. Once the transaction is committed or the session is terminated, the data created during
that session is removed from the temporary table. To create a temporary table, you use the familiar CREATE TABLE syntax with
the addition of the GLOBAL TEMPORARY clause. An additional clause, ON COMMIT PRESERVE ROWS, retains the rows added to
the table until the end of the session; otherwise, the rows are removed after each COMMIT.

temporary table

A table whose definition is persistent and shared by all database users but whose data is local to the session
that created the data. When the transaction or session is completed, the data is truncated from the temporary
table.

A temporary table might be useful in an application that uses a table for its session data and is used by hundreds of users; the
table needs to be created only once, with the proper permissions so that all application users can access it.

Janice, the DBA, is installing a travel itinerary application that employees use to plan their business trips. The application needs a
table that temporarily holds the travel destinations and costs for the employee. Janice realizes a temporary table is perfect for this
purpose. Her CREATE TABLE statement looks like this:
create global temporary table travel_dest
   (employee_id      number(6),
    destination_id   number(4),
    airfare          number(7,2),
    hotel            number(6,2))
on commit preserve rows;

Table created.

Once the travel itinerary application is terminated and the user disconnects from the database, any rows placed in this table by the
user are automatically removed.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Indexes
The purpose of indexes can be summarized in one word: performance. An index is a database structure designed to reduce the
amount of time necessary to retrieve one or more rows from a table. Indexes can also enforce uniqueness on one or more
columns of a table.

index

A database object designed to reduce the amount of time it takes to retrieve rows from a table. An index is
created based on one or more columns in the table.

Any number of indexes may be created on a table. An index may also be built against a combination of columns in a table; this
type of index is known as a composite index.

composite index

An index that is created on two or more columns in a table.

Indexes are maintained automatically. When new rows are added to the table, new entries are recorded in the indexes. When
rows are deleted from the table, the corresponding index entries are also deleted.

Warning Be cautious when creating indexes in an environment with frequent update, insert, and delete operations. The
overhead of keeping the indexes up to date can have a performance impact on the database and potentially
increase the response time for users.

Indexes can be either unique or nonunique. A unique index prevents duplicate values from being inserted into a table column with
a unique index. For example, an employee table might have a column with a social security number. Since no two employees will
have the same social security number, a unique index can be created on the column. If a primary key is defined for a table, a
unique index is automatically created to enforce the uniqueness of the primary key.

Nonunique indexes, by definition, will not enforce uniqueness, but can still speed processing by narrowing down the range of
blocks where the desired rows of a table can be found. For example, a nonunique index on a column with a last name would likely
have many entries for Smith. Each of the index entries for Smith would point to a row in the table where the last name was
Smith. Using this nonunique index to find all the Smith entries will typically take much less time than scanning the entire table for
Smith directly.

An index on a database table column corresponds closely to the real-world analogy of an index in a book. A topic in a book can be
located much more quickly if the topic’s title is located in the book’s index with the corresponding page number. Without the index,
you might need to search through each page of the book to locate the topic you want.

The simplest form of the CREATE INDEX statement looks like this:
CREATE INDEX index_name
ON table_name (column1[, column2]...);

The columns column1, column2, and so forth are the columns to be indexed on the table table_name. The index name
index_name must be unique across all objects within the same schema.

Janice has been receiving complaints that the queries against the COUNTRIES table have been slow. She knows that there is
already an index on the COUNTRY_ID column, so she is surprised that the response time would be poor when selecting a row
from the COUNTRIES table. After further investigation, she discovers that a lot of users are trying to find the two-letter country code
given the name of the country—the users are searching the table using a WHERE clause on the COUNTRY_NAME column. She
decides that an index on the COUNTRY_NAME column might improve the response time. To create the index, she uses the
following command:
create index countries_ie1 on countries(country_name);

Index created.

The index did not necessarily need the name of the table in its name. However, Janice realizes that it’s good practice to include
the table name, so that she can easily avoid duplicate index names in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating and Using Views
In this section, we’ll talk about views that users can create themselves, and then we’ll cover views owned by SYS that contain
important information about the objects in the database.

User-Defined Views

Views are database objects that look like tables, but are instead derived from a SELECT statement performed on one or more
tables. In other words, a view is a subset of data from one or more tables. A view does not contain its own data; the contents of a
view are dynamically retrieved from the tables on which it is based. A view is sometimes referred to as a stored query.

view

A database object that is based on a SELECT statement against one or more tables or other views in the
database. A regular view does not store any data in the database; only the definition is stored. Views are also
known as stored queries.

Views can enhance the usability of the database by making complex queries appear to be simple. For example, users may
frequently join together two or more tables in the same way. A view will make the users’ lives a bit easier, allowing them to write a
query against a single view instead of needing to rewrite a complex query over and over.

Views can also be used to restrict access to certain rows or columns of a table. For example, the DBA can create a view against
the EMPLOYEES table that excludes the SALARY column and make this view available to those departments that need to see
employee information but should not see salary information.

The CREATE VIEW statement looks like this:
CREATE VIEW view_name (alias1[, alias2] ...)
   AS subquery;

The subquery clause is a SELECT statement that may join more than one table and may also have a WHERE clause. Column
aliases can be specified for the resulting columns from the subquery.

After reviewing some of the SELECT statements that the users are writing, Janice, the DBA and application developer, notices that
there are frequent joins between the EMPLOYEES table and the DEPARTMENTS table, similar to the following:
select employee_id, last_name, first_name,
       department_id, department_name
from employees join departments using(department_id);

Creating a view based on this query might help the users who typically don’t use SQL to join tables but need to see the associated
department information for each employee. Janice creates the view using the sample query above as the subquery in a CREATE
VIEW statement:
create view
      emp_dept(emp_id, lname, fname, dept_id, dname) as
select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

View created.

Notice that Janice has supplied column aliases so that the original column names are not visible to the users of the view. For all
intents and purposes, the EMP_DEPT view looks and operates in the same way as a single table, as demonstrated below with the
DESCRIBE and SELECT statements:
describe emp_dept;
 Name                               Null?    Type
 ---------------------------------- -------- ------------
 EMP_ID                             NOT NULL NUMBER(6)
 LNAME                              NOT NULL VARCHAR2(25)
 FNAME                                       VARCHAR2(20)
 DEPT_ID                            NOT NULL NUMBER(4)
 DNAME                              NOT NULL VARCHAR2(30)

select * from emp_dept;

 EMP_ID LNAME         FNAME       DEPT_ID DNAME
------- ------------- ----------- ------- ----------------
    100 King          Steven           90 Executive
    101 Kochhar       Neena            90 Executive
    102 De Haan       Lex              90 Executive
    103 Hunold        Alexander        60 IT
    104 Ernst         Janice           60 IT
    105 Austin        David            60 IT
    106 Pataballa     Valli            60 IT
    107 Lorentz       Diana            60 IT
    108 Greenberg     Nancy           100 Finance

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    108 Greenberg     Nancy           100 Finance
    109 Faviet        Daniel          100 Finance
    110 Chen          John            100 Finance
...
    203 Mavris        Susan            40 Human Resources
    204 Baer          Hermann          70 Public Relations
    205 Higgins       Shelley         110 Accounting
    206 Gietz         William         110 Accounting

106 rows selected.

The EMP_DEPT view can be used in the same way as any database table. The users can add a WHERE clause to the SELECT
statement above. Also, the EMP_DEPT view can be joined with a table in another query if so desired.

Data Dictionary Views

Data dictionary views are predefined views that contain a variety of information about tables, users, and various other objects in
the database. Like other views, data dictionary views are based on one or more tables. The main differences between data
dictionary views and user-created views are that data dictionary views are owned by the user SYS and the views themselves may
appear to have different results depending on who is accessing them.

data dictionary views

Read-only views owned by the user SYS that are created when the database is created and contain information
about users, security, and database structures, as well as other persistent information about the database.

Data Dictionary View Types
Data dictionary views have one of three prefixes:

USER_ These views show information about the structures owned by the user (in the user’s schema). They are accessible to all
users and do not have an OWNER column.

ALL_  These views show information about all objects that the user has access to, including objects owned by the user and
objects that other users have granted the user access to. These views are accessible to all users. Each view has an OWNER
column, since some of the objects may reside in other users’ schemas.

DBA_  These views have information about all structures in the database—they show what is in all users’ schemas. Accessible to
the DBA, they provide information on all the objects in the database and have an OWNER column as well.

Common Data Dictionary Views
Some data dictionary views are commonly used by both developers and DBAs to retrieve information about tables, table columns,
indexes, and other objects in the database. The following descriptions refer to the ALL_ version of each of the views.

ALL_TABLES

The ALL_TABLES view contains information about all database tables to which the user has access. The following query, run by
the user HR, identifies the table and owner of all tables that HR can access:
select table_name, owner from all_tables;

TABLE_NAME                     OWNER
------------------------------ ------
DUAL                           SYS
SYSTEM_PRIVILEGE_MAP           SYS
TABLE_PRIVILEGE_MAP            SYS
STMT_AUDIT_OPTION_MAP          SYS
AUDIT_ACTIONS                  SYS
...
REGIONS                        HR
COUNTRIES                      HR
LOCATIONS                      HR
DEPARTMENTS                    HR
JOBS                           HR
EMPLOYEES                      HR
JOB_HISTORY                    HR
EMP                            SCOTT
SALGRADE                       SCOTT
EMPLOYEES_DEPARTMENTS          HR
EMPLOYEES_SSN                  HR
CUST_COMMENTS                  HR
EMPTY_CUST_COMMENTS            HR

44 rows selected.

Many of the tables visible to HR are tables owned by SYS and SYSTEM, such as the DUAL table. The user HR can also access the
EMP and SALGRADE tables owned by SCOTT.

ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view contains information about the columns in all tables accessible to the user. If the user HR wanted to
find out the columns and datatypes in the COUNTRIES table, the query would be written as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


find out the columns and datatypes in the COUNTRIES table, the query would be written as follows:
select column_name, data_type from all_tab_columns
where table_name = ‘COUNTRIES’;

COLUMN_NAME               DATA_TYPE
------------------------- ------------
COUNTRY_ID                CHAR
COUNTRY_NAME              VARCHAR2
REGION_ID                 NUMBER

3 rows selected.

ALL_INDEXES

The ALL_INDEXES view contains information about the indexes accessible to the user. If the HR user wanted to find out the
indexes that were created against the COUNTRIES table and whether the indexes were unique, the query would look like this:
select table_name, index_name, uniqueness from all_indexes
where table_name = ‘COUNTRIES’;

TABLE_NAME               INDEX_NAME           UNIQUENES
------------------------ -------------------- ---------
COUNTRIES                COUNTRY_C_ID_PK      UNIQUE
COUNTRIES                COUNTRIES_IE1        NONUNIQUE

2 rows selected.

The COUNTRIES table has two indexes, one of which is a unique index.

ALL_IND_COLUMNS

The ALL_IND_COLUMNS view contains information about the columns indexed by an index on a table. Following the previous
example, the HR user can use the INDEX_NAME to help identify the indexed column or columns on the table.
select table_name, column_name from  all_ind_columns
where index_name = ‘COUNTRY_C_ID_PK’;

TABLE_NAME     COLUMN_NAME
-----------    -----------------
COUNTRIES      COUNTRY_ID

1 row selected.

The index COUNTRY_C_ID_PK indexes the COUNTRY_ID column in the COUNTRIES table.

ALL_OBJECTS

The ALL_OBJECTS view combines all types of Oracle structures into one view. This view comes in handy when you want a
summary of all database objects using one query, or you have the name of the object and want to find out what kind of object it is.
The following query retrieves all the objects accessible to HR and owned by either the HR or JANICE schema:
select owner, object_name, object_type, temporary
   from all_objects
   where owner in (‘HR’,’JANICE’);

OWNER      OBJECT_NAME                OBJECT_TYPE        T
---------- -------------------------- ------------------ -
JANICE     TRAVEL_DEST                TABLE              Y
HR         ADD_JOB_HISTORY            PROCEDURE          N
HR         COUNTRIES                  TABLE              N
HR         COUNTRIES_IE1              INDEX              N
HR         COUNTRY_C_ID_PK            INDEX              N
HR         CUST_COMMENTS              TABLE              N
HR         DEPARTMENTS                TABLE              N
HR         DEPARTMENTS_SE             SEQUENCE           N
HR         DEPT_ID_PK                 INDEX              N
...
HR         PK_EMPL_SSN                INDEX              N
HR         REGIONS                    TABLE              N
HR         REG_ID_PK                  INDEX              N
HR         SECURE_DML                 PROCEDURE          N
HR         SECURE_EMPLOYEES           TRIGGER            N
HR         UK1_EMPLOYEES              INDEX              N
HR         UPDATE_JOB_HISTORY         TRIGGER            N

43 rows selected.

The TEMPORARY (T) column in the ALL_OBJECTS view indicates whether the object is temporary. The temporary table
TRAVEL_DEST, created and owned by JANICE but accessible to all users, is indicated correctly as being a temporary table in the
query results.

Data Dictionary View Shorthand

Because of how frequently some of the data dictionary views are used by a typical database user, a number of short
synonyms exist for these views. Here are some examples of shortened view names:

TABS is a synonym for USER_TABLES.

IND is a synonym for USER_INDEXES.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IND is a synonym for USER_INDEXES.

OBJ is a synonym for USER_OBJECTS.

Dynamic Performance Views

Dynamic performance views are similar in nature to data dictionary views, with one important difference: Dynamic performance
views are continuously updated while the database is open and in use; they are re-created when the database is shut down and
restarted. In other words, the contents of these views are not retained when the database is restarted. The contents of dynamic
performance views primarily relate to the performance of the database.

dynamic performance views

Data dictionary views owned by the user SYS that are continuously updated while a database is open and in use
and whose contents relate primarily to performance. These views have the prefix V$ and their contents are lost
when the database is shut down.

The names of the dynamic performance views begin with V$. Two common dynamic performance views include V$SESSION and
V$INSTANCE.

V$SESSION
The dynamic performance view V$SESSION contains information about each connected user or process in the database. To find
out what programs the user HR is using to connect to the database, you can query the PROGRAM column of V$SESSION:
select sid, serial#, username, program from v$session
where username = ‘HR’;

       SID    SERIAL# USERNAME           PROGRAM
---------- ---------- ------------------ ----------------
        16       6921 HR                 Toad.exe
        19         18 HR                 jrew.exe
        20         39 HR                 sqlplusw.exe
        21       6932 HR                 Toad.exe

4 rows selected.

In this case, the user HR has four connections open in the database using three different programs. The SID and SERIAL#
columns together uniquely identify a session. This information is needed by the DBA if, for some reason, one of the sessions must
be terminated.

V$INSTANCE
The V$INSTANCE view provides one row of statistics for each Oracle instance running against the database. Multiple instances
running against a single database can greatly enhance the scalability of the Oracle database by spreading out the CPU resource
usage over multiple servers. The following query finds out the version of the Oracle software and how long the instance has been
up since the last restart, along with other instance information.
select instance_name, host_name, version,
   startup_time, round(sysdate-startup_time) "Days Up",
   status from v$instance;

INSTANCE_NAME HOST_NAME VERSION   STARTUP_T Days Up STATUS
------------- --------- --------- --------- ------- ------
or92          ATH1800   9.2.0.1.0 13-OCT-02       7 OPEN

1 row selected.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Creating Sequences and Synonyms
Various other database objects are needed to support the main objects in the database (such as tables). Two such objects are
sequences and synonyms.

Sequences

An Oracle sequence is a named sequential number generator. A sequence is often used to generate a unique key for the primary
key of a table. A sequence object is owned by a single schema, but it can be used by other database users if the proper
permissions are granted to the users.

sequence

A database structure that generates a series of numbers typically used to assign primary key values to database
tables.

Sequences can begin and end with any value, can be ascending or descending, and can skip (increment) a specified number
between each value in the sequence. The basic syntax for CREATE SEQUENCE is as follows:
CREATE SEQUENCE sequence_name
   [START WITH starting_value]
   [INCREMENT BY increment_value];

If all optional parameters are omitted, the sequence starts with one and increments by one, with no upper boundary.

Sequences are referenced in DML statements by using the syntax sequence_name.currval or sequence_name.nextval.
The qualifier nextval retrieves the next value. The qualifier currval retrieves the most recent number generated without
incrementing the counter. For example, here are some sample SELECT statements that access the sequence used for employee
numbers, EMPLOYEES_SEQ:
select employees_seq.nextval from dual;

NEXTVAL
----------
       211

1 row selected.

select employees_seq.nextval from dual;

NEXTVAL
----------
       212

1 row selected.

select employees_seq.currval from dual;

CURRVAL
----------
       212

1 row selected.

The HR department has asked the DBA, Janice, to re-create the sequence for the EMPLOYEES table to start at 501 and increment
by 10. Janice drops the old sequence and re-creates it:
drop sequence hr.employees_seq;

Sequence dropped.

create sequence hr.employees_seq
   start with 501
   increment by 10;

Sequence created.

After the sequence has been created, the user HR inserts a record into the EMPLOYEES table as follows:
insert into employees
   (employee_id, last_name, first_name, email,
    hire_date, job_id)
values
   (employees_seq.nextval, ‘JUNDT’, ‘SUSAN’, ‘SJUNDT’,
    ‘15-oct-02’,’ST_MAN’);

1 row created.

select employee_id from employees
where last_name = ‘JUNDT’;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


where last_name = ‘JUNDT’;

EMPLOYEE_ID
-----------
        501

1 row selected.

The next time the employees_sesequence is used, the value returned will be 511.

Synonyms

A synonym is an alias for another database object, such as a table, sequence, or view. Synonyms provide easier access to
database objects outside the user’s schema.

synonym

An alias assigned to a table, view, or other database structure. Synonyms can be either available to all users
(public) or available only to one schema owner (private).

There are two kinds of synonyms: public and private. Public synonyms are available to all database users. A private synonym is
available only in the session of the schema owner who created it.

Synonyms are useful in providing a common name to a database object, regardless of which username is logged in to the
database. The temporary table created by Janice, the DBA, called TRAVEL_DEST must be qualified with the schema name if
anyone other than Janice wants to access it. For example, if the user HR is connected to the database and no synonym has been
specified, the table must be fully qualified:
insert into janice.travel_dest
   values(101, 1201, 320.50, 988.00);

The syntax for creating a synonym is as follows:
CREATE [PUBLIC] SYNONYM synonym_name
   FOR [schema.]object_name;

To facilitate easy access to the table TRAVEL_DEST, Janice creates a public synonym for the table:
create public synonym travel_dest for travel_dest;

Synonym created.

What happens if a user has a private synonym called TRAVEL_DEST, or worse yet, his or her own table is called TRAVEL_DEST?
Unqualified object references (object references that aren’t prefixed with a schema name) are resolved in the following order:

1. A real object with the specified name

2. A private synonym owned by the current user

3. A public synonym

Private synonyms can be useful in a development environment when you have a copy of a table with a different name. A private
synonym can be created to refer to the copy of the production table with the same name as the production table. During testing,
the developer’s private synonym points to the copy and does not impact the production table. When development is complete, the
developer can remove the private synonym and move the new SQL code into a production environment, without changing any
table names in the SQL code.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. The data dictionary view IND has the same definition as what other data dictionary view?

2. The most common form of a table in the Oracle database is a(n) table.

3. What clause do you add to the CREATE TABLE statement to create a temporary table?

4. What tables are displayed if a user accesses the ALL_TABLES data dictionary view?

5. Name two ways in which external tables are different from relational tables.

6. True or false: Oracle resolves object references by checking for private synonyms first.

7. What are two reasons for creating a view against one or more tables?

8. What database object type can be used to generate a series of sequential numbers?

9. True or false: Data dictionary tables retain their contents even after the database has been shut down and
restarted.

10. An index created on more than one column is known as what kind of index?

Answers

1. The data dictionary view IND is equivalent to the data dictionary view USER_INDEXES.

2. Relational

3. You add the clause GLOBAL TEMPORARY to the CREATE TABLE statement to create a temporary table.

4. The ALL_TABLES data dictionary view contains a row for each table in the user’s schema plus a row for each table that the
user has access to in other schemas of the database.

5. External tables cannot be updated, and external tables cannot have indexes created on them.

6. False, Oracle resolves object references by checking for a real object owned by the user, then checks for a private synonym,
and then checks for a public synonym.

7. A view can be created to hide the complexity of a table join from the user. A view can also be created to restrict the rows or
columns seen by users of the view.

8. A sequence can be used to generate a series of sequential numbers.

9. True, data dictionary tables retain their contents even after the database has been restarted. Dynamic performance views,
however, lose their contents when the database is shut down and restarted.

10. An index based on more than one column is known as a composite index.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
composite index

CTAS

data dictionary views

directory

dynamic performance views

external table

index

relational table

sequence

synonym

temporary table

view

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 11: Users and Security
If a company has more than one employee who needs access to the Oracle database, then the security of the database is a prime
concern for the DBA. The data integrity of the database and the level of security in the database are maintained, in part, by
preventing unauthorized or unintentional actions in the database.

Database security can be divided into roughly two areas: data security and system security. Data security includes monitoring and
assigning users permissions to the various objects in the database. System security covers the user login process, how much disk
space is assigned to each user, and what kinds of actions each user can perform.

Creating User Accounts
To connect to the Oracle database, a user must have an Oracle database account, also known as a username. When you create
the username, you can specify various other characteristics of the account, including a password, a profile, default tablespaces,
and disk space quotas.

username

An Oracle database account identifier that, along with a password, allows a user to connect to the database.

The basic syntax to create a username is as follows:
CREATE USER user <other options>;

At a minimum, you should assign a password to the account. Passwords and the other user account options are discussed in the
following sections.

Assigning Passwords

The password for the user account is typically assigned at the time the account is created, and then changed after the user logs in
for the first time. Janice, the DBA, creates an account for one of the new stocking managers with an initial password of
BLINKIE6:
create user jsmith identified by blinkie6;

User created.

Passwords are not case sensitive; for example, BlinKIe6 or blinkIe6 would both be stored as BLINKIE6 in the database. To
ensure that the password won’t be easy to guess, it’s important to use a mixture of letters, numbers, and punctuation characters in
the password. The DBA can define additional rules for allowable passwords by the use of a special stored function owned by the
SYS schema. For example, the DBA may require that certain sensitive accounts such as HR have a password that is longer than
the password for any other accounts.

The DBA or user can use the ALTER USER command to change the password:
alter user jsmith identified by spinner40;

User altered.

To change a password from an iSQL*Plus session, the user can use the Preferences link in the upper-right area of the browser.
From within SQL*Plus, the user can change the password using the SQL*Plus PASSWORD command. The advantage to these last
two methods is that the old and new passwords are not echoed to the screen:
SQL> password
Changing password for JSMITH
Old password: *********
New password: ********
Retype new password: ********
Password changed
SQL>

Creating and Assigning Profiles

Each username in the database has a profile associated with it. A profile is a set of predefined resource parameters that can be
used to monitor and control various database resources. The following are some examples of resources that can be controlled in
a profile:

Concurrent connections to the database

Maximum failed login attempts before the account is locked

Elapsed time connected

Continuous idle time connected

CPU time used

Disk reads performed

How often a password needs to be changed

profile

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A set of predefined resource parameters that can be used to monitor and control various database resources,
such as CPU time and number of disk reads against the database.

When an account is created, a profile can be specified; otherwise, Oracle assigns a default profile. Not surprisingly, this profile is
called DEFAULT. The initial values of the DEFAULT profile allow for unlimited use of all resources.

At Scott’s widget company, the users in the stocking department are notorious for leaving their sessions connected to the
database and forgetting to log off when they are finished. This consumes valuable memory resources, so Janice, the DBA,
decides to create a new profile in the database to make sure that users are disconnected from the database after 15 minutes of
idle time:
create profile st_user limit
   idle_time 15;

Profile created.

In the new ST_USER profile just created, all resources are set to UNLIMITED except for the IDLE_TIME resource, which has been
set to 15 minutes. The DBA modifies the recently created user to use the newly created profile:
alter user jsmith profile st_user;

User altered.

For JSMITH’s subsequent sessions, the session will be disconnected if the session remains idle for 15 minutes.

Assigning Default Tablespaces and Quotas

When a user creates some type of object—a table, an index, a sequence, or another object—that object uses space in one of the
database’s tablespaces. In addition, a user may need temporary space for sorting and other operations. Each user has a default
tablespace for permanent objects and a default tablespace for temporary objects, although a user may explicitly create objects in
a different tablespace if the user has the proper permissions.

If a default permanent tablespace is not specified when the user account is created, the SYSTEM tablespace is used. It is generally
not a good idea to leave SYSTEM as the default tablespace. Since the SYSTEM tablespace contains all of the data dictionary
objects, there is a high level of contention in the SYSTEM tablespace already, so any new user objects in the SYSTEM tablespace
might have a negative impact on overall system performance.

