

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

TCP/IP Network Administration, 3rd Edition

By Craig Hunt

Publisher: O'Reilly
Pub Date: April 2002

ISBN: 0-596-00297-1
Pages: 746
Slots: 1

This complete hands-on guide to setting up and running a TCP/IP network
starts with the fundamentals: what protocols do and how they work, how
addresses and routing are used, and how to set up your network connection.
The book also covers advanced routing protocols and provides tutorials on
configuring important network services. The expanded third edition includes
sections on Samba, Apache web server, network security, and much more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

TCP/IP Network Administration, 3rd Edition

By Craig Hunt

Publisher: O'Reilly
Pub Date: April 2002

ISBN: 0-596-00297-1
Pages: 746
Slots: 1

 Copyright

 Dedication

 Preface

 Audience

 Organization

 Unix Versions

 Conventions

 We'd Like to Hear from You

 Acknowledgments

 Chapter 1. Overview of TCP/IP

 Section 1.1. TCP/IP and the Internet

 Section 1.2. A Data Communications Model

 Section 1.3. TCP/IP Protocol Architecture

 Section 1.4. Network Access Layer

 Section 1.5. Internet Layer

 Section 1.6. Transport Layer

 Section 1.7. Application Layer

 Section 1.8. Summary

 Chapter 2. Delivering the Data

 Section 2.1. Addressing, Routing, and Multiplexing

 Section 2.2. The IP Address

 Section 2.3. Internet Routing Architecture

 Section 2.4. The Routing Table

 Section 2.5. Address Resolution

 Section 2.6. Protocols, Ports, and Sockets

 Section 2.7. Summary

 Chapter 3. Network Services

 Section 3.1. Names and Addresses

 Section 3.2. The Host Table

 Section 3.3. DNS

 Section 3.4. Mail Services

 Section 3.5. File and Print Servers

 Section 3.6. Configuration Servers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.7. Summary

 Chapter 4. Getting Started

 Section 4.1. Connected and Non-Connected Networks

 Section 4.2. Basic Information

 Section 4.3. Planning Routing

 Section 4.4. Planning Naming Service

 Section 4.5. Other Services

 Section 4.6. Informing the Users

 Section 4.7. Summary

 Chapter 5. Basic Configuration

 Section 5.1. Kernel Configuration

 Section 5.2. Startup Files

 Section 5.3. The Internet Daemon

 Section 5.4. The Extended Internet Daemon

 Section 5.5. Summary

 Chapter 6. Configuring the Interface

 Section 6.1. The ifconfig Command

 Section 6.2. TCP/IP Over a Serial Line

 Section 6.3. Installing PPP

 Section 6.4. Summary

 Chapter 7. Configuring Routing

 Section 7.1. Common Routing Configurations

 Section 7.2. The Minimal Routing Table

 Section 7.3. Building a Static Routing Table

 Section 7.4. Interior Routing Protocols

 Section 7.5. Exterior Routing Protocols

 Section 7.6. Gateway Routing Daemon

 Section 7.7. Configuring gated

 Section 7.8. Summary

 Chapter 8. Configuring DNS

 Section 8.1. BIND: Unix Name Service

 Section 8.2. Configuring the Resolver

 Section 8.3. Configuring named

 Section 8.4. Using nslookup

 Section 8.5. Summary

 Chapter 9. Local Network Services

 Section 9.1. The Network File System

 Section 9.2. Sharing Unix Printers

 Section 9.3. Using Samba to Share Resources with Windows

 Section 9.4. Network Information Service

 Section 9.5. DHCP

 Section 9.6. Managing Distributed Servers

 Section 9.7. Post Office Servers

 Section 9.8. Summary

 Chapter 10. sendmail

 Section 10.1. sendmail's Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 10.2. Running sendmail as a Daemon

 Section 10.3. sendmail Aliases

 Section 10.4. The sendmail.cf File

 Section 10.5. sendmail.cf Configuration Language

 Section 10.6. Rewriting the Mail Address

 Section 10.7. Modifying a sendmail.cf File

 Section 10.8. Testing sendmail.cf

 Section 10.9. Summary

 Chapter 11. Configuring Apache

 Section 11.1. Installing Apache Software

 Section 11.2. Configuring the Apache Server

 Section 11.3. Understanding an httpd.conf File

 Section 11.4. Web Server Security

 Section 11.5. Managing Your Web Server

 Section 11.6. Summary

 Chapter 12. Network Security

 Section 12.1. Security Planning

 Section 12.2. User Authentication

 Section 12.3. Application Security

 Section 12.4. Security Monitoring

 Section 12.5. Access Control

 Section 12.6. Encryption

 Section 12.7. Firewalls

 Section 12.8. Words to the Wise

 Section 12.9. Summary

 Chapter 13. Troubleshooting TCP/IP

 Section 13.1. Approaching a Problem

 Section 13.2. Diagnostic Tools

 Section 13.3. Testing Basic Connectivity

 Section 13.4. Troubleshooting Network Access

 Section 13.5. Checking Routing

 Section 13.6. Checking Name Service

 Section 13.7. Analyzing Protocol Problems

 Section 13.8. Protocol Case Study

 Section 13.9. Summary

 Appendix A. PPP Tools

 Section A.1. Dial-Up IP

 Section A.2. The PPP Daemon

 Section A.3. chat

 Appendix B. A gated Reference

 Section B.1. The gated Command

 Section B.2. The gated Configuration Language

 Section B.3. Directive Statements

 Section B.4. Trace Statements

 Section B.5. Options Statements

 Section B.6. Interface Statements

 Section B.7. Definition Statements

 Section B.8. Protocol Statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section B.9. static Statements

 Section B.10. Control Statements

 Section B.11. Aggregate Statements

 Appendix C. A named Reference

 Section C.1. The named Command

 Section C.2. named.conf Configuration Commands

 Section C.3. Zone File Records

 Appendix D. A dhcpd Reference

 Section D.1. Compiling dhcpd

 Section D.2. The dhcpd Command

 Section D.3. The dhcpd.conf Configuration File

 Appendix E. A sendmail Reference

 Section E.1. Compiling sendmail

 Section E.2. The sendmail Command

 Section E.3. m4 sendmail Macros

 Section E.4. More sendmail.cf

 Appendix F. Solaris httpd.conf File

 Appendix G. RFC Excerpts

 Section G.1. IP Datagram Header

 Section G.2. TCP Segment Header

 Section G.3. ICMP Parameter Problem Message Header

 Section G.4. Retrieving RFCs

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2002, 1998, 1992 Craig Hunt. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations
used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the
land crab and TCP/IP network administration is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

To Alana, the beginning of a new life.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
The first edition of TCP/IP Network Administration was written in 1992. In the decade since, many
things have changed, yet some things remain the same. TCP/IP is still the preeminent
communications protocol for linking together diverse computer systems. It remains the basis of
interoperable data communications and global computer networking. The underlying Internet
Protocol (IP), Transmission Control Protocol, and User Datagram Protocol (UDP) are remarkably
unchanged. But change has come in the way TCP/IP is used and how it is managed.

A clear symbol of this change is the fact that my mother-in-law has a TCP/IP network connection
in her home that she uses to exchange electronic mail, compressed graphics, and hypertext
documents with other senior citizens. She thinks of this as "just being on the Internet," but the
truth is that her small system contains a functioning TCP/IP protocol stack, manages a
dynamically assigned IP address, and handles data types that did not even exist a decade ago.

In 1991, TCP/IP was a tool of sophisticated users. Network administrators managed a limited
number of systems and could count on the users for a certain level of technical knowledge. No
more. In 2002, the need for highly trained network administrators is greater than ever because the
user base is larger, more diverse, and less capable of handling technical problems on its own.
This book provides the information needed to become an effective TCP/IP network administrator.

TCP/IP Network Administration was the first book of practical information for the professional
TCP/IP network administrator, and it is still the best. Since the first edition was published there
has been an explosion of books about TCP/IP and the Internet. Still, too few books concentrate
on what a system administrator really needs to know about TCP/IP administration. Most books
are either scholarly texts written from the point of view of the protocol designer, or instructions on
how to use TCP/IP applications. All of those books lack the practical, detailed network information
needed by the Unix system administrator. This book strives to focus on TCP/IP and Unix and to
find the right balance of theory and practice.

I am proud of the earlier editions of TCP/IP Network Administration. In this edition, I have done
everything I can to maintain the essential character of the book while making it better. Dynamic
address assignment based on Dynamic Host Configuration Protocol (DHCP) is covered. The
Domain Name System material has been updated to cover BIND 8 and, to a lesser extent, BIND
9. The email configuration is based on current version of sendmail 8, and the operating system
examples are from the current versions of Solaris and Linux. The routing protocol coverage
includes Routing Information Protocol version 2 (RIPv2), Open Shortest Path First (OSPF), and
Border Gateway Protocol (BGP). I have also added a chapter on Apache web server
configuration, new material on xinetd, and information about building a firewall with iptables.
Despite the additional topics, the book has been kept to a reasonable length.

TCP/IP is a set of communications protocols that define how different types of computers talk to
each other. TCP/IP Network Administration is a book about building your own network based on
TCP/IP. It is both a tutorial covering the "why" and "how" of TCP/IP networking, and a reference
manual for the details about specific network programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Audience

This book is intended for everyone who has a Unix computer connected to a TCP/IP network.[1]

This obviously includes the network managers and the system administrators who are responsible
for setting up and running computers and networks, but it also includes any user who wants to
understand how his or her computer communicates with other systems. The distinction between a
"system administrator" and an "end user" is a fuzzy one. You may think of yourself as an end
user, but if you have a Unix workstation on your desk, you're probably also involved in system
administration tasks.

[1] Much of this text also applies to non-Unix systems. Many of the file formats and commands and all of the protocol
descriptions apply equally well to Windows 9x, Windows NT/2000, and other operating systems. If you're an NT
administrator, you should read Windows NT TCP/IP Network Administration (O'Reilly).

Over the last several years there has been a rash of books for "dummies" and "idiots." If you
really think of yourself as an "idiot" when it comes to Unix, this book is not for you. Likewise, if you
are a network administration "genius," this book is probably not suitable either. If you fall
anywhere between these two extremes, however, you'll find this book has a lot to offer.

This book assumes that you have a good understanding of computers and their operation and
that you're generally familiar with Unix system administration. If you're not, the Nutshell Handbook
Essential System Administration by Æleen Frisch (published by O'Reilly & Associates) will fill you
in on the basics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Organization

Conceptually, this book is divided into three parts: fundamental concepts, tutorial, and reference.
The first three chapters are a basic discussion of the TCP/IP protocols and services. This
discussion provides the fundamental concepts necessary to understand the rest of the book. The
remaining chapters provide a "how-to" tutorial. Chapter 4–Chapter 7 discuss how to plan a
network installation and configure the basic software necessary to get a network running. Chapter
8–Chapter 11 discuss how to set up various important network services. Chapter 12 and Chapter
13 cover how to perform the ongoing tasks that are essential for a reliable network: security and
troubleshooting. The book concludes with a series of appendixes that are technical references for
important commands and programs.

This book contains the following chapters:

Chapter 1 gives the history of TCP/IP, a description of the protocol architecture, and a basic
explanation of how the protocols function.

Chapter 2 describes addressing and how data passes through a network to reach the proper
destination.

Chapter 3 discusses the relationship between clients and server systems and the various services
that are central to the function of a modern internet.

Chapter 4 begins the discussion of network setup and configuration. This chapter discusses the
preliminary configuration planning needed before you configure the systems on your network.

Chapter 5 describes how to configure TCP/IP in the Unix kernel, and how to configure the system
to start the network services.

Chapter 6 tells you how to identify a network interface to the network software. This chapter
provides examples of Ethernet and PPP interface configurations.

Chapter 7 describes how to set up routing so that systems on your network can communicate
properly with other networks. It covers the static routing table, commonly used routing protocols,
and gated, a package that provides the latest implementations of several routing protocols.

Chapter 8 describes how to administer the name server program that converts system names to
Internet addresses.

Chapter 9 describes how to configure many common network servers. The chapter discusses the
DHCP configuration server, the LPD print server, the POP and IMAP mail servers, the Network
File System (NFS), the Samba file and print server, and the Network Information System (NIS).

Chapter 10 discusses how to configure sendmail, which is the daemon responsible for delivering
electronic mail.

Chapter 11 describes how the Apache web server software is configured.

Chapter 12 discusses how to live on the Internet without excessive risk. This chapter covers the
security threats introduced by the network, and describes the plans and preparations you can
make to meet those threats.

Chapter 13 tells you what to do when something goes wrong. It describes the techniques and
tools used to troubleshoot TCP/IP problems and gives examples of actual problems and their
solutions.

Appendix A is a reference guide to the various programs used to configure a serial port for
TCP/IP. The reference covers dip, pppd, and chat.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TCP/IP. The reference covers dip, pppd, and chat.

Appendix B is a reference guide to the configuration language of the gated routing package.

Appendix C is a reference guide to the Berkeley Internet Name Domain (BIND) name server
software.

Appendix D is a reference guide to the Dynamic Host Configuration Protocol Daemon (dhcpd).

Appendix E is a reference guide to sendmail syntax, options, and flags.

Appendix F lists the contents of the Apache configuration file discussed in Chapter 11.

Appendix G contains detailed protocol references taken directly from the RFCs that support the
protocol troubleshooting examples in Chapter 13. This appendix explains how to obtain your own
copies of the RFCs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix Versions

Most of the examples in this book are taken from Red Hat Linux, currently the most popular Linux
distribution, and from Solaris 8, the Sun operating system based on System V Unix. Fortunately,
TCP/IP software is remarkably standard from system to system, and because of this uniformity,
the examples should be applicable to any Linux, System V, or BSD-based Unix system. There are
small variations in command output or command-line options, but these should not present a
problem.

Some of the ancillary networking software is identified separately from the Unix operating system
by its own release number. Many such packages are discussed, and when appropriate are
identified by their release numbers. The most important of these packages are:

BIND

Our discussion of the BIND software is based on version 8 running on a Solaris 8 system.
BIND 8 is the version of the BIND software delivered with Solaris, and supports all of the
standard resource records. There are relatively few administrative differences between
BIND 8 and the newer BIND 9 release for basic configurations.

sendmail

Our discussion of sendmail is based on release 8.11.3. This version should be compatible
with other releases of sendmail v8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions

This book uses the following typographical conventions:

Italic

is used for the names of files, directories, hostnames, domain names, and to emphasize
new terms when they are introduced.

Constant width

is used to show the contents of files or the output from commands. It is also used to
represent commands, options, and keywords in text.

Constant width bold
is used in examples to show commands typed on the command line.

Constant width italic

is used in examples and text to show variables for which a context-specific substitution
should be made. (The variable filename, for example, would be replaced by some actual
filename.)

%, #

Commands that you would give interactively are shown using the default C shell prompt
(%). If the command must be executed as root, it is shown using the default superuser
prompt (#). Because the examples may include multiple systems on a network, the prompt
may be preceded by the name of the system on which the command was given.

[option]

When showing command syntax, optional parts of the command are placed within
brackets. For example, ls [-l] means that the -l option is not required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'd Like to Hear from You

We have tested and verified all of the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us know
about any errors you find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, or any additional information.
You can access this page at:

http://www.oreilly.com/catalog/tcp3

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see our web site at:

http://www.oreilly.com

To find out what else Craig is doing, visit his web site, http://www.wrotethebook.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

I would like to thank the many people who helped in the preparation of this book. All of the people
who contributed to the first and second editions deserve thanks because so much of their input
lives on in this edition. For the first edition that's John Wack, Matt Bishop, Wietse Venema, Eric
Allman, Jeff Honig, Scott Brim, and John Dorgan. For the second edition that's Eric Allman again,
Bryan Costales, Cricket Liu, Paul Albitz, Ted Lemon, Elizabeth Zwicky, Brent Chapman, Simson
Garfinkel, Jeff Sedayao, and Æleen Frisch.

The third edition has also benefited from many contributors—a surprising number of whom are
authors in their own right. They set me straight about the technical details and improved my
prose. Three authors are due special thanks. Cricket Liu, one of the authors of the best book ever
written about DNS, provided many comments that improved the sections on Domain Name
System. David Collier-Brown, one of the authors of Using Samba, did a complete technical review
of the Samba material. Charles Aulds, author of a best-selling book on Apache administration,
provided insights into Apache configuration. All of these people helped me make this book better
than earlier editions. Thanks!

All the people at O'Reilly & Associates have been very helpful. Deb Cameron, my editor, deserves
a special thanks. Deb kept everything moving forward while balancing the demands of a beautiful
newborn daughter, Bethany Rose. Emily Quill was the production editor and project manager. Jeff
Holcomb and Jane Ellin performed quality control checks. Leanne Soylemez provided production
assistance. Tom Dinse wrote the index. Edie Freedman designed the cover, and Melanie Wang
designed the interior format of the book. Neil Walls converted the book from Microsoft Word to
Framemaker. Chris Reilley and Robert Romano's illustrations from the earlier editions have been
updated by Robert Romano and Jessamyn Read.

Finally, I want to thank my family—Kathy, Sara, David, and Rebecca. They keep my feet on the
ground when the pressure to meet deadlines is driving me into orbit. They are the best.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Overview of TCP/IP
All of us who use a Unix desktop system—engineers, educators, scientists, and business people
—have second careers as Unix system administrators. Networking these computers gives us new
tasks as network administrators.

Network administration and system administration are two different jobs. System administration
tasks such as adding users and doing backups are isolated to one independent computer system.
Not so with network administration. Once you place your computer on a network, it interacts with
many other systems. The way you do network administration tasks has effects, good and bad, not
only on your system but on other systems on the network. A sound understanding of basic
network administration benefits everyone.

Networking your computers dramatically enhances their ability to communicate—and most
computers are used more for communication than computation. Many mainframes and
supercomputers are busy crunching the numbers for business and science, but the number of
these systems in use pales in comparison to the millions of systems busy moving mail to a remote
colleague or retrieving information from a remote repository. Further, when you think of the
hundreds of millions of desktop systems that are used primarily for preparing documents to
communicate ideas from one person to another, it is easy to see why most computers can be
viewed as communications devices.

The positive impact of computer communications increases with the number and type of
computers that participate in the network. One of the great benefits of TCP/IP is that it provides
interoperable communications between all types of hardware and all kinds of operating systems.

The name "TCP/IP" refers to an entire suite of data communications protocols. The suite gets its
name from two of the protocols that belong to it: the Transmission Control Protocol (TCP) and the
Internet Protocol (IP). TCP/IP is the traditional name for this protocol suite and it is the name used
in this book. The TCP/IP protocol suite is also called the Internet Protocol Suite (IPS). Both
names are acceptable.

This book is a practical, step-by-step guide to configuring and managing TCP/IP networking
software on Unix computer systems. TCP/IP is the leading communications software for local
area networks and enterprise intranets, and it is the foundation of the worldwide Internet. TCP/IP
is the most important networking software available to a Unix network administrator.

The first part of this book discusses the basics of TCP/IP and how it moves data across a
network. The second part explains how to configure and run TCP/IP on a Unix system. Let's start
with a little history.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 TCP/IP and the Internet

In 1969 the Advanced Research Projects Agency (ARPA) funded a research and development
project to create an experimental packet-switching network. This network, called the ARPAnet,
was built to study techniques for providing robust, reliable, vendor-independent data
communications. Many techniques of modern data communications were developed in the
ARPAnet.

The experimental network was so successful that many of the organizations attached to it began
to use it for daily data communications. In 1975 the ARPAnet was converted from an
experimental network to an operational network, and the responsibility for administering the
network was given to the Defense Communications Agency (DCA).[1] However, development of
the ARPAnet did not stop just because it was being used as an operational network; the basic
TCP/IP protocols were developed after the network was operational.

[1] DCA has since changed its name to Defense Information Systems Agency (DISA).

The TCP/IP protocols were adopted as Military Standards (MIL STD) in 1983, and all hosts
connected to the network were required to convert to the new protocols. To ease this conversion,
DARPA[2] funded Bolt, Beranek, and Newman (BBN) to implement TCP/IP in Berkeley (BSD)
Unix. Thus began the marriage of Unix and TCP/IP.

[2] During the 1980s, ARPA, which is part of the U.S. Department of Defense, became Defense Advanced Research
Projects Agency (DARPA). Whether it is known as ARPA or DARPA, the agency and its mission of funding advanced
research have remained the same.

About the time that TCP/IP was adopted as a standard, the term Internet came into common
usage. In 1983 the old ARPAnet was divided into MILNET, the unclassified part of the Defense
Data Network (DDN), and a new, smaller ARPAnet. "Internet" was used to refer to the entire
network: MILNET plus ARPAnet.

In 1985 the National Science Foundation (NSF) created NSFNet and connected it to the then-
existing Internet. The original NSFNet linked together the five NSF supercomputer centers. It was
smaller than the ARPAnet and no faster: 56Kbps. Still, the creation of the NSFNet was a
significant event in the history of the Internet because NSF brought with it a new vision of the use
of the Internet. NSF wanted to extend the network to every scientist and engineer in the United
States. To accomplish this, in 1987 NSF created a new, faster backbone and a three-tiered
network topology that included the backbone, regional networks, and local networks. In 1990 the
ARPAnet formally passed out of existence, and in 1995 the NSFNet ceased its role as a primary
Internet backbone network.

Today the Internet is larger than ever and encompasses hundreds of thousands of networks
worldwide. It is no longer dependent on a core (or backbone) network or on governmental
support. Today's Internet is built by commercial providers. National network providers, called tier-
one providers, and regional network providers create the infrastructure. Internet Service Providers
(ISPs) provide local access and user services. This network of networks is linked together in the
United States at several major interconnection points called Network Access Points (NAPs).

The Internet has grown far beyond its original scope. The original networks and agencies that
built the Internet no longer play an essential role for the current network. The Internet has evolved
from a simple backbone network, through a three-tiered hierarchical structure, to a huge network
of interconnected, distributed network hubs. It has grown exponentially since 1983—doubling in
size every year. Through all of this incredible change one thing has remained constant: the
Internet is built on the TCP/IP protocol suite.

A sign of the network's success is the confusion that surrounds the term internet. Originally it was
used only as the name of the network built upon IP. Now internet is a generic term used to refer to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used only as the name of the network built upon IP. Now internet is a generic term used to refer to
an entire class of networks. An internet (lowercase "i") is any collection of separate physical
networks, interconnected by a common protocol, to form a single logical network. The Internet
(uppercase "I") is the worldwide collection of interconnected networks, which grew out of the
original ARPAnet, that uses IP to link the various physical networks into a single logical network.
In this book, both "internet" and "Internet" refer to networks that are interconnected by TCP/IP.

Because TCP/IP is required for Internet connection, the growth of the Internet spurred interest in
TCP/IP. As more organizations became familiar with TCP/IP, they saw that its power can be
applied in other network applications as well. The Internet protocols are often used for local area
networking even when the local network is not connected to the Internet. TCP/IP is also widely
used to build enterprise networks. TCP/IP-based enterprise networks that use Internet techniques
and web tools to disseminate internal corporate information are called intranets. TCP/IP is the
foundation of all of these varied networks.

1.1.1 TCP/IP Features

The popularity of the TCP/IP protocols did not grow rapidly just because the protocols were there,
or because connecting to the Internet mandated their use. They met an important need
(worldwide data communication) at the right time, and they had several important features that
allowed them to meet this need. These features are:

Open protocol standards, freely available and developed independently from any specific
computer hardware or operating system. Because it is so widely supported, TCP/IP is ideal
for uniting different hardware and software components, even if you don't communicate
over the Internet.

Independence from specific physical network hardware. This allows TCP/IP to integrate
many different kinds of networks. TCP/IP can be run over an Ethernet, a DSL connection, a
dial-up line, an optical network, and virtually any other kind of physical transmission
medium.

A common addressing scheme that allows any TCP/IP device to uniquely address any
other device in the entire network, even if the network is as large as the worldwide Internet.

Standardized high-level protocols for consistent, widely available user services.

1.1.2 Protocol Standards

Protocols are formal rules of behavior. In international relations, protocols minimize the problems
caused by cultural differences when various nations work together. By agreeing to a common set
of rules that are widely known and independent of any nation's customs, diplomatic protocols
minimize misunderstandings; everyone knows how to act and how to interpret the actions of
others. Similarly, when computers communicate, it is necessary to define a set of rules to govern
their communications.

In data communications, these sets of rules are also called protocols. In homogeneous networks,
a single computer vendor specifies a set of communications rules designed to use the strengths
of the vendor's operating system and hardware architecture. But homogeneous networks are like
the culture of a single country—only the natives are truly at home in it. TCP/IP creates a
heterogeneous network with open protocols that are independent of operating system and
architectural differences. TCP/IP protocols are available to everyone and are developed and
changed by consensus, not by the fiat of one manufacturer. Everyone is free to develop products
to meet these open protocol specifications.

The open nature of TCP/IP protocols requires an open standards development process and
publicly available standards documents. Internet standards are developed by the Internet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publicly available standards documents. Internet standards are developed by the Internet
Engineering Task Force (IETF) in open, public meetings. The protocols developed in this process
are published as Requests for Comments (RFCs).[3] As the title "Request for Comments" implies,
the style and content of these documents are much less rigid than in most standards documents.
RFCs contain a wide range of interesting and useful information, and are not limited to the formal
specification of data communications protocols. There are three basic types of RFCs: standards
(STD), best current practices (BCP), and informational (FYI).

[3] Interested in finding out how Internet standards are created? Read RFC 2026, The Internet Standards Process.

RFCs that define official protocol standards are STDs and are given an STD number in addition to
an RFC number. Creating an official Internet standard is a rigorous process. Standards track
RFCs pass through three maturity levels before becoming standards:

Proposed Standard

This is a protocol specification that is important enough and has received enough Internet
community support to be considered for a standard. The specification is stable and well
understood, but it is not yet a standard and may be withdrawn from consideration to be a
standard.

Draft Standard

This is a protocol specification for which at least two independent, interoperable
implementations exist. A draft standard is a final specification undergoing widespread
testing. It will change only if the testing forces a change.

Internet Standard

A specification is declared a standard only after extensive testing and only if the protocol
defined in the specification is considered to be of significant benefit to the Internet
community.

There are two categories of standards. A Technical Specification (TS) defines a protocol. An
Applicability Statement (AS) defines when the protocol is to be used. There are three requirement
levels that define the applicability of a standard:

Required

This standard protocol is a required part of every TCP/IP implementation. It must be
included for the TCP/IP stack to be compliant.

Recommended

This standard protocol should be included in every TCP/IP implementation, although it is
not required for minimal compliance.

Elective

This standard is optional. It is up to the software vendor to implement it or not.

Two other requirements levels (limited use and not recommended) apply to RFCs that are not
part of the standards track. A "limited use" protocol is used only in special circumstances, such as
during an experiment. A protocol is "not recommended " when it has limited functionality or is
outdated. There are three types of non-standards track RFCs:

Experimental

An experimental RFC is limited to use in research and development.

Historic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A historic RFC is outdated and no longer recommended for use.

Informational

An informational RFC provides information of general interest to the Internet community; it
does not define an Internet standard protocol.

A subset of the informational RFCs is called the FYI (For Your Information) notes. An FYI
document is given an FYI number in addition to an RFC number. FYI documents provide
introductory and background material about the Internet and TCP/IP networks. FYI documents
are not mentioned in RFC 2026 and are not included in the Internet standards process. But there
are several interesting FYI documents available.[4]

[4] To find out more about FYI documents, read RFC 1150, FYI on FYI: An Introduction to the FYI Notes.

Another group of RFCs that go beyond documenting protocols are the Best Current Practices
(BCP) RFCs. BCPs formally document techniques and procedures. Some of these document the
way that the IETF conducts itself; RFC 2026 is an example of this type of BCP. Others provide
guidelines for the operation of a network or service; RFC 1918, Address Allocation for Private
Internets, is an example of this type of BCP. BCPs that provide operational guidelines are often of
great interest to network administrators.

There are now more than 3,000 RFCs. As a network system administrator, you will no doubt read
several. It is as important to know which ones to read as it is to understand them when you do
read them. Use the RFC categories and the requirements levels to help you determine which
RFCs are applicable to your situation. (A good starting point is to focus on those RFCs that also
have an STD number.) To understand what you read, you need to understand the language of
data communications. RFCs contain protocol implementation specifications defined in terminology
that is unique to data communications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 A Data Communications Model

To discuss computer networking, it is necessary to use terms that have special meaning. Even
other computer professionals may not be familiar with all the terms in the networking alphabet
soup. As is always the case, English and computer-speak are not equivalent (or even necessarily
compatible) languages. Although descriptions and examples should make the meaning of the
networking jargon more apparent, sometimes terms are ambiguous. A common frame of
reference is necessary for understanding data communications terminology.

An architectural model developed by the International Standards Organization (ISO) is frequently
used to describe the structure and function of data communications protocols. This architectural
model, which is called the Open Systems Interconnect (OSI) Reference Model, provides a
common reference for discussing communications. The terms defined by this model are well
understood and widely used in the data communications community—so widely used, in fact, that
it is difficult to discuss data communications without using OSI's terminology.

The OSI Reference Model contains seven layers that define the functions of data communications
protocols. Each layer of the OSI model represents a function performed when data is transferred
between cooperating applications across an intervening network. Figure 1-1 identifies each layer
by name and provides a short functional description for it. Looking at this figure, the protocols are
like a pile of building blocks stacked one upon another. Because of this appearance, the structure
is often called a stack or protocol stack.

Figure 1-1. The OSI Reference Model

A layer does not define a single protocol—it defines a data communications function that may be
performed by any number of protocols. Therefore, each layer may contain multiple protocols,
each providing a service suitable to the function of that layer. For example, a file transfer protocol
and an electronic mail protocol both provide user services, and both are part of the Application
Layer.

Every protocol communicates with its peers. A peer is an implementation of the same protocol in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Every protocol communicates with its peers. A peer is an implementation of the same protocol in
the equivalent layer on a remote system; i.e., the local file transfer protocol is the peer of a remote
file transfer protocol. Peer-level communications must be standardized for successful
communications to take place. In the abstract, each protocol is concerned only with
communicating to its peers; it does not care about the layers above or below it.

However, there must also be agreement on how to pass data between the layers on a single
computer, because every layer is involved in sending data from a local application to an
equivalent remote application. The upper layers rely on the lower layers to transfer the data over
the underlying network. Data is passed down the stack from one layer to the next until it is
transmitted over the network by the Physical Layer protocols. At the remote end, the data is
passed up the stack to the receiving application. The individual layers do not need to know how
the layers above and below them function; they need to know only how to pass data to them.
Isolating network communications functions in different layers minimizes the impact of
technological change on the entire protocol suite. New applications can be added without
changing the physical network, and new network hardware can be installed without rewriting the
application software.

Although the OSI model is useful, the TCP/IP protocols don't match its structure exactly.
Therefore, in our discussions of TCP/IP, we use the layers of the OSI model in the following way:

Application Layer

The Application Layer is the level of the protocol hierarchy where user-accessed network
processes reside. In this text, a TCP/IP application is any network process that occurs
above the Transport Layer. This includes all of the processes that users directly interact
with as well as other processes at this level that users are not necessarily aware of.

Presentation Layer

For cooperating applications to exchange data, they must agree about how data is
represented. In OSI, the Presentation Layer provides standard data presentation routines.
This function is frequently handled within the applications in TCP/IP, though TCP/IP
protocols such as XDR and MIME also perform this function.

Session Layer

As with the Presentation Layer, the Session Layer is not identifiable as a separate layer in
the TCP/IP protocol hierarchy. The OSI Session Layer manages the sessions
(connections) between cooperating applications. In TCP/IP, this function largely occurs in
the Transport Layer, and the term "session" is not used; instead, the terms "socket" and
"port" are used to describe the path over which cooperating applications communicate.

Transport Layer

Much of our discussion of TCP/IP is directed to the protocols that occur in the Transport
Layer. The Transport Layer in the OSI reference model guarantees that the receiver gets
the data exactly as it was sent. In TCP/IP, this function is performed by the Transmission
Control Protocol (TCP). However, TCP/IP offers a second Transport Layer service, User
Datagram Protocol (UDP), that does not perform the end-to-end reliability checks.

Network Layer

The Network Layer manages connections across the network and isolates the upper layer
protocols from the details of the underlying network. The Internet Protocol (IP), which
isolates the upper layers from the underlying network and handles the addressing and
delivery of data, is usually described as TCP/IP's Network Layer.

Data Link Layer

The reliable delivery of data across the underlying physical network is handled by the Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The reliable delivery of data across the underlying physical network is handled by the Data
Link Layer. TCP/IP rarely creates protocols in the Data Link Layer. Most RFCs that relate to
the Data Link Layer discuss how IP can make use of existing data link protocols.

Physical Layer

The Physical Layer defines the characteristics of the hardware needed to carry the data
transmission signal. Features such as voltage levels and the number and location of
interface pins are defined in this layer. Examples of standards at the Physical Layer are
interface connectors such as RS232C and V.35, and standards for local area network
wiring such as IEEE 802.3. TCP/IP does not define physical standards—it makes use of
existing standards.

The terminology of the OSI reference model helps us describe TCP/IP, but to fully understand it,
we must use an architectural model that more closely matches the structure of TCP/IP. The next
section introduces the protocol model we'll use to describe TCP/IP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 TCP/IP Protocol Architecture

While there is no universal agreement about how to describe TCP/IP with a layered model,
TCP/IP is generally viewed as being composed of fewer layers than the seven used in the OSI
model. Most descriptions of TCP/IP define three to five functional levels in the protocol
architecture. The four-level model illustrated in Figure 1-2 is based on the three layers
(Application, Host-to-Host, and Network Access) shown in the DOD Protocol Model in the DDN
Protocol Handbook Volume 1, with the addition of a separate Internet layer. This model provides
a reasonable pictorial representation of the layers in the TCP/IP protocol hierarchy.

Figure 1-2. The TCP/IP architecture

As in the OSI model, data is passed down the stack when it is being sent to the network, and up
the stack when it is being received from the network. The four-layered structure of TCP/IP is seen
in the way data is handled as it passes down the protocol stack from the Application Layer to the
underlying physical network. Each layer in the stack adds control information to ensure proper
delivery. This control information is called a header because it is placed in front of the data to be
transmitted. Each layer treats all the information it receives from the layer above as data, and
places its own header in front of that information. The addition of delivery information at every
layer is called encapsulation. (See Figure 1-3 for an illustration of this.) When data is received, the
opposite happens. Each layer strips off its header before passing the data on to the layer above.
As information flows back up the stack, information received from a lower layer is interpreted as
both a header and data.

Figure 1-3. Data encapsulation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each layer has its own independent data structures. Conceptually, a layer is unaware of the data
structures used by the layers above and below it. In reality, the data structures of a layer are
designed to be compatible with the structures used by the surrounding layers for the sake of more
efficient data transmission. Still, each layer has its own data structure and its own terminology to
describe that structure.

Figure 1-4 shows the terms used by different layers of TCP/IP to refer to the data being
transmitted. Applications using TCP refer to data as a stream, while applications using UDP refer
to data as a message. TCP calls data a segment, and UDP calls its data a packet. The Internet
layer views all data as blocks called datagrams. TCP/IP uses many different types of underlying
networks, each of which may have a different terminology for the data it transmits. Most networks
refer to transmitted data as packets or frames. Figure 1-4 shows a network that transmits pieces
of data it calls frames.

Figure 1-4. Data structures

Let's look more closely at the function of each layer, working our way up from the Network Access
Layer to the Application Layer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Network Access Layer

The Network Access Layer is the lowest layer of the TCP/IP protocol hierarchy. The protocols in
this layer provide the means for the system to deliver data to the other devices on a directly
attached network. This layer defines how to use the network to transmit an IP datagram. Unlike
higher-level protocols, Network Access Layer protocols must know the details of the underlying
network (its packet structure, addressing, etc.) to correctly format the data being transmitted to
comply with the network constraints. The TCP/IP Network Access Layer can encompass the
functions of all three lower layers of the OSI Reference Model (Network, Data Link, and Physical).

The Network Access Layer is often ignored by users. The design of TCP/IP hides the function of
the lower layers, and the better-known protocols (IP, TCP, UDP, etc.) are all higher-level
protocols. As new hardware technologies appear, new Network Access protocols must be
developed so that TCP/IP networks can use the new hardware. Consequently, there are many
access protocols—one for each physical network standard.

Functions performed at this level include encapsulation of IP datagrams into the frames
transmitted by the network, and mapping of IP addresses to the physical addresses used by the
network. One of TCP/IP's strengths is its universal addressing scheme. The IP address must be
converted into an address that is appropriate for the physical network over which the datagram is
transmitted.

Two RFCs that define Network Access Layer protocols are:

RFC 826, Address Resolution Protocol (ARP), which maps IP addresses to Ethernet
addresses

RFC 894, A Standard for the Transmission of IP Datagrams over Ethernet Networks, which
specifies how IP datagrams are encapsulated for transmission over Ethernet networks

As implemented in Unix, protocols in this layer often appear as a combination of device drivers
and related programs. The modules that are identified with network device names usually
encapsulate and deliver the data to the network, while separate programs perform related
functions such as address mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Internet Layer

The layer above the Network Access Layer in the protocol hierarchy is the Internet Layer. The
Internet Protocol (IP) is the most important protocol in this layer. The release of IP used in the
current Internet is IP version 4 (IPv4), which is defined in RFC 791. There are more recent
versions of IP. IP version 5 is an experimental Stream Transport (ST) protocol used for real-time
data delivery. IPv5 never came into operational use. IPv6 is an IP standard that provides greatly
expanded addressing capacity. Because IPv6 uses a completely different address structure, it is
not interoperable with IPv4. While IPv6 is a standard version of IP, it is not yet widely used in
operational, commercial networks. Since our focus is on practical, operational networks, we do
not cover IPv6 in detail. In this chapter and throughout the main body of the text, "IP" refers to
IPv4. IPv4 is the protocol you will configure on your system when you want to exchange data with
remote systems, and it is the focus of this text.

The Internet Protocol is the heart of TCP/IP. IP provides the basic packet delivery service on
which TCP/IP networks are built. All protocols, in the layers above and below IP, use the Internet
Protocol to deliver data. All incoming and outgoing TCP/IP data flows through IP, regardless of its
final destination.

1.5.1 Internet Protocol

The Internet Protocol is the building block of the Internet. Its functions include:

Defining the datagram, which is the basic unit of transmission in the Internet

Defining the Internet addressing scheme

Moving data between the Network Access Layer and the Transport Layer

Routing datagrams to remote hosts

Performing fragmentation and re-assembly of datagrams

Before describing these functions in more detail, let's look at some of IP's characteristics. First, IP
is a connectionless protocol. This means that it does not exchange control information (called a
"handshake") to establish an end-to-end connection before transmitting data. In contrast, a
connection-oriented protocol exchanges control information with the remote system to verify that it
is ready to receive data before any data is sent. When the handshaking is successful, the
systems are said to have established a connection. The Internet Protocol relies on protocols in
other layers to establish the connection if they require connection-oriented service.

IP also relies on protocols in the other layers to provide error detection and error recovery. The
Internet Protocol is sometimes called an unreliable protocol because it contains no error detection
and recovery code. This is not to say that the protocol cannot be relied on—quite the contrary. IP
can be relied upon to accurately deliver your data to the connected network, but it doesn't check
whether that data was correctly received. Protocols in other layers of the TCP/IP architecture
provide this checking when it is required.

1.5.1.1 The datagram

The TCP/IP protocols were built to transmit data over the ARPAnet, which was a packet-switching
network. A packet is a block of data that carries with it the information necessary to deliver it,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

network. A packet is a block of data that carries with it the information necessary to deliver it,
similar to a postal letter, which has an address written on its envelope. A packet-switching
network uses the addressing information in the packets to switch packets from one physical
network to another, moving them toward their final destination. Each packet travels the network
independently of any other packet.

The datagram is the packet format defined by the Internet Protocol. Figure 1-5 is a pictorial
representation of an IP datagram. The first five or six 32-bit words of the datagram are control
information called the header. By default, the header is five words long; the sixth word is optional.
Because the header's length is variable, it includes a field called Internet Header Length (IHL) that
indicates the header's length in words. The header contains all the information necessary to
deliver the packet.

Figure 1-5. IP datagram format

The Internet Protocol delivers the datagram by checking the Destination Address in word 5 of the
header. The Destination Address is a standard 32-bit IP address that identifies the destination
network and the specific host on that network. (The format of IP addresses is explained in
Chapter 2.) If the Destination Address is the address of a host on the local network, the packet is
delivered directly to the destination. If the Destination Address is not on the local network, the
packet is passed to a gateway for delivery. Gateways are devices that switch packets between
the different physical networks. Deciding which gateway to use is called routing. IP makes the
routing decision for each individual packet.

1.5.1.2 Routing datagrams

Internet gateways are commonly (and perhaps more accurately) referred to as IP routers because
they use Internet Protocol to route packets between networks. In traditional TCP/IP jargon, there
are only two types of network devices—gateways and hosts. Gateways forward packets between
networks, and hosts don't. However, if a host is connected to more than one network (called a
multi-homed host), it can forward packets between the networks. When a multi-homed host
forwards packets, it acts just like any other gateway and is in fact considered to be a gateway.
Current data communications terminology makes a distinction between gateways and routers,[5]

but we'll use the terms gateway and IP router interchangeably.

[5] In current terminology, a gateway moves data between different protocols, and a router moves data between
different networks. So a system that moves mail between TCP/IP and X.400 is a gateway, but a traditional IP gateway
is a router.

Figure 1-6 shows the use of gateways to forward packets. The hosts (or end systems) process
packets through all four protocol layers, while the gateways (or intermediate systems) process the
packets only up to the Internet Layer where the routing decisions are made.

Figure 1-6. Routing through gateways

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Systems can deliver packets only to other devices attached to the same physical network.
Packets from A1 destined for host C1 are forwarded through gateways G1 and G2. Host A1 first
delivers the packet to gateway G1, with which it shares network A. Gateway G1 delivers the
packet to G2 over network B. Gateway G2 then delivers the packet directly to host C1 because
they are both attached to network C. Host A1 has no knowledge of any gateways beyond gateway
G1. It sends packets destined for both networks C and B to that local gateway and then relies on
that gateway to properly forward the packets along the path to their destinations. Likewise, host
C1 sends its packets to G2 to reach a host on network A, as well as any host on network B.

Figure 1-7 shows another view of routing. This figure emphasizes that the underlying physical
networks a datagram travels through may be different and even incompatible. Host A1 on the
token ring network routes the datagram through gateway G1 to reach host C1 on the Ethernet.
Gateway G1 forwards the data through the X.25 network to gateway G2 for delivery to C1. The
datagram traverses three physically different networks, but eventually arrives intact at C1.

Figure 1-7. Networks, gateways, and hosts

1.5.1.3 Fragmenting datagrams

As a datagram is routed through different networks, it may be necessary for the IP module in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a datagram is routed through different networks, it may be necessary for the IP module in a
gateway to divide the datagram into smaller pieces. A datagram received from one network may
be too large to be transmitted in a single packet on a different network. This condition occurs only
when a gateway interconnects dissimilar physical networks.

Each type of network has a maximum transmission unit (MTU), which is the largest packet that it
can transfer. If the datagram received from one network is longer than the other network's MTU,
the datagram must be divided into smaller fragments for transmission. This process is called
fragmentation. Think of a train delivering a load of steel. Each railway car can carry more steel
than the trucks that will take it along the highway, so each railway car's load is unloaded onto
many different trucks. In the same way that a railroad is physically different from a highway, an
Ethernet is physically different from an X.25 network; IP must break an Ethernet's relatively large
packets into smaller packets before it can transmit them over an X.25 network.

The format of each fragment is the same as the format of any normal datagram. Header word 2
contains information that identifies each datagram fragment and provides information about how
to re-assemble the fragments back into the original datagram. The Identification field identifies
what datagram the fragment belongs to, and the Fragmentation Offset field tells what piece of the
datagram this fragment is. The Flags field has a "More Fragments" bit that tells IP if it has
assembled all of the datagram fragments.

1.5.1.4 Passing datagrams to the transport layer

When IP receives a datagram that is addressed to the local host, it must pass the data portion of
the datagram to the correct Transport Layer protocol. This is done by using the protocol number
from word 3 of the datagram header. Each Transport Layer protocol has a unique protocol
number that identifies it to IP. Protocol numbers are discussed in Chapter 2.

You can see from this short overview that IP performs many important functions. Don't expect to
fully understand datagrams, gateways, routing, IP addresses, and all the other things that IP does
from this short description; each chapter will add more details about these topics. So let's
continue on with the other protocol in the TCP/IP Internet Layer.

1.5.2 Internet Control Message Protocol

An integral part of IP is the Internet Control Message Protocol (ICMP) defined in RFC 792. This
protocol is part of the Internet Layer and uses the IP datagram delivery facility to send its
messages. ICMP sends messages that perform the following control, error reporting, and
informational functions for TCP/IP:

Flow control

When datagrams arrive too fast for processing, the destination host or an intermediate
gateway sends an ICMP Source Quench Message back to the sender. This tells the source
to stop sending datagrams temporarily.

Detecting unreachable destinations

When a destination is unreachable, the system detecting the problem sends a Destination
Unreachable Message to the datagram's source. If the unreachable destination is a
network or host, the message is sent by an intermediate gateway. But if the destination is
an unreachable port, the destination host sends the message. (We discuss ports in
Chapter 2.)

Redirecting routes

A gateway sends the ICMP Redirect Message to tell a host to use another gateway,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A gateway sends the ICMP Redirect Message to tell a host to use another gateway,
presumably because the other gateway is a better choice. This message can be used only
when the source host is on the same network as both gateways. To better understand this,
refer to Figure 1-7. If a host on the X.25 network sent a datagram to G1, it would be
possible for G1 to redirect that host to G2 because the host, G1, and G2 are all attached to
the same network. On the other hand, if a host on the token ring network sent a datagram
to G1, the host could not be redirected to use G2. This is because G2 is not attached to the
token ring.

Checking remote hosts

A host can send the ICMP Echo Message to see if a remote system's Internet Protocol is
up and operational. When a system receives an echo message, it replies and sends the
data from the packet back to the source host. The ping command uses this message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6 Transport Layer

The protocol layer just above the Internet Layer is the Host-to-Host Transport Layer, usually
shortened to Transport Layer. The two most important protocols in the Transport Layer are
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides reliable
data delivery service with end-to-end error detection and correction. UDP provides low-overhead,
connectionless datagram delivery service. Both protocols deliver data between the Application
Layer and the Internet Layer. Applications programmers can choose whichever service is more
appropriate for their specific applications.

1.6.1 User Datagram Protocol

The User Datagram Protocol gives application programs direct access to a datagram delivery
service, like the delivery service that IP provides. This allows applications to exchange messages
over the network with a minimum of protocol overhead.

UDP is an unreliable, connectionless datagram protocol. As noted, "unreliable" merely means that
there are no techniques in the protocol for verifying that the data reached the other end of the
network correctly. Within your computer, UDP will deliver data correctly. UDP uses 16-bit Source
Port and Destination Port numbers in word 1 of the message header to deliver data to the correct
applications process. Figure 1-8 shows the UDP message format.

Figure 1-8. UDP message format

Why do applications programmers choose UDP as a data transport service? There are a number
of good reasons. If the amount of data being transmitted is small, the overhead of creating
connections and ensuring reliable delivery may be greater than the work of re-transmitting the
entire data set. In this case, UDP is the most efficient choice for a Transport Layer protocol.
Applications that fit a query-response model are also excellent candidates for using UDP. The
response can be used as a positive acknowledgment to the query. If a response isn't received
within a certain time period, the application just sends another query. Still other applications
provide their own techniques for reliable data delivery and don't require that service from the
Transport Layer protocol. Imposing another layer of acknowledgment on any of these types of
applications is inefficient.

1.6.2 Transmission Control Protocol

Applications that require the transport protocol to provide reliable data delivery use TCP because
it verifies that data is delivered across the network accurately and in the proper sequence. TCP is
a reliable, connection-oriented, byte-stream protocol. Let's look at each of these characteristics in
more detail.

TCP provides reliability with a mechanism called Positive Acknowledgment with Re-transmission
(PAR). Simply stated, a system using PAR sends the data again unless it hears from the remote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(PAR). Simply stated, a system using PAR sends the data again unless it hears from the remote
system that the data arrived OK. The unit of data exchanged between cooperating TCP modules
is called a segment (see Figure 1-9). Each segment contains a checksum that the recipient uses
to verify that the data is undamaged. If the data segment is received undamaged, the receiver
sends a positive acknowledgment back to the sender. If the data segment is damaged, the
receiver discards it. After an appropriate timeout period, the sending TCP module re-transmits
any segment for which no positive acknowledgment has been received.

Figure 1-9. TCP segment format

TCP is connection-oriented. It establishes a logical end-to-end connection between the two
communicating hosts. Control information, called a handshake, is exchanged between the two
endpoints to establish a dialogue before data is transmitted. TCP indicates the control function of
a segment by setting the appropriate bit in the Flags field in word 4 of the segment header.

The type of handshake used by TCP is called a three-way handshake because three segments
are exchanged. Figure 1-10 shows the simplest form of the three-way handshake. Host A begins
the connection by sending host B a segment with the "Synchronize sequence numbers" (SYN) bit
set. This segment tells host B that A wishes to set up a connection, and it tells B what sequence
number host A will use as a starting number for its segments. (Sequence numbers are used to
keep data in the proper order.) Host B responds to A with a segment that has the
"Acknowledgment" (ACK) and SYN bits set. B's segment acknowledges the receipt of A's
segment, and informs A which sequence number host B will start with. Finally, host A sends a
segment that acknowledges receipt of B's segment, and transfers the first actual data.

Figure 1-10. Three-way handshake

After this exchange, host A's TCP has positive evidence that the remote TCP is alive and ready to
receive data. As soon as the connection is established, data can be transferred. When the
cooperating modules have concluded the data transfers, they will exchange a three-way
handshake with segments containing the "No more data from sender" bit (called the FIN bit) to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handshake with segments containing the "No more data from sender" bit (called the FIN bit) to
close the connection. It is the end-to-end exchange of data that provides the logical connection
between the two systems.

TCP views the data it sends as a continuous stream of bytes, not as independent packets.
Therefore, TCP takes care to maintain the sequence in which bytes are sent and received. The
Sequence Number and Acknowledgment Number fields in the TCP segment header keep track of
the bytes.

The TCP standard does not require that each system start numbering bytes with any specific
number; each system chooses the number it will use as a starting point. To keep track of the data
stream correctly, each end of the connection must know the other end's initial number. The two
ends of the connection synchronize byte-numbering systems by exchanging SYN segments
during the handshake. The Sequence Number field in the SYN segment contains the Initial
Sequence Number (ISN), which is the starting point for the byte-numbering system. For security
reasons the ISN should be a random number.

Each byte of data is numbered sequentially from the ISN, so the first real byte of data sent has a
Sequence Number of ISN+1. The Sequence Number in the header of a data segment identifies
the sequential position in the data stream of the first data byte in the segment. For example, if the
first byte in the data stream was sequence number 1 (ISN=0) and 4000 bytes of data have
already been transferred, then the first byte of data in the current segment is byte 4001, and the
Sequence Number would be 4001.

The Acknowledgment Segment (ACK) performs two functions: positive acknowledgment and flow
control. The acknowledgment tells the sender how much data has been received and how much
more the receiver can accept. The Acknowledgment Number is the sequence number of the next
byte the receiver expects to receive. The standard does not require an individual acknowledgment
for every packet. The acknowledgment number is a positive acknowledgment of all bytes up to
that number. For example, if the first byte sent was numbered 1 and 2000 bytes have been
successfully received, the Acknowledgment Number would be 2001.

The Window field contains the window, or the number of bytes the remote end is able to accept. If
the receiver is capable of accepting 6000 more bytes, the window would be 6000. The window
indicates to the sender that it can continue sending segments as long as the total number of bytes
that it sends is smaller than the window of bytes that the receiver can accept. The receiver
controls the flow of bytes from the sender by changing the size of the window. A zero window tells
the sender to cease transmission until it receives a non-zero window value.

Figure 1-11 shows a TCP data stream that starts with an Initial Sequence Number of 0. The
receiving system has received and acknowledged 2000 bytes, so the current Acknowledgment
Number is 2001. The receiver also has enough buffer space for another 6000 bytes, so it has
advertised a window of 6000. The sender is currently sending a segment of 1000 bytes starting
with Sequence Number 4001. The sender has received no acknowledgment for the bytes from
2001 on, but continues sending data as long as it is within the window. If the sender fills the
window and receives no acknowledgment of the data previously sent, it will, after an appropriate
timeout, send the data again starting from the first unacknowledged byte.

Figure 1-11. TCP data stream

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 1-11 re-transmission would start from byte 2001 if no further acknowledgments are
received. This procedure ensures that data is reliably received at the far end of the network.

TCP is also responsible for delivering data received from IP to the correct application. The
application that the data is bound for is identified by a 16-bit number called the port number. The
Source Port and Destination Port are contained in the first word of the segment header. Correctly
passing data to and from the Application Layer is an important part of what the Transport Layer
services do.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.7 Application Layer

At the top of the TCP/IP protocol architecture is the Application Layer. This layer includes all
processes that use the Transport Layer protocols to deliver data. There are many applications
protocols. Most provide user services, and new services are always being added to this layer.

The most widely known and implemented applications protocols are:

Telnet

The Network Terminal Protocol, which provides remote login over the network.

FTP

The File Transfer Protocol, which is used for interactive file transfer.

SMTP

The Simple Mail Transfer Protocol, which delivers electronic mail.

HTTP

The Hypertext Transfer Protocol, which delivers web pages over the network.

While HTTP, FTP, SMTP, and Telnet are the most widely implemented TCP/IP applications, you
will work with many others as both a user and a system administrator. Some other commonly
used TCP/IP applications are:

Domain Name System (DNS)

Also called name service, this application maps IP addresses to the names assigned to
network devices. DNS is discussed in detail in this book.

Open Shortest Path First (OSPF)

Routing is central to the way TCP/IP works. OSPF is used by network devices to exchange
routing information. Routing is also a major topic of this book.

Network File System (NFS)

This protocol allows files to be shared by various hosts on the network.

Some protocols, such as Telnet and FTP, can be used only if the user has some knowledge of
the network. Other protocols, like OSPF, run without the user even knowing that they exist. As the
system administrator, you are aware of all these applications and all the protocols in the other
TCP/IP layers. And you're responsible for configuring them!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.8 Summary

In this chapter we discussed the structure of TCP/IP, the protocol suite upon which the Internet is
built. We have seen that TCP/IP is a hierarchy of four layers: Applications, Transport, Internet,
and Network Access. We have examined the function of each of these layers. In the next chapter
we look at how the IP datagram moves through a network when data is delivered between hosts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Delivering the Data
In Chapter 1, we touched on the basic architecture and design of the TCP/IP protocols. From that
discussion, we know that TCP/IP is a hierarchy of four layers. In this chapter, we explore in finer
detail how data moves between the protocol layers and the systems on the network. We examine
the structure of Internet addresses, including how addresses route data to its final destination and
how address structure is locally redefined to create subnets. We also look at the protocol and port
numbers used to deliver data to the correct applications. These additional details move us from
an overview of TCP/IP to the specific implementation issues that affect your system's
configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Addressing, Routing, and Multiplexing

To deliver data between two Internet hosts, it is necessary to move the data across the network to
the correct host, and within that host to the correct user or process. TCP/IP uses three schemes
to accomplish these tasks:

Addressing

IP addresses, which uniquely identify every host on the network, deliver data to the correct
host.

Routing

Gateways deliver data to the correct network.

Multiplexing

Protocol and port numbers deliver data to the correct software module within the host.

Each of these functions—addressing between hosts, routing between networks, and multiplexing
between layers—is necessary to send data between two cooperating applications across the
Internet. Let's examine each of these functions in detail.

To illustrate these concepts and provide consistent examples, we'll use an imaginary corporate
network. Our imaginary company brings together authors to write computer books and conduct
training. Our company network is made up of several networks at our training facilities and
publishing office, as well as a connection to the Internet. We are responsible for managing the
Ethernet in the computing center. This network's structure, or topology, is shown in Figure 2-1.

Figure 2-1. Sample network topology

The icons in the figure represent computer systems. There are, of course, several other imaginary
systems on our imaginary network, but we'll use the hosts rodent (a workstation) and crab (a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

systems on our imaginary network, but we'll use the hosts rodent (a workstation) and crab (a
system that serves as a gateway) for most of our examples. The thick line is our computer center
Ethernet, and the oval is the local network that connects our various corporate networks. The
cloud is the Internet, and the numbers are IP addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 The IP Address

An IP address is a 32-bit value that uniquely identifies every device attached to a TCP/IP network.
IP addresses are usually written as four decimal numbers separated by dots (periods) in a format
called dotted decimal notation.[1] Each decimal number represents an 8-bit byte of the 32-bit
address, and each of the four numbers is in the range 0-255 (the decimal values possible in a
single byte).

[1] Addresses are occasionally written in other formats, e.g., as hexadecimal numbers. Whatever the notation, the
structure and meaning of the address are the same.

IP addresses are often called host addresses. While this is common usage, it is slightly
misleading. IP addresses are assigned to network interfaces, not to computer systems. A
gateway, such as crab (see Figure 2-1), has a different address for each network to which it is
connected. The gateway is known to other devices by the address associated with the network
that it shares with those devices. For example, rodent addresses crab as 172.16.12.1 while
external hosts address it as 10.104.0.19.

Systems can be addressed in three different ways. Individual systems are directly addressed by a
host address, which is called a unicast address . A unicast packet is addressed to one individual
host. Groups of systems can be addressed using a multicast address, e.g., 224.0.0.9. Routers
along the path from the source to the destination recognize the special address and route copies
of the packet to each member of the multicast group.[2] All systems on a network are addressed
using the broadcast address, e.g., 172.16.255.255. The broadcast address depends on the
broadcast capabilities of the underlying physical network.

[2] This is only partially true. Multicasting is not supported by every router. Sometimes it is necessary to tunnel through
routers and networks by encapsulating the multicast packet inside a unicast packet.

The broadcast address is a good example of the fact that not all network addresses or host
addresses can be assigned to a network device. Some host addresses are reserved for special
uses. On all networks, host numbers 0 and 255 are reserved. An IP address with all host bits set
to 1 is a broadcast address.[3] The broadcast address for network 172.16 is 172.16.255.255. A
datagram sent to this address is delivered to every individual host on network 172.16. An IP
address with all host bits set to 0 identifies the network itself. For example, 10.0.0.0 refers to
network 10, and 172.16.0.0 refers to network 172.16. Addresses in this form are used in routing
tables to refer to entire networks.

[3] There are configuration options that affect the default broadcast address. Chapter 5 discusses these options.

Network addresses with a first byte value greater than 223 cannot be assigned to a physical
network, because those addresses are reserved for special use. There are two other network
addresses that are used only for special purposes: network 0.0.0.0 designates the default route
and network 127.0.0.0 is the loopback address. The default route is used to simplify the routing
information that IP must handle. The loopback address simplifies network applications by allowing
the local host to be addressed in the same manner as a remote host. These special network
addresses play an important part when configuring a host, but these addresses are not assigned
to devices on real networks. Despite these few exceptions, most addresses are assigned to
physical devices and are used by IP to deliver data to those devices.

The Internet Protocol moves data between hosts in the form of datagrams. Each datagram is
delivered to the address contained in the Destination Address (word 5) of the datagram's header.
The Destination Address is a standard 32-bit IP address, which contains sufficient information to
uniquely identify a network and a specific host on that network.

2.2.1 Address Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An IP address contains a network part and a host part, but the format of these parts is not the
same in every IP address. The number of address bits used to identify the network and the
number used to identify the host vary according to the prefix length of the address. The prefix
length is determined by the address bit mask.

An address bit mask works like this: if a bit is on in the mask, that equivalent bit in the address is
interpreted as a network bit; if a bit in the mask is off, the bit belongs to the host part of the
address. For example, if address 172.22.12.4 is given the network mask 255.255.255.0, which
has 24 bits on and 8 bits off, the first 24 bits are the network number and the last 8 bits are the
host address. Combining the address and the mask tells us that this is the address of host 4 on
network 172.22.12.

Specifying both the address and the mask in dotted decimal notation is cumbersome when writing
out addresses. A shorthand notation is available for writing an address with its associated
address mask. Instead of writing network 172.31.26.32 with a mask of 255.255.255.224, we can
write 172.31.26.32/27. The format of this notation is address/prefix-length, where
prefix-length is the number of bits in the network portion of the address. Without this
notation, the address 172.31.26.32 could easily be misinterpreted.

Organizations usually obtain official IP addresses by purchasing a block of addresses from their
Internet service provider. The ISP normally assigns a single organization a continuous block of
addresses that is appropriate for the needs of the organization. For example, a moderately large
business might purchase 192.168.16.0/20 while a small business might buy 192.168.32.0/24.
Because the prefix shows the length of the network portion of the address, the number of host
addresses that are available to an organization (the host portion of the address) is determined by
subtracting the prefix from the total number of bits in an address, which is 32. Thus a prefix of 20
leaves 12 bits that are available to be locally assigned. This is called a "12-bit block" of
addresses. A prefix of 24 creates an "8-bit block." Of the two sample address blocks, the first is a
12-bit block that encompasses 4,096 addresses from 192.168.16.0 to 192.168.31.255, and the
second is an 8-bit block that includes the 256 addresses from 192.168.32.0 to 192.168.32.255.

Each of these address blocks appears to the outside world to be a single "network" address. Thus
external routers have one route to the block 192.168.16.0/20 and one route to the block
192.168.32.0/24, regardless of the size of the address block. Internally, however, the organization
may have several separate physical networks within the address block. The flexibility of address
masks means that service providers can assign arbitrary length blocks of addresses to their
customers, and the customers can subdivide those address blocks using different length masks.

2.2.2 Subnets

The structure of an IP address can be locally modified by using host address bits as additional
network address bits. Essentially, the "dividing line" between network address bits and host
address bits is moved, creating additional networks but reducing the maximum number of hosts
that can belong to each network. These newly designated network bits define an address block
within the larger address block, which is called a subnet.

Organizations usually decide to subnet in order to overcome topological or organizational
problems. Subnetting allows decentralized management of host addressing. With the standard
addressing scheme, a central administrator is responsible for managing host addresses for the
entire network. By subnetting, the administrator can delegate address assignment to smaller
organizations within the overall organization—which may be a political expedient, if not a
technical requirement. If you don't want to deal with the data processing department, for example,
assign them their own subnet and let them manage it themselves.

Subnetting can also be used to overcome hardware differences and distance limitations. IP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subnetting can also be used to overcome hardware differences and distance limitations. IP
routers can link dissimilar physical networks together, but only if each physical network has its
own unique network address. Subnetting divides a single address block into many unique subnet
addresses, so that each physical network can have its own unique address.

A subnet is defined by changing the bit mask of the IP address. A subnet mask functions in the
same way as a normal address mask: an "on" bit is interpreted as a network bit; an "off" bit
belongs to the host part of the address. The difference is that a subnet mask is only used locally.
On the outside, the address is still interpreted using the address mask known to the outside world.

Assume you have a small real estate business that has been assigned the address block
192.168.32.0/24. The bit mask associated with that address block is 255.255.255.0, and the block
contains 256 addresses. Further, assume that your business has 10 offices, each with a half-
dozen computers, and that you want to allocate some addresses to each office and keep some
for future expansion. You can subdivide the 256 address block with a subnet mask that extends
the network portion of the address by a few additional bits.

To subdivide 192.168.32.0/24 into 16 subnets, use the mask 255.255.255.240, i.e.,
192.168.32.0/28. The first three bytes contain the original network address block; the fourth byte
is divided between the subnet address and the address of the host on that subnet. Applying this
mask defines the four high-order bits of the fourth byte as the subnet part of the address, and the
remaining four bits—the last four bits of the fourth byte—as the host portion of the address. This
creates 16 subnets that each contain 14 host addresses, which is better suited to the network
topology of your small real estate business. Table 2-1 shows the subnets and host addresses
produced by applying this subnet mask to network address 192.168.32.0/24.

Table 2-1. Effects of a subnet mask
Network number Host address range Broadcast address

192.168.32.0 192.168.32.1 - 192.168.32.14 192.168.32.15

192.168.32.16 192.168.32.17 - 192.168.32.30 192.168.32.31

192.168.32.32 192.168.32.33 - 192.168.32.46 192.168.32.47

192.168.32.48 192.168.32.49 - 192.168.32.62 192.168.32.63

192.168.32.64 192.168.32.65 - 192.168.32.78 192.168.32.79

192.168.32.80 192.168.32.81 - 192.168.32.94 192.168.32.95

192.168.32.96 192.168.32.97 - 192.168.32.110 192.168.32.111

192.168.32.112 192.168.32.113 - 192.168.32.126 192.168.32.127

192.168.32.128 192.168.32.129 - 192.168.32.142 192.168.32.143

192.168.32.144 192.168.32.145 - 192.168.32.158 192.168.32.159

192.168.32.160 192.168.32.161 - 192.168.32.174 192.168.32.175

192.168.32.176 192.168.32.177 - 192.168.32.190 192.168.32.191

192.168.32.192 192.168.32.193 - 192.168.32.206 192.168.32.207

192.168.32.208 192.168.32.209 - 192.168.32.222 192.168.32.223

192.168.32.224 192.168.32.225 - 192.168.32.238 192.168.32.239

192.168.32.240 192.168.32.241 - 192.168.32.254 192.168.32.255

In Table 2-1, the first row describes a subnet with a subnet number that is all 0s (the first four bits
of the fourth byte are all set to 0). The last row in the table describes a subnet with a subnet
number that is all 1s (the first four bits of the fourth byte are all set to 1). Originally, the RFCs
implied that you should not use subnet numbers of all 0s or all 1s. However, RFC 1812,
Requirements for IP Version 4 Routers, makes it clear that subnets of all 0s and all 1s are legal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Requirements for IP Version 4 Routers, makes it clear that subnets of all 0s and all 1s are legal
and should be supported by all routers. Some older routers did not allow the use of these
addresses despite the newer RFCs. Today's router software and hardware should make it
possible for you to reliably use all subnet addresses.

You don't have to manually calculate a table like this to know what subnets and host addresses
are produced by a subnet mask. The calculations have already been done for you. RFC 1878,
Variable Length Subnet Table For IPv4, lists all possible subnet masks and the valid addresses
they produce.

RFC 1878 describes all 32 prefix values. But little documentation is needed because the prefix is
easy to understand and remember. Writing 10.104.0.19 as 10.104.0.19/8 shows that this address
has 8 bits for the network number and therefore 24 bits for the host number. Unfortunately, things
are not always this neat. Sometimes the address is not given an explicit address mask, and you
need to know how to determine the natural mask that an address will be assigned by default.

2.2.3 The Natural Mask

Originally, the IP address space was divided into a few fixed-length structures called address
classes. The three main address classes were class A, class B, and class C. IP software
determined the class, and therefore the structure, of an address by examining its first few bits.
Address classes are no longer used, but the same rules that were used to determine the address
class are now used to create the default address mask, which is called the natural mask . These
rules are as follows:

If the first bit of an IP address is 0, the default mask is 8 bits long (prefix 8). This is the
same as the old class A network address format. The first 8 bits identify the network, and
the last 24 bits identify the host.

If the first 2 bits of the address are 1 0, the default mask is 16 bits long (prefix 16), which is
the same as the old class B network address format. The first 16 bits identify the network,
and the last 16 bits identify the host.

If the first 3 bits of the address are 1 1 0, the default mask is 24 bits long (prefix 24). This
mask is the same as the old class C network address format. The first 24 bits are the
network address, and the last 8 bits identify the host.

If the first 4 bits of the address are 1 1 1 0, it is a multicast address. These addresses were
sometimes called class D addresses, but they don't really refer to specific networks.
Multicast addresses are used to address groups of computers all at one time. They identify
a group of computers that share a common application, such as a videoconference, as
opposed to a group of computers that share a common network. All bits in a multicast
address are significant for routing, so the default mask is 32 bits long (prefix 32).

When an IP address is written in dotted decimal format, it is sometimes easier to think of the
address as four 8-bit bytes instead of as a 32-bit value. We can look at the address as composed
of full bytes of network address and full bytes of host address when using the natural mask,
because the three default masks all create prefix lengths that are multiples of 8. A simple way to
determine the default mask is to look at the first byte of the address. If the value of the first byte is:

Less than 128, the default address mask is 8 bits long; the first byte is the network number,
and the next three bytes are the host address.

From 128 to 191, the default address mask is 16 bits long; the first two bytes identify the
network, and the last two bytes identify the host.

From 192 to 223, the default address mask is 24 bits long; the first three bytes are the
network address, and the last byte is the host number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From 224 to 239, the address is multicast. The entire address identifies a specific multicast
group; therefore the default mask is 32 bits.

Greater than 239, the address is reserved. We can ignore reserved addresses.

Figure 2-2 illustrates the two techniques for determining the default address structure. The first
address is 10.104.0.19. The first bit of this address is 0; therefore, the first 8 bits define the
network and the last 24 bits define the host. Explained in a byte-oriented manner, the first byte is
less than 128, so the address is interpreted as host 104.0.19 on network 10. One byte specifies
the network and three bytes specify the host.

Figure 2-2. Default IP address formats

The second address is 172.16.12.1. The two high-order bits are 1 0, meaning that 16 bits define
the network and 16 bits define the host. Viewed in a byte-oriented way, the first byte falls between
128 and 191, so the address refers to host 12.1 on network 172.16. Two bytes identify the
network and two identify the host.

Finally, in the address 192.168.16.1, the three high-order bits are 1 1 0, indicating that 24 bits
represent the network and 8 bits represent the host. The first byte of this address is in the range
from 192 to 223, so this is the address of host 1 on network 192.168.16—three network bytes and
one host byte.

Evaluating addresses according to the class rules discussed above limits the length of network
numbers to 8, 16, or 24 bits—1, 2, or 3 bytes. The IP address, however, is not really byte-
oriented. It is 32 contiguous bits. The address bit mask provides a flexible way to define the
network and host portions of an address. IP uses the network portion of the address to route the
datagram between networks. The full address, including the host information, is used to identify
an individual host. Because of the dual role of IP addresses, the flexibility of address masks not
only makes more addresses available for use, but also has a positive impact on routing.

2.2.4 CIDR Blocks and Route Aggregation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IP address, which provides universal addressing across all of the networks of the Internet, is
one of the great strengths of the TCP/IP protocol suite. However, the original class structure of
the IP address had weaknesses. The TCP/IP designers did not envision the enormous scale of
today's network. When TCP/IP was being designed, networking was limited to large organizations
that could afford substantial computer systems. The idea of a powerful Unix system on every
desktop did not exist. At that time, a 32-bit address seemed so large that it was divided into
classes to reduce the processing load on routers, even though dividing the address into classes
sharply reduced the number of host addresses actually available for use. For example, assigning
a large network a single class B address instead of six class C addresses reduced the load on the
router because the router needed to keep only one route for that entire organization. However, an
organization that was assigned the class B address probably did not have 64,000 computers, so
most of the host addresses available to the organization were never used.

The class-structured address design was critically strained by the rapid growth of the Internet. At
one point it appeared that all class B addresses might be rapidly exhausted. The rapid depletion
of the class B addresses showed that three primary address classes were not enough: class A
was much too large and class C was much too small. Even a class B address was too large for
many networks, but was used because it was better than the alternatives.

The obvious solution to the class B address crisis was to force organizations to use multiple class
C addresses. There were millions of these addresses available and they were in no immediate
danger of depletion. As is often the case, the obvious solution was not as simple as it seemed.
Each class C address requires its own entry within the routing table. Assigning thousands or
millions of class C addresses would cause the routing table to grow so rapidly that the routers
would soon be overwhelmed. The solution required the new way of looking at addresses that
address masks provide; it also required a new way of assigning addresses.

Originally network addresses were assigned in more or less sequential order as they were
requested. This worked fine when the network was small and centralized. However, it did not take
network topology into account. Thus, only random chance determined if the same intermediate
routers would be used to reach network 195.4.12.0 and network 195.4.13.0, which makes it
difficult to reduce the size of the routing table. Addresses can be aggregated only if they are
contiguous numbers and are reachable through the same route. For example, if addresses are
contiguous for one service provider, a single route can be created for that aggregation because
that service provider will have a limited number of connections to the Internet. But if one network
address is in France and the next contiguous address is in Australia, creating a consolidated
route for these addresses is not possible.

Today, large, contiguous blocks of addresses are assigned to large network service providers in a
manner that better reflects the topology of the network. The service providers then allocate
chunks of these address blocks to the organizations to which they provide network services.
Because the assignment of addresses reflects the topology of the network, it permits route
aggregation. Under this scheme, we know that network 195.4.12.0 and network 195.4.13.0 are
reachable through the same intermediate routers. In fact, both of these addresses are in the
range of the addresses assigned to Europe, 194.0.0.0 to 195.255.255.255.

Assigning addresses that reflect the topology of the network enables route aggregation but does
not implement it. As long as network 195.4.12.0 and network 195.4.13.0 were interpreted as
separate class C addresses, they still required separate entries in the routing table. The
development of address masks not only increased the usable address space, but it improved
routing.

The use of an address mask instead of the old address classes to determine the destination
network is called Classless Inter-Domain Routing (CIDR).[4] CIDR requires modifications to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

network is called Classless Inter-Domain Routing (CIDR).[4] CIDR requires modifications to the
routers and routing protocols. The protocols need to distribute, along with the destination
addresses, address masks that define how the addresses are interpreted. The routers and hosts
need to know how to interpret these addresses as "classless" addresses and how to apply the bit
mask that accompanies the address. All new operating systems and routing protocols support
address masks.

[4] CIDR is pronounced "cider."

CIDR was intended as an interim solution, but it has proved much more durable than its
designers imagined. CIDR has provided address and routing relief for many years and is capable
of providing it for many more years to come. The long-term solution for address depletion is to
replace the current addressing scheme with a new one. In the TCP/IP protocol suite, addressing
is defined by the IP protocol. Therefore, to define a new address structure, the Internet
Engineering Task Force (IETF) created a new version of IP called IPv6.

2.2.5 IPv6

IPv6 is an improvement on the IP protocol based on 20 years of operational experience. The
original motivation for the new protocol was the threat of address depletion. IPv6 has a very large
128-bit address, so address depletion is not an issue. The large address also makes it possible to
use a hierarchical address structure to reduce the burden on routers while still maintaining more
than enough addresses for future network growth. But large addresses are only one of the
benefits of the new protocol. Other benefits of IPv6 are:

Improved security built into the protocol

Simplified, fixed-length, word-aligned headers to speed header processing and reduce
overhead

Improved techniques for handling header options

IPv6 has several good features, but it is still not widely used. This is partly because
enhancements to IPv4, improvements in hardware performance, and changes in the way that
networks are configured have reduced the demand for the new features of IPv6.

A critical shortage of addresses did not materialize for three reasons:

CIDR makes the assignment of addresses more flexible, which in turn makes more
addresses available and permits aggregation to reduce the burden on routers.

Private addresses and NAT have greatly reduced the demand for official addresses. Many
organizations prefer to use private addresses for all systems on their internal networks
because private addresses reduce the administrative burden and improve security.

Permanent, fixed address assignment is less common than dynamic address assignment.
The majority of systems use dynamic addresses temporarily assigned by the configuration
protocol DHCP.

The creation of the IPsec standards for IPv4 lessened the need for the security enhancements of
IPv6. In fact, many of the security tools and features available for IPv4 systems are not being fully
utilized, indicating that the demand for tools that secure the link may have been overestimated.

IPv6 eliminates hop-by-hop segmentation, has a more efficient header design, and features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IPv6 eliminates hop-by-hop segmentation, has a more efficient header design, and features
enhanced option processing. These things make it more efficient to process IPv6 packets than to
handle IPv4 packets. However, for the vast majority of systems, this increased efficiency is not
needed because processing IP datagrams is a very minor task. Most systems are at the edge of
the network and handle relatively few communications packets. Processor speed and memory
have increased enormously while hardware prices have fallen. Most managers would rather buy
more hardware using the proven IPv4 protocol than risk implementing the new IPv6 protocol just
to save a few machine cycles. Only those systems located near the core of the network would
truly benefit from this efficiency, and although important, those systems are relatively few in
number.

All of these things have worked together to lessen the demand for IPv6. This lack of demand has
limited the number of organizations that have adopted IPv6 as their primary communications
protocol, and a large user community is the one thing that a protocol needs to be truly successful.
We use communications protocols to communicate with other people. If there are not enough
people using the protocol, we don't feel the need to use it. IPv6 is still in the early-adopter phase.
Most organizations do not use IPv6 at all, and many that do use it only for experimental
purposes.[5] Between organizations, most IPv6 communications are encapsulated inside IPv4
datagrams and sent over the Internet inside IPv4 tunnels. It will be some time before it is the
primary protocol of operational networks.

[5] Both Solaris and Linux include support for IPv6 if you wish to experiment with it.

If you run an operational network, you should not be overly concerned with IPv6. The current
generation of TCP/IP (IPv4), with the enhancements that CIDR and other extensions provide,
should be more than adequate for your current network needs. On your network and the Internet,
you will use IPv4 and 32-bit IP addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Internet Routing Architecture

Chapter 1 described the evolution of the Internet architecture over the years. Along with these
architectural changes have come changes in the way that routing information is disseminated
within the network.

In the original Internet structure, there was a hierarchy of gateways. This hierarchy reflected the
fact that the Internet was built upon the existing ARPAnet. When the Internet was created, the
ARPAnet was the backbone of the network: a central delivery medium to carry long-distance
traffic. This central system was called the core, and the centrally managed gateways that
interconnected it were called the core gateways.

In that hierarchical structure, routing information about all of the networks on the Internet was
passed into the core gateways. The core gateways processed the information and then
exchanged it among themselves using the Gateway to Gateway Protocol (GGP). The processed
routing information was then passed back out to the external gateways. The core gateways
maintained accurate routing information for the entire Internet.

Using the hierarchical core router model to distribute routing information has a major weakness:
every route must be processed by the core. This places a tremendous processing burden on the
core, and as the Internet grew larger the burden increased. In network-speak, we say that this
routing model does not "scale well." For this reason, a new model emerged.

Even in the days of a single Internet core, groups of independent networks called autonomous
systems existed outside of the core. The term autonomous system (AS) has a formal meaning in
TCP/IP routing. An autonomous system is not merely an independent network. It is a collection of
networks and gateways with its own internal mechanism for collecting routing information and
passing it to other independent network systems. The routing information passed to the other
network systems is called reachability information. Reachability information simply says which
networks can be reached through that autonomous system. In the days of a single Internet core,
autonomous systems passed reachability information into the core for processing. The Exterior
Gateway Protocol (EGP) was the protocol used to pass reachability information between
autonomous systems and into the core.

The new routing model is based on co-equal collections of autonomous systems called routing
domains. Routing domains exchange routing information with other domains using Border
Gateway Protocol (BGP). Each routing domain processes the information it receives from other
domains. Unlike the hierarchical model, this model does not depend on a single core system to
choose the "best" routes. Each routing domain does this processing for itself; therefore, this
model is more expandable. Figure 2-3 represents this model with three intersecting circles. Each
circle is a routing domain. The overlapping areas are border areas, where routing information is
shared. The domains share information but do not rely on any one system to provide all routing
information.

Figure 2-3. Routing domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The problem with this model is: how are "best" routes determined in a global network if there is no
central routing authority, like the core, that is trusted to determine the "best" routes? In the days of
the NSFNET, the policy routing database (PRDB) was used to determine whether the reachability
information advertised by an autonomous system was valid. But now, even the NSFNET does not
play a central role.

To fill this void, NSF created the Routing Arbiter (RA) servers when it created the Network Access
Points (NAPs) that provide interconnection points for the various service provider networks. A
route arbiter is located at each NAP. The server provides access to the Routing Arbiter Database
(RADB), which replaced the PRDB. ISPs can query servers to validate the reachability information
advertised by an autonomous system.

The RADB is only part of the Internet Routing Registry (IRR). As befits a distributed routing
architecture, there are multiple organizations that validate and register routing information.
Europeans were the pioneers in this. The Reseaux IP Europeens (RIPE) Network Control Center
(NCC) provides the routing registry for European IP networks. Big network carriers provide
registries for their customers. All of the registries share a common format based on the RIPE-181
standard.

Many ISPs do not use the route servers. Instead they depend on formal and informal bilateral
agreements, where two ISPs get together and decide what reachability information each will
accept from the other. They create, in effect, private routing policies. Small ISPs have criticized
the routing policies of the tier-one providers, claiming that they limit competition. In response,
most tier-one providers have promised to make the policies public, which should clarify the basis
for the current architecture and may even spark more changes.

Creating an effective routing architecture continues to be a major challenge for the Internet, and
the routing architecture will certainly evolve over time. No matter how it is derived, the routing
information eventually winds up in your local gateway, where it is used by IP to make routing
decisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 The Routing Table

Gateways route data between networks, but all network devices, hosts as well as gateways, must
make routing decisions. For most hosts, the routing decisions are simple:

If the destination host is on the local network, the data is delivered to the destination host.

If the destination host is on a remote network, the data is forwarded to a local gateway.

IP routing decisions are simply table lookups. Packets are routed toward their destinations as
directed by the routing table (also called the forwarding table). The routing table maps destinations
to the router and network interface that IP must use to reach that destination. Examining the
routing table on a Linux system shows this.

On a Linux system, use the route command with the -n option to display the routing table.[6] The
-n option prevents route from converting IP addresses to hostnames, which gives a clearer
display. Here is a routing table from a sample Red Hat system:

[6] The netstat command is used to examine the routing table on Solaris 8 systems. A Solaris example is covered
later in this chapter.

route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.16.55.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

172.16.50.0 172.16.55.36 255.255.255.0 UG 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 172.16.55.1 0.0.0.0 UG 0 0 0 eth0

On a Linux system, the route -n command displays the routing table with the following fields:

Destination

The value against which the destination IP address is matched.

Gateway

The router to use to reach the specified destination.

Genmask

The address mask used to match an IP address to the value shown in the Destination field.

Flags

Certain characteristics of this route. The possible Linux flag values are:[7]

[7] The flags R, M, C, I, and ! are specific to Linux. The other flags are used on most Unix systems.

U

Indicates that the route is up and operational.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

H

Indicates that this is a route to a specific host (most routes are to networks).

G

Indicates that the route uses an external gateway. The system's network interfaces provide
routes to directly connected networks. All other routes use external gateways. Directly
connected networks do not have the G flag set; all other routes do.

R

Indicates a route that was installed, probably by a dynamic routing protocol running on this
system, using the reinstate option.

D

Indicates that this route was added because of an ICMP Redirect Message. When a system
learns of a route via an ICMP Redirect, it adds the route to its routing table so that additional
packets bound for that destination will not need to be redirected. The system uses the D flag
to mark these routes.

M

Indicates a route that was modified, probably by a dynamic routing protocol running on this
system, using the mod option.

A

Indicates a cached route that has an associated entry in the ARP table.

C

Indicates that this route came from the kernel routing cache. Most systems use two routing
tables: the Forwarding Information Base (FIB), which is the table we are interested in
because it is used for the routing decision, and the kernel routing cache, which lists the
source and destination of recently used routes. This flag is documented, but I have never
seen the C flag in a routing table listing, even when listing the routing cache.

L

Indicates that the destination of this route is one of the addresses of this computer. These
"local routes" are found only in the routing cache.

B

Indicates a route whose destination is a broadcast address. These "broadcast routes" are
found only in the routing cache. Solaris assigns the flag to both broadcast addresses and
network addresses; i.e., both 172.16.255.255 and 172.16.0.0 are given the B flag by Solaris
systems that live on network 172.16.0.0/16.

I

Indicates a route that uses the loopback interface for some purpose other than addressing
the loopback network. These "internal routes" are found only in the routing cache.

!

Indicates that datagrams bound for this destination will be rejected. Linux permits you to
manually install "negative" routes. These are routes that explicitly block data bound for a
specific destination. This is Linux-specific and rarely used, but it is a possible flag setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metric

The "cost" of the route. The metric is used to sort duplicate routes if any appear in the table.
Beyond this, a dynamic routing protocol is required to make use of the metric.

Ref

The number of times the route has been referenced to establish a connection. This value is
not used by Linux systems.

Use

The number of times this route was looked up by IP.

Iface

The name of the network interface[8] used by this route.

[8] The network interface is the network access hardware and software that IP uses to communicate with the
physical network. See Chapter 6 for details.

Each entry in the routing table starts with a destination value. The destination value is the key
against which the IP address is matched to determine if this is the correct route to use to reach the
IP address. The destination value is usually called the "destination network," although it does not
need to be a network address. The destination value can be a host address, a multicast address,
an address block that covers an aggregation of many networks, or a special value for the default
route or loopback address. In all cases, however, the Destination field contains the value against
which the destination address from the IP packet is matched to determine if IP should deliver the
datagram using this route.

The Genmask field is the bit mask that IP applies to the destination address from the packet to see
if the address matches the destination value in the table. If a bit is on in the bit mask, the
corresponding bit in the destination address is significant for matching the address. Thus, the
address 172.16.50.183 would match the second entry in the sample table because ANDing the
address with 255.55.255.0 yields 172.16.50.0.

When an address matches an entry in the table, the Gateway field tells IP how to reach the
specified destination. If the Gateway field contains the IP address of a router, the router is used. If
the Gateway field contains all 0s (0.0.0.0 when route is run with -n) or an asterisk (* when route
is run without -n), the destination network is a directly connected network and the "gateway" is the
computer's network interface. The last field displayed for each table entry is the network interface
used for the route. In the example, it is either the first Ethernet interface (eth0) or the loopback
interface (lo). The destination, gateway, mask, and interface define the route.

The remaining four fields (Ref, Use, Flags, and Metric) display supporting information about the
route. These informational fields are of only marginal value. Some systems keep an accurate count
in the Ref field; others, such as Linux, don't really use it. Linux uses the Use field to count the
number of times a route needed to be looked up because it was not in the routing cache when IP
needed it. Some other systems show the number of packets transmitted via the route in the Use
field. The Flags field displays information that is often obvious even without the flags: every route
has the U flag set because every route in the routing table is up by definition, and looking at the
Gateway field tells you whether or not an external gateway is used without looking for the G flag.
The Metric value is used only if you run some version of the Routing Information Protocol (RIP) on
your system. Don't be distracted by this information. The heart of the routing table is the route,
which is composed of the destination, the mask, the gateway, and the interface.

IP uses the information from the routing table (the forwarding table) to construct the routes used
for active connections. The routes associated with active connections are stored in the routing
cache. On Linux systems, the routing cache can be examined by adding the -C argument to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cache. On Linux systems, the routing cache can be examined by adding the -C argument to the
route command line:

$ route -Cn
Kernel IP routing cache

Source Destination Gateway Flags Metric Ref Use Iface

127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo

192.203.230.10 172.16.55.3 172.16.55.3 l 0 0 0 lo

172.16.55.1 172.16.55.255 172.16.55.255 ibl 0 0 243 lo

172.16.55.2 172.16.55.255 172.16.55.255 ibl 0 0 15 lo

172.16.55.3 192.203.230.10 172.16.55.1 0 0 0 eth0

127.0.0.1 127.0.0.1 127.0.0.1 l 0 0 0 lo

172.16.55.3 132.163.4.9 172.16.55.1 0 0 0 eth0

172.16.55.2 172.16.55.3 172.16.55.3 il 0 0 149 lo

172.16.55.3 172.16.55.2 172.16.55.2 0 1 0 eth0

132.163.4.9 172.16.55.3 172.16.55.3 l 0 0 0 lo

The routing cache is different from the routing table because the cache shows established routes.
The routing table is used to make routing decisions; the routing cache is used after the decision is
made. The routing cache shows the source and destination of a network connection and the
gateway and interface used to make that connection.

Linux provides a good example for showing the contents of the routing table because the Linux
route command displays the table so clearly. On Solaris systems, the route command has a
very different syntax. When running Solaris, display the routing table's contents with the netstat
-nr command. The -r option tells netstat to display the routing table, and the -n option tells
netstat to display the table in numeric form.[9]

[9] Linux incorporates the address mask information in the routing table display. Solaris 8 supports address masks; it just
doesn't show them when displaying the routing table.

% netstat -nr
Routing Table: IPv4

Destination Gateway Flags Ref Use Interface

----------- ----------- ----- ---- ----- ---------

127.0.0.1 127.0.0.1 UH 1 298 lo0

default 172.16.12.1 UG 2 50360

172.16.12.0 172.16.12.2 U 40 111379 dnet0

172.16.2.0 172.16.12.3 UG 4 1179

172.16.1.0 172.16.12.3 UG 10 1113

172.16.3.0 172.16.12.3 UG 2 1379

172.16.4.0 172.16.12.3 UG 4 1119

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

172.16.4.0 172.16.12.3 UG 4 1119

The first table entry is the loopback route for the local host. This is the loopback address
mentioned earlier as a reserved network number. Because every system uses the loopback route
to send datagrams to itself, an entry for the loopback interface is in every host's routing table. The
H flag is set because Solaris creates a route to a specific host (127.0.0.1), not a route to an entire
network (127.0.0.0). We'll see the loopback facility again when we discuss kernel configuration and
the ifconfig command. For now, however, our real interest is in external routes.

Another unique entry in this routing table is the one with the word "default" in the destination field.
This entry is for the default route, and the gateway specified in this entry is the default gateway.
The default route is the other reserved network number mentioned earlier: 0.0.0.0. The default
gateway is used whenever there is no specific route in the table for a destination network address.
For example, this routing table has no entry for network 192.168.16.0. If IP receives any
datagrams addressed to this network, it will send them via the default gateway 172.16.12.1.

All of the gateways that appear in the routing table are on networks directly connected to the local
system. In the sample shown above, this means that the gateway addresses all begin with
172.16.12 regardless of the destination address. This is the only network to which this sample host
is directly attached, and therefore it is the only network to which it can directly deliver data. The
gateways that a host uses to reach the rest of the Internet must be on its subnet.

In Figure 2-4, the IP layer of two hosts and a gateway on our imaginary network is replaced by a
small piece of a routing table, showing destination networks and the gateways used to reach those
destinations. Assume that the address mask used for network 172.16.0.0 is 255.255.255.0. When
the source host (172.16.12.2) sends data to the destination host (172.16.1.2), it applies the
address mask to determine that it should look for the destination network address 172.16.1.0 in the
routing table. The routing table in the source host shows that data bound for 172.16.1.0 is sent to
gateway 172.16.12.3. The source host forwards the packet to the gateway. The gateway does the
same steps and looks up the destination address in its routing table. Gateway 172.16.12.3 then
makes direct delivery through its 172.16.1.5 interface. Examining the routing tables in Figure 2-4
shows that all systems list only gateways on networks to which they are directly connected. This is
illustrated by the fact that 172.16.12.1 is the default gateway for both 172.16.12.2 and 172.16.12.3,
but because 172.16.1.2 cannot reach network 172.16.12.0 directly, it has a different default route.

Figure 2-4. Table-based routing

A routing table does not contain end-to-end routes. A route points only to the next gateway, called
the next hop, along the path to the destination network.[10] The host relies on the local gateway to
deliver the data, and the gateway relies on other gateways. As a datagram moves from one
gateway to another, it should eventually reach one that is directly connected to its destination
network. It is this last gateway that finally delivers the data to the destination host.

[10] As we'll see in Chapter 7, some routing protocols, such as OSPF and BGP, obtain end-to-end routing information.
Nevertheless, the packet is still passed to the next-hop router.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IP uses the network portion of the address to route the datagram between networks. The full
address, including the host information, is used to make final delivery when the datagram reaches
the destination network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 Address Resolution

The IP address and the routing table direct a datagram to a specific physical network, but when
data travels across a network, it must obey the physical layer protocols used by that network. The
physical networks underlying the TCP/IP network do not understand IP addressing. Physical
networks have their own addressing schemes, and there are as many different addressing
schemes as there are different types of physical networks. One task of the network access
protocols is to map IP addresses to physical network addresses.

The most common example of this Network Access Layer function is the translation of IP
addresses to Ethernet addresses. The protocol that performs this function is Address Resolution
Protocol (ARP), which is defined in RFC 826.

The ARP software maintains a table of translations between IP addresses and Ethernet
addresses. This table is built dynamically. When ARP receives a request to translate an IP
address, it checks for the address in its table. If the address is found, it returns the Ethernet
address to the requesting software. If the address is not found, ARP broadcasts a packet to every
host on the Ethernet. The packet contains the IP address for which an Ethernet address is
sought. If a receiving host identifies the IP address as its own, it responds by sending its Ethernet
address back to the requesting host. The response is then cached in the ARP table.

The arp command displays the contents of the ARP table. To display the entire ARP table, use
the arp -a command. Individual entries can be displayed by specifying a hostname on the arp
command line. For example, to check the entry for rodent in the ARP table on crab, enter:

% arp rodent
rodent (172.16.12.2) at 0:50:ba:3f:c2:5e

Checking all entries in the table with the -a option produces the following output:

% arp -a

Net to Media Table: IPv4

Device IP Address Mask Flags Phys Addr

------ -------------------- --------------- ----- ---------------

dnet0 rodent 255.255.255.255 00:50:ba:3f:c2:5e

dnet0 crab 255.255.255.255 SP 00:00:c0:dd:d4:da

dnet0 224.0.0.0 240.0.0.0 SM 01:00:5e:00:00:00

This table tells you that when crab forwards datagrams addressed to rodent, it puts those
datagrams into Ethernet frames and sends them to Ethernet address 00:50:ba:3f:c2:5e.

One of the entries in the sample table (rodent) was added dynamically as a result of queries by
crab. Two of the entries (crab and 224.0.0.0) are static entries added as a result of the
configuration of crab. We know this because both these entries have an S, for "static," in the
Flags field. The special 224.0.0.0 entry is for all multicast addresses. The M flag means
"mapping" and is used only for the multicast entry. On a broadcast medium like Ethernet, the
Ethernet broadcast address is used to make final delivery to a multicast group.

The P flag on the crab entry means that this entry will be "published." The "publish" flag indicates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The P flag on the crab entry means that this entry will be "published." The "publish" flag indicates
that when an ARP query is received for the IP address of crab, this system answers it with the
Ethernet address 00:00:c0:dd:d4:da. This is logical because this is the ARP table on crab.
However, it is also possible to publish Ethernet addresses for other hosts, not just for the local
host. Answering ARP queries for other computers is called proxy ARP.

For example, assume that 24seven is the server for a remote system named clock connected via
a dial-up telephone line. Instead of setting up routing to the remote system, the administrator of
24seven could place a static, published entry in the ARP table with the IP address of clock and
the Ethernet address of 24seven. Now when 24seven hears an ARP query for the IP address of
clock, it answers with its own Ethernet address. The other systems on the network therefore send
packets destined for clock to 24seven. 24seven then forwards the packets on to clock over the
telephone line. Proxy ARP is used to answer queries for systems that can't answer for
themselves.

ARP tables normally don't require any attention because they are built automatically by the ARP
protocol, which is very stable. However, if things go wrong, the ARP table can be manually
adjusted. See Section 13.4.2 in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 Protocols, Ports, and Sockets

Once data is routed through the network and delivered to a specific host, it must be delivered to the
correct user or process. As the data moves up or down the TCP/IP layers, a mechanism is needed
to deliver it to the correct protocols in each layer. The system must be able to combine data from
many applications into a few transport protocols, and from the transport protocols into the Internet
Protocol. Combining many sources of data into a single data stream is called multiplexing.

Data arriving from the network must be demultiplexed: divided for delivery to multiple processes. To
accomplish this task, IP uses protocol numbers to identify transport protocols, and the transport
protocols use port numbers to identify applications.

Some protocol and port numbers are reserved to identify well-known services. Well-known services
are standard network protocols, such as FTP and Telnet, that are commonly used throughout the
network. The protocol numbers and port numbers are assigned to well-known services by the
Internet Assigned Numbers Authority (IANA). Officially assigned numbers are documented at
http://www.iana.org. Unix systems define protocol and port numbers in two simple text files.

2.6.1 Protocol Numbers

The protocol number is a single byte in the third word of the datagram header. The value identifies
the protocol in the layer above IP to which the data should be passed.

On a Unix system, the protocol numbers are defined in /etc/protocols. This file is a simple table
containing the protocol name and the protocol number associated with that name. The format of the
table is a single entry per line, consisting of the official protocol name, separated by whitespace from
the protocol number. The protocol number is separated by whitespace from the "alias" for the
protocol name. Comments in the table begin with #. An /etc/protocols file is shown below:

% cat /etc/protocols
#ident "@(#)protocols 1.5 99/03/21 SMI" /* SVr4.0 1.1 */

#

Internet (IP) protocols

#

ip 0 IP # pseudo internet protocol number

icmp 1 ICMP # internet control message protocol

ggp 3 GGP # gateway-gateway protocol

tcp 6 TCP # transmission control protocol

egp 8 EGP # exterior gateway protocol

pup 12 PUP # PARC universal packet protocol

udp 17 UDP # user datagram protocol

hmp 20 HMP # host monitoring protocol

xns-idp 22 XNS-IDP # Xerox NS IDP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rdp 27 RDP # "reliable datagram" protocol

#

Internet (IPv6) extension headers

#

hopopt 0 HOPOPT # Hop-by-hop options for IPv6

ipv6 41 IPv6 # IPv6 in IP encapsulation

ipv6-route 43 IPv6-Route # Routing header for IPv6

ipv6-frag 44 IPv6-Frag # Fragment header for IPv6

esp 50 ESP # Encap Security Payload for IPv6

ah 51 AH # Authentication Header for IPv6

ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol

ipv6-nonxt 59 IPv6-NoNxt # IPv6No next header extension header

ipv6-opts 60 IPv6-Opts # Destination Options for IPv6

The listing above is the contents of the /etc/protocols file from a Solaris 8 workstation. This list of
numbers is by no means complete. If you refer to the Protocol Numbers section of the IANA web
site, you'll see many more protocol numbers. However, a system needs to include only the numbers
of the protocols that it actually uses. Even the list shown above is more than this specific workstation
needed; for example, the second half of this table is used only on systems that run IPv6. Don't worry
if your system doesn't use IPv6 or many of these other protocols. The additional entries do no harm.

What exactly does this table mean? When a datagram arrives and its destination address matches
the local IP address, the IP layer knows that the datagram has to be delivered to one of the
transport protocols above it. To decide which protocol should receive the datagram, IP looks at the
datagram's protocol number. Using this table, you can see that if the datagram's protocol number is
6, IP delivers the datagram to TCP; if the protocol number is 17, IP delivers the datagram to UDP.
TCP and UDP are the two transport layer services we are concerned with, but all of the protocols
listed in the first half of the table use IP datagram delivery service directly. Some, such as ICMP,
EGP, and GGP, have already been mentioned. Others haven't, but you don't need to be concerned
with the minor protocols in order to configure and manage a TCP/IP network.

2.6.2 Port Numbers

After IP passes incoming data to the transport protocol, the transport protocol passes the data to the
correct application process. Application processes (also called network services) are identified by
port numbers, which are 16-bit values. The source port number, which identifies the process that
sent the data, and the destination port number, which identifies the process that will receive the
data, are contained in the first header word of each TCP segment and UDP packet.

Port numbers below 1024 are reserved for well-known services (like FTP and Telnet) and are
assigned by the IANA. Well-known port numbers are considered "privileged ports" that should not
be bound to a user process. Ports numbered from 1024 to 49151 are "registered ports." IANA tries
to maintain a registry of services that use these ports, but it does not officially assign port numbers
in this range. The port numbers from 49152 to 65535 are the "private ports." Private port numbers
are available for any use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Port numbers are not unique between transport layer protocols; the numbers are unique only within
a specific transport protocol. In other words, TCP and UDP can and do assign the same port
numbers. It is the combination of protocol and port numbers that uniquely identifies the specific
process to which the data should be delivered.

On Unix systems, port numbers are defined in the /etc/services file. There are many more network
applications than there are transport layer protocols, as the size of the /etc/services table shows. A
partial /etc/services file from a Solaris 8 workstation is shown here:

rodent% head -22 /etc/services
#ident "@(#)services 1.25 99/11/06 SMI" /* SVr4.0 1.8 */

#

#

Copyright (c) 1999 by Sun Microsystems, Inc.

All rights reserved.

#

Network services, Internet style

#

tcpmux 1/tcp

echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

daytime 13/tcp

daytime 13/udp

netstat 15/tcp

chargen 19/tcp ttytst source

chargen 19/udp ttytst source

ftp-data 20/tcp

ftp 21/tcp

telnet 23/tcp

The format of this file is very similar to the /etc/protocols file. Each single-line entry starts with the
official name of the service separated by whitespace from the port number/protocol pairing
associated with that service. The port numbers are paired with transport protocol names because
different transport protocols may use the same port number. An optional list of aliases for the official
service name may be provided after the port number/protocol pair.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The /etc/services file, combined with the /etc/protocols file, provides all of the information necessary
to deliver data to the correct application. A datagram arrives at its destination based on the
destination address in the fifth word of the datagram header. Using the protocol number in the third
word of the datagram header, IP delivers the data from the datagram to the proper transport layer
protocol. The first word of the data delivered to the transport protocol contains the destination port
number that tells the transport protocol to pass the data up to a specific application. Figure 2-5
shows this delivery process.

Figure 2-5. Protocol and port numbers

Despite its size, the /etc/services file does not contain the port number of every important network
service. You won't find the port number of every Remote Procedure Call (RPC) service in the
services file. Sun developed a different technique for reserving ports for RPC services that doesn't
involve getting a well-known port number assignment from IANA. RPC services generally use
registered port numbers, which do not need to be officially assigned. When an RPC service starts, it
registers its port number with the portmapper. The portmapper is a program that keeps track of
the port numbers being used by RPC services. When a client wants to use an RPC service, it
queries the portmapper running on the server to discover the port assigned to the service. The
client can find portmapper because it is assigned well-known port 111. portmapper makes it
possible to install widely used services without formally obtaining a well-known port.

2.6.3 Sockets

Well-known ports are standardized port numbers that enable remote computers to know which port
to connect to for a particular network service. This simplifies the connection process because both
the sender and receiver know in advance that data bound for a specific process will use a specific
port. For example, all systems that offer Telnet do so on port 23.

Equally important is a second type of port number called a dynamically allocated port. As the name
implies, dynamically allocated ports are not pre-assigned; they are assigned to processes when
needed. The system ensures that it does not assign the same port number to two processes, and
that the numbers assigned are above the range of well-known port numbers, i.e., above 1024.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamically allocated ports provide the flexibility needed to support multiple users. If a telnet user is
assigned port number 23 for both the source and destination ports, what port numbers are assigned
to the second concurrent telnet user? To uniquely identify every connection, the source port is
assigned a dynamically allocated port number, and the well-known port number is used for the
destination port.

In the telnet example, the first user is given a random source port number and a destination port
number of 23 (telnet). The second user is given a different random source port number and the
same destination port. It is the pair of port numbers, source and destination, that uniquely identifies
each network connection. The destination host knows the source port because it is provided in both
the TCP segment header and the UDP packet header. Both hosts know the destination port
because it is a well-known port.

Figure 2-6 shows the exchange of port numbers during the TCP handshake. The source host
randomly generates a source port, in this example 3044. It sends out a segment with a source port
of 3044 and a destination port of 23. The destination host receives the segment and responds back
using 23 as its source port and 3044 as its destination port.

Figure 2-6. Passing port numbers

The combination of an IP address and a port number is called a socket. A socket uniquely identifies
a single network process within the entire Internet. Sometimes the terms "socket" and "port number"
are used interchangeably. In fact, well-known services are frequently referred to as "well-known
sockets." In the context of this discussion, a "socket" is the combination of an IP address and a port
number. A pair of sockets, one socket for the receiving host and one for the sending host, define the
connection for connection-oriented protocols such as TCP.

Let's build on the example of dynamically assigned ports and well-known ports. Assume a user on
host 172.16.12.2 uses Telnet to connect to host 192.168.16.2. Host 172.16.12.2 is the source host.
The user is dynamically assigned a unique port number, 3382. The connection is made to the telnet
service on the remote host, which is, according to the standard, assigned well-known port 23. The
socket for the source side of the connection is 172.16.12.2.3382 (IP address 172.16.12.2 plus port
number 3382). For the destination side of the connection, the socket is 192.168.16.2.23 (address
192.168.16.2 plus port 23). The port of the destination socket is known by both systems because it
is a well-known port. The port of the source socket is known by both systems because the source
host informed the destination host of the source socket when the connection request was made.
The socket pair is therefore known by both the source and destination computers. The combination
of the two sockets uniquely identifies this connection; no other connection in the Internet has this
socket pair.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 Summary

This chapter has shown how data moves through the global Internet from one specific process on
the source computer to a single cooperating process on the other side of the world. TCP/IP uses
globally unique addresses to identify any computer on the Internet. It uses protocol numbers and
port numbers to uniquely identify a single process running on that computer.

Routing directs the datagrams destined for a remote process through the maze of the global
network. Routing uses part of the IP address to identify the destination network. Every system
maintains a routing table that describes how to reach remote networks. The routing table usually
contains a default route that is used if the table does not contain a specific route to the remote
network. A route only identifies the next computer along the path to the destination. TCP/IP uses
hop-by-hop routing to move datagrams one step closer to the destination until the datagram finally
reaches the destination network.

At the destination network, final delivery is made by using the full IP address (including the host
part) and converting that address to a physical layer address. Address Resolution Protocol (ARP)
is an example of the type of protocol used to convert IP addresses to physical layer addresses. It
converts IP addresses to Ethernet addresses for final delivery.

These first two chapters described the structure of the TCP/IP protocol stack and the way in which
it moves data across a network. In the next chapter, we move up the protocol stack to look at the
type of services the network provides to simplify configuration and use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Network Services
Some network servers provide essential computer-to-computer services. These differ from
application services in that they are not directly accessed by end users. Instead, these services
are used by networked computers to simplify the installation, configuration, and operation of the
network.

The functions performed by the servers covered in this chapter are varied:

Name service for converting IP addresses to hostnames

Configuration servers that simplify the installation of networked hosts by handling part or all
of the TCP/IP configuration

Electronic mail services for moving mail through the network from the sender to the
recipient

File servers that allow client computers to transparently share files

Print servers that allow printers to be centrally maintained and shared by all users

Servers on a TCP/IP network should not be confused with traditional PC LAN servers. Every Unix
host on your network can be both a server and a client. The hosts on a TCP/IP network are
"peers." All systems are equal, and the network is not dependent on any one server. All of the
services discussed in this chapter can be installed on one or several systems on your network.

We begin with a discussion of name service. It is an essential service that you will certainly use on
your network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Names and Addresses

The Internet Protocol document[1] defines names, addresses, and routes as follows:

[1] RFC 791, Internet Protocol, Jon Postel, ISI, 1981, page 7.

A name indicates what we seek. An address indicates where it is. A route indicates
how to get there.

Names, addresses, and routes all require the network administrator's attention. Routes and
addresses were covered in the previous chapter. This section discusses names and how they are
disseminated throughout the network. Every network interface attached to a TCP/IP network is
identified by a unique 32-bit IP address. A name (called a hostname) can be assigned to any
device that has an IP address. Names are assigned to devices because, compared to numeric
Internet addresses, names are easier to remember and type correctly. Names aren't required by
the network software, but they do make it easier for humans to use the network.

In most cases, hostnames and numeric addresses can be used interchangeably. A user wishing
to telnet to the workstation at IP address 172.16.12.2 can enter:

% telnet 172.16.12.2
or use the hostname associated with that address and enter the equivalent command:

% telnet rodent.wrotethebook.com
Whether a command is entered with an address or a hostname, the network connection always
takes place based on the IP address. The system converts the hostname to an address before
the network connection is made. The network administrator is responsible for assigning names
and addresses and storing them in the database used for the conversion.

Translating names into addresses isn't simply a "local" issue. The command telnet
rodent.wrotethebook.com is expected to work correctly on every host that's connected to the
network. If rodent.wrotethebook.com is connected to the Internet, hosts all over the world should
be able to translate the name rodent.wrotethebook.com into the proper address. Therefore, some
facility must exist for disseminating the hostname information to all hosts on the network.

There are two common methods for translating names into addresses. The older method simply
looks up the hostname in a table called the host table.[2] The newer technique uses a distributed
database system called the Domain Name System (DNS) to translate names to addresses. We'll
examine the host table first.

[2] Sun's Network Information Service (NIS) is an improved technique for accessing the host table. NIS is discussed
later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 The Host Table

The host table is a simple text file that associates IP addresses with hostnames. On most Unix
systems, the table is in the file /etc/hosts. Each table entry in /etc/hosts contains an IP address
separated by whitespace from a list of hostnames associated with that address. Comments begin
with #.

The host table on rodent might contain the following entries:

Table of IP addresses and hostnames

172.16.12.2 rodent.wrotethebook.com rodent

127.0.0.1 localhost

172.16.12.1 crab.wrotethebook.com crab loghost

172.16.12.4 jerboas.wrotethebook.com jerboas

172.16.12.3 horseshoe.wrotethebook.com horseshoe

172.16.1.2 ora.wrotethebook.com ora

172.16.6.4 linuxuser.articles.wrotethebook.com linuxuser

The first entry in the sample table is for rodent itself. The IP address 172.16.12.2 is associated
with the hostname rodent.wrotethebook.com and the alternate hostname (or alias) rodent. The
hostname and all of its aliases resolve to the same IP address, in this case 172.16.12.2.

Aliases provide for name changes, alternate spellings, and shorter hostnames. They also allow
for "generic hostnames." Look at the entry for 172.16.12.1. One of the aliases associated with that
address is loghost. loghost is a special hostname used by Solaris in the syslog.conf configuration
file. Some systems preconfigure programs like syslogd to direct their output to the host that has
a certain generic name. You can direct the output to any host you choose by assigning it the
appropriate generic name as an alias. Other commonly used generic hostnames are lprhost,
mailhost, and dumphost.

The second entry in the sample file assigns the address 127.0.0.1 to the hostname localhost. As
we have discussed, the network address 127.0.0.0/8 is reserved for the loopback network. The
host address 127.0.0.1 is a special address used to designate the loopback address of the local
host—hence the hostname localhost. This special addressing convention allows the host to
address itself the same way it addresses a remote host. The loopback address simplifies software
by allowing common code to be used for communicating with local or remote processes. This
addressing convention also reduces network traffic because the localhost address is associated
with a loopback device that loops data back to the host before it is written out to the network.

Although the host table system has been superseded by DNS, it is still widely used for the
following reasons:

Most systems have a small host table containing name and address information about the
important hosts on the local network. This small table is used when DNS is not running,
such as during the initial system startup. Even if you use DNS, you should create a small
/etc/hosts file containing entries for your host, for localhost, and for the gateways and
servers on your local net.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sites that use NIS use the host table as input to the NIS host database. You can use NIS in
conjunction with DNS, but even when they are used together, most NIS sites create host
tables that have an entry for every host on the local network. Chapter 9 explains how to use
NIS with DNS.

Very small sites that are not connected to the Internet sometimes use the host table. If
there are few local hosts and the information about those hosts rarely changes, and there
is also no need to communicate via TCP/IP with remote sites, then there is little advantage
to using DNS.

The old host table system is inadequate for the global Internet for two reasons: inability to scale
and lack of an automated update process. Prior to the development of DNS, an organization
called the Network Information Center (NIC) maintained a large table of Internet hosts called the
NIC host table. Hosts included in the table were called registered hosts, and the NIC placed
hostnames and addresses into this file for all sites on the Internet.

Even when the host table was the primary means of translating hostnames to IP addresses, most
sites registered only a limited number of key systems. But even with limited registration, the table
grew so large that it became an inefficient way to convert hostnames to IP addresses. There is no
way that a simple table could provide adequate service for the enormous number of hosts on
today's Internet.

Another problem with the host table system is that it lacks a technique for automatically
distributing information about newly registered hosts. Newly registered hosts can be referenced
by name as soon as a site receives the new version of the host table. However, there is no way to
guarantee that the host table is distributed to a site, and no way to know who had a current
version of the table and who did not. This lack of guaranteed uniform distribution is a major
weakness of the host table system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 DNS

DNS overcomes both major weaknesses of the host table:

DNS scales well. It doesn't rely on a single large table; it is a distributed database system
that doesn't bog down as the database grows. DNS currently provides information on
approximately 100,000,000 hosts, while fewer than 10,000 were listed in the host table.

DNS guarantees that new host information will be disseminated to the rest of the network
as it is needed.

Information is automatically disseminated, and only to those who are interested. Here's how it
works. If a DNS server receives a request for information about a host for which it has no
information, it passes on the request to an authoritative server. An authoritative server is any
server responsible for maintaining accurate information about the domain being queried. When
the authoritative server answers, the local server saves, or caches, the answer for future use. The
next time the local server receives a request for this information, it answers the request itself. The
ability to control host information from an authoritative source and to automatically disseminate
accurate information makes DNS superior to the host table, even for networks not connected to
the Internet.

In addition to superseding the host table, DNS also replaces an earlier form of name service.
Unfortunately, both the old and new services were called name service. Both are listed in the
/etc/services file. In that file, the old software is assigned UDP port 42 and is called nameserver or
name; DNS name service is assigned port 53 and is called domain. Naturally, there is some
confusion between the two name servers. There shouldn't be—the old name service is outdated.
This text discusses DNS only; when we refer to "name service," we always mean DNS.

3.3.1 The Domain Hierarchy

DNS is a distributed hierarchical system for resolving hostnames into IP addresses. Under DNS,
there is no central database with all of the Internet host information. The information is distributed
among thousands of name servers organized into a hierarchy similar to the hierarchy of the Unix
filesystem. DNS has a root domain at the top of the domain hierarchy that is served by a group of
name servers called the root servers.

Just as directories in the Unix filesystem are found by following a path from the root directory
through subordinate directories to the target directory, information about a domain is found by
tracing pointers from the root domain through subordinate domains to the target domain.

Directly under the root domain are the top-level domains. There are two basic types of top-level
domains—geographic and organizational. Geographic domains have been set aside for each
country in the world and are identified by a two-letter country code. Thus, this type of domain is
called a country code top-level domain (ccTLD). For example, the ccTLD for the United Kingdom
is .uk, for Japan it is .jp, and for the United States it is .us. When .us is used as the top-level
domain, the second-level domain is usually a state's two-letter postal abbreviation (e.g., .wy.us for
Wyoming). U.S. geographic domains are usually used by state governments and K-12 schools
but are not widely used for other hosts.

Within the United States, the most popular top-level domains are organizational—that is,
membership in a domain is based on the type of organization (commercial, military, etc.) to which
the system belongs.[3] These domains are called generic top-level domains or general-purpose
top-level domains (gTLDs).

[3] There is no relationship between the organizational and geographic domains in the U.S. Each system belongs to
either an organizational domain or a geographic domain, not both.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The official generic top-level domains are:

com

Commercial organizations

edu

Educational institutions

gov

Government agencies

mil

Military organizations

net

Network support organizations, such as network operation centers

int

International governmental or quasi-governmental organizations

org

Organizations that don't fit into any of the above, such as nonprofit organizations

aero

Organizations involved in the air-transport industry

biz

Businesses

coop

Cooperatives

museum

Museums

pro

Professionals, such as doctors and lawyers

info

Sites providing information

name

Individuals

These are the fourteen current gTLDs. The first seven domains in the list (com, edu, gov, mil, net,
int, and org) have been part of the domain system since the beginning. The last seven domains in
the list (aero, biz, coop, museum, pro, info, and name) were added in 2000 to increase the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the list (aero, biz, coop, museum, pro, info, and name) were added in 2000 to increase the
number of top-level domains. One motivation for creating the new gTLDs is the huge size of the
.com domain. It is so large that it is difficult to maintain an efficient .com database. Whether or not
these new gTLDs will be effective in drawing registrations away from the .com domain remains to
be seen.

Figure 3-1 illustrates the domain hierarchy using six of the original organizational top-level
domains. At the top is the root. Directly below the root domain are the top-level domains. The root
servers have complete information only about the top-level domains. No servers, not even the
root servers, have complete information about all domains, but the root servers have pointers to
the servers for the second-level domains.[4] So while the root servers may not know the answer to
a query, they know who to ask.

[4] Figure 3-1 shows two second-level domains: nih under gov and wrotethebook under com.

Figure 3-1. Domain hierarchy

3.3.2 Creating Domains and Subdomains

Several domain name registrars have been authorized by the Internet Corporation for Assigned
Names and Numbers (ICANN), a nonprofit organization that was formed to take over the
responsibility for allocating domain names and IP addresses. (Previously, the U.S. government
oversaw this process.) ICANN has authorized these registrars to allocate domains. To obtain a
domain, you apply to a registrar for authority to create a domain under one of the top-level
domains. (The details of applying for a domain name are covered in Chapter 4.) Once the
authority to create a domain is granted, you can create additional domains, called subdomains,
under your domain. Let's look at how this works at our imaginary company.

Our company is a commercial, profit-making (we hope) enterprise. It clearly falls into the com
domain. We apply for authority to create a domain named wrotethebook within the com domain.
The request for the new domain contains the hostnames and addresses of the servers that will
provide name service for the new domain. When the registrar approves the request, it adds
pointers in the com domain to the new domain's name servers. Now when queries are received
by the root servers for the wrotethebook.com domain, the queries are referred to the new name
servers.

The registrar's approval grants us complete authority over our new domain. Any registered
domain has authority to divide its domain into subdomains. Our imaginary company can create
separate domains for the division that handles special events (events.wrotethebook.com) and for
the division that coordinates the preparation of magazine articles (articles.wrotethebook.com)
without consulting the registrar or any other "higher authority." The decision to add subdomains is
completely up to the local domain administrator. The registrars delegate authority and distribute
control over names to individual organizations. Once that authority has been delegated, the
individual organization is responsible for managing the names it has been assigned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A new subdomain becomes accessible when pointers to the servers for the new domain are
placed in the domain above it (see Figure 3-1). Remote servers cannot locate the
wrotethebook.com domain until a pointer to its server is placed in the com domain. Likewise, the
subdomains events and articles cannot be accessed until pointers to them are placed in
wrotethebook.com. The DNS database record that points to the name servers for a domain is the
NS (name server) record. This record contains the name of the domain and the name of the host
that is a server for that domain. Chapter 8 discusses the actual DNS database. For now, let's just
think of these records as pointers.

Figure 3-2 illustrates how the NS records are used as pointers. A local server has a request to
resolve linuxuser.articles.wrotethebook.com into an IP address. The server has no information on
wrotethebook.com in its cache, so it queries a root server (a.root-servers.net in our example) for
the address. The root server replies with an NS record that points to crab.wrotethebook.com as
the source of information on wrotethebook.com. The local server queries crab, which points it to
linuxmag.articles.wrotethebook.com as the server for articles.wrotethebook.com. The local server
then queries linuxmag.articles.wrotethebook.com and finally receives the desired IP address. The
local server caches the A (address) record and each of the NS records. The next time it has a
query for linuxuser.articles.wrotethebook.com, it will answer the query itself. And the next time the
server has a query for other information in the wrotethebook.com domain, it will go directly to crab
without involving a root server.

Figure 3-2. A DNS query

Figure 3-2 provides examples of both recursive and nonrecursive searches. The remote servers
are examples of nonrecursive servers. The remote servers tell the local server who to ask next.
The local server must follow the pointers itself. The local server is an example of a recursive
server. In a recursive search, the server follows the pointers and returns the final answer for the
query. The root servers generally perform only nonrecursive searches. Most other servers
perform recursive searches.

3.3.3 Domain Names

Domain names reflect the domain hierarchy. They are written from most specific (a hostname) to
least specific (a top-level domain), with each part of the domain name separated by a dot.[5] A
fully qualified domain name (FQDN) starts with a specific host and ends with a top-level domain.
rodent.wrotethebook.com is the FQDN of workstation rodent, in the wrotethebook domain, of the
com domain.

[5] The root domain is identified by a single dot; i.e., the root name is a null name written simply as ".".

Domain names are not always written as fully qualified domain names. They can be written
relative to a default domain in the same way that Unix pathnames are written relative to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relative to a default domain in the same way that Unix pathnames are written relative to the
current (default) working directory. DNS adds the default domain to the user input when
constructing the query for the name server. For example, if the default domain is
wrotethebook.com, a user can omit the wrotethebook.com extension for any hostnames in that
domain. crab.wrotethebook.com could be addressed simply as crab; DNS adds the default
domain wrotethebook.com.

On most systems, the default domain name is added only if there is no dot in the requested
hostname. For example, linuxuser.articles would not be extended and would therefore not be
resolved by the name server because articles is not a valid top-level domain. But the hostname
crab, which contains no dot, would be extended with wrotethebook.com, giving the valid domain
name crab.wrotethebook.com. Like almost everything on a Unix system, this behavior is
configurable, as you'll see in Chapter 8.

How the default domain is used and how queries are constructed vary depending on the software
configuration. For this reason, you should exercise caution when embedding a hostname in a
program. Only a fully qualified domain name or an IP address is immune from changes in the
name server software.

3.3.4 BIND, Resolvers, and named

The implementation of DNS used on Unix systems is the Berkeley Internet Name Domain (BIND)
software. Descriptions in this text are based on the BIND name server implementation.

DNS software is conceptually divided into two components—a resolver and a name server. The
resolver is the software that forms the query; it asks the questions. The name server is the
process that responds to the query; it answers the questions.

The resolver does not exist as a distinct process running on the computer. Rather, the resolver is
a library of software routines (called the resolver code) that is linked into any program that needs
to look up addresses. This library knows how to ask the name server for host information.

Under BIND, all computers use resolver code, but not all computers run the name server process.
A computer that does not run a local name server process and relies on other systems for all
name service answers is called a resolver-only system. Resolver-only configurations are common
on single-user systems. Larger Unix systems usually run a local name server process.

The BIND name server runs as a distinct process called named (pronounced "name" "d"). Name
servers are classified differently depending on how they are configured. The three main
categories of name servers are:

Master

The master server (also called the primary server) is the server from which all data about a
domain is derived. The master server loads the domain's information directly from a disk
file created by the domain administrator. Master servers are authoritative, meaning they
have complete information about their domain and their responses are always accurate.
There should be only one master server for a domain.

Slave

Slave servers (also known as secondary servers) transfer the entire domain database from
the master server. A particular domain's database file is called a zone file; copying this file
to a slave server is called a zone file transfer. A slave server assures that it has current
information about a domain by periodically transferring the domain's zone file. Slave
servers are also authoritative for their domain.

Caching-only

Caching-only servers get the answers to all name service queries from other name servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Caching-only servers get the answers to all name service queries from other name servers.
Once a caching server has received an answer to a query, it caches the information and
will use it in the future to answer queries itself. Most name servers cache answers and use
them in this way. What makes the caching-only server unique is that this is the only
technique it uses to build its domain database. Caching servers are non-authoritative,
meaning that their information is second-hand and incomplete, though usually accurate.

The relationship between the different types of servers is an advantage that DNS has over the
host table for most networks, even very small networks. Under DNS, there should be only one
primary name server for each domain. DNS data is entered into the primary server's database by
the domain administrator. Therefore, the administrator has central control of the hostname
information. An automatically distributed, centrally controlled database is an advantage for a
network of any size. When you add a new system to the network, you don't need to modify the
/etc/hosts files on every node in the network; you modify only the DNS database on the primary
server. The information is automatically disseminated to the other servers by full zone transfers or
by caching single answers.

3.3.5 Network Information Service

The Network Information Service (NIS)[6] is an administrative database system developed by Sun
Microsystems. It provides central control and automatic dissemination of important administrative
files. NIS can be used in conjunction with DNS or as an alternative to it.

[6] NIS was formerly called the "Yellow Pages," or yp. Although the name has changed, the abbreviation yp is still
used.

NIS and DNS have similarities and differences. Like DNS, the Network Information Service
overcomes the problem of accurately distributing the host table, but unlike DNS, it provides
service only for local area networks. NIS is not intended as a service for the Internet as a whole.
Another difference is that NIS provides access to a wider range of information than DNS—much
more than name-to-address conversions. It converts several standard Unix files into databases
that can be queried over the network. These databases are called NIS maps.

NIS converts files such as /etc/hosts and /etc/networks into maps. The maps can be stored on a
central server where they can be centrally maintained while still being fully accessible to the NIS
clients. Because the maps can be both centrally maintained and automatically disseminated to
users, NIS overcomes a major weakness of the host table. But NIS is not an alternative to DNS
for Internet hosts because the host table, and therefore NIS, contains only a fraction of the
information available to DNS. For this reason DNS and NIS are usually used together.

This chapter has introduced the concept of hostnames and provided an overview of the various
techniques used to translate hostnames into IP addresses. This is by no means the complete
story. Assigning hostnames and managing name service are important tasks for the network
administrator. These topics are revisited several times in this book and discussed in extensive
detail in Chapter 8.

Name service is not the only service that you will install on your network. Another service that you
are sure to use is electronic mail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Mail Services

Users consider electronic mail the most important network service because they use it for interpersonal communications. Some
applications are newer and fancier; others consume more network bandwidth; and others are more important for the continued
operation of the network. But email is the application people use to communicate with each other. It isn't very fancy, but it is
vital.

TCP/IP provides a reliable, flexible email system built on a few basic protocols. These protocols are
Protocol (SMTP), Post Office Protocol (POP), Internet Message Access Protocol (IMAP), and Multipurpose Internet Mail
Extensions (MIME). There are other TCP/IP mail protocols that have some interesting features, but they are not yet widely
implemented.

Our coverage concentrates on the four protocols you are most likely to use building your network: SMTP, POP, IMAP, and
MIME. We start with SMTP, the foundation of all TCP/IP email systems.

3.4.1 Simple Mail Transfer Protocol

SMTP is the TCP/IP mail delivery protocol. It moves mail across the Internet and across your local network. SMTP is defined in
RFC 821, A Simple Mail Transfer Protocol. It runs over the reliable, connection-oriented service provided by
Control Protocol (TCP), and it uses well-known port number 25.[7] Table 3-1 lists some of the simple,
commands used by SMTP.

[7] Most standard TCP/IP applications are assigned a well-known port so that remote systems know how to connect the service.

Table 3-1. SMTP commands
Command Syntax

Hello
HELO <sending-host>

EHLO <sending-host>
Identify sending SMTP

From MAIL FROM:<from-address> Sender address

Recipient RCPT TO:<to-address> Recipient address

Data DATA Begin a message

Reset RSET Abort a message

Verify VRFY <string> Verify a username

Expand EXPN <string> Expand a mailing list

Help HELP [string] Request online help

Quit QUIT End the SMTP session

SMTP is such a simple protocol you can literally do it yourself. telnet to port 25 on a remote host and type mail
command line using the SMTP commands. This technique is sometimes used to test a remote system's SMTP server, but we
use it here to illustrate how mail is delivered between systems. The example below shows mail that Daniel on
rodent.wrotethebook.com manually input and sent to Tyler on crab.wrotethebook.com.

$ telnet crab 25

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ telnet crab 25
Trying 172.16.12.1...

Connected to crab.wrotethebook.com.

Escape character is '^]'.

220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Thu, 19 Apr 2001 16:28:01-0400 (EDT)

HELO rodent.wrotethebook.com
250 crab.wrotethebook.com Hello rodent [172.16.12.2], pleased to meet you

MAIL FROM:<daniel@rodent.wrotethebook.com>
250 <daniel@rodent.wrotethebook.com>... Sender ok

RCPT TO:<tyler@crab.wrotethebook.com>
250 <tyler@crab.wrotethebook.com>... Recipient ok

DATA
354 Enter mail, end with "." on a line by itself

Hi Tyler!
.

250 QAA00316 Message accepted for delivery

QUIT
221 crab.wrotethebook.com closing connection

Connection closed by foreign host.

The user input is shown in bold type. All of the other lines are output from the system. This example shows how simple it is. A
TCP connection is opened. The sending system identifies itself. The From address and the To address are provided. The
message transmission begins with the DATA command and ends with a line that contains only a period (.). The session
terminates with a QUIT command. Very simple, and very few commands are used.

There are other commands (SEND, SOML, SAML, and TURN) defined in RFC 821 that are optional and not widely
implemented. Even some of the commands that are implemented are not commonly used. The commands
EXPN are designed more for interactive use than for the normal machine-to-machine interaction used by SMTP. The following
excerpt from a SMTP session shows how these odd commands work.

HELP
214-This is Sendmail version 8.9.3+Sun

214-Topics:

214- HELO EHLO MAIL RCPT DATA

214- RSET NOOP QUIT HELP VRFY

214- EXPN VERB ETRN DSN

214-For more info use "HELP <topic>".

214-For local information contact postmaster at this site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

214 End of HELP info

HELP RSET
214-RSET

214- Resets the system.

214 End of HELP info

VRFY <jane>
250 <jane@brazil.wrotethebook.com>

VRFY <mac>
250 Kathy McCafferty <<mac>>

EXPN <admin>
250-<sara@horseshoe.wrotethebook.com>

250 David Craig <<david>>

250-<tyler@wrotethebook.com>

The HELP command prints out a summary of the commands implemented on the system. The HELP RSET command
specifically requests information about the RSET command. Frankly, this help system isn't very helpful!

The VRFY and EXPN commands are more useful but are often disabled for security reasons because
account information that might be exploited by network intruders. The EXPN <admin> command asks for a listing of the
addresses in the mailing list admin, and that is what the system provides. The VRFY command asks for
individual instead of a mailing list. In the case of the VRFY <mac> command, mac is a local user account, and the
account information is returned. In the case of VRFY <jane>, jane is an alias in the /etc/aliases file. The
email address for jane found in that file. The three commands in this example are interesting but rarely used. SMTP depends
on the other commands to get the real work done.

SMTP provides direct end-to-end mail delivery. Other mail systems, like UUCP and X.400, use store and forward
move mail toward its destination one hop at a time, storing the complete message at each hop and then
next system. The message proceeds in this manner until final delivery is made. Figure 3-3 illustrates both store-and-forward
and direct-delivery mail systems. The UUCP address clearly shows the path that the mail takes to its
SMTP mail address implies direct delivery.[8]

[8] The address doesn't have anything to do with whether a system is store and forward or direct delivery. It just happens that UUCP provides an address that
helps to illustrate this point.

Figure 3-3. Mail delivery systems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Direct delivery allows SMTP to deliver mail without relying on intermediate hosts. If the delivery fails, the
right away. It can inform the user that sent the mail or queue the mail for later delivery without reliance on
disadvantage of direct delivery is that it requires both systems to be fully capable of handling mail. Some
handle mail, particularly small systems such as PCs or mobile systems such as laptops. These systems are usually shut down
at the end of the day and are frequently offline. Mail directed from a remote host fails with a "cannot connect" error
local system is turned off or is offline. To handle these cases, features in the DNS system are used to route the message to a
mail server in lieu of direct delivery. The mail is then moved from the server to the client system when the client is back online.
One of the protocols TCP/IP networks use for this task is POP.

3.4.2 Post Office Protocol

There are two versions of Post Office Protocol: POP2 and POP3. POP2, defined in RFC 937, uses port 109, and POP3,
defined in RFC 1725, uses port 110. These are incompatible protocols that use different commands, although they perform the
same basic functions. The POP protocols verify the user's login name and password and move the user's mail from the server
to the user's local mail reader. POP2 is rarely used anymore, so this section focuses on POP3.

A sample POP3 session clearly illustrates how a POP protocol works. POP3 is a simple request/response protocol, and just as
with SMTP, you can type POP3 commands directly into its well-known port (110) and observe their effect. Here's an example
with the user input shown in bold type:

% telnet crab 110
Trying 172.16.12.1 ...

Connected to crab.wrotethebook.com.

Escape character is '^]'.

+OK crab POP3 Server Process 3.3(1) at Mon 16-Apr-2001 4:48PM-EDT

USER hunt
+OK User name (hunt) ok. Password, please.

PASS Watts?Watt?
+OK 3 messages in folder NEWMAIL (V3.3 Rev B04)

STAT
+OK 3 459

RETR 1
+OK 146 octets

...The full text of message 1...

DELE 1
+OK message # 1 deleted

RETR 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RETR 2
+OK 155 octets

...The full text of message 2...

DELE 2
+OK message # 2 deleted

RETR 3
+OK 158 octets

...The full text of message 3...

DELE 3
+OK message # 3 deleted

QUIT
+OK POP3 crab Server exiting (0 NEWMAIL messages left) Connection closed by foreign host.

The USER command provides the username, and the PASS command provides the password for the
that is being retrieved. (This is the same username and password the user would use to log into the mail
the STAT command, the server sends a count of the number of messages in the mailbox and the total number of bytes
contained in those messages. In the example, there are three messages that contain a total of 459 bytes.
full text of the first message. DELE 1 deletes that message from the server. Each message is retrieved and deleted
client ends the session with the QUIT command. Simple! Table 3-2 lists the full set of POP3 commands.