Janice, the DBA, remedies this situation with the new user account and changes the default tablespace:
alter user jsmith default tablespace users;

User altered.

Janice double-checks her work by querying the DBA_USERS data dictionary view:
select username, default_tablespace,
   temporary_tablespace from dba_users
where username = ‘JSMITH’;

USERNAME     DEFAULT_TABLESPACE   TEMPORARY_TABLESPACE
------------ -------------------- --------------------
JSMITH       USERS                TEMP

1 row selected.

Janice makes a mental note to use the GUI-based Oracle Enterprise Manager (OEM) tool next time. Its Create User facility,
shown below, is not only easier to use, but it also automatically specifies the USER tablespace as the default tablespace for new
users, among other defaults.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although disk space gets cheaper every day, you may also want to limit how much disk space each user can allocate in each
tablespace. The limit on the amount of disk space in a tablespace is called a quota. Even though each username is assigned a
default tablespace when the username is created, the quota defaults to zero. Therefore, you must assign a quota to the user
before that user can create objects in the tablespace.

quota

A numeric limit on the amount of disk space that a user can allocate within a tablespace. The quota can also be
specified as UNLIMITED.

Since the new user, JSMITH, is expected to create tables for other people in the stocking department, Janice allocates 15MB of
disk space in the USERS tablespace for JSMITH:
alter user jsmith quota 15M on users;

User altered.

If Janice specified UNLIMITED instead of 15M, JSMITH would not have any limits on how much space she can use in the USERS
tablespace for database objects.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Granting and Revoking Privileges
Privileges are rights to execute specific SQL statements. The DBA grants privileges to user accounts to control what users can
do in the database. There are two kinds of privileges: system privileges and object privileges. The GRANT command allocates
system and object privileges to a user. The REVOKE command removes privileges from a user.

privileges

The right to perform a specific action in the database, granted by the DBA or other database users.

Roles provide an easy way to group privileges together and assign them to one or more users in the database.

System Privileges

System privileges allow users to perform a specific action on one or more database objects or users in the database. There are
more than 100 system privileges available in the Oracle9i database. Typically, system privileges will fall into two general
categories: DBA privileges and user privileges. There is no distinction at the database level between these two types of system
privileges.

system privileges

Privileges that allow users to perform a specific action on one or more database objects or users in the
database.

In general, system privileges that can affect the database as a whole are generally considered to be DBA privileges. The following
are typical DBA privileges:

Privilege Description

CREATE USER Create a new database user

DROP USER Remove a database user

CREATE ANY TABLE Create a new table in any schema

CREATE TABLESPACE Create a new tablespace

AUDIT ANY Turn on or off database auditing

DROP ANY INDEX Drop an index in any schema

System privileges that allow users to perform specific tasks within a single schema are considered to be user privileges. The
typical user privileges are generally a bit more innocuous than the DBA privileges, as you can see by the following examples:

Privilege Description

CREATE SESSION Establish a connection to the database

CREATE TABLE Create a table in the user’s schema

CREATE PROCEDURE Create a stored function or procedure

System privileges are granted with the GRANT command, which has the following syntax:
GRANT sys_privilege [, sys_privilege ...]
       TO user [, user, role, PUBLIC ...];

Notice that the syntax makes it easy to grant a group of privileges all at once to one user or to many users. Also, a privilege may
be granted to a special class of users called PUBLIC. When a privilege is granted to PUBLIC, all current and future users will have
that privilege.

The CREATE SESSION privilege is important because a user cannot log in to the database without this privilege. Janice, the DBA,
realizes that the new user account she created did not have this privilege. In addition, the new user will be creating new tables, so
she needs the CREATE TABLE privilege. Janice applies both of these privileges to JSMITH using the GRANT command.
grant create session,
      create table to jsmith;

Grant succeeded.

The user JSMITH can now log in and create tables in the database within the JSMITH schema.

The questions you may be asking are, “Why isn’t the CREATE SESSION privilege automatic? Don’t we want everyone to be able
to log in? Why would we create a user who couldn’t log in?"

In some database application environments, it is beneficial to keep all of the tables within a single schema for ease of
maintenance, quota, and backups. You might not, however, allow the schema owner to log in. In this way, the application users
can be tracked to know who used what table in the application’s schema. If only the application’s username were used, you would
not know which user performed what action against the database. The DBA can set up the proper permissions and synonyms for
other users to access this new schema, without the need for the application schema’s owner to ever log in to the database.

Object Privileges

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object privileges allow users to manipulate the contents of database objects in other schemas. Object privileges are granted on
schema objects such as tables, directories, and stored procedures. They are granted to a username in a different schema. In
other words, the owner of an object in a schema has all privileges on the object and can grant privileges on the object to another
user.

object privileges

Privileges that allow users to manipulate the contents of database objects in other schemas.

Typical object privileges include the following:

Privilege Description

SELECT Read (query) access on a table

UPDATE Update (change) rows in a table or view

DELETE Delete rows from a table or view

INSERT Add rows to a table or view

EXECUTE Run (execute) a stored procedure or function

INDEX Create an index on a table

In addition to the ability of the user to grant privileges on objects to other users, a user can grant the privilege for the grantee to
subsequently grant the same privilege to yet another user.

Object privileges are granted with a GRANT statement similar to that for granting system privileges:
GRANT obj_privilege [(column_list)]
   [, obj_privilege ...] ON object
   TO user [, user, role, PUBLIC ...]
   [WITH GRANT OPTION];

The column_list parameter is used if the object is a table and only certain columns of the table are made available for updating
by other users. The WITH GRANT OPTION clause allows the grantee to pass the privilege on to yet another user.

The HR department at Scott’s widget company frequently receives requests to update the EMPLOYEES table. The department
asks Janice, the DBA, to make some of the columns of the table available to all employees, so that they can make changes to
their phone number and e-mail address. The GRANT statement is as follows:
grant update (email, phone_number) on employees to public;

Now employees can update their records if they know their employee ID. One of the new employees uses the following SQL
command to change his e-mail address:
update hr.employees set email=’RSMITH’
where employee_id = 502;

1 row updated.

However, trying to update a different column in the table is not permitted:
update hr.employees set salary=25000
where employee_id = 502;

update hr.employees set salary=25000
          *
ERROR at line 1:
ORA-01031: insufficient privileges

In fact, even selecting rows from the table is disallowed:
select * from hr.employees
where employee_id = 502;

select * from hr.employees
                 *
ERROR at line 1:
ORA-01031: insufficient privileges

Any user other than HR has only the object privilege on EMPLOYEES to update the EMAIL and PHONE_NUMBER columns.

After a month or so, the HR department has decided that granting the privileges on the two columns in the EMPLOYEES table was
not a very good idea. Employees were using the wrong employee number to update the EMPLOYEES table, and they inadvertently
updated the wrong e-mail and phone number information. To solve the problem, Janice revokes the privileges on the EMPLOYEES
table, as follows:
revoke update on employees from public;

Revoke succeeded.

Notice that the REVOKE statement did not specify any columns in the EMPLOYEES table. When revoking UPDATE privileges on a
table, columns cannot be specified. If the HR department wanted to continue to allow access to one of the columns, a new GRANT
statement specifying the desired column would be issued after the REVOKE statement.

Creating and Assigning Roles

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A role is a named group of privileges. Using roles makes it easy for the DBA to grant groups of privileges to users. Granting a role
takes a lot fewer steps than granting individual privileges. For example, if several users all require the same 15 privileges, it’s a lot
easier to assign those 15 privileges to a role first, and then assign the role to each user who needs it.

role

A named group of privileges created to ease the administration of system and object privileges.

The privileges granted to the role can be a combination of system and object privileges. A user may be granted more than one
role in addition to any system or object privileges granted directly. Roles are created with the CREATE ROLE statement. The basic
syntax for CREATE ROLE is as follows:
CREATE ROLE <rolename> [IDENTIFIED BY <role_password>];

As the syntax indicates, a role may have a password. If a role requires a password, a user granted this role must use the SET
ROLE command to use the privileges granted to the role.

The Order Entry department at Scott’s widget company wants to give employees in certain departments an additional discount on
orders placed. To identify a customer as an employee, the Order Entry department will need access to the EMPLOYEES and
DEPARTMENTS tables in the HR schema. Janice, the DBA, decides that using a role might be the best way to provide this access,
since other departments may be asking for this same functionality in the future.

The first step is to create a role to hold the privileges. Janice creates the role as follows:
create role hr_emp_dept;

Role created.

Next, the privileges on the tables must be added to the roles:
grant select on hr.employees to hr_emp_dept;

Grant succeeded.

grant select on hr.departments to hr_emp_dept;

Grant succeeded.

Finally, the role itself is granted to the user OE:
grant hr_emp_dept to oe;

Grant succeeded.

Now the user OE can read the contents of the EMPLOYEES and DEPARTMENTS tables in the HR schema. In the future, to provide
the same access to the HR tables to other departments, only the last GRANT statement needs to be executed.

To check the roles granted to the OE user, Janice runs the following query against the DBA_ROLE_PRIVS data dictionary view:
select grantee, granted_role from dba_role_privs
where grantee = ‘OE’;

GRANTEE                   GRANTED_ROLE
------------------------- ------------
OE                        CONNECT
OE                        RESOURCE
OE                        HR_EMP_DEPT

3 rows selected.

To find out which privileges are assigned to the role HR_EMP_DEPT, Janice runs another query against the ROLE_TAB_PRIVS
data dictionary view:
select role, owner, table_name, privilege from
   role_tab_privs where role=’HR_EMP_DEPT’;

ROLE              OWNER    TABLE_NAME           PRIVILEGE
----------------- -------- -------------------- ---------
HR_EMP_DEPT       HR       EMPLOYEES            SELECT
HR_EMP_DEPT       HR       DEPARTMENTS          SELECT

2 rows selected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2 rows selected.

The role HR_EMP_DEPT has SELECT privileges against two tables in the HR schema: EMPLOYEES and DEPARTMENTS.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Auditing
Auditing in the Oracle database stores information about database activities. The activities to be audited are specified by the
DBA. Once enabled, auditing records the activity in the AUD$ table, owned by SYS.

auditing

Storing information about activities in the database in the SYS.AUD$ table. Auditing is controlled by the DBA.

Auditing can be fine-tuned in a number of ways. It can be restricted to particular objects, to specific users, or based on whether
the action is successful or unsuccessful. In other words, you might not care if users who are granted rights to a table access the
table, but you might want to know when users without rights to a table try to access that table.

The types of auditing can be divided into two broad categories: statement auditing and object auditing. The general syntax for
AUDIT is as follows:
AUDIT {statement_clause | object_clause}
   [BY SESSION | BY ACCESS]
   [WHENEVER [NOT] SUCCESSFUL];

The statement_clause allows you to specify not only the SQL statement to audit, but also, optionally, the username that will be
running the SQL statement. The object_clause allows you to specify a particular object to audit.

The BY SESSION clause means that an audit record is written to SYS.AUD$ only once in the session that triggered the audit,
regardless of how many times the action was performed. BY ACCESS will record all occurrences of the specified action.

The NOAUDIT command turns off auditing and has the same syntax as AUDIT, except that BY SESSION or BY ACCESS is not
specified when using NOAUDIT.

Statement Auditing

Statement auditing allows the DBA to trigger audit records in SYS.AUD$ when a given SQL statement is executed, either for all
users or a particular group of users.

Recently, Janice, the DBA, created a new user JSMITH and granted the CREATE TABLE privilege to JSMITH. Janice is
concerned that the new user is having trouble creating tables, so she decides to turn on auditing to see how often the new user’s
CREATE TABLE statements are failing:
audit create table by jsmith
   whenever not successful;

Audit succeeded.

In the next few days, the user JSMITH runs a variety of CREATE TABLE statements, such as the following:
create table temp_emp
   (employee_id number(6),
    email       varchar2(25));

Table created.

create table temp_emp
   (employee_id number(6),
    email       varchar2(25));

ERROR at line 1:
ORA-00955: name is already used by an existing object

The user’s second attempt failed because the table already exists.

Janice could review the SYS.AUD$ table, but she knows that the data dictionary view called DBA_AUDIT_TRAIL formats the
records from SYS.AUD$ into a more readable format. She checks that view:
select username, obj_name, timestamp, action_name from
dba_audit_trail;

USERNAME      OBJ_NAME     TIMESTAMP ACTION_NAME
------------- ------------ --------- ------------
JSMITH        TEMP_EMP     26-OCT-02 CREATE TABLE

1 row selected.

The OBJ_NAME column contains the name of the object affected by the statement, and the ACTION_NAME column contains the
type of statement executed. Because Janice is auditing only unsuccessful uses of the CREATE TABLE statement, there is only
one row inserted into SYS.AUD$, even though two CREATE TABLE statements were executed.

The following week, Janice turns off the CREATE TABLE auditing with the following command:
noaudit create table by jsmith;

Noaudit succeeded.

Rows in the SYS.AUD$ table (and as a result, the DBA_AUDIT_TRAIL view) remain there until they are removed by the DBA.

Object Auditing

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object auditing allows the DBA to monitor access to specific objects in the database, along with the operations performed on
those objects. For example, the DBA may want to see how often SELECT statements occur on a particular table in a certain period
of time versus how many UPDATE statements occur against that same table. As with statement auditing, object auditing can also
be further refined to audit only successful or only unsuccessful statements against the object.

Janice, the DBA, wants to find out how often the EMPLOYEES table in the HR schema is being accessed by SELECT, INSERT,
UPDATE, and DELETE statements, and by whom. She decides that auditing the table for a few hours one day would give her the
information that she needs. The AUDIT statement she runs looks like this:
audit select, insert, update, delete
   on hr.employees;

Audit succeeded.

After a few hours, she reviews the data dictionary view DBA_AUDIT_TRAIL to see what kind of activity has been performed
against the EMPLOYEES table:
select username, obj_name,
to_char(timestamp,’dd-mon-yy hh:miPM’) "Date/Time" from
dba_audit_trail where obj_name = ‘EMPLOYEES’;

USERNAME        OBJ_NAME        Date/Time
--------------- --------------- ------------------
HR              EMPLOYEES       27-oct-02 08:53AM
HR              EMPLOYEES       27-oct-02 08:59AM
HR              EMPLOYEES       27-oct-02 10:23AM
HR              EMPLOYEES       27-oct-02 10:56AM
OE              EMPLOYEES       27-oct-02 11:59AM

5 rows selected.

From this query, she sees that the activity so far has been very light, with four accesses by HR and one by OE, all in the morning.
Janice turns off the EMPLOYEE table auditing using the NOAUDIT command:
noaudit select, insert, update, delete
   on hr.employees;

Noaudit succeeded.

As with statement auditing, the records in SYS.AUD$ remain there until they are removed by the DBA.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. Privileges can be grouped and assigned as a unit by using what database object?

2. When granting privileges with the GRANT statement, what does the clause WITH GRANT OPTION do?

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

4. What is the name of the table, owned by the user SYS, that contains all audit records?

5. Write a SQL statement that will create audit records when UPDATE statements fail against the HR.EMPLOYEES
table.

6. Which system privilege allows a user to make a connection to the database?

7. In addition to assigning a default tablespace to a user, what else must be assigned to a user before that user can
create objects in the tablespace?

8. Which tablespace is assigned to a user for the user’s permanent objects if one is not explicitly assigned in the
CREATE USER statement?

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

10. A profile controls which kinds of database resources?

11. Which keyword can be used in a GRANT command to assign one or more privileges to every user in the database?

Answers

1. A role can be used to group system and object privileges and assign them as a unit to database users.

2. The WITH GRANT OPTION clause allows the grantee to pass on the privilege to another database user.

3. DROP USER and CREATE SESSION are examples of system privileges.

4. The table SYS.AUD$ contains all audit records.

5. The following SQL statement will create audit records when UPDATE statements fail against the HR.EMPLOYEES table:
audit update on hr.employees whenever not successful;

6. The CREATE SESSION system privilege allows a user to make a connection to the database.

7. A quota must be assigned to a user before that user can create objects in the tablespace.

8. The SYSTEM tablespace is assigned to a user for permanent objects if no tablespace is explicitly assigned in the CREATE
USER statement.

9. DELETE, INSERT, and EXECUTE are examples of object privileges.

10. A profile controls things such as concurrent connections to the database, CPU time used, continuous idle time, disk reads
performed, failed login attempts, how often a password needs to be changed, and elapsed time connected.

11. The PUBLIC keyword can be used instead of an individual username or role in a GRANT command to assign one or more
privileges to every user in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
auditing

object privileges

privileges

profile

quota

role

system privileges

username

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 12: Making Things Run Fast (Enough)
Tuning a database is an ongoing job for the busy DBA. Users never seem to stop complaining about queries running slowly. And
once you think that everything is at peak performance, a new application is added to the mix, a new server is added to the server
pool, the volume of orders for widgets doubles mysteriously, or a data warehouse is using up more and more of the server’s
resources.

In this chapter, we’ll talk about several ways to optimize the performance of the database, beginning with Oracle’s Tuning
Methodology. Then we’ll cover indexes, data design tuning, application tuning, and memory tuning.

Oracle’s Tuning Methodology
When tuning a newly developed database system or a system that has experienced major changes, you can follow Oracle’s
Tuning Methodology. This methodology prioritizes the steps to take when optimizing a database system:

Priority Tuning Focus

1 Data design

2 Application design

3 Memory allocation

4 I/O and physical structures

5 Resource contention

6 Underlying platform

Oracle’s Tuning Methodology

A tuning method recommended by Oracle Corporation that prioritizes areas in tuning database performance.
The six areas, in order of priority, are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

The tuning focus areas are as follows:

Data design This step focuses on what kinds of indexes to create and on which tables, using views and other variations on the
basic table to achieve better performance, and similar considerations.

Application design This area is somewhat intertwined with data design, especially when analyzing the SQL statements that run
against the tables and indexes. Application design focuses on how to use Oracle tools to write effective and efficient SQL SELECT
and other DDL statements against the database tables.

Memory allocation This step is concerned with making sure that you not only have enough system memory overall, but also are
dividing that memory judiciously among the main Oracle memory structures. It is possible to allocate too much memory for one
Oracle memory structure and potentially have an adverse performance impact on another Oracle memory structure.

I/O and physical structures This step tunes the communication between the memory structures and disk structures to reduce
the amount of time it takes to retrieve data blocks from disk or to avoid disk I/O completely.

Resource contention This area analyzes the Oracle structures that control concurrent access to the various Oracle structures
directly and indirectly accessible by the user. At the table level, this means locking rows versus locking the entire table, for
example. At the block level, this means allowing more than one user to insert or update row data concurrently.

Underlying platform This step deals primarily with placing Oracle file objects on the appropriate physical disk devices, as well as
taking advantage of multiple CPUs on a server for improving the overall throughput of queries and data loads.

Ninety percent or more of all tuning issues fall within the first three areas—data design, application design, and memory allocation
—and they are the focus of this chapter.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Indexes
Indexes are used to significantly boost the performance of queries by reducing the amount of time needed to retrieve rows from a
table. However, too many indexes on a table can be just as bad as not enough indexes.

Once you decide to create an index, you need to choose which type of index will work best. After you’ve created an index, you
may need to change or drop it. Before dropping an index, you may want to monitor it to see how often it is used over a given time
span. Finally, you can use data dictionary views to see the structure of the indexes in the database.

When to Create Indexes

In an environment where there are frequent insert, update, and delete operations on a table, it’s wise to minimize the number of
indexes on that table. For each row that is inserted, updated, or deleted, all indexes on that table must be updated also, which can
increase the response time for the user and raise the load on the Oracle server.

An index on a table column makes sense when the column is frequently referenced in a WHERE clause of a SELECT statement or
in a join condition. If the table is large and the query is expected to return a small percentage of the rows, an index makes sense
there, too. Although there is some overhead when traversing an index looking for a column value, the overhead is far less than the
time it would take to search the table itself for the value in question. Oracle’s general guideline is that an index on a column makes
sense if most queries on the table are expected to retrieve less than about 4% of the rows.

NULL values are not included in an index, so an index is recommended if the table is large and a column contains a lot of NULL
values. Any queries on non-NULL column values will likely use the index, while queries on NULL values in the column will not.

Index Types

Indexes can be divided into two general categories: b-tree and bitmap. They both serve the same purpose: to reduce the amount
of time a query takes to retrieve rows from a table. However, they are constructed completely differently and are chosen based on
the expected type and distribution of the data in the column to be indexed.

B-tree Indexes
A b-tree index looks like an inverted tree with branch blocks and leaf blocks. B-tree stands for balanced-tree, because the
search of the tree for a given table column’s key value always traverses the same number of levels in the tree to find the leaf block
containing the address of the desired row. B-tree indexes are the most common type of index, and are created by default. The
following illustrates how a b-tree index works.

b-tree index

A type of index structure that resembles an inverted tree. The branches of a b-tree index are balanced.
Traversing the tree for any index value reads the same number of blocks.

branch blocks

Index blocks in the traversal path of a b-tree index that either point to branch blocks at the next level or point to
leaf blocks.

leaf blocks

Index blocks at the bottom of a b-tree index that contain ROWIDs to the rows in the table containing the desired
index value.

In this example, the EMPLOYEE_ID column of the EMPLOYEES table is indexed. The b-tree has a depth of three, and each block
has up to three entries. Each of the branch blocks at levels one and two contains entries that further subdivide the search and
point to successive branch blocks, until the search reaches a leaf block. If the value is in a leaf block, the entry in that leaf block
contains the address of the row in the table; this is called a ROWID and is unique across the entire database.

ROWID

A unique identifier for a row in a table, maintained automatically in the table by the Oracle server. ROWIDs are
unique throughout the database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Pseudo-column ROWID

The pseudo-column ROWID exists for every row of every table in the database, and is unique across the entire database. It is
represented externally by an 18-character string of uppercase and lowercase letters and numbers.

select dummy, rowid from dual;

D ROWID
- ------------------
X AAAADeAABAAAAZSAAA

1 row selected.

Notice that the leaf blocks are also linked horizontally. Sometimes, examining only the leaf blocks for a match, rather than starting
at the root of the tree, is a more efficient way to conduct the index search.

B-tree indexes are good for columns with high cardinality, which are columns that have many distinct values. For example, a
column containing last names and a column containing zip codes have high cardinality; a column containing a gender code has
low cardinality.

cardinality

The number of distinct values in a column of a table.

A b-tree index can be created with a few different options:

Unique or nonunique In a unique index, there are no duplicate values. An error is returned if you try to insert two rows into a
table with the same index column values. By default, an index is nonunique.

unique index

A b-tree index whose keys are not duplicated.

Keys stored in reverse order A reverse key index stores the key values in reverse order. For example, if an indexed column
contains the value 40589, the value would be stored as 98504 in a reverse key index. In applications that insert rows in the
ascending order of the indexed column, a reverse key index may improve the performance of applications by reducing the
contention (concurrent access by several users) on a particular leaf block.

reverse key index

A b-tree index whose keys have their byte-order reversed to improve the performance of an application by
spreading out the key values for adjacent index values to different leaf blocks.

Function-based An index created on some kind of transformation of one or more columns in the table is known as a function-
based index. This type of index is created on an expression, instead of on a column of the database. For example, if the
database users frequently search on the fourth and successive characters of the JOB_ID column, an index based solely on the
JOB_ID column would not be useful to locate a row in the table. However, a function-based index on the expression
substr(job_id,4) would help speed queries searching on the fourth and successive characters of the JOB_ID column.

function-based index

A b-tree index that is created based on an expression involving the columns of a table, instead of on a single
column or columns in the table.

Index-organized table An index-organized table (IOT) is a specialized form of a b-tree index that stores both the data and the
index in the same database segment. An IOT has advantages for tables that are primarily lookup tables. For example, a state
code table, where the access of the table is primarily via the primary key, would be a good IOT candidate. When a state code
lookup occurs (for example, WI), the state name (Wisconsin) resides in the index block itself, saving an extra disk I/O of a block
in a standard table.

index-organized table (IOT)

A b-tree index that stores both the data and the index in the same segment.

Bitmap Indexes
Bitmap indexes are the other major type of index. As the name implies, a bitmap index uses a string of binary ones and zeros to
represent the existence or nonexistence of a particular column value. For each distinct value of a column, a string of binary digits
with a length equal to the number of rows in the table is stored. Therefore, bitmap indexes are recommended for indexing low-
cardinality columns. Using bitmap indexes makes multiple AND and OR operations against several table columns very efficient in
a query. The following illustrates how a bitmap index works.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bitmap index

An index that maintains a binary string of ones and zeros for each distinct value of a column within the index.