Table 3-2. POP3 commands
Command Function

USER username The user's account name

PASS password The user's password

STAT Display the number of unread messages/bytes

RETR n Retrieve message number n

DELE n Delete message number n

LAST Display the number of the last message accessed

LIST [n] Display the size of message n or of all messages

RSET Undelete all messages; reset message number to 1

TOP n l Print the headers and l lines of message n

NOOP Do nothing

QUIT End the POP3 session

The retrieve (RETR) and delete (DELE) commands use message numbers that allow messages to be processed in any order.
Additionally, there is no direct link between retrieving a message and deleting it. It is possible to delete a message that has
never been read or to retain a message even after it has been read. However, POP clients do not normally take advantage of
these possibilities. On an average POP server, the entire contents of the mailbox are moved to the client
from the server or retained as if never read. Deletion of individual messages on the client is not reflected on the
all of the messages are treated as a single unit that is either deleted or retained after the initial transfer of data to
Email clients that want to remotely maintain a mailbox on the server are more likely to use IMAP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.3 Internet Message Access Protocol

Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the same basic service as POP and
features to support mailbox synchronization, which is the ability to read individual mail messages on a client or directly on
server while keeping the mailboxes on both systems completely up to date. IMAP provides the ability to manipulate individual
messages on the client or the server and to have those changes reflected in the mailboxes of both systems.

IMAP uses TCP for reliable, sequenced data delivery. The IMAP port is TCP port 143.[9] Like the POP protocol, IMAP is also a
request/response protocol with a small set of commands. The IMAP command set is somewhat more complex than the one
used by POP because IMAP does more, yet there are still fewer than 25 IMAP commands. Table 3-3
commands as defined in RFC 2060, Internet Message Access Protocol - Version 4rev1.

[9] The /etc/services file lists two different ports for IMAP: 143 and 220. Port 220 is used by IMAP 3. IMAP 4 uses port number 143, which is the same port used
by IMAP 2

Table 3-3. IMAP4 commands
Command Function

CAPABILITY List the features supported by the server

NOOP Literally "No Operation"

LOGOUT Close the connection

AUTHENTICATE Request an alternate authentication method

LOGIN Provide the username and password for plain-text authentication

SELECT Open a mailbox

EXAMINE Open a mailbox as read-only

CREATE Create a new mailbox

DELETE Remove a mailbox

RENAME Change the name of a mailbox

SUBSCRIBE Add a mailbox to the list of active mailboxes

UNSUBSCRIBE Delete a mailbox name from the list of active mailboxes

LIST Display the requested mailbox names from the set of all mailbox names

LSUB Display the requested mailbox names from the set of active mailboxes

STATUS Request the status of a mailbox

APPEND Add a message to the end of the specified mailbox

CHECK Force a checkpoint of the current mailbox

CLOSE Close the mailbox and remove all messages marked for deletion

EXPUNGE Remove from the current mailbox all messages marked for deletion

SEARCH Display all messages in the mailbox that match the specified search criterion

FETCH Retrieve a message from the mailbox

STORE Modify a message in the mailbox

COPY Copy the specified messages to the end of the specified mailbox

UID Locate a message based on the message's unique identifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This command set clearly illustrates the "mailbox" orientation of IMAP. The protocol is designed to remotely maintain
that are stored on the server. The protocol commands show that. Despite the increased complexity of the protocol, it is still
possible to run a simple test of your IMAP server using telnet and a small number of the IMAP commands.

$ telnet localhost 143
Trying 127.0.0.1...

Connected to rodent.wrotethebook.com.

Escape character is '^]'.

* OK rodent.wrotethebook.com IMAP4rev1 v12.252 server ready

a0001 LOGIN craig Wats?Watt?
a0001 OK LOGIN completed

a0002 SELECT inbox
* 3 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 965125671] UID validity status

* OK [UIDNEXT 5] Predicted next UID

* FLAGS (\Answered \Flagged \Deleted \Draft \Seen)

* OK [PERMANENTFLAGS (* \Answered \Flagged \Deleted \Draft \Seen)] Permanent flags

* OK [UNSEEN 1] first unseen message in /var/spool/mail/craig

a0002 OK [READ-WRITE] SELECT completed

a0003 FETCH 1 BODY[TEXT]
* 1 FETCH (BODY[TEXT] {1440}

... an e-mail message that is 1440 bytes long ...

* 1 FETCH (FLAGS (\Seen))

a0003 OK FETCH completed

a0004 STORE 1 +FLAGS \DELETED
* 1 FETCH (FLAGS (\Seen \Deleted))

a0004 OK STORE completed

a0005 CLOSE
a0005 OK CLOSE completed

a0006 LOGOUT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a0006 LOGOUT
* BYE rodent.wrotethebook.com IMAP4rev1 server terminating connection

a0006 OK LOGOUT completed

Connection closed by foreign host.

The first three lines and the last line come from telnet; all other messages come from IMAP. The
entered by the user is LOGIN, which provides the username and password from /etc/passwd used to
Notice that the command is preceded by the string A0001. This is a tag, which is a unique identifier generated by the client for
each command. Every command must start with a tag. When you manually type in commands for a test, you are the source of
the tags.

IMAP is a mailbox-oriented protocol. The SELECT command selects the mailbox that will be used. In the example, the user
selects a mailbox named "inbox". The IMAP server displays the status of the mailbox, which contains three messages.
Associated with each message are a number of flags. The flags are used to manage the messages in
them as Seen, Unseen, Deleted, and so on.

The FETCH command downloads a message from the mailbox. In the example, the user downloads the text of the
which is what you normally see when reading a message. It is possible, however, to download only the headers or flags.

After the message is downloaded, the user deletes it. This is done by writing the Deleted flag with the
DELETE command is not used to delete messages; it deletes entire mailboxes. Individual messages are marked for deletion by
setting the Delete flag. Messages with the Delete flag set are not deleted until either the EXPUNGE command is issued or the
mailbox is explicitly closed with the CLOSE command, as is done in the example. The session is then terminated with the
LOGOUT command.

Clearly, the IMAP protocol is more complex than POP; it is just about at the limits of what can reasonably be typed in manually.
Of course, you don't really enter these commands manually. The desktop system and the server exchange them automatically.
They are shown here only to give you a sense of the IMAP protocol. About the only IMAP test you would ever do manually is to
test if imapd is up and running. To do that, you don't even need to log in; if the server answers the telnet
and running. All you then need to do is send the LOGOUT command to gracefully close the connection.

3.4.4 Multipurpose Internet Mail Extensions

The last email protocol on our quick tour is Multipurpose Internet Mail Extensions (MIME).[10] As its name implies, MIME is an
extension of the existing TCP/IP mail system, not a replacement for it. MIME is more concerned with what
delivers than with the mechanics of delivery. It doesn't attempt to replace SMTP or TCP; it extends the
constitutes "mail."

[10] MIME is also an integral part of the Web and HTTP.

The structure of the mail message carried by SMTP is defined in RFC 822, Standard for the Format of ARPA Internet Text
Messages. RFC 822 defines a set of mail headers that are so widely accepted they are used by many mail systems that do not
use SMTP. This is a great benefit to email because it provides a common ground for mail translation and delivery through
gateways to different mail networks. MIME extends RFC 822 into two areas not covered by the original RFC:

Support for various data types. The mail system defined by RFC 821 and RFC 822 transfers only 7-bit ASCII data. This
is suitable for carrying text data composed of U.S. ASCII characters, but it does not support several languages that have
richer character sets, nor does it support binary data transfer.

Support for complex message bodies. RFC 822 doesn't provide a detailed description of the body of an electronic
message. It concentrates on the mail headers.

MIME addresses these two weaknesses by defining encoding techniques for carrying various forms of data and by defining a
structure for the message body that allows multiple objects to be carried in a single message. RFC 1521,
Mail Extensions Part One: Format of Internet Message Bodies, defines two headers that give structure to the mail message
body and allow it to carry various forms of data. These are the Content-Type header and the Content-Transfer-Encoding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

body and allow it to carry various forms of data. These are the Content-Type header and the Content-Transfer-Encoding
header.

As the name implies, the Content-Type header defines the type of data being carried in the message. The header has
Subtype field that refines the definition. Many subtypes have been defined since the original RFC was released. A current list of
MIME types can be obtained from the Internet.[11] The original RFC defines seven initial content types and a few subtypes:

[11] Go to ftp://ftp.isi.edu/in-notes/iana/assignments/media-types to retrieve the file media-types.

text

Text data. RFC 1521 defines text subtypes plain and richtext. More than 30 subtypes have since
enriched, xml and html.

application

Binary data. The primary subtype defined in RFC 1521 is octet-stream, which indicates the data is
binary bytes. One other subtype, PostScript, is defined in the standard. Since then more than 200 subtypes have been
defined. They specify binary data formatted for a particular application. For example, msword is an application subtype.

image

Still graphic images. Two subtypes are defined in RFC 1521: jpeg and gif. More than 20 additional subtypes have since
been added, including widely used image data standards such as tiff, cgm, and g3fax.

video

Moving graphic images. The initially defined subtype was mpeg, which is a widely used standard for
data. A few others have since been added, including quicktime.

audio

Audio data. The only subtype initially defined for audio was basic, which means the sounds are encoded
code modulation (PCM). About 20 additional audio types, such as MP4A-LATM, have since been added.

multipart

Data composed of multiple independent sections. A multipart message body is made up of several independent
RFC 1521 defines four subtypes. The primary subtype is mixed, which means that each part of the
of any content type. Other subtypes are alternative, meaning that the same data is repeated in each section in different
formats; parallel, meaning that the data in the various parts is to be viewed simultaneously; and
each section is data of the type message. Several subtypes have since been added, including support for voice
messages (voice-message) and encrypted messages.

message

Data that is an encapsulated mail message. RFC 1521 defines three subtypes. The primary subtype,
that the data is a complete RFC 822 mail message. The other subtypes, partial and External-body
handle large messages. partial allows large encapsulated messages to be split among multiple MIME messages.
External-body points to an external source for the contents of a large message body so that only the pointer, not
message itself, is contained in the MIME message. Two additional subtypes that have been defined are
carrying network news and http for HTTP traffic formatted to comply with MIME content typing.

The Content-Transfer-Encoding header identifies the type of encoding used on the data. Traditional SMTP systems forward
only 7-bit ASCII data with a line length of less than 1000 bytes. Since the data from a MIME system may be forwarded through
gateways that support only 7-bit ASCII, the data can be encoded. RFC 1521 defines six types of encoding. Some types are
used to identify the encoding inherent in the data. Only two types are actual encoding techniques defined in the RFC. The six
encoding types are:

7bit

U.S. ASCII data. No encoding is performed on 7-bit ASCII data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8bit

Octet data. No encoding is performed. The data is binary, but the lines of data are short enough for SMTP
the lines are less than 1000 bytes long.

binary

Binary data. No encoding is performed. The data is binary and the lines may be longer than 1000 bytes. There is
difference between binary and 8bit data except the line length restriction; both types of data are unencoded byte (octet)
streams. MIME does not modify unencoded bitstream data.

quoted-printable

Encoded text data. This encoding technique handles data that is largely composed of printable ASCII
text is sent unencoded, while bytes with a value greater than 127 or less than 33 are sent encoded as strings made up
the equals sign followed by the hexadecimal value of the byte. For example, the ASCII form feed character, which has
the hexadecimal value of 0C, is sent as =0C. Naturally, there's more to it than this—for example, the literal
has to be sent as =3D, and the newline at the end of each line is not encoded. But this is the
printable data is sent.

base64

Encoded binary data. This encoding technique can be used on any byte-stream data. Three octets of data
as four 6-bit characters, which increases the size of the file by one-third. The 6-bit characters are a subset of U.S. ASCII,
chosen because they can be handled by any type of mail system. The maximum line length for
characters. Figure 3-4 illustrates this 3-to-4 encoding technique.

x-token

Specially encoded data. It is possible for software developers to define their own private encoding techniques.
so, the name of the encoding technique must begin with X-. Doing this is strongly discouraged because
interoperability between mail systems.

Figure 3-4. base64 encoding

The number of supported data types and encoding techniques grows as new data formats appear and are used in message
transmissions. New RFCs constantly define new data types and encoding. Read the latest RFCs to keep up with MIME
developments.

MIME defines data types that SMTP was not designed to carry. To handle these and other future requirements,
SMTP Service Extensions, defines a technique for making SMTP extensible. The RFC does not define new services for SMTP;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SMTP Service Extensions, defines a technique for making SMTP extensible. The RFC does not define new services for SMTP;
in fact, the only service extensions mentioned in the RFC are defined in other RFCs. What this RFC does define is a simple
mechanism for systems to negotiate which SMTP extensions are supported. The RFC defines a new
and the legal responses to that command. One response is for the receiving system to return a list of the SMTP extensions it
supports. This response allows the sending system to know what extended services can be used, and to
not implemented on the remote system. SMTP implementations that support the EHLO command are called Extended
(ESMTP).

Several ESMTP service extensions have been defined for MIME mailers. Table 3-4 lists some of these. The table lists the
EHLO keyword associated with each extension, the number of the RFC that defines it, and its purpose. These service
extensions are just an example. Other have been defined to support SMTP enhancements.

Table 3-4. SMTP service extensions
Keyword RFC Function

8BITMIME 1652 Accept 8bit binary data

CHUNKING 1830 Accept messages cut into chunks

CHECKPOINT 1845 Checkpoint/restart mail transactions

PIPELINING 1854 Accept multiple commands in a single send

SIZE 1870 Display maximum acceptable message size

DSN 1891 Provide delivery status notifications

ETRN 1985 Accept remote queue processing requests

ENHANCEDSTATUSCODES 2034 Provide enhanced error codes

STARTTLS 2487 Use Transport Layer Security to encrypt the email exchange

AUTH 2554 Use strong authentication to identify the email source

It is easy to check which extensions are supported by your server by using the EHLO command. The following example is
a generic Solaris 8 system, which comes with sendmail 8.9.3:

> telnet localhost 25
Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

220 crab.wrotethebook.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Mon, 23 Apr 2001 11:00:35-0400 (EDT)

EHLO crab
250-crab.wrotethebook.com Hello localhost [127.0.0.1], pleased to meet you

250-EXPN

250 HELP

250-8BITMIME

250-SIZE

250-DSN

250-ETRN

250-VERB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

250-ONEX

250-XUSR

QUIT
221 crab.foobirds.org closing connection

Connection closed by foreign host.

The sample system lists nine commands in response to the EHLO greeting. Two of these, EXPN and HELP,
SMTP commands that aren't implemented on all systems (the standard commands are listed in Table 3-1
DSN, and ETRN are ESMTP extensions, all of which are described in Table 3-4. The last three keywords in the response are
VERB, ONEX, and XUSR. All of these are specific to sendmail version 8. None is defined in an RFC. VERB
sendmail server in verbose mode. ONEX limits the session to a single message transaction. XUSR is equivalent to the
sendmail command-line argument.[12] As the last three keywords indicate, the RFCs allow for private ESMTP extensions.

[12] See Appendix E for a list of the sendmail command-line arguments.

The specific extensions implemented on each system are different. For example, on a generic Solaris 2.5.1
keywords (EXPN, SIZE, and HELP) are displayed in response to EHLO. The extensions available depend on the version of
sendmail that is running and on how sendmail is configured.[13] The purpose of EHLO is to identify these
beginning of the SMTP mail exchange.

[13] See Chapter 10 for the details of sendmail configuration.

ESMTP and MIME are important because they provide a standard way to transfer non-ASCII data through email. Users share
lots of application-specific data that is not 7-bit ASCII. Many users depend on email as a file transfer mechanism.

SMTP, POP, IMAP, and MIME are essential parts of the mail system, but other email protocols may also be essential in the
future. The one certainty is that the network will continue to change. You need to track current developments and include
helpful technologies in your planning. Two technologies that users find helpful are file sharing and printer sharing. In the next
section we look at file and print servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 File and Print Servers

File and print services make the network more convenient for users. Not long ago, disk drives and
high-quality printers were relatively expensive, and diskless workstations were common. Today,
every system has a large hard drive and many have their own high-quality laser printers, but the
demand for resource-sharing services is higher than ever.

3.5.1 File Sharing

File sharing is not the same as file transfer; it is not simply the ability to move a file from one
system to another. A true file-sharing system does not require you to move files across the
network. It allows files to be accessed at the record level so that it is possible for a client to read a
record from a file located on a remote server, update that record, and write it back to the server—
without moving the entire file from the server to the client.

File sharing is transparent to the user and to the application software running on the user's
system. Through file sharing, users and programs access files located on remote systems as if
they were local files. In a perfect file-sharing environment, the user neither knows nor cares where
files are actually stored.

File sharing didn't exist in the original TCP/IP protocol suite. It was added to support diskless
workstations. Several TCP/IP protocols for file sharing have been defined, but two hold the lion's
share of the file sharing market:

NetBIOS/Server Message Block

NetBIOS was originally defined by IBM. It is the basic networking used on Microsoft
Windows systems. Unix systems can act as file and print servers for Windows clients by
running the Samba software package that implements NetBIOS and Server Message Block
(SMB) protocols.

Network File System

NFS was defined by Sun Microsystems to support their diskless workstations. NFS is
designed primarily for LAN applications and is implemented for all Unix systems and many
other operating systems.

For file sharing between Unix systems, you will probably use NFS, as it is the most widely used
Unix file-sharing protocol. If you need to support Windows clients using Unix servers, you will
probably use Samba. For a detailed discussion of both of these tools, see Chapter 9.

3.5.2 Print Services

A print server allows printers to be shared by everyone on the network. Printer sharing is not as
important as file sharing, but it is a useful network service. The advantages of printer sharing are:

Fewer printers are needed, and less money is spent on printers and supplies.

Reduced maintenance. There are fewer machines to maintain, and fewer people spending
time fiddling with printers.

Access to special printers. Very high-quality color printers and very high-speed printers are
expensive and needed only occasionally. Sharing these printers makes the best use of
expensive resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two techniques commonly used for sharing printers on a corporate network. One
technique is to use the sharing services provided by Samba. This is the technique preferred by
Windows clients. The other approach is to use the traditional Unix lpr command and an lpd
server. Print server configuration is also covered in Chapter 9.

This chapter concludes with a discussion of the various types of TCP/IP configuration servers.
Unlike email, file sharing, and print servers, configuration servers are not used on every network.
However, the demand for easier installation and improved mobility makes configuration servers
an important part of many networks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Configuration Servers

The powerful features that add to the utility and flexibility of TCP/IP also add to its complexity.
TCP/IP is not as easy to configure as some other networking systems. TCP/IP requires that the
configuration provide hardware, addressing, and routing information. It is designed to be
independent of any specific underlying network hardware, so configuration information that can be
built into the hardware in some network systems cannot be built in for TCP/IP. The information must
be provided by the person responsible for the configuration. This assumes that every system is run
by people who are knowledgeable enough to provide the proper information to configure the system.
Unfortunately, this assumption does not always prove correct.

Configuration servers make it possible for the network administrator to control TCP/IP configuration
from a central point. This relieves the end user of some of the burden of configuration and improves
the quality of the information used to configure systems.

TCP/IP has used three protocols to simplify the task of configuration: RARP, BOOTP, and DHCP.
We begin with RARP, the oldest and most basic of these configuration tools.

3.6.1 Reverse Address Resolution Protocol

RARP, defined in RFC 903, is a protocol that converts a physical network address into an IP
address, which is the reverse of what Address Resolution Protocol (ARP) does. A Reverse Address
Resolution Protocol server maps a physical address to an IP address for a client that doesn't know
its own IP address. The client sends out a broadcast using the broadcast services of the physical
network.[14] The broadcast packet contains the client's physical network address and asks if any
system on the network knows what IP address is associated with the address. The RARP server
responds with a packet that contains the client's IP address.

[14] Like ARP, RARP is a Network Access Layer protocol that uses physical network services residing below the Internet
Layer. See the discussion of TCP/IP protocol layers in Chapter 1.

The client knows its physical network address because it is encoded in the Ethernet interface
hardware. On most systems, you can easily check the value with a command. For example, on a
Solaris 8 system, the superuser can type:

ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

 inet 172.16.12.1 netmask ffffff00 broadcast 172.16.12.255

 ether 0:0:c0:dd:d4:da

The ifconfig command can set or display the configuration values for a network interface.[15]

dnet0 is the device name of the Ethernet interface. The Ethernet address is displayed after the ether
label. In the example, the address is 0:0:c0:dd:d4:da.

[15] See Chapter 6 for information about the ifconfig command.

The RARP server looks up the IP address that it uses in its response to the client in the /etc/ethers
file. The /etc/ethers file contains the client's Ethernet address followed by the client's hostname. For
example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2:60:8c:48:84:49 clock

0:0:c0:a1:5e:10 ring

0:80:c7:aa:a8:04 24seven

8:0:5a:1d:c0:7e limulus

8:0:69:4:6:31 arthropod

To respond to a RARP request, the server must also resolve the hostname found in the /etc/ethers
file into an IP address. DNS or the hosts file is used for this task. The following hosts file entries
could be used with the ethers file shown above:

clock 172.16.3.10

ring 172.16.3.16

24seven 172.16.3.4

limulus 172.16.3.7

arthropod 172.16.3.21

Given these sample files, if the server receives a RARP request that contains the Ethernet address
0:80:c7:aa:a8:04, it matches it to 24seven in the /etc/ethers file. The server uses the name 24seven
to look up the IP address. It then sends the IP address 172.16.3.4 out as its ARP response.

RARP is a useful tool, but it provides only the IP address. There are still several other values that
need to be manually configured. Bootstrap Protocol (BOOTP) is a more flexible configuration tool
that provides more values than just the IP address and can deliver those values via the network.

BOOTP is defined in RFCs 951 and 1532. The RFCs describe BOOTP as an alternative to RARP;
when BOOTP is used, RARP is not needed. BOOTP, however, is a more comprehensive
configuration protocol than RARP. It provides much more configuration information and has the
potential to offer still more. The original specification allowed vendor extensions as a vehicle for the
protocol's evolution. RFC 1048 first formalized the definition of these extensions, which have been
updated over time and are currently defined in RFC 2132. BOOTP and its extensions became the
basis for the Dynamic Host Configuration Protocol (DHCP). DHCP has superseded BOOTP, so
DHCP is the configuration protocol that you will use on your network.

3.6.2 Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) is defined in RFCs 2131 and 2132. It's designed to be
compatible with BOOTP. RFC 1534 outlines interactions between BOOTP clients and DHCP
servers and between DHCP clients and BOOTP servers. DHCP is the correct configuration protocol
for your network because DHCP exceeds the capabilities of BOOTP while maintaining support for
existing BOOTP clients.

DHCP uses the same UDP ports as BOOTP (67 and 68) and the same basic packet format. But
DHCP is more than just an update of BOOTP. The new protocol expands the function of BOOTP in
two areas:

The configuration parameters provided by a DHCP server include everything defined in the
Requirements for Internet Hosts RFC. DHCP provides a client with a complete set of TCP/IP
configuration values.

DHCP permits automated allocation of IP addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DHCP expands the original BOOTP packet in order to indicate the DHCP packet type and to carry a
complete set of configuration information. DHCP calls the values in this part of the packet options.
To handle the full set of configuration values from the Requirements for Internet Hosts RFC, the
Options field is large and has a variable format.

You don't usually need to use the full set of configuration values. Don't get me wrong; it's not that
the values are unnecessary—all the parameters are needed for a complete TCP/IP configuration.
It's just that you don't need to define values for them. Default values are provided in most TCP/IP
implementations, and the defaults need to be changed only in special circumstances. The expanded
configuration parameters of DHCP make it a more complete protocol than BOOTP, but they are not
the most useful features of DHCP.

For most network administrators, automatic allocation of IP addresses is a more interesting feature.
DHCP allows addresses to be assigned in four ways:

Permanent fixed addresses

As always, the administrator can continue to assign addresses without using the DHCP
system. While this happens completely outside of DHCP, DHCP makes allowances for it by
permitting addresses to be excluded from the range of addresses under the control of the
DHCP server. Most networks have some permanently assigned addresses.

Manual allocation

The network administrator keeps complete control over addresses by specifically assigning
them to clients in the DHCP configuration. This is exactly the same way that addresses are
handled under BOOTP. Manual allocation fails to take full advantage of the power of DHCP
but might be needed if you have BOOTP clients.

Automatic allocation

The DHCP server permanently assigns an address from a pool of addresses. The
administrator is not involved in the details of assigning a client an address. This technique
fails to take advantage of the DHCP server's ability to collect and reuse addresses.

Dynamic allocation

The server assigns an address to a DHCP client for a limited period of time. The limited life of
the address is called a lease. The client can return the address to the server at any time but
must request an extension from the server to retain the address longer than the time
permitted. The server automatically reclaims the address after the lease expires if the client
has not requested an extension. Dynamic allocation uses the full power of DHCP.

Dynamic allocation is useful in any network, particularly a large distributed network where many
systems are being added and deleted. Unused addresses are returned to the pool of addresses
without relying on users or system administrators to deliberately return them. Addresses are used
only when and where they're needed. Dynamic allocation allows a network to make the maximum
use of a limited set of addresses. It is particularly well suited to mobile systems that move from
subnet to subnet and therefore must be constantly reassigned addresses appropriate for their
current network location. Even in the smallest network, dynamic allocation simplifies the network
administrator's job.

Dynamic address allocation does not work for every system. Name servers, email servers, login
hosts, and other shared systems are always online, and they are not mobile. These systems are
accessed by name, so a shared system's domain name must resolve to the correct address. Shared
systems are manually allocated permanent, fixed addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic address assignment has major repercussions for DNS. DNS is required to map hostnames
to IP addresses. It cannot perform this job if IP addresses are constantly changing and DNS is not
informed of the changes. To make dynamic address assignment work for all types of systems, we
need a DNS that can be dynamically updated by the DHCP server. Dynamic DNS (DDNS) is
available, but it is not yet widely used.[16] When fully deployed, it will help make dynamic addresses
available to systems that provide services and to those that use them.

[16] See Chapter 8 for more information about DDNS.

Given the nature of dynamic addressing, most sites assign permanent fixed addresses to shared
servers. This happens through traditional system administration and is not handled by DHCP. In
effect, the administrator of the shared server is given an address and puts that address in the
shared server's configuration. Using DHCP for some systems doesn't mean it must be used for all
systems.

DHCP servers can support BOOTP clients. However, a DHCP client is needed to take full
advantage of the services offered by DHCP. BOOTP clients do not understand dynamic address
leases. They do not know that an address can time out and that it must be renewed. BOOTP clients
must be manually or automatically assigned permanent addresses. True dynamic address
assignment is limited to DHCP clients.

Therefore, most sites that use DHCP have a mixture of:

Permanent addresses assigned to systems that can't use DHCP

Manual addresses assigned to BOOTP clients

Dynamic addresses assigned to all DHCP clients

All of this begs the question of how a client that doesn't know its own address can communicate with
a server. DHCP defines a simple packet exchange that allows the client to find a server and obtain a
configuration.

3.6.2.1 How DHCP works

The DHCP client broadcasts a packet called a DHCPDISCOVER message that contains, at a
minimum, a transaction identifier and the client's DHCP identifier, which is normally the client's
physical network address. The client sends the broadcast using the address 255.255.255.255,
which is a special address called the limited broadcast address.[17] The client waits for a response
from the server. If a response is not received within a specified time interval, the client retransmits
the request. DHCP uses UDP as a transport protocol and, unlike RARP, does not require any
special Network Access Layer protocols.

[17] This address is useful because, unlike the normal broadcast address, it doesn't require the system to know the
address of the network it is on.

The server responds to the client's message with a DHCPOFFER packet. DHCP uses two different
well-known port numbers. UDP port number 67 is used for the server, and UDP port number 68 is
used for the client. This is very unusual. Most software uses a well-known port on the server side
and a randomly generated port on the client side. (How and why random source port numbers are
used is described in Chapter 1.) The random port number ensures that each pair of
source/destination ports identifies a unique path for exchanging information. A DHCP client,
however, is still in the process of booting. It probably does not know its IP address. Even if the client
generates a source port for the DHCPDISCOVER packet, a server response that is addressed to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

generates a source port for the DHCPDISCOVER packet, a server response that is addressed to
that port and the client's IP address won't be read by a client that doesn't recognize the address.
Therefore, DHCP sends the response to a specific port on all hosts. A broadcast sent to UDP port
68 is read by all hosts, even by a system that doesn't know its specific address. The system then
determines if it is the intended recipient by checking the transaction identifier and the physical
network address embedded in the response.

The server fills in the DHCPOFFER packet with the configuration data it has for the client. A DHCP
server can provide every TCP/IP configuration value a client needs, provided the server is properly
configured. Chapter 9 is a tutorial on setting up a DHCP server, and Appendix D is a complete list of
all of the DHCP configuration parameters.

As the name implies, the DHCPOFFER packet is an offer of configuration data. That offer has a
limited lifetime—typically 120 seconds. The client must respond to the offer before the lifetime
expires. This is done because more than one server may hear the DHCPDISCOVER packet from
the client and respond with a DHCPOFFER. If the servers did not require a response from the client,
multiple servers might commit resources to a single client, thus wasting resources that could be
used by other clients. If a client receives multiple DHCPOFFER packets, it responds to only one and
ignores the others.

The client responds to the DHCPOFFER with a DHCPREQUEST message. The DHCPREQUEST
message asks the server to assign the client the configuration information that was offered. The
server checks the information in the DHCPREQUEST to make sure that the client got everything
right and that all of the offered data is still available. If everything is correct, the server sends the
client a DHCPACK message letting the client know that it is now configured to use all of the
information from the original DHCPOFFER packet. Figure 3-5 shows the normal packet flow when
DHCP is used to configure a client.

Figure 3-5. DHCP client/server protocol

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 Summary

TCP/IP provides some network services that simplify network installation, configuration, and use.
Name service is one such service and it is used on every TCP/IP network.

Name service can be provided by the host table, Domain Name System (DNS), and Network
Information Service (NIS). The host table is a simple text file stored in /etc/hosts. Most systems
have a small host table, but it cannot be used for all applications because it is not scalable and
does not have a standard method for automatic distribution. NIS, the Sun "yellow pages" server,
solves the problem of automatic distribution for the host table but does not solve the problem of
scaling. DNS, which superseded the host table as a TCP/IP standard, does scale. DNS is a
hierarchical, distributed database system that provides hostname and address information for all
of the systems in the Internet.

Simple Mail Transfer Protocol (SMTP), Post Office Protocol (POP), Internet Message Access
Protocol (IMAP), and Multipurpose Internet Mail Extensions (MIME) are the building blocks of a
TCP/IP email network. SMTP is a simple request/response protocol that provides end-to-end mail
delivery. Sometimes end-to-end mail delivery is not suitable, and the mail must be routed to a
mail server. TCP/IP mail servers can use POP or IMAP to move the mail from the server to the
end system, where it is read by the user. SMTP can deliver only 7-bit ASCII data. MIME extends
the TCP/IP mail system so that it can carry a wide variety of data.

Network File System (NFS) is the leading Unix file-sharing protocol. It allows server systems to
export directories that are then mounted by clients and used as if they were local disk drives. The
Unix LPD/LPR protocol can be used for printer sharing on a TCP/IP network. Samba provides
similar file and print sharing services for Windows clients.

Many configuration values are needed to install TCP/IP. These values can be provided by a
configuration server. Three protocols have been used by TCP/IP for distributing configuration
information:

RARP

Reverse Address Resolution Protocol tells a client its IP address. The RARP server does
this by mapping the client's Ethernet address to its IP address. The Ethernet to IP address
mappings are stored on the server in the /etc/ethers file.

BOOTP

Bootstrap Protocol provides a wide range of configuration values.

DHCP

Dynamic Host Configuration Protocol replaced BOOTP with a service that provides the full
set of configuration parameters defined in the Requirements for Internet Hosts RFC. It also
provides for dynamic address allocation, which allows a network to make maximum use of
a limited set of addresses.

This chapter concludes our introduction to the architecture, protocols, and services of a TCP/IP
network. In the next chapter, we begin to look at how to install a TCP/IP network by examining the
process of planning an installation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Getting Started
In this chapter, our emphasis shifts from how TCP/IP functions to how it is configured. While
Chapters Chapter 1 through Chapter 3 described the TCP/IP protocols and how they work, now
we begin to explore the network configuration process. The first step in this process is planning.
Before configuring a host to run TCP/IP, you must have certain information. At the very least,
every host must have a unique IP address and hostname. You should also resolve the following
issues before configuring a system:

Default gateway address

If the system communicates with TCP/IP hosts that are not on its local network, a default
gateway address may be needed. Alternatively, if a routing protocol is used on the network,
each device needs to know that protocol.

Name server addresses

To resolve hostnames into IP addresses, each host needs to know the addresses of the
domain name servers.

Domain name

Hosts using the domain name system must know their correct domain name.

Subnet mask

To communicate properly, each system on a network must use the same subnet mask.

If you're adding a system to an existing network, make sure you find out the answers from your
network administrator before putting the system online. The network administrator is responsible
for making and communicating decisions about overall network configuration. If you have an
established TCP/IP network, you can skip several sections in this chapter, but you may still want
to read about selecting hostnames, planning mail systems, and other topics that affect mature
networks as much as they do new networks.

If you are creating a new TCP/IP network, you will have to make some basic decisions. Will the
new network connect to the Internet? If so, how will the connection be made? How should the
network number be chosen? How do I register a domain name? How do I choose hostnames? In
the following sections, we cover the information you need to make these decisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Connected and Non-Connected Networks

First, you must decide whether your new network will be fully connected to the Internet. A
connected network is directly attached to the Internet and is fully accessible to other networks on
the Internet. A non-connected network is not directly attached to the Internet, and its access to
Internet networks is limited. An example of a non-connected network is a TCP/IP network that
attaches to the outside world via a network address translation (NAT) box or a proxy server.
Users on the non-connected network can access remote Internet hosts, but remote users cannot
directly access hosts on the non-connected network. Because non-connected networks do not
provide services to the outside world, they are also known as private networks.

Private networks that interconnect the various parts of an organization are often called enterprise
networks. When those private networks use the information services applications that are built on
top of TCP/IP, particularly web servers and browsers, to distribute internal information, those
networks are called intranets.

There are a few basic reasons why many sites do not fully connect to the Internet. One reason is
security. Connecting to any network gives more people access to your system. Connecting to a
global network with millions of users is enough to scare any security expert. There is no doubt
about it: connecting to the Internet increases the security risks for your network. Chapter 12
covers some techniques for reducing this risk.

Cost is another consideration. Many organizations do not see sufficient value in a full Internet
connection for every desktop. For some organizations, low use or limited requirements, such as
needing only email access, make the cost of connecting the entire network to the Internet exceed
the benefit. For others, the primary reason for an Internet connection is to provide information
about their products. It is not necessary to connect the entire enterprise network to the Internet to
do this. It is often sufficient to connect a single web server to the local Internet Service Provider
(ISP) or to work with a web hosting company to provide information to your customers.

Other organizations consider an Internet connection an essential requirement. Educational and
research institutions depend on the Internet as a source of information, and many companies use
it as a means of delivering service and support to their customers.

You may have both types of networks: a non-connected enterprise network sitting behind a
security firewall, and a small connected network that provides services to your external customers
and proxy service for your internal users.

Unless you have carefully determined what your needs are and what an Internet connection will
cost, you cannot know whether connecting your entire network to the Internet is right for your
organization. Your local ISPs can give you the various cost and performance alternatives. Ask
them about services as well as prices. Some ISPs specialize in providing low-cost service to
home users. They emphasize price. However, if you are connecting a full network to the Internet,
you may want an ISP that can provide network addresses, name service, web hosting, and other
features that your network might need.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Basic Information

Regardless of whether you decide to connect your network to the Internet, one thing is certain:
you will build your enterprise network using the TCP/IP protocols. All TCP/IP networks, whether or
not they connect to the Internet, require the same basic information to configure the physical
network interface. As we will see in Chapter 6, the network interface needs an IP address and
may also need a subnet mask and broadcast address. The decision of whether to connect to the
Internet affects how you obtain the values needed to configure the interface. In this section, we
look at how the network administrator arrives at each of the required values.

4.2.1 Obtaining an IP Address

Every interface on a TCP/IP network must have a unique IP address. If a host is part of the
Internet, its IP address must be unique within the entire Internet. If a host's TCP/IP
communications are limited to a local network, its IP address only needs to be unique locally.
Administrators whose networks will not be connected to the Internet can select an address from
RFC 1918, Address Allocation for Private Intranets, which lists network numbers that are reserved
for private use.[1] The private network numbers are:

[1] The address used in this book (172.16.0.0) is treated as an official address, but it is a private network number set
aside for use by non-connected enterprise networks. Feel free to use this address on your network if it will not be
connected to the Internet.

Network 10.0.0.0 (10/8 prefix) is a 24-bit block of addresses.

Networks 172.16.0.0 to 172.31.0.0 (172.16/12 prefix) is a 20-bit block of addresses.

Networks 192.168.0.0 to 192.168.255.0 (192.168/16 prefix) is a 16-bit block of addresses.

The disadvantage of using a network address from RFC 1918 is that you may have to change
your address in the future if you connect your full network to the Internet. The advantages to
choosing a private network address are:

It's easy. You do not have to apply for an official address or get anyone's approval.

It's friendly. You save address space for those who need to connect to the Internet.

It's free. RFC 1918 addresses cost nothing—official addresses cost money.

If you do choose an address from RFC 1918, the hosts on your network can still have access to
systems on the Internet. But it will take some effort. You'll need a network address translation
(NAT) box or a proxy server. NAT is available as a separate piece of hardware or as an optional
piece of software in some routers and firewalls. It works by converting the source address of
datagrams leaving your network from your private address to your official address. Address
translation has several advantages:

It conserves IP addresses. Most network connections are between systems on the same
enterprise network. Only a small percentage of systems need to connect to the Internet at
any one time. Therefore, far fewer official IP addresses are needed than the total number
of systems on an enterprise network. NAT makes it possible for you to use a large address
space from RFC 1918 for configuring your enterprise network while using only a small
official address space for Internet connections.

It reduces address spoofing, a security attack in which a remote system pretends to be a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It reduces address spoofing, a security attack in which a remote system pretends to be a
local system. The addresses in RFC 1918 cannot be routed over the Internet. Therefore,
even if a datagram is routed off your network toward the remote system, the fact that the
datagram contains an RFC 1918 destination address means that the routers in the Internet
will discard the datagram as a martian .[2]

[2] A martian is a datagram with an address that is known to be invalid.

It eliminates the need to renumber your hosts when you connect to the Internet.

Network address translation also has disadvantages:

Cost

NAT may add cost for new hardware or optional software. However, these costs tend to be
very low.

Performance

Address translation adds overhead to the processing of every datagram. When the address
is changed, the checksum must be recalculated. Furthermore, some upper-layer protocols
carry a copy of the IP address that also must be converted.

Reliability

Routers never modify the addresses in a datagram header, but NAT does. This might
introduce some instability. Additionally, protocols and applications that embed addresses in
their data may not function correctly with NAT.

Security

NAT limits the use of end-to-end encryption and authentication. Authentication schemes
that include the header within the calculation do not work because the router changes the
addresses in the header. Encryption does not work if the encrypted data includes the
source address.

Proxy servers provide many of the same advantages as NAT boxes. In fact, these terms are often
used interchangeably. But there are differences. Proxy servers are application gateways originally
created as part of firewall systems to improve security. Internal systems connect to the outside
world through the proxy server, and external systems respond to the proxy server. Proxy servers
are application-specific. A network might have one proxy web server and another proxy FTP
server—each server dedicated to serving connections for one type of application. Therefore, the
difference between NAT boxes and proxy servers is that NAT maps IP addresses regardless of
the application; the true proxy server focuses on one application.

Proxy servers often have added security features. Address translation can be done at the IP
layer. Proxy services require the server to handle data up to the application layer. Security filters
can be put in proxy servers that filter data at all layers of the protocol stack.

Given the differences discussed here, network address translation servers should scale better
than proxy servers, and proxy servers should provide better security. However, over time these
technologies have merged and are now largely indistinguishable. Before you decide to use either
NAT or proxy services, make sure they are suitable for your network needs.

Combining NAT with a private network address gives every host on your network access to the
outside world, but it does not allow outside users access into your network. For that, you need to
obtain an official IP address.

4.2.1.1 Obtaining an official network address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Networks that are fully connected to the Internet must obtain official network addresses. An
official address is needed for every system on your network that is directly accessible to remote
Internet hosts. Every network that communicates with the Internet, even those that use NAT, have
at least one official address, although that address may not be permanently assigned. The first
step toward obtaining a block of addresses is to determine how many addresses you need.

Determining your "organizational type" helps you assess your address needs and how you should
satisfy those needs. RFC 2901, Administrative Internet Infrastructure Guide, describes four
different organizational types:

Internet end user

A small- to medium-sized organization focused on connecting itself to the Internet. This
could be as small as a single user connecting to the Internet with a dynamic address
assigned by the ISP's DHCP server, or as large as a network of thousands of hosts using
NAT on the enterprise network and official addresses on a limited number of publicly
accessible systems. What categorizes this organizational type is that it wants to use the
Internet while limiting the number of systems it makes available to remote users. "Internet
end user" organizations obtain official addresses from their ISP. From the point of view of
the Internet, all Internet end user organizations appear small because they use only a
limited number of official addresses.

High-volume end user

A medium-sized to large organization that distributes official addresses to systems
throughout its network. This type of organization tends to have a distributed management
under which divisions within the overall organization are allowed to make systems remotely
accessible. "High-volume end user" organizations usually satisfy their address
requirements through their ISP or a Local Internet Registry. If the organization needs more
than 8,000 addresses, it may go directly to a Regional Internet Registry. While in reality a
high-volume end user organization may not be any larger than an Internet end user
organization, it appears to be larger from the point of view of the Internet because it
exposes more systems to the Internet.

Internet Service Provider

An organization that provides Internet connection services to other organizations and
provides those organizations with official addresses. Even an ISP connects to the Internet
in some way. If it connects through another ISP, that ISP is its upstream provider. The
upstream provider assigns addresses to the ISP. If it connects directly to a network access
point (NAP), as described in Chapter 2, the ISP requests addresses from the Local Internet
Registry or the Regional Internet Registry.

Local Internet Registry

An organization that provides addresses to ISPs. In effect, a Local Internet Registry is an
organization that provides addresses to other organizations that provide addresses. A
Local Internet Registry must obtain its addresses from a Regional Internet Registry.

RFC 2901 lists four organizational types in order to be thorough, but most organizations are either
Internet end users or high-volume end users. In all likelihood, your organization is one of these,
and you will obtain all of your addresses from your ISP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Your ISP has been delegated authority over a group of network addresses and should be able to
assign you a network number. If your local ISP cannot meet your needs, perhaps the ISP's
upstream provider can. Ask your local ISP who it receives service from and ask that organization
for an address. If all else fails, you may be forced to go directly to an Internet registry. If you are
forced to take your request to a registry, you will need to take certain steps before you make the
application.

You need to prepare a detailed network topology. The topology must include a diagram that
shows the physical layout of your network and highlights its connections to the Internet. You
should include network engineering plans that, in addition to diagramming the topology, describe:

Your routing plans, including the protocols you will use and any constraints that forced your
routing decisions.

Your subnetting plans, including the mask you will use and the number of networks and
hosts you will have connected during the next year. RFC 2050, Internet Registry IP
Allocation Guidelines, suggests the following details in your subnet plan:

A table listing all subnets.

The mask for each subnet. The use of variable-length subnet masks (VLSMs) is
strongly encouraged. VLSMs are described later in this chapter under "Defining a
Subnet Mask."

The estimated number of hosts.

A descriptive remark explaining the purpose of each subnet.

The biggest challenge is accurately predicting your future requirements for addresses. If you have
previously been assigned an address block, you may be required to provide a history of how that
address block was used. Even if it is not requested by the Internet registry, a history can be a
helpful tool for your own planning. Additionally, you will be asked to prepare a network deployment
plan. This plan typically shows the number of hosts you currently have that need official
addresses and the number you expect to have in six months, one year, and two years.

One factor used to determine how much address space is needed is the expected utilization rate.
The expected utilization rate is the number of hosts assigned official addresses divided by the
total number of hosts possible for the network. The deployment plans must show the number of
hosts that will be assigned addresses over a two-year period. The total number of possible hosts
can be estimated from the total number of employees in your organization and the number of
systems that have been traditionally deployed per employee. Clearly you need to have a global
knowledge of your organization and its needs before applying for an official address assignment.

In addition to providing documentation that justifies the address request, obtaining an official
address requires a formal commitment of resources. Most address applications require at least
two contacts: an administrative contact and a technical contact. The administrative contact should
have the authority to deal with administrative issues ranging from policy violations to billing
disputes. The technical contact must be a skilled technical person who can deal with technical
problems and answer technical questions. The registries require that these contacts live in the
same country as the organization that they represent. You must provide the names, addresses,
telephone numbers, and email addresses of these people. Don't kid yourself—these are not
honorary positions. These people have targets on their backs when things go wrong.

The registry includes this contact information in the whois database, which provides publicly
available contact information about the people responsible for networks. Once your name is in the
whois database, you're given a NIC handle, which is a unique identifier linked to your whois
database record. For example, my NIC handle is cwh3. Many official applications request your
NIC handle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to human resources, you need to commit computer resources. You should have
systems set up, running, and ready to accept the new addresses before you apply for official
addresses.

When all of the background work is done, you're ready to present your case to an Internet
registry. A three-level bureaucracy controls the allocation of IP addresses:

IANA

The Internet Assigned Numbers Authority allocates large blocks of addresses to regional
Internet registries.

Regional Internet Registry

Regional Internet Registries (IRs) have been given authority by the IANA to allocate
addresses within a large region of the world. There are three IRs:

APNIC

The Asian Pacific Network Information Center has address allocation authority for
Asia and the Pacific region.

ARIN

The American Registry for Internet Numbers has address allocation authority for the
Americas.

RIPE

Reseaux IP Europeens has address allocation authority for Europe.

Local Internet Registry

Local IRs are given authority, either by IANA or by a regional IR, to allocate addresses
within a specific area. An example might be a national registry or a registry created by a
consortium of ISPs.

Regardless of how much address space you need, you should start at the bottom of the hierarchy
and work your way up. Always start with your local ISP. If they cannot handle your needs, ask
them if there is a local IR that can help you. As a last resort, take your request to the regional IR
that serves your part of the world.

If you're in the APNIC region, first fill out the membership application. The APNIC membership
application is available at http://www.apnic.net/member/application.html. Once you become a
member of APNIC, you can request an address.

ARIN does not require that you become a member before applying for an address. If you're a
high-volume end user, use the application form at
http://www.arin.net/templates/networktemplate.txt to apply for an address. If you're an ISP, use
http://www.arin.net/templates/isptemplate.txt. In either case, send the completed application to
hostmaster@arin.net.

End user organization in the RIPE region must use a local IR. RIPE only allocates addresses to
local IRs that are members of RIPE. End user organizations cannot apply to RIPE for address
allocations. See the document ftp://ftp.ripe.net/ripe/docs/ripe-159.txt for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Regardless of where your network is located, the most important thing to remember is that most
organizations never have to go through this process because they do not want to expose the bulk
of their computers to the Internet. For security reasons, they use private address numbers for
most systems and have only a limited number of official IP addresses. That limited number of
addresses can usually be provided by a local ISP.

4.2.1.2 Obtaining an IN-ADDR.ARPA domain

When you obtain an official IP address, you should also apply for an in-addr.arpa domain. This
special domain is sometimes called a reverse domain. Chapter 8 contains more information about
how the in-addr.arpa domain is set up and used, but basically the reverse domain maps numeric
IP addresses into domain names. This is the reverse of the normal domain name lookup process,
which converts domain names to addresses. If your ISP provides your name service or assigned
you an address from a block of its own addresses, you may not need to apply for an in-addr.arpa
domain on your own. Check with your ISP before applying. If, however, you obtain a block of
addresses from a Regional Internet Registry, you probably need to get your own in-addr.arpa
domain. If you do need to get a reverse domain, you will register it with the same organization
from which you obtained your address assignment.

For address blocks obtained from APNIC, use the form ftp://ftp.apnic.net/apnic/docs/in-
addr-request and mail the completed form to domreg@rs.apnic.net.

For address blocks obtained from ARIN, use the form
http://www.arin.net/templates/modifytemplate.txt and mail the completed form to
hostmaster@arin.net.

For address blocks obtained from RIPE, a domain object needs to be entered into the RIPE
database. Mail the completed object to auto-inaddr@ripe.net.

As an example, assume that your network is located in the RIPE region. You would need to
provide the information needed to create a RIPE domain object for your network. The domain
object for the RIPE database illustrates the type of information that is required to register a
reverse domain. The RIPE database object has ten fields:

domain:

This is the domain name. How reverse domain names are derived is described in detail in
Chapter 8, but the name is essentially the address reversed with in-addr.arpa added to the
end. For our 172.16/16 address allocation, the reverse domain name is 16.172.in-
addr.arpa.

descr:

A text description of the domain. For example, "The address allocation for
wrotethebook.com."

admin-c:

The NIC handle of the administrative contact.

tech-c:

The NIC handle of the technical contact.

zone-c:

The NIC handle of the domain administrator, also called the zone contact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nserver:

The name or address of the master server for this domain.

nserver:

The name or address of a slave server for this domain.

nserver:

For RIPE, this third server is always ns.ripe.net.

changed:

The email address of the maintainer who submitted this database object and the date it
was submitted.

source:

For addresses allocated by RIPE, the value of this field is always RIPE.

Again, the most important thing to note about reverse address registration is that most
organizations don't have to do this. If you obtain your address from your ISP, you probably do not
have to take care of this paperwork yourself. These services are one of the reasons you pay your
ISP.

4.2.2 Assigning Host Addresses

So far we have been discussing network numbers. Our imaginary company's network was
assigned network number 172.16.0.0/16. The network administrator assigns individual host
addresses within the range of IP addresses available to the network address; i.e., our
administrator assigns the last two bytes of the four-byte address.[3] The portion of the address
assigned by the administrator cannot have all bits 0 or all bits 1; i.e., 172.16.0.0 and
172.16.255.255 are not valid host addresses. Beyond these two restrictions, you're free to assign
host addresses in any way that seems reasonable to you.

[3] The range of addresses is called the address space.

Network administrators usually assign host addresses in one of two ways:

One address at a time

Each individual host is assigned an address, perhaps in sequential order, through the
address range.

Groups of addresses

Blocks of addresses are delegated to departments within the organization, which then
assign the individual host addresses.

The assignment of groups of addresses is most common when the network is subnetted and the
address groups are divided along subnet boundaries. But assigning blocks of addresses does not
require subnetting. It can be just an organizational device for delegating authority. Delegating
authority for groups of addresses is often very convenient for large networks, while small networks
tend to assign host addresses one at a time. No matter how addresses are assigned, someone
must retain sufficient central control to prevent duplication and to ensure that the addresses are
recorded correctly on the domain name servers.

Addresses can be assigned statically or dynamically. Static assignment is handled through

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Addresses can be assigned statically or dynamically. Static assignment is handled through
manually configuring the boot file on the host computer. Dynamic address assignment is always
handled by a server, such as a DHCP server. One advantage of dynamic address assignment is
that the server will not accidentally assign duplicate addresses. Thus, dynamic address
assignment is desirable not only because it reduces the administrator's workload but also
because it reduces errors.

Before installing a server for dynamic addressing, make sure it is useful for your purposes.
Dynamic PPP addressing is useful for servers that handle many remote dial-in clients that
connect for a short duration. If the PPP server is used to connect various parts of the enterprise
network and has long-lived connections, dynamic addressing is probably unnecessary. Likewise,
the dynamic address assignment features of DHCP are of most use if you have mobile systems in
your network that move between subnets and therefore need to change addresses frequently.
See Chapter 6 for information on PPP, and Chapter 3 and Chapter 9 for details about DHCP.

Clearly, you must make several decisions about obtaining and assigning addresses. You also
need to decide what bit mask will be used with the address. In the next section we look at the
subnet mask, which changes how the address is interpreted.

4.2.3 Defining the Subnet Mask

As the prefix number indicates, a network address is assigned with a specific address mask. For
example, the prefix of 16 in the network address 172.16.0.0/16 means that ARIN assigned our
imaginary network the block of addresses defined by the address 172.16.0.0 and the 16-bit mask
255.255.0.0.[4] Unless you have a reason to change the interpretation of your assigned network
number, you do not have to define a subnet mask. Chapter 2 described the structure of IP
addresses and touched upon the reasons for subnetting. The decision to subnet is commonly
driven by topological or organizational considerations.

[4] Even though 172.16.0.0 is an RFC 1918 private network number, this text treats 172.16.0.0 as if it were an officially
assigned network number, for the sake of example.

The topological reasons for subnetting include:

Overcoming distance limitations

Some network hardware has very strict distance limitations. The original 10 Mbps Ethernet
is the most common example. The maximum length of a "thick" Ethernet cable is 500
meters; the maximum length of a "thin" cable is 300 meters; the total length of a 10 Mbps
Ethernet, called the maximum diameter, is 2500 meters.[5] If you need to cover a greater
distance, you can use IP routers to link a series of Ethernet cables. Individual cable still
must not exceed the maximum allowable length, but using this approach, every cable is a
separate Ethernet. Therefore the total length of the IP network can exceed the maximum
length of an Ethernet.

[5] The faster the Ethernet, the smaller its network diameter. For this reason, high-speed Ethernet
technologies use switches instead of a daisy chain cable to connect nodes.

Interconnecting dissimilar physical networks

IP routers can be used to link networks that have different and incompatible underlying
network technologies. Figure 4-1 later in this chapter shows a central token ring subnet,
172.16.1.0, connecting two Ethernet subnets, 172.16.6.0 and 172.16.12.0.

Filtering traffic between networks

Local traffic stays on the local subnet. Only traffic intended for other networks is forwarded
through the gateway.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subnetting is not the only way to solve topology problems. Networks are implemented in
hardware and can be altered by changing or adding hardware, but subnetting is an effective way
to overcome these problems at the TCP/IP level.

Of course, there are non-technical reasons for creating subnets. Subnets often serve
organizational purposes such as:

Simplifying network administration

Subnets can be used to delegate address management, troubleshooting, and other
network administration responsibilities to smaller groups within the overall organization.
This is an effective tool for managing a large network with a limited staff. It places the
responsibility for managing the subnet on the people who benefit from its use.

Recognizing organizational structure

The structure of an organization (or simply office politics) may require independent network
management for some divisions. Creating independently managed subnets for these
divisions is preferable to having them go directly to an ISP to get their own independent
network numbers.

Isolating traffic by organization

Certain organizations may prefer to have their local traffic isolated to a network that is
primarily accessible only to members of that organization. This is particularly appropriate
when security is involved. For example, the payroll department might not want its network
packets on the engineering network where some clever person could figure out how to
intercept them.

Isolating potential problems

If a certain segment is less reliable than the remainder of the net, you may want to make
that segment a subnet. For example, if the research group puts experimental systems on
the network from time to time or experiments with the network itself, this part of the network
will be unstable. You would make it a subnet to prevent experimental hardware or software
from interfering with the rest of the network.

The network administrator decides if subnetting is required and defines the subnet mask for the
network. The subnet mask has the same form as an IP address mask. As described in Chapter 2,
it defines which bits form the "network part" of the address and which bits form the "host part."
Bits in the "network part" are turned on (i.e., 1) while bits in the "host part" are turned off (i.e., 0).

The subnet mask used on our imaginary network is 255.255.255.0. This mask sets aside 8 bits to
identify subnets, which creates 256 subnets. The network administrator has decided that this
mask provides enough subnets and that the individual subnets have enough hosts to effectively
use the address space of 254 hosts per subnet. The upcoming Figure 4-1 shows an example of
this type of subnetting. Applying this subnet mask to the addresses 172.16.1.0 and 172.16.12.0
causes them to be interpreted as the addresses of two different networks, not as two different
hosts on the same network.

Once a mask is defined, it must be disseminated to all hosts on the network. There are two ways
this is done: manually, through the configuration of network interfaces, and automatically, through
configuration protocols like DHCP. Routing protocols can distribute subnet masks, but in most
environments host systems do not run routing protocols. In this case, every device on the network
must use the same subnet mask because every computer believes that the entire network is
subnetted in exactly the same way as its local subnet.

Because routing protocols distribute address masks for each destination, it is possible to use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable-length subnet masks (VLSMs). Using variable-length subnet masks increases the
flexibility and power of subnetting. Assume you wanted to divide 192.168.5.0/24 into three
networks: one network of 110 hosts, one network of 50 hosts, and one network of 60 hosts. Using
traditional subnet masks, a single subnet mask would have to be chosen and applied to the entire
address space. At best, this would be a compromise. With variable-length subnet masks you
could use a mask of 255.255.255.128 to create subnets of 126 hosts for the large subnet, and a
mask of 255.255.255.192 to create subnets of 62 hosts for the smaller subnets. VLSMs, however,
require that every router on the network knows how to store and use the masks and runs routing
protocols that can transmit them. (See Chapter 7 for more information on routing.) Routing is an
essential part of a TCP/IP network. Like other key components of your network, routing should be
planned before you start configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Planning Routing

In Chapter 2, we learned that hosts communicate directly only with other computers connected to
the same network. Gateways are needed to communicate with systems on other networks. If the
hosts on your network need to communicate with computers on other networks, a route through a
gateway must be defined. There are two ways to do this:

Routing can be handled by a static routing table built by the system administrator. Static
routing tables are most useful when the number of gateways is limited. Static tables do not
dynamically adjust to changing network conditions, so each change in the table is made
manually by the network administrator. Complex environments require a more flexible
approach to routing than a static routing table provides.

Routing can be handled by a dynamic routing table that responds to changing network
conditions. Dynamic routing tables are built by routing protocols. Routing protocols
exchange routing information that is used to update the routing table. Dynamic routing is
used when there are multiple gateways on a network; it's essential when more than one
gateway can reach the same destination.

Many networks use a combination of both static and dynamic routing. Some systems on the
network use static routing tables while others run routing protocols and have dynamic tables.
While it is often appropriate for hosts to use static routing tables, gateways usually run routing
protocols.

The network administrator is responsible for deciding what type of routing to use and for choosing
the default gateway for each host. Make these decisions before you start to configure your
system.

Here are a few guidelines to help you plan routing. If you have:

A network with no gateways to other TCP/IP networks

No special routing configuration is required in this case. The gateways referred to in this
discussion are IP routers that interconnect TCP/IP networks. If you are not interconnecting
TCP/IP networks, you do not need an IP router. Neither a default gateway nor a routing
protocol needs to be specified.

A network with a single gateway

If you have only one gateway, don't run any routing protocols. Specify the single gateway
as the default gateway in a static routing table.

A network with internal gateways to other subnets and a single gateway to the world

Here, there is a real choice. You can statically specify each subnet route and make the
gateway to the world your default route, or you can run a routing protocol. Decide which
you want to do based on the effort involved in maintaining a static table versus the slight
overhead of running a routing protocol on your hosts and networks. If you have more than
a few hosts, running a routing protocol is probably easiest.

A network with multiple gateways to the world

If you have multiple gateways that can reach the same destination, use a routing protocol.
This allows the gateways to adapt to network changes, giving you redundant access to the
remote networks.

Figure 4-1 shows a subnetted network with five gateways identified as A through E. A central

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-1 shows a subnetted network with five gateways identified as A through E. A central
subnet (172.16.1.0) interconnects five other subnets. One of the subnets has a gateway to an
external network. The network administrator would probably choose to run a routing protocol on
the central subnet (172.16.1.0) and perhaps on subnet 172.16.12.0, which is attached to an
external network. Dynamic routing is appropriate on these subnets because they have multiple
gateways. Without dynamic routing, the administrator would need to update every one of these
gateways manually whenever any change occurred in the network—for example, whenever a new
subnet was added. A mistake during the manual update could disrupt network service. Running a
routing protocol on these two subnets is simpler and more reliable.

Figure 4-1. Routing and subnets

On the other hand, the administrator would probably choose static routing for the other subnets
(172.16.3.0, 172.16.6.0, and 172.16.9.0). These subnets each use only one gateway to reach all
destinations. Changes external to the subnets, such as the addition of a new subnet, do not
change the fact that these three subnets still have only one routing choice. Newly added networks
are still reached through the same gateway. The hosts on these subnets specify the subnet's
gateway as their default route. In other words, the hosts on subnet 172.16.3.0 specify B as the
default gateway, while the hosts on subnet 172.16.9.0 specify D as the default, no matter what
happens on the external networks.

Some routing decisions are thrust upon you by the external networks to which you connect. In
Figure 4-1, the local network connects to an external network that requires that Border Gateway
Protocol (BGP) be used for routing. Therefore, gateway E has to run BGP to exchange routes
with the external network.

4.3.1 Obtaining an autonomous system number

The Border Gateway Protocol (BGP) requires that gateways have a special identifier called an
autonomous system number (ASN).[6] Most sites do not need to run BGP. Even when a site does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

autonomous system number (ASN).[6] Most sites do not need to run BGP. Even when a site does
run BGP, it usually runs it using the ASN of its ISP or one of the ASNs that have been set aside
for private use, which are the numbers from 64512 to 65535. Coordinate your ASN selection with
your border gateway peers to avoid any possible conflicts. If you connect to the Internet through a
single ISP, you almost certainly do not need an official ASN. If after discussions with your service
provider you find that you must obtain an official ASN, obtain the application from the Regional
Internet Registry that services your country.

[6] Refer to the section Section 2.3 for a discussion of autonomous systems.

If you're in the Asia and Pacific region, served by APNIC, you should use the application
form at http://ftp.apnic.net/apnic/docs/asn-request and mail the completed form to
hostmaster@apnic.net.

If you're in the Americas, served by ARIN, you should use the application form at
http://www.arin.net/templates/asntemplate.txt and mail the completed form to
hostmaster@arin.net.

If you're in Europe, served by RIPE, you should use the application form at
ftp://ftp.ripe.net/ripe/docs/ripe-147.txt and mail the completed form to hostmaster@ripe.net.

If you submit an application, you are asked to explain why you need a unique autonomous system
number. Unless you are an ISP, probably the only reason to obtain an ASN is that you are a multi-
homed site. A multi-homed site is any site that connects to more than one ISP. Reachability
information for the site may be advertised by both ISPs, confusing the routing policy. Assigning
the site an ASN gives it direct responsibility for setting its own routing policy and advertising its
own reachability information. This doesn't prevent the site from advertising bad routes, but it
makes the advertisement traceable back to one site and ultimately to one technical contact.
(Once you submit an ASN application, you have no one to blame but yourself!)

4.3.2 Registering in a Routing Database

If you obtain an official ASN, you must decide whether you need to register in a routing database.
If you got your ASN because you're multi-homed, you should register with a routing database.
Section 2.3 explains that routing databases are used to validate routing in the new Internet
because there is no longer a central core that can be relied on to determine "best" routes. When
you obtain an official ASN, you become part of the structure of co-equal routing domains. You
assume responsibility for a small portion of the routing burden and you declare that responsibility
by registering in a routing database.

There are several different databases that make up the Internet Routing Registry (IRR). In
addition to the Routing Arbiter Database (RADB) mentioned in Chapter 2, RIPE, ANS, Bell
Canada, and Cable & Wireless all maintain databases. RIPE serves customers in the RIPE
region. ANS, Bell Canada, and Cable & Wireless register only their paying customers. RADB is
available to anyone.

To register in the RADB, first register a maintainer object. Maintainer objects identify the person
who will be responsible for maintaining your database entries. Provide the required information,
and pay the $200 fee. You must then register the autonomous system as an AS object. Finally,
you create a Route object for each route your system will advertise. See http:/http://www.radb.net
for detailed information about registering these database objects.

All of the items discussed so far (addressing, subnetting, and routing) are required to configure
the basic physical network on top of which the applications and services run. Now we begin
planning the services that make the network useful and usable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Planning Naming Service

To make your network user-friendly, you need to provide a service to convert hostnames into IP
addresses. The Domain Name System (DNS) and the host table, explained in Chapter 3, perform
this function. You should plan to use both.

To configure a computer, a network user needs to know the domain name, the system's
hostname, and the hostname and address of at least one name server. The network administrator
provides this information.

4.4.1 Obtaining a Domain Name

The first item you need for name service is a domain name. Your ISP may be willing to get one for
you or to assign you a name within its domain; however, it is likely that you will have to apply for a
domain name yourself. You can buy an official domain name from a domain name registrar.

Your domain is not part of the official domain name space until it is registered. Only certain
organizations are permitted to officially register a domain name. You need to locate an official
registrar and obtain its services to register your domain. The place to start is either
http://www.icann.org or http://www.internic.net. Both of these sites provide listings of official
registrars.

ICANN is the Internet Corporation for Assigned Names and Numbers, a nonprofit organization
created to take over management of some functions previously managed through U.S.
government contractors. ICANN oversees the domain name registrars. The ICANN web site
provides pointers to various international registrars.

http://www.internic.net is a U.S. government web site designed to point users to official gTLD
registrars and to answer any questions Internet users might have about the domain registration
process. The imaginary domain used in this book is registered in .com. For .org, .com, or .net
domains, this is a good place to start. Figure 4-2 shows part of the alphabetical list of accredited
registrars found at http://www.internic.net.

Figure 4-2. The registrar listing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is not much that differentiates registrars. Domain registration is very inexpensive, usually
less than $50 a year, so cost is not much of a factor. Service is also difficult to determine because
once a domain is registered, it doesn't usually require any maintenance. Some administrators like
to choose a registrar located close to home, but even this is not really significant in a wired world.
Use your own judgment. I frankly can't find anything to recommend any individual registrar. In the
following examples, I used Network Solutions as the registrar, in part because they are located a
stone's throw away from my home. You, however, should choose your own registrar.

4.4.2 Registering a Domain

Once you select a registrar, go to its web site for instructions on registering a domain. At
http://www.internic.net, simply clicking the symbol of the registrar should take you to its web site.
Most registrars provide an online web form for registering your domain name.

For example, if you select Network Solutions from the list at http://www.internic.net, you go to
http://www.netsol.com. There, you are asked to select a domain name. This first step searches
the existing domain database system to make sure that the name you want is available. If it isn't,
you're asked to choose another name. If the name is available, you must provide information
about the servers that will be authoritative for the new domain. Some registrars, including Network
Solutions, will provide DNS service for your new domain as an optional, extra-cost service.
Because we plan to create our own server for the wrotethebook.com domain, we will provide our
own server information.

First, you're asked to provide the name of the person legally responsible for this domain. This
information is used by the registrar for billing purposes and is included in the whois database that
provides contact information about the people responsible for domains. If you're already in the
whois database, you're asked to provide your NIC handle, which is a unique identifier linked to
your whois database record. For example, my NIC handle is cwh3.

If you are a new customer, you're asked to provide the names and addresses of the people who
will be the administrative, technical, and billing contacts. These can be three different people or
the same person, depending on how your business is organized.

Next, the system prompts for the names and IP addresses of two servers that will be authoritative
for this domain. Enter the names of the master and slave servers you have configured for your
domain. The servers should already be operational when you fill in this form. If they aren't, you
can pay a little extra and have Network Solutions host your domain until your servers are ready.
You shouldn't enter the names of servers that aren't yet ready to run because that will cause a
lame delegation when the root servers use this information to put pointers into the top-level
domain to servers that are not really authoritative. Either preconfigure your servers, even with
only minimal information, or pay the somewhat higher fee to reserve your domain name until your
servers are ready.

Check the information. Pay the bill. Now you're ready to run your own domain.

4.4.3 Choosing a Hostname

Once you have a domain name, you are responsible for assigning hostnames within that domain.
You must ensure that hostnames are unique within your domain or subdomain, in the same way
that host addresses must be unique within a network or subnet. But there is more to choosing a
hostname than just making sure the name is unique; it can be a surprisingly emotional issue.
Many people feel very strongly about the name of their computer because they identify their
computer with themselves or their work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RFC 1178 provides excellent guidelines on how to choose a hostname. Some key suggestions
from these guidelines are:

Use real words that are short, easy to spell, and easy to remember. The point of using
hostnames instead of IP addresses is that they are easier to use. If hostnames are difficult
to spell and remember, they defeat their own purpose.

Use theme names. For example, all hosts in a group could be named after human
movements: fall, jump, hop, skip, walk, run, stagger, wiggle, stumble, trip, limp, lurch,
hobble, etc. Theme names are often easier to choose than unrestricted names and
increase the sense of community among network users.

Avoid using project names, personal names, acronyms, numeric names, and technical
jargon. Projects and users change over time. If you name a computer after the person who
is currently using it or the project it is currently assigned to, you will probably have to
rename the computer in the future. Use nicknames to identify the server function of a
system, e.g., www, ftp, ns, etc. Nicknames can easily move between systems if the server
function moves. See the description of CNAME records in Chapter 8 for information on
creating nicknames.

The only requirement for a hostname is that it be unique within its domain. But a well-chosen
hostname can save future work and make the user happier.

Name service is the most basic network service, and it is one service that you will certainly run on
your network. There are, however, other services that you should also include in your network
planning process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Other Services

Three services that are used on many networks are file servers, print servers, and mail servers.
The purpose of these services and the protocols they are built on was discussed in Chapter 3. In
this section we investigate what information must be passed to the users so that the client
systems can be successfully configured and how the network administrator determines that
information.

4.5.1 File Servers

At a minimum, the user needs to know the hostnames of the network file servers. Using the
names and the showmount command, the user can determine what filesystems are being offered
by the servers and who is permitted to use those filesystems.[7] Without at least the hostname, the
user would have to guess which system offered file service.

[7] See the showmount command in Chapter 9.

A better approach is to give users information that includes what filesystems are being offered
and who should use those filesystems. For example, if the Unix manpages are made available
from a central server, the users should be informed not to install the man pages on their local disk
drives and should be told exactly how to access the centrally supported files.

4.5.2 Print Servers

Whether printers are shared using lp, lpd, or Samba, the basic information needed to configure
the print server's clients is the same: the hostname and IP address of the print server and the
name of the printer. The printer make and model may be needed for non-PostScript printers.
Printer security may also require that the user be given a username and password to access the
printer.

This is the only information needed to configure the client. However, you probably will want to
provide your users with additional information about the features, location, and administration of
shared printers.

4.5.3 Planning Your Mail System

TCP/IP provides the tools you need to create a reliable, flexible electronic mail system. Servers
are one of the tools that improve reliability. It is possible to create a peer-to-peer email network in
which every end system directly sends and receives its own mail. However, relying on every
system to deliver and collect the mail requires that every system be properly administered and
consistently up and running. This isn't practical because many small systems are offline for large
portions of the day. Most networks use servers so that only a few systems need to be properly
configured and operational for the mail to go through.

The terminology that describes email servers is confusing because all the server functions usually
occur in one computer, and all the terms are used interchangeably to refer to that system. This
text differentiates between these functions, but it is expected that you will do all of these tasks on
one Unix system running sendmail. The terms are used in the following manner:

Mail server

The mail server collects incoming mail for other computers on the network. It supports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mail server collects incoming mail for other computers on the network. It supports
interactive logins as well as POP and IMAP so that users can manage their mail as they
see fit.

Mail relay

A mail relay is a host that forwards mail between internal systems and from internal
systems to remote hosts. Mail relays allow internal systems to have simple mail
configurations because only the relay host needs to have software to handle special mail-
addressing schemes and aliases.

Mail gateway

A mail gateway is a system that forwards email between dissimilar systems. You don't need
a gateway to go from one Internet host to another because both systems use SMTP. You
do need a gateway to go from SMTP to X.400 or to a proprietary mailer. In a pure TCP/IP
network, this function is not needed.

The mail server is the most important component of a reliable system because it eliminates
reliance on the user's system. A centrally controlled, professionally operated server collects the
mail regardless of whether or not the end system is operational.

The relay host also contributes to the reliability of the email system. If mail cannot be immediately
delivered by the relay host, it is queued and processed later. An end system also queues mail, but
if it is shut down no attempts can be made to deliver queued mail until the system is back online.
The mail server and the mail relay are operated 24 hours a day.

The design of most TCP/IP email networks is based on the following guidelines:

Use a mail server to collect mail, and POP or IMAP to deliver the mail to the client.

Use a mail relay host to forward mail. Implement a simplified email address scheme on the
relay host.

Standardize on TCP/IP and SMTP. Users who insist on using a proprietary email system
should be responsible for obtaining and configuring an SMTP mail gateway for that system
in order to connect to your TCP/IP email network.

Standardize on MIME for binary attachments. Avoid proprietary attachment schemes; they
just cause confusion when the users of Brand X email cannot read attachments received
from Brand Y.

For their client configurations, provide the users with the hostname and IP address of the mail
server and the mail relay. The mail server will also require a username and password for each
person.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6 Informing the Users

All of the configuration information that you gather or develop through the planning process must
be given to the end users to configure their systems. You can use several techniques to help your
users configure their systems.

First, you want to relieve end users of as much of the burden of configuration as possible. In
Chapter 3 we discussed NIS, NFS, and configuration servers. All of these play a role in simplifying
the configuration process, with DHCP having the most important role. DHCP configuration servers
provide every parameter needed to configure a TCP/IP client. Everything covered in this chapter
—IP address, subnet mask, hostname, domain name, default gateways, and server addresses—
can all be provided by DHCP without involving the end user in the process.

One important thing that DHCP does is point clients to the other network servers. The servers
require that the client is configured to be a client. For NIS and NFS, the client must have a full
basic configuration. Once the client is running, NIS and NFS can provide additional levels of
configuration support. NIS provides several system administration databases that include many of
the basic configuration values. With NIS, you maintain these databases centrally so that users do
not have to maintain them on their Unix desktop systems. NFS can distribute preconfigured
system files and documentation files to client systems.

However, even DHCP combined with other servers is not the complete solution. Even DHCP
requires that the users know that DHCP is being used so that they do not enter any incorrect
values during the initial system installation. Therefore, the network administrator must directly
communicate configuration instructions to the administrator of the end system, usually through
written documentation or the Web.

To communicate this information, the network administrator will often create a short list of
information for the user. When DHCP is used, the information given to the user is often the same
for all Unix clients and for all Windows clients. For example, Unix clients might be told to use
DHCP to configure the interface, to run NIS, and to run NFS. They might be further directed to
mount specific NFS filesystems. Windows clients might be told to run DHCP to configure the
interface and to use specific workgroup and NetBIOS names.

Building a TCP/IP network requires careful planning on your part. Once you have made your
plans, you must document them and communicate your decisions to the people who will be using
your network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7 Summary

Planning is the first step in configuring TCP/IP. We began this chapter by deciding whether our
network will connect to the Internet and exploring how that decision impacts the rest of our
planning. We also looked at the basic information needed to configure a physical network: an IP
address, a subnet mask, and a hostname. We discussed how to plan routing, which is essential
for communicating between TCP/IP networks. We outlined the basic network services, starting
with DNS, and discussed file, print, and email servers. Finally, we looked at the different ways that
this planning information is communicated from the network administrator to the system
administrators and users.

In the chapters that follow, we put these plans into action, starting with the configuration of the
network interface in Chapter 6. First, however, we will go inside the Unix kernel to see how
TCP/IP is built into the operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Basic Configuration
Every Unix computer that runs TCP/IP has a technique for incorporating the basic transport and
IP datagram services into its operating system. This chapter discusses two techniques for
incorporating the basic TCP/IP configuration into a Unix system: recompiling the kernel, and
loading dynamically linked kernel modules. We'll study these techniques and the role they play in
linking TCP/IP and Unix. With this information, you should be able to understand how the vendor
builds the basic configuration and how to modify it to create your own custom configuration.

The transport and datagram services installed in the operating system are used by the application
services described in Chapter 3. There are two different techniques for starting application
services: they are either run at boot time or launched on an on-demand basis. This chapter
covers both of these techniques and shows you how to configure and control this startup process.
But first let's look at how TCP/IP is incorporated into the Unix operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Kernel Configuration

Kernel configuration is not really a network administration task—rather, it is a basic part of Unix
system administration, whether or not the computer is connected to a network. But TCP/IP
networking, like other system functions, is integrated into the kernel.

There are two very different approaches to kernel configuration. Some systems are designed to
eliminate the need for you to recompile the kernel, while others encourage you to compile your
own custom kernel. Linux is an example of the latter philosophy: its documentation encourages
you to create your own configuration. Solaris is an example of the former.

The Solaris system comes with a generic kernel that supports all basic system services. When a
Solaris system boots, it detects all system hardware and uses dynamically loadable modules to
support that hardware. Solaris can rely on this technique because Sun is primarily a hardware
vendor. Sun designs its hardware to work with the Solaris kernel, and has a well-defined device
driver interface so that third-party hardware vendors can design hardware that clearly identifies
itself to the kernel.

5.1.1 Using Dynamically Loadable Modules

Most versions of Unix support dynamically loadable modules, which are kernel modules that can
be dynamically linked into the kernel at runtime. These modules provide the system with a great
deal of flexibility because the kernel is able to load support for new hardware when the hardware
is detected. Dynamically loadable modules are used to add new features to the system without
requiring the system administrator to perform a manual reconfiguration.

Solaris depends on dynamically loadable modules. Solaris does have a kernel configuration file,
defined in the /etc/system file, but this file is very small, has only limited applicability, and is not
directly edited by the system administrator. When a new software package is added to the
system, the script that installs that package makes any changes it requires to the /etc/system file.
But even that is rare. Most drivers that are delivered with third-party hardware carry their own
configuration files.

On a Solaris system, optional device drivers are installed using the pkgadd command. The
syntax of the command is:

pkgadd -d device packagename

device is the device name. packagename is the name of the driver software package provided
by the vendor.

The device driver installation creates the proper entry in the /dev directory as well as in the
/kernel/drv directory. As an example, look at the Ethernet device driver for adapters that use the
DEC 21140 chipset. The name of the driver is dnet.[1] There is a device named /dev/dnet defined
in the device directory. There is a dynamically loadable module named /kernel/drv/dnet in the
kernel driver directory, and there is a configuration file for the driver named /kernel/drv/dnet.conf.
dnet is a standard driver, but the installation of an optional driver will create similar files.

[1] dnet is not an optional device. It is a standard part of Solaris and it is the Ethernet device we use in all of our Solaris
examples.

After installing a new device driver, create an empty file named /reconfigure. Shut down the
system and install the new hardware. Then restart the system. The /reconfigure file is a flag to the
system to check for new hardware. When the Solaris system reboots, it will detect the new
hardware and load the dynamic module that provides the device driver for that hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Solaris ifconfig command, which is covered in extensive detail in Chapter 6, provides the
modlist option to let you see the kernel modules that are associated with a TCP/IP network
interface. For example:

ifconfig dnet0 modlist
0 arp

1 ip

2 dnet

The purpose of each kernel module in this list is clear. arp provides the ARP protocol for the
Ethernet interface. ip provides the TCP/IP protocols used for this network. Each of these modules
has a configuration file in the /kernel/drv directory. There is an arp.conf file, an ip.conf file, and a
dnet.conf file. However, these files provide very limited capacity for controlling the function of the
modules. On Solaris systems, use the ndd command to control the module.

To see what configuration options are available for a module, use the ndd command with a ? as
an argument. For example, use the following command to see the variables available for the arp
module:

ndd /dev/arp ?
? (read only)

arp_cache_report (read only)

arp_debug (read and write)

arp_cleanup_interval (read and write)

arp_publish_interval (read and write)

arp_publish_count (read and write)

The arp module offers six values:

?

A read-only value that displays this list.

arp_cache_report

A read-only value that displays the permanent values in the ARP cache. The arp
command gives a better display of the cache. See the description of the arp command in
Chapter 2.

arp_debug

A variable that enables ARP protocol debugging. By default, it is set to 0 and debugging is
disabled. Setting it to 1 enables debugging. The ARP protocol is very old and very reliable.
ARP debugging is never needed.

arp_cleanup_interval

A variable that defines how long temporary entries are kept in the cache.

arp_publish_interval

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arp_publish_interval

A variable that defines how long the system waits between broadcasts of an Ethernet
address that it is configured to publish.

arp_publish_count

A variable that defines how many ARP broadcasts are sent in response to a query for an
address that this system publishes.

The default configuration values set for the arp module have worked well for every Solaris system
I have ever worked with. I have never had a need to change any of these settings. The second
module displayed by modlist provides a slightly more interesting example.

Use the ndd /dev/ip ? command to list the configuration options for the ip module. There are
almost 60 of them! Of all of these, there is only one that I have ever needed to adjust:
ip_forwarding.

The ip_forwarding variable specifies whether the ip module should act as if the system is a
router and forward packets to other hosts. By default, systems with one network interface are
hosts that do not forward packets, and systems with more than one interface are routers that do
forward packets. Setting ip_forwarding to 0 turns off packet forwarding, even if the system has
more than one network interface. Setting ip_forwarding to 1 turns on packet forwarding, even
if the system has only one network interface.

On occasion you will have a multi-homed host, which is a host connected to more than one
network. Despite multiple network connections, the system is a host, not a router. To prevent that
system from acting as a router and potentially interfering with the real routing configuration,
disable IP forwarding as follows:

ndd /dev/ip ip_forwarding
1

ndd -set /dev/ip ip_forwarding 0
ndd /dev/ip ip_forwarding
0

The first ndd command in this example queries the ip module for the value set in
ip_forwarding. In this example it is set to 1, which enables forwarding. The second ndd
command uses the -set option to write the value 0 into the ip_forwarding variable. The last
command in the example redisplays the variable to show that it has indeed been changed.

The pkgadd command, the ifconfig modlist option, and the ndd command are all specific to
Solaris. Other systems use dynamically loadable modules but use a different set of commands to
control them.

Linux also uses loadable modules. Linux derives the same benefit from loadable modules as
Solaris does, and like Solaris usually you have very little involvement with loadable modules.
Generally the Linux system detects the hardware and determines the correct modules needed
during the initial installation without any input from the system administrator. But not always.
Sometimes hardware is not detected during the installation, and other times new hardware is
added to a running system. To handle these situations, you need to know the Linux commands
used to work with loadable modules.

Use the lsmod command to check which modules are installed in a Linux system. Here's an
example from a Red Hat system:

lsmod

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lsmod
Module Size Used by

ide-cd 26848 0 (autoclean)

cdrom 27232 0 (autoclean) [ide-cd]

autofs 11264 1 (autoclean)

smc-ultra 6048 1 (autoclean)

8390 6816 0 (autoclean) [smc-ultra]

ipchains 38976 0 (unused)

nls_iso8859-1 2880 1 (autoclean)

nls_cp437 4384 1 (autoclean)

vfat 9392 1 (autoclean)

fat 32672 0 (autoclean) [vfat]

Loadable modules perform a variety of tasks. Some modules are hardware device drivers, such
as the smc-ultra module for the SMC Ultra Ethernet card. Other modules provide support for the
wide array of filesystems available in Linux, such as the ISO8859 filesystem used on CD-ROMs
or the DOS FAT filesystem with long filename support (vfat).

Each entry in the listing produced by the lsmod command begins with the name of the module
followed by the size of the module. As the size field indicates, modules are small. Often modules
depend on other modules to get the task done. The interrelationships of modules are called
module dependencies, which are shown in the listing. In the sample, the smc-ultra driver depends
on the 8390 module, as indicated by the 8390 entry ending with the string "[smc-ultra]". The 8390
entry lists the modules that depend on it under the heading Used by. The listing shows other
dependencies, including that vfat depends on fat and cdrom depends on ide-cd.

Most of the lines in the sample include the string "(autoclean)". This indicates that the specified
module can be removed from memory automatically if it is unused. autoclean is an option. You
can select different options by manually loading modules with the insmod command.

Modules can be manually loaded using the insmod command. This command is very
straightforward—it's just the command and the module name. For example, to load the 3c509
device driver, enter insmod 3c509. This does not install the module with the autoclean option. If
you want this driver removed from memory when it is not in use, add the -k option to the insmod
command: insmod -k 3c509.

A critical limitation with the insmod command is that it does not understand module
dependencies. If you used it to load the smc-ultra module, it would not automatically load the
required 8390 module. For this reason, modprobe is a better command for manually loading
modules. As with the insmod command, the syntax is simple. To load the smc-ultra module,
simply enter modprobe smc-ultra.

modprobe reads the module dependencies file that is produced by the depmod command.
Whenever the kernel or the module libraries are updated, run depmod to produce a new file
containing the module dependencies. The command depmod -a searches all of the standard
module libraries and creates the necessary file. After it is run, you can use modprobe to install
any modules and have the other modules it depends on automatically installed.

Use the rmmod command to remove unneeded modules. Again, the syntax is simple: rmmod
appletalk removes the appletalk driver from your system. There is rarely any need to remove

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appletalk removes the appletalk driver from your system. There is rarely any need to remove
unneeded modules because, as noted in the discussion of autoclean, the system automatically
removes unused modules.

The smc-ultra module is an Ethernet device driver. It is in fact the device driver used for the
network interface on our sample Linux system. Device drivers can be compiled into the kernel, as
described later, or they can be dynamically loaded from a module. Most Ethernet device drivers
are handled as dynamically loadable modules. The Ethernet driver modules are found in the
/lib/modules directory. On a Red Hat 7.2 system, Ethernet device drivers are in the
/lib/modules/2.4.7-10/kernel/drivers/net directory, as the following listing shows:

ls /lib/modules/2.4.7-10/kernel/drivers/net
3c501.o atp.o eexpress.o ni5010.o smc-ultra.o

3c503.o bcm epic100.o ni52.o starfire.o

3c505.o bonding.o eql.o ni65.o strip.o

3c507.o bsd_comp.o es3210.o pcmcia sundance.o

3c509.o cipe eth16i.o pcnet32.o sunhme.o

3c515.o cs89x0.o ethertap.o plip.o tlan.o

3c59x.o de4x5.o ewrk3.o ppp_async.o tokenring

8139too.o de600.o fc ppp_deflate.o tulip

82596.o de620.o hamachi.o ppp_generic.o tun.o

8390.o defxx.o hp100.o ppp_synctty.o via-rhine.o

ac3200.o depca.o hp.o rcpci.o wan

acenic.o dgrs.o hp-plus.o sb1000.o wavelan.o

aironet4500_card.o dmfe.o irda shaper.o wd.o

aironet4500_core.o dummy.o lance.o sis900.o winbond-840.o

aironet4500_proc.o e1000.o lne390.o sk98lin yellowfin.o

appletalk e100.o natsemi.o skfp

arlan.o e2100.o ne2k-pci.o sk_g16.o

arlan-proc.o eepro100.o ne3210.o slip.o

at1700.o eepro.o ne.o smc-ultra32.o

All loadable network device drivers are listed here. Some, such as plip.o, are not for Ethernet
devices. Most are easily identifiable as Ethernet drivers, such as the 3COM drivers, the SMC
drivers, the NE2000 drivers, and the Ethernet Express drivers.

The Linux system detects the Ethernet hardware during the initial installation, and if Linux has the
correct driver for that hardware, it installs the appropriate driver. If the Ethernet adapter is not
detected during the operating system installation or if it is added after the system is installed, use
the modprobe command to load the device driver manually. If the correct driver for the adapter is
not included with your Linux system, you may need to compile the module yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a device driver to operate correctly, it must be compiled with the correct libraries for your
kernel. Sometimes this means downloading the driver source code and compiling it yourself on
your system. Ethernet driver source code is available for many adapters from
http://www.scyld.com, which has a great repository of Linux network driver software. The
comments in the driver source code includes the correct compiler command to compile the
module.

After compiling, copy the object file to the correct /lib/modules directory. Then use modprobe to
load and test the driver. Alternatively, most device drivers are now available in RPM format,
eliminating the need for compilation.

Linux frequently uses dynamically loadable modules for device drivers. But most other
components of TCP/IP are not loaded at runtime; they are compiled into the kernel. Next we look
at how Unix kernels are recompiled.

5.1.2 Recompiling the Kernel

This text uses Linux and FreeBSD as examples of systems that encourage you to compile a
custom kernel.[2] This chapter's examples of kernel configuration statements come from these two
Unix systems. While kernel configuration involves all aspects of system configuration, we include
only statements that directly affect TCP/IP configuration.

[2] The kernel configuration process of other BSD systems, such as SunOS 4.1.3, is similar to the FreeBSD example.

Both of the Unix systems used in the examples come with a kernel configuration file
preconfigured for TCP/IP. During the initial installation, you may need to select a preconfigured
kernel that includes network support, but you probably won't need to modify the kernel
configuration for networking. The kernel configuration file is normally changed only when you wish
to:

Produce a smaller, more efficient kernel by removing unneeded items

Add a new device

Modify a system parameter

While there is rarely any need to modify the kernel network statements, it is useful to understand
what these statements do. Looking into the kernel configuration file shows how Unix is tied to the
hardware and software of the network.

The procedures and files used for kernel configuration vary dramatically
depending on Unix implementation. These variations make it essential
that you refer to your system documentation before trying to configure the
kernel on your system. Only your system documentation can provide you
with the accurate, detailed instructions required to successfully complete
this task.

5.1.3 Linux Kernel Configuration

The source code for the Linux kernel is normally delivered with a Linux distribution. If your system
does not have the source code or you want a newer version of the Linux kernel, it can be
downloaded from http://www.kernel.org as a compressed tar file. If you already have a directory
named /usr/src/linux, rename it before you unpack the tarball:

cd /usr/src

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cd /usr/src
tar -zxvf linux-2.1.14.tar.gz
The Linux kernel is a C program compiled and installed by make. The make command customizes
the kernel configuration and generates the files (including the Makefile) needed to compile and
link the kernel. There are three variations of the command:

make config

This form of the make command is entirely text-based. It takes you through a very long
sequence of questions that ask about every aspect of the kernel configuration. Because it
asks every question in a sequential manner, this can be the most cumbersome way to
reconfigure the kernel, particularly if you wish to change only a few items.

make menuconfig

This form of the make command uses curses to present a menu of configuration choices.
It provides all of the capabilities of the make config command but is much easier to use
because it allows you to jump to specific areas of interest. The make menuconfig
command works from any terminal and on any system, even one that does not support X
Windows.

make xconfig

This form of the make command uses X Windows to provide a "point and click" interface for
kernel configuration. It has all the power of the other commands and is very easy to use.

Choose the form of the command you like best. In this example we use make xconfig.

On Linux systems, the kernel source is found in /usr/src/linux. To start the configuration process,
change to the source directory and run make xconfig:

cd /usr/src/linux
make xconfig
The make xconfig command displays the screen shown in Figure 5-1.

Figure 5-1. Linux xconfig main menu

The menu displays more than 30 buttons that represent different configuration categories. Click
on a button to view and set the configuration options in that category. Because our focus is on the
kernel configuration options that affect TCP/IP, the two menu items we're interested in are
Networking options and Network device support. Figure 5-2 shows the window that appears if the
Network device support button is selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-2. Linux kernel network device support

This window lists the network device drivers that can be compiled into or loaded by the kernel and
shows the three choices for most configuration options:

y

Selecting y compiles the option into the new kernel.

m

Selecting m causes the option to be loaded as a dynamically loadable module by the
kernel. Not every option is available as a loadable module. When a configuration question
must be answered yes or no, the module selection is not available. Notice the FDDI driver
support option. Choosing y for that option enables FDDI driver support and highlights a
selection of possible FDDI interface adapters, which are "grayed-out" in Figure 5-2.
Frequently, interface support must be selected before an individual adapter can be
selected.

n

Selecting n tells the kernel not to use the configuration option.

Each configuration option also has a Help button. Clicking on the Help button provides additional
information about the option and advice about when the option should be set. Even if you think
you know what the option is about, you should read the description displayed by the Help button
before you change the default setting.

Two items shown in Figure 5-2, Ethernet (10 or 100 Mbit) and Ethernet (1000 Mbit), open
separate windows with extensive menu selections because Linux supports a very large number of
Ethernet adapters. The Ethernet adapters available through those windows are selected using the
same y, m, and n settings described above.

The Network device support window and the Ethernet adapter windows show that it is possible to
compile specific adapter support into the kernel, but it is not necessary. As we saw in the previous
section on dynamically loadable modules, network interfaces are usually controlled by loadable
modules. All Linux systems need a network interface to run TCP/IP, but that interface does not
need to be compiled into the kernel.

Selecting Networking options from the main menu in Figure 5-1 opens the Network options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Selecting Networking options from the main menu in Figure 5-1 opens the Network options
window, which contains over 60 menu selections because Linux supports a wide range of network
services. Some of these are experimental and some relate to protocols other than IPv4. Here we
limit ourselves to those options that directly relate to IPv4. Yet there are still a substantial number
of options. They are:

Packet socket

This service allows applications to communicate directly with the network device. It is
required for applications such as tcpdump that do packet capture and packet filtering. If
Packet socket is enabled, Packet socket: mmapped IO can be selected to use memory-
mapped I/O for the packet socket service. Packet socket service is usually enabled while
packet socket memory mapped I/O is usually disabled.

Kernel/User netlink socket

This service provides communication between the kernel and user space programs. If
enabled, Routing messages and Netlink device emulation can also be selected. Netlink
sockets permit user space programs to interface with IPv4 routing and ARP tables and with
kernel firewall code.

Network packet filtering

This service provides the IP packet filtering services that are required to make the system
function as a firewall or a network address translation box. If Network packet filtering is
enabled, Network packet filtering debugging can also be selected. Network packet filtering
is normally enabled on routers and disabled on hosts, although it can be used to improve
server security as described in the iptables section of Chapter 12.

TCP/IP networking

This selection installs kernel support for TCP/IP. It provides all basic TCP/IP transport and
datagram protocols. Once TCP/IP networking is selected, many other optional TCP/IP
services become available, listed below:

IP: multicasting

This provides IP multicasting support. Multicasting is described in Chapter 2.

IP: advanced router

This menu selection highlights several options that configure the kernel for advanced
routing protocols. Advanced routing does not need to be enabled for basic routing to
work, and is not needed for a host or a small interior router. Advanced routing is
used only if the Linux system is configured as the primary router or an exterior router
between autonomous systems. Chapter 7 describes how gated is used to run
advanced routing protocols on Unix systems. The kernel configuration advanced
routing options are:

IP: policy routing enables kernel-level policy-based routing, which is discussed in
Chapter 7 in relationship to the BGP routing protocol, and in Chapter 2 in relationship
to the Policy Routing Database (PRDB). This option is not needed by gated, which
implements policy-based routing at the user level.

IP: equal cost multipath enables kernel support for multiple routes to the same
destination. Multipath routing is described in Chapter 7 in relationship to the OSPF
routing protocol.

IP use TOS value as routing key enables a type of tag switching (also called label
switching) that uses the Type of Service (TOS) field of the IP header to hold the tag.
Both OSPF and RIP version 2 can use a tag field. Appendix B touches upon the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Both OSPF and RIP version 2 can use a tag field. Appendix B touches upon the
gated syntax used for tag fields.

IP: verbose route monitoring increases the number and length of the routing table
update messages.

IP: large routing tables increases the memory reserved for the routing table.

IP: kernel level autoconfiguration

This service is used on diskless clients. When selected, two additional selections
become available, IP: BOOTP support and IP: RARP support, that are used to
specify whether the configuration comes from BOOTP or RARP. See Chapter 3 for a
description of BOOTP and RARP.

IP: tunneling

This service encapsulates IPv4 datagrams within an IP tunnel, which makes a host
appear to be on a different network than the one to which it is physically connected.
This service is occasionally used on laptop machines to facilitate mobility.

IP: GRE tunnels over IP

This enables the Generic Routing Encapsulation (GRE) protocol that is used to
encapsulate IPv4 or IPv6 datagrams in an IPv4 tunnel. Selecting this option makes
the IP: broadcast GRE over IP option available, which provides support for
multicasting with the tunnel. GRE is the preferred encapsulation protocol when
dealing with Cisco routers.

IP: multicast routing

This selection provides support for multicast routing. It is needed only if your system
acts as a multicast router, i.e., runs mrouted. When selected, you are given the
options IP: PIM-SM version 1 support and IP: PIM-SM version 2 support that set the
level of the PIM-SM protocol used by your system.

IP: TCP Explicit Congestion Notification support

This enables Explicit Congestion Notification (ECN). ECN messages are sent from a
router to a client to alert the client of congestion. This would be enabled only if the
Linux system is a router. Because many firewalls are incompatible with ECN, it is
recommended that ECN not be enabled.

IP: TCP syncookie support

This enables support for SYN cookies, which are used to counteract SYN flooding
denial-of-service attacks.

IP: Netfilter Configuration

Selecting this menu item opens a window that allows you to select a range of
services for the kernel's Netfilter firewall. The iptables discussion in Chapter 12
describes how the Netfilter service is used.

QoS and/or fair queueing

This specifies options that change the way network packets are handled by the server.
Because it is experimental, this option should be set to n for an operational server. The
optional packet handlers require special software to administer them.

After completing the network configuration, run make dep; make clean to build the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After completing the network configuration, run make dep; make clean to build the
dependencies and clean up the odds and ends. When the makes are complete, compile the
kernel. The make bzImage command builds a compressed kernel and puts it into the
/usr/src/linux/i386/boot directory.[3] When you're sure that the new kernel is ready to run, simply
copy the new kernel file, bzImage, to the vmlinuz file your system uses to boot.

[3] Most Linux systems use a compressed kernel that is automatically decompressed during the system boot.

Linux's list of network configuration options is long.[4] Linux is yin to the Solaris yang: Linux
permits the system administrator to configure everything while Solaris configures everything for
the administrator. BSD kernel configuration lies somewhere between these two extremes.

[4] Not only is this list long, it is bound to change. Always check the system documentation before starting a kernel
reconfiguration.

5.1.4 The BSD Kernel Configuration File

Like Linux, the BSD Unix kernel is a C program compiled and installed by make. The config
command reads the kernel configuration file and generates the files (including the Makefile)
needed to compile and link the kernel. On FreeBSD systems, the kernel configuration file is
located in the directory /usr/src/sys/i386/conf.[5]

[5] /usr/src/sys is symbolically linked to /sys. We use /usr/src/sys only as an example. Your system may use another
directory.

A large kernel configuration file named GENERIC is delivered with the FreeBSD system. The
GENERIC kernel file configures all of the standard devices for your system—including everything
necessary for TCP/IP. In this section, we look at just those items found in the GENERIC file that
relate to TCP/IP. No modifications are necessary for the GENERIC kernel to run basic TCP/IP
services. The reasons for modifying the BSD kernel are the same as those discussed for the
Linux kernel: to make a smaller, more efficient kernel, or to add new features.

There is no standard name for a BSD kernel configuration file. When you create a configuration
file, choose any name you wish. By convention, BSD kernel configuration filenames use
uppercase letters. To create a new configuration, copy GENERIC to the new file and then edit the
newly created file. The following creates a new configuration file called FILBERT:

cd /usr/src/sys/i386/conf
cp GENERIC FILBERT
If the kernel has been modified on your system, the system administrator will have created a new
configuration file in the /usr/src/sys/i386/conf directory. The kernel configuration file contains
many configuration commands that cover all aspects of the system configuration. This text
discusses only those parameters that directly affect TCP/IP configuration. See the documentation
that comes with the FreeBSD system for information about the other configuration commands.[6]

[6] The book The Complete FreeBSD by Greg Lehey (published by Walnut Creek CDROM Books) is a good source for
information on recompiling a BSD kernel.

5.1.5 TCP/IP in the BSD Kernel

For a network administrator, it is more important to understand which kernel statements are
necessary to configure TCP/IP than to understand the detailed structure of each statement. Three
types of statements are used to configure TCP/IP in the BSD kernel: options, pseudo-device, and
device statements.

5.1.5.1 The options statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The options statement tells the kernel to compile a software option into the system. The options
statement that is most important to TCP/IP is:

 options INET # basic networking support--mandatory

Every BSD-based system running TCP/IP has an options INET statement in its kernel
configuration file. The statement produces a -DINET argument for the C compiler, which in turn
causes the IP, ICMP, TCP, UDP, and ARP modules to be compiled into the kernel. This single
statement incorporates the basic transport and IP datagram services into the system. Never
remove this statement from the configuration file.

options ICMP_BANDLIM #Rate limit bad replies

This option limits the amount of bandwidth that can be consumed by ICMP error messages. Use it
to protect your system from denial-of-service attacks that deliberately cause errors to overload
your network.

options "TCP_COMPAT_43" # Compatible with BSD 4.3 [KEEP THIS!]

This option prevents connections between BSD 4.3 and FreeBSD systems from hanging by
adjusting FreeBSD to ignore mistakes made by 4.3. In addition, setting this parameter prevents
some applications from malfunctioning. For these reasons, keep this parameter as is.

5.1.5.2 The pseudo-device statement

The second statement type required by TCP/IP in all BSD configurations is a pseudo-device
statement. A pseudo-device is a device driver not directly associated with an actual piece of
hardware. The pseudo-device statement creates a header (.h) file that is identified by the pseudo-
device name in the kernel directory. For example, the statement shown below creates the file
loop.h:

pseudo-device loop # loopback network--mandatory

The loop pseudo-device is necessary to create the loopback device (lo0). This device is
associated with the loopback address 127.0.0.1; it is defined as a pseudo-device because it is not
really a piece of hardware.

Another pseudo-device that is used on many FreeBSD TCP/IP systems is:

pseudo-device ether # basic Ethernet support

This statement is necessary to support Ethernet. The ether pseudo-device is required for full
support of ARP and other Ethernet specific functions. While it is possible that a system that does
not have Ethernet may not require this statement, it is usually configured and should remain in
your kernel configuration.

Other commonly configured pseudo-devices used by TCP/IP are those that support SLIP and
PPP.

pseudo-device sl 2 # Serial Line IP

This statement defines the interface for the Serial Line IP protocol. The number, 2 in the example,
defines the number of SLIP pseudo-devices created by the kernel. The two devices created here
would be addressed as devices sl0 and sl1.

pseudo-device ppp 2 # Point-to-point protocol

The ppp pseudo-device is the interface for the Point-to-Point Protocol. The number, 2 in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ppp pseudo-device is the interface for the Point-to-Point Protocol. The number, 2 in the
example, defines the number of PPP pseudo-devices created by the kernel. The two devices
created here would be addressed as devices ppp0 and ppp1. One other pseudo-device is directly
related to PPP.

pseudo-device tun 1 # Tunnel driver(user process ppp)

The tun pseudo-device is a tunnel driver used by user-level PPP software. Tunneling is when a
system passes one protocol through another protocol; tun is a FreeBSD feature for doing this
over PPP links. The number, 1 in the example, is the number of tunnels that will be supported by
this kernel.

One pseudo-device is used for troubleshooting and testing.

pseudo-device bpfilter 4 # Berkeley packet filter

The bpfilter statement adds the support necessary for capturing packets. Capturing packets is an
essential part of protocol analyzers such as tcpdump; see Chapter 13. When the bpfilter
statement is included in the BSD kernel, the Ethernet interface can be placed into promiscuous
mode.[7] An interface in promiscuous mode passes all packets, not just those addressed to the
local system, up to the software at the next layer. This feature is useful for a system administrator
troubleshooting a network. But it can also be used by intruders to steal passwords and
compromise security. Use the bpfilter pseudo-device only if you really need it. The number, 4 in
the example, indicates the maximum number of Ethernet interfaces that can be monitored by
bpfilter.

[7] This assumes that the Ethernet hardware is capable of functioning in promiscuous mode. Not all Ethernet boards
support this feature.

5.1.5.3 The device statement

Real hardware devices are defined using the device statement. Every host connected to a TCP/IP
network requires some physical hardware for that attachment. The hardware is declared with a
device statement in the kernel configuration file. There are many possible network interfaces for
TCP/IP, but the most common are Ethernet interfaces. The device statements for Ethernet
interfaces found in the GENERIC kernel are listed below:

device de # DEC/Intel DC21x4x (``Tulip'')

device fxp # Intel EtherExpress PRO/100B (82557, 82558)

device tx # SMC 9432TX (83c170 ``EPIC'')

device vx # 3Com 3c590, 3c595 (``Vortex'')

device wx # Intel Gigabit Ethernet Card (``Wiseman'')

device dc # DEC/Intel 21143 and various workalikes

device rl # RealTek 8129/8139

device sf # Adaptec AIC-6915 (``Starfire'')

device sis # Silicon Integrated Systems SiS 900/SiS 7016

device ste # Sundance ST201 (D-Link DFE-550TX)

device tl # Texas Instruments ThunderLAN

device vr # VIA Rhine, Rhine II

device wb # Winbond W89C840F

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

device wb # Winbond W89C840F

device xl # 3Com 3c90x (``Boomerang'', ``Cyclone'')

device ed0 at isa? port 0x280 irq 10 iomem 0xd8000

device ex

device ep

device wi # WaveLAN/IEEE 802.11 wireless NIC

device an # Aironet 4500/4800 802.11 wireless NICs

device ie0 at isa? port 0x300 irq 10 iomem 0xd0000

device fe0 at isa? port 0x300

device le0 at isa? port 0x300 irq 5 iomem 0xd0000

device lnc0 at isa? port 0x280 irq 10 drq 0

device cs0 at isa? port 0x300

device sn0 at isa? port 0x300 irq 10

The device statement used to configure an Ethernet interface in the FreeBSD kernel comes in two
general formats:

device ed0 at isa? port 0x280 net irq 10 iomem 0xd8000

device de0

The format varies depending on whether the device is an ISA device or a PCI device. The ed0
device statement defines the bus type (isa), the I/O base address (port 0x280), the interrupt
number (irq 10) and the memory address (iomem 0xd8000). These values should match the
values configured on the adapter card. All of these are standard items for configuring PC ISA
hardware. On the other hand, the de0 device statement requires very little configuration because
it configures a card attached to the PCI bus. The PCI is an intelligent bus that can determine the
configuration directly from the hardware.

Ethernet is not the only TCP/IP network interface supported by FreeBSD. It supports several
other interfaces. The serial line interfaces necessary for SLIP and PPP are shown below:

device sio0 at isa? port IO_COM1 flags 0x10 irq 4

device sio1 at isa? port IO_COM2 irq 3

device sio2 at isa? disable port IO_COM3 irq 5

device sio3 at isa? disable port IO_COM4 irq 9

The four serial interfaces, sio0 through sio3, correspond to the MS-DOS interfaces COM1 to
COM4. These are needed for SLIP and PPP. Chapter 6 covers other aspects of configuring PPP.

The device statement varies according to the interface being configured. But how do you know
which hardware interfaces are installed in your system? Remember that the GENERIC kernel that
comes with your FreeBSD system is configured for a large number of devices. A simple way to tell
which hardware interfaces are installed in your system is to look at the messages displayed on
the console at boot time. These messages show all of the devices, including network devices, that
the kernel found during initialization. Look at the output of the dmesg command. It displays a copy
of the console messages generated during the last boot. Customizing the kernel for your network
device more often than not means removing unneeded devices from the kernel configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The options, pseudo-device, and device statements found in the kernel configuration file tell the
system to include the TCP/IP hardware and software in the kernel. The statements in your
configuration may vary somewhat from those shown in the previous examples. But you have the
same basic statements in your kernel configuration file. With these basic statements, FreeBSD
Unix is ready to run TCP/IP.

You may never change any of the variables discussed in this section. Like everything else in the
kernel configuration file, they usually come correctly configured to run TCP/IP. You will, however,
frequently be called upon to control the network services your server runs over TCP/IP. We'll now
look at how network services are started and how you control which ones are started.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Startup Files

The kernel configuration brings the basic transport and IP datagram services of TCP/IP into Unix. But
there is much more to the TCP/IP suite than just the basic services. How are these other protocols
included in the Unix configuration?

Some protocols are explicitly started by including them in the boot files. This technique is used, for
example, to start the Routing Information Protocol (RIP) and the Domain Name System (DNS). Network
services that either have a long startup procedure or are in constant demand are normally started by a
script at boot time, and run as daemon processes the entire time the system is running.

Anything that can be run from a shell prompt can be stored in a file and run as a shell script. Systems use
this capability to automate the startup of system services. There are two basic Unix startup models that
control how startup files are invoked: the BSD model and the System V model.

The BSD model is the simplest: a limited number of startup scripts are executed in order every time the
system boots. At its simplest, there are three basic scripts, /etc/rc, /etc/rc.boot, and /etc/rc.local, executed
in that order for system initialization, service initialization, and local customization. On BSD Unix systems,
network services are usually started by the /etc/rc.boot file or the /etc/rc.local file.

On systems that use the BSD startup model, place customized network configuration commands in the
rc.local script. rc.local executes at the end of the startup process. Any configuration values set in this file
override the earlier configuration commands.

The BSD startup model is used on BSD systems and SunOS systems. Linux and Solaris systems use the
System V startup model. The System V startup model employs a much more complex set of startup
files.[8] This model uses whole directories of scripts executed by the init process, with different
directories being used depending on the runlevel of the system.

[8] A good description of the maze of System V initialization files is provided in Essential System Administration by Æleen Frisch
(O'Reilly & Associates).

5.2.1 Startup Runlevels

To understand System V startup, you need to understand runlevels, which are used to indicate the state
of the system when the init process is complete. There is nothing inherent in the system hardware that
recognizes runlevels; they are purely a software construct. init and /etc/inittab -- the file used to
configure init—are the only reasons why the runlevels affect the state of the system. We use Red Hat
Linux as an example of how runlevels are used.

Linux defines several runlevels that run the full gamut of possible system states from not-running (halted)
to running multiple processes for multiple users:

Runlevel 0 shuts down all running processes and halts the system.

Runlevel 1 places the system in single-user mode. Single-user mode is used by the system
administrator to perform maintenance that cannot be done when users are logged in. This runlevel
may also be indicated by the letter S instead of the number 1. Solaris uses S for single-user mode.

Runlevel 2 is a special multiuser mode that does not support file sharing.

Runlevel 3 provides full multiuser support with the full range of services, including NFS file sharing.
It is the default mode used on Solaris systems.

Runlevel 4 is unused. You can design your own system state and implement it through runlevel 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Runlevel 5 initializes the system as a dedicated X Windows terminal. Linux systems use this to
provide an X Windows console login. When Linux systems boot at runlevel 3, they provide a text-
based console login. Solaris does not use this runlevel. Entering runlevel 5 on a Solaris system
causes a system shutdown.

Runlevel 6 shuts down all running processes and reboots the system.

As these notes make clear, different systems use the same runlevels in different ways. That is because
runlevels are software. They are boot command arguments that tell init which startup scripts should be
run. The scripts that are run can contain any valid commands. init maps runlevels to startup scripts
using the inittab file.

5.2.1.1 Understanding /etc/inittab

All of the lines in the inittab file that begin with a sharp sign (#) are comments. A liberal dose of comments
is needed because the syntax of inittab configuration lines is terse and arcane. An inittab entry has this
general format:

label:runlevel:action:process

The label is a one- to four-character tag that identifies the entry. Because some systems support only
two-character labels, most configurations limit all labels to two characters. The labels can be any arbitrary
character string; they have no intrinsic meaning.

The runlevel field indicates the runlevels to which the entry applies. For example, if the field contains a
3, the process identified by the entry must be run for the system to initialize runlevel 3. More than one
runlevel can be specified. Entries that have an empty runlevel field are not involved in initializing specific
runlevels. For example, Linux systems have an inittab entry to handle the three-finger salute
(Ctrl+Alt+Del); it does not have a value in the runlevel field.

The action field defines the conditions under which the process is run. Table 5-1 lists the action values
used on Red Hat, Mandrake, and Caldera Linux systems.

Table 5-1. Linux inittab action values
Action Meaning

Boot Runs when the system boots. Runlevels are ignored.

Bootwait Runs when the system boots, and init waits for the process to complete. Runlevels are
ignored.

Ctrlaltdel Runs when Ctrl+Alt+Del is pressed, which passes the SIGINT signal to init. Runlevels are
ignored.

Initdefault Doesn't execute a process. It sets the default runlevel.

Kbrequest Runs when init receives a signal from the keyboard. This requires that a key combination
be mapped to KeyBoardSignal.

Off Disables the entry so the process is not run.

Once Runs one time for every runlevel.

Ondemand Runs when the system enters one of the special runlevels A, B, or C.

Powerfail Runs when init receives the SIGPWR signal.

Powerokwait Runs when init receives the SIGPWR signal and the file /etc/powerstatus contains the
word OK.

Powerwait Runs when init receives the SIGPWR signal, and init waits for the process to complete.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Respawn Restarts the process whenever it terminates.

sysinit Runs before any boot or bootwait processes.

wait Runs the process upon entering the run mode, and init waits for the process to complete.

The last field in an inittab entry is process. It contains the process that init executes. The process
appears in the exact format that it is executed from the command line. Therefore the process field starts
with the name of the program that is to be executed followed by the arguments that will be passed to that
process. For example, /sbin/shutdown -t3 -r now, which is the process executed by some Linux
systems when Ctrl+Alt+Del is pressed, is the same command that could be typed at the shell prompt to
reboot the system. On most inittab entries, the process field contains the name of a startup script. Two
main types of startup scripts are used: the system initialization script and the runlevel initialization scripts.
These sample lines from a Red Hat Linux system show both:

System initialization.

si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0

l1:1:wait:/etc/rc.d/rc 1

l2:2:wait:/etc/rc.d/rc 2

l3:3:wait:/etc/rc.d/rc 3

l4:4:wait:/etc/rc.d/rc 4

l5:5:wait:/etc/rc.d/rc 5

l6:6:wait:/etc/rc.d/rc 6

These seven lines are the real heart of the inittab file—they invoke the startup scripts. The first line tells
init to run the boot script located at /etc/rc.d/rc.sysinit to initialize the system. This entry has no runlevel
value. It is run every time the system starts. The system initialization script performs certain essential
tasks. For example, the Red Hat rc.sysinit script:

Initializes the swap space

Runs the filesystem check

Mounts the /proc filesystem

Mounts the root filesystem as read-write after the fsck completes

Loads the loadable kernel modules

Other initialization scripts may look different than Red Hat's, but they perform very similar functions. For
example, a Caldera system begins by loading the loadable modules. It then activates the swap space,
does the filesystem check, and remounts the root filesystem as read-write. The order is different, but the
major functions are the same.

After the system initialization script is run, init runs a script for the specific runlevel. The remaining six
lines in the sample are used to invoke the startup scripts for individual runlevels. Except for the runlevel
involved, each line is identical.

Let's use the line with label l3 as an example. This line starts all of the processes and services needed to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's use the line with label l3 as an example. This line starts all of the processes and services needed to
provide the full multiuser support. The runlevel is 3. The action wait directs init to wait until the startup
script terminates before going on to any other entries in the inittab file that relate to runlevel 3. init
executes the script /etc/rc.d/rc and passes that script the command-line argument 3.

The control script, /etc/rc.d/rc, then runs all the scripts that are appropriate for the runlevel. It does this by
running the scripts that are stored in the directory /etc/rcn.d, where n is the specified runlevel. In our
example, the rc script is passed a 3, so it runs the scripts found in the directory /etc/rc.d/rc3.d. A listing of
that directory from a Red Hat system shows that there are lots of scripts:

$ ls /etc/rc.d
init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit

rc rc1.d rc3.d rc5.d rc.local

$ ls /etc/rc.d/rc3.d
K03rhnsd K35smb K74ntpd S05kudzu S25netfs S85httpd

K16rarpd K45arpwatch K74ypserv S06reconfig S26apmd S90crond

K20nfs K45named K74ypxfrd S08ipchains S28autofs S90xfs

K20rstatd K50snmpd K75gated S09isdn S40atd S95anacron

K20rusersd K50tux K84bgpd S10network S55sshd S99linuxconf

K20rwalld K55routed K84ospf6d S12syslog S56rawdevices S99local

K20rwhod K61ldap K84ospfd S13portmap S56xinetd

K28amd K65identd K84ripd S14nfslock S60lpd

K34yppasswdd K73ypbind K84ripngd S17keytable S80sendmail

K35dhcpd K74nscd K85zebra S20random S85gpm

The scripts that begin with a K are used to kill processes when exiting a specific runlevel. In the listing
above, the K scripts would be used when terminating runlevel 3. The scripts that start with an S are used
when starting runlevel 3. None of the items in rc3.d, however, is really a startup script. They are logical
links to the real scripts, which are located in the /etc/rc.d/init.d directory. For example, S80sendmail is
linked to init.d/sendmail. This raises the question of why the scripts are executed from the directory rc3.d
instead of directly from init.d where they actually reside. The reasons are simple. The same scripts are
needed for several different runlevels. Using logical links, the scripts can be stored in one place and still
be accessed by every runlevel from the directory used by that runlevel.

Scripts are executed in alphabetical order. Thus S10network is executed before S80sendmail. This allows
the system to control the order in which scripts are executed through simple naming conventions.
Different runlevels can execute the scripts in different orders while still allowing the real scripts in init.d
have simple, descriptive names. A listing of the init.d directory shows these descriptive names:

$ ls /etc/rc.d/init.d
amd functions kdcrotate network rarpd rwalld xfs

anacron gated keytable nfs rawdevices rwhod xinetd

apmd gpm killall nfslock reconfig sendmail ypbind

arpwatch halt kudzu nscd rhnsd single yppasswdd

atd httpd ldap ntpd ripd smb ypserv

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

atd httpd ldap ntpd ripd smb ypserv

autofs identd linuxconf ospf6d ripngd snmpd ypxfrd

bgpd ipchains lpd ospfd routed sshd zebra

crond iptables named portmap rstatd syslog

dhcpd isdn netfs random rusersd tux

It is possible to place a customized configuration command directly in the applicable script in the init.d
directory. A better alternative on a Red Hat system is to place any local changes in rc.local.

Like BSD systems, Linux systems provide an rc.local script for local customization. In general, you do not
directly edit boot scripts. The exception to this rule is the rc.local script located in the /etc/rc.d directory. It
is the one customizable startup file, and it is reserved for your use; you can put anything you want in
there. After the system initialization script executes, the runlevel scripts execute in alphabetical order. The
last of these is S99local, which is a link to rc.local. Since it is executed last, the values set in the rc.local
script override other configuration values.

Solaris also uses the System V startup model, but it makes things a little more difficult than Linux does.
First off, it does not provide an rc.local script. If you want to use one, you need to add your own to the
runlevel directories. Secondly, Solaris does not use many logical links in the runlevel directories.
Therefore, there is no guarantee of a central place to modify scripts that are used for all runlevels.
Additionally, each runlevel has a separate controlling script that can introduce differences in the startup
process for each runlevel. For example, /sbin/rc2 is the controlling script for runlevel 2 and /sbin/rc3
controlling script for runlevel 3. All of these differences make the Solaris startup process more complex to
analyze.

On a Solaris 8 system, runlevel 3 is the default runlevel for a multiuser system offering network services.
The /sbin/rc3 controlling script runs the scripts in /etc/rc2.d and then those in /etc/rc3.d. Basic network
configuration is handled in /etc/rc2.d by the S69inet script and the S72inetsvc script. Several other scripts
in both /etc/rc2.d and /etc/rc3.d are involved in launching network services.

For troubleshooting purposes it is important to understand where and how things happen during the
system startup. When the network fails to initialize properly, it is good to know where to look. However,
when you configure the network you should stick with the standard tools and procedures provided with
your system. Directly modifying startup scripts can cause problems during the startup and can lead to
of confusion for the other people who help you maintain your systems.

Of course, not all network services are started by a boot script. Most network services are started on
demand. The most widely used tool for starting network services on demand is inetd, the Internet
Daemon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 The Internet Daemon

The internet daemon, inetd (pronounced "i net d"), is started at boot time from an initialization file
such as /etc/rc2.d/S72inetsvc. When it is started, inetd reads its configuration from the
/etc/inetd.conf file. This file contains the names of the services that inetd listens for and starts. You
can add or delete services by making changes to the inetd.conf file.

An example of a file entry from a Solaris 8 system is:

ftp stream tcp6 nowait root /usr/sbin/in.ftpd in.ftpd

The fields in the inetd.conf entry are, from left to right:

name

The name of a service, as listed in the /etc/services file. In the sample entry, the value in this
field is ftp.

type

The type of data delivery service used, also called socket type. The commonly used socket
types are:

stream

The stream delivery service provided by TCP, i.e., TCP byte stream.[9]

[9] Here the reference is to TCP/IP sockets and TCP streams, not to AT&T streams I/O or BSD socket
I/O.

dgram

The packet (datagram) delivery service provided by UDP.

raw

Direct IP datagram service.

The sample shows that FTP uses a stream socket.

protocol

The name of a protocol, as given in the /etc/protocols file. Its value is usually either "tcp" or
"udp". To indicate that a service can run over both IPv4 and IPv6, Solaris uses "tcp6" or
"udp6" in this field. The FTP protocol uses TCP as its transport layer protocol, so the sample
entry contains tcp6 in this field.

wait-status

The value for this field is either "wait" or "nowait." Generally, but not always, datagram type
servers require "wait," and stream type servers allow "nowait." If the status is "wait," inetd
must wait for the server to release the socket before it begins to listen for more requests on
that socket. If the status is "nowait," inetd can immediately begin to listen for more
connection requests on the socket. Servers with "nowait" status use sockets other than the
connection request socket for processing; i.e., they use dynamically allocated sockets.

uid

The uid is the username under which the server runs. This can be any valid username, but it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The uid is the username under which the server runs. This can be any valid username, but it
is normally root. There are several exceptions. For example, in the default Solaris 8
configuration, the finger service and the Sun Font Server (fs) both run as the user nobody
for security reasons.

server

This is the full pathname of the server program started by inetd. Because our example is
from a Solaris system, the path is /usr/sbin/in.ftpd. On your system the path may be different.
It is more efficient for inetd to provide some small services directly than it is for inetd to
start separate servers for these functions. For these small services, the value of the server
field is the keyword "internal," which means that this service is an internal inetd service.

arguments

These are any command-line arguments that should be passed to the server program when it
is invoked. This list always starts with argv[0] (the name of the program being executed).
The program's manpage documents the valid command-line arguments for each program. In
the example, only in.ftpd, the name of the program, is provided.

There are a few situations in which you need to modify the inetd.conf file. For example, you may
wish to disable a service. The default configuration provides a full array of servers. Not all of them
are required on every system, and for security reasons you may want to disable non-essential
services on some computers. To disable a service, place a # at the beginning of its entry (which
turns the line into a comment) and pass a hang-up signal to the inetd server. When inetd
receives a hang-up signal, it re-reads the configuration file, and the new configuration takes effect
immediately.

You may also need to add new services. We'll see some examples of that in later chapters. Let's
look in detail at an example of restoring a service that has been previously disabled. We'll begin by
looking at some entries and comments from the Solaris /etc/inetd.conf file:

Tftp service is provided primarily for booting. Most sites run this

only on machines acting as "boot servers."

#

#tftp dgram udp6 wait root /usr/sbin/in.tftpd in.tftpd -s /tftpboot

#

Finger, systat and netstat give out user information which may be

valuable to potential "system crackers." Many sites choose to disable

some or all of these services to improve security.

#

finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd

This part of the file shows two TCP/IP services. One of these, tftp, is commented out. The TFTP
protocol is a special version of FTP that allows file transfers without username/password verification.
Because of this, it is a possible security hole and is often disabled in the inetd.conf file. The other is
finger, which the comments suggest we might want to comment out.

As an example of modifying the inetd.conf file, we'll reconfigure the system to provide tftp service,
which is sometimes necessary for supporting diskless devices. First, use your favorite editor to
remove the comment (#) from the tftp entry in inetd.conf. (The example uses sed, everyone's
favorite editor!) Then find out the process ID for inetd and pass it the SIGHUP signal. The
following steps show how this is done:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cd /etc
mv inetd.conf inetd.conf.org
cat inetd.conf.org | sed s/#tftp/tftp/ > inetd.conf
ps -acx | grep inetd
 144 ? I 0:12 inetd

kill -HUP 144
In some situations, you may also need to modify the pathname of a server or the arguments passed
to a particular server when it is invoked. For example, look again at the tftp entry. This line
contains command-line arguments that are passed to the tftp server when it is started. The -s
/tftpboot option addresses the most obvious tftp security hole. It prevents tftp users from
retrieving files that are not located in the directory specified after the -s option. If you want to use
another directory for tftp, you must change the inetd.conf file. The only command-line arguments
passed to servers started by inetd are those defined in the inetd.conf file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 The Extended Internet Daemon

An alternative to inetd is the Extended Internet Daemon (xinetd). xinetd is configured in the
/etc/xinetd.conf file, which provides the same information to xinetd as inetd.conf provides to
inetd. But instead of using positional parameters with meanings determined by location on a
configuration line (as inetd.conf does), xinetd.conf uses attribute and value pairs. The attribute
name clearly identifies the purpose of each parameter. The value configures the parameter. For
example, the third field in an inetd.conf entry contains the name of the transport protocol. In an
xinetd.conf file, the name of the transport protocol is defined using the protocol attribute, e.g.,
protocol = tcp. Here is an example of an xinetd.conf tftp entry:

default: off

description: The tftp server uses the trivial file transfer \

protocol. The tftp protocol is often used to boot diskless \

workstations, download configuration files to network printers, \

and to start the installation process for some operating systems.

service tftp

{

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = -s /tftpboot

 disable = yes

}

Lines that start with # are comments. The actual entry begins with the service command. The
attributes enclosed in the curly braces ({}) define the characteristics of the specified service.

The service, socket_type, protocol, wait, user, server, and server_args values all parallel values
shown in the tftp example from the Solaris inetd.conf file. These attributes perform exactly the
same functions for xinetd that their positional counterparts did for inetd.

One item, disable = yes, needs a little explanation. disable = yes prevents xinetd from
starting tftp on demand. disable = yes is equivalent to commenting tftp out of the
inetd.conf file. To enable tftp, edit this file and change it to disable = no.

Red Hat 7 uses xinetd. However, you won't find the network services listed in the /etc/xinetd.conf
file on a Red Hat system. In the Red Hat configuration, xinetd.conf includes by reference all of the
files defined in the directory /etc/xinetd.d. The listing shown above is actually the contents of the
/etc/xinetd.d/tftp file from our sample Red Hat system. Each service has its own configuration file.

xinetd is used because it has enhanced security features. Security is one of the most important
reasons for understanding the inetd.conf file or the xinetd.conf file. How to use the access control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reasons for understanding the inetd.conf file or the xinetd.conf file. How to use the access control
features of xinetd and inetd is covered in Chapter 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Summary

The basic configuration files, the kernel configuration file, the startup files, and the /etc/inetd.conf
or /etc/xinetd.conf file are necessary for installing the TCP/IP software on a Unix system. The
kernel comes configured to run TCP/IP on most systems. Some systems, such as Solaris, are
designed to eliminate kernel configuration. Others, such as Linux, encourage it as a way to
produce a more efficient kernel. In either case, a network administrator needs to be aware of the
kernel configuration commands required for TCP/IP so that they are not accidentally removed
from the kernel when it is rebuilt.

Network services are either started at boot time from a startup script or are started on demand
using xinetd or inetd. BSD systems have a few startup scripts that are run in sequence for
every boot. System V Unix runs a different set of startup scripts for each runlevel. Runlevels are
used to start the system in different modes, e.g., single user mode or multi-user mode. Both
Solaris and Linux use the System V startup scheme.

inetd and xinetd start essential network services. Most Unix systems use inetd, although
some, such as Red Hat Linux, use xinetd. Reconfigure inetd or xinetd to add new services
and to improve security. Security can be improved by removing unneeded services or by adding
access control. Chapter 12 provides additional information on how inetd and xinetd are used
to improve system security.

The kernel configuration defines the network interface. In the next chapter we configure it, calling
upon the planning we did in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Configuring the Interface
When networking protocols work only with a single kind of physical network, there is no need to
identify the network interface to the software. The software knows what the interface must be; no
configuration issues are left for the administrator. However, one important strength of TCP/IP is its
flexible use of different physical networks. This flexibility adds complexity to the system
administrator's task, because you must tell TCP/IP which interfaces to use, and you must define
the characteristics of each interface.

Because TCP/IP is independent of the underlying physical network, IP addresses are
implemented in the network software—not in the network hardware. Unlike Ethernet addresses,
which are determined by the Ethernet hardware, the system administrator assigns an IP address
to each network interface.

In this chapter, we use the ifconfig (interface configure) command to identify the network
interface to TCP/IP and to assign the IP address, subnet mask, and broadcast address to the
interface. We also configure a network interface to run Point-to-Point Protocol (PPP), which is the
standard Network Access Layer protocol used to run TCP/IP over modem connections.

During a real installation the system administrator is isolated from most of the details of the
network configuration. The installation program prompts the administrator for information, places
that information in script files, and then uses the scripts to configure the interface at every boot. In
this chapter we look beyond the superficial to see how things actually work by examining the
details of the ifconfig command and the scripts that invoke the command. Let's begin with a
discussion of ifconfig.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 The ifconfig Command

The ifconfig command sets, or checks, configuration values for network interfaces. Regardless of the vendor
version of Unix, the ifconfig command sets the IP address, the subnet mask, and the broadcast address for
each interface. Its most basic function is assigning the IP address.

Here is the ifconfig command that configures the Ethernet interface on a Solaris system:

ifconfig dnet0 172.16.12.2 netmask 255.255.255.0 broadcast 172.16.12.255
Many other arguments can be used with the ifconfig command; we discuss several of these later. But a few
important arguments provide the basic information required by TCP/IP for every network interface. These are:

interface

The name of the network interface that you want to configure for TCP/IP. In the example above, this is the
Ethernet interface dnet0.

address

The IP address assigned to this interface. Enter the address as either an IP address (in dotted decimal form)
or as a hostname. If you use a hostname, place the hostname and its address in the /etc/hosts
system must be able to find the hostname in /etc/hosts because ifconfig usually executes before DNS
starts. The example uses the numeric IP address 172.16.12.2 as the address value.

netmask mask

The address mask for this interface. Ignore this argument only if you're using the default mask derived from
the traditional address class structure. The address mask chosen for our imaginary network is
255.255.255.0, so that is the value assigned to interface dnet0. See Chapter 2 and Chapter 4
on address masks.

broadcast address

The broadcast address for the network. Most systems default to the standard broadcast address, which is an
IP address with all host bits set to 1. In the ifconfig example we explicitly set the broadcast address to
172.16.12.255 to avoid any confusion, despite the fact that a Solaris 8 system will set the correct
address by default. Every system on the subnet must agree on the broadcast address.

In the example above, we use keyword/value pairs because this makes explaining and understanding the syntax
easier. However, Solaris does not require that syntax. The following (much shorter) command does exactly the
same thing as the previous one:

ifconfig dnet0 172.16.12.2/24
In this command the network mask is defined with an address prefix and the broadcast address is allowed to
default. A prefix length of 24 is the same as 255.255.255.0. The default broadcast address given that prefix length
is 172.16.12.255.

The network administrator provides the values for the address, subnet mask, and broadcast address. The values in
our example are taken directly from the plans we developed in Chapter 4. But the name of the interface, the first
argument on every ifconfig command line, is determined by the system during startup.

6.1.1 The Interface Name

In Chapter 5, we saw that Ethernet network interfaces come in many varieties and that different Ethernet cards

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Chapter 5, we saw that Ethernet network interfaces come in many varieties and that different Ethernet cards
usually have different interface names. You can usually determine which interface is used on a system from the
messages displayed on the console during a boot. On many systems these messages can be examined with the
dmesg command. The following example shows the output of the dmesg command on two different systems:

$ dmesg | grep ether
Oct 1 13:07:23 crab gld: [ID 944156 kern.info] dnet0: DNET 21x4x:

 type "ether" mac address 00:00:c0:dd:d4:da

$ dmesg | grep eth
eth0: SMC EtherEZ at 0x240, 00 00 C0 9A 72 CA,assigned IRQ 5 programmed-I/O mode.

The first dmesg command in the example shows the message displayed when an Ethernet interface is detected
during the boot of a Solaris 8 system. The string type "ether" makes it clear that dnet0 is an Ethernet interface.
The Ethernet address (00:00:c0:dd:d4:da) is also displayed.

The second dmesg example, which comes from a PC running Linux, provides even more information. On Linux
systems, the Ethernet interface name starts with the string "eth", so we look for a message containing that string.
The message from the Linux system displays the Ethernet address (00:00:c0:9a:72:ca) and the make
(SMC EtherEZ) of the network adapter card.

It is not always easy to determine all available interfaces on your system by looking at the output of dmesg
messages show only the physical hardware interfaces. In the TCP/IP protocol architecture, the Network Access
Layer encompasses all functions that fall below the Internet Layer. This can include all three lower layers of the
OSI Reference Model: the Physical Layer, the Data Link Layer, and the Network Layer. IP needs to know the
specific interface in the Network Access Layer where packets should be passed for delivery to a particular network.
This interface is not limited to a physical hardware driver. It could be a software interface into the network layer of
another protocol suite. So what other methods can help you determine the network interfaces available
system? Use the netstat and the ifconfig commands. For example, to see all network interfaces that are
already configured, enter:

netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

lo0 8232 127.0.0.0 127.0.0.1 4504 0 4504 0 0 0

dnet0 1500 172.16.12.0 172.16.12.1 366 0 130 0 0 0

The -i option tells netstat to display the status of all configured network interfaces, and the -n tells
display its output in numeric form. In the Solaris 8 example shown above, the netstat -in command
the following fields:

Name

The Interface Name field shows the actual name assigned to the interface. This is the name you give to
ifconfig to identify the interface. An asterisk (*) in this field indicates that the interface is not enabled; i.e.,
the interface is not "up."

Mtu

The Maximum Transmission Unit shows the longest frame (packet) that can be transmitted by this interface
without fragmentation. The MTU is displayed in bytes and is discussed in more detail later in this

Net/Dest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Network/Destination field shows the network or the destination host to which the interface provides
access. In our Ethernet examples, this field contains a network address. The network address
from the IP address of the interface and the subnet mask. This field contains a host address if the interface
is configured for a point-to-point (host-specific) link. The destination address is the address of the remote
host at the other end of the point-to-point link.[1] A point-to-point link is a direct connection between two
computers. You can create a point-to-point link with the ifconfig command. How this is done is covered
later in this chapter.

[1] See the description of the H flag in Section 2.4.

Address

The IP Address field shows the Internet address assigned to this interface.