In the example, the GENDER column has a cardinality of two, and therefore it is a good candidate for a bitmap index. Two bitmaps
are maintained in the bitmap index, each with a length equal to the number of rows in the table.

Creating bitmap indexes on high-cardinality columns makes the index significantly more expensive to maintain during row
insertions and deletions. Bitmap indexes for high-cardinality columns are not recommended.

Tip There are exceptions to every rule. If you suspect a bitmap index might work better than a b-tree index, even on a high-
cardinality column, create both types of indexes on the column in question (but not at the same time!). Using the tools
discussed later in this chapter, measure the resource consumption for a typical query using the indexed column in the
WHERE clause, and see which type of index provides the lowest resource usage and response time.

Bitmap indexes are common in data warehouse environments, where many low-cardinality columns exist, DML is done in bulk,
and query conditions against combinations of these columns are used frequently.

Creating, Dropping, and Maintaining Indexes

The CREATE INDEX command is used to create a b-tree or bitmap index. The basic syntax for CREATE INDEX is as follows:
CREATE [BITMAP | UNIQUE] INDEX indexname
     ON tablename (column1, column2, ...) [REVERSE];

If BITMAP is not specified, a b-tree index is assumed. The UNIQUE keyword ensures that the indexed column or columns are
unique within the table; the REVERSE keyword creates a reverse key index. The name of the index must be unique within the
schema that owns the index. Indexes can be dropped with the DROP INDEX command:
DROP INDEX indexname;

At Scott’s widget company, Janice, the DBA and senior developer, has been asked to add a GENDER column to the EMPLOYEES
table. She modifies the table and adds the new column using the following ALTER TABLE statement:
alter table employees
add (gender  char(1));

Table altered.

Over the next week or two, the HR department populates the new GENDER column with either an M or an F. As other departments
start running queries against the EMPLOYEES table using the new GENDER column, they start complaining that the queries are
running slower than when they run queries against an indexed column, such as EMPLOYEE_ID or DEPARTMENT_ID. Janice also
knows that a copy of the EMPLOYEES table will be used in a data warehouse environment, so she decides that a bitmap index
might be appropriate in this situation. She uses the BITMAP option of the CREATE INDEX statement, as follows:
create bitmap index
bm_employees_gender on employees(gender);

Index created.

The users also tell Janice that they don’t use the index on the employee’s name, so she drops the index on the last and first name
columns:
drop index emp_name_ix;

Index dropped.

Two days later, she gets a call from the HR department, requesting that the employee name index be re-created:
create index emp_name_ix on
  employees(last_name, first_name);

Index created.

In the next section, you’ll learn how to monitor the usage of an index to get an indication of how often an index is actually being
used.

As her last task for the day, Janice thinks that the primary key of the EMPLOYEES table might work better as a reverse key index,
so she rebuilds the index to re-create it:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter index emp_emp_id_pk rebuild reverse;

Index altered.

Note In addition to converting the index type, the ALTER INDEX statement can also allow the table to remain available
during the rebuild operation by using the ONLINE option. Note that more space is required in the database’s temporary
tablespace for this operation.

Monitoring Indexes

As Janice just discovered, she can’t always rely on the user community to portray an accurate picture of what indexes are actually
being used. Oracle9i has a new feature that can monitor an index and set a flag in the dynamic performance view
V$OBJECT_USAGE. To turn on the monitoring process, you use the MONITORING USAGE clause of the ALTER INDEX statement.

Janice wants to see if the EMP_NAME_IX index is going to be used in the next eight hours. At 9 a.m., she turns on the monitoring
process with this statement:
alter index hr.emp_name_ix monitoring usage;

Index altered.

She immediately checks V$OBJECT_USAGE to make sure the index is being monitored:
select index_name, table_name, monitoring, used, start_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME       MON USE START_MONITORING
------------- ---------------- --- --- -------------------
EMP_NAME_IX   EMPLOYEES        YES NO  11/02/2002 08:57:44

1 row selected.

During the day, one of the HR employees runs this query:
select employee_id from employees
where last_name = ‘King’;

EMPLOYEE_ID
-----------
        100
        156

2 rows selected.

At around 5 p.m., Janice checks V$OBJECT_USAGE again to see if the index was used:
select index_name, table_name, monitoring, used, start_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME       MON USE START_MONITORING
------------- ---------------- --- --- -------------------
EMP_NAME_IX   EMPLOYEES        YES YES 11/02/2002 08:57:44

1 row selected.

Janice has decided that the index should stay, since it was used at least once during the day. She turns off monitoring with the
NOMONITORING USAGE clause and checks the V$OBJECT_USAGE view one more time to verify this.
alter index hr.emp_name_ix nomonitoring usage;

Index altered.

select index_name, table_name, monitoring, used, end_monitoring
from v$object_usage where index_name = ‘EMP_NAME_IX’;

INDEX_NAME   TABLE_NAME        MON USE END_MONITORING
------------ ----------------- --- --- -------------------
EMP_NAME_IX  EMPLOYEES         NO  YES 11/02/2002 17:00:40

1 row selected.

Note Because V$OBJECT_USAGE is a dynamic performance view, the contents will not be retained in the view once the
database is shut down and restarted.

Data Dictionary Index Information

As you’ve learned, data dictionary views can provide you with information about all database objects. The two key data dictionary
views relating to indexes that every DBA should know about are DBA_INDEXES and DBA_ IND_COLUMNS, which contain the
names of the indexes and the names of the indexed columns, respectively.

DBA_INDEXES
To find out the owners, tablespace names, and index type for all indexes on the EMPLOYEES table, Janice constructs a query
against the DBA_INDEXES data dictionary view, as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


against the DBA_INDEXES data dictionary view, as follows:
select owner, index_name, index_type, tablespace_name from
dba_indexes where table_name = ‘EMPLOYEES’;

OWNER   INDEX_NAME           INDEX_TYPE    TABLESPACE_NAME
------- -------------------- ------------- ---------------
HR      EMP_EMAIL_UK         NORMAL        EXAMPLE
HR      EMP_EMP_ID_PK        NORMAL/REV    EXAMPLE
HR      EMP_DEPARTMENT_IX    NORMAL        EXAMPLE
HR      EMP_JOB_IX           NORMAL        EXAMPLE
HR      EMP_MANAGER_IX       NORMAL        EXAMPLE
HR      UK1_EMPLOYEES        NORMAL        EXAMPLE
HR      BM_EMPLOYEES_GENDER  BITMAP        EXAMPLE
HR      EMP_NAME_IX          NORMAL        EXAMPLE

8 rows selected.

All of the indexes on the EMPLOYEES table are normal b-tree indexes, except that the primary key index EMP_EMP_ID_PK is a
reverse key b-tree index, and the new BM_EMPLOYEES_GENDER index is a bitmap index.

DBA_IND_COLUMNS
To further drill down into the details of the indexes on the EMPLOYEES table, Janice queries the DBA_IND_COLUMNS table to find
out which columns are in the EMP_NAME_IX index:
select index_name, table_name,
        column_name, column_position from
dba_ind_columns where index_name = ‘EMP_NAME_IX’;

INDEX_NAME    TABLE_NAME   COLUMN_NAME   COLUMN_POSITION
------------- ------------ ------------- ---------------
EMP_NAME_IX   EMPLOYEES    LAST_NAME                   1
EMP_NAME_IX   EMPLOYEES    FIRST_NAME                  2

2 rows selected.

From this output, Janice can determine that EMP_NAME_IX is a composite index consisting of two columns: LAST_NAME and
FIRST_NAME.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Data Design Tuning
Oracle has a number of solutions to improve performance from a data design perspective. We will cover two techniques in this
section: partitioned tables and materialized views.

Partitioned Tables

When tables grow very large, it becomes advantageous to use partitioned tables to divide the rows of a table into more
manageable pieces based on the values of one or more columns. Because the data is subdivided into smaller pieces, it makes
the DBA’s job easier when doing backups; each partition of a partitioned table may be backed up or restored separately. One
partition of a table can be in the process of being repaired, while the rest of the partitions are available to the database users,
increasing the overall availability of the table.

partitioned table

A table that stores its rows into smaller and more manageable pieces based on the values of one or more
columns of the table.

Partitioned tables can have a performance benefit for database users. In many cases, a query may need to retrieve rows from
only a subset of the partitions of a partitioned table. As a result, either index accesses or direct table accesses are reduced
because the partition key automatically limits the partitions that need to be searched for the rows requested by the query.

There are four different ways to partition a table:

Range partitioning With this type, the partition keys are in a range. For example, each partition can hold sales data by quarter or
for a given month date range.

Hash partitioning When the sizes of each partition may vary widely or you do not know how much data will end up in a partition,
hash partitioning is useful. This type of partitioning uses an algorithm on the partition key column to automatically balance the
number of rows that end up in each partition.

List partitioning If you know the values that will divide the data into partitions, but they are not necessarily sequential either
numerically or alphabetically, list partitioning is useful. For example, it may be desirable to store all rows with state codes by region
into separate partitions. Rows with state codes of WI, IL, IA, IN, and MN would reside in the MIDWEST partition.

Composite partitioning This is a hybrid method that uses the range partition method for partitions and the hash method for
subpartitions.

Creating a partitioned table is very similar to creating a nonpartitioned table, with the addition of the PARTITION BY clause:
CREATE TABLE ...
PARTITION BY {RANGE | LIST | HASH} (column1, column2, ...)
     [SUBPARTITION BY {HASH | LIST} (column1, column2, ...)
        SUBPARTITIONS n]

Note that the SUBPARTITION BY HASH or LIST clause is only valid if the primary partitioning is BY RANGE. Also, specifying
multiple columns in the PARTITION BY clause is only valid for HASH and RANGE partitioning, since LIST partitioning assigns rows
to a partition based on the value of a single column.

The Order Entry department has asked Janice, the DBA, to look into improving the performance of the OE.ORDERS table.
Response time against this table has been increasing, and the customer service representatives have reported that the web
customers are waiting too long for their orders to be confirmed after clicking the Place My Order button on the checkout page.

Janice decides that since the ORDERS table now has hundreds of thousands of rows, she will partition the table by month.
Partitioning by a date range makes sense, since rows from the ORDERS table are rarely accessed across more than one month.
Janice retrieves the DDL for the original CREATE TABLE statement:
create table orders (
  order_id      number (12)   not null,
  order_date    date
         constraint order_date_nn not null,
  order_mode    varchar2 (8),
  customer_id   number (6)
         constraint order_customer_id_nn not null,
  order_status  number (2),
  order_total   number (8,2),
  sales_rep_id  number (6),
  promotion_id  number (6),
   constraint order_mode_lov
         check (order_mode in (‘direct’,’online’)) ,
   constraint order_total_min
         check (order_total >= 0),
   constraint order_pk primary key ( order_id ) ) ;

Janice creates a new version of the table for testing on the development server by adding partition-related options to the CREATE
TABLE statement:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TABLE statement:
create table new_orders (
  order_id      number (12)   not null,
  order_date    date
         constraint new_order_date_nn not null,
  order_mode    varchar2 (8),
  customer_id   number (6)
         constraint new_order_customer_id_nn not null,
  order_status  number (2),
  order_total   number (8,2),
  sales_rep_id  number (6),
  promotion_id  number (6),
   constraint new_order_mode_lov
         check (order_mode in (‘direct’,’online’)) ,
   constraint new_order_total_min
         check (order_total >= 0),
   constraint new_order_pk primary key ( order_id ) )
   partition by range (order_date)
    (partition FY2002_07 values less than
      (to_date(‘08012002’,’MMDDYYYY’)),
     partition FY2002_08 values less than
      (to_date(‘09012002’,’MMDDYYYY’)),
     partition FY2002_09 values less than
      (to_date(‘10012002’,’MMDDYYYY’)),
     partition FY2002_10 values less than
      (to_date(‘11012002’,’MMDDYYYY’)),
     partition FY2002_11 values less than
      (to_date(‘12012002’,’MMDDYYYY’)),
     partition FY2002_12 values less than
      (to_date(‘01012003’,’MMDDYYYY’)),
     partition FY9999 values less than (maxvalue)
    );
In the new table NEW_ORDERS, all orders before August 1, 2002, will end up in the first partition, FY2002_07. At the other end are
partitions defined for the rest of 2002. It is assumed that for 2003, the DBA will create additional partitions on this table to
accommodate orders placed in 2003. In the meantime, any orders with a date mistakenly keyed in as 2003 or later will be stored
in the partition FY9999. If this partition were not created, any INSERT statement containing a date value outside the range of any
partition would return an error.

Materialized Views

A materialized view can help speed queries by storing data in a previously joined or summarized format. Unlike a traditional view,
which stores only the query and runs that query every time the view is accessed, a materialized view stores the results of the
query in addition to the SQL statements of the view itself. Because the materialized view already contains the results of the view’s
underlying query, using a materialized view can be as fast as accessing a single table.

materialized view

A view that stores the results of the query the view is based on, in addition to the SQL join statement of the view
itself. Materialized views may be refreshed manually (on demand), on a regular basis, or when there is a change
in the underlying tables on which that view is based.

But what if the underlying tables of the materialized view change? A materialized view can be refreshed either manually or
automatically. If the refresh is automatic, it can occur as a scheduled event, such as every day at 2 a.m., or the materialized view
can be refreshed automatically whenever the underlying tables of the view change. Materialized views can be refreshed manually
by using the REFRESH procedure in the system package DBMS_MVIEW.

To further enhance the performance of a materialized view, it can be indexed and partitioned in the same way as any standard
table.

Another key performance enhancement related to materialized views is the QUERY REWRITE feature. If a materialized view is
created with the QUERY REWRITE option, any user SQL statements that use tables and columns similar to those found in the
materialized view’s query are automatically rewritten to use the materialized view directly. In other words, the database user does
not need to know about the existence of the materialized view to take advantage of the pre-joined result of the materialized view.

The syntax for creating a materialized view is similar to that of the CREATE VIEW command from Chapter 10, "Creating and
Maintaining Database Objects":
CREATE MATERIALIZED VIEW materialized_view_name
   [ENABLE QUERY REWRITE] AS subquery;

At Scott’s widget company, Janice has been helping some of the users in the HR department with their queries. She notices that
they often use the view she created for them earlier with this statement:
create view
      emp_dept(emp_id, lname, fname, dept_id, dname) as
select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

In its present form, this view must perform the join every time it is accessed. Janice thinks that rewriting this view as a materialized
view will not only improve the performance of the view, but may also improve the performance of other queries that join the
EMPLOYEES and DEPARTMENTS table using Oracle9i’s QUERY REWRITE feature. Janice creates the materialized view as follows:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


EMPLOYEES and DEPARTMENTS table using Oracle9i’s QUERY REWRITE feature. Janice creates the materialized view as follows:
create materialized view emp_dept
   enable query rewrite
as select employee_id, last_name, first_name,
      department_id, department_name
from employees join departments using(department_id);

Materialized view created.

The new materialized view looks like any table or regular view:
describe emp_dept

 Name                         Null?    Type
 ---------------------------- -------- --------------
 EMP_ID                       NOT NULL NUMBER(6)
 LNAME                        NOT NULL VARCHAR2(25)
 FNAME                                 VARCHAR2(20)
 DEPT_ID                      NOT NULL NUMBER(4)
 DNAME                        NOT NULL VARCHAR2(30)

The ENABLE QUERY REWRITE clause directs Oracle to use the materialized view instead of the EMPLOYEES and DEPARTMENTS
table when a user writes a query similar to the one used to create the materialized view.

To manually refresh the view, Janice uses the DBMS_MVIEW package:
exec dbms_mview.refresh(‘emp_dept’);

PL/SQL procedure successfully completed.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

SQL Application Tuning
After you’ve created the optimal tables, indexes, and other database objects, the next step in your quest to improve the
performance of the database is to review the users’ SQL commands. You can use some of Oracle’s GUI-based tools, such as Top
SQL and Explain Plan, to identify and analyze the SQL commands that are not only frequently executed but also use the most
resources. Also, you can help the Oracle optimizer do its job of deciding the best way to run a specific query.

Top SQL Tool

The Top SQL tool can identify SQL statements that may be causing performance problems in the database, such as by using too
much CPU or reading blocks from disk instead of from the cache. Even if the SQL command itself does not use many resources,
it may still be a candidate for tuning if it is executed hundreds of times an hour!

Top SQL tool

A GUI-based Oracle tool that can identify SQL statements that may be consuming too many system resources
and therefore may be good candidates for tuning.

The Top SQL tool is available through the Oracle Enterprise Manager (OEM) console, via the Diagnostics Pack pull-out, as shown
below.

The Top SQL tool shows a number of statistics for each SQL command executed, such as disk reads, buffer reads (data is
already available in the buffer cache and does not need a read from disk), CPU time used, and the number of executions. The
following illustration shows an example of a Top SQL window.

In this example, the SQL statement that joins the EMPLOYEES and DEPARTMENTS table has a high number of executions relative

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this example, the SQL statement that joins the EMPLOYEES and DEPARTMENTS table has a high number of executions relative
to the other user and system SQL statements. It may be a good candidate for analysis, even though all of the data the query
needed was already in memory, as indicated by the Disk Reads Per Execution statistic.

Explain Plan Graphical Tool

The Explain Plan tool can be launched directly or from the Top SQL tool. It shows in a step-by-step fashion how a SQL
statement is processed and how each of the tables in the query is accessed—for example, by an index or by reading the entire
table. With the statement in question highlighted in the Top SQL window, select Drilldown > Explain Plan to bring up the Explain
Plan analysis window, as shown on the next page.

Explain Plan tool

A GUI-based Oracle tool that details the steps in which a SQL statement is executed, as well as what method
Oracle used to access the tables in the query.

The Explain Plan window is divided into three horizontal sections. The SQL statement itself is displayed in the top third of the
window. The steps that Oracle uses to execute the statement are in the middle third of the window. As each step is selected, a
brief explanation of what occurs in that step is detailed in the bottom third of the window.

In the case of the join between the EMPLOYEES and DEPARTMENTS table in this example, both tables are accessed with a full
table scan instead of an index. This make sense because the query retrieves most, if not all, of the rows in both tables. If there
were a limiting condition in a WHERE clause, and the tables were still accessed by a full table scan, then it might indicate that you
are missing an index on one or both of the tables.

The Oracle Optimizer

As the old saying goes, “All roads lead to Rome.” In the case of a SQL query, there are many different ways that a query—even a
query on a single table—can be processed. It’s the job of the Oracle optimizer to choose the best way to run a query.

Oracle has two optimizer modes: rule-based and cost-based. We’ll talk about the differences between those two modes, as well
as two different ways to assist the optimizer in finding the best way to run a query.

Rule-Based Optimization
The older rule-based optimizer mode uses a fairly simple set of guidelines to decide how a query is run. It will use an index,
regardless of the size of the table. Also, it ignores the cardinality of the columns being accessed, even if the cardinality would
otherwise indicate that most of the table will be scanned for the results anyway.

rule-based optimizer

An Oracle optimizer methodology that relies on a fixed set of rules to determine the method used to run a query,
ignoring the cardinality and distribution of data in the column being queried.

Why would you use the rule-based optimizer? Some older Oracle applications might run better since they were written to
specifically exploit some of the behaviors of the rule-based optimizer. Otherwise, Oracle strongly recommends that cost-based
optimization be used in all new development environments.

You can set the optimizer mode to rule-based for the session with the ALTER SESSION command:
alter session set optimizer_mode=rule;

Session altered.

Cost-Based Optimization
The cost-based optimizer is much more sophisticated than the rule-based optimizer. It takes into consideration the cardinality of
the columns being searched, the potential I/O cost, estimated CPU cost, and sorting cost. The cost-based optimizer will ultimately
use the method that has the lowest overall cost, even if it means not using an index on one or more of the columns being
searched.

cost-based optimizer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An Oracle optimizer methodology that relies on the characteristics of the tables being queried to determine the
method used to run the query. A cost is calculated for estimated CPU, I/O, and sorting for the possible
execution paths. The path with the lowest overall cost is used to perform the query.

You can tell Oracle to pick which optimizer mode to use for the session with the ALTER SESSION command:
alter session set optimizer_mode=choose;

Session altered.

The CHOOSE keyword means that Oracle will decide whether to use the rule-based optimizer or the cost-based optimizer. When
analyzing a SQL statement, the optimizer may use a rule-based approach for calculating the CPU cost, but may use the cost-
based approach for all other calculations. Notice that you cannot specify optimizer_mode=cost: the optimizer will always use
cost-based optimization if at least one of the tables in the query has statistics and the optimizer mode is set to choose. The
optimizer will estimate statistics on-the-fly for any tables in the query that don’t already have them. A table’s statistics are a set of
predetermined characteristics stored in the data dictionary, such as those mentioned above: the cardinality of the indexed
columns in the table, the number of rows in the table, the distribution of values in an indexed column, and so forth. Calculating
statistics for some or all of the tables in the query will have the same effect as forcing cost-based optimization.

statistics

Information about tables and indexes stored in the data dictionary used to assist the cost-based optimizer when
deciding how to run a given query.

Therefore, to effectively use the cost-based optimizer, it is important to have statistics calculated on the tables present in the SQL
statement. We will talk about statistics gathering in the next section.

Gathering Statistics
The cost-based optimizer relies on the cardinality of columns in the table, the size of the table, the number of rows in the table, the
length of each row in the table, and other statistics. By default, these statistics are not stored anywhere in the database. You can
use the ANALYZE command to store these statistics in the data dictionary for use by the cost-based optimizer.

In general, it is recommended that you analyze all rows of a table and its indexes, but if the table is very large, you might analyze
the indexes separately. Alternatively, you can calculate statistics on a subset of the rows in the table by using the ESTIMATE
STATISTICS option of the ANALYZE command. ESTIMATE STATISTICS will use about 1,000 rows to calculate its statistics, and
in many cases, it is nearly as accurate as scanning the entire table.

To gather the statistics for the EMPLOYEES table and all of its indexes using a sample of all rows, use the following command:
analyze table employees estimate statistics;

Table analyzed.

Statistics are not automatically refreshed when rows are inserted or updated; however, unless the table dramatically changes in
size or in the cardinality of the indexed columns, the statistics are still useful to the cost-based optimizer. However, statistics
gathering should be scheduled to run on a regular basis in order to provide the cost-based optimizer with the best information
available.

Optimizer Hints
As good as the Oracle optimizer is, it is not perfect. For example, even with the best statistics, the optimizer may not choose an
index; however, your experience tells you that the types of queries users are running recently may use a very narrow range in the
index, so using the index has an advantage over a full table scan. In this case, it is prudent to override the optimizer and provide a
hint as part of the query.

hint

A directive placed between /*+ and */ in a query that overrides an execution method that the Oracle optimizer
would normally choose.

Insert the hint after the SELECT keyword, between the character strings /*+ and */. There are more than 40 hints available in
Oracle. Common hints include the INDEX hint to specify that a particular index is used in a query and the REWRITE hint to force a
materialized view to be used to resolve the join condition in the query instead of using the base tables.

Warning If the hint is misspelled or otherwise incorrect, it is ignored. Therefore, it is important to double-check the syntax of
any hint you provide in a SQL statement.

To force the optimizer to use the index EMP_NAME_IX on the EMPLOYEES table, use the INDEX hint, as follows:
select /*+ index(employees emp_name_ix) */ employee_id from employees
where last_name = ‘King’;

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Memory Tuning
Some of the memory structures used by Oracle include the database buffer cache, the shared pool, and the redo log buffer
cache, as shown below. (These memory structures were discussed in Chapter 8, “Installing Oracle and Creating a Database.”)
While increasing the memory allocated for any of these structures will usually help, how much is enough? How much is too much?

You can adjust the amount of memory allocated to each of these areas by changing the value of a parameter in the parameter file
used by Oracle, called a PFILE. A PFILE is a text file containing the parameters and their values for configuring the database and
instance.

PFILE

A text file containing the parameters and their values for configuring the database and instance at startup.

Oracle9i supports a more flexible version of a PFILE called an SPFILE. An SPFILE is stored in a binary format. A change to a
parameter in an SPFILE can be for the current running instance only, can take effect only after the next restart of the instance, or
both.

SPFILE

A parameter file stored in a binary format that gives the DBA more flexibility when changing parameters.
Parameters can be changed for the current instance only, can take effect only after the next restart of the
instance, or both.

The sizing of the database buffer cache is usually the most problematic, since blocks from all tables read from and written to
reside in this cache. A buffer cache that is too small will hurt performance by obtaining blocks from disk instead of from the buffer
cache. A buffer cache that is too big will waste memory that can otherwise be used for other memory areas.