Ipkts

The Input Packets field shows how many packets this interface has received.

Ierrs

The Input Errors field shows how many damaged packets the interface has received.

Opkts

The Output Packets field shows how many packets were sent out by this interface.

Oerrs

The Output Errors field shows how many of the packets caused an error condition.

Collis

The Collisions field shows how many Ethernet collisions were detected by this interface. Ethernet collisions
are a normal condition caused by Ethernet traffic contention. This field is not applicable to non-Ethernet
interfaces.

Queue

The Packets Queued field shows how many packets are in the queue, awaiting transmission via this
interface. Normally this is zero.

The output of a netstat -in command on a Linux system appears quite different:

$ netstat -in
Kernel Interface table

Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg

eth0 1500 0 2234 280 0 0 1829 0 0 0 BRU

lo 16436 0 10 0 0 0 10 0 0 0 LRU

This output appears different, but as is often the case, appearances can fool you. Again we have the interface
name, the MTU, and the packet statistics.[2] Here RX-OK is the total number of input packets, while RX-ERR
(errors), RX-DRP (drops), and RX-OVR (overruns) added together give the total number of input errors. The total
number of output packets is TX-OK, and the TX-ERR, TX-DRP, and TX-OVR counters provide the total number of
output errors. Only two fields, Net/Dest and Address, that are provided in the Solaris output are not provided here.
On the other hand, this display has two fields not used in the Solaris output. The Met field contains the routing
metric assigned to this interface. The Flg field shows the interface flags:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[2] The packet statistics displayed by netstat are used in Chapter 13.

R means the interface is running.

U means the interface is up.

B means it is a broadcast-capable interface.

L means it is a loopback interface.

This display shows that this workstation has only two network interfaces. In this case it is easy to identify each
network interface. The lo0 interface is the loopback interface, which every TCP/IP system has. It is the same
loopback device discussed in Chapter 5. eth0 is the Ethernet interface, also discussed previously.

On most systems, the loopback interface is part of the default configuration, so you won't need to configure it. If
you do need to configure lo0 on a Solaris system, use the following command:

ifconfig lo0 plumb 127.0.0.1 up
This example is specific to Solaris because it contains the plumb option. This option literally creates the "plumbing"
required by the network interface the first time it is configured. Subsequent reconfigurations of this interface do not
require the plumb option, and other systems, such as Linux, do not use this option.

The configuration of the Ethernet interface requires more attention than the loopback interface. Many systems use
an installation script to install Unix. This script requests the host address, which it then uses to configure the
interface. Later we'll look at these scripts and what to do when the user does not successfully set up the
with the installation script.

The ifconfig command can also be used to find out what network interfaces are available on a system. The
netstat command shows only interfaces that are configured. On some systems the ifconfig command
used to show all interfaces, even those that have not yet been configured. On Solaris 8 systems, ifconfig -a
does this; on a Linux 2.0.0 system, entering ifconfig without any arguments will list all of the network interfaces.

While most hosts have only one real network interface, some hosts and all gateways have multiple interfaces.
Sometimes all interfaces are the same type; e.g., a gateway between two Ethernets may have two Ethernet
interfaces. netstat on a gateway like this might display lo0, eth0, and eth1. Deciphering a netstat
multiple interfaces of the same type is still very simple. But deciphering a system with many different types of
network interfaces is more difficult. You must rely on documentation that comes with optional software to choose
the correct interface. When installing new network software, always read documentation carefully.

This long discussion about determining the network interface is not meant to overshadow the important
functions of assigning the IP address, subnet mask, and broadcast address. So let's return to these important
topics.

6.1.2 Checking the Interface with ifconfig

As noted previously, the Unix installation script configures the network interface. However, this configuration may
not be exactly what you want. Check the configuration of an interface with ifconfig. To display the current values
assigned to the interface, enter ifconfig with an interface name and no other arguments. For example, to check
interface dnet0:

% ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 172.16.12.2 netmask ffff0000 broadcast 172.16.255.255

When used to check the status of an interface on a Solaris system, the ifconfig command displays two lines of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When used to check the status of an interface on a Solaris system, the ifconfig command displays two lines of
output. The first line shows the interface name, the flags that define the interface's characteristics, and the
Maximum Transmission Unit (MTU) of this interface.[3] In our example the interface name is dnet0, and the MTU is
1500 bytes. The flags are displayed as both a numeric value and a set of keywords.

[3] index is an interface characteristic that is specific to Solaris. It is an internal number used to uniquely identify the interface. The number
does not have meaning to TCP/IP.

The interface's flags have the numeric value 1000843, which corresponds to:

UP

The interface is enabled for use.

BROADCAST

The interface supports broadcasts, which means it is connected to a network that supports broadcasts, such
as an Ethernet.

NOTRAILERS

This interface does not support trailer encapsulation.

RUNNING

This interface is operational.

MULTICAST

This interface supports multicasting.

IPv4

This interface supports TCP/IP version 4, which is the standard version of TCP/IP used on the Internet and
described in this book.

The second line of ifconfig output displays information that directly relates to TCP/IP. The keyword
followed by the Internet address assigned to this interface. Next comes the keyword netmask, followed by the
address mask written in hexadecimal. Finally, the keyword broadcast and the broadcast address are

On a Linux system the ifconfig command displays up to seven lines of information for each interface instead of
the two lines displayed by the Solaris system. The additional information includes the Ethernet address, the PC
IRQ, I/O Base Address and memory address, and packet statistics. The basic TCP/IP configuration information is
the same on both systems.

> ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:00:C0:9A:D0:DB

 inet addr:172.16.55.106 Bcast:172.16.55.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:844886 errors:0 dropped:0 overruns:0 frame:0

 TX packets:7668 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 Interrupt:11 Base address:0x7c80 Memory:c0000-c2000

Refer to the Solaris ifconfig dnet0 example at the beginning of this section, and check the information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refer to the Solaris ifconfig dnet0 example at the beginning of this section, and check the information
displayed in that example against the subnet configuration planned for our imaginary network. You'll
interface needs to be reconfigured. The configuration done by the user during the Unix installation did not provide
all of the values we planned. The address (172.16.12.2) is correct, but the address mask (ffff0000 or 255.255.0.0)
and the broadcast address (172.16.0.0) are incorrect. Let's look at the various ways values are assigned, and how
to correct them.

6.1.3 Assigning an Address

The IP address can be assigned directly on the ifconfig command line or indirectly from a file. The
examples seen earlier in this chapter had an IP address written in standard dotted decimal notation
command line. An alternative is to use a hostname from the /etc/hosts file on the ifconfig command line to
provide the address. For example:

ifconfig dnet0 crab netmask 255.255.255.0
Most administrators are very comfortable with using hostnames in place of addresses. Vendor configurations,
however, tend to take address assignment to another level of indirection. The ifconfig command in the startup
script references a file. The file contains a hostname and the hostname maps to an address. Solaris systems place
the hostname in a file named /etc/hostname. interface, where interface is the name of the
being configured. On our sample system the file is called /etc/hostname.dnet0. The hostname.dnet0
a standard Solaris installation contains only a simple hostname:

$ cat /etc/hostname.dnet0
crab

$ grep crab /etc/hosts
172.16.12.1 crab crab.wrotethebook.com loghost

The example shows that the Solaris configuration created the hostname.dnet0 file and the necessary entry in
/etc/hosts file to map the name from hostname.dnet0 to an IP address. The Solaris boot first gets the hostname
from a file and then gets the address associated with that hostname from a second file. Both of these
required for the configuration.

Linux also uses indirection for the ifconfig configuration. Several Linux systems, including Red Hat, Mandrake,
and Caldera, place the values used to configure the network interface in a file named ifcfg.interface
interface is the name of the interface.[4]

[4] Our sample Red Hat system places the file ifcfg.eth0 in the directory /etc/sysconfig/network-scripts.

For example, ifcfg.eth0 contains the configuration values for the Ethernet interface eth0.

$ cat /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0

ONBOOT=yes

BOOTPROTO=none

BROADCAST=172.16.12.255

NETWORK=172.16.12.0

NETMASK=255.255.255.0

IPADDR=172.16.12.2

USERCTL=no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USERCTL=no

This file makes the configuration very easy to see.

DEVICE defines the device name, in this case eth0.

ONBOOT specifies whether the interface is initialized when the system boots. Normally an Ethernet interface
is brought up and running every time the system boots.

BOOTPROTO identifies the configuration service used to configure the interface. In this case it is
meaning that the interface is configured locally. Alternates are bootp if an old-fashioned BootP server is
used, or dhcp if a DHCP server is used. If either DHCP or BootP is used, the specific configuration
listed below are not found in this file.

BROADCAST defines the broadcast address used by ifconfig.

NETWORK defines the network address.

NETMASK defines the address mask used by ifconfig.

IPADDR defines the IP address used by ifconfig.

USERCTL specifies whether users can run usernetctl to bring the interface up or down. The
usernetctl command is found on only a few versions of Linux. In this case, the value no prevents the
user from downing the interface.

Most systems take advantage of the fact that the IP address, subnet mask, and broadcast address can be set
indirectly to reduce the extent that startup files need to be customized. Reducing customization lessens the chance
that a system might hang while booting because a startup file was improperly edited, and it makes it
preconfigure these files for all of the systems on the network. Solaris systems have the added advantage that the
hosts, networks, and netmasks files, which provide input to the ifconfig command, all produce NIS maps that
can be centrally managed at sites using NIS.

A disadvantage of setting the ifconfig values indirectly is that it can make troubleshooting more cumbersome. If
all values are set in the boot file, you only need to check the values there. When network configuration information
is supplied indirectly, you may need to check several files to find the problem. An error in any of these files could
cause an incorrect configuration. To make debugging easier, a few operating systems set the configuration values
directly on the ifconfig command line in the boot file.

My advice is that you follow the standard model used on your system. If you use a Solaris system, set the address
in /etc/hostname.dnet0 and /etc/hosts. If you use a Red Hat system, set the address in the /etc/sysconfig/network-
scripts/ifcfg.eth0 file. If you use a Slackware system, set the address directly in the rc.inet boot file. Following the
standard procedure for your system makes it easier for others to troubleshoot your computer. We'll see more of
these alternatives as we assign the remaining interface configuration values.

6.1.4 Assigning a Subnet Mask

In order to function properly, every interface on a specific physical network segment must have the same address
mask. For crab and rodent, the netmask value is 255.255.255.0 because both systems are attached to
subnet. However, although crab's local network interface and its external network interface are parts
computer, they use different netmasks because they are on different networks.

To assign an address mask, write the mask value after the keyword netmask on the ifconfig command
as a prefix attached to the address. When written as a prefix, the address mask is a decimal number that defines
the number of bits in the address mask. For example, 172.16.12.2/24 defines a 24-bit address mask. When the
subnet mask follows the keyword netmask, it is usually written in the dotted decimal form used for IP addresses.

[5] Hexadecimal notation can also be used for the address mask. To enter a netmask in hexadecimal form, write the value as a single hex

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[5] Hexadecimal notation can also be used for the address mask. To enter a netmask in hexadecimal form, write the value as a single hex
number starting with a leading 0x. For example, the hexadecimal form of 255.255.255.0 is 0xffffff00. Choose the form that is easier for you to
understand.

For example, the following command assigns the correct subnet mask to the dnet0 interface on rodent

ifconfig le0 172.16.12.2 netmask 255.255.255.0
Putting the netmask value directly on the ifconfig command line is the most common, the simplest, and the best
way to assign the mask to an interface manually. But it is rare for the mask to be assigned manually. Like
addresses, address masks are made part of the configuration during the initial installation. To simplify
configuration, ifconfig is able to take the netmask value from a file instead of from the command line.
Conceptually, this is similar to using a hostname in place of an IP address. The administrator can place the mask
value in either the hosts file or the networks file and then reference it by name. For example, the books-net
administrator might add the following entry to /etc/networks:

 books-mask 255.255.255.0

Once this entry has been added, you can use the name books-mask on the ifconfig command line instead of
the actual mask. For example:

ifconfig dnet0 172.16.5.2 netmask books-mask
The name books-mask resolves to 255.255.255.0, which is the correct netmask value for our sample systems.

Personally, I avoid setting the address mask value indirectly from a file that is not primarily intended for this use.
The hosts file is a particularly bad choice for storing mask values. The hosts file is heavily used by other programs,
and placing a mask value in this file might confuse one of these programs. Setting the address mask directly on the
command line or from a file that is dedicated to this purpose is probably the best approach.

On Solaris systems, the /etc/inet/netmasks file is specifically designed to set the subnet mask.[6] The
/etc/inet/netmasks file is a table of one-line entries, each containing a network address separated from a mask by
whitespace.[7]

[6] /etc/netmasks is symbolically linked to /etc/inet/netmasks.

[7] Use the official network address, not a subnet address.

If a Solaris system on books-net (172.16.0.0) has an /etc/inet/netmasks file that contains the entry:

 172.16.0.0 255.255.255.0

then the following ifconfig command can be used to set the address mask:

ifconfig dnet0 172.16.5.1 netmask +
The plus sign after the keyword netmask causes ifconfig to take the mask value from /etc/inet/netmasks
ifconfig searches the file for a network address that matches the network address of the interface being
configured. It then extracts the mask associated with that address and applies it to the interface.

Most Linux systems also set the address mask indirectly from a file. The ifcfg-eth0 file shown in the previous
section contains the following line:

NETMASK=255.255.255.0

This line clearly defines the netmask value that is used by the ifconfig command. To modify the address mask
on this Red Hat system, edit this line in the ifcfg-eth0 file.

6.1.5 Setting the Broadcast Address

RFC 919, Broadcasting Internet Datagrams, clearly defines the format of a broadcast address as an address with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RFC 919, Broadcasting Internet Datagrams, clearly defines the format of a broadcast address as an address with
all host bits set to 1. Since the broadcast address is so precisely defined, ifconfig is able to compute it
automatically, and you should always be able to use the default. Unfortunately, the user in the example under
Section 6.1.2" used a broadcast address with all host bits set to 0 and didn't allow the broadcast address to be set
by default.

Correct this mistake by defining a broadcast address for the network device with the ifconfig command. Set the
broadcast address in the ifconfig command using the keyword broadcast followed by the correct
address. For example, the ifconfig command to set the broadcast address for crab's dnet0 interface is:

ifconfig dnet0 172.16.12.1 netmask 255.255.255.0 broadcast 172.16.12.255
Note that the broadcast address is relative to the local subnet. crab views this interface as connected to
172.16.12.0; therefore, its broadcast address is 172.16.12.255. Depending on the implementation, a Unix system
could interpret the address 172.16.255.255 as host address 255 on subnet 255 of network 172.16.0.0, or as the
broadcast address for books-net as a whole. In neither case would it consider 172.16.255.255 the broadcast
address for subnet 172.16.12.0.

Solaris systems can indirectly set the broadcast address from the netmask value defined in /etc/inet/netmasks
that file is used. The previous section showed that netmask + takes the netmask value from a file. Likewise,
broadcast + syntax calculates the correct broadcast value using the netmask value from the netmasks

ifconfig dnet0 172.16.12.1 netmask + broadcast +
Assume that the netmask defined in netmasks is 255.255.255.0. This tells the Solaris system that the first three
bytes are network bytes and that the fourth byte contains the host portion of the address. Since the standard
broadcast address consists of the network bits plus host bits of all 1s, Solaris can easily calculate that the
broadcast address in this case is 172.16.12.255.

Linux makes it even easier. The ifcfg-eth0 file on our sample Red Hat system clearly defines the broadcast address
with the line:

BROADCAST=172.16.12.255

Modify the broadcast address by modifying this line in the ifcfg-eth0 file.

6.1.6 The Other Command Options

We've used ifconfig to set the interface address, the subnet mask, and the broadcast address. These are
certainly the most important functions of ifconfig, but it has other functions as well. It can enable or disable the
address resolution protocol and the interface itself. ifconfig can set the routing metric used by the Routing
Information Protocol (RIP) and the maximum transmission unit (MTU) used by the interface. We'll look at
of each of these functions.

6.1.6.1 Enabling and disabling the interface

The ifconfig command has two arguments, up and down, for enabling and disabling the network interface. The
up argument enables the network interface and marks it ready for use. The down argument disables
so that it cannot be used for network traffic.

Use the down argument when interactively reconfiguring an interface. Some configuration parameters—for
example, the IP address—cannot be changed unless the interface is down. First, the interface is brought down.
Then, the reconfiguration is done, and the interface is brought back up. For example, the following steps change
the address for an interface:

ifconfig eth0 down
ifconfig eth0 172.16.1.2 up

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ifconfig eth0 172.16.1.2 up
After these commands execute, the interface operates with the new configuration values. The up argument in the
second ifconfig command is not always required because it is the default on some systems. However, an
explicit up is commonly used after the interface has been disabled, or when an ifconfig command is used in a
script file to avoid problems because up is not the default on all systems.

6.1.6.2 ARP

Chapter 2 discusses the Address Resolution Protocol (ARP), an important protocol that maps IP addresses to
physical Ethernet addresses. Enable ARP with the ifconfig keyword arp and disable it with the keyword
It is possible (though very unlikely) that a host attached to your network cannot handle ARP. This would only
happen on a network using specialized equipment or developmental hardware. In these very rare circumstances, it
may be necessary to disable ARP in order to interoperate with the nonstandard systems. By default,
enables ARP. Leave ARP enabled on all your systems.

6.1.6.3 Promiscuous mode

In Chapter 13, promiscuous mode is used to examine the packets traveling on a local Ethernet. By default, an
Ethernet interface passes only frames that are addressed to the local host up to the higher layer protocols.
Promiscuous mode passes all frames up without regard to the address in those frames.

On a Linux system, promiscuous mode is enabled using the promisc option of the ifconfig command. For
example:

$ ifconfig eth0 promisc
Promiscuous mode is disabled by using -promisc.[8] By default promiscuous mode is disabled. When it is
enabled, the local system is forced to process many packets that are normally discarded by the Ethernet interface
hardware. Promiscuous mode is enabled only for certain troubleshooting applications.

[8] On Solaris systems, promiscuous mode is enabled by programs that need it. It is not set by the ifconfig command.

6.1.6.4 Metric

On some systems, the ifconfig command creates an entry in the routing table for every interface that is
assigned an IP address. Each interface is the route to a network. Even if a host isn't a gateway, its interface is still
its "route" to the local network. ifconfig determines the route's destination network by applying the interface's
address mask to the interface's IP address. For example, the dnet0 interface on crab has an address of
172.16.12.1 and a mask of 255.255.255.0. Applying this mask to the address provides the destination network,
which is 172.16.12.0. The netstat -in display shows the destination address:

% netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

le0 1500 172.16.12.0 172.16.12.1 1125826 16 569786 0 8914 0

lo0 1536 127.0.0.0 127.0.0.1 94280 0 94280 0 0 0

The Routing Information Protocol (RIP) is a routing protocol sometimes used by Unix. RIP does two things: it
distributes routing information to other hosts, and it uses incoming routing information to build routing tables
dynamically. The routes created by ifconfig are one source of the routing information distributed by RIP, and the
ifconfig metric argument can be used to control how RIP uses this routing information.

RIP makes routing decisions based on the cost of a route. The route's cost is determined by a routing metric

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RIP makes routing decisions based on the cost of a route. The route's cost is determined by a routing metric
associated with the route. A routing metric is just a number. The lower the number, the lower the cost of the route;
the higher the number, the higher the cost. When building a routing table, RIP favors low-cost routes over high-cost
routes. Directly connected networks are given a very low cost. Therefore, the default metric is for a route through
an interface to a directly attached network. However, you can use the metric argument to supply a different
routing metric for an interface.

To increase the cost of an interface to 3, so that RIP prefers routes with values of 0, 1, or 2, use metric 3
ifconfig command line:

ifconfig std0 10.104.0.19 metric 3
Use the metric option only if there is another route to the same destination and you want to use it as the primary
route. We did not use this command on crab because it has only one interface connected to the outside world. If it
had a second connection, say, through a higher-speed link, then the command shown above could be used to
direct traffic through the higher-performance interface.

A related ifconfig parameter is available on Solaris systems. RIP builds the routing table by choosing the most
economical routes, and it distributes the routing table information to other hosts. The metric parameter controls
which routes RIP selects as the lowest cost. The private argument, available on Solaris systems, controls the
routes that RIP distributes. If private is specified on the ifconfig command line, the route created by that
ifconfig command is not distributed by RIP. The default value is -private, which permits the route
distributed. The private parameter is not universally supported.

Additionally, not all systems make use of the metric argument. A Linux system doesn't create a routing table
entry when it processes the ifconfig command. When configuring a Linux system, you add an explicit
command for each interface. (The route command is covered in the next chapter.) Linux systems reject the
metric argument, as this example shows:

ifconfig eth0 192.168.0.4 metric 3
SIOCSIFMETRIC: Operation not supported

Set the routing metric in a routing configuration file instead of on the ifconfig command line. This is the
preferred method of providing routing information for newer routing software. We discuss the format of routing
configuration files in the next chapter.

6.1.6.5 Maximum transmission unit

A network has a maximum transmission unit (MTU), which is the largest packet that can be transported over that
physical network. On Ethernet, the maximum size is 1500 bytes, which is defined as part of the Ethernet standard.
There is rarely any need to change the MTU on the ifconfig command line. By default, ifconfig
optimum MTU, which is usually the largest legal MTU for a given type of network hardware. A large
default because it normally provides the best performance. However, a smaller MTU is helpful to achieve the
following goals:

To avoid fragmentation. If the traffic travels from a network with a large MTU (such as an FDDI network with
an MTU of 4500 bytes) through a network with a smaller MTU (like an Ethernet), the smaller MTU size
be best in order to avoid packet fragmentation. It is possible that specifying an MTU of 1500 on the interface
connected to the FDDI may actually improve performance by avoiding fragmentation in the routers. This
would be done only if fragmentation actually appeared to be the cause of a performance problem.

To reduce buffer overruns or similar problems. On serial line connections, it is possible to have equipment of
such low performance that it cannot keep up with standard 1006-byte packets. In this case, it is possible to
avoid buffer overruns or SILO overflows by using a smaller MTU. However, such solutions are
fixes. The real fix is to purchase the correct hardware for the application.

To change the MTU, use the mtu command-line argument:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To change the MTU, use the mtu command-line argument:

ifconfig fddi0 172.16.16.1 netmask 255.255.255.0 mtu 1500
This forces the FDDI interface on 172.16.16.1 to use an MTU of 1500 bytes.

6.1.6.6 Point-to-point

There are probably several more ifconfig command-line arguments available on your system. Linux has
parameters to define the PC interrupt of the Ethernet hardware (irq) and the Ethernet hardware address
to enable multicasting (multicast) and promiscuous mode (promisc). Solaris has arguments to set up or tear
down the streams for an interface (plumb/unplumb) and to use Reverse ARP (RARP) to obtain the IP address for
an interface (auto-revarp). But most of these parameters are not standardized between versions of Unix.

One last feature that is available on most versions of Unix is the ability to define point-to-point connections with the
ifconfig command. Point-to-point connections are network links that directly connect only two computers. Of
course the computers at either end of the link could be gateways to the world, but only two computers are directly
connected to the link. Examples of a point-to-point connection are two computers linked together by a
telephone line, or two computers in an office linked together by a null modem cable.

To define a point-to-point link on a Solaris system:

ifconfig zs0 172.16.62.1 172.16.62.2
This ifconfig command has two addresses immediately following the interface name. The first is the address of
the local host. The second address, called the destination address, is the address of the remote host at the other
end of the point-to-point link. The second address shows up as the Net/Dest value in a netstat -ni

On a Linux system, this same configuration looks slightly different:

$ ifconfig sl0 172.16.62.1 point-to-point 172.16.62.2
The syntax is different but the effect is the same. This enables the interface to run in point-to-point mode and
identifies the hosts at both ends of the link.

Does this set up the Point-to-Point Protocol (PPP) used for TCP/IP serial line communication? No, it does not.
These ifconfig parameters sometimes confuse people about how to set up PPP. There is much more to
configuring PPP, which we cover later in this chapter.

Before moving on to PPP, you should note that the configuration entered on an ifconfig command line will not
survive a system boot. For a permanent configuration, put ifconfig in a startup file.

6.1.6.7 Putting ifconfig in the startup scripts

The ifconfig command is normally executed at boot time by a startup file. The two basic Unix startup models,
the BSD model and the System V model, were explained in Chapter 5. On BSD Unix systems, the ifconfig
commands are usually located in /etc/rc.boot or /etc/rc.local.

To override a BSD system's default configuration, place a full ifconfig command in the rc.local script.
executes at the end of the startup process. Any interface configuration values set in this file override
interface configuration. For example, the following line placed in that file configures eth0 without regard to any
earlier configuration:

ifconfig eth0 172.16.12.1 broadcast 172.16.12.255 netmask 255.255.255.0

The BSD startup model is used on BSD systems and SunOS systems. Linux and Solaris systems use the System
V startup model. However, Red Hat Linux systems have an rc.local script in the /etc/rc.d directory. On a Red Hat
system, place the custom ifconfig command in the rc.local file to override the default configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system, place the custom ifconfig command in the rc.local file to override the default configuration.

Solaris does not have an rc.local script or a central directory of scripts for all runlevels. If you want to use an
rc.local script on a Solaris system, you need to create your own and add it to the runlevel 3 directory. You need to
name it properly to ensure it executes at the end of the Solaris startup process. For example, the file
/etc/rc3.d/S99local would execute at the end of the standard Solaris runlevel 3 startup. Commands placed in this
file would override the previous configuration.

If possible, however, configure the network with the standard tools and procedures provided with your system.
Directly modifying startup scripts or adding nonstandard scripts can lead to lots of confusion for the people who
help you maintain your systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 TCP/IP Over a Serial Line

TCP/IP runs over a wide variety of physical media. The media can be Ethernet cables, as in your
local Ethernet, or telephone circuits, as in a wide area network. In the first half of this chapter, we
used ifconfig to configure a local Ethernet interface. In this section, we use other commands
to configure a network interface to use a telephone circuit.

Almost all data communication takes place via serial interfaces. A serial interface is just an
interface that sends the data as a series of bits over a single wire, as opposed to a parallel
interface that sends the data bits in parallel over several wires simultaneously. This description of
a serial interface would fit almost any communications interface (including Ethernet itself), but the
term is usually applied to an interface that connects to a telephone circuit via a modem or similar
device. Likewise, a telephone circuit is often called a serial line.

In the TCP/IP world, serial lines are used to create wide area networks (WANs). Unfortunately,
TCP/IP has not always had a standard physical layer protocol for serial lines. Because of the lack
of a standard, network designers were forced to use a single brand of routers within their WANs
to ensure successful physical layer communication. The growth of TCP/IP WANs led to a strong
interest in standardizing serial line communications to provide vendor independence.

Other forces that increased interest in serial line communications were the advent of small,
affordable systems that run TCP/IP, and the advent of high-speed, dial-up modems that provide
"reasonable" TCP/IP performance. When the ARPAnet was formed, computers were very
expensive and dial-up modems were very slow. At that time, if you could afford a computer, you
could afford a leased telephone line. In recent years, however, it has become possible to own a
Unix system at home. In this new environment, there is a strong demand for services that allow
TCP/IP access over dial-up modems. Currently, approximately 7% of home users have a high-
speed Digital Subscriber Line (DSL) connection or a cable modem. Most DSL and cable modems
connect to the host via Ethernet, meaning that no special host configuration is required to use
those services. But most home users still use dial-up serial lines. Dial-up serial lines require
special protocols and special configurations.

These two forces—the need for standardized wide area communications and the need for dial-up
TCP/IP access—led to the creation of two serial line protocols: Serial Line IP (SLIP) and Point-to-
Point Protocol (PPP).[9]

[9] Dial-up modems are usually asynchronous. Both PPP and SLIP support asynchronous dial-up service as well as
synchronous leased-line service.

6.2.1 The Serial Protocols

Serial Line IP was created first. It is a minimal protocol that allows isolated hosts to link via
TCP/IP over the telephone network. The SLIP protocol defines a simple mechanism for framing
datagrams for transmission across serial lines. SLIP sends the datagram across the serial line as
a series of bytes, and it uses special characters to mark when a series of bytes should be
grouped together as a datagram. SLIP defines two special characters for this purpose:

The SLIP END character, a single byte with the decimal value 192, is the character that
marks the end of a datagram. When the receiving SLIP encounters the END character, it
knows that it has a complete datagram that can be sent up to IP.

The SLIP ESC character, a single byte with the decimal value of 219, is used to "escape"
the SLIP control characters. If the sending SLIP encounters a byte value equivalent to
either a SLIP END character or a SLIP ESC character in the datagram it is sending, it
converts that character to a sequence of two characters. The two-character sequences are
ESC 220 for the END character, and ESC 221 for the ESC character itself.[10] When the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ESC 220 for the END character, and ESC 221 for the ESC character itself.[10] When the
receiving SLIP encounters these two-byte sequences, it converts them back to single-byte
values. This procedure prevents the receiving SLIP from incorrectly interpreting a data byte
as the end of the datagram.

[10] Here ESC refers to the SLIP escape character, not the ASCII escape character.

SLIP is described in RFC 1055, A Nonstandard for Transmission of IP Datagrams Over Serial
Lines: SLIP. As the name of the RFC makes clear, SLIP is not an Internet standard. The RFC
does not propose a standard; it documents an existing protocol. The RFC identifies the
deficiencies in SLIP, which fall into two categories:

The SLIP protocol does not define any link control information that could be used to
dynamically control the characteristics of a connection. Therefore, SLIP systems must
assume certain link characteristics. Because of this limitation, SLIP can be used only when
both hosts know each other's addresses, and only when IP datagrams are being
transmitted.

SLIP does not compensate for noisy, low-speed telephone lines. The protocol does not
provide error correction or data compression.

To address SLIP's weaknesses, Point-to-Point Protocol (PPP) was developed as an Internet
standard. There are several RFCs that document Point-to-Point Protocol.[11] Two key documents
are RFC 1661, The Point-to-Point Protocol (PPP), and RFC 1172, The Point-to-Point Protocol
(PPP) Initial Configuration Options.

[11] If you want to make sure you have the very latest version of a standard, obtain the latest list of RFCs as described
in Appendix G.

PPP addresses the weaknesses of SLIP with a three-layered protocol:

Data Link Layer Protocol

The Data Link Layer Protocol used by PPP is a slightly modified version of High-level Data
Link Control (HDLC). PPP modifies HDLC by adding a Protocol field that allows PPP to
pass traffic for multiple Network Layer protocols. HDLC is an international standard protocol
for reliably sending data over synchronous, serial communications lines. PPP also uses a
proposed international standard for transmitting HDLC over asynchronous lines, so PPP
can guarantee reliable delivery over any type of serial line.

Link Control Protocol

The Link Control Protocol (LCP) provides control information for the serial link. It is used to
establish the connection, negotiate configuration parameters, check link quality, and close
the connection. LCP was developed specifically for PPP.

Network Control protocols

The Network Control protocols are individual protocols that provide configuration and
control information for the Network Layer protocols. Remember, PPP is designed to pass
data for a wide variety of network protocols. NCP allows PPP to be customized to do just
that. Each network protocol (DECNET, IP, OSI, etc.) has its own Network Control protocol.
The Network Control protocol defined in RFCs 1661 and 1332 is the Internet Control
Protocol (IPCP), which supports Internet Protocol.

Point-to-Point Protocol is the best TCP/IP serial protocol. PPP is preferred because it is an
Internet standard, which ensures interoperability between systems from a wide variety of vendors.
It has more features than SLIP and is more robust. These benefits make PPP the best choice as
an open protocol for connecting routers over serial lines and for connecting remote computers via
dial-up lines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some Linux systems include both SLIP and PPP. However, on most Unix systems, such as
Solaris, PPP is included and SLIP is not. This is fine, as you should avoid using SLIP and use
PPP instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Installing PPP

The procedures for installing and configuring PPP vary from implementation to implementation.[12] In this section,
we use the PPP daemon implementation (pppd) included with Linux and the supporting configuration commands
that come with it. PPP is an Internet standard, and most Unix systems include support for it in the kernel
the standard operating system installation. Usually this does not require any action on your part. Refer to
5 for examples of how PPP is configured in the Linux kernel. The Linux system installs the PPP physical and data
link layer software (the HDLC protocol) in the kernel.

[12] Check your system documentation to find out exactly how to configure PPP on your system.

Installing PPP in the kernel is only the beginning. In this section, we look at how pppd is used to provide PPP
services on a Linux system.

6.3.1 The PPP Daemon

Point-to-Point Protocol is implemented on the Linux system in the PPP daemon (pppd), which was derived from a
freeware PPP implementation for BSD systems. pppd can be configured to run in all modes: as a client, as a
server, over dial-up connections, and over dedicated connections. (Clients and servers are familiar concepts from
Chapter 3.) A dedicated connection is a direct cable connection or a leased line, neither of which requires a
telephone to establish the connection. A dial-up connection is a modem link established by dialing a telephone
number.

Configuring pppd for a dedicated line is the simplest configuration. A dial-up script is not needed for a leased
or direct connection. There is no point in dynamically assigning addresses because a dedicated line always
connects the same two systems. Authentication is of limited use because the dedicated line physically runs
between two points. There is no way for an intruder to access the link, short of "breaking and entering" or a
wiretap. A single pppd command placed in a startup file configures a dedicated PPP link for our Linux system:

pppd /dev/cua3 56000 crtscts defaultroute

The /dev/cua3 argument selects the device to which PPP is attached. It is, of course, the same port to which
the dedicated line is attached. Next, the line speed is specified in bits per second (56000). The remainder of the
command line is a series of keyword options. The crtscts option turns on hardware flow control. The final
option, defaultroute, creates a default route using the remote server as the default gateway.[13]

[13] If a default route already exists in the routing table, the defaultroute option is ignored.

PPP exchanges IP addresses during the initial link connection process. If no address is specified on the
command line, the daemon sends the address of the local host, which it learns from DNS or the host table, to the
remote host. Likewise, the remote system sends its address to the local host. The addresses are then used as
the source and destination addresses of the link. You can override this by specifying the addresses on the
command line in the form local-address:remote-address. For example:

 pppd /dev/cua3 56000 crtscts defaultroute 172.16.24.1:

Here we define the local address as 172.16.24.1 and leave the remote address blank. In this case pppd
the address from the command line and waits for the remote server to send its address. The local address is
specified on the command line when it is different from the address associated with the local hostname in
table or the DNS server. For example, the system might have an Ethernet interface that already has an address
assigned. If we want to use a different address for the PPP connection, we must specify it on the pppd
line; otherwise, the PPP link will be assigned the same address as the Ethernet interface.

The pppd command has many more options than those used in these examples (see Appendix A for a full list of
options). In fact, there are so many pppd command-line options that it is sometimes easier to put them in a file
than to enter them all on the command line. pppd reads its options from the /etc/ppp/options file, then the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

than to enter them all on the command line. pppd reads its options from the /etc/ppp/options file, then the
~/.ppprc file, then the /etc/ppp/options.device file (where device is a device name like cua3), and finally from the
command line. The order in which they are processed creates a hierarchy such that options on the command line
can override those in the ~/.ppprc file, which can in turn override those in the /etc/ppp/options file. This permits
the system administrator to establish certain systemwide defaults in the /etc/ppp/options file while still permitting
the end user to customize the PPP configuration. The /etc/ppp/options file is a convenient and flexible way to
pass parameters to pppd.

A single pppd command is all that is needed to set up and configure the software for a dedicated PPP link. Dial-
up connections are more challenging.

6.3.2 Dial-Up PPP

A direct-connect cable can connect just two systems. When a third system is purchased, it cannot be added to the
network. For that reason, most people use expandable network technologies, such as Ethernet, for connecting
systems in a local area. Additionally, leased lines are expensive. They are primarily used by large organizations to
connect networks of systems. For these reasons, using PPP for dedicated network connections is less common
than using it for dial-up connections.

Several different utilities provide dial-up support for PPP. Dial-up IP (dip) is a popular package for simplifying the
process of dialing the remote server, performing the login, and attaching PPP to the resulting connection. We
discuss dip in this section because it is popular and freely available for a wide variety of Unix systems, and
because it comes with Red Hat Linux, which is the system we have been using for our PPP examples.

One of the most important features of dip is a scripting language that lets you automate all the steps necessary
to set up an operational PPP link. Appendix A covers all the scripting commands supported by the 3.3.7o-uri
version of dip, which is the version included with Red Hat. You can list the commands supported by your system
by running dip in test mode (-t) and then entering the help command:

> dip -t
DIP: Dialup IP Protocol Driver version 3.3.7o-uri (8 Feb 96)

Written by Fred N. van Kempen, MicroWalt Corporation.

DIP> help
DIP knows about the following commands:

 beep bootp break chatkey config

 databits dec default dial echo

 flush get goto help if

 inc init mode modem netmask

 onexit parity password proxyarp print

 psend port quit reset send

 shell sleep speed stopbits term

 timeout wait

 DIP> quit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DIP> quit
These commands can configure the interface, control the execution of the script, and process errors. Only a
subset of the commands is required for a minimal script:

Ask PPP to provide the local IP address

get $local 0.0.0.0

Select the port and set the line speed

port cua1

speed 38400

Reset the modem and flush the terminal

reset

flush

Dial the PPP server and wait for the CONNECT response

dial *70,301-555-1234

wait CONNECT

Give the server 2 seconds to get ready

sleep 2

Send a carriage-return to wake up the server

send \r

Wait for the Login> prompt and send the username

wait ogin>

send kristin\r

Wait for the Password> prompt and send the password

wait word>

password

Wait for the PPP server's command-line prompt

wait >

Send the command required by the PPP server

send ppp enabled\r

Set the interface to PPP mode

mode PPP

Exit the script

exit

The get command at the beginning of the script allows PPP to provide the local and remote addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The get command at the beginning of the script allows PPP to provide the local and remote addresses.
is a script variable. There are several available script variables, all of which are covered in Appendix A
normally stores the local address, which can be set statically in the script. A PPP server, however, is capable of
assigning an address to the local system dynamically. We take advantage of this capability by giving a
address of all 0s. This peculiar syntax tells dip to let pppd handle the address assignments. A pppd
get addresses in three ways:

The PPP systems can exchange their local addresses as determined from DNS. This was discussed
previously for the dedicated line configuration.

The addresses can be specified on the pppd command line, also discussed previously.

The client can allow the server to assign both addresses. This feature is most commonly used on dial-up
lines. It is very popular with servers that must handle a large number of short-lived connections. A dial-up
Internet Service Provider (ISP) is a good example.

The next two lines select the physical device to which the modem is connected, and set the speed at which the
device operates. The port command assumes the path /dev, so the full device path is not used. On
Unix systems, the value provided to the port command is cua0, cua1, cua2, or cua3. These values correspond
to MS-DOS ports COM1 to COM4. The speed command sets the maximum speed used to send data to the
modem on this port. The default speed is 38400. Change it if your modem accepts data at a different speed.

The reset command resets the modem by sending it the Hayes modem interrupt (+++) followed by the Hayes
modem reset command (ATZ). This version of dip uses the Hayes modem AT command set and works only with
Hayes-compatible modems.[14] Fortunately, that includes most brands of modems. After being reset, the modem
responds with a message indicating that the modem is ready to accept input. The flush command removes this
message, and any others that might have been displayed by the modem, from the input queue. Use
avoid the problems that can be caused by unexpected data in the queue.

[14] If your modem doesn't use the full Hayes modem command set, avoid using dip commands, such as rest and dial, that generate
Hayes commands. Use send instead. This allows you to send any string you want to the modem.

The next command dials the remote server. The dial command sends a standard Hayes ATD dial
to the modem. It passes the entire string provided on the command line to the modem as part of the ATD
command. The sample dial command generates ATD*70,301-555-1234. This causes the modem to dial *70
(which turns off call waiting[15]), and then area code 301, exchange 555, and number 1234.When this modem
successfully connects to the remote modem, it displays the message CONNECT. The wait command waits for
that message from the modem.

[15] If you have call waiting, turn it off before you attempt to make a PPP connection. Different local telephone companies may use different
codes to disable call waiting.

The sleep 2 command inserts a two-second delay into the script. It is often useful to delay at the beginning of
the connection to allow the remote server to initialize. Remember that the CONNECT message is displayed by
the modem, not by the remote server. The remote server may have several steps to execute before it
accept input. A small delay can sometimes avoid unexplained intermittent problems.

The send command sends a carriage return (\r) to the remote system. Once the modems are connected,
anything sent from the local system goes all the way to the remote system. The send command can send any
string. In the sample script, the remote server requires a carriage return before it issues its first prompt. The
carriage return is entered as \r and the newline is entered as \n.

The remote server then prompts for the username with Login>. The wait ogin> command detects this prompt,
and the send kristin command sends the username kristin as a response. The server then prompts for the
password with Password>. The password command causes the script to prompt the local user to manually
enter the password. It is possible to store the password in a send command inside the script. However, this is a
potential security problem if an unauthorized person gains access to the script and reads the password. The
password command improves security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

password command improves security.

If the password is accepted, our remote server prompts for input with the greater-than symbol (>). Many servers
require a command to set the correct protocol mode. The server in our example supports several different
protocols. We must tell it to use PPP by using send to pass it the correct command.

The script finishes with a few commands that set the correct environment on the local host. The mode
tells the local host to use the PPP protocol on this link. The protocol selected must match the protocol running on
the remote server. Protocol values that are valid for the dip mode command are SLIP, CSLIP, PPP, and TERM.
SLIP and CSLIP are variations of the SLIP protocol, which was discussed earlier. TERM is terminal emulation
mode. PPP is the Point-to-Point Protocol. Finally, the exit command ends the script, while dip keeps running in
the background servicing the link.

This simple script does work and it should give you a good idea of the wait/send structure of a dip script.
However, your scripts will probably be more complicated. The sample script is not robust because it does not do
any error checking. If an expected response does not materialize, the sample script hangs. To address
problem, use a timeout on each wait command. For example, the wait OK 10 command tells the
wait 10 seconds for the OK response. When the OK response is detected, the $errlvl script variable is set to
zero and the script falls through to the next command. If the OK response is not returned before the 10-second
timer expires, $errlvl is set to a nonzero value and the script continues on to the next command. The
variable is combined with the if and goto commands to provide error handling in dip scripts. Refer to
A for more details.

Once the script is created, it is executed with the dip command. Assume that the sample script shown above
was saved to a file named start-ppp.dip. The following command executes the script, creating a PPP link between
the local system and the remote server:

> dip start-ppp
Terminate the PPP connection with the command dip -k. This closes the connection and kills the background
dip process.

pppd options are not configured in the dip script. dip creates the PPP connection; it doesn't customize
pppd options are stored in the /etc/ppp/options file.

Assuming the dip script shown above, we might use the following pppd options:

noipdefault

ipcp-accept-local

ipcp-accept-remote defaultroute

The noipdefault option tells the client not to look up the local address. ipcp-accept-local tells
obtain its local address from the remote server. The ipcp-accept-remote option tells the system to
remote address from the remote server. Finally, pppd sets the PPP link as the default route. This is the same
defaultroute option we saw on the pppd command line in an earlier example. Any pppd option that can be
invoked on the command line can be put in the /etc/ppp/options file and thus be invoked when pppd
a dip script.

I use dip on my home computer to set up my dial-up PPP connection.[16] Personally, I find dip simple and
straightforward to use, in part because I am familiar with the dip scripting language. You may prefer to use the
chat command that comes with the pppd software package.

[16] For me, the PPP dial-up is just a backup; like many other people I use a high-speed connection. However, DSL and cable modem
connections do not require a special configuration because the interface to most DSL and cable modems is Ethernet.

6.3.3 chat

A chat script is a simple expect/send script consisting of the strings the system expects and the strings it sends

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A chat script is a simple expect/send script consisting of the strings the system expects and the strings it sends
in response. The script is organized as a list of expect/send pairs. chat does not really have a scripting
language, but it does have some special characters that can be used to create more complex scripts. The
script to perform the same dial-up and login functions as the sample dip script would contain:

'' ATZ

OK ATDT*70,301-555-1234

CONNECT \d\d\r

ogin> kristin

word> Wats?Wat?

> 'set port ppp enabled'

Each line in the script begins with an expected string and ends with the string sent as a response. The modem
does not send a string until it receives a command. The first line in the script says, in effect, "expect nothing and
send the modem a reset command." The pair of single quotes ('') at the beginning of the line tells chat
expect nothing. The script then waits for the modem's OK prompt and dials the remote server. When the modem
displays the CONNECT message, the script delays two seconds (\d\d) and then sends a carriage return (\r). Each
\d special character causes a one-second delay. The \r special character is the carriage return. chat
special characters that can be used in the expect strings and the send strings.[17] Finally, the script ends by
sending the username, password, and remote server configuration command in response to the server's prompts.

[17] See Appendix A for more details.

Create the script with your favorite editor and save it in a file such as dial-server. Test the script using
the -V option, which logs the script execution through stderr:

% chat -V -f dial-server
Invoking the chat script is not sufficient to configure the PPP line. It must be combined with pppd to
job. The connect command-line option allows you to start pppd and invoke a dial-up script all in one

pppd /dev/cua1 56700 connect "chat -V -f dial-server" \
 nodetach crtscts modem defaultroute
The chat command following the connect option is used to perform the dial-up and login. Any package capable
of doing the job could be called here; it doesn't have to be chat.

The pppd command has some other options that are used when PPP is run as a dial-up client. The
causes pppd to monitor the carrier-detect (DCD) indicator of the modem. This indicator tells pppd when the
connection is made and when the connection is broken. pppd monitors DCD to know when the remote server
hangs up the line. The nodetach option prevents pppd from detaching from the terminal to run as a background
process. This is necessary only when running chat with the -V option. When you are done debugging the
script, you can remove the -V option from the chat subcommand and the nodetach option from the
command. An alternative is to use -v on the chat command. -v does not require pppd to remain attached to a
terminal because it sends the chat logging information to syslogd instead of to stderr. We have seen all of
other options on this command line before.

6.3.4 PPP Daemon Security

A major benefit of PPP over SLIP is the enhanced security PPP provides. Put the following pppd options in the
/etc/ppp/options file to enhance security:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lock

auth

usehostname domain wrotethebook.com

The first option, lock, makes pppd use UUCP-style lock files. This prevents other applications, such as UUCP or
a terminal emulator, from interfering with the PPP connection. The auth option requires the remote system to be
authenticated before the PPP link is established. This option causes the local system to request authentication
data from the remote system. It does not cause the remote system to request similar data from the local system. If
the remote system administrator wants to authenticate your system before allowing a connection, she must put
the auth keyword in the configuration of her system. The usehostname option requires that the hostname is
used in the authentication process and prevents the user from setting an arbitrary name for the local system with
the name option. (More on authentication in a minute.) The final option makes sure that the local hostname is fully
qualified with the specified domain before it is used in any authentication procedure.

Recall that the ~/.ppprc file and the pppd command-line options can override options set in the /etc/ppp/options
file, which could be a security problem. For this reason, several options, once configured in the /etc/ppp/options
file, cannot be overridden. That includes the options just listed.

pppd supports two authentication protocols: Challenge Handshake Authentication Protocol (CHAP) and
Password Authentication Protocol (PAP). PAP is a simple password security system that is vulnerable to all of the
attacks of any reusable password system. CHAP, however, is an advanced authentication system that does not
use reusable passwords and that repeatedly reauthenticates the remote system.

Two files are used in the authentication process, the /etc/ppp/chap-secrets file and the /etc/ppp/pap-secrets
Given the options file shown above, pppd first attempts to authenticate the remote system with CHAP. To do this,
there must be data in the chap-secrets file, and the remote system must respond to the CHAP challenge. If either
of these conditions is not true, pppd attempts to authenticate the remote system with PAP. If there is no
applicable entry in the pap-secrets file or the remote system does not respond to the PAP challenge, the PPP
connection is not established. This process allows you to authenticate remote systems with CHAP (the
protocol), if they support it, and to fall back to PAP for systems that support only PAP. For this to work, however,
you must have the correct entries in both files.

Each entry in the chap-secrets file contains up to four fields:

client

The name of the computer that must answer the challenge, i.e., the computer that must be authenticated
before the connection is made. This is not necessarily a client that is seeking access to a PPP
although client is the term used in most of the documentation, it is really the respondent—the system
responds to the challenge. Both ends of a PPP link can be forced to undergo authentication. In your
secrets file you will probably have two entries for each remote system: one entry to authenticate the remote
system, and a corresponding entry to authenticate your system when it is challenged by the remote system.

server

The name of the system that issues the CHAP challenge, i.e., the computer that requires the authentication
before the PPP link is established. This is not necessarily a PPP server. The client system can require the
server to authenticate itself. Server is the term used in most documentation, but really this is the
authenticator—the system that authenticates the response.

secret

The secret key that is used to encrypt the challenge string before it is sent back to the system that issued
the challenge.

address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An address, written as a hostname or an IP address, that is acceptable for the host named in the first field.
If the host listed in the first field attempts to use an address other than the address listed here, the
connection is terminated even if the remote host properly encrypts the challenge response. This field is
optional.

A sample chap-secrets file for the host ring might contain:

limulus ring Peopledon'tknowyou 172.16.15.3

ring limulus andtrustisajoke. 172.16.15.1

The first entry is used to validate limulus, the remote PPP server. limulus is being authenticated and the system
performing the authentication is ring. The secret key is "Peopledon'tknowyou". The allowable address is
172.16.15.3, which is the address assigned to limulus in the host table. The second entry is used to validate
when limulus issues the challenge. The secret key is "andtrustisajoke.". The only address ring is allowed to use is
172.16.15.1. A pair of entries, one for each end of the link, is normal. The chap-secret file usually contains two
entries for every PPP link: one for validating the remote system and one for answering the challenge of that
remote system.

Use PAP only when you must. If you deal with a system that does not support CHAP, make an entry for that
system in the pap-secrets file. The format of pap-secrets entries is the same as those used in the chap-secrets
file. A system that does not support CHAP might have the following entry in the pap-secrets file:

24seven ring Wherearethestrong? 24seven.wrotethebook.com

ring 24seven Whoarethetrusted? ring.wrotethebook.com

Again we have a pair of entries: one for the remote system and one for our system. We support CHAP but the
remote system does not. Thus we must be able to respond using the PAP protocol in case the remote
requests authentication.

PPP authentication improves security in a dial-up environment. It is most important when you run the PPP server
into which remote systems dial. In the next section, we look at PPP server configuration.

6.3.5 PPP Server Configuration

The PPP server can be started in several different ways. One way is to use pppd as a login shell for dial-in PPP
users. Replace the login shell entry in the /etc/passwd file with the path of pppd to start the server. A modified
/etc/passwd entry might contain:

 craig:wJxX.iPuPzg:101:100:Craig Hunt:/etc/ppp:/usr/sbin/pppd

The fields are exactly the same as in any /etc/passwd entry: username, password, uid, gid, gcos information,
home directory, and login shell. For a remote PPP user, the home directory is /etc/ppp and the login shell is the
full path of the pppd program. The encrypted password must be set using the passwd program, just as for any
user, and the login process is the same as it is for any user. When getty detects incoming traffic on the serial
port it invokes login to authenticate the user. login verifies the username and the password entered by the
user and starts the login shell. In this case, the login shell is actually the PPP daemon.

When the server is started in this manner, server options are generally placed in the /etc/ppp/.ppprc
validates the user, and pppd authenticates the client. Therefore the chap-secrets or pap-secrets file must be set
up to handle the client system from which this user logs in.

A traditional alternative to using pppd as the login script is to create a real script in which pppd is only one of the
commands. For example, you might create an /etc/ppp/ppplogin script such as the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/bin/sh

mesg -n

stty -echo

exec /sbin/pppd auth passive crtscts modem

You can see that the script can contain more than just the pppd command. The mesg -n command makes sure
that other users cannot write to this terminal with talk, write, or similar programs. The stty command turns off
character echoing. On some systems, characters typed at the terminal are echoed from the remote host instead
of being locally echoed by the terminal; this behavior is called full duplex. We don't want to echo anything back on
a PPP link, so we turn full duplex off. Controlling the characteristics of the physical line is the main reason that
pppd is often placed inside a script file.

The key line in the script is, of course, the line that starts pppd. We start the daemon with several options,
one thing that is not included on the command line is the tty device name. In all of the previous pppd
we provided a device name. When it is not provided, as is this case, pppd uses the controlling terminal as its
device and doesn't put itself in background mode. This is just what we want. We want to use the device
login was servicing when it invoked the ppplogin script.

The auth command-line option tells pppd to authenticate the remote system, which of course requires us to
place an entry for that system in the chap-secrets or the pap-secrets file. The crtscts option turns on hardware
flow control, and the modem option tells PPP to monitor the modem's DCD indicator so that it can detect when the
remote system drops the line. We have seen all of these options before. The one new option is passive
passive set, the local system waits until it receives a valid LCP packet from the remote system, even if the
remote system fails to respond to its first packet. Normally, the local system would drop the connection if the
remote system fails to respond in a timely manner. This option gives the remote system time to initialize its own
PPP daemon.

A final option for running PPP as a server is to allow the user to start the server from the shell prompt. To do this,
pppd must be installed as setuid root, which is not the default installation. Once pppd is setuid root, a user with a
standard login account can log in and then issue the following command:

$ pppd proxyarp
This command starts the PPP daemon. Assuming that the auth parameter is set in the /etc/ppp/options
pppd authenticates the remote client using CHAP or PAP. Once the client is authenticated, a proxy ARP entry for
the client is placed in the server's ARP table so that the client appears to other systems to be located on the local
network.

Of these three approaches, I prefer to create a shell script that is invoked by login as the user's login shell.
this approach, I don't have to install pppd setuid root. I don't have to place the burden of running pppd
user. And I get all the power of the pppd command plus all the power of a shell script.

6.3.6 Solaris PPP

dip and pppd are available for Linux, BSD, AIX, Ultrix, OSF/1, and SunOS. If you have a different operating
system, you probably won't use these packages. Solaris is a good example of a system that uses a different set of
commands to configure PPP.

PPP is implemented under Solaris as the Asynchronous PPP Daemon (aspppd). aspppd is configured by the
/etc/asppp.cf file. The asppp.cf file is divided into two sections: an ifconfig section and a path section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/etc/asppp.cf file. The asppp.cf file is divided into two sections: an ifconfig section and a path section.

ifconfig ipdptp0 plumb ring limulus up

path

 interface ipdptp0

 peer_system_name limulus inactivity_timeout 300

The ifconfig command configures the PPP interface (ipdptp0) as a point-to-point link with a local
ring and a destination address of limulus. The ifconfig command does not have to define the destination
address of the link. However, if you always connect to the same remote server, it will probably be defined here as
the destination address. We saw all of these options in the discussion of the ifconfig command earlier
chapter.

The more interesting part of this file is the path section, which defines the PPP environment. The interface
statement identifies the interface used for the connection. It must be one of the PPP interfaces defined in the
ifconfig section. In the example, only one is defined, so it must be ipdptp0. The peer_system_name
statement identifies the system at the remote end of the connection. This may be the same address as the
destination address from the ifconfig statement, but it doesn't have to be. It is possible to have no destination
address on the ifconfig command and several path sections if you connect to several different remote hosts.
The hostname on the peer_system_name statement is used in the dialing process, as described later.

The path section ends with an inactivity_timeout statement. The command in the sample sets the timeout
to 300 seconds. This points out a nice feature of the Solaris system. Solaris automatically dials the remote system
when it detects data that needs to be delivered through that system. Further, it automatically disconnects the PPP
link when it is inactive for the specified time. With this feature you can use a PPP link without manually initiating
the dial program and without tying up phone lines when the link is not in use.

Like pppd, aspppd does not have a built-in dial facility. It relies on an external program to do the dialing. In the
case of aspppd, it utilizes the dial-up facility that comes with UUCP. Here's how.

First, the serial port, the modem attached to it, and the speed at which they operate are defined in the
/etc/uucp/Devices file. For example, here we define an Automatic Call Unit (ACU is another name for a modem)
attached to serial port B (cua/b) that operates at any speed defined in the Systems file, and that has the modem
characteristics defined by the "hayes" entry in the Dialers file:

ACU cua/b - Any hayes

Next, the modem characteristics, such as its initialization setting and dial command, are defined in the
/etc/uucp/Dialers file. The initialization and dial commands are defined as a chat script using the standard
expect/send format and the standard set of chat special characters. For example:

hayes =,-, "" \dA\pTE1V1X1Q0S2=255S12=255\r\c OK\r \EATDT\T\r\c CONNECT

The system comes with Devices and Dialers preconfigured. The preconfigured entries are probably compatible
with the modem on your system. The /etc/uucp/Systems file may be the only configuration file that you modify. In
the Systems file, you need to enter the name of the remote system, select the modem you'll use, enter the
telephone number, and enter a chat script to handle the login. For example:

limulus Any ACU 56700 5551234 "" \r ogin> kristin word> Wats?Watt? > set ppp on

In this one line, we identify limulus as the remote system, declare that we allow connections to and from that
at any time of the day (Any), select the ACU entry in the Devices file to specify the port and modem, set
speed to 56700, send the dialer the telephone number, and define the login chat script.

This is not a book about UUCP, so we won't go into further details about these files. I'd suggest looking at the
Solaris AnswerBook and the Solaris TCP/IP Network Administration Guide (where did they come up with such a
great name?) for more information about UUCP and aspppd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

great name?) for more information about UUCP and aspppd.

6.3.7 Troubleshooting Serial Connections

There are several layers of complexity that make PPP connections difficult to debug. To set up PPP, we must set
up the serial port, configure the modem, configure PPP, and configure TCP/IP. A mistake in any one of these
layers can cause a problem in another layer. All of these layers can obscure the true cause of a problem. The
best way to approach troubleshooting on a serial line is by debugging each layer, one layer at a time. It is usually
best to troubleshoot each layer before you move on to configure the next layer.

The physical serial ports should be configured by the system during the system boot. Check the /dev
make sure they are configured. On a Linux system with four serial ports, the inbound serial ports are
through /dev/ttyS3 and the outbound serial ports are /dev/cua0 through /dev/cua3. There are many more tty and
cua device names. However, the other devices are associated with real physical devices only if you have a multi-
port serial card installed in your Linux system. Most Unix systems use the names tty and cua, even if those
names are just symbolic links to the real devices. Solaris is a good example:

% ls -l /dev/tty?
lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttya -> term/a

lrwxrwxrwx 1 root root 6 Sep 23 2001 /dev/ttyb -> term/b

% ls -l /dev/cua/*
lrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/a ->

 /devices/obio/zs@0,100000:a,cu

lrwxrwxrwx 1 root root 35 Sep 23 2001 /dev/cua/b -> /devices/obio/zs@0,100000:b,cu

If the serial devices do not show up in the /dev directory, they can be manually added with a mknod
For example, the following commands create the serial devices for the first serial port on a Linux system:

mknod -m 666 /dev/cua0 c 5 64
mknod -m 666 /dev/ttyS0 c 4 64
However, if you need to add the serial devices manually, there may be a problem with the kernel configuration.
The serial devices should be installed in your system by default during the boot when the hardware
The following boot message shows the detection of a single serial interface on a Linux system:

$ dmesg | grep tty
ttyS00 at 0x03f8 (irq = 4) is a 16550

You should see similar messages from your system boot for each interface that is detected. If you don't, you may
have a hardware problem with the serial interface board.

The modem used for the connection is attached to one of the serial ports. Before attempting to build a dial-up
script, make sure the modem works and that you can communicate with it through the port. Use a simple serial
communications package, such as minicom, kermit, or seyon. First, make sure the program is configured to
use your modem. It must be set to the correct port, speed, parity, number of databits, etc. Check your
documentation to determine these settings.

We'll use minicom on a Linux system for our examples. To configure minicom , su to root and run it with
option, which displays a configuration menu. Walk through the menu and make sure everything is properly set.
One thing you might notice is that the port is set to /dev/modem. That device name is sometimes symbolically
linked to the port to which the modem is connected. If you're not sure that the link exists on your system, enter the
correct port name in the minicom configuration, e.g., /dev/cua1. After checking the configuration, exit the menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

correct port name in the minicom configuration, e.g., /dev/cua1. After checking the configuration, exit the menu
and use the minicom terminal emulator to make sure you can communicate with the modem:

Welcome to minicom 1.83.1

OPTIONS: History Buffer, F-key Macros, Search History Buffer, I18n

Compiled on Feb 23 2001, 07:31:40.

Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L1 V1 X4 &c1 E1 Q0

OK

atz
OK

atdt555-1234
CONNECT 26400/LAPM-V

^M
Enter login> kristin
Enter user password> Wats?Watt?

 Welcome to the PPP MODEM POOL

PORT-9> set port ppp enabled
+++

OK

ath
OK

atz
OK

^A
CTRL-A Z for help | 57600 8N1 | NOR | Minicom 1.83.1 | VT102 | Offline

X
In the sample, minicom displays a few header lines and then sends a Hayes command (AT) to the modem.
didn't set this command; it was part of the default minicom configuration. (If it causes problems, edit it out of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

didn't set this command; it was part of the default minicom configuration. (If it causes problems, edit it out of the
configuration using the menus discussed previously.) We then reset the modem (atz) and dial the remote server
(atdt). When the modems connect, we log into the server and configure it. (The login process is different for
every remote server; this is just an example.) Everything appears to be running fine, so we end the connection by
getting the modem's attention (+++), hanging up the line (ath), and resetting the modem. Exit minicom
pressing Ctrl-A followed by X. On our sample system the port and modem are working. If you cannot send
commands to your modem, ensure that:

The modem is properly connected to the port

You have the correct cables

The modem is powered up

The modem is properly configured for dial-out and for echoing commands

When the modem responds to simple commands, use it to dial the remote server as we did in the example above.
If the modem fails to dial the number or displays the message NO DIALTONE, check that the telephone
connected to the correct port of the modem and to the wall jack. You may need to use an analog phone to test the
telephone wall jack and replace the line between the modem and the wall to make sure that the cable is good. If
the modem dials but fails to successfully connect to the remote modem, check that the local modem configuration
matches the configuration required by the remote system. You must know the requirements of that remote system
to successfully debug a connection. See the following list of script debugging tips for some hints on what to check.
If you can successfully connect to the remote system, note everything you entered to do so, and note everything
that the modem and the remote server display. Then set the remote server to PPP or SLIP mode and note how
you accomplished this. You will need to duplicate all of these steps in your dip script.

Start with a bare-bones script, like the sample start-ppp.dip script, so that you can debug the basic connection
before adding the complexity of error processing to the script. Run the script through dip using the
option (-v) option. This displays each line of the script as it is processed. Look for the following problems:

The modem does not respond to the script. Check that you are using the correct device on the
command. Make sure that if the script contains databits, parity, speed, or stopbits commands,
they are set to values compatible with your modem. Double-check that the modem is Hayes-compatible,
particularly if you attempt to do modem configuration using dip keywords instead of using send

The modem fails to connect to the remote host. Make sure the modem is configured exactly as it was
during the manual login. The modem's databits, parity, and other options need to match the configuration of
the remote system. It is possible that you will need a special configuration, for example, 7-bit/even-parity, to
perform the login before you can switch to the 8-bit/no-parity configuration required by PPP and SLIP. Don't
forget to check that the phone number entered in the dial command is correct, particularly if the modem
displays VOICE, RING - NO ANSWER, or BUSY when you expect to see CONNECT.

The script hangs. It is probably waiting for a response. Make sure that the string in each wait
correct. Remember that the string only needs to be a subset of the response. It is better to use the string
">" than it is to use "Port9>" if you are not sure whether the remote system always displays the same port
number. Use a substring from the end of the expected response so that the script does not send to the
server before the server is ready for input. Also try putting a delay into the script just before the script sends
the first command to the server, e.g., sleep 2 to delay two seconds. A delay is sometimes needed to
allow the server to initialize the port after the modems connect.

The remote server displays an error message. The script probably sent an incorrect value. Check the string
in each send command. Make sure they terminate with the correct carriage-return or line-feed combination
expected by the remote server.

If you have trouble with the script, try running dip in test mode (-t), which allows you to enter each command
manually one at a time. Do this repeatedly until you are positive that you know all the commands needed to log
into the remote server. Then go back to debugging the script. You'll probably have fresh insight into the login
process that will help you find the flaw in the script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once the script is running and the connection is successfully made, things should run smoothly. You should be
able to ping the remote server without difficulty. If you have problems, they may be in the IP interface
configuration or in the default route. The script should have created the serial interface. The netstat -ni
command shows which interfaces have been configured:

netstat -ni
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

dnet0 1500 172.16.15.0 172.16.15.1 1 0 4 0 0 0

lo0 1536 127.0.0.0 127.0.0.1 1712 0 1712 0 0 0

ppp0 1006 172.16.15.26 172.16.15.3 0 0 0 0 0 0

The interface, ppp0 in the example, has been installed. The default command in the script creates a default
route. Use netstat to see the contents of the routing table:

netstat -nr
Routing tables

Destination Gateway Flags Refcnt Use Interface

127.0.0.1 127.0.0.1 UH 1 28 lo0

default 172.16.25.3 U 0 0 ppp0

172.16.15.0 172.16.15.1 U 21 1687 le0

The contents of routing tables are explained in detail in the next chapter. For now, just notice that the interface
used for the default route is ppp0 and that the default route is a route to the remote PPP server (172.16.25.3 in
the example).

If the script creates the connection, the interface is installed, and the routing table contains the default route,
everything should work fine. If you still have problems they may be related to other parts of the TCP/IP
installation. Refer to Chapter 13 for more troubleshooting information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 Summary

TCP/IP works with a wide variety of networks. TCP/IP cannot make assumptions about the
network it runs on—the network interface and its characteristics must be identified to TCP/IP. In
this chapter we looked at several examples of how to configure the physical network interface
over which TCP/IP runs.

ifconfig is the most commonly used interface configuration command. It assigns the interface
its IP address, sets the subnet mask, sets the broadcast address, and performs several other
functions.

TCP/IP can also run over telephone lines using dial-up connections. Two protocols are available
to do this: Serial Line IP (SLIP) and Point-to-Point Protocol (PPP). PPP is the preferred choice. It
is an Internet standard and offers better reliability, performance, and security.

There are several steps to setting up a PPP connection: configuring the serial protocol,
configuring the port and modem, making the dial-up connection, and completing the remote login.
Some programs, such as dip, combine all of these steps into one program. Other programs,
such as pppd and chat, separate the functions.

Configuring the network interface allows us to talk to the local network, while configuring routing
allows us to talk to the world. We touched on routing in Chapter 2 and again in this chapter in our
discussion of routing metrics for ifconfig and default routes for PPP. In the next chapter we
look at routing in much greater detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Configuring Routing
Routing is the glue that binds the Internet together. Without it, TCP/IP traffic is limited to a single
physical network. Routing allows traffic from your local network to reach its destination
somewhere else in the world—perhaps after passing through many intermediate networks.

The important role of routing and the complex interconnection of Internet networks make the
design of routing protocols a major challenge to network software developers. Consequently,
most discussions of routing concern protocol design. Very little is written about the important task
of properly configuring routing protocols. However, more day-to-day problems are caused by
improperly configured routers than by improperly designed routing algorithms. As system
administrators, we need to ensure that the routing on our systems is properly configured. This is
the task we tackle in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Common Routing Configurations

First, we must make a distinction between routing and routing protocols. All systems route data,
but not all systems run routing protocols. Routing is the act of forwarding datagrams based on the
information contained in the routing table. Routing protocols are programs that exchange the
information used to build routing tables.

A network's routing configuration does not always require a routing protocol. In situations where
the routing information does not change—for example, when there is only one possible route—the
system administrator usually builds the routing table manually. Some networks have no access to
any other TCP/IP networks and therefore do not require that the system administrator build the
routing table at all. The three most common routing configurations[1] are the following.

[1] Chapter 4 presents guidelines for choosing the correct routing configuration for your network.

Minimal routing

A network completely isolated from all other TCP/IP networks requires only minimal routing.
A minimal routing table usually is built when the network interface is configured by adding a
route for each interface. If your network doesn't have direct access to other TCP/IP
networks and you are not using subnetting, this may be the only routing table you'll require.

Static routing

A network with a limited number of gateways to other TCP/IP networks can be configured
with static routing. When a network has only one gateway, a static route is the best choice.
A static routing table is constructed manually by the system administrator using the route
command. Static routing tables do not adjust to network changes, so they work best where
routes do not change.

Dynamic routing

A network with more than one possible route to the same destination should use dynamic
routing. A dynamic routing table is built from the information exchanged by routing
protocols. The protocols are designed to distribute information that dynamically adjusts
routes to reflect changing network conditions. Routing protocols handle complex routing
situations more quickly and accurately than the system administrator can. Routing
protocols are designed not only to switch to a backup route when the primary route
becomes inoperable, but also to decide which is the "best" route to a destination. On any
network where there are multiple paths to the same destination, a routing protocol should
be used.

Routes are built manually by the system administrator or dynamically by routing protocols. But no
matter how routes are entered, they all end up in the routing table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 The Minimal Routing Table

Let's look at the contents of the routing table constructed when ifconfig is used to configure the
network interfaces on a Solaris 8 system:

% netstat -rn
Routing Table: IPv4

 Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------

172.16.12.0 172.16.12.15 U 1 8 dnet0

224.0.0.0 172.16.12.15 U 1 0 dnet0

127.0.0.1 127.0.0.1 UH 20 3577 lo0

The first entry is the route to network 172.16.12.0 through interface dnet0. Address 172.16.12.15 is
not a remote gateway address; it is the address assigned to the dnet0 interface on this host. The
other two entries do not define routes to real physical networks; both are special software
conventions. 224.0.0.0 is the multicast address. This entry tells Solaris to send multicast addresses to
interface 172.16.12.15 for delivery. The last entry is the loopback route to localhost created when lo0
was configured.

Look at the Flags field for these entries. All entries have the U (up) flag set, indicating that they are
ready to be used, but no entry has the G (gateway) flag set. The G flag indicates that an external
gateway is used. The G flag is not set because all of these routes are direct routes through local
interfaces, not through external gateways.

The loopback route also has the H (host) flag set. This indicates that only one host can be reached
through this route. The meaning of this flag becomes clear when you look at the Destination field for
the loopback entry. It shows that the destination is a host address, not a network address. The
loopback network address is 127.0.0.0. The destination address shown (127.0.0.1) is the address of
localhost, an individual host. Some systems use a route to the loopback network and others use a
route to the localhost, but all systems have some route for the loopback interface in the routing table.

Although this routing table has a host-specific route, most routes lead to networks. One reason
network routes are used is to reduce the size of the routing table. An organization may have only one
network but hundreds of hosts. The Internet has thousands of networks but millions of hosts. A
routing table with a route for every host would be unmanageable.

Our sample table contains only one route to a physical network, 172.16.12.0. Therefore, this system
can communicate only with hosts located on that network. The limited capability of this routing table
easily verified with the ping command. ping uses the ICMP Echo Message to force a remote host to
echo a packet back to the local host. If packets can travel to and from a remote host, it indicates that
the two hosts can successfully communicate.

To check the routing table on this system, first ping another host on the local network:

% ping -s crab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% ping -s crab
PING crab.wrotethebook.com: 56 data bytes

64 bytes from crab.wrotethebook.com (172.16.12.1): icmp_seq=0. time=11. ms

64 bytes from crab.wrotethebook.com (172.16.12.1): icmp_seq=1. time=10. ms

^C

----crab.wrotethebook.com PING Statistics----

2 packets transmitted, 2 packets received, 0% packet loss

round-trip (ms) min/avg/max = 10/10/11

ping displays a line of output for each ICMP ECHO_RESPONSE received.[2] When ping is
interrupted, it displays some summary statistics. All of this indicates successful communication with
crab. But if we check a host that is not on network 172.16.12.0, say a host at O'Reilly, the results are
different.

[2] Sun's ping would display only the message "crab is alive" if the -s option was not used. Most ping implementations do
not require the -s option.

 % ping 207.25.98.2
sendto: Network is unreachable

Here the message "sendto: Network is unreachable" indicates that this host does not know how to
send data to the network that host 207.25.98.2 is on. There are only three routes in this system's
routing table, and none is a route to 207.25.98.0.

Even other subnets on books-net cannot be reached using this routing table. To demonstrate this,
ping a host on another subnet. For example:

% ping 172.16.1.2
sendto: Network is unreachable

These ping tests show that the minimal routing table created when the network interfaces were
configured allows communication only with other hosts on the local network. If your network does not
require access to any other TCP/IP networks, this may be all you need. However, if it does require
access to other networks, you must add more routes to the routing table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Building a Static Routing Table

As we have seen, the minimal routing table works to reach hosts only on the directly connected physical networks. To reach remote
hosts, routes through external gateways must be added to the routing table. One way to do this is by constructing a static routing
table with route commands.

Use the Unix route command to add or delete entries manually in the routing table. For example, to add the route
a Solaris system's routing table, enter:

route add 207.25.98.0 172.16.12.1 1
add net 207.25.98.0: gateway crab

The first argument after the route command in this sample is the keyword add. The first keyword on a
either add or delete, telling route either to add a new route or delete an existing one. There is no default; if neither keyword is
used, route displays the routing table.

The next value is the destination address, which is the address reached via this route. The destination address can be specified as
an IP address, a network name from the /etc/networks file, a hostname from the /etc/hosts file, or the keyword
most routes are added early in the startup process, numeric IP addresses are used more than names.
routing configuration is not dependent on the state of the name server software. Always use the complete
bytes). route expands the address if it contains fewer than four bytes, and the expanded address may not be what you intended.

[3] Some implementations of route expand "26" to 0.0.0.26, even though "26" could mean Milnet (26.0.0.0).

If the keyword default is used for the destination address, route creates a default route.[4] The default route is used whenever
there is no specific route to a destination, and it is often the only route you need. If your network has only one gateway, use a
default route to direct all traffic bound for remote networks through that gateway.

[4] The network address associated with the default route is 0.0.0.0.

Next on the route command line is the gateway address.[5] This is the IP address of the external gateway through which data is
sent to the destination address. The address must be the address of a gateway on a directly connected network. TCP/IP routes
specify the next hop in the path to a remote destination. That next hop must be directly accessible to the local host; therefore, it
must be on a directly connected network.

[5] Linux precedes the values on the route command line with keywords; e.g., route add -net 207.25.98.0 netmask 255.255.255.0 gw 172.16.12.1
Check your system's documentation for the details.

The last argument on the command line is the routing metric. The metric argument is not used when routes
older systems require it when a route is added; for Solaris 8, the metric is optional. Systems that require a metric
route command use it only to decide if this is a route through a directly attached interface or a route
If the metric is 0, the route is installed as a route through a local interface, and the G flag, which we saw in the
display, is not set. If the metric value is greater than 0, the route is installed with the G flag set, and the gateway address is
assumed to be the address of an external gateway. Static routing makes no real use of the metric. Dynamic routing is required to
make real use of varying metric values.

7.3.1 Adding Static Routes

As an example, let's configure static routing on the imaginary workstation rodent. Figure 7-1 shows the subnet 172.16.12.0. There
are two gateways on this subnet, crab and horseshoe. crab is the gateway to thousands of networks on the Internet;
provides access to the other subnets on books-net. We'll use crab as our default gateway because it is used
routes. The smaller number of routes through horseshoe can easily be entered individually. The number of routes through a
gateway, not the amount of traffic it handles, decides which gateway to select as the default. Even if most
goes through horseshoe to other hosts on books-net, the default gateway should be crab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-1. Routing on a subnet

To install the default route on rodent, we enter:

route add default gw 172.16.12.1
The destination is default, and the gateway address (172.16.12.1) is crab's address. Now crab is
Notice that the command syntax is slightly different from the Solaris route example shown earlier. rodent
values on the Linux route command line are preceded by keywords. In this case, the gateway address is
gw.

After installing the default route, examine the routing table to make sure the route has been added:[6]

[6] Solaris always uses netstat to examine the routing table. Linux can use either netstat or route, but route is more common.

route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0

Try ping again to see whether rodent can now communicate with remote hosts. If we're lucky,[7] the remote
see:

[7] It is possible that the remote host is down. If it is, ping receives no answer. Don't give up; try another host.

% ping 207.25.98.2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% ping 207.25.98.2
PING 207.25.98.2: 56 data bytes

64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=0. time=110. ms

64 bytes from ruby.ora.com (207.25.98.2): icmp_seq=1. time=100. ms

^C

----207.25.98.2 PING Statistics----

2 packets transmitted, 2 packets received, 0% packet loss

round-trip (ms) min/avg/max = 100/105/110

This display indicates successful communication with the remote host, which means that we now have a good route to hosts on the
Internet.

However, we still haven't installed routes to the rest of books-net. If we ping a host on another subnet, something interesting
happens:

% ping 172.16.1.2
PING 172.16.1.2: 56 data bytes

ICMP Host redirect from gateway crab.wrotethebook.com (172.16.12.1)

 to horseshoe.wrotethebook.com (172.16.12.3) for ora.wrotethebook.com (172.16.1.2)

64 bytes from ora.wrotethebook.com (172.16.1.2): icmp_seq=1. time=30. ms

^C
----172.16.1.2 PING Statistics----

1 packets transmitted, 1 packets received, 0% packet loss round-trip (ms) min/avg/max = 30/30/30

rodent believes that all destinations are reachable through its default route. Therefore, even data destined
sent to crab. If rodent sends data to crab that should go through horseshoe, crab sends an ICMP Redirect to
horseshoe. (See Chapter 1 for a description of the ICMP Redirect Message.) ping shows the ICMP
has a direct effect on the routing table:

route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0

172.16.1.2 172.16.12.3 255.255.255.0 UGHD 0 0 514 eth0

The route with the D flag set was installed by the ICMP Redirect.

Some network managers take advantage of ICMP Redirects when designing a network. All hosts are configured with a default
route, even those on networks with more than one gateway. The gateways exchange routing information through routing protocols
and redirect hosts to the best gateway for a specific route. This type of routing, which is dependent on ICMP Redirects, became
popular because of personal computers (PCs). Many PCs cannot run a routing protocol; some early

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popular because of personal computers (PCs). Many PCs cannot run a routing protocol; some early
command and were limited to a single default route. ICMP Redirects were one way to support these clients. Also, this type of
routing is simple to configure and well suited for implementation through a configuration server, as the same default route is used
on every host. For these reasons, some network managers encourage repeated ICMP Redirects.

Other network administrators prefer to avoid ICMP Redirects and to maintain direct control over the contents of the routing table.
To avoid redirects, specific routes can be installed for each subnet using individual route statements:

route add -net 172.16.1.0 netmask 255.255.255.0 gw 172.16.12.3
route add -net 172.16.6.0 netmask 255.255.255.0 gw 172.16.12.3
route add -net 172.16.3.0 netmask 255.255.255.0 gw 172.16.12.3
route add -net 172.16.9.0 netmask 255.255.255.0 gw 172.16.12.3
rodent is directly connected only to 172.16.12.0, so all gateways in its routing table have addresses that
finished routing table is shown below:

route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

172.16.6.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0

172.16.3.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0

172.16.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

172.16.1.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0

172.16.9.0 172.16.12.3 255.255.255.0 UG 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 172.16.12.1 0.0.0.0 UG 0 0 0 eth0

172.16.1.2 172.16.12.3 255.255.255.0 UGHD 0 0 514 eth0

The routing table we have constructed uses the default route (through crab) to reach external networks, and specific
(through horseshoe) to reach other subnets within books-net. Rerunning the ping tests produces consistently successful
However, if any subnets are added to the network, the routes to these new subnets must be manually added to the routing table.
Additionally, if the system is rebooted, all static routing table entries are lost. Therefore, to use static routing, you must ensure
the routes are re-installed each time your system boots.

7.3.1.1 Installing static routes at startup

If you decide to use static routing, you need to make two modifications to your startup files:

1. Add the desired route statements to a startup file.

2. Remove any statements from the startup file that run a routing protocol.

To add static routing to a startup script, you must first select an appropriate script. On BSD and Linux systems, the script
set aside for local modifications to the boot process. rc.local runs at the end of the boot process so it is a good place to put in
changes that will modify the default boot process. On our sample Red Hat Linux system, the full path of the
/etc/rc.d/rc.local. On a Solaris system, edit /etc/init.d/inetinit to add the route statements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/etc/rc.d/rc.local. On a Solaris system, edit /etc/init.d/inetinit to add the route statements:

route -n add default 172.16.12.1 > /dev/console

route -n add 172.16.1.0 172.16.12.3 > /dev/console

route -n add 172.16.6.0 172.16.12.3 > /dev/console

route -n add 172.16.3.0 172.16.12.3 > /dev/console

route -n add 172.16.9.0 172.16.12.3 > /dev/console

The -n option tells route to display numeric addresses in its informational messages. When you add
Solaris startup file, use the -n option to prevent route from wasting time querying name server software that may not be running.
The -n option is not required on a Linux system because Linux does not display informational messages when installing

After adding the route commands, check whether the script starts a routing protocol. If it does, comment out the lines
You don't want a routing protocol running when you are using static routing. On our Solaris sample system, the
started only if the system has more than one network interface (i.e., is a router) or the /etc/gateways
on this file later.) Neither of these things is true; therefore, the routing daemon won't be run by the startup process and we
have to do anything except add the route statements.

Before making changes to your real system, check your system's documentation. You may need to modify a different boot script,
and the execution path of the routing daemon may be different. Only the documentation can provide the exact details you need.

Although the startup filename may be different on your system, the procedure should be basically the same. These simple steps
are all you need to set up static routing. The problem with static routing is not setting it up, but maintaining it if you have a
changeable networking environment. Routing protocols are flexible enough to handle simple and complex
That is why some startup procedures run routing protocols by default. However, most Unix systems need only a static
Routing protocols are usually needed only by routers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Interior Routing Protocols

Routing protocols are divided into two general groups: interior and exterior protocols. An interior
protocol is a routing protocol used inside—interior to—an independent network system. In TCP/IP
terminology, these independent network systems are called autonomous systems.[8] Within an
autonomous system (AS), routing information is exchanged using an interior protocol chosen by
the autonomous system's administration.

[8] Autonomous systems are described in Chapter 2.

All interior routing protocols perform the same basic functions. They determine the "best" route to
each destination and distribute routing information among the systems on a network. How they
perform these functions (in particular, how they decide which routes are best) is what makes
routing protocols different from each other. There are several interior protocols:

The Routing Information Protocol (RIP) is the interior protocol most commonly used on
Unix systems. RIP is included as part of the Unix software delivered with most systems. It is
adequate for local area networks and is simple to configure. RIP selects the route with the
lowest "hop count" (metric) as the best route. The RIP hop count represents the number of
gateways through which data must pass to reach its destination. RIP assumes the best
route is the one that uses the fewest gateways. This approach to route choice is called a
distance-vector algorithm.

Hello is a protocol that uses delay as the deciding factor when choosing the best route.
Delay is the length of time it takes a datagram to make the round trip between its source
and destination. A Hello packet contains a timestamp indicating when it was sent. When
the packet arrives at its destination, the receiving system subtracts the timestamp from the
current time to estimate how long it took the packet to arrive. Hello is not widely used. It
was the interior protocol of the original 56 Kbps NSFNET backbone and has had very little
use otherwise.

Intermediate System to Intermediate System (IS-IS) is an interior routing protocol from the
OSI protocol suite. It is a Shortest Path First (SPF) link-state protocol. It was the interior
routing protocol used on the T1 NSFNET backbone, and it is still used by some large
service providers.

Open Shortest Path First (OSPF) is another link-state protocol developed for TCP/IP. It is
suitable for very large networks and provides several advantages over RIP.

Of these protocols, we will discuss RIP and OSPF in detail. OSPF is widely used on routers. RIP
is widely used on Unix systems. We will start the discussion with RIP.

7.4.1 Routing Information Protocol

As delivered with many Unix systems, Routing Information Protocol (RIP) is run by the routing
daemon routed (pronounced "route" "d"). When routed starts, it issues a request for routing
updates and then listens for responses to its request. When a system configured to supply RIP
information hears the request, it responds with an update packet based on the information in its
routing table. The update packet contains the destination addresses from the routing table and
the routing metric associated with each destination. Update packets are issued in response to
requests as well as periodically to keep routing information accurate.

To build the routing table, routed uses the information in the update packets. If the routing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To build the routing table, routed uses the information in the update packets. If the routing
update contains a route to a destination that does not exist in the local routing table, the new
route is added. If the update describes a route whose destination is already in the local table, the
new route is used only if it is a better route. As noted previously, RIP considers a route with a
lower " hop count" to be a better route. In RIP terminology, the hop count is called the cost of the
route or the routing metric. We saw earlier that the routing metric in the local routing table can be
manually controlled using the metric argument of the route command. To select the best route,
RIP must first determine the cost of the route. The cost of a route is determined by adding the
cost of reaching the gateway that sent the update to the metric contained in the RIP update
packet. If the total cost is less than the cost of the current route, the new route is used.

RIP also deletes routes from the routing table. It accomplishes this in two ways. First, if the
gateway to a destination says the cost of the route is greater than 15, the route is deleted.
Second, RIP assumes that a gateway that doesn't send updates is dead. All routes through a
gateway are deleted if no updates are received from that gateway for a specified time period. In
general, RIP issues routing updates every 30 seconds. In many implementations, if a gateway
does not issue routing updates for 180 seconds, all routes through that gateway are deleted from
the routing table.

7.4.1.1 Running RIP with routed

To run RIP using the routing daemon (routed),[9] enter the following command:

[9] On some systems the routing daemon is in.routed.

routed
The routed statement is often used without any command-line arguments, but you may want to
use the -q option. The -q option prevents routed from advertising routes. It just listens to the
routes advertised by other systems. If your computer is not a gateway, you should probably use
the -q option.

In the section on static routing, we did not need to comment out the routed statement found in
the inetinit startup file because Solaris runs routed only if the system has two network interfaces
or if the /etc/gateways file is found. If your Unix system starts routed unconditionally, no action is
required to run RIP; just boot your system and RIP will run. Otherwise, you need to make sure the
routed command is in your startup and the conditions required by your system are met. The
easiest way to get Solaris to run routed is to create a gateways file—even an empty one will do.

routed reads /etc/gateways at startup and adds its information to the routing table. routed can
build a functioning routing table simply by using the RIP updates received from the RIP suppliers.
However, it is sometimes useful to supplement this information with, for example, an initial default
route or information about a gateway that does not announce its routes. The /etc/gateways file
stores this additional routing information.

The most common use of the /etc/gateways file is to define an active default route, so we'll use
that as an example. This one example is sufficient because all entries in the /etc/gateways file
have the same basic format. The following entry specifies crab as the default gateway:

net 0.0.0.0 gateway 172.16.12.1 metric 1 active

The entry starts with the keyword net. All entries start with either the keyword net or the keyword
host to indicate whether the address that follows is a network address or a host address. The
destination address 0.0.0.0 is the address used for the default route. In the route command we
used the keyword default to indicate this route, but in /etc/gateways the default route is
indicated by network address 0.0.0.0.

Next is the keyword gateway followed by the gateway's IP address. In this case it is the address
of crab (172.16.12.1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then comes the keyword metric followed by a numeric metric value. The metric is the cost of
the route. The metric was almost meaningless when used with static routing, but now that we are
running RIP, the metric is used to make routing decisions. The RIP metric represents the number
of gateways through which data must pass to reach its final destination. But as we saw with
ifconfig, the metric is really an arbitrary value used by the administrator to prefer one route
over another. (The system administrator is free to assign any metric value.) However, it is useful
to vary the metric only if you have more than one route to the same destination. With only one
gateway to the Internet, the correct metric to use for crab is 1.

All /etc/gateways entries end with either the keyword passive or the keyword active. "Passive"
means the gateway listed in the entry is not required to provide RIP updates. Use passive to
prevent RIP from deleting the route if no updates are expected from the gateway. A passive route
is placed in the routing table and kept there as long as the system is up. In effect, it becomes a
permanent static route.

The keyword active, on the other hand, creates a route that can be updated by RIP. An active
gateway is expected to supply routing information and will be removed from the routing table if,
over a period of time, it does not provide routing updates. Active routes are used to "prime the
pump" during the RIP startup phase, with the expectation that the routes will be updated by RIP
when the protocol is up and running.

Our sample entry ends with the keyword active, which means that this default route will be
deleted if no routing updates are received from crab. Default routes are convenient; this is
especially true when you use static routing. But when you use dynamic routing, default routes
should be used with caution, especially if you have multiple gateways that can reach the same
destination. A passive default route prevents the routing protocol from dynamically updating the
route to reflect changing network conditions. Use an active default route that can be updated by
the routing protocol.

RIP is easy to implement and simple to configure. Perfect! Well, not quite. RIP has three serious
shortcomings:

Limited network diameter

The longest RIP route is 15 hops. A RIP router cannot maintain a complete routing table for
a network that has destinations more than 15 hops away. The hop count cannot be
increased because of the second shortcoming.

Slow convergence

Deleting a bad route sometimes requires the exchange of multiple routing update packets
until the route's cost reaches 16. This is called "counting to infinity" because RIP keeps
incrementing the route's cost until it becomes greater than the largest valid RIP metric. (In
this case, 16 is infinity.) Additionally, RIP may wait 180 seconds before deleting the invalid
routes. In network-speak, we say that these conditions delay the "convergence of routing,"
i.e., it takes a long time for the routing table to reflect the current state of the network.

Classful routing

RIP interprets all addresses using the class rules described in Chapter 2. For RIP, all
addresses are class A, B, or C, which makes RIP incompatible with the current practice of
interpreting an address based on the address bit mask.

Nothing can be done to change the limited network diameter. A small metric is essential to reduce
the impact of counting to infinity. However, limited network size is the least important of RIP's
shortcomings. The real work of improving RIP concentrates on the other two problems, slow
convergence and classful routing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Features have been added to RIP to address slow convergence. Before discussing them we must
understand how the "counting-to-infinity" problem occurs. Figure 7-2 illustrates a network where a
counting-to-infinity problem might happen.

Figure 7-2. Sample network

Figure 7-2 shows that crab reaches subnet 3 through horseshoe and then through ora. Subnet 3
is two hops away from crab and one hop away from horseshoe. Therefore horseshoe advertises a
cost of 1 for subnet 3 and crab advertises a cost of 2, and traffic continues to be routed through
horseshoe. That is, until something goes wrong. If ora crashes, horseshoe waits for an update
from ora for 180 seconds. While waiting, horseshoe continues to send updates to crab that keep
the route to subnet 3 in crab's routing table. When horseshoe's timer finally expires, it removes all
routes through ora from its routing table, including the route to subnet 3. It then receives an
update from crab advertising that crab is two hops away from subnet 3. horseshoe installs this
route and announces that it is three hops away from subnet 3. crab receives this update, installs
the route, and announces that it is four hops away from subnet 3. Things continue on in this
manner until the cost of the route to subnet 3 reaches 16 in both routing tables. If the update
interval is 30 seconds, this could take a long time!

Split horizon and poison reverse are two features that attempt to avoid counting to infinity. Here's
how:

Split horizon

With this feature, a router does not advertise routes on the link from which those routes
were obtained. This would solve the count-to-infinity problem described above. Using the
split horizon rule, crab would not announce the route to subnet 3 on subnet 12 because it
learned that route from the updates it received from horseshoe on subnet 12. While this
feature works for the previous example described, it does not work for all count-to-infinity
configurations. (More on this later.)

Poison reverse

This feature is an enhancement of split horizon. It uses the same idea: "Don't advertise
routes on the link from which those routes were obtained." But it adds a positive action to
that essentially negative rule. Poison reverse says that a router should advertise an infinite
distance for routes on this link. With poison reverse, crab would advertise subnet 3 with a
cost of 16 to all systems on subnet 12. The cost of 16 means that subnet 3 cannot be
reached through crab.

Split horizon and poison reverse solve the problem described above. But what happens if crab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Split horizon and poison reverse solve the problem described above. But what happens if crab
crashes? Refer to Figure 7-2. With split horizon, aulds and smith do not advertise to crab the
route to subnet 12 because they learned the route from crab. They do, however, advertise the
route to subnet 12 to each other. When crab goes down, aulds and smith perform their own count
to infinity before they remove the route to subnet 12. Triggered updates address this problem.

Triggered updates are a big improvement. Instead of waiting the normal 30-second update
interval, a triggered update is sent immediately. Therefore, when an upstream router crashes or a
local link goes down, the router sends the changes to its neighbors immediately after it updates its
local routing table. Without triggered updates, counting to infinity can take almost eight minutes!
With triggered updates, neighbors are informed in a few seconds. Triggered updates also use
network bandwidth efficiently. They don't include the full routing table; they include only the routes
that have changed.

Triggered updates take positive action to eliminate bad routes. Using triggered updates, a router
advertises the routes deleted from its routing table with an infinite cost to force downstream
routers to also remove them. Again, look at Figure 7-2. If crab crashes, smith and aulds wait 180
seconds and remove the routes to subnets 1, 3, and 12 from their routing tables. They then send
each other triggered updates with a metric of 16 for subnets 1, 3, and 12. Thus they tell each
other that they cannot reach these networks and no count to infinity occurs. Split horizon, poison
reverse, and triggered updates go a long way toward eliminating counting to infinity.

It is the final shortcoming—the fact that RIP is incompatible with CIDR supernets and variable-
length subnets—that caused the RIP protocol to be moved to "historical" status in 1996. RIP is
not compatible with current and future plans for the TCP/IP protocol stack. A new version of RIP
had to be created to address this final problem.

7.4.2 RIP Version 2

RIP version 2 (RIP-2), defined in RFC 2453, is a new version of RIP. It is not a completely new
protocol; it simply defines extensions to the RIP packet format. RIP-2 adds a network mask and a
next-hop address to the destination address and metric found in the original RIP packet.

The network mask frees the RIP-2 router from the limitation of interpreting addresses based on
outdated address class rules. The mask is applied to the destination address to determine how
the address should be interpreted. Using the mask, RIP-2 routers support variable-length subnets
and CIDR supernets.

The next-hop address is the IP address of the gateway that handles the route. If the address is
0.0.0.0, the source of the update packet is the gateway for the route. The next-hop route permits
a RIP-2 supplier to provide routing information about gateways that do not speak RIP-2. Its
function is similar to an ICMP Redirect, pointing to the best gateway for a route and eliminating
extra routing hops.

RIP-2 adds other new features to RIP. It transmits updates via the multicast address 224.0.0.9 to
reduce the load on systems that are not capable of processing a RIP-2 packet. RIP-2 also
introduces a packet authentication scheme to reduce the possibility of accepting erroneous
updates from misconfigured systems.

Despite these changes, RIP-2 is compatible with RIP. The original RIP specification allowed for
future versions of RIP. RIP has a version number in the packet header, and several empty fields
for extending the packet. The new values used by RIP-2 did not require any changes to the
structure of the packet. The new values are simply placed in the empty fields that the original
protocol reserved for future use. Properly implemented RIP routers can receive RIP-2 packets
and extract the data that they need from the packet without becoming confused by the new data.

Split horizon, poison reverse, triggered updates, and RIP-2 eliminate most of the problems with
the original RIP protocol. But RIP-2 is still a distance-vector protocol. There are other, newer
routing technologies that are considered superior for large networks. In particular, link-state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

routing technologies that are considered superior for large networks. In particular, link-state
routing protocols are favored because they provide rapid routing convergence and reduce the
possibility of routing loops.

7.4.3 Open Shortest Path First

Open Shortest Path First (OSPF), defined by RFC 2328, is a link-state protocol. As such, it is very
different from RIP. A router running RIP shares information about the entire network with its
neighbors. Conversely, a router running OSPF shares information about its neighbors with the
entire network. The "entire network" means, at most, a single autonomous system. RIP doesn't try
to learn about the entire Internet, and OSPF doesn't try to advertise to the entire Internet. That's
not their job. These are interior routing protocols, so their job is to construct the routing inside an
autonomous system. OSPF further refines this task by defining a hierarchy of routing areas within
an autonomous system:

Areas

An area is an arbitrary collection of interconnected networks, hosts, and routers. Areas
exchange routing information with other areas within the autonomous system through area
border routers.

Backbone

A backbone is a special area that interconnects all of the other areas within an autonomous
system. Every area must connect to the backbone because the backbone is responsible for
distributing routing information between the areas.

Stub area

A stub area has only one area border router, which means that there is only one route out
of the area. In this case, the area border router does not need to advertise external routes
to the other routers within the stub area. It can simply advertise itself as the default route.

Only a large autonomous system needs to be subdivided into areas. The sample network shown
in Figure 7-2 is small and would not need to be divided. We can, however, use it to illustrate the
different areas. We could divide this autonomous system into any areas we wish. Assume we
divide it into three areas: area 1 contains subnet 3; area 2 contains subnet 1 and subnet 12; and
area 3 contains subnet 25, subnet 36, and the PPP links. Furthermore, we could define area 1 as
a stub area because ora is that area's only area border router. We also could define area 2 as the
backbone area because it interconnects the other two areas and all routing information between
areas 1 and 3 must be distributed by area 2. Area 2 contains two area border routers, crab and
ora, and one interior router, horseshoe. Area 3 contains three routers: crab, smith, and aulds.

Clearly OSPF provides lots of flexibility for subdividing an autonomous system. But why is it
necessary? One problem for a link-state protocol is the large quantity of data that can be collected
in the link-state database and the amount of time it can take to calculate the routes from that data.
A look at the protocol shows why this is true.

Every OSPF router builds a directed graph of the entire network using the Dijkstra Shortest Path
First (SPF) algorithm. A directed graph is a map of the network from the perspective of the router;
that is, the root of the graph is the router. The graph is built from the link-state database, which
includes information about every router on the network and all the neighbors of every router. The
link-state database for the autonomous system in Figure 7-2 contains 5 routers and 10 neighbors:
ora has 1 neighbor, horseshoe; horseshoe has 2 neighbors, ora and crab; crab has 3 neighbors,
horseshoe, aulds, and smith; aulds has 2 neighbors, crab and smith; and smith has 2 neighbors,
aulds and crab. Figure 7-3 shows the graph of this autonomous system from the perspective of
ora.

Figure 7-3. A network graph

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dijkstra algorithm builds the map in this manner:

1. Install the local system as the root of the map with a cost of 0.

2. Locate the neighbors of the system just installed and add them to the map. The cost of
reaching the neighbors is calculated as the sum of the cost of reaching the system just
installed plus the cost it advertises for reaching each neighbor. For example, assume that
crab advertises a cost of 20 for aulds and that the cost of reaching crab is 15. Then the
cost for aulds in ora's map is 35.

3. Walk through the map and select the lowest-cost path for each destination. For example,
when aulds is added to the map, its neighbors include smith. The path to smith through
aulds is temporarily added to the map. In this third phase of the algorithm, the cost of
reaching smith through crab is compared to the cost of reaching it through aulds. The
lowest-cost path is selected. Figure 7-3 shows the deleted paths in dotted lines. Steps 2
and 3 of the algorithm are repeated for every system in the link-state database.

The information in the link-state database is gathered and distributed in a simple and efficient
manner. An OSPF router discovers its neighbors through the use of Hello packets.[10] It sends
Hello packets and listens for Hello packets from adjacent routers. The Hello packet identifies the
local router and lists the adjacent routers from which it has received packets. When a router
receives a Hello packet that lists it as an adjacent router, it knows it has found a neighbor. It
knows this because it can hear packets from that neighbor and, because the neighbor lists it as
an adjacent router, the neighbor must be able to hear packets from it. The newly discovered
neighbor is added to the local system's neighbor list.

[10] Don't confuse Hello packets with the Hello protocol. These are OSPF Hello packets.

The OSPF router then advertises all of its neighbors. It does this by flooding a Link-State
Advertisement (LSA) to the entire network. The LSA contains the address of every neighbor and
the cost of reaching that neighbor from the local system. Flooding means that the router sends
the LSA out of every interface and that every router that receives the LSA sends it out of every
interface except the one from which it was received. To avoid flooding duplicate LSAs, the routers
store a copy of the LSAs they receive and discard duplicates.

Figure 7-2 provides an example. When OSPF starts on horseshoe it sends a Hello packet on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2 provides an example. When OSPF starts on horseshoe it sends a Hello packet on
subnet 1 and one on subnet 12. ora and crab hear the Hello and respond with Hello packets that
list horseshoe as an adjacent router. horseshoe hears their Hello packets and adds them to its
neighbor list. horseshoe then creates an LSA that lists ora and crab as neighbors with appropriate
costs assigned to each. For instance, horseshoe might assign a cost of 5 to ora and a cost of 10
to crab. horseshoe then floods the LSA on subnet 1 and subnet 12. ora hears the LSA and floods
it on subnet 3. crab receives the LSA and floods it on both of its PPP links. aulds floods the LSA
on the link toward smith, and smith floods it on the same link to aulds. When aulds and smith
received the second copy of the LSA, they discarded it because it duplicated one that they had
already received from crab. In this manner, every router in the entire network receives every other
router's link-state advertisement.

OSPF routers track the state of their neighbors by listening for Hello packets. Hello packets are
issued by all routers on a periodic basis. When a router stops issuing packets, it or the link it is
attached to is assumed to be down. Its neighbors update their LSA and flood them through the
network. The new LSAs are included into the link-state database on every router on the network,
and every router recalculates its network map based on this new information. Clearly, limiting the
number of routers by limiting the size of the network reduces the burden of recalculating the map.
For many networks, the entire autonomous system is small enough. For others, dividing the
autonomous system into areas improves efficiency.

Another feature of OSPF that improves efficiency is the designated router. The designated router
is one router on the network that treats all other routers on the network as its neighbors, while all
other routers treat only the designated router as their neighbor. This helps reduce the size of the
link-state database and thus improves the speed of the Shortest-Path-First calculation. Imagine a
broadcast network with 5 routers. Five routers each with 4 neighbors produce a link-state
database with 20 entries. But if one of those routers is the designated router, then that router has
4 neighbors and all other routers have only 1 neighbor, for a total of 10 link-state database
entries. While there is no need for a designated router on such a small network, the larger the
network, the more dramatic the gains. For example, a broadcast network with 25 routers has a
link-state database of 50 entries when a designated router is used, versus a database of 600
entries without one.

OSPF provides the router with an end-to-end view of the route between two systems instead of
the limited next-hop view provided by RIP. Flooding quickly disseminates routing information
throughout the network. Limiting the size of the link-state database through areas and designated
routers speeds the SPF calculation. Taken altogether, OSPF is an efficient link-state routing
protocol.

OSPF also offers additional features that RIP doesn't. It provides simple password authentication
to ensure that the update comes from a valid router using an eight-character, clear-text password.
It provides Message Digest 5 (MD5) crypto-checksum for stronger authentication.

OSPF also supports equal-cost multi-path routing . This mouthful means that OSPF routers can
maintain more than one path to a single destination. Given the proper conditions, this feature can
be used for load balancing across multiple network links. However, many systems are not
designed to take advantage of this feature. Refer to your router's documentation to see if it
supports load balancing across equal-cost OSPF routes.

With all of these features, OSPF is the preferred TCP/IP interior routing protocol for dedicated
routers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 Exterior Routing Protocols

Exterior routing protocols are used to exchange routing information between autonomous
systems. The routing information passed between autonomous systems is called reachability
information. Reachability information is simply information about which networks can be reached
through a specific autonomous system.

RFC 1771 defines Border Gateway Protocol (BGP), the leading exterior routing protocol, and
provides the following description of the routing function of an autonomous system:

The classic definition of an Autonomous System is a set of routers under a single
technical administration, using an interior gateway protocol and common metrics to
route packets within the AS, and using an exterior gateway protocol to route packets
to other ASs.... The administration of an AS appears to other ASs to have a single
coherent interior routing plan and presents a consistent picture of what networks are
reachable through it. From the standpoint of exterior routing, an AS can be viewed
as monolithic...

Moving routing information into and out of these monoliths is the function of exterior routing
protocols. Exterior routing protocols are also called exterior gateway protocols. Don't confuse an
exterior gateway protocol with the Exterior Gateway Protocol (EGP). EGP is not a generic term; it
is a particular exterior routing protocol, and an old one at that.

7.5.1 Exterior Gateway Protocol

A gateway running EGP announces that it can reach networks that are part of its autonomous
system. It does not announce that it can reach networks outside its autonomous system. For
example, the exterior gateway for our imaginary autonomous system book-as can reach the entire
Internet through its external connection, but only one network is contained in its autonomous
system. Therefore, it would announce only one network (172.16.0.0) if it ran EGP.

Before sending routing information, the systems exchange EGP Hello and I-Heard-You (I-H-U)
messages. These messages establish a dialogue between two EGP gateways. Computers
communicating via EGP are called EGP neighbors, and the exchange of Hello and I-H-U
messages is called acquiring a neighbor.

Once a neighbor is acquired, routing information is requested via a poll. The neighbor responds
by sending a packet of reachability information called an update. The local system includes the
routes from the update into its local routing table. If the neighbor fails to respond to three
consecutive polls, the system assumes that the neighbor is down and removes the neighbor's
routes from its table. If the system receives a poll from its EGP neighbor, it responds with its own
update packet.

Unlike the interior protocols discussed above, EGP does not attempt to choose the "best" route.
EGP updates contain distance-vector information, but EGP does not evaluate this information.
The routing metrics from different autonomous systems are not directly comparable. Each AS
may use different criteria for developing these values. Therefore, EGP leaves the choice of a
"best" route to someone else.

When EGP was designed, the network relied upon a group of trusted core gateways to process
and distribute the routes received from all of the autonomous systems. These core gateways
were expected to have the information necessary to choose the best external routes. EGP
reachability information was passed into the core gateways, where the information was combined
and passed back out to the autonomous systems.

A routing structure that depends on a centrally controlled group of gateways does not scale well

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A routing structure that depends on a centrally controlled group of gateways does not scale well
and is therefore inadequate for the rapidly growing Internet. As the number of autonomous
systems and networks connected to the Internet grew, it became difficult for the core gateways to
keep up with the expanding workload. This is one reason why the Internet moved to a more
distributed architecture that places a share of the burden of processing routes on each
autonomous system. Another reason is that no central authority controls the commercialized
Internet. The Internet is composed of many equal networks. In a distributed architecture, the
autonomous systems require routing protocols, both interior and exterior, that can make intelligent
routing choices. Because of this, EGP is no longer popular.

7.5.2 Border Gateway Protocol

Border Gateway Protocol (BGP) is the leading exterior routing protocol of the Internet. It is based
on the OSI InterDomain Routing Protocol (IDRP). BGP supports policy-based routing, which uses
non-technical reasons (for example, political, organizational, or security considerations) to make
routing decisions. Thus BGP enhances an autonomous system's ability to choose between routes
and to implement routing policies without relying on a central routing authority. This feature is
important in the absence of core gateways to perform these tasks.

Routing policies are not part of the BGP protocol. Policies are provided externally as configuration
information. As described in Chapter 2, the National Science Foundation provides Routing
Arbiters (RAs) at the Network Access Points (NAPs) where large Internet Service Providers
(ISPs) interconnect. The RAs can be queried for routing policy information. Most ISPs also
develop private policies based on the bilateral agreements they have with other ISPs. BGP can
be used to implement these policies by controlling the routes it announces to others and the
routes it accepts from others. In the gated section later in this chapter, we discuss the import
command and the export command, which control what routes are accepted (import) and what
routes are announced (export). The network administrator enforces the routing policy through
configuring the router.

BGP is implemented on top of TCP, which provides BGP with a reliable delivery service. BGP
uses well-known TCP port 179. It acquires its neighbors through the standard TCP three-way
handshake. BGP neighbors are called peers. Once connected, BGP peers exchange OPEN
messages to negotiate session parameters, such as the version of BGP that is to be used.

The UPDATE message lists the destinations that can be reached through a specific path and the
attributes of the path. BGP is a path-vector protocol. It is called a path-vector protocol because it
provides the entire end-to-end path of a route in the form of a sequence of autonomous system
numbers. Having the complete AS path eliminates the possibility of routing loops and count-to-
infinity problems. A BGP UPDATE contains a single path vector and all of the destinations
reachable through that path. Multiple UPDATE packets may be sent to build a routing table.

BGP peers send each other complete routing table updates when the connection is first
established. After that, only changes are sent. If there are no changes, just a small (19-byte)
KEEPALIVE message is sent to indicate that the peer and the link are still operational. BGP is
very efficient in its use of network bandwidth and system resources.

By far the most important thing to remember about exterior protocols is that most systems never
run them. Exterior protocols are required only when an AS must exchange routing information
with another AS. Most routers within an AS run an interior protocol such as OSPF. Only those
gateways that connect the AS to another AS need to run an exterior routing protocol. Your
network is probably an independent part of an AS run by someone else. ISPs are good examples
of autonomous systems made up of many independent networks. Unless you provide a similar
level of service, you probably don't need to run an exterior routing protocol.

7.5.3 Choosing a Routing Protocol

Although there are many routing protocols, choosing one is usually easy. Most of the interior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although there are many routing protocols, choosing one is usually easy. Most of the interior
routing protocols mentioned above were developed to handle the special routing problems of very
large networks. Some of the protocols have been used only by large national and regional
networks. For local area networks, RIP is still a common choice. For larger networks, OSPF is the
choice.

If you must run an exterior routing protocol, the protocol that you use is often not a matter of
choice. For two autonomous systems to exchange routing information, they must use the same
exterior protocol. If the other AS is already in operation, its administrators have probably decided
which protocol to use, and you will be expected to conform to their choice. Most often this choice
is BGP.

The type of equipment affects the choice of protocols. Routers support a wide range of protocols,
though individual vendors may have a preferred protocol. Hosts don't usually run routing protocols
at all, and most Unix systems are delivered with only RIP. Allowing host systems to participate in
dynamic routing could limit your choices. gated, however, gives you the option to run many
different routing protocols on a Unix system. While the performance of hardware designed
specifically to be a router is generally better, gated gives you the option of using a Unix system
as a router.

In the following sections we discuss the Gateway Routing Daemon (gated) software that
combines interior and exterior routing protocols into one software package. We look at examples
of running RIP, RIPv2, OSPF, and BGP with gated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6 Gateway Routing Daemon

Routing software development for general-purpose Unix systems is limited. Most sites use Unix
systems only for simple routing tasks for which RIP is usually adequate. Large and complex
routing applications, which require advanced routing protocols, are handled by dedicated router
hardware that is optimized specifically for routing. Many of the advanced routing protocols are
only available for Unix systems in gated. gated combines several different routing protocols in a
single software package.

Additionally, gated provides other features that are usually associated only with dedicated
routers:

Systems can run more than one routing protocol. gated combines the routing information
learned from different protocols and selects the "best" routes.

Routes learned through an interior routing protocol can be announced via an exterior
routing protocol, which allows the reachability information announced externally to adjust
dynamically to changing interior routes.

Routing policies can be implemented to control what routes are accepted and what routes
are advertised.

All protocols are configured from a single file (/etc/gated.conf) using a single consistent
syntax for the configuration commands.

gated is constantly being upgraded. Using gated ensures that you're running the most
up-to-date routing software.

7.6.1 gated's Preference Value

There are two sides to every routing protocol implementation. One side, the external side,
exchanges routing information with remote systems. The other side, the internal side, uses the
information received from the remote systems to update the routing table. For example, when
OSPF exchanges Hello packets to discover a neighbor, it is an external protocol function. When
OSPF adds a route to the routing table, it is an internal function.

The external protocol functions implemented in gated are the same as those in other
implementations of the protocols. However, the internal side of gated is unique for Unix systems.
Internally, gated processes routing information from different routing protocols, each of which
has its own metric for determining the best route, and combines that information to update the
routing table. Before gated was written, if a Unix system ran multiple routing protocols, each
would write routes into the routing table without knowledge of the others' actions. The route found
in the table was the last one written—not necessarily the best route.

With multiple routing protocols and multiple network interfaces, it is possible for a system to
receive routes to the same destination from different protocols. gated compares these routes
and attempts to select the best one. However, the metrics used by different protocols are not
directly comparable. Each routing protocol has its own metric. It might be a hop count, the delay
on the route, or an arbitrary value set by the administrator. gated needs more than that protocol's
metric to select the best route. It uses its own value to prefer routes from one protocol or interface
over another. This value is called preference.

Preference values help gated combine routing information from several different sources into a
single routing table. Table 7-1 lists the sources from which gated receives routes and the default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

single routing table. Table 7-1 lists the sources from which gated receives routes and the default
preference given to each source. Preference values range from 0 to 255, with the lowest number
indicating the most preferred route. From this table you can see that gated prefers a route
learned from OSPF over the same route learned from BGP.

Table 7-1. Default preference values
Route type Default preference

direct route 0

OSPF 10

IS-IS Level 1 15

IS-IS Level 2 18

Internally generated default 20

ICMP redirect 30

Routes learned from the route socket 40

static route 60

SLSP routes 70

RIP 100

Point-to-Point interface routes 110

Routes through a downed interface 120

Aggregate and generate routes 130

OSPF ASE routes 150

BGP 170

EGP 200

Preference can be set in several different configuration statements. It can be used to prefer
routes from one network interface over another, from one protocol over another, or from one
remote gateway over another. Preference values are not transmitted or modified by the protocols.
Preference is used only in the configuration file. In the next section we'll look at the gated
configuration file (/etc/gated.conf) and the configuration commands it contains.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.7 Configuring gated

gated is available from http://www.gated.org. Appendix B provides information about
downloading and compiling the software. In this section, we use gated release 3.6, the version of
gated that is currently available without restrictions. There are other versions of gated available
to members of the Gated Consortium. If you plan to build products based on gated or do
research on routing protocols using gated, you should join the consortium. For the purposes of
this book, release 3.6 is fine.

gated reads its configuration from the /etc/gated.conf file. The configuration commands in the file
resemble C code. All statements end with a semicolon, and associated statements are grouped
together by curly braces. This structure makes it simple to see what parts of the configuration are
associated with each other, which is important when multiple protocols are configured in the same
file. In addition to structure in the language, the /etc/gated.conf file also has a structure.

The different configuration statements, and the order in which these statements must appear,
divide gated.conf into sections: option statements, interface statements, definition statements,
unicast and multicast protocol statements, static statements, control statements, and aggregate
statements. Entering a statement out of order causes an error when parsing the file.

Two other types of statements do not fall into any of these categories. They are directive
statements and trace statements. These can occur anywhere in the gated.conf file and do not
directly relate to the configuration of any protocol. These statements provide instructions to the
parser and instructions to control tracing from within the configuration file.

The gated configuration commands are summarized in Table 7-2. The table lists each command
by name, identifies the statement type, and provides a very short synopsis of each command's
function. The entire command language is covered in detail in Appendix B.

Table 7-2. gated configuration statements
Statement Type Function

%directory directive Sets the directory for include files

%include directive Includes a file into gated.conf

traceoptions trace Specifies which events are traced

options option Defines gated options

interfaces interface Defines interface options

autonomoussystem definition Defines the AS number

routerid definition Defines the originating router for BGP or OSPF

martians definition Defines invalid destination addresses

multicast protocol Defines multicast protocol options

snmp protocol Enables reporting to SNMP

rip protocol Enables RIP

isis protocol Enables IS-IS protocol

kernel protocol Configures kernel interface options

ospf protocol Enables OSPF protocol

redirect protocol Removes routes installed by ICMP

egp protocol Enables EGP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bgp protocol Enables BGP

icmp protocol Configures the processing of general ICMP packets

pim protocol Enables the PIM multicast protocol

dvmrp protocol Enables the DVMRP multicast protocol

msdp protocol Enables the MSDP multicast protocol

static static Defines static routes

import control Defines what routes are accepted

export control Defines what routes are advertised

aggregate aggregate Controls route aggregation

generate aggregate Controls creation of a default route

You can see that the gated configuration language has many commands. The language
provides configuration control for several different protocols and additional commands to
configure the added features of gated itself. All of this can be confusing.

To avoid confusion, don't try to understand the details of everything offered by gated. Your
routing environment will not use all of these protocols and features. Even if you are providing the
gateway at the border between two anonymous systems, you will probably run only two routing
protocols: one interior protocol and one exterior protocol. Only those commands that relate to
your actual configuration need to be included in your configuration file. As you read this section,
skip the things you don't need. For example, if you don't use the BGP protocol, don't study the
bgp statement. When you do need more details about a specific statement, look it up in Appendix
B. With this in mind, let's look at some sample configurations.

7.7.1 Sample gated.conf Configurations

The details in Appendix B may make gated configuration appear more complex than it is.
gated's rich command language can be confusing, as can its support for multiple protocols and
the fact that it often provides a few ways to do the same thing. But some realistic examples will
show that individual configurations do not need to be complex.

The basis for the sample configurations is the network in Figure 7-4. We have installed a new
router that provides our backbone with direct access to the Internet, and we have decided to
install new routing protocols. We'll configure a host to listen to RIP-2 updates, an interior gateway
to run RIP-2 and OSPF, and an exterior gateway to run OSPF and BGP.

Figure 7-4. Sample routing topology

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gateway limulus interconnects subnet 172.16.9.0 and subnet 172.16.1.0. To hosts on subnet 9, it
advertises itself as the default gateway because it is the gateway to the outside world. It uses
RIP-2 to advertise routes on subnet 9. On subnet 1, gateway limulus advertises itself as the
gateway to subnet 9 using OSPF.

Gateway chill provides subnet 1 with access to the Internet through autonomous system 164.
Because gateway chill provides access to the Internet, it announces itself as the default gateway
to the other systems on subnet 1 using OSPF. To the external autonomous system, it uses BGP
to announce itself as the path to the internal networks it learns about through OSPF.

Let's look at the routing configuration of host minasi, gateway limulus, and gateway chill.

7.7.1.1 A host configuration

The host routing configuration is very simple. The rip yes statement enables RIP, and that's all
that is really required to run RIP. That basic configuration should work for any system that runs
RIP. The additional clauses enclosed in curly braces modify the basic RIP configuration. We use
a few clauses to create a more interesting example. Here is the RIP-2 configuration for host
minasi:

enable rip, don't broadcast updates,

listen for RIP-2 updates on the multicast address,

check that the updates are authentic.

rip yes {

 nobroadcast ;

 interface 172.16.9.23

 version 2

 multicast

 authentication simple "REAL stuff" ;

 } ;

This sample file shows the basic structure of gated.conf configuration statements. Lines beginning
with a sharp sign (#) are comments.[11] All statements end with semicolons. Clauses associated
with a configuration statement can span multiple lines and are enclosed in curly braces ({}). In
the example, the nobroadcast and interface clauses apply directly to the rip statement.
The version, multicast, and authentication keywords are part of the interface clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The version, multicast, and authentication keywords are part of the interface clause.

[11] Comments can also be enclosed between * and *\.

The keyword nobroadcast prevents the host from broadcasting its own RIP updates. The
default is nobroadcast when the system has one network interface, and broadcast when it
has more than one. The nobroadcast keyword performs the same function as the -q
command-line option does for routed. However, gated can do much more than routed, as the
next clause shows.

The interface clause defines interface parameters for RIP. The parameters associated with
this clause say that RIP-2 updates will be received via the RIP-2 multicast address on interface
172.16.9.23 and that authentic updates will contain the password REAL^stuff. For RIP-2,
simple authentication is a clear-text password up to 16 bytes long. This is not intended to protect
the system from malicious actions; it is intended only to protect the routers from a configuration
accident. If a user mistakenly sets his system up as a RIP supplier, he is very unlikely to
accidentally enter the correct password into his configuration. Stronger authentication is available
in the form of a Message Digest 5 (MD5) cryptographic checksum by specifying md5 in the
authentication clause.

7.7.1.2 Interior gateway configurations

Gateway configurations are more complicated than the simple host configuration shown above.
Gateways always have multiple interfaces and occasionally run multiple routing protocols. Our
first sample configuration is for the interior gateway between subnet 9 and the central backbone,
subnet 1. It uses RIP-2 on subnet 9 to announce routes to the Unix hosts. It uses OSPF on
subnet 1 to exchange routes with the other gateways. Here's the configuration of gateway limulus:

Don't time-out subnet 9

interfaces {

 interface 172.16.9.1 passive ;

} ;

Define the OSPF router id

routerid 172.16.1.9 ;

Enable RIP-2; announce OSPF routes to

subnet 9 with a cost of 5.

rip yes {

 broadcast ;

 defaultmetric 5 ;

 interface 172.16.9.1

 version 2

 multicast

 authentication simple "REAL stuff" ;

} ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} ;

Enable OSPF; subnet 1 is the backbone area;

use password authentication.

ospf yes {

 backbone {

 interface 172.16.1.9 {

 priority 5 ;

 auth simple "It'sREAL" ;

 } ;

 } ;

} ;

The interfaces statement defines routing characteristics for the network interfaces. The
keyword passive in the interface clause is used here, just as we have seen it used before, to
create a permanent static route that will not be removed from the routing table. In this case, the
permanent route is through a directly attached network interface. Normally when gated thinks an
interface is malfunctioning, it increases the cost of the interface by giving it a high-cost preference
value (120) to reduce the probability of a gateway routing data through a non-operational
interface. gated determines that an interface is malfunctioning when it does not receive routing
updates on that interface. We don't want gated to downgrade the 172.16.9.1 interface, even if it
does think the interface is malfunctioning, because our router is the only path to subnet 9. That's
why this configuration includes the clause interface 172.16.9.1 passive.

The routerid statement defines the router identifier for OSPF. Unless it is explicitly defined in
the configuration file, gated uses the address of the first interface it encounters as the default
router identifier address. Here we specify the address of the interface that actually speaks OSPF
as the OSPF router identifier.

In the previous example we discussed all the clauses on the rip statement except one—the
defaultmetric clause. The defaultmetric clause defines the RIP metric used to advertise
routes learned from other routing protocols. This gateway runs both OSPF and RIP-2. We wish to
advertise the routes learned via OSPF to our RIP clients, and to do that, a metric is required. We
choose a RIP cost of 5. If the defaultmetric clause is not used, routes learned from OSPF are
not advertised to the RIP clients.[12] This statement is required for our configuration.

[12] This is not strictly true. The routes are advertised with a cost of 16, meaning that the destinations are unreachable.

The ospf yes statement enables OSPF. The first clause associated with this statement is
backbone. It states that the router is part of the OSPF backbone area. Every ospf yes
statement must have at least one associated area clause. It can define a specific area, e.g., area
2, but at least one router must be in the backbone area. While the OSPF backbone is area 0, it
cannot be specified as area 0; it must be specified with the keyword backbone. In our sample
configuration, subnet 1 is the backbone, and all routers attached to it are in the backbone area. It
is possible for a single router to attach to multiple areas with a different set of configuration
parameters for each area. Notice how the nested curly braces group the clauses together. The
remaining clauses in the configuration file are directly associated with the backbone area clause.

The interface that connects this router to the backbone area is defined by the interface clause.
It has two associated subclauses, the priority clause and the auth clause.

The priority 5 ; clause defines the priority used by this router when the backbone is electing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The priority 5 ; clause defines the priority used by this router when the backbone is electing
a designated router. The higher the priority number, the less likely a router will be elected as the
designated router. Use priority to steer the election toward the most capable routers.

The auth simple "It'sREAL" ; clause says that simple, password-based authentication is
used in the backbone area and defines the password used for simple authentication. Three
choices, none, simple, and md5, are available for authentication in GateD 3.6. none means no
authentication is used. simple means that the correct eight-character password must be used or
the update will be rejected. Password authentication is used only to protect against accidents; it is
not intended to protect against malicious actions. Stronger authentication based on MD5 is used
when md5 is selected.

7.7.1.3 Exterior gateway configuration

The configuration for gateway chill is the most complex because it runs both OSPF and BGP.
Here's the configuration file for gateway chill:

Defines our AS number for BGP

autonomoussystem 249;

Defines the OSPF router id

routerid 172.16.1.1;

Disable RIP

rip no;

Enable BGP

bgp yes {

 group type external peeras 164 {

 peer 10.6.0.103 ;

 peer 10.20.0.72 ;

 };

};

Enable OSPF; subnet 1 is the backbone area;

use password authentication.

ospf yes {

 backbone {

 interface 172.16.1.1 {

 priority 10 ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 priority 10 ;

 auth simple "It'sREAL" ;

 } ;

 } ;

};

Announce routes learned from OSPF and route

to directly connected network via BGP to AS 164

export proto bgp as 164 {

 proto direct ;

 proto ospf ;

};

Announce routes learned via BGP from

AS number 164 to our OSPF area.

export proto ospfase type 2 {

 proto bgp autonomoussystem 164 {

 all ;

 };

};

This configuration enables both BGP and OSPF and sets certain protocol-specific parameters.
BGP needs to know the AS number, which is 249 for books-net. OSPF needs to know the router
identifier address. We set it to the address of the router interface that runs OSPF. The AS number
and the router identifier are defined early in the configuration because autonomoussystem and
routerid are definition statements and therefore must occur before the first protocol statement.
Refer back to Table 7-2 for the various statement types.

The first protocol statement is the one that turns RIP off. We don't want to run RIP, but the default
for gated is to turn RIP on. Therefore we explicitly disable RIP with the rip no ; statement.

BGP is enabled by the bgp yes statement, which also defines a few additional BGP parameters.
The group clause sets parameters for all of the BGP peers in the group. The clause defines the
type of BGP connection being created. The example is a classic external routing protocol
connection, and the external autonomous system we are connecting to is AS number 164. gated
can create five different types of BGP sessions, but only one, type external, is used to
directly communicate with an external autonomous system. The other four group types are used
for internal BGP (IBGP).[13] IBGP is simply an acronym for BGP when it is used to move routing
information around inside an autonomous system. In our example we use it to move routing
information between autonomous systems.

[13] See Appendix B for information on all group types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The BGP neighbors from which updates are accepted are indicated by the peer clauses. Each
peer is a member of the group. Everything related to the group, such as the AS number, applies
to every system in the group. To accept updates from any system with ASN 164, use allow in
place of the list of peers.

The OSPF protocol is enabled by the ospf yes statement. The configuration of OSPF on this
router is the same as it is for other routers in the backbone area. The only parameter that has
been changed from the previous example is the priority number. Because this route has a
particularly heavy load, we have decided to make it slightly less preferred for the designated
router election.

The export statements control the routes that gated advertises to other routers. The first export
statement directs gated to use BGP (proto bgp) to advertise to autonomous system 164 (as
164) any directly connected networks (proto direct) and any routes learned from OSPF
(proto ospf). Notice that the AS number specified in this statement is not the AS number of
books-net; it is the AS number of the external system. The first line of the export statement
defines to whom we are advertising. The proto clauses within the curly braces define what we
are advertising.

The second export statement announces the routes learned from the external autonomous
system. The routes are received via BGP and are advertised via OSPF. Because these are
routes from an external autonomous system, they are advertised as autonomous system external
(ASE) routes. That's why the export statement specifies ospfase as the protocol through which
the routes are announced. The type 2 parameter defines the type of external routes that are
being advertised. There are two types supported by gated. Type 2 routes are those learned from
an exterior gateway protocol that does not provide a routing metric comparable to the OSPF
metric. These routes are advertised with the cost of reaching the border router. In this case, the
routes are advertised with the OSPF cost of reaching gateway chill. Type 1 routes are those
learned from an external protocol that does provide a metric directly comparable to the OSPF
metric. In that case, the metric from the external protocol is added to the cost of reaching the
border router when routes are advertised.

The source of the routes advertised in the second export statement is the BGP connection
(proto bgp) to autonomous system 164 (autonomoussystem 164). The proto clause is
qualified with an optional route filter. A route filter is used to select the routes from a specific
source. The filter can list networks with associated netmasks to select an individual destination. In
the example, the keyword all is used to select all routes received via BGP, which is, in fact, the
default. As the default, the keyword all does not need to be specified. However, it does no harm,
and it provides clear documentation of our intentions.

All of the routes received from an external autonomous system could produce a very large routing
table. Individual routes are useful when you have multiple border routers that can reach the
outside world. However, if you have only one border router, a default route may be all that is
needed. To export a default route, insert an options gendefault ; statement at the beginning
of the configuration file.[14] This tells gated to generate a default route when the system peers
with a BGP neighbor. Next, replace the second export statement in the sample file with the
following export statement:

[14] The generate statement is an alternative way to create a default route. See Appendix B for details.

Announce a default route when peering

with a BGP neighbor.

export proto ospfase type 2 {

 proto default ;

};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

This export statement tells gated to advertise the border router as the default gateway, but only
when it has an active connection to the external system.

These few examples show that gated.conf files are usually small and easy to read. Use gated if
you need to run a routing protocol on your computer. It allows you to use the same software and
the same configuration language on all of your hosts, interior gateways, and exterior gateways.

7.7.2 Testing the Configuration

Test the configuration file before you try to use it; the gated configuration syntax is complex and
it is easy to make a mistake. Create your new configuration in a test file, test the new
configuration, and then move the test configuration to /etc/gated.conf. Here's how.

Assume that a configuration file called test.conf has already been created. It is tested using -f
and -c on the command line:

% gated -c -f test.conf trace.test
The -f option tells gated to read the configuration from the named file instead of from
/etc/gated.conf. In the sample it reads the configuration from test.conf. The -c option tells gated
to read the configuration file and check for syntax errors. When gated finishes reading the file, it
terminates; it does not modify the routing table. The -c option turns on tracing, so specify a trace
file or the trace data will be displayed on your terminal. In the sample we specified trace.test as
the trace file. The -c option also produces a snapshot of the state of gated after reading the
configuration file, and writes the snapshot to /usr/tmp/gated_dump.[15] You don't need to be
superuser or to terminate the active gated process to run gated when the -c option is used.

[15] /usr/tmp is the default for this file and for the gated_parse file described later; however, some systems place these
files in /var/tmp.

The dump and the trace file (trace.test) can then be examined for errors and other information.
When you're confident that the configuration is correct, become superuser and move your new
configuration (test.conf) to /etc/gated.conf.

An alternative command for testing the configuration file is gdc, though it must be run by the root
user or as a setuid root program. It includes features for checking and installing a new
configuration. gdc uses three different configuration files. The current configuration is
/etc/gated.conf. The previous configuration is stored in /etc/gated.conf-. The "next" configuration
is stored in /etc/gated.conf+, which is normally the configuration that needs to be tested. Here's
how gdc tests a configuration:

cp test.conf /etc/gated.conf+
gdc checknew
configuration file /etc/gated.conf+ checks out okay

gdc newconf
gdc restart
gated not currently running

gdc: /etc/gated was started

In this sample, the test configuration is copied to /etc/gated.conf+ and tested with the gdc
checknew command. If syntax problems are found in the file, a warning message is displayed
and detailed error messages are written to /usr/tmp/gated_parse. There are no syntax errors in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and detailed error messages are written to /usr/tmp/gated_parse. There are no syntax errors in
the example, so we make the test file the current configuration with the gdc newconf command.
This command moves the current configuration to gated.conf- and moves the new configuration
(gated.conf+) to the current configuration. The gdc restart command terminates gated if it is
currently running—it was not in the example—and starts a new copy of gated using the new
configuration.

7.7.2.1 Running gated at startup

As with any routing software, gated should be included in your startup file. Some systems come
with the code to start gated included in the startup file. If your system doesn't, you'll need to add
it. If you already have code in your startup file that runs routed, replace it with code to run
gated. gated and routed should not be running at the same time.

Our imaginary gateway, crab, is a Solaris system with code in the /etc/init.d/inetinit file that starts
routed. We comment out those lines, and add these lines:

if [-f /usr/sbin/gated -a -f /etc/gated.conf]; then

 /usr/sbin/gated; echo -n 'gated' > /dev/console

fi

This code assumes that gated is installed in /usr/sbin and that the configuration file is named
/etc/gated.conf. The code checks that gated is present and that the configuration file
/etc/gated.conf exists. If both files are found, gated begins.

The code checks for a configuration file because gated usually runs with one. If gated is started
without a configuration file, it checks the routing table for a default route. If it doesn't find one, it
starts RIP; otherwise, it just uses the default route. Create an /etc/gated.conf file even if you only
want to run RIP. The configuration file documents your routing configuration and protects you if
the default configuration of gated changes in the future.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.8 Summary

Routing is the glue that binds networks together to build internets. Without it, networks cannot
communicate with each other. Configuring routing is an important task for the network
administrator.

Minimal routing is required to communicate through the network interface to the directly attached
network. These routes can be seen in the routing table where they show up as entries that do not
have the G (gateway) flag set. On some systems, minimal routes are created by the ifconfig
command when an interface is installed. On Linux systems, the route through the interface must
be explicitly installed with a route command.

The route command is used to build a static routing table. Static routing is routing that is
manually maintained by the network administrator. Routes are added to or removed from the
routing table with the route command. The most common use for static routing is to install a
default route.

Dynamic routing uses routing protocols to select the best routes and to update the routing table.
There are many different dynamic routing protocols. The one that is available on most Unix
systems is Routing Information Protocol (RIP). RIP is run by routed. routed builds the routing
table from information received on the network and from information read from /etc/gateway.

gated is a software package that provides several more routing protocols for Unix systems,
including advanced protocols such as Open Shortest Path First (OSPF) and Border Gateway
Protocol (BGP). gated is configured through the /etc/gated.conf file. The gated configuration
commands are covered in Appendix B.

This is the last chapter on how to create the physical network connection. Once routing is
installed, the system is capable of basic communication. In the next chapter, we begin the
discussion of the various applications and services that are necessary to make the network truly
useful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Configuring DNS
Congratulations! You have installed TCP/IP in the kernel, configured the network interface, and
configured routing. At this point, you have completed all of the configuration tasks required to run
TCP/IP on a Unix system. While none of the remaining tasks is required for TCP/IP software to
operate, they are necessary for making the network more friendly and useful. In the next two
chapters, we look at how to configure basic TCP/IP network services. Perhaps the most important
of these is name service.

It is, as the name implies, a service—specifically, a service intended to make the network more
user-friendly. Computers are perfectly happy with IP addresses, but people prefer names. The
importance of name service is indicated by the amount of coverage it has in this book. Chapter 3
discusses why name service is needed; this chapter covers how it is configured; and Appendix C
covers the details of the name server configuration commands. This chapter provides sufficient
information to show you how to configure the BIND software to run on your system.[1] But if you
want to know more about why something is done or details on how to do it, don't hesitate to refer
to Chapter 3 and Appendix C.

[1] BIND 8 is the version of domain name software that comes with most versions of Linux and with Solaris 8. A newer
version of DNS software—BIND 9—is also available. BIND 8 and BIND 9 use essentially the same configuration file
syntax. The examples presented here should work with both BIND 8 and BIND 9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 BIND: Unix Name Service

In Unix, DNS is implemented by the Berkeley Internet Name Domain (BIND) software. BIND is a
client/server software system. The client side of BIND is called the resolver. It generates the
queries for domain name information and sends them to the server. The DNS server software
answers the resolver's queries. The server side of BIND is a daemon called named (pronounced
"name" "d").

This chapter covers three basic BIND configuration tasks:

Configuring the BIND resolver

Configuring the BIND name server (named)

Constructing the name server database files, called the zone files

A zone is a piece of the domain namespace over which a name server holds authority. A zone
cannot contain a domain that is delegated to another server. Here we use "zone" to refer to the
DNS database file, while the term "domain" is used in more general contexts. In this book, a
domain is part of the domain hierarchy identified by a domain name. A zone is a collection of
domain information contained in a DNS database file. The file that contains the domain
information is called a zone file.

RFC 1033, the Domain Administrators Operations Guide, defines the basic set of standard
records used to construct zone files. Many RFCs propose new DNS records that are not widely
implemented. In this chapter and in Appendix C, we stick to the basic resource records that you
are most likely to use. We'll use these records to construct the zone files used in this chapter. But
how, or even if, you need to construct zone files on your system is controlled by the type of BIND
configuration you decide to use.

8.1.1 BIND Configurations

BIND configurations are described by the type of service the software is configured to provide.
The four levels of service that can be defined in a BIND configuration are resolver-only systems,
caching-only servers, master servers, and slave servers.

The resolver is the code that asks name servers for domain information. On Unix systems, it is
implemented as a library rather than as a separate client program. Some systems, called
resolver-only systems, use only the resolver; they don't run a name server. Resolver-only systems
are very easy to configure: you just need to set up the /etc/resolv.conf file.

The three other BIND configurations all require that the local system run the named server
software. They are:

Master

The master name server is the authoritative source for all information about a specific
zone. It loads the domain information from a locally maintained disk file that is built by the
domain administrator. This file (the zone file) contains the most accurate information about
a piece of the domain hierarchy over which this name server has authority. The master
server is an authoritative server because it can answer any query about its zone with full
authority.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuring a master server requires creating a complete set of configuration files: zone
files for the forward-mapping zone and the reverse-mapping zone, the conf file, the root
hints file, and the loopback file. No other configuration requires creating this complete set of
files.

Slave

A slave server transfers a complete set of zone information from the master server. The
zone data is transferred from the master server and stored on the slave server as a local
disk file. This transfer is aptly called a zone transfer. A slave server keeps a complete copy
of all zone information and can answer queries about that zone with authority. Therefore, a
slave server is also considered an authoritative server.

Configuring a slave server does not require creating local zone files because the zone files
are downloaded from the master server. However, other files (a boot file, a cache file, and
a loopback file) are required.

Caching-only

A caching-only server runs the name server software but keeps no zone files. It learns the
answer to every name server query from some remote server. Once it learns an answer,
the server caches the answer and uses it to answer future queries for the same
information. All name servers use cached information in this manner, but a caching-only
server depends on this technique for all of its name server information. It is not considered
an authoritative server because all of the information it provides is secondhand. Only a
boot file and a cache file are required for a caching-only configuration, but the most
common configuration also includes a loopback file. This is probably the most common
name server configuration, and apart from the resolver-only configuration, it is the easiest
to configure.

A name server may use any one of these configurations or, as is often the case, it may combine
elements of more than one type of configuration. However, all systems run the resolver, so let's
begin by examining the configuration of the client side of the DNS software.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Configuring the Resolver

The resolver is configured in the /etc/resolv.conf file. The resolver is not a separate and distinct
process; it is a library of routines called by network processes. The resolv.conf file is read when a
process using the resolver starts, and is cached for the life of that process. If the configuration file
is not found, the resolver attempts to connect to the named server running on the local host.
While this may work, I don't recommend it. By allowing the resolver configuration to default, you
give up control over your system and become vulnerable to variations in the techniques used by
different systems to determine the default configuration. For these reasons, the resolver
configuration file should be created on every system running BIND.

8.2.1 The Resolver Configuration File

The configuration file clearly documents the resolver configuration. It allows you to identify up to
three name servers, two of which provide backup if the first server doesn't respond. It defines the
default domain and various other processing options. The resolv.conf file is a critical part of
configuring name service.

resolv.conf is a simple, human-readable file. There are system-specific variations in the
commands used in the file, but the entries supported by most systems are:

nameserver address

The nameserver entries identify, by IP address, the servers that the resolver is to query
for domain information. The name servers are queried in the order that they appear in the
file. If no response is received from a server, the next server in the list is tried until the
maximum number of servers are tried.[2] If no nameserver entries are contained in the
resolv.conf file or if no resolv.conf file exists, all queries are sent to the local host. However,
if there is a resolv.conf file and it contains nameserver entries, the local host is not
queried unless an entry points to it. Specify the local host with its official IP address or with
0.0.0.0, not with the loopback address. The official address avoids problems seen on some
versions of Unix when the loopback address is used. A resolver-only configuration never
contains a nameserver entry that points to the local host.

[2] Three is the maximum number of servers tried by most BIND implementations.

domain name

The domain entry defines the default domain name. The resolver appends the default
domain name to any hostname that does not contain a dot.[3] It then uses the expanded
hostname in the query it sends to the name server. For example, if the hostname crab
(which does not contain a dot) is received by the resolver, the default domain name is
appended to crab to construct the query. If the value for name in the domain entry is
wrotethebook.com, the resolver queries for crab.wrotethebook.com. If the environment
variable LOCALDOMAIN is set, it overrides the domain entry, and the value of
LOCALDOMAIN is used to expand the hostname.

[3] This is the most common way that default domain names are used, but this is configurable.

search domain ...

The search entry defines a series of domains that is searched when a hostname does not
contain a dot. Assume the entry search essex.wrotethebook.com
butler.wrotethebook.com. A query for the hostname cookbook is first tried as
cookbook.essex.wrotethebook.com. If that fails to provide a successful match, the resolver
queries for cookbook.butler.wrotethebook.com. If that query fails, no other attempts are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queries for cookbook.butler.wrotethebook.com. If that query fails, no other attempts are
made to resolve the hostname. Use either a search statement or a domain statement.
(The search command is preferred.) Never use both in the same configuration. If the
environment variable LOCALDOMAIN is set, it overrides the search entry.

sortlist network[/ netmask] ...

Addresses from the networks listed on the sortlist command are preferred over other
addresses. If the resolver receives multiple addresses in response to a query about a multi-
homed host or a router, it reorders the addresses so that an address from a network listed
in the sortlist statement is placed in front of the other addresses. Normally addresses
are returned to the application by the resolver in the order in which they are received.

The sortlist command is rarely used because it interferes with the servers' ability to
reorder addresses for load balancing and other purposes. The primary exception to this is
that sometimes sortlist is configured to prefer addresses on a shared network over
other addresses. Using this configuration, if the computer running the resolver is connected
to network 172.16.0.0/16 and one of the addresses returned in a multiple address response
is from that network, the address from 172.16.0.0 is placed in front of the other addresses.

options option ...

The options entry is used to select optional settings for the resolver. There are several
possible options:[4]

[4] This list shows the options on Linux systems that run BIND 8. The Solaris version of BIND 8 does not
provide the rotate, no-check-names, or inet6 options.

debug

Turns on debugging, which prints debugging messages to standard output. debug
works only if the resolver was compiled with the -DDEBUG option, and most weren't.

ndots: n

Sets the number of dots in a hostname used to determine whether or not the search
list is applied before sending the query to the name server. The default is 1.
Therefore a hostname with one dot does not have a domain appended before it is
sent to the name server. If options ndots:2 is specified, a hostname with one dot
does have the search list domain added before the query is sent out, but a hostname
with two or more dots does not have a domain added.

ndots may be useful for you if some component of your domain could be confused
with a top-level domain and your users consistently truncate hostnames at that
domain. In that case, the queries would first be sent to the root servers for resolution
in the top-level domain before eventually getting back to your local server. It is very
bad form to bother the root servers over nothing. Use ndots to force the resolver to
extend the troublesome hostnames with your local domain name so that they will be
resolved before reaching the root servers.

timeout: n

Sets the initial query timeout for the resolver. By default, the timeout is 5 seconds for
the first query to every server. Under the Solaris 8 version of BIND, the syntax of this
option is retrans:n.

attempts: n

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attempts: n

Defines the number of times the resolver will retry a query. The default value is 2,
which means the resolver will retry a query two times with every server in its server
list before returning an error to the application. Under the Solaris 8 version of BIND,
the syntax of this option is retry:n, and the default is 4.

rotate

Turns on round-robin selection of name servers. Normally, the resolver sends the
query to the first server in the name server list, sending it to another server only if the
first server does not respond. The rotate option tells the resolver to share the
name server workload evenly among all of the servers.

no-check-names

Disables checking of domain names for compliance with RFC 952, DOD Internet
Host Table Specification. By default, domain names that contain an underscore (_),
non-ASCII characters, or ASCII control characters are considered to be in error. Use
this option if you must work with hostnames that contain an underscore.

inet6

Causes the resolver to query for IPv6 addresses. The version of the Internet Protocol
(IP) used in today's Internet is IPv4. IPv4 uses 32-bit addresses. IPv6 expands those
to 128-bit addresses.

The most common resolv.conf configuration defines the local domain name as the search list, the
local host as the first name server, and one or two backup name servers. An example of this
configuration is:

Domain name resolver configuration file

search wrotethebook.com

try yourself first

nameserver 172.16.12.2

try crab next

nameserver 172.16.12.1

finally try ora

nameserver 172.16.1.2

The example is based on our imaginary network, so the default domain name is
wrotethebook.com. The configuration is for rodent, and it specifies itself as the first name server.
The backup servers are crab and ora. The configuration does not contain a sort list or any
options, as these are infrequently used. This is an example of an average resolver configuration.

8.2.1.1 A resolver-only configuration

The resolver-only configuration is very simple. It is identical to the average configuration except
that it does not contain a nameserver entry for the local system. A sample resolv.conf file for a
resolver-only system is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Domain name resolver configuration file

search wrotethebook.com

try crab

nameserver 172.16.12.1

next try ora

nameserver 172.16.1.2

The configuration tells the resolver to pass all queries to crab; if that fails, try ora. Queries are
never resolved locally. This simple resolv.conf file is all that is required for a resolver-only
configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Configuring named

While the resolver configuration requires, at most, one configuration file, several files are used to
configure named. The complete set of named files is:

The configuration file

Sets general named parameters and points to the sources of DNS database information used by
this server. These sources can be local disk files or remote servers. This file is usually called
named.conf.

The root hints file

Points to the root zone servers. Some common names for this file are named.ca, db.cache,
named.root, or root.ca.

The localhost file

Used to locally resolve the loopback address. The filename named.local is generally used for
this file.

The forward-mapping zone file

The zone file that maps hostnames to IP addresses. This is the file that contains the bulk of the
information about the zone. To make it easier to discuss this file, this text generally refers to it as
the zone file, dropping the "forward-mapping" qualifier. The zone file is generally given a
descriptive name, such as wrotethebook.com.hosts, that identifies which zone's data is
contained in the file.

The reverse-mapping zone file

The zone file that maps IP addresses to hostnames. To make it easier to discuss this file, this
text generally refers to it as the reverse zone file. The reverse zone file is generally given a
descriptive name, such as 172.16.rev, that identifies which IP address is mapped by the file.

All of these files can have any names you wish. However, you should use descriptive names for your
zone files, the filenames named.conf and named.local for the boot file and the loopback address file,
and one of the well-known names for the root hints file to make it easier for others to maintain your
system. In the following sections, we'll look at how each of these files is used, starting with named.conf

8.3.1 The named.conf File

The named.conf file points named to sources of DNS information. Some of these sources are local
files; others are remote servers. You need to create only the files referenced in the master and cache
statements. We'll look at an example of each type of file you may need to create.

The structure of the configuration commands in named.conf is similar to the structure of the C
programming language. A statement ends with a semicolon (;), literals are enclosed in quotes (""),
and related items are grouped together inside curly braces ({}). A comment can be enclosed between
/* and */, like a C language comment; it can begin with //, like a C++ comment, or with #, like a shell
comment. These examples use C++ style comments, but, of course, you can use any of the three valid
styles you like.

Table 8-1 summarizes the basic named.conf configuration statements. It provides just enough
information to help you understand the examples. Not all of the named.conf configuration commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

information to help you understand the examples. Not all of the named.conf configuration commands
are used in the examples, and you probably won't use all of the commands in your configuration. The
commands are designed to cover the full spectrum of configurations, even the configurations of root
servers. If you want more details about the named.conf configuration statements, Appendix C contains
a full explanation of each command.

Table 8-1. named.conf configuration commands
Command Function

acl Defines an access control list of IP addresses

include Includes another file into the configuration file

key Defines security keys for authentication

logging Defines what will be logged and where it will be stored

options Defines global configuration options and defaults

server Defines a remote server's characteristics

zone Defines a zone

The way you configure the named.conf file controls whether the name server acts as a zone's master
server, a zone's slave server, or a caching-only server. The best way to understand these different
configurations is to look at sample named.conf files. The next sections show examples of each type of
configuration.

8.3.1.1 A caching-only server configuration

A caching-only server configuration is simple. A named.conf file and a named.ca file are all that you
need, though the named.local file is usually also used. A possible named.conf file for a caching-only
server is:

$ cat /etc/named.conf
options {

 directory "/var/named";

};

//

// a caching only name server config

//

zone "." {

 type hint;

 file "named.ca";

};

zone "0.0.127.in-addr.arpa" {

 type master;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 file "named.local";

};

The options statement defines the default directory for named. In the sample file, this is /var/named
All subsequent file references in the named.conf file are relative to this directory.

The two zone statements in this caching-only configuration are found in all server configurations. The
first zone statement defines the hints file that is used to help the name server locate the root servers
during startup. The second zone statement makes the server the master for its own loopback address,
and says that the information for the loopback domain is stored in the file named.local. The loopback
domain is an in-addr.arpa domain[5] that maps the address 127.0.0.1 to the name localhost. The idea
of resolving your own loopback address makes sense to most people, and named.conf files should
contain this entry. The hints file and the local host file, along with the named.conf file, are used for
every server configuration.[6]

[5] See Chapter 4 for a description of in-addr.arpa domains.

[6] BIND 8 requires the root hints file, but BIND 9 has hints compiled in that are used if no root hints file is provided.

These zone and options statements are the only statements used in most caching-only server
configurations, but the options statement used can be more complex. A forwarders option and a
forward only option are sometimes used. The forwarders option causes the caching-only server
to send all of the queries that it cannot resolve from its own cache to specific servers. For example:

options {

 directory "/var/named";

 forwarders { 172.16.12.1; 172.16.1.2; };

};

This forwarders option forwards every query that cannot be answered from the local cache to
172.16.12.1 and 172.16.1.2. The forwarders option builds a rich DNS cache on selected servers
located on the local network. This reduces the number of times that queries must be sent out on the
wide area network, which is particularly useful if you have limited bandwidth to the wide area network
or if you are charged for usage.

When network access to the outside world is severely limited, use the forward only option to force
the local server to always use the forwarder:

options {

 directory "/var/named";

 forwarders { 172.16.12.1; 172.16.1.2; };

 forward only;

};

With this option in the configuration file, the local server will not attempt to resolve a query itself even if
it cannot get an answer to that query from the forwarders.

Adding options to the options statements does not change this from being a caching-only server
configuration. Only the addition of master and slave zone commands will do that.

8.3.1.2 Master and slave server configurations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The imaginary wrotethebook.com domain is the basis for our sample master and slave server
configurations. Here is the named.conf file to define crab as the master server for the
wrotethebook.com domain:

options {

 directory "/var/named";

};

// a master name server configuration

//

zone "." {

 type hint;

 file "named.ca";

};

zone "0.0.127.in-addr.arpa" {

 type master;

 file "named.local";

};

zone "wrotethebook.com" {

 type master;

 file "wrotethebook.com.hosts";

};

zone "16.172.in-addr.arpa" {

 type master;

 file "172.16.rev";

};

The directory option saves keystrokes on the subsequent filenames. It tells named that all relative
filenames (i.e., filenames that don't begin with a /), no matter where they occur in the named
configuration, are relative to the directory /var/named. This option also tells named where to write
various files, such as the dump file.

The first two zone statements in the sample configuration are the zone statements for the loopback

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first two zone statements in the sample configuration are the zone statements for the loopback
address and the hints file. These statements were discussed earlier in reference to caching-only
configurations. They always have the same function and are found in almost every configuration.

The first new zone statement declares that this is the master server for the wrotethebook.com domain
and that the data for that domain is loaded from the file wrotethebook.com.hosts.

The second new zone statement points to the file that maps IP addresses from 172.16.0.0 to
hostnames. This statement says that the local server is the master server for the reverse domain
16.172.in-addr.arpa and that the data for that domain is loaded from the file 172.16.rev.

A slave server's configuration differs from a master's only in the structure of the zone statements.
Slave server zone statements point to remote servers as the source of the domain information instead
of local disk files, and they define the zone as type slave. Unlike the file clause in a master zone
statement, the file clause in a slave zone statement contains the name of a local file where
information received from the remote server will be stored—not a file from which the domain is loaded.
The following named.conf file configures ora as a slave server for the wrotethebook.com domain:

options {

 directory "/var/named";

};

// a slave server configuration

//

zone "." {

 type hint;

 file "named.ca";

};

zone "0.0.127.in-addr.arpa" {

 type master;

 file "named.local";

};

zone "wrotethebook.com" {

 type slave;

 file "wrotethebook.hosts";

 masters { 172.16.12.1; };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 masters { 172.16.12.1; };

};

zone "16.172.in-addr.arpa" {

 type slave;

 file "172.16.rev";

 masters { 172.16.12.1; };

};

The first zone statement with its type set to slave makes this a slave server for the
wrotethebook.com domain. The statement tells named to download the data for the wrotethebook.com
domain from the server at IP address 172.16.12.1 and to store that data in the file
/var/named/wrotethebook.hosts. If the wrotethebook.hosts file does not exist, named creates it, gets
the zone data from the remote server, and writes the data in the newly created file. If the file does
exist, named checks with the remote server to see if the remote server's data is newer than the data in
the file. If the data has changed, named downloads the updated data and overwrites the file's contents
with the new data. If the data has not changed, named loads the contents of the disk file and doesn't
bother with a zone transfer.[7] Keeping a copy of the database on a local disk file makes it unnecessary
to transfer the zone file every time the local host is rebooted. It's necessary to transfer the zone only
when the data changes.

[7] Appendix C (in Section C.3.1.1) discusses how named determines if data has been updated.

The last zone statement in this configuration says that the local server is also a slave server for the
reverse domain 16.172.in-addr.arpa, and that the data for that domain should also be downloaded
from 172.16.12.1. The reverse domain data is stored locally in a file named 172.16.rev, following the
same rules discussed previously for creating and overwriting wrotethebook.hosts.

8.3.2 Standard Resource Records

The configuration commands discussed above and listed in Table 8-1 are used only in the named.conf
file. All other files used to configure named (the zone file, the reverse zone file, named.local, and
named.ca) store DNS database information. These files all have the same basic format and use the
same type of database records. They use standard resource records, called RRs. These are defined in
RFC 1033, the Domain Administrators Operations Guide, and in other RFCs. Table 8-2 summarizes all
of the standard resource records used in this chapter. These records are covered in detail in Appendix
C.

Table 8-2. Standard resource records
Resource record

text name
Record

type Function

Start of Authority SOA Marks the beginning of a zone's data and defines parameters that
affect the entire zone.

Nameserver NS Identifies a domain's name server.

Address A Converts a hostname to an address.

Pointer PTR Converts an address to a hostname.

Mail Exchange MX Identifies where to deliver mail for a given domain name.

Canonical Name CNAME Defines an alias hostname.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text TXT Stores arbitrary text strings.

The resource record syntax is described in Appendix C, but a little understanding of the structure of
these records is necessary to read the sample configuration files used in this chapter.

The format of DNS resource records is:

 [name] [ttl] IN type data

name

The name of the domain object that the resource record references. It can be an individual host
or an entire domain. The string entered for the name field is relative to the current domain unless
it ends with a dot. If the name field is blank, i.e., contains only whitespace, the record applies to
the domain object that was named last. For example, if the A record for rodent is followed by an
MX record with a blank name field, both the A record and the MX record apply to rodent.

ttl

Time-to-live defines the length of time, in seconds, that the information in this resource record
should be kept in a remote system's cache. Usually this field is left blank and the default ttl,
set for the entire zone by the $TTL directive, is used.[8]

[8] See the description of the $TTL directive later in this chapter.

IN

Identifies the record as an Internet DNS resource record. There are other classes of records, but
they are rarely used. Curious? See Appendix C for the other, non-Internet, classes.

type

Identifies the kind of resource record. Table 8-2 lists the record types under the heading Record
type. Specify one of these values in the type field.

data

The information specific to this type of resource record. For example, in an A record, this is the
field that contains the actual IP address.

Later in this chapter we look at each of the remaining configuration files. As you look at the files,
remember that all of the standard resource records in these files follow the format described above.

The bulk of a zone file is composed of standard resource records. In addition, BIND provides some
zone file directives that are used to build a DNS database.

8.3.3 Zone File Directives

BIND provides four directives that simplify the construction of a zone file or define a value used by the
resource records in the file. The four directives are evenly divided into two commands that simplify the
construction of a zone file, $INCLUDE and $GENERATE, and two that define values used by the
resource records, $ORIGIN and $TTL.

8.3.3.1 The $TTL directive

The $TTL directive defines the default TTL for resource records that do not specify an explicit time to
live. The time value can be specified as a number of seconds or as a combination of numbers and
letters. Defining one week as the default TTL using the numeric format is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$TTL 604800

One week is equal to 604800 seconds. Using the alphanumeric format, one week can be defined
simply as:

$TTL 1w

The possible values that can be used with the alphanumeric format are:

w for week

d for day

h for hour

m for minute

s for second

8.3.3.2 The $ORIGIN directive

The $ORIGIN directive sets the current origin, which is the domain name used to complete any relative
domain names. A relative domain name is any name that does not end with a dot. By default, $ORIGIN
starts out as the domain name defined on the zone statement. Use the $ORIGIN directive to change
the setting.

8.3.3.3 The $INCLUDE directive

The $INCLUDE directive reads in an external file and includes it as part of the zone file. The external
file is included in the zone file at the point where the $INCLUDE directive occurs.

8.3.3.4 The $GENERATE directive

The $GENERATE directive is used to create a series of resource records. The resource records
created by the $GENERATE directive are almost identical, varying only by a numeric iterator. For
example:

$ORIGIN 20.16.172.in-addr.arpa.

$GENERATE 1-4 $ CNAME $.1to4

The $GENERATE keyword is followed by the range of records to be created. In the example the range
is 1 through 4. The range is followed by the template of the resource records to be generated. In this
case, the template is $ CNAME $.1to4. A $ sign in the template is replaced by the current iterator
value. In the example, the value iterates from 1 to 4. This $GENERATE directive produces the
following resource records:

1 CNAME 1.1to4

2 CNAME 2.1to4

3 CNAME 3.1to4

4 CNAME 4.1to4

Given that 20.16.172.in-addr.arpa. is the value defined for the current origin, these resource records

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Given that 20.16.172.in-addr.arpa. is the value defined for the current origin, these resource records
are the same as:

1.20.16.172.in-addr.arpa. CNAME 1.1to4.20.16.172.in-addr.arpa.

2.20.16.172.in-addr.arpa. CNAME 2.1to4.20.16.172.in-addr.arpa.

3.20.16.172.in-addr.arpa. CNAME 3.1to4.20.16.172.in-addr.arpa.

4.20.16.172.in-addr.arpa. CNAME 4.1to4.20.16.172.in-addr.arpa.

These odd-looking records are helpful for delegating reverse subdomains. Delegating domains is
described later in this chapter.

Except for named.conf, all of the BIND configuration files are composed of standard records and
directives. All four of the remaining configuration files are database files. Two of these files, named.ca
and named.local, are used on all servers, regardless of server type.

8.3.4 The Cache Initialization File

The zone statement in named.conf that has its type set to hints points to the cache initialization file.
Each server that maintains a cache has such a file. It contains the information needed to begin building
a cache of domain data when the name server starts. The root domain is indicated on the zone
statement by a single dot in the domain name field because the cache initialization file contains the
names and addresses of the root servers.

The named.ca file is called a "hints" file because it contains hints that named uses to initialize the
cache. The hints it contains are the names and addresses of the root servers. The hints file is used to
help the local server locate a root server during startup. Once a root server is found, an authoritative
list of root servers is downloaded from that server. The hints are not referred to again until the local
server is forced to restart. The information in the named.ca file is not referred to often, but it is critical
for booting a named server.

The basic named.ca file contains NS records that name the root servers and A records that provide the
addresses of the root servers. A sample named.ca file is shown here:

;

. 3600000 IN NS A.ROOT-SERVERS.NET.

A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4

;

. 3600000 NS B.ROOT-SERVERS.NET.

B.ROOT-SERVERS.NET. 3600000 IN A 128.9.0.107

;

. 3600000 NS C.ROOT-SERVERS.NET.

C.ROOT-SERVERS.NET. 3600000 IN A 192.33.4.12

;

. 3600000 NS D.ROOT-SERVERS.NET.

D.ROOT-SERVERS.NET. 3600000 IN A 128.8.10.90

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.ROOT-SERVERS.NET. 3600000 IN A 128.8.10.90

;

. 3600000 NS E.ROOT-SERVERS.NET.

E.ROOT-SERVERS.NET. 3600000 IN A 192.203.230.10

;

. 3600000 NS F.ROOT-SERVERS.NET.

F.ROOT-SERVERS.NET. 3600000 IN A 192.5.5.241

;

. 3600000 NS G.ROOT-SERVERS.NET.

G.ROOT-SERVERS.NET. 3600000 IN A 192.112.36.4

;

. 3600000 NS H.ROOT-SERVERS.NET.

H.ROOT-SERVERS.NET. 3600000 IN A 128.63.2.53

;

. 3600000 NS I.ROOT-SERVERS.NET.

I.ROOT-SERVERS.NET. 3600000 IN A 192.36.148.17

;

. 3600000 NS J.ROOT-SERVERS.NET.

J.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.10

;

. 3600000 NS K.ROOT-SERVERS.NET.

K.ROOT-SERVERS.NET. 3600000 IN A 193.0.14.129

;

. 3600000 NS L.ROOT-SERVERS.NET.

L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12

;

. 3600000 NS M.ROOT-SERVERS.NET.

M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33

This file contains only name server and address records. Each NS record identifies a name server for
the root (.) domain. The associated A record gives the address of each root server. The TTL value for
all of these records is 3600000—a very large value that is approximately 42 days.

Create the named.ca file by downloading the file domain/named.root from ftp.rs.internic.net via
anonymous ftp. The file stored there is in the correct format for a Unix system. The following example
shows the superuser downloading the named.root file directly into the local system's named.ca file.
The file doesn't even need to be edited; it is ready to run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ftp ftp.rs.internic.net
Connected to rs.internic.net.

220-*****Welcome to the InterNIC Registration Host *****

 *****Login with username "anonymous"

 *****You may change directories to the following:

 policy - Registration Policies

 templates - Registration Templates

 netinfo - NIC Information Files

 domain - Root Domain Zone Files

220 And more!

Name (ftp.rs.internic.net:craig): anonymous
331 Guest login ok, send your complete e-mail address as password.

Password: craig@wrotethebook.com

230 Guest login ok, access restrictions apply.

Remote system type is Unix.

Using binary mode to transfer files.

ftp> get /domain/named.root /var/named/named.ca
local: /var/named/named.ca remote: /domain/named.root

200 PORT command successful.

150 Opening BINARY mode data connection for /domain/named.root (2769 bytes).

226 Transfer complete.

2769 bytes received in 0.998 secs (2.7 Kbytes/sec)

ftp> quit
221 Goodbye.

Download the named.root file every few months to keep accurate root server information in your cache.
A bogus root server entry could cause problems with your local server. The data given above is correct
as of publication, but could change at any time.

If your system is not connected to the Internet, it won't be able to communicate with the root servers.
Initializing your hints file with the servers listed above would be useless. In this case, initialize your
hints with entries that point to the major name servers on your local network. Those servers must also
be configured to answer queries for the "root" domain. However, this root domain contains only NS
records pointing to the domain servers on your local network. For example, assume that
wrotethebook.com is not connected to the Internet and that crab and horseshoe are going to act as
root servers for this isolated domain. crab is declared the master server for the root domain in its
named.conf file. horseshoe is configured as the slave server for the root domain. They load the root
from a zone file that starts with an SOA record identifying crab as the server and providing an in-house

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from a zone file that starts with an SOA record identifying crab as the server and providing an in-house
point of contact. Following the SOA record, the file contains NS records and A records, stating that
crab and horseshoe are authoritative for the root and delegating the wrotethebook.com and 16.172.in-
addr.arpa domains to the local name servers that service those domains. (How domains are delegated
is covered later in the chapter.) Details of this type of configuration are provided in DNS and BIND by
Liu and Albitz (O'Reilly & Associates).

8.3.5 The named.local File

The named.local file is used to convert the address 127.0.0.1 (the "loopback address") into the name
localhost. It's the zone file for the reverse domain 0.0.127.IN-ADDR.ARPA. Because all systems use
127.0.0.1 as the "loopback" address, this file is virtually identical on every server. Here's a sample
named.local file:

$TTL 86400

@ IN SOA crab.wrotethebook.com. alana.crab.wrotethebook.com. (

 1 ; serial

 360000 ; refresh every 100 hours

 3600 ; retry after 1 hour

 3600000 ; expire after 1000 hours

 3600 ; negative cache is 1 hour

)

 IN NS crab.wrotethebook.com.

0 IN PTR loopback.

1 IN PTR localhost.

Most zone files start as this one does, with a $TTL directive. This directive sets the default TTL for all
resource records in this zone. It can be overridden on any individual record by defining a specific TTL
on that record.

The SOA record and the NS record identify the zone and the name server for the zone. The first PTR
record maps the network 127.0.0.0 to the name loopback, which is an alternative to mapping the
network name in the /etc/networks file. The second PTR record is the heart of this file. It maps host
address 1 on network 127.0.0 to the name localhost.

The SOA record's data fields and the NS record that contains the computer's hostname vary from
system to system. The sample SOA record identifies crab.wrotethebook.com. as the server originating
this zone, and the email address alana.crab.wrotethebook.com. as the point of contact for any
questions about the zone. (Note that in an SOA record, the email address is written with a dot
separating the recipient's name from the hostname: alana is the user and crab.wrotethebook.com is
the host. The domain names end in a dot, indicating that they are fully qualified and no default domain
name should be appended.) The NS record also contains the computer's hostname. Change these
three data fields and you can use this identical file on any host.

The files discussed so far, named.conf, named.ca, and named.local, are the only files required to
configure caching-only servers and slave servers. Most of your servers will use only these files, and
the files used will contain almost identical information on every server. The simplest way to create
these three files is to copy a sample file and modify it for your system. Most systems come with sample
files. If your system doesn't, get sample configuration files from a running server.

The remaining named configuration files are more complex, but the relative number of systems that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The remaining named configuration files are more complex, but the relative number of systems that
require these files is small. Only the master server needs all of the configuration files, and there should
be only one master server per zone.

8.3.6 The Reverse Zone File

The reverse zone file is very similar in structure to the named.local file. Both of these files translate IP
addresses into hostnames, so both files contain PTR records.

The 172.16.rev file in our example is the reverse zone file for the 16.172.in-addr.arpa domain. The
domain administrator creates this file on crab, and every other host that needs this information gets it
from there.

$TTL 86400

;

; Address to hostname mappings.

;

@ IN SOA crab.wrotethebook.com. jan.crab.wrotethebook.com. (

 2001061401 ; Serial

 21600 ; Refresh

 1800 ; Retry

 604800 ; Expire

 900) ; Negative cache TTL

 IN NS crab.wrotethebook.com.

 IN NS ora.wrotethebook.com.

 IN NS bigserver.isp.com.

1.12 IN PTR crab.wrotethebook.com.

2.12 IN PTR rodent.wrotethebook.com.

3.12 IN PTR horseshoe.wrotethebook.com.

4.12 IN PTR jerboas.wrotethebook.com.

2.1 IN PTR ora.wrotethebook.com.

6 IN NS linuxuser.articles.wrotethebook.com.

 IN NS horseshoe.wrotethebook.com.

Like all zone files, the first resource record in the reverse zone file is an SOA record. The @ in the
name field of the SOA record references the current origin. Because this zone file does not contain an
$ORIGIN directive to explicitly define the origin, the current origin is the domain 16.172.in-addr.arpa
defined by the zone statement for this file in our sample named.conf file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defined by the zone statement for this file in our sample named.conf file:

 zone "16.172.in-addr.arpa" {

 type master;

 file "172.16.rev";

};

The @ in the SOA record allows the zone statement to define the zone file domain. This same SOA
record is used on every zone; it always references the correct domain name because it references the
domain defined for that particular zone file in named.conf. Change the hostname
(crab.wrotethebook.com.) and the manager's mail address (jan.crab.wrotethebook.com.), and use this
SOA record in any of your zone files.

The NS records that follow the SOA record define the name servers for the domain. Generally the
name servers are listed immediately after the SOA and have a blank name field. Recall that a blank
name field means that the last domain name is still in force. This means that the NS records apply to
the same domain as the SOA's.

PTR records dominate the reverse zone file because they are used to translate addresses to
hostnames. The PTR records in our example provide address-to-name conversions for hosts 12.1,
12.2, 12.3, 12.4, and 2.1 on network 172.16. Because they don't end in dots, the values in the name
fields of these PTR records are relative to the current domain. For example, the value 3.12 is
interpreted as 3.12.16.172.in-addr.arpa. The hostname in the data field of the PTR record is fully
qualified to prevent it from being relative to the current domain name (and therefore it ends with a dot).
Using the information in this PTR, named will translate 3.12.16.172.in-addr.arpa into
horseshoe.wrotethebook.com.

The last two lines of this file are additional NS records. As with any domain, subdomains can be
created in an in-addr.arpa domain. This is what the last two NS records do. These NS records point to
horseshoe and linuxuser as name servers for the subdomain 6.16.172.in-addr.arpa. Any query for
information in the 6.16.172.in-addr.arpa subdomain is referred to them. NS records that point to the
servers for a subdomain must be placed in the higher-level domain before you can use that
subdomain.

Domain names and IP addresses are not the same thing and do not have the same structure. When
an IP address is turned into an in-addr.arpa domain name, the four bytes of the address are treated as
four distinct pieces of a name. In reality, the IP address is 32 contiguous bits, not four distinct bytes.
Subnets divide up the IP address space and subnet masks are bit-oriented, which does not limit them
to byte boundaries. Limiting subdomains to byte boundaries makes them less flexible than the subnets
they must support. Our example in-addr.arpa domain delegates the subdomain at a full byte boundary,
which treats each byte of the address as a distinct "name." This is the simplest reverse subdomain
delegation, but it might not be flexible enough for your situation.

The $GENERATE example shown earlier in this chapter helps create more flexible reverse domain
delegations. The $GENERATE directive created CNAME records to map a range of addresses in an
in-addr.arpa domain to a different domain that has more flexible domain name rules. Real in-addr.arpa
domain names must be four numeric fields, corresponding to the four bytes of the IP address, followed
by the string in-addr.arpa. In the $GENERATE example, we mapped these names to longer names
that give us more flexibility. Here is a larger example of the $GENERATE command:

$ORIGIN 30.168.192.in-addr.arpa.

$GENERATE 0-63 $ CNAME $.1ST64

$GENERATE 63-127 $ CNAME $.2ND64

$GENERATE 128-191 $ CNAME $.3RD64

$GENERATE 192-255 $ CNAME $.4TH64

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$GENERATE 192-255 $ CNAME $.4TH64

These four $GENERATE commands map the 256 numeric names in the 30.168.192.in-addr.arpa
domain into four other domains, each composed of 64 numeric names. When a remote server seeks
the PTR record for 52.30.168.192.in-addr.arpa, it is told that the canonical name for that host is
52.1st64.30.168.192.in-addr.arpa and that the server must seek the pointer record for that host from
the server for the 1st64.30.168.192.in-addr.arpa domain. In effect, the $GENERATE directive lets us
divide the single 30.168.192.in-addr.arpa domain into multiple domains. Once it is divided, each piece
can be delegated to a different server.

Subdomain delegation can make reverse domains complex.[9] In most cases, however, reverse zone
files are simpler than the forward-mapping zone file.

[9] For even more complex examples, see DNS and BIND by Albitz and Liu.

8.3.7 The Forward-Mapping Zone File

The forward-mapping zone file contains most of the domain information. This file converts hostnames
to IP addresses, so A records predominate, but it also contains MX, CNAME, and other records. The
zone file, like the reverse zone file, is created only on the master server; all other servers get this
information from the master server.

$TTL 86400

;

; Addresses and other host information.

;

@ IN SOA crab.wrotethebook.com. jan.crab.wrotethebook.com. (

 2001061401 ; Serial

 21600 ; Refresh

 1800 ; Retry

 604800 ; Expire

 900) ; Negative cache TTL

; Define the name servers and the mail servers

 IN NS crab.wrotethebook.com.

 IN NS ora.wrotethebook.com.

 IN NS bigserver.isp.com.

 IN MX 10 crab.wrotethebook.com.

 IN MX 20 horseshoe.wrotethebook.com.

;

; Define localhost

;

localhost IN A 127.0.0.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

localhost IN A 127.0.0.1

;

; Define the hosts in this zone

;

crab IN A 172.16.12.1

loghost IN CNAME crab.wrotethebook.com.

rodent IN A 172.16.12.2

 IN MX 5 crab.wrotethebook.com.

mouse IN CNAME rodent.wrotethebook.com.

horseshoe IN A 172.16.12.3

jerboas IN A 172.16.12.4

ora IN A 172.16.1.2

; host table has BOTH host and gateway entries for 10.104.0.19

wtb-gw IN A 10.104.0.19

;

; Glue records for servers within this domain

;

linuxmag.articles IN A 172.16.18.15

24seven.events IN A 172.16.6.1

;

; Define sub-domains

;

articles IN NS linuxmag.articles.wrotethebook.com.

 IN NS horseshoe.wrotethebook.com.

events IN NS 24seven.events.wrotethebook.com.

 IN NS linuxmag.articles.wrotethebook.com.

Like the reverse zone file, the zone file begins with an SOA record and a few NS records that define
the domain and its servers, but the zone file contains a wider variety of resource records than a
reverse zone file does. We'll look at each of these records in the order they occur in the sample file, so
you can follow along using the sample file as your reference.

The first MX record identifies a mail server for the entire domain. This record says that crab is the mail
server for wrotethebook.com with a preference of 10. Mail addressed to user@wrotethebook.com is
redirected to crab for delivery. Of course, for crab to successfully deliver the mail, it must be properly
configured as a mail server. The MX record is only part of the story. We look at configuring sendmail in
Chapter 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second MX record identifies horseshoe as a mail server for wrotethebook.com with a preference
of 20. Preference numbers let you define alternate mail servers. The lower the preference number, the
more desirable the server. Therefore, our two sample MX records say "send mail for the
wrotethebook.com domain to crab first; if crab is unavailable, try sending the mail to horseshoe."
Rather than relying on a single mail server, preference numbers allow you to create backup servers. If
the main mail server is unreachable, the domain's mail is sent to one of the backups instead.

These sample MX records redirect mail addressed to wrotethebook.com, but mail addressed to
user@jerboas.wrotethebook.com will still be sent directly to jerboas.wrotethebook.com—not to crab or
horseshoe. This configuration allows simplified mail addressing in the form user@wrotethebook.com
for those who want to take advantage of it, but it continues to allow direct mail delivery to individual
hosts for those who wish to take advantage of that.

The first A record in this example defines the address for localhost. This is the opposite of the PTR
entry in the named.local file. It allows users within the wrotethebook.com domain to enter the name
localhost and have it resolved to the address 127.0.0.1 by the local name server.

The next A record defines the IP address for crab, which is the master server for this domain. This A
record is followed by a CNAME record that defines loghost as an alias for crab.

rodent's A record is followed by an MX record and a CNAME record. (Note that the records that relate
to a single host are grouped together, which is the most common structure used in zone file.) rodent
MX record directs all mail addressed to user@rodent.wrotethebook.com to crab. This MX record is
required because the MX records at the beginning of the zone file redirect mail only if it is addressed to
user@wrotethebook.com. If you also want to redirect mail addressed to rodent, you need a "rodent-
specific" MX record.

The name field of the CNAME record contains an alias for the official hostname. The official name,
called the canonical name, is provided in the data field of the record. Because of these records, crab
can be referred to by the name loghost, and rodent can be referred to as mouse. The loghost alias is a
generic hostname used to direct syslogd output to crab.[10] Hostname aliases should not be used in
other resource records.[11] For example, don't use an alias as the name of a mail server in an MX
record. Use only the canonical (official) name that's defined in an A record.

[10] See Chapter 3 for a further discussion of generic hostnames.

[11] See Appendix C for additional information about using CNAME records in the zone data file.

Your zone file could be much larger than the sample file we've discussed, but it will contain essentially
the same records. If you know the names and addresses of the hosts in your domain, you have most of
the information necessary to create the named configuration.

8.3.8 Controlling the named Process

After you construct the named.conf file and the required zone files, start named. named is usually
started at boot time from a startup script. On a Solaris 8 system, named is started by the
/etc/init.d/inetsvc script. On a Red Hat Linux system, the script that starts named is
/etc/rc.d/init.d/named. The Red Hat script can be run from the command prompt with optional
arguments. For example, on a Red Hat system, the following command can be used to stop the name
server:

/etc/rc.d/init.d/named stop
To resume name service, use the command:

/etc/rc.d/init.d/named start
Startup scripts work, but the named control (ndc) program is a more effective tool for managing the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Startup scripts work, but the named control (ndc) program is a more effective tool for managing the
named process. It comes with BIND 8 and provides a variety of functions designed to help you manage
named. BIND 9 has a similar tool named rndc. Table 8-3 lists the ndc options and the purpose of
each.[12]

[12] At this writing, the status, trace, and restart commands are not yet implemented for rndc.

Table 8-3. ndc options
Option Function

status Displays the process status of named.

dumpdb Dumps the cache to named_dump.db.[13]

reload Reloads the name server.

stats Dumps statistics to named.stats.

trace Turns on tracing to named.run.

notrace Turns off tracing and closes named.run.

querylog Toggles query logging, which logs each incoming query to syslogd.

start Starts named.

stop Stops named.

restart Stops the current named process and starts a new one.

[13] This file is stored in the directory defined by the directory option in the named.conf file.

ndc options are simple to understand and easy to use. The following commands would stop, then
restart the named process:

ndc stop
ndc start
new pid is 795

This command sequence assumes that there is some length of time between stopping the old named
process and starting a new one. If you really want to quickly kill and restart the named process, use the
restart option:

ndc restart
new pid is 798

The first time you run named, watch for error messages. named logs errors to the messages file.[14]

Once named is running to your satisfaction, use nslookup to query the name server to make sure it is
providing the correct information.

[14] This file is found in /usr/adm/messages on our Solaris system and in /var/log/messages on our Red Hat system. It might
be located somewhere else on your system; check your documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Using nslookup

nslookup is a debugging tool provided as part of the BIND software package. It allows anyone to query a name
server directly and retrieve any of the information known to the DNS system. It is helpful for determining if the
server is running correctly and is properly configured, or for querying for information provided by remote servers.

The nslookup program is used to resolve queries either interactively or directly from the command line. Here is
a command-line example of using nslookup to query for the IP address of a host:

% nslookup crab.wrotethebook.com
Server: rodent.wrotethebook.com

Address: 172.16.12.2

Name: crab.wrotethebook.com

Address: 172.16.12.1

Here, a user asks nslookup to provide the address of crab.wrotethebook.com. nslookup displays the name
and address of the server used to resolve the query, and then it displays the answer to the query. This is useful,
but nslookup is more often used interactively.

The real power of nslookup is seen in interactive mode. To enter interactive mode, type nslookup
command line without any arguments. Terminate an interactive session by typing Ctrl-D (^D) or entering the
command at the nslookup prompt. As an interactive session, the previous query shown is:

% nslookup
Default Server: rodent.wrotethebook.com

Address: 172.16.12.2

> crab.wrotethebook.com
Server: rodent.wrotethebook.com

Address: 172.16.12.2

Name: crab.wrotethebook.com

Address: 172.16.12.1

 > ^D
By default, nslookup queries for A records, but you can use the set type command to change the
another resource record type or to the special query type ANY. ANY is used to retrieve all available resource
records for the specified host.[15]

[15] "All available" records can vary based on the server answering the question. A server that is authoritative for the zone that contains the
host's records responds with all records. A nonauthoritative server that has cached information about the host provides all of the records it
has cached, which might not be every record the host owns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example checks MX records for crab and rodent. Note that once the query type is set
MX. It doesn't revert to the default A-type query. Another set type command is required to reset the query type.

% nslookup
Default Server: rodent.wrotethebook.com

Address: 172.16.12.2

> set type=MX
> crab.wrotethebook.com
Server: rodent.wrotethebook.com

Address: 172.16.12.2

crab.wrotethebook.com preference = 5, mail exchanger = crab.wrotethebook.com

crab.wrotethebook.com inet address = 172.16.12.1

> rodent.wrotethebook.com
Server: rodent.wrotethebook.com

Address: 172.16.12.2

rodent.wrotethebook.com preference = 5, mail exchanger = rodent.wrotethebook.com

rodent.wrotethebook.com inet address = 172.16.12.2

> exit
You can use the server command to control the server used to resolve queries. This is particularly useful for
going directly to an authoritative server to check some information. The following example does just that. In fact,
this example contains several interesting commands:

First we set type=NS and get the NS records for the zoo.edu domain.

From the information returned by this query, we select a server and use the server command to direct
nslookup to use that server.

Next, using the set domain command, we set the default domain to zoo.edu. nslookup uses this default
domain name to expand the hostnames in its queries in the same way that the resolver uses
domain name defined in resolv.conf.

We reset the query type to ANY. If the query type is not reset, nslookup still queries for NS records.

Finally, we query for information about the host tiger.zoo.edu. Because the default domain is set
zoo.edu, we simply enter tiger at the prompt.

Here's the example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% nslookup
Default Server: rodent.wrotethebook.com

Address: 172.16.12.2

> set type=NS
> zoo.edu
Server: rodent.wrotethebook.com

Address: 172.16.12.2

Non-authoritative answer:

zoo.edu nameserver = NOC.ZOO.EDU

zoo.edu nameserver = NI.ZOO.EDU

zoo.edu nameserver = NAMESERVER.AGENCY.GOV

Authoritative answers can be found from:

NOC.ZOO.EDU inet address = 172.28.2.200

NI.ZOO.EDU inet address = 172.28.2.240

NAMESERVER.AGENCY.GOV inet address = 172.21.18.31

> server NOC.ZOO.EDU
Default Server: NOC.ZOO.EDU

Address: 172.28.2.200

> set domain=zoo.edu
> set type=any
> tiger
Server: NOC.ZOO.EDU

Address: 172.28.2.200

tiger.zoo.edu inet address = 172.28.172.8

tiger.zoo.edu preference = 10, mail exchanger = tiger.ZOO.EDU

tiger.zoo.edu CPU=ALPHA OS=Unix

tiger.zoo.edu inet address = 172.28.172.8, protocol = 6

 7 21 23 25 79

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 7 21 23 25 79

tiger.ZOO.EDU inet address = 172.28.172.8

> exit
The final example shows how to download an entire domain from an authoritative server and examine it on your
local system. The ls command requests a zone transfer and displays the contents of the zone it receives.
the zone file is more than a few lines long, redirect the output to a file and use the view command to examine the
contents of the file. (view sorts a file and displays it using the Unix more command.) The combination of
view is helpful when tracking down a remote hostname. In this example, the ls command retrieves the
zone and stores the information in temp.file. Then view is used to examine temp.file.

[16] For security reasons, many name servers do not respond to the ls command. See the allow-transferoption in Appendix C
information on how to limit access to zone transfers.

rodent% nslookup
Default Server: rodent.wrotethebook.com

Address: 172.16.12.2

> server minerals.big.com
Default Server: minerals.big.com

Address: 192.168.20.1

> ls big.com > temp.file
[minerals.big.com]

########

Received 406 records.

> view temp.file
 acmite 192.168.20.28

 adamite 192.168.20.29

 adelite 192.168.20.11

 agate 192.168.20.30

 alabaster 192.168.20.31

 albite 192.168.20.32

 allanite 192.168.20.20

 altaite 192.168.20.33

 alum 192.168.20.35

 aluminum 192.168.20.8

 amaranth 192.168.20.85

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 amaranth 192.168.20.85

 amethyst 192.168.20.36

 andorite 192.168.20.37

 apatite 192.168.20.38

 beryl 192.168.20.23

--More--q

> exit
These examples show that nslookup allows you to:

Query for any specific type of standard resource record

Directly query the authoritative servers for a domain

Get the entire contents of a domain into a file so you can view it

Use nslookup's help command to see its other features. Turn on debugging (with set debug) and examine
the additional information this provides. As you play with this tool, you'll find many helpful features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Summary

The Domain Name System (DNS) provides an important user service that should be used on
every system connected to the Internet. The vast majority of Unix implementations of DNS are
based on the Berkeley Internet Name Domain (BIND) software. BIND provides both a DNS client
and a DNS server.

The BIND client issues name queries and is implemented as library routines. It is called the
resolver. The resolver is configured in the resolv.conf file. All systems run the resolver.

The BIND server answers name queries and runs as a daemon. It is called named. named is
configured by the named.conf file, which defines where the server gets the DNS database
information and the type of server being configured. The server types are master, slave, and
caching servers. Because all servers are caching servers, a single configuration often
encompasses more than one server type.

The original DNS database source files are found on the master server. The DNS database file is
called a zone file. The zone file is constructed from standard resource records (RRs) that are
defined in RFCs. The RRs share a common structure and are used to define all DNS database
information.

The DNS server can be tested using nslookup. This test tool is included with the BIND release.

In this chapter we have seen how to configure and test DNS. In the next chapter, we configure
several other services.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Local Network Services
Now our attention turns to configuring local network servers. As with name service, these servers
are not strictly required for the network to operate, but they provide services that are central to the
network's purpose.

There are many network services—many more than can be covered in this chapter. Here we
concentrate on servers that provide essential services for local clients. The services covered in
this chapter are:

The Network File System (NFS)

The Line Printer Daemon (LPD) and the Line Printer (LP) service

Windows file and print services (Samba)

The Network Information Service (NIS)

Dynamic Host Configuration Protocol (DHCP)

The Post Office Protocol (POP)

Internet Message Access Protocol (IMAP)

All of these software packages are designed to provide service to systems within your
organization and are not intended to service outsiders. Essential services that are as important to
external users as they are to in-house users, such as email, web service, and name service, are
covered in separate chapters.

We begin our discussion of local network services with NFS, which is the server that provides file
sharing on Unix networks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 The Network File System

The Network File System (NFS) allows directories and files to be shared across a network. It was
originally developed by Sun Microsystems but is now supported by virtually all Unix and many non-
Unix operating systems. Through NFS, users and programs can access files located on remote
systems as if they were local files. In a perfect NFS environment, the user neither knows nor cares
where files are actually stored.

NFS has several benefits:

It reduces local disk storage requirements because a server can store a single copy of a
directory that is fully accessible to everyone on the network.

It simplifies central support tasks—files can be updated centrally yet be available throughout
the network.

It allows users to use familiar Unix commands to manipulate remote files instead of learning
new commands. There is no need to use ftp or rcp to copy a file between hosts on the
network; cp works fine.

There are two sides to NFS: a client side and a server side. The client is the system that uses the
remote directories as if they were part of its local filesystem. The server is the system that makes
the directories available for use. Attaching a remote directory to the local filesystem (a client
function) is called mounting a directory. Offering a directory for remote access (a server function) is
called sharing or exporting a directory.[1] Frequently, a system runs both the client and the server
NFS software. In this section we'll look at how to configure a system to export and mount
directories using NFS.

[1] Solaris uses the term sharing. Most other systems use the term exporting.

If you're responsible for an NFS server for a large site, you should take care in planning and
implementing the NFS environment. This chapter describes how NFS is configured to run on a
client and a server, but you may want more details to design an optimal NFS environment. For a
comprehensive treatment, see Managing NFS and NIS by Hal Stern (O'Reilly & Associates).

9.1.1 NFS Daemons

The Network File System is run by several daemons, some performing client functions and some
performing server functions. Before we discuss the NFS configuration, let's look at the function of
the daemons that run NFS on a Solaris 8 system:

nfsd [nservers]

The NFS daemon, nfsd, runs on NFS servers. This daemon services the client's NFS
requests. The nservers option specifies how many daemons should be started.

mountd

The NFS mount daemon, mountd, processes the clients' mount requests. NFS servers run
the mount daemon.

nfslogd

The NFS logging daemon, nfslogd, logs activity for exported filesystems. NFS servers run
the logging daemon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rquotad

The remote quota server, rquotad, provides information about user quotas on remote
filesystems that is then displayed by the quota command. The remote quota server is run
on both clients and servers.

lockd

The lock daemon, lockd, handles file lock requests. Both clients and servers run the lock
daemon. Clients request file locks, and servers grant them.

statd

The network status monitor daemon, statd, is required by lockd to provide monitoring
services. In particular, it allows locks to be reset properly after a crash. Both clients and
servers run statd.

On a Solaris 8 system, the daemons necessary to run NFS are found in the /usr/lib/nfs directory.
Most of these daemons are started at boot time by two scripts located in the /etc/init.d directory,
nfs.client and nfs.server. The nfs.client script starts the statd and lockd programs.[2]

[2] Alternatively, the prefix rpc. may be used on the daemon names. For example, the Slackware Linux system uses the
filename rpc.nfsd for the NFS daemon. Check your system's documentation.

NFS server systems run those two daemons, plus the NFS server daemon (nfsd), the NFS
logging daemon (nfslogd), and the mount server daemon (mountd). On Solaris systems, the
nfs.server script starts mountd, nfslogd, and 16 copies of nfsd. Solaris systems do not normally
start rquotad at boot time. Instead, rquotad is started by inetd, as this grep of the
/etc/inetd.conf file shows:

$ grep rquotad /etc/inetd.conf
rquotad/1 tli rpc/datagram_v wait root /usr/lib/nfs/rquotad rquotad

Each system has its own technique for starting these daemons. If some of the daemons aren't
starting, ensure your startup scripts and your inetd.conf file are correct.

9.1.2 Sharing Unix Filesystems

The first step in configuring a server is deciding which filesystems will be shared and what
restrictions will be placed on them. Only filesystems that provide a benefit to the client should be
shared. Before you share a filesystem, think about what purpose it will serve. Some common
reasons for sharing filesystems are:

To provide disk space to diskless clients

To prevent unnecessary duplication of the same data on multiple systems

To provide centrally supported programs and data

To share data among users in a group

Once you've selected the filesystems you'll share, you must configure them for sharing using the
appropriate commands for your system. The following section emphasizes the way this is done on
Solaris systems. It is very different on Linux systems, which are covered later. Check your system's
documentation to find out exactly how it implements NFS file sharing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1.2.1 The share command

On Solaris systems, directories are exported using the share command.

A simplified syntax for the share command is:

 share -F nfs [-o options] pathname
where pathname is the path of the directory the server is offering to share with its clients, and
options are the access controls for that directory. The options are:

rw

The rw option grants read and write access to the shared filesystem. It can be specified in
the form rw=accesslist to identify the systems that are granted this access. When used
in this way, only the systems identified in the list are given access to the filesystem. If the
access list is not provided with the rw option, all hosts are given read/write access to the
filesystem.

ro

This option limits access to read-only. It also can be specified with an access list, e.g.,
ro=accesslist. When the access list is included, only the systems on the list have access
and that access is limited to read-only. If the access list is not provided with the ro option,
all hosts are given read-only access to the filesystem, which is the default if no options are
specified.

aclok

This option grants full access to all clients, which could open up a security hole. This option
is documented on the Solaris system, but it should never be used. It is intended to provide
backward compatibility with a version of NFS that no longer exists.

anon= uid

Defines the UID used for users who do not provide a valid user ID.

index= file

Tells NFS to use a web-style index file instead of a directory listing for this filesystem.

log[= tag]

Enable logging. If an optional tag is specified, it must match a tag defined in the
/etc/nfs/nfslog.conf file.

nosub

Do not allow clients to mount subdirectories. The default is sub, which allows subdirectories
to be mounted.

nosuid

Do not allow clients to create setuid or setgid files on this filesystem. The default is suid,
which allows clients to create setuid and setgid files.

public

Use the public file handle for this filesystem.

root= accesslist

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root= accesslist

This option allows the root users from the systems specified by the access list to have root
access to the filesystem.

sec= type

Defines the type of authentication used for accessing this filesystem. type is a colon-
separated list of NFS security modes. For access to be successful, the client must support
at least one of the security modes identified in the type list. The possible type values are:

sys

Use clear-text user IDs and group IDs to control access to the filesystem. This is the
same as traditional Unix file permissions, which are granted based on UID and GID,
with the exception that the UID and GID are passed over the network and the server
must trust the remote source.

dh

Use Diffie-Hellman public key cryptography for authentication.

krb4

Use the Kerberos Version 4 for authentication.

none

Do not use authentication. When no authentication is used, all users access the
filesystem as user nobody.

window= seconds

Defines the maximum lifetime in seconds that the NFS server will permit for a dh or krb4
authentication. The server rejects any security credentials that have a longer lifetime value.
seconds defaults to 30000.

A few of the options contain an access list. The access list is a colon-separated list that identifies
computers by individual hostnames, individual IP addresses, or by the domain, network, or NIS
netgroup to which the hosts belong. The syntax of these list elements is:

hostname

This is any hostname that resolves to an IP address. It can be a fully qualified name or just
the hostname as long as the name as written will resolve to an IP address. If the hostname
can be found in the local host table, the short name can be used. If the name must be
resolved by DNS, the fully qualified hostname, with its domain name attached, should be
specified. However, fully qualified names should not be used if your system does not use
DNS, i.e., if your system relies exclusively on NIS.

address

An IP address in dotted decimal format can be used.

netgroup

If an NIS netgroup name is used, the option applies to every system within that netgroup.
Netgroup names look identical to unqualified hostnames and are easy to confuse with
hostnames. Netgroup names should only be used if your system uses NIS.

. domain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. domain

A domain name is used to apply the option to every system within that domain. When a
domain name is used, it is preceded by a dot (.). Thus .wrotethebook.com applies to every
system in the wrotethebook.com domain. Domain names should be used only if your server
uses DNS.

@ network[/ prefix]

A network address is used to apply an option to every system within the network. When a
network address is used, it must be preceded by an at-sign (@). An optional network prefix
can be used with the address to clearly define the network mask.

The rw and ro options can be combined to grant different levels of access to different clients. For
example:

share -F nfs -o rw=crab:horseshoe ro /usr/man

share -F nfs -o rw=rodent:crab:horseshoe:jerboas /export/home/research

The first share command grants read and write access to crab and rodent, and read-only access
to all other clients. On the other hand, the second share command grants read/write access to
rodent, crab, horseshoe, and jerboas, and no access of any kind to any other client.

The share command does not survive a boot. Put the share commands in the /etc/dfs/dfstab file
to make sure that the filesystems continue to be offered to your clients even if the system reboots.
Here is a sample dfstab file containing our two share commands:

% cat /etc/dfs/dfstab
place share(1M) commands here for automatic execution

on entering init state 3.

share [-F fstype] [-o options] [-d "<text>"] <pathname> [resource]

.e.g.,

share -F nfs -o rw=engineering -d "home dirs" /export/home2

share -F nfs -o rw=crab:horseshoe ro /usr/man

share -F nfs -o rw=rodent:crab:horseshoe:jerboas /export/home/research

The share command, the dfstab file, and even the terminology "share" are Solaris-specific. Most
Unix systems say that they are exporting files, instead of sharing files, when they are offering files
to NFS clients. Furthermore, they do not use the share command or the dfstab file; instead, they
offer filesystems through the /etc/exports file. Linux is an example of such a system.

9.1.2.2 The /etc/exports file

The /etc/exports file is the NFS server configuration file for Linux systems. It controls which files
and directories are exported, which hosts can access them, and what kinds of access are allowed.
A sample /etc/exports file might contain these entries:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/man crab(rw) horseshoe(rw) (ro)

/usr/local (ro)

/home/research rodent(rw) crab(rw) horseshoe(rw) jerboas(rw)

This sample file says that:

/usr/man can be mounted by any client, but it can be written to only by crab and horseshoe.
Other clients have read-only access.

/usr/local can be mounted by any client, with read-only access.

/home/research can be mounted only by the hosts rodent, crab, horseshoe, and jerboas.
These four hosts have read/write access.

The options used in each of the entries in the /etc/exports file determine what kinds of access are
allowed. The information derived from the sample file is based on the options specified on each
line in the file. The general format of the entries is as follows:

 directory [host(option)]...

directory names the directory or file that is available for export. The host is the name of the
client granted access to the exported directory, while the option specifies the type of access
being granted.

In the sample /etc/exports file shown above, the host value is either the name of a single client or
it is blank. When a single hostname is used, access is granted to the individual client. If no
hostvalue is specified, the directory is exported to everyone. Like Solaris, Linux also accepts
values for domains, networks, and netgroups, although the syntax is slightly different. Valid host
values are:

Individual hostnames such as crab or crab.wrotethebook.com.

Domain wildcards such as *wrotethebook.com for every host in the wrotethebook.com
domain.

IP address/address mask pairs such as 172.16.12.0/255.255.255.0 for every host with an
address that begins with 172.16.12.

Net groups such as @group1.

Notice that in Linux, domain names begin with an asterisk (*), instead of the dot used in Solaris.
Also note that the at-sign begins a netgroup name, whereas in Solaris the at-sign is used at the
beginning of a network address.

The options used in the sample /etc/exports file are:

ro

Read-only prevents NFS clients from writing to this directory. Attempts by clients to write to a
read-only directory fail with the message "Read-only filesystem" or "Permission denied." If
ro is specified without a client hostname, all clients are granted read-only access.

rw

Read/write permits clients to read and write to this directory. When specified without
hostname, all clients are granted read/write access. If a hostname is specified, only the
named host is given read/write permission.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although specific hosts are granted read/write access to some of these directories, the access
granted to individual users of those systems is controlled by standard Unix user, group, and world
file permissions based on the user's user ID (UID) and group ID (GID). NFS trusts that a remote
host has authenticated its users and assigned them valid UIDs and GIDs. Exporting files grants the
client system's users the same access to the files they would have if they directly logged into the
server. This assumes, of course, that both the client and the server have assigned exactly the
same UIDs and GIDs to the same users, which is not always the case. If both the client and the
server assign the same UID to a given user, for example, if Craig is assigned 501 on both
systems, then both systems properly identify Craig and grant him appropriate access to his files.
On the other hand, if the client assigns Craig a UID of 501 and the server has assigned that UID to
Michael, the server will grant Craig access to Michael's files as if Craig owned those files. NFS
provides several tools to deal with the problems that arise because of mismatched UIDs and GIDs.

One obvious problem is dealing with the root account. It is very unlikely that you want people with
root access to your clients to also have root access to your server. By default, NFS prevents this
with the root_squash setting, which maps requests that contain the root UID and GID to the
nobody UID and GID. Thus if someone is logged into a client as root, they are only granted world
permissions on the server. You can undo this with the no_root_squash setting, but
no_root_squash opens a potential security hole.

Map other UIDs and GIDs to nobody with the squash_uids, squash_gids, and all_squash
options. all_squash maps every user of a client system to the user nobody. squash_uids and
squash_gids map specific UIDs and GIDs. For example:

/pub (ro,all_squash)

/usr/local/pub (squash_uids=0-50,squash_gids=0-50)

The first entry exports the /pub directory with read-only access to every client. It limits every user of
those clients to the world permissions granted to nobody, meaning that the only files the users can
read are those that have world read permission.

The second entry exports /usr/local/pub to every client with default read/write permission. The
squash_uid and squash_gid options in the example show that a range of UIDs and GIDs can
be specified in some options.[3] A single UID or GID can be defined with these options, but it is
frequently useful to affect a range of values with a single command. In the example we prevent
users from accessing the directory with a UID or GID that is 50 or less. These low numbers are
usually assigned to non-user accounts. For example, on our Linux system, UID 10 is assigned to
uucp. Attempting to write a file as uucp would cause the file to be written with the owner mapped to
nobody. Thus the user uucp would be able to write to the /usr/local/pub directory only if that
directory had world write permission.

[3] Of the eight options discussed in this section, three, squash_uid, squash_gid, and map_static, map a range of
UIDs and GIDs. These three options are not available in the kernel-level NFS (knfsd) used on some Linux systems.
Mapping for knfsd must be done with the other options.

It is also possible to map every user from a client to a specific user ID or group ID. The anonuid
and anongid options provide this capability. These options are most useful when the client has
only one user and does not assign that user a UID or GID, for example, in the case of a Microsoft
Windows PC running NFS. PCs generally have only one user and they don't use UIDs or GIDs. To
map the user of a PC to a valid user ID and group ID, enter a line like this in the /etc/exports file:

/home/alana giant(all_squash,anonuid=1001,anongid=1001)

In this example, the hostname of Alana's PC is giant. The entry grants that client read/write access
to the directory /home/alana. The all_squash option maps every request from that client to a
specific UID, but this time, instead of nobody, it maps to the UID and the GID defined by the
anonuid and anongid options. Of course, for this to work correctly, 1001:1001 should be the UID
and GID pair assigned to alana in the /etc/passwd file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A single mapping is sufficient for a PC, but it might not handle all of the mapping needed for a Unix
client. Unix clients assign their users UIDs and GIDs. Problems occur if those differ from the UIDs
and GIDs assigned to those same users on the NFS server. Use the map_static option to point
to a file that maps the UIDs and GIDs for a specific client. For example:

/export/oscon oscon(map_static=/etc/nfs/oscon.map)

This entry says that the /export/oscon directory is exported to the client oscon with read/write
permission. The map_static option points to a file on the server named /etc/nfs/oscon.map that
maps the UIDs and GIDs used on oscon to those used on the server. The oscon.map file might
contain the following entries:

UID/GID mapping for client oscon

remote local comment

uid 0-50 - #squash these

gid 0-50 - #squash these

uid 100-200 1000 #map 100-200 to 1000-1100

gid 100-200 1000 #map 100-200 to 1000-1100

uid 501 2001 #map individual user

gid 501 2001 #map individual user

The first two lines map the UIDs and GIDs from 0 to 50 to the user nobody. The next two lines map
all of the client UIDs and GIDs in the range of 100 to 200 to corresponding numbers in the range of
1000 to 1100 on the server. In other words, 105 on the client maps to 1005 on the server. This is
the most common type of entry. On most systems, existing UIDs and GIDs have been assigned
sequentially. Often, several systems have assigned the UIDs and GIDs sequentially from 101 to
different users in a completely uncoordinated manner. This entry maps the users on oscon to UIDs
and GIDs starting at 1000. Another file might map the 100 to 200 entries of another client to UIDs
and GIDs starting at 2000. A third file might map yet another client to 3000. This type of entry
allows the server to coordinate UIDs and GIDs where no coordination exists. The last two lines
map an individual user's UID and GID. This is less commonly required, but it is possible.

9.1.2.3 The exportfs command

After defining the directories in the /etc/exports file, run the exportfs command to process the
exports file and to build /var/lib/nfs/xtab. The xtab file contains information about the currently
exported directories, and it is the file that mountd reads when processing client mount requests.
To process all of the entries in the /etc/exports file, run exportfs with the -a command-line
option:

exportfs -a
This command, which exports everything in the exports file, is normally run during the boot from a
startup script. To force changes in the /etc/exports file to take effect without rebooting the system,
use the -r argument:

exportfs -r
The -r switch synchronizes the contents of the exports file and the xtab file. Items that have been
added to the exports file are added to the xtab file, and items that have been deleted are removed
from xtab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The exportfs command can export a directory that is not listed in the /etc/exports file. For
example, to temporarily export /usr/local to the client fox with read/write permission, enter this
command:

exportfs fox:/usr/local -o rw
After the client has completed its work with the temporarily exported filesystem, the directory is
removed from the export list with the -u option, as shown:

exportfs -u fox:/usr/local
The -u option can be combined with the -a option to completely shut down all exports without
terminating the NFS daemon:

exportfs -ua
Once the server exports or shares the appropriate filesystems, the clients can mount and use
those filesystems. The next section looks at how an NFS client system is configured.

9.1.3 Mounting Remote Filesystems

Some basic information is required before you can decide which NFS directories to mount on your
system. You need to know which servers are connected to your network and which directories are
available from those servers. A directory cannot be mounted unless it is first exported by a server.

Your network administrator is a good source for this information. The administrator can tell you
what systems are providing NFS service, what directories they are exporting, and what these
directories contain. If you are the administrator of an NFS server, you should develop this type of
information for your users. See Chapter 4 for advice on planning and distributing network
information.

On Solaris and Linux systems, you can also obtain information about the shared directories directly
from the servers by using the showmount command. The NFS servers are usually the same
centrally supported systems that provide other services such as mail and DNS. Select a likely
server and query it with the command showmount -e hostname. In response to this command,
the server lists the directories that it exports and the conditions applied to their export.

For example, a showmount -e query to jerboas produces the following output:

% showmount -e jerboas
export list for jerboas:

/usr/man (everyone)

/home/research rodent,crab,limulus,horseshoe

/usr/local (everyone)

The export list shows the NFS directories exported by jerboas as well as who is allowed to access
those directories. From this list, rodent's administrator may decide to mount any of the directories
offered by jerboas. Our imaginary administrator decides to:

1. Mount /usr/man from jerboas instead of maintaining the manpages locally.

2. Mount /home/research to more easily share files with other systems in the research group.

3. Mount the centrally maintained programs in /usr/local.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These selections represent some of the most common motivations for mounting NFS directories:

Saving disk space

Sharing files with other systems

Maintaining common files centrally

The extent to which you use NFS is a personal choice. Some people prefer the greater personal
control you get from keeping files locally, while others prefer the convenience offered by NFS. Your
site may have guidelines for how NFS should be used, which directories should be mounted, and
which files should be centrally maintained. Check with your network administrator if you're unsure
about how NFS is used at your site.

9.1.3.1 The mount command

A client must mount a shared directory before using it. "Mounting" the directory attaches it to the
client's filesystem hierarchy. Only directories offered by the servers can be mounted, but any part
of the offered directory, such as a subdirectory or a file, can be mounted.

NFS directories are mounted using the mount command. The general structure of the mount
command is:

 mount hostname:remote-directory local-directory

The hostname identifies an NFS server, and the remote-directory identifies all or part of a
directory offered by that server. The mount command attaches that remote directory to the client's
filesystem using the directory name provided for local-directory. The client's local directory,
called the mount point, must be created before mount is executed. Once the mount is completed,
files located in the remote directory can be accessed through the local directory exactly as if they
were local files.

For example, assume that jerboas.wrotethebook.com is an NFS server and that it shares the files
shown in the previous section. Further assume that the administrator of rodent wants to access the
/home/research directory. The administrator simply creates a local /home/research directory and
mounts the remote /home/research directory offered by jerboas on this newly created mount point:

mkdir /home/research
mount jerboas:/home/research /home/research
In this example, the local system knows to mount an NFS filesystem because the remote directory
is preceded by a hostname and NFS is the default network filesystem for this client. NFS is the
most common default network filesystem. If your client system does not default to NFS, specify
NFS directly on the mount command line. On a Solaris 8 system, the -F switch is used to identify
the filesystem type:

mount -F nfs jerboas:/home/research /home/research
On a Linux system the -t switch is used:

mount -t nfs jerboas:/home/research /home/research
Once a remote directory is mounted, it stays attached to the local filesystem until it is explicitly
dismounted or the local system reboots. To dismount a directory, use the umount command. On
the umount command line, specify either the local or remote name of the directory that is to be
dismounted. For example, the administrator of rodent can dismount the remote
jerboas:/home/research filesystem from the local /home/research mount point, with either:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

umount /home/research
or:

umount jerboas:/home/research
Booting also dismounts NFS directories. Because systems frequently wish to mount the same
filesystems every time they boot, Unix provides a system for automatically remounting after a boot.

9.1.3.2 The vfstab and fstab files

Unix systems use the information provided in a special table to remount all types of filesystems,
including NFS directories, after a system reboot. The table is a critical part of providing users
consistent access to software and files, so care should be taken whenever it is modified. Two
different files with two different formats are used for this purpose by the different flavors of Unix.
Linux and BSD systems use the /etc/fstab file, and Solaris, our System V example, uses the
/etc/vfstab file.

The format of the NFS entries in the Solaris vfstab file is:

filesystem - mountpoint nfs - yes options

The various fields in the entry must appear in the order shown and be separated by whitespace.
The items not in italics (both dashes and the words nfs and yes) are keywords that must appear
exactly as shown. filesystem is the name of the directory offered by the server, mountpoint is
the pathname of the local mount point, and options are the mount options discussed below. A
sample NFS vfstab entry is:

jerboas:/home/research - /home/research nfs - yes rw,soft

This entry mounts the NFS filesystem jerboas:/home/research on the local mount point
/home/research. The filesystem is mounted with the rw and soft options set. We previously
discussed the commonly used read/write (rw) and read-only (ro) options, and there are many
more NFS options. The NFS mount options available on Solaris systems are:

remount

If the filesystem is already mounted read-only, remount the filesystem as read/write.

soft

If the server fails to respond, return an error and don't retry the request.

timeo= n

Defines the number of seconds to wait for a timeout before issuing an error.

hard

If the server fails to respond, retry until it does respond. This is the default.

bg

Do the retries in background mode, which allows the boot to proceed.

fg

Do the retries in foreground mode. This option could hang the boot process while the mount
is being retried. For this reason, fg is used primarily for debugging.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

intr

Allow a keyboard interrupt to kill a process that is hung waiting for the server to respond.
Hard-mounted filesystems can become hung because the client retries forever, even if the
server is down. This is a default.

nointr

Don't allow keyboard interrupts. In general, this is a bad idea.

nosuid

Do not allow an executable stored on the mounted filesystem to run setuid. This improves
security but may limit utility.

acdirmax= n

Cache directory attributes for no more than n seconds. The default is to hold cache values
for a maximum of 60 seconds. Repeated requests for filesystem attributes is one of the
leading contributors to NFS traffic. Caching this information helps to reduce the traffic.

acdirmin= n

Cache directory attributes for at least n seconds. The default is 30 seconds.

acregmax= n

Cache file attributes for no more than n seconds. The default is 60 seconds.

acregmin= n

Cache file attributes for at least n seconds. The default is 3 seconds.

actimeo= n

Sets a single value for acdirmax, acdirmin, acregmax, and acregmin.

grpid

Use the group ID of the parent directory when creating new files. If this option is not set, the
effective GID of the calling process is used.

noac

Do not cache information. The default is to use caching, which can be specified with the ac
option.

port= n

Identifies the IP port number used by the server.

posix

Use POSIX standards for the filesystem. POSIX is a wide-ranging Unix interoperability
standard that includes many standards for filesystems, such as the maximum length of
filenames and how file locks are set.

proto= protocol

Specifies the transport protocol that will be used by NFS.

public

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public

Use the public file handle when connecting to the NFS server.

quota

Use quota to enforce user quotas on this filesystem.

noquota

Do not use quota to enforce user quotas on this filesystem.

retrans= n

Defines the number of times NFS will retransmit when a connectionless transport protocol is
used.

retry= n

Defines the number of times a mount attempt will be retried. The default is to retry 10,000
times.

rsize= n

Defines the size of the read buffer as n bytes. The default for NFS version 3 is 32,768 bytes.

sec= type

Specifies the type of security used for NFS transactions. The type values supported on the
Solaris 8 mount command are the same as those listed for the share command: sys, dh,
krb4, or none.

wsize= n

Sets the size of the write buffer to n bytes. The default is 32768 bytes for NFS version 3.

vers= version

Specifies the version of NFS that should be used for this mount. By default, the system
automatically selects the latest version supported by both the client and the server.

On the Solaris system, the filesystems defined in the vfstab file are mounted by a mountall
command located in a startup file. On Linux systems, the startup file contains a mount command
with the -a flag set, which causes Linux to mount all filesystems listed in fstab.[4]

[4] Red Hat Linux uses a special script, /etc/init.d/netfs, just for mounting all of the different networked filesystems, which
include NFS.

The format of NFS entries in the /etc/fstab file is:

 filesystem mountpoint nfs options

The fields must appear in the order shown and must be separated by whitespace. The keyword
nfs is required for NFS filesystems. filesystem is the name of the directory being mounted.
mountpoint is the pathname of the local mount point. options are any of the Linux mount
options.

Linux uses most of the same NFS mount options as Solaris. rsize, wsize, timeo, retrans,
acregmin, acregmax, acdirmin, acdirmax, actimeo, retry, port, bg, fg, soft, hard,
intr, nointr, ac, noac, and posix are all options that Linux has in common with Solaris. In
addition to these, Linux uses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mountport= n

Defines the port to be used by mountd.

mounthost= name

Identifies the server running mountd.

mountprog= n

Defines the RPC program number used by mountd on the remote host.

mountvers= n

Defines the RPC version number used by mountd on the remote host.

nfsprog= n

Defines the RPC program number used by nfsd on the remote host.

nfsvers= n

Defines the RPC version number used by nfsd on the remote host.

namlen= n

Defines the maximum length of the filenames supported by the remote server.

nocto

Do not retrieve attributes when creating a file. The default is to retrieve the attributes, which
can be specified with the cto option.

tcp

Specifies that NFS should use TCP as its transport protocol.

udp

Specifies that NFS should use UDP as its transport protocol.

nolock

Prevents the system from starting lockd. The default is to run lockd, which can be
requested with the lock option.

Finally, there are several options that are not specific to NFS and can be used on the mount
command for any type of filesystem. Table 9-1 lists the common mount options used on Linux
systems.

Table 9-1. Common mount options
Option Function

async Use asynchronous file I/O, which acknowledges writes as soon as they are received to
improve performance.

auto Mount when the -a option is used.

dev Allow character and block special devices on the filesystem.

exec Permit execution of files from the filesystem.

noauto Don't mount with the -a option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nodev Don't allow character and block special devices on the filesystem.

noexec Don't allow execution of files from the filesystem.

nosuid Don't allow programs stored on the filesystem to run setuid or setgid.

nouser Only root can mount the filesystem.

remount Remount a mounted filesystem with new options.

ro Mount the filesystem read-only.

rw Mount the filesystem read/write.

suid Allow programs to run setuid or setgid.

sync Use synchronous filesystem I/O, which acknowledges writes only after they are written
to disk to improve reliability.

user Permit ordinary users to mount the filesystem.

atime Update inode access time for every access.

noatime Do not update inode access time.

defaults Set the rw, suid, dev, exec, auto, nouser, and async options.

A grep of fstab shows sample NFS entries.[5]

[5] grep is used because the fstab file contains other information not related to NFS.

% grep nfs /etc/fstab
jerboas:/usr/spool/mail /usr/spool/mail nfs rw 0 0

jerboas:/usr/man /usr/man nfs rw 0 0

jerboas:/home/research /home/research nfs rw 0 0

The grep shows that there are three NFS filesystems contained in the /etc/fstab file. The mount -
a command in the boot script remounts these three directories every time the system boots.

The vfstab and fstab files are the most common methods used for mounting filesystems at boot
time. There is another technique that automatically mounts NFS filesystems, but only when they
are actually needed. It is called automounter.

9.1.4 NFS Automounter

An automounter is a feature available on most NFS clients. Two varieties of automounters are in
widespread use: autofs and amd. The Automounter Filesystem (autofs) is the automounter
implementation that comes with Solaris and Linux, and it is the implementation we cover in this
section. Automounter Daemon (amd) is available for many Unix versions and is included with Linux
but not with Solaris. To find out more about amd, see Linux NFS and Automounter Administration
written by Erez Zadok, the amd maintainer. In this section, automounter and automounter daemon
refer to the version of autofs that comes with Solaris 8.

The automounter configuration files are called maps. Three basic map types are used to define the
automounter filesystem:

Master map

The configuration file read by automount. It lists all of the other maps that are used to
define the autofs filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Direct map

A configuration file that lists the mount points, pathnames, and options of filesystems that
are to be mounted by the automounter daemon (automountd).

Indirect map

A configuration file that contains pathnames and "relative" mount points. The mount points
are relative to a directory path declared in the master map. How indirect maps are used will
become clear in the examples.

On Solaris systems the automounter daemon (automountd) and the automount command are
started by the /etc/init.d/autofs script. The script is run with the start option to start automounter,
i.e., autofs start. It is run with the stop option to shut down automounter. automount and
automountd are two distinct, separate programs. automountd runs as a daemon and
dynamically mounts filesystems when they are needed. automount processes the auto_master
file to determine the filesystems that can be dynamically mounted.

To use automounter, first configure the /etc/auto_master file. Entries in the auto_master file have
this format:

mount-point map-name options

The Solaris system comes with a default auto_master file preconfigured. Customize the file for
your configuration. Comment out the +auto_master entry unless you run NIS+ or NIS and your
servers offer a centrally maintained auto_master map. Also ignore the /xfn entry, which is for
creating a federated (composite) name service. Add an entry for your direct map. In the example,
this is called auto_direct. Here is /etc/auto_master after our modifications:

Master map for automounter

#+auto_master

#/xfn -xfn

/net -hosts -nosuid

/home auto_home

/- auto_direct

All lines that begin with a sharp sign (#) are comments, including the +auto_master and /xfn
lines we commented out. The first real entry in the file specifies that the shared filesystems offered
by every NFS server listed in the /etc/hosts file are automatically mounted under the /net directory.
A subdirectory is created for each server under /net using the server's hostname. For example,
assume that jerboas is listed in the hosts file and that it exports the /usr/local directory. This
auto_master entry automatically makes that remote directory available on the local host as
/net/jerboas/usr/local.

The second entry automatically mounts the home directories listed in the /etc/auto_home map
under the /home directory. A default /etc/auto_home file is provided with the Solaris system.
Comment out the +auto_home entry found in the default file. It is used only if you run NIS+ or NIS
and your servers offer a centrally maintained auto_home map. Add entries for individual user home
directories or for all home directories from specific servers. Here is a modified auto_home map:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Home directory map for automounter

#+auto_home

craig crab:/export/home/craig

* horseshoe:/export/home/&

The first entry mounts the /export/home/craig filesystem shared by crab on the local mount point
/home/craig. The auto_home map is an indirect map, so the mount point specified in the map
(craig) is relative to the /home mount point defined in the auto_master map. The second entry
mounts every home directory found in the /export/home filesystem offered by horseshoe to a "like-
named" mount point on the local host. For example, assume that horseshoe has two home
directories, /export/home/daniel and /export/home/kristin. Automounter makes them both available
on the local host as /home/daniel and /home/kristin. The asterisk (*) and the ampersand (&) are
wildcard characters used specifically for this purpose in autofs maps.

That's it for the auto_home map. Refer back to the auto_master map. The third and final entry in
the /etc/auto_master file is:

/- auto_direct

We added this entry for our direct map. The special mount point /- means that the map name
refers to a direct map. Therefore the real mount points are found in the direct map file. We named
our direct map file /etc/auto_direct. There is no default direct map file; you must create it from
scratch. The file we created is:

Direct map for automounter

/home/research -rw jerboas:/home/research

/usr/man -ro,soft horseshoe,crab,jerboas:/usr/share/man

The format of entries in a direct map file is:

mount-point options remote filesystem

Our sample file contains two typical entries. The first entry mounts the remote filesystem
/home/research offered by the server jerboas on the local mount point /home/research. It is
mounted read/write. The second entry mounts the manpages read-only with a "soft" timeout.[6]

Note that three servers are specified for the manpages in a comma-separated list. If a server is
unavailable or fails to respond within the soft timeout period, the client asks the next server in the
list. This is one of the nice features of automounter.

[6] See the description of NFS mount options earlier in this chapter.

Automounter has four key features: the -hosts map, wildcarding, automounting, and multiple
servers. The -hosts map makes every exported filesystem from every server listed in the /etc/hosts
file available to the local user. The wildcard characters make it very easy to mount every directory
from a remote server to a like-named directory on the local system. Automounting goes hand-in-
glove with these two features because only the filesystems that are actually used are mounted.
While -hosts and wildcards make a very large number of filesystems available to the local host,
automounting limits the filesystems that are actually mounted to those that are needed. The last
feature, multiple servers, improves the reliability of NFS by removing the dependence on a single
server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Sharing Unix Printers

Unix uses NFS to share files; it uses two different tools, the Line Printer Daemon (lpd) and the Line
Printer (lp) printer service, to provide printer services for local and remote users. lpd is used on
BSD systems and most Linux systems. lp is used on System V systems, including Solaris 8. In the
following sections we discuss both tools.

9.2.1 Line Printer Daemon

lpd manages the printer spool area and the print queues. lpd is started at boot time from a startup
script. It is generally included in the startup of Linux and BSD systems by default, so you might not
need to add it to your startup script. For example, it is started by the /etc/init.d/lpd script on a Red Hat
Linux system.

9.2.1.1 The printcap file

When lpd starts, it reads the /etc/printcap file to find out about the printers available for its use. The
printcap file defines the printers and their characteristics. Configuring a printcap file is the scariest
part of setting up a Unix print server. (Don't worry. As we'll see later with the Solaris admintool,
most systems provide a GUI tool for configuring printers.) The printcap file scares system
administrators because the parser that reads the file is very finicky, and the syntax of the parameters
in the file is terse and arcane. Most parser problems can be avoided by following these rules:

Start each entry with a printer name that begins in the first column. No white-space should
precede the first printer name. Multiple printer names can be used if they are separated by pipe
characters (|). One entry must have the printer name lp. If you have more than one printer on
the server, assign lp to the "default" printer.

Continue printer entries across multiple lines by escaping the newline character at the end of
the line with a backslash (\) and beginning the following line with a tab. Take care that no blank
space comes after the backslash. The character after the backslash must be the newline
character.

Every field, other than the printer name, begins and ends with a colon (:). The character before
the backslash on a continued line is a colon and the first character after the tab on the
continuation line is a colon.

Begin comments with a sharp sign (#).

The configuration parameters used in a printcap file describe the characteristics of the printer. These
characteristics are called "capabilities" in the printcap documentation, but really they are the printer
characteristics that lpd needs to know in order to communicate with the printer. Parameters are
identified by names that are two characters long and are usually assigned a value. The syntax of the
parameters varies slightly depending on the type of value they are assigned. Parameters come in
three different flavors:

Boolean

All printcap Boolean values default to "false." Specifying a Boolean enables its function.
Booleans are specified simply by entering the two-character parameter name in the file. For
example, :rs: enables security for remote users.

Numeric

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some parameters are assigned numeric values. For example, :br#9600: sets the baud rate
for a serial printer.

String

Some parameters use string values. For example, :rp=laser: defines the name of a remote
printer.

A glance at the manpage shows that there are many printcap parameters. Thankfully, you'll never
need to use most of them. Most printer definitions are fairly simple, and most printcap files are small.

Print servers usually have only one or two directly attached printers; any other printers defined in
printcap are probably remote printers. Most, if not all, of the printers defined in a client's printcap are
remote printers.

Remote LaserWriter

lw:\

 :lf=/var/adm/lpd-errs:\

 :lp=:rm=horseshoe:rp=lw:\

 :sd=/var/spool/lpd-lw:

The lw printer in this sample printcap file is a remote printer. The lf parameter points to the log file
used to log status and error messages. The remote machine to which the printer is attached is
defined by the :rm=horseshoe: parameter, and the name of the remote printer on that machine is
defined by the :rp=lw: parameter. Multiple printers can use the same log file. The final parameter,
sd, defines the spool directory. Each printer has its own unique spool directory. Defining the remote
printer in the client's printcap file is all that is needed to configure an LPD client.

Writing a printcap from scratch is unnecessary. At most, you will need to tweak the printcap
configuration for your own special needs. All modern Unix systems have printer configuration tools
that will build the basic printcap for you. The Red Hat printconf-gui tool is an example.

Launch the printer configuration tool on a Red Hat 7.2 system running the Gnome desktop by
selecting Printer Configuration from the System menu. When the printconf-gui window opens,
click the New button to add a printer to the printcap file. The New button launches a printer
configuration wizard. Use the first page of the wizard to define the printer name and the queue type.
Enter the printer name, for example lw, in the Queue Name box. Then select the Queue Type. Red
Hat 7.2 offers five choices:

Local Printer

Use this type to define a directly attached printer. When Local Printer is selected, the wizard
asks you to select the printer port to which the printer is attached. The default is /dev/lp0.

Unix Printer

Use this type to define a printer located on a remote server that is accessed via the LPD
protocol. When Unix Printer is selected, the wizard asks for the name of the remote server and
the name of the printer on the remote server.

Windows Printer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use this type to define a remote printer that is accessed via the SMB protocol. When Windows
Printer is selected, the wizard asks for the IP address of the remote server, the SMB
workgroup, and the name of the remote printer, which it calls a share name. The wizard also
allows a username and password to be input in case they are required for access to the printer.
Printer sharing through SMB is is covered in detail later in this chapter.

Novell Printer

Use this type to define a remote printer accessed via the NetWare protocols. When Novell
Printer is selected, the wizard asks for the name of the server and the printer on that server. A
username and password can also be entered if they are required for printer access. To
communicate with a Novell printer you must have the NetWare protocols installed on your
system.

JetDirect Printer

Use this type to define a network-attached printer that uses the JetDirect protocol. Primarily,
this protocol is used on HP printers that contain a built-in Ethernet interface and that connect
directly to the Ethernet cable without going through a server. When JetDirect is selected, the
wizard asks for the IP address of the printer and gives you a chance to enter a port number in
case the printer is not configured to use the standard JetDirect port.

Finally, the wizard presents you with a selection of hundreds of printer drivers. Most Unix systems
use standard PostScript printers. Linux systems, however, are built on commodity PC hardware. PCs
use a hodgepodge of different printers. The wizard lets you select the correct driver for your printer by
selecting the printer make and then the printer model. Once you select the drive, the configuration is
finished and the new printer is installed.

The Red Hat tool is just an example. Future versions of Red Hat will have a newer tool, and other
Unix systems have their own tools. The point is not the details of the tool, but the fact that the
printcap file is not usually written by hand. It is created by a configuration tool.

9.2.1.2 Using LPD

Once the printer is configured, print jobs are sent to the line printer daemon using the Line Printer
Remote (lpr) program. The lpr program creates a control file and sends it and the print file to lpd
There are many possible lpr command-line arguments, but in general the command simply identifies
the printer and the file to be printed, as in:

% lpr -Plj ch09
This command sends a file called ch09 to a printer called lj. The printer can be local or remote. It
doesn't matter as long as the printer is defined in the printcap file and therefore known to lpd.

The client software provides commands to allow the user to check the status of the print job. Table 9-
2 lists these commands, their syntax, and their meaning.

Table 9-2. Line printer commands
Command Function

lpc start [printer] Starts a new printer daemon.

lpc status [printer] Displays printer and queue status.

lpq -Pprinter [user] [job] Lists the jobs in the printer's queue.

lprm -Pprinter job Removes a print job from the queue.

In this syntax, printer is the name of the printer as defined in the /etc/printcap file, user is the
username of the owner of a print job, and job is the job number associated with the print job while it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

username of the owner of a print job, and job is the job number associated with the print job while it
is waiting in the queue. The keyword all can be used in place of a printer name in any lpc
command to refer to all printers.

While lpc is primarily for the system administrator, the status and start commands can be used
by anyone. All the commands shown in Table 9-2 are available to users.

The lpq command displays a list of jobs queued for a printer. Command-line arguments permit the
user to select which printer queue is displayed and to limit the display from that queue to a specific
user's jobs or even to a specific job. Here's an example of displaying the queue for the printer lp:

$ lpq -Plp
Printer: lp@crab 'Canon'

 Queue: 4 printable jobs

 Server: pid 1459 active

 Unspooler: pid 1460 active

 Status: waiting for subserver to exit at 14:17:47.120

 Rank Owner/ID Class Job Files Size Time

active alana@crab+458 A 458 /usr/share/printconf 18043 14:16:53

2 micheal@crab+477 A 477 /usr/share/printconf/t 193 14:17:38

3 james@crab+479 A 479 /usr/share/printconf 18259 14:17:43

4 daniel@crab+481 A 481 /usr/share/printconf 18043 14:17:46

A queued print job can be removed by the owner of the job with the lprm command. Assume that
daniel wants to remove print job number 481. He enters the following command:

$ lprm -Plp 481
Printer lp@crab:

 checking perms 'daniel@crab+481'

 dequeued 'daniel@crab+481'

lpd and lpr were among the first commands created for Unix to exploit the power of TCP/IP
networking. Managing printers is primarily a system administration task. Only those aspects of lpd
related to remote printing are covered here.

9.2.2 Line Printer Service

The Line Printer (LP) print service is used by most System V Unix systems. LP offers the same type
of service as LPD.

Traditionally on System V Unix systems, the LP configuration files are located in the /etc/lp directory.
These files perform the same basic function that the /etc/printcap file does for LPD. However, the
/etc/lp files are not directly edited by the system administrator. The files are created and modified
using the System V lpadmin and lpsystem commands.

The lpadmin command adds local printers to the /etc/lp/printers directory, which makes the printers
available to LP. The basic syntax of adding a new printer is simple. The -p switch defines the local
name of the printer. The -p switch is used with either the -v switch that defines the interface for a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name of the printer. The -p switch is used with either the -v switch that defines the interface for a
local printer or the -s switch that defines the server and printer name for a remote printer. For
example, the following command adds a local printer named lp connected to the parallel printer port
/dev/lp1:

lpadmin -plp -v /dev/lp1
This command adds a printer locally known as laser that is the lj printer on the remote server crab:

lpadmin -llaser -s crab!lj
The specific characteristics of a printer added by lpadmin are controlled by the terminfo file. terminfo
is a file that is almost identical to the printcap file. Like printcap, it has a great many possible
parameters. For more information on terminfo, see the manpage.

The lpsystem command manages printer access on System V systems. By default, most System V
systems share all local printers. Remote printer access settings are defined in the /etc/lp/Systems file,
which comes preconfigured with the following entry:

+:x:-:s5:-:n:10:-:-:Allow all connections

As the comment at its end makes clear, this entry grants all remote systems access to the local
printers. The first field defines the name of the host being granted access. When a plus sign (+) is
used in this field, it means all hosts.

The fields in an /etc/lp/Systems entry are separated by colons (:). The field containing an x and all of
the fields containing a dash (-) can be ignored. These fields are unused.

The fourth field identifies the type of operating system used on the remote client. It contains either s5
for System V computers that use LP to print jobs, or bsd for BSD systems that use LPD.

The n in the sixth field indicates that this "connection" should never be timed out and removed from
the system. A timeout period in minutes could be entered in this field, but this is not usually done.
Keep the connection available as long as the local server is up. The 10 is a related value. It indicates
that if a connection to a remote system fails, it should be retried after 10 minutes. This is a good
value: it is long enough to give the remote system a chance to restart after a crash. Both n and 10
are the defaults and don't usually need to be changed.

Don't directly edit the /etc/lp/Systems file. Modify it with the lpsystem command. To remove a
system from the Systems file, use lpsystem with the -r hostname command-line argument, where
hostname is the value in the first field of the entry you wish to delete. For example, to remove the
plus sign (+) entry from the default /etc/lp/Systems file, type:

lpsystem -r +
To add an entry to the Systems file, use the lpsystem command without the -r option. For
example, to add a BSD system named clock, enter:

lpsystem -t bsd -y "Linux PC in room 820" clock
The command adds the following entry to the Systems file:

clock:x:-:bsd:-:n:10:-:-:Linux PC in room 820

The -t command-line option defines the operating system type. The -y option defines the comment;
clock is, of course, the hostname. We accepted the default values for the timeout and the retry
intervals. These could have been modified from the command line using the -T timeout and the -R
retry options. See the manpage for lpsystem for more information.

The lpadmin and lpsystem commands are found on most System V systems, including Solaris.
Solaris 8, however, does not rely solely on these commands and the /etc/lp directory to configure LP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solaris 8, however, does not rely solely on these commands and the /etc/lp directory to configure LP.
On a Solaris system, printers are configured through the /etc/printers.conf file. The lpadmin
command will add new printers to the /etc/printers.conf file, but printers are usually configured
through the Printer Manager window of the admintool. Figure 9-1 shows the Printer Manager
window.

Figure 9-1. Printer Manager

Clients select Add, then Access to Printer from the Edit menu, and enter the name of the remote
printer and its server in the window that appears. Servers share printers simply by selecting Add, then
LocalPrinter in the same menu and configuring a local printer.

All Unix systems provide some technique for sharing printers. The network administrator's task is to
ensure that the printers are accessible via the network and that they are properly secured.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Using Samba to Share Resources with Windows

NFS and lpd are file and print sharing services for Unix systems, and are both native TCP/IP
applications. Microsoft Windows printer and file sharing applications are based on NetBIOS
(Network Basic Input Output System). Samba bridges these two worlds, providing file and print
sharing for Unix and Windows systems. Samba is the key to integrating Unix and Windows
because it allows a Unix system to be a file and print server for Windows clients, or to be a client
of a Windows server.

The protocol used between NetBIOS clients and servers is Server Message Block Protocol
(SMB). Originally, NetBIOS was a monolithic protocol that took data all the way from the
application to the physical network. Today, NetBIOS runs over TCP/IP, which allows NetBIOS
applications to run on Unix systems that use TCP/IP.

Two things are needed to run NetBIOS on a TCP/IP network: a protocol to carry NetBIOS data
over TCP/IP and a technique to map NetBIOS addresses to TCP/IP addresses. The protocol that
transports NetBIOS is NetBIOS over TCP/IP (NBT), which is defined by RFCs 1001 and 1002.
Address mapping is handled by a special NetBIOS name server. Samba provides both of these
services.

Samba services are implemented as two daemons. The SMB daemon (smbd), the heart of
Samba, provides the file and printer sharing services. The NetBIOS name server daemon (nmbd)
provides NetBIOS-to-IP-address name service. NBT requires some method for mapping NetBIOS
computer names, which are the addresses of a NetBIOS network, to the IP addresses of a
TCP/IP network.

Samba is included in most Linux distributions and is installed during the initial system installation.
On a Red Hat system, the /etc/rc.d/init.d/smb script runs at boot time, and starts both smbd and
nmbd. Samba is not included in Solaris 8, but the software is available for download from the
Internet. Go to http://www.samba.org to select your nearest download site.

9.3.1 Configuring a Samba Server

The Samba server is configured by the smb.conf file. Look in the startup script to see where smbd
expects to find the configuration file. On a Red Hat system, it is /etc/samba/smb.conf. On a
Caldera system, it is /etc/samba.d/smb.conf. The default used in most Samba documentation is
/usr/local/samba/lib/smb.conf. Use find or check the startup script so you know where it is on
your system.

The smb.conf file is divided into sections. Except for the global section, which defines
configuration parameters for the entire server, the sections are named after shares. A share is a
resource offered by the server to the clients. It can be either a filesystem or a shared printer.

The best way to learn about the smb.conf file is to look at one. Minus the printers share, which is
covered later, the Red Hat smb.conf file contains these active lines:

[global]

 workgroup = MYGROUP

 server string = Samba Server

 printcap name = /etc/printcap

 load printers = yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 load printers = yes

 printing = lprng

 log file = /var/log/samba/%m.log

 max log size = 0

 security = user

 encrypt passwords = yes

 smb passwd file = /etc/samba/smbpasswd

 socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192

 dns proxy = no

[homes]

 comment = Home Directories

 browseable = no

 writable = yes

 valid users = %S

 create mode = 0664

 directory mode = 0775

Two sections of the Red Hat configuration file, global and homes, are listed above. The global
section defines parameters that affect the entire server:

workgroup

Defines the hierarchical grouping of hosts, called a workgroup, of which this server is a
member. Replace the MYGROUP name in the example with a meaningful workgroup name
of 15 characters or less. Make sure you use a meaningful name. Never use the name
MYGROUP or WORKGROUP.

server string

Defines the descriptive comment for this server that is displayed by the net view
command on DOS clients. Change the string in the example to something meaningful for
your system.

printcap name

Defines the location of the printcap file. The printcap file is used to identify the printers that
are available to share. The default path is /etc/printcap.

load printers

Specifies whether or not all the printers in the printcap file are to be shared. The default is
yes, use all the printers defined in the printcap file. no means don't read the printcap file at
all. If no is specified, all shared printers must be defined individually.

printing

Identifies the Unix printing system used by the server. In the example, it is LPR Next
Generation (lprng), which is an implementation of the standard LPR/LPD system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Generation (lprng), which is an implementation of the standard LPR/LPD system
described earlier in this chapter.

log file

Defines the location of the log file. The example contains the %m variable,[7] which varies
according to the client's NetBIOS name. This creates a different log file for each client with
a file extension that is the client's NetBIOS name. If the NetBIOS name of the client is crab,
the log file is named /var/log/samba/log.crab. If the client's NetBIOS name is rodent, the log
file is /var/log/samba/log.rodent.

[7] Samba has about 20 different variables. See the manpage for a full list.

max log size

Defines the maximum size of a log file in kilobytes. The default is 5 MB, or 5000 KB. (If the
maximum size is exceeded, smbd closes the log and renames it with the extension .old.) In
the sample configuration, this is set to 0, which means that no maximum size is set for log
files.

security

Defines the type of security used. There are four possible settings:

share

Requests share-level security. This is the lowest level of security. The resource is
shared with everyone. It is possible to associate a password with a share, but the
password is the same for everyone.

user

Requests user-level security. Every user is required to enter a username and an
associated password. By default, this is the username and password defined in
/etc/passwd. The default values for passwords can be changed. See the discussion
of passwords later in this section.

server

Defines server-level security. This is similar to user-level security, but an external
server is used to authenticate the username and password. The external server must
be defined by the password server option.

domain

Defines domain-level security. In this scheme, the Linux server joins a Windows
NT/2000 domain and uses the Windows NT/2000 domain controller as the server
that approves usernames and passwords. Use the password server option to point to
the Windows NT/2000 Primary Domain Controller (PDC). Log into the PDC and
create an account for the Linux system. Finally, add these lines to the global section
on the Linux system:

domain master = no

local master = no

preferred master = no

os level = 0

encrypt passwords

Setting this option to yes causes Samba to encrypt passwords before they are sent across

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting this option to yes causes Samba to encrypt passwords before they are sent across
the network. This makes the server more compatible with Windows clients from Windows
98 on, which default to encrypted passwords, and makes it harder for intruders to sniff
passwords from the network. By default, Samba uses clear-text Unix passwords.

smb passwd file

This option points to the location of the smbpasswd file, where encrypted Samba
passwords are stored. When encrypted passwords are used, the Samba server must
maintain two password files: passwd and smbpasswd. Use the mksmbpasswd.sh script to
build the initial smbpasswd file from the passwd file.

socket options

Defines performance tuning parameters. This option is not required, although setting the
send and receive buffers to 8 KB may slightly increase performance. In the case of this
sample Red Hat configuration, the TCP_NODELAY setting, which causes Samba to send
multiple packets with each transfer, has no effect because it is the default for versions of
Samba 2.0.4 or higher. See Appendix B of Using Samba, by Kelly, Eckstein, and Collier-
Brown (O'Reilly) for a good discussion of Samba performance tuning.

dns proxy

Specifies whether or not nmbd should forward unresolved NBNS queries to DNS.

In addition to the options described above, several other parameters are commonly used in the
global section; they are shown in Table 9-3.

Table 9-3. Other global section parameters
Option Function

deadtime Defines the timeout for inactive connections.

debug level Sets the level of messages written to the log.

keepalive Uses keepalives to check on the state of the clients.

lock
directory

Defines the path of the directory where wins.dat, status files, and lock files are
stored.

message
command Defines how smbd handles WinPopup messages.

name
resolve
order

Defines the order in which services are queried to resolve NetBIOS names.
Possible values are: lmhosts, hosts, wins, and bcast.

netbios
aliases Defines other names the server will answer to.

netbios
name Defines the server's NetBIOS name.

syslog Maps debug levels to syslog levels.

syslog only Uses syslog instead of Samba log files.

time server Tells the server to advertise itself as a Windows time server.

wins
support Enables the WINS name server.

As the Red Hat sample configuration demonstrates, many servers come preconfigured with
reasonable global parameters to begin running a simple server system. In addition to a
preconfigured global section, the Red Hat configuration comes with a preconfigured homes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preconfigured global section, the Red Hat configuration comes with a preconfigured homes
section.

9.3.1.1 The smb.conf homes section

The homes section is a special share section. It tells smbd to permit users to access their home
directories through SMB. Unlike other share sections, which we cover later, this section does not
tell smbd the specific path of the directory being shared. Instead, smbd uses the home directory
from the /etc/passwd file based on the username of the user requesting the share. The
configuration parameters in the Red Hat homes section are:

comment

Provides a description of the share that is displayed in the comment field of the Network
Neighborhood window when this share is viewed on a Windows PC.

browseable

Specifies whether or not all users may browse the contents of this share. no means that
only users with the correct user ID are allowed to browse this share. yes means all users,
regardless of UID, can browse the share. This parameter controls only browsing; actual
access to the contents of the share is controlled by standard Linux file permissions.

writable

Specifies whether or not files can be written to this share. If yes, the share can be written
to. If no, the share is read-only. This parameter defines the actions permitted by Samba.
Actual permission to write to the directory defined by the share is still controlled by standard
Linux file permissions.

valid users

This option lists the users who are allowed to use this share. In this example, %S contains
the name of the user allowed to access this share.

create mode

This option defines the file permissions used when a client creates a file within the homes
share.

directory mode

This option defines the permissions used when a client creates a directory within the
homes share.

9.3.1.2 Sharing directories through Samba

To share a directory through Samba, create a share section in smb.conf that describes the
directory and the conditions under which it will be shared. To share a new directory named
/usr/doc/pcdocs and the /home/research directory used in the NFS examples, add the following
two share sections to the sample smb.conf file:

[pcdocs]

 comment = PC Documentation

 path = /usr/doc/pcdocs

 browseable = yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 browseable = yes

 writable = no

 public = yes

[research]

 comment = Research Deptment Shared Directory

 path = /home/research

 browseable = no

 writable = yes

 create mode = 0750

 hosts allow = horseshoe,jerboas,crab,rodent

Each share section is labeled with a meaningful name. This name is displayed as a folder in the
Network Neighborhood window on client PCs. The example contains some commands we have
already covered and a few new commands. The first new command is path, which defines the
path of the directory being offered by this share.

The pcdocs share also contains the command public, which grants everyone access, even if
they don't have a valid username or password. These public users are granted "guest account"
access to the share. On a Linux system, this means they run as user nobody and group nobody
and are limited to world permissions.

Files may be written to the research share. The create mode command controls the Unix
permissions used when a client writes a file to the share. In the example, the permission 0750
specifies that files will be created as read/write/execute for the owner, read/execute for the group,
and no permissions for the world. A related command, directory mode, defines the permission
used when a client creates a directory within a share. For example:

directory mode = 0744

This sets the permissions for new directories to read/write/execute for the owner, read/execute for
the group, and read/execute for the world. This is a reasonable setting that allows cd and ls to
work as expected.

The research share section also contains a hosts allow command, which defines the clients
that are allowed to access this share. Even if a user has the correct username and password, that
user is allowed to access this share only from the specified hosts. By default, all hosts are granted
access, and specific access is controlled by the username and password.

In addition to the hosts allow command, there is a hosts deny command that defines
computers that are explicitly denied access to the share. Its syntax is similar to that of the hosts
allow command.

Combining these two new share sections with the section that came with the Red Hat
configuration creates a server that provides access to user home directories, to public directories,
and to private directories limited to members of a group. This provides the same services as NFS
in a manner that is simpler for Microsoft Windows clients to use. Samba can also be used to
share printers with Windows clients.

9.3.1.3 Sharing printers through Samba

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shared printers are configured through the smb.conf file. The Red Hat system comes with a
smb.conf file that is preconfigured for sharing printers. The following lines occur right after the
global and homes sections in the Red Hat smb.conf file:

[printers]

 comment = All Printers

 path = /var/spool/samba

 browseable = no

 guest ok = no

 writable = no

 printable = yes

The printcap and load printers lines in the global section prepare the server to share the
printers defined in the printcap file. This printers section makes those printers available to the
clients in a manner similar to the way the homes section makes every home directory available to
the appropriate user. The Red Hat printers share section contains five parameters.

Three of the parameters, comment, browseable, and path, were explained previously. Here,
however, path does not define the path of a shared file. Instead, it defines the path of the spool
directory for the SMB printers.

We introduce two new parameters in this configuration, the first of which is printable, which
identifies this share as a printer. The default for this option is no, meaning that by default, shares
are considered to be file shares instead of printer shares. To create a printer share, set this option
to yes. Setting printable = yes permits clients to write printer files to the spool directory
defined by the path option. Use a create mode command to limit the permissions of the files
created by clients in the spool directory. For example, create mode = 0700.

The other new line, guest ok, defines whether or not guest accounts are permitted access to the
resource. This is exactly the same as the public option discussed earlier, so these two options
are used interchangeably. no means that the user nobody cannot send a print job to the printer. A
user must have a valid user account to use the printer. This is designed to prevent guest users
from abusing the printer, but it is also useful to have a valid username for sorting out print jobs if
you use banner pages and accounting on the server.

Generally, a print server offers all of its printers to all of its clients. However, individual share
sections can be created for each printer in the same way that they are created for file sharing. If
you don't want to share every printer, remove the printers section, set the load printers
option to no, and add individual share sections for just those printers that you want to share.

An smb.conf file with a share section for a specific printer might contain:

[global]

 workgroup = BOOKS

 server string = Print Server

 load printers = no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 security = user

[homes]

 comment = Home Directories

 browseable = no

 writable = yes

[hp5m]

 comment = PostScript Laser Printer

 path = /var/spool/samba

 browseable = no

 public = no

 create mode = 0700

 printable = yes

 printer = lp

This sample file has no printers section. Instead, a share section named hp5m is added that
shares a printer named lp. The printer name must be found in the printcap file for this to work.
The printcap option is allowed to default to /etc/printcap.

smbd is the component of Samba that provides file and printer sharing. The other component of
Samba is nmbd.

9.3.2 NetBIOS Name Service

The NetBIOS name server daemon (nmbd) is the part of the basic Samba software distribution
that turns a Unix server into a NetBIOS name server (NBNS). nmbd can handle queries from
LanManager clients, and it can be configured to act as a Windows Internet Name Server (WINS).

nmbd is configured in the global section of the smb.conf file. The options that relate to running
WINS are:

wins support

Set to yes or no. This option determines whether or not nmbd runs as a WINS server. no is
the default, so by default, nmbd provides browsing controls but does not provide WINS
service.

dns proxy

Set to yes or no. This option tells nmbd to use DNS to resolve WINS queries that it cannot
resolve any other way. This is significant only if nmbd is running as a WINS server. The
default is yes. DNS can help with NetBIOS name resolution only if NetBIOS names and
DNS hostnames are the same.

wins server

Set to the IP address of an external WINS server. This option is useful only if you're not
running a WINS server on your Linux system. This option tells Samba the address of the
external WINS server to which it should send NetBIOS name queries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wins proxy

Set to yes or no. The default is no. When set to yes, nmbd resolves broadcast NetBIOS
name queries by turning them into unicast queries and sending them directly to the WINS
server. If wins support = yes is set, these queries are handled by nmbd itself. If
instead wins server is set, these queries are sent to the external server. The wins
proxy option is needed only if clients don't know the address of the server or don't
understand the WINS protocol.

The NetBIOS name server is generally started at boot time with the following command:

nmbd -D

When started with the -D option, nmbd runs continuously as a daemon listening for NetBIOS
name service requests on port 137. The server answers requests using registration data collected
from its clients and the NetBIOS name-to-address mappings it has learned from other servers.

The lmhosts file is used to manually map addresses when that is necessary. Most WINS servers
do not need an lmhosts file because the servers learn address mappings dynamically from clients
and other servers. NetBIOS names are self-registered; clients register their NetBIOS names with
the server when they boot. The addresses and names are stored in the WINS database, wins.dat.
The lmhosts file is only a small part of the total database.

The lmhosts file is similar to the hosts file described in Chapter 4. Each entry begins with an IP
address that is followed by a hostname. However, this time, the hostname is the NetBIOS name.
Here is a sample lmhosts file:

$ cat /etc/lmhosts
172.16.12.3 horseshoe

172.16.12.1 crab

172.16.12.2 rodent

172.16.12.4 jerboas

Given this lmhosts file, the NetBIOS name rodent maps to IP address 172.16.12.2. Notice that
these NetBIOS names are the same as the TCP/IP hostnames assigned to these clients. Use the
same hostnames for both NetBIOS and TCP/IP. Doing otherwise limits configuration choices and
creates confusion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4 Network Information Service

The Network Information Service (NIS)[8] is an administrative database that provides central
control and automatic dissemination of important administrative files. NIS converts several
standard Unix files into databases that can be queried over the network. The databases are
called NIS maps. Some maps are created from files that you're familiar with from system
administration, such as the password file (/etc/passwd) and the groups file (/etc/group). Others
are derived from files related to network administration:

[8] NIS was formerly called the "Yellow Pages," or yp. Although the name has changed, the abbreviation yp is still
used.

/etc/ethers

Creates the NIS maps ethers.byaddr and ethers.byname. The /etc/ethers file is used by
RARP (see Chapter 2).

/etc/hosts

Creates the maps hosts.byname and hosts.byaddr (see Chapter 3).

/etc/networks

Creates the maps networks.byname and networks.byaddr (see Chapter 3).

/etc/protocols

Creates the maps protocols.byname and protocols.byaddr (see Chapter 2).

/etc/services

Creates a single map called services.byname (see Chapter 2).

/etc/aliases

Defines electronic mail aliases and creates the maps mail.aliases and mail.byaddr (see
Chapter 10).

Check the maps available on your server with the ypcat -x command. This command produced
the same map list on both our Solaris and Linux sample systems. Your server may display a
longer list. Here is the list from a Linux system:

% ypcat -x
Use "passwd" for map "passwd.byname"

Use "group" for map "group.byname"

Use "networks" for map "networks.byaddr"

Use "hosts" for map "hosts.byname"

Use "protocols" for map "protocols.bynumber"

Use "services" for map "services.byname"

Use "aliases" for map "mail.aliases"

Use "ethers" for map "ethers.byname"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use "ethers" for map "ethers.byname"

NIS allows these important administrative files to be maintained on a central server yet remain
completely accessible to every workstation on the network. All of the maps are stored on a master
server that runs the NIS server process ypserv. The maps are queried remotely by client
systems. Clients run ypbind to locate the server.

The NIS server and its clients are a NIS domain, a term NIS shares with DNS. The NIS domain is
identified by a NIS domain name. The only requirement for the name is that different NIS domains
accessible through the same local network must have different names. Although NIS domains
and DNS domains are distinct entities, Sun recommends using the DNS domain name as the NIS
domain name to simplify administration and reduce confusion.

NIS uses its domain name to create a directory within /var/yp where the NIS maps are stored. For
example, the DNS domain of our imaginary network is wrotethebook.com, so we also use this as
our NIS domain name. NIS creates a directory named /var/yp/wrotethebook.com and stores the
NIS maps in it.

While the NIS protocols and commands were originally defined by Sun Microsystems, the service
is now widely implemented. To illustrate this, the majority of examples in this section come from
Linux, not from Solaris. The syntax of the commands is very similar from system to system.

The command domainname checks or sets the NIS domain name. The superuser can make
wrotethebook.com the NIS domain name by entering:

 # domainname wrotethebook.com
The NIS domain name is normally configured at startup by placing the domainname command in
one of the startup files. On many systems, the NIS domain name that is used as input to a
domainname command is placed in a second file. For example, on Solaris systems, the value for
the NIS domain name is taken from the /etc/defaultdomain file. As shown here, defaultdomain
contains only the name of the NIS domain:

% cat /etc/defaultdomain
wrotethebook.com

On Red Hat Linux systems, the NIS domain name is just one of the values in the
/etc/sysconfig/network file:

$ cat /etc/sysconfig/network
NETWORKING=yes

HOSTNAME=jerboas.wrotethebook.com

NISDOMAIN=wrotethebook.com

Initialize the NIS server and build the initial maps with make. The /var/yp/Makefile contains the
instructions needed to build the maps. As noted above, it creates a directory using the NIS
domain name. The Makefile reads the files in the /etc directory and places maps created from
them in the new directory. To initialize a Linux system as a NIS server:

domainname wrotethebook.com
cd /var/yp
make

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

make
make[1]: Entering directory '/var/yp/wrotethebook.com'

Updating hosts.byname...

Updating hosts.byaddr...

Updating networks.byaddr...

Updating networks.byname...

Updating protocols.bynumber...

Updating protocols.byname...

Updating rpc.byname...

Updating rpc.bynumber...

Updating services.byname...

Updating passwd.byname...

Updating passwd.byuid...

Updating group.byname...

Updating group.bygid...

Updating netid.byname...

make[1]: Leaving directory '/var/yp/wrotethebook.com'

After initializing the maps, start the NIS server process ypserv and the NIS binder process
ypbind:[9]

[9] If, during the initial build of the NIS maps, make complains that ypserv is not registered, run ypserv before
running make.

ypserv
ypbind
Our system is now running as both a NIS server and a NIS client. A quick test with ypwhich
shows that we are bound to the correct server. Use ypcat or ypmatch to test that you can
retrieve data from the server. We use ypcat in the following example:

ypwhich
localhost

ypcat hosts
172.16.55.105 cow cow.wrotethebook.com

172.16.55.106 pig pig.wrotethebook.com

172.16.26.36 island.wrotethebook.com island

127.0.0.1 localhost

The clients need only to define the correct domain name and to run the binder software ypbind:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The clients need only to define the correct domain name and to run the binder software ypbind:

domainname wrotethebook.com
ypbind
Most NIS clients use ypbind to locate the server. Using the NIS domain name, ypbind
broadcasts a request for a server for that domain. The first server that responds is the server to
which the client "binds." The theory is that the server that responds quickest is the server with the
least workload. Generally this works well. However, it is possible for the client to bind to an
inappropriate system, e.g., a system that was accidentally configured to run ypserv or one that
was maliciously configured to be a false server. Because of this possibility, some systems allow
you to explicitly configure the server to which the client binds. Linux provides the /etc/yp.conf file
for this purpose. The syntax of the entries in different versions of this file varies, so see your
system documentation before attempting to use it.

Place the NIS domain name in the appropriate startup file so that the NIS setup survives the boot.
The ypbind and ypserv commands are probably already in a startup file. On a Red Hat Linux
NIS system, ypbind and ypserv have their own scripts in the /etc/init.d directory. In addition to
putting a value for NISDOMAIN in /etc/sysconfig/network, use the chkconfig command to make
sure the ypbind and the ypserv scripts run at boot time.

NIS is a possible alternative to DNS, but most systems use both NIS and DNS. Hostnames can
be converted to IP addresses by DNS, NIS, and the host file. The order in which the various
sources are queried is defined in the nsswitch.conf file.

9.4.1 The nsswitch.conf file

The Name Service Switch file (nsswitch.conf) defines the order in which the sources of
information are searched. Despite its name, it applies to more than just name service. All of the
databases handled by NIS are covered by the nsswitch.conf file, as shown in this example:

hosts: dns nis files

networks: nis [NOTFOUND=return] files

services: nis files

protocols: nis files

The first entry in the file says that a hostname lookup is first passed to DNS for resolution; if DNS
fails to find a match, the lookup is then passed to NIS and finally looked up in the hosts file. The
second entry says that network names are looked up through NIS. The [NOTFOUND=return]
string says to use the networks file only if NIS fails to respond, that is, if NIS is down. In this case,
if NIS answers that it cannot find the requested network name, terminate the search. The last two
entries search for services port and protocol numbers through NIS and then in the files in the /etc
directory.

9.4.2 NIS+

Before leaving the topic of NIS, I should say a word about NIS+. It will be a short discussion,
because I do not use NIS+ and do not know much about it.

NIS+ replaces NIS on Sun systems. It is not a new version of NIS, but a completely new software
product that provides all the functionality of NIS and some new features. The new features are:

Improved security. NIS does not authenticate servers (as noted in the ypbind discussion)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Improved security. NIS does not authenticate servers (as noted in the ypbind discussion)
or clients. NIS+ provides authentication of users with a secure DES-encrypted
authentication scheme. NIS+ also provides various levels of access so that different users
have authority to look at different levels of data. NIS can only provide the same access to
everyone in the NIS domain.

A hierarchical, decentralized architecture. NIS+, like DNS, is a distributed, hierarchical
database system. This allows for a very large namespace. It also allows distributed
management of the information structure while maintaining consistent access to the data.
NIS is a flat structure. All information about a NIS domain comes from a single master
server, and NIS domains are not interrelated.

Enhanced data structures. NIS converts ASCII files into simple keyed files that the NIS+
documentation calls "two-column maps." NIS+ builds multicolumn database tables. Tables
can be searched in a variety of ways to retrieve information about an entry. In addition,
NIS+ tables can be linked together to provide related information about an entry.

Clearly, NIS+ has some excellent new features and advantages over NIS. So why don't I use it?
Good question! The hierarchical architecture and enhanced data structures are important if you
have a very large network and lots of data in your namespace. However, many sites evolved
using NIS on local subnets and do not see the need to move the entire enterprise under NIS+.
Improved security seems like a real winner, but sites with low security requirements don't see the
need for additional security, and sites with high security requirements may already be behind a
firewall that blocks external NIS queries. Additionally, NIS+ is not available for as many operating
systems as NIS. And finally, other directory services, such as LDAP, that provide similar services
and are more widely available have overtaken NIS+. Taken together, these reasons have slowed
the move to NIS+.

To learn more about NIS+ and how to install it on your system, read the NIS+ Transition Guide,
the Name Service Configuration Guide, and the Name Service Administration Guide. All of these
are available from Sun as part of the Solaris System and Network Administration manual set.

NIS and NIS+ provide a wide range of system configuration information to their clients. However,
they cannot provide all the information needed to configure a TCP/IP system. In the next two
sections, we look at configuration servers that can do the entire job.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5 DHCP

Bootstrap Protocol (BOOTP) was the first comprehensive configuration protocol. It provides all of
the information commonly used to configure TCP/IP, from the client's IP address to what print
server the client should use. BOOTP was simple and effective; so effective, in fact, that it became
the basis for Dynamic Host Configuration Protocol (DHCP). DHCP operates over the same UDP
ports, 67 and 68, as BOOTP. It provides all of the services of BOOTP as well as some important
extensions. Dynamic Host Configuration Protocol provides three important features:

Backward compatibility with Bootstrap Protocol

A DHCP server can support BOOTP clients. Properly configured, a DHCP server can
support all of your clients.

Full configurations

A DHCP server provides a complete set of TCP/IP configuration parameters. (See
Appendix D for a full list.) The network administrator can handle the entire configuration for
the users.

Dynamic address assignments

A DHCP server can provide permanent addresses manually, permanent addresses
automatically, and temporary addresses dynamically. The network administrator can tailor
the type of address to the needs of the network and the client system.

In this section we configure a DHCP server that supports BOOTP clients, performs dynamic
address allocation, and provides a wide range of configuration parameters for its clients.

Several implementations of DHCP are available for Unix systems. Some are commercial
packages and some run on a specific version of Unix. We use the Internet Software Consortium
(ISC) Dynamic Host Configuration Protocol Daemon (dhcpd). It is freely available over the
Internet and runs on a wide variety of Unix systems, including both our Linux and Solaris sample
systems. (See Appendix D for information on downloading and compiling dhcpd.) If you use
different DHCP server software, it will have different configuration commands, but it will probably
perform the same basic functions.

9.5.1 dhcpd.conf

dhcpd reads its configuration from the /etc/dhcpd.conf file. The configuration file contains the
instructions that tell the server what subnets and hosts it services and what configuration
information it should provide them. dhcpd.conf is an ASCII text file that is similar to a C language
source file. The easiest way to learn about the dhcpd.conf file is to look at a sample:

Define global values that apply to all systems.

default-lease-time 86400;

max-lease-time 604800;

get-lease-hostnames true;

option subnet-mask 255.255.255.0;

option domain-name "wrotethebook.com";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option domain-name "wrotethebook.com";

option domain-name-servers 172.16.12.1, 172.16.3.5;

option lpr-servers 172.16.12.1;

option interface-mtu 1500;

Identify the subnet served, the options related

to the subnet, and the range of addresses that

are available for dynamic allocation.

subnet 172.16.3.0 netmask 255.255.255.0 {

 option routers 172.16.3.25;

 option broadcast-address 172.16.3.255;

 range 172.16.3.50 172.16.3.250;

}

subnet 172.16.12.0 netmask 255.255.255.0 {

 option routers 172.16.12.1;

 option broadcast-address 172.16.12.255;

 range 172.16.12.64 172.16.12.192;

 range 172.16.12.200 172.16.12.250;

}

Identify each BOOTP client with a host statement

group {

 use-host-decl-names true;

 host 24seven {

 hardware ethernet 00:80:c7:aa:a8:04;

 fixed-address 172.16.3.4;

 }

 host rodent {

 hardware ethernet 08:80:20:01:59:c3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fixed-address 172.16.12.2;

 }

 host ring {

 hardware ethernet 00:00:c0:a1:5e:10;

 fixed-address 172.16.3.16;

 }

}

This sample configuration file defines a server that is connecting to and serving two separate
subnets. It assigns IP addresses dynamically to the DHCP clients on each subnet and supports a
few BOOTP clients. All of the lines that begin with a sharp sign (#) are comments. The first few
real configuration lines in the file specify a set of parameters and options that apply to all of the
subnets and clients served. The first three lines are parameters, which provide direction to the
server. All three of the sample parameters define some aspect of how dhcpd should handle
dynamic address assignments.

default-lease-time

Tells the server how many seconds long a default address lease should be. The client can
request that the address be leased for a specific period of time. If it does, it is assigned the
address for that period of time, given some restrictions. Frequently, clients do not request a
specific lifetime for an address lease. When that happens, the default-lease-time is used. In
the example, the default lease is set to one day (86400 seconds).

max-lease-time

Sets the upper limit for how long an address can be leased. Regardless of the length of
time requested by the client, this is the longest address lease that dhcpd will grant. The life
of the lease is specified in seconds. In the example here, it is one week.

get-lease-hostnames

Directs dhcpd to provide a hostname to each client that is assigned a dynamic address.
Further, the hostname is to be obtained from DNS. This parameter is a Boolean. If it is set
to false, which is the default, the client receives an address but no hostname. Looking up
the hostname for every possible dynamic address adds substantial time to the startup. Set
this to false. Set it to true only if the server handles a very small number of dynamic
addresses.

The configuration file uses a few more parameters that will be explained as we go. For a complete
list of all DHCP parameters, see Appendix D.

The next four lines are options. The options all start with the keyword option. The keyword is
followed by the name of the option and the value assigned to the option. Options define
configuration values that are used by the client.

The meanings of the sample options are easy to deduce. The option names are very descriptive.
We are providing the clients with the subnet mask, domain name, domain name server
addresses, and print server address. These values are similar to those that could have been
provided with the old BOOTP service.

DHCP, however, can do more than BOOTP. For sake of illustration, we also define the maximum
transmission unit (MTU). The sample interface-mtu option tells the client that the MTU is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transmission unit (MTU). The sample interface-mtu option tells the client that the MTU is
1500 bytes. In this case, the option is not needed because 1500 bytes is the default for Ethernet.
However, it illustrates the point that DHCP can provide a very complete set of configuration
information.

The subnet statements define the networks that dhcpd serves. The identity of each network is
determined from the address and the address mask, both of which are required by the subnet
statement. dhcpd provides configuration services only to clients that are attached to one of these
networks. There must be a subnet statement for every subnet to which the server physically
connects, even if some subnets do not contain any clients. dhcpd requires the subnet information
to complete its startup.

The options and parameters defined in a subnet statement apply only to the subnet and its
clients. The meanings of the sample options are clear. They tell the clients what router and what
broadcast address to use. The range parameter is more interesting, as it goes to the heart of
one of DHCP's key features.

The range parameter defines the scope of addresses that are available for dynamic address
allocation. It always occurs in association with a subnet statement, and the range of addresses
must fall within the address space of the subnet. The scope of the range parameter is defined by
the two addresses it contains. The first address is the lowest address that can be automatically
assigned, and the second is the highest address that can be assigned. The first range parameter
in the example identifies a contiguous group of addresses from 172.16.12.50 to 172.16.12.250
that are available for dynamic assignment. Notice that the second subnet statement has two
range parameters. This creates two separate groups of dynamic addresses. The reason for this
might be that some addresses were already manually assigned before the DHCP server was
installed. Regardless of the reason, the point is that we can define a noncontiguous dynamic
address space with multiple range statements.

If a range parameter is defined in a subnet statement, any DHCP client on the subnet that
requests an address is granted one as long as addresses are available. If a range parameter is
not defined, dynamic addressing is not enabled.

To provide automatic address assignment for BOOTP clients, add the dynamic-bootp
argument to the range parameter. For example:

 range dynamic-bootp 172.16.8.10 172.16.8.50;

By default, BOOTP clients are assigned permanent addresses. It is possible to override this
default behavior with either the dynamic-bootp-lease-cutoff or the dynamic-bootp-
lease-length parameter. However, BOOTP clients do not understand address leases and do
not know that they should renew an address. Therefore the dynamic-bootp-lease-cutoff
and the dynamic-bootp-lease-length parameters are used only in special circumstances. If
you're interested in these parameters, see Appendix D.

Each BOOTP client should have an associated host statement that is used to assign the client
configuration parameters and options. It can be used to manually assign the client a permanent,
fixed address. The sample configuration file ends with three host statements: one for 24seven,
one for rodent, and one for ring. Each host statement contains a hardware parameter that defines
the type of network hardware (ethernet) and the physical network address (e.g.,
08:80:20:01:59:c3) used by the client. The hardware parameter is required in host
statements for BOOTP clients. The Ethernet address is used by dhcpd to identify the BOOTP
client. DHCP clients can also have associated host statements. For DHCP clients, the hardware
parameter is optional because a DHCP client can be identified by the dhcp-client-
identifier option. However, it is simpler for a DHCP client connected via Ethernet to be
identified by its Ethernet address.

A wide variety of parameters and options can be defined in the host statement. For example,
adding to each host statement an option similar to the following assigns each client a hostname:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adding to each host statement an option similar to the following assigns each client a hostname:

option host-name 24seven;

It is often easier, however, to define options and parameters at a higher level. Global options
apply to all systems. Subnet options apply to every client on the subnet, but the options defined
inside a host statement apply to only a single host. The host-name option shown above would
need to be repeated with a different hostname in every host statement. An easier way to define a
parameter or option for a group of hosts is to use a group statement.

A group statement groups together any other statements. The sole purpose of the group
statement is to apply parameters and options to all members of the group. That is exactly what we
do in the example. The group statement groups all of the host statements together. The use-
host-decl-names parameter in the group statement applies to every host in the group. This
particular parameter tells dhcpd to assign each client the hostname that is declared on the host
statement associated with that client, which makes the host-name option unnecessary for this
configuration.

Given the sample dhcpd.conf file shown earlier, when dhcpd receives a request packet from a
client with the Ethernet address 08:80:20:01:59:c3, it sends that client:

The address 172.16.12.2

The hostname rodent

The default router address 172.16.12.1

The broadcast address 172.16.12.255

The subnet mask 255.255.255.0

The domain name wrotethebook.com

The domain name server addresses 172.16.12.1 and 172.16.3.5

The print server address 172.16.12.1

The MTU for an Ethernet interface

The client receives all global values, all subnet values, and all host values that are appropriate.
Clearly, DHCP can provide a complete configuration.

Your DHCP configuration, though larger in the number of systems supported, probably is simpler
than the example. Some commands appear in the sample primarily for the purpose of illustration.
The biggest difference is that most sites do not serve more than one subnet with a single
configuration server. Servers are normally placed on each subnet. This reduces the burden on
the server, particularly the burden that can be caused by a network-wide power outage. It
eliminates the need to move boot packets through routers. Also, the fact that addresses are
assigned at the subnet level makes placing the assigning system at the subnet level as well
somehow more logical. DHCP servers are not the only servers that work best when located close
to the clients. In the next section we look at how to keep distributed servers updated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.6 Managing Distributed Servers

Large networks have multiple servers. As noted earlier, the servers are often distributed around
the network with a server on every subnet. This improves network efficiency, but it conflicts with
the goal of central configuration control. The more servers you have, the more dispersed the
control, and the more likely that a configuration error will occur. Implementing distributed servers
requires a technique for maintaining central control and coordinating configuration information
among the servers. TCP/IP offers several techniques for doing this.