Oracle9i has a feature called the buffer cache advisory, which can help the DBA decide how big to make the buffer cache. The
first step in monitoring the size of the buffer cache is to turn on the buffer cache advisory feature by setting the
DB_CACHE_ADVICE parameter. You can do this either by editing the PFILE and restarting the database or by using an SPFILE
and changing the value using the ALTER SYSTEM command.

buffer cache advisory

A feature of the Oracle9i database that can assist the DBA in determining how large to make the buffer cache.
This feature collects statistics on how often a requested database block is found in the buffer cache. The
system initialization parameter DB_CACHE_ADVICE controls whether these statistics are collected, and the data
dictionary view V$DB_CACHE_ ADVICE contains the estimated number of physical reads that would occur given
a number of different cache sizes.

Janice, the DBA at Scott’s widget company, is determined to put off asking for a memory upgrade on the server until she makes
the best use of what’s already there. First, she will find out if the buffer cache needs to be larger. She changes the value of
DB_CACHE_ADVICE, as follows:
alter system set db_cache_advice=ON;

System altered.

To verify that the parameter is set correctly, she checks the value of that parameter in the V$PARAMETER dynamic performance
view, along with the current value for the buffer cache size:
select name, value, isdefault, ismodified from v$parameter
where name =’db_cache_advice’ or name =’db_cache_size’;

NAME                      VALUE      ISDEFAULT ISMODIFIED
------------------------- ---------- --------- ----------
db_cache_size             25165824   FALSE     FALSE
db_cache_advice           ON         TRUE      SYSTEM_MOD

2 rows selected.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2 rows selected.

The value is set correctly, but Janice notices that ON is the default value for this parameter. After this tuning exercise is completed,
Janice will remember to change this value back to OFF to eliminate any overhead generated by the monitoring process. It also
looks like the value for DB_CACHE_SIZE is currently about 25MB.

After the system has been running for a day or two with the DB_CACHE_ADVICE parameter turned on, Janice reviews the dynamic
performance view V$DB_CACHE_ADVICE:
select size_for_estimate, estd_physical_reads
from v$db_cache_advice;

SIZE_FOR_ESTIMATE ESTD_PHYSICAL_READS
----------------- -------------------
                4             1158418
                8              213691
               12              100625
               16               44844
               20               37598
               24               35000
               28               34727
               32               34590
               36               34590
               40               34590
               44               34590
               48               34590
               52               34590
               56               34590
               60               34590
               64               34590
               68               34590
               72               34590
               76               34590
               80               34590

20 rows selected.

The first column, SIZE_FOR_ESTIMATE, is the proposed size for the buffer pool in megabytes. The second column,
ESTD_PHYSICAL_READS, is the number of reads from disk that would occur with the corresponding buffer cache size, given the
recent activity level. From this report, Janice sees that her buffer cache of 25MB is sized optimally. Increasing the buffer cache
size to 28MB, for example, would only reduce the physical I/O slightly, and it probably would not justify a memory upgrade at this
time. At 32MB and higher, the additional memory allocated to the buffer cache would not reduce the reads from disk at all. It
appears that Janice will not need a memory upgrade on the server for the foreseeable future.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. What GUI tool analyzes a SQL statement and identifies the steps used to process the query?

2. The two general categories of indexes are indexes and indexes.

3. Which type of index is best for columns with a low cardinality?

4. Which dynamic performance view can assist the DBA in sizing the buffer cache appropriately?

5. Which type of table divides the contents of a very large table into more manageable chunks, both improving the
manageability of the table for the DBA and potentially increasing the performance of queries on the table?

6. Which data dictionary views contain information about table indexes and the table columns indexed?

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

8. Which feature associated with materialized views rewrites a query to use the materialized view instead of using
the tables that are the source for the materialized view?

9. What is the name of the pseudo-column that exists for every row of every table in the database and is unique
across the entire database?

10. Name the two different optimizer modes and identify which one uses statistics from tables and indexes to derive
an execution plan.

Answers

1. The Explain Plan GUI tool analyzes a SQL statement and identifies the steps used to process the query.

2. B-tree, bitmap

3. A bitmap index is best for columns with a low cardinality.

4. The dynamic performance view V$DB_CACHE_ADVICE can assist the DBA in sizing the buffer cache appropriately.

5. A partitioned table divides the contents of a very large table into more manageable chunks.

6. The data dictionary views DBA_INDEXES and DBA_IND_COLUMNS contain information about table indexes and the table
columns indexed.

7. The six steps in Oracle’s Tuning Methodology are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

8. The QUERY REWRITE feature rewrites a query to use the materialized view instead of using the tables that are the source for
the materialized view.

9. The pseudo-column ROWID exists for every row of every table in the database and is unique across the entire database.

10. The two different optimizer modes are rule-based and cost-based. The cost-based method uses statistics from tables and
indexes to derive an execution plan.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
bitmap index

branch blocks

b-tree index

buffer cache advisory

cardinality

cost-based optimizer

Explain Plan tool

function-based index

hint

index-organized table (IOT)

leaf blocks

materialized view

Oracle’s Tuning Methodology

partitioned table

PFILE

reverse key index

ROWID

rule-based optimizer

SPFILE

statistics

Top SQL tool

unique index

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 13: Saving Your Stuff (Backups)

Overview
Sooner or later, you’ll lose some data in the database. As a user, you may delete some rows in a table that you really didn’t want
to delete. As a DBA, you may have a server crash or one of the server’s hard disks may fail, resulting in loss of data.

Oracle provides a number of tools for both users and DBAs to minimize data loss in these situations. Some of the tools are
primarily for use by the DBA; other tools are primarily used by the database user.

This chapter begins with descriptions of the types of failures possible in the database, and then discusses the different ways that
you can back up and restore data.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Database Failures
Database failures can be divided into two general categories: media failures and nonmedia failures.

Media failures, the more serious type, occur when a server hardware component fails and the contents of one or more disk files
are either unreadable or corrupted. The DBA is solely responsible for recovering from this type of failure by restoring the
unreadable or corrupted file from a tape or disk backup. The DBA can perform the recovery process using one of the tools
described in this chapter.

media failure

A type of database failure where a server hardware component fails and the contents of one or more disk files
are either unreadable or corrupted.

Nonmedia failures are all other types of failures, including the following:

nonmedia failure

A type of database failure that is not related to a server disk-related hardware component and is one of several
types: statement failure, process failure, instance failure, or user error.

Statement failure The SQL statement being executed has a syntax error or the user executing the statement has the wrong
permissions. Recovery from a statement failure is generally simple: Rerun the SQL statement with the right syntax or obtain the
proper permissions on the objects in the query, and then rerun the query.

Process failure The user may be disconnected from the database due to a network problem or because a resource limit was
exceeded. One of the Oracle background processes automatically cleans up the terminated process by freeing the memory used
by the process.

Instance failure The entire database instance fails due to a power outage, a server memory problem, or a bug in the Oracle
software. When the database instance is restarted, Oracle uses the redo log files to make sure that all committed transactions are
recorded properly in the database datafiles.

User error A user may drop a table or delete rows from a table unintentionally.

In the following sections, we’ll cover the processes used by DBAs and users to recover from the two types of errors that Oracle
cannot handle automatically: media failures and user errors.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User Backup and Recovery Methods
There are a number of methods that database users and developers can use to back up and restore the data in their tables. While
a good DBA has a comprehensive database backup and restore plan in place, there are a couple of reasons why database users
might make their own backups:

The DBA is typically very busy, and may not be able to respond to a user’s request to restore data in a timely
manner.

The type of backup a DBA typically performs is at an enterprise level—entire tablespaces rather than individual user
objects—making it difficult to accommodate requests to restore individual objects.

In this section, we’ll talk about two ways that database users can back up and restore the objects they own or objects that are
accessible to them in the database: by using the Export and Import utilities and by running flashback queries.

Export and Import for Users

The Export and Import utilities save and retrieve objects stored in an operating system file external to the database. They work
with database table objects, along with their associated indexes, constraints, and permissions. These commands are similar in
their syntax and are executed outside the database at an operating system prompt.

The Export (EXP) Utility
The Export utility (EXP) connects to the database and performs a SELECT statement on the table or tables specified in the EXP
command. It places the results of the SELECT statement, along with the DDL statements required to create the tables and their
associated indexes, into a single binary dump file. Subsequently, this dump file can be used to restore the tables in case of data
loss. In addition, the dump file can be used to copy the table to another database. The format of the EXP command is as follows:
EXP username/password KEYWORD=(value1, value2, ...)

Export utility (EXP)

An Oracle utility that copies the contents of one or more tables to a binary dump file, along with the DDL needed
to create the table and its associated indexes, permissions, and constraints.

If the EXP command is executed without specifying any parameters, Export prompts the user for the parameters in an interactive
mode. The username and password belong to the user who owns the objects to be exported. The TABLES keyword specifies the
tables that are to be exported to the dump file, which defaults to the filename EXPDAT.DMP. Running EXP -HELP displays all of
the Export options. The most common keywords are listed below.

Keyword Description

FILE Destination for the dump file; defaults to EXPDAT.DMP
TABLES List of table names

ROWS Export rows of the table; defaults to Y

INDEXES Export indexes; defaults to Y

CONSTRAINTS Export table constraints; defaults to Y

GRANTS Export privileges granted on tables; defaults to Y

COMPRESS Create a single extent for each table in the CREATE TABLE statement generated by
EXP; defaults to Y

Tip While the default for the COMPRESS parameter of Export is Y, it should almost always be set to N to avoid wasting disk
space when new extents are allocated for the imported version of the table.

At Scott’s widget company, one of the developers, Gary, is working on a project to provide customers with customized widgets,
made to order. He is working on the order entry part of the system, and he has a copy of the Order Entry department’s ORDER and
ORDER_ITEM tables in his own schema:
select table_name from all_tables
where owner=’GARY’;

TABLE_NAME
--------------------
ORDERS
ORDER_ITEMS

2 rows selected.

Gary decides to use Export to save a copy of these tables to a binary dump file on a local PC’s hard drive, just in case one of the
tables is inadvertently dropped:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


E:\TEMP>exp gary/castiron
         tables=(orders, order_items) file=exp_oe.dmp

Export: Release 9.2.0.1.0 -
      Production on Sat Nov 9 08:45:43 2002

Copyright (c) 1982, 2002, Oracle Corporation.
      All rights reserved.

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set

About to export specified tables via Conventional Path ...
. . exporting table       ORDERS        105 rows exported
. . exporting table       ORDER_ITEMS   665 rows exported
Export terminated successfully without warnings.

E:\TEMP>

The operating system file E:\temp\exp_oe.dmp contains the definitions of the two tables and their contents, along with any
indexes, constraints, and permissions defined on the tables.

The Import (IMP) Utility
The Import utility (IMP) reads a binary dump file produced by the Export utility and restores the tables and any associated
indexes, constraints, and permissions saved in the dump file. The format of the IMP command is as follows:
IMP username/password KEYWORD=(value1, value2, ...)

Import utility (IMP)

An Oracle utility that takes as input a binary dump file created by the Export utility and restores one or more
database tables, along with any associated indexes, permissions, and constraints.

If the IMP command is executed without specifying any parameters, Import can prompt the user for the parameters in an
interactive mode. The username and password belong to the user who owns the objects to be imported. The TABLES keyword
lists the tables that are to be imported from the dump file, which defaults to a name of EXPDAT.DMP. Running IMP -HELP lists all
of the Import options. The most common keywords are listed below.

Keyword Description

FILE Dump file to restore from; defaults to EXPDAT.DMP
TABLES List of table names to restore

ROWS Import rows of the table; defaults to Y

INDEXES Import indexes; defaults to Y

CONSTRAINTS Import table constraints; defaults to Y

GRANTS Import privileges granted on tables; defaults to Y

SHOW Show just the file contents and do not perform the restore; defaults to N

Later in the week, Gary, the database developer, inadvertently drops the ORDER_ ITEMS table that he was using to test his
custom widgets application. He remembers using Export earlier in the week to create a backup to the file exp_oe.dmp, but is not
sure of its contents. He uses the SHOW option of the IMP command to query the contents of the dump file:
E:\TEMP>imp file=exp_oe.dmp show=y

Import: Release 9.2.0.1.0 - Production on Sat Nov 9 09:22:47 2002

Copyright (c) 1982, 2002, Oracle Corporation.  All rights reserved.

Username: gary
Password:

Connected to: Oracle9i Enterprise Edition Release
     9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing GARY’s objects into GARY

 "CREATE TABLE "ORDERS"
     ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE,"ORDER_DAT"
 "E" TIMESTAMP (6) WITH LOCAL TIME ZONE
     CONSTRAINT "ORDER_DATE_NN" NOT NULL E"
...

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


...
"CREATE TABLE "ORDER_ITEMS"
     ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE, "LINE"
...
Import terminated successfully without warnings.

E:\TEMP>

Since the SHOW=Y option was specified, the tables were not actually restored to the database, even though the output from IMP
seems to indicate that the restore took place. Since this file has the table that Gary wants, he performs the import and specifies
the file he dropped:
E:\TEMP>imp file=exp_oe.dmp tables=order_items

Import: Release 9.2.0.1.0 - Production on Sat Nov 9 09:31:35 2002

Copyright (c) 1982, 2002, Oracle Corporation.  All rights reserved.

Username: gary
Password:

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data Mining
     options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing GARY’s objects into GARY
. . importing table    "ORDER_ITEMS"     665 rows imported
Import terminated successfully without warnings.

E:\TEMP>

Gary’s ORDER_ITEMS table is now restored. Any changes made to the table since the export was performed are lost. Those
changes will need to be manually restored by rerunning the INSERT, DELETE, and UPDATE statements than ran since the last
export. To minimize data loss, you should export the table after any major changes are made to the table.

Flashback Query

One of the features new to Oracle9i is called flashback query. It allows a user to “go back in time” and view the contents of a
table as it existed at some point in the recent past. A flashback query looks a lot like a standard SQL SELECT statement, with the
addition of the AS OF TIMESTAMP clause.

flashback query

A feature of the Oracle database that allows a user to view the contents of a table as of a user-specified point in
time in the past. How far in the past a flashback query can retrieve rows depends on the size of the undo
tablespace and on the setting of the UNDO_RETENTION system parameter.

Before users can take advantage of the flashback query feature, the DBA must perform two tasks:

The DBA must make sure that there is an undo tablespace in the database that is large enough to retain changes
made by all users for a specified period of time. This is the same tablespace that is used to support COMMIT and
ROLLBACK functionality (discussed in Chapter 7, "Logical Consistency").

The DBA must specify how long the undo information will be retained for use by flashback queries by using the
initialization parameter UNDO_ RETENTION. This parameter is specified in seconds; therefore, if the DBA specifies
UNDO_RETENTION=172800, the undo information for flashback queries will be available for two days.

At Scott’s widget company, an error in the Accounting department added $2,000 to two orders placed yesterday:
update orders
set order_total = order_total+2000
where order_id in (2367,2361);

2 rows updated.

select order_id, customer_id, order_total
from orders where order_id in (2367,2361);

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    122131.3
      2367         148    146054.8

2 rows selected.

Today, the customer with customer ID 108 called to complain that his bill from his last order (order number 2361) is $2,000 higher
than expected. Sharon, one of the order-entry clerks, retrieves the row from the ORDERS table with the information for order
number 2361:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


select order_id, customer_id, order_total
from orders where order_id = 2361;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    122131.3

1 row selected.

Before calling back the customer, Sharon finds out from the Accounting department that a day ago, two of the orders were
incorrectly modified with an additional surcharge. To confirm whether this particular order was affected by the accounting error,
she uses a flashback query to see if this order had a different order total two days ago:
select order_id, customer_id, order_total from orders
as of timestamp (sysdate - 2)
where order_id = 2361;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL
---------- ----------- -----------
      2361         108    120131.3

1 row selected.

This flashback query confirms that the order total for this order was $2,000 less two days ago. The AS OF TIMESTAMP clause
specifies how far back in the past you want to view the contents of this table. In this case, (sysdate - 2) evaluates to today’s
date minus two days—in other words, two days ago. Sharon concludes that at some point in the past two days, this was one of
the orders that was incorrectly modified. To find all of the orders that have the incorrect surcharge, she uses another flashback
query as a nested query to compare the order totals:
select o.order_id, o.customer_id,
  o.order_total "CURR_TOTAL", oo.order_total "ORIG_TOTAL"
from orders o,
      (select order_id, order_total from orders
       as of timestamp (sysdate - .2)) oo
where o.order_id = oo.order_id and
      o.order_total != oo.order_total;

  ORDER_ID CUSTOMER_ID ORDER_TOTAL ORIG_TOTAL
---------- ----------- ----------- ----------
      2361         108    122131.3   120131.3
      2367         148    146054.8   144054.8

2 rows selected.

In this query, Sharon is comparing the entire contents of the current ORDERS table to the entire contents of the ORDERS table as it
was two days ago and selecting records where the order totals don’t match. She now knows which records must be updated with
the correct order total amount.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

DBA Backup and Recovery Methods
The DBA has a number of additional tools for performing backup and recovery, with capabilities for working at a much larger scale
than the methods previously discussed. Instead of a couple of tables being dropped by a user, the DBA may need to handle a
disk drive failure, resulting in the loss of an entire tablespace.

In addition to using Export and Import to back up database objects, the DBA can perform cold backups or hot backups for an
entire tablespace or an entire database. Other tools available to the DBA include Log Miner and RMAN.

Export and Import for DBAs

Earlier in this chapter, you learned about the Export (EXP) and Import (IMP) utilities that a user can use to save and restore
database objects. The DBA can use additional features of these utilities for backing up all user objects in the database or to copy
a tablespace to another database. The tablespace copy feature, new to Oracle9i, is known as transportable tablespaces. It is a
very convenient way to copy all objects in a tablespace to another database, without needing to specify individual objects in the
tablespace.

transportable tablespace

A feature of Oracle’s Import and Export utilities that allows a tablespace to be copied to another database. All
objects within the tablespace to be copied must be self-contained; in other words, a table in a tablespace to be
copied must have its associated indexes in the same tablespace.

At Scott’s widget company, there are two primary databases:

The OLTP database (OR92), which contains the online widget order system and the HR tables. It has the
EMPLOYEES, DEPARTMENTS, and other tables.

The data warehouse database (WH92), which contains summaries of orders processed on the online system.
Analysts use this summarized information to do "what-if" analyses to predict sales for the upcoming fiscal year.

On a weekly basis, Janice, the DBA, needs to copy the transactions from the online database to the data warehouse database.
She decides that using transportable tablespaces is the most convenient and efficient way to move this data, as there are
hundreds of tables in several different schemas that need to be merged into the data warehouse.

In the online database, Janice reviews the available tablespaces:
connect janice/janice@or92;

Connected.

select tablespace_name, status, contents from dba_tablespaces;

TABLESPACE_NAME                STATUS    CONTENTS
------------------------------ --------- ---------
SYSTEM                         ONLINE    PERMANENT
UNDOTBS1                       ONLINE    UNDO
TEMP                           ONLINE    TEMPORARY
CWMLITE                        ONLINE    PERMANENT
DRSYS                          ONLINE    PERMANENT
EXAMPLE                        ONLINE    PERMANENT
INDX                           ONLINE    PERMANENT
ODM                            ONLINE    PERMANENT
TOOLS                          ONLINE    PERMANENT
USERS                          ONLINE    PERMANENT
XDB                            ONLINE    PERMANENT
TO_DATAMART                    ONLINE    PERMANENT

12 rows selected.

The TO_DATAMART tablespace contains the tables that need to go to the data warehouse database. The first step in copying a
tablespace to another database is to make it read-only:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alter tablespace to_datamart read only;

Tablespace altered.

Next, Janice uses Export (EXP) to save the characteristics of the tablespace to a dump file. Note that the contents of the
tablespace are not saved to the dump file; only the information about the objects in the tablespace is saved. She will use the
datafiles that make up the tablespace to copy the data. In the following EXP command, Janice creates the dump file for the
TO_DATAMART tablespace:
E:\TEMP>exp transport_tablespace=y
          tablespaces=to_datamart file=exp_mart.dmp

Export: Release 9.2.0.1.0 - Production on
   Sat Nov 9 18:47:15 2002

Copyright (c) 1982, 2002, Oracle Corporation.
    All rights reserved.

Username: janice as sysdba
Password:

Connected to: Oracle9i Enterprise Edition
      Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production
Export done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
Note: table data (rows) will not be exported
About to export transportable tablespace metadata...
For tablespace TO_DATAMART ...
. exporting cluster definitions
. exporting table definitions
. . exporting table                    INVENTORIES
. . exporting table                    SALES001
. . exporting table                    SALES002
...
. . exporting table                    SALES226
. . exporting table                    CUSTOMERS
. exporting referential integrity constraints
. exporting triggers
. end transportable tablespace metadata export
Export terminated successfully without warnings.

E:\TEMP>

In the next step, Janice copies the datafiles that compose the TO_DATAMART tablespace to the directory location where the rest of
the data warehouse datafiles reside. Janice uses the data dictionary views V$TABLESPACE and V$DATAFILE to determine the
operating system files that compose the TO_DATAMART tablespace:
select d.name "Filenames"
from v$tablespace t, v$datafile d
where t.ts# = d.ts#
and t.name = ‘TO_DATAMART’;

Filenames
---------------------------------------
D:\ORACLE\ORADATA\OR92\TO_DATAMART.ORA

1 row selected.

Janice uses a standard operating system copy command to make a copy of the tablespace in the new database:
D:\> copy d:\oracle\oradata\or92\to_datamart.ora
        d:\oracle\oradata\wh92

        1 file(s) copied.

D:\>

Back in the online database, Janice changes the source tablespace back to read-write:
connect janice/janice@or92;

Connected.

alter tablespace to_datamart read write;

Tablespace altered.

At this point, the source database is back to its original state, the information about the TO_DATAMART tablespace has been saved
to a dump file, and a copy of the TO_DATAMART tablespace datafile is ready to attach to the data warehouse database. Janice will
run Import (IMP) to attach the tablespace to the data warehouse database, using many of the same options she used with Export
to create the tablespace dump file:
E:\TEMP>imp transport_tablespace=y file=exp_mart.dmp
   datafiles=(‘d:\oracle\oradata\wh92\to_datamart.ora’)
   tablespaces=to_datamart

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   tablespaces=to_datamart

Import: Release 9.2.0.1.0 - Production
     on Sun Nov 10 08:55:26 2002

Copyright (c) 1982, 2002, Oracle Corporation.
     All rights reserved.

Username: janice as sysdba
Password:

Connected to: Oracle9i Enterprise Edition
     Release 9.2.0.1.0 - Production
With the Partitioning, OLAP and Oracle Data
     Mining options
JServer Release 9.2.0.1.0 - Production

Export file created by EXPORT:V09.02.00
     via conventional path

About to import transportable tablespace(s) metadata...
import done in WE8MSWIN1252 character set
     and AL16UTF16 NCHAR character set
. importing SYS’s objects into SYS
. importing RJB’s objects into RJB
. . importing table                  "INVENTORIES"
. . importing table                  "SALES001"
. . importing table                  "SALES002"
...
. . importing table                  "SALES226"
. . importing table                  "CUSTOMERS"

Import terminated successfully without warnings.

E:\TEMP>

A copy of the TO_DATAMART tablespace is now attached to the data warehouse database and ready for use by the marketing
analysts:
connect janice/janice@wh92;

Connected.

select tablespace_name, status, contents
     from dba_tablespaces
     where tablespace_name = ‘TO_DATAMART’;

TABLESPACE_NAME                STATUS    CONTENTS
------------------------------ --------- ---------
TO_DATAMART                    READ ONLY PERMANENT

1 row selected.

Before the tablespace can be imported again into the data warehouse database, it must be taken offline and dropped. It is
assumed that any objects in the TO_ DATAMART tablespace are copied to other tablespaces shortly after the TO_DATAMART
tablespace is imported.

Cold Backups

A database cold backup is most likely the simplest way to make a backup of a database. A cold backup consists of making
copies of the datafiles, the control files, and the initialization parameter files while the database is shut down. A cold backup is
also known as a closed backup.

cold backup

A database backup performed while the database is shut down. Also known as a closed backup.

closed backup

See cold backup.

Cold backups are easy to do, but they have several disadvantages. The database is unavailable to users during a cold backup, so
any database that must be available 24 hours a day is not a good candidate for a cold backup. In addition, a database media
failure will result in some loss of data—any transactions that are recorded to the database since the last cold backup are lost.

Hot Backups

A hot backup is similar to a cold backup, except that the backup is performed while the database is open and available to users.
A hot backup is also known as an open backup.

hot backup

A database backup performed while the database is open and available to users. Also known as an open
backup.

open backup

See hot backup.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Hot backups are performed on one tablespace at a time. They are better than cold backups in that the database is always
available to users, even while the backup is in progress.