Any file transfer protocol can be used to move configuration data or any other kind of data from a
central system to a group of distributed systems. Either FTP or TFTP will work, but both present
difficulties when used in this way. FTP and TFTP are interactive protocols, and require multiple
commands to retrieve a file, making them difficult to script. Additionally, FTP requires password
authentication before it grants access to a file, and most security experts frown on storing
passwords in scripts. For these reasons, we don't concentrate on using these protocols to
distribute the configuration file. Besides, if you know how to use FTP (and you should!), you know
how to use it to send a configuration file.

Another possibility is to use NFS to distribute the information. NFS allows files on the server to be
used by clients as if they are local files. It is a powerful tool, but it does have limitations when used
to distribute configuration information to boot servers. The same power outage that affects the
distributed servers can cause the central server to crash. The distributed servers and their clients
can be delayed in booting while waiting for the central server to come back online. Sharing a
single copy of the configuration file conflicts with the effort to distribute boot services because it
puts too much reliance on the central server.

One way to avoid this problem is for the distributed servers to periodically copy the configuration
file from the mounted filesystem to a local disk. This is very simple to script, but it creates the
possibility that the servers will be "out of sync" at certain times—the distributed servers copy the
configuration file on a periodic schedule without knowing if, in the interim, the master file has been
updated. Of course, it is possible for all of the remote servers to export filesystems that the central
server mounts. The central server can then copy the configuration file directly to the remote
filesystems whenever the master file is updated. However, there are easier ways to do this.

The Unix r-commands rcp and rdist provide the most popular methods for distributing the
configuration file.

9.6.1 rcp

Remote copy (rcp) is simply a file transfer protocol. It has two advantages over FTP for this
particular application: it is easy to script and it does not require a password. rcp is easy to script
because only a single line is needed to complete a transfer. An example of transferring the file
dhcpd.conf from the master server to a remote server named arthropod.wrotethebook.com is:

rcp /etc/dhcpd.conf arthropod.wrotethebook.com:/etc/dhcpd.conf
For every remote server that the file is sent to, add a line like this one to the procedure that
updates the master configuration file.

rcp is only one choice for distributing the central configuration file. rdist, while a little harder to
use, is often a better choice because it has several features that make it particularly well suited for
this application.

9.6.2 rdist

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Remote File Distribution Program (rdist) is designed to maintain identical copies of files on
multiple hosts. A single rdist command can distribute several different files to many different
hosts. It does this by following the instructions stored in an rdist configuration file called a
Distfile.

The function of a Distfile is similar to that of the Makefile used by the make command, and it has a
similar syntax and structure. Now, don't panic! It's not that bad. The initial configuration of an
rdist command is more difficult than the straightforward syntax of an rcp command, but the
rdist command provides much more control and is much easier to maintain in the long run.

A Distfile is composed of macros and primitives. Macros can be assigned a single value or a list
of values. If a list of values is used, the list is enclosed in parentheses, e.g., macro = (value
value). Once assigned a value, the macro is referenced using the syntax ${macro}, where
macro is the name of the macro. The other components of a Distfile, the primitives, are explained
in Table 9-4.[10]

[10] For more details, see the rdist manpage.

Table 9-4. rdist primitives
Primitive Function

install Recursively updates files and directories.

notify address Sends error/status mail messages to address.

except file Omits file from the update.

except_pat pattern Omits filenames that match the pattern.

special "command " Executes command after each file update.

The simplest way to understand how the primitives and macros are combined to make a
functioning Distfile is to look at a sample. The following configuration file distributes the current
version of dhcpd and the latest dhcpd.conf configuration file to the remote boot servers
horseshoe, arthropod, and limulus:

HOSTS = (horseshoe root@limulus arthropod)

FILES = (/usr/sbin/dhcpd /etc/dhcpd.conf)

${FILES} -> ${HOSTS}

 install ;

 notify craig@crab.wrotethebook.com

Let's look at each line of the file:

HOSTS = (horseshoe root@limulus arthropod)

This line defines HOSTS, a macro that contains the hostname of each of the remote
servers. Notice the entry for limulus. It tells rdist to log in as root on limulus to perform
the update. On horseshoe and arthropod, rdist will run under the same username it has
on the local host.

FILES = (/usr/sbin/dhcpd /etc/dhcpd.conf)

This macro, FILES, defines the two files that will be sent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

${FILES} -> ${HOSTS}

The -> symbol has a special meaning to rdist. It tells rdist to copy the files named at
the left of the symbol to the hosts named at the right. In this case, FILES is a macro that
contains the file names /usr/sbin/dhcpd and /etc/dhcpd.conf, and HOSTS is a macro that
contains the hostnames horseshoe, limulus, and arthropod. Therefore this command tells
rdist to copy two files to three different hosts. Any primitives that follow apply to this file-
to-host mapping.

install ;

The install primitive explicitly tells rdist to copy the specified files to the specified
hosts if the corresponding file is out of date on the remote host. A file is considered out of
date if the creation date or the size is not the same as the master file. The semicolon at the
end of this line indicates that another primitive follows.

notify craig@crab.wrotethebook.com

Status and error messages are to be mailed to craig@crab.wrotethebook.com.

Additional files and hosts can be easily added to this file. In the long run, most people find rdist
the simplest way to distribute multiple files to multiple hosts.

One final note: the configuration file does not have to be called Distfile. Any filename can be
specified on the rdist command line using the -f option. For example, the Distfile shown above
could be saved under the name dhcp.dist and invoked with the following command:

% rdist -f dhcp.dist

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.7 Post Office Servers

In this section we configure a system to act as a post office server. A post office server, or mailbox
server, is a computer that holds mail for a client computer until the client is ready to download it for
the mail reader. This service is essential to support mobile users and small systems that are
frequently offline and thus not able to receive mail in real time. We look at two techniques for
creating a post office server: Post Office Protocol (POP), which is the original protocol for this
purpose, and Internet Message Access Protocol (IMAP), which is a popular alternative. We start
with POP.

9.7.1 POP Server

A Unix host turns into a Post Office Protocol server when it runs a POP daemon. Check your
system's documentation to see if a POP daemon is included in the system software. If it isn't clear
from the documentation, check the inetd.conf or xinetd.conf file, or try the simple telnet test from
Chapter 4. If the server responds to the telnet test, not only is the daemon available on your
system, it is installed and ready to run.

% telnet localhost 110
Trying 127.0.0.1 ...

Connected to localhost.

Escape character is ']'.

+OK POP3 crab Server (Version 1.004) ready

quit
+OK POP3 crab Server (Version 1.001) shutdown

Connection closed by foreign host.

This example is from a system that comes with POP3 ready to run. The Red Hat Linux system
includes POP3, although it must be enabled in the /etc/xinetd.d/pop3 file before it can be used.
The Solaris system, on the other hand, does not ship with POP2 or POP3. Don't worry if your
system doesn't include this software. POP3 software is available from several sites on the Internet
where it is stored in both the popper17.tar and the pop3d.tar files. I have used them both, and both
work fine.

If you don't have POP3 on your system, download the source code. Extract it using the Unix tar
command. pop3d.tar creates a directory called pop3d under the current directory, but popper17.tar
does not. If you decide to use popper, create a new directory before extracting it with tar. Edit
the Makefile to configure it for your system and do a make to compile the POP3 daemon. If it
compiles without errors, install the daemon in a system directory.

On a Solaris system, POP3 is started by the Internet daemon, inetd. Start POP3 from inetd by
placing the following in the inetd.conf file:

pop3 stream tcp nowait root /usr/sbin/pop3d pop3d

This entry assumes that you are using pop3d, that you placed the executable in the /usr/sbin
directory, and that the port for this daemon is identified in the /etc/services file by the name pop3.
If these things aren't true, adjust the entry accordingly.

Make sure that POP3 is actually defined in /etc/services. If it isn't, add the following line to that file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pop3 110/tcp # Post Office Version 3

Once the lines are added to the services file and the inetd.conf file, send a SIGHUP to inetd to
force it to read the new configuration, as in this example:

ps -ef | grep inetd
 root 109 1 0 Jun 09 ? 0:01 /usr/sbin/inetd -s

kill -HUP 109
Now that POP3 is installed, rerun the test using telnet localhost pop3. If the POP3 daemon
answers, you're in business. All users who have a valid user account on the system are now able
to download mail via POP3 or read the mail directly on the server.

9.7.2 IMAP Server

Internet Message Access Protocol (IMAP) is an alternative to POP. It provides the same basic
service as POP and adds features to support mailbox synchronization, which is the ability to read
mail on a client or directly on the server while keeping the mailboxes on both systems completely
up to date. On an average POP server, the entire contents of the mailbox are moved to the client
and either deleted from the server or retained as if never read. Deletion of individual messages on
the client is not reflected on the server because all the messages are treated as a single unit that
is either deleted or retained after the initial transfer of data to the client. IMAP provides the ability to
manipulate individual messages on either the client or the server and to have those changes
reflected in the mailboxes of both systems.

IMAP is not a new protocol; it is about as old as POP3. There have been four distinct versions:
IMAP, IMAP2, IMAP3, and the current version, IMAP4, which is defined in RFC 2060. IMAP is
popular because of the importance of email as a means of communicating, even when people are
out of the office, and the need for a mailbox that can be read and maintained from anywhere.

Solaris 8 does not include IMAP. IMAP binaries for Solaris are available from
http://sunfreeware.com. IMAP source code can be obtained via anonymous FTP from
ftp://ftp.cac.washington.edu. Download /mail/imap.tar.Z from ftp://ftp.cac.washington.edu as a
binary image. Uncompress and untar the file. This creates a directory containing the source code
and Makefile needed to build IMAP.[11]

[11] The name of the directory tells you the current release level of the software. At this writing, it is imap-2001.

Read the Makefile carefully. It supports many versions of Unix. If you find yours listed, use the
three-character operating system type listed there. For a Solaris system using the gcc compiler,
enter:

make gso
If it compiles without error, as it does on our Solaris system, it produces three daemons: ipop2d,
ipop3d, and imapd. We are familiar with installing POP3. The new one is imapd. Install it in
/etc/services:

imap 143/tcp # IMAP version 4

Also add it to /etc/inetd:

imap stream tcp nowait root /usr/sbin/imapd imapd

Now basic IMAP service is available to every user with an account on the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A nice feature of the University of Washington package is that it provides implementations of POP2
and POP3 as well as IMAP. This is important because many email clients run POP3. The IMAP
server can be accessed only by an IMAP client. Installing POP3 along with IMAP gives you the
chance to support the full range of clients.

Most Linux systems include IMAP, so compiling the source code is not a requirement. Simply
make sure that the service is listed in the /etc/services file and available through inetd or
xinetd. On Red Hat Linux 7, the /etc/xinetd.d/imap file is disabled by default and must be
enabled to allow clients access to the service.

POP and IMAP are important components of a mail service. However, there is a great deal more
to configuring a complete email system, as we will see in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.8 Summary

This chapter covered several important TCP/IP network services.

Network File System (NFS) is the leading TCP/IP file-sharing protocol for Unix systems. It allows
server systems to share directories with clients that are then used by the clients as if they were
local disk drives. NFS uses trusted hosts and Unix UIDs and GIDs for authentication and
authorization.

Unix printer sharing is available on a TCP/IP network through the use of the Line Printer Daemon
(LPD) or the Line Printer (LP) server. The lpd software is originally from BSD Unix but is widely
available. The lpd program reads the printer definitions from the printcap file. The LP software is
originally from System V. It uses terminfo for printer capabilities and the /etc/lp directory to
configure individual printers. Solaris 8 printer sharing is based on the LP software but it configures
printers in a single file, /etc/printers.conf.

Windows PCs use NetBIOS and Server Message Block (SMB) protocol for file and printer
sharing. Unix systems can act as SMB servers by using the Samba software package. Samba
provides file and printer sharing in a single package that is configured through the smb.conf file.

Network Information Service (NIS) is a server that distributes several system administration
databases. It allows central control and automatic distribution of important system configuration
information.

Dynamic Host Configuration Protocol (DHCP) extends BOOTP to provide the full set of
configuration parameters defined in the Requirements for Internet Hosts RFC. It also provides for
dynamic address allocation, which allows a network to make maximum use of a limited set of
addresses.

Large networks use distributed boot servers to avoid overloading a single server and to avoid
sending boot parameters through IP routers. The configuration files on distributed boot servers
are kept synchronized through file transfer, NFS file sharing, or the Remote File Distribution
Program (rdist).

Post Office Protocol (POP) and Internet Message Access Protocol (IMAP) servers allow email to
be stored on the mail server until the user is ready to read it. In the next chapter, we take a closer
look at configuring an electronic mail system as we explore sendmail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. sendmail
Users have a love-hate relationship with email: they love to use it, and hate when it doesn't work.
It's the system administrator's job to make sure it does work. That is the job we tackle in this
chapter.

sendmail is not the only mail transport program; smail and qmail are also popular, but plain
sendmail is the most widely used mail transport program. This entire chapter is devoted to
sendmail, and an entire book can easily be devoted to the subject.[1] In part, this is because of
email's importance, but it is also because sendmail has a complex configuration.

[1] See sendmail by Costales and Allman (O'Reilly & Associates) and Linux Sendmail Administration by Craig Hunt
(Sybex) for book-length treatments of sendmail.

Oddly enough, the complexity of sendmail springs in part from an attempt to reduce complexity by
placing all email support in one program. At one time, a wide variety of programs and protocols
were used for email. Multiple programs complicate configuration and support. Even today, a few
distinct delivery schemes remain. SMTP sends email over TCP/IP networks; another program
sends mail between users on the same system; still another sends mail between systems on
UUCP networks. Each of these mail systems—SMTP, UUCP, and local mail—has its own
delivery program and mail addressing scheme. All of this can cause confusion for mail users and
for system administrators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 sendmail's Function

sendmail eliminates the confusion caused by multiple mail delivery programs. It does this by
routing mail for the user to the proper delivery program based on the email address. It accepts
mail from a user's mail program, interprets the mail address, rewrites the address into the proper
form for the delivery program, and routes the mail to the correct delivery program. sendmail
insulates the end user from these details. If the mail is properly addressed, sendmail will see that
it is properly passed on for delivery. Likewise, for incoming mail, sendmail interprets the address
and either delivers the mail to a user's mail program or forwards it to another system.

Figure 10-1 illustrates sendmail's special role in routing mail between the various mail programs
found on Unix systems.

Figure 10-1. Mail routed through sendmail

In addition to routing mail between user programs and delivery programs, sendmail does the
following:

Receives and delivers SMTP (Internet) mail

Provides systemwide mail aliases, which allow mailing lists

Configuring a system to perform all of these functions properly is a complex task. In this chapter
we discuss each of these functions, look at how they are configured, and examine ways to
simplify the task. First, we'll see how sendmail is run to receive SMTP mail. Then we'll see how
mail aliases are used, and how sendmail is configured to route mail based on the mail's address.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Running sendmail as a Daemon

To receive SMTP mail from the network, run sendmail as a daemon during system startup. The
sendmail daemon listens to TCP port 25 and processes incoming mail. In most cases, the code to
start sendmail is already in one of your boot scripts. If it isn't, add it. The following command starts
sendmail as a daemon:

/usr/lib/sendmail -bd -q15m
This command runs sendmail with two command-line options. The -q option tells sendmail how
often to process the mail queue. In the sample code, the queue is processed every 15 minutes (-
q15m), which is a good setting to process the queue frequently. Don't set this time too low.
Processing the queue too often can cause problems if the queue grows very large due to a
delivery problem such as a network outage. For the average desktop system, every hour (-q1h)
or half hour (-q30m) is an adequate setting.

The other option relates directly to receiving SMTP mail. The -bd option tells sendmail to run as a
daemon and to listen to TCP port 25 for incoming mail. Use this option if you want your system to
accept incoming TCP/IP mail.

The command-line example is a simple one. Most system startup scripts are more complex.
These scripts generally do more than just start sendmail. Solaris 8 uses the /etc/init.d/sendmail
script to run sendmail. First the Solaris script checks for the existence of the mail queue directory.
If a mail queue directory doesn't exist, it creates one. In the Solaris 8 script, the command-line
options are set in script variables. The variable MODE holds the -bd option, and the variable
QUEUEINTERVAL holds the queue processing interval. In the Solaris 8 script,
QUEUEINTERVAL defaults to 15m; change the value stored in the QUEUEINTERVAL variable to
change how often the queue is processed. Do not change the value in the MODE variable unless
you don't want to accept inbound mail. The value must be -bd for sendmail to run as a daemon
and collect inbound mail. If you want to add other options to the sendmail command line that is
run by the Solaris 8 script file, store those options in the OPTIONS variable.

The Red Hat /etc/rc.d/init.d/sendmail script is even more complex than the Solaris version. It
accepts the arguments start, stop, restart, condrestart, and status so that the script
can be used to effectively manage the sendmail daemon process. The start and stop
arguments are self-explanatory. The restart argument first stops the sendmail process and
then runs a new sendmail process. The condrestart argument is similar to restart except
that it runs only if there is a current sendmail process running. If the sendmail daemon is not
running when the script is run with the condrestart argument, the script does nothing. The
status argument returns the status of the daemon, which is basically the process ID number if it
is running or a message saying that sendmail is stopped if sendmail is not running.

When the Red Hat script is run with the start argument, it begins by rebuilding all of the
sendmail database files. It then starts the sendmail daemon using the command-line options
defined in the /etc/sysconfig/sendmail file. Like the Solaris script, the Red Hat script uses
variables to set the value of the command-line options, but the variables themselves are set
indirectly by values from /etc/sysconfig/sendmail file. The /etc/sysconfig/sendmail file from a
default Red Hat configuration contains only two lines:

$ cat /etc/sysconfig/sendmail
DAEMON=yes

QUEUE=1h

If DAEMON is set to yes, sendmail is run with the -bd option. How often the queue is processed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If DAEMON is set to yes, sendmail is run with the -bd option. How often the queue is processed
is determined by the value set for QUEUE. In this example, the queue is processed every hour
(1h). The additional code found in most startup scripts is helpful, but it is not required to run
sendmail as a daemon. All you really need is the sendmail command with the -bd option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 sendmail Aliases

It is almost impossible to exaggerate the importance of mail aliases. Without them, a sendmail
system could not act as a central mail server. Mail aliases provide for:

Alternate names (nicknames) for individual users

Forwarding of mail to other hosts

Mailing lists

sendmail mail aliases are defined in the aliases file.[2]

[2] The location of the file is defined in the ALIAS_FILE parameter in the sendmail m4 configuration.

The basic format of entries in the aliases file is:

 alias: recipient[, recipient,...]

alias is the name to which the mail is addressed, and recipient is the name to which the mail
is delivered. recipient can be a username, the name of another alias, or a full email address
containing both a username and a hostname. Including a hostname allows mail to be forwarded
to a remote host. Additionally, there can be multiple recipients for a single alias. Mail addressed to
that alias is delivered to all of the recipients, thus creating a mailing list.

Aliases that define nicknames for individual users can be used to handle frequently misspelled
names. You can also use aliases to deliver mail addressed to special names, such as postmaster
or root, to the real users that do those jobs. Aliases can also be used to implement simplified mail
addressing, especially when used in conjunction with MX records.[3]

[3] Chapter 8 discusses MX records.

This aliases file from crab shows all of these uses:

special names

postmaster: clark

root: norman

accept firstname.lastname@wrotethebook.com

rebecca.hunt: becky@rodent

jessie.mccafferty: jessie@jerboas

anthony.resnick: anthony@horseshoe

andy.wright: andy@ora

a mailing list

admin: kathy, david@rodent, sara@horseshoe, becky@rodent, craig,

 anna@rodent, jane@rodent, christy@ora

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 anna@rodent, jane@rodent, christy@ora

owner-admin: admin-request

admin-request: craig

The first two aliases are special names. Using these aliases, mail addressed to postmaster is
delivered to the local user clark, and mail addressed to root is delivered to norman.

The second set of aliases is in the form of firstname and lastname. The first alias in this group is
rebecca.hunt. Mail addressed to rebecca.hunt is forwarded from crab and delivered to
becky@rodent. Combine this alias with an MX record that names crab as the mail server for
wrotethebook.com, and mail addressed to rebecca.hunt@wrotethebook.com is delivered to
becky@rodent.wrotethebook.com. This type of addressing scheme allows each user to advertise
a consistent mailing address that does not change just because the user's account moves to
another host. Additionally, if a remote user knows that this firstname.lastname addressing scheme
is used at wrotethebook.com, the remote user can address mail to Rebecca Hunt as
rebecca.hunt@wrotethebook.com without knowing her real email address.

The last two aliases are for a mailing list. The alias admin defines the list itself. If mail is sent to
admin, a copy of the mail is sent to each of the recipients (kathy, david, sara, becky, craig, anna,
jane, and christy). Note that the mailing list continues across multiple lines. A line that starts with a
blank or a tab is a continuation line.

The owner-admin alias is a special form used by sendmail. The format of this special alias is
owner-listname where listname is the name of a mailing list. The person specified on this alias
line is responsible for the list identified by listname. If sendmail has problems delivering mail to
any of the recipients in the admin list, an error message is sent to owner-admin. The owner-admin
alias points to admin-request as the person responsible for maintaining the mailing list admin.
Aliases in the form of listname-request are commonly used for administrative requests, such as
subscribing to a list, for manually maintained mailing lists. Notice that we point an alias to another
alias, which is perfectly legal. The admin-request alias resolves to craig.

sendmail does not use the aliases file directly. The aliases file must first be processed by the
newaliases command. newaliases is equivalent to sendmail with the -bi option, which
causes sendmail to build the aliases database. newaliases creates the database files that are
used by sendmail when it is searching for aliases. Invoke newaliases after updating the aliases
file to make sure that sendmail is able to use the new aliases.[4]

[4] The AutoRebuildAliases option causes sendmail to automatically rebuild the aliases database—even if
newaliases is not run. See Appendix E.

10.3.1 Personal Mail Forwarding

In addition to the mail forwarding provided by aliases, sendmail allows individual users to define
their own forwarding. The user defines personal forwarding in the .forward file in her home
directory. sendmail checks for this file after using the aliases file and before making final delivery
to the user. If the .forward file exists, sendmail delivers the mail as directed by that file. For
example, say that user kathy has a .forward file in her home directory that contains
kathy@podunk.edu. The mail that sendmail would normally deliver to the local user kathy is
forwarded to kathy's account at podunk.edu.

Use the .forward file for temporary forwarding. Modifying aliases and rebuilding the database
takes more effort than modifying a .forward file, particularly if the forwarding change will be short-
lived. Additionally, the .forward file puts users in charge of their own mail forwarding.

Mail aliases and mail forwarding are handled by the aliases file and the .forward file. Everything
else about the sendmail configuration is handled in the sendmail.cf file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4 The sendmail.cf File

The sendmail configuration file is sendmail.cf.[5] It contains most of the sendmail configuration,
including the information required to route mail between the user mail programs and the mail
delivery programs. The sendmail.cf file has three main functions:

[5] The default location for the configuration file prior to sendmail 8.11 was the /etc directory. Now the default is
/etc/mail, but the file is often placed in other directories, such as /usr/lib.

It defines the sendmail environment.

It rewrites addresses into the appropriate syntax for the receiving mailer.

It maps addresses into the instructions necessary to deliver the mail.

Several commands are necessary to perform all of these functions. Macro definitions and option
commands define the environment. Rewrite rules rewrite email addresses. Mailer definitions
define the instructions necessary to deliver the mail. The terse syntax of these commands makes
most system administrators reluctant to read a sendmail.cf file, let alone write one! Fortunately,
you can avoid writing your own sendmail.cf file, as we'll see next.

10.4.1 Locating a Sample sendmail.cf File

There is never any good reason to write a sendmail.cf file from scratch. Sample configuration files
are delivered with most systems' software. Some system administrators use the sendmail.cf
configuration file that comes with the system and make small modifications to it to handle site-
specific configuration requirements. We cover this approach to sendmail configuration later in this
chapter.

Most system administrators prefer to use the m4 source files to build a sendmail.cf file. Building
the configuration with m4 is recommended by the sendmail developers and is the easiest way to
build and maintain a configuration. Some systems, however, do not ship with the m4 source files,
and even when m4 source files come with a system, they are adequate only if used with the
sendmail executable that comes with that system. If you update sendmail, use the m4 source files
that are compatible with the updated version of sendmail. If you want to use m4 or the latest
version of sendmail, download the sendmail source code distribution from
http://www.sendmail.org. See Appendix E for an example of installing the sendmail distribution.

The sendmail cf/cf directory contains several sample configuration files. Several of these are
generic files preconfigured for different operating systems. The cf/cf directory in the
sendmail.8.11.3 directory contains generic configurations for BSD, Solaris, SunOS, HP Unix,
Ultrix, OSF1, and Next Step. The directory also contains a few prototype files designed to be
easily modified and used for other operating systems. We will modify the tcpproto.mc file, which is
for systems that have direct TCP/IP network connections and no direct UUCP connections, to run
on our Linux system.

10.4.1.1 Building a sendmail.cf with m4 macros

The prototype files that come with the sendmail tar are not "ready to run." They must be edited
and then processed by the m4 macro processor to produce the actual configuration files. For
example, the tcpproto.mc file contains the following macros:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

divert(0)dnl

VERSIONID(`$Id: ch10.xml,v 1.7 2002/09/04 21:08:29 chodacki Exp $')

OSTYPE(`unknown')

FEATURE(`nouucp', `reject')

MAILER(`local')

MAILER(`smtp')

These macros are not sendmail commands; they are input for the m4 macro processor. The few
lines shown above are the active lines in the tcpproto.mc file. They are preceded by a section of
comments, not shown here, that is discarded by m4 because it follows a divert(-1) command,
which diverts the output to the "bit bucket." This section of the file begins with a divert(0)
command, which means these commands should be processed and that the results should be
directed to standard output.

The dnl command that appears at the end of the divert(0) line is used to prevent unwanted
lines from appearing in the output file. dnl deletes everything up to the next newline. It affects the
appearance, but not the function, of the output file. dnl can appear at the end of any macro
command. It can also be used at the beginning of a line. When it is, the line is treated as a
comment.

The VERSIONID macro is used for version control. Usually the value passed in the macro call is a
version number in RCS (Release Control System) or SCCS (Source Code Control System)
format. This macro is optional, and we can just ignore it.

The OSTYPE macro defines operating system-specific information for the configuration. The
cf/ostype directory contains almost 50 predefined operating system macro files. The OSTYPE
macro is required and the value passed in the OSTYPE macro call must match the name of one
of the files in the directory. Examples of values are bsd4.4, solaris8, and linux.

The FEATURE macro defines optional features to be included in the sendmail.cf file. The nouucp
feature in the example shown says that UUCP addresses are not used on this system. The
argument reject says that local addresses that use the UUCP bang syntax (i.e., contain an ! in
the local part) will be rejected. Recall that in the previous section we identified tcpproto.mc as the
prototype file for systems that have no UUCP connections. Another prototype file would have
different FEATURE values.

The prototype file ends with the mailer macros. These must be the last macros in the input file.
The example shown above specifies the local mailer macro and the SMTP mailer macro.

The MAILER(local) macro includes the local mailer that delivers local mail between users of the
system and the prog mailer that sends mail files to programs running on the system. All the
generic macro configuration files include the MAILER(local) macro because the local and prog
mailers provide essential local mail delivery services.

The MAILER(smtp) macro includes all of the mailers needed to send SMTP mail over a TCP/IP
network. The mailers included in this set are:

smtp

This mailer can handle traditional 7-bit ASCII SMTP mail. It is outmoded because most
modern mail networks handle a variety of data types.

esmtp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This mailer supports Extended SMTP (ESMTP). It understands the ESMTP protocol
extensions and it can deal with the complex message bodies and enhanced data types of
MIME mail. This is the default mailer used for SMTP mail.

smtp8

This mailer sends 8-bit data to the remote server, even if the remote server does not
indicate that it can support 8-bit data. Normally, a server that supports 8-bit data also
supports ESMTP and thus can advertise its support for 8-bit data in the response to the
EHLO command. (See Chapter 3 for a description of the SMTP protocol and the EHLO
command.) It is possible, however, to have a connection to a remote server that can
support 8-bit data but does not support ESMTP. In that rare circumstance, this mailer is
available for use.

dsmtp

This mailer allows the destination system to retrieve mail queued on the server. Normally,
the source system sends mail to the destination in what might be called a "push" model,
where the source pushes mail out to the destination. On demand, SMTP allows the
destination to "pull" mail down from the mail server when it is ready to receive the mail. This
mailer implements the ETRN command that permits on-demand delivery. (The ETRN
protocol command is described in RFC 1985.)

relay

This mailer is used when SMTP mail must be relayed through another mail server. Several
different mail relay hosts can be defined.

Every server that is connected to or communicates with the Internet uses the MAILER(smtp) set
of mailers, and most systems on isolated networks use these mailers because they use TCP/IP
on their enterprise network. Despite the fact that the vast majority of sendmail systems require
these mailers, installing them is not the default. To support SMTP mail, you must have the
MAILER(smtp) macro in your configuration, which is why it is included in the prototype file.

In addition to these two important sets of mailers, there are nine other sets of mailers available
with the MAILER command, all of which are covered in Appendix E. Most of them are of very little
interest for an average configuration. The two sets of mailers included in the tcpproto.mc
configuration are the only ones that most administrators ever use.

To create a sample sendmail.cf from the tcpproto.mc prototype file, copy the prototype file to a
work file. Edit the work file to change the OSTYPE line from unknown to the correct value for your
operating system, e.g., solaris8 or linux. In the example we use sed to change unknown to
linux. We store the result in a file we call linux.mc:

sed 's/unknown/linux/' < tcpproto.mc > linux.mc
Then enter the m4 command:

m4 ../m4/cf.m4 linux.mc > sendmail.cf
The sendmail.cf file output by the m4 command is in the correct format to be read by the sendmail
program. With the exception of how UUCP addresses are handled, the output file produced
above is similar to the sample generic-linux.cf configuration file delivered with the sendmail
distribution.

OSTYPE is not the only thing in the macro file that can be modified to create a custom
configuration. There are a large number of configuration options, all of which are explained in
Appendix E. As an example we modify a few options to create a custom configuration that
converts user@host email addresses originating from our computer into

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

converts user@host email addresses originating from our computer into
firstname.lastname@domain. To do this, we create two new configuration files: a macro file with
specific values for the domain that we name wrotethebook.com.m4, and a modified macro control
file, linux.mc, that calls the new wrotethebook.com.m4 file.

We create the new macro file wrotethebook.com.m4 and place it in the cf/domain directory. The
new file contains the following:

$ cat domain/wrotethebook.com.m4
MASQUERADE_AS(wrotethebook.com)

FEATURE(masquerade_envelope)

FEATURE(genericstable)

These lines say that we want to hide the real hostname and display the name wrotethebook.com
in its place in outbound email addresses. Also, we want to do this on "envelope" addresses as
well as message header addresses. The first two lines handle the conversion of the host part of
the outbound email address. The last line says that we will use the generic address conversion
database, which converts login usernames to any value we wish to convert the user part of the
outbound address. We must build the database by creating a text file with the data we want and
processing that file through the makemap command that comes with sendmail.

The format of the database can be very simple:

dan Dan.Scribner

tyler Tyler.McCafferty

pat Pat.Stover

willy Bill.Wright

craig Craig.Hunt

Each line in the file has two fields: the first field is the key, which is the login name, and the
second field is the user's real first and last names separated by a dot. Fields are separated by
spaces. Using this database, a query for dan will return the value Dan.Scribner. A small
database such as this one can be easily built by hand. On a system with a large number of
existing user accounts, you may want to automate this process by extracting the user's login
name and first and last names from the /etc/passwd file. The gcos field of the /etc/passwd file
often contains the user's real name.[6]

[6] See Appendix E for a sample script that builds the realnames database from /etc/passwd.

Once the data is in a text file, convert it to a database with the makemap command. The makemap
command is included in the sendmail distribution. The syntax of the makemap command is:

makemap type name
makemap reads the standard input and writes the database out to a file it creates using the value
provided by name as the filename. The type field identifies the database type. The most
commonly supported database types for sendmail are dbm, btree, and hash.[7] All of these types
can be made with the makemap command.

[7] On Solaris systems, NIS maps and NIS+ tables are built with standard commands that come with the operating
system. The syntax for using those maps within sendmail is different (see Table 10-3).

Assume that the data shown above has been put in a file named realnames. The following
command converts that file to a database:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

makemap hash genericstable < realnames
makemap reads the text file and produces a database file called genericstable. The database
maps login names to real names, e.g., the key willy returns the value Bill.Wright.

Now that we have created the database, we create a new sendmail configuration file to use it. All
of the m4 macros related to using the database are in the wrotethebook.com.m4 file. We need to
include that file in the configuration. To do that, add a DOMAIN(wrotethebook.com) line to the
macro control file (linux.mc) and then process the linux.mc through m4. The following grep
command shows what the macros in the file look like after the change:

grep '^[A-Z]' linux.mc
VERSIONID(`$Id: ch10.xml,v 1.7 2002/09/04 21:08:29 chodacki Exp $')

OSTYPE(`linux')

DOMAIN(`wrotethebook.com')

FEATURE(`nouucp', `reject')

MAILER(`local')

MAILER(`smtp')

m4 ../m4/cf.m4 linux.mc > sendmail.cf
Use a prototype mc file as the starting point of your configuration if you install sendmail from the
tar file. To use the latest version of sendmail you must build a compatible sendmail.cf file using
the m4 macros. Don't attempt to use an old sendmail.cf file with a new version of sendmail; you'll
just cause yourself grief. As you can see from the sample above, m4 configuration files are very
short and can be constructed from only a few macros. Use m4 to build a fresh configuration every
time you upgrade sendmail.

Conversely, you should not use a sendmail.cf file created from the prototype files found in the
sendmail distribution with an old version of sendmail. Features in these files require that you run a
compatible version of sendmail, which means it is necessary to recompile sendmail to use the
new configuration file.[8] This is not something every system administrator will choose to do,
because some systems don't have the correct libraries; others don't even have a C compiler! If
you choose not to recompile sendmail, you can use the sample sendmail.cf file provided with your
system as a starting point. However, if you have major changes planned for your configuration, it
is probably easier to recompile sendmail and build a new configuration with m4 than it is to make
major changes directly to the sendmail.cf.

[8] See Appendix E for information about compiling sendmail.

In the next part of this chapter, we use one of the sample sendmail.cf files provided with Linux.
The specific file we start with is generic-linux.cf found in the cf/cf directory of the sendmail
distribution. All of the things we discuss in the remainder of the chapter apply equally well to
sendmail.cf files that are produced by m4. The structure of a sendmail.cf file, the commands that it
contains, and the tools used to debug it are universal.

10.4.2 General sendmail.cf Structure

Most sendmail.cf files have more or less the same structure because most are built from the
standard m4 macros. Therefore, the files provided with your system probably are similar to the
ones used in our examples. Some systems use a different structure, but the functions of the
sections described here will be found somewhere in most sendmail.cf files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Linux file, generic-linux.cf, is our example of sendmail.cf file structure. The section labels
from the sample file are used here to provide an overview of the sendmail.cf structure. These
sections will be described in greater detail when we modify a sample configuration. The sections
are:

Local Information

Defines the information that is specific to the individual host. In the generic-linux.cf file,
Local Information defines the hostname, the names of any mail relay hosts, and the mail
domain. It also contains the name that sendmail uses to identify itself when it returns error
messages, the message that sendmail displays during an SMTP login, and the version
number of the sendmail.cf file. (Increase the version number each time you modify the
configuration.) This section is usually customized during configuration.

Options

Defines the sendmail options. This section usually requires no modifications.

Message Precedence

Defines the various message precedence values used by sendmail. This section is not
modified.

Trusted Users

Defines the users who are trusted to override the sender address when they are sending
mail. This section is not modified. Adding users to this list is a potential security problem.

Format of Headers

Defines the format of the headers that sendmail inserts into mail. This section is not
modified.

Rewriting Rules

Defines the rules used to rewrite mail addresses. Rewriting Rules contains the general
rules called by sendmail or other rewrite rules. This section is not modified during the initial
sendmail configuration. Rewrite rules are usually modified only to correct a problem or to
add a new service.

Mailer Definitions

Defines the instructions used by sendmail to invoke the mail delivery programs. The
specific rewrite rules associated with each individual mailer are also defined in this section.
The mailer definitions are usually not modified. However, the rewrite rules associated with
the mailers are sometimes modified to correct a problem or to add a new service.

The section labels in the sample file delivered with your system may be different from these.
However, the structure of your sample file is probably similar to the structure discussed above in
these ways:

The information that is customized for each host is probably at the beginning of the file.

Similar types of commands (option commands, header commands, etc.) are usually
grouped together.

The bulk of the file consists of rewrite rules.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last part of the file probably contains mailer definitions intermixed with the rewrite rules
that are associated with the individual mailers.

Look at the comments in your sendmail.cf file. Sometimes these comments provide valuable
insight into the file structure and the things that are necessary to configure a system.

It's important to realize how little of sendmail.cf needs to be modified for a typical system. If you
pick the right sample file to work from, you may need to modify only a few lines in the first section.
From this perspective, sendmail configuration appears to be a trivial task. So why are system
administrators intimidated by it? It is largely because of the difficult syntax of the sendmail.cf
configuration language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5 sendmail.cf Configuration Language

Every time sendmail starts up, it reads sendmail.cf. For this reason, the syntax of the sendmail.cf commands is
designed to be easy for sendmail to parse—not necessarily easy for humans to read. As a consequence, sendmail
commands are very terse, even by Unix standards.

The configuration command is not separated from its variable or value by any spaces. This "run together" format
makes the commands hard to read. Figure 10-2 illustrates the format of a command. In the figure, a define macro
command assigns the value wrotethebook.com to the macro D.

Figure 10-2. A sendmail.cf configuration command

Starting with version 8 of sendmail, variable names are no longer restricted to a single character. Long variable
names, enclosed in braces, are now acceptable. For example, the define macro shown in Figure 10-2
written:

D{Domain}wrotethebook.com

Long variable names are easier to read and provide for more choices than the limited set provided by single
character names. However, the old-fashioned, short variable names are still common. This terse syntax can be
very hard to decipher, but it helps to remember that the first character on the line is always the command. From
this single character you can determine what the command is and therefore its structure. Table 10-1
sendmail.cf commands and their syntax.

Table 10-1. sendmail configuration commands
Command Syntax Function

Version Level Vlevel[/vendor] Specify version level.

Define Macro Dxvalue Set macro x to value.

Define Class Ccword1[word2] ... Set class c to word1 word2

Define Class Fcfile Load class c from file.

Set Option Ooption=value Set option to value.

Trusted Users Tuser1[user2 ...] Trusted users are user1 user2

Set Precedence Pname=number Set name to precedence number.

Define Mailer Mname, {field=value} Define mailer name.

Define Header H[?mflag?]name:format Set header format.

Set Ruleset Sn Start ruleset number n.

Define Rule Rlhs rhs comment Rewrite lhs patterns to rhs format.

Key File Kname type [argument] Define database name.

The following sections describe each configuration command in more detail.

10.5.1 The Version Level Command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The version level command is an optional command not found in all sendmail.cf files. You don't add a
to the sendmail.cf file or change one if it is already there. The V command is inserted into the configuration file
when it is first built from m4 macros or by the vendor.

The level number on the V command line indicates the version level of the configuration syntax. V1 is the oldest
configuration syntax and V9 is the version supported by sendmail 8.11.3. Every level in between adds
feature extensions. The vendor part of the V command identifies if any vendor-specific syntax is supported. The
default vendor value for the sendmail distribution is Berkeley.

The V command tells the sendmail executable the level of syntax and commands required to support this
configuration. If the sendmail program cannot support the requested commands and syntax, it displays the
following error message:

/usr/lib/sendmail -Ctest.cf
Warning: .cf version level (9) exceeds sendmail version 8.9.3+Sun functionality (8):

Operation not permitted

This error message indicates that this sendmail program supports level 8 configuration files with Sun syntax
extensions.[9] The example was produced on a Solaris 8 system running the sendmail program that came with the
operating system. In the example we attempted to read a configuration file that was created by the m4
came with sendmail 8.11.3. The syntax and functions needed by the configuration file are not available in the
sendmail program. To use this configuration file, we would have to compile a newer version of the sendmail
program. See Appendix E for an example of compiling sendmail.

[9] See Table 10-4 for Sun-specific syntax.

You will never change the values on a V command. You might, however, need to customize some D

10.5.2 The Define Macro Command

The define macro command (D) defines a macro and stores a value in it. Once the macro is defined, it is used to
provide the stored value to other sendmail.cf commands and directly to sendmail itself. This allows sendmail
configurations to be shared by many systems simply by modifying a few system-specific macros.

A macro name can be any single ASCII character or a word enclosed in curly braces. Use long names for user-
created macros. sendmail's own internal macros use most of the available letters and special characters as names.
Additionally, a large number of long macro names are already defined. This does not mean that you
upon to name a macro, but it does mean you will have to be careful that your name doesn't conflict with a name
that has already been used. Internal macros are sometimes defined in the sendmail.cf file. Appendix E
complete list of sendmail's internal macros. Refer to that list when creating a user-defined macro to avoid
conflicting with an internal macro. To retrieve the value stored in a macro, reference it as $x, where
name. Macros are expanded when the sendmail.cf file is read. A special syntax, $&x, is used to expand macros
when they are referenced. The $&x syntax is only used with certain internal macros that change at runtime.

The code below defines the macros {our-host}, M, and Q. After this code executes, ${our-host}
crab, $M returns wrotethebook.com, and $Q returns crab.wrotethebook.com. This sample code defines Q as
containing the value of {our-host} (which is ${our-host}), plus a literal dot, plus the value of M (

D{our-host}crab

DMwrotethebook.com

DQ${our-host}.$M

If you customize your sendmail.cf file, it will probably be necessary to modify some macro definitions. The macros

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you customize your sendmail.cf file, it will probably be necessary to modify some macro definitions. The macros
that usually require modification define site-specific information, such as hostnames and domain names.

10.5.2.1 Conditionals

A macro definition can contain a conditional. Here's a conditional:

 DXg?x ($x)$.

The D is the define macro command; X is the macro being defined; and $g says to use the value stored in macro
But what does $?x ($x)$. mean? The construct $?x is a conditional. It tests whether macro x has a value set. If
the macro has been set, the text following the conditional is interpreted. The $. construct ends the conditional.

Given this, the assignment of macro X is interpreted as follows: X is assigned the value of g; and if x
also assigned a literal blank, a literal left parenthesis, the value of x, and a literal right parenthesis.

So if g contains chunt@wrotethebook.com and x contains Craig Hunt, X will contain:

 chunt@wrotethebook.com (Craig Hunt)

The conditional can be used with an "else" construct, which is $|. The full syntax of the conditional is:

 $?x text1 $| text2 $.

This is interpreted as:

if ($?) x is set;

use text1;

else ($|);

use text2;

end if ($.).

10.5.3 Defining Classes

Two commands, C and F, define sendmail classes. A class is similar to an array of values. Classes are used for
anything with multiple values that are handled in the same way, such as multiple names for the local host or a list of
uucp hostnames. Classes allow sendmail to compare against a list of values instead of against a single value.
Special pattern matching symbols are used with classes. The $= symbol matches any value in a class, and the
symbol matches any value not in a class. (More on pattern matching later.)

Like macros, classes can have single-character names or long names enclosed in curly braces. User-created
classes use long names that do not conflict with sendmail's internal names. (See Appendix E for a complete list of
the names that sendmail uses for its internal class values.) Class values can be defined on a single line, on
multiple lines, or loaded from a file. For example, class w is used to define all of the hostnames by which the local
host is known. To assign class w the values goober and pea, you can enter the values on a single line:

Cwgoober pea

Or you can enter the values on multiple lines:

Cwgoober

Cwpea

You can also use the F command to load the class values from a file. The F command reads a file and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use the F command to load the class values from a file. The F command reads a file and
words found there in a class variable. For example, to define class w and assign it all of the strings found in
/etc/mail/local-host-names, use:[10]

[10] sendmail 8.11 uses /etc/mail/local-host-names to load class w. Earlier versions of sendmail used /etc/sendmail.cw. Only the name has
changed; the file still contains a list of hostnames.

 Fw/etc/mail/local-host-names

You may need to modify a few class definitions when creating your sendmail.cf file. Frequently information
to uucp, to alias hostnames, and to special domains for mail routing is defined in class statements. If
has a uucp connection as well as a TCP/IP connection, pay particular attention to the class definitions.
case, check the class definitions carefully and make sure they apply to your configuration.

Here we grep the Linux sample configuration file for lines beginning with C or F:

% grep '^[CF]' generic-linux.cf
Cwlocalhost

Fw/etc/mail/local-host-names

CP.

CO @ % !

C..

C[[

FR-o /etc/mail/relay-domains

C{E}root

CPREDIRECT

This grep shows that generic-linux.cf defines classes w, P, O, ., [, R, and E. w contains the host's alias
hostnames. Notice that values are stored in w with both a C command and an F command. Unlike a
which overwrites the value stored in a macro, the commands that store values in class arrays are additive. The
command and the F command at the start of this listing add values to class w. Another example of the additive
nature of C commands is class P. P holds pseudo-domains used for mail routing. The first C command affecting
class P stores a dot in the array. The last command in the list adds REDIRECT to class P.

Class O stores operators that cannot be part of a valid username. The classes . (dot) and [are primarily of
interest because they show that variable names do not have to be alphabetic characters and that sometimes
arrays have only one value. E lists the usernames that should always be associated with the local host's fully
qualified domain name, even if simplified email addresses are being used for all other users. (More
addresses later.) Notice that even a single character class name, in this case E, can be enclosed in curly braces.

Remember that your system will be different. These same class names may be assigned other values on your
system, and are only presented here as an example. Carefully read the comments in your sendmail.cf
guidance as to how classes and macros are used in your configuration.

Many class names are reserved for internal sendmail use. All internal classes defined in sendmail version 8.11 are
shown in Appendix E. Only class w, which defines all of the hostnames the system will accept as its own, is
commonly modified by system administrators who directly configure the sendmail.cf file.

10.5.4 Setting Options

The option (O) command is used to define the sendmail environment. Use the O command to set values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The option (O) command is used to define the sendmail environment. Use the O command to set values
appropriate for your installation. The value assigned to an option is a string, an integer, a Boolean, or a time
interval, as appropriate for the individual option. All options define values used directly by sendmail.

There are no user-created options. The meaning of each sendmail option is defined within sendmail itself.
Appendix E lists the meaning and use of each option, and there are plenty of them.

A few sample options from the generic-linux.cf file are shown below. The AliasFile option defines the name of
the sendmail aliases file as /etc/mail/aliases. If you want to put the aliases file elsewhere, change this option. The
TempFileMode option defines the default file mode as 0600 for temporary files created by sendmail in
/var/spool/mqueue. The Timeout.queuereturn option sets the timeout interval for undeliverable mail, here set to five
days (5d). These options show the kind of general configuration parameters set by the option command.

location of alias file

O AliasFile=/etc/mail/aliases

temporary file mode

O TempFileMode=0600

default timeout interval

O Timeout.queuereturn=5d

The syntax of the option command shown in this example and in Appendix E was introduced in sendmail version
8.7.5. Prior to that, the option command used a syntax more like the other sendmail commands. The old syntax is:
Oovalue, where O is the command, o is the single character option name, and value is the value assigned to the
option. The options shown in the previous discussion, if written in the old syntax, would be:

location of alias file

OA/etc/aliases

temporary file mode

OF0600

default timeout interval OT5d

If your configuration uses the old option format, it is dangerously out of date and should be upgraded. See
Appendix E for information on downloading, compiling, and installing the latest version of sendmail.

Most of the options defined in the sendmail.cf file that comes with your system don't require modification.
change options settings because they want to change the sendmail environment, not because they have to. The
options in your configuration file are almost certainly correct for your system.

10.5.5 Defining Trusted Users

The T command defines a list of users who are trusted to override the sender address using the mailer
Normally the trusted users are defined as root, uucp, and daemon. Trusted users can be specified as a
usernames on a single command line or on multiple command lines. The users must be valid usernames from the
/etc/passwd file.

[11] Mailer flags are listed in Appendix E.

The most commonly defined trusted users are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Troot

Tdaemon

Tuucp

Do not modify this list. Additional trusted users increase the possibility of security problems.

10.5.6 Defining Mail Precedence

Precedence is one of the factors used by sendmail to assign priority to messages entering its queue. The
command defines the message precedence values available to sendmail users. The higher the precedence
number, the greater the precedence of the message. The default precedence of a message is 0. Negative
precedence numbers indicate especially low-priority mail. Error messages are not generated for mail with a
negative precedence number, making low priorities attractive for mass mailings. Some commonly used precedence
values are:

Pfirst-class=0

Pspecial-delivery=100

Plist=-30

Pbulk=-60

Pjunk=-100

To specify a desired precedence, add a Precedence header to your outbound message. Use the text name from
the P command in the Precedence header to set the specific precedence of the message. Given the precedence
definitions shown above, a user who wanted to avoid receiving error messages for a large mailing could select a
message precedence of -60 by including the following header line in the mail:

 Precedence: bulk

The five precedence values shown are probably more than you'll ever need.

10.5.7 Defining Mail Headers

The H command defines the format of header lines that sendmail inserts into messages. The format of the header
command is the H command, optional header flags enclosed in question marks, a header name, a colon, and a
header template. The header template is a combination of literals and macros that are included in the header line.
Macros in the header template are expanded before the header is inserted in a message. The same
syntax used in macro definitions can be used in header templates, and it functions in exactly the same way: it
allows you to test whether a macro is set and to use another value if it is not set.

The header template field can contain the $>name syntax that is used in rewrite rules. When used in a header
template, the $>name syntax allows you to call the ruleset identified by name to process an incoming header. This
can be useful for filtering headers in order to reduce spam email. We discuss rulesets, rewrite rules, the
syntax, and how these things are used later in this chapter.

The header flags often arouse more questions than they merit. The function of the flags is very simple. The header
flags control whether or not the header is inserted into mail bound for a specific mailer. If no flags are specified, the
header is used for all mailers. If a flag is specified, the header is used only for a mailer that has the same flag set in
the mailer's definition. (Mailer flags are listed in Appendix E.) Header flags control only header insertion
is received in the input, it is passed to the output regardless of the flag settings.

Some sample header definitions from the generic-linux.cf sample file are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

H?P?Return-Path: <$g>

HReceived: $?sfrom $s $.$?_($?s$|from $.$_)

H?D?Resent-Date: $a

H?D?Date: $a

H?F?Resent-From: $?x$x <$g>$|g.

H?F?From: $?x$x <$g>$|g.

H?x?Full-Name: $x

H?M?Resent-Message-Id: <$t.$i@$j>

H?M?Message-Id: <$t.$i@$j>

The headers provided in your system's sendmail.cf are sufficient for most installations. It's unlikely you'll ever need
to change them.

10.5.8 Defining Mailers

The M commands define the mail delivery programs used by sendmail. The syntax of the command is:

 Mname, {field=value}

name is an arbitrary name used internally by sendmail to refer to this mailer. The name doesn't matter as
is used consistently within the sendmail.cf file to refer to this mailer. For example, the mailer used to deliver SMTP
mail within the local domain might be called smtp on one system and ether on another system. The function of both
mailers is the same; only the names are different.

There are a few exceptions to this freedom of choice. The mailer that delivers local mail to users on the same
machine must be called local, and a mailer named local must be defined in the sendmail.cf file. Three other special
mailer names are:

prog

Delivers mail to programs.

file

Sends mail to files.

include

Directs mail to :include: lists.

Of these, only the prog mailer is defined in the sendmail.cf file. The other two are defined internally by sendmail.

Despite the fact that the mailer name can be anything you want, it is usually the same on most systems because
the mailers in the sendmail.cf file are built by standard m4 macros. In the linux.mc configuration created earlier, the
MAILER(local) macro created the prog and local mailers, and the MAILER(smtp) macro created the
smtp8, dsmtp, and relay mailers. Every system you work with will probably have this same set of mailer

The mailer name is followed by a comma-separated list of field=value pairs that define the characteristics of the
mailer. Table 10-2 shows the single-character field identifiers and the contents of the value field associated with
each of them. Most mailers don't require all of these fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 10-2. Mailer definition fields
Field Meaning Contents Example

P Path Path of the mailer P=/bin/mail

F Flags sendmail flags for this mailer F=lsDFMe

S Sender Rulesets for sender addresses S=10

R Recipient Rulesets for recipient addresses R=20

A Argv The mailer's argument vector A=sh -c $u

E Eol End-of-line string for the mailer E=\r\n

M Maxsize Maximum message length M=100000

L Linelimit Maximum line length L=990

D Directory prog mailer's execution directory D=$z:/

U Userid User and group ID used to run mailer U=uucp:wheel

N Nice nice value used to run mailer N=10

C Charset Content-type for 8-bit MIME characters C=iso8859-1

T Type Type information for MIME errors T=dns/rfc822/smtp

The Path (P) fields contain either the path to the mail delivery program or the literal string [IPC]. Mailer definitions
that specify P=[IPC] use sendmail to deliver mail via SMTP.[12] The path to a mail delivery program varies from
system to system depending on where the systems store the programs. Make sure you know where the programs
are stored before you modify the Path field. If you use a sendmail.cf file from another computer, make
mailer paths are valid for your system. If you use m4 to build the configuration, the path will be correct.

[12] [TCP] and [IPC] are used interchangeably, both in the P field and in the A field.

The Flags (F) field contains the sendmail flags used for this mailer. These are the mailer flags referenced earlier in
this chapter under "Defining Mail Headers," but mailer flags do more than just control header insertion. There are a
large number of flags. Appendix E describes all of them and their functions.

The Sender (S) and the Recipient (R) fields identify the rulesets used to rewrite the sender and recipient addresses
for this mailer. Each ruleset is identified by its number. We'll discuss rulesets more later in this chapter, and we will
refer to the S and R values when troubleshooting the sendmail configuration.

The Argv (A) field defines the argument vector passed to the mailer. It contains, among other things, macro
expansions that provide the recipient username (which is $u),[13] the recipient hostname ($h), and the
From address ($f). These macros are expanded before the argument vector is passed to the mailer.

[13] In the prog mailer definition, $u actually passes a program name in the argument vector.

The End-of-line (E) field defines the characters used to mark the end of a line. A carriage return and a line feed
(CRLF) is the default for SMTP mailers.

Maxsize (M) defines, in bytes, the longest message that this mailer will handle. This field is used most frequently in
definitions of UUCP mailers.

Linelimit (L) defines, in bytes, the maximum length of a line that can be contained in a message handled by this
mailer. This mailer field was introduced in sendmail V8. Previous versions of sendmail limited lines to 80 characters
because this was the limit for SMTP mail before MIME mail was introduced.

The Directory (D) field specifies the working directory for the prog mailer. More than one directory can
for the directory field by separating the directory paths with colons. The example in Table 10-2 tells prog
recipient's home directory, which is the value returned by the internal macro $z. If that directory is not available, it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recipient's home directory, which is the value returned by the internal macro $z. If that directory is not available, it
should use the root (/) directory.

The Userid (U) field is used to specify the default user and the group ID used to execute the mailer. The example
U=uucp:wheel says that the mailer should be run under the user ID uucp and the group ID wheel. If no value is
specified for the Userid field, the value defined by the DefaultUser option is used.

Use Nice (N) to change the nice value for the execution of the mailer. This allows you to change the
priority of the mailer. This is rarely used. If you're interested, see the nice manpage for appropriate values.

The last two fields are used only for MIME mail. Charset (C) defines the character set used in the Content-type
header when an 8-bit message is converted to MIME. If Charset is not defined, the value defined in the
DefaultCharSet option is used. If that option is not defined, unknown-8bit is used as the default value.

The Type (T) field defines the type information used in MIME error messages. MIME-type information defines the
mailer transfer agent type, the mail address type, and the error code type. The default is dns/rfc822/smtp

10.5.8.1 Some common mailer definitions

The following mailer definitions are from generic-linux.cf:

Mlocal, P=/usr/bin/procmail, F=lsDFMAw5:/|@qSPfhn9,

 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, T=DNS/RFC822/X-Unix,

 A=procmail -Y -a $h -d $u

Mprog, P=/bin/sh, F=lsDFMoqeu9, S=EnvFromL/HdrFromL,

 R=EnvToL/HdrToL, D=$z:/, T=X-Unix/X-Unix/X-Unix,

 A=sh -c $u

Msmtp, P=[IPC], F=mDFMuX, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,

 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h

Mesmtp, P=[IPC], F=mDFMuXa, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,

 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h

Msmtp8, P=[IPC], F=mDFMuX8, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,

 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h

Mdsmtp, P=[IPC], F=mDFMuXa%, S=EnvFromSMTP/HdrFromSMTP, R=EnvToSMTP,

 E=\r\n, L=990, T=DNS/RFC822/SMTP, A=TCP $h

Mrelay, P=[IPC], F=mDFMuXa8, S=EnvFromSMTP/HdrFromSMTP, R=MasqSMTP,

 E=\r\n, L=2040, T=DNS/RFC822/SMTP,A=TCP $h

This example contains the following mailer definitions:

A definition for local mail delivery, always called local. This definition is required by sendmail.

A definition for delivering mail to programs, always called prog. This definition is found in most
configurations.

A definition for TCP/IP mail delivery, here called smtp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A definition for an Extended SMTP mailer, here called esmtp.

A definition for an SMTP mailer that handles unencoded 8-bit data, here called smtp8.

A definition for on-demand SMTP, here called dsmtp.

A definition for a mailer that relays TCP/IP mail through an external mail relay host, here called

A close examination of the fields in one of these mailer entries, for example the entry for the smtp mailer, shows
the following:

Msmtp

A mailer, arbitrarily named smtp, is being defined.

P=[IPC]

The path to the program used for this mailer is [IPC], which means delivery of this mail is handled internally
by sendmail.

F=mDFMuX

The sendmail flags for this mailer say that this mailer can send to multiple recipients at once; that Date,
From, and Message-Id headers are needed; that uppercase should be preserved in hostnames and
usernames; and that lines beginning with a dot have an extra dot prepended. Refer to Appendix E
details.

S =EnvFromSMTP/HdrFromSMTP

The sender address in the mail "envelope" is processed through ruleset EnvFromSMTP, and the sender
address in the message is processed through ruleset HdrFromSMTP. More on this later.

R= EnvToSMTP

All recipient addresses are processed through ruleset EnvToSMTP.

E=\r\n

Lines are terminated with a carriage return and a line feed.

L=990

This mailer will handle lines up to 990 bytes long.

T=DNS/RFC822/SMTP

The MIME-type information for this mailer says that DNS is used for hostnames, RFC 822 email addresses
are used, and SMTP error codes are used.

A=TCP $h

The meaning of each option in an argument vector is exactly as defined on the manpage for the command;
see the local mailer as an example. In the case of the smtp mailer, however, the argument refers to an
internal sendmail process designed to deliver SMTP mail over a TCP connection. The macro
expanded to provide the recipient host ($h) address.

Despite this long discussion, don't worry about mailer definitions. The configuration file that is built by
operating system contains the correct mailer definitions to run sendmail in a TCP/IP network environment.
shouldn't need to modify any mailer definitions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6 Rewriting the Mail Address

Rewrite rules are the heart of the sendmail.cf file. Rulesets are groups of individual rewrite rules
used to parse email addresses from user mail programs and rewrite them into the form required
by the mail delivery programs. Each rewrite rule is defined by an R command. The syntax of the R
command is:

 Rpattern transformation comment

The fields in an R command are separated by tab characters. The comment field is ignored by the
system, but good comments are vital if you want to have any hope of understanding what's going
on. The pattern and transformation fields are the heart of this command.

10.6.1 Pattern Matching

Rewrite rules match the input address against the pattern, and if a match is found, they rewrite
the address in a new format using the rules defined in the transformation. A rewrite rule may
process the same address several times because, after being rewritten, the address is again
compared against the pattern. If it still matches, it is rewritten again. The cycle of pattern matching
and rewriting continues until the address no longer matches the pattern.

The pattern is defined using macros, classes, literals, and special metasymbols. The macros,
classes, and literals provide the values against which the input is compared, and the
metasymbols define the rules used in matching the pattern. Table 10-3 shows the metasymbols
used for pattern matching.

Table 10-3. Pattern matching metasymbols
Symbol Meaning

$@ Match exactly zero tokens.

$* Match zero or more tokens.

$+ Match one or more tokens.

$- Match exactly one token.

$=x Match any token in class x.

$~x Match any token not in class x.

$x Match all tokens in macro x.

$%x Match any token in the NIS map named in macro x.[14]

$!x Match any token not in the NIS map named in macro x.

$%y Match any token in the NIS hosts.byname map.

[14] This symbol is specific to Sun operating systems.

All of the metasymbols request a match for some number of tokens. A token is a string of
characters in an email address delimited by an operator. The operators are the characters
defined in the OperatorChars option. Operators are also counted as tokens when an address is
parsed. For example:

 becky@rodent.wrotethebook.com

This email address contains seven tokens: becky, @, rodent, ., wrotethebook, ., and com. This
address would match the pattern:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $-@$+

The address matches the pattern because:

It has exactly one token before the @ that matches the requirement of the $- symbol.

It has an @ that matches the pattern's literal @.

It has one or more tokens after the @ that match the requirement of the $+ symbol.

Many addresses, such as hostmaster@apnic.net and craigh@ora.com, match this pattern, but
other addresses do not. For example, rebecca.hunt@wrotethebook.com does not match because
it has three tokens: rebecca, ., and hunt, before the @. Therefore, it fails to meet the requirement
of exactly one token specified by the $- symbol. Using the metasymbols, macros, and literals,
patterns can be constructed to match any type of email address.

When an address matches a pattern, the strings from the address that match the metasymbols
are assigned to indefinite tokens. The matching strings are called indefinite tokens because they
may contain more than one token value. The indefinite tokens are identified numerically according
to the relative position in the pattern of the metasymbol that the string matched. In other words,
the indefinite token produced by the match of the first metasymbol is called $1; the match of the
second symbol is called $2; the third is $3; and so on. When the address
becky@rodent.wrotethebook.com matched the pattern $-@$+, two indefinite tokens were created.
The first is identified as $1 and contains the single token, becky, that matched the $- symbol. The
second indefinite token is $2 and contains the five tokens—rodent, ., wrotethebook, ., and com—
that matched the $+ symbol. The indefinite tokens created by the pattern matching can then be
referenced by name ($1, $2, etc.) when rewriting the address.

A few of the symbols in Table 10-3 are used only in special cases. The $@ symbol is normally
used by itself to test for an empty, or null, address. The symbols that test against NIS maps can
only be used on Sun systems that run the sendmail program that Sun provides with the operating
system. We'll see in the next section that systems running basic sendmail can use NIS maps, but
only for transformation—not for pattern matching.

10.6.2 Transforming the Address

The transformation field, from the right-hand side of the rewrite rule, defines the format used for
rewriting the address. It is defined with the same things used to define the pattern: literals,
macros, and special metasymbols. Literals in the transformation are written into the new address
exactly as shown. Macros are expanded and then written. The metasymbols perform special
functions. The transformation metasymbols and their functions are shown in Table 10-4.

Table 10-4. Transformation metasymbols
Symbol Meaning

$n Substitute indefinite token n.

$[name$] Substitute the canonical form of name.

$map key$@argument $:default$) Substitute a value from database map indexed by key.

$>n Call ruleset n.

$@ Terminate ruleset.

$: Terminate rewrite rule.

The $n symbol, where n is a number, is used for the indefinite token substitution discussed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The $n symbol, where n is a number, is used for the indefinite token substitution discussed
above. The indefinite token is expanded and written to the "new" address. Indefinite token
substitution is essential for flexible address rewriting. Without it, values could not be easily moved
from the input address to the rewritten address. The following example demonstrates this.

Addresses are always processed by several rewrite rules. No one rule tries to do everything.
Assume the input address mccafferty@rodent has been through some preliminary processing
and now is:

kathy.mccafferty<@rodent>

Assume the current rewrite rule is:

R$+<@$-> $1<@$2.$D> user@host -> user@host.domain

The address matches the pattern because it contains one or more tokens before the literal <@,
exactly one token after the <@, and then the literal >. The pattern match produces two indefinite
tokens that are used in the transformation to rewrite the address.

The transformation contains the indefinite token $1, a literal <@, indefinite token $2, a literal dot
(.), the macro D, and the literal >. After the pattern matching, $1 contains kathy.mccafferty and
$2 contains rodent. Assume that the macro D was defined elsewhere in the sendmail.cf file as
wrotethebook.com. In this case the input address is rewritten as:

kathy.mccafferty<@rodent.wrotethebook.com>

Figure 10-3 illustrates this specific address rewrite. It shows the tokens derived from the input
address and how those tokens are matched against the pattern. It also shows the indefinite
tokens produced by the pattern matching and how the indefinite tokens and other values from the
transformation are used to produce the rewritten address. After rewriting, the address is again
compared to the pattern. This time it fails to match the pattern because it no longer contains
exactly one token between the literal <@ and the literal >. So, no further processing is done by this
rewrite rule and the address is passed to the next rule in line. Rules in a ruleset are processed
sequentially, though a few metasymbols can be used to modify this flow.

Figure 10-3. Rewriting an address

The $>n symbol calls ruleset n and passes the address defined by the remainder of the
transformation to ruleset n for processing. For example:

$>9 $1 % $2

This transformation calls ruleset 9 ($>9), and passes the contents of $1, a literal %, and the
contents of $2 to ruleset 9 for processing. When ruleset 9 finishes processing, it returns a
rewritten address to the calling rule. The returned email address is then compared again to the
pattern in the calling rule. If it still matches, ruleset 9 is called again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The recursion built into rewrite rules creates the possibility for infinite loops. sendmail does its
best to detect possible loops, but you should take responsibility for writing rules that don't loop.
The $@ and the $: symbols are used to control processing and to prevent loops. If the
transformation begins with the $@ symbol, the entire ruleset is terminated and the remainder of
the transformation is the value returned by the ruleset. If the transformation begins with the $:
symbol, the individual rule is executed only once. Use $: to prevent recursion and to prevent
loops when calling other rulesets. Use $@ to exit a ruleset at a specific rule.

The $[name$] symbol converts a host's nickname or its IP address to its canonical name by
passing the value name to the name server for resolution. For example, using the
wrotethebook.com name servers, $[mouse$] returns rodent.wrotethebook.com and
$[[172.16.12.1]$] returns crab.wrotethebook.com.

In the same way that a hostname or address is used to look up a canonical name in the name
server database, the $(map key$) syntax uses the key to retrieve information from the database
identified by map. This is a more generalized database retrieval syntax than the one that returns
canonical hostnames, and it is more complex to use. Before we get into the details of setting up
and using databases from within sendmail, let's finish describing the rest of the syntax of rewrite
rules.

There is a special rewrite rule syntax that is used in ruleset 0. Ruleset 0 defines the triple (mailer,
host, user) that specifies the mail delivery program, the recipient host, and the recipient user.

The special transformation syntax used to do this is:

 $#mailer$@host$:user

An example of this syntax taken from the generic-linux.cf sample file is:

 R$*<@$*>$* $#esmtp $@ $2 $: $1 < @ $2 > $3 user@host.domain

Assume the email address david<@ora.wrotethebook.com> is processed by this rule. The
address matches the pattern $*<@$+>$* because:

The address has zero or more tokens (david) that match the first $* symbol.

The address has a literal <@.

The address has zero or more tokens (the five tokens in ora.wrotethebook.com) that match
the requirement of the second $* symbol.

The address has a literal >.

The address has zero or more (in this case, zero) tokens that match the requirement of the
last $* symbol.

This pattern match produces two indefinite tokens. Indefinite token $1 contains david and $2
contains ora.wrotethebook.com. No other matches occurred, so $3 is null. These indefinite tokens
are used to rewrite the address into the following triple:

 $#smtp$@ora.wrotethebook.com$:david<@ora.wrotethebook.com>

The components of this triple are:

$#smtp

smtp is the internal name of the mailer that delivers the message.

$@ora.wrotethebook.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$@ora.wrotethebook.com

ora.wrotethebook.com is the recipient host.

$:david<@ora.wrotethebook.com>

david<@ora.wrotethebook.com> is the recipient user.

There are a few variations on the mailer triple syntax that are also used in the templates of some
rules. Two of these variations use only the "mailer" component.

$#OK

Indicates that the input address passed a security test. For example, the address is
permitted to relay mail.

$#discard

Indicates that the input address failed some security test and that the email message
should be discarded.

Neither OK, discard, nor error (which is discussed in a second) is
declared in M commands like real mailers. But the sendmail
documentation refers to them as "mailers" and so do we.

The $#OK and $#discard mailers are used in relay control and security. The $#discard mailer
silently discards the mail and does not return an error message to the sender. The $#error
mailer also handles undeliverable mail, but unlike $#discard, it returns an error message to the
sender. The template syntax used with the $#error mailer is more complex than the syntax of
either $#OK or $#discard. That syntax is shown here:

$#error $@dsn-code $:message

The mailer value must be $#error. The $:message field contains the text of the error message
that you wish to send. The $@dsn-code field is optional. If it is provided, it appears before the
message and must contain a valid Delivery Status Notification (DSN) error code as defined by
RFC 1893, Mail System Status Codes.

DSN codes are composed of three dot-separated components:

class

Provides a broad classification of the status. Three values are defined for class in the RFC:
2 means success, 4 means temporary failure, and 5 means permanent failure.

subject

Classifies the error messages as relating to one of eight categories:

0 (Undefined)

The specific category cannot be determined.

1 (Addressing)

A problem was encountered with the address.

2 (Mailbox)

A problem was encountered with the delivery mailbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 (Mail system)

The destination mail delivery system is having a problem.

4 (Network)

The network infrastructure is having a problem.

5 (Protocol)

A protocol problem was encountered.

6 (Content)

The message content caused a translation error.

7 (Security)

A security problem was reported.

detail

Provides the details of the specific error. The detail value is meaningful only in context of
the subject code. For example, x.1.1 means a bad destination user address and x.1.2
means a bad destination host address, while x.2.1 means the mailbox is disabled and
x.2.2 means the mailbox is full. There are far too many detail codes to list here. See RFC
1893 for a full list.

An error message written to use the DSN format might be:

R<@$+> $#error$@5.1.1$:"user address required"

This rule returns the DSN code 5.1.1 and the message "user address required" when
the address matches the pattern. The DSN code has a 5 in the class field, meaning it is a
permanent failure; a 1 in the subject field, meaning it is an addressing failure; and a 1 in the detail
field, meaning that, given the subject value of 1, it is a bad user address.

Error codes and the error syntax are part of the advanced configuration options used for relay
control and security. These values are generated by the m4 macro used to select these advanced
features. These values are very rarely placed in the sendmail.cf file by a system administrator
directly.

10.6.2.1 Transforming with a database

External databases can be used to transform addresses in rewrite rules. The database is included
in the transformation part of a rule by using the following syntax:

 $(map key [$@argument...] [$:default] $)

map is the name assigned to the database within the sendmail.cf file. The name assigned to map
is not limited by the rules that govern macro names. Like mailer names, map names are used
only inside of the sendmail.cf file and can be any name you choose. Select a simple descriptive
name, such as "users" or "mailboxes". The map name is assigned with a K command. (More on
the K command in a moment.)

key is the value used to index into the database. The value returned from the database for this
key is used to rewrite the input address. If no value is returned, the input address is not changed
unless a default value is provided.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unless a default value is provided.

An argument is an additional value passed to the database procedure along with the key.
Multiple arguments can be used, but each argument must start with $@. The argument can be
used by the database procedure to modify the value it returns to sendmail. It is referenced inside
the database as %n, where n is a digit that indicates the order in which the argument appears in
the rewrite rule—%1, %2, and so on—when multiple arguments are used. (Argument %0 is the
key.)

An example will make the use of arguments clear. Assume the following input address:

 tom.martin<@sugar>

Further, assume the following database with the internal sendmail name of "relays":

oil %1<@relay.fats.com>

sugar %1<@relay.calories.com>

salt %1<@server.sodium.org>

Finally, assume the following rewrite rule:

 R$+<@$-> $(relays $2 $@ $1 $:$1<@$2> $)

The input address tom.martin<@sugar> matches the pattern because it has one or more tokens
(tom.martin) before the literal <@ and exactly one token (sugar) after it. The pattern matching
creates two indefinite tokens and passes them to the transformation. The transformation calls the
database (relays) and passes it token $2 (sugar) as the key and token $1 (tom.martin) as the
argument. If the key is not found in the database, the default ($1<@$2>) is used. In this case, the
key is found in the database. The database program uses the key to retrieve
"%1@relay.calories.com", expands the %1 argument, and returns
"tom.martin@relay.calories.com" to sendmail, which uses the returned value to replace the input
address.

Before a database can be used within sendmail, it must be defined. This is done with the K
command. The syntax of the K command is:

 Kname type [arguments]

name is the name used to reference this database within sendmail. In the example above, the
name is "relays".

type is the class of database. The type specified in the K command must match the database
support compiled into your sendmail. Most sendmail programs do not support all database types,
but a few basic types are widely supported. Common types are hash, btree, and nis. There are
many more, all of which are described in Appendix E.

arguments are optional. Generally, the only argument is the path of the database file.
Occasionally the arguments include flags that are interpreted by the database program. The full
list of K command flags that can be passed in the argument field is found in Appendix E.

To define the "relays" database file used in the example above, we might enter the following
command in the sendmail.cf file:

 Krelays hash /etc/mail/relays

The name relays is simply a name you chose because it is descriptive. The database type hash is
a type supported by your version of sendmail and was used by you when you built the database
file. Finally, the argument /etc/mail/relays is the location of the database file you created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don't worry if you're confused about how to build and use database files within sendmail. We will
revisit this topic later in the chapter and the examples will make the practical use of database files
clear.

10.6.3 The Set Ruleset Command

Rulesets are groups of associated rewrite rules that can be referenced by a name or a number.
The S command marks the beginning of a ruleset and names it. In the Sname command syntax,
name identifies the ruleset. Optionally a number can also be assigned to the ruleset using the full
Sname=number syntax. In that case, the ruleset can be referenced either by its name or its
number. It is even possible to identify a ruleset with a number instead of a name by using the old
Snumber syntax. This form of the syntax is primarily found in old configurations because old
versions of sendmail used numbers to identify rulesets.

Rulesets can be thought of as subroutines, or functions, designed to process email addresses.
They are called from mailer definitions, from individual rewrite rules, or directly by sendmail. Six
rulesets have special functions and are called directly by sendmail. These are:

Ruleset canonify (3) is the first ruleset applied to addresses. It converts an address to the
canonical form: local-part@host.domain.

Ruleset parse (0) is applied to the addresses used to deliver the mail. Ruleset parse is
applied after ruleset canonify, and only to the recipient addresses actually used for mail
delivery. It resolves the address to the triple (mailer, host, user) composed of the
name of the mailer that will deliver the mail, the recipient hostname, and the recipient
username.

Ruleset sender (1) is applied to all sender addresses in the message.

Ruleset recipient (2) is applied to all recipient addresses in the message.

Ruleset final (4) is applied to all addresses in the message and is used to translate internal
address formats into external address formats.

Ruleset localaddr (5) is applied to local addresses after sendmail processes the address
against the aliases file. Ruleset 5 is applied only to local addresses that do not have an
alias.

Figure 10-4 shows the flow of the message and addresses through these rulesets. The S and R
symbols stand for additional rulesets. They have names just like all normal rulesets, but the
names are not fixed as is the case with the rulesets described above. The S and R ruleset names
are identified in the S and R fields of the mailer definition. Each mailer may specify its own S and
R rulesets for mailer-specific cleanup of the sender and recipient addresses just before the
message is delivered.

Figure 10-4. Sequence of rulesets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are, of course, many more rulesets in most sendmail.cf files. The other rulesets provide
additional address processing, and are called by existing rulesets using the $>n construct. (See
Table 10-5 later in this chapter.) The rulesets provided in any vendor's sendmail.cf file will be
adequate for delivering SMTP mail. It's unlikely you'll have to add to these rulesets, unless you
want to add new features to your mailer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.7 Modifying a sendmail.cf File

In this section we put into practice everything we discussed about sendmail configuration files—their structure and
the commands used to build them. We'll modify the configuration file, generic-linux.cf, for use on
rodent.wrotethebook.com. We'll modify this particular file because its configuration is closest to the configuration
we need for rodent.wrotethebook.com. rodent is a Linux workstation on a TCP/IP Ethernet, and it uses SMTP mail
and DNS.

The following sections are titled according to the sections of the file, and they describe the modifications we'll
make to the file, section by section. Remember that other sendmail.cf files will probably use different
but the basic information provided in the configuration will be the same.

10.7.1 Modifying Local Information

The first line in the local information section of the configuration file defines class w.[15] Class w is the full set of
hostnames for which this system accepts mail. Use the C command or the F command to add hostnames to this
set. sendmail initializes this class to the value in macro w ($w), which is the hostname of this computer. On many
systems that is enough. However, sometimes a sendmail server acts as a mailbox server that must accept and
store mail for clients that do not directly receive SMTP mail. The w class needs to identify systems that expect this
host to accept mail for them. You'll need to add a hostname to class w for every mailbox client.

[15] The C and F commands from generic-linux.cf are shown earlier in this chapter.

In our sample, we accept the Cw command as written, and let sendmail define the value for w internally. This is
the most common method for desktop systems like rodent. On the system crab, which is also known by the name
wtb-gw, we would add values to class w as follows:

 Cwlocalhost wtb-gw wtb-gw.wrotethebook.com

Now mail addressed to user@wtb-gw.wrotethebook.com would be accepted by crab and not rejected as being
addressed to the wrong host.

Some mail servers might need to be configured to accept mail for many different hostnames. In that case, you
may want to load class w from a file containing all the hostnames. You can do that with the F command. The
generic-linux.cf file already has an F command, so we could just place the client hostnames in the file
/etc/mail/local-host-names.

No modification is necessary for the j macro definition because, on this system, sendmail obtains a fully qualified
domain name for the j macro from DNS. On most systems this is the case; on other systems sendmail obtains the
hostname without the domain extension. If j doesn't contain the full name, initialize j with the hostname
the domain name. In the sample file, we would do this by "uncommenting" the Dj command and editing the
domain string to be wrotethebook.com. However, there is no need to do this because j has the correct value.

To test if j is set to the correct value on your system, run sendmail with the -bt option and the debug level
0.4. In response to this, sendmail displays several lines of information, including the value of j. In the example
below, sendmail displays the value rodent.wrotethebook.com for j. If it displayed only rodent, we would edit
sendmail.cf to correct the value for j.

sendmail -bt -d0.4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sendmail -bt -d0.4
Version 8.11.3

 Compiled with: LOG MATCHGECOS MIME8TO7 NAMED_BIND NDBM

 NETINET NETUNIX NEWDB SCANF USERDB XDEBUG

canonical name: rodent.wrotethebook.com

 UUCP nodename: rodent

 a.k.a.: rodent.wrotethebook.com

 a.k.a.: [172.16.12.2]

============ SYSTEM IDENTITY (after readcf) ============

 (short domain name) $w = rodent

 (canonical domain name) $j = rodent.wrotethebook.com

 (subdomain name) $m = wrotethebook.com

 (node name) $k = rodent

==

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address> > ^D
The next line in the local information section defines class P. In our sample configuration file, class P stores the
names of two pseudo-domains. These pseudo-domain names are "." and REDIRECT. The pseudo-domain dot (.)
is used to identify canonical domain names. The REDIRECT pseudo-domain is used by the redirect feature
described in Appendix E. Other pseudo-domains can be added to class P to address users who are not on the
Internet with Internet-style email addresses. For example, we could add UUCP to class P so that mail can be
addressed using the old UUCP "bang" syntax, e.g., ora!los!craig, or it can be addressed in a pseudo-Internet
format, e.g., craig@los.ora.uucp. These mail routing domains simplify the address that the user enters and route
the mail to the correct mail relay host. However, additional pseudo-domains are rarely needed because most
mailers now support standard Internet-style addresses. The class P definition in generic-linux.cf does not require
any modification.

The configuration file has macro definitions for several mail relays. None of these are assigned a value in our
sample file. You only need a relay host if your system cannot deliver the mail because it lacks capability or
connectivity. Unix systems do not lack capability, but a firewall might limit connectivity. Some sites use a mail
relay so that only one system needs a full sendmail.cf configuration. The other hosts at the site simply forward
their mail to the smart host for delivery. If this is the configuration policy of your site, enter the name of the mail
relay as the "smart" relay. For example:

 DSrelay.wrotethebook.com

We don't enter anything in any of the relay settings on rodent. This desktop system will handle all its
Hey, that's why we run Unix!

The local information section in the sample file also includes five key file definitions. Two of these K commands
define pseudo-databases, which are internal sendmail routines used in rewrite rules as if they were true
databases. The arith database is an internal routine used to perform certain arithmetic functions. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

databases. The arith database is an internal routine used to perform certain arithmetic functions. The
database is an internal sendmail routine used to remove quotes from within email addresses. The other three
commands define real databases: mailertable, virtuser, and access. These are real databases, but the
files exist only if you create them. The mailertable database is used to send mail addressed to a specific domain
through a particular mailer to a specific remote host. The virtuser database routes mail for virtual mail domains,
which are mail domains that have no real existence beyond the sendmail server itself. The access database
provides access controls for mail relaying and for spam control.

The version number doesn't require modification—but it's a good idea to keep track of the changes you make to
your sendmail.cf file, and this is the place to do it. Each time you modify the configuration, change the version
number by adding your own revision number. At the same time, enter a comment in the file describing the
changes you made. Usually, this is the last change made to the files so the comments reflect all changes.
example, the original version number section in the generic-linux.cf file is:

######################

Version Number #

######################

 DZ8.11.3

After we have finished all of our modifications, it will contain:

######################

Version Number #

######################

R1.0 - modified for rodent by Craig

- cleaned up the comments in the local info section

R1.1 - modified macro M to use wrotethebook.com instead of the

hostname in outgoing mail

R2.0 - added rule a to SEnvFromSMTP & S HdrFromSMTP to rewrite

 the user in outgoing mail to firstname.lastname format

 DZ8.11.3R2.0

Finally, we need to understand the purpose of a few other classes and macros found in this section. The M macro
is used to rewrite the sender host address. Define a value for M to hide the name of the local host in outbound
mail. Classes E and M are both related to macro M. Class E defines the usernames for which the hostname is not
rewritten even if the M macro is defined. For example, root@rodent.wrotethebook.com is not rewritten to
root@wrotethebook.com even if M is defined as DMwrotethebook.com. Class M defines other hostnames, not just
the local hostname, that should be rewritten to the value of macro M. This is used on mail servers that
to rewrite sender addresses for their clients. For example:

who I masquerade as (null for no masquerading) (see also $=M)

DMwrotethebook.com

class M: domains that should be converted to $M CM24seven.wrotethebook.com brazil.

wrotethebook.com ora.wrotethebook.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wrotethebook.com ora.wrotethebook.com

Given the macro M and class M definitions shown above, this host would rewrite mail from
user@brazil.wrotethebook.com or user@24seven.wrotethebook.com to user@wrotethebook.com. rodent
server so we won't use class M. But we will use macro M later in the configuration.

We've spent lots of time looking at the local information section because almost everything you will need to do to
configure a system can be done here. We will quickly discuss the other section before getting into the really
challenging task of working with rewrite rules.

10.7.2 Modifying Options

The section "Options" defines the sendmail environment. For example, some of the options specify the file paths
used by sendmail, as in these lines from the generic-linux.cf file:

location of alias file

O AliasFile=/etc/mail/aliases

location of help file

O HelpFile=/etc/mail/helpfile

status file

O StatusFile=/etc/mail/statistics

queue directory

O QueueDirectory=/var/spool/mqueue

If these paths are correct for your system, don't modify them. On rodent we want to keep the files just where
are, which is generally the case when you use a sendmail.cf file that was designed for your operating system. In
fact, you will probably not need to change any of the options if you use a configuration file designed for your
operating system. If you're really curious about sendmail options, see Appendix E.

The next few sections of the generic-linux.cf file define the messages' precedences, the trusted users, and
headers. None of these sections is modified. Following these sections are the rewrite rules and the mailers. This
material is the bulk of the file and the heart of the configuration. The sample configuration file is designed to allow
SMTP mail delivery on a Linux system running DNS, so we assume no modifications are required. We
test the configuration before copying it into sendmail.cf. We'll save it in a temporary configuration file,
use the troubleshooting features of sendmail to test it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.8 Testing sendmail.cf

sendmail provides powerful tools for configuration testing and debugging. These test tools are invoked on the
sendmail command line using some of the many sendmail command-line arguments. Appendix E lists all of the
command-line arguments; Table 10-5 summarizes those that relate to testing and debugging.

Table 10-5. sendmail arguments for testing and debugging
Argument Function

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bt Run in test mode.

-bv Verify addresses; don't collect or deliver mail.

-bp Print the mail queue.

-Cfile Use file as the configuration file.

-dlevel Set debugging level.

-Ooption=value Set option to the specified value.

-e Defines how errors are returned.

-v Run in verbose mode.

Some command-line arguments are used to verify address processing and to gain confidence in the new
configuration. Once you think your configuration will work, send mail to yourself at various sites—testing is a
great reason to have several email accounts at various free services. Use the -C argument to read the test
configuration file and the -v argument to display the details of the mail delivery. -v displays the complete
SMTP exchange between the two hosts.

By observing whether your mailer properly connects to the remote mailer and formats the addresses correctly,
you'll get a good idea of how the configuration is working. The following example is a test from rodent
test.cf configuration file we just created:

rodent# sendmail -Ctest.cf -t -v
To: craigh@ora.com
From: craig
Subject: Sendmail Test
Ignore this test.
^D
craigh@ora.com... Connecting to ora.com. via esmtp...

220-ruby.ora.com ESMTP Sendmail 8.9.3+Sun/8.9.3; Wed, 23 May 2001

>>> EHLO rodent.wrotethebook.com

250-ruby.ora.com Hello craig@rodent.wrotethebook.com [172.16.12.2],

pleased to meet you

250-EXPN

250-VERB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

250-VERB

250-8BITMIME

250-SIZE

250-DSN

250-ONEX

250-ETRN

250-XUSR

250 HELP

>>> MAIL From:<craig@rodent.wrotethebook.com> SIZE=64

250 <craig@rodent.wrotethebook.com>... Sender ok

>>> RCPT To:<craigh@ora.com>

250 <craigh@ora.com>... Recipient ok

>>> DATA

354 Enter mail, end with "." on a line by itself

>>> .

250 SAA27399 Message accepted for delivery

craigh@ora.com... Sent (SAA27399 Message accepted for delivery)

Closing connection to ora.com.

>>> QUIT

221 ruby.ora.com closing connection

We entered everything before the Ctrl-D (^D). Everything after the ^D was displayed by sendmail. Figure 10-5
highlights some of the important information in this display and notes the sendmail macros that relate to the
highlighted material.

Figure 10-5. Verbose mail output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This test successfully transfers mail to a remote Internet site. The sendmail output shows that rodent
mail to ora.com via the smtp mail delivery program. The sendmail greeting shows that the remote host handling
this SMTP connection is ruby.ora.com. Therefore, ruby must be the mail server for the ora.com domain; i.e.,
the MX record for ora.com points to ruby.ora.com.

The EHLO messages indicate that both rodent and ruby use Extended Simple Mail Transfer Protocol
(ESMTP).

Everything worked just fine! We could quit right now and use this configuration. But like most computer people,
we cannot stop ourselves from tinkering in order to make things "better."

The From: address, craig@rodent.wrotethebook.com, is clearly a valid address but is not quite what we want.
We want to have people address us as firstname.lastname@domain -- not as user@host.domain, which is
exactly the configuration we created earlier in this chapter with a few lines of m4 code. We will create the same
configuration here to provide an example of how to use the various troubleshooting tools that come with
sendmail. However, if you really want to make major sendmail configuration changes, you should use
build your configuration.

Most changes to sendmail.cf are small and are made near the beginning of the file in the Local Information
section. Looking closely at that section provides the clues we need to solve part of our configuration

Without knowing what "masquerading" means, the comments for class E, class M, and macro M lead us to
guess that the value set for macro M will be used to rewrite the hostname.[16]

[16] In the m4 source file we configured masquerading with the MASQUERADE_AS(wrotethebook.com) command.

In particular, the comment "names that should be exposed as from this host, even if we masquerade" led me to
believe that masquerading hides the hostname. Based on this guess, we set a value for macro M as follows:

who I masquerade as (null for no masquerading) (see also $=M) DMwrotethebook.com

Are we sure that setting a value for the M macro will hide the hostname? No, but changing the value in
and running another test will do no harm. Running the test program with the test configuration has no effect on
the running sendmail daemon started by the sendmail -bd -q1h command in the boot script. Only an
instantiation of sendmail with the -Ctest.cf argument will use the test.cf test configuration.

10.8.1 Testing Rewrite Rules

In the initial test, the From: address went into sendmail as craig, and it came out as
craig@rodent.wrotethebook.com. Obviously it has been rewritten. This time we test whether the change we
made to the macro M in the configuration files modifies the rewrite process by directly testing the rewrite
rulesets. First, we need to find out what rules were used to rewrite this address. To get more information, we
run sendmail with the -bt option.

When sendmail is invoked with the -bt option, it prompts for input using the greater-than symbol (>). At the
prompt, enter one of the test commands shown in Table 10-6.

Table 10-6. sendmail testing commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Function
ruleset[,ruleset...]
address Process address through ruleset(s).

.Dmvalue Assign value to macro m.

.Ccvalue Add value to class c.

=Sruleset Display the rules in ruleset.

=M Display the mailer definitions.

-dvalue Set the debug flag to value.

$m Display the value of macro m.

$=c Display the contents of class c.

/mxhost Display the MX records for host.

/parseaddress Return the mailer/host/user triple for address.

/try mailer address Process address for mailer.

/tryflags flags Set the address processed by /parse or /try to H (Header), E (Envelope), S (Sender),
or R (Recipient).

/canonhostname Canonify hostname.

/mapmapname key Display the value for key found in mapname.

/quit Exit address test mode.

The most basic test is a ruleset name followed by an email address. The address is the test data, and the
name is the ruleset to be tested. The address is easy to select; it is the one that was improperly rewritten. But
how do you know which ruleset to specify?

Use Figure 10-4 to determine which rulesets to enter. The canonify ruleset is applied to all addresses. It is
followed by different rulesets depending on whether the address is a delivery address, a sender address, or a
recipient address. Furthermore, the rulesets used for sender and recipient addresses vary depending on the
mailer that is used to deliver the mail. All addresses are then processed by ruleset final.

There are two variables in determining the rulesets used to process an address: the type of address and the
mailer through which it is processed. The three address types are delivery address, recipient address, and
sender address. You know the address type because you select the address being tested. In our test mail we
were concerned about the sender address. Which mailer is used is determined by the delivery address. One
way to find out which mailer delivered the test mail is to run sendmail with the -bv argument and the delivery
address:

sendmail -bv craigh@ora.com
craigh@ora.com... deliverable: mailer esmtp, host ora.com.,

 user craigh@ora.com

Knowing the mailer, we can use sendmail with the -bt option to process the sender From: address.
two types of sender addresses: the sender address in the "envelope" and the sender address in the message
header. The message header address is the one on the From: line sent with the message during the SMTP
DATA transfer. You probably see it in the mail headers when you view the message with your mail reader. The
"envelope" address is the address used during the SMTP protocol interactions. sendmail allows us to view the
processing of both of these addresses:

sendmail -bt -Ctest.cf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS
> /try esmtp craig
Trying header sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

MasqHdr returns: craig < @ wrotethebook . com . >

HdrFromSMTP returns: craig < @ wrotethebook . com . >

final input: craig < @ wrotethebook . com . >

final returns: craig @ wrotethebook . com

Rcode = 0, addr = craig@wrotethebook.com

> /tryflags ES
> /try esmtp craig
Trying envelope sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

EnvFromSMTP input: craig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EnvFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqEnv input: craig < @ *LOCAL* >

MasqEnv returns: craig < @ rodent . wrotethebook . com . >

EnvFromSMTP returns: craig < @ rodent . wrotethebook . com . >

final input: craig < @ rodent . wrotethebook . com . >

final returns: craig @ rodent . wrotethebook . com

Rcode = 0, addr = craig@rodent.wrotethebook.com

> /quit
The /tryflags command defines the type of address to be processed by a /try or a /parse command.
Four flags are available for the /tryflags command: S for sender, R for recipient, H for header, and
envelope. By combining two of these flags, the first /tryflags command says we will process a header
sender (HS) address. The /try command tells sendmail to process the address through a specific mailer. In
the example, we process the email address craig through the mailer esmtp. First, we process it as the header
sender address, and then as the envelope sender address. From this test, we can tell that the value that we
entered in the M macro is used to rewrite the sender address in the message header, but it is not used
rewrite the sender address in the envelope.

The results of these tests show that the value of the M macro rewrites the hostname in the message header
sender address just as we wanted. The hostname in the envelope sender address is not rewritten. Usually this
is acceptable. However, we want to create exactly the same configuration as in the m4 example. The
FEATURE (masquerade_envelope) command used in the m4 example causes the envelope sender address to
be rewritten. Therefore, we want this configuration to also rewrite it.

The only difference between how the message and envelope addresses are processed is that one goes
through ruleset HdrFromSMTP and the other goes through ruleset EnvFromSMTP. The tests show that both
rulesets call basically the same rulesets. They diverge where ruleset HdrFromSMTP calls ruleset MasqHdr and
ruleset EnvFromSMTP calls ruleset MasqEnv. The tests also show that ruleset MasqHdr provides the address
rewrite that we want for the message sender address, while the envelope sender address is not processed in
the manner we desire by ruleset MasqEnv. The test.cf code for rulesets MasqEnv is shown here:

Ruleset 94 -- convert envelope names to masquerade form ###

SMasqEnv=94

R$+ $: $>93 $1 do masquerading

R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

Clearly, ruleset MasqEnv does not do what we want, and ruleset MasqHdr does. A quick inspection of ruleset
MasqEnv shows that it does not contain a single reference to macro M. Yet the comment on the line at the start
of the ruleset indicates it should "do masquerading." Our solution is to add a line to ruleset MasqEnv
now calls ruleset MasqHdr, which is the ruleset that really does the masquerade processing. The modified
ruleset is shown here:

Ruleset 94 -- convert envelope names to masquerade form ###

SMasqEnv=94

R$+ $: $>93 $1 do masquerading

R$* < @ *LOCAL* > $* $: $1 < @ $j . > $2

Debugging a sendmail.cf file is more of an art than a science. Deciding to add the first line to ruleset MasqEnv
to call ruleset MasqHdr is little more than a hunch. The only way to verify the hunch is through testing. We run
sendmail -bt -Ctest.cf again to test the addresses craig, craig@rodent, and craig@localhost using the
/try esmtp command. All tests run successfully, rewriting the various input addresses into
craig@wrotethebook.com. We then retest by sending mail via sendmail -v -t -Ctest.cf. Only when all of
these tests run successfully do we really believe in our hunch and move on to the next task, which is to rewrite
the user part of the email address into the user's first and last names.

10.8.2 Using Key Files in sendmail

The last feature we added to the m4 source file was FEATURE(genericstable), which adds a database process
to the configuration that we use to convert the user portion of the email address from the user's login
the user's first and last names. To do the same thing here, create a text file of login names and first and last
names and build a database with makemap.[17]

[17] See the m4 section for more information about makemap.

cd /etc/mail
cat realnames
dan Dan.Scribner

tyler Tyler.McCafferty

pat Pat.Stover

willy Bill.Wright

craig Craig.Hunt

makemap hash realnames < realnames
Once the database is created, define it for sendmail. Use the K command to do this. To use the database that
we have just built, insert the following lines into the Local Information section of the sendmail.cf file:

define a database to map login names to firstname.lastname

Krealnames hash /etc/mail/realnames

The K command defines realnames as the internal sendmail name of this database. Further, it identifies that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The K command defines realnames as the internal sendmail name of this database. Further, it identifies that
this is a database of type hash and that the path to the database is /etc/realnames. sendmail adds the correct
filename extensions to the pathname depending on the type of the database, so you don't need to worry about
it.

Finally, we add a new rule that uses the database to rewrite addresses. We add it to ruleset EnvFromSMTP
and ruleset HdrFromSMTP immediately after the lines in those rulesets that call ruleset MasqHdr. This way,
our new rule gets the address as soon as ruleset MasqHdr finishes processing it.

when masquerading convert login name to firstname.lastname

R$-<@$M.>$* $:$(realnames $1 $)<@$M.>$2 user=>first.last

This rule is designed to process the output of ruleset MasqHdr, which rewrites the hostname portion of the
address. Addresses that meet the criteria to have the hostname part rewritten are also the addresses
we want to rewrite the user part. Look at the output of ruleset MasqHdr from the earlier test. That address,
craig<@wrotethebook.com.>, matches the pattern $-<@$M.>$*. The address has exactly one token (craig)
before the literal <@, followed by the value of M (wrotethebook.com), the literal .>, and zero tokens.

The transformation part of this rule takes the first token ($1) from the input address and uses it as the key to
the realnames database, as indicated by the $:$(realnames $1 $) syntax. For the sample address
craig<@wrotethebook.com>, $1 is craig. When used as an index into the database realnames shown at the
beginning of this section, it returns Craig.Hunt. This returned value is prepended to the literal <@, the value of
macro M ($M), the literal .>, and the value of $2, as indicated by the <@$M.>$2 part of the transformation. The
effect of this new rule is to convert the username to the user's real first and last names.

After adding the new rule to rulesets EnvFromSMTP and HdrFromSMTP, a test yields the following results:

sendmail -bt -Ctest.cf
ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)

Enter <ruleset> <address>

> /tryflags HS
> /try esmtp craig
Trying header sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

HdrFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MasqHdr returns: craig < @ wrotethebook . com . >

HdrFromSMTP returns: Craig . Hunt < @ wrotethebook . com . >

final input: Craig . Hunt < @ wrotethebook . com . >

final returns: Craig . Hunt @ wrotethebook . com

Rcode = 0, addr = Craig.Hunt@wrotethebook.com

> /tryflags ES
> /try esmtp craig
Trying envelope sender address craig for mailer esmtp

canonify input: craig

Canonify2 input: craig

Canonify2 returns: craig

canonify returns: craig

1 input: craig

1 returns: craig

EnvFromSMTP input: craig

PseudoToReal input: craig

PseudoToReal returns: craig

MasqSMTP input: craig

MasqSMTP returns: craig < @ *LOCAL* >

MasqEnv input: craig < @ *LOCAL* >

MasqHdr input: craig < @ *LOCAL* >

MasqHdr returns: craig < @ wrotethebook . com . >

MasqEnv returns: craig < @ wrotethebook . com . >

EnvFromSMTP returns: Craig . Hunt < @ wrotethebook . com . >

final input: Craig . Hunt < @ wrotethebook . com . >

final returns: Craig . Hunt @ wrotethebook . com

Rcode = 0, addr = Craig.Hunt@wrotethebook.com

> /quit
If the tests do not give the results you want, make sure that you have correctly entered the new rewrite rules
and that you have correctly built the database. The following error message could also be displayed:

 test.cf: line 116: readcf: map realnames: class hash not available

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 test.cf: line 116: readcf: map realnames: class hash not available

This indicates that your system does not support hash databases. You can try changing the database type on
the K command line to hash and rerunning sendmail -bt until you find a type of database that your sendmail
likes. When you do, rerun makemap using that database type. If your sendmail doesn't support any database
type, see Appendix E for information on recompiling sendmail with database support.

Note that all of the changes made directly to the sendmail.cf file in the second half of this chapter
(masquerading the sender address, masquerading the envelope address, and converting usernames) were
handled by just three lines in the m4 source file. These examples demonstrated how to use the sendmail test
tools. If you really need to make a new, custom configuration, use m4. It is easiest to maintain and enhance the
sendmail configuration through the m4 source file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.9 Summary

sendmail sends and receives SMTP mail, processes mail aliases, and interfaces between user
mail agents and mail delivery agents. sendmail is started as a daemon at boot time to process
incoming SMTP mail. sendmail aliases are defined in the aliases file. The rules for interfacing
between user agents and mail delivery agents can be complex; sendmail uses the sendmail.cf file
to define these rules.

Configuring the sendmail.cf file is the most difficult part of setting up a sendmail server. The file
uses a very terse command syntax that is hard to read. Sample sendmail.cf files are available to
simplify this task. Most systems come with a vendor-supplied configuration file, and others are
available with the sendmail software distribution. The sendmail sample files must first be
processed by the m4 macro processor. Once the proper sample file is available, very little of it
needs to be changed. Almost all of the changes needed to complete the configuration occur at
the beginning of the file and are used to define information about the local system, such as the
hostname and the name of the mail relay host. sendmail provides an interactive testing tool that is
used to check the configuration before it is installed.

sendmail is a big, complex service that is important enough to deserve its own chapter. Web
service is another important service, provided by Apache on most Unix systems. Apache's
complex configuration syntax is the topic of the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Configuring Apache
Web servers provide the leading method for delivering information over an IP network. The Web
is best known for providing information over the global Internet, yet it can just as effectively
provide information to internal staff as it does to external customers. All but the smallest networks
can benefit from a well-run web server, which can advertise products and offer support services to
external customers, as well as coordinate and disseminate information to users within your
organization. The Web is the single most effective tool for delivering on-demand information to
end users.

Most Unix web servers are built with Apache software. Apache is freely available web server
software with origins in the National Center for Supercomputer Applications (NCSA) web server,
the first widely used web server. Because of these "ancient" roots, Apache has undergone years
of testing and development. Because it is the most widely deployed web server software on the
Internet, you will probably use Apache to build your Unix web server.

In this chapter, we focus on installing and configuring an Apache server. The large number of
configuration options can make Apache configuration appear more complex than it really is. This
chapter provides an example of a simple configuration to get Apache up and running quickly.

Our focus is configuration and administration of the service, not the design of the content
provided by the service; web page design is beyond the scope of this book. If you're lucky, your
organization has trained web designers; if you're not so lucky, you may be expected to take on
this artistic task yourself. O'Reilly has books that can help you: try HTML and XHTML: The
Definitive Guide, by Chuck Musciano and Bill Kennedy, or Web Design in a Nutshell, by Jennifer
Niederst.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Installing Apache Software

The Apache server software is bundled with many Unix systems. Frequently, Apache is installed
as part of the initial operating system installation. For example, the initial installation of a Red Hat
system presents a screen that allows the user to select the Apache software by clicking on an
icon labeled Apache Web Server.

Frequently, users select the Apache server software even when they don't plan to run a web
server. You might be surprised to find an Apache server installed and running on client desktop
workstations. Try a ps test:

$ ps ax | grep httpd
 321 ? S 0:00 httpd

 324 ? S 0:00 httpd

 325 ? S 0:00 httpd

 326 ? S 0:00 httpd

 329 ? S 0:00 (httpd)

 330 ? S 0:00 (httpd)

 331 ? S 0:00 (httpd)

 332 ? S 0:00 (httpd)

 333 ? S 0:00 (httpd)

 334 ? S 0:00 (httpd)

 335 ? S 0:00 (httpd)

 2539 p1 D 0:00 grep http

The daemon that Apache installs to provide web services is the Hypertext Transport Protocol
daemon (httpd). Use the process status (ps) command to check for all processes in the system,
and the grep command to display only those with the name httpd. Running this test on a freshly
installed system will show you if Apache is installed and running.

If Apache is running, start the Netscape web browser and enter "localhost" in the search box.
Figure 11-1 shows the result on a sample Red Hat 7 system. Not only is Apache installed and
running, it is configured and responding with a web page. Users of desktop Linux systems are
sometimes surprised to find out they are running a fully functional web server. Of course, if you're
the administrator of a web server system, this is exactly what you want to see—Apache installed,
up, and running.

Figure 11-1. Default Apache server web page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the Apache software is not installed on your system, you need to install the package. The
easiest way to install optional software on a Linux system is to use a package manager. Several
good ones are available. Most Linux systems support the Red Hat Package Manager (rpm), so
we'll use that in the following example.

11.1.1 Using the Red Hat Package Manager

Use the Red Hat Package Manager to install needed software, remove unneeded software, and
check what software is installed. rpm has many options for the developers who build the
packages, but for a network administrator, rpm comes down to three basic commands:

rpm --install package

The --install option installs software.

rpm --uninstall package

The --uninstall option removes software.

rpm --query

The --query option lists a software package that is already installed. Use --all with the
--query option to list all installed packages.

You must know the name of a package to install it with rpm. To find the full name of the Apache
package, mount the Linux CD-ROM and look in the RPMS directory. Here is an example from a
Red Hat 7.2 system:

$ cd /mnt/cdrom/RedHat/RPMS
$ ls *apache*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls *apache*
apache-1.3.20-16.i386.rpm

apacheconf-0.8.1-1.noarch.rpm

This example assumes that the CD-ROM was mounted on /mnt/cdrom. It shows that two Apache
software packages are included in the Red Hat distribution: the web server software and a Red
Hat configuration tool. Install apache-1.3.20-16.i386.rpm with this command to get the web server
software:

rpm -- install apache-1.3.20-16.i386.rpm
After installing the package, check that it is installed with this rpm command:

$ rpm -- query apache
apache-1.3.20-16

Once the Apache package is installed, make sure the httpd daemons are started at boot time.
On a Red Hat system, the script /etc/init.d/httpd starts the daemons. Use chkconfig or a similar
command to add the script to the boot process. The following example adds the httpd startup
script to the boot process for runlevels 3 and 5:

chkconfig -- list httpd
httpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off

chkconfig -- level 35 httpd on
chkconfig -- list httpd
httpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off

The first chkconfig command lists the status of the httpd script for every runlevel. The response
shows that httpd is off for all seven runlevels, meaning that the script is not run. We want to start
the web server at runlevel 3, which is the multiuser runlevel, and at runlevel 5, which is the default
runlevel for this Red Hat system. The second chkconfig command does this. The --level
argument specifies that runlevel 3 and runlevel 5 are affected—note that the 3 and the 5 are run
together with no intervening spaces. The httpd on argument says that the httpd script should be
executed for those two runlevels. The last chkconfig command again lists the status of the
httpd script for all runlevels. This time it shows that httpd will be executed for runlevel 3 and
runlevel 5.

The next time this Red Hat system reboots, the web server will be running. To start the web
server without rebooting, invoke the httpd script from the command line:

/etc/init.d/httpd start
Starting httpd: [OK]

Installing Apache on a Linux system is straightforward. It is often installed during the initial system
setup; if not, it can usually be installed from the CDs that came with the system. Installing Apache
on a Solaris system is just as simple because Solaris 8 also includes Apache as part of the
operating system. If your Unix system does not include Apache, download it from the Internet.

11.1.2 Downloading Apache

Apache is available from http://www.apache.org in both source and binary forms. The Apache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache is available from http://www.apache.org in both source and binary forms. The Apache
source is available for Unix systems in both compressed and zipped tarballs. You can download
and compile the source, but the easiest way to get Apache is as a precompiled binary. Figure 11-
2 shows just some of the versions of Unix for which precompiled httpd server daemons are
available.

Figure 11-2. Binary distributions at the Apache web site

The binaries are listed by operating system. Assume you have a FreeBSD system. Click on the
freebsd link, and you're presented with a long list of zipped tarballs. Each tarball relates to a
different version of FreeBSD and contains an Apache binary distribution. Select the binary that is
appropriate for your version of FreeBSD and download it to a working directory. Make a backup
copy of the current daemon and extract the new daemon with tar. The software should now be
installed and ready to run with the configuration files from your current configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Configuring the Apache Server

Apache configuration traditionally involves three files:

httpd.conf

This is the primary configuration file. It traditionally contains configuration settings for the
HTTP protocol and for the operation of the server. This file is processed first.

srm.conf

This file traditionally contains configuration settings to help the server respond to client
requests. The settings include how to handle different MIME types, how to format output,
and the location of HTTP documents and Common Gateway Interface (CGI) scripts. This
file is processed second.

access.conf

This file traditionally defines access control for the server and the information the server
provides. This file is processed last.

All three files have a similar structure: they are all written as ASCII text files, comments begin with
a #, and the files are well commented. Most of the directives in the files are written in the form of
an option followed by a value.

We say that these three files traditionally handle Apache configuration, but common practice
today has diverged from that approach. There is overlap in the function of the three files. You may
think you know where a certain value should be set, only to be surprised to find it in another file.
In fact, any Apache configuration directive can be used in any of the configuration files—the
traditional division of the files into server, data, and security functions was essentially arbitrary.
Some administrators still follow tradition, but it is most common for the entire configuration to be
defined in the httpd.conf file. This is the recommended approach, and the one we use in this
chapter.

Different systems put the httpd.conf file in different directories. On a Solaris system, the file is
stored in the /etc/apache directory; on a Red Hat system, it is found in the /etc/httpd/conf
directory; and on Caldera systems, in the /etc/httpd/apache/conf directory. The Apache manpage
should tell you where httpd.conf is located on your system; if it doesn't, look in the script that
starts httpd at boot time. The location of the httpd.conf file will either be defined by a script
variable or by the -f argument on the httpd command line. Of course, a very simple way to
locate the file is with the find command, as in this Caldera Linux example:

find / -name httpd.conf -print
/etc/httpd/apache/conf/httpd.conf

Once you find httpd.conf, customize it for your system. The Apache configuration file is large and
complex; however, it is preconfigured, so your server will run with only a little input from you. Edit
the httpd.conf file to set the web administrator's email address in ServerAdmin and the server's
hostname in ServerName. With those small changes, the httpd configuration provided with your
Unix system will probably be ready to run. Let's look at a Solaris 8 example.

11.2.1 Configuring Apache on Solaris

The first step to configure Apache on a Solaris system is to copy the file httpd.conf-example to
httpd.conf:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cd /etc/apache
cp httpd.conf-example httpd.conf
Use an editor to put valid ServerAdmin and ServerName values into the configuration. In the
Solaris example, we change ServerAdmin from:

ServerAdmin you@your.address

to:

ServerAdmin webmaster@www.wrotethebook.com

We change ServerName from:

#ServerName new.host.name

to:

ServerName www.wrotethebook.com

Once these minimal changes are made, the server can be started. The easiest way to do this on
a Solaris system is to run the /etc/init.d/apache script file. The script accepts three possible
arguments: start, restart, and stop. Since httpd is not yet running, there is no daemon to
stop or restart, so we use the start command:

/etc/init.d/apache start
httpd starting.

ps -ef | grep '/httpd'
 nobody 474 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd

 nobody 475 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd

 nobody 476 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd

 root 473 1 0 12:57:26 ? 0:00 /usr/apache/bin/httpd

 nobody 477 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd

 nobody 478 473 0 12:57:27 ? 0:00 /usr/apache/bin/httpd

 root 501 358 0 13:10:04 pts/2 0:00 grep /httpd

After running the apache startup script, run ps to verify that the httpd daemon is running.[1] In
this example, several copies of the daemon are running, just as we saw earlier in the Linux
example. This group of daemons is called the swarm, and we'll examine the Apache configuration
directives that control the size of the swarm later.

[1] The DynaWeb (dwhttpd) daemon, which is used to display the AnswerBook, may also appear in the ps list on
Solaris systems that run an AnswerBook2 server.

Now that the daemons are running, run Netscape. Enter "localhost" in the location box, and you
should see something like Figure 11-3.

Figure 11-3. Default web page on a Solaris server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our Solaris Apache server is now up, running, and serving data. Of course, this is not really the
data we want to serve our clients. There are two solutions to this problem: either put the correct
data in the directory that the server is using, or configure the server to use the directory in which
the correct data is located.

The DocumentRoot directive points the server to the directory that contains web page information.
By default, the Solaris server gets web pages from the /var/apache/htdocs directory, as you can
see by checking the value for DocumentRoot in the httpd.conf file:

grep '^DocumentRoot' httpd.conf
DocumentRoot "/var/apache/htdocs"

ls /var/apache/htdocs
apache_pb.gif index.html

The /var/apache/htdocs directory contains only two files. The GIF file is the Apache feather
graphic seen at the bottom of the web page in Figure 11-3. The index.html file is the HTML
document that creates this web page. By default, Apache looks for a file named index.html and
uses it as the home page if a specific page has not been requested. You can put your own
index.html file in this directory, along with any other supporting files and directories you need, and
Apache will start serving your data. Alternately, you can edit the httpd.conf file to change the value
in the DocumentRoot directive to point to the directory where you store your data. The choice is
yours. Either way, you need to create HTML documents for the web server to display.

Although the Solaris server can run after modifying only two or three configuration directives, you
still need to understand the full range of Apache configuration. Given the importance of web
services for most networks, Apache is too essential for you to ignore. To properly debug a
misconfigured web server, you need to understand the entire httpd.conf file. The following
sections examine this file in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Understanding an httpd.conf File

It's helpful to know the default configuration when you're called upon to correct the configuration of someone else's system. In
this section we examine the values set in the default configuration on a Solaris 8 system. (The default Solaris 8 configuration
file is listed in Appendix F.)

Here we focus on the directives that are actually used in the Solaris 8 configuration, and a few others that show important
Apache features. There are some other directives that we don't discuss. If you need additional information about any directive,
there are many places to look. The full httpd.conf file contains many comments, which explain the purpose of each directive
and are an excellent source of information. The Apache web site (http://www.apache.org) provides online
excellent books on Apache configuration are Apache: The Definitive Guide, by Ben and Peter Laurie (O'Reilly), and
Apache Web Server Administration, by Charles Aulds (Sybex). However, you'll probably find more information about the
httpd.conf file than you need for an average configuration right here in this chapter.

The httpd.conf file that comes with Solaris has 160 active configuration lines. To tackle that much information, the
sections organize the configuration directives into different groups. Note that the configuration file itself organizes
scope: global environment directives, main server directives, and virtual host directives. (Virtual hosts are explained
this chapter.) Although that organization is great for httpd when it is processing the file, it's not so great for a human reading
the file. Here, related directives are grouped by function to make the individual directives more understandable. Once you
understand the individual directives, you will understand the entire configuration.

We start our look at the httpd.conf file with the directives that load dynamically loadable modules. These modules
loaded before the directives they provide can be used in the configuration, so it makes sense to discuss loading the modules
before we discuss the features they provide. Understanding dynamically loadable modules is a good place to start
understanding Apache configuration.

11.3.1 Loading Dynamic Shared Objects

The two directives that appear most in the Solaris httpd.conf file are LoadModule and AddModule. Together, they make up
more than 60 of the 160 active lines in the httpd.conf file. All 60 of these lines configure the Dynamic Shared Object (DSO)
modules used by the Apache web server.

Apache is composed of many software modules. Like kernel modules, DSO modules can be compiled into Apache or loaded
at runtime. Running httpd with the -l command-line option lists all the modules compiled into Apache. The following
example is from a Solaris 8 system:

$ /usr/apache/bin/httpd -l
Compiled-in modules:

 http_core.c

 mod_so.c

Some systems may have many modules compiled into the Apache daemon. Solaris and Red Hat systems are delivered with
only the following two modules compiled in:

http_core.c

This is the core module. It is always statically linked into the Apache kernel, and it provides the basic functions that
must be found in every Apache web server. This module is required; all other modules are optional.

mod_so.c

This module provides runtime support for Dynamic Shared Object modules. It is required if you plan to dynamically link
in other modules at runtime. If modules are loaded through the httpd.conf file, this module must be installed
to support those modules. For this reason it is often statically linked into the Apache kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to these statically linked modules, Solaris uses many dynamically loadable modules. The LoadModule and
AddModule directives are used in the httpd.conf file to load DSOs. First, each module is identified by a
For example, this line in the Solaris httpd.conf file identifies the module that tracks users through the use of cookies:

LoadModule usertrack_module /usr/apache/libexec/mod_usertrack.so

The LoadModule directive is followed by the module name and the path of the shared object file.

Before a module can be used, it must be added to the list of modules that are available to Apache. The first step in building
the new module list is to clear the old one. This is done with the ClearModuleList directive. ClearModuleList
or options. It occurs in the httpd.conf file after the last LoadModule directive and before the first AddModule directive.

The AddModule directive adds a module name to the module list. The module list must include all optional modules,
those compiled into the server and those that are dynamically loaded. On our sample Solaris system, that means that there is
one more AddModule directive in the httpd.conf file than there are LoadModule directives. The extra AddModule directive
handles mod_so.c, which is the only optional module compiled into Apache on our sample system.[2]

[2] The http_core.c module is an integrated part of Apache. It is not installed with LoadModule and AddModule commands.

Mostly, however, LoadModule and AddModule directives occur in pairs: there is one AddModule directive
LoadModule directive. For example, the following AddModule directive in the Solaris httpd.conf file adds
defined by the LoadModule directive shown previously to the module list:

AddModule mod_usertrack.c

The AddModule directive is followed by the name of the source file for the module being loaded. Notice that this is the name
of the source file that produced the object module, not the module name seen in the LoadModule directive. This name is
identical to the object filename except for the extension. In the LoadModule directive, which uses the shared object extension
.so, the object filename is mod_usertrack.so. AddModule uses the source filename extension .c, so the module name
mod_usertrack.c.

Table 11-1 lists all the modules referenced by AddModule directives in the Solaris 8 httpd.conf file.

Table 11-1. DSO modules loaded in the Solaris configuration
Module Function

mod_access Enables allow/deny type access controls.

mod_actions Enables the use of user-defined handlers for specific MIME types or access methods.

mod_alias Allows references to documents and scripts outside the document root.

mod_asis Defines file types returned without headers.

mod_auth Enables user authentication.

mod_auth_anon Enables anonymous logins.

mod_auth_dbm Enables use of a DBM authentication file.

mod_autoindex Enables automatic index generation.

mod_cern_meta Enables compatibility with old CERN web servers.

mod_cgi Enables execution of CGI programs.

mod_digest Enables MD5 authentication.

mod_dir Controls formatting of directory listings.

mod_env Allows CGI scripts and server-side includes (SSI) to inherit all shell environment variables.

mod_expires Set the date for the Expires: header.

mod_headers Enables customized response headers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_imap Processes image map files.

mod_include Processes SSI files.

mod_info Enables use of the server-info handler.

mod_log_config Enables use of custom log formats.

mod_mime Provides support for MIME files.

mod_mime_magic Determines the MIME type of a file from its content.

mod_negotiation Enables MIME content negotiation.

mod_perl Provides support for the Perl language.

mod_proxy Enables web caching.

mod_rewrite Enables URI-to-filename mapping.

mod_setenvif Sets environment variables from client information.

mod_so Provides runtime support for dynamic shared objects (DSOs).

mod_speling Automatically corrects minor spelling errors.

mod_status Provides web-based access to the server-info report.

mod_unique_id Generates a unique request identifier for each request.

mod_userdir Defines where users can create public web pages.

mod_usertrack Provides user tracking through a unique identifier called a cookie.

mod_vhost_alias Provides support for name-based virtual hosts.

If you decide to add modules to your configuration, do so very carefully. The order of the LoadModule and AddModule
directives in the httpd.conf file is critical. Don't change things without knowing what you're doing. Before
new installation, read the documentation that comes with your new module and the modules documentation found in the
manual/mod directory of the Apache distribution. See the previously mentioned book Linux Apache Web Server
Administration for detailed advice about adding new modules.

Once the DSOs are loaded, the directives that they provide can be used in the configuration file. Let's
Solaris httpd.conf file by examining some of the basic configuration directives.

11.3.2 Basic Configuration Directives

This section covers six different directives. The directives as they appear in the sample configuration we created for our
Solaris system are:

ServerAdmin webmaster@www.wrotethebook.com

ServerName www.wrotethebook.com

UseCanonicalName On

ServerRoot "/var/apache"

ServerType standalone

Port 80

Two of the basic directives, ServerAdmin and ServerName, were touched upon earlier in the chapter.
the email address of the web server administrator. This is set to a bogus value, you@your.host, in the default Solaris
configuration. You should change this to the full email address of the real web administrator before starting the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServerName defines the hostname returned to clients when they read data from this server. In the default
configuration, the ServerName directive is commented out, which means that the "real" hostname is sent to clients.
the name assigned to the first network interface is crab.wrotethebook.com, then that is the name sent to clients. Many Apache
experts suggest defining an explicit value for ServerName in order to document your configuration and to
exactly the value you want. Earlier, we set ServerName to www.wrotethebook.com, so that even though the web server is
running on crab, the server will be known as www.wrotethebook.com during web interactions. Of course,
www.wrotethebook.com must be a valid hostname configured in DNS. (See Chapter 8, where www is defined as a nickname
for crab in the wrotethebook.com zone file.)

A configuration directive related to ServerName is UseCanonicalName, which defines how httpd builds "self-referencing"
URLs. A self-referencing URL contains the name of the server itself in the hostname portion of the URL. For example, on the
server www.wrotethebook.com, a URL that starts with http://www.wrotethebook.com would be a self-referencing URL. The
hostname in the URL should be a canonical name, which is a name that DNS can resolve to a valid IP address. When
UseCanonicalName is set to on, as it is in the default Solaris configuration, the value in ServerName
server in self-referencing URLs. For most configurations, leave it set to on. If it is set to off, the value
from the client is used.

The ServerRoot option defines the directory that contains important files used by httpd, including error files, log files, and the
three configuration files: httpd.conf, srm.conf, and access.conf. In the Solaris configuration, ServerRoot points to
This is surprising in that the Solaris httpd configuration files are actually located in /etc/apache, so
at work.

Solaris uses the -f option on the httpd command line to override the location of the httpd.conf file at runtime.
started at boot time using the script /etc/init.d/apache. That script defines a variable named CONF_FILE that contains the
value /etc/apache/httpd.conf. This variable is used with the httpd command that launches the web
variable that defines the location of the configuration file on a Solaris system.

The ServerType option defines how the server is started. If the server starts from a startup script at boot time,
to standalone. If the server is run on demand by inetd, the option is set to inetd. The default Solaris configuration sets
ServerType to standalone, which is the best value; web servers are usually in high demand, so it is best to start them
boot time. It is possible, of course, for a user to set up a small, rarely used web site on a desktop workstation, in which case
running the server from inetd may be desirable. But the web server you create for your network should be

Port defines the TCP port number used by the server. The standard port number is 80. On occasion, private web
on other port numbers. For example, Solaris runs the AnswerBook2 server on port 8888. Other popular
special-purpose web sites are 8080 and 8000. If you change the port number, you must then tell your users the
port number. For example, http://jerboas.wrotethebook.com:8080 is a URL for a web site running on TCP port 8080 on host
jerboas.wrotethebook.com.

When ServerType is set to inetd, it is usually desirable to set Port to something other than 80. The reason for this
ports under 1024 are "privileged" ports. If 80 is used, httpd must be run from inetd with the userid root. This is a potential
security problem, as an intruder might be able to exploit the web site to get root access. Using port 80 is okay when
ServerType is standalone because the initial httpd process does not provide direct client service. Instead it starts several
other HTTP daemons, called the swarm, to provide client services. The daemons in the swarm do not run with root privilege.

11.3.3 Managing the Swarm

In the original web server design, the server would create separate processes to handle individual requests. This placed a
heavy load on the CPU when the server was busy and had a major negative impact on responsiveness. It was possible for the
entire system to be overwhelmed by httpd processes.

Apache uses a different approach. A swarm of server processes starts at boot time (the ps command earlier in the
shows several httpd processes running on the Solaris system), and all the processes in the swarm share the
the persistent httpd processes become busy, spare processes are started to share the work. Five
configuration control how the swarm of server child processes is managed. They are:

MinSpareServers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This directive sets the minimum number of idle server processes that must be maintained. In the Solaris configuration,
this is set to 5, which is the default value used in the Apache distribution. When the number of idle processes drops
below 5, another process is created to maintain the correct number of idle processes. Five is a good value
average server; it allows a burst of up to five quick requests to be handled without making the client wait for a child
process to start. A lightly used server might have a lower number, and a heavily used server could benefit from a higher
number. However, you don't want too many idle servers waiting around for requests that may never come.

MaxSpareServers

This directive sets the maximum number of idle server processes that may be maintained. It prevents too many idle
servers from sitting around with nothing to do. If the number of idle servers exceeds MaxSpareServers, the excess idle
servers are killed. In the Solaris configuration, MaxSpareServers is set to 10, which is the default
the Apache distribution. Set this value to about twice the value set for MinSpareServers.

StartServers

This directive defines the number of httpd daemons started at boot time. In the Solaris configuration, it is set to 5.
effect of this directive can be seen in the output of the ps command earlier in this chapter, which showed
httpd daemons were running. One of these is the parent process that manages the swarm; the other five are the
processes that actually handle client requests for data.

MaxClients

This directive sets the maximum number of client connections that can be serviced simultaneously. HTTP connection
requests beyond the number set by MaxClients are rejected. Solaris sets this to 150, which is the most commonly used
value. MaxClients prevents the server from consuming all system resources when it receives an overwhelming
of client requests. MaxClients should be increased only if you have an extremely powerful system with fast disks and a
large amount of memory. It is generally best to handle additional clients by adding additional servers. The upper limit for
MaxClients is set by HARD_SERVER_LIMIT, which is compiled into Apache. The default for HARD_SERVER_LIMIT is
256.

MaxRequestsPerChild

This directive defines the number of client requests a child process can handle before it must terminate. Solaris sets
MaxRequestsPerChild to 0, which means "unlimited"—a child process can keep handling client requests for as long as
the system is up and running. This directive should always be set to 0, unless you know for a fact that the library you
used to compile Apache has a memory leak.

The User and Group directives define the UID and GID under which the swarm of httpd processes are run. When
starts at boot time, it runs as a root process, binds to port 80, and then starts a group of child processes
actual web services. These child processes are the ones given the UID and GID defined in the file. The UID and GID
provide the least possible system privileges to the web server. On the Solaris system, this is the user
nobody. The previous ps command output shows this clearly. One httpd process belongs to root and five other
processes belong to the user nobody. An alternative to using nobody is to create a userid and groupid just
do this, create the file permissions granted to the new user account very carefully. The advantage of creating a special user
and group for httpd is that you can use group permissions for added protection, and you won't be completely dependent on
the world permissions granted to nobody.

11.3.4 Defining Where Things Are Stored

The DocumentRoot directive defines the directory that contains the web server documents. For security reasons, this is not
the same directory that holds the configuration files. As we saw earlier, the Solaris setting for DocumentRoot is:

DocumentRoot "/var/apache/htdocs"

To apply directives to a specific directory, create a container for those directives. Three of the httpd.conf
create containers are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Directory pathname>

The Directory directive creates a container for directives that apply to the directory identified by
configuration directives that occur after the Directory directive and before the next </Directory>
only to the specified directory.

<Location document>

The Location directive creates a container for directives that apply to a specific document. Any configuration directives
that occur after the Location directive and before the next </Location> statement apply only to the
document.

<Files filename>

The Files directive creates a container for directives that apply to the file identified by filename
directives that occur after the Files directive and before the next </Files> statement apply only to the
filename can refer to more than one file if it contains the Unix wildcard character * or ?. Additionally, if the
directive is followed by an optional ~ (tilde), the filename field is interpreted as a regular expression.

Directories and files are easy to understand: they are parts of the Unix filesystem that every system administrator knows.
Documents, on the other hand, are specific to the web server. The screenful of information that appears in response to a web
query is a document; it can be made up of many files from different directories. The Location container provides an easy way
to refer to a complex document as a single entity. We will see examples of Location and Files containers
Here we look at Directory containers.

The Solaris configuration defines a Directory container for the server's root directory and for the DocumentRoot:

<Directory />

 Options FollowSymLinks

 AllowOverride None

</Directory>

<Directory "/var/apache/htdocs">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

Each Directory container starts with a Directory directive and ends with a </Directory> tag. Both containers shown here
enclose configuration statements that apply to only a single directory. The purpose of the directives inside these containers is
covered later in Section 11.4. For now, it is sufficient to understand that containers are used inside the
the scope of various configuration directives.

The Alias directive and the ScriptAlias directive both map a URL path to a directory on the server. For example, the Solaris
configuration contains the following three directives:

Alias /icons/ "/var/apache/icons/"

Alias /manuals/ "/usr/apache/htdocs/manual/"

ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

The first line maps the URL path /icons/ to the directory /var/apache/icons/. Thus a request for www.wrotethebook.com/icons/
is mapped to www.wrotethebook.com/var/apache/icons/. The second directive maps the URL path /manuals/
www.wrotethebook.com/usr/apache/htdocs/manual/.

You may have several Alias directives to handle several different mappings, but you will have only one ScriptAlias directive.
The ScriptAlias directive functions in exactly the same ways as the Alias directive, except that the directory it points to
contains executable CGI programs. Therefore, httpd grants this directory execution privileges. ScriptAlias is particularly
important because it allows you to maintain executable web scripts in a directory separate from the DocumentRoot. CGI
scripts are the single biggest security threat to your server; maintaining them separately allows you to have tighter control over
who has access to the scripts.

The Solaris configuration has containers for the /var/apache/icons directory and the /var/apache/cgi-bin
the /usr/apache/htdocs/manual directory. Just because a directory is defined inside the httpd.conf file does not mean that a
Directory container must be created for that directory. The /var/apache/icons and the /var/apache/cgi-bin
shown here:

<Directory "/var/apache/icons">

 Options Indexes MultiViews

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<Directory "/var/apache/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

These containers enclose AllowOverride, Options, Order, and Allow statements—all of which relate to security. Most of the
directives found in containers have security implications, and have been placed in containers to provide special security
settings for a file, document, or directory. All of the directives used in the containers shown above are covered in
later in this chapter.

The UserDir directive enables personal user web pages and points to the directory that contains the user pages.
usually points to public_html, and it does in the Solaris configuration. With this default setting, users
public_html in their home directories to hold their personal web pages. When a request comes in for
www.wrotethebook.com/~sara, for example, it is mapped to www.wrotethebook.com/export/home/sara/public_html
alternative is to define a full pathname on the UserDir directive line such as /export/home/userpages
creates the directory and allows each user to store personal pages in subdirectories of this directory, so that a request
www.wrotethebook.com/~sara will map to www.wrotethebook.com/export/home/userpages/sara. The advantage of this
approach is that it makes it easier for you to monitor the content of user pages. The disadvantage is that a
directory tree must be created and protected separately, whereas a web folder within the user's home
protection of that user's home.

The PidFile and ScoreBoardFile directives define the paths of files that relate to process status. The PidFile is the file in
httpd stores its process ID, and the ScoreBoardFile is the file where httpd writes process status information.

The DirectoryIndex option defines the name of the file retrieved if the client's request does not include

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DirectoryIndex option defines the name of the file retrieved if the client's request does not include
system has the following value for this option:

DirectoryIndex index.html

Given the value defined for DocumentRoot and this value, if the server gets a request for http://www.wrotethebook.com
gives the client the file /var/apache/htdocs/index.html. If it gets a request for http://www.wrotethebook.com/books/
client the file /var/apache/htdocs/books/index.html. The DocumentRoot is prepended to every request, and the DirectoryIndex
is appended to any request that doesn't end in a filename.

Earlier in this chapter, we saw from an ls of /var/apache/htdocs that the directory contains a file named
it didn't? What would Apache send to the client? If the file index.html is not found in the directory, httpd
listing of the directory, if the configuration permits it. A directory listing is allowed if the Options directive in the Directory
container for the directory contains the keyword Indexes. (More on Options later.) If a directory index is allowed, several
different directives control how that directory listing is formatted.

11.3.5 Creating a Fancy Index

The keyword FancyIndexing is used on the IndexOptions directive line to enable a "fancy index" of the directory when
Apache is forced to send the client a directory listing. When fancy indexing is enabled, httpd creates a directory list that
includes graphics, links, and other advanced features. The Solaris configuration enables fancy indexing with the IndexOptions
directive, and it contains about 20 extra lines to help configure the fancy index. Solaris uses the following directives
the graphics and features used in the fancy directory listing:

IndexIgnore

Identifies the files that should not be included in the directory listing. Files can be specified by name, partial name,
extension, or by standard wildcard characters.

HeaderName

Specifies the name of a file that contains information to be displayed at the top of the directory listing.

ReadmeName

Specifies the name of a file that contains information to be displayed at the bottom of the directory listing.

AddIconByEncoding

Points to the icon used to represent a file based on its MIME encoding type.

AddIconByType

Points to the icon used to represent a file based on its MIME file type.

AddIcon

Points to the icon used to represent a file based on its extension.

DefaultIcon

Points to the icon file used to represent a file that has not been given an icon by any other option.

11.3.6 Defining File Types

MIME file types and file extensions play a major role in helping the server determine how a file should be handled. Specifying
MIME options is also a major part of the Solaris httpd.conf file. The directives involved are:

DefaultType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the MIME type that is used when the server cannot determine the type of a file. In the Solaris configuration this
is set to text/plain. Thus, when a file has no file extension, the server assumes it is a plain-text file.

AddEncoding

Maps a MIME encoding type to a file extension. The Solaris configuration contains two AddEncoding directives:

AddEncoding x-compress Z

AddEncoding x-gzip gz tgz

The first directive maps the extension Z to the MIME encoding type x-compress. The second line maps the extensions
gz and tgz to MIME encoding type x-gzip.