To perform a hot backup, you must know the names of the datafiles that belong to the tablespace you are backing up. Janice, the
DBA, needs to back up the USERS tablespace while the database is open, so she uses the V$TABLESPACE and V$DATAFILE
views to find out the datafile names for the USERS tablespace:
select d.name "Filenames"
from v$tablespace t, v$datafile d
where t.ts# = d.ts#
and t.name = ‘USERS’;

Filenames
-----------------------------------
D:\ORACLE\ORADATA\OR92\USERS01.DBF

1 row selected.

Before Janice initiates the backup, she marks the tablespace as being in a backup state:
alter tablespace users begin backup;

Tablespace altered.

Now any transactions occurring against the tablespace while the backup is in progress will be correctly applied to the objects in
the tablespace when the backup is complete.

In the next step, Janice performs a copy operation at the operating system command prompt, similar to the copy she performed
when transporting a tablespace:
D:\> copy d:\oracle\oradata\or92\users01.dbf d:\backup
        1 file(s) copied.

D:\>

To finish the hot backup, Janice takes the tablespace out of backup mode:
alter tablespace users end backup;

Tablespace altered.

During the time the tablespace was in backup mode, all objects in the tablespace were still available to users.

Log Miner

Oracle Log Miner is another tool the DBA can use to view past activity in the database. The Log Miner tool can help the DBA find
changed records in redo log files by using a set of PL/SQL procedures and functions. Log Miner extracts all DDL and DML activity
from the redo log files for viewing by a DBA via the dynamic performance view V$LOGMNR_CONTENTS. In addition to extracting the
DDL and DML statements used to change the database, the V$LOGMNR_CONTENTS view also contains the DML or DDL
statements needed to reverse the change made to the database. This is a good tool for not only pinpointing when changes were
made to a table, but also for automatically generating the SQL statements needed to reverse those changes.

Log Miner works differently from Oracle’s flashback query feature. The flashback query feature allows a user to see the contents
of a table at a specified time in the past; Log Miner can search a time period for all DDL against the table. A flashback query uses
the undo information stored in the undo tablespace; Log Miner uses redo logs. Both of these tools can be useful for tracking down
how and when changes to database objects took place.

Log Miner may be configured and used either from a SQL command line or via a GUI-based interface within Oracle Enterprise
Manager (OEM) by selecting Tools > Database Applications > Logminer Viewer, as shown here.

This Log Miner session initiated through OEM shows a sequence of DML statements executed by GARY against the ORDERS

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This Log Miner session initiated through OEM shows a sequence of DML statements executed by GARY against the ORDERS
table. The SQL Redo column shows the DML statement used to change the ORDERS table, and the SQL Undo column shows how
to reverse the change made by the DML statement in the SQL Redo column. Double-clicking a row in the report brings up a
second window that shows the complete text of both the SQL Undo and SQL Redo columns, as shown on the next page.

Recovery Manager

The Recovery Manager (RMAN) tool is an extensive and comprehensive set of tools that can streamline the backup and recovery
of a database. It can be accessed via either a command line or a GUI interface through OEM by selecting Tools > Database Tools
> Backup Management > Backup. Using RMAN can reduce errors by automating many of the tasks that a DBA would otherwise
need to perform manually, such as checking a backup set for completeness or logging the results of a backup operation.

Recovery Manager (RMAN)

A comprehensive set of backup and recovery tools that can streamline the backup and recovery of a database.

RMAN can perform the following tasks:

Back up all database objects. RMAN can back up every individual type of database or filesystem object, or the entire database.
It can back up tablespaces, datafiles, control files, and log files.

Log all backup operations. RMAN automatically logs the status of the backup as it occurs and when it completes.

Catalog backup information. Information about what database objects were backed up on what days is kept in an Oracle
database.

Perform incremental backups. Only the changes to database objects are backed up in an RMAN incremental backup. This
saves time and space. A full backup can occur weekly, with incremental backups performed during the week.

Create a duplicate of a database. A copy of an entire database can be made for testing a new release of a software application
or testing an upgrade to a new release of the Oracle database software.

Test the recovery process. RMAN can review the contents of backups to validate that the database can be restored successfully
in case of a catastrophic failure of the database.

The GUI version of RMAN includes a wizard, as shown below. This interface can help the DBA choose which objects are included
in a backup, choose a backup strategy, and automate the backup process through OEM.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. A cold database backup occurs when a database is , and a hot database backup occurs when a database is .

2. The failure of a disk drive containing database datafiles would be considered what kind of a failure?

3. What clause in a SELECT statement specifies the time and date for an Oracle flashback query?

4. The flashback query tool uses what Oracle structure to retrieve information on how a table appeared at some
specified point in the past?

5. True or false: Flashback query can retrieve the DDL statement needed to undo a change made to a table in the
past.

6. An abnormal termination of the Oracle server software would be considered what type of database failure?

7. Which Oracle utilities can be used by a database user to back up and restore a table and by a DBA to move a
tablespace from one database to another?

8. What Oracle structure allows the automatic recovery of the Oracle database after an instance failure?

9. What option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without
executing those DDL commands?

10. What is the name of the feature of Oracle’s Export and Import utilities that allows a DBA to move or copy an entire
tablespace from one database to another?

Answers

1. Closed and unavailable to users, open and available to users.

2. The failure of a disk drive containing database datafiles would be considered a media failure.

3. The AS OF TIMESTAMP clause in a SELECT statement specifies the time and date for an Oracle flashback query.

4. The undo tablespace contains information that is used to reconstruct how a table appeared at some specified point in the
past.

5. False, the flashback query feature does not provide the DDL for undoing changes. Log Miner is the tool that can retrieve the
DDL statement needed to undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered an instance failure, and therefore a nonmedia
failure.

7. The Import (IMP) and Export (EXP) utilities can be used by a database user to back up and restore a table and by a DBA to
move a tablespace from one database to another.

8. The redo log files ensure that all committed transactions are applied to the database in the event of an instance failure.

9. The SHOW=Y option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without executing
those DDL commands.

10. The transportable tablespace feature of Oracle’s Export and Import utilities allows a DBA to move or copy an entire
tablespace from one database to another.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
closed backup

cold backup

Export utility (EXP)

flashback query

hot backup

Import utility (IMP)

media failure

nonmedia failure

open backup

Recovery Manager (RMAN)

transportable tablespace

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 14: Troubleshooting

Overview
When trouble strikes in your Oracle database, there are many places to turn for clues about what is causing the problem. The
approach you take to troubleshooting the database will depend, in part, on whether a few users complain or you get hundreds of
phone calls and e-mail messages from irate users.

The alert log file can give you clues about global database errors, and the system trace files can tell you about problems with the
background processes. When individual users are having problems with their sessions, and the error messages they are receiving
in their SQL*Plus session aren’t very descriptive, the user trace files may provide additional clues to the problem.

You can also use the Event Manager in Oracle Enterprise Manager (OEM) to automatically notify you of problems or potential
problems, such as when disk space is close to running out.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

The Alert Log File
The alert log file is a grab bag of messages about the state of the database instance. It contains entries about significant
database events, such as database startup and shutdown, nondefault initialization parameters, ALTER SYSTEM commands, and
various errors.

alert log file

A text file that contains entries about significant database events, such as database startup and shutdown,
nondefault initialization parameters, and various errors. The alert log file is stored in the directory specified by
the system parameter BACKGROUND_DUMP_DEST.

Locating the Alert Log File

At Scott’s widget company, Janice, the DBA, doesn’t remember when she made the changes to the redo log files. She wanted to
increase the redundancy of the redo log files, so she added a second set of redo logs on a different disk. She can find information
about the redo logs in the alert log file.

Janice’s first step is to locate the alert log file itself. This log file is a text file in the directory specified by the system parameter
BACKGROUND_DUMP_DEST:
show parameter background_dump_dest

NAME                  TYPE       VALUE
--------------------- ---------- --------------------------
background_dump_dest  string     d:\oracle\admin\or92\bdump

From an operating system command-line session, Janice locates the alert log file:
C:\TEMP>d:

D:\>cd oracle\admin\or92\bdump

D:\ORACLE\ADMIN\OR92\BDUMP>dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/10/2002  02:24 AM    <DIR>          .
11/10/2002  02:24 AM    <DIR>          ..
11/13/2002  08:53 PM            26,708 alert_or92.log
11/13/2002  08:53 PM               885 or92_arc0_2172.trc
11/13/2002  08:53 PM               949 or92_arc1_1420.trc
11/07/2002  09:05 PM               597 or92_lgwr_2084.trc
11/07/2002  08:58 PM               597 or92_lgwr_2944.trc
11/07/2002  09:10 PM               597 or92_lgwr_3280.trc
11/07/2002  08:49 PM               597 or92_lgwr_3636.trc
               7 File(s)         30,930 bytes
               2 Dir(s)  39,615,973,888 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>notepad alert_or92.log

The alert log file’s name on Windows is alert_, followed by the instance’s connection identifier and an extension of .log.

Viewing the Alert Log File

Now that Janice knows where to find the alert log file, she opens it using the Windows Notepad text editor:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


It appears that the new redo logs were created on November 13, 2002, at about 8:49 p.m. You can also see that the new redo log
files were created via OEM, since OEM puts a special comment with a timestamp into the alert log file to indicate operations
performed via OEM.

Maintaining the Alert Log File

The alert log file grows in size slowly, but without limit. After a few weeks, it can become cumbersome to review the file, so it’s a
good idea to archive or delete the file on a periodic basis.

The alert log file can be safely renamed or deleted, even when the database is up and running. The next time an entry needs to
be written to the alert log file and the alert log file is not there, a new one is created.

Janice, the DBA, reviews the alert log file every Friday and renames it with a name containing the date it was renamed:
D:\> cd \oracle\admin\or92\bdump

D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/10/2002  02:24 AM    <DIR>          .
11/10/2002  02:24 AM    <DIR>          ..
11/15/2002  03:16 AM       27,239 alert_or92.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/13/2002  08:53 PM          949 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
               7 File(s)         31,523 bytes
               2 Dir(s)  41,803,294,208 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP> rename alert_or92.log
     alert_or92_2002-11-15.log

D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/15/2002  08:35 PM    <DIR>          .
11/15/2002  08:35 PM    <DIR>          ..
11/15/2002  03:16 AM       27,239 alert_or92_2002-11-15.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/13/2002  08:53 PM          949 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
               7 File(s)         31,523 bytes
               2 Dir(s)  41,803,294,208 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

OEM’s Event Manager
OEM can automatically alert the DBA, through an e-mail message or page, to error conditions or conditions that may signal an
impending error. Using OEM’s Event Manager, accessible as one of the nodes in the OEM Navigator pane, the DBA can monitor
a variety of error conditions, such as an abnormal termination of the Oracle instance or a tablespace running low on space. Even
events that would not technically be considered an error condition can be monitored. For example, you could tell Event Manager
to notify you when users are performing too many table scans within a certain period of time, as shown here.

Creating a new event is straightforward. From OEM’s toolbar at the top, select Event > Create Event. On the Tests tab in the
Create Event window, you can select from a long list of available tests. In this example, the DBA will be notified when any
tablespace’s used space exceeds a specified threshold percentage or the number of full table scans performed each second
exceeds a specified threshold amount. The Parameters tab in the Create Event window is used to specify these thresholds. For
the Tablespace Full test, an alert will be sent to the DBA via pager or e-mail whenever any tablespace is 80% full or higher, as
shown below.

For the Table Scans Per Second test, the DBA will be notified with a warning message if the number of full table scans exceeds
10 per second at least three times, or with a critical error if the number of full table scans exceeds 25 per second at least three
times, as shown below.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


These tests can be performed on the database automatically on a regular schedule, specified on the Schedule tab of the Create
Event window:

In this example, when the event is saved, the tests in the event will run immediately and then every 15 minutes thereafter.

The DBA can also specify a script to run automatically when event conditions are detected. This is helpful when the DBA is on
vacation or not able to receive e-mail or pager messages for some other reason. You can select a script through the Fixit Jobs tab
of the Create Event window.

In many cases, a fixit job can repair the problem without any intervention by the DBA at all. The fixit job can, for example,
temporarily allocate more disk space on a spare disk volume for the tablespace that is about to run out of space. A fixit job can be
a series of predefined actions to be performed when the event occurs, such as shutting down and restarting the database, or a
fixit job may call a customized SQL script written by the DBA, or any combination of predefined actions and customized scripts.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

System Trace Files
An Oracle instance’s system trace files are stored in the same directory as the alert log file, in the directory specified by the
system parameter BACKGROUND_ DUMP_DEST. The system trace files contain debugging, status, and error messages for each of
the background processes, such as SMON, PMON, DBWx, LGWR, and so forth.

system trace file

A text file that pertains to a single background process and contains status, debugging, or error information
about that background process. System trace files are stored in the directory specified by the system parameter
BACKGROUND_DUMP_DEST.

Janice, the DBA, notices that there are quite a few system trace files in the BACKGROUND_DUMP_DEST directory:
D:\ORACLE\ADMIN\OR92\BDUMP> dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

Directory of D:\ORACLE\ADMIN\OR92\BDUMP

11/16/2002  02:09 PM    <DIR>          .
11/16/2002  02:09 PM    <DIR>          ..
11/16/2002  02:14 PM        5,378 alert_or92.log
11/15/2002  03:16 AM       27,239 alert_or92_2002-11-15.log
11/15/2002  03:15 AM          947 or92_arc0_2172.trc
11/16/2002  09:36 AM        1,011 or92_arc1_1420.trc
11/07/2002  09:05 PM          597 or92_lgwr_2084.trc
11/07/2002  08:58 PM          597 or92_lgwr_2944.trc
11/07/2002  09:10 PM          597 or92_lgwr_3280.trc
11/07/2002  08:49 PM          597 or92_lgwr_3636.trc
11/16/2002  02:09 PM          597 or92_lgwr_3856.trc
               9 File(s)         37,560 bytes
               2 Dir(s)  40,448,815,616 bytes free

D:\ORACLE\ADMIN\OR92\BDUMP>

She sees quite a few files for the LGWR (log writer) background process, so she is concerned that there might be a problem with
LGWR. She opens the most recent LGWR trace file, or92_lgwr_3856.trc, to see what the problem might be.

She looks at the date stamp and realizes that the time the LGWR process was shutting down was the same time that the
database was restarted that day:
select instance_name,
   to_char(startup_time,’yyyy-mm-dd hh:miPM’)
   from v$instance;

INSTANCE_NAME    TO_CHAR(STARTUP_TI
---------------- ------------------
or92             2002-11-16 02:13PM

1 row selected.

As a result, the trace file is merely informational in this case, and there appears to be nothing wrong with the LGWR.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

User Trace Files
User trace files, as the name implies, contain information pertaining to any error conditions triggered by a command in an
individual user’s session. User trace files can also help the DBA to optimize the performance of SQL statements by producing
statistics for each SQL statement in a user session. The location for user trace files is specified by the system parameter
USER_DUMP_DEST.

user trace file

A text file that contains information pertaining to any error conditions triggered by a command in an individual
user’s session or SQL statement information for the purposes of tuning and optimization. User trace files are
stored in the directory specified by the system parameter USER_DUMP_ DEST.

Enabling Tracing

The users in the HR department want to optimize some of their queries, so they decide to use user trace files to save the statistics
in the USER_DUMP_DEST directory. The first step is to turn on tracing:
alter session set sql_trace = true;

Session altered.

One of the users in the HR department runs a typical query joining the EMPLOYEES and the DEPARTMENTS table, then
immediately turns off the tracing:
select employee_id emp_id, last_name, first_name,
   department_id dept_id, department_name
from hr.employees join hr.departments
   using(department_id);

  EMP_ID LAST_NAME   FIRST_NAME  DEPT_ID DEPARTMENT_NAME
-------- ----------- ----------- ------- ---------------
     100 King        Steven           90 Executive
     101 Kochhar     Neena            90 Executive
     102 De Haan     Lex              90 Executive
...
     205 Higgins     Shelley         110 Accounting
     206 Gietz       William         110 Accounting

106 rows selected.

alter session set sql_trace = false;

Session altered.

Locating the User Trace Files

Janice, the DBA, has agreed to help out the HR department by analyzing the user trace file. First, she needs to find out where the
user trace file is stored:
show parameter user_dump_dest;

NAME                  TYPE      VALUE
--------------------- --------- --------------------------
user_dump_dest        string    d:\oracle\admin\or92\udump

From an operating system command-line session, Janice locates the trace file:
D:\>cd oracle\admin\or92\udump

D:\ORACLE\ADMIN\OR92\UDUMP>dir
 Volume in drive D is DAT
 Volume Serial Number is 2C2D-238A

 Directory of D:\ORACLE\ADMIN\OR92\UDUMP

11/16/2002  10:48 PM    <DIR>          .
11/16/2002  10:48 PM    <DIR>          ..
11/16/2002  02:14 PM               740 or92_ora_180.trc
11/10/2002  02:36 PM               609 or92_ora_18660.trc
11/07/2002  09:11 PM               628 or92_ora_2076.trc
11/10/2002  02:33 PM               609 or92_ora_21776.trc
11/16/2002  10:38 PM             1,247 or92_ora_2348.trc
11/07/2002  08:59 PM               713 or92_ora_2788.trc
11/07/2002  09:13 PM               743 or92_ora_2924.trc
11/07/2002  09:05 PM               713 or92_ora_3160.trc
11/07/2002  08:59 PM               629 or92_ora_3224.trc
11/07/2002  08:50 PM               628 or92_ora_3344.trc
11/07/2002  08:50 PM               712 or92_ora_3784.trc
11/07/2002  09:05 PM               629 or92_ora_4060.trc
11/16/2002  02:09 PM               633 or92_ora_56600.trc
11/16/2002  10:49 PM             2,522 or92_ora_5996.trc
              14 File(s)         11,755 bytes
               2 Dir(s)  40,448,329,216 bytes free

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


               2 Dir(s)  40,448,329,216 bytes free

Which trace file is the right one? Janice must join the V$PROCESS and V$SESSION dynamic performance views to retrieve the
operating system process number, which Oracle uses in the trace filename:
select spid from v$process v, v$session s
   where v.addr = s.paddr and s.username = ‘HR’;

SPID
------------
5996

1 row selected.

Given the operating system process number of 5996, Janice knows that she needs to analyze the user trace file
or92_ora_5996.trc. However, when she opens this trace file in Notepad, it is not very readable:

Converting the Trace File

To convert the trace file into something more readable, Janice uses the Oracle utility TKPROF:
D:\ORACLE\ADMIN\OR92\UDUMP>tkprof or92_ora_5996.trc
     or92_ora_5996.txt

TKPROF: Release 9.2.0.1.0 - Production
     on Sat Nov 16 23:24:55 2002

Copyright (c) 1982, 2002, Oracle Corporation. 
     All rights reserved.

D:\ORACLE\ADMIN\OR92\UDUMP>

TKPROF

An Oracle utility that reformats a user trace file containing SQL statement statistics into a readable format.

Janice reviews the file or92_ora_5996.txt and finds that the output is much easier to interpret. A sample of the output is
shown below.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Using statistics from the trace file such as CPU time and elapsed time can help Janice focus on which of the HR department’s
SQL statements need tuning.

Tip Oracle provides two websites that can assist the DBA when trouble strikes. Metalink, Oracle’s trouble reporting site at
http://metalink.oracle.com, is a subscription service that allows DBAs to submit problem reports (either online or
by phone) and search the knowledge base of all other problems submitted to Oracle support staff. Oracle’s technology
network, http://technet.oracle.com, is a free service, although user registration is required to access the site.
Technet contains searchable product documentation, trial versions of most of Oracle’s software, discussion forums,
sample code, white papers, and more.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Review Questions
1. System trace files can be found in the directory identified by which initialization parameter?

2. What Oracle tool can the DBA use to monitor the size of a tablespace and notify the DBA when the tablespace is
running out of space?

3. True or false: The alert log file records both successful and unsuccessful logins to the database.

4. The alert log file can be found in the directory identified by which initialization parameter?

5. What does the Oracle utility TKPROF do?

Answers

1. System trace files can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

2. OEM’s Event Manager tool can be used to monitor space conditions in database tablespaces.

3. False, the alert log file records database startup and shutdown, but not user logins.

4. The alert log file can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

5. The Oracle utility TKPROF formats a user trace file containing SQL statement statistics into a readable format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Terms to Know
alert log file

system trace file

TKPROF

user trace file

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix A: Answers to Review Questions

Chapter 1
1. Name the most important element of a relational database and its components.

2. Which type of table relationship associates more than one record in a given table with more than one record in
another table?

3. What type of key can be used to enforce referential integrity between two tables in a database?

4. What are some reasons why using a spreadsheet is not a good alternative to using a large-scale database?

5. What are some of the benefits of abstraction in an object-relational database management system?

6. What object-relational feature of Oracle eases the transition between relational and object-relational applications?

7. What are the three steps in the ERA process for database design?

Answers

1. The table is the most important element of a relational database and it consists of rows and columns. A field exists at the
intersection of a row and a column.

2. A many-to-many relationship associates more than one record in a table with more than one record in another table.

3. A foreign key can be used to enforce referential integrity between two tables.

4. Some reasons why a spreadsheet is not a good alternative to a large-scale database are that it’s difficult to use for multiple
users, it does not offer transaction control, the cells in a spreadsheet can contain any type of data, and referential integrity
controls between spreadsheets are difficult to implement efficiently.

5. In an object-relational database management system, new datatypes can be created as aggregates of existing datatypes and
other new datatypes, enhancing standards adherence and reusability.

6. Object views allow the developer to define an object-oriented structure over an existing relational database table, thus easing
the transition between relational and object-relational applications.

7. The three steps in the ERA (entities, relationships, attributes) design process are to define the entities, then define the
relationships between the entities, and then define the attributes of the entities. After one pass through all three steps, one or
more iterations may be necessary.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 2
1. What are the three types of DML (Data Manipulation Language) statements?

2. If the user SCOTT is granted the privilege to insert records on the OE.WAREHOUSES table using the command
GRANT INSERT ON OE.WAREHOUSES WITH GRANT OPTION, what does the WITH GRANT OPTION clause
allow SCOTT to do?

3. Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

4. What two methods are used to rename a column in the report output of a SQL SELECT statement?

5. ODBC provides what capability to client applications?

6. Which SELECT statement keyword removes duplicate rows from the result of the query?

7. What is the name of the set of library routines that allows a developer to send SQL statements from a C program?

8. What are some of the differences between a DELETE and a TRUNCATE statement?

9. The new MERGE statement combines the functionality of which two other DML statements?

10. What function does the DESCRIBE command perform in SQL*Plus or iSQL*Plus?

Answers

1. The three types of DML statements are INSERT, UPDATE, and DELETE.

2. It allows SCOTT to grant another user, such as HR, the same INSERT privilege on the OE.WAREHOUSES table.

3. iSQL*Plus runs on only the middleware tier where the Apache web server is running. However, Apache can run on the client
with the user who is executing the SQL statements, on its own dedicated server, or on the same server as the Oracle
database.

4. You can rename a column in the report output by using the SQL*Plus or iSQL*Plus column command, or by specifying the
alias name next to the column name in the SQL SELECT statement.

5. ODBC (Open Database Connectivity) provides a client application that supports SQL commands and the capability to
connect to a variety of different database servers without knowing the specific details as to how to connect and interact
directly with the database.

6. The DISTINCT keyword removes duplicate rows. If there is only one column in the result of a SQL query, there will be no
duplicates of that column returned in the query result. If there are two columns in the result of the query, there will be one row
returned for each unique combination of values in the first and the second column.

7. The library routines for sending SQL statements from a C program are called the OCI (Oracle Call Interface).

8. A DELETE statement may be rolled back, whereas a TRUNCATE is implicitly committed. The DELETE statement can
conditionally specify which rows to delete, but a TRUNCATE statement removes the contents of the entire table. A DELETE
statement retains the disk space in the table for future inserts or updates, but a TRUNCATE statement frees the disk space for
other tables or database objects.

9. MERGE combines the functionality of INSERT and UPDATE.

10. The DESCRIBE command displays the structure of a table, including the column name, datatype, and whether the column is
a required field.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 3
1. What is another way to write the following SQL statement by using another function?

select empno || lpad(initcap(ename),
40-length(empno),’.’)
"Employee Directory" from emp;

2. Which function would you use to perform an explicit conversion from a number to a string?

3. How can you rewrite the function call NUMTOYMINTERVAL(17,’year’) using the function TOYMINTERVAL?

4. What is the result of a number added to a NULL value?

5. What is the result of formatting the number -232.6 using the format mask ‘9999.99S’?

6. Rank the following operators or conditionals based on priority, from highest to lowest: *, OR, ||, >=

7. The DUAL table has how many rows and how many columns?

8. True or false: Strings and numbers can be concatenated.

9. Write a SELECT statement with a built-in function or functions that will format the string ‘Queen’ with the ‘!’
character padded for a total of 20 characters on the left side, and with the ‘?’ character padded for a total of 30
characters on the right. (Hint: Use nested functions.)

10. What functionality does the new Oracle TIMESTAMP datatype have over the DATE datatype?

Answers

1. You can rewrite the statement using the CONCAT function:
select concat(empno, lpad(initcap(ename),
40-length(empno),’.’) "Employee Directory" from emp;

2. You can use the TOCHAR function to convert a number to a string.

3. You can rewrite the function call as TOYMINTERVAL(‘17-00’).

4. The result of a number added to a NULL is NULL.

5. The resulting format is 232.60-.

6. *, ||, >=, OR

7. The DUAL table has one row and one column. The column is named DUMMY and has a value of ‘X’.

8. True, before the number is concatenated with the string, it is implicitly converted to a string.

9. select rpad(lpad(‘Queen’,20,’!’),30,’?’) from dual;
RPAD(LPAD(‘QUEEN’,20,’!’),30,’
------------------------------
!!!!!!!!!!!!!!!Queen??????????

10. The TIMESTAMP datatype stores the time in seconds to up to nine digits of precision.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 4
1. Rewrite the following expression using the CONCAT function.

last_name || ‘, ‘ || first_name

2. What are two ways that you can indicate a comment in a SQL command?

3. The SQL engine converts the IN operator to a series of .

4. Rewrite the following WHERE clause to be case-insensitive.
where job_title like ‘%Manager%’;

5. What is the only group function that counts NULL values in its calculation without using NVL or other special
processing?

6. The query results from using aggregate functions with a GROUP BY clause can be filtered or restricted by using
what clause?

7. Identify the two special characters used with the LIKE operator and describe what they do.

8. Name two aggregate functions that work only on numeric columns or expressions, and two other aggregate
functions that work on numeric, character, and date columns.

9. Put the clauses of a SQL SELECT statement in the order in which they are processed.

10. Which operator can do valid comparisons to columns with NULL values?

11. The SQL engine converts the BETWEEN operator to .

12. Where do NULL values end up in a sort operation?

Answers

1. The expression is rewritten as:
concat(concat(last_name, ‘, ‘),first_name)

2. You can indicate a comment in a SQL command by using /* and */ or by using --.

3. The SQL engine converts the IN operator to a series of OR operations.

4. Use the UPPER function to convert the job title to uppercase:
where UPPER(job_title) like ‘%MANAGER%’;

5. The COUNT group function using the syntax COUNT(*) counts NULL values without using NVL.

6. The HAVING clause filters or restricts the query results of the GROUP BY clause.

7. The % character matches zero or more characters, and the character matches exactly one character.

8. AVG and SUM work only on numeric columns; MIN and MAX work on all datatypes.

9. The proper order is: SELECT, WHERE, GROUP BY, HAVING, ORDER BY.

10. The operator is IS NULL.

11. The SQL engine converts the BETWEEN operator to two logical comparisons using >= and <=, connected by an AND
operation.

12. For ascending sorts, the NULL values are at the end; for descending sorts, the NULL values are at the beginning.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 5
1. Add a clause to the WHERE condition to make the following query return only the department names without

employees:
select employee_id "Emp ID", last_name || ‘, ‘ ||
  first_name "Name", department_name "Dept"
from employees e,departments d
where e.department_id(+) = d.department_id;

2. A type of query that has either too few or no join conditions is known as a query.

3. Name three kinds of equijoins.

4. A natural join makes what assumption between the columns of two or more tables to be joined?

5. The Oracle9i syntax moves the join conditions from the clause to the clause in a SELECT statement.

6. To avoid a Cartesian product, a query with four tables must have at least how many join conditions between
tables?

7. To return all the rows in one table regardless of whether any rows in another table match on the join condition, you
would use what kind of a join?

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

10. A primary key in one table would frequently be joined to what in a second table?

Answers

1. The following clause added to the WHERE condition makes the query return only department names without employees:
and employee_id is null

2. Cartesian product

3. Inner joins, self-joins, left outer joins, right outer joins, and full outer joins are all examples of equijoins.

4. A natural join assumes that the tables are to be joined on the columns that have the same names and datatypes.

5. WHERE, FROM

6. A query with four tables must have at least three join conditions to avoid a Cartesian product.

7. An outer join returns all rows in one table regardless of whether any rows in another table match on the join condition.

8. A (+) is used to signify an outer join in a pre-Oracle9i query.

9. A full outer join uses the UNION set operator in a pre-Oracle9i query.

10. A primary key in one table would frequently be joined to a foreign key in a second table.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 6
1. A subquery is allowed in which parts of a SQL SELECT statement?

2. True or false: A correlated subquery references a table in the SELECT clause.

3. Which set operator will not remove duplicate rows from the result of a compound query?

4. What characteristics of the columns in a compound query using INTERSECT must match?

5. How are NULL values handled using set operators in a compound UNION query?

6. Why are ROLLUP and CUBE the preferred method for generating subtotals and grand totals for an aggregate
query?

7. Which operators can be used to compare a column to a single-row subquery?

8. A compound query that needs to find only the rows that are the same between the two queries should use the set
operator.

9. True or false: The IN operator cannot be used with a single-row subquery.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of precedence.

11. What can be used to change the precedence of a pair of queries in a compound query with more than two
queries?

Answers

1. A subquery is allowed in the SELECT clause, the FROM clause, and the WHERE clause.

2. False, the correlated subquery references a column in the main query.

3. UNION ALL will not remove duplicate rows from the result of a compound query.

4. The number of columns and their datatypes must match in a compound query using INTERSECT. The lengths of the
columns and the names do not need to match.

5. NULL values in one query are considered equal to NULL values in the other query, for the purposes of eliminating duplicates
in a UNION.

6. ROLLUP and CUBE need to make only one pass over the source table(s). Other methods, such as using a UNION between
two similar queries, will make more than one pass.

7. The following operators can be used to compare a column to a single-row subquery: =, !=, >, <, >=, and <=.

8. INTERSECT

9. False, using IN with a single-row subquery would be equivalent to using =.

10. All of those operators have equal precedence and are evaluated left to right in a compound query.

11. As with any other part of a SQL query, parentheses may be used to change the evaluation order of the set operators.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 7
1. A COMMIT occurs under which three conditions within a transaction?

2. Under what circumstances can a foreign key column not match the defined primary key value in the parent table?

3. True or false: A CHECK constraint cannot check for NULL values.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List two ways.

5. What are the three conditions that may be specified, either implicitly or explicitly, on a foreign key column when the
primary key column in the parent table is deleted?

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more than MIN_SALARY.

7. What statement will allow a partial rollback of certain DML statements within a transaction?

8. True or false: A NOT NULL constraint can be defined at the table level or at the column level.

Answers

1. A COMMIT occurs from an explicit COMMIT command, after a DDL or DCL command is executed, or when a SQL*Plus or
iSQL*Plus session is exited normally.

2. A foreign key column may not match the defined primary key value in the parent table when the foreign key column allows
NULL values and is NULL.

3. False, a CHECK constraint can use IS NULL and IS NOT NULL to check for the existence of NULL values in one or more
columns of the table.

4. PRIMARY KEY constraints do not allow NULL values, and there can be only one primary key per table.

5. By default, the row in the parent table will not be deleted if rows exist in the child table that have a foreign key referencing the
parent table’s primary or unique key. Alternatively, the child table’s foreign key may be set to NULL (SET NULL), or the entire
row in the child table may be deleted if a parent row is deleted (CASCADE).

6. This constraint ensures MAX_SALARY is at least 10,000 more than MIN_SALARY:

7. The ROLLBACK TO SAVEPOINT <savepoint>; statement will allow a partial rollback of certain DML statements.

8. False, a NOT NULL constraint can be defined only at the column level.
check (max_salary - 10000 > min_salary)

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 8
1. What are the four functions of the Database Creation Assistant (DBCA)?

2. What is the Oracle background process that writes modified data blocks to disk?

3. What is the difference between a database and an instance?

4. An extent is composed of one or more .

5. True or false: The control file contains important system tables.

6. What is the GUI-based Oracle tool that can manage and monitor one or more Oracle instances?

7. DBCA can save the specified database parameters in what kind of file?

8. Which Oracle background process will apply the data in the redo log files to the datafiles in the event of a system
crash?

9. A database schema is closely associated with which other database object?

10. A segment consists of one or more .

Answers

1. DBCA can create, delete, and modify databases. It can also create a template that can be used to create a database.

2. The DBWn process writes modified data blocks to disk.

3. A database is a set of files on disk that is managed by an instance, which is a collection of processes and memory structures
that operate against the datafiles on disk.

4. Database blocks

5. False, the control file contains information about the physical structure of the entire database.

6. The Oracle Enterprise Manager (OEM) can manage and monitor one or more Oracle instances.

7. DBCA can save the database parameters as an HTML file.

8. The SMON process will apply the data in the redo log files to the datafiles in the event of a system crash.

9. A schema is associated 1:1 with a user account in the database.

10. Extents

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 9
1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

2. Identify the two iSQL*Plus commands that define the header and footer for a report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus window where you enter your iSQL*Plus
commands or SQL statements?

4. Write an iSQL*Plus footer command to display the text Page 22, right-justified on the line.

5. Sums and averages can be displayed on an iSQL*Plus report using which iSQL*Plus command?

6. Write a single iSQL*Plus COLUMN command to format the Salary column with a total of six digits, four to the left of
the decimal point and two to the right. In the same COLUMN command, define the header to be Monthly Salary,
with the words appearing on different lines in the column header.

7. Which iSQL*Plus command controls the row count display after a SELECT statement is executed?

8. Which iSQL*Plus command controls how duplicate column values are displayed on a report?

9. The iSQL*Plus BREAK command is almost always specified in conjunction with what SQL SELECT statement
clause?

10. In both the TTITLE and BTITLE commands, what option must be used to specify more than one line in the
header or footer?

Answers

1. An iSQL*Plus substitution variable is preceded by either one or two ampersands (& or &&).

2. The TTITLE and BTITLE commands define the header and footer for an iSQL*Plus report.

3. The size of the iSQL*Plus Work Screen window can be adjusted on the Interface Options page.

4. This iSQL*Plus command will display the text Page 22, right-justified on the footer line of the report:
btitle right ‘Page 22’

5. Sums and averages can be displayed on an iSQL*Plus report by using the COMPUTE iSQL*Plus command.

6. The following iSQL*Plus command will format the Salary column with six digits, four to the left of the decimal point and two to
the right. In addition, the header will be defined as Monthly Salary, with the words appearing on different lines in the column
header:
column Salary format 9999.99 heading ‘Monthly|Salary’

7. The FEEDBACK command controls the row count display after a SELECT statement is executed. By default, the row count
from a query is displayed if there are six or more rows in the query output.

8. The BREAK command will suppress duplicate values in a report for a specified column.

9. The BREAK command is almost always specified on a column that is in the ORDER BY clause of a SQL SELECT statement.

10. The SKIP option must be used in a BTITLE or TTITLE command to specify more than one line in the header or footer.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 10
1. The data dictionary view IND has the same definition as what other data dictionary view?

2. The most common form of a table in the Oracle database is a(n) table.

3. What clause do you add to the CREATE TABLE statement to create a temporary table?

4. What tables are displayed if a user accesses the ALL_TABLES data dictionary view?

5. Name two ways in which external tables are different from relational tables.

6. True or false: Oracle resolves object references by checking for private synonyms first.

7. What are two reasons for creating a view against one or more tables?

8. What database object type can be used to generate a series of sequential numbers?

9. True or false: Data dictionary tables retain their contents even after the database has been shut down and
restarted.

10. An index created on more than one column is known as what kind of index?

Answers

1. The data dictionary view IND is equivalent to the data dictionary view USER_INDEXES.

2. Relational

3. You add the clause GLOBAL TEMPORARY to the CREATE TABLE statement to create a temporary table.

4. The ALL_TABLES data dictionary view contains a row for each table in the user’s schema plus a row for each table that the
user has access to in other schemas of the database.

5. External tables cannot be updated, and external tables cannot have indexes created on them.

6. False, Oracle resolves object references by checking for a real object owned by the user, then checks for a private synonym,
and then checks for a public synonym.

7. A view can be created to hide the complexity of a table join from the user. A view can also be created to restrict the rows or
columns seen by users of the view.

8. A sequence can be used to generate a series of sequential numbers.

9. True, data dictionary tables retain their contents even after the database has been restarted. Dynamic performance views,
however, lose their contents when the database is shut down and restarted.

10. An index based on more than one column is known as a composite index.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 11
1. Privileges can be grouped and assigned as a unit by using what database object?

2. When granting privileges with the GRANT statement, what does the clause WITH GRANT OPTION do?

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

4. What is the name of the table, owned by the user SYS, that contains all audit records?

5. Write a SQL statement that will create audit records when UPDATE statements fail against the HR.EMPLOYEES
table.

6. Which system privilege allows a user to make a connection to the database?

7. In addition to assigning a default tablespace to a user, what else must be assigned to a user before that user can
create objects in the tablespace?

8. Which tablespace is assigned to a user for the user’s permanent objects if one is not explicitly assigned in the
CREATE USER statement?

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

10. A profile controls which kinds of database resources?

11. Which keyword can be used in a GRANT command to assign one or more privileges to every user in the database?

Answers

1. A role can be used to group system and object privileges and assign them as a unit to database users.

2. The WITH GRANT OPTION clause allows the grantee to pass on the privilege to another database user.

3. DROP USER and CREATE SESSION are examples of system privileges.

4. The table SYS.AUD$ contains all audit records.

5. The following SQL statement will create audit records when UPDATE statements fail against the HR.EMPLOYEES table:
audit update on hr.employees whenever not successful;

6. The CREATE SESSION system privilege allows a user to make a connection to the database.

7. A quota must be assigned to a user before that user can create objects in the tablespace.

8. The SYSTEM tablespace is assigned to a user for permanent objects if no tablespace is explicitly assigned in the CREATE
USER statement.

9. DELETE, INSERT, and EXECUTE are examples of object privileges.

10. A profile controls things such as concurrent connections to the database, CPU time used, continuous idle time, disk reads
performed, failed login attempts, how often a password needs to be changed, and elapsed time connected.

11. The PUBLIC keyword can be used instead of an individual username or role in a GRANT command to assign one or more
privileges to every user in the database.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 12
1. What GUI tool analyzes a SQL statement and identifies the steps used to process the query?

2. The two general categories of indexes are indexes and indexes.

3. Which type of index is best for columns with a low cardinality?

4. Which dynamic performance view can assist the DBA in sizing the buffer cache appropriately?

5. Which type of table divides the contents of a very large table into more manageable chunks, both improving the
manageability of the table for the DBA and potentially increasing the performance of queries on the table?

6. Which data dictionary views contain information about table indexes and the table columns indexed?

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

8. Which feature associated with materialized views rewrites a query to use the materialized view instead of using
the tables that are the source for the materialized view?

9. What is the name of the pseudo-column that exists for every row of every table in the database and is unique
across the entire database?

10. Name the two different optimizer modes and identify which one uses statistics from tables and indexes to derive
an execution plan.

Answers

1. The Explain Plan GUI tool analyzes a SQL statement and identifies the steps used to process the query.

2. B-tree, bitmap

3. A bitmap index is best for columns with a low cardinality.

4. The dynamic performance view V$DB_CACHE_ADVICE can assist the DBA in sizing the buffer cache appropriately.

5. A partitioned table divides the contents of a very large table into more manageable chunks.

6. The data dictionary views DBA_INDEXES and DBA_IND_COLUMNS contain information about table indexes and the table
columns indexed.

7. The six steps in Oracle’s Tuning Methodology are data design, application design, memory allocation, I/O and physical
structures, resource contention, and underlying platform.

8. The QUERY REWRITE feature rewrites a query to use the materialized view instead of using the tables that are the source for
the materialized view.

9. The pseudo-column ROWID exists for every row of every table in the database and is unique across the entire database.

10. The two different optimizer modes are rule-based and cost-based. The cost-based method uses statistics from tables and
indexes to derive an execution plan.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 13
1. A cold database backup occurs when a database is , and a hot database backup occurs when a database is .

2. The failure of a disk drive containing database datafiles would be considered what kind of a failure?

3. What clause in a SELECT statement specifies the time and date for an Oracle flashback query?

4. The flashback query tool uses what Oracle structure to retrieve information on how a table appeared at some
specified point in the past?

5. True or false: Flashback query can retrieve the DDL statement needed to undo a change made to a table in the
past.

6. An abnormal termination of the Oracle server software would be considered what type of database failure?

7. Which Oracle utilities can be used by a database user to back up and restore a table and by a DBA to move a
tablespace from one database to another?

8. What Oracle structure allows the automatic recovery of the Oracle database after an instance failure?

9. What option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without
executing those DDL commands?

10. What is the name of the feature of Oracle’s Export and Import utilities that allows a DBA to move or copy an entire
tablespace from one database to another?

Answers

1. Closed and unavailable to users, open and available to users.

2. The failure of a disk drive containing database datafiles would be considered a media failure.

3. The AS OF TIMESTAMP clause in a SELECT statement specifies the time and date for an Oracle flashback query.

4. The undo tablespace contains information that is used to reconstruct how a table appeared at some specified point in the
past.

5. False, the flashback query feature does not provide the DDL for undoing changes. Log Miner is the tool that can retrieve the
DDL statement needed to undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered an instance failure, and therefore a nonmedia
failure.

7. The Import (IMP) and Export (EXP) utilities can be used by a database user to back up and restore a table and by a DBA to
move a tablespace from one database to another.

8. The redo log files ensure that all committed transactions are applied to the database in the event of an instance failure.

9. The SHOW=Y option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file without executing
those DDL commands.

10. The transportable tablespace feature of Oracle’s Export and Import utilities allows a DBA to move or copy an entire
tablespace from one database to another.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Chapter 14
1. System trace files can be found in the directory identified by which initialization parameter?

2. What Oracle tool can the DBA use to monitor the size of a tablespace and notify the DBA when the tablespace is
running out of space?

3. True or false: The alert log file records both successful and unsuccessful logins to the database.

4. The alert log file can be found in the directory identified by which initialization parameter?

5. What does the Oracle utility TKPROF do?

Answers

1. System trace files can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

2. OEM’s Event Manager tool can be used to monitor space conditions in database tablespaces.

3. False, the alert log file records database startup and shutdown, but not user logins.

4. The alert log file can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

5. The Oracle utility TKPROF formats a user trace file containing SQL statement statistics into a readable format.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix B: Glossary
abstract datatypes

New datatypes, usually user-created, that are based on one or more built-in datatypes and can be treated as a
unit.

aggregate
A type of function in Oracle SQL that performs a calculation or transformation across multiple rows in a table,
rather than just on a single row.

alert log file
A text file that contains entries about significant database events, such as database startup and shutdown,
nondefault initialization parameters, and various errors. The alert log file is stored in the directory specified by the
system parameter BACKGROUND_DUMP_DEST.

alias
An alternate name for a column, specified right after the column name in a SELECT statement, seen in the results
of the query.

associative table
A database table that stores the valid combinations of rows from two other tables and usually enforces a business
rule. An associative table resolves a many-to-many relationship.

auditing
Storing information about activities in the database in the SYS.AUD$ table. Auditing is controlled by the DBA.

bitmap index
An index that maintains a binary string of ones and zeros for each distinct value of a column within the index.

branch blocks
Index blocks in the traversal path of a b-tree index that either point to branch blocks at the next level or point to
leaf blocks.

b-tree index
A type of index structure that resembles an inverted tree. The branches of a b-tree index are balanced. Traversing
the tree for any index value reads the same number of blocks.

buffer cache advisory
A feature of the Oracle9i database that can assist the DBA in determining how large to make the buffer cache.
This feature collects statistics on how often a requested database block is found in the buffer cache. The system
initialization parameter DB_CACHE_ADVICE controls whether these statistics are collected, and the data
dictionary view V$DB_CACHE_ ADVICE contains the estimated number of physical reads that would occur given
a number of different cache sizes.

cardinality
The number of distinct values in a column of a table.

Cartesian product
A join between two tables where no join condition is specified, and as a result, every row in the first table is joined
with every row in the second table.

CHECK constraint
A constraint that evaluates the condition defined in the constraint and permits the INSERT or UPDATE of the row
in the table if the condition is satisfied.

closed backup
See cold backup.

cold backup
A database backup performed while the database is shut down. Also known as a closed backup.

column
The component of a database table that contains all of the data of the same name and type across all rows.

comment
Documentation for SQL statements. Comments are specified by using the pair /* and */ or by using —.

composite index
An index that is created on two or more columns in a table.

concatenation
The process of combining two or more data elements into a single element. In Oracle SQL, concatenation can be
accomplished by using the concatenation operator (a pair of vertical bars, ||) or the CONCAT function.

connection identifier

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


See host string.

constraint
A condition defined against a column or columns on a table in the database to enforce business rules or
relationships between tables in the database.

control file
A file that records the physical structure of a database, the database name, and the names and locations of
datafiles and redo log files.

correlated subquery
A subquery that contains a reference to a column in the main, or parent, query.

cost-based optimizer
An Oracle optimizer methodology that relies on the characteristics of the tables being queried to determine the
method used to run the query. A cost is calculated for estimated CPU, I/O, and sorting for the possible execution
paths. The path with the lowest overall cost is used to perform the query.

CTAS
Also known as Create Table As Select, a method for creating a table in the database by using the results from a
subquery to both populate the data and specify the datatypes of the columns in the new table.

data dictionary views
Read-only views owned by the user SYS that are created when the database is created and contain information
about users, security, and database structures, as well as other persistent information about the database.

data modeling
A process of defining the entities, attributes, and relationships between the entities in preparation for creating the
physical database.

database
The collection of all physical files on disk that are associated with a single Oracle instance.

database block
The smallest unit of allocation in an Oracle database. One or more database blocks compose a database extent.

database buffer cache
The memory structure in the SGA that holds the most recently used or written blocks of data.

Database Configuration Assistant (DBCA)
A multiplatform GUI tool that allows a DBA to easily create, modify, and delete databases, as well as manage
database templates.

datafiles
Files that contain all of the database data that the users of the database save and retrieve using SELECT and
other DML statements. A tablespace comprises one or more datafiles.

date function
A function that performs some kind of transformation on a date literal, a column containing a date, or an
expression consisting of date literals and table columns. Date functions return a date or a string containing a
portion of the date as the result of the transformation.

DCL (Data Control Language)
Includes statements such as GRANT and REVOKE to provide or deny users or roles system or object privileges.

DDL (Data Definition Language)
Includes statements such as CREATE, ALTER, and DROP to work with objects such as tables. DDL modifies the
structure of the objects in a database instead of the contents of the objects.

directory
A database object that stores a reference to a directory on the host operating system’s filesystem.

DML (Data Manipulation Language)
Includes INSERT, UPDATE, DELETE, and MERGE statements that operate specifically on database tables.
Occasionally, SELECT statements are included in the SQL DML category.

DUAL
A special table, owned by the Oracle SYS user, that has one row and one column. It is useful for ad-hoc queries
that don’t require rows from a specific table.

dynamic performance views
Data dictionary views owned by the user SYS that are continuously updated while a database is open and in use
and whose contents relate primarily to performance. These views have the prefix V$ and their contents are lost
when the database is shut down.

encapsulation
An object-oriented technique that may hide, or abstract, the inner workings of an object and expose only the
relevant characteristics and operations on the object to other objects.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


equijoin
A join between two tables where rows are returned if one or more columns in common between the two tables are
equal and not NULL.

Explain Plan tool
A GUI-based Oracle tool that details the steps in which a SQL statement is executed, as well as what method
Oracle used to access the tables in the query.

explicit conversion
Conversion of one datatype to another in an expression using function calls such as TO_CHAR instead of relying
on automatic conversion rules (See implicit conversion).

Export utility (EXP)
An Oracle utility that copies the contents of one or more tables to a binary dump file, along with the DDL needed
to create the table and its associated indexes, permissions, and constraints.

extent
A contiguous group of blocks allocated for use as part of a table, index, and so forth.

external table
A table whose definition is stored in the database but whose data is stored externally to the database.

field
The smallest piece of information that can be retrieved by the database query language. A field is found at the
intersection of a row and a column in a database table.

flashback query
A feature of the Oracle database that allows a user to view the contents of a table as of a user-specified point in
time in the past. How far in the past a flashback query can retrieve rows depends on the size of the undo
tablespace and on the setting of the UNDO_RETENTION system parameter.

foreign key
A column (or columns) in a table that draws its values from a primary or unique key column in another table. A
foreign key assists in ensuring the data integrity of a table.