AddLanguage

Maps a MIME language type to a file extension. The Solaris configuration contains mappings for six languages, e.g.,
.en for English and .fr for French.

LanguagePriority

Sets the priority of the language encoding used when preparing multiviews, and the language used when the client
does not specify a preference. In the Solaris configuration, the priority is English (en), French (
This means that English, French, and German views will be prepared if multiviews are used. The client will be
English version if no language preference is specified.

AddType

Maps a MIME file type to a file extension. The Solaris configuration has only one AddType directive; it maps MIME type
application/x-tar to the extension .tgz. A configuration can have several AddType directives.

Another directive that is commonly used to process files based on the filename extension is the AddHandler directive. This
directive maps a file handler to a file extension. A file handler is a program that knows how to process a specific file type. For
example, the handler cgi-script is able to execute CGI files. The Solaris configuration does not define any optional
handlers, so all the AddHandler directives are commented out.

11.3.7 Performance Tuning Directives

The KeepAlive directive enables the use of persistent connections. Without persistent connections, the client must make a
new connection to the server for every link the user selects. Because HTTP runs over TCP, every connection requires a
connection setup, adding time to every file retrieval. With persistent connections, the server waits to see
additional requests before it closes the connection. Therefore, the client does not need to create a new
a new document. The KeepAliveTimeout defines the number of seconds the server holds a persistent
waiting to see if the client has additional requests. The Solaris configuration turns KeepAlive on and sets
15 seconds.

MaxKeepAliveRequests defines the maximum number of requests that will be accepted on a "kept-alive" connection before a
new TCP connection is required. Solaris sets this value to 100, which is the Apache default. Setting MaxKeepAliveRequests
to 0 allows unlimited requests. 100 is a good value for this parameter: few users request 100 document transfers, so the value
essentially creates a persistent connection for all reasonable cases. If the client does request more
transfers, it might indicate a problem with the client system, so requiring another connection request is probably a

Timeout defines the number of seconds the server waits for a transfer to complete. The value needs to be large enough to
handle the size of the files your site sends as well as the low performance of the modem connections of your clients. But if it is
set too high, the server will hold open connections for clients that may have gone offline. The Solaris configuration has the
Timeout set to 5 minutes (300 seconds), which is a very common setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BrowserMatch is a different type of tuning parameter: it reduces performance for compatibility's sake. The Solaris
configuration contains the following five BrowserMatch directives:

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

The BrowserMatch statements are used to present information in ways that are compatible with the capabilities of different
web browsers. For example, a browser may be able to handle only HTTP 1.0, not HTTP 1.1. In this case,
used on the BrowserMatch line to ensure that the server uses only HTTP 1.0 when dealing with that browser.

In the Solaris configuration, keepalives are disabled for two browsers. One browser is offered only HTTP 1.0 during the
connection, and responses are formatted to be compatible with HTTP 1.0 for four different browsers.

Don't fiddle with the BrowserMatch directives. These settings are shipped as defaults in the Apache distribution, and are set to
handle the limitations of different browsers. These are tuning parameters, but they are used by the Apache developers to
adjust to the limitations of older browsers.

HostnameLookups tells httpd whether or not it should log hostnames as well as IP addresses. The advantage of enabling
hostname logging is that you get a more readable log. The disadvantage is that httpd has the added overhead of DNS name
lookups. Setting this to off, as in the Solaris configuration, enhances server performance. The HostnameLookups directive
affects what is logged, but its major impact is on system performance, which is why we cover it under tuning parameters
instead of logging directives.

11.3.8 Logging Configuration Directives

Log files provide a great deal of information about the web server. The following seven lines define the Apache logging
configuration in the default Solaris 8 httpd.conf file:

ErrorLog /var/apache/logs/error_log

LogLevel warn

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

CustomLog /var/apache/logs/access_log common

ErrorLog defines the path of the error log file. Use the error log to track and correct failures. You should review the log at least
once a day to check for problems. To keep a close eye on the file while you're logged in, use the tail
option:

$ tail -l 1 -f /var/log/httpd/apache/error_log
The tail command prints the tail end of a file; in the example, the file is /var/log/httpd/apache/error_log
lines option. It tells tail how many lines from the end of the file to print. In this case, -l 1 directs tail
line in the file. The -f option keeps the tail process running so that you will see each record as it is written to
allows you to monitor the file in real time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The LogLevel directive defines the type of events written to the error log. The Solaris configuration sets LogLevel to
which specifies that warnings and other more critical errors are to be written to the log. This is a safe setting
because it logs a wide variety of operational errors. LogLevel has eight possible settings: debug, info
error, crit, alert, and emerg. The log levels are cumulative. For example, warn provides warnings, errors, critical
messages, alerts, and emergency messages; debug provides all types of logging, which causes the file to grow at a very
rapid rate; emerg keeps the file small but notifies you only of disasters. warn is a good compromise between not enough
detail and too much detail.

Just as important as reporting errors, the logs provide information about who is using the server, how much it is being used,
and how well it is servicing the users. Web servers are used to distribute information; if no one wants or uses the information,
you need to know it. The LogFormat and CustomLog directives do not configure the error log, but rather
logged.

11.3.8.1 Defining the log file format

The LogFormat directives define the format of log file entries. A LogFormat directive contains two things: the layout of a file
entry and a label used in the httpd.conf file to identify the log entry. The layout of the entry is placed directly after the
LogFormat keyword and is enclosed in quotes. The layout is defined using literals and variables.

Examining a sample LogFormat directive shows how the variables are used. The basic Apache log file conforms to the
Common Log Format (CLF). CLF is a standard used by all web server vendors, and using this format means that the logs
generated by Apache servers can be processed by any log analysis tool that conforms to the standard. The
standard CLF entry is clearly defined by the second LogFormat directive in the Solaris httpd.conf file:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

This LogFormat directive specifies exactly the information required for a CLF log entry. It does this using seven different
LogFormat variables:

%h

Logs the IP address of the client. If HostnameLookups is set to on, this is the client's fully qualified hostname. On the
sample Solaris system, this would be the client's IP address because HostnameLookups is turned off to enhance server
performance.

%l

Logs the username used to log in to the client, if available. The name is retrieved using the identd
most clients do not run identd and thus do not provide this information. Therefore, this field usually
to indicate a missing value. Likewise, if the server does not have a value for a field, the log contains a hyphen
field.

%u

Logs the username used to access a password-protected web page. This should match a name you defined in the
AuthUser file or the AuthDBMUser database you created on the server. (AuthUser and AuthDBMUser are covered in
Section 11.4 of this chapter.) Most documents are not password protected, and therefore this field contains a hyphen in
most log entries.

%t

Logs the date and time the log entry was made.

%r

Logs the first line of the client's request. This often contains the URL of the requested document. The
the LogFormat directive indicate that quotes should be inserted in the output. In the log file, the client's request
enclosed in quotes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%>s

Logs the status of the last request. This is the three-digit response code that the server returned to the client.

%b

Logs the number of bytes contained in the document sent to the client.

Apache log entries are not limited to the CLF format. The LogFormat directive lets you define what information is logged. A
wide variety of information can be logged.

The Solaris configuration contains three additional LogFormat directives that demonstrate some optional log formats. The
three directives are:

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""

combined

All of these directives log the contents of HTTP headers. For example, the first directive logs the value received from the client
in the User-agent header. User-agent is the user program that generates the document request; generally this is the
name of a browser. The format that logs the header is:

%{User-agent}i

This format works for any header: simply replace User-agent with the name of the header. The i indicates that this is an
input header; output headers are indicated by an o. Apache can log the contents of any header records received or sent.

The second LogFormat directive logs the contents of the Referer header received from the client (
characters dash and greater-than sign (->), and the requested URL (%U). Referer is the name of the remote site that
referred the client to your web site; %U is the document to which the site referred the client.

The last LogFormat directive starts with the CLF (%h %l %u %t \"%r\" %>s %b \") and adds to that the values from
Referer header and the User-agent header. This format is labeled combined because it combines the CLF with other
information; the other two formats are also aptly labeled as agent and referer. Yet none of these formats is actually used
in the Solaris configuration. Simply creating a LogFormat is not enough to generate a log file; you must
CustomLog directive to map the format to a file, as explained later.

In the LogFormat directive, the layout of the log entry is enclosed in quotes. The label that occurs after the closing quote is not
part of the format. In the LogFormat directive that defines the CLF format, the label common is an arbitrary string
the LogFormat directive to a CustomLog directive. In the Solaris configuration, that particular LogFormat is tied to the file
/var/apache/logs/access_log defined by this line:

CustomLog /var/apache/logs/access_log common

The label common binds the two directives together. Thus the CLF entries defined by this LogFormat directive
the file defined by this CustomLog directive.

In the Solaris configuration, the other CustomLog directives that create the agent, referer, and combined
commented out:

#CustomLog /var/apache/logs/referer_log referer

#CustomLog /var/apache/logs/agent_log agent

#CustomLog /var/apache/logs/access_log combined

The referer_log stores the URL of the source page that linked to your web server. This helps you determine what

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The referer_log stores the URL of the source page that linked to your web server. This helps you determine what
pointing to your web pages. Entries in the referer_log are defined by this line:

LogFormat "%{Referer}i -> %U" referer

To create the log, uncomment this line:

CustomLog /var/apache/logs/referer_log referer

The agent_log identifies the browsers that are used to access your site, and is defined by this LogFormat statement:

LogFormat "%{User-agent}i" agent

To create the log, uncomment this line:

CustomLog /var/apache/logs/agent_log agent

Lastly, the format for the expanded CLF log is defined by this line:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

To create a combined log, uncomment this line:

CustomLog /var/apache/logs/access_log combined

and comment this line:

#CustomLog /var/apache/logs/access_log common

These changes cause the combined log format to be used to build a log file named /var/apache/logs/access_log
same log file that is used by the default common log format. To avoid duplicate log entries, turn off common
turn on combined logging. In effect, these changes switch the access_log file from using the common
the combined log entry.

Each LogFormat statement and its associated CustomLog statement end with the same label. The label is an arbitrary name
used to bind the format and the file together.

11.3.8.2 Using conditional logging

Apache also supports conditional logging to identify fields that are logged only when certain status codes are
server. The status codes are listed in Table 11-2.

Table 11-2. Apache server status codes
Status code Meaning

200: OK A valid request

302: Found The document was found

304: Not Modified The requested document has not been modified

400: Bad Request An invalid request

401: Unauthorized The client or user is denied access

403: Forbidden The requested access is not allowed

404: Not Found The requested document does not exist

500 Server Error An unspecified server error occurred

503: Out of Resources (Service Unavailable) The server has insufficient resources to honor the request

501: Not Implemented The requested server feature is not available

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

502: Bad Gateway The client specified an invalid gateway

To make a field conditional, put one or more status codes on the field in the LogFormat entry. If multiple status codes are
used, separate them with commas. Assume that you want to log the browser name only if the browser requests a service that
is not implemented in your server. Combine the Not Implemented (501) status code with User-agent

%501{User-agent}i

If this value appears in the LogFormat statement, the name of the browser is logged only when the status code is 501.

Place an exclamation mark in front of the status codes to specify that you want to log a field only when the status code does
not contain the specified values. For example, to log the address of the site that referred the user to your web page only if the
status code is not one of the good status codes, add the following to a LogFormat:

%!200,302,304{Referer}i

This particular conditional log entry is very useful, as it tells you when a remote page has a stale link pointing to your web site.

Combine these features with the common log format to create a more useful log entry. Here we modify the Solaris
format to include conditional logging:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%!200,302,304{Referer}i\" \"%{User-Agent}i\"" combined

This entry provides all the data of the CLF and thus can be analyzed by standard tools. But it also provides the browser name
and, when the user requests a stale link, it provides the address of the remote site that references that link.

Despite the fact that the Solaris configuration file contains over 160 active lines, there are some interesting Apache features
that the Solaris configuration does not exploit. Before we move on to the important ongoing tasks of server security and
monitoring, the following sections provide a quick overview of three features not included in the default Solaris configuration:
proxies and caching, multi-homed server configuration, and virtual hosts.

11.3.9 Proxy Servers and Caching

Servers that act as intermediaries between clients and web servers are called proxy servers. When
web access is often blocked. Instead, users connect to the proxy server through the local network, and the
trusted to connect to the remote web server. Proxy servers can maintain cached copies of remote servers' web pages
improve performance by reducing the amount of traffic sent over the wide area network and by reducing the contention for
popular web sites. The options that control caching behavior are:

CacheNegotiatedDocs

Allows proxy servers to cache web pages from your server. By default, Apache asks proxy servers not to cache your
server's web pages. This option takes no command-line arguments.

ProxyRequests

Setting this option to on turns your server into a proxy server. By default, this is set to off.

ProxyVia

Enables or disables the use of Via: headers, which aid in tracking where cached pages actually came from.

CacheRoot

Specifies the directory path where cached web pages are written when this server is configured as a proxy server. To
avoid making the directory writable by the user nobody, create a special userid for httpd when you run a proxy

CacheSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the maximum size of the cache in kilobytes. The default is 5.

CacheGcInterval

Sets the time interval (in hours) at which the server prunes the cache. The default is 4. Given the defaults, the server
prunes the cache down to 5 kilobytes every 4 hours.

CacheMaxExpire

Sets the maximum number of hours a document can be held in the cache without requesting a fresh copy from the
remote server. The default is 24 hours. With the default, a cached document can be up to a day

CacheLastModifiedFactor

Sets the length of time a document is cached based on when it was last modified. The default factor is 0.1. Therefore, if
a document that was modified 10 hours ago is retrieved, it is held in the cache for only 1 hour before a fresh copy is
requested. The assumption is that if a document changes frequently, the time of its last modification will be recent; thus,
documents that change frequently are cached for only a short period of time. Regardless, nothing is
CacheMaxExpire.

CacheDefaultExpire

Sets a default cache expiration value for protocols that do not provide the value. The default is 1 hour.

NoCache

Defines a list of servers whose pages you do not want to cache. If you know that a server has constantly changing
information, you won't want to cache information from that server because your cache will always be out of date. Listing
the name of that server on the NoCache command line means that queries are sent directly to the
responses from the server are not saved in the cache.

All of these directives are commented out in the Solaris configuration. By default, the Solaris Apache server is not
to be a proxy server. If you need to create a proxy server, refer to a book dedicated to Apache configuration such as
Apache Web Server Administration.

11.3.10 Multi-Homed Server Options

Web servers with more than one IP address are said to be multi-homed. A multi-homed web server
address it should listen to for incoming server requests. There are two configuration options to handle this:

BindAddress

Specifies the address used for server interactions. The default value is *, which means that the server should respond
to web service requests addressed to any of its valid IP addresses. If a specific address is used on the BindAddress
line, only requests for that address are honored.

Listen

Specifies addresses and ports to monitor for web service requests in addition to the default port and address. Address
and port pairs are separated by a colon. For example, to monitor port 8080 on IP address 172.16.12.5, enter
172.16.12.5:8080. If a port is entered with no address, the address of the server is used.
not used, httpd monitors only the port defined by the Port directive.

The BindAddress and Listen directives are commented out of the Solaris configuration.

11.3.11 Defining Virtual Hosts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some of the options commented out of the sample httpd.conf file are used if your server hosts multiple web sites. For
example, to host web sites for fish.edu and mammals.com on the crab.wrotethebook.com server, add these
httpd.conf file:

<VirtualHost "www.fish.edu">

DocumentRoot /var/apache/fish

ServerName www.fish.edu

</VirtualHost>

<VirtualHost "www.mammals.com">

DocumentRoot /var/apache/mammals

ServerName www.mammals.com

</VirtualHost>

Each VirtualHost option defines a hostname alias that your server responds to. For this to be valid, DNS must define the alias
with a CNAME record. Our example requires CNAME records that assign crab.wrotethebook.com the aliases of
and www.mammals.com. When crab receives a server request addressed to one of these aliases, it uses
parameters defined here to override its normal settings. Therefore, when it gets a request for www.fish.edu
www.fish.edu as its ServerName value instead of its own server name, and /var/apache/fish as the DocumentRoot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Web Server Security

Web servers are vulnerable to all of the normal security problems discussed in Chapter 12, but they also
have their own special security considerations. In addition to guarding against the usual threats, web servers
should be set up to protect the integrity of the information they disseminate as well as the information they
receive from the client.

Access to the information on the server is protected by access controls. You can control access to the
server at the host level and at the user level in the httpd.conf configuration file. Access control is important
for protecting internal and private web pages, but most web information is intended for dissemination to the
world at large. For these global web pages, you don't want to limit access in any way, but you still want
protect the integrity of the information on the pages.

One of the unique security risks for a web server is the possibility of an intruder changing the information on
your web pages. We have all heard of high-profile incidents in which intruders alter the home page of some
government agency to include comical or pornographic material. Although these attacks are not intended to
do long-term harm to the server, they can certainly embarrass the organization that runs the web site.

Unix file permissions protect the files and directories where web documents are stored. The server does not
need write permissions, but it does need to read and execute these files. Executable files, if they are poorly
designed, are always a potential security threat.

11.4.1 The CGI and SSI Threat

Apache itself is reliable and reasonably secure. The biggest threat to the security of your server is the code
that you write for your server to execute, most commonly Common Gateway Interface programs and Server
Side Includes.

CGI programs can be written in C, Perl, Python, or other programming languages. Badly written CGI
programs represent one of the biggest threats to server security: intruders can exploit poor code by
buffer overflows or passing shell commands through the program to the system. To avoid this, you must be
very careful about the code that you make available on your system. You should personally review all
programs included in the cgi-bin directory. Try to write programs that do not allow free-form user input; use
pull-down menus instead of keyboard input where possible. Limit and validate what comes in from the user
to your system.

To make it easier to review your CGI scripts, keep them all in the ScriptAlias directory. Don't allow scripts to
be executed from any other directory unless you're positive no one can place a script there that you have
not personally reviewed. In the next section, we'll see how to control which directories allow CGI execution
when we discuss the Options directive.

Server Side Includes (SSI) are also a potential problem for the same reason as CGI programs. Server Side
Includes are also called Server Parsed HTML, and the files often have the .shtml file extension. These files
are processed by the server before they are sent to the client, and they can include other files or execute
code from script files. If user input is used to dynamically modify an SSI file, the file is vulnerable to the same
type of attacks as CGI scripts.

SSI commands are embedded inside HTML comments, and therefore begin with <!-- and conclude with
->. The SSI commands are listed in Table 11-3.

Table 11-3. Server Side Include commands
Command Function

#config Formats the display of file size and time.

#echo Displays variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#exec Executes a CGI script or a shell command.

#flastmod Displays the date a document was last modified.

#fsize Displays the size of a document.

#include Inserts another file into the current document.

The most secure way to operate is to disallow all SSI processing. This is the default unless All or Includes is
specified by an Options directive in the httpd.conf file. A compromise setting is to allow SSI processing but
disallow the #include and #exec commands. These are the greatest security threats because #include writes
data to the document from an external file, and #exec enables script and command execution. Use
IncludesNOEXEC on the Options directive for this setting. Let's now look at how Options are set for
individual directories.

11.4.2 Controlling Server Options

The httpd.conf file can define server controls for all web documents or for documents in individual
directories. The Options directive specifies what server options are permitted for documents. Placing the
Options directive inside a Directory container limits the scope of the directive to that specific directory. The
Solaris configuration provides an example:

<Directory />

 Options FollowSymLinks

 AllowOverride None

</Directory>

<Directory "/var/apache/htdocs">

 Options Indexes FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<Directory "/var/apache/icons">

 Options Indexes MultiViews

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

<Directory "/var/apache/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Order allow,deny

 Allow from all

</Directory>

This configuration defines server option controls for four directories: the root (/), /var/apache/htdocs,
/var/apache/icons, and /var/apache/cgi-bin. The example shows four possible values for the Options
directive: FollowSymLinks, Indexes, None, and MultiViews. The Options directive has several possible
settings:

All

Permits the use of all server options.

ExecCGI

Permits the execution of CGI scripts from this directory. The ExecCGI option allows CGI scripts to be
executed from directories other than the directory pointed to by the ScriptAlias directive. Many
administrators set this option for the ScriptAlias directory, but doing so is somewhat redundant: the
ScriptAlias directive already defines /var/apache/cgi-bin as the script directory. In the example,
Options is set to None for the /var/apache/cgi-bin directory without undoing the effect of the
ScriptAlias directive.

FollowSymLinks

Permits the use of symbolic links. If this is allowed, the server treats a symbolic link as if it were a
document in the directory.

Includes

Permits the use of Server Side Includes (SSI).

IncludesNOEXEC

Permits Server Side Includes (SSI) files that do not contain #exec and #include commands.

Indexes

Permits a server-generated listing of the directory if an index.html file is not found.

MultiViews

Permits the document language to be negotiated. See the AddLanguage and LanguagePriority
directives discussed earlier in Section 11.3.6.

None

Disallows all server options. My personal favorite!

SymLinksIfOwnerMatch

Permits the use of symbolic links if the target file of the link is owned by the same userid as the link
itself.

Use server options with care. The None and MultiViews options used in the Solaris configuration should not
cause security problems, although MultiViews consumes server resources. The Indexes option poses a
slight security risk, as it exposes a listing of the directory contents if no index.html file is found, which may be
more information than you want to share with the world. FollowSymLinks has the potential for security
problems because symbolic links can increase the number of directories in which documents are stored.
The more directories you have, the more difficult it is to secure them, because each must have the proper
permissions set and be monitored for possible file corruption. (See Chapter 12 for information on Tripwire, a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

permissions set and be monitored for possible file corruption. (See Chapter 12 for information on Tripwire, a
tool that helps monitor files.)

The Directory containers in the previous example also contain AllowOverride directives. These directives
limit the amount of configuration control given to the individual directories.

11.4.3 Directory-Level Configuration Controls

The statement AccessFileName .htaccess enables directory-level configuration control and states that
the name of the directory configuration file is .htaccess. If the server finds a file with this name in a directory
from which it is retrieving information, it applies the configuration lines defined in the file before it releases
the data. The AccessFileName directive delegates configuration control to the people who create and
manage the individual web pages, giving them a file in which they can write configuration directives. The
configuration directives in the .htaccess file are the same as those in the httpd.conf file that defines
systemwide configuration. The Solaris configuration contains the AccessFileName .htaccess line,
directory-level configuration is allowed on Solaris systems by default.

The AllowOverride directive can be used to limit the amount of configuration control given to individual
directories. It defines when the .htaccess file is allowed to override the configuration values set in httpd.conf
Placing the AllowOverride directives inside a Directory container limits the scope of AllowOverride to that
specific directory, as we saw in the previous example.

The AllowOverride directive has many possible settings. In addition to the keywords All, which permits the
.htaccess file to override everything defined in the configuration files, and None, which allows no overrides,
individual directives can be permitted through this directive. For example, to allow an .htaccess file to define
file extension mappings, specify AllowOverride AddType. When this value is used on an AllowOverride
directive, AddType directives can be used in the directory's .htaccess file to define file extension mappings.
AllowOverride can be used to permit just about anything in the configuration to be overridden by the
.htaccess file.

The Options and AllowOverride directives limit access to server features and configuration controls, and can
help keep information safe from corruption. Sometimes, however, you have information you want to keep
safe from widespread distribution. Access controls limit the distribution of information.

11.4.4 Defining Access Controls

Use the httpd.conf file to define host and user access controls. A few examples will make this capability
clear. Let's start with an example of host access controls:

<Directory "/var/apache/htdocs/internal">

Order deny,allow

Deny from all

Allow from wrotethebook.com

</Directory>

This shows access controls for the directory /var/apache/htdocs/internal. The access controls are designed
to grant access only to those hosts within the wrotethebook.com domain. The Directory container encloses
three access control directives:

Order

Defines the order in which the access control rules are evaluated. deny,allow tells httpd to apply
the deny rule first, and then permit exceptions to that rule based on the allow rule. In the example, we
block access from everyone with the deny rule and then permit exceptions for systems that are part of
the wrotethebook.com domain with the allow rule. This is an example of access rules that might be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the wrotethebook.com domain with the allow rule. This is an example of access rules that might be
used to protect an internal web site.

Deny from

Identifies the hosts not allowed to access web documents found in the /var/apache/htdocs/internal
directory. The hosts can be identified by full or partial hostnames or IP addresses. Each Deny from
directive can identify only one source; to specify multiple sources, use multiple Deny from directives.
However, if a domain name or a network address is used, the source can encompass every host in
entire domain or network. The keyword all blocks all hosts.

Allow from

Identifies hosts that are granted access to documents in the directory. The hosts can be identified by
full or partial hostnames or IP addresses. Each Allow from directive can identify only one source; to
specify multiple sources, use multiple Allow from directives. However, if a domain name or a network
address is used, the source can encompass every host in an entire domain or network. The keyword
all allows all hosts.

The example here controls access on a host-by-host basis. This type of control is commonly used to
segregate information for internal users from information for external customers. It is also possible to
file access at the user and group level.

11.4.4.1 Requiring user authentication

User authentication can be required before granting access to a document or directory. It is generally used
to limit information to a small group. An example of user access control is:

<Directory "/var/apache/htdocs/internal/accounting">

AuthName "Accounting"

AuthType Basic

AuthUserFile /etc/apache/http.passwords

AuthGroupFile /etc/apache/http.groups

Require hdqtrs rec bill pay

Order deny,allow

Deny from all

Allow from Limit>

</Directory>

The first two directives in this Directory container are AuthName and AuthType. AuthName provides the
value for the authentication realm—a value that is placed on the WWW-Authenticate header sent to the
client. A realm is a group of server resources that share the same authentication. In the example, the
directory /var/apache/htdocs/internal/accounting is the only item in the Accounting realm. But it would be
possible to have other password-protected directories or documents in the Accounting realm. If we did, a
user that was authenticated for any resource in the Accounting realm would be authenticated for all
resources in that realm.

The AuthType directive specifies the type of password authentication that will be used. This can be either

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The AuthType directive specifies the type of password authentication that will be used. This can be either
Basic or Digest. When Basic is specified, a plain clear-text password is used for authentication. When
Digest is specified, Message Digest 5 (MD5) is used for authentication. Digest is rarely used, partly because
it is not completely implemented in all browsers, but more importantly because data that requires strong
authentication is better protected using Secure Sockets Layer (SSL) security. SSL is covered later in
11.4.5.

In this example, access is granted if the user belongs to a valid group and has a valid password. These
groups and passwords have nothing to do with the groups and passwords used by login. The groups and
passwords used here are specifically defined by you for use with the web server. The files you create for this
purpose are the ones pointed to by the AuthUserFile and AuthGroupFile entries. Add passwords to the web
server password file with the htpasswd command that comes with the Apache system; add groups to the
group file by editing the file with any text editor. The entries in the group file start with the group name
followed by a colon and a list of users that belong to the group. For example:

hdqtrs: amanda pat craig kathy

The Require directive requires the user to enter the web username and password. The example limits
access to users who belong to one of the groups hdqtrs, rec, bill, or pay, and who also enter a valid
password. Alternatively, placing the keyword valid-user on the Require line instead of a list of groups
grants access to any user with a valid password and ignores the group file.

Even if you do not use web server groups, specify the AuthGroupFile entry when using password
authentication. If you don't want to create a dummy group file, simply point the entry to /dev/null.

The Order, Deny, and Allow directives perform the same function in this example as they did in the previous
one. Here we are adding password authentication to host authentication. That's not required. If the Order,
Deny, and Allow directives were not in the example, any system on the Internet would be allowed to access
the documents if the user on that system had the correct username and password.

11.4.4.2 Improved user authentication

The standard authentication module, mod_auth, stores user authentication data in flat files that are
searched sequentially. A sequential search of even a few hundred entries can be time consuming. Use an
indexed database to improve performance if you have more than a few password entries.

Two modules, mod_auth_db, which uses Berkeley DB databases, and mod_auth_dbm, which uses Unix
DBM databases, provide support for password databases. The basic Solaris configuration dynamically loads
mod_auth_dbm, so we can use a password database on a Solaris system with very little effort.

The password database is used in much the same way as the sequential database. Using the authentication
example shown previously, we can change to a password database simply by changing the AuthUserFile
directive to an AuthDBMUserFile directive and the AuthGroupFile directive to an AuthDBMGroupFile
directive. Here is an example:

<Directory "/var/apache/htdocs/internal/accounting">

AuthName "Accounting"

AuthType Basic

AuthDBMUserFile /etc/apache/passwords

AuthDBMGroupFile /etc/apache/groups

Require hdqtrs rec bill pay

Order deny,allow

Deny from all

Allow from Limit>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allow from Limit>

</Directory>

These two small changes are all that is needed in the httpd.conf file. The biggest change when using a
password database is that passwords are no longer defined with the htpassword command. Instead, the
dbmmanage command is used to create password and group database entries. The syntax of the
dbmmanage command is:

dbmmanage filename command username password

The items on a dbmmanage command line are largely self-explanatory. filename is the name of the
database file. username and password are just what you would expect for a password database. command
is a keyword that defines the function of the dbmmanage command. The possible command keywords are:

add

Adds a username and password to the database. The password must already be encrypted because
dbmmanage does not encrypt the password for you when you use the add keyword. See the
adduser keyword.

adduser

Adds a username and password to the database. The password is provided in clear text and then
encrypted by dbmmanage.

check

Checks if the username and password match those in the database.

delete

Removes a username and password from the database.

import

Copies username:password entries from stdin. The passwords must already be encrypted.

update

Changes the password for a username that is already in the database.

view

Displays the contents of the database.

In the following example, the /etc/apache/passwords file is created and two new users are added to the
database:

dbmmanage /etc/apache/passwords adduser sara
New password:

Re-type new password:

User sara added with password encrypted to XsH4aRiQbEzp2

dbmmanage /etc/apache/passwords adduser alana

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dbmmanage /etc/apache/passwords adduser alana
New password:

Re-type new password:

User alana added with password encrypted to AslrgF/FPQvF6

dbmmanage /etc/apache/passwords view
alana:AslrgF/FPQvF6

sara:XsH4aRiQbEzp2

Notice that dbmmanage prompts for the password if it is not provided on the command line.

All of the access control examples shown so far define access controls for a directory. It is also possible to
define access control for all directories on a server or for individual documents. To apply access controls to
every document provided by the server, simply place the access control directives outside a Directory
container; the access controls here apply only to a single directory because they are located within a
Directory container. To apply access controls to a single file or document, place the directives inside a Files
or Document container.

11.4.4.3 Setting file-level access controls

The Solaris configuration provides an example of applying access controls to individual files. In order to
prevent the .htaccess file from being downloaded by a curious client, the Solaris configuration contains the
following Files container:

<Files ~ "^\.ht">

 Order allow,deny

 Deny from all

</Files>

The Order and Deny directives are somewhat different from previous examples. Here the Order directive
tells Apache to process the Allow directive first and then the Deny directive. This enables the Deny directive
to override anything done by the Allow directive. In this case there is no Allow directive, and the Deny
directive denies all remote access to the .htaccess file.

In fact, this Deny directive applies to more than just the .htaccess file. The tilde (~) on the Files line tells
Apache to interpret the filename as a regular expression. The regular expression ^\.ht matches any
filename that begins with .ht. This was done because users and administrators often start httpd
configuration files with the string .ht, e.g., a user password file might be named .htpassword. Using a
regular expression as a filename on the Files line applies the access controls to a wide range of possible
files.

11.4.4.4 Setting document-level access controls

Use the Location directive to apply access controls at the document level. Where the Directory line has a
directory name, the Location directive has a document name from a URL. The directives defined inside a
Location container apply only to that document. In the following example, access controls are applied
server-status document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from wrotethebook.com

</Location>

If the Apache server gets a request for www.wrotethebook.com/server-status, it applies these access
controls. /server-status is the name of a document, not the name of a directory. In fact, this is a special
document that shows the server status and is constructed by a special handler. The access controls make
the server status available to everyone in our domain but deny it to all outsiders. The last section in this
chapter shows how the server-status page is used to monitor a web server. But before we move on to that
topic, we need to look at one final aspect of security—protecting the information the client sends to the
server.

11.4.5 Using Encryption

The security features described in the previous sections are all designed to protect information provided by
the server. However, you are also responsible for protecting the security of your client's data. If you want to
run an electronic commerce business, you must use a secure server that protects your customers' personal
information, such as credit card numbers. Secure Apache servers use Secure Sockets Layer (SSL) to
encrypt protected sessions.

SSL is both more powerful and more complex than the security features discussed so far. It is more powerful
because it uses public key cryptography for strong authentication and to negotiate session encryption. When
SSL is used, the exchange of data between the client and server is encrypted and protected.

SSL is also more complex because it uses public key cryptography. All encryption is complex, and public
key encryption is particularly so. Chapter 12 describes how public key encryption works and, in particular,
how the SSL protocol works. If you want this background information, read Chapter 12 before adding SSL to
your Apache server.

The mod_ssl package adds SSL support to Apache. In turn, mod_ssl depends on OpenSSL for encryption
libraries, tools, and the underlying SSL protocols. Many Linux systems and some Unix systems include
OpenSSL. Before installing mod_ssl, make sure OpenSSL is installed on your system; if it isn't, download
the source code from http://www.openssl.org. Run the config utility that comes with the source code and
then run make to compile OpenSSL. Run make test and make install to install it.

Once OpenSSL is installed, mod_ssl can be installed. Many Linux systems and some Unix systems include
mod_ssl as part of the basic Apache system. If your system doesn't, download the mod_ssl package from
http://www.modssl.org. Recompile Apache using the --with-ssl option to incorporate the SSL extensions
into Apache.[3]

[3] Linux Apache Web Server Administration is an excellent reference on compiling Apache.

The mod_ssl installation inserts various SSL configuration lines into the sample Apache configuration,
usually called httpd.conf.default. These new lines are placed inside IfDefine containers so that SSL support
is an option that can be invoked from the httpd command line. Red Hat, which bundles mod_ssl into the
basic system, provides a good example of how this is done. Here are the IfDefine containers for the mod_ssl
LoadModule and AddModule directives from a Red Hat system:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<IfDefine HAVE_SSL>

LoadModule ssl_module modules/libssl.so

</IfDefine>

<IfDefine HAVE_SSL>

AddModule mod_ssl.c

</IfDefine>

The LoadModule and AddModule directives are used only if HAVE_SSL is defined on the httpd command
line. The string "HAVE_SSL" is arbitrary; on another system, the string might be "SSL". All that matters is
that the string matches a value defined on the httpd command line. For example:

httpd -DHAVE_SSL
This command attempts to start an SSL Apache server on a Red Hat 7.2 system.

In addition to the containers for the LoadModule and AddModule directives, there is an IfDefine container
that defines a special SSL server configuration. The container from the Red Hat configuration is shown here:

<IfDefine HAVE_SSL>

Listen 80

Listen 443

</IfDefine>

<IfDefine HAVE_SSL>

AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl

</IfDefine>

<IfDefine HAVE_SSL>

<VirtualHost _default_:443>

ErrorLog logs/error_log

TransferLog logs/access_log

SSLEngine on

SSLCertificateFile /etc/httpd/conf/ssl.crt/server.crt

SSLCertificateKeyFile /etc/httpd/conf/ssl.key/server.key

<Files ~ "\.(cgi|shtml|phtml|php3?)$">

 SSLOptions +StdEnvVars

</Files>

<Directory "/var/www/cgi-bin">

 SSLOptions +StdEnvVars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SSLOptions +StdEnvVars

</Directory>

SetEnvIf User-Agent ".*MSIE.*" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

CustomLog logs/ssl_request_log \

 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x '%r' %b"

</VirtualHost>

</IfDefine>

The two lines in the first IfDefine container tell the server to listen to port 443, as well as to the standard port
80. Port 443 is the port used by SSL. The two lines in the second IfDefine container map the file extensions
.crt and .crl to specific MIME file types. The extensions .crt and .crl are both related to SSL certificates. More
on certificates in a moment.

The bulk of the SSL server configuration is defined in a VirtualHost container. This virtual host configuration
is invoked when a connection comes into the default server on port 443—the SSL port. A special log file is
created to track SSL requests. ErrorLog, TransferLog, and CustomLog are directives we have seen before.
Most of the other configuration directives are valid only when SSL is running:

SSLEngine

Turns on SSL processing for this virtual host.

SetEnvIf

Performs essentially the same function as the BrowserMatch directives described earlier. In this case,
the SetEnvIf directive checks to see if the User-Agent (the browser) is Microsoft Internet Explorer. If
it is, the ssl-unclean-shutdown option lets Apache know that this browser will not properly shut
down the connection and that keepalives should not be used with Internet Explorer.

SSLOptions

Sets special SSL protocol options. In the example, StdEnvVars are enabled for the /var/www/cgi-bin
directory and for all CGI and SSI files. StdEnvVars are environment variables sent over the
connection to the client. Retrieving these variables is time consuming for the server, so they are sent
only when it is possible that the client could use them, as is the case when CGI scripts or SSI files are
involved.

SSLCertificateFile

Points to the file that contains the server's public key.

SSLCertificateKeyFile

Points to the file that contains the server's private key.

Public key cryptography requires two encryption keys: a public key that is made available to all clients, and a
private key that is kept secret. The public key is in a special format called a certificate. Before you can start
SSL on your server, you must create these two keys.

OpenSSL provides the tools to create the public and private keys required for SSL. The simplest of these is
the Makefile found in the ssl/certs directory,[4] which allows you to create certificates and keys with a
command. Two different types of arguments can be used with the make command to create an SSL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command. Two different types of arguments can be used with the make command to create an SSL
certificate or key. One type of argument uses the file extension to determine the type of certificate or key
created:

[4] ssl/certs is relative to the path where OpenSSL is installed on your system. On our Red Hat system, the full path is
/usr/share/ssl/certs.

make name.key

Creates a private key and stores it in the file name.key.

make name.crt

Creates a certificate containing a public key and stores it in the file name.crt.

make name.pem

Creates a certificate and a key in the Privacy Enhanced Mail (PEM) format and stores it in the file
name.pem. In Chapter 12, this make command is used to create the keys required for the stunnel
program.

make name.csr

Creates a certificate signature request. A certificate can be digitally signed by a trusted agent, called a
certificate authority (CA), who vouches for the authenticity of the public key contained in the
certificate. More about this later in this section.

Keywords are the other type of argument that can be used with this Makefile. The keywords create
certificates and keys that are intended solely for use with Apache:

make genkey

Creates a private key for the Apache server. The key is stored in the file pointed to by the KEY
variable in the Makefile.

make certreq

Creates a certificate signature request for the Apache server. The certificate signature request is
stored in the file pointed to by the CSR variable in the Makefile.

make testcert

Creates a certificate for the Apache server. This certificate can be used to boot and test the SSL
server. However, the certificate is not signed by a recognized CA and therefore is not acceptable for
use on the Internet. The certificate is stored in the file pointed to by the CRT variable in the Makefile.

The /etc/httpd/conf directory on the Red Hat system has a link to the Makefile to make it easy to build the
keys in the place where the httpd.conf file expects to find them. A look at the /etc/httpd/conf directory on a
Red Hat system shows that the keys pointed to by SSLCertificateFile and SSLCertificateKeyFile already
exist, even though you did not create them.

The Makefile uses the openssl command to create the certificates and keys. The openssl command has
a large and complex syntax, so using the Makefile provides real benefit. However, you can use the
openssl command directly to do things that are not available through the Makefile. For example, to look at
the contents of the certificate that Red Hat has placed in the /etc/httpd/conf directory, enter the following
command:

openssl x509 -noout -text -in ssl.crt/server.crt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

openssl x509 -noout -text -in ssl.crt/server.crt
Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 0 (0x0)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=--, ST=SomeState, L=SomeCity, O=SomeOrganization,

 OU=SomeOrganizationalUnit,

 CN=localhost.localdomain/Email=root@localhost.localdomain

 Validity

 Not Before: Jul 27 12:58:42 2001 GMT

 Not After : Jul 27 12:58:42 2002 GMT

 Subject: C=--, ST=SomeState, L=SomeCity, O=SomeOrganization,

 OU=SomeOrganizationalUnit,

 CN=localhost.localdomain/Email=root@localhost.localdomain

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:a3:e7:ef:ba:71:2a:52:ff:d9:df:da:94:75:59:

 07:f9:49:4b:1c:d0:67:b2:da:bd:7b:0b:64:63:93:

 50:3d:a1:02:e3:05:3b:8e:e6:25:06:a3:d2:0f:75:

 0a:85:71:66:d0:ce:f9:8b:b0:73:2f:fe:90:75:ad:

 d6:28:77:b0:27:54:81:ce:3b:88:38:88:e7:eb:d6:

 e9:a0:dd:26:79:aa:43:31:29:08:fe:f8:fa:90:d9:

 90:ed:80:96:91:53:9d:88:a4:24:0a:d0:21:7d:5d:

 53:9f:77:a1:2b:4f:62:26:13:57:7f:de:9b:40:33:

 c3:9c:33:d4:25:1d:a3:e2:47

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 55:E9:ED:C1:BF:1A:D4:F8:C2:78:6E:7A:2C:D4:9C:AC:7B:CD:D2

 X509v3 Authority Key Identifier:

 keyid:55:E9:ED:C1:BF:1A:D4:6E:7A:2C:D4:DD:9C:AC:7B:CD:D2

 DirName:/C=-/ST=SomeState/L=SomeCity/O=SomeOrganization/

 OU=SomeOrganizationalUnit/CN=localhost.localdomain/

 Email=root@localhost.localdomain

 serial:00

 X509v3 Basic Constraints:

 CA:TRUE

 Signature Algorithm: md5WithRSAEncryption

 76:78:77:f0:a2:19:3b:39:5f:2a:bd:d0:42:da:85:6e:c2:0c:

 5e:80:40:9c:a8:65:da:bf:38:2b:f0:d6:aa:30:72:fb:d3:1d:

 ce:cd:19:22:fb:b3:cc:07:ce:cc:9b:b6:38:02:7a:21:72:7c:

 26:07:cc:c9:e0:36:4f:2f:23:c9:08:f7:d4:c1:57:2f:3e:5c:

 d5:74:70:c6:02:df:1a:62:72:97:74:0a:a6:db:e0:9d:c9:3d:

 8e:6b:18:b1:88:93:68:48:c3:a3:27:99:67:6f:f7:89:09:52:

 3a:a3:fb:20:52:b0:03:06:22:dd:2f:d2:46:4e:42:f2:1c:f0:

 f1:1a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 f1:1a

As you can see, there is a lot of information in a certificate. But only a few pieces of it are needed to
determine whether this is a valid certificate for our server:

Issuer

The Issuer is the distinguished name of the CA that issued and signed this certificate. A distinguished
name is a name format designed to uniquely identify an organization. It's clear in this certificate that
the name of the Issuer is just an example, not a real organization.

Subject

The Subject is the distinguished name of the organization to which this certificate was issued. In our
case, it should be the name of our organization. Again, the Subject in this certificate is just an
example.

Validity

The Validity is the time frame in which this certificate is valid. Here, the certificate is valid for a year.
Because the dates are valid, this certificate can be used to test SSL.

To test that the SSL server is indeed running, use a browser to attach to the local server. However, instead
of starting the URL with http://, start it with https://. https connects to port 443, which is the SSL
port. The browser responds by warning you that the server has an invalid certificate, as shown in Figure 11-
4.

Figure 11-4. A warning about an invalid certificate

Clicking on View Certificate shows some of the same certificate information we just saw. You can accept the
certificate for this session and connect to the "secure document." In this case, the secure document is just a
test page because we have not yet stored any real secure documents on the system.

The server is up and running, but it can't be used by external customers until we get a valid signed
certificate. Use make certreq to create a certificate signature request specific to your server. Here is an
example:

cd /etc/httpd/conf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cd /etc/httpd/conf
make certreq
umask 77 ; \

/usr/bin/openssl req -new -key /etc/httpd/conf/ssl.key/server.key -out /etc/http

d/conf/ssl.csr/server.csr

Using configuration from /usr/share/ssl/openssl.cnf

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank.

For some fields there will be a default value.

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Gaithersburg
Organization Name (eg, company) [Internet Widgits Ltd]:WroteThebook.com
Organizational Unit Name (eg, section) []:Headquarters
Common Name (eg, your name or hostname)[]:crab.wrotethebook.com
Email Address []:alana@wrotethebook.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

The freshly created request can be examined using the openssl command. Notice that this request has a
valid Subject containing a distinguished name that identifies our server. However, there is no Issuer. This
request needs to be signed by a recognized CA to become a useful certificate.

openssl req -noout -text -in server.csr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

openssl req -noout -text -in server.csr
Using configuration from /usr/share/ssl/openssl.cnf

Certificate Request:

 Data:

 Version: 0 (0x0)

 Subject: C=US, ST=Maryland, L=Gaithersburg, O=WroteThebook.com,

 OU=Headquarters,

 CN=crab.wrotethebook.com/Email=alana@wrotethebook.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:a3:e7:ef:ba:71:2a:52:ff:d9:df:da:94:75:59:

 07:f9:49:4b:1c:d0:67:b2:da:bd:7b:0b:64:63:93:

 50:3d:a1:02:e3:05:3b:8e:e6:25:06:a3:d2:0f:75:

 0a:85:71:66:d0:ce:f9:8b:b0:73:2f:fe:90:75:ad:

 d6:28:77:b0:27:54:81:ce:3b:88:38:88:e7:eb:d6:

 e9:a0:dd:26:79:aa:43:31:29:08:fe:f8:fa:90:d9:

 90:ed:80:96:91:53:9d:88:a4:24:0a:d0:21:7d:5d:

 53:9f:77:a1:2b:4f:62:26:13:57:7f:de:9b:40:33:

 c3:9c:33:d4:25:1d:a3:e2:47

 Exponent: 65537 (0x10001)

 Attributes:

 a0:00

 Signature Algorithm: md5WithRSAEncryption

 3f:c2:34:c1:1f:21:d7:93:5b:c0:90:c5:c9:5d:10:cd:68:1c:

 7d:90:7c:6a:6a:99:2f:f8:51:51:69:9b:a4:6c:80:b9:02:91:

 f7:bd:29:5e:a6:4d:a7:fc:c2:e2:39:45:1d:6a:36:1f:91:93:

 77:5b:51:ad:59:e1:75:63:4e:84:7b:be:1d:ae:cb:52:1a:7c:

 90:e3:76:76:1e:52:fa:b9:86:ab:59:b7:17:08:68:26:e6:d4:

 ef:e6:17:30:b6:1c:95:c9:fc:bf:21:ec:63:81:be:47:09:c7:

 67:fc:73:66:98:26:5e:53:ed:41:c5:97:a5:55:1d:95:8f:0b:

 22:0b

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 22:0b

CAs are commercial, for-profit businesses. Fees and forms, as well as the CSR, are required before you can
get your certificate signed. Your web browser contains a list of recognized CAs. On a Netscape 6.1 browser,
you can view this list in the Certificate Manager in the Preferences, as shown in Figure 11-5. All CAs have
web sites that provide the details of the cost and the application process.

Figure 11-5. The Netscape 6.1 list of recognized CAs

Although certificates signed by a recognized CA are the most widely used, it is possible to create a self-
signed certificate. However, this has limited utility. As we saw in Figure 11-4, a certificate that is not signed
by a recognized CA must be manually accepted by the client. Therefore, self-signed certificates can be
only if you have a small client base. Use the openssl command to sign the certificate yourself:

openssl req -x509 -key ssl.key/server.key \
> -in ssl.csr/server.csr -out ssl.crt/server.crt
Examining the newly created server.crt file with openssl shows that the Issuer and the Subject contain the
same distinguished name. But this time, the name is the valid name of our server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5 Managing Your Web Server

Despite the enormous number of options found in the httpd.conf configuration file, configuration is
not the biggest task you undertake when you run a web server. Configuration usually requires no
more than adjusting a few options when the server is first installed; however, monitoring your
server's usage and performance and ensuring its reliability and security are daily tasks. The
Apache server provides some tools to simplify these tasks.

11.5.1 Monitoring Your Server

Apache provides tools to monitor the status of the server, and logs that keep a history of how the
system is used and how it performs over time. The earlier discussion of logging configuration
touched on these issues. We even looked at a technique for observing log entries in real time.

A better way to monitor your server in real time is the server-status monitor. This monitor must
either be compiled in to httpd or installed as a dynamically loadable module. These two lines
from the Solaris httpd.conf configuration file install the loadable module:

LoadModule status_module modules/mod_status.so

AddModule mod_status.c

To get the maximum information from the server-status display, add the ExtendedStatus option to
your httpd.conf file:

ExtendedStatus on

Enable the monitor in the httpd.conf file by inserting the Location /server-status container. The
Solaris httpd.conf file has the Location /server-status container predefined, but it is commented
out of the configuration. To enable the monitor, uncomment the lines and edit the Allow directive
to specify the hosts that will be allowed to monitor the server. For example:

<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from wrotethebook.com

</Location>

Once the monitor is installed and enabled, access it from your browser. For our sample system,
we use the URL http://www.wrotethebook.com/server-status/?refresh=20. The refresh value is not
required, but using it will cause the status display to update automatically. In this example, we are
asking for a status update every 20 seconds. Figure 11-6 shows the status screen for our test
server.

Figure 11-6. The Apache server status display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Monitoring tells you about the real-time status of your server. Logging provides information about
how your server is used over time. Together, logging and monitoring can help you maintain a
healthy, useful web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.6 Summary

Web servers are an essential part of any organization's network, and the Apache web server is an
excellent choice. It runs as the HTTP daemon (httpd), which is configured in the httpd.conf file.

The Apache software on Linux and Solaris systems comes preconfigured and ready to run.
Review the configuration and adjust parameters such as ServerAdmin, ServerName, and
DocumentRoot to make sure they are exactly what you want for your server.

Use the monitoring tools and log files to closely observe the usage and performance of your
system. Keep tight control on Common Gateway Interface (CGI) scripts and Server Side Includes
(SSI) to keep your server secure. Use SSL to secure the confidential data coming from your
clients.

This chapter concludes our study of TCP/IP server configuration, our last configuration task. In
the next chapter, we begin to look at the ongoing tasks that are part of running a network once it
has been installed and configured. We begin that discussion with security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Network Security
Hosts attached to a network—particularly the worldwide Internet—are exposed to a wider range of
security threats than are unconnected hosts. Network security reduces the risks of connecting to
a network. But by nature, network access and computer security work at cross-purposes. A
network is a data highway designed to increase access to computer systems, while security is
designed to control access to those systems. Providing network security is a balancing act
between open access and security.

The highway analogy is very appropriate. Like a highway, the network provides equal access for
all—welcome visitors as well as unwelcome intruders. At home, you provide security for your
possessions by locking your house, not by blocking the streets. Likewise, network security
requires adequate security on individual host computers. Simply securing the network with a
firewall is not enough.

In very small towns where people know each other, doors are often left unlocked. But in big cities,
doors have deadbolts and chains. The Internet has grown from a small town of a few thousand
users into a big city of millions of users. Just as the anonymity of a big city turns neighbors into
strangers, the growth of the Internet has reduced the level of trust between network neighbors.
The ever-increasing need for computer security is an unfortunate side effect. Growth, however, is
not all bad. In the same way that a big city offers more choices and more services, the expanded
network provides increased services. For most of us, security consciousness is a small price to
pay for network access.

Network break-ins have increased as the network has grown and become more impersonal, but it
is easy to exaggerate the extent of these security breaches. Overreacting to the threat of break-
ins may hinder the way you use the network. Don't make the cure worse than the disease. The
best advice about network security is to use common sense. RFC 1244, now replaced by RFC
2196, stated this principle very well:

Common sense is the most appropriate tool that can be used to establish your
security policy. Elaborate security schemes and mechanisms are impressive, and
they do have their place, yet there is little point in investing money and time on an
elaborate implementation scheme if the simple controls are forgotten.

This chapter emphasizes the simple controls that can be used to increase your network's security.
A reasonable approach to security, based on the level of security required by your system, is the
most cost-effective—both in terms of actual expense and in terms of productivity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 Security Planning

One of the most important network security tasks, and probably one of the least enjoyable, is
developing a network security policy. Most computer people want a technical solution to every
problem. We want to find a program that "fixes" the network security problem. Few of us want to
write a paper on network security policies and procedures. However, a well-thought-out security
plan will help you decide what needs to be protected, how much you are willing to invest in
protecting it, and who will be responsible for carrying out the steps to protect it.

12.1.1 Assessing the Threat

The first step toward developing an effective network security plan is to assess the threat that
connection presents to your systems. RFC 2196, Site Security Handbook, identifies three distinct
types of security threats usually associated with network connectivity:

Unauthorized access

A break-in by an unauthorized person.

Disclosure of information

Any problem that causes the disclosure of valuable or sensitive information to people who
should not have access to the information.

Denial of service (DoS)

Any problem that makes it difficult or impossible for the system to continue to perform
productive work.

Assess these threats in relation to the number of users who would be affected, as well as to the
sensitivity of the information that might be compromised. For some organizations, break-ins are
an embarrassment that can undermine the confidence that others have in the organization.
Intruders tend to target government and academic organizations that will be embarrassed by the
break-in. But for most organizations, unauthorized access is not a major problem unless it
involves one of the other threats: disclosure of information or denial of service.

Assessing the threat of information disclosure depends on the type of information that could be
compromised. While no system with highly classified information should ever be directly
connected to the Internet, systems with other types of sensitive information might be connected
without undue hazard. In most cases, files such as personnel and medical records, corporate
plans, and credit reports can be adequately protected by network access controls and standard
Unix file security procedures. However, if the risk of liability in case of disclosure is great, the host
may choose not to be connected to the Internet.

Denial of service can be a severe problem if it impacts many users or a major mission of your
organization. Some systems can be connected to the network with little concern. The benefit of
connecting individual workstations and small servers to the Internet generally outweighs the
chance of having service interrupted for the individuals and small groups served by these
systems. Other systems may be vital to the survival of your organization. The threat of losing the
services of a mission-critical system must be evaluated seriously before connecting such a
system to the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An insidious aspect of DoS appears when your system becomes an unwitting tool of the
attackers. Through unauthorized access, intruders can place malicious software on your system
in order to use your system as a launching pad for attacks on others. This is most often
associated with Microsoft systems, but any type of computer system can be a victim. Preventing
your system from becoming a tool of evil is an important reason for protecting it.

In his class on computer security, Brent Chapman classifies information security threats into three
categories: threats to the secrecy, to the availability, and to the integrity of data. Secrecy is the
need to prevent the disclosure of sensitive information. Availability means that you want
information and information processing resources available when they are needed; a denial-of-
service attack disrupts availability. The need for the integrity of information is equally obvious, but
its link to computer security is more subtle. Once someone has gained unauthorized access to a
system, the integrity of the information on that system is in doubt. Some intruders just want to
compromise the integrity of data; we are all familiar with cases where web vandals gain access to
a web server and change the data on the server in order to embarrass the organization that runs
the web site. Thinking about the impact network threats have on your data can make it easier to
assess the threat.

Network threats are not, of course, the only threats to computer security, or the only reasons for
denial of service. Natural disasters and internal threats (threats from people who have legitimate
access to a system) are also serious. Network security has had a lot of publicity, so it's a
fashionable thing to worry about, but more computer time has probably been lost because of fires
and power outages than has ever been lost because of network security problems. Similarly,
more data has probably been improperly disclosed by authorized users than by unauthorized
break-ins. This book naturally emphasizes network security, but network security is only part of a
larger security plan that includes physical security and disaster recovery plans.

Many traditional (non-network) security threats are handled, in part, by physical security. Don't
forget to provide an adequate level of physical security for your network equipment and cables.
Again, the investment in physical security should be based on your realistic assessment of the
threat.

12.1.2 Distributed Control

One approach to network security is to distribute the responsibility for and control over different
segments of a large network to small groups within the organization. This approach involves a
large number of people in security and runs counter to the school of thought that seeks to
increase security by centralizing control. However, distributing responsibility and control to small
groups can create an environment of small, easily monitored networks composed of a known user
community. Using the analogy of small towns and big cities, it is similar to creating a
neighborhood watch to reduce risks by giving people connections with their neighbors, mutual
responsibility for one another, and control over their own fates.

Additionally, distributing security responsibilities formally recognizes one of the realities of network
security—most security actions take place on individual systems. The managers of these systems
must know that they are responsible for security and that their contribution to network security is
recognized and appreciated. If people are expected to do a job, they must be empowered to do it.

12.1.2.1 Use subnets to distribute control

Subnets are a possible tool for distributing network control. A subnet administrator should be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subnets are a possible tool for distributing network control. A subnet administrator should be
appointed when a subnet is created. The administrator is then responsible for the security of the
network and for assigning IP addresses to the devices connected to the networks. Assigning IP
addresses gives the subnet administrator some control over who connects to the subnet. It also
helps to ensure that the administrator knows each system that is connected and who is
responsible for that system. When the subnet administrator gives a system an IP address, he also
delegates certain security responsibilities to the system's administrator. Likewise, when the
system administrator grants a user an account, the user takes on certain security responsibilities.

The hierarchy of responsibility flows from the network administrator to the subnet administrator to
the system administrator and finally to the user. At each point in this hierarchy the individuals are
given responsibilities and the power to carry them out. To support this structure, it is important for
users to know what they are responsible for and how to carry out that responsibility. The network
security policy described in the next section provides this information.

12.1.2.2 Use the network to distribute information

If your site adopts distributed control, you must develop a system for disseminating security
information to each group. Mailing lists for each administrative level can be used for alerts and
other real-time information. An internal web site can be used to provide policy, background, and
archival information as well as links to important security sites.

The network administrator receives security information from outside authorities, filters out
irrelevant material, and forwards the relevant material to the subnet administrators. Subnet
administrators forward the relevant parts to their system administrators, who in turn forward what
they consider important to the individual users. The filtering of information at each level ensures
that individuals get the information they need without receiving too much. If too much
unnecessary material is distributed, users begin to ignore everything they receive.

At the top of this information structure is the information that the network administrator receives
from outside authorities. In order to receive this, the network administrator should join the
appropriate mailing lists and newsgroups and browse the appropriate web sites. A few places to
start looking for computer security information are the following:

Your Unix vendor

Many vendors have their own security information mailing lists. Most vendors also have a
security page on their web sites. Place a link on your internal web site to the vendor
information that you find important and useful.

The Bugtraq archive

Bugtraq reports on software bugs, some of which are exploited by intruders. Knowing about
these bugs and the fixes for them is the single most important thing you can do to improve
system security. Bugtraq is widely available on the Web. Two sites I use are
http://www.geek-girl.com/bugtraq and http://www.securityfocus.com, which provide access
to a wide range of security information.

Security newsgroups

The comp.security newsgroups—comp.security.unix, comp.security.firewalls,
comp.security.announce, and comp.security.misc—contain some useful information. Like
most newsgroups, they also contain lots of unimportant and uninteresting material. But they
do contain an occasional gem.

FIRST web site

The Forum of Incident Response and Security Teams (FIRST) is a worldwide organization
of computer security response teams. FIRST provides a public web site for computer
security information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NIST Computer Security Alerts

The National Institute of Standards and Technology's Computer Security Division maintains
a web site with pointers to security-related web pages all over the world. Follow the Alerts
link from http://csrc.nist.gov.

CERT advisories

The Computer Emergency Response Team (CERT) advisories provide information about
known security problems and the fixes to these problems. You can retrieve these
advisories from t he CERT web site at http://www.cert.org.

SANS Institute

The System Administration, Networking and Security (SANS)Institute offers informative
security newsletters that are delivered weekly via email . They also have a useful online
reading room. These resources are available from their web site, http://www.sans.org.

Exploit sites

Most intruders use canned attack scripts that are available from the Web. Sites that provide
the scripts often provide discussions of the current security vulnerabilities that might affect
your system. http://www.insecure.org is a good site because it provides descriptions of
current exploits as well as plenty of other useful information.

12.1.3 Writing a Security Policy

Security is largely a "people problem." People, not computers, are responsible for implementing
security procedures, and people are responsible when security is breached. Therefore, network
security is ineffective unless people know their responsibilities. It is important to write a security
policy that clearly states what is expected and from whom. A network security policy should
define:

The network user's security responsibilities

The policy may require users to change their passwords at certain intervals, to use
passwords that meet certain guidelines, or to perform certain checks to see if their
accounts have been accessed by someone else. Whatever is expected from users, it is
important that it be clearly defined.

The system administrator's security responsibilities

The policy may require that every host use specific security measures, login banner
messages, or monitoring and accounting procedures. It might list applications that should
not be run on any host attached to the network.

The proper use of network resources

Define who can use network resources, what things they can do, and what things they
should not do. If your organization takes the position that email, files, and histories of
computer activity are subject to security monitoring, tell the users very clearly that this is the
policy.

The actions taken when a security problem is detected

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What should be done when a security problem is detected? Who should be notified? It is
easy to overlook things during a crisis, so you should have a detailed list of the exact steps
that a system administrator or user should take when a security breach is detected. This
could be as simple as telling the users to "touch nothing, and call the network security
officer." But even these simple actions should be in the written policy so that they are
readily available.

Connecting to the Internet brings with it certain security responsibilities. RFC 1281, A Guideline
for the Secure Operation of the Internet, provides guidance for users and network administrators
on how to use the Internet in a secure and responsible manner. Reading this RFC will provide
insight into the information that should be in your security policy.

A great deal of thought is necessary to produce a complete network security policy. The outline
shown above describes the contents of a network policy document, but if you are personally
responsible for writing a policy, you may want more detailed guidance. I recommend that you read
RFC 2196, which is a very good guide for developing a security plan.

Security planning (assessing the threat, assigning security responsibilities, and writing a security
policy) is the basic building block of network security, but the plan must be implemented before it
can have any effect. In the remainder of this chapter, we'll turn our attention to implementing
basic security procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 User Authentication

Good passwords are one of the simplest parts of good network security. Passwords are used to
log into systems that use password authentication. Popular mythology says that all network
security breaches are caused by sophisticated crackers who discover software security holes. In
reality, some of the most famous intruders entered systems simply by guessing or stealing
passwords or by exploiting well-known security problems in outdated software. Later in this
chapter, we look at guidelines for keeping software up to date and ways to prevent a thief from
stealing your password. First, let's see what we can do to prevent it from being guessed.

These are a few things that make it easy to guess passwords:

Accounts that use the account name as the password. Accounts with this type of trivial
password are called joe accounts.

Guest or demonstration accounts that require no password or use a well-publicized
password.

System accounts with default passwords.

User who tell their passwords to others.

Guessing these kinds of passwords requires no skill, just lots of spare time! Changing your
password frequently is a deterrent to password guessing. However, if you choose good
passwords, don't change them so often that it is hard to remember them. Many security experts
recommend that passwords should be changed about every 3 to 6 months.

A more sophisticated form of password guessing is dictionary guessing. Dictionary guessing uses
a program that encrypts each word in a dictionary (e.g., /usr/dict/words) and compares each
encrypted word to the encrypted password in the /etc/passwd file. Dictionary guessing is not
limited to words from a dictionary. Things known about you (your name, initials, telephone
number, etc.) are also run through the guessing program. Because of dictionary guessing, you
must protect the /etc/passwd file.

Some systems provide a shadow password file to hide the encrypted passwords from potential
intruders. If your system has a shadow password facility, use it. Hiding encrypted passwords
greatly reduces the risk of password guessing.

12.2.1 The Shadow Password File

Shadow password files have restricted permissions that prevent them from being read by
intruders. The encrypted password is stored only in the shadow password file, /etc/shadow, and
not in the /etc/passwd file. The passwd file is maintained as a world-readable file because it
contains information that various programs use. The shadow file can be read only by root and it
does not duplicate the information in the passwd file. It contains only passwords and the
information needed to manage them. The format of a shadow file entry on a Solaris system is:

username:password:lastchg:min:max:warn:inactive:expire:flag

username is the login username. password is the encrypted password or, on Solaris systems,
one of the keyword values NP or *LK*. lastchg is the date that the password was last changed,
written as the number of days from January 1, 1970 to the date of the change. min is the
minimum number of days that must elapse before the password can be changed. max is the
maximum number of days the user can keep the password before it must be changed. warn is
the number of days before the password expires that the user is warned. inactive is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the number of days before the password expires that the user is warned. inactive is the
number of days the account can be inactive before it is locked. expire is the date on which the
account will be closed. flag is unused.

The encrypted password appears only in this file. Every password field in the /etc/passwd file
contains an x, which tells the system to look in the shadow file for the real password. Every
password field in the /etc/shadow file contains either an encrypted password, NP, or *LK*. If it
contains the keyword NP, it means that there is no password because this is not a login account.
System accounts, such as daemon or uucp, are not login accounts, so they have NP in the
password field. *LK* in the password field means that this account has been locked and is
therefore disabled from any further use. Other systems use different symbols in the password field
to indicate these conditions; some Linux systems use * and !!. However, all systems have some
technique for differentiating active login accounts from other types of user IDs.

While the most important purpose of the shadow file is to protect the password, the additional
fields in the shadow entry provide other useful security services. One of these is password aging.
A password aging mechanism defines a lifetime for each password. When a password reaches
the end of its lifetime, the password aging mechanism notifies the user to change the password. If
it is not changed within some specified period, the password is removed from the system and the
user is blocked from using his account.

The lastchg, max, and warn fields all play a role in password aging. They allow the system to
know when the password was changed and how long it should be kept, as well as when the user
should be warned about his impending doom. Another nice feature of the shadow file is the min
field. This is a more subtle aspect of password aging. It prevents the user from changing her
favorite password to a dummy password and then immediately back to the favorite. When the
password is changed it must be used for the number of days defined by min before it can be
changed again. This reduces one of the common tricks used to avoid really changing passwords.

The inactive and expire fields help eliminate unused accounts. Here, "inactivity" is determined by
the number of days the account continues with an expired password. Once the password expires,
the user is given some number of days to log in and set a new password. If the user does not log
in before the specified number of days has elapsed, the account is locked and the user cannot log
in.

The expire field lets you create a user account that has a specified "life." When the date stored in
the expire field is reached, the user account is disabled even if it is still active. The expiration date
is stored as the number of days since January 1, 1970.

On a Solaris system the /etc/shadow file is not edited directly. It is modified through the Users
window of the admintool or special options on the passwd command line. This window is
shown in Figure 12-1. The username, password, min, max, warn, inactive, and expire fields are
clearly shown.

Figure 12-1. Admintool password maintenance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The passwd command on Solaris systems has -n min, -w warn, and -x max options to set the
min, max, and warn fields in the /etc/shadow file. Only the root user can invoke these options.
Here, root sets the maximum life of Tyler's password to 180 days:

passwd -x 180 tyler
The Solaris system permits the system administrator to set default values for all of these options
so that they do not have to be set every time a user is added through the admintool or the
passwd command line. The default values are set in the /etc/default/passwd file.

% cat /etc/default/passwd
#ident "@(#)passwd.dfl 1.3 92/07/14 SMI"

MAXWEEKS=

MINWEEKS=

PASSLENGTH=6

The default values that can be set in the /etc/default/passwd file are:

MAXWEEKS

The maximum life of a password defined in weeks, not days. The 180-day period used in
the example above would be defined with this parameter as MAXWEEKS=26.

MINWEEKS

The minimum number of weeks a password must be used before it can be changed.

PASSLENGTH

The minimum number of characters that a password must contain. This is set to 6 in the
sample file. Only the first eight characters are significant on a Solaris system; setting the
value above 8 does not change that fact.

WARNWEEKS

The number of weeks before a password expires that the user is warned.

This section uses Solaris as an example. The shadow password system is provided as part of the
Solaris operating system. It is also included with Linux systems. The shadow file described here is
exactly the same format as used on Linux systems, and it functions in the same way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is very difficult to take the encrypted password and decrypt it back to its original form, but
encrypted passwords can be compared against encrypted dictionaries. If bad passwords are
used, they can be easily guessed. Take care to protect the /etc/passwd file and choose good
passwords.

12.2.2 Choosing a Password

A good password is an essential part of security. We usually think of the password used for a
traditional login; however, passwords, passphrases, and keys are also needed for more advanced
authentication systems. For all of these purposes, you want to choose a good password.
Choosing a good password boils down to not choosing a password that can be guessed using the
techniques described above. Some guidelines for choosing a good password are:

Don't use your login name.

Don't use the name of anyone or anything.

Don't use any English or foreign-language word or abbreviation.

Don't use any personal information associated with the owner of the account. For example,
don't use your initials, phone number, social security number, job title, organizational unit,
etc.

Don't use keyboard sequences, e.g., qwerty.

Don't use any of the above spelled backwards, or in caps, or otherwise disguised.

Don't use an all-numeric password.

Don't use a sample password, no matter how good, that you've gotten from a book that
discusses computer security.

Do use a mixture of numbers, special characters, and mixed-case letters.

Do use at least six characters.

Do use a seemingly random selection of letters and numbers.

Common suggestions for constructing seemingly random passwords are:

Use the first letter of each word from a line in a book, song, or poem. For example, "People
don't know you and trust is a joke."[1] would produce Pd'ky&tiaj.

[1] Toad the Wet Sprocket, "Walk on the Ocean."

Use the output from a random password generator. Select a random string that can be
pronounced and is easy to remember. For example, the random string "adazac" can be
pronounced a-da-zac, and you can remember it by thinking of it as "A-to-Z." Add uppercase
letters to create your own emphasis, e.g., aDAzac.[2]

[2] A password generator created this password.

Use two short words connected by punctuation, e.g., wRen%Rug.

Use numbers and letters to create an imaginary vanity license plate password, e.g.,
2hot4U?.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A common theme of these suggestions is that the password should be easy to remember. Avoid
passwords that must be written down to be remembered. If unreliable people gain access to your
office and find the password you have written down, the security of your system will be
compromised.

However, don't assume that you can't remember a random password. It may be difficult the first
few times you use the password, but any password that is used often enough is easy to
remember. If you have an account on a system that you rarely use, you may have trouble
remembering a random password. But in that case, the best solution is to get rid of the account.
Unused and underutilized accounts are prime targets for intruders. They like to attack unused
accounts because there is no user to notice changes to the files or strange Last login: messages.
Remove all unused accounts from your systems.

How do you ensure that the guidance for creating new passwords is followed? The most
important step is to make sure that every user knows these suggestions and the importance of
following them. Cover this topic in your network security plan, and periodically reinforce it through
newsletter articles and online system bulletins.

It is also possible to use programs that force users to follow specific password selection
guidelines. The web page http://csrc.nist.gov/tools/tools.htm lists several programs that do exactly
that.

12.2.3 One-Time Passwords

Sometimes good passwords are not enough. Passwords are transmitted across the network as
clear text. Intruders can use protocol-analyzer software to spy on network traffic and steal
passwords. If a thief steals your password, it does not matter how good the password was.

The thief can be on any network that handles your TCP/IP packets. If you log in through your local
network, you have to worry only about local snoops. But if you log in over the Internet, you must
worry about unseen listeners from any number of unknown networks.

Commands that use encrypted passwords are not vulnerable to this type of attack. Because of
this, telnet has been largely supplanted by secure shell (ssh). However, the secure shell client
may not be available at a remote site. Use one-time passwords for remote logins when you
cannot use secure shell. Because a one-time password can be used only once, a thief who steals
the password cannot use it.

Naturally, one-time password systems are a hassle. You must carry with you a list of one-time
passwords, or something that can generate them, any time you want to log in. If you forget the
password list, you cannot log in. However, this may not be as big a problem as it seems. You
usually log in from your office where your primary login host is probably on your desktop or your
local area network. When you log into your desktop system from its keyboard, the password does
not traverse the network, so you can use a reusable password. And ssh can be used any time
you control both ends of the connection, for example, when logging in with your laptop. One-time
passwords are needed only for the occasions when you log in from a remote location that does
not offer ssh. For this reason, some one-time password systems are designed to allow reusable
passwords when they are appropriate.

There are several one-time password systems. Some use specialized hardware such as "smart
cards." OPIE is a free software system that requires no special hardware.

12.2.4 OPIE

One-time Passwords In Everything (OPIE) is free software from the U.S. Naval Research

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One-time Passwords In Everything (OPIE) is free software from the U.S. Naval Research
Laboratory (NRL) that modifies a Unix system to use one-time passwords. OPIE is directly
derived from Skey, which is a one-time password system created by Bell Communications
Research (Bellcore).

Download OPIE from the Internet from http://inner.net/opie. The current version of OPIE is opie-
2.4.tar.gz. It is a binary file. gunzip the file and extract it using tar. The directory this produces
contains the source files, Makefiles, and scripts necessary to compile and install OPIE.

OPIE comes with configure, an auto-configuration script that detects your system's
configuration and modifies the Makefile accordingly. It does a good job, but you still should
manually edit the Makefile to make sure it is correct. For example, my Linux system uses the
Washington University FTP daemon wu.ftpd. OPIE replaces login, su, and ftpd with its own
version of these programs. Using an earlier version of OPIE on my Linux system, configure did
not find ftpd, and I did not notice the problem when I checked the Makefile. make ran without
errors, but make install failed during the install of the OPIE FTP daemon. The Makefile was
easily corrected and the rerun of make install was successful.

The effects of OPIE are evident as soon as the install completes. Run su and you're prompted
with root's response: instead of Password:. login prompts with Response or
Password: instead of just Password:. The response requested by these programs is the
OPIE equivalent of a password. Programs that prompt with Response or Password accept
either the OPIE response or the traditional password from the /etc/passwd file. This feature
permits users to migrate gracefully from traditional passwords to OPIE. It also allows local
console logins with reusable passwords while permitting remote logins with one-time passwords.
The best of both worlds—convenient local logins without creating separate local and remote login
accounts!

To use OPIE you must first select a secret password that is used to generate the one-time
password list, and then run the program that generates the list. To select a secret password, run
opiepasswd as shown:

$ opiepasswd -c
Updating kristin:

Reminder - Only use this method from the console; NEVER from remote.

 If you are using telnet, xterm, or a dial-in, type ^C now or exit with

 no password. Then run opiepasswd without the -c parameter.

Using MD5 to compute responses.

Enter old secret pass phrase: 3J5Wd6PaWP
Enter new secret pass phrase: 9WA11WSfW95/NT
Again new secret pass phrase: 9WA11WSfW95/NT
This example shows the user kristin updating her secret password. She runs opiepasswd from
the computer's console, as indicated by the -c command option. Running opiepasswd from the
console is the most secure. If it is not run from the console, you must have a copy of the
opiekey software with you to generate the correct responses needed to enter your old and new
secret passwords, because clear text passwords are accepted only from the console. Kristin is
prompted to enter her old password and to select a new one. OPIE passwords must be at least
10 characters long. Since the new password is long enough, opiepasswd accepts it and displays
the following two lines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ID kristin OPIE key is 499 be93564

CITE JAN GORY BELA GET ABED

These lines tell Kristin the information she needs to generate OPIE login responses and the first
response she will need to log into the system. The one-time password needed for Kristin's next
login response is the second line of this display: a group of six short, uppercase character strings.
The first line of the display contains the initial sequence number (499) and the seed (be93564)
she needs, along with her secret password, to generate OPIE login responses. The software used
to generate those responses is opiekey.

opiekey takes the login sequence number, the user's seed, and the user's secret password as
input and outputs the correct one-time password. If you have opiekey software on the system
from which you are initiating the login, you can produce one-time passwords one at a time. If,
however, you will not have access to opiekey when you are away from your login host, you can
use the -n option to request several passwords. Write the passwords down, put them in your
wallet, and you're ready to go! [3]

[3] Security experts will cringe when they read this suggestion. Writing down passwords is a "no-no." Frankly, I think
the people who steal wallets are more interested in my money and credit cards than in the password to my system. But
you should consider this suggestion in light of the level of protection your system needs.

In the following example we request five (-n 5) responses from opiekey:

$ opiekey -n 5 495 wi01309
Using MD5 algorithm to compute response.

Reminder: Don't use opiekey from telnet or dial-in sessions.

Enter secret pass phrase: UUaX26CPaU
491: HOST VET FOWL SEEK IOWA YAP

492: JOB ARTS WERE FEAT TILE IBIS

493: TRUE BRED JOEL USER HALT EBEN

494: HOOD WED MOLT PAN FED RUBY

495: SUB YAW BILE GLEE OWE NOR

First opiekey tells us that it is using the MD5 algorithm to produce the responses, which is the
default for OPIE. For compatibility with older Skey or OPIE implementations, force opiekey to
use the MD4 algorithm by using the -4 command-line option. opiekey prompts for your secret
password. This is the password you defined with the opiepasswd command. It then prints out
the number of responses requested and lists them in sequence number order. The login
sequence numbers in the example are 495 to 491. When the sequence number gets down to 10,
rerun opiepasswd and select a new secret password. Selecting a new secret password resets
the sequence number to 499.

The OPIE login prompt displays a sequence number, and you must provide the response that
goes with that sequence number. For example:

login: tyler
otp-md5 492 wi01309 Response or Password:

JOB ARTS WERE FEAT TILE IBIS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JOB ARTS WERE FEAT TILE IBIS
At the login: prompt, Tyler enters her username. The system then displays a single line that
tells her that one-time passwords are being generated with the MD5 algorithm (otp-md5), that this
is login sequence number 492, and that the seed used for her one-time passwords is wi01309.
She looks up the response for login number 492 and enters the six short strings. She then marks
that response off her list because it cannot be used again to log into the system. A response from
the list must be used any time she is not sitting at the console of her system. Reusable passwords
can be used only at the console.

Secure shell is used for remote logins whenever it is available on the client. Because of this, one-
time passwords are needed only in special cases. Generally, it is sufficient to have one small
OPIE server on your network. Remote users who are forced to use one-time passwords log into
that server and then use a preferred mechanism, such as ssh, to log into your real servers.

12.2.5 Secure the r Commands

Some applications use their own security mechanisms. Make sure that the security for these
applications is configured properly. In particular, check the Unix r commands, which are a set of
Unix networking applications comparable to ftp and telnet. Care must be taken to ensure that
the r commands don't compromise system security. Improperly configured r commands can
open access to your computer facilities to virtually everyone in the world. For this reason, use of
the r commands is discouraged.

In place of password authentication, the r commands use a security system based on trusted
hosts and users. Trusted users on trusted hosts are allowed to access the local system without
providing a password. Trusted hosts are also called "equivalent hosts" because the system
assumes that users given access to a trusted host should be given equivalent access to the local
host. The system assumes that user accounts with the same name on both hosts are "owned" by
the same user. For example, a user logged in as becky on a trusted system is granted the same
access as the user logged in as becky on the local system.

This authentication system requires databases that define the trusted hosts and the trusted users.
The databases used to configure the r commands are /etc/hosts.equiv and .rhosts.

The /etc/hosts.equiv file defines the hosts and users that are granted "trusted" r command
access to your system. This file can also define hosts and users that are explicitly denied trusted
access. Not having trusted access doesn't mean that the user is denied access; it just means that
he is required to supply a password.

The basic format of entries in the /etc/hosts.equiv file is:

 [+ | -][hostname] [+ | -][username]

The hostname is the name of a "trusted" host, which may optionally be preceded by a plus sign
(+). The plus sign has no real significance, except when used alone. A plus sign without a
hostname following it is a wildcard character that means "any host."

If a host is granted equivalence, users logged into that host are allowed access to like-named
user accounts on your system without providing a password. (This is one reason for
administrators to observe uniform rules in handing out login names.) The optional username is
the name of a user on the trusted host who is granted access to all user accounts. If username is
specified, that user is not limited to like-named accounts, but is given access to all user accounts
without being required to provide a password.[4]

[4] The root account is not included.

The hostname may also be preceded by a minus sign (-). This explicitly says that the host is not
an equivalent system. Users from that host must always supply a password when they use an r

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an equivalent system. Users from that host must always supply a password when they use an r
command to interact with your system. A username can also be preceded by a minus sign. This
says that, whatever else may be true about that host, the user is not trusted and must always
supply a password.

The following examples show how entries in the hosts.equiv file are interpreted:

rodent

Allows password-free access from any user on rodent to a like-named user account on
your local system.

-rodent

Denies password-free access from any user on rodent to accounts on your system.

rodent -david

Denies password-free access to the user david if he attempts to access your system from
rodent.

rodent +becky

Allows the user becky to access any account (except root) on your system, without
supplying a password, if she logs in from rodent.

+ becky

Allows the user becky to access any account (except root) on your system without
supplying a password, no matter what host she logs in from.

This last entry is an example of something that should never be used in your configuration. Don't
use a standalone plus sign in place of a hostname. It allows access from any host anywhere and
can open up a big security hole. For example, if the entry shown above was in your hosts.equiv
file, an intruder could create an account named becky on his system and gain access to every
account on your system. Check /etc/hosts.equiv, ~/.rhosts, and /etc/hosts.lpd to make sure that
none of them contains a + entry. Remember to check the .rhosts file in every user's home
directory.

A simple typographical error could give you a standalone plus sign. For example, consider the
entry:

 + rodent becky
The system administrator probably meant "give becky password-free access to all accounts when
she logs in from rodent." However, with an extraneous space after the + sign, it means "allow
users named rodent and becky password-free access from any host in the world." Don't use a
plus sign in front of a hostname, and always use care when working with the /etc/hosts.equiv file
to avoid security problems.

When configuring the /etc/hosts.equiv file, grant trusted access only to the systems and users you
actually trust. Don't grant trusted access to every system attached to your local network. In fact, it
is best not to use the r commands at all. If you must use them, only trust hosts from your local
network when you know the person responsible for that host, when you know that the host is not
available for public use, and when the local network is protected by a firewall. Don't grant trusted
access by default—have some reason for conferring trusted status. Never grant trust to remotely
located systems. It is too easy for an intruder to corrupt routing or DNS in order to fool your
system when you grant trust to a remote system. Also, never begin your hosts.equiv file with a
minus sign as the first character. This confuses some systems, causing them to improperly grant
access. Always err on the side of caution when creating a hosts.equiv file. Adding trusted hosts
as they are requested is much easier than recovering from a malicious intruder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .rhosts file grants or denies password-free r command access to a specific user's account. It
is placed in the user's home directory and contains entries that define the trusted hosts and users.
Entries in the .rhosts file use the same format as entries in the hosts.equiv file and function in
almost the same way. The difference is the scope of access granted by entries in these two files.
In the .rhosts file, the entries grant or deny access to a single user account; the entries in
hosts.equiv control access to an entire system.

This functional difference can be shown in a simple example. Assume the following entry:

horseshoe anthony

In crab's hosts.equiv file, this entry means that the user anthony on horseshoe can access any
account on crab without entering a password. In an .rhosts file in the home directory of user
resnick, the exact same entry allows anthony to rlogin from horseshoe as resnick without
entering a password, but it does not grant password-free access to any other accounts on crab.

Individuals use the .rhosts file to establish equivalence among the different accounts they own.
The entry shown above would probably be made only if anthony and resnick are the same
person. For example, I have accounts on several different systems. Sometimes my username is
hunt, and sometimes it is craig. It would be nice if I had the same account name everywhere, but
that is not always possible; the names craig and hunt are used by two other people on my local
network. I want to be able to rlogin to my workstation from any host that I have an account on,
but I don't want mistaken logins from the other craig and the other hunt. The .rhosts file gives me
a way to control this problem.

For example, assume my username on crab is craig, but my username on filbert is hunt. Another
user on filbert is craig. To allow myself password-free access to my crab account from filbert, and
to make sure that the other user doesn't have password-free access, I put the following .rhosts file
in my home directory:

filbert hunt

filbert -craig

Normally the hosts.equiv file is searched first, followed by the user's .rhosts file, if it exists. The
first explicit match determines whether or not password-free access is allowed. Therefore, the
.rhosts file cannot override the hosts.equiv file. The exception to this is root user access. When a
root user attempts to access a system via the r commands, the hosts.equiv file is not checked;
only .rhosts in the root user's home directory is consulted. This allows root access to be more
tightly controlled. If the hosts.equiv file were used for root access, entries that grant trusted
access to hosts would give root users on those hosts root privileges. You can add trusted hosts to
hosts.equiv without granting remote root users root access to your system.

You should remember that the user can provide access with the .rhosts file even when the
hosts.equiv file doesn't exist. The only way to prevent users from doing this is to periodically
check for and remove the .rhosts files. As long as you have the r commands on your system, it is
possible for a user to accidentally compromise the security of your system.

12.2.6 Secure Shell

The weak security of the r commands poses a security threat. You cannot use these commands
to provide secure remote access, even if you use all the techniques given in the previous section.
At best, only trusted local systems on a secured local network can be given access via the r
commands. The reason for this is that the r commands grant trust based on a belief that the IP
address uniquely identifies the correct computer. Normally it does. But an intruder can corrupt
DNS to provide the wrong IP address or corrupt routing to deliver to the wrong network, thus
undermining the authentication scheme used by the r commands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

undermining the authentication scheme used by the r commands.

An alternative to the remote shell is the secure shell. Secure shell replaces the standard r
commands with secure commands that include encryption and authentication. Secure shell uses
a strong authentication scheme to ensure that the trusted host really is the host it claims to be.
Secure shell provides a number of public-key encryption schemes to ensure that every packet in
the stream of packets is from the source it claims to be from. Secure shell is secure and easy to
use.

There are currently two versions of secure shell in widespread use: SSH Secure Shell, which is a
commercial product, and OpenSSH, which is an open source product. OpenSSH is included with
various versions of Unix and Linux, and both the open source and the commercial secure shell
products are available for download from the Internet if your system does not include secure shell.
The examples used in this section are based on OpenSSH, but the basic functions of both
versions of secure shell are essentially the same.

The basic components of secure shell are:

sshd

The secure shell daemon handles incoming SSH connections. sshd should be started at
boot time from one of the boot scripts; don't start it from inetd.conf. sshd generates an
encryption key every time it starts. This can cause it to be slow to start, which makes it
unsuitable for inetd.conf. A system serving SSH connections must run sshd.

ssh

The secure shell user command. The ssh command replaces rsh and rlogin. It is used
to securely pass a command to a remote system or to securely log into a remote system.
This command creates the outgoing connections that are handled by the remote secure
shell daemon. A client system that wants to use an SSH connection must have the ssh
command.

scp

Secure copy (scp) is the secure shell version of rcp.

ssh-keygen

Generates the public and private encryption keys used to secure the transmission for the
secure shell.

sftp

A version of FTP that operates over a secure shell connection.

When an ssh client connects to an sshd server, they exchange public keys. The systems compare
the keys they receive to the known keys they have stored in the /etc/ssh_known_hosts file and in
the .ssh/known_hosts file in the user's home directory.[5]

[5] The system administrator can initialize the ssh_known_hosts file by running make-ssh-known-hosts, which gets
the key from every host within a selected domain.

If the key is not found or has changed, the user is asked to verify that the new key should be
accepted:

> ssh horseshoe

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> ssh horseshoe
Host key not found from the list of known hosts.

Are you sure you want to continue connecting (yes/no)? yes

Host 'horseshoe' added to the list of known hosts.

craig's password: Watts.Watt.

Last login: Thu Sep 25 15:01:32 1997 from rodent

Linux 2.0.0.

/usr/X11/bin/xauth: creating new authority file /home/craig/.Xauthority

If the key is found in one of the files or is accepted by the user, the client uses it to encrypt a
randomly generated session key. The session key is then sent to the server, and both systems
use the key to encrypt the remainder of the SSH session.

The client is authenticated if it is listed in the hosts.equiv file, the shost.equiv file, the user's
.rhosts file, or the .shosts file. This type of authentication is similar to the type used by the r
commands, and the format of the shost.equiv and the .shosts files is the same as their r
command equivalents. Notice that in the sample above, the user is prompted for a password. If
the client is not listed in one of the files, password authentication is used. As you can see, the
password appears in plain text. However, there is no need to worry about password thieves
because SSH encrypts the password before it is sent across the link.

Users can employ a public-key challenge/response protocol for authentication. First generate your
public and private encryption keys:

> ssh-keygen
Initializing random number generator...

Generating p: ++ (distance 616)

Generating q: ++ (distance 244)

Computing the keys...

Testing the keys...

Key generation complete.

Enter file in which to save the key (/home/craig/.ssh/identity):

Enter passphrase: Pdky&tiaj.

Enter the same passphrase again: Pdky&tiaj.

Your identification has been saved in /home/craig/.ssh/identity.

Your public key is:

1024 35 158564823484025855320901702005057103023948197170850159592181522

craig@horseshoe

Your public key has been saved in /home/craig/.ssh/identity.pub

The ssh-keygen command creates your keys. Enter a password (or "passphrase") of at least 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ssh-keygen command creates your keys. Enter a password (or "passphrase") of at least 10
characters. Use the rules described earlier for picking a good password to choose a good
passphrase that is easy to remember. If you forget the passphrase, no one will be able to recover
it for you.

Once you have created your keys on the client system, copy the public key to your account on the
server. The public key is stored in your home directory on the client in .ssh/identity.pub. Copy it to
.ssh/authorized_keys in your home directory on the server. Now when you log in using ssh, you
are prompted for the passphrase:

> ssh horseshoe
Enter passphrase for RSA key 'craig@horseshoe': Pdky&tiaj.

Last login: Thu Sep 25 17:11:51 2001

To improve system security, the r commands should be disabled after SSH is installed. Comment
rshd, rlogind, rexcd, and rexd out of the inetd.conf file to disable inbound connections to the
r commands. To ensure that SSH is used for outbound connections, replace rlogin and rsh
with ssh. To do this, store copies of the original rlogin and rsh in a safe place, rerun
configure with the special options shown here, and run make install:

whereis rlogin
/usr/bin/rlogin

whereis rsh
/usr/bin/rsh

cp /usr/bin/rlogin /usr/lib/rlogin
cp /usr/bin/rsh /usr/lib/rsh
./configure -- with-rsh=/usr/bin -- program-transform-name='s/ s/r/'
make install
The example assumes that the path to the original rlogin and rsh commands is /usr/bin. Use
whatever is correct for your system.

After replacing rlogin and rsh, you can still log into systems that don't support SSH. You will,
however, be warned that it is not a secure connection:

> rlogin cow
Secure connection to cow refused; reverting to insecure method.

Using rsh. WARNING: Connection will not be encrypted.

Last login: Wed Sep 24 22:15:28 from rodent

SSH is an excellent way to have secure communications between systems across the Internet.
However, it does require that both systems have SSH installed. When you control both ends of
the link, this is not a problem. But there are times when you must log in from a system that is not
under your control. For those occasions, one-time passwords, such as those provided by OPIE,
are still essential.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 Application Security

Having authentication is an important security measure. However, it isn't the only thing you can do
to improve the security of your computer and your network. Most break-ins occur when bugs in
applications are exploited or when applications are misconfigured. In this section we'll look at
some things you can do to improve application security.

12.3.1 Remove Unnecessary Software

Any software that allows an incoming connection from a remote site has the potential of being
exploited by an intruder. Some security experts recommend you remove every daemon from the
/etc/inetd.conf file that you don't absolutely need. (Configuring the inetd.conf file and the
/etc/xinetd.conf file is discussed in Chapter 5, with explicit examples of removing tftp from
service.)

Server systems may require several daemons, but most desktop systems require very few, if any.
Removing the daemons from inetd.conf prevents only inbound connections. It does not prevent
out-bound connections. A user can still initiate a telnet to a remote site even after the telnet
daemon is removed from her system's inetd.conf. A simple approach used by some people is to
remove everything from inetd.conf and then add back to the file only those daemons that you
decide you really need.

12.3.2 Keep Software Updated

Vendors frequently release new versions of network software for the express purpose of
improving network security. Use the latest version of the network software offered by your vendor.
Track the security alerts, CERT advisories, and bulletins to know what programs are particularly
important to keep updated.

If you fail to keep the software on your system up to date, you open a big security hole for
intruders. Most intruders don't discover new problems—they exploit well-known problems. Keep
track of the known security problems so you can keep your system up to date.

Stay informed about all the latest fixes for your system. The computer security advisories are a
good way to do this. Contact your vendor and find out what services they provide for distributing
security fixes. Make sure that the vendor knows that security is important to you.

Figure 12-2 shows a software update list at the Red Hat web site. Clicking on any of the updates
listed here provides a detailed description of the problem as well as a link to the fix for that
problem.

Figure 12-2. Vendor-provided updates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Vendor resources such as the one shown in Figure 12-2 are essential for keeping software up to
date. However, you must use these resources for them to be effective. Frequently, administrators
complain that vendors do not fix problems, and of course sometimes that is true. But a far more
common problem is that system administrators do not install the fixes that are available. Set aside
some time every month to apply the latest updates.

Software update services, such as the Red Hat Network, have the potential of lessening the
burden of keeping software up to date. With a software update service, the vendor is responsible
for periodically updating the system software via the network. Whether or not these services will
be a success remains to be seen. They have the potential to improve security and reduce the
administrative burden, but many administrators fear the loss of control that comes with giving
update privileges to an outside organization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4 Security Monitoring

A key element of effective network security is security monitoring. Good security is an ongoing
process, and following the security guidelines discussed above is just the beginning. You must also
monitor the systems to detect unauthorized user activity and to locate and close security holes. Over
time, a system will change—active accounts become inactive and file permissions are changed. You
need to detect and fix these problems as they arise.

12.4.1 Know Your System

Network security is monitored by examining the files and logs of individual systems on the network.
To detect unusual activity on a system, you must know what activity is normal. What processes are
normally running? Who is usually logged in? Who commonly logs in after hours? You need to know
this, and more, about your system in order to develop a "feel" for how things should be. Some
common Unix commands—ps and who—can help you learn what normal activity is for your system.

The ps command displays the status of currently running processes. Run ps regularly to gain a
clear picture of what processes run on the system at different times of the day and who runs them.
The Linux ps -au command and the Solaris ps -ef command display the user and the command
that initiated each process. This should be sufficient information to learn who runs what and when
they run it. If you notice something unusual, investigate it. Make sure you understand how your
system is being used.

The who command provides information about who is currently logged into your system. It displays
who is logged in, what device they are using, when they logged in and, if applicable, what remote
host they logged in from. (The w command, a variation of who available on some systems, also
displays the currently active process started by each user.) The who command helps you learn who
is usually logged in as well as what remote hosts they normally log in from. Investigate any
variations from the norm.

If any of these routine checks gives you reason to suspect a security problem, examine the system
for unusual or modified files, for files that you know should be there but aren't, and for unusual login
activity. This close examination of the system can also be made using everyday Unix commands.
Not every command or file we discuss will be available on every system. But every system will have
some tools that help you keep a close eye on how your system is being used.

12.4.2 Looking for Trouble

Intruders often leave behind files or shell scripts to help them re-enter the system or gain root
access. Use the ls -a | grep '^\'. command to check for files with names that begin with a
dot (.). Intruders particularly favor names such as .mail, .xx, ... (dot, dot, dot), .. (dot, dot, space), or
..^G (dot, dot, Ctl-G).

If any files with names like these are found, suspect a break-in. (Remember that one directory
named . and one directory named .. are in every directory except the root directory.) Examine the
contents of any suspicious files and follow your normal incident-reporting procedures.

You should also examine certain key files if you suspect a security problem:

/etc/inetd.conf and /etc/xinetd.conf

Check the names of the programs started from the /etc/inetd.conf file or the /etc/xinetd.conf
file if your system uses xinetd. In particular, make sure that it does not start any shell
programs (e.g., /bin/csh). Also check the programs that are started by inetd or by xinetd to
make sure the programs have not been modified. /etc/inetd.conf and /etc/xinetd.conf should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

make sure the programs have not been modified. /etc/inetd.conf and /etc/xinetd.conf should
not be world-writable.

r command security files

Check /etc/hosts.equiv, /etc/hosts.lpd, and the .rhosts file in each user's home directory to
make sure they have not been improperly modified. In particular, look for any plus sign (+)
entries and any entries for hosts outside of your local trusted network. These files should not
be world-writable. Better yet, remove the r commands from your system and make sure no
one reinstalls them.

/etc/passwd

Make sure that the /etc/passwd file has not been modified. Look for new usernames and
changes to the UID or GID of any account. /etc/passwd should not be world-writable.

Files run by cron or at

Check all of the files run by cron or at, looking for new files or unexplained changes.
Sometimes intruders use procedures run by cron or at to readmit themselves to the system,
even after they have been kicked off.

Executable files

Check all executable files, binaries, and shell files to make sure they have not been modified
by the intruder. Executable files should not be world-writable.

If you find or even suspect a problem, follow your reporting procedure and let people know about the
problem. This is particularly important if you are connected to a local area network. A problem on
your system could spread to other systems on the network.

12.4.2.1 Checking files

The find command is a powerful tool for detecting potential filesystem security problems because it
can search the entire filesystem for files based on file permissions. Intruders often leave behind
setuid programs to grant themselves root access. The following command searches for these files
recursively, starting from the root directory:

find / -user root -perm -4000 -print
This find command starts searching at the root (/) for files owned by the user root (-user root)
that have the setuid permission bit set (-perm -4000). All matches found are displayed at the
terminal (-print). If any filenames are displayed by find, closely examine the individual files to
make sure that these permissions are correct. As a general rule, shell scripts should not have setuid
permission.

You can use the find command to check for other problems that might open security holes for
intruders. The other common problems that find checks for are world-writable files (-perm -2),
setgid files (-perm -2000), and unowned files (-nouser -o -nogroup). World-writable and setgid
files should be checked to make sure that these permissions are appropriate. As a general rule, files
with names beginning with a dot (.) should not be world-writable, and setgid permission, like setuid,
should be avoided for shell scripts.

The process of scanning the filesystem can be automated with the Tripwire program. A
commercially supported version of Tripwire is available from http://www.tripwiresecurity.com, and an
open source version for Linux is available from http://www.tripwire.org. This package not only scans
the filesystem for problems, it computes digital signatures to ensure that if any files are changed, the
changes will be detected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4.2.2 Checking login activity

Strange login activity (at odd times of the day or from unfamiliar locations) can indicate attempts by
intruders to gain access to your system. We have already used the who command to check who is
currently logged into the system. To check who has logged into the system in the past, use the
last command.

The last command displays the contents of the wtmp file.[6] It is useful for learning normal login
patterns and detecting abnormal login activity. The wtmp file keeps a historical record of who logged
into the system, when they logged in, what remote site they logged in from, and when they logged
out.

[6] This file is frequently stored in /usr/adm, /var/log, or /etc.

Figure 12-3 shows a single line of last command output. The figure highlights the fields that show
the user who logged in, the device, the remote location from which the login originated (if
applicable), the day, the date, the time logged in, the time logged out (if applicable), and the elapsed
time.

Figure 12-3. Last command output

Simply typing last produces a large amount of output because every login stored in wtmp is
displayed. To limit the output, specify a username or tty device on the command line. This limits the
display to entries for the specified username or terminal. It is also useful to use grep to search
last's output for certain conditions. For example, the command below checks for logins that occur
on Saturday or Sunday:

% last | grep 'S[au]' | more
craig console :0 Sun Dec 15 10:33 still logged in

reboot system boot Sat Dec 14 18:12

root console Sat Dec 14 18:14

craig pts/5 jerboas Sat Dec 14 17:11 - 17:43 (00:32)

craig pts/2 172.16.12.24 Sun Dec 8 21:47 - 21:52 (00:05)

 .

 .

--More--

The next example searches for root logins not originating from the console. If you don't know who
made the two logins reported in this example, be suspicious:

% last root | grep -v console
root pts/5 rodent.wrotethebook.com Tue Oct 29 13:12 - down (00:03)

root ftp crab.wrotethebook.com Tue Sep 10 16:37 - 16:38 (00:00)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root ftp crab.wrotethebook.com Tue Sep 10 16:37 - 16:38 (00:00)

The last command is a major source of information about previous login activity. User logins at
odd times or from odd places are suspicious. Remote root logins should always be discouraged.
Use last to check for these problems.

Report any security problems that you detect, or even suspect. Don't be embarrassed to report a
problem because it might turn out to be a false alarm. Don't keep quiet because you might get
"blamed" for the security breach. Your silence will only help the intruder.

12.4.3 Automated Monitoring

Manually monitoring your system is time consuming and prone to errors and omissions. Fortunately,
several automated monitoring tools are available. At this writing, the web site
http://www.insecure.com lists the monitoring tools that are currently most popular. Tripwire
(mentioned earlier) is one of them. Some other currently popular tools are:

Nessus

Nessus is a network-based security scanner that uses a client/server architecture. Nessus
scans target systems for a wide range of known security problems.

SATAN

Security Auditing Tool for Analyzing Networks is the first network-based security scanner that
became widely distributed. Somewhat outdated, it is still popular and can detect a wide range
of known security problems. SATAN has spawned some children, SAINT and SARA, that are
also popular.

SAINT

System Administrator's Integrated Network Tool scans systems for a wide range of known
security problems. SAINT is based on SATAN.

SARA

Security Auditor's Research Assistant is the third-generation security scanner based on
SATAN and SAINT. SARA detects a wide range of known security problems.

Whisker

Whisker is a security scanner that is particularly effective at detecting certain CGI script
problems that threaten web site security.

ISS

Internet Security Scanner is a commercial security scanner for those who prefer a commercial
product.

Cybercop

Cybercop is another commercial security scanner for those who prefer commercial products.

Snort

Snort provides a rule-based system for logging packets. Snort attempts to detect intrusions
and report them to the administrator in real time.

PortSentry

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PortSentry detects port scans and can, in real time, block the system initiating the scan. Port
scans often precede a full-blown security attack.

The biggest problem with security scanners and intrusion detection tools is that they rapidly become
outdated. New attacks emerge that the tools are not equipped to detect. For this reason, this book
does not spend time describing the details of any specific scanner. These are the currently popular
scanners. By the time you read this, new security tools or new versions of these tools may have
taken their place. Use this list as a starting point to search the Web for the latest security tools.

Well-informed users and administrators, good password security, and good system monitoring are
the foundation of network security. But more is needed. That "more" is some technique for
controlling access to the systems connected to the network, or for controlling access to the data the
network carries. In the remainder of this chapter, we look at various security techniques that control
access.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5 Access Control

Access control is a technique for limiting access. Routers and hosts that use access control check the address
of a host requesting a service against an access control list. If the list says that the remote host is permitted to
use the requested service, the access is granted. If the list says that the remote host is not permitted to
the service, access is denied. Access control does not bypass any normal security checks. It adds a check to
validate the source of a service request and retains all of the normal checks to validate the user.

Access control systems are common in terminal servers and routers. For example, Cisco routers have an
access control facility. Access control software is also available for Unix hosts. Two such packages
and the TCP wrapper program. First we examine TCP wrapper (tcpd), which gets its name from the fact that
you wrap it around a network service so that the service can be reached only by going through the wrapper.

12.5.1 wrapper

The wrapper package performs two basic functions: it logs requests for Internet services, and provides an
access control mechanism for Unix systems. Logging requests for specific network services is a useful
monitoring function, especially if you are looking for possible intruders. If this were all it did, wrapper would be a
useful package. But the real power of wrapper is its ability to control access to network services.

The wrapper software is included with many versions of Linux and Unix. The wrapper tar file containing the C
source code and Makefile necessary to build the wrapper daemon tcpd is also available from several sites on
the Internet.

If your Unix system does not include wrapper, download the source, make tcpd, and then install it in the same
directory as the other network daemons. Edit /etc/inetd.conf and replace the path to each network service
daemon that you wish to place under access control with the path to tcpd. The only field in the /etc/inetd.conf
entry affected by tcpd is the sixth field, which contains the path to the network daemon.

For example, the entry for the finger daemon in /etc/inetd.conf on our Solaris 8 system is:

finger stream tcp6 nowait nobody /usr/sbin/in.fingerd in.fingerd

The value in the sixth field is /usr/sbin/in.fingerd. To monitor access to the finger daemon, replace this value
with /usr/sbin/tcpd, as in the following entry:

finger stream tcp6 nowait nobody /usr/sbin/tcpd in.fingerd

Now when inetd receives a request for fingerd, it starts tcpd instead. tcpd then logs the fingerd
checks the access control information, and, if permitted, starts the real finger daemon to handle the request.
In this way, tcpd acts as a gatekeeper for other functions.

Make a similar change for every service you want to place under access control. Good candidates for access
control are ftpd, tftpd, telnetd, and fingerd. Obviously, tcpd cannot directly control access for
that are not started by inetd, such as sendmail and NFS. However, other tools, such as portmapper
the tcpd configuration files to enforce their own access controls. Thus the wrapper configuration can have a
positive impact on the security of daemons that are not started by inetd.

Using the wrapper on most Linux systems is even easier. There is no need to download and install the
software. It comes as an integral part of the Linux release. You don't even have to edit the /etc/inetd.conf
because the sixth field of the entries in that file already points to the tcpd program, as shown below:

finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd -w

12.5.1.1 tcpd access control files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The information tcpd uses to control access is in two files, /etc/hosts.allow and /etc/hosts.deny. Each file's
function is obvious from its name. hosts.allow contains the list of hosts that are allowed to access the network's
services, and hosts.deny contains the list of hosts that are denied access. If the files are not found,
permits every host to have access and simply logs the access request. Therefore, if you only want to monitor
access, don't create these two files.

If the files are found, tcpd checks the hosts.allow file first, followed by the hosts.deny file. It stops as soon as it
finds a match for the host and the service in question. Therefore, access granted by hosts.allow cannot be
overridden by hosts.deny.

The format of entries in both files is the same:

service-list : host-list [: shell-command]

The service-list is a list of network services, separated by commas. These are the services to which access is
being granted (hosts.allow) or denied (hosts.deny). Each service is identified by the process name used in the
seventh field of the /etc/inetd.conf entry. This is simply the name that immediately follows the path to
inetd.conf. (See Chapter 5 for a description of the arguments field in the /etc/inetd.conf entry.)

Again, let's use finger as an example. We changed its inetd.conf entry to read:

 finger stream tcp nowait nobody /usr/etc/tcpd in.fingerd

Given this entry, we would use in.fingerd as the service name in a hosts.allow or hosts.deny file.

The host-list is a comma-separated list of hostnames, domain names, Internet addresses, or network numbers.
The systems listed in the host-list are granted access (hosts.allow) or denied access (hosts.deny) to the services
specified in the service-list. A hostname or an Internet address matches an individual host. For example,
is a hostname and 172.16.12.2 is an Internet address. Both match a particular host. A domain name matches
every host within that domain; e.g., .wrotethebook.com matches crab.wrotethebook.com,
rodent.wrotethebook.com, horseshoe.wrotethebook.com, and any other hosts in the domain. When specified in
a tcpd access control list, domain names always start with a dot (.). A network number matches every IP
address within that network's address space. For example, 172.16. matches 172.16.12.1, 172.16.12.2,
172.16.5.1, and any other address that begins with 172.16. Network addresses in a tcpd access control list
always end with a dot (.).

A completed hosts.allow entry that grants FTP and Telnet access to all hosts in the wrotethebook.com
shown below:

ftpd,telnetd : .wrotethebook.com

Two special keywords can be used in hosts.allow and hosts.deny entries. The keyword ALL can be used in the
service-list to match all network services, and in the host-list to match all hostnames and addresses. The second
keyword, LOCAL, can be used only in the host-list. It matches all local hostnames. tcpd considers a hostname
"local" if it contains no embedded dots. Therefore, the hostname rodent would match on LOCAL, but the
hostname rodent.wrotethebook.com would not match. The following entry affects all services and all local hosts:

ALL : LOCAL

A more complete example of how tcpd is used will help you understand these entries. First, assume that you
wish to allow every host in your local domain (wrotethebook.com) to have access to all services on your system,
but you want to deny access to every service to all other hosts. Make an entry in /etc/hosts.allow to permit
access to everything by everyone in the local domain:

ALL : LOCAL, .wrotethebook.com

The keyword ALL in the services-list indicates that this rule applies to all network services. The colon (:)
separates the services-list from the host-list. The keyword LOCAL indicates that all local hostnames without a
domain extension are acceptable, and the .wrotethebook.com string indicates that all hostnames that have the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domain extension are acceptable, and the .wrotethebook.com string indicates that all hostnames that have the
wrotethebook.com domain name extensions are also acceptable.

After granting access to just those systems you want to service, explicitly deny access to all other systems using
the hosts.deny file. To prevent access by everyone else, make this entry in the /etc/hosts.deny file:

ALL : ALL

Every system that does not match the entry in /etc/hosts.allow is passed on to /etc/hosts.deny. Here the entry
denies everyone access, regardless of what service they are asking for. Remember, even with ALL in the
services-list field, only services started by inetd, and only those services whose entries in inetd.conf
edited to invoke tcpd, are affected. This does not automatically provide security for any other service.

The syntax of a standard wrapper access control file can be a little more complicated than the examples above.
A hosts.allow file might contain:

imapd, ipopd3 : 172.16.12.

ALL EXCEPT imapd, ipopd3 : ALL

The first entry says that every host whose IP address begins with 172.16.12 is granted access to the IMAP and
POP services. The second line says that all services except IMAP and POP are granted to all hosts. These
entries would limit mailbox service to a single subnet while providing all other services to anyone who requested
them. The EXCEPT keyword is used to except items from an all-encompassing service list. It can also be used
in the host-list of an access rule. For example:

ALL: .wrotethebook.com EXCEPT public.wrotethebook.com

If this appeared in a hosts.allow file it would permit every system in the wrotethebook.com domain to have
access to all services except for the host public.wrotethebook.com. The assumption is that
public.wrotethebook.com is untrusted for some reason—perhaps users outside of the domain are allowed to log
into public.

The final syntax variation uses the at-sign (@) to narrow the definition of services or hosts. Here are two
examples:

in.telnetd@172.16.12.2 : 172.16.12.0/255.255.255.0

in.rshd : KNOWN@robin.wrotethebook.com

When the @ appears in the services side of a rule it indicates that the server has more than one IP address and
that the rule being defined applies only to one of those addresses. Examples of systems with more than one
address are multi-homed hosts and routers. If your server is also the router that connects your local network to
outside networks, you may want to provide services on the interface connected to the local network but not on
the interface connected to the outside world. The @ syntax lets you do that. If the first line in this example
appeared in a hosts.allow file, it would permit access to the Telnet daemon through the network interface that
has the address 172.16.12.2 by any client with an address that begins with 172.16.12.

The purpose of the @ when it appears in the host-list of a rule is completely different. In the host-list, the
indicates that a username is required from the client as part of the access control test. This means that the client
must run an identd daemon. The host-list can test for a specific username, but it is more common to use one
of three possible keywords:

KNOWN

The result of the test is KNOWN when the remote system returns a username in response to the query.

UNKNOWN

The result of the test is UNKNOWN when the remote host does not run identd and thus fails to respond
to the query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALL

This setting requires the remote host to return a username. It is equivalent to using KNOWN but is less
commonly used.

The final field that can be used in these entries is the optional shell-command field. When a match occurs for an
entry that has an optional shell command, tcpd logs the access, grants or denies access to the service, and
then passes the shell command to the shell for execution.

12.5.1.2 Defining an optional shell command

The shell command allows you to define additional processing that is triggered by a match in the access control
list. In all practical examples this feature is used in the hosts.deny file to gather more information about the
intruder or to provide immediate notification to the system administrator about a potential security attack. For
example:

ALL : ALL : (safe_finger -l @%h | /usr/sbin/mail -s %d - %h root) &

In this example from a hosts.deny file, all systems that are not explicitly granted access in the hosts.allow
denied access to all services. After logging the attempted access and blocking it, tcpd sends the
safe_finger command to the shell for execution. All versions of finger, including safe_finger
remote host to find out who is logged into that host. This information is useful when tracking down an attacker.
The result of the safe_finger command is mailed to the root account. The ampersand (&) at the end of the
line causes the shell commands to run in the background. This is important. Without it, tcpd would sit and wait
for these programs to complete before returning to its own work.

The safe_finger program is provided with wrapper. It is specially modified to be less vulnerable to attack than
the standard finger program.

There are some variables, such as %h and %d, used in the example above. These variables allow you to take
values for the incoming connection and to use them in the shell process. Table 12-1 lists the variables you can
use.

Table 12-1. Variables used with tcpd shell commands
Variable Value
%a The client's IP address.

%A The server's IP address.

%c All available client information, including the username when available.

%d The network service daemon process name.

%h The client's hostname. If the hostname is unavailable, the IP address is used.

%H The server's hostname.

%n The client's hostname. If the hostname is unavailable, the keyword UNKNOWN is used. If a DNS
lookup of the client's hostname and IP address do not match, the keyword PARANOID is used.

%N The server's hostname.

%p The network service daemon process id (PID).

%s All available server information, including the username when available.

%u The client username or the keyword UNKNOWN if the username is unavailable.

%% The percent character (%).

Table 12-1 shows that %h is the remote hostname and %d is the daemon being accessed. Refer back to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 12-1 shows that %h is the remote hostname and %d is the daemon being accessed. Refer back to the
sample shell command. Assume that the attempted access to in.rshd came from the host foo.bar.org
command passed to the shell would be:

safe_finger -l @foo.bar.org |

 /usr/sbin/mail -s in.rshd-foo.bar.org root

The standard wrapper access control syntax is a complete configuration language that should cover any
reasonable need. Despite this, there is also an extended version of the wrapper access control language.

12.5.1.3 Optional access control language extensions

If wrapper is compiled with PROCESS_OPTIONS enabled in the Makefile, the syntax of the wrapper access
control language is changed and extended. With PROCESS_OPTIONS enabled, the command syntax is not
limited to three fields. The new syntax is:

service-list : host-list : option : option ...
The service-list and the host-list are defined in exactly the same way they were in the original wrapper
syntax. The options are new, and so is the fact that multiple options are allowed for each rule. There are several
possible options:

allow

Grants the requested service and must appear at the end of a rule.

deny

Denies the requested service and must appear at the end of a rule.

spawn shell-command

Executes the specified shell command as a child process.

twist shell-command

Executes the shell command instead of the requested service.

keepalive

Sends keepalive messages to the remote host. If the host does not respond, the connection is closed.

linger seconds

Specifies how long to try to deliver data after the server closes the connection.

rfc931 [timeout]

Uses the IDENT protocol to look up the user's name on the remote host. timeout defines how many
seconds the server should wait for the remote host to respond.

banners path

Sends the contents of a message file to the remote system. path is the name of a directory that
the banner files. The file displayed is the file that has the same name as the network daemon process.

nice [number]

Sets the nice value for the network service process. The default value is 10.

umask mask

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

umask mask

Sets a umask value for files used by the network service process.

user user[. group]

Defines the user ID and group ID under which the network service process runs. This overrides what is
defined in inetd.conf.

setenv variable value

Sets an environment variable for the process runtime environment.

A few examples based on the samples shown earlier will illustrate the differences in the new syntax. Using the
new syntax, a hosts.allow file might contain:

ALL : LOCAL, .wrotethebook.com : ALLOW

in.ftpd,in.telnetd : eds.oreilly.com : ALLOW

ALL : ALL : DENY

With the new syntax there is no need to have two files. The options ALLOW and DENY permit everything to be
listed in a single file. The first line grants access to all services to every local host and every host in the
wrotethebook.com domain. The second line gives the remote host eds.oreilly.com access through FTP and
Telnet. The third line is the same as having the line ALL : ALL in the hosts.deny file; it denies all other hosts
access to all of the services. Using the ALLOW and DENY options, the command:

ALL: .wrotethebook.com EXCEPT public.wrotethebook.com

can be rewritten as:

ALL: .wrotethebook.com : ALLOW

ALL: public.wrotethebook.com : DENY

The shell command example using the original syntax is almost identical in the new syntax:

in.rshd : ALL: spawn (safe_finger -l @%h | /usr/sbin/mail -s %d - %h root) & : DENY

A more interesting variation on the shell command theme comes from using the twist option. Instead of
passing a command to the shell for execution, the twist command executes a program for the remote user,
but not the program the user expects. For example:

in.ftpd : ALL: twist /bin/echo 421 FTP not allowed from %h : DENY

In this case, when the remote user attempts to start the FTP daemon, echo is started instead. The echo
program then sends the message to the remote system and terminates the connection.

The extended wrapper syntax is rarely used because everything can be done with the traditional syntax. It is
useful to understand the syntax so that you can read it when you encounter it, but it is unlikely that you will feel
the need to use it. An alternative to wrapper that you will encounter is xinetd. It replaces inetd and adds
access controls. The basics of xinetd are covered in Chapter 5. Here we focus on the access controls that it
provides.

12.5.2 Controlling Access with xinetd

As noted in Chapter 5, most of the information in the xinetd.conf file parallels values found in the inetd.conf
What xinetd adds are capabilities similar to those of wrapper. xinetd reads the /etc/hosts.allow and
/etc/hosts.deny files and implements the access controls defined in those files. Additionally, xinetd
own logging and its own access controls. If your system uses xinetd, you will probably create hosts.allow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

own logging and its own access controls. If your system uses xinetd, you will probably create hosts.allow
hosts.deny files to enhance the security of services, such as portmapper, that read those files, and you will
use the security features of xinetd because those features provide improved access controls.

xinetd provides two logging parameters: log_on_success and log_on_failure. Use these parameters to
customize the standard log entry made when a connection is successful or when a connection attempt fails.
log_on_success and log_on_failure accept the following options:

USERID

Logs the user ID of the remote user. USERID can be logged for both successful and failed connection
attempts.

HOST

Logs the address of the remote host. Like USERID, HOST can be used for both success and failure.

PID

Logs the process ID of the server started to handle the connection. PID applies only to
log_on_success.

DURATION

Logs the length of time that the server handling this connection ran. DURATION applies only to
log_on_success.

EXIT

Logs the exit status of the server when the connection terminates. EXIT applies only to
log_on_success.

ATTEMPT

Logs unsuccessful connection attempts. ATTEMPT applies only to log_on_failure.

RECORD

Logs the connection information received from the remote server. RECORD applies only to
log_on_failure.

In addition to logging, xinetd provides three parameters for access control. Use these parameters to configure
xinetd to accept connections from certain hosts, paralleling the hosts.allow file, to reject connections from
certain hosts, paralleling the hosts.deny file, and to accept connections only at certain times of the day. The
three parameters are:

only_from

This parameter identifies the hosts that are allowed to connect to the service. Hosts can be defined using:

a numeric address. For example, 172.16.12.5 defines a specific host, and 129.6.0.0 defines all
hosts with an address that begins with 129.6. The address 0.0.0.0 matches all addresses.

an address scope. For example, 172.16.12.{3,6,8,23} defines four different hosts: 172.16.12.3,
172.16.12.6, 172.16.12.8, and 172.16.12.23.

a network name. The network name must be defined in the /etc/networks file.

a canonical hostname. The IP address provided by the remote system must reverse-map to this
hostname.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a domain name. The hostname returned by the reverse lookup must be in the specified domain.
For example, the value .wrotethebook.com requires a host in the wrotethebook.com
Note that when a domain name is used, it starts with a dot.

an IP address with an associated address mask. For example, 172.16.12.128/25 would match
every address from 172.16.12.128 to 172.16.12.255.

no_access

This parameter defines the hosts that are denied access to the service. Hosts are defined using exactly
the same methods as those described for the only_from attribute.

access_times

This parameter defines the time of day a service is available, in the form hour:min-hour:min
hour clock is used. Hours are 0 to 23 and minutes are 0 to 59.

If neither only_from nor no_access is specified, access is granted to everyone. If both are specified, the most
exact match applies—for example:

no_access = 172.16.12.250

only_from = 172.16.12.0

The only_from command in this example permits every system on network 172.16.12.0 to have access to the
service. The no_access command takes away that access for one system. It doesn't matter whether the
no_access command comes before or after the only_from command. It always works the same way
the more exact match takes precedence.

A sample POP3 entry from xinetd.conf is shown below:

default: on

description: The POP3 service allows remote users to access their mail \

using an POP3 client such as Netscape Communicator, mutt, \

or fetchmail.

service login

{

 socket_type = stream

 wait = no

 user = root

 log_on_success += USERID

 log_on_failure += USERID

 only_from = 172.16.12.0

 no_access = 172.16.12.231

 server = /usr/sbin/ipop3d

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 server = /usr/sbin/ipop3d

}

In the sample, the only_from command permits access from every system on network 172.16.12.0, which is
the local network for this sample system, and blocks access from all other systems. Additionally, there is one
system on subnet 17.16.12.0 (host 172.16.12.231) that is not trusted to have POP access. The no_access
command denies access to anyone on the system 172.16.12.231.

Remember that wrapper and xinetd can only control access to services. These tools cannot limit access to
data on the system or moving across the network. For that, you need encryption.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6 Encryption

Encryption is a technique for limiting access to the data carried on the network. Encryption encodes the data in a form that can be read
only by systems that have the "key" to the encoding scheme. The original text, called the "clear text," is encrypted using an encryption
device (hardware or software) and an encryption key. This produces encoded text, which is called the cipher. To recreate the clear text,
the cipher must be decrypted using the same type of encryption device and an appropriate key.

Largely because of spy novels and World War II movies, encryption is one of the first things that people think of when they think of
security. However, encryption has not always been applicable to network security. Traditionally, encrypting data for transmission
a network required that the same encryption key, called a shared secret or a private key, be used at both ends of the data exchange.
Unless you controlled both ends of the network and could ensure that the same encryption key was
difficult to use end-to-end data encryption. For this reason, encryption was most commonly used to exchange data where the facilities
at both ends of the network were controlled by a single authority, such as military networks, private networks, individual systems, or
when the individuals at both ends of the communication could reach personal agreement on the encryption technique and key.
Encryption that requires prior agreement to share a secret key is called symmetric encryption.

Public-key encryption is the technology that makes encryption an important security technology for an open global
Internet. For example, an e-commerce web server and any customer's web browser can exchange encrypted data because
use public-key cryptography. Public-key systems encode the clear text with a key that is widely known and publicly available,
cipher can only be decoded back to clear text with a secret key. This means that Dan can look up Kristin's public key in a
database and use it to encode a message to her that no one else can read. Even though everyone on the Internet has access to the
public key, only Kristin can decrypt the message using her secret key. This encrypted communication takes place without Kristin ever
divulging her secret key.

Additionally, messages encrypted using the private key can only be decrypted by the public key. Thus the public key can be used to
authenticate the source of a message since only the proper source should have access to the private key. Because public-key
cryptography uses different keys for encryption and decryption, it is called asymmetric encryption.

One problem with asymmetric encryption is that it is computationally intensive and slow when compared to symmetric encryption. For
this reason it is used for only a small portion of the data exchange. Public-key encryption is used for both encryption and authentication
during the initial handshake of an encrypted connection. During the handshake, a shared secret key, protected by public-key
encryption, is exchanged by the participants. The subsequent data exchange is encrypted with symmetric encryption using that shared
key.

Another problem with public-key encryption in a global network is that it requires a universally recognized, trusted infrastructure to
distribute public keys and to ensure that the keys have not been tampered with. The first step when Dan sent a message to Kristin was
retrieving her public key. But where did it come from? The key probably came from one of two places: from a private exchange of
keys or from the network with verification from a trusted certificate authority. When the number of participants is limited,
be exchanged through private agreements in the same manner that private keys used to be exchanged. That does not work,
for global network applications where there is no prior knowledge of the participants. In that case the public key is
network and certified by a trusted third party called a certificate authority (CA). The CA provides the public key in a message called a
certificate that contains the public key, the name of the organization whose key it is, and dates when the key
will become invalid. This message is signed with the private key of the CA. Thus when the certificate is verified
key, the recipient knows that the certificate came from the trusted CA. CA public keys are well known
example, browser vendors provide the public keys of many CAs with every copy of their browser software.

The type of encryption used in the examples in the next section is symmetric encryption. It requires that the same encryption technique
and the same secret key is used for both encrypting and decrypting the message. It does not rely on public keys, digital signatures, or
widely accepted infrastructure, but its usefulness is limited.

12.6.1 When Is Symmetric Encryption Useful?

Before using encryption, decide why you want to encrypt the data, whether the data should be protected with
the data should even be stored on a networked computer system.

A few valid reasons for encrypting data are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To prevent casual browsers from viewing sensitive data files

To prevent accidental disclosure of sensitive data

To prevent privileged users (e.g., system administrators) from viewing private data files

To complicate matters for intruders who attempt to search through a system's files

There are several tools available for encrypting data files, many of which are commercial packages. Two open source filesystems that
provide automatic file encryption are the Cryptographic File System (CFS) and the Practical Privacy Disk Driver (PPDD).
even a couple of file encryption tools included with Solaris and Linux.

[7] Linux Security by Ramon Hontanon (Sybex) covers the installation, configuration, and use of both CFS and PPDD.

Solaris includes the old Unix crypt command. crypt is easy to use, but it has limited value. The encryption provided by
easily broken. At best, crypt protects files from casual browsing, nothing more.

The age of crypt and the fact that other, better, more recent symmetric encryption tools are not included with the
show that there is little demand for symmetric encryption tools. Public-key encryption is simply more flexible and
wider range of applications. In fact, the file encryption tool included with Linux is an asymmetric encryption tool.

12.6.2 Public-Key Encryption Tools

Public-key encryption is the type of encryption that has the greatest customer demand. The most popular Unix encryption tools,
and SSL, are public-key tools. Even for tasks such as encrypting files for local storage, public-key systems are
not require users to share their private keys.

Linux systems often include the GNU Privacy Guard (gpg). gpg, like the well-known tool PGP,[8] can be

[8] PGP: Pretty Good Privacy by Simson Garfinkel (O'Reilly & Associates) provides a book-length treatment of PGP, an encryption
mail.

It also provides digital signature services that can be used for email authentication. In the following example,
and decrypt a file. We begin by creating our keys with the --gen-key option:

$ gpg -- gen-key
gpg (GnuPG) 1.0.4; Copyright (C) 2000 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

gpg: Warning: using insecure memory!

gpg: /home/craig/.gnupg/secring.gpg: keyring created

gpg: /home/craig/.gnupg/pubring.gpg: keyring created

Please select what kind of key you want:

 (1) DSA and ElGamal (default)

 (2) DSA (sign only)

 (4) ElGamal (sign and encrypt)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Your selection? 1
DSA keypair will have 1024 bits.

About to generate a new ELG-E keypair.

 minimum keysize is 768 bits

 default keysize is 1024 bits

 highest suggested keysize is 2048 bits

What keysize do you want? (1024) 1024
Requested keysize is 1024 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0) 0
Key does not expire at all

Is this correct (y/n)? y
A User-ID identifies your key; the software constructs the user id

from Real Name, Comment and Email Address in this form:

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Craig Hunt
Email address: craig.hunt@wrotethebook.com
Comment:

You selected this USER-ID:

 "Craig Hunt <craig.hunt@wrotethebook.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.

Type the passphrase: Fateful lightening
Repeat: Fateful lightening

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Repeat: Fateful lightening
We need to generate a lot of random bytes. It is a good idea to perform

some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

+++++.+++++.+++++.++++++++++++++++++++.+++++.+++++++++++++++++++++++++.++++++++++.

++++++++++++++++++++.+++++++++++++++++++++++++++++++++++>.+++++.............................+++++^^^

public and secret key created and signed.

The --gen-key option asks several questions. However, the questions are simple and the initial key generation needs to be
once. First gpg asks what kind of key you want. What it is really asking is whether you want to use the
encryption, or for both digital signatures and encryption. Choose (1), which is the default. This creates both types of keys so that you're
prepared for any encryption task. Next it asks how long the key should be; the longer the key, the more difficult it is to generate
crack. The default is 1024 bits, which is plenty long for any realistic gpg application. gpg asks for your name, email address, and,
optionally, a comment. It uses this information to identify your keys in the key databases. Finally, it asks for a passphrase that will be
used to identify you when you access your secret key.

gpg uses two key databases: one for secret keys and one for public keys. gpg calls these databases
secret keys is secring.gpg and the database of public keys is pubring.gpg. Both public and private keys are used
then decrypt a file. The following example shows the encryption process:

The cat command shows that we have created a simple text file named test.txt that we wish to encrypt. It is clear what the
option on the gpg command line is doing, but the purpose of the --recipient argument is not as clear. The
can contain many public keys. The --recipient argument identifies the public key used to encrypt the file. The word "recipient"
used because gpg is often used to encrypt mail, and therefore the public key of the mail recipient is used. For this
common to identify the desired key with the email address provided when the key was created.

gpg produces a cipher file that has the same name as the clear-text file with the addition of the file extension
file shows that it is not readable. After checking that the cipher file exists, the clear-text file is deleted. It wouldn't do us
create an encrypted file if the unencrypted file was still around for everyone to read!

To read the cipher file, it must be decrypted. In the following example, the --decrypt option is used with the
the test.txt.gpg file:

$ gpg -- output test.txt -- decrypt test.txt.gpg
gpg: Warning: using insecure memory!

You need a passphrase to unlock the secret key for

user: "Craig Hunt <craig.hunt@wrotethebook.com>"

1024-bit ELG-E key, ID D99991BA, created 2001-09-18 (main key ID 9BE3B5AD)

Enter passphrase: Fateful lightening

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter passphrase: Fateful lightening
$ cat test.txt
This is a test file.

The --output option tells gpg where to write the clear text after decrypting the cipher file. In the example we write it to
of test.txt shows that the file is readable and that it contains the original test.

These gpg examples are reminiscent of the ssh examples seen earlier in this chapter and the openssl
these programs have tools to generate public and private keys that are then used for a specific purpose.
ssh secures terminal connections. openssl secures web traffic. SSL, however, can be used to secure communications for a wide
variety of applications.

12.6.2.1 stunnel

stunnel is a program that uses SSL to encrypt traffic for daemons that do not encrypt their own traffic.
public-key encryption to a wide variety of network applications. stunnel is included with OpenSSL and is installed
installed.[9]

[9] OpenSSL is covered in Chapter 11.

Like all applications that use SSL, stunnel needs a certificate to function properly. The easiest way to create the
is to change to the SSL certificate directory and run make, as in the example below:

cd /usr/share/ssl/certs
make stunnel.pem
umask 77 ; \

PEM1=`/bin/mktemp /tmp/openssl.XXXXXX` ; \

PEM2=`/bin/mktemp /tmp/openssl.XXXXXX` ; \

/usr/bin/openssl req -newkey rsa:1024 -keyout $PEM1 -nodes -x509 -days 365 -out $PEM2 ; \

cat $PEM1 > stunnel.pem ; \

echo "" >> stunnel.pem ; \

cat $PEM2 >> stunnel.pem ; \

rm -f $PEM1 $PEM2

Using configuration from /usr/share/ssl/openssl.cnf

Generating a 1024 bit RSA private key

....++++++

........++++++

writing new private key to '/tmp/openssl.3VVjex'

You are about to be asked to enter information that will be incorporated

into your certificate request. What you are about to enter is what is

called a Distinguished Name or a DN. There are quite a few fields but you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can leave some blank. If you enter '.', the field will be left blank. For

some fields there will be a default value.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Maryland
Locality Name (eg, city) []:Gaithersburg
Organization Name (eg, company) [Internet Widgits Ltd]:WroteTheBook.com
Organizational Unit Name (eg, section) []:Books
Common Name (eg, your name or your server's hostname) []:Craig Hunt
Email Address []:craig.hunt@wrotethebook.com
By default the openssl installation creates the directory /usr/share/ssl/certs to hold certificates, and by default
certificate in that directory with the filename stunnel.pem.[10] As with all new openssl certificates, you're prompted for the information
needed to uniquely identify the certificate.

[10] The default certificate path can be changed on the stunnel command line with the -p option.

Once the certificate is created, stunnel is ready for use. POP and IMAP are excellent examples of services that can be
secure connection using stunnel. The primary reason that POP and IMAP are run through stunnel
password cannot be stolen from a POP or IMAP session and then used by the thief to log into the server.
everything: the login and the download of mail. This also guarantees that the contents of the mail cannot be surreptitiously read by a
snooper during the download, although from the point of view of the system administrator, the password is really the piece of
information you want to protect.

For secure POP and IMAP communication to work, both ends of the connection must be able to tunnel the data through SSL. This is
not always the case. Some clients do not have stunnel; some do not even have SSL. For this reason, servers usually provide
traditional POP and IMAP connections on the appropriate well-known ports, and SSL-secured POP and IMAP on other ports. When run
over stunnel, POP is called pops and assigned TCP port 995, and IMAP is called imaps and assigned TCP port 993.
are not special protocols. They are simply service names from the /etc/services file that map to port numbers 995
following command added to the system startup runs POP inside an SSL tunnel on port 995:

stunnel -d 995 -l /usr/sbin/ipop3d -- ipop3d

Alternatively, stunnel can be run by inetd using an entry in the inetd.conf file. For example, the following
SSL tunnel on a demand basis:

pops stream tcp nowait root /usr/sbin/stunnel -l /usr/sbin/ipop3d -- ipop3d

Systems that use xinetd can run stunnel from the xinetd.conf file. The following xinetd entry runs

service imaps

{

 socket_type = stream

 wait = no

 user = root

 server = /usr/sbin/stunnel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 server = /usr/sbin/stunnel

 server_args = -l /usr/sbin/imapd -- imapd

 log_on_failure += USERID

}

stunnel has nothing specific to do with POP or IMAP. It can be used to secure a wide variety of daemons. When used
daemon that is normally run by inetd or xinetd, the stunnel command is placed in the inetd.conf
When used to secure a daemon that runs from a startup file, the stunnel command is placed in that startup file.

Despite the power of tools like stunnel and ssh, encryption is not a substitute for good computer security. Encryption can protect
sensitive or personal information from snooping, but it should never be the sole means of protecting critical information. Encryption
systems can be broken, and encrypted data can be deleted or corrupted just like any other data. So don't let encryption lull you into a
false sense of security. Some information is so sensitive or critical that it should not be stored on a networked computer system, even if
it is encrypted. Encryption is only a small part of a complete security system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.7 Firewalls

A firewall system is an essential component of network security. The term "firewall" implies
protection from danger, and just as the firewall in your car protects the passengers' compartment
from the car's engine, a firewall computer system protects your network from the outside world. A
firewall computer system provides strict access control between your systems and the outside
world.