FOREIGN KEY constraint
A constraint that establishes a parent-child relationship between two tables via one or more common columns.
The foreign key in the child table refers to a primary or unique key in the parent table.

function
A named set of predefined programming language commands that performs a specific task given zero, one, or
more arguments and returns a value.

function-based index
A b-tree index that is created based on an expression involving the columns of a table, instead of on a single
column or columns in the table.

heading separator
A single character embedded in an iSQL*Plus column alias that indicates where the alias is split to appear on
multiple lines in the output. The heading separator itself does not appear in the output.

hierarchical
A table design where one of the foreign keys in the table references the primary key of the same table in a parent-
child relationship.

hint
A directive placed between /*+ and */ in a query that overrides an execution method that the Oracle optimizer
would normally choose.

host string
A text string that represents a shortcut or reference to a set of parameters that provide the information needed to
connect to a database host from the client application.

hot backup
A database backup performed while the database is open and available to users. Also known as an open backup.

implicit conversion
Conversion of one datatype to another that occurs automatically when columns or constants with dissimilar
datatypes appear in an expression.

Import utility (IMP)
An Oracle utility that takes as input a binary dump file created by the Export utility and restores one or more
database tables, along with any associated indexes, permissions, and constraints.

index
A database object designed to reduce the amount of time it takes to retrieve rows from a table. An index is
created based on one or more columns in the table.

index-organized table (IOT)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A b-tree index that stores both the data and the index in the same segment.

inheritance
Acquiring the properties of the parent, or base object, in a new object.

inner join
See equijoin.

instance
The collection of memory structures and Oracle background processes that operates against an Oracle database.

intersection table
See associative table.

JDBC (Java Database Connectivity)
A set of library routines specific to the Java language that allows a Java application to easily connect to and
process SQL statements against an Oracle database.

join
To combine two or more tables in a query to produce rows as a result of a comparison between columns in the
tables.

leaf blocks
Index blocks at the bottom of a b-tree index that contain ROWIDs to the rows in the table containing the desired
index value.

logical structures
Structures in an Oracle database that a database user would see, such as a table, as opposed to the underlying
physical structures at the datafile level.

LRU (least recently used) algorithm
An algorithm used to determine when to reuse buffers in the database buffer cache that are not dirty or pinned.
The less frequently a block is used, the more likely it is to be replaced with a new database block read from disk.

many-to-many relationship
A relationship type between tables in a relational database where one row of a given table may be related to
many rows of another table, and vice versa. Many-to-many relationships are often resolved with an intermediate
associative table.

materialized view
A view that stores the results of the query the view is based on, in addition to the SQL join statement of the view
itself. Materialized views may be refreshed manually (on demand), on a regular basis, or when there is a change
in the underlying tables on which that view is based.

media failure
A type of database failure where a server hardware component fails and the contents of one or more disk files are
either unreadable or corrupted.

methods
Operations on an object that are exposed for use by other objects or applications.

multiple-column subquery
A subquery in which more than one column is selected for comparison to the main query using the same number
of columns.

multiple-row subquery
A subquery that can return more than one row for comparison to the main, or parent, query using operators such
as IN.

nonmedia failure
A type of database failure that is not related to a server disk-related hardware component and is one of several
types: statement failure, process failure, instance failure, or user error.

NOT NULL constraint
A constraint that prevents NULL values from being entered into a column of a table.

NULL
A possible value for any Oracle column that indicates the absence of any known value for that column. A NULL is
usually used to represent a value that is unknown, not applicable, or not available.

numeric function
A function that operates on numeric literals, columns containing numbers, or an expression containing numeric
literals and table columns, returning a number as the result.

numeric literal
A constant that can consist of numeric digits, plus the characters +, -, ., and E.

object privileges

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Privileges that allow users to manipulate the contents of database objects in other schemas.

object view
A database construct that overlays an object-oriented structure over an existing relational database table. As a
result, the table can be accessed as a relational table or as an object table and make the transition to a fully
object-oriented environment easier.

object-relational database
A relational database that includes additional operations and components to support object-oriented data
structures and methods.

OCI (Oracle Call Interface)
A set of library routines that allows a C application on virtually any development platform to easily connect to and
process SQL statements against an Oracle database. The OCI routines are called as native C library functions;
therefore, no preprocessor is necessary when compiling a C application using OCI.

ODBC (Open Database Connectivity)
A set of standards that allow applications that are not dependent on any one specific database to process SQL
statements against any database that supports SQL.

ODBC driver
An interface, usually at the operating-system level, that supports the connection of an ODBC-compliant
application to a specific database platform.

one-to-many relationship
A relationship type between tables where one row in a given table is related to many other rows in a child table.
The reverse condition, however, is not true. A given row in a child table is related to only one row in the parent
table.

one-to-one relationship
A relationship type between tables where one row in a given table is related to only one or zero rows in a second
table. This relationship type is often used for subtyping. For example, an EMPLOYEE table may hold the
information common to all employees, while the FULLTIME, PARTTIME, and CONTRACTOR tables hold
information unique to full time employees, part time employees and contractors respectively. These entities would
be considered subtypes of an EMPLOYEE and maintain a one-to-one relationship with the EMPLOYEE table.

open backup
See hot backup.

Oracle block
See database block.

Oracle Enterprise Manager (OEM)
A GUI tool that allows access, maintenance, and monitoring of multiple databases or services within a single
application.

Oracle Home
A common directory location used to store the associated program files for a specific release of the Oracle
database software.

Oracle Universal Installer (OUI)
A GUI-based tool used to install or uninstall Oracle software components and tools.

Oracle’s Tuning Methodology
A tuning method recommended by Oracle Corporation that prioritizes areas in tuning database performance. The
six areas, in order of priority, are data design, application design, memory allocation, I/O and physical structures,
resource contention, and underlying platform.

outer join
A join between two or more tables returning all the rows in one table whether or not the second table contains a
match on the join condition.

partitioned table
A table that stores its rows into smaller and more manageable pieces based on the values of one or more
columns of the table.

pattern matching
Comparing a string in a database column to a string containing wildcard characters. These wildcard characters
can represent zero, one, or more characters in the database column string.

PFILE
A text file containing the parameters and their values for configuring the database and instance at startup.

physical structures
Structures of an Oracle database, such as datafiles on disk, that are not directly manipulated by users of the
database. Physical structures exist at the operating system level.

primary key

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A column (or columns) in a table that makes the row in the table distinguishable from every other row in the same
table.

PRIMARY KEY constraint
A constraint that uniquely defines each row of a table and prevents NULL values from being specified in the
column or combination of columns. Only one PRIMARY KEY constraint may be defined on a table.

privileges
The right to perform a specific action in the database, granted by the DBA or other database users.

process
An executing computer program in memory that performs a specific task.

profile
A set of predefined resource parameters that can be used to monitor and control various database resources,
such as CPU time and number of disk reads against the database.

Program Global Area (PGA)
A nonshared area of memory used for storing all connection information, including SQL statement information, in
a dedicated server configuration for a user who is connected to the database. In a shared server configuration, a
large portion of the memory for each connection is stored in the SGA instead of the PGA.

quota
A numeric limit on the amount of disk space that a user can allocate within a tablespace. The quota can also be
specified as UNLIMITED.

read consistency
A feature of the Oracle database that ensures a database reader (in a SELECT statement) will see the same data
in a table regardless of changes made to the table by database writers that were initiated after the reader initiated
the SELECT statement.

Recovery Manager (RMAN)
A comprehensive set of backup and recovery tools that can streamline the backup and recovery of a database.

redo log buffer
A buffer in the SGA that contains information pertaining to changes in the database.

redo log files
Files that contain a record of all changes made to both the data in tables and indexes, as well as changes to the
database structures themselves. These files are used to recover changed data that was in memory at the time of
a crash.

referential integrity
A method employed by a relational database system that enforces one-to-many relationships between tables.

relation
A two-dimensional structure used to hold related information, also known as a table.

relational database
A collection of tables that stores data without any assumptions as to how the data is related within the tables or
between the tables.

relational table
The most common form of a table in the Oracle database; the default type created with the CREATE TABLE
statement. A relational table is permanent and can be partitioned.

reverse key index
A b-tree index whose keys have their byte-order reversed to improve the performance of an application by
spreading out the key values for adjacent index values to different leaf blocks.

role
A group of related privileges that is referenced by a single name. Privileges can be assigned to a role, and a role
can be assigned to a database user or to another role. Roles ease the maintenance issues with managing
privileges for a large number of users who can be grouped into a relatively small number of categories based on
job function.

row
A group of one or more data elements in a database table that describes a person, place, or thing.

ROWID
A unique identifier for a row in a table, maintained automatically in the table by the Oracle server. ROWIDs are
unique throughout the database.

rule-based optimizer
An Oracle optimizer methodology that relies on a fixed set of rules to determine the method used to run a query,
ignoring the cardinality and distribution of data in the column being queried.

schema

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A group of related database objects assigned to a database user. A schema contains tables, views, indexes,
sequences, and SQL code. The schema name can be used to qualify objects that are not owned by the user
referencing the objects.

script
A set of one or more SQL or iSQL*Plus commands that is executed as a group. Scripts may be retrieved from
within an iSQL*Plus session, or saved to an operating system file and retrieved later in another session.

segment
A set of extents allocated for a single type of object, such as a table.

self-join
A join of a table to itself where a non-primary key column in the table is related to the primary key column of
another row in the same table.

sequence
A database structure that generates a series of numbers typically used to assign primary key values to database
tables.

shared pool
An area of memory within the total amount of memory allocated for the Oracle database that can hold recently
executed SQL statements, PL/SQL procedures and packages, as well as cached information from the system
tables.

SID
A system identifier, which is a unique name assigned to an Oracle instance. A user must supply a SID to connect
to an Oracle instance.

single-row function
Functions that may have zero, one, or more arguments, and will return one result for each row returned in a
query.

single-row subquery
A subquery that returns a single row and is compared to a single value in the parent query.

Software Code Area
A location in memory where the Oracle application software resides. The Software Code Area can be shared
among several Oracle instances.

SPFILE
A parameter file stored in a binary format that gives the DBA more flexibility when changing parameters.
Parameters can be changed for the current instance only, can take effect only after the next restart of the
instance, or both.

SQL (Structured Query Language)
The industry-standard database language used to query and manipulate the data, structures, and permissions in
a relational database.

statistics
Information about tables and indexes stored in the data dictionary used to assist the cost-based optimizer when
deciding how to run a given query.

stored function
A sequence of PL/SQL variable declarations and statements that can be called as a unit, passing zero or more
arguments and returning a single value of a specified datatype. Built-in stored functions are created when the
database software is installed. Customized or user-defined functions are defined by application developers or
DBAs.

string function
A function that operates on string literals, columns containing strings, or an expression containing string literals
and table columns, returning a string as the result.

string literal
A constant that can consist of any string of letters, digits, and special characters enclosed in single quotation
marks.

subquery
A query that is embedded in a main, or parent, query and used to assist in filtering the result set from a query.

substitution variable
A string literal with no embedded spaces, preceded by & or &&, that will prompt the user for a value when an
iSQL*Plus script containing one of these variables is executed. A substitution variable preceded by & will not
prompt the user for a value if the same substitution variable, preceded by &&, exists earlier in the script.

synonym
An alias assigned to a table, view, or other database structure. Synonyms can be either available to all users
(public) or available only to one schema owner (private).

System Global Area (SGA)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A group of shared memory structures for a single Oracle instance.

system privileges
Privileges that allow users to perform a specific action on one or more database objects or users in the database.

system trace file
A text file that pertains to a single background process and contains status, debugging, or error information about
that background process. System trace files are stored in the directory specified by the system parameter
BACKGROUND_DUMP_DEST.

system variable
A variable maintained in the iSQL*Plus, SQL*Plus, or SQL*Plus Worksheet environment that holds a status or a
setting for a particular feature in that environment. PAGESIZE is an example of a system variable in iSQL*Plus.

table
The basic construct of a relational database that contains rows and columns of related data.

tablespace
A logical grouping of database objects, usually to facilitate security, performance, or the availability of database
objects such as tables and indexes. A tablespace is composed of one or more datafiles on disk.

temporary table
A table whose definition is persistent and shared by all database users but whose data is local to the session that
created the data. When the transaction or session is completed, the data is truncated from the temporary table.

thin client
A workstation or CPU with relatively low-powered components that can use a web interface (or other application
with a small footprint) to connect to a middleware or a back-end database server where most of the processing
occurs. iSQL*Plus is an example of a web application that runs on a thin client.

tiers
Locations where different components of an enterprise application system reside. In a typical three-tier
environment, the client tier runs a thin application such as a web browser, which connects to a middleware server
that is running a web server. The web server and its related components typically manage the business rules of
the application. The third-tier database platform controls access to the data and manages the data itself. This
approach partitions the application so that it is easier to maintain and segregates the tasks into tiers that are best
equipped to handle a particular function.

TKPROF
An Oracle utility that reformats a user trace file containing SQL statement statistics into a readable format.

Top SQL tool
A GUI-based Oracle tool that can identify SQL statements that may be consuming too many system resources
and therefore may be good candidates for tuning.

transaction
A logical unit of work consisting of one or more SQL statements that must all succeed or all fail to keep the
database in a logically consistent state. A transfer of funds from one bank account is a logical transaction, in that
both the withdrawal from one account and the deposit to another account must both succeed for the transaction
to succeed.

transportable tablespace
A feature of Oracle’s Import and Export utilities that allows a tablespace to be copied to another database. All
objects within the tablespace to be copied must be self-contained; in other words, a table in a tablespace to be
copied must have its associated indexes in the same tablespace.

UNIQUE constraint
A constraint that prevents duplicate values from being specified in a column or combination of columns in a table.
NULL values may be specified for columns that have a UNIQUE constraint defined, as long as the column itself
does not have a NOT NULL constraint.

unique index
A b-tree index whose keys are not duplicated.

user trace file
A text file that contains information pertaining to any error conditions triggered by a command in an individual
user’s session or SQL statement information for the purposes of tuning and optimization. User trace files are
stored in the directory specified by the system parameter USER_DUMP_DEST.

user-defined function
A function that is written by an analyst, user, or database adminstrator and does not come as part of the default
installation of the Oracle server software.

username
An Oracle database account identifier that, along with a password, allows a user to connect to the database.

view

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A database object that is based on a SELECT statement against one or more tables or other views in the
database. A regular view does not store any data in the database; only the definition is stored. Views are also
known as stored queries.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Appendix C: Common Database Platforms
This appendix offers an overview of some common database platforms for enterprise and “personal” use. Most popular databases
today can be considered relational or object-relational in nature, and they support SQL. When choosing a database platform,
price, market sector, interoperability, and scalability are sometimes the deciding factors over features.

Enterprise Databases
There are a few heavy-hitters in the database world, including the key players in the enterprise relational database management
system (RDBMS) market listed here. The following list of vendors is not intended to be comprehensive, but to give an overview of
the various approaches to solving the problems of a large, distributed enterprise.

Oracle

Historically, Oracle is the granddaddy of them all. In 1979, Oracle Corporation released the first commercially viable RDBMS,
based on the work of Dr. E. F. Codd. In 1983, however, the true power and cross-platform capabilities of Oracle were evident
when the source code for Oracle was rewritten in the C language, making Oracle extremely portable across any hardware and
software platform that has a C compiler.

As a database, Oracle9i has become “unbreakable.” All market hype aside, so much redundancy and failover capability has been
built into the product that Oracle has a written guarantee that your database won’t go down!

What really distinguishes Oracle from many of its competitors is its availability on so many operating systems and hardware
platforms. Products like Microsoft SQL Server run strictly on Windows operating systems with Intel hardware, and many of the
other potential contenders run on only Windows or Linux or a combination of the two.

Many independent benchmark tests of Oracle versus its competitors, such as the March 26, 2002, PC Magazine review of SQL
databases, show Oracle to be one of the key market leaders.

More information about Oracle9i can be found at http://oracle.com/ip/deploy/database/oracle9i/index.html.

IBM DB2/UDB

IBM DB2/UDB had its humble beginnings as a mainframe database, but has now grown to be implemented on almost as many
hardware and software platforms as Oracle. The strengths of DB2 lie in its strong text-search capabilities, on par with the Oracle
Text product. The integration with its WebSphere middleware product also makes it a good all-in-one enterprise solution, although
the WebSphere product can be used with an Oracle database as the back-end.

More information about DB2/UDB can be found at http://www-3.ibm.com/software/data/db2/udb.

Sybase

Sybase’s Adaptive Server Enterprise finds its strengths in its financial application suites, but it is also on par, feature for feature,
with similar products from IBM and Oracle. The SQLAnywhere product suite is crafted for small workgroups as well as embedded
and mobile applications.

More information on Sybase products can be found at http://www.sybase.com/products.

Microsoft SQL Server

Microsoft SQL Server picked up where Sybase left off at version 6, when Microsoft and Sybase broke their development ties,
although SQL Server has diverged quite a bit from Sybase’s products. SQL Server’s dependence on the Windows operating
system and Intel hardware as a host rule it out as a choice for enterprises that rely on Unix and non-Intel hardware for their base
infrastructure.

More information about Microsoft SQL Server can be found at http://www.microsoft.com/sqlserver.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Personal and Freeware Databases
The term personal may be interpreted two ways: by cost and by the size of the target end-user audience. What further muddies
the water are vendors from the “big list” in the previous section who have designed their products to run on anything from a cell
phone up to large network clusters. When you get down to the cell phone level, however, it’s a sure bet that there is some
powerful middleware in the mix, and a very thin client on the cell phone!

Two examples of personal database platforms are presented here. This list is not intended to be comprehensive, but to give an
overview of various approaches to solving the problems of an individual or a small workgroup that needs more than a spreadsheet
to manage corporate data.

Microsoft Access

Microsoft Access is not an easy product to categorize. It is part of the Microsoft Office suite for data management. This self-
contained database has powerful query facilities, yet lacks the recovery and robust multiple-user support that Oracle and SQL
Server have. It can link to any external database that has an ODBC-compliant driver under Windows, which makes it a good
cross-platform choice for the individual analyst or small workgroups that don’t need 24 x 7 availability or highly flexible recovery
options.

More information on Microsoft Access can be found at http://www.microsoft.com/office.

MySQL

MySQL is billed as “the world’s most popular open source database.” This product is free under the GNU General Public License
(GPL), with technical support being an added cost option. It runs under almost any operating system, including all flavors of Unix
and Windows. It is somewhat lacking in some of the features common to commercial databases, such as multiple CPU support,
stored procedures, transaction processing, graphical administration tools, and XML support. However, it is highly extensible and
customizable. Its lack of features is offset by its high performance and reliability.

More information about MySQL can be found at http://www.mysql.com/products/index.html.

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic. Italicized page
numbers indicate illustrations.

Symbols
—, for comments, 78
!= comparison operator, 51, 73, 120
( ), and operator precedence, 75
**, NOT operator, 51
*,/ operator, 51
+ outer join operator, 107
+,- (unary), PRIOR operator, 51
. . . in syntax, 25
/* and */ comments, 78
< comparison operator, 51, 73, 120
<= comparison operator, 51, 73, 120
= comparison operator, 51, 73, 120
> comparison operator, 51, 73, 120
>= comparison operator, 51, 73, 120
[ ] in syntax, 25
{ } in syntax, 25
| (vertical bar)

in syntax, 25
HEADSEP and, 183

^= comparison operator, 73

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

A
abstraction, 9
Access

basics of, 330
ODBC and, 23, 23

aggregate operations, defined, 85
alert log files, 290–293, 291
aliases

column renaming and, 27
defined, 27
table aliases, 97

ALL_ data dictionary view, 212
ALL_IND_COLUMNS view, 214
ALL_INDEXES view, 214
ALL_OBJECTS view, 214–215
ALL_TAB_COLUMNS view, 213–214
ALL_TABLES view, 213
ALTER INDEX statement, 248, 249
ALTER statement, 37–38
AND operator

precedence, 51
WHERE clause and, 74–75

Apache, and hosting iSQL*Plus, 20
application design, and Oracle’s Tuning Methodology, 242
application tuning, SQL, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

ASC keyword, 84
associative tables, 7
attributes, assigning, 8
auditing

basics of, 234
object auditing, 236–237
statement auditing, 234–236

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

B
b-tree indexes, 244–246, 244
Backup Wizard, 285, 285
backups, 267–287

database failures, 268
DBA backup and recovery methods, 276–285

cold backups, 281
export and import, 276–281, 277
hot backups, 281–282
Log Miner, 282–284, 283–284
Recovery Manager (RMAN), 284–285, 285

user backup and recovery methods, 268–275
Export utility (EXP), 269–271
flashback query, 273–275
Import utility (IMP), 271–273

BETWEEN operator, and WHERE clause, 76–78
bitmap indexes, 246–247, 246
branch blocks, defined, 244, 244
BREAK command, 189–191
BTITLE command, 187–188
buffer cache

basics of, 163–164, 163
buffer cache advisories, 262–263

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

C
C language

OCI and, 24
Oracle and, 328

cardinality
b-tree indexes and, 245
bitmap indexes and, 246–247
defined, 245

Cartesian products, 114–115
case sensitivity, and passwords, 224
Change Password, 184
CHECK constraints, 144–146
closed backups, 281
COALESCE function, 129–130
Codd, Dr. E. F., 3, 328
code samples, OCI, 24
cold backups, 281
columns

formatting for reports, 188–189
multiple-column subqueries, 125–126
relational databases and, 4
SELECT statement and, 25–27, 26
updating, 30–31, 30–31
validating data in. See constraints

comments, defined, 78
COMMIT statements, 152–153, 153
comparison conditions, and WHERE clause, 72–74
comparison operators, 73, 120
components, 158–166

background processes, 165–166
logical storage structures, 158–160, 158
memory structures, 162–165, 163
physical storage structures, 160–162, 161

composite indexes, defined, 208
composite partitioning, 252
connection identifiers, 16, 16
constraints, 141, 142–151

basics of, 142
CHECK, 144–146
FOREIGN KEY, 149–151
naming, 144
NOT NULL, 142–143
PRIMARY KEY, 147–149
UNIQUE, 146–147

control files, 161, 162
conversion functions, built-in, 60–62
correlated subqueries, 123–124, 123
cost-based optimizer, 259
COUNT group function, 85–86
CREATE DIRECTORY command, 206
CREATE INDEX statement, 209, 247–248
CREATE MATERIALIZED VIEW command, 255
CREATE ROLE statement, 232
CREATE SEQUENCE statement, 217
CREATE statement, 35–37, 36
CREATE TABLE statement, 202, 203, 208, 234–236, 253
CREATE VIEW statement, 210, 211
CTAS (Create Table As Select), 203–205
CUBE operator, 135, 136–137

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

D
data, 71–93

group functions and, 85–91
basics of, 85–87
GROUP BY clause, 87–89
HAVING clause, 90–91
NVL and, 89

ORDER BY clause and, 83–84
@Index2:validating in columns. See constraints
Where clause and, 72–82

BETWEEN, 76–78
IN, 79–80
AND, OR, and NOT, 74–76
comparison conditions, 72–74
IS NULL and IS NOT NULL, 81–82
LIKE, 80–81
@Index1:Data Control Language (DCL), 40–41

GRANT statement, 40
REVOKE statement, 41

Data Definition Language (DDL), 34–39
ALTER statement, 37–38
CREATE statement, 35–37, 36
DROP statement, 38
RENAME statement, 38–39
TRUNCATE statement, 39

data design tuning, 251–255
materialized views and, 254–255
Oracle’s Tuning Methodology and, 242
partitioned tables and, 251–254

data dictionary views
basics of, 212–215
index information, 250–251

Data Manipulation Language (DML), 29–34
DELETE statement, 33, 33
INSERT statement, 32–33
MERGE statement, 34
UPDATE statement, 30–31, 30–31

data modeling, and relational databases, 6–9
database administrators. See DBAs
Database Configuration Assistant (DBCA)

basics of, 171–176, 171–176
tablespaces and, 159

database objects, 201–221
auditing, 236–237
backing up, RMAN, 284
indexes, creating, 208–210
object views, defined, 10
privileges, 229–231
sequences, creating, 217–218
synonyms, creating, 219
tables, creating, 202–210

Create Table As Select (CTAS), 203–205
external tables, 205–207
relational tables, 202–203
temporary tables, 208

views, 10, 210–217
data dictionary, 212–215
dynamic performance, 215–217
user-defined, 210–212

Database Writer (DBWn), 163, 165
databases, 1–11. See also Oracle database functions; Oracle database installation and creation

blocks, 160
buffer cache, 163, 163
duplicating, and RMAN, 285
failures, 268
history of Oracle, 328
object-relational databases, 9–10
platforms, 328–330

enterprise databases, 328–329

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


personal and freeware databases, 330
relational databases, 3–4

data modeling, 6–9
primary keys, datatypes and foreign keys, 5–6
tables, rows and columns, 4

spreadsheets vs., 2–3
datafiles, 161, 161
datatypes

abstract, 9
relational databases and, 5–6

date functions, built-in, 58–60
DBA_ data dictionary views, 212
DBA_IND_COLUMNS, 251
DBA_INDEXES data dictionary views, 250–251
DBAs

backup and recovery methods, 276–285
cold backups, 281
Export and Import utilities, 276–281, 277
hot backups, 281–282
Log Miner, 282–284, 283–284
Recovery Manager (RMAN), 284–285, 285

DBA privileges, listed, 228
DBCA (Database Configuration Assistant)

basics of, 171–176, 171–176
tablespaces and, 159

DBWn (Database Writer), 163, 165
DCL (Data Control Language), 40–41

GRANT statement, 40
REVOKE statement, 41

DDL. See Data Definition Language (DDL)
default tablespaces, assigning, 226–227
DELETE statement

DML and, 33, 33
vs. TRUNCATE statement, 39

DESCRIBE statement, 211
directories, defined, 206
dirty buffers, 163–164
disk and memory requirements, 171
DISTINCT keyword, 27–28, 86
DML. See Data Manipulation Language (DML)
DROP statement, 38
DUAL tables, 46–48, 47
dynamic performance views, 215–217

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

E
encapsulation, 10
entities

assigning attributes to, 8
defining, 7

equijoins, 96–103
defined, 96
join on, 101–102
join using, 100–101, 102–103
natural joins, 99–100
pre-Oracle9i, 97–99

ERA, 6
ESCAPE option, 81
Event Manager, OEM, 293–296, 293–295
events, creating, 293–295, 294–295
EXP. See Export utility (EXP)
Explain Plan tool, 257–258, 258
explicit conversion, defined, 55
Export utility (EXP)

DBAs and, 276–281, 277
users and, 269–271

expressions, and SELECT statement, 28–29
extents, 158, 159
external tables, creating, 205–207, 205

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

F
FALSE values, vs. NULL values, 82
FEEDBACK system variable, 184
fields

blank, 5–6
defined, 4

files. See also trace files
alert log files, 290–293, 291
control files, 161, 162
datafiles, 161, 161
locations for installation, 166–167, 167, 174, 174
redo log files, 161, 162

flashback query
basics of, 273–275
vs. Log Miner, 283

footers, formatting, 185–188
FOREIGN KEY constraints, 149–151, 151
foreign keys, 5–6
free buffers, 164
full outer joins, 107–108, 110–111
function-based indexes, 245
functions

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

defined, 52
group functions, 85–91

basics of, 85–87
GROUP BY clause, 87–89
HAVING clause, 90–91
NVL and, 89

stored functions, defined, 65, 67
user-defined functions, 65–67

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

G
GRANT statement

DCL and, 40
privileges and, 229, 230

GROUP BY clause, 87–89

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

H
hash partitioning, 252
HAVING clause, 90–91
headers, formatting, 185–188
heading separators, defined, 189
HEADING system variable, 183
HEADSEP system variable, 183
hierarchical databases, 3
hierarchical tables, defined, 111
hints, 260–261
host strings, 16, 16
hot backups, 281–282

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

I
I/O, and Oracle’s Tuning Methodology, 242
IBM DB2/UDB, 329
identifiers for accounts, 224
IMP. See Import utility (IMP)
implicit conversion, defined, 55
Import utility (IMP)

DBAs and, 276–281, 277
users and, 271–273

IMS, 3
IN operator

Import utility (IMP) and, 79–80
WHERE clause and, 76, 120

incremental backups, RMAN, 284
index-organized tables (IOTs), 246
indexes, 243–251

creating, dropping and maintaining, 208–210, 247–248
data dictionary index information, 250–251
defined, 208
monitoring, 248–250
types of, 244–247, 244, 246
when to create, 243

inheritance, 10
INITCAP function, 53, 54
inner joins, and INTERSECT operator, 132
INSERT statement, 32–33
instances

creating, 171–172, 171–172
defined, 158
failures of, 268
naming, 172, 172–173
OEM and, 176, 176

interface options for reporting, 180–181, 181
INTERSECT set operator, 130–132
intersection tables, 7
IOTs (index-organized tables), 246
IS NULL and IS NOT NULL, 81–82
iSQL*Plus

basics of, 18–20, 19–20
configuration for reporting, 180–184, 180

Change Password, 184
interface options, 180–181, 181
system variables, 182–184, 182

vs. SQL*Plus, 19–20, 19–20
italics in syntax, 24

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

J
JDBC (Java Database Connectivity), 24
joins, 95–117

basics of, 96
Cartesian products, 114–115
defined, 96
equijoins, 96–103

join on, 101–102
join using, 100–101, 102–103
natural joins, 99–100
pre-Oracle9i, 97–99

non-equijoins, 103–105
outer joins, 105–111

full outer joins, 110–111
left outer joins, 109
pre-Oracle9i, 105–108
right outer joins, 110

self-joins, 111–113
Oracle9i, 113
pre-Oracle9i, 112–113

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

K
keywords

ASC keyword, 84
DISTINCT keyword, 27–28, 86
most common, listed

EXP, 270
IMP, 271

NULL keyword, 32
TABLES keyword, 269, 270
UNION keyword, 126

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

L
leaf blocks, defined, 244, 244
least recently used (LRU) algorithm, 164
left outer joins, 109
LGWR. See Log Writer (LGWR)
Like operator, and WHERE clause, 76, 80–81
LINESIZE system variable, 183
list partitioning, 252
Log Miner, 282–284, 283–284
Log Writer (LGWR), 163, 165–166
logical consistency, 141–155

constraints, 141, 142–151
basics of, 142
CHECK, 144–146
FOREIGN KEY, 149–151
NOT NULL, 142–143
PRIMARY KEY, 147–149
UNIQUE, 146–147

transaction processing, 151–154
COMMIT statement, 152–153, 153
ROLLBACK statement, 153–154
SAVEPOINT statement, 154

logical storage structures, 158–160, 158, 161
LRU (least recently used) algorithm, 164

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

M
many-to-many relationships, 8
materialized views, and data design tuning, 254–255
media failures, 268
memory

allocation, 242
Oracle memory structures, 161, 162–165, 163
Oracle requirements, 171
tuning, 261–263, 261

MERGE statement, 34
Metalink Web site, 301
methods, defined, 10
Microsoft Access

basics of, 330
ODBC and, 23, 23

Microsoft SQL Server
basics of, 329
vs. Oracle database platforms, 328

Microsoft Windows, and running SQL*Plus, 15
MINUS set operator, 132–134
multiple-column subqueries, 125–126
multiple-row subqueries, 121–123
MySQL, 330

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

N
natural joins, 99–100
network databases, 3
non-equijoins, 103–105
nonmedia failures, 268
nonunique indexes, 209, 245
NOT NULL constraints, 142–143
NOT operator, and WHERE clause, 76
NULL keyword, 32
NULL values

defined, 32
vs. FALSE values, 82
group functions and, 85, 86, 89
queries and, 48

numeric functions
built-in, 55–58
numeric formatting, 61–62

numeric literals, 50
NVL, 89

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

O
object-relational databases, 9–10
objects. See database objects
OCI (Oracle Call Interface), 24
ODBC. See Open Database Connectivity (ODBC)
OEM. See Oracle Enterprise Manager (OEM)
one-to-many relationships, 7–8
one-to-one relationships, 8
open backups, 281–282
Open Database Connectivity (ODBC)

basics of, 22–24, 23
ODBC drivers, defined, 23

operators. See also specific operators
comparison operators, listed, 73
operator precedence, 50–51
set operators, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

optimizers, Oracle, 258–261
OR operator

IN operator and, 79
precedence, 51
WHERE clause and, 75

Oracle Call Interface (OCI), 24
Oracle database account identifiers, 224
Oracle database functions

built-in single-row functions, 52–65
conversion functions, 60–62
date functions, 58–60
general functions, 62–65
numeric functions, 55–58
string functions, 52–55

queries, 46–51
concatenating strings and, 49–50
DUAL tables and, 46–48, 47
NULL values and, 48
numeric literals and, 50
operator precedence and, 50–51
string literals and, 49–50

user-defined functions, 65–67
Oracle database installation and creation, 157–177

components, 158–166
background processes, 165–166
logical storage structures, 158–160, 158
Oracle memory structures, 162–165, 163
physical storage structures, 160–162, 161

database creation, 171–176
DBCA, 171–176, 171–176
disk and memory requirements, 171

database, defined, 158
software installation, 166–170

OEM, 169–170, 170
OUI, 166–169, 167–169

Oracle databases. See also databases
history of, 328
Oracle blocks, 160
vs. other database platforms, 328–329

Oracle Enterprise Manager (OEM)
defined, 21, 166
Event Manager, 293–296, 293–295
installing Oracle, 169–170, 170
SQL*Plus Worksheet and, 21, 21

Oracle Home, 166
Oracle optimizer, 258–261
Oracle Universal Installer (OUI), 166–169, 167–169

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Oracle’s Tuning Methodology, 242–243
ORDER BY clause, 83–84
OUI. See Oracle Universal Installer (OUI)
outer join operator +, 107
outer joins, 105–111

defined, 105
full outer joins, 107–108, 110–111
left outer joins, 109
pre-Oracle9i, 105–108
right outer joins, 110

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

P
PAGESIZE system variable, 183
parameters. See predefined resource parameters
parentheses ( ), and operator precedence, 75
partitioned tables, 251–254
passwords

assigning, 224–225
Change Password, 184

pattern matching, defined, 80
performance, optimizing, 241–265

data design tuning, 251–255
materialized views, 254–255
partitioned tables, 251–254

indexes and, 243–251
creating, dropping and maintaining, 247–248
data dictionary index information, 250–251
monitoring, 248–250
types of, 244–247, 244, 246
when to create, 243

memory tuning, 261–263, 261
Oracle’s Tuning Methodology, 242–243
SQL application tuning, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

personal databases, defined, 330
PFILEs, 261–262
PGA (Program Global Area), 163, 164
physical storage structures, 158, 161

basics of, 160–162
Oracle’s Tuning Methodology and, 242

pinned buffers, 164
predefined resource parameters, 225
PRIMARY KEY constraints, 147–149
primary keys, 5–6
private synonyms, 219
privileges, 227–234

DBA privileges, 228
DCL for handling, 40–41
object privileges, 229–231
roles, 232–234, 232
system privileges, 228–229

processes
defined, 163, 165
process failures, 268

profiles, creating and assigning, 225–226
Program Global Area (PGA), 163, 164
public synonyms, 219

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

Q
queries, 46–51

concatenating strings and, 49–50
DUAL tables and, 46–48, 47
multiple vs. CUBE and ROLLUP and, 135
NULL values and, 48
numeric literals and, 50
operator precedence and, 50–51
string literals and, 49–50

queries, advanced SQL, 119–139
CUBE, 135, 136–137
ROLLUP, 134–136
set operators, 126–130, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

subqueries, 120–126
correlated, 123–124
multiple-column, 125–126
multiple-row, 121–123
single-row, 120–121

quotas, defined, 227

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

R
range partitioning, 252
read consistency, 151
Recovery Manager (RMAN), 284–285, 285
redo log buffer, 163, 164
redo log files, 161, 162
referential integrity, 6
relational databases

basics of, 3–4
data modeling, 6–9
primary keys, datatypes and foreign keys, 5–6
tables, rows and columns, 4

relational tables, 202–203
relations, defined, 4
relationships, defined, 4
RENAME statement, 38–39
reporting techniques, 179–199

formatting, 184–192
basics of, 184–185
BREAK processing, 189–191
column formatting, 188–189
headers and footers, 185–188
totals, 191–192

iSQL*Plus configuration, 180–184, 180
Change Password, 184
interface options, 180–181, 181
system variables, 182–184, 182

scripts, 195–198, 196–197
substitution variables, 192–195, 193–194

resource contention, and Oracle’s Tuning Methodology, 242
resource parameters, 225
reverse key indexes, 245
review questions and answers

advanced SQL queries, 138–139, 307–308
backups, 286–287, 312–313
data, restricting, sorting and grouping, 92–93, 306
database basics, 11, 304
database creation, 177, 309
database functions, 68–69, 305–306
database objects, 220–221, 310–311
joins, 116–117
logical consistency, 155, 308
multiple tables, using, 116–117, 307
performance optimizing, 264–265, 312
reporting, 198–199, 309–310
SQL*Plus and iSQL*Plus, 42–43, 304–305
troubleshooting, 302, 313
users and security, 238–239, 311

REVOKE statement
DCL and, 41
privileges and, 230

right outer joins, 110
RMAN (Recovery Manager), 284–285, 285
roles

creating and assigning, 232–234, 232
defined, 40, 232

ROLLBACK statements, 153–154
ROLLUP operator, 134–136
ROWIDs, 244–245
rows

DELETE statement and, 33, 33
INSERT statement and, 32–33
relational databases and, 4
removing duplicate, 27–28
subqueries and

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


multiple-row subqueries, 121–123
single-row subqueries, 120–121

TRUNCATE statement and, 39
UPDATE statement and, 30–31, 30–31

rule-based optimizer, 258–259

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

S
SAVEPOINT statements, 152, 154
schema, defined, 35, 160
scripts

defined, 180
reporting and, 195–198, 196–197

security, 223–239
auditing, 234–237

object auditing, 236–237
statement auditing, 234–236

Change Password and, 184
creating user accounts and, 224–227

assigning passwords, 224–225
default tablespaces and quotas, 226–227, 227
profiles, 225–226

privileges, 227–234
object privileges, 229–231
roles, 232–234, 232
system privileges, 228–229

segments, 158, 159
SELECT clause, vs. WHERE clause, 72
SELECT statement, 25–29

column renaming and, 27
column specification and, 25–27, 26
duplicate removal and, 27–28
expressions and, 28–29
retrieval of rows and, 17–18, 18
user-defined views and, 211–212

self-joins, 111–113
sequences, creating, 217–218
set operators, 126–130, 126–134

INTERSECT, 130–132
MINUS, 132–134
UNION and UNION ALL, 126–130

SGA (System Global Area), 163, 163
shared pool, defined, 67, 164
SIDs (system identifiers), defined, 172
single-row subqueries, 120–121
SMON (System Monitor), 163, 166
Software Code Area, 165
software, installing Oracle, 166–170

OEM and, 169–170, 170
OUI and, 166–169, 167–169

SPFILEs, 262
spreadsheets vs. databases, 2–3
SQL. See Structured Query Language (SQL)
SQL Server

basics of, 329
vs. Oracle database platforms, 328

SQL*Plus
basics of, 15–18, 16–17
vs. iSQL*Plus, 19–20
system variables, defined, 182

SQL*Plus Worksheet
basics of, 21, 21
system variables, defined, 182

statements
auditing, 234–236
failures of, 268

statistics, and cost-based optimizer, 259–260
storage

logical storage structures, 158–160, 158
physical storage structures, 160–162, 161

stored functions, defined, 65, 67

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strings
concatenating, 49–50
string functions, built-in, 52–55
string literals, 49–50

Structured Query Language (SQL), 4, 13–43
application tuning, 256–261

Explain Plan tool, 257–258, 258
Oracle optimizer, 258–261
Top SQL tool, 256–257, 256–257

DCL, 40–41
GRANT statement, 40
REVOKE statement, 41

DDL, 34–39
ALTER statement, 37–38
CREATE statement, 35–37, 36
DROP statement, 38
RENAME statement, 38–39
TRUNCATE statement, 39

defined, 14
DML, 29–34

DELETE statement, 33, 33
INSERT statement, 32–33
MERGE statement, 34
UPDATE statement, 30–31, 30–31

SELECT statement, 25–29
column renaming, 27
column specification, 25–27, 26
duplicate removal, 27–28
expressions, 28–29

tools for running, 14–24
iSQL*Plus, 18–20, 19–20
OCI, 24
ODBC/JDBC, 22–24, 23
SQL*Plus, 15–18, 16–17
SQL*Plus Worksheet, 21, 21
third-party tools, 21

subqueries, 120–126
correlated, 123–124
multiple-column, 125–126
multiple-row, 121–123
single-row, 120–121

substitution variables, and reporting, 192–195, 193–194
summary operations, and report formatting, 191–192
Sybase’s Adaptive Server Enterprise, 329
synonyms

creating, 219
for data dictionary views, 215

syntax
for CTAS, 203
italics in, 24
uppercase in, 24

System Global Area (SGA), 163, 163
system identifiers (SIDs), defined, 172
System Monitor (SMON), 163, 166
system privileges, 228–229
system trace files, 296–297, 297
system variables, and reporting, 182–184

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

T
tables. See also columns; rows

creating, 202–210
CREATE statement and, 35–37, 36
Create Table As Select (CTAS), 203–205
CREATE TABLE statement and, 202, 203, 208, 234–236, 253
external tables, 205–207, 205
relational tables, 202–203
temporary tables, 208

data integrity between parent and child tables. See FOREIGN KEY constraints
DUAL tables, 46–48, 47
eliminating, with DROP statement, 38
relational databases and, 4
renaming, with RENAME statement, 38–39
using multiple. See joins

TABLES keyword, 269, 270
tablespaces

basics of, 158, 159, 161
checking, 170, 170
transportable, 276–280, 277

Technet Web site, 301
temporary tables, creating, 208
thin clients, defined, 18
tiers, 14
TKPROF, 300–301, 301
TOAD. See Tool for Oracle Application Developers (TOAD)
TO_CHAR numeric formatting, 62
Tool for Oracle Application Developers (TOAD), 22, 22
Top SQL tool, 256–257, 256–257
totals, and report formatting, 191–192
trace files

system trace files, 296–297, 297
user trace files, 297–301

converting trace files, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

transaction processing, 151–154
COMMIT statement and, 152–153, 153
read consistency, defined, 151
ROLLBACK statement and, 153–154
SAVEPOINT statement and, 154
transactions, defined, 151

transportable tablespaces, 276–280, 277
troubleshooting, 289–302

alert log files and, 290–293, 291
OEM’s Event Manager and, 293–296, 293–295
system trace files and, 296–297, 297
user trace files and, 297–301

converting, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

TRUNCATE statement, 39
TTITLE command, 186–187

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

U
underlying platform, and Oracle’s Tuning Methodology, 243
UNION ALL set operator, 126–130
UNION keyword, 126
UNION set operator, 126–130
UNIQUE constraints, 146–147
unique indexes, 209, 245
UNKNOWN values, 82
UPDATE statement, 30–31, 30–31
uppercase in syntax, 24
user accounts, creating, 224–227

assigning passwords and, 224–225
default tablespaces and quotas and, 226–227, 227
profiles and, 225–226

USER_ data dictionary views, 212
user-defined functions, 65–67
user-defined views, 210–212
user trace files, 297–301

converting, 300–301, 301
enabling tracing, 298
locating, 298–300, 300

username, defined, 224
users

backup and recovery methods for, 268–275
Export utility (EXP), 269–271
flashback query, 273–275
Import utility (IMP), 271–273

object privileges, 229–231
user errors, 268
user privileges, 228

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

V
views, 210–217

data dictionary, 212–215
dynamic performance, 215–217
user-defined, 210–212

V$INSTANCE, 216–217
V$OBJECT_USAGE clause, 249–250
V$SESSION, 216

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Index

W
Web sites

for data modeling tools, 7
IBM DB2/UDB, 329
Microsoft Access information, 330
Microsoft SQL Server information, 329
MySQL information, 330
Oracle information, 329
Sybase products, 329
for troubleshooting assistance with Metalink, 301
for troubleshooting assistance with Technet, 301

WebSphere, 329
WHERE clause, 72–82, 72

BETWEEN operator and, 76–78
IN operator and, 79–80
AND, OR, and NOT operators and, 74–76
comparison conditions and, 72–74
IS NULL and IS NOT NULL and, 81–82
LIKE operator and, 80–81

wildcard characters, and LIKE operator, 80
Windows, and running SQL*Plus, 15
wizards. See Backup Wizard

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

Where Can I Find?
Aggregating data Chapter 4

Alert log file Chapter 14

Application tuning Chapter 12

Auditing Chapter 11

Backups Chapter 13

Built-in functions Chapter 3

Cartesian products Chapter 5

Configuring iSQL*Plus Chapter 9

Constraints Chapter 7

Correlated subqueries Chapter 6

Creating a database Chapter 8

Creating external tables Chapter 10

Creating relational tables Chapter 10

CUBE operator Chapter 6

Data dictionary views Chapter 10

Data modeling Chapter 1

Database failure types Chapter 13

DCL commands Chapter 2

DDL commands Chapter 2

Disk and memory structures Chapter 8

DML commands Chapter 2

Dynamic performance views Chapter 10

Equijoins Chapter 5

Export utility Chapter 13

Flashback queries Chapter 13

Formatting reports Chapter 9

Functions Chapter 3

Granting privileges Chapter 11

GROUP BY clause Chapter 4

Grouping functions Chapter 4

HAVING clause Chapter 4

Import utility Chapter 13

Indexes Chapters 10 and 12

Inner joins Chapter 5

Installing Oracle software Chapter 8

INTERSECT operator Chapter 6

iSQL*Plus Chapter 2

Log Miner Chapter 13

Materialized views Chapter 12

Memory tuning Chapter 12

MINUS operator Chapter 6

Monitoring events Chapter 14

Multiple-column subqueries Chapter 6

Non-equijoins Chapter 5

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Object privileges Chapter 11

Optimizer modes Chapter 12

Oracle Enterprise Manager Chapter 8

ORDER BY clause Chapter 4

Outer joins Chapter 5

Partitioned tables Chapter 12

Performance tuning Chapter 12

Privileges Chapter 11

Profiles Chapter 11

Query operators Chapter 3

Recovery Manager Chapter 13

Revoking privileges Chapter 11

Roles Chapter 11

ROLLUP operator Chapter 6

Scripts Chapter 9

SELECT statements Chapter 2

Self-joins Chapter 5

Sequences Chapter 10

Set operators Chapter 6

Sorting rows Chapter 4

SQL*Plus Chapter 2

SQL99 standard Chapter 5

Subqueries Chapter 6

Substitution variables Chapter 9

Synonyms Chapter 10

System privileges Chapter 11

System trace files Chapter 14

Transaction processing Chapter 7

UNION operator Chapter 6

User accounts Chapter 11

User trace files Chapter 14

User-defined functions Chapter 3

Views Chapter 10

WHERE clause Chapter 4

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 

List of Tables

Chapter 3: Oracle Database Functions
Table 3.1: Standard and Conditional Operators and Precedence

Table 3.2: Built-in String Functions

Table 3.3: Built-in Numeric Functions

Table 3.4: Built-in Date Functions

Table 3.5: Built-in Conversion Functions

Table 3.6: Numeric Format Examples Using TO_CHAR

Table 3.7: Built-in General Functions

Chapter 4: Restricting, Sorting, and Grouping Data
Table 4.1: Comparison Operators

Table 4.2: Common Group Functions

 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


List of Sidebars

Chapter 1: Relational Database Concepts
Hierarchical and Network Databases

Chapter 10: Creating and Maintaining Database Objects
Data Dictionary View Shorthand

Chapter 12: Making Things Run Fast (Enough)
The Pseudo-column ROWID

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Oracle9i DBA JumpStart
by Bob Bryla ISBN:0782141897

Sybex © 2003 (347 pages)

Get up to speed for Oracle9i Administration Training
Courses--Fast!

Table of Contents

Oracle9i DBA JumpStart
Introduction
Chapter 1 - Relational Database Concepts
Chapter 2 - SQL*Plus and iSQL*Plus Basics
Chapter 3 - Oracle Database Functions
Chapter 4 - Restricting, Sorting, and Grouping Data
Chapter 5 - Using Multiple Tables
Chapter 6 - Advanced SQL Queries
Chapter 7 - Logical Consistency
Chapter 8 - Installing Oracle and Creating a Database
Chapter 9 - Reporting Techniques
Chapter 10 - Creating and Maintaining Database Objects
Chapter 11 - Users and Security
Chapter 12 - Making Things Run Fast (Enough)
Chapter 13 - Saving Your Stuff (Backups)
Chapter 14 - Troubleshooting
Appendix A - Answers to Review Questions
Appendix B - Glossary
Appendix C - Common Database Platforms
Index
Where Can I Find?
List of Tables
List of Sidebars

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