The concept of a firewall is quite simple. A firewall is a choke point through which all traffic
between a secured network and an unsecured network must pass. In practice, it is usually a
choke point between an enterprise network and the Internet. Creating a single point through
which all traffic must pass allows the traffic to be more easily monitored and controlled and allows
security expertise to be concentrated on that single point.

Firewalls are implemented in many ways. In fact, there are so many different types of firewalls, the
term is almost meaningless. When someone tells you they have a firewall, you really can't know
exactly what they mean. Covering all of the different types of firewall architectures requires an
entire book—see Building Internet Firewalls (O'Reilly & Associates). Here we cover the screened
subnet architecture (probably the most popular firewall architecture) and the multi-homed host
architecture, which is essentially a firewall-in-a-box.

The most common firewall architecture contains at least four hardware components: an exterior
router, a secure server (called a bastion host), an exposed network (called a perimeter network),
and an interior router. Each hardware component provides part of the complete security scheme.
Figure 12-4 illustrates this architecture.

Figure 12-4. Screened subnet firewall

The exterior router is the only connection between the enterprise network and the outside world.
This router is configured to do a minimal level of access control. It checks to make sure that no
packet coming from the external world has a source address that matches the internal network. If
our network number is 172.16, the exterior router discards any packets it receives on its exterior
interface that contain the source address 172.16. That source address should be received by the
router only on its interior interface. Security people call this type of access control packet filtering .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The interior router does the bulk of the access control work. It filters packets not only on address
but also on protocol and port numbers to control the services that are accessible to and from the
interior network. It's up to you which services this router blocks. If you plan to use a firewall, the
services that will be allowed and those that will be denied should be defined in your security policy
document. Almost every service can be a threat. These threats must be evaluated in light of your
security needs. Services that are intended only for internal users (NIS, NFS, X-Windows, etc.) are
almost always blocked. Services that allow writing to internal systems (Telnet, FTP, SMTP, etc.)
are usually blocked. Services that provide information about internal systems (DNS, fingerd,
etc.) are usually blocked. This doesn't leave much running! That is where the bastion host and
perimeter network come in.

The bastion host is a secure server. It provides an interconnection point between the enterprise
network and the outside world for the restricted services. Some of the services that are restricted
by the interior gateway may be essential for a useful network. Those essential services are
provided through the bastion host in a secure manner. The bastion host provides some services
directly, such as DNS, SMTP mail services, and anonymous FTP. Other services are provided as
proxy services. When the bastion host acts as a proxy server, internal clients connect to the
outside through the bastion host, and external systems respond back to the internal clients
through the host. The bastion host can therefore control the traffic flowing into and out of the site
to any extent desired.

There can be more than one secure server, and there often is. The perimeter network connects
the servers together and connects the exterior router to the interior router. The systems on the
perimeter network are much more exposed to security threats than are the systems on the interior
network. This is as it must be. After all, the secure servers are needed to provide service to the
outside world as well as to the internal network. Isolating the systems that must be exposed on a
separate network lessens the chance that a compromise of one of those systems will lead directly
to the compromise of an internal system.

The multi-homed host architecture attempts to duplicate all of these firewall functions in a single
box. It works by replacing an IP router with a multi-homed host that does not forward packets at
the IP layer.[11] The multi-homed host effectively severs the connection between the interior and
exterior networks. To provide the interior network with some level of network connectivity, it
performs similar functions to the bastion hosts.

[11] The role of IP routers, also called gateways, in gluing the Internet together is covered extensively in earlier
chapters.

Figure 12-5 shows a comparison between an IP router and a multi-homed host firewall. A router
handles packets up through the IP layer. The router forwards each packet based on the packet's
destination address, and the route to that destination indicated in the routing table. A host, on the
other hand, does not simply forward packets. A multi-homed host can process packets through
the Application Layer, which provides it with complete control over how packets are handled.[12]

[12] See Chapter 5 for information on how to prevent a multi-homed host from forwarding packets.

Figure 12-5. Firewalls versus routers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This definition of a firewall—as a device completely distinct from an IP router—is not universally
accepted. Some people refer to routers with special security features as firewalls, but this is really
just a matter of semantics. In this book, routers with special security features are called "secure
routers" or "secure gateways." Firewalls, while they may include routers, do more than just filter
packets.

12.7.1 Functions of the Firewall

Ideally, an intruder cannot mount a direct attack on any of the systems behind a firewall. Packets
destined for hosts behind the firewall are simply delivered to the firewall. The intruder must
instead mount an attack directly against the firewall machine. Because the firewall machine can
be the target of break-in attacks, it employs very strict security guidelines. But because there is
only one firewall versus many machines on the local network, it is easier to enforce strict security
on the firewall.

The disadvantage of a firewall system is obvious. In the same manner that it restricts access from
the outside world into the local network, it restricts access from the local network to the outside
world. To minimize the inconvenience caused by the firewall, the system must do many more
things than a router does. Some firewalls provide:

DNS name service for the outside world

Email forwarding

Proxy services

Only the minimal services truly needed to communicate with external systems should be provided
on a firewall system. Other common network services (NIS, NFS, X Windows, finger, etc.)
should generally not be provided. Services are limited to decrease the number of holes through
which an intruder can gain access. On firewall systems, security is more important than service.

The biggest problems for the firewall machine are ftp service and remote terminal service. To
maintain a high level of security, user accounts are discouraged on the firewall machine; however,
user data must pass through the firewall system for ftp and remote terminal services. This
problem can be handled by creating special user accounts for ftp and telnet that are shared
by all internal users. But group accounts are generally viewed as security problems. A better
solution is to allow ssh services through the firewall. This encourages the use of ssh, which in
turn provides strong authentication and encrypted data exchanges.

Because a firewall must be constructed with great care to be effective, and because there are
many configuration variables for setting up a firewall machine, vendors offer special firewall
software. Some vendors sell special-purpose machines designed specifically for use as firewall
systems. There are several low-cost Linux firewall packages. Before setting up your own firewall,
investigate the options available from software vendors and your hardware vendor.

The details of setting up a firewall system are beyond the scope of this book. Before you proceed,
I recommend you read Building Internet Firewalls and Firewalls and Internet Security. Unless you
have skilled Unix system administrators with adequate free time, a do-it-yourself firewall
installation is a mistake. Hire a company that specializes in firewall design and installation. If your
information is valuable enough to protect with a firewall, it should be valuable enough to protect
with a professionally installed firewall.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Of course, not every site can afford a professionally installed firewall—you might be protecting a
small office or even a home network. If you don't have money or time, you can buy a low-cost
firewall router, sometimes referred to as a firewall appliance. These boxes are specifically
designed for the small office and home office. They provide basic packet filtering, proxy services,
and network address translation service, and they often cost only a few hundred dollars. In most
cases, you simply buy the box and plug it in. At the very least, your network deserves this level of
protection. If you have the time and the skill to build a firewall, you can use a firewall package or
the firewall tools built into your operating systems. A firewall package increases initial cost, but it
is easy to work with. The packet filtering tools built into the operating system cost nothing but are
the most difficult to configure. The iptables tool provided with Linux is a good example of the
type of firewall tools provided with some Unix operating systems.

12.7.2 Filtering Traffic with iptables

In its simplest incarnation, a firewall is a filtering router that screens out unwanted traffic. Use the
routing capabilities of a multi-homed Linux host combined with the filtering features of iptables
to create a filtering router.

The Linux kernel categorizes firewall traffic into three groups and applies different filter rules to
each category of traffic. These are:

INPUT

Incoming traffic bound for a process on the local system is tested against the INPUT filter
rules before it is accepted.

OUTPUT

Outbound traffic that initiated on the local system is tested against the OUTPUT filter rules
before it is sent.

FORWARD

Traffic from one external system bound for another external system is tested against the
FORWARDING filter rules.

The INPUT and OUTPUT rules are used when the system acts as a host. The FORWARD rules
are used when the system acts as a router. In addition to the three standard categories,
iptables accepts user-defined categories.

12.7.2.1 Defining iptables filter rules

The Linux kernel maintains a list of rules for each of these categories. The lists of rules are
maintained by the iptables command.[13] Use the options shown in Table 12-2 with the
iptables command to create or delete user-defined chains, to add rules to a chain, to delete
rules from a chain, and to change the order of the rules in the chain.

[13] iptables came into use with Linux kernel 2.4. Early kernels used the ipfwadm and the ipchains commands.
See Linux Firewalls by Robert Ziegler (New Riders, 2000) for information on these older commands.

Table 12-2. iptables command-line options
Option Function

-A Appends rules to the end of a ruleset.

-D Deletes rules from a ruleset.

-E Renames a ruleset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-F Removes all of the rules from a ruleset.

-I Inserts a rule into a specific location in a ruleset.

-L Lists all rules in a ruleset.

-N Creates a user-defined ruleset with the specified name.

-P Sets the default policy for a chain.

-R Replaces a rule in a chain.

-X Deletes the specified user-defined ruleset.

-Z Resets all packet and byte counters to zero.

Firewall rules are composed of a filter against which the packets are matched and the action
taken when a packet matches the filter. The action can either be a standard policy or a jump to a
user-defined ruleset for additional processing. The -j target command-line option identifies the
user-defined ruleset or the standard policy to handle the packet. target is either the name of a
ruleset or a keyword that identifies a standard policy. The keywords for the standard policies are:

ACCEPT

Let the packet pass through the firewall.

DROP

Discard the packet.

QUEUE

Pass the packet up to user space for processing.

RETURN

In a user-defined ruleset, this means to return to the ruleset that called this ruleset. In one
of the three kernel rulesets, this means to exit the chain and use the default policy for the
chain.

The iptables command constructs filters that match on the protocol used, the source or
destination address, or the network interface used for the packet, using a variety of command-line
parameters. The basic iptables parameters for building filters are:

-p protocol

Defines the protocol to which the rule applies. protocol can be any numeric value from
the /etc/protocols file or one of the keywords: tcp, udp, or icmp.

-s address[/ mask]

Defines source address of the packets to which the rule applies. address can be a
hostname, network name, or IP address.

--sport [port[: port]]

Defines the source port of the packets to which the rule applies. port can be a name or
number from the /etc/services file. A range of ports can be specified using the format
port:port. If no specific port value is specified, all ports are assumed.

-d address[/ mask]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-d address[/ mask]

Defines the destination address of the packets to which the rule applies. address can be a
hostname, network name, or IP address.

--dport [port[: port]

Defines the destination port to which the rule applies. This filters all traffic bound for a
specific port. The port is defined using the same rules as those used to define these values
for the packet source.

--icmp-type type

Defines the ICMP type to which the rule applies. type can be any valid ICMP message
type number or name.

-i name

Defines the name of the input network interface to which the rule applies. Only packets
received on this interface are affected by the rule. Specify a partial interface name by
ending it with a + (e.g., eth+ matches all Ethernet interfaces that begin with eth).

-o name

Defines the name of the output network interface to which the rule applies. Only packets
sent out this interface are affected by the rule. Specify a partial interface name by ending it
with a + (e.g., eth+ matches all Ethernet interfaces that begin with eth).

-f

Indicates that the rule refers only to second and subsequent fragments of fragmented
packets.

12.7.2.2 Sample iptables commands

Putting this all together creates a firewall that can protect your network. Assume we have a Linux
router attached to a perimeter network with the address 172.16.12.254 on interface eth0 and to
an external network with the address 192.168.6.5 on interface eth1. Further assume that the
perimeter network contains only a sendmail server and an Apache server. Here is an example of
some iptables commands we might use on the Linux system to protect the perimeter network:

iptable -F INPUT

iptables -F FORWARD

iptables -A INPUT -i eth1 -j DROP

iptables -A FORWARD -i eth1 -s 172.16.0.0/16 -j DROP

iptables -A FORWARD -o eth1 -d 172.16.0.0/16 -j DROP

iptables -A FORWARD -d 172.16.12.1 25 -j ACCEPT

iptables -A FORWARD -d 172.16.12.6 80 -j ACCEPT

iptables -A FORWARD -j DROP

The first two commands use the -F option to clear the rulesets we plan to work with. The third line
drops any packets from the external network that are bound for a process running locally on the
Linux router. We do not allow any access to router processes from the external world.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next two commands drop packets that are being routed to the external world using an internal
address. If packets are received on the external interface with a source address from the internal
network, they are dropped. Likewise, if packets are being sent out the external interface with a
destination address from the internal network, they are dropped. These rules say that if packets
on the external network interface (eth1) misuse addresses from the internal network (172.16),
somebody is trying to spoof us and the packets should be discarded.

The next two rules are basically identical. They accept packets if the destination and port are the
correct destination and port for a specific server. For example, port 25 is the SMTP port and
172.16.12.1 is the mail server, and port 80 is the HTTP port and 172.16.12.6 is the web server.
We accept these inbound connections because they are destined for the correct systems. The
last rule rejects all other traffic.

These examples illustrate the power of Linux's built-in filtering features and provide enough
information to get you started. Clearly much more can and should be done to build a real firewall.
If you want to know more about iptables, see Building Internet Firewalls and Linux Security,
both mentioned in the reading list below, for many more detailed examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.8 Words to the Wise

I am not a security expert; I am a network administrator. In my view, good security is good system
administration and vice versa. Most of this chapter is just common-sense advice. It is probably
sufficient for most circumstances, but certainly not for all.

Make sure you know whether there is an existing security policy that applies to your network or
system. If there are policies, regulations, or laws governing your situation, make sure to obey
them. Never do anything to undermine the security system established for your site.

No system is completely secure. No matter what you do, you will have problems. Realize this and
prepare for it. Prepare a disaster recovery plan and do everything necessary so that when the
worst does happen, you can recover from it with the minimum possible disruption.

If you want to read more about security, I recommend the following:

RFC 2196, Site Security Handbook, B. Fraser, September 1997.

RFC 1281, Guidelines for the Secure Operation of the Internet, R. Pethia, S. Crocker, and
B. Fraser, November 1991.

Practical Unix and Internet Security, Simson Garfinkel and Gene Spafford, O'Reilly &
Associates, 1996.

Linux Security, Ramon Hontanon, Sybex, 2001.

Building Internet Firewalls, Elizabeth Zwicky, Simon Cooper, and Brent Chapman, O'Reilly
& Associates, 2000.

Linux Firewalls, Robert Ziegler, New Riders, 2000.

Firewalls and Internet Security, William Cheswick and Steven Bellovin, Addison Wesley,
1994.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.9 Summary

Network access and computer security work at cross-purposes. Attaching a computer to a
network increases the security risks for that computer. Evaluate your security needs to determine
what must be protected and how vigorously it must be protected. Develop a written site security
policy that defines your procedures and documents the security duties and responsibilities of
employees at all levels.

Network security is essentially good system security. Good user authentication, effective system
monitoring, and well-trained system administrators provide the best security. Tools are available
to help with these tasks. SSH, OPIE, Tripwire, OpenSSL, iptables, TCP wrappers, encryption,
and firewalls are all tools that can help.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Troubleshooting TCP/IP
Network administration tasks fall into two very different categories: configuration and
troubleshooting. Configuration tasks prepare for the expected; they require detailed knowledge of
command syntax, but are usually simple and predictable. Once a system is properly configured,
there is rarely any reason to change it. The configuration process is repeated each time a new
operating system release is installed, but with very few changes.

In contrast, network troubleshooting deals with the unexpected. Troubleshooting frequently
requires knowledge that is conceptual rather than detailed. Network problems are usually unique
and sometimes difficult to resolve. Troubleshooting is an important part of maintaining a stable,
reliable network service.

In this chapter, we discuss the tools you will use to ensure that the network is in good running
condition. However, good tools are not enough. No troubleshooting tool is effective if applied
haphazardly. Effective troubleshooting requires a methodical approach to the problem, and a
basic understanding of how the network works. We'll start our discussion by looking at ways to
approach a network problem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Approaching a Problem

To approach a problem properly, you need a basic understanding of TCP/IP. The first few
chapters of this book discuss the basics of TCP/IP and provide enough background information to
troubleshoot most network problems. Knowledge of how TCP/IP routes data through the network,
between individual hosts, and between the layers in the protocol stack is important for
understanding a network problem. But detailed knowledge of each protocol usually isn't
necessary. When you need these details, look them up in a definitive reference—don't try to recall
them from memory.

Not all TCP/IP problems are alike, and not all problems can be approached in the same manner.
But the key to solving any problem is understanding what the problem is. This is not as easy as it
may seem. The "surface" problem is sometimes misleading, and the "real" problem is frequently
obscured by many layers of software. Once you understand the true nature of the problem, the
solution to the problem is often obvious.

First, gather detailed information about exactly what's happening. When a user reports a problem,
talk to her. Find out which application failed. What is the remote host's name and IP address?
What is the user's hostname and address? What error message was displayed? If possible, verify
the problem by having the user run the application while you talk her through it. If possible,
duplicate the problem on your own system.

Testing from the user's system, and other systems, find out:

Does the problem occur in other applications on the user's host, or is only one application
having trouble? If only one application is involved, the application may be misconfigured or
disabled on the remote host. Because of security concerns, many systems disable some
services.

Does the problem occur with only one remote host, all remote hosts, or only certain
"groups" of remote hosts? If only one remote host is involved, the problem could easily be
with that host. If all remote hosts are involved, the problem is probably with the user's
system (particularly if no other hosts on your local network are experiencing the same
problem). If only hosts on certain subnets or external networks are involved, the problem
may be related to routing.

Does the problem occur on other local systems? Make sure you check other systems on
the same subnet. If the problem occurs only on the user's host, concentrate testing on that
system. If the problem affects every system on a subnet, concentrate on the router for that
subnet.

Once you know the symptoms of the problem, visualize each protocol and device that handles the
data. Visualizing the problem will help you avoid oversimplification, and keep you from assuming
that you know the cause even before you start testing. Using your TCP/IP knowledge, narrow your
attack to the most likely causes of the problem, but keep an open mind.

13.1.1 Troubleshooting Hints

Below are several useful troubleshooting hints. They are not part of a troubleshooting
methodology—just good ideas to keep in mind.

Approach problems methodically. Allow the information gathered from each test to guide
your testing. Don't jump on a hunch into another test scenario without ensuring that you can
pick up your original scenario where you left off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Work carefully through the problem, dividing it into manageable pieces. Test each piece
before moving on to the next. For example, when testing a network connection, test each
part of the network until you find the problem.

Keep good records of the tests you have completed and their results. Keep a historical
record of the problem in case it reappears.

Keep an open mind. Don't assume too much about the cause of the problem. Some people
believe their network is always at fault, while others assume the remote end is always the
problem. Some are so sure they know the cause of a problem that they ignore the evidence
of the tests. Don't fall into these traps. Test each possibility and base your actions on the
evidence of the tests.

Be aware of security barriers. Security firewalls sometimes block ping, traceroute, and
even ICMP error messages. If problems seem to cluster around a specific remote site, find
out if it has a firewall.

Pay attention to error messages. Error messages are often vague, but they frequently
contain important hints for solving the problem.

Duplicate the reported problem yourself. Don't rely too heavily on the user's problem report.
The user has probably seen this problem only from the application level. If necessary,
obtain the user's data files to duplicate the problem. Even if you cannot duplicate the
problem, log the details of the reported problem for your records.

Most problems are caused by human error. You can prevent some of these errors by
providing information and training on network configuration and usage.

Keep your users informed. This reduces the number of duplicated trouble reports and the
duplication of effort when several system administrators work on the same problem without
knowing others are already working on it. If you're lucky, someone may have seen the
problem before and have a helpful suggestion about how to resolve it.

Don't speculate about the cause of the problem while talking to the user. Save your
speculations for discussions with your networking colleagues. Your speculations may be
accepted by the user as gospel, and become rumors. These rumors can cause users to
avoid using legitimate network services and may undermine confidence in your network.
Users want solutions to their problems; they're not interested in speculative techno-babble.

Stick to a few simple troubleshooting tools. For most TCP/IP software problems, the tools
discussed in this chapter are sufficient. Just learning how to use a new tool is often more
time-consuming than solving the problem with an old, familiar tool.

Thoroughly test the problem at your end of the network before locating the owners of the
remote system to coordinate testing with them. The greatest difficulty of network
troubleshooting is that you do not always control the systems at both ends of the network.
In many cases, you may not even know who does control the remote system. The more
information you have about your end, the simpler the job will be when you have to contact
the remote administrator.

Don't neglect the obvious. A loose or damaged cable is always a possible problem. Check
plugs, connectors, cables, and switches. Small things can cause big problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Diagnostic Tools

Because most problems have simple causes, developing a clear idea of the problem often
provides the solution. Unfortunately, this is not always true, so in this section we begin to discuss
the tools that can help you attack the most intractable problems. Many diagnostic tools are
available, ranging from commercial systems with specialized hardware and software that may
cost thousands of dollars, to free software that is available from the Internet. Many software tools
are provided with your Unix system. You should also keep some hardware tools handy.

To maintain the network's equipment and wiring, you need some simple hand tools. A pair of
needle-nose pliers and a few screwdrivers may be sufficient, but you may also need specialized
tools. For example, attaching RJ45 connectors to unshielded twisted pair (UTP) cable requires
special crimping tools. It is usually easiest to buy a ready-made network maintenance toolkit from
your cable vendor.

A full-featured cable tester is also useful. Modern cable testers are small hand-held units with a
keypad and LCD display that test both thinnet and UTP cable. Tests are selected from the
keyboard and results are displayed on the LCD screen. It is not necessary to interpret the results
because the unit does that for you and displays the error condition in a simple text message. For
example, a cable test might produce the message "Short at 74 feet." This tells you that the cable
is shorted 74 feet away from the tester. What could be simpler? The proper test tools make it
easier to locate, and therefore fix, cable problems.

A laptop computer can be a most useful piece of test equipment when properly configured. Install
TCP/IP software on the laptop. Take it to the location where the user reports a network problem.
Disconnect the Ethernet cable from the back of the user's system and attach it to the laptop.
Configure the laptop with an appropriate address for the user's subnet and reboot it. Then ping
various systems on the network and attach to one of the user's servers. If everything works, the
fault is probably in the user's computer. Users trust this test because it demonstrates something
they do every day. They have more confidence in the laptop than in an unidentifiable piece of test
equipment displaying the message "No faults found." If the test fails, the fault is probably in the
network equipment or wiring. That's the time to bring out the cable tester.

Another advantage of using a laptop as a piece of test equipment is its inherent versatility. It runs
a wide variety of test, diagnostic, and management software. Install Unix on the laptop and run
the software discussed in the rest of this chapter from your desktop or your laptop.

This book emphasizes free or "built-in" software diagnostic tools that run on Unix systems. The
software tools used in this chapter, and many more, are described in RFC 1470, FYI on a
Network Management Tool Catalog: Tools for Monitoring and Debugging TCP/IP Internets and
Interconnected Devices. A catchy title, and a useful RFC! The RFC is somewhat dated, but it
does point out some very useful tools. The tools listed in that catalog and discussed in this book
are:

ifconfig

Provides information about the basic configuration of the interface. It is useful for detecting
bad IP addresses, incorrect subnet masks, and improper broadcast addresses. Chapter 6
covers ifconfig in detail. This tool is provided with the Unix operating system.

arp

Provides information about Ethernet/IP address translation. It can be used to detect
systems on the local network that are configured with the wrong IP address. arp is covered
in this chapter and is used in an example in Chapter 2. arp is delivered as part of Unix.

netstat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provides a variety of information. It is commonly used to display detailed statistics about
each network interface, the network sockets, and the network routing table. netstat is
used repeatedly in this book, most extensively in Chapters Chapter 2, Chapter 6, and
Chapter 7. netstat is delivered as part of Unix.

ping

Indicates whether a remote host can be reached. ping also displays statistics about packet
loss and delivery time. ping is discussed in Chapter 1 and used in Chapter 7. ping also
comes as part of Unix.

nslookup

Provides information about the DNS name service. nslookup is covered in detail in
Chapter 8. It comes as part of the BIND software package.

dig

Also provides information about name service and is similar to nslookup.

traceroute

Prints information about each routing hop that packets take going from your system to a
remote system.

snoop

Analyzes the individual packets exchanged between hosts on a network. snoop is a
TCP/IP protocol analyzer included with Solaris 8 systems. It examines the contents of
packets, including their headers, and is most useful for analyzing protocol problems.
tcpdump is a tool similar to snoop that is provided with Linux systems.

This chapter discusses each of these tools, even those covered earlier in the text. We start with
ping, which is used in more troubleshooting situations than any other diagnostic tool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3 Testing Basic Connectivity

The ping command tests whether a remote host can be reached from your computer. This simple
function is extremely useful for testing the network connection, independent of the application in
which the original problem was detected. ping allows you to determine whether further testing
should be directed toward the network connection (the lower layers) or the application (the upper
layers). If ping shows that packets can travel to the remote system and back, the user's problem
is probably in the upper layers. If packets can't make the round trip, lower protocol layers are
probably at fault.

Frequently a user reports a network problem by stating that he can't telnet (or ftp, or send
email, or whatever) to some remote host. He then immediately qualifies this statement with the
announcement that it worked before. In cases like this, where the ability to connect to the remote
host is in question, ping is a very useful tool.

Using the hostname provided by the user, ping the remote host. If your ping is successful, have
the user ping the host. If the user's ping is also successful, concentrate your further analysis on
the specific application that the user is having trouble with. Perhaps the user is attempting to
telnet to a host that provides only anonymous ftp. Perhaps the host was down when the user
tried his application. Have the user try it again, while you watch or listen to every detail of what he
is doing. If he is doing everything right and the application still fails, detailed analysis of the
application with snoop and coordination with the remote system administrator may be needed.

If your ping is successful and the user's ping fails, concentrate testing on the user's system
configuration, and on those things that are different about the user's path to the remote host when
compared to your path to the remote host.

If your ping fails, or the user's ping fails, pay close attention to any error messages. The error
messages displayed by ping are helpful guides for planning further testing. The details of the
messages may vary from implementation to implementation, but there are only a few basic types of
errors:

Unknown host

The remote host's name cannot be resolved by name service into an IP address. The name
servers could be at fault (either your local server or the remote system's server), the name
could be incorrect, or something could be wrong with the network between your system and
the remote server. If you know the remote host's IP address, try to ping that. If you can
reach the host using its IP address, the problem is with name service. Use nslookup or
dig to test the local and remote servers, and to check the accuracy of the hostname the
user gave you.

Network unreachable

The local system does not have a route to the remote system. If the numeric IP address was
used on the ping command line, re-enter the ping command using the hostname. This
eliminates the possibility that the IP address was entered incorrectly, or that you were given
the wrong address. If a routing protocol is being used, make sure it is running and check the
routing table with netstat. If a static default route is being used, reinstall it. If everything
seems fine on the host, check its default gateway for routing problems.

No answer

The remote system did not respond. Most network utilities have some version of this
message. Some ping implementations print the message "100% packet loss." telnet
prints the message "Connection timed out" and sendmail returns the error "cannot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prints the message "Connection timed out" and sendmail returns the error "cannot
connect." All of these errors mean the same thing. The local system has a route to the
remote system, but it receives no response from the remote system to any of the packets it
sends.

There are many possible causes of this problem. The remote host may be down. Either the
local or the remote host may be configured incorrectly. A gateway or circuit between the
local host and the remote host may be down. The remote host may have routing problems.
Only additional testing can isolate the cause of the problem. Carefully check the local
configuration using netstat and ifconfig. Check the route to the remote system with
traceroute. Contact the administrator of the remote system and report the problem.

All of the tools mentioned here will be discussed later in this chapter. However, before leaving
ping, let's look more closely at the command and the statistics it displays.

13.3.1 The ping Command

The basic format of the ping command on a Solaris system is:[1]

[1] Check your system's documentation. ping varies slightly from system to system. On Linux, the format shown above
would be: ping [-c count] [-s packetsize] host.

ping host [packetsize] [count]

host

The hostname or IP address of the remote host being tested. Use the hostname or address
provided by the user in the trouble report.

packetsize

Defines the size in bytes of the test packets. This field is required only if the count field is
going to be used. Use the default packetsize of 56 bytes.

count

The number of packets to be sent in the test. Use the count field, and set the value low.
Otherwise, the ping command may continue to send test packets until you interrupt it,
usually by pressing Ctrl-C (^C). Sending excessive numbers of test packets is not a good
use of network bandwidth and system resources. Usually five packets are sufficient for a
test.

To check that ns.uu.net can be reached from crab, we send five 56-byte packets with the following
command:

% ping -s ns.uu.net 56 5
PING ns.uu.net: 56 data bytes

64 bytes from ns.uu.net (137.39.1.3): icmp_seq=0. time=32.8 ms

64 bytes from ns.uu.net (137.39.1.3): icmp_seq=1. time=15.3 ms

64 bytes from ns.uu.net (137.39.1.3): icmp_seq=2. time=13.1 ms

64 bytes from ns.uu.net (137.39.1.3): icmp_seq=3. time=32.4 ms

64 bytes from ns.uu.net (137.39.1.3): icmp_seq=4. time=28.1 ms

----ns.uu.net PING Statistics----

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

----ns.uu.net PING Statistics----

5 packets transmitted, 5 packets received, 0% packet loss

round trip (ms) min/avg/max = 13.1/24.3/32.8

The -s option is included because crab is a Solaris workstation, and we want packet-by-packet
statistics. Without the -s option, Sun's ping command prints only a summary line saying
"ns.uu.net is alive." Other ping implementations do not require the -s option; they display the
statistics by default, as the Linux example below shows:

$ ping -c5 ns.uu.net
PING ns.uu.net (137.39.1.3) from 172.16.12.3 : 56(84) bytes of data.

64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=0 ttl=244 time=98.283 msec

64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=1 ttl=244 time=94.114 msec

64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=2 ttl=244 time=66.565 msec

64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=3 ttl=244 time=24.301 msec

64 bytes from ns.UU.NET (137.39.1.3): icmp_seq=4 ttl=244 time=37.060 msec

--- ns.uu.net ping statistics ---

5 packets transmitted, 5 packets received, 0% packet loss

round trip min/avg/max/mdev = 24.301/64.064/98.283/29.634 ms

Both tests show a good wide area network link to ns.uu.net with no packet loss and a fast
response. The round trip between almond and ns.uu.net took an average of only 24.3 milliseconds.
A small packet loss, and a round trip time an order of magnitude higher, would not be abnormal for
a connection made across a wide area network. The statistics displayed by the ping command
can indicate low-level network problems. The key statistics are:

The sequence in which the packets are arriving, as shown by the ICMP sequence number
(icmp_seq) displayed for each packet.

How long it takes a packet to make the round trip, displayed in milliseconds after the string
time=.

The percentage of packets lost, displayed in a summary line at the end of the ping output.

If the packet loss is high, the response time is very slow, or packets are arriving out of order, there
could be a network hardware problem. If you see these conditions when communicating over great
distances on a wide area network, there is nothing to worry about. TCP/IP was designed to deal
with unreliable networks, and some wide area networks suffer a lot of packet loss. But if these
problems are seen on a local area network, they indicate trouble.

On a local network cable segment, the round trip time should be near 0, there should be little or no
packet loss, and the packets should arrive in order. If these things are not true, there is a problem
with the network hardware. On an Ethernet, the problem could be improper cable termination, a
bad cable segment, or a bad piece of "active" hardware, such as a hub, switch, or transceiver.
Check the cable with a cable tester as described earlier. Good hubs and switches often have built-
in diagnostic software that can be checked. Cheap hubs and transceivers may require the "brute
force" method of disconnecting individual pieces of hardware until the problem goes away.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The results of a simple ping test, even if the ping is successful, can help you direct further
testing toward the most likely causes of the problem. But other diagnostic tools are needed to
examine the problem more closely and find the underlying cause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4 Troubleshooting Network Access

The "no answer" and "cannot connect" errors indicate a problem in the lower layers of the network
protocols. If the preliminary tests point to this type of problem, concentrate your testing on routing and
on the network interface. Use the ifconfig, netstat, and arp commands to test the Network
Access Layer.

13.4.1 Troubleshooting with the ifconfig Command

ifconfig checks the network interface configuration. Use this command to verify the user's
configuration if the user's system has been recently configured or if the user's system cannot reach
the remote host while other systems on the same network can.

When ifconfig is entered with an interface name and no other arguments, it displays the current
values assigned to that interface. For example, checking interface dnet0 on a Solaris 8 system gives
this report:

% ifconfig dnet0
dnet0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

 inet 172.16.55.105 netmask ffffff00 broadcast 172.16.55.255

The ifconfig command displays two lines of output. The first line of the display shows the
interface's name and its characteristics. Check for these characteristics:

UP

The interface is enabled for use. If the interface is "down," have the system's superuser bring
the interface "up" with the ifconfig command (e.g., ifconfig dnet0 up). If the interface
won't come up, replace the interface cable and try again. If it still fails, have the interface
hardware checked.

RUNNING

This interface is operational. If the interface is not "running," the driver for this interface may not
be properly installed. The system administrator should review all of the steps necessary to
install this interface, looking for errors or missed steps.

The second line of ifconfig output shows the IP address, the subnet mask (written in
hexadecimal), and the broadcast address. Check these three fields to make sure the network
interface is properly configured.

Two common interface configuration problems are misconfigured subnet masks and incorrect IP
addresses. A bad subnet mask is indicated when the host can reach other hosts on its local subnet
and remote hosts on distant networks, but it cannot reach hosts on other local subnets. ifconfig
quickly reveals if a bad subnet mask is set.

An incorrectly set IP address can be a subtle problem. If the network part of the address is incorrect,
every ping will fail with the "no answer" error. In this case, using ifconfig will reveal the incorrect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

every ping will fail with the "no answer" error. In this case, using ifconfig will reveal the incorrect
address. However, if the host part of the address is wrong, the problem can be more difficult to
detect. A small system, such as a PC that only connects out to other systems and never accepts
incoming connections, can run for a long time with the wrong address without its user noticing the
problem. Additionally, the system that suffers the ill effects may not be the one that is misconfigured.
It is possible for someone to accidentally use your IP address on his system, and for his mistake to
cause your system intermittent communications problems. An example of this problem is discussed
later. This type of configuration error cannot be discovered by ifconfig because the error is on a
remote host. The arp command is used for this type of problem.

13.4.2 Troubleshooting with the arp Command

The arp command is used to analyze problems with IP-to-Ethernet address translation. The arp
command has three useful options for troubleshooting:

-a

Display all ARP entries in the table.

-d hostname

Delete an entry from the ARP table.

-s hostname ether-address

Add a new entry to the table.

With these three options you can view the contents of the ARP table, delete a problem entry, and
install a corrected entry. The ability to install a corrected entry is useful in "buying time" while you look
for the permanent fix.

Use arp if you suspect that incorrect entries are getting into the address resolution table. One clear
indication of problems with the ARP table is a report that the "wrong" host responded to some
command, like ftp or telnet. Intermittent problems that affect only certain hosts can also indicate
that the ARP table has been corrupted. ARP table problems are usually caused by two systems using
the same IP address. The problems appear intermittent because the entry that appears in the table is
the address of the host that responded quickest to the last ARP request. Sometimes the "correct"
host responds first, and sometimes the "wrong" host responds first.

If you suspect that two systems are using the same IP address, display the address resolution table
with the arp -a command. Here's an example from a Solaris system:[2]

[2] The format in which the ARP table is displayed may vary slightly between systems.

% arp -a
Net to Media Table: IPv4

Device IP Address Mask Flags Phys Addr

------ -------------------- --------------- ----- ---------------

dnet0 pecan 255.255.255.255 08:00:20:05:21:33

dnet0 horseshoe 255.255.255.255 00:00:0c:e0:80:b1

dnet0 crab 255.255.255.255 SP 08:00:20:22:fd:51

dnet0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dnet0 BASE-ADDRESS.MCAST.NET 240.0.0.0 SM 01:00:5e:00:00:00

It is easiest to verify that the IP and Ethernet address pairs are correct if you have a record of each
host's correct Ethernet address. For this reason you should record each host's Ethernet and IP
address when it is added to your network. If you have such a record, you'll quickly see if anything is
wrong with the table.

If you don't have this type of record, the first three bytes of the Ethernet address can help you to
detect a problem. The first three bytes of the address identify the equipment manufacturer. A list of
these identifying prefixes is found at http://www.iana.org/assignments/ethernet-numbers.

From the vendor prefixes we see that two of the ARP entries displayed in our example are Sun
systems (8:0:20). If horseshoe is also supposed to be a Sun, the 0:0:0c Cisco prefix indicates that a
Cisco router has been mistakenly configured with horseshoe's IP address.

If neither checking a record of correct assignments nor checking the manufacturer prefix helps you
identify the source of the errant ARP, try using telnet to connect to the IP address shown in the
ARP entry. If the device supports telnet, the login banner might help you identify the incorrectly
configured host.

13.4.2.1 ARP problem case study

A user called in asking if the server was down, and reported the following problem. The user's
workstation, called limulus, appeared to "lock up" for minutes at a time when certain commands were
used, while other commands worked with no problems. The network commands that involved the NIS
name server all caused the lock-up problem, but some unrelated commands also caused the
problem. The user reported seeing the error message:

 NFS getattr failed for server crab: RPC: Timed out

The server crab was providing limulus with NIS and NFS services. The commands that failed on
limulus were commands that required NIS service, or that were stored in the centrally maintained
/usr/local directory exported from crab. The commands that ran correctly were installed locally on the
user's workstation. No one else reported a problem with the server, and we were able to ping limulus
from crab and get good responses.

We had the user check the messages file[3] for recent error messages, and she discovered this:

[3] Check /etc/syslog.conf for the full path of the messages file. Common locations are /var/adm/messages and
/var/log/messages.

Mar 6 13:38:23 limulus vmunix: duplicate IP address!!

 sent from ethernet address: 0:0:c0:4:38:1a

This message indicates that the workstation detected another host on the Ethernet responding to its
IP address. The "imposter" used the Ethernet address 0:0:c0:4:38:1a in its ARP response. The
correct Ethernet address for limulus is 8:0:20:e:12:37.

We checked crab's ARP table and found that it had the incorrect ARP entry for limulus. We deleted
the bad limulus entry with the arp -d command, and installed the correct entry with the -s option, as
shown below:

arp -d limulus
limulus (172.16.180.130) deleted

arp -s limulus 8:0:20:e:12:37

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arp -s limulus 8:0:20:e:12:37
ARP entries received via the ARP protocol are temporary. The values are held in the table for a finite
lifetime and are deleted when that lifetime expires. New values are then obtained via the ARP
protocol. Therefore, if some remote interfaces change, the local table adjusts and communications
continue. Usually this is a good idea, but if someone is using the wrong IP address, that bad address
can keep reappearing in the ARP table even if it is deleted. However, manually entered values are
permanent; they stay in the table and can only be deleted manually. This allowed us to install a
correct entry in the table without worrying about it being overwritten by a bad address.

This quick fix resolved limulus's immediate problem, but we still needed to find the culprit. We
checked the /etc/ethers file to see if we had an entry for Ethernet address 0:0:c0:4:38:1a, but we
didn't. From the first three bytes of this address, 0:0:c0, we knew that the device was a Western
Digital card. Since our network has only Unix workstations and PCs, we assumed the Western Digital
card was installed in a PC. We also guessed that the problem address was recently installed because
the user had never had the problem before. We sent out an urgent announcement to all users asking
if anyone had recently installed a new PC, reconfigured a PC, or installed TCP/IP software on a PC.
We got one response. When we checked his system, we found out that he had entered the address
172.16.180.130 when he should have entered 172.16.180.138. The address was corrected and the
problem did not recur.

Nothing fancy was needed to solve this problem. Once we checked the error messages, we knew
what the problem was and how to solve it. Involving the entire network user community allowed us to
quickly locate the problem system and to avoid a room-to-room search for the PC. Reluctance to
involve users and make them part of the solution is one of the costliest, and most common, mistakes
made by network administrators.

13.4.3 Checking the Interface with netstat

If the preliminary tests lead you to suspect that the connection to the local area network is unreliable,
the netstat -i command can provide useful information. The example below shows the output
from the netstat -i command on a Solaris 8 system:[4]

[4] The output on a Linux system is formatted differently, but the same statistics are provided.

% netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

dnet0 1500 wrotethebook.com crab 442697 2 633424 2 50679 0

lo0 1536 loopback localhost 53040 0 53040 0 0 0

The line for the loopback interface, lo0, can be ignored. Only the line for the real network interface is
significant, and only the last five fields on that line provide significant troubleshooting information.

Let's look at the last field first. There should be no packets queued (Queue) that cannot be
transmitted. If the interface is up and running, and the system cannot deliver packets to the network,
suspect a bad drop cable or a bad interface. Replace the cable and see if the problem goes away. If it
doesn't, call the vendor for interface hardware repairs.

The input errors (Ierrs) and the output errors (Oerrs) should be close to 0. Regardless of how much
traffic has passed through this interface, 100 errors in either of these fields is high. High output errors
could indicate a saturated local network or a bad physical connection between the host and the
network. High input errors could indicate that the network is saturated, the local host is overloaded,
there is a physical network problem. Tools, such as ping statistics or a cable tester, can help you
determine if it is a physical network problem. Evaluating the collision rate can help you determine if
the local Ethernet is saturated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A high value in the collision field (Collis) is normal, but if the percentage of output packets that result
in a collision is too high, it indicates that the network is saturated. Collision rates greater than 5% bear
watching. If high collision rates are seen consistently, and are seen among a broad sampling of
systems on the network, you may need to subdivide the network to reduce traffic load.

Collision rates are a percentage of output packets. Don't use the total number of packets sent and
received; use the values in the Opkts and Collis fields when determining the collision rate. For
example, the output in the netstat example shows 50679 collisions out of 633424 outgoing
packets. That's a collision rate of 8%. This sample network could be overworked; check the statistics
on other hosts on this network. If the other systems also show a high collision rate, consider
subdividing this network.

13.4.4 Subdividing an Ethernet

To reduce the collision rate, you must reduce the amount of traffic on the network segment. A simple
way to do this is to create multiple segments out of the single segment. Each new segment will have
fewer hosts and, therefore, less traffic. We'll see, however, that it's not quite this simple.

The most effective way to subdivide an Ethernet is to install an Ethernet switch. Each port on the
switch is essentially a separate Ethernet. So a 16-port switch gives you 16 Ethernets to work with
when balancing the load. On most switches the ports can be used in a variety of ways (see Figure 13-
1). Lightly used systems can be attached to a hub that is then attached to one of the switch ports to
allow the systems to share a single segment. Servers and demanding systems can be given
dedicated ports so that they don't need to share a segment with anyone. Most switches provide both
10 Mbps Ethernet and Fast Ethernet 100 Mbps ports. These are called asymmetric switches because
different ports operate at different speeds. Use the Fast Ethernet ports to connect heavily used
servers or segments. Most 10/100 switches have auto-sensing ports. This allows every port to be
used at either 100 Mbps or at 10 Mbps, which gives you the maximum configuration flexibility.

Gigabit Ethernet switches can also be used, but they have a unique place in the network topology.
10/100 switches connect servers and local networks. Gigabit switches are primarily used to create a
"collapsed backbone" to interconnect other switches. Gigabit switches are used when designing a
new corporate backbone network. 10/100 switches are used when subdividing an individual Ethernet
segment.

Figure 13-1 shows an 8-port 10/100 Ethernet switch. Ports 1 and 2 are wired to Ethernet hubs. A few
systems are connected to each hub. When new systems are added they are distributed evenly
among the hubs to prevent any one segment from becoming overloaded. Additional hubs can be
added to the available switch ports for future expansion. Port 4 attaches a demanding system with its
own private segment. Port 6 operates at 100 Mbps and attaches a heavily used server. A port can be
reserved for a future 100 Mbps connection to a second 10/100 Ethernet switch for even more
expansion.

Figure 13-1. Subdividing an Ethernet with switches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before allocating the ports on your switch, evaluate what services are in demand, and who talks to
whom. Then develop a plan that reduces the amount of traffic flowing over any segment. For
example, if the demanding system on Port 4 uses lots of bandwidth because it is constantly talking to
one of the systems on Port 1, all of the systems on Port 1 will suffer because of this traffic. The
computer that the demanding system communicates with should be moved to one of the vacant ports
or to the same port (4) as the demanding system. Use your switch to the greatest advantage by
balancing the load.

Should you segment an old coaxial cable Ethernet by cutting the cable and joining it back together
through a router or a bridge? No. If you have an old network that is finally reaching saturation, it is
time to install a new network built on a more robust technology. A shared media network, a network
where everyone is on the same cable (in this example, a coaxial cable Ethernet) is an accident
waiting to happen. Design a network that a user cannot bring down by merely disconnecting his
system, or even by accidentally cutting a wire in his office. Use unshielded twisted pair (UTP) cable,
ideally Category 5 cable, to create a 10BaseT Ethernet or 100BaseT Fast Ethernet that wires
equipment located in the user's office to a hub securely stored in a wire closet. The network
components in the user's office should be sufficiently isolated from the network so that damage to
those components does not damage the entire network. The new network will solve your collision
problem and reduce the amount of hardware troubleshooting you are called upon to do.

13.4.5 Network Hardware Problems

Some of the tests discussed in this section can show a network hardware problem. If a hardware
problem is indicated, contact the people responsible for the hardware. If the problem appears to be in
a leased telephone line, contact the telephone company. If the problem appears to be in a wide area
network, contact the management of that network. Don't sit on a problem expecting it to go away. It
could easily get worse.

If the problem is in your local area network, you will have to handle it yourself. Some tools, such as
the cable tester, can help. But frequently the only way to approach a hardware problem is by brute
force—disconnecting pieces of hardware until you find the one causing the problem. It is most
convenient to do this at the switch or hub. If you identify a device causing the problem, repair or
replace it. Remember that the problem can be the cable itself, rather than any particular device.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5 Checking Routing

The "network unreachable" error message clearly indicates a routing problem. If the problem is in the local
routing table, it is easy to detect and resolve. First, use netstat -nr and grep to see whether or not a valid route to
your destination is installed in the routing table.[5]

[5] netstat -nr works on most systems, but Linux administrators prefer route -n.

This example checks for a specific route to network 128.8.0.0:

% netstat -nr | grep '^128\.8\.'
128.8.0.0 26.20.0.16 UG 0 37 dnet0

This same test, run on a system that did not have this route in its routing table, would return no response at all. For
example, a user reports that the "network is down" because he cannot ftp to helios.metalab.unc.edu
test returns the following results:

% ping -s helios.metalab.unc.edu 56 2
PING helios.metalab.unc.edu: 56 data bytes

sendto: Network is unreachable

ping: wrote helios.metalab.unc.edu 64 chars, ret=-1

sendto: Network is unreachable

ping: wrote helios.metalab.unc.edu 64 chars, ret=-1

----helios.metalab.unc.edu PING Statistics----

2 packets transmitted, 0 packets received, 100% packet loss

Based on the "network unreachable" error message, check the user's routing table. In our example, we're looking
a route to helios.metalab.unc.edu. The IP address[6] of helios.metalab.unc.edu is 152.2.210.81. So we
route to a destination that begins with 152.2:

[6] Use nslookup to find the IP address if you don't know it. nslookup is discussed later in this chapter.

% netstat -nr | grep '^152\.2\.'
%

This test shows that there is no specific route to a destination that begins with 152.2. If a route was found,
would display it. Since there's no specific route to the destination, remember to look for a default route. This example
shows a successful check for a default route on a Solaris system:[7]

[7] On a Linux system, grep for network 0.0.0.0, which Linux uses instead of the word "default" to indicate the default route.

% netstat -nr | grep def
default 172.16.12.1 UG 0 101277 dnet0

If netstat shows the correct specific route or a valid default route, the problem is not in the routing table. In that
case, use traceroute, as described in the next section, to trace the route all the way to its destination.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

case, use traceroute, as described in the next section, to trace the route all the way to its destination.

If the routing table doesn't contain the expected route, it's a local routing problem. There are two ways to approach
local routing problems, depending on whether the system uses static or dynamic routing. If you're using static routing,
install the missing route using the route add command. Remember, most systems that use static routing rely on a
default route, so the missing route could be the default route. Make sure that the startup files add the needed
the table whenever the system reboots. See Chapter 7 for details about the route add command.

If you're using dynamic routing, make sure that the routing program is running. For example, the command below
makes sure that gated is running:

% ps 'cat /etc/gated.pid'
 PID TT STAT TIME COMMAND

27711 ? S 304:59 gated -tep /etc/log/gated.log

If the correct routing daemon is not running, restart it and specify tracing. Tracing allows you to check for problems
that might be causing the daemon to terminate abnormally.

13.5.1 Tracing Routes

If the local routing table is correct, the problem may be occurring some distance away from the local host. Remote
routing problems can cause the "no answer" error message, as well as the "network unreachable" error message. But
the "network unreachable" message does not always signify a routing problem. It can mean that the remote network
cannot be reached because something is down between the local host and the remote destination. traceroute
the program that can help you locate these problems.

traceroute traces the route of UDP packets from the local host to a remote host. It prints the name (if it can be
determined) and IP address of each gateway along the route to the remote host.

traceroute uses two techniques, small TTL (time-to-live) values and an invalid port number, to trace packets to
their destination. traceroute sends out UDP packets with small TTL values to detect the intermediate gateways.
The TTL values start at 1 and increase in increments of 1 for each group of three UDP packets sent. When a gateway
receives a packet, it decrements the TTL. If the TTL is then 0, the packet is not forwarded and an ICMP "Time
Exceeded" message is returned to the source of the packet. traceroute displays one line of output for each
gateway from which it receives a "Time Exceeded" message. Figure 13-2 presents a sample of the single line of
output that is displayed for a gateway, and shows the meaning of each field in the line.

Figure 13-2. traceroute output

When the destination host receives a packet from traceroute, it returns an ICMP "Unreachable Port"
This happens because traceroute intentionally uses an invalid port number (33434) to force this error. When
traceroute receives the "Unreachable Port" message, it knows that it has reached the destination
terminates the trace. So, traceroute is able to develop a list of the gateways, starting at one hop away
increasing one hop at a time until the remote host is reached. Figure 13-3 illustrates the flow of packets tracing
host three hops away. The following shows a traceroute to www.internic.net from a Solaris system hanging
Comcast network. traceroute sends out three packets at each TTL value. If no response is received to a
traceroute prints an asterisk (*). If a response is received, traceroute displays the name and address of the
gateway that responded and the packet's round trip time in milliseconds.

Figure 13-3. Flow of traceroute packets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ traceroute www.internic.net
traceroute to www.internic.net (207.151.159.3), 30 hops max, 40 byte packets

 1 ani (192.168.0.1) 1.712 ms 1.40 ms 1.34 ms

 2 10.81.130.1 (10.81.130.1) 52.01 ms 34.38 ms 118.97 ms

 3 bb1-fe1-0.mtgmry1.md.home.net (24.11.248.1) 13.30 ms 100.92 ms 31.99 ms

 4 c2-se9-0-10.washdc1.home.net (24.7.73.25) 118.63 ms 94.92 ms 121.10 ms

 5 24.7.71.6 (24.7.71.6) 127.63 ms 26.29 ms 132.07 ms

 6 p4-6-1-0.r00.plalca01.us.bb.verio.net (129.250.2.245) 186.02 ms 164.81 ms 156.44 ms

 7 p16-0-0-0.r06.plalca01.us.bb.verio.net (129.250.2.161) 86.59 ms 130.28 ms 121.09 ms

 8 p16-0-0-0.r04.snjsca03.us.bb.verio.net (129.250.3.162) 84.594 ms 117.42 ms 174.59 ms

 9 p16-3-0-0.r01.snjsca03.us.bb.verio.net (129.250.2.63) 123.87 ms 91.39 ms 119.79 ms

10 p4-2-0-0.r00.lsanca01.us.bb.verio.net (129.250.2.26) 142.38 ms 166.11 ms 95.32 ms

11 ge-0-0-0.a02.lsanca02.us.ra.verio.net (129.250.29.116) 137.59 ms 98.28 ms 256.11 ms

12 uscisi-pl.customer.ni.net (209.189.66.66) 98.64 ms 125.03 ms 231.11 ms

13 207.151.151.2 (207.151.151.2) 192.06 ms 164.52 ms 103.30 ms

14 icann-IWC.interworld.net (206.124.230.170) 113.33 ms 145.72 ms 107.39 ms

15 * host159-3.icann.org (207.151.159.3) 99.67 ms 178.72 ms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15 * host159-3.icann.org (207.151.159.3) 99.67 ms 178.72 ms

This trace shows that 15 intermediate gateways are involved, that packets are making the trip, and that round trip
travel time for packets from this host to www.internic.net is about 140 ms.

Variations and bugs in the implementation of ICMP on different types of gateways, as well as the unpredictable nature
of the path a datagram can take through a network, can cause some odd displays. For this reason, you shouldn't
examine the output of traceroute too closely. The most important things in the traceroute output are:

Did the packet get to its remote destination?

If not, where did it stop?

In the code below we show another trace of the path to www.internic.net. This time the trace does not
through to the InterNIC.

$ traceroute www.internic.net
traceroute to www.internic.net (207.151.159.3), 30 hops max, 40 byte packets

 1 ani (192.168.0.1) 1.712 ms 1.40 ms 1.34 ms

 2 10.81.130.1 (10.81.130.1) 52.01 ms 34.38 ms 118.97 ms

 3 bb1-fe1-0.mtgmry1.md.home.net (24.11.248.1) 13.30 ms 100.92 ms 31.99 ms

 4 c2-se9-0-10.washdc1.home.net (24.7.73.25) 118.63 ms 94.92 ms 121.10 ms

 5 24.7.71.6 (24.7.71.6) 127.63 ms 26.29 ms 132.07 ms

 6 p4-6-1-0.r00.plalca01.us.bb.verio.net (129.250.2.245) 186.02 ms 164.81 ms 156.44 ms

 7 p16-0-0-0.r06.plalca01.us.bb.verio.net (129.250.2.161) 86.59 ms 130.28 ms 121.09 ms

 8 p16-0-0-0.r04.snjsca03.us.bb.verio.net (129.250.3.162) 84.594 ms 117.42 ms 174.59 ms

 9 * * *

10 * * *

 .

 .

 .

29 * * *

30 * * *

When traceroute fails to get packets through to the remote end system, the trace trails off, displaying a series of
three asterisks at each hop count until the count reaches 30. If this happens, contact the administrator of the remote
host you're trying to reach, and the administrator of the last gateway displayed in the trace. Describe the problem to
them; they may be able to help. In our example, the last gateway that responded to our packets was
0.r04.snjsca03.us.bb.verio.net. We would therefore contact this system administrator and the administrator of
www.internic.net.

13.5.2 Locating an Administrator

To contact a remote administrator, you must know who to contact. whois helps you locate important people. One of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To contact a remote administrator, you must know who to contact. whois helps you locate important people. One of
the most important pieces of information in a network is who is in charge at the other end. When troubleshooting
network problem, whois is a tool that helps you find this out.

whois obtains the requested information from the Internet white pages. The white pages is a database of information
about responsible people that is maintained by the Internet registrars. When you request an official network number
or domain name, you are asked to provide contact information, which becomes your personal record in the white
pages database. Because of this, everyone who is responsible for an official network or domain is supposed to have
an entry in the white pages, and that entry can be retrieved by anyone who needs to contact them.

Many Unix systems provide a whois command to query the white pages. The general form of this command is:

% whois [-h server] name

The name field is the information to be searched for in the white pages database. The server field is the name of a
system containing the white pages.

In the following example, we search for contact information for the verio.net domain, which is the domain where the
remote router from the traceroute example is located.

$ whois verio.net
[whois.crsnic.net]

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

 Domain Name: VERIO.NET

 Registrar: MELBOURNE IT, LTD. D/B/A INTERNET NAMES WORLDWIDE

 Whois Server: whois.inww.com

 Referral URL: http://www.inww.com

 Name Server: NS0.VERIO.NET

 Name Server: NS1.VERIO.NET

 Name Server: NS2.VERIO.NET

 Updated Date: 13-jun-2001

>>> Last update of whois database: Tue, 17 Jul 2001 02:04:28 EDT <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Registrars.

[whois.inww.com]

Domain Name.......... verio.net

 Creation Date........ 1996-12-07

 Registration Date.... 2000-05-10

 Expiry Date.......... 2001-12-06

 Organisation Name.... Verio, Inc.

 Organisation Address. 8005 South Chester Street

 Organisation Address. Suite 200

 Organisation Address. Englewood

 Organisation Address. CO

 Organisation Address. 80112

 Organisation Address. UNITED STATES

Admin Name........... Hostmaster Verio

 Admin Address........ 8005 South Chester Street

 Admin Address........ Suite 200

 Admin Address........ Englewood

 Admin Address........ 80112

 Admin Address........ CO

 Admin Address........ UNITED STATES

 Admin Email.......... DomainAdmin@verio.net

 Admin Phone.......... 214 290 8620

 Admin Fax............ .

Tech Name............ Hostmaster Verio

 Tech Address......... 8005 South Chester Street

 Tech Address......... Suite 200

 Tech Address......... Englewood

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Tech Address......... CO

 Tech Address......... 80112

 Tech Address......... UNITED STATES

 Tech Email........... hostmaster@verio.net

 Tech Phone........... 214 290 8620

 Tech Fax............. .

 Name Server.......... NS0.VERIO.NET

 Name Server.......... NS1.VERIO.NET

 Name Server.......... NS2.VERIO.NET

The query displays the name, address, and telephone number of the contacts for the domain, as well as a list of hosts
providing authoritative name service for the domain. This example shows how it is supposed to work, and for
substantial, well-run networks such as verio.net, it usually does. Unfortunately, many whois queries return no useful
information because the white pages database is poorly maintained. If whois provides no information, try checking
DNS name service. The DNS SOA record should contain a mailing address for a domain contact who may be able to
point you to the right system administrator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6 Checking Name Service

Name server problems are indicated when the "unknown host" error message is returned by the user's application. Name server
problems can usually be diagnosed with nslookup or dig. nslookup is discussed in detail in Chapter 8
with similar functionality and is discussed in this chapter. Before looking at dig, let's take another look at
is used to troubleshoot name service.

The three features of nslookup covered in Chapter 8 are particularly important for troubleshooting
These features are its ability to:

Locate the authoritative servers for the remote domain using the NS query

Obtain all records about the remote host using the ANY query

Browse all entries in the remote zone using nslookup's ls and view commands

When troubleshooting a remote server problem, directly query the authoritative servers returned by the NS query. Don't rely on
information returned by non-authoritative servers. If the problems that have been reported are intermittent, query all of the
authoritative servers in turn and compare their answers. Intermittent name server problems are sometimes caused by the remote
servers returning different answers to the same query.

The ANY query returns all records about a host, thus giving the broadest range of troubleshooting information. Simply knowing
what information is (and isn't) available can solve a lot of problems. For example, if the query returns an MX record but no A
it is easy to understand why the user couldn't telnet to that host! Many hosts are accessible to mail that are not accessible by
other network services. In this case, the user is confused and is trying to use the remote host in an inappropriate manner.

If you are unable to locate any information about the hostname that the user gave you, perhaps the hostname is incorrect. Given
that the hostname you have is wrong, looking for the correct name is like trying to find a needle in a haystack. However,
can help. Use nslookup's ls command to dump the remote zone file, and redirect the listing to a file. Then
command to browse through the file, looking for names similar to the one the user supplied. Many problems are caused by a
mistaken hostname.

All of the nslookup features and commands mentioned here are used in Chapter 8. However, some examples using these
commands to solve real name server problems will be helpful. The three examples that follow are based on actual

[8] The host and server names are fictitious, but the problems were real.

13.6.1 Some Systems Work, Others Don't

A user reported that she could resolve a certain hostname from her workstation, but could not resolve the same
central system. However, the central system could resolve other hostnames. We ran several tests and found that we could
the hostname on some systems and not on others. There seemed to be no predictable pattern to the failure. So we used
nslookup to check the remote servers:

% nslookup
Default Server: crab.wrotethebook.com

Address: 172.16.12.1

> set type=NS
> foo.edu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> foo.edu.
Server: crab.wrotethebook.com

Address: 172.16.12.1

foo.edu nameserver = gerbil.foo.edu

foo.edu nameserver = red.big.com

foo.edu nameserver = shrew.foo.edu

gerbil.foo.edu inet address = 198.97.99.2

red.big.com inet address = 184.6.16.2

shrew.foo.edu inet address = 198.97.99.1

> set type=ANY
> server gerbil.foo.edu
Default Server: gerbil.foo.edu

Address: 198.97.99.2

> hamster.foo.edu
Server: gerbil.foo.edu

Address: 198.97.99.2

hamster.foo.edu inet address = 198.97.99.8

> server red.big.com
Default Server: red.big.com

Address: 184.6.16.2

> hamster.foo.edu
Server: red.big.com

Address: 184.6.16.2

 *** red.big.com can't find hamster.foo.edu: Non-existent domain

This sample nslookup session contains several steps. The first step is to locate the authoritative servers for the
question (hamster.foo.edu). We set the query type to NS to get the name server records, and query for
which the hostname is found. This returns three names of authoritative servers: gerbil.foo.edu, red.big.com

Next, we set the query type to ANY to look for any records related to the hostname in question. Then we set the server to the first
server in the list, gerbil.foo.edu, and query for hamster.foo.edu. This returns an address record. So server
We repeat the test using red.big.com as the server, and it fails. No records are returned.

The next step is to get SOA records from each server and see if they are the same:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> set type=SOA
> foo.edu.
Server: red.big.com

Address: 184.6.16.2

foo.edu origin = gerbil.foo.edu

 mail addr = amanda.gerbil.foo.edu

 serial=10164, refresh=43200, retry=3600, expire=3600000,

 min=2592000

> server gerbil.foo.edu
Default Server: gerbil.foo.edu

Address: 198.97.99.2

> foo.edu.
Server: gerbil.foo.edu

Address: 198.97.99.2

foo.edu origin = gerbil.foo.edu

 mail addr = amanda.gerbil.foo.edu

 serial=10164, refresh=43200, retry=3600, expire=3600000,

 min=2592000

 > exit
If the SOA records have different serial numbers, perhaps the zone file, and therefore the hostname, has not yet been downloaded
to the slave server. If the serial numbers are the same and the data is different, as in this case, there is a definite problem. Contact
the remote domain administrator and notify her of the problem. The administrator's mailing address is shown in the "mail
of the SOA record. In our example, we would send mail to amanda@gerbil.foo.edu reporting the problem.

13.6.2 The Data Is Here and the Server Can't Find It!

This problem was reported by the administrator of one of our slave name servers. The administrator reported that his server could
not resolve a certain hostname in a domain for which his server was a slave server. The master server was, however, able to
resolve the name. The administrator dumped his cache (more on dumping the server cache in the next section), and he could see
in the dump that his server had the correct entry for the host. But his server still would not resolve that hostname to an IP address!

The problem was replicated on several other slave servers. The master server would resolve the name; the slave servers wouldn't.
All servers had the same SOA serial number, and a dump of the cache on each server showed that they all had the correct address
records for the hostname in question. So why wouldn't they resolve the hostname to an address?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visualizing the difference between the way master and slave servers load their data made us suspicious of the zone file transfer.
Master servers load the data directly from local disk files. Slave servers transfer the data from the master server via a zone file
transfer. Perhaps the zone files were getting corrupted. We displayed the zone file on one of the slave servers, and it showed the
following data:

% cat /usr/etc/events.wrotethebook.com.hosts
PCpma IN A 172.16.64.159

 IN HINFO "pc" "n3/800eventsnutscom"

PCrkc IN A 172.16.64.155

 IN HINFO "pc" "n3/800eventsnutscom"

PCafc IN A 172.16.64.189

 IN HINFO "pc" "n3/800eventsnutscom"

accu IN A 172.16.65.27

cmgds1 IN A 172.16.130.40

cmg IN A 172.16.130.30

PCgns IN A 172.16.64.167

 IN HINFO "pc" "(3/800eventsnutscom"

gw IN A 172.16.65.254

zephyr IN A 172.16.64.188

 IN HINFO "Sun" "sparcstation"

ejw IN A 172.16.65.17

PCecp IN A 172.16.64.193

 IN HINFO "pc" "n Lsparcstationstcom"

Notice the odd display in the last field of the HINFO statement for each PC.[9]

[9] See Appendix C for a detailed description of the HINFO statement.

This data might have been corrupted in the transfer or it might be bad on the master server. We used

% nslookup
Default Server: crab.wrotethebook.com

Address: 172.16.12.1

> server 24seven.events.wrotethebook.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> server 24seven.events.wrotethebook.com
Default Server: 24seven.events.wrotethebook.com

Address: 172.16.6.1

> set query=HINFO
> PCwlg.events.wrotethebook.com
Server: 24seven.events.wrotethebook.com

Address: 172.16.6.1

PCwlg.events.wrotethebook.com CPU=pc OS=ov

packet size error (0xf7fff590 != 0xf7fff528)

> exit
In this nslookup example, we set the server to 24seven.events.wrotethebook.com, which is the master server for
events.wrotethebook.com. Next we queried for the HINFO record for one of the hosts that appeared to
The "packet size error" message clearly indicates that nslookup was even having trouble retrieving the HINFO record directly
from the master server. We contacted the administrator of the master server and told him about the problem, pointing out the
records that appeared to be in error. He discovered that he had forgotten to put an operating system
records. He corrected this, and it fixed the problem.

13.6.3 Cache Corruption

The previous problem was caused by the name server cache being corrupted by bad data. Cache corruption can occur even if
system is not a slave server. All servers cache answers. If those answers are corrupted, entries in the cache may become
corrupted. Dumping the cache can help diagnose these types of problems.

For example, a user reported intermittent name server failures. She had no trouble with any hostnames within the local domain or
with some names outside the local domain, but names in several different remote domains would not resolve.
produced no solid clues, so the name server cache was dumped and examined for problems. The root server entries were
corrupted, so named was reloaded to clear the cache and reread the named.ca file. Here's how it was done.

The ndc dumpdb command or the SIGINT signal causes named to dump the name server cache to the file
/var/tmp/named_dump.db. The following example uses the signal:

kill -INT 'cat /etc/named.pid'
The process ID of named can be obtained from /etc/named.pid, as in the example above, because named
that file during startup.[10]

[10] On our Linux system the process ID is written to /var/run/named.pid.

Once named writes its cache to the file, we can examine the file to see if the names and addresses servers are
named_dump.db file is composed of three sections: the zone table section, the Cache & Data section,

13.6.3.1 The zone table section

The first section of the dump file is the zone table, which shows the zones loaded when the server started. The zone table from the
master server for zones wrotethebook.com and 16.172.in-addr.arpa would show the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; Dumped at Tue Jul 17 16:08:18 2001

;; ++zone table++

; . (type 6, class 0, source Nil)

; time=0, lastupdate=0, serial=0,

; refresh=0, retry=0, expire=0, minimum=0

; ftime=0, xaddrcnt=0, state=0000, pid=0

; . (type 3, class 1, source named.ca)

; time=0, lastupdate=965723221, serial=0,

; refresh=0, retry=0, expire=0, minimum=4294967295

; ftime=965723221, xaddrcnt=0, state=0040, pid=0

; 0.0.127.in-addr.arpa (type 1, class 1, source named.local)

; time=0, lastupdate=0, serial=1997022700,

; refresh=0, retry=14400, expire=3600000, minimum=86400

; ftime=965723221, xaddrcnt=0, state=0041, pid=0

; wrotethebook.com (type 1, class 1, source wrotethebook.com.hosts)

; time=0, lastupdate=0, serial=2001070501,

; refresh=0, retry=1800, expire=604800, minimum=900

; ftime=982967703, xaddrcnt=0, state=0041, pid=0

; 16.172.in-addr.arpa (type 1, class 1, source 172.16.rev)

; time=0, lastupdate=0, serial=2001071602,

; refresh=0, retry=1800, expire=604800, minimum=900

; ftime=982968091, xaddrcnt=0, state=0041, pid=0

;; --zone table--

The section begins by displaying the date and time that the dump was taken. Labels at the start and end of the section delimit the
zone table. As indicated by the fact that each line begins with a semicolon, all of these lines are comments meant to provide
information to the system administrator. None of these are real database entries used by DNS. From the example above, you can
tell that this server has a zone statement in its named.conf file for the following domains:

. (dot)

The root domain that was loaded from a source file called named.ca. This is the hints file described in

0.0.127.in-addr.arpa

The loopback domain that was loaded from the source file named.local.

wrotethebook.com

The wrotethebook.com domain that was loaded from the wrotethebook.com.hosts source file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.172.in-addr.arpa

The reverse domain 16.172.in-addr.arpa that was loaded from the 172.16.rev source file.

The values from the SOA record of each zone are also printed. In the sample shown above, every zone except the root (.) has an
SOA record.

The zone table section identifies every zone for which the server has authority. It tells you where the server obtained the
information about the zone, and it tells you what defaults are set for the zone by the SOA record. If a zone is missing or is loading
from the wrong source, correct the zone statement in the named.conf file.

13.6.3.2 The Cache & Data section

The second section of the dump file is by far the longest. This is the section that contains all of the DNS information
server. Because of the section's length, the Cache & Data information shown below is just an excerpt:

; Note: Cr=(auth,answer,addtnl,cache) tag only shown for non-auth RR's

; Note: NT=milliseconds for any A RR which we've used as a nameserver

; --- Cache & Data ---

$ORIGIN .

. 513482 IN NS H.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS C.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS G.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS F.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS B.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS J.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS K.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS L.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS M.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS I.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS E.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS D.ROOT-SERVERS.NET. ;Cr=auth

 513482 IN NS A.ROOT-SERVERS.NET. ;Cr=auth

... Many Lines Deleted ...

$ORIGIN ROOT-SERVERS.NET.

K 599882 IN A 193.0.14.129 ;NT=9 Cr=answer

A 599882 IN A 198.41.0.4 ;NT=10 Cr=answer

L 599882 IN A 198.32.64.12 ;NT=5 Cr=answer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L 599882 IN A 198.32.64.12 ;NT=5 Cr=answer

M 599882 IN A 202.12.27.33 ;NT=15 Cr=answer

B 599882 IN A 128.9.0.107 ;NT=5 Cr=answer

C 599882 IN A 192.33.4.12 ;NT=165 Cr=answer

D 599882 IN A 128.8.10.90 ;NT=12 Cr=answer

E 599882 IN A 192.203.230.10 ;NT=6 Cr=answer

F 599882 IN A 192.5.5.241 ;NT=1021 Cr=answer

G 599882 IN A 192.112.36.4 ;NT=1023 Cr=answer

H 599882 IN A 128.63.2.53 ;NT=6 Cr=answer

I 599882 IN A 192.36.148.17 ;NT=7 Cr=answer

J 599882 IN A 198.41.0.10 ;NT=6 Cr=answer

... Many Lines Deleted ...

$ORIGIN com.

foobirds 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2

 86400 IN MX 10 wren.foobirds.org. ;Cl=2

 86400 IN MX 20 parrot.foobirds.org. ;Cl=2

 86400 IN NS wren.foobirds.org. ;Cl=2

 86400 IN NS parrot.foobirds.org. ;Cl=2

 86400 IN SOA wren.foobirds.org. admin.wren.foobirds.org. (

 2000020501 21600 1800 604800 900) ;Cl=2

$ORIGIN foobirds.org.

ducks 86400 IN NS ruddy.ducks.foobirds.org. ;Cl=2

 86400 IN NS wren.foobirds.org. ;Cl=2

 86400 IN NS bear.mammals.org. ;Cl=2

news 86400 IN CNAME parrot.foobirds.org. ;Cl=2

robin 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2

 86400 IN MX 5 wren.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.2 ;Cl=2

puffin 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2

 86400 IN MX 5 wren.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.17 ;Cl=2

wren 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wren 86400 IN RP admin.foobirds.org. hotline.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.1 ;Cl=2

parrot 86400 IN RP logan.parrot.foobirds.org. logan.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.3 ;Cl=2

logan 86400 IN TXT "Logan Little (301)555-2021" ;Cl=2

crow 86400 IN RP doris.crow.foobirds.org.foobirds.org. crowRP.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.5 ;Cl=2

localhost 86400 IN A 127.0.0.1 ;Cl=2

terns 86400 IN NS sooty.terns.foobirds.org. ;Cl=2

 86400 IN NS arctic.terns.foobirds.org. ;Cl=2

www 86400 IN CNAME wren.foobirds.org. ;Cl=2

hotline 86400 IN TXT "Support hotline (301)555-2000" ;Cl=2

bob 86400 IN CNAME robin.foobirds.org. ;Cl=2

redbreast 86400 IN CNAME robin.foobirds.org. ;Cl=2

hawkRP 86400 IN TXT "Clark Smart (301)555-2099" ;Cl=2

kestrel 86400 IN RP clark.foobirds.org.foobirds.org. hawkRP.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.20 ;Cl=2

crowRP 86400 IN TXT "Doris Nathan (301)555-2078" ;Cl=2

kestral 86400 IN CNAME kestrel.foobirds.org. ;Cl=2

hawk 86400 IN RP clark.foobirds.org.foobirds.org. hawkRP.foobirds.org. ;Cl=2

 86400 IN A 172.16.5.4 ;Cl=2

foobirds-net 86400 IN PTR 0.0.16.172.in-addr.arpa. ;Cl=2

$ORIGIN terns.foobirds.org.

arctic 86400 IN A 172.16.30.251 ;Cl=2

sooty 86400 IN A 172.16.30.250 ;Cl=2

$ORIGIN 172.in-addr.arpa.

16 86400 IN NS wren.foobirds.org. ;Cl=4

 86400 IN SOA wren.foobirds.org. admin.wren.foobirds.org. (

 2000021602 21600 1800 604800 900) ;Cl=4

$ORIGIN 6.16.172.in-addr.arpa.

1 86400 IN PTR arctic.terns.foobirds.org. ;Cl=4

$ORIGIN 12.16.172.in-addr.arpa.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 86400 IN PTR wren.foobirds.org. ;Cl=4

$ORIGIN 5.16.172.in-addr.arpa.

20 86400 IN PTR kestrel.foobirds.org. ;Cl=4

4 86400 IN PTR hawk.foobirds.org. ;Cl=4

2 86400 IN PTR robin.foobirds.org. ;Cl=4

17 86400 IN PTR puffin.foobirds.org. ;Cl=4

5 86400 IN PTR crow.foobirds.org. ;Cl=4

3 86400 IN PTR parrot.foobirds.org. ;Cl=4

$ORIGIN 0.127.in-addr.arpa.

0 86400 IN NS localhost. ;Cl=5

 86400 IN SOA localhost. root.localhost. (

 1997022700 28800 14400 3600000 86400) ;Cl=5

$ORIGIN 0.0.127.in-addr.arpa.

1 86400 IN PTR localhost. ;Cl=5

The example is long even though the dump was taken shortly after the server started, and many lines have been deleted from the
listing. The bulk of the data shown is information loaded from the local zone files, but a dump file also contains a good deal of
cached information. Large chunks of the cache are the result of information provided in the authority and additional sections of the
query responses. At least as much data enters the cache in this manner as enters as a result of specific answers to queries. The
large number of NS entries and the A records for those NS entries make this clear.

The Cache & Data section is segmented by $ORIGIN directives. All of the other lines in this section are clearly identifiable DNS
resource records. But some additional information is appended to the end of each record as a comment. Three comments that the
server commonly adds to a record include the following:

Cl

Identifies the number of fields in the current origin. Therefore, when the origin is 0.0.127.in-addr.arpa
when the origin is wrotethebook.com, the Cl value is 2. The root (.) is assigned a Cl value of 0.

Nt

The round trip time for queries to the specified name server. This comment is added only to the address records of name
servers. The round trip time helps named select the best server for a given query.

Cr

The "credibility" tag identifies the authority level of the source of cached information. BIND has three authority levels:

auth

An authoritative answer.

answer

An answer from a non-authoritative source.

addtnl

A record learned from the authority or additional section of a query response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Cr value is used by named when a record is received that already exists in the name server's cache. If the
a higher credibility rating than the record in the cache, the new record replaces the cached record. If the new
credibility rating than the record in the cache, the cached record is retained. Of the Cr values, auth is the most credible and
addtnl is the least credible.

The comments at the end of a record are not the only comments that you might see in the Cache & Data section of a dump file.
Negative cached information also appears in the dump as a comment. There are no examples of this in our sample dump file, but if
there were, you would see a normal resource record that starts with a semicolon. In other words, the negative cached information
appears as a resource record that has been commented out of the file. Additionally, the tag NXDOMAIN is written near the end of
the record.

Examine the Cache & Data section to discover if the data you entered in your zone file has been loaded as you expect. Also use
this section to see if the information you have loaded from a remote server is what you expect. Local data can be corrected locally.
Incorrect data from a remote server may require coordination with the administrator of a remote domain.

13.6.3.3 The Hints section

The last section in the dump file is the Hints section. This section contains the list of root name servers loaded
(Defining and using the hints file is discussed in Chapter 8.) This hints file is used only when the name server starts. Once the
server starts, one of the root servers is queried for an authoritative list of root servers. It is the authoritative list obtained from the
root server that you see in the Cache & Data section following the $ORIGIN . statement.

The Hints section from our sample system is shown below. Notice that all of the name servers in the Hints section have an Nt
number assigned. named queries each server to establish a round trip time to select the best root server to use.

; --- Hints ---

$ORIGIN .

. 3600000 IN NS A.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS B.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS C.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS D.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS E.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS F.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS G.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS H.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS I.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS J.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS K.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS L.ROOT-SERVERS.NET. ;Cl=0

 3600000 IN NS M.ROOT-SERVERS.NET. ;Cl=0

$ORIGIN ROOT-SERVERS.NET.

K 3600000 IN A 193.0.14.129 ;NT=2 Cl=0

L 3600000 IN A 198.32.64.12 ;NT=5 Cl=0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

L 3600000 IN A 198.32.64.12 ;NT=5 Cl=0

A 3600000 IN A 198.41.0.4 ;NT=6 Cl=0

M 3600000 IN A 202.12.27.33 ;NT=10 Cl=0

B 3600000 IN A 128.9.0.107 ;NT=134 Cl=0

C 3600000 IN A 192.33.4.12 ;NT=8 Cl=0

D 3600000 IN A 128.8.10.90 ;NT=24 Cl=0

E 3600000 IN A 192.203.230.10 ;NT=2 Cl=0

F 3600000 IN A 192.5.5.241 ;NT=22 Cl=0

G 3600000 IN A 192.112.36.4 ;NT=2 Cl=0

H 3600000 IN A 128.63.2.53 ;NT=22 Cl=0

I 3600000 IN A 192.36.148.17 ;NT=2 Cl=0

J 3600000 IN A 198.41.0.10 ;Cl=0

The purpose of dumping the DNS cache is to examine what data is stored internally by DNS and how it is stored. Examining the
authoritative information that you provide to the server in the zone files will give you insight into how that data is being stored.
Examining the other data in the cache shows you how your users use DNS. Learning how DNS is normally used can help identify
when usage patterns change.

If you see problems in the dump file, force named to reload its cache with the ndc reload command
reload), or with the SIGHUP signal as shown below:

kill -HUP 'cat /etc/named.pid'
This clears the cache and reloads the valid root server entries from your named.ca file.

If you know which system is corrupting your cache, instruct your system to ignore updates from the culprit by using a
statement in the /etc/named.conf file with the bogus option set to yes. The server statement lists the IP address of a name
server. Setting bogus to yes in the server statement tells named that information from that server cannot be
example, the previous section described a problem where 24seven.events.wrotethebook.com (172.16.16.1)
corruption with improperly formatted HINFO records. The following entry in the named.conf file would
24seven.events.wrotethebook.com and thus prevent the cache corruption:

 server 172.16.16.1 {

 bogus yes;

};

Setting bogus to yes is only a temporary measure, designed to keep things running while the remote
chance to diagnose and repair the problem. Once the remote system is fixed, remove the server statement

13.6.4 dig: An Alternative to nslookup

An alternative to nslookup for making name service queries is dig. dig queries are usually entered as single-line commands,
while nslookup is usually run as an interactive session. But the dig command performs essentially the same function as
nslookup. Which you use is mostly a matter of personal choice. They both work well.

As an example, we'll use dig to ask the root server b.root-servers.net for the NS records for the mit.edu
the following command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% dig @b.root-servers.net mit.edu ns
In this example, @b.root-servers.net is the server that is being queried. The server can be identified by name or
you're troubleshooting a problem in a remote domain, specify an authoritative server for that domain. In this
for the names of servers for a top-level domain (mit.edu), so we ask a root server.

If you don't specify a server explicitly, dig uses the local name server or the name server defined in the
(Chapter 8 describes resolv.conf.) Optionally, you can set the environment variable LOCALRES to the name
resolv.conf file. This alternate file will then be used in place of /etc/resolv.conf for dig queries. Setting the LOCALRES variable will
affect only dig. Other programs that use name service will continue to use /etc/resolv.conf.

The last item on our sample command line is ns. This is the query type. A query type is a value that requests a
information. It is similar to the value used in nslookup's set type command. Table 13-1 shows the possible
their meanings.

Table 13-1. dig query types
Query type DNS record requested

a Address records

any Any type of record

mx Mail Exchange records

ns Name Server records

soa Start of Authority records

hinfo Host Info records

axfr All records in the zone

txt Text records

Notice that the function of nslookup's ls command is performed by the dig query type axfr.

dig also has an option that is useful for locating a hostname when you have only an IP address. If you have only the
a host, you may want to find out the hostname because numeric addresses are more prone to typos. Having the hostname can
reduce the user's problems. The in-addr.arpa domain converts addresses to hostnames, and dig provides a simple way to enter
in-addr.arpa domain queries. Using the -x option, you can query for a number-to-name conversion without having to manually
reverse the numbers and add "in-addr.arpa." For example, to query for the hostname of IP address 18.72.0.3, simply enter:

% dig -x 18.72.0.3

; <<>> DiG 2.2 <<>> -x

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUERY SECTION:

;; 3.0.72.18.in-addr.arpa, type = ANY, class = IN

;; ANSWER SECTION:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

;; ANSWER SECTION:

3.0.72.18.in-addr.arpa. 6H IN PTR BITSY.MIT.EDU.

;; AUTHORITY SECTION:

18.in-addr.arpa. 6H IN NS W20NS.MIT.EDU.

18.in-addr.arpa. 6H IN NS BITSY.MIT.EDU.

18.in-addr.arpa. 6H IN NS STRAWB.MIT.EDU.

;; ADDITIONAL SECTION:

W20NS.MIT.EDU. 6H IN A 18.70.0.160

BITSY.MIT.EDU. 6H IN A 18.72.0.3

STRAWB.MIT.EDU. 6H IN A 18.71.0.151

;; Total query time: 367 msec

;; FROM: wren.foobirds.org to SERVER: default -- 0.0.0.0

;; WHEN: Thu Jul 19 16:00:39 2001

;; MSG SIZE sent: 40 rcvd: 170

The answer to our query is BITSY.MIT.EDU, but dig displays lots of other output. For the purposes of this specific
important information is the answer.[11] However, the additional information displayed by dig is useful for gaining an insight into the
format of a DNS response packet and for learning where the various pieces of DNS information come from.

[11] To see a single-line answer to this query, pipe dig's output to grep; e.g., dig -x 18.72.0.3 | grep PTR.

The format of the DNS message is defined in RFC 1035, Domain Names - Implementation and Specification
standard message format composed of up to five parts:

Header

Provides administrative information about the message, including information about what is contained in subsequent
sections of the message.

Question

Defines the question being asked by a query. When the question section is returned in a response, it is used to help
determine which question the response is answering.

Answer

The part of a response that contains the answer to the specific question sent in the query.

Authority

Contains pointers to the authoritative servers for the domain being queried.

Additional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contains other resource records that provide additional, important information that supports the answer. This is not the
answer to the query, but it helps in interpreting or utilizing the answer.

The core of the output of the dig command is found in the various sections from the DNS response packet. The header data
the example above is:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

dig does not display the header data in the order in which it occurs in the header section, but it is easy to map the
the header described in RFC 1035. The various values displayed in the example and their meanings are listed here:

opcode: QUERY

Indicates that this is a standard query.

status: NOERROR

Indicates that no error code was found in the RCODE field of the header, which means that the RCODE field contains a 0.

id: 6

Indicates that the identifier used for this message was the number 6.

flags: qr aa rd ra

flags groups together all of the one-bit fields from the header. In this case it covers four different fields in the
section and gives us information about three others. This flag group means that QR is set to 1, indicating this is a response.
AA is set to 1 because this answer came from an authoritative server. RD is set to 1 to indicate that recursion was requested
by the query. RA is set to 1, indicating that recursion is available on the server. TC is not listed, meaning it is set to 0 and that
the response was not truncated. AD and CD are also set to 0 because DNSSEC is not in use.

QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

These represent the header fields QDCOUNT, ANCOUNT, NSCOUNT, and ARCOUNT, which indicate the number of
resource records in the remaining sections of the response. This display says that there is one entry in the question section,
one resource record in the answer section, three records in the authority section, and three records in

The sample dig command displays the following query data:

;; QUERY SECTION:

;; 3.0.72.18.in-addr.arpa, type = ANY, class = IN

The three fields of this query are clearly shown. The class field is IN because this is a query for Internet records. The query is
asking for any record (type = any) associated with 3.0.72.18.in-addr.arpa. Notice how dig reversed the address and created the
proper reverse domain name for this query.

Next, the dig command displays the answer, authority, and additional sections:

;; ANSWER SECTION:

3.0.72.18.in-addr.arpa. 6H IN PTR BITSY.MIT.EDU.

;; AUTHORITY SECTION:

18.in-addr.arpa. 6H IN NS W20NS.MIT.EDU.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.in-addr.arpa. 6H IN NS W20NS.MIT.EDU.

18.in-addr.arpa. 6H IN NS BITSY.MIT.EDU.

18.in-addr.arpa. 6H IN NS STRAWB.MIT.EDU.

;; ADDITIONAL SECTION:

W20NS.MIT.EDU. 6H IN A 18.70.0.160

BITSY.MIT.EDU. 6H IN A 18.72.0.3

STRAWB.MIT.EDU. 6H IN A 18.71.0.151

The answer is just what you would expect: the PTR record for 3.0.72.18.in-addr.arpa. The record tells us that
address 18.72.0.3 is bitsy.mit.edu.

The authority section lists the servers that are authoritative for the 18.in-addr.arpa domain. There are three NS
providing the name of an authoritative server. From this, we know that w20ns.mit.edu, bitsy.mit.edu,
authoritative for the reverse domain 18.in-addr.arpa.

The additional section completes the message by providing the address of each of the authoritative servers. The addresses are
important because if the local server wants to send future queries directly to these authoritative servers, it needs to know the
servers' addresses. In this case, the addresses are 18.70.0.160, 18.72.0.3, and 18.71.0.151.

In addition to the DNS response, dig provides status information in the first three lines and the last four lines
first line echoes the dig command-line options (-x in the example). The second line displays the resolver library settings, and the
third line states whether or not an answer was found for the query. The last four lines show the query response time, the name and
address of the server that answered the query, when the query was received, and the size of the query and response packets. All
of this can be helpful information when debugging a DNS problem.

dig is useful because the format of the DNS message is clearly shown in the dig output. dig is included with Linux, but it is not
found on all Unix systems. Don't worry if you don't have it on your system. nslookup can be used to attack the
dig. nslookup and dig both test DNS very effectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7 Analyzing Protocol Problems

Problems caused by bad TCP/IP configurations are much more common than problems caused
by bad TCP/IP protocol implementations. Most of the problems you encounter will succumb to
analysis using the simple tools we have already discussed. But on occasion, you may need to
analyze the protocol interaction between two systems. In the worst case, you may need to
analyze the packets in the data stream bit by bit. Protocol analyzers help you do this.

snoop is the tool we'll use. It is provided with the Solaris operating system.[12] Although we use
snoop in all of our examples, the concepts introduced in this section should be applicable to the
analyzer that you use, since most protocol analyzers function in basically the same way. Protocol
analyzers allow you to select, or filter, the packets you want to examine, and to examine those
packets byte by byte. We'll discuss both of these functions.

[12] If you use Linux, try tcpdump. It is similar to snoop.

Protocol analyzers watch all the packets on the network. Therefore, you only need one system
that runs analyzer software on the affected part of the network. One Solaris system with snoop
can monitor the network traffic and tell you what the other hosts are (or aren't) doing. This, of
course, assumes a shared media network. If you use an Ethernet switch, only the traffic on an
individual segment can be seen. Some switches provide a monitor port. For others you may need
to take your monitor to the location of the problem.

13.7.1 Packet Filters

snoop reads all the packets on an Ethernet. It does this by placing the Ethernet interface into
promiscuous mode.[13] Normally, an Ethernet interface only passes packets that are destined for
the local host up to the higher layer protocols. In promiscuous mode, all packets are accepted and
passed to the higher layer. This allows snoop to view all packets and to select packets for
analysis, based on a filter you define. Filters can be defined to capture packets from, or to,
specific hosts, protocols, ports, or combinations of all these. As an example, let's look at a very
simple snoop filter. The following snoop command displays all packets sent between the hosts
crab and rodent:

[13] This works only if the interface supports promiscuous mode; not all interfaces do.

snoop host crab and host rodent
Using device /dev/le (promiscuous mode)

rodent.wrotethebook.com -> crab.wrotethebook.com ICMP Echo request

crab.wrotethebook.com -> rodent.wrotethebook.com ICMP Echo reply

rodent.wrotethebook.com -> crab.wrotethebook.com RLOGIN C port=1023

crab.wrotethebook.com -> rodent.wrotethebook.com RLOGIN R port=1023

^C
The filter "host crab and host rodent" selects only those packets that are from rodent to crab, or
from crab to rodent. The filter is constructed from a set of primitives, and associated hostnames,
protocol names, and port numbers. The primitives can be modified and combined with the
operators and, or, and not. The filter may be omitted; this causes snoop to display all packets
from the network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 13-2 shows the primitives used to build snoop filters. There are a few additional primitives
and some variations that perform the same functions, but these are the essential primitives. See
the snoop manpage for additional details.

Table 13-2. Expression primitives
Primitive Matches packets

dst host | net | port destination To destination host, net, or port

src host | net | port source From source host, net, or port

host destination To or from destination host

net destination To or from destination network

port destination To or from destination port

ether address To or from Ethernet address

protocol Of protocol type (icmp, udp, or tcp)

Using these primitives with the operators and and or, complex filters can be constructed.
However, filters are usually simple. Capturing the traffic between two hosts is probably the most
common filter. You may further limit the data captured to a specific protocol, but often you're not
sure which protocol will reveal the problem. Just because the user sees the problem in ftp or
telnet does not mean that is where the problem actually occurs. Analysis must often start by
capturing all packets, and can only be narrowed after test evidence points to some specific
problem.

13.7.1.1 Modifying analyzer output

The example in the previous section shows that snoop displays a single line of summary
information for each packet received. All lines show the source and destination addresses, and
the protocol being used (ICMP and RLOGIN in the example). The lines that summarize the ICMP
packets identify the packet types (Echo request and Echo reply in the example). The lines that
summarize the application protocol packets display the source port and the first 20 characters of
the packet data.

This summary information is sufficient to gain insight into how packets flow between two hosts
and into potential problems. However, troubleshooting protocol problems requires more detailed
information about each packet. snoop has options that give you control over what information is
displayed. To display the data contained in a packet, use the -x option. It causes the entire
contents of the packet to be dumped in hex and ASCII. In most cases, you don't need to see the
entire packet; usually, the headers are sufficient to troubleshoot a protocol problem. The -v
option displays the headers in a well-formatted and very detailed manner. Because of the large
number of lines displayed for each packet, use -v only when you need it.

The following example shows an ICMP Echo Request packet displayed with the -v option. The
same type of packet was summarized in the first line of the previous example.

snoop -v host crab and host minasi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

snoop -v host crab and host minasi
Using device /dev/le (promiscuous mode)

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 3 arrived at 16:56:57.90

ETHER: Packet size = 98 bytes

ETHER: Destination = 8:0:20:22:fd:51, Sun

ETHER: Source = 0:0:c0:9a:d0:db, Western Digital

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 0x00

IP: xxx. = 0 (precedence)

IP: ...0 = normal delay

IP: 0... = normal throughput

IP: 0.. = normal reliability

IP: Total length = 84 bytes

IP: Identification = 3049

IP: Flags = 0x0

IP: .0.. = may fragment

IP: ..0. = last fragment

IP: Fragment offset = 0 bytes

IP: Time to live = 64 seconds/hops

IP: Protocol = 1 (ICMP)

IP: Header checksum = fde0

IP: Source address = 172.16.55.106, minasi.wrotethebook.com

IP: Destination address = 172.16.12.1, crab.wrotethebook.com

IP: No options

IP:

ICMP: ----- ICMP Header -----

ICMP:

ICMP: Type = 8 (Echo request)

ICMP: Code = 0

ICMP: Checksum = ac54 ICMP:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ICMP: Checksum = ac54 ICMP:

The detailed formatting done by snoop maps the bytes received from the network to the header
structure. Look at the description of the various header fields in Chapter 1 and Appendix G for
more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8 Protocol Case Study

This example is an actual case that was solved by protocol analysis. The problem was reported as an occasional
message:

netout: Option not supported by protocol 421 Service not available, remote server has closed connection

Only one user reported the problem, and it occurred only when transferring large files from a workstation to the central computer
backbone network.

We obtained the user's data file and were able to duplicate the problem from other workstations, but only when we transferred the
same central system via the backbone network. Figure 13-4 graphically summarizes the tests we ran to

Figure 13-4. FTP test summary

We notified all users of the problem. In response, we received reports that others had also experienced it, but again only when
to the central system, and only when transferring via the backbone. They had not reported it because they rarely saw it.
reports gave us some evidence that the problem did not relate to any recent network changes.

Because the problem had been duplicated on other systems, it probably was not a configuration problem on the user's system. The
failure could also be avoided if the backbone routers and the central system did not interact. So we concentrated
systems. We checked the routing tables and ARP tables, and ran ping tests on the central system
observed.

Based on this preliminary analysis, the ftp failure appeared to be a possible protocol interaction problem
routers and a central computer. We made that assessment because the transfer routinely failed when these two
involved, but never failed in any other circumstance. If the router or the central system were misconfigured,
transferring data to other hosts. If the problem was an intermittent physical problem, it should occur
involved. Instead, this problem occurred predictably, and only between two specific brands of computers. Perhaps there was something
incompatible in the way these two systems implemented TCP/IP.

Therefore, we used snoop to capture the TCP/IP headers during several ftp test runs. Reviewing the dumps showed that all transfers that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Therefore, we used snoop to capture the TCP/IP headers during several ftp test runs. Reviewing the dumps showed that all transfers that
failed with the "netout" error message had an ICMP Parameter Error packet near the end of the session, usually about 50 packets before
the final close. No successful transfer had this ICMP packet. Note that the error did not occur in the last packet in
might expect. It is common for an error to be detected, and for the data stream to continue for some time before
shut down. Don't assume that an error will always be at the end of a data stream.

Here are the headers from the key packets. First, the IP header of the packet from the backbone router that caused the central system to
send the error:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 1 arrived at 16:56:36.39

ETHER: Packet size = 60 bytes

ETHER: Destination = 8:0:25:30:6:51, CDC

ETHER: Source = 0:0:93:e0:a0:bf, Proteon

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 0x00

IP: xxx. = 0 (precedence)

IP: ...0 = normal delay

IP: 0... = normal throughput

IP: 0.. = normal reliability

IP: Total length = 552 bytes

IP: Identification = 8a22

IP: Flags = 0x0

IP: .0.. = may fragment

IP: ..0. = last fragment

IP: Fragment offset = 0 bytes

IP: Time to live = 57 seconds/hops

IP: Protocol = 6 (TCP)

IP: Header checksum = ffff

IP: Source address = 172.16.55.106, fs.wrotethebook.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IP: Source address = 172.16.55.106, fs.wrotethebook.com

IP: Destination address = 172.16.51.252, bnos.wrotethebook.com

IP: No options IP:

And this is the ICMP Parameter Error packet sent from the central system in response to that packet:

ETHER: ----- Ether Header -----

ETHER:

ETHER: Packet 3 arrived at 16:56:57.90

ETHER: Packet size = 98 bytes

ETHER: Destination = 0:0:93:e0:a0:bf, Proteon

ETHER: Source = 8:0:25:30:6:51, CDC

ETHER: Ethertype = 0800 (IP)

ETHER:

IP: ----- IP Header -----

IP:

IP: Version = 4

IP: Header length = 20 bytes

IP: Type of service = 0x00

IP: xxx. = 0 (precedence)

IP: ...0 = normal delay

IP: 0... = normal throughput

IP: 0.. = normal reliability

IP: Total length = 56 bytes

IP: Identification = 000c

IP: Flags = 0x0

IP: .0.. = may fragment

IP: ..0. = last fragment

IP: Fragment offset = 0 bytes

IP: Time to live = 59 seconds/hops

IP: Protocol = 1 (ICMP)

IP: Header checksum = 8a0b

IP: Source address = 172.16.51.252, bnos.wrotethebook.com

IP: Destination address = 172.16.55.106, fs.wrotethebook.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IP: Destination address = 172.16.55.106, fs.wrotethebook.com

IP: No options

IP:

ICMP: ----- ICMP Header -----

ICMP:

ICMP: Type = 12 (Parameter problem)

ICMP: Code = 0

ICMP: Checksum = 0d9f ICMP: Pointer = 10

Each packet header is broken out bit by bit and mapped to the appropriate TCP/IP header fields. From this detailed analysis of each
packet, we see that the router issued an IP Header Checksum of 0xffff, and that the central system objected to this checksum. We
that the central system objected to the checksum because it returned an ICMP Parameter Error with a Pointer of 10. The Parameter
indicates that there is something wrong with the data the system has just received, and the Pointer identifies the specific
system thinks is in error. The tenth byte of the router's IP header is the IP Header Checksum. The data field of
returns the header that it believes is in error. When we displayed that data we noticed that when the central
checksum field was "corrected" to 0000. Clearly the central system disagreed with the router's checksum calculation.

Occasional checksum errors will occur. They can be caused by transmission problems, and are intended to detect these types of
Every protocol suite has a mechanism for recovering from checksum errors. So how should they be handled in TCP/IP?

To determine the correct protocol action in this situation, we turned to the authoritative sources—the RFCs. RFC 791,
provided information about the checksum calculation, but the best source for this particular problem was RFC 1122,
Internet Hosts—Communication Layers, by R. Braden. This RFC provided two specific references that define the action to be taken.
excerpts are from page 29 of RFC 1122:

In the following, the action specified in certain cases is to "silently discard" a received datagram. This means that
will be discarded without further processing and that the host will not send any ICMP error message (see Section 3.2.2) as
result....

... A host MUST verify the IP header checksum on every received datagram and silently discard every datagram that has a
bad checksum.

Therefore, when a system receives a packet with a bad checksum, it is not supposed to do anything with it. The packet should be
discarded, and the system should wait for the next packet to arrive. The system should not respond with an error message. A system
cannot respond to a bad IP header checksum because it cannot really know where the packet came from. If the header checksum is in
doubt, how do you know if the addresses in the header are correct? And if you don't know for sure where the packet came from, how can
you respond to it?

IP relies on the upper-layer protocols to recover from these problems. If TCP is used (as it was in this case), the sending TCP
notices that the recipient has never acknowledged the segment, and it sends the segment again. If UDP is used, the sending
responsible for recovering from the error. In neither case does recovery rely on an error message returned from the

Therefore, for an incorrect checksum, the central system should have simply discarded the bad packet. The vendor was informed of this
problem and, much to their credit, they sent us a fix for the software within two weeks. Not only that, the fix worked perfectly!

Not all problems are resolved so cleanly. But the technique of analysis is the same no matter what the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9 Summary

Every network will have problems. This chapter discusses the tools and techniques that can help
you recover from these problems, and the planning and monitoring that can help avoid them. A
solution is sometimes obvious if you can just gain enough information about the problem. Unix
provides several built-in software tools that can help you gather information about system
configuration, addressing, routing, name service, and other vital network components. Gather
your tools and learn how to use them before a breakdown occurs.

Troubleshooting is an ongoing process. This book is just the beginning of another ongoing
process—learning. As you explore your system and network, you'll see that there is much more to
networking than can ever be covered in one book. This book has been your launching pad—
helping you connect your system to the network. Now that your system is up and running, use it
as a tool to expand your information horizons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. PPP Tools
This appendix is a reference for dip, pppd, and chat. These tools are used to create dial-up IP
connections for the Point-to-Point Protocol (PPP). dip and chat are both scripting languages.
Creating a script that initializes the modem, dials the remote server, logs in, and configures the
remote server is the biggest task in configuring a PPP connection. Chapter 6 provides examples
and tutorial information about all three of the programs covered here. This appendix provides a
reference to the programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1 Dial-Up IP

dip is a scripting tool designed specifically for creating SLIP and PPP connections.[A]

[A] Serial Line IP (SLIP) predates PPP. Today most serial connections are PPP, which is what this appendix
emphasizes.

The syntax of the dip command is:

dip [options] [scriptfile]

The dip command is invoked with an option set, a script file specified, or both. When
scriptfile is specified, dip executes the commands contained in the script file to create a
point-to-point connection. Examples of scripts and dip are shown in Chapter 6. The options
valid with script files are:

-v

Runs dip in verbose mode. In this mode, dip echoes each line of the script file as it is
executed and displays enhanced status messages.

-m mtu

Sets the maximum transmission unit (MTU) to the number of bytes specified by mtu. The
default MTU is 296 bytes.

-p proto

Selects the serial line protocol. Possible values for proto are: SLIP, CSLIP, PPP, or
TERM.

The other dip command-line options are:

-k

Kills the last dip process you started. You can only kill a process you own, unless of
course you're root.

-l device

Specifies that the process to be killed is the one that has locked the specified device. This
option is valid only when used with the -k option.

-i [username]

Runs dip as a login shell to provide a PPP server. The diplogin command is equivalent
to dip -i. These two forms of the command are used interchangeably, but diplogin is
the most common form. diplogin is placed in the login shell field of the /etc/passwd file
entry for each PPP client. From there it is run by login. The username from the
/etc/passwd file is used to retrieve additional configuration information from /etc/diphosts. If
the optional username is specified with the diplogin command, that username is used to
retrieve the information from the /etc/diphosts file. Chapter 6 provides a tutorial and
examples of creating a PPP server.

-a

Prompts for the username and password. The -a option is valid only when used with the -
i option. The diplogini command is equivalent to dip -i -a. diplogini is used as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

i option. The diplogini command is equivalent to dip -i -a. diplogini is used as a
login shell in the /etc/passwd file where it is run by login.

-t

Runs dip in test mode, which allows you to input individual script language commands
directly from the keyboard. The -t option is frequently used in combination with -v so that
the result of each command can be better observed. As shown in Chapter 6, this option is
used to debug a dip script.

diplogin and diplogini are used only on servers and are not used with a script file. The
script file is used on the PPP clients when dip is configured to dial into a remote server. The
script file contains the instructions used to do this.

A.1.1 The dip Script File

The script file is made up of comments, labels, variables, and commands. Any line that begins
with a sharp sign (#) is a comment. A label is a line that contains only a string ending in a colon.
Labels are used to divide the script into separate procedures. For example, the section of the
script that dials the remote host might begin with the label:

 Dial-in:

A variable stores a value. A variable name is a string that begins with a dollar sign ($). You might,
for example, create a variable to hold a loop counter and give it the name $loopcntr. It is
possible to create your own variables, but this is rarely done. The variables that are used in most
scripts are the special variables defined by dip. Table A-1 lists the special variables and the
value that each holds.

Table A-1. dip special variables
Variable Value stored

$errlvl The return code of the last command

$locip The IP address of the local host

$local The fully qualified domain name of the local host

$rmtip The IP address of the remote host

$remote The fully qualified domain name of the remote host

$mtu The maximum transmission unit in bytes

$modem The modem type; currently this must be HAYES

$port The name of the serial device, e.g., cua0

$speed The transmission speed of the port

The final component of the script file is the command list. There are many script commands.
Because this appendix is a reference, we cover them all. However, most scripts are built using
only a few of these commands. See the sample scripts in Chapter 6 and at the end of this section
for realistic dip scripts. The complete list of script commands is:

beep [n]

Tells the system to beep the user. Repeat n times.

bootp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bootp

Tells the system to use the BOOTP protocol to obtain the local and remote IP addresses.
This command applies only to SLIP. PPP has its own protocol for assigning addresses;
SLIP does not. Usually SLIP addresses are statically set inside the script. However, some
SLIP servers have evolved techniques for dynamic address assignment. The most
common method is for the server to display the address as clear text immediately after the
connection is made. Use the get $locip remote command to retrieve the address from
this type of SLIP server. Other SLIP servers require you to send them a command before
they will display the address. Put the required server command in the script and follow it
with the get command. Finally, a few SLIP servers use BOOTP to distribute addresses.
Use the bootp command in your script to enable BOOTP when it is required by your SLIP
server.

break

Sends a BREAK. Some remote servers may require a BREAK as an attention character.

chatkey keyword code

Maps a modem response keyword to a numeric code. The predefined mappings are:

0 OK

1 CONNECT

2 ERROR

3 BUSY

4 NO CARRIER

5 NO DIALTONE

config [interface|routing] [pre|up|down|post] arguments...

Modifies interface characteristics (interface) or the routing table (routing) either
before (pre) the link comes up, when it is up, when it goes down, or after (post) the link is
shut down. For example:

 config up routing add canary gw ibis

adds a route to canary using ibis as the gateway when the link is up. Allowing users to
modify the routing table or interface characteristics is very dangerous. The config
command is disabled in the DIP code and requires recompilation to be enabled.

databits 7|8

Sets the number of data bits to 7 or 8. 8 bits is recommended for PPP and SLIP links.

dec $variable [value]

Decrements $variable by value. The default value is 1.

default

Sets the PPP connection as the default route.

dial phonenumber [timeout]

Dials the phonenumber. If the remote modem does not answer within timeout seconds,
the connection aborts. $errlvl is set to a numeric value based on the keyword returned
by the local modem. Set chatkey for the keyword to numeric mappings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the local modem. Set chatkey for the keyword to numeric mappings.

echo on|off

Enables or disables the display of modem commands.

exit [n]

Exits the script, optionally returning the number n as the exit status. Clears the input buffer.

get $variable [ask | remote [timeout]] value

Sets $variable to value, unless ask or remote is specified. When ask is specified, the
user is prompted for the value. When remote is specified, the value is read from the
remote machine, optionally waiting timeout seconds for the remote system to respond.

goto label

Jumps to the section of the script identified by label.

help

Lists the dip script commands.

if expr goto label

A conditional statement that jumps to the section of the script identified by label if the
expression evaluates to true. The expression must compare a variable to a constant
using one of these operators: == (equal), != (not equal), < (less than), > (greater than), <=
(less than or equal to), >= (greater than or equal to).

inc $variable [value]

Increments $variable by value. The default value is 1.

init command

Sets the command string used to initialize the modem. The default is ATE0 Q0 V1 X1.

mode SLIP|CSLIP|PPP|TERM

Selects the serial protocol. The default is SLIP, so this should be set to PPP.

modem type

Sets the modem type. Ignore this command. The only legal value is HAYES, and that is the
default.

netmask mask

Sets the address mask.

parity E|O|N

Sets the parity to even (E), odd (O), or no (N). No parity (N) is recommended for SLIP and
PPP links.

password

Prompts the user for the password.

proxyarp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

proxyarp

Installs a proxy ARP entry for the remote system in the local host's ARP table.

print $variable

Displays the contents of $variable.

psend command

Executes command through the default shell passing the output to the serial device. The
command runs using the user's real UID.

port device

Identifies the serial device, such as cua0, that attaches the modem.

quit

Exits the script with a nonzero exit status, aborting the connection.

reset

Resets the modem.

send string

Passes string to the serial device.

shell command

Executes command through the default shell. The command runs using the user's real UID.

skey [timeout]

Waits for an S/Key challenge from the remote terminal server, prompts the user for the
secret key, and generates and sends the response. Waits timeout seconds for the
challenge. If the timer expires, $errlvl is set to 1; otherwise, it is set to 0. S/Key must be
compiled into dip.

sleep time

Delays time seconds.

speed bits-per-second

Sets the port speed. The default is 38400.

stopbits 1|2

Sets the number of stop bits to 1 or 2. Enables terminal mode. In terminal mode, keyboard
input is passed directly to the serial device.

timeout time

Sets the time in seconds that the line is allowed to remain inactive. When this timer
expires, the link is closed.

wait text [timeout]

Waits timeout seconds for the text string to arrive from the remote system. If timeout
is not specified, the script will wait forever.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the next section we put some of these commands to work in a realistic script.

A.1.1.1 A sample dip script

This script is based on the PPP sample from Chapter 6. Labels and error detection have been
added to create a more robust script.

Select configuration settings

setup:

Ask PPP to provide the addresses

get $local 0.0.0.0

Select the port

port cua1

Set the port speed

speed 57600

Create a loop counter

get $loopcntr 0

Dial the remote server

dialin:

Reset the modem and clear the input buffer

reset

flush

Dial the PPP server and check the modem response

dial *70,301-555-1234

If BUSY, dial again

if $errlvl == 3 goto redial

If some other error, abort

if $errlvl != 1 goto dial-error

Otherwise rest loop counter

get $loopcntr 0

Give the server 2 seconds to get ready

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Give the server 2 seconds to get ready

sleep 2

Login to the remote server

login:

Send a carriage-return to wake up the server

send \r

Wait for the Username> prompt and send the username

wait name> 20

if $errlvl != 0 goto try-again

send kristin\r

Wait for the Password> prompt and send the password

wait word> 10

if $errlvl != 0 goto server-failure

password

Wait for the PPP server's command-line prompt

wait > 20

if $errlvl != 0 goto server-failure

Send the command required by the PPP server

send ppp enabled\r

Success! We're on-line

connected:

Set the interface to PPP mode

mode PPP

Exit the script

exit

Error processing routines

Try dialing 3 times. Wait 5 seconds between attempts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try dialing 3 times. Wait 5 seconds between attempts

redial:

inc $loopcntr

if $loopcntr > 3 goto busy-failure

sleep 5

goto dialin

Try a second carriage return

try-again:

inc $loopcntr

if $loopcntr > 1 goto server-failure

goto login

dial-error:

print Dial up of $remote failed.

quit

server-failure:

print $remote failed to respond.

quit

busy-failure:

print $remote is busy. Try again later.

quit

This script provides a realistic example of the commands used in most scripts. However, you may
encounter a particularly tough scripting problem. If you do, the abundance of scripting commands
available with dip should be able to handle it. If dip can't do the job, try expect. See Exploring
Expect by Don Libes (O'Reilly & Associates) for a full description of the expect scripting
language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2 The PPP Daemon

The PPP Daemon (pppd) is a freely available implementation of the Point-to-Point Protocol (PPP)
that runs on many Unix systems. Examples of configuring and using pppd are covered in Chapter
6. The syntax of the pppd command is:

pppd[device] [speed] [options]

device is the name of the serial port over which the PPP protocol operates and speed is the
transmission speed of that port in bits per second. The complexity of this command comes not
from these simple parameters but from the large number of options that it supports. There are
so many options, in fact, that they are often stored in a file. There are three options files that can
be used with pppd: the /etc/ppp/options file, which is used to set systemwide pppd options; the
~/.ppprc file, which is used by an individual to set personal pppd options; and the
/etc/ppp/options.device file, which sets options for a serial device, e.g., /etc/ppp/options.cua0
sets options for cua0. The order of precedence for options is that those specified in the
/etc/ppp/options.device file are the highest priority, followed by those defined on the command
line, then those in the ~/.ppprc file, and, finally, those defined in the /etc/ppp/options file. Some
options that relate to system security, once defined in the /etc/ppp/options file, cannot be
overridden by the user through the command line or the ~/.ppprc file. The system administrator
can override any option set by the user by setting the option in the /etc/ppp/options.device file.

The following list contains all of the pppd options except those that do not relate to TCP/IP:

local_IP_address: remote_IP_address

Defines static local and remote IP addresses. Either address may be omitted. For example,
172.16.25.3: defines only the local address, while :172.16.25.12 defines only the remote
address. The default local address is the IP address associated with the local system's
hostname.

active-filter filter-expression

Defines a packet filter that determines which packets are regarded as link activity. Packets
that pass through the filter reset the idle timer or cause the link to initialize when it is in
demand-dial mode. The kernel and pppd must be compiled with PPP_FILTER defined.

allow-ip address

Systems using the specified IP address, which can identify individual hosts or entire
networks, do not need to be authenticated.

asyncmap map

Defines the ASCII control characters that must be sent as two-character escape
sequences. The first 32 ASCII characters are control characters. map is a 32-bit hex
number with each bit representing a control character. Bit 0 (00000001) represents the
character 0x00; bit 31 (80000000) represents the character 0x1f. If a bit is on in map, the
character represented by that bit must be sent as an escape sequence. If no asyncmap
option is specified, all control characters are sent as escape sequences.

auth

Requires the use of an authentication protocol. See Chapter 6 for a discussion of the
authentication protocols CHAP and PAP.

bsdcomp receive, transmit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bsdcomp receive, transmit

Enables the BSD-Compress scheme to compress packets. The maximum code word
length used to compress packets accepted by this host is receive bits long. The
maximum code word length used to compress packets sent by this host is transmit bits
long. Acceptable code word length is 9 to 15 bits. Disable compression when receiving or
transmitting by placing a 0 in receive or transmit, respectively.

call name

Reads options from a file named /etc/ppp/peers/name.

cdtrcts

Tells pppd that the modem uses nonstandard hardware flow control based on the DTR and
CTS signals.

chap-interval

Tells the system to use the Challenge Handshake Authentication Protocol (CHAP) to
reauthenticate the remote system every n seconds.

chap-max-challenge n

Tells the system to send the CHAP challenge to the remote system a maximum of n times
until the remote system responds. The default is 10.

chap-restart n

Tells the system to wait n seconds before retransmitting a CHAP challenge when the
remote system fails to respond. The default is 3 seconds.

connect script

Invokes a script to create the serial connection. Any scripting language can be used, but
chat is the most common. See Chapter 6 for an example of using connect to invoke an
inline chat script.

connect-delay n

Waits n milliseconds after the connect script finishes for a valid PPP packet from the
remote system.

crtscts

Enables hardware flow control (RTS/CTS).

debug

Logs all control packets sent or received using syslogd with facility daemon and level
debug. The debug option can also be written as -d.

default-asyncmap

Disables asyncmap negotiation, forcing all control characters to be escaped.

default-mru

Disables Maximum Receive Unit negotiation and uses a default MRU of 1500 bytes.

defaultroute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defaultroute

Defines the PPP link as the default route. The route is removed when the connection is
closed.

deflate nr, nt

Tells pppd to request Deflate packet compression. nr is the maximum receive window size
expressed as a power of 2; i.e., if nr is 8, the receive window is 2 to the 8 (or 256) bytes.
nt defines the maximum transmit window size expressed as a power of 2. If nt is not
specified, it defaults to the value given for nr.

demand

Places the link in dial-on-demand mode. The network connection is made when network
traffic is present.

disconnect script

Invokes a script to gracefully shut down the serial connection. Any scripting language
can be used, but chat is the most common.

domain name

Defines the name of the local domain. Use this if hostname does not return a fully qualified
name for the local system.

escape x,x,...

Specifies characters that should be transmitted as two-character escape sequences. The
characters are specified in a comma-separated list of hex numbers. Any character except
0x20 - 0x3f and 0x5e can be escaped.

endpoint epdisc

Defines the endpoint discriminator sent to the remote system during multilink negotiation.
The default endpoint discriminator is the MAC address of the first Ethernet interface or, if
no Ethernet is found, the system's IP address. epdisc is defined in the form type:value,
where type is one of the keywords local, IP, MAC, magic, or phone, and value is
either an IP address in dotted-decimal notation for the IP type, the name of an Ethernet
interface for the MAC type, or a string of colon-separated hexadecimal bytes for the other
types. Multilink is available only on Linux systems.

file file

Defines another options file, where file is the name of the new file. Options are normally
read for /etc/ppp/options, ~/.ppprc, the command line, and /etc/ppp/options.device. See the
description of these files earlier in this section.

hide-password

Hides the password string when logging the contents of Password Authentication Protocol
(PAP) packets.

holdoff n

Waits n seconds before restarting the link after the link terminates.

idle n

Disconnects the link if no data packets are sent or received for n seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

init script

Executes script to initialize the serial line.

ipcp-accept-local

Tells the system to use the local IP address provided by the remote server even if it is
defined locally.

ipcp-accept-remote

Tells the system to use the remote IP address provided by the remote server even if it is
defined locally.

ipcp-max-configure n

Tells the system to send the IPCP configure-request packet a maximum of n times. The
default is 10.

ipcp-max-failure n

Tells the system to accept up to n IPCP configure-NAKs before sending a configure-reject.
The default is 10.

ipcp-max-terminate n

Tells the system to send no more than n IPCP terminate-request packets without receiving
an acknowledgment. The default is 3.

ipcp-restart n

Tells the system to wait n seconds before resending an IPCP configure-request packet.
The default is 3.

ipparam string

Passes string to the ip-up and ip-down scripts. /etc/ppp/ip-up is a shell script executed by
pppd when the link comes up. /etc/ppp/ip-down is a shell script executed by pppd when
the link is brought down.

ipv6 local_interface_identifier, remote_interface_identifier

Sets the local and remote 64-bit interface identifier using standard IPv6 ASCII address
notation. If no identifiers are defined, the system creates a random identifier. (See also the
ipv6cp-use-ipaddr and the ipv6cp-use-persistent options.)

ipv6cp-max-configure n

Send a maximum of n IPv6CP configure-request packets. The default is 10.

ipv6cp-max-failure n

Accept a maximum of n IPv6CP configure-NAK packets. The default is 10.

ipv6cp-max-terminate n

Send a maximum of n IPv6CP terminate-request packets. The default is 3.

ipv6cp-restart n

Wait n seconds before resending an IPv6CP configure-request packet. The default is 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Wait n seconds before resending an IPv6CP configure-request packet. The default is 3
seconds.

ipv6cp-use-ipaddr

Use the system's IPv4 address as the IPv6 local interface identifier.

ipv6cp-use-persistent

Use the system's unique persistent identifier as the IPv6 local interface identifier. Most
systems do not support persistent identifiers.

kdebug n

Enables kernel-level debugging. n is 1 to print general debugging messages, 2 to print
received packets, and 4 to print transmitted packets.

ktune

Tells the system to allow pppd to alter kernel settings. For example, on a Linux system,
pppd could enable IP forwarding by setting /proc/sys/net/ipv4/ip_forward to 1 if allowed to
do so.

lcp-echo-failure n

Tells the system to terminate the connection if no reply is received to n LCP echo-requests.
Normally, echo-requests are not used for this purpose because "link down" conditions are
determined by the modem hardware.

lcp-echo-interval n

Tells the system to wait n seconds before sending another LCP echo-request when the
remote system fails to reply.

lcp-max-configure n

Tells the system to send the LCP configure-request packet a maximum of n times. The
default is 10.

lcp-max-failure n

Tells the system to accept up to n LCP configure-NAKs before sending a configure-reject.
The default is 10.

lcp-max-terminate n

Tells the system to send no more than n LCP terminate-request transmissions without
receiving an acknowledgment. The default is 3.

lcp-restart n

Tells the system to wait n seconds before resending an LCP configure-request packet. The
default is 3.

linkname name

Sets the logical name of the link to name. pppd writes its process ID into a file named
ppp-name.pid in either /var/run or /etc/ppp. This maps each instantiation of pppd to a
specific link.

local

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local

Tells the system to ignore the DCD (Data Carrier Detect) and DTR (Data Terminal Ready)
modem control lines.

lock

Tells the system to use a UUCP-style lock file to ensure that pppd has exclusive access to
the serial device.

logfd n

Logs messages to file descriptor n.

logfile filename

Appends messages to the log file identified by filename.

login

Tells the system to use the /etc/passwd file to authenticate PAP users. Records the login in
the wtmp file.

maxconnect n

Sets the maximum connection time to n seconds. After n seconds, the connection is
terminated even if it is active.

maxfail n

Stop attempting to connect to the remote system after n consecutive connection attempt
failures. The default value is 10 attempts.

modem

Tells the system to use the DCD (Data Carrier Detect) and DTR (Data Terminal Ready)
modem control lines; wait for the DCD signal before opening the serial device; and drop the
DTR signal when terminating a connection.

mp

This is an alias for the multilink option. See multilink.

mpshortseq

Use short, 12-bit sequence numbers in multilink headers instead of the standard 24-bit
sequence numbers.

mrru n

Sets the Maximum Reconstructed Receive Unit (MRRU) to n bytes. The MRRU is the
maximum packet size that can be received on a multilink bundle. The value is analogous to
MRU on other media.

mru n

Sets the Maximum Receive Unit (MRU) to n bytes. MRU is used to tell the remote system
the maximum packet size the local system can accept. The minimum is 128. The default is
1500.

ms-dns address

Supplies Domain Name System addresses to Microsoft Windows clients.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ms-wins address

Supplies Windows Internet Name Services (WINS) server addresses to Microsoft Windows
clients.

mtu n

Sets the Maximum Transmission Unit (MTU) to n bytes. MTU defines the maximum length
of a packet that can be sent. The smaller of the local MTU and the remote MRU is used to
define the maximum packet length.

multilink

Enables the multilink protocol, which allows multiple physical connections to be bundled
together as one logical link. This is used to increase the bandwidth to a remote system. For
example, two modem connections to a single remote system could be viewed as a single
multilink bundle to give twice the bandwidth of one modem connection. This option is
currently available only with Linux.

name name

Tells the system to use name as the name of the local system for authentication purposes.

netmask mask

Defines the subnet mask.

noaccomp

Disables Address/Control compression negotiation.

noauth

Allows unauthenticated access.

nobsdcomp

Disables BSD-Compress compression.

noccp

Disables Compression Control Protocol (CCP) negotiation.

nocrtscts

Disables all types of hardware flow control.

nodtrcts

Disables all types of hardware flow control.

nodefaultroute

Prevents users from creating a default route using the defaultroute option.

nodeflate

Disables Deflate compression.

nodetach

Prevents pppd from running as a background process. See the example in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prevents pppd from running as a background process. See the example in Chapter 6.

noendpoint

Tells the system not to send or accept Multilink endpoint discriminators.

noip

Disables the IPCP and IP protocols.

noipv6

Disables IPv6CP negotiation and IPv6 communication.

noipdefault

Instructs the system not to use hostname to determine the local IP address. The address
must be obtained from the remote system or explicitly set by an option.

noktune

Prevents pppd from changing kernel values.

nolog

Disables logging.

nomagic

Disables magic number negotiation.

nomp

Disables the multilink protocol.

nompshortseq

Disables the use of short, 12-bit sequence numbers in the multilink protocol.

nomultilink

Disables the multilink protocol.

nopcomp

Disables protocol field compression negotiation. By default, protocol field compression is
not used. Setting this option means that even if the remote end requests it, it will not be
used.

nopersist

Terminates when the connection is made. This is the default.

nopredictor1

Tells the system not to use Predictor-1 compression.

noproxyarp

Disables the proxyarp option, preventing users from creating proxy ARP entries with
pppd.

notty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

notty

Causes pppd to transmit characters to standard output and receive them on standard
input. This option increases latency and overhead.

novj

Disables Van Jacobson header compression.

novjccomp

Disables the connection-ID compression option in Van Jacobson header compression.

papcrypt

Instructs the system not to accept passwords that are identical to those in the /etc/ppp/pap-
secrets file because the ones in the file are encrypted. Therefore the transmitted password
should not match an entry in the pap-secrets file until it is also encrypted.

pap-max-authreq n

Tells the system to transmit no more than n PAP authenticate-requests if the remote
system does not respond. The default is 10.

pap-restart n

Tells the system to wait n seconds before retransmitting a PAP authenticate-request. The
default is 3 seconds.

pap-timeout n

Tells the system to wait no more than n seconds for the remote system to authenticate
itself. When n is 0, there is no time limit.

pass-filter filter-expression

Defines a packet filter that determines which packets can be sent or received over the PPP
link. Packets that do not pass through the filter are silently discarded. filter-
expression is defined using the syntax of tcpdump.

passive

Tells the system to wait for a Link Control Protocol (LCP) packet from the remote system
even if that system does not reply to the initial LCP packet sent by the local system.
Without this option, the local system aborts the connection when it does not receive a reply.
The passive option can also be written as -p.

persist

Tells the system to reopen the connection if it was terminated by a SIGHUP signal.

plugin filename

Loads a shared library object as a "plugin" to pppd.

predictor1

Tells the system to ask the remote system to use Predictor-1 compression.

privgroup group-name

Allows all members of the group group-name to use privileged options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

proxyarp

Tells the system to enable proxy ARP. This adds a proxy ARP entry for the remote system
to the local system's ARP table.

pty script

Identifies a script that is run as a child process and used as the communications source in
lieu of a terminal device. If used in conjunction with the record option, the child process will
have pipes on its standard input and output.

receive-all

Tells the system to accept all control characters from the remote system, even those that
should be discarded according to the standard asyncmap handling defined in RFC 1662.

record filename

Tells the system to log every character sent and received to filename.

remotename name

Tells the system to use name as the remote system's name for authentication purposes.

refuse-chap

Disables the use of CHAP. This is a bad idea.

refuse-pap

Disables the use of PAP.

require-chap

Requires the use of CHAP.

require-pap

Requires the use of PAP.

show-password

Shows the password when PAP packets are logged.

silent

Tells the system to wait for an LCP packet from the remote system. Do not send the first
LCP packet.

sync

Tells the system to use synchronous HDLC physical layer protocols instead of the default
asynchronous protocol.

updetach

Tells the system to detach from the controlling terminal after the connection is made.

usehostname

Disables the name option, forcing the local hostname to be used for authentication
purposes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

usepeerdns

Asks the remote system to provide up to two DNS server addresses. The provided
addresses are passed up to the /etc/ppp/ip-up script in the environment variables DNS1
and DNS2. Additionally, pppd uses the addresses to create nameserver lines in a file
named /etc/ppp/resolv.conf.

user username

Tells the system to use username for PAP authentication when challenged by a remote
host.

vj-max-slots n

Tells the system to use n connection slots for Van Jacobson header compression. n must
be a number from 2 to 16.

welcome script

Execute script before initiating PPP negotiation.

xonxoff

Enables software flow control (XON/XOFF).

Several of the options listed above concern PPP security. One of the strengths of PPP is its
security. The Challenge Handshake Authentication Protocol (CHAP) is the preferred PPP security
protocol. The Password Authentication Protocol (PAP) is less secure and is only provided for
compatibility with less capable systems. The usernames, IP addresses, and secret keys used for
these protocols are defined in the /etc/ppp/chap-secrets file and the /etc/ppp/pap-secrets file.
Chapter 6 shows the format of these files and describes their use.

It is very important that the directory /etc/ppp and its contents not be world- or group-writable.
Modifications to the chap-secrets, pap-secrets, or options files could compromise system security.
In addition, the script files /etc/ppp/ip-up and /etc/ppp/ip-down may run with root privilege. If pppd
finds a file with the name ip-up in the /etc/ppp directory, it executes it as soon as the PPP
connection is established. The ip-up script is used to modify the routing table, process the
sendmail queue, or do other tasks that depend on the presence of the network connection. The
ip-down script is executed by pppd after the PPP connection is closed and is used to terminate
processes that depend on the link. Clearly these scripts and the /etc/ppp directory must be
protected.

A.2.1 Signal Processing

pppd handles the following signals:

SIGUSR1

This signal toggles debugging on or off. The first SIGUSR1 signal received by pppd turns
on debugging and begins logging diagnostic messages through syslogd with facility set to
daemon and level set to debug. The second SIGUSR1 signal turns off debugging and
closes the log file. See the debug option described previously.

SIGUSR2

This signal causes pppd to renegotiate compression. It has limited applicability because it
is needed only to restart compression after a fatal error has occurred. Most people close
the PPP connection and open a new one after a fatal error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SIGHUP

This signal closes the PPP connection, returns the serial device to its normal operating
mode, and terminates pppd. If the persist option is specified, pppd opens a new
connection instead of terminating.

SIGINT

This signal, or the SIGTERM signal, closes the PPP connection, returns the serial device to
its normal operating mode, and terminates pppd. The persist option has no effect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3 chat

chat is a general-purpose scripting language that is used to control the modem, dial the remote
server, and perform the remote system login. chat is less powerful than dip but is widely used.
The "expect/send" structure of a chat script is the fundamental structure used in most scripting
languages.

A chat script is composed of expect/send pairs. These pairs consist of the string expected from
the remote system, separated by whitespace from the response that is sent to the remote host
when the expected string is received. If no string is expected from the remote system, two quotes
("") or two apostrophes ('') are used to "expect nothing." A simple chat script is:

 "" \r name> jane word> TOga!toGA

The script expects nothing ("") until it sends the remote system a carriage return (\r). Then the
script expects the remote system to send the string name>, which is part of the system's
Username> prompt. In response to this prompt, the script sends the username jane. Finally the
script waits for part of the Password> prompt and responds with TOga!toGA. A script this simple
can be defined directly on the chat command line:

% chat -v -t30 "" \r name> jane word> TOga!toGA
This command runs chat in verbose mode, sets the length of time the script waits for an
expected string to 30 seconds, and then executes the simple login script described above.

The syntax of the chat command is:

chat [options] [script]

The chat command options are:

-e

Echo all output from the modem to stderr. This has the same effect as using the ECHO
keyword inside the chat script.

-E

Enables the use of environment variables inside the chat script.

-s

Send all log entries and all error messages to stderr.

-S

Do not send log messages or error messages to the SYSLOG.

-T phone-number

Replace the \T escape sequence in the chat script with the values specified for phone-
number.

-U phone-number-2

Replace the \U escape sequence in the chat script with the value specified for phone-
number-2.

-v

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-v

Runs the chat script in verbose mode. Verbose mode logs informational messages via
syslogd.

-V

Runs the chat script in stderr verbose mode. The stderr verbose mode displays
informational messages on the stderr device. See Chapter 6 for an example of this being
used with pppd.

-t timeout

Sets the maximum time to wait for an expected string. If the expected string is not received
in timeout seconds, the reply string is not sent and the script terminates—unless an
alternate send is defined. If defined, the alternate send (more about this later) is sent and
the remote system is given one more timeout period to respond. If this fails, the script is
terminated with a nonzero error code. By default, the timeout period is 45 seconds.

-f scriptfile

Reads the chat script from the scriptfile instead of from the command line. Multiple
lines of expect/send pairs are permitted in the file.

-r reportfile

Writes the output generated by REPORT strings to the reportfile. By default, REPORT
strings are written to stderr. The REPORT keyword is covered below.

In order to make the scripts more useful and robust, chat provides special keywords, escape
sequences, and alternate send/expect pairs that can be used in the script. First let's look at the
six basic chat keywords.

Two keywords transmit special signals to the remote system. The keyword EOT sends the End of
Transmission character. On Unix systems, this is usually the End of File character, which is a Ctrl-
D. The BREAK keyword sends a line break to the remote system. The five remaining keywords
(TIMEOUT, ABORT, REPORT, CONNECT, and SAY) define processing characteristics for the
script itself.

The TIMEOUT keyword defines the amount of time to wait for an expected string. Because it is
defined inside the script, the timeout value can be changed for each expected string. For
example, assume you want to allow the remote server 30 seconds to display the initial
Username> prompt but only 5 seconds to display Password> once the username has been sent.
Enter this script command:

TIMEOUT 30 name> karen TIMEOUT 5 word> beach%PARTY

The ABORT keyword and the REPORT keyword are similar. They both define strings that, when
received, cause a special action to take place. The ABORT keyword defines strings that cause
the script to abort if they are received when the system is expecting the string CONNECT from
the modem. The REPORT keyword defines substrings that determine what messages received
on the serial port should be written to stderr or the report file. A sample chat script file illustrates
both of these keywords:

REPORT CONNECT

ABORT BUSY

ABORT 'NO CARRIER'

ABORT 'RING - NO ANSWER'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABORT 'RING - NO ANSWER'

SAY "Dialing your PPP server..."

"" ATDT5551234

CONNECT \r

name> karen

word> beach%PARTY

The first line says that any message received by the script that contains the word CONNECT will
be logged. If the -r command-line option was used when chat was started, the message is
logged in the file defined by that option. Otherwise the message is displayed on stderr. The point
of this command is to display the modem's connect message to the user. For example, the
complete message might be CONNECT 28,800 LAPM/V, which tells the user the link speed and
the transmission protocol used by the modems. The CONNECT message means success. The
next three lines of the script begin with the keyword ABORT and define the modem messages
that mean failure. If the modem responds with BUSY, NO CARRIER, or RING - NO ANSWER, the
script aborts.

The SAY keyword sends the specified string to the user's terminal. In this case, we are telling the
user that the dialing process has begun.

The last four lines are the basic expect/send pairs we have seen repeatedly in this section. We
expect nothing ("") and send the dial command to the modem (ATDT). We expect CONNECT
from the modem and send a carriage return (\r) to the remote server. We expect Username>
from the remote server and send karen. Finally, we expect Password> from the server and
send beach%PARTY.

chat extends the standard expect/send pair with an alternate send and an alternate expect to
improve robustness. You may define an alternate send string and an alternate expect value to be
used when the script times out waiting for the primary expected value. The alternate send and the
alternate expect are indicated in the script by preceding them with dashes. For example:

 gin:-BREAK-gin: becca

In this sample we wait for the string gin: and send the string becca. The first string and the last
string compose the standard expect/send pair. The alternate send/expect is used only if the timer
expires and the expected gin: string has not been received. When this occurs, the script sends
a line break, restarts the timer, and waits for gin: again, because that is what our alternate
send/expect pair (-BREAK-gin:) tells the script to do. Note that unlike the standard expect/send
pair, in the send/expect pair a value is transmitted before a string is expected, i.e., the send
comes before the expect. Another example more in keeping with our other script examples is:

 name>--name> karen

Here the script expects the name> string. If it is not received, the script sends an empty line,
which is simply a carriage return, and again waits for the name> string. This action is dictated by
the alternate send/expect pair, --name>. The pair begins with a dash that signals the start of the
send string, but the next character is the second dash that marks the beginning of the alternate
expect string. There is no send string. It is this "empty string" that causes the script to send a
single return character. This example is more common than the BREAK example shown above,
though a little harder to explain.

The carriage return character is not the only special character that can be sent from a chat
script. chat provides several escape sequences for sending and receiving special characters.
Table A-2 lists these.

Table A-2. chat escape sequences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Escape sequence Meaning
\b The backspace character

\ Send without the terminating return character

\d Delay sending for one second

\K Send a BREAK

\n Send a newline character

\N Send a null character

\ Delay sending 1/10th of a second

\xd5 Send the string but don't log it

\r The carriage return

\s The space character

\T Send the value provided on the chat command line by the -T argument

\t The tab character

\U Send the value provided on the chat command line by the -U argument

\\ The backslash character

\ddd The ASCII character with the octal value ddd

^C A control character

All of the escape sequences start with a backslash (\) except for the sequence used to enter a
control character. Control characters are entered as a caret (^) followed by an uppercase letter.
For example, control X is entered as ^X. The escape sequences that are described in Table A-2
with the words "send" or "sending" can be used only in a send string; all others can be used in
either a send or expect string. Several escape sequences are used in the following example:

"" \d\d^G\p^G\p\p^GWake\sUp!\nSleepy\sHead!

Expect nothing (""). Wait two seconds (\d\d). Send three ASCII BELL characters, which is Ctrl-
G on the keyboard, at intervals of 1/10 of a second (^G\p^G\p\p^G). Send the string Wake Up!.
Go to a new line (\n) and send the string Sleepy Head!.

For security reasons, some servers call the client back before allowing the connection. This
allows the server to verify that the client call is coming from an approved telephone number. It
works this way:

The client calls the server and provides an identifying string.

The server hangs up after receiving the string.

The server uses the identifying string to find out the valid phone number for the client and
calls the client back.

The client continues with the login process.

The fact that the server hangs up the connection could cause a problem for a chat script.
Normally, a hangup unconditionally ends the connection. chat provides the HANGUP command
to handle "callback" servers. The command HANGUP OFF prevents chat from ending the login

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to handle "callback" servers. The command HANGUP OFF prevents chat from ending the login
script when the server breaks the connection. Place the HANGUP OFF command immediately
after the command that sends the identifying script to the server. After the server calls back and
the connection is established, use the HANGUP ON command to return to normal hangup
processing. HANGUP ON is the default. With HANGUP ON, the script terminates when a hangup
is detected.

When a chat script terminates, a termination code is set. A termination code is a numeric value
that represents the state of the script when it exited. The basic numeric codes and what those
codes mean is shown below:

0

The script terminated normally.

1

The script failed because of an invalid parameter or an expect string that overflowed the
internal buffer.

2

The script shut down because of an I/O error or a termination signal (SIGINT/SIGTERM).

3

The program terminated because an expected string was not received before the timeout.

4 or more

A condition defined by an ABORT command occurred. The numeric value indicates which
condition occurred. The condition defined by the first ABORT command is assigned the
value 4; the condition defined by the second ABORT command is assigned the value 5; the
condition defined by the third ABORT command is assigned the value 6; and so on.

The termination codes 0 through 3 are self-explanatory. An example is useful for understanding
the codes above 3.

The sample script shown earlier in this section contained three ABORT commands: the first one
for the BUSY condition, the second one for the NO CARRIER condition, and the third one for the
RING - NO ANSWER condition. If the modem returns the BUSY string, the script aborts and
returns the termination code 4. If the modem returns the string RING - NO ANSWER, the script
aborts and returns the termination code 6. The codes are "position dependent." If another user
rewrote this script and placed the ABORT RING - NO ANSWER command before the other
ABORT commands, aborting on the RING - NO ANSWER condition would return a termination
code of 4 instead of the 6 it returns in our script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. A gated Reference
This appendix covers the syntax of the gated command and the gated configuration language
for Gated 3.6—the publicly available version of gated. As a reference to the gated configuration
language, this appendix stands on its own. But to fully understand how to configure gated, use
this reference in conjunction with the sample configuration files in Chapter 7.

gated is constantly being improved. As it is upgraded, the command language changes. Refer to
the latest manpages for the most recent information about gated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1 The gated Command

The syntax of the gated command is:

gated [-v] [-c] [-C] [-n] [-N] [-t trace_options] [-f config_file] [trace_file

The -c and -n command-line options debug the routing configuration file without impacting the network or
the kernel routing table. Frequently, these debugging options are used with a test configuration identified
by the -f config_file option:

-c

Tells gated to read the configuration file and check for syntax errors. When gated finishes reading
the configuration file, it produces a snapshot of its status and then terminates. It writes the snapshot
to /usr/tmp/gated_dump. Running gated with the -c option does not require superuser privileges,
and it is not necessary to terminate the active gated process.

-C

Checks the configuration file for syntax errors. gated exits with a status 1 if there are errors and 0 if
there are none. Because this provides exit status, it is useful for script files.

-n

Tells gated not to update the kernel routing table. This is used to test the routing configuration with
real routing data without interfering with system operation.

-f config_file

Tells gated to read the configuration from config_file instead of from the default configuration
file, /etc/gated.conf. Used in conjunction with the -c option, -f checks a new configuration without
interfering with the currently running gated configuration.

The -v option causes gated to display its version number. When this is used, no other options are
because gated terminates immediately after displaying the version information.

The -N command-line option prevents gated from running in background mode as a daemon. This option
is used when gated is started from inittab. By default, gated runs as a daemon.

The command-line arguments trace_options and trace_file are used for protocol tracing. The
trace_file argument names the file to which the trace output is written. If a file is not specified, the
is written to the standard output. Tracing usually produces a large amount of output.

The command-line options used for tracing are:

-t

This option turns on tracing. If -t is specified with no trace_options, gated defaults to general
tracing, which traces normal protocol interactions and routing table changes. gated always logs
protocol errors even if no tracing is specified. You can define several different trace_options
of which are described later in this appendix. A few trace_options (detail, send, recv) cannot
be specified on the gated command line. Two others are most useful when they are defined on the
command line:

symbols

Traces the symbols read from the kernel, which is primarily of interest to developers
debugging the interaction of gated and the kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

debugging the interaction of gated and the kernel.

iflist

Traces the list of interfaces read from the kernel. Use this to determine what interfaces are
detected by the kernel interface scan.

The advantage of placing a trace option on the command line is that it can trace activities that happen
before the configuration file is processed. For the two options listed above, this is an essential advantage.
For other options, it is not very important. Most trace options are specified in the configuration file. See the
traceoptions command later in this appendix for more details.

B.1.1 Signal Processing

gated processes the following signals:

SIGHUP

Tells gated to reread the configuration file. The new configuration replaces the one that gated
currently running. SIGHUP loads the new configuration file without interrupting gated service.
SIGHUP is available for quick configuration changes. At most sites, the routing configuration
changes infrequently. The few times you need to change to a new configuration, terminate gated
and rerun it with the new configuration. This is a more accurate test of how things will run at the next
boot.

SIGINT

Tells gated to snapshot its current state to the file /usr/tmp/gated_dump.

SIGTERM

Tells gated to shut down gracefully. All protocols are shut down following the rules of that protocol.
For example, EGP sends a CEASE message and waits for it to be confirmed. SIGTERM removes
from the kernel routing table all routes learned via the exterior routing protocols. If you need to
preserve those routes while gated is out of operation, use SIGKILL.

SIGKILL

Tells gated to terminate immediately and dump core. Routes are not removed from the routing
table, and no graceful shutdown is attempted.

SIGUSR1

Tells gated to toggle tracing. If no trace flags are set, SIGUSR1 has no effect. But if tracing is
enabled, the first SIGUSR1 causes gated to toggle off tracing and to close the trace file. The next
SIGUSR1 turns tracing back on and opens the trace file. When the trace file is closed, it can be
moved or removed without interfering with the operation of gated. Use this to periodically empty out
the trace file to prevent it from becoming too large.

SIGUSR2

Tells gated to check for changes in the status of the network interfaces.

The following is an example of gated signal handling. First, the SIGUSR1 signal is passed to the gated
process using the process ID obtained from the gated.pid file (/var/run/gated.pid in this case).

kill -USR1 'cat /var/run/gated.pid'
Next, the old trace file (/usr/tmp/gated.log in this case) is removed, and gated is passed another
SIGUSR1 signal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rm /usr/tmp/gated.log
kill -USR1 'cat /etc/gated.pid'
After receiving the second signal, gated opens a fresh trace file (still named /usr/tmp/gated.log). An
shows that the new file has been created.

ls -l /usr/tmp/gated.log
-rw-rw-r-- 1 root 105 Jul 6 16:41 /usr/tmp/gated.log

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2 The gated Configuration Language

The gated configuration language is a highly structured language similar to C in appearance.
Comments either begin with a #, or they begin with /* and end with */. gated configuration
statements end with a semicolon, and groups of associated statements are enclosed in curly
braces. The language structure is familiar to most Unix system administrators, and the structure
makes it easy to see what parts of the configuration are associated with each other. This is
important when multiple protocols are configured in the same file.

The configuration language is composed of nine types of statements. Two statement types,
directive statements and trace statements, can occur anywhere in the gated.conf file and do not
directly relate to the configuration of any protocol. These statements provide instructions to the
parser and control tracing from within the configuration file. The other seven statement types are
options statements, interface statements, definition statements, protocol statements, static
statements, control statements, and aggregate statements. These statements must appear in the
configuration file in the correct order, starting with options statements and ending with aggregate
statements. Entering a statement out of order causes an error when parsing the file.

The remainder of this appendix provides a description of all commands in the gated
configuration language, organized by statement type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3 Directive Statements

Directive statements provide direction to the gated command language parser about "include"
files. An include file is an external file whose contents are parsed into the configuration as if it
were part of the original gated.conf file. Include files can contain references to other include files,
and these references can be nested up to 10 levels deep.

The two directive statements are:

%include filename

Identifies an include file. The contents of the file are "included" in the gated.conf file at the
point in the gated.conf file where the %include directive is encountered. filename is any
valid Unix filename. If filename is not fully qualified, i.e., does not begin with a /, it is
considered to be relative to the directory defined in the %directory directive.

%directory pathname

Defines the directory where the include files are stored. When it is used, gated looks in the
directory identified by pathname for any include file that does not have a fully qualified
filename.

Unless you have a very complex routing configuration, avoid using include files. In a complex
environment, segmenting a large configuration into smaller, more easily understood segments
can be helpful, but most gated configurations are very small. One of the great advantages of
gated is that it combines the configuration of several different routing protocols into a single file.
If that file is small and easy to read, segmenting the file unnecessarily complicates things.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4 Trace Statements

Trace statements allow you to control the trace file and its contents from within the gated.conf file.
The trace statement is:

traceoptions

 ["trace_file" [replace] [size bytes[k|m] files n]]

 [nostamp]

 trace_options [except trace_options]

;

Its components are as follows:

trace_file

Identifies the file that receives the trace output. It has exactly the same function as the
trace_file argument on the gated command line.

replace

Replaces the existing trace file. If you do not use this keyword, the trace output is
appended to the current contents of the file.

size bytes[k|m] [files n]

Limits the trace file to a maximum size of bytes. The optional k or m indicates thousands
(k) or millions (m) of bytes. Thus 1000000 and 10m are equivalent entries. The size of the
trace file cannot be less than 10k bytes. n defines the maximum number of trace files that
should be saved. When the trace file reaches the maximum size, it is saved as
trace_file.0, trace_file.1, trace_file.2 up to trace_file.n. The next save then
overwrites trace_file.0. The value for n must be at least 2.

nostamp

Specifies that trace lines should not begin with a timestamp. Timestamping each line of
trace data is the default.

trace_options

Defines the events to be traced by gated. Each trace option is specified by a keyword
name. The available trace options are:

none

Turns off all tracing.

all

Turns on all types of global tracing.

general

Turns on both normal and route tracing.

state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

state

Traces state machine transitions for protocols such as OSPF and BGP. The RFCs
describe these protocols using finite state machine (FSM) diagrams or tables. The
protocols transition from one state to another based on the occurrence of certain
events. For example, the state might change from idle to connect when a connection
open event occurs. This is a highly specialized trace flag, useful only to those who
have a thorough understanding of the protocols involved. Use this option within the
protocol statement to trace a specific protocol's transitions.

normal

Traces normal protocol interactions. Errors are always traced.

policy

Traces the application of routing policies. Use this to check that you have properly
configured your routing policy.

task

Traces system-level processing.

timer

Traces the various timers used by a protocol or peer.

route

Traces routing table changes. Use this to check that routes are properly installed by
the protocol.

detail

Traces the contents of the packets exchanged by the router. Must be specified
before send or recv.

send

Limits the detail trace to packets sent by this router.

recv

Limits the detail trace to packets received by this router. Without these two
options, all packets are traced when detail is specified.

symbols

Traces the symbols read from the kernel at startup. See the -t command-line
argument.

iflist

Traces the kernel interface list. See the -t command-line argument.

parse

Traces the lexical analyzer and parser.

adv

Traces the allocation and release of blocks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

except trace_options

Disables specific trace options. Must be used in conjunction with trace_options that
enable a wide variety of tracing. For example, traceoptions all except state turns
on all traces except for finite state machine tracing.

gated provides the flexibility for you to choose where you want to control tracing—on the
command line or in the configuration file. By and large, the same trace options can be set on the
gated command line or in the configuration file. detail, send, and recv can be set only in the
configuration file.

Two others, symbols and iflist, are primarily used on the command line. Refer to the section
on the gated command for a description of setting trace options with -t.

Some trace options are useful only for protocol developers and other experts. For most of us,
general, which enables normal and route tracing, is an appropriate level of information for
debugging routing problems. Occasionally, policy is useful for testing a routing policy. Most of
the time, however, no tracing is needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5 Options Statements

Options statements define parameters that direct gated to do special internal processing.
Options statements appear before any other configuration statements in the gated.conf file.

The options statement syntax is:

 options

 [nosend]

 [noresolv]

 [gendefault [preference preference] [gateway gateway]]

 [syslog [upto] log_level]

 [mark time]

 ;

An options statement can contain:

nosend

Instructs the system not to send any packets. This option tests gated without actually
sending out routing information. Use for RIP and HELLO. It is not yet implemented for BGP
and is not useful for OSPF.

noresolv

Instructs the system not to use the Domain Name System (DNS) to resolve hostnames and
addresses. DNS failures can cause gated to deadlock during startup. Use this to prevent
deadlock.

gendefault [preference preference] [gateway gateway]

Generates a default route, with a preference of 20, when gated peers with an EGP or BGP
neighbor. If gateway is not defined, the gateway in the generated route is the system itself,
the default route is not installed in the kernel table, and this option is used only to advertise
this system as a default gateway. If gateway is specified, the default route is installed in
the kernel table with the specified router as the next hop. This option can be overridden
with the nogendefault option.

syslog [upto] log_level

Tells the system to use the setlogmask facility to control gated logging. See the
setlogmask(3) manpage if this facility is available on your system.

mark time

Sends a periodic timestamp message to the trace file. time defines how frequently the
timestamp should be issued. Use this to determine if gated is running.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.6 Interface Statements

An interface statement defines configuration options for the network interfaces. The
interface_list identifies the interfaces affected by the configuration options. The interfaces in
the list are identified by interface name (e.g., le0), by hostname, by IP address, or by the keyword
all. The keyword all refers to every interface on the system. The interface name can refer to a
single interface or a group of interfaces. For example, an interface name of eth0 refers to the
interface eth0, whereas the name le refers to all installed interfaces that start with the letters le
(which might include le0, le1, and le2). A hostname can be used if it resolves to only one address.

Most system administrators prefer to use the IP address to identify an interface. After all, IP
addresses are inherently a part of TCP/IP, and it's TCP/IP routing that this file configures.

Additionally, remote systems know this interface by its IP address, not its interface name. Finally,
DNS may provide more than one address for a hostname, and future Unix operating systems may
allow more than one address per interface. IP addresses are safest.

gated supports four types of interfaces: loopback, broadcast, point-to-point, and nonbroadcast
multiple access (NBMA). All of these are discussed in the text of this book except for NBMA. It is
a multiple access interface, but the underlying network is not capable of broadcast. Examples are
Frame Relay and X.25.

gated ignores any interface in the list that has an invalid local, remote, or broadcast address, or
an invalid subnet mask. gated also ignores a point-to-point interface that has the same local and
remote addresses. gated assumes that interfaces that are not marked UP by the kernel do not
exist.

The syntax of the interfaces statement is:

interfaces {

 options

 [strictinterfaces]

 [scaninterval time]

 [aliases-nexthop (primary | lowestip | keepall)];

 interface interface_list

 [preference preference]

 [down preference preference]

 [passive]

 [simplex]

 [reject]

 [blackhole]

 [AS autonomoussystem];

 define address

 [broadcast address] | [pointopoint address]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [broadcast address] | [pointopoint address]

 [netmask mask]

 [multicast] ;

 } ;

The configuration options defined before the interface list are global options. The global options
are:

strictinterfaces

Generates a fatal error if an interface referenced in the configuration file is not found when
gated scans the kernel at startup and is not listed in a define statement. (See the
define option later in this section.) Normally a warning message is issued and gated
continues running.

scaninterval time

Specifies how often gated scans the kernel interface list for changes. The default is every
15 seconds on most systems, and 60 seconds on systems that pass interface status
changes through the routing socket, such as BSD 4.4. Note that gated also scans the
interface list on receipt of a SIGUSR2.

aliases-nexthop (primary | lowestip | keepall)

Defines the next-hop address that gated installs for interface routes. primary, which is
the default, uses the primary interface address as the gateway for an interface route.
lowestip uses the lowest IP address as the next-hop address. keepall retains all
interface routes in the kernel.

The interface command defines the interface_list and all of the options that affect the
specified interfaces. Options available on this statement are:

preference preference

Sets the preference for this interface. The value preference is a number between 0 and
255. gated prefers routes through interfaces with low preference numbers. The default
preference for all directly attached network interfaces is 0.

down preference preference

Sets the preference used when gated believes an interface is not functioning properly.
The default is 120.

passive

Prevents gated from downgrading the preference of the interface when it is not functioning
properly. gated assumes that an interface is down when it stops receiving routing
information through that interface. gated performs this check only if the interface is actively
participating in a routing protocol.

simplex

Specifies that gated should not use packets generated by this system as an indication that
the interface is functioning properly. Only packets from remote systems are used to indicate
that the interface is operating.

reject | blackhole

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reject | blackhole

Either of these keywords identifies the interface as the "blackhole interface" used to install
rejected routes in the kernel. (See the control statements for more about rejected routes.)
This is available only on BSD systems that have installed a reject/blackhole pseudo-
interface.

AS autonomoussystem

Identifies the autonomous system number that gated should use when creating an AS
path vector for this route. You should recall that some routing protocols, such as BGP,
associate an AS path with a route.

The define address command lists interfaces that might not be present when gated scans the
kernel interface list at startup. It overrides the strictinterfaces option for the interface
defined by address. Possible options for the define command are:

broadcast address

Defines the broadcast address.

pointopoint address

Defines the local address for a point-to-point interface. (See Chapter 6 for a discussion of
point-to-point interfaces.) When this option is used, the address on the define statement
specifies the address of the remote host, and the address specified after the
pointopoint keyword defines the local address. Don't use both broadcast and
pointopoint in the same define.

netmask mask

Defines the subnet mask.

multicast

Specifies that the interface supports multicasting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.7 Definition Statements

Definition statements are general configuration statements that relate to more than one protocol.
Definition statements must appear before any protocol statements in gated.conf. The three
definition statements are:

autonomoussystem asn [loops n] ;

Defines the autonomous system number (asn) used by BGP or EGP. The loops number
defines the number of times this autonomous system may appear in an AS path for path
vector protocols, such as BGP. The default value for n is 1.

routerid address ;

Defines the router identifier used by BGP and OSPF. Use the address of your primary
OSPF or BGP interface. By default, gated uses the address of the first interface it
encounters.

martians {host address [allow]; address [mask mask | masklen number] [allow]
; default [allow] ; } ;

Changes the list of addresses about which all routing information is ignored. Sometimes a
misconfigured system sends out obviously invalid destination addresses. These invalid
addresses, called martians, are rejected by the routing software. This command allows
changes to the list of martian addresses. A martian address can be specified as a host
address by using the host keyword before the address, or as a network address by simply
specifying the address.

An address mask can be defined for a network address. The mask can be defined in dotted
decimal notation using the mask keyword or as a numeric prefix length using the masklen
keyword. The address masks mask 255.255.0.0 and masklen 16 are equivalent. If no
address mask is specified, the natural mask is used. Specifying an address in the martians
statement adds the address to the martians list. The allow keyword is used to remove an
address from the martians list. When an address is removed from the martians list, it then
becomes a valid address for routing.

gated contains a standard martian list of addresses that are known to be invalid. This is the
default martian list. The option default allow removes all of the standard entries from the
martians list and permits unrestricted routing. Don't do this if you're on a connected network.

Here is a sample of each definition statement:

autonomoussystem 249 ;

routerid 172.16.12.2 ;

martians {

 host 0.0.0.26 ;

 192.168.0.0 masklen 16 allow ; } ;

The statements in the sample perform the following functions:

The autonomoussystem statement tells gated to use AS number 249 for its BGP or
EGP packets.

The routerid statement tells gated to use 172.16.12.2 as the router identifier for OSPF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The routerid statement tells gated to use 172.16.12.2 as the router identifier for OSPF
and BGP.

The martians statement prevents routes to 0.0.0.26 from being included in the table, but
it allows routes to the private IP addresses in the range 192.168.0.0 to 192.168.255.255.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.8 Protocol Statements

Protocol statements enable or disable protocols and set protocol options. The protocol statements
occur after the definition statements and before the static statements. There are many protocol
statements, and more may be added at any time. There are statements for the various interior
and exterior routing protocols and for other things that are not really routing protocols.

In this section we begin with the interior protocols, move on to the exterior protocols, and finish
with the special "protocols."

B.8.1 The ospf Statement

ospf yes | no | on | off [{

 defaults {

 preference preference ;

 cost cost ;

 tag [as] tag ;

 type 1 | 2 ;

 inherit-metric; } ;

 exportlimit routes ;

 exportinterval time ;

 traceoptions trace_options ;

 syslog [first count] [every count];

 monitorauthkey key ;

 backbone | area number {

 authtype 0 | 1 | none | simple ;

 stub [cost cost] ;

 networks {

 address [mask mask | masklen number] [restrict] ;

 host address [restrict] ; } ;

 stubhosts {

 address cost cost ; } ;

 interface interface_list [nonbroadcast] [cost cost] {

 pollinterval time ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pollinterval time ;

 routers {

 address [eligible] ; } ;

 interface_parameters } ;

 virtuallink neighborid router_id transitarea area {

 interface_parameters } ;

 } ; }] ;

The ospf statement enables or disables the Open Shortest Path First (OSPF) routing protocol.
By default, OSPF is disabled. It is enabled by specifying yes or on (it doesn't matter which you
use) and it is disabled with no or off.

For the sake of brevity, this text explains only the first occurrence of any
gated.conf parameter if it is used the same way in subsequent
commands. Only differences between commands are explained. For
example, yes | no | on | off is not explained again because it is
always used in the same way to enable or disable a protocol.

The ospf statement has many configuration parameters:

defaults

Defines the defaults used when importing OSPF routes from an external autonomous
system and announcing those routes to other OSPF routers. The link-state advertisement
(LSA) used to announce these routes is called an ASE (autonomous system external)
because it contains routes from external autonomous systems. See the description of
OSPF in Chapter 7.

preference preference

Defines the preference of OSPF ASE routes. The default is 150.

cost cost

Defines the cost used when advertising a non-OSPF route in an ASE. The default is
1.

tag [as] tag

Defines the OSPF ASE tag value. The tag is not used by the OSPF protocol but may
be used by an export policy to filter routes. (See the export statement later in this
appendix.) When the as keyword is specified, the tag field may contain AS path
information.

type 1 | 2

Defines the type of ASE used. The default is type 1. Type 1 contains routes learned
from an external protocol that provides a metric directly comparable to the OSPF
metric. The metric is added to the cost of reaching the border router when routes are
advertised. A type 2 ASE contains routes learned from an exterior gateway protocol
that does not provide a routing metric comparable to the OSPF metric. These routes
are advertised with the cost of reaching the border router. See Chapter 7.

inherit-metric

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inherit-metric

Directs gated to use the external metric for ASE routes if no metric is defined in the
export statement.

exportlimit routes

Defines the maximum number of ASE LSAs that will be flooded at one time. The default is
100.

exportinterval time

Defines how frequently ASE link-state advertisements are flooded to the network. The
default is once per second.

traceoptions trace_options

Defines the tracing used to debug OSPF. In addition to the standard trace flags, OSPF
supports:

lsabuild

Traces construction of link-state advertisements (LSAs).

spf

Traces the Shortest Path First (SPF) calculations.

hello

Traces the OSPF HELLO packets.

dd

Traces the OSPF Database Description packets.

request

Traces the OSPF Link-State Request packets.

lsu

Traces the OSPF Link-State Update packets.

ack

Traces the OSPF Link-State Ack packets.

syslog [first number] [every count]

Defines packet capture parameters. first specifies the number of packets captured for
each type of OSPF packet. every specifies how often packets are captured after the initial
group is captured. For example, if count is set to 50, every fiftieth packet of each type is
captured.

monitorauthkey password

Defines the password used for ospf_monitor queries. By default these queries are not
authenticated. If monitorauthkey is specified, incoming queries must contain the
specified password.

backbone | area number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

backbone | area number

Defines the OSPF area of which this router is a member. Every router must belong to an
area. If more than one area is configured, at least one must be the backbone. The
backbone is defined using the backbone keyword. All other areas are defined by the area
keyword and the number of the area, e.g., area 1. See Chapter 7 for a discussion of
OSPF areas. Several configuration parameters are associated with each area:

stub [cost cost]

Specifies that this is a stub area. A stub area is one in which there are no ASE
routes. If a cost is specified, it is used to advertise a default route into the stub area.

networks

Defines the range of networks contained within this area. The specified ranges are
advertised into other areas as summary network LSAs and not as inter-area routes.
If restrict is specified, the summary network LSAs are not advertised. The entries
in the networks list are either specified as a host address by using the host keyword
before the address, or as a network address by simply specifying the address. An
address mask can be defined for a network address. The mask can be defined in
dotted decimal notation using the mask keyword or as a numeric prefix length using
the masklen keyword. The address masks mask 255.255.0.0 and masklen 16
are equivalent. If no address mask is specified, the natural mask is used. This option
can reduce the amount of routing information propagated between areas.

stubhosts

Lists the directly attached hosts, and their costs, that should be advertised as reachable
from this router. List point-to-point interfaces here.

interface interface_list [nobroadcast] [cost cost]

Defines the interfaces used by OSPF. If the keyword nobroadcast is specified, the
interface connects to a nonbroadcast multiple access (NBMA) network. If nobroadcast is
not used, the interface connects to a broadcast or a point-to-point network. Specify the cost
of the interface with the cost keyword, e.g., cost 5. The default cost is 1. Two options are
specific to NBMA interfaces:

pollinterval time

Defines the time interval at which OSPF HELLO packets are sent to neighbors.

routers

Lists all neighbors by address. The eligible keyword indicates if the neighbor can
become a designated router.

All interfaces—NBMA and broadcast—can use these parameters:

enable | disable ;

Enables or disables the interface.

retransmitinterval time ;

Defines the number of seconds between link-state advertisement retransmissions.

transitdelay time ;

Defines the estimated number of seconds required to transmit a link-state update
over this interface. It must be greater than 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

priority priority ;

Defines this system's priority for the designated router election. priority is a
number from 0 to 255. The router with the highest priority becomes the designated
router. A router whose priority is 0 is ineligible to become the designated router. See
Chapter 7 for a discussion of designated routers.

hellointerval time ;

Defines the number of seconds between transmissions of HELLO packets.

routerdeadinterval time ;

Defines the timeout before a neighbor is declared down. time is the maximum
number of seconds this router will wait for a neighbor's HELLO packet.

auth [none | simple password | md5 key] ;

Defines the type of authentication used to authenticate OSPF packets. none selects
no authentication. simple selects password authentication. The password is
specified as one to eight decimal digits separated by periods, a one- to eight-byte
hexadecimal string preceded by 0x, or a one- to eight-character string in double
quotes. md5 selects MD5 authentication. key is a valid MD5 cryptographic key.

virtuallink neighborid router_id transitarea area

Defines a virtual link for the backbone area. The router_id is the router identifier of the
remote router at the other end of the virtual link. The transit area must be one of the other
areas configured on this system. All standard interface parameters defined above may be
specified on a virtual link.

B.8.2 The rip Statement

rip yes | no | on | off [{

 broadcast ;

 nobroadcast ;

 nocheckzero ;

 preference preference ;

 defaultmetric metric ;

 query authentication [none | [simple | md5 password]] ;

 interface interface_list

 [noripin] | [ripin]

 [noripout] | [ripout]

 [metricin metric]

 [metricout metric]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [metricout metric]

 [version 1 | 2 [multicast | broadcast]]

 [[secondary] authentication [none | [simple | md5 password]] ;

 trustedgateways gateway_list ;

 sourcegateways gateway_list ;

 traceoptions trace_options ; }] ;

The rip statement enables or disables RIP. By default RIP is enabled. The rip statement
options are:

broadcast

Forces gated to broadcast RIP update packets even if the system has only one network
interface. By default, RIP updates are not broadcast if the system has only one network
interface and are broadcast if it has more than one network interface; i.e., hosts do not
broadcast updates and routers do.

nobroadcast

Forces gated to not broadcast RIP update packets even if the system has more than one
network interface. If a sourcegateways clause is present, routes are still unicast directly
to that gateway. See sourcegateways later in this section.

notcheckzero

Specifies that gated should not reject incoming version 1 RIP packets where the reserved
fields are 0. Rejecting those packets is standard practice.

preference preference ;

Sets the gated preference for routes learned from RIP. The default preference for these
routes is 100.

defaultmetric metric ;

Defines the metric used when advertising routes via RIP that were learned from other
protocols. The default metric is 16, which to RIP indicates an unusable route. This means
that by default, routes learned from other protocols are not advertised as valid routes by
RIP. Set a lower value only if you want all routes learned from other protocols advertised at
that metric.

query authentication [none | [simple | md5 key]] ;

Specifies the authentication used for nonrouter query packets. The default is none. If
simple is specified, the key is a 16-byte password. If md5 is specified, the key is a 16-
byte value used with the packet contents to generate a Message Digest 5 cryptographic
checksum.

interface interface_list

Identifies the interfaces over which RIP runs and defines the configuration parameters of
those interfaces. The interface_list can contain interface names, hostnames, IP
addresses, or the keyword all. Possible parameters are:

noripin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

noripin

Tells system to ignore RIP packets received on this interface. The default is to listen
to RIP packets on all nonloopback interfaces.

ripin

Tells system to listen to RIP packets received on this interface. This is the default.

noripout

Tells system not to send RIP packets out this interface. The default is to send RIP on
all broadcast and nonbroadcast interfaces when in broadcast mode. See the
nobroadcast option defined earlier in this list.

ripout

Tells system to send RIP packets out this interface. This is the default.

metricin metric

Specifies the RIP metric used for routes received on this interface. The default is the
kernel interface metric plus 1, which is the default RIP hop count. If this metric is
specified, it is used as the absolute value and is not added to the kernel metric.

metricout

Specifies the RIP metric added to routes sent out this interface. The default is 0. This
option can only increase the metric.

version 1 | 2 [multicast | broadcast]

Identifies the version of RIP used for updates sent out this interface. Available
versions are RIP 1 and RIP 2. RIP 1 is the default. If RIP 2 is specified and IP
multicast is supported, full version 2 packets are sent via multicast. If multicast is not
available, version 1-compatible version 2 packets are sent via broadcast. The
keyword multicast, the default, specifies this behavior. The keyword broadcast
specifies that RIP version 1-compatible version 2 packets should be broadcast on
this interface, even if IP multicast is available. Neither keyword is used with version
1.

[secondary] authentication [none | simple | md5 key]

Defines the RIP version 2 authentication used on this interface. The default
authentication type is none. If simple is specified, the key is a 16-byte password. If
md5 is specified, the key is a 16-byte value used with the packet contents to
generate a Message Digest 5 cryptographic checksum. If secondary is specified,
this defines the secondary authentication type. Packets are always sent using the
primary authentication technique. The secondary authentication type is defined only
for incoming packets. Inbound packets are checked against both the primary and
secondary authentication methods before being discarded as invalid.

trustedgateways gateway_list ;

Defines the list of gateways from which RIP accepts updates. The gateway_list is
simply a list of hostnames or IP addresses. By default, all gateways on the shared network
are trusted to supply routing information. But if the trustedgateways statement is used,
only updates from the gateways in the list are accepted.

sourcegateways gateway_list ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sourcegateways gateway_list ;

Defines a list of gateways to which RIP sends packets directly. By default, RIP packets are
broadcast or multicast to several systems on the shared network, but if this statement is
used, RIP unicasts packets directly to the listed gateways.

traceoptions trace_options

Defines tracing for RIP. RIP supports most of the standard tracing options as well as these
packet-tracing options:

packets

Traces all RIP packets.

request

Traces the RIP information request packets, such as REQUEST, POLL, and
POLLENTRY.

response

Traces all RIP RESPONSE packets.

other

Traces any other type of RIP packet.

B.8.3 The isis Statement

isis on | off {

 [area areaid ;]

 [area auth simple key ;]

 [domain auth simple key ;]

 [domain-wide on | off ;]

 [export-defaults ;]

 [export-defaults level 1 | 2 ;]

 [export-defaults metric metric | inherit ;]

 [export-defaults metric-type internal | external ;]

 [external preference preference ;]

 [level 1 | 2 | 1 and 2 ;]

 [interface name | address [{

 [enable | disable ;]

 [auth simple key ;]

 [csn-interval interval [level 1 | 2 | 1 and 2] ;]

 [dis-hello-interval interval [level 1 | 2 | 1 and 2] ;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [dis-hello-interval interval [level 1 | 2 | 1 and 2] ;]

 [encap [iso | ip] ;]

 [hello-interval interval [level 1 | 2 | 1 and 2] ;]

 [hello-multiplier number [level 1 | 2 | 1 and 2] ;]

 [lsp-interval interval ;]

 [level 1 | 2 | 1 and 2 ;]

 [max-burst number ;]

 [metric metric [level 1 | 2 | 1 and 2] ;]

 [passive on | off ;]

 [priority priority [level 1 | 2 | 1 and 2] ;]

 [retransmit-interval interval ;]

 }] ;]

 [overload-bit on | off ;]

 [preference preference ;]

 [psn-interval intervalt ;]

 [require-snp-auth on | off ;]

 [ribs unicast | unicast multicast ;]

 [spf-interval interval ;]

 [inet6 on | off ;]

 [summary-originate [inet | inet6] {

 [network (mask mask | masklen n) metric cost-value ;]

 } ;]

 [summary-filter [inet | inet6] {

 [network mask mask | masklen number ;]

 } ;]

 [systemid systemid ;]

 [traceoptions traceoptions ;]

 [config-time seconds ;]

 [es-config-time seconds ;]

 [hold-time seconds ;]

};

The isis statement enables the IS-IS protocol. By default, it is disabled. The options that may

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The isis statement enables the IS-IS protocol. By default, it is disabled. The options that may
appear in the isis statement are:

area areaid

Adds area addresses to those configured automatically from the circuits. IS-IS area
addresses are automatically configured based on the real circuits over which IS-IS runs. Up
to three areas can be added using area statements.

area auth simple key

Enables authentication for level 1 routing and selects the key. The format for key is one to
eight decimal digits separated by periods, a one- to eight-byte hexadecimal string preceded
by 0x, or a one- to eight-character string in double quotes. The same key format is used
throughout the isis statement.

domain auth simple key

Enables authentication and selects the key for level 2 routing.

export-defaults level 1 | 2

Sets the protocol level used for exported routes. By default, a level 1 router exports at level
1, and a level 2 router supports both level 1 and 2.

export-defaults metric metric | inherit

Defines the default metric used on routes exported as IS-IS from another protocol. The
default is to use the metric already contained in the route, which is indicated by the
inherit keyword.

export-defaults metric-type internal | external

Defines the type of the metric used on routes exported as IS-IS from another protocol. The
default is internal.

external preference preference

Defines the preference of external routes learned from IS-IS. The default preference is 151.

level 1 | 2 | 1 and 2

Sets the protocol level for this intermediate system. A level 1 system is an intra-area
router. A level 1 system cannot have any level 2 interfaces. A level 2 system is an
inter-area router, and it cannot have any level 1 interfaces. A level 1 and 2 system may
have level 1, level 2, and level 1 and 2 interfaces. Additionally, individual options relating to
protocol settings can be specified as level 1, level 2 or level 1 and 2 depending on the
specific level for which the option is being set when the system supports level 1 and 2. The
default is level 1 and 2.

interface name | address

Identifies the interfaces on which to run IS-IS. The default is all. The following options can
be set for each interface:

enable | disable

enable or disable the interface. The default is enable.

auth simple key

Enables authentication and selects the authentication key for this interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

csn-interval interval [level 1 | 2 | 1 and 2]

Sets the interval at which this system will multicast CSN packets if it is elected the
Designated Intermediate System (DIS). The interval can be from 1 to 100
seconds.

dis-hello-interval interval [level 1 | 2 | 1 and 2]

Sets the interval at which this system will send hello messages if it is elected the
DIS. The interval can be from 1 to 100 seconds.

encap [ip | iso]

Selects the type of encapsulation used. The default is ip.

hello-interval interval [level 1 | 2 | 1 and 2]

Defines the interval at which hello packets are sent on the interface. interval can
be from 1 to 300 seconds.

hello-multiplier number [level 1 | 2 | 1 and 2]

Defines the number of hello packets that must be missed before a neighbor is
considered "down." Thus if number is set to 3 and no hello packets are received
from a neighbor in the amount of time in which three hello packets are normally
received, the neighbor is considered down. number can be from 1 to 100.

lsp-interval interval

Defines the interval at which LSP packets are sent on the interface.

level 1 | 2 | 1 and 2 ;

Defines the protocol level used on this interface.

max-burst number

Defines the maximum number of packets that can be sent in a burst.

metric metric [level 1 | 2 | 1 and 2]

Defines the cost associated with this interface.

passive on | off

Indicates whether this interface should be treated as an active or passive interface.

priority priority [level 1 | 2 | 1 and 2]

Sets the priority number used for the DIS election. priority is a value from 1 to
127.

retransmit-interval interval

Defines the interval at which packets are retransmitted on the interface.

overload-bit on | off

Enables or disables use of the overload bit.

preference preference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preference preference

Sets the gated preference for IS-IS routes. The default is 11.

psn-interval interval

Defines how often PSN packets are sent by this system. interval can be 1 to 20
seconds.

ribs unicast | unicast multicast

Defines the routing information base format used for IS-IS routes. The default is unicast.

spf-interval interval

Defines the amount of time to wait for more changes to occur before recalculating the
routing table. interval can be from 1 to 60 seconds.

inet6 on | off

Enables support for IPv6 routing.

summary-originate

Defines how level 1 routes are summarized in this system's routing information base for
level 2 routing. summary-originate is used only if this system is a level 2 router.
network identifies the level 1 address received, and the network mask, defined as either a
mask or a numeric mask length, aggregates the routes.

summary-filter

Defines how level 1 routes are summarized when this system advertises them through level
2 routing. summary-filter is used only if this system is a level 2 router.

systemid systemid

Defines the IS-IS system ID. If no system identifier is specified, the system ID portion of the
first circuit's NSAP address is used.

traceoptions traceoptions

Defines the trace options used for IS-IS. The default is none.

B.8.4 The bgp Statement

bgp yes | no | on | off [{

 preference preference ;

 defaultmetric metric ;

 traceoptions trace_options ;

 group type external peeras as_number

 | internal peeras as_number

 | igp peeras as_number proto proto

 | routing peeras as_number proto proto interface interface_list

 | test peeras as_number {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 | test peeras as_number {

 allow {

 address mask mask | masklen number

 all

 host address } ;

 peer address

 [metricout metric]

 [localas as_number]

 [nogendefault]

 [gateway address]

 [preference preference]

 [preference2 preference]

 [lcladdr address]

 [holdtime time]

 [version number]

 [passive]

 [sendbuffer number]

 [recvbuffer number]

 [indelay time]

 [outdelay time]

 [keep all | none]

 [showwarnings]

 [noaggregatorid]

 [keepalivesalways]

 [v3asloopokay]

 [nov4asloop]

 [logupdown]

 [ttl ttl]

 [traceoptions trace_options] ; }

 ; }] ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ; }] ;

This statement enables or disables BGP. By default, BGP is disabled. The default preference is
170. By default, BGP does not advertise a metric. Unlike the RIP metric, the BGP metric does not
play a primary role in determining the best route. The BGP metric is simply an arbitrary 16-bit
value that can be used as one criterion for choosing a route. The defaultmetric statement can
be used to define a metric that BGP will use when advertising routes.

Trace options can be specified for all of BGP or for individual BGP peers. BGP supports most of
the standard trace options as well as the following:

packets

Traces all BGP packets. Traces BGP OPEN packets. Traces BGP UPDATE packets.
Traces BGP KEEPALIVE packets.

BGP peers must be members of a group. The group statement declares the group, defines
which peers are members of the group, and defines the group "type." Multiple group statements
may be specified, but each must have a unique combination of type and autonomous system
number. There are five possible group types:

group type external peeras as_number

Specifies that BGP will run as a classic exterior gateway protocol. The peers listed in this
group are members of an external autonomous system. Full policy checking is applied to all
incoming and outgoing routes.

group type internal peeras as_number

Specifies that BGP will be used to distribute routes to an internal group that has no
traditional interior gateway protocol. Routes received from external BGP peers are re-
advertised to this group with the received metric.

group type igp peeras as_number proto proto

Specifies that BGP will be used to distribute path attributes to an internal group that runs an
interior gateway protocol. BGP advertises the AS path, path origin, and transitive optional
attributes if the path attributes are provided by the IGP's tag mechanism. proto is the
name of the interior gateway protocol, e.g., proto ospf.

group type routing peeras as_number proto proto interface interface_list

Specifies that BGP will be used internally to carry external routes, while an interior gateway
protocol is used to carry only internal routes. Normally the routes learned by BGP from
external autonomous systems are written in the routing table where they are picked up and
distributed by an interior protocol to the local autonomous system. For this type of group,
BGP distributes the external routes itself, and the interior protocol is limited to distributing
only those routes that are interior to the local autonomous system. proto is the name of
the interior protocol.

group type test peeras as_number

Specifies that the members of this group are test peers. All routing information exchanged
by test peers is discarded.

A group clause contains peer subclauses. Any number of peer subclauses may belong to a
group. Peers are specified explicitly with a peer statement, or implicitly with the allow
statement.

allow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allow

Any peer whose address is contained in the specified address range is a member of the
group. The keyword all matches all possible addresses. The keyword host precedes an
individual host address. The address and mask pairs define a range of addresses. Network
masks can be defined with the keyword mask and an address mask written in dotted
decimal notation, or with the keyword masklen and the prefix length written as a decimal
number. All parameters for these peers must be defined in the group clause.

peer address

The peer identified by address is a member of the group.

The BGP peer subclause allows the following parameters, which can also be specified on the
group clause. If placed on the group clause, the parameters affect all peers in the group. The
available options are:

metricout metric

Defines the primary metric for routes sent to the peer. This overrides the default metric, a
metric specified on the group, and any metric specified by export policy.

localas as_number

Defines the local system's autonomous system number (asn). The default is to use the asn
defined in the autonomoussystem statement.

nogendefault

Prevents gated from generating a default route when BGP peers with this neighbor, even
if gendefault is set in the options directive statement.

gateway address

Identifies the next-hop gateway through which packets for this peer are routed. Use this
only if the neighbor does not share a network with the local system. This option is rarely
needed.

preference preference

Defines the preference used for routes learned from this peer, which permits gated to
prefer routes from one peer, or group of peers, over another.

preference2 preference

Defines the "second" preference. In the case of a preference tie, the second preference is
used to break the tie. The default value is 0.

lcladdr address

Defines the address of the local interface used to communicate with this neighbor.

holdtime time

Defines the number of seconds the peer should wait for a keepalive, update, or notification
message before closing the connection. The value is sent to the peer in the Hold Time field
of the BGP Open message. The value must be either 0 (no keepalives will be sent) or at
least 3.

version version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version version

Identifies the version of the BGP protocol to use with this peer. By default, the version is
negotiated when the connection is opened. Currently supported versions are 2, 3, and 4.

passive

Specifies that gated should wait for the peer to issue an OPEN. By default, gated
periodically sends OPEN messages until the peer responds.

sendbuffer buffer_size
recvbuffer buffer_size

Defines the size of the send and receive buffers. The default is 65535 bytes, which is the
maximum. These parameters are not used on normally functioning systems.

indelay time
outdelay time

Implements "route dampening." indelay defines the number of seconds a route must be
stable before it is accepted. outdelay is the number of seconds a route must be present
in the gated routing database before it is exported to this peer. The default value for each
is 0, meaning that these features are disabled. Use this only if the routing table is
fluctuating so rapidly it is unstable.

keep all

Tells the system to retain routes learned from this peer even if the routes' AS paths contain
our local AS number. Normally, routes that contain the local AS number are discarded as
potential routing loops.

showwarnings

Tells the system to issue warning messages for events, such as duplicate routes, that are
normally "silently ignored."

noaggregatorid

Sets the routerid in the aggregator attribute to 0. By default, it is set to the router identifier.
Use this to prevent this router from creating aggregate routes with AS paths that differ from
other routers in the AS.

keepalivesalways

Instructs the system to send a keepalive even when an update could have correctly
substituted for one. Used for interoperability with some routers.

v3asloopokay

Allows advertisement of a route with a loop in the AS path (i.e., with an AS appearing more
than once in the path) to version 3 external peers.

nov4asloop

Prevents a route with a loop in the AS path from being advertised to version 4 external
peers. Used to avoid passing such routes to a peer that incorrectly forwards them to
version 3 neighbors.

logupdown

Logs every time a BGP peer enters or leaves the ESTABLISHED state.

ttl ttl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ttl ttl

Defines the IP ttl for local neighbors. By default it is set to 1. Use this option if the local
neighbor discards packets sent with a ttl of 1. Not all Unix kernels allow the ttl to be
specified for TCP connections.

The BGP trace options were covered previously.

B.8.5 The egp Statement

egp yes | no | on | off [{

 preference preference ;

 defaultmetric metric ;

 packetsize maxpacketsize ;

 traceoptions trace_options ;

 group [peeras as_number] [localas as_number] [maxup number] {

 neighbor address

 [metricout metric]

 [preference preference]

 [preference2 preference]

 [ttl ttl]

 [nogendefault]

 [importdefault]

 [exportdefault]

 [gateway address]

 [lcladdr address]

 [sourcenet network]

 [minhello | p1 interval]

 [minpoll | p2 interval]

 [traceoptions trace_options] ; }

 ; }] ;

This statement enables or disables EGP. By default, EGP is disabled. The default metric for
announcing routes via EGP is 255, and the default preference for routes learned from EGP is
200.

The packetsize argument defines the size of the largest EGP packet that will be sent or
accepted. maxpacketsize is the size in bytes. The default is 8192 bytes. If gated receives a
packet larger than maxpacketsize, the packet is discarded, but maxpacketsize is increased
to the size of the larger packet so that future packets won't have to be discarded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The traceoptions statement defines the tracing for EGP. Tracing can be specified for the EGP
protocol or for an individual EGP neighbor. The EGP trace options are:

packets

Traces all EGP packets.

hello

Traces EGP HELLO/I-HEARD-U packets.

acquire

Traces EGP ACQUIRE/CEASE packets.

update

Traces EGP POLL/UPDATE packets.

The egp statement has two clauses: the group clause and the neighbor clause. EGP
neighbors must be part of a group, and all of the neighbors in a group must be members of the
same autonomous system. Use the group clause to define parameters for a group of EGP
neighbors. Values set in a group clause apply to all neighbor clauses in the group. There can be
multiple group clauses. The following parameters are set by the group clause:

peeras

Identifies the autonomous system number of the autonomous system to which the
members of the group belong. If not specified, this number is learned from the neighbors.

localas

Defines the local system's autonomous system number. The default is to use the asn
defined in the autonomoussystem statement.

maxup

Defines the number of EGP neighbors that gated is to acquire. The default is to acquire all
listed neighbors.

The neighbor clause defines one EGP neighbor. The only part of the clause that is required is
the address argument, which is the hostname or IP address of the neighbor. All other
parameters are optional. All of these optional parameters can also be specified in the group
clause if you want to apply the parameter to all neighbors. The neighbor clause parameters are:

metricout metric

Used for all routes sent to this neighbor. This value overrides the defaultmetric value
set in the egp statement, but only for this specific neighbor.

preference preference

Defines the preference used for routes learned from this neighbor, which permits gated to
prefer routes from one neighbor, or group of neighbors, over another.

preference2 preference

Defines the "second" preference. In the case of a preference tie, the second preference is
used to break the tie. The default value is 0.

ttl ttl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ttl ttl

Defines the IP ttl for local neighbors. By default, it is set to 1. Use this option if the local
neighbor discards packets sent with a ttl of 1.

nogendefault

Prevents gated from generating a default route when EGP peers with this neighbor, even
if gendefault is set in the options directive statement.

importdefault

Tells the system to accept the default route if it is included in this neighbor's EGP update.
By default, it is ignored.

exportdefault

Tells the system to send the default route in EGP updates to this EGP neighbor. Normally a
default route is not included in an EGP update.

gateway address

Identifies the next-hop gateway through which packets for this neighbor are routed. Use
this only if the neighbor does not share a network with the local system. This option is rarely
needed.

lcladdr address

Defines the address of the local interface used to communicate with the neighbor.

sourcenet network

Changes the network queried in EGP POLL packets. By default, this is the shared network.
However, if the neighbor does not share a network with your system, the neighbor's
network address should be specified here. This parameter is normally not needed. Do not
use it if you share a network with the EGP neighbor.

minhello | p1 time

Sets the interval between the transmission of EGP HELLO packets. The default HELLO
interval is 30 seconds. If the neighbor fails to respond to three HELLO packets, the system
stops trying to acquire the neighbor. Setting a larger interval gives the neighbor a better
chance to respond. The interval can be defined as seconds, minutes:seconds, or
hours:minutes:seconds. For example, a 3-minute interval could be specified as 180
(seconds), 3:00 (minutes), or 0:3:00 (no hours and 3 minutes). The keyword p1 can be
used instead of the keyword minhello.

minpoll | p2 time

Sets the time interval between sending polls to the neighbor. The default is 120 seconds. If
three polls are sent without a response, the neighbor is declared "down" and all routes
learned from that neighbor are removed from the routing table. If a neighbor becomes
congested and can't respond to rapid polls, this can cause the routing table to become very
unstable. A longer polling interval provides a more stable, but less responsive, routing
table. This interval is also defined as seconds, minutes:seconds, or
hours:minutes:seconds.

B.8.6 The smux Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

smux yes | no | on | off [{

 port port ;

 password string ;

 traceoptions trace_options ; }] ;

This command replaces the snmp statement used in previous versions of gated. The smux
command controls whether gated informs the SNMP management software of its status. SNMP
is not a routing protocol and is not started by this command. You must run SNMP software
independently. This statement only controls whether gated keeps the management software
apprised of its status. The default is on, so gated does inform SNMP of its status.

The smux statement supports three options:

port port

Changes the SNMP port used by gated. By default, the SNMP daemon listens to port 199.

password string

Enables password authentication and defines the password used.

traceoptions trace_options

Traces the interactions between gated and the SNMP daemon. Three options are
supported: packets, send, and receive.

B.8.7 The redirect Statement

redirect yes | no | on | off [{

 preference preference ;

 interface interface_list [noredirects | redirects] ;

 trustedgateways gateway_list ;

 traceoptions trace_options ; }] ;

This statement controls whether ICMP redirects are allowed to modify the kernel routing table. It
does not prevent a system from sending redirects, only from listening to them. If no or off is
specified, gated attempts to remove the effects of ICMP redirects from the kernel routing table
whenever the redirects are detected. Remember that ICMP is part of IP, and the redirects may be
installed in the kernel table before they are seen by gated. If you disable redirects, gated
actively removes the redirected routes from the routing table. By default, ICMP redirects are
enabled on hosts that quietly listen to interior routing protocols, and disabled on gateways that
actively participate in interior routing protocols.

The default preference of a route learned from a redirect is 30, which can be changed with the
preference option. The interface statement controls how redirects are handled on an
interface-by-interface basis. Redirects are ignored if noredirects is specified, and are
permitted if redirects, which is the default, is specified. The trustedgateways statement
enables redirects on a gateway-by-gateway basis. By default, redirects are accepted from all
routers on the local network. If the trustedgateways statement is used, only redirects received
from a gateway listed in the gateway_list are accepted. The gateway_list is simply a list of
hostnames or addresses. The trace_options defined on the traceoptions statement are
the standard gated trace options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the standard gated trace options.

B.8.8 The icmp Statement

icmp {

 traceoptions trace_options ; }

On some systems, gated listens to all ICMP messages but only processes the ICMP redirect
packets. That processing is controlled by the redirect statement. In the future, more functionality
may be added. At present the icmp statement is used only to enable tracing of ICMP messages.
The tracing options supported by the icmp statement are:

packets

Traces all ICMP packets.

redirect

Traces ICMP REDIRECT packets.

routerdiscovery

Traces ICMP ROUTER DISCOVERY packets.

info

Traces ICMP informational packets.

error

Traces ICMP error packets.

B.8.9 The routerdiscovery Statement

The Router Discovery Protocol informs hosts of the routers that are available on the network. It
provides an alternative to static routes, routing protocols, and ICMP redirects for hosts that simply
need to know the address of their default router. The Router Discovery Protocol is implemented
as a server running on the router and a client running on the host. Both the server (router)
software and the client (host) software are provided by gated.

First let's look at the server configuration statement:

routerdiscovery server yes | no | on | off [{

 traceoptions trace_options ;

 interface interface_list

 [minadvinterval time]

 [maxadvinterval time]

 [lifetime time] ;

 address interface_list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 address interface_list

 [advertise | ignore]

 [broadcast | multicast]

 [ineligible | preference preference] ;

}] ;

The routerdiscovery statement for both the client and server supports tracing. The state
trace flag can be used to trace finite state machine transitions. Router discovery packet tracing,
however, is not done here. It is enabled via the ICMP statement.

The interface clause defines the physical interfaces and the parameters that apply to them.
Only physical interfaces can be defined in the interface clause. Addresses are specified in the
address clauses shown below. The interface parameters are:

maxadvinterval time

Defines the maximum time interval between sending router advertisements. It must be
more than 4 seconds and less than 30:00 minutes. The default is 10:00 minutes (600
seconds).

minadvinterval time

Defines the minimum time interval between sending router advertisements. It must be no
less than 3 seconds and no greater than maxadvinterval. The default is 0.75 times the
maxadvinterval.

lifetime time

Defines how long clients should consider the addresses in a router advertisement valid. It
must be greater than maxadvinterval and no more than 2:30:00 (two hours, thirty
minutes). The default is 3 times the maxadvinterval.

The address clause defines the IP addresses used and the parameters that apply to them. The
address clause parameters are:

advertise | ignore

advertise specifies that the address should be included in router advertisements, which
is the default. ignore specifies that the address should not be included in router
advertisements.

broadcast | multicast

broadcast specifies that the address should be included in a broadcast router
advertisement because some systems on the network do not support multicasting. This is
the default if the router does not support multicasting.

multicast specifies that the address should only be included in a multicast router
advertisement. If the system does not support multicasting, the address is not advertised.

ineligible | preference preference

Defines the preference of the address as a default router. preference is a 32-bit signed
integer. Higher values mean the address is more preferable. Note that this is not gated
preference. This is a value transmitted as part of the Router Discovery Protocol.

The keyword ineligible assigns a preference of hex 80000000, which means the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The keyword ineligible assigns a preference of hex 80000000, which means the
address is not eligible to be the default router. Hosts use ineligible addresses to verify
ICMP redirects.

For routerdiscovery to work, the hosts must have the routerdiscovery client software. It
is part of gated and is configured by the routerdiscovery client statement.

B.8.9.1 The routerdiscovery client statement

routerdiscovery client yes | no | on | off [{

 traceoptions trace_options ;

 preference preference ;

 interface interface_list

 [enable | disable | multicast]

 [quiet | solicit] ;

}] ;

The client uses the same trace options as the server. Other options are different, however. The
full list of client options is:

preference preference ;

Defines the preference of default routes learned from routerdiscovery. The default is
55. Unlike the server statement, this is gated preference.

interface interface_list

Defines the interfaces used by routerdiscovery.

enable | disable | multicast

Enables or disables routerdiscovery on the interface. enable is the default.
multicast forces gated to use multicasting for router discovery. If multicasting is
unavailable, router discovery is not attempted. Normally, gated uses multicasting or
broadcasting depending on what is available for the interface.

broadcast | multicast

Specifies whether router solicitations should be broadcast or multicast on the interface. By
default, router solicitations are multicast if that is supported; otherwise, router solicitations
are broadcast. If the multicast keyword is specified and multicast is not available, the
router solicitations are not sent. Generally, if these options are not specified, gated will do
the right thing.

quiet | solicit

Specifies whether router solicitations are sent on this interface. solicit, which is the
default, sends router solicitations. quiet listens to Router Advertisements but does not
send router solicitations.

B.8.10 The kernel Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kernel {

 options

 [nochange]

 [noflushatexit]

 [protosync];

 remnantholdtime ;

 routes number ;

 flash

 [limit number]

 [type interface | interior | all] ;

 background

 [limit number]

 [priority flash | higher | lower] ;

 traceoptions trace_options ; } ;

The kernel statement defines the interactions between gated and the kernel.

options

Defines three possible configuration options. These are:

nochange

Limits gated to deletes and adds. Use on early versions of the routing socket code
that have a malfunctioning change operation.

noflushatexit

Prevents route deletions at shutdown. Normally, shutdown processing deletes routes
that do not have a "retain" indication. Use to speed startup on systems with
thousands of routes.

protosync

Updates the kernel protocol field with the current gated protocol value.

remnantholdtime

Holds routes read from the kernel forwarding table at startup for up to 3 minutes unless
they are overridden.

routes number

Defines the maximum number of routes gated will install in the kernel. By default, there is
no limit to the number of routes in the kernel forwarding table.

flash

Tunes the parameters used for flash updates. When routes change, the process of
notifying the kernel is called a "flash update."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

limit number

Sets the maximum number of routes processed during one flash update. The default
is 20. A value of -1 causes all route changes to be processed. Large updates can
slow the processing of "time-critical" protocols. 20 is a good default.

type interface | interior | all

Specifies the type of routes processed during a flash update. By default, only
interface routes are installed during a flash update. interior specifies that interior
routes are also installed, and all specifies that interior and exterior routes should be
processed. Specifying flash limit -1 all causes all routes to be installed
during the flash update, which mimics the behavior of previous versions of gated.

background

Tunes the parameters used for background processing. Since only interface routes are
normally installed during a flash update, most routes are processed in batches in the
background.

limit number

Sets the number of routes processed in one batch. The default is 120.

priority flash | higher | lower

Sets the priority for processing batch updates. The default is lower, which means
that batch updates are processed at a lower priority than flash updates. To process
kernel updates at the same priority as flash updates, specify flash.

Many tracing options work for the kernel interface because, in many cases, the interface is
handled as a routing protocol. The command-line trace options, symbols and iflist, provide
information about the kernel. The kernel statement trace options are:

remnants

Traces routes read from the kernel when gated starts.

request

Traces gated kernel Add/Delete/Change operations.

The remaining trace options apply only to systems that use the routing socket to exchange routing
information with the kernel.

info

Traces informational messages received from the routing socket.

routes

Traces routes exchanged with the kernel.

redirect

Traces redirect messages received from the kernel.

interface

Traces interface status messages received from the kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

other

Traces any other messages received from the kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.9 static Statements

static statements define the static routes used by gated. A single static statement can
specify several routes. The static statements occur after protocol statements and before
control statements in the gated.conf file. To gated, static routes are any routes defined with
static statements. However, unlike the routes in a static routing table, these routes can be
overridden by routes with better preference values.

The structure of a static statement is:

static {

 [default] | [[host] address [mask mask | masklen n]] gateway gateways

 [interface interface_list]

 [preference preference]

 [retain]

 [reject]

 [blackhole]

 [noinstall] ;

 address [mask mask | masklen n] interface interface

 [preference preference]

 [retain]

 [reject]

 [blackhole]

 [noinstall] ;

} ;

The static statement has two different clauses. The one with the keyword gateway is the one
you'll use. This clause contains information similar to that provided by the route command. A
static route is defined as a destination address reached though a gateway. The format of this
clause is:

[default] | [[host] address [mask mask | masklen number]] gateway gateways

Defines a static route through one or more gateways. The destination is defined by the
keyword default (for the default route) or by a destination address. The destination
address can be preceded by the keyword host, if it is a host address, or followed by an
address mask. The address mask can be defined with the keyword mask and a dotted
decimal address mask, or by the keyword masklen and a numeric prefix length. The listed
gateways must be on a directly attached network. Possible configuration parameters are:

interface interface_list

When specified, gateways in the gateway_list must be directly reachable through
one of these interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preference preference

Sets the gated preference for this static route. The default is 60.

retain

Prevents this static route from being removed during a graceful shutdown. Normally,
only interface routes are retained in the kernel forwarding table. Use this to provide
some routing when gated is not running.

reject

Installs this route as a "reject route." Packets sent to a reject route are dropped and
an "unreachable" message is sent back to the source. Not all kernels support reject
routes.

blackhole

Installs this route as a "blackhole route." A blackhole route is the same as a reject
route except the "unreachable" message is not sent.

noinstall

Instructs the system to advertise this route via routing protocols but not to install it in
the kernel forwarding table.

The other static statement clause uses the keyword interface instead of the keyword
gateway. Use this clause only if you have a single physical network with more than one network
address—a rare occurrence. ifconfig normally creates only one destination for each interface.
This special form of the static statement adds additional destinations to the interface.

address [mask mask | masklen number] interface interface

The preference, retain, reject, blackhole, and noinstall options are the same as
described above.

The default preference of a static route is 60, which prefers static routes over several other
routing sources. If you want other types of routes to override static routes, use the preference
argument on the static statement to increase the preference number. (Remember that high
preference values mean less-preferred routes.)

The following example defines a static default route through gateway 172.16.12.1. The preference
is set to 125 so that routes learned from RIP are preferred over this static route:

static {

 default gateway 128.66.12.1 preference 125 ; } ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.10 Control Statements

The control statements define your routing policy. Often when administrators hear the terms
"routing policy" or "policy-based routing," they assume that this is something done inside the
routing protocol.

In reality, a routing policy is defined outside of the routing protocol in the configuration file. The
policy defines what routes are accepted and what routes are advertised. gated does this with two
control statements: import and export. The import statement defines which routes are
accepted and from what sources those routes are accepted. The export statement defines
which routes are advertised based on the source of the routes and the protocol used to advertise
them.

The import and export statements use gated preference, routing metrics, routing filters, and
AS paths to define routing policy. Preference and metrics are controlled by these keywords:

restrict

Specifies that the routes are not to be imported, in the case of the import command, or
exported in the case of the export command. This keyword blocks the use of a specific
route.

preference preference

Defines the preference value used when comparing this route to other routes. Preference is
used when installing routes, not when advertising them.

metric metric

Specifies the metric used when advertising a route.

Route filters match routes by destination address. Among other places, route filters are used on
martians and import and export statements. A route matches the most specific filter that
applies. Specifying more than one filter with the same destination, mask, and modifiers generates
an error. Import and export route filters can be specified in the following ways:[B]

[B] Route filters may include additional parameters. On import statements, they include a preference, and on export
statements, a metric. Preference and metric were described previously.

address [mask mask | masklen number] [exact | refines | between n1 and n2]

Defines a range of addresses using an address and an address mask. The address mask
can be defined with the keyword mask and a mask written in dotted decimal notation, or
with the keyword masklen and a numeric prefix length. If no mask is defined, the natural
mask of the network is used. Three options can be used:

exact

Matches a network, but no subnets or hosts of that network.

refines

Matches subnets and/or hosts of a network, but not the network itself.

between n1 and n2

Matches an address where at least n1 bits match and no more than n2 bits match.

all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

all

Matches every possible address.

default

Matches only the default route.

host address

Matches an individual host address.

A routing filter that matches everything on network number 192.168.12.0 and the individual host
10.104.19.12 contains:

192.168.12.0 masklen 24 ; host 10.104.19.12 ;

When no route filtering is specified in an import or export statement, all routes from the
specified source will match that statement. If any filters are specified, only routes that match the
specified filters are imported or exported.

Border Gateway Protocol (BGP) is designed to support policy-based routing. A key feature of
BGP is that it is a path-vector protocol. import and export statements allow you to use the AS
path vector to enforce your routing policy.

An AS path lists the autonomous systems end-to-end for a route and provides an indication of the
completeness of the path. Each autonomous system that a route passes through prepends its AS
number to the beginning of the AS path.

The "origin" of the path indicates its completeness. An origin of igp indicates the route was
learned from an interior routing protocol and is most likely complete. An origin of egp indicates
the route was learned from an exterior routing protocol that does not support AS paths (EGP for
example) and the path is most likely not complete.

When the path information is definitely not complete, an origin of incomplete is used. All of
these origins can be specified in the import and export statements and therefore used in your
routing policy. The keyword any is used when the policy applies to all origins.

The AS path can also be used in the control statements by defining an AS path regular
expression.[B] The AS path regular expression provides a pattern-matching syntax used to filter
routes based on the autonomous system numbers in the AS paths associated with those routes.

[B] AS path regular expressions are defined in RFC 1164.

An AS path regular expression is a regular expression composed of autonomous system numbers
and special operators. Table B-1 lists the AS path operators. The AS path operator operates on
an AS path term, which is an autonomous system number; a dot (.), which matches any
autonomous system number; or a parentheses-enclosed subexpression.

Table B-1. AS path operators
Symbol Meaning

{m,n} At least m and at most n repetitions

{m} Exactly m repetitions

{m,} m or more repetitions

* 0 or more repetitions

+ 1 or more repetitions

? 0 or 1 repetition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aspath_term | aspath_term Matches either the AS term on the left or the AS term on the right

A simple AS path regular expression might be:

import proto bgp aspath 164+ origin any restrict ;

This restricts all routes that have one or more occurrences of autonomous system number 164 in
their path vector.

B.10.1 The import Statement

The format of an import statement varies depending on the source protocol. The format of the
import statements for the exterior gateway protocols is:

import proto bgp | egp autonomoussystem as_number

 [restrict] |

 [[preference preference] {

 route_filter [restrict | (preference preference)]] ; } ;

import proto bgp aspath aspath_regexp

 origin any | igp | egp | incomplete

 [restrict] |

 [[preference preference] {

 route_filter [restrict | (preference preference)]] ; } ;

BGP and EGP importation may be controlled by autonomous system number. BGP also can
control importation using AS path regular expressions. Routes that are rejected by the routing
policy are stored in the routing table with a negative preference. A negative preference prevents a
route from being installed in the forwarding table or exported to other protocols. Handling rejected
routes in this manner alleviates the need to break and reestablish a session if routing policy
changes during a reconfiguration.

The format of the import statements for the RIP and redirect protocols is:

import proto rip | redirect

 [interface interface_list | gateway gateway_list]

 [restrict] |

 [[preference preference] {

 route_filter [restrict | (preference preference)]] ; } ;

This statement controls what routes are imported based on the source protocol, interface, and
gateway. The order of precedence is from the most general (protocol) to the most specific
(gateway). Unlike BGP and EGP, these protocols do not save routes that were rejected because
these protocols have short update intervals.

The preference option is not used with RIP. RIP doesn't use preference to choose between
routes of the same protocol. It uses the protocol metrics.

The format of the import statement for the OSPF protocol is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The format of the import statement for the OSPF protocol is:

import proto ospfase [tag ospf_tag] [restrict] |

 [[preference preference] {

 route_filter [restrict | (preference preference)]] ; } ;

Due to the nature of OSPF, only the importation of ASE routes can be controlled. Furthermore, it
is only possible to restrict the importation of OSPF ASE routes when functioning as an AS border
router. This requires you to specify an export ospfase statement in addition to the import
ospfase statement. Specify an empty export statement to control importation of ASEs when no
ASEs are being exported. (See the following section, "The export Statement.") If a tag is
specified, the import statement applies only to routes with the tag. OSPF ASE routes that are
rejected by policy are stored in the table with a negative preference.

OSPF routes are imported into the gated routing table with a preference of 10. Preference is not
used to choose between OSPF ASE routes. OSPF costs are used for that purpose.

B.10.2 The export Statement

The syntax of the export statement is similar to the syntax of the import statement, and the
meanings of many of the parameters are identical. An important difference between the two
statements is that while route importation is controlled by source information, route exportation is
controlled by both source and destination. Thus, export statements define where the routes will
be sent and where they originated. The destination of the route advertisement is defined by the
proto clause at the beginning of the export statement. The source of the routes is defined in
the export list.

The export statement varies slightly for each protocol. To advertise routes via EGP and BGP,
use this syntax:

export proto bgp | egp as as_number

 [restrict] |

 [[metric metric] {

 export_list ; }] ;

Routes are exported via EGP and BGP to the specified autonomous system. restrict blocks
exports to the AS. Valid BGP or EGP metrics can be specified. If no export list is defined, only the
direct routes of the attached interfaces are exported. If an export list is used, it must explicitly
specify everything that should be exported.

To advertise routes via RIP, use this syntax:

export proto rip

 [interface interface_list | gateway gateway_list]

 [restrict] |

 [[metric metric] {

 export_list ; }] ;

Routes exported by RIP can be sent through a specific interface or to a specific gateway. Set
metric if you plan to export static or internally generated default routes. The metric option is
used only when exporting non-RIP routes via RIP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If no export list is specified, RIP exports direct routes and RIP routes. If an export list is used, it
must explicitly specify everything that should be exported.

To advertise routes via OSPF, use this syntax:

export proto osfpase [type 1 | 2] [tag ospf_tag]

 [restrict] |

 [[metric metric] {

 export_list ; }] ;

Only OSPF ASE routes can be exported by gated. There are two types of OSPF ASE routes,
type 1 and type 2. They are described in Chapter 7 and earlier in this appendix. The default type
is specified in the ospf protocol statement, but it can be overridden here. The ospf_tag is
an arbitrary 32-bit number used to filter routing information. The default tag value is specified in
the ospf protocol statement, but it can be overridden here.

The source of the routes advertised by a protocol is defined by the export list. Each of the
commands listed above contains an export list option. Just like those commands, the export list
syntax varies depending on the source protocol of the routes. The commands described above
define the protocols that are used to advertise the routes. The export lists shown below describe
the protocols from which the routes are obtained. The biggest confusion caused by the export list
syntax is that it is almost identical to the syntax shown above. In both cases we define protocols,
autonomous systems, interfaces, gateways, and so on. In the first case we are defining the
protocols, interfaces, etc., to which routes are sent, and in this case we are defining the protocols,
interfaces, etc., from which routes are received.

To export routes learned from BGP and EGP, use this export list syntax:

export proto bgp | egp autonomoussystem as_number

 [restrict [noagg]] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

This defines routes learned via BGP or EGP from a specific autonomous system. Routes can be
restricted, or have a metric applied, based on matching the source AS number or the route filter.
noagg can be used with restrict to prevent any aggregate routes from matching the filter.

When BGP is configured, gated assigns all routes an AS path. For interior routes, the AS path
specifies igp as the origin and no autonomous systems in the AS path (the current AS is added
when the route is exported). For EGP routes, the AS path specifies egp as the origin and the
source AS as the AS path. For BGP routes, the AS path learned from BGP is used. If you run
BGP, the export of all routes may be controlled by the AS path using this syntax:

proto proto | all

 aspath aspath_regexp origin any | igp | egp | incomplete

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

The source of the routes can be any one protocol (proto) or all protocols (all). The importation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The source of the routes can be any one protocol (proto) or all protocols (all). The importation
of routes can be controlled by matching their AS paths against the AS path regular expression
(aspath_regexp) or by matching their addresses against the route_filter. Route filters and
AS path regular expressions were explained previously.

To export routes learned from RIP, use this export list syntax:

proto rip

 [interface interface_list | gateway gateway_list]

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

The export of RIP routes may be controlled by source interface, source gateway, or route filter.

To export routes learned from OSPF, use this export list syntax:

proto ospf | ospfase

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

The export of OSPF and OSPF ASE routes may be controlled by protocol and route filter.
Exporting OSPF routes can also be controlled by tag using the following syntax:

proto proto | all tag tag

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

OSPF and RIP version 2 provide a tag field. For all other protocols, the tag is always 0. Routes
may be selected based on the contents of the tag field.

There are other sources of routes that are not true routing protocols, and export lists can be
defined for these sources. The two export lists for these sources are:

proto direct | static | kernel

 [interface interface_list]

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

The export of these routes can be controlled based on the source "protocol" and the source
interface. The "protocols" in this case are routes to direct interfaces, static routes, or routes
learned from the kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

proto default | aggregate

 [restrict] |

 [[metric metric] {

 route_filter [restrict | metric metric] ; }] ;

The export of these routes may only be controlled based on source "protocol." default refers to
routes created by the gendefault option. aggregate refers to routes created by the aggregate
statements, the topic of the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.11 Aggregate Statements

Route aggregation is used by regional and national networks to reduce the number of routes
advertised. With careful planning, large network providers can announce a few aggregate routes
instead of hundreds of client network routes. Enabling aggregation is the main reason that CIDR
blocks are allocated as contiguous address blocks.

Most of us don't have hundreds of routes to advertise. But we may have a classless address
composed of a few class C addresses, and we may need to tell gated how to handle it. Older
versions of gated automatically generated an aggregate route to a natural network using the old
class A, B, and C concept; i.e., interface address 192.168.16.1 created a route to 192.168.16.0.
With the advent of classless interdomain routing, this can be the wrong thing to do. gated does
not aggregate routes unless it is explicitly configured with the aggregate statement:

aggregate default | address [[mask mask | masklen number] [bgp]]

 [preference preference] [brief] {

 proto proto

 [as as_number | tag tag | aspath aspath_regexp]

 [restrict] |

 [[preference preference] {

 route_filter [restrict | (preference preference)]] ; } ;

Several options are available for the aggregate statement:

bgp

Aggregations are to be formed using BGP protocol rules.

preference preference;

Defines the preference of the resulting aggregate route. The default is 130.

brief

Specifies that the AS path of the aggregate route should be the longest common AS path.
The default is to build an AS path consisting of all contributing AS paths.

proto proto

Only aggregate routes learned from the specified protocol. The value of proto may be any
currently configured protocol. This includes the "protocols" direct, static, and kernel,
discussed in the previous section; all for all possible protocols; and aggregate for other
route aggregations.

as as_number

Only aggregate routes learned from the specified autonomous system.

tag tag

Only aggregate routes with the specified tag.

aspath aspath_regexp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aspath aspath_regexp

Only aggregate routes that match the specified AS path.

restrict

Indicates routes that are not to be aggregated.

Routes that match the route filters may contribute to the aggregate route. A route may contribute
only to an aggregate route that is more general than itself. Any given route may contribute to only
one aggregate route, but an aggregate route may contribute to a more general aggregate.

A slight variation of aggregation is the generation of a route based on the existence of certain
conditions. The most common usage for this is to create a default based on the presence of a
route from a peer on a neighboring backbone. This is done with the generate statement:

generate default | address [mask mask | masklen number]

 [preference preference]

 [brief] {

 proto proto

 [as as_number | tag tag | aspath aspath_regexp]

 [restrict] |

 [[preference preference] {

 route_filter [restrict | preference preference]] ; } ;

} ;

The generate statement uses many of the same options as the aggregate statement. These
options were described earlier in this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. A named Reference
This appendix provides detailed information about named syntax and the commands and files
used to configure it. This is primarily a reference to use in conjunction with the tutorial information
in Chapter 8. This information is useful to any domain administrator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.1 The named Command

The server side of DNS is run by the name server daemon, named. The syntax of the named
command is:[C]

[C] Sun systems use in.named instead of named.

named [-d level] [-p port] [[-b|c] configfile] [-q -r -f -v] [-u username]

[-g groupname] [-t path] [-w path] [configfile]

The options used on the named command line are:

-d level

Logs debugging information in the file named.run. The argument level is a number from 1 to
11. A higher level number increases the detail of the information logged, but even when
level is set to 1, the named.run file grows very rapidly. Whenever you use debugging, keep
an eye on the size of the named.run file and use ndc notrace or SIGUSR2 to close the file if
it gets too large. Signal handling is covered in the next section.

It is not necessary to turn on debugging with the -d option to receive error messages from
named. named displays error messages on the console and stores them in the messages,
even if debugging is not specified. The -d option provides additional debugging information.

-p port

Defines the UDP/TCP port used by named. port is the port number used to connect to the
remote name server. If the -p option is not specified, the standard port (53) is used. Since port
53 is a well-known port, changing the port number makes the name server inaccessible to
standard software packages. Therefore, -p is used only for testing.

-b configfile or -c configfile

Specifies the file named uses as its configuration file. By default the configuration file is
/etc/named.conf, but the -b or -c option allows the administrator to choose another
configuration file. Note that using -b or -c is optional. As long as the filename used for
configfile doesn't start with a dash, the -b or -c flag is not required. Any filename written
on the named command line is assumed to be the configuration file, as the last item on the
command line shows.

-q

Logs all incoming queries. named must be compiled with the QRYLOG option set to enable this
type of logging.

-r

Turns off recursion. With this option set, the server will provide answers only for zones for
which it is an authoritative server. It will not pursue the query through other servers or zones.

-f

Runs named in the foreground. Normally named is run as a background daemon.

-v

Displays the version number. The -v switch does not run named.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displays the version number. The -v switch does not run named.

-u username

Sets the user ID under which the server runs after initializing. By default, named runs as root.

-g groupname

Set the group ID under which named runs after initializing. The group ID defaults to the master
group of the user ID under which named is run.

-t path

Defines the path to the directory named uses when running chroot.

-w path

Defines the path of named's working directory. The default is the current directory. The
directory option in the configuration file overrides this setting.

C.1.1 Signal Processing

named handles the following signals:

SIGHUP

Causes named to reread the named.conf file and reload the name server database. named
then continues to run with the new configuration. If named is compiled with the
FORCED_RELOAD option, this signal forces a slave server to transfer the zone from its
master server. This signal has the same effect as ndc reload.

SIGINT

Causes named to dump its cache to named_dump.db. The dump file contains all of the domain
information that the local name server knows. The file begins with the root servers and marks
off every domain under the root that the local server knows anything about. If you examine this
file, you'll see that it shows a complete picture of the information the server has learned. This
signal has the same effect as ndc dumpdb.

SIGUSR1

Turns on debugging; each subsequent SIGUSR1 signal increases the level of debugging.
Debugging information is written to named.run just as it is when the -d option is used on the
named command line. Debugging does not have to be enabled with the -d option for the
SIGUSR1 signal to work. SIGUSR1 allows debugging to be turned on when a problem is
suspected, without stopping named and restarting it with the -d option. This signal has the
same effect as ndc trace.

SIGUSR2

Turns off debugging and closes named.run. After issuing SIGUSR2, you can examine
named.run or remove it if it is getting too large. This signal has the same effect as ndc
notrace.

Optionally, some other signals can be handled by named. These additional signals require named to
be compiled with the appropriate options to support the signals:

SIGILL

Writes statistics data to named.stats. named must be compiled with -DSTATS for this signal to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writes statistics data to named.stats. named must be compiled with -DSTATS for this signal to
work.

SIGSYS

Writes profiling data into the directory defined by the directory option in the named.conf file.
named must be compiled with profiling to support this signal.

SIGTERM

Writes back the master and slave database files. This is used to save data modified by
dynamic updates before the system is shut down. named must be compiled with dynamic
updating enabled.

SIGWINCH

Toggles logging of all incoming queries via syslogd. named must be compiled with the
QRYLOG option to support this. This signal has the same effect as ndc querylog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2 named.conf Configuration Commands

The named.conf file defines the name server configuration and tells named where to obtain the
name server database information. BIND 8 uses the following configuration commands: key,
acl, options, logging, zone, server, controls, and trusted-keys. BIND 9 uses the
same eight commands and adds the view command.

In addition to these configuration commands, both BIND 8 and BIND 9 provide an include
statement used to load an external file that contains any of the configuration commands. For
example:

include /var/named/keys

copies the file /var/named/keys, which might be a file containing key and trusted-key
commands into the named.conf file.

C.2.1 The key Statement

The key statement assigns an internal name used to reference an authentication method. key
statements usually occur near the start of the configuration because forward references are not
allowed. The syntax of the key statement for both BIND 8 and BIND 9 is:

key key_id {

 algorithm algorithm_id;

 secret secret_string;

};

key_id

The name assigned to the authentication method.

algorithm_id

The authentication algorithm used.

secret_string

A base64-encoded key used by the algorithm.

C.2.2 The acl Statement

The acl command assigns a name to an address match list so that it can be referenced later in
the configuration. Forward references are not allowed. The syntax of the acl command for both
BIND 8 and BIND 9 is:

acl name {

 address_match_list

};

name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name

An internal name for the list. There are four predefined names:

any

Match every possible address.

none

Match no address.

localhost

Match every address assigned to the local host.

localnet

Match every address where the network portion is the same as the network portion
of any address assigned to the local hosts.

address_match_list

A list of IP addresses written in dotted decimal notation with an optional address mask
prefix. An exclamation point (!) before an address means "don't match" the value. An
address_match_list can also contain the name of a previously defined access control
list, including the four predefined names.

C.2.3 The trusted-keys Statement

The trusted-keys statement manually defines the public key for a remote domain when that
key cannot be securely obtained from the network. The BIND 8 and BIND 9 syntax for the
trusted-keys statement is:

trusted-keys {

 domain_name flags protocol algorithm key; [...]

};

domain_name

The name of the remote domain.

flags, protocol, algorithm

Attributes of the authentication method used by the remote domain.

key

A base64-encoded string representing the remote domain's public key.

C.2.4 The server Statement

The server statement defines the characteristics of a remote server. The BIND 8 syntax is:

server address {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server address {

 [bogus yes|no;]

 [support-ixfr yes|no;]

 [transfers number;]

 [transfer-format one-answer|many-answers;]

 [keys { key_id [key_id ...] };]

};

The server statement applies to the remote server identified by address.

transfer-format

Sets the format used for zone transfers with this server to either the more efficient many-
answers format or the backward-compatible one-answer format.

bogus yes

Prevents the local server from sending queries to this server. The default is no, which
permits queries to the remote server.

support-ixfr yes

Indicates that the remote server can support incremental transfers. no, which is the default,
says that the remote server cannot perform incremental transfers.

transfers

Defines the maximum number of concurrent inbound transfers permitted from this server.

keys

Identifies the key required by the remote host for transaction security.

C.2.4.1 The BIND 9 server statement

The BIND 9 server statement syntax varies slightly. It is:

server address {

 [bogus yes|no;]

 [provide-ixfr yes|no;]

 [request-ixfr yes|no;]

 [transfers number;]

 [transfer-format one-answer|many-answers;]

 [keys { key_id [key_id ...] };]

};

All of the fields are the same as BIND 8, with the exception that support-ixfr has been
replaced by two options:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provide-ixfr

Indicates that the local server will provide incremental zone transfers to the remote server.

request-ixfr

Indicates that the local server will request incremental zone transfers from the remote
server.

C.2.5 The options Statement

The options statement defines global options for BIND and the DNS protocol. The BIND 8
syntax of the options command is:

options {

 [version string;]

 [directory pathname;]

 [named-xfer pathname;]

 [dump-file pathname;]

 [memstatistics-file pathname;]

 [pid-file pathname;]

 [statistics-file pathname;]

 [auth-nxdomain yes|no;]

 [deallocate-on-exit yes|no;]

 [dialup yes|no;]

 [fake-iquery yes|no;]

 [fetch-glue yes|no;]

 [has-old-clients yes|no;]

 [host-statistics yes|no;]

 [multiple-cnames yes|no;]

 [notify yes|no;]

 [recursion yes|no;]

 [rfc2308-type1 yes|no;]

 [use-id-pool yes|no;]

 [treat-cr-as-space yes|no;]

 [also-notify { address-list; };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [also-notify { address-list; };

 [forward only|first;]

 [forwarders { address-list; };]

 [check-names master|slave|response warn|fail|ignore;]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [allow-recursion { address_match_list };]

 [blackhole { address_match_list };]

 [listen-on [port ip_port] { address_match_list };]

 [query-source [address ip_addr|*] [port ip_port|*] ;]

 [lame-ttl number;]

 [max-transfer-time-in number;]

 [max-ncache-ttl number;]

 [min-roots number;]

 [serial-queries number;]

 [transfer-format one-answer|many-answers;]

 [transfers-in number;]

 [transfers-out number;]

 [transfers-per-ns number;]

 [transfer-source ip_addr;]

 [maintain-ixfr-base yes|no;]

 [max-ixfr-log-size number;]

 [coresize size;]

 [datasize size;]

 [files size;]

 [stacksize size;]

 [cleaning-interval number;]

 [heartbeat-interval number;]

 [interface-interval number;]

 [statistics-interval number;]

 [topology { address_match_list };]

 [sortlist { address_match_list };]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [sortlist { address_match_list };]

 [rrset-order { order_spec ; [order_spec ; ...]] };

};

There are almost a dozen different types of values for these options. Two options, check-names
and transfer-format, accept keyword values. Boolean options accept either yes or no. All
other options expect an appropriate value in a specific format. Some formats (string, number,
pathname, domain, type, class, ip_port, and ip_addr) are self-explanatory. Some formats
require a little explanation:.

address-list

A list of IP addresses separated by semicolons. This is more limited than an
address_match_list.

address_match_list

A list of addresses, acl names, and key_ids.

order_spec

A multi-part rule that defines how resource records are ordered when multiple records are
sent in response to a single query. The structure of an order_spec is:

[class class][type type][name "domain"] order order

class, type and domain are self-explanatory. order is one of three possible values:

fixed

The order in which records are defined in the zone file is maintained.

random

Resource records are shuffled into a random order.

cyclic

The resource records are rotated in a round-robin manner, which is the default order.

The BIND 8 options are:

version

The string returned when the server is queried for its version.

directory

The path of the working directory from which the server reads and writes files.

named-xfer

The path to the named-xfer program.

dump-file

The file where the database is dumped if named receives a SIGINT signal. The default
filename is named_dump.db.

memstatistics-file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memstatistics-file

The file where memory usage statistics are written. The default filename is
named.memstats.

pid-file

The file where the process ID is stored.

statistics-file

The file where statistics are written when named receives a SIGILL signal. The default
filename is named.stats.

auth-nxdomain

yes, which is the default, causes the server to respond as an authoritative server.

deallocate-on-exit

yes writes memory usage to the named.memstats file. The default is no.

dialup

yes optimizes the server for a dial-up network operation. The default is no.

fake-iquery

yes makes the server issue a fake reply instead of an error in response to inverse queries.
The default is no.

fetch-glue

yes, which is the default, retrieves all of the glue records for a response.

has-old-clients

yes sets auth-nxdomain and maintain-ixfr-base to yes and rfc2308-type1 to
no.

host-statistics

yes keeps statistics on every host. The default is no.

multiple-cnames

yes permits multiple CNAME records for a domain name. The default is no.

notify

yes, which is the default, sends DNS NOTIFY messages when a zone is updated.

recursion

yes, the default, recursively seeks answers to queries.

rfc2308-type1

yes returns NS records with the SOA record for negative caching. no, the default, returns
only the SOA record for compatibility with old servers.

use-id-pool

yes tracks outstanding query IDs to increase randomness. no is the default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

yes tracks outstanding query IDs to increase randomness. no is the default.

treat-cr-as-space

yes treats carriage returns as spaces when loading a zone file. no is the default.

also-notify

Identifies unofficial name servers to which the server should send DNS NOTIFY messages.

forward

first causes the server to first query the forwarders and then look for the answer itself.
only causes the server to query only the forwarders.

forwarders

Lists the IP addresses of the servers to which queries are forwarded. The default is not to
use forwarding.

check-names

Checks hostnames for compliance with the RFC specifications. Names can be checked
when the master server loads the zone (master), when the slave transfers the zone
(slave), or when a response is processed (response). If an error is detected, it can be
ignored (ignore), a warning can be sent (warn), or the bad name can be rejected (fail).

allow-query

Only queries from hosts in the address list will be accepted. The default is to accept queries
from all hosts.

allow-transfer

Only hosts in the address list are allowed to receive zone transfers. The default is to allow
transfers to all hosts.

allow-recursion

Only listed hosts are allowed to make recursive queries through this server. The default is
to do recursive queries for all hosts.

blackhole

Lists hosts from which this server will not accept queries.

listen-on

Defines the interfaces and ports on which the server provides name service. By default, the
server listens to the standard port (53) on all installed interfaces.

query-source

Defines the address and port used to query other servers.

lame-ttl

The amount of time a lame server indication will be cached. The default is 10 minutes.

max-transfer-time-in

The maximum amount of time the server waits for an inbound transfer to complete. The
default is 120 minutes (2 hours).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

max-ncache-ttl

The amount of time this server will cache negative answers. The default is 3 hours and the
maximum acceptable value is 7 days.

min-roots

The minimum number of root servers that must be reachable for queries involving the root
servers to be accepted. The default is 2.

serial-queries

The number of outstanding SOA queries a slave server can have at one time. The default
is 4.

transfer-format

one-answer transfers one resource record per message. many-answers transfers as
many resource records as possible in each message.

transfers-in

Sets the maximum number of concurrent inbound zone transfers. The default value is 10.

transfers-out

Lists the number of concurrent outbound zone transfers.

transfers-per-ns

Limits the number of concurrent inbound zone transfers from any one name server. The
default value is 2.

transfer-source

The IP address of the network interface this server uses to transfer zones from remote
masters.

maintain-ixfr-base

yes keeps a log of incremental zone transfers. no is the default.

max-ixfr-log-size

Sets the maximum size of the incremental zone transfer log file.

coresize

Sets the maximum size of a core dump file.

datasize

Limits the amount of data memory the server may use.

files

Limits the number of files the server may have open concurrently. The default is unlimited.

stacksize

Limits amount of stack memory the server may use.

cleaning-interval

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cleaning-interval

Sets the time interval for the server to remove expired resource records from the cache.
The default is 60 minutes.

heartbeat-interval

Sets the time interval used for zone maintenance when the dialup option is set to yes. 60
minutes is the default.

interface-interval

Sets the time interval for the server to scan the network interface list looking for new
interfaces or interfaces that have been removed. The default is every 60 minutes.

statistics-interval

Sets the time interval for the server to log statistics. The default is every 60 minutes.

topology

Forces the server to prefer certain remote name servers over others. Normally, the server
prefers the remote name server that is topologically closest to itself.

sortlist

Defines a sort algorithm applied to resource records before sending them to the client.

rrset-order

Specifies the ordering used when multiple records are returned for a single query.

C.2.5.1 The BIND 9 options statement

The BIND 9 syntax of the options command is:

options {

 [version string;]

 [directory pathname;]

 [additional-from-auth yes|no;]

 [additional-from-cache yes|no;]

 [dump-file pathname;]

 [pid-file pathname;]

 [statistics-file pathname;]

 [auth-nxdomain yes|no;]

 [dialup yes|no;]

 [notify yes|no|explicit;]

 [notify-source [ip_addr|*] [port ip_port] ;]

 [notify-source-v6 [ip_addr|*] [port ip_port] ;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [notify-source-v6 [ip_addr|*] [port ip_port] ;]

 [recursion yes|no;]

 [recursive-clients number;]

 [tcp-clients number;]

 [also-notify { address-list; };

 [forward only|first;]

 [forwarders { address-list; };]

 [allow-notify { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [allow-recursion { address_match_list };]

 [blackhole { address_match_list };]

 [listen-on [port ip_port] { address_match_list };]

 [listen-on-v6 [port ip_port] { address_match_list };]

 [port ip_port;]

 [query-source [address ip_addr|*] [port ip_port|*] ;]

 [query-source-v6 [address ip6_addr|*] [port ip_port|*] ;]

 [lame-ttl number;]

 [max-transfer-time-in number;]

 [max-transfer-time-out number;]

 [max-transfer-idle-in number;]

 [max-transfer-idle-out number;]

 [max-refresh-time number;]

 [max-retry-time number;]

 [max-cache-ttl number;]

 [max-ncache-ttl number;]

 [min-refresh-time number;]

 [min-retry-time number;]

 [transfer-format one-answer|many-answers;]

 [transfers-in number;]

 [transfers-out number;]

 [transfers-per-ns number;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [transfers-per-ns number;]

 [transfer-source ip_addr|*] [port ip_port|*];]

 [transfer-source-v6 ip6_addr|*] [port ip_port|*];]

 [coresize size;]

 [datasize size;]

 [files size;]

 [stacksize size;]

 [cleaning-interval number;]

 [heartbeat-interval number;]

 [interface-interval number;]

 [sortlist { address_match_list };]

 [sig-validity-interval number;]

 [tkey-dhkey key_name key_tag;]

 [tkey-domain domain;]

 [zone-statistics yes|no;]

};

Many BIND 9 options are the same as those used for BIND 8 and perform exactly the same
functions. A few options have been added to BIND 9 to handle IPv6, which is an integral part of
BIND 9. These options, listen-on-v6, notify-source-v6, query-source-v6, and
transfer-source-v6, perform exactly the same functions as the like-named options do for
IPv4. Many BIND 8 options are no longer needed because important functions have been
incorporated into the new BIND 9 code. However, the list of options is no shorter because many
new options have been added:

additional-from-auth

yes, the default, causes the server to use information from any zone for which it is
authoritative when completing the additional data section of a response.

additional-from-cache

yes, the default, causes the server to use information from its cache when completing the
additional data section of a response.

notify-source

Defines the address and port used to send NOTIFY messages.

recursive-clients

Defines the maximum number of outstanding recursive lookups the server will perform for
its clients. The default is 1000.

tcp-clients

Defines the maximum number of concurrent client connections. The default is 1000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allow-notify

Identifies the servers that are permitted to send NOTIFY messages to the slave servers.

port

Defines the port number used by the server. The default is standard port 53.

max-transfer-time-out

Defines the maximum time allowed for outbound zone transfers. The default is 2 hours.

max-transfer-idle-in

Defines the maximum time that an inbound zone transfer will be allowed to sit idle. The
default is 1 hour.

max-transfer-idle-out

Defines the maximum time that an outbound zone transfer will be allowed to sit idle. The
default is 1 hour.

max-refresh-time

Sets the maximum refresh time this server will use when acting as a slave. This value
overrides the refresh time set in the SOA record of the zone for which this server acts as a
slave.

max-retry-time

Sets the maximum retry time this server will use when acting as a slave. This value
overrides the retry time set in the SOA record of the zone for which this server acts as a
slave.

max-cache-ttl

Sets the maximum amount of time this server will cache data. This value overrides the TTL
values defined in the zone from which the data was retrieved.

min-refresh-time

Sets the minimum refresh time this server will use when acting as a slave. This value
overrides the refresh time set in the SOA record of the zone for which this server acts as a
slave.

min-retry-time

Sets the minimum retry time this server will use when acting as a slave. This value
overrides the retry time set in the SOA record of the zone for which this server acts as a
slave.

sig-validity-interval

Defines the amount of time that digital signatures generated for automatic updates will be
considered valid. The default is 30 days.

tkey-dhkey

Identifies the Diffie-Hellman key used by the server to generate shared keys.

tkey-domain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tkey-domain

Defines the domain name appended to shared keys. Normally this is the server's domain
name.

zone-statistics

yes causes the server to collect statistics on all zones. The default is no.

Options change over time. Check the documentation that comes with the BIND 9 distribution for
the latest list of options.

C.2.6 The logging Statement

The logging statement defines the logging options for the server. The logging statement can
include two different types of subordinate clauses: the channel clause and the category
clause. The BIND 8 syntax of the command is:

logging {

 [channel channel_name {

 file pathname

 [versions number|unlimited]

 [size size]

 |syslog kern|user|mail|daemon|auth|syslog|lpr

 |news|uucp|cron|authpriv|ftp

 |local0|local1|local2|local3

 |local4|local5|local6|local7

 |null;

 [severity critical|error|warning|notice

 |info|debug [level]|dynamic;]

 [print-category yes|no;]

 [print-severity yes|no;]

 [print-time yes|no;]

 };]

 [category category_name {

 channel_name; [channel_name; ...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 channel_name; [channel_name; ...]

 };]

 ...

};

The channel clause defines how logging messages are handled. Messages are written to a file
(file), sent to syslog (syslog), or discarded (null). If a file is used, you can specify how many
old versions are retained (version), how large the log file is allowed to grow (size), and the
severity of the messages written to the log file (severity). You can specify that the time
(print-time), category (print-category), and severity (print-severity) of the message
be included in the log.

The category clause defines the types of messages sent to the channel. Thus the category
clause defines what is logged, and the channel clause defines where it is logged. The categories
are listed in Table C-1.

Table C-1. BIND 8 logging categories
Category Type of messages logged

cname Messages recording CNAME references.

config Messages about configuration file processing.

db Messages that log database operations.

default Various types of messages. This is the default if nothing is specified.

eventlib Messages containing debugging data from the event system.

insist Messages that report internal consistency check failures.

lame-
servers Messages about lame server delegations.

load Messages about loading the zone.

maintenance Messages reporting maintenance events.

ncache Messages about negative caching.

notify Messages tracing the NOTIFY protocol.

os Messages reporting operating system problems.

packet Messages containing dumps of all of the packets sent and received.

panic Messages generated by a fault that causes the server to shut down.

parser Messages about configuration command processing.

queries Messages about every DNS query received.

response-
checks Messages reporting the results of response checking.

security Messages concerning the application of security criteria. These are most
meaningful if allow-update, allow-query, and allow-transfer options are in use.

statistics Messages containing server statistics.

update Messages concerning dynamic updates.

xfer-in Messages recording inbound zone transfers.

xfer-out Messages recording outbound zone transfers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.2.6.1 The BIND 9 logging statement

The BIND 9 syntax of the logging command is:

logging {

 [channel channel_name {

 file pathname

 [versions number|unlimited]

 [size size]

 |syslog kern|user|mail|daemon|auth|syslog|lpr

 |news|uucp|cron|authpriv|ftp

 |local0|local1|local2|local3

 |local4|local5|local6|local7

 |stderr

 |null;

 [severity critical|error|warning|notice

 |info|debug [level]|dynamic;]

 [print-category yes|no;]

 [print-severity yes|no;]

 [print-time yes|no;]

 };]

 [category category_name {

 channel_name; [channel_name; ...]

 };]

 ...

};

The channel clause is essentially the same as it was in BIND 8 with the addition of stderr as a
possible destination for messages. The category clause looks the same, but there has been a
major change in the categories supported. One category has been renamed from db to
database. A dozen categories are no longer supported: cname, eventlib, insist, load,
maintenance, ncache, os, packet, panic, parser, response-check, and statistics.
Six new categories have been added:

general

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

general

A wide variety of messages.

resolver

Messages relating to DNS resolution.

client

Messages concerning processing of client requests.

network

Messages relating to network operations.

dispatch

Messages that trace packets sent to various server modules.

dnssec

Messages that track the processing of the DNSSEC and TSIG protocols.

C.2.7 The zone Statement

The zone statement identifies the zone being served and defines the source of DNS database
information. There are four variants of the zone statement: one for the master server, one for the
slave servers, one for the root cache zone, and a special one for forwarding. The BIND 8 syntax
of each variant is:

zone domain_name [in|hs|hesiod|chaos] {

 type master;

 file pathname;

 [forward only|first;]

 [forwarders { address-list; };]

 [check-names warn|fail|ignore;]

 [allow-update { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [dialup yes|no;]

 [notify yes|no;]

 [also-notify { address-list };

 [ixfr-base pathname;]

 [pubkey flags protocol algorithm key;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [pubkey flags protocol algorithm key;]

};

zone domain_name [in|hs|hesiod|chaos] {

 type slave|stub;

 [file pathname;]

 [ixfr-base pathname;]

 masters [port ip_port]{ address-list };

 [forward only|first;]

 [forwarders { address-list; };]

 [check-names warn|fail|ignore;]

 [allow-update { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [transfer-source ip_addr;]

 [dialup yes|no;]

 [max-transfer-time-in number;]

 [notify yes|no;]

 [also-notify { address-list };

 [pubkey flags protocol algorithm key;]

};

zone "." [in|hs|hesiod|chaos] {

 type hint;

 file pathname;

 [check-names warn|fail|ignore;]

};

zone domain_name [in|hs|hesiod|chaos] {

 type forward;

 [forward only|first;]

 [forwarders { address-list; };]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [forwarders { address-list; };]

 [check-names warn|fail|ignore;]

};

The zone keyword is followed by the name of the domain. For the root cache, the domain name
is always ".". The domain name is followed by the data class. This is always IN for Internet DNS
service, which is the default if no value is supplied.

The type clause defines whether this is a master server, a slave server, a forwarded zone, or the
hints file for the root cache. A stub server is a slave server that loads only the NS records instead
of the entire domain.

The file clause for a master server points to the source file from which the zone is loaded. For
the slave server, it points to the file to which the zone is written, and the master clause points to
the source of the data written to the file. For the root cache, the file clause points to the hints
file used to initialize the cache. A forwarded domain does not have a file clause because no
data for the forwarded domain is stored on the local server.

With the exception of the pubkey option, all of the options available for the BIND 8 zone
statement are covered earlier in this appendix. When defined in a zone statement, an option
applies only to the specific zone. When specified in the options statement, an option applies to
all zones. The specific settings for a zone override the global settings of the options statement.

The pubkey option defines the DNSSEC public encryption key for the zone when there is no
trusted mechanism for distributing public keys over the network. pubkey defines the DNSSEC
flags, protocol, and algorithm as well as a base64-encoded version of the key. The remote server
that will be accessing this domain through DNSSEC defines the same settings using the
trusted-key command described earlier in this appendix.

C.2.7.1 The BIND 9 zone statement

The BIND 9 syntax of the four zone statement variants is:

zone domain_name [in|hs|hesiod|chaos] {

 type master;

 file pathname;

 [forward only|first;]

 [forwarders { address-list; };]

 [allow-update { address_match_list };]

 [allow-update-forwarding { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [allow-notify { address_match_list };]

 [dialup yes|no;]

 [notify yes|no|notify|notify-passive|refresh|passive;]

 [also-notify { address-list };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [also-notify { address-list };

 [database string; [...]]

 [update-policy { policy };]

 [sig-validity-interval number;]

 [max-refresh-time number;]

 [max-retry-time number;]

 [max-transfer-idle-out number;]

 [max-transfer-time-out number;]

 [min-refresh-time number;]

 [min-retry-time number;]

};

zone domain_name [in|hs|hesiod|chaos] {

 type slave|stub;

 [file pathname;]

 [ixfr-base pathname;]

 masters [port ip_port]{ address-list };

 [forward only|first;]

 [forwarders { address-list; };]

 [check-names warn|fail|ignore;]

 [allow-update { address_match_list };]

 [allow-update-forwarding { address_match_list };]

 [allow-query { address_match_list };]

 [allow-transfer { address_match_list };]

 [transfer-source ip_addr;]

 [dialup yes|no|notify|notify-passive|refresh|passive;]

 [max-transfer-time-in number;]

 [notify yes|no;]

 [also-notify { address-list };

 [max-refresh-time number;]

 [max-retry-time number;]

 [max-transfer-idle-in number;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [max-transfer-idle-in number;]

 [max-transfer-idle-out number;]

 [max-transfer-time-in number;]

 [max-transfer-time-out number;]

 [min-refresh-time number;]

 [min-retry-time number;]

 [transfer-source ip_addr|*] [port ip_port|*];]

 [transfer-source-v6 ip6_addr|*] [port ip_port|*];]

};

zone "." [in|hs|hesiod|chaos] {

 type hint;

 file pathname;

};

zone domain_name [in|hs|hesiod|chaos] {

 type forward;

 [forward only|first;]

 [forwarders { address-list; };]

};

BIND 9 uses the same four zone command variations as does BIND 8. The difference between
the two versions of BIND is that they use different options. Most of the options shown in the BIND
9 syntax were explained in the discussion of the BIND 9 options statement. The two options
that are unique to the BIND 9 zone statement are:

allow-update-forwarding

Identifies the systems that are allowed to submit dynamic zone updates to a slave that will
then be forwarded to the master.

database

Specifies the type of database used for storing zone data. The default is rbt, which is the
only database type supported by the standard BIND 9 executable.

C.2.8 The controls Statement

The BIND 8 controls statement defines the control channels used by ndc. ndc can use a Unix
socket or a network socket as a control channel. The controls statement defines those sockets.
The syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controls {

 [inet ip_addr

 port ip_port

 allow { address_match_list; };]

 [unix pathname

 perm file_permissions

 owner uid

 group gid;]

};

The first three options, inet, port, and allow, define the IP address and the port number of a
network socket and the access control list of those systems allowed to control named through that
channel. Because BIND 8 has weak authentication, creating a control channel that is accessible
from the network is a risky thing to do. Whoever gains access to that channel has control over the
name server process.

The last four options, unix, perm, owner, and group, define the Unix control socket. The Unix
socket appears as a file in the filesystem. It is identified by a normal file pathname, for example,
/var/run/ndc. Like any file, the Unix socket is assigned the user ID (uid) of its owner and a valid
group ID (gid). It is protected by standard file permissions. Only numeric uid, gid, and
file_permissions values are acceptable. The file_permissions value must start with a 0.
For example, to set owner read and write, group read, and world no permissions, the numeric
value would be 0640.

C.2.8.1 The BIND 9 controls statement

The BIND 9 controls statement defines the control channels used by rndc. rndc performs the
same functions as the older ndc program, but it can reliably be used over a network. The BIND 9
controls statement is:

controls {

 [inet ip_addr|*

 port ip_port

 allow address_match_list;

 keys key_list;]

};

In BIND 9, the controls statement always defines a network socket. However, strong
authentication is used that requires cryptographic keys.

C.2.9 BIND 9 view Statement

The view statement allows the same zone to be viewed differently by different clients. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The view statement allows the same zone to be viewed differently by different clients. This
makes it possible to provide an internal view to clients within an organization, and a more limited,
external view to clients in the outside world. The syntax of the view command is:

view view-name {

 match-clients { address_match_list };

 [view-option; ...]

 [zone-statement; ...]

};

view-name

An arbitrary name used inside the configuration to identify this view. To prevent conflicts
with keywords, view-name should be enclosed in quotes, e.g., "internal".

match-clients

Defines the list of clients that will access the zone through this view.

view-option

A standard BIND 9 option. Any option defined inside the view statement applies only to
this view. This allows different options to be applied to the same zone depending on which
view of the zone is being used.

zone-statement

A standard BIND 9 zone statement. A complete zone statement is embedded inside the
view statement to define the zone accessed through this view.

The view statement is available only in BIND 9. BIND 8 does not support views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C.3 Zone File Records

Two types of entries are used to construct a zone file: directives that simplify constructing the file,
and standard resource records that define the domain data contained in the zone file. While there
are many types of standard resource records, there are only four directives. These are:

$INCLUDE filename

Identifies a file that contains data to be included in the zone file. The data in the included
file must be valid directives or standard resource records. $INCLUDE allows a large zone
file to be divided into smaller, more manageable units.

The filename specified on the command line is relative to the directory named on the
directory option in the named.conf file. For example, if the named.conf file for crab
points to /etc with the directory option, and a zone file on crab contains an $INCLUDE
events.hosts statement, then the file /etc/events.hosts would be included in that zone
file. If you don't want the filename to be relative to that directory, specify a fully qualified
name, such as /usr/dns/events.hosts.

$ORIGIN domainname

Changes the default domain name used by subsequent records in the zone file. Use this
command to put more than one domain in a zone file. For example, an $ORIGIN events
statement in the wrotethebook.com zone file sets the domain name to
events.wrotethebook.com. All subsequent resource records would be relative to this new
domain.

The named software uses $ORIGIN statements to organize its own information. Dumping
the named database, with ndc dumpdb, produces a single file containing all the information
that the server knows. This file, named_dump.db, contains many $ORIGIN entries to place
all of the domains that named knows about into a single file.

$TTL time-to-live

Defines the default TTL value used on resource records that do not include a specific TTL.
Each zone file should start with a $TTL directive to ensure that all resource records have a
valid TTL. A purely numeric time-to-live field defines the TTL in seconds. An
alphanumeric time-to-live format can also be used. For example, 1w sets the TTL to
one week. The possible values for the alphanumeric format are:

w for week

d for day

h for hour

m for minute

s for second

$GENERATE range template

Generates resource records for a range of values using a specific resource record
template. range is a numeric range of values written in the form
low_value-high_value. $GENERATE creates a resource record for each value in
range. Thus a range of 1-9 would create nine distinct records. The type of records
created is determined by the template. The template is composed of literal values that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

created is determined by the template. The template is composed of literal values that
are written to the resource record exactly as shown in the template, and the symbol $
that is replaced by the current range value before the resource record is written. Therefore,
if the current range value is 7 and the template is $ CNAME $.first64, the resource
record generated is 7 CNAME 7.first64.

These directives are helpful for organizing and controlling the data in a zone file, but all of the
actual database information comes from standard resource records. All of the files pointed to by
named.conf contribute to the DNS database, so all of these files are constructed from standard
resource records.

C.3.1 Standard Resource Records

The format of standard resource records, sometimes called RRs, is defined in RFC 1033, the
Domain Administrators Operations Guide. The format is:

[name] [ttl] class type data

The individual fields in the standard resource record are:

name

This is the name of the object affected by this resource record. The named object can be
as specific as an individual host, or as general as an entire domain. The string entered for
name is relative to the current domain unless a fully qualified domain name is used.[C]

[C] The FQDN must be specified all the way to the root; i.e., it must end with a dot.

Certain name values have special meaning. These are:

A blank name field denotes the current named object. The current name stays in
force until a new name value is encountered in the name field. This permits multiple
RRs to be applied to a single object without having to repeat the object's name for
each record.

..

Two dots in the name field refer to the root domain. However, a single dot (the actual
name of the root) also refers to the root domain, and is more commonly used.

@

A single at-sign (@) in the name field refers to the current origin. The origin is a
domain name derived by the system from the current domain name, or explicitly set
by the system administrator using the $ORIGIN command.

*

An asterisk in the name field is a wildcard character. It stands for a name composed
of any string. It can be combined with a domain name or used alone. Used alone, an
asterisk in the named field means that the resource record applies to objects with
names composed of any string of characters plus the name of the current domain.
Used with a domain name, the asterisk is relative to that domain. For example,
*.uucp. in the name field means any string plus the string .uucp.

ttl

Time-to-live defines the length of time that the information in this resource record should be
kept in the cache. When ttl is specified as a purely numeric value, it defines the length of
time in seconds. ttl can also use the alphanumeric format described for the $TTL
directive. If no value is set for ttl, it defaults to the value defined for the entire zone file by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directive. If no value is set for ttl, it defaults to the value defined for the entire zone file by
the $TTL directive.

class

This field defines the address class of the resource record. The Internet address class is
IN. All resource records used by Internet DNS have IN in this field, but it is possible for a
zone file to hold non-Internet information. For example, information used by the Hesiod
server, a name server developed at MIT, is identified by HS in the class field, and chaosnet
information is identified by a CH in the class field. All resource records used in this book
have an address class of IN.

type

This field indicates the type of data this record provides. For example, the A type RR
provides the address of the host identified in the name field. The most common standard
resource record types are discussed in the following sections.

data

This field contains the information specific to the resource record. The format and content
of the data field vary according to the resource record type. The data field is the meat of the
RR. For example, in an A record, the data field contains the IP address.

In addition to the special characters that have meaning in the name field, zone file records use
these other special characters:

;

The semicolon is the comment character. Use the semicolon to indicate that the remaining
data on the line is a comment.

()

Parentheses are the continuation characters. Use parentheses to continue data beyond a
single line. After an opening parenthesis, all data on subsequent lines is considered part of
the current line until a closing parenthesis.

\ x

The backslash is an escape character. A non-numeric character following a backslash (\) is
taken literally, and any special meaning that the character may ordinarily have is ignored.
For example, \; means a semicolon—not a comment.

\ ddd

The backslash can also be followed by three decimal numbers. When the escape character
is used in this manner, the decimal numbers are interpreted as an absolute byte value. For
example, \255 means the byte value 11111111.

The same general resource record format is used for each of the resource records in a zone file.
The most commonly used resource records are described below.[C]

[C] There are more than 40 RRs, most of which are not used. For a description of all of them, see Linux DNS
Administration by Craig Hunt (Sybex).

C.3.1.1 Start of Authority record

The Start of Authority (SOA) record marks the beginning of a zone, and is usually the first record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Start of Authority (SOA) record marks the beginning of a zone, and is usually the first record
in a zone file. All of the records that follow are part of the zone declared by the SOA. Each zone
has only one SOA record; the next SOA record encountered marks the beginning of another
zone. Because a zone file is normally associated with a single zone, it normally contains only one
SOA record.

The format of the SOA record is:

[zone] [ttl] IN SOA origin contact (

 serial

 refresh

 retry

 expire

 negative_cache_ttl)

The components of the SOA record are:

zone

This is the name of the zone. Usually the SOA name field contains an at-sign (@). When
used in an SOA record, the at-sign refers back to the domain name declared in the
named.conf zone statement that points to this zone file.

ttl

Time-to-live is left blank on the SOA record.

IN

The address class is IN for all Internet RRs.

SOA

SOA is the resource record type. All the information that follows this is part of the data field
and is specific to the SOA record.

origin

This is the hostname of the master server for this domain. It is normally written as a fully
qualified domain name. For example, crab is the master server for wrotethebook.com, so
this field contains crab.wrotethebook.com. in the SOA record for wrotethebook.com.

contact

The email address of the person responsible for this domain is entered in this field. The
address is modified slightly. The at-sign (@) that usually appears in an Internet email
address is replaced by a dot. Therefore, if david@crab.wrotethebook.com is the mailing
address of the administrator of the wrotethebook.com domain, the wrotethebook.com SOA
record contains david.crab.wrotethebook.com. in the contact field.

serial

This is the version number of the zone file. It is a ten-digit numeric field usually entered as
a simple number, e.g., 117. However, the composition of the number is up to the
administrator. Some choose a format that shows the date the zone was updated, e.g.,
2001061800. Regardless of the format, the important thing is that the serial number must
increase every time the data in the zone file is modified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The serial field is extremely important. It is used by the slave servers to determine if the
zone file has been updated. To make this determination, a slave server requests the SOA
record from the master server and compares the serial number of the data it has stored to
the serial number received from the master server. If the serial number has increased, the
slave server requests a full zone transfer. Otherwise it assumes that it has the most current
zone data. You must increment the serial number each time you update the zone data. If
you don't, the new data may not be disseminated to the slave servers.

refresh

This specifies the length of time that the slave server should wait before checking with the
master server to see if the zone has been updated. Every refresh seconds, the slave
server checks the SOA serial number to see if the zone file needs to be reloaded. Slave
servers check the serial numbers of their zones whenever they restart. But it is important to
keep the slave server's database current with the master server, so named does not rely on
these unpredictable events. The refresh interval provides a predictable cycle for
reloading the zone that is controlled by the domain administrator.

The value used in refresh is a number, up to eight digits long, that is the maximum
number of seconds that the master and slave servers' databases can be out of sync. A low
refresh value keeps the data on the servers closely synchronized, but a very low
refresh value is not usually required. A value set lower than needed places an
unnecessary burden on the network and the slave servers. The value used in refresh
should reflect the reality of how often your DNS database is updated.

Most sites' DNS databases are very stable. Systems are added periodically, but not
generally on an hourly basis. When you are adding a new system, you can assign the
hostname and address of that system before the system is operational. You can then install
this information in the name server database before it is actually needed, ensuring that it is
disseminated to the slave servers long before it has to be used.

If extensive changes are planned, the refresh time can be temporarily reduced while the
changes are underway. Therefore, you can normally set refresh time high, reducing load
on the network and servers. Two (43200 seconds) to four (21600 seconds) times a day for
refresh is adequate for many sites.

The process of retrieving the SOA record, evaluating the serial number, and, if necessary,
downloading the zone file is called a zone refresh. Thus the name refresh is used for this
value.

retry

This defines how long slave servers should wait before trying again if the master server
fails to respond to a request for a zone refresh. retry is specified in seconds and can be
up to eight digits long.

You should not set the retry value too low. If a master server fails to respond, the server
or the network could be down. Quickly retrying a down system gains nothing and costs
network resources. A slave server that backs up a large number of zones can have
problems when retry values are short. If the slave server cannot reach the master
servers for several of its zones, it can become stuck in a retry loop.[C] Avoid problems; use
an hour (3600) or a half hour (1800) for the retry value.

[C] The server may alternate between periods when it fails to respond and when it resolves queries, or it may
display the error "too many open files."

expire

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expire

This defines how long the zone's data should be retained by the slave servers without
receiving a zone refresh. The value is specified in seconds and is up to eight digits long. If
after expire seconds the slave server has been unable to refresh this zone, it should
discard all of the data.

expire is normally a very large value. 604800 seconds (about one week) is commonly
used. This says that if there has been no answer from the master server to refresh
requests repeated every retry seconds for the last 7 days, discard the data. Seven days
is a good value, but much longer values are not unusual.

negative_cache_ttl

The negative_cache_ttl field of the SOA record is the default time-to-live for negative
information about this domain that is cached by remote servers. All servers cache answers
and use those answers to respond to subsequent queries. Most of the answers cached by
a server are standard resource records. Yet a name server can learn from an authoritative
server that a specific resource record does not exist. This is also valuable information that
should be cached.

The server keeps cached records as long as they are valid, and the TTL defines how long
that is. Each resource record has a TTL, either a TTL defined specifically for that record or
the default TTL defined by the $TTL directive. However, there is no resource record for
negative information and thus no explicit TTL. It is the negative_cache_ttl that tells
remote servers how long to cache negative information.

The negative_cache_ttl value is usually set to between 5 and 15 minutes. This is long
enough to prevent repeated queries for nonexistent information from causing your server
any trouble, but short enough for repeated queries caused by a remote user who knows
that a system with a certain name will soon come online.

Most of the fields in the SOA record provide values used to keep the slave servers synchronized
with the master server. These values are used to guarantee that the slave will periodically pull a
copy of the zone from the master server. In addition to this, and completely independent of the
settings on the SOA record, the master notifies the slaves when the zone is updated in order to
push a copy of the zone down to the slave. Combining the master-initiated zone push and the
slave-initiated zone pull ensures that the zone files on the master and its slaves stay tightly
synchronized.

A sample SOA record for the wrotethebook.com domain is:

@ IN SOA crab.wrotethebook.com. david.crab.wrotethebook.com. (

 2001061801 ; serial

 21600 ; refresh four times a day

 1800 ; retry every half hour

 604800 ; expire after 1 week

 900 ; negative cache ttl is 15 minutes

)

Notice the serial number in this SOA. The serial number is in the format yyyymmddvv, where yyyy
is the year, mm is the month, dd is the day, and vv is the version written that day. This type of
serial number allows the administrator to track what day the zone was updated. Adding the
version number allows for multiple updates in a single day. This zone file was created June 18,
2001, and it is the first update that day.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This SOA record also says that crab is the master server for this zone and that the person
responsible for this zone can be reached at the email address david@crab.wrotethebook.com.
The SOA tells the slave servers to check the zone for changes four times a day and to retry every
half hour if they don't get an answer. If they retry for an entire week and never get an answer, they
should discard the data for this zone. Finally, if an RR does not exist in this zone and the remote
server decides to cache that information, it should cache that information for 15 minutes.

C.3.1.2 Name Server record

Name Server (NS) resource records identify the authoritative servers for a zone. These records
are the pointers that link the domain hierarchy together. NS records in the top-level domains point
to the servers for the second-level domains, which in turn contain NS records that point to the
servers for their subdomains. Name server records pointing to the servers for subordinate
domains are required for these domains to be accessible. Without NS records, the servers for a
domain would be unknown.

The format of the NS RR is:

[domain] [ttl] IN NS server

domain

The name of the domain for which the host specified in the server field is an authoritative
name server.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

NS

The name server resource record type is NS.

server

The hostname of a computer that provides authoritative name service for this domain.

Usually domains have at least one server that is located outside the local domain. The
server name cannot be specified relative to the local domain; it must be specified as a fully
qualified domain name. To be consistent, many administrators use fully qualified names for
all servers, even though it is not necessary for servers within the local domain.

C.3.1.3 Address record

The majority of the resource records in a forward-mapping zone file[C] are address records.
Address records are used to convert hostnames to IP addresses, which is the most common use
of the DNS database.

[C] Chapter 8 describes the various named configuration files.

The address RR contains the following:

 [host] [ttl] IN A address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [host] [ttl] IN A address

host

The name of the host whose address is provided in the data field of this record. Most often
the hostname is written relative to the current domain.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

A

The address resource record type is A.

address

The IP address of the host is written here in dotted decimal form, e.g., 172.16.12.2.

A glue record is a special type of address record. Most address records refer to hosts within the
zone, but sometimes an address record needs to refer to a host in another zone. This is done to
provide the address of a name server for a subordinate domain. Recall that the NS record for a
subdomain server identifies the server by name. An address is needed to communicate with that
server, so an A record must also be provided. The address record, combined with the name
server record, links the domains together—thus the term "glue record."

C.3.1.4 Mail Exchanger record

The Mail Exchanger (MX) record redirects mail to a mail server. It can redirect mail for an
individual computer or an entire domain. MX records are extremely useful for domains that
contain some systems that don't run SMTP server software. Mail addressed to those systems can
be redirected to computers that do run server software. MX records are also used to simplify mail
addressing by redirecting mail to servers that understand the simplified addresses.

The format of the MX RR is:

[name] [ttl] IN MX preference host

name

The name of a host or domain to which the mail is addressed. Think of this as the value
that occurs after the @ in a mailing address. Mail addressed to this name is sent to the mail
server specified by the MX record's host field.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

MX

The mail exchanger resource record type is MX.

preference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preference

A host or domain may have more than one MX record associated with it. The preference
field specifies the order in which the mail servers are tried. Servers with low preference
numbers are tried first, so the most preferred server has a preference of 0. Preference
values are usually assigned in increments of 5 or 10, so that new servers can be inserted
between existing servers without editing the old MX records.

host

The name of the mail server to which mail is delivered when it is addressed to the host or
domain identified in the name field.

Here is how MX records work. If a remote system has mail to send to a host, it requests the host's
MX records. DNS returns all of the MX records for the specified host. The remote server chooses
the MX with the lowest preference value and attempts to deliver the mail to that server. If it cannot
connect to that server, it will try each of the remaining servers in preference order until it can
deliver the mail. If no MX records are returned by DNS, the remote server delivers the mail
directly to the host to which the mail is addressed. MX records only define how to redirect mail.
The remote system and the mail server perform all of the processing that actually delivers the
mail.

Because the remote system will first try to use an MX record, many domain administrators include
MX records for every host in the zone. Many of these MX records point right back to the host to
which the mail is addressed, e.g., an MX for crab with a host field of crab.wrotethebook.com.
These records are used to ensure that the remote computer first attempts delivery to the host,
and uses the MX server only if the host cannot accept the mail.

An important use for MX records is to allow mail to non-Internet sites to be delivered using
Internet-style addressing. MX records do this by redirecting the mail to computers that know how
to deliver the mail to non-Internet networks. For example, sites using uucp can register an
Internet domain name with UUNET. UUNET uses MX records to redirect Internet mail addressed
to these non-connected sites to uunet.uu.net, which delivers the mail to its final destination via
uucp.

Here are some MX examples. All of these examples are for the imaginary domain
wrotethebook.com. In the first example, mail addressed to clock.wrotethebook.com is redirected
to crab.wrotethebook.com with this MX record:

 clock IN MX 10 crab

The second example is an MX record used to simplify mail addressing. People can send mail to
any user in this domain without knowing the specific computer that the user reads his mail on.
Mail addressed to user@wrotethebook.com is redirected by this MX record to crab, which is a
mail server that knows how to deliver mail to every individual user in the domain.

 wrotethebook.com. IN MX 10 crab.wrotethebook.com.

The last example is an MX record that redirects mail addressed to any host within the domain to
a central mail server. Mail addressed to any host, horseshoe.wrotethebook.com,
24seven.wrotethebook.com, or anything.wrotethebook.com, is redirected to crab. This is the most
common use of the wildcard character (*).

 *.wrotethebook.com. IN MX 10 crab.wrotethebook.com.

In these examples, the preference is 10 so that a mail server with a lower preference number
can be added to the zone without changing the existing MX record. Also notice that the
hostnames in the first example are specified relative to the wrotethebook.com domain, but the
other names are not relative because they end in a dot. All of these names could have been
entered as relative names because they all are hosts in the wrotethebook.com domain; fully

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entered as relative names because they all are hosts in the wrotethebook.com domain; fully
qualified names were used only to vary the examples. Finally, the wildcard MX record applies only
to hosts that do not have specific MX records. If the specific record for clock is in the same
configuration as the wildcard record, the wildcard MX does not apply to clock.

C.3.1.5 Canonical Name record

The Canonical Name (CNAME) resource record defines an alias for the official name of a host.
The CNAME record provides a facility similar to nicknames in the host table. The facility provides
alternate hostnames for the convenience of users, and generic hostnames used by applications
(such as loghost used by syslogd).

The CNAME record is frequently used to ease the transition from an old hostname to a new
hostname. While it is best to avoid hostname changes by carefully choosing hostnames in the first
place, not all changes can be avoided. When you do make a name change, it can take a long
time before it becomes completely effective, particularly if the hostname is embedded in a mailing
list run at a remote site. To reduce problems for the remote site, use a CNAME record until they
can make the change.

The format of the CNAME record is:

nickname [ttl] IN CNAME host

nickname

This hostname is an alias for the official hostname defined in the host field. The
nickname can be any valid hostname.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

CNAME

The canonical name resource record type is CNAME.

host

The canonical name of the host is provided here. This hostname must be the official
hostname; it cannot be an alias.

One important thing to remember about the CNAME record is that all other resource records must
be associated with the official hostname and not with the nickname. This means that the CNAME
record should not be placed between a host and the list of RRs associated with that host. The
example below shows a correctly placed CNAME record:

rodent IN A 172.16.12.2

 IN MX 5 rodent.wrotethebook.com.

 IN RP alana.wrotethebook.com. alana

 IN TXT "Linux workstation in room A15"

mouse IN CNAME rodent.wrotethebook.com.

In this example, the hostname rodent stays in force for the MX, RP, and TXT records because

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, the hostname rodent stays in force for the MX, RP, and TXT records because
they all have blank name fields. The CNAME record changes the name field value to mouse,
which is a nickname for rodent. Any RRs with blank name fields following this CNAME record
would associate themselves with the nickname mouse, which is illegal. An improper CNAME
placement is:

rodent IN A 172.16.12.2

mouse IN CNAME rodent.wrotethebook.com.

 IN MX 5 rodent.wrotethebook.com.

 IN RP alana.wrotethebook.com. alana

 IN TXT "Linux workstation in room A15"

This improperly placed CNAME record causes named to display the error message
"mouse.wrotethebook.com has CNAME and other data (illegal)." Check /var/adm/messages for
named error messages to ensure that you have not misplaced any CNAME records.

C.3.1.6 Domain Name Pointer record

The Domain Name Pointer (PTR) resource records are used to convert numeric IP addresses to
hostnames. This is the opposite of what is done by the address record that converts hostnames to
addresses. PTR records are used to construct the in-addr.arpa reverse domain files.

Many administrators ignore the reverse domains because things appear to run fine without them.
Don't ignore them. Keep these zones up to date. Several programs use the reverse domains to
map IP addresses to hostnames when preparing status displays. A good example is the netstat
command. Some service providers use the reverse domains to track who is using their services. If
they cannot map your IP address back to a hostname, they reject your connection.

The format of the PTR record is:

name [ttl] IN PTR host

name

The name specified here is actually a number. The number is defined relative to the current
in-addr.arpa domain. Names in an in-addr.arpa domain are IP addresses specified in
reverse order. If the current domain is 16.172.in-addr.arpa, then the name field for rodent
(172.16.12.2) is 2.12. These digits (2.12) are added to the current domain (16.172.in-
addr.arpa) to make the name 2.12.16.172.in-addr.arpa. Chapter 4 discusses the unique
structure of in-addr.arpa domain names.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

PTR

The Domain Name Pointer resource record type is PTR.

host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

host

This is the fully qualified domain name of the computer whose address is specified in the
name field. The host must be specified as a fully qualified name because the name cannot
be relative to the current in-addr.arpa domain.

There are many examples of PTR records in the sample reverse-mapping zone file (172.16.rev)
shown in Chapter 8.

C.3.1.7 Responsible Person record

The Responsible Person (RP) record identifies the point of contact for a host or domain. The
format of the RP record is:

[name] [ttl] IN RP mail_address text_pointer

name

The name of the domain object for which the responsible person is defined.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

RP

The resource record type is RP.

mail_address

The email address of the responsible person. The @ usually included in an email address
is replaced with a dot. Thus, craig@wrotethebook.com becomes craig.wrotethebook.com.

text_pointer

The domain name of a TXT record that contains additional information about the
responsible person.

Here's an example of how an RP record is used with a TXT record:

crab.wrotethebook.com. IN RP craig.wrotethebook.com. crabRP

crabRP.wrotethebook.com. IN TXT "Craig Hunt (301)555-1234 X237"

The RP record states that the person responsible for crab.wrotethebook.com can be reached via
email at craig@wrotethebook.com and that additional information about the person can be
obtained in the TXT records for crabRP.wrotethebook.com. The TXT record provides the contact
person's name and phone number.

C.3.1.8 Text record

The Text (TXT) resource record holds string data. The text data can be in any format. Some sites
define a local format for the information. For example, a TXT record could hold the Ethernet
address of a host at one site and a room number at another site.

The format of the TXT record is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[name] [ttl] IN TXT string

name

The name of the domain object with which the string data is associated.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

TXT

The resource record type is TXT.

string

The string field contains text data enclosed in quotation marks.

C.3.1.9 Host Information record

The Host Information (HINFO) resource record provides a short description of the hardware and
operating system used by a specific host. The hardware and software are described using
standard terminology defined in the Assigned Numbers RFC in the sections on Machine Names
(hardware) and System Names (software). There are a large number of hardware and software
designators listed in the RFC. Most names use the same general format. Names with embedded
blanks must be enclosed in quotes, so some names have a dash (-) where you might expect a
blank. A machine name is usually the manufacturer's name in uppercase letters separated from
the model number by a dash. The system name is usually the manufacturer's operating system
name written in uppercase letters. Naturally the rapid changes in the computer market constantly
make the data in the Assigned Numbers RFC out of date. Because of this, many administrators
make up their own values for machine names and system names.

The format of the HINFO record is:

[host] [ttl] IN HINFO hardware software

host

The hostname of the computer whose hardware and software are described in the data
section of this resource record.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

HINFO

HINFO is the resource record type. All of the information that follows is part of the HINFO
data field.

hardware

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hardware

This field identifies the hardware used by this host. It contains the machine name defined in
the Assigned Numbers RFC. This field must be enclosed in quotes if it contains any blanks.
A single blank space separates the hardware field from the software field that follows it.

software

This field identifies the operating system software this host runs. It contains the system
name defined for this operating system in the Assigned Numbers RFC. Use quotes if the
system name contains any blanks.

No widely used application makes use of the HINFO record; the record just provides information.
Some security-conscious sites discourage its use. They fear that this additional information helps
intruders narrow their attacks to the specific hardware and operating system that they wish to
crack. The general-purpose TXT record is more often used to provide information about systems
than is the HINFO record.

C.3.1.10 Well-Known Services record

The Well-Known Services (WKS) resource record names the network services supported by the
specified host. The official protocol names and services names used on the WKS record are
defined in the Assigned Numbers RFC. The simplest way to list the names of the well-known
services is to cat the /etc/services file on your system. Each host can have no more than two
WKS records; one record for TCP and one for UDP. Because several services are usually listed
on the WKS record, each record may extend through multiple lines.

The format of the WKS record is:

[host] [ttl] IN WKS address protocol services

host

The hostname of the computer that provides the advertised services.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

WKS

The resource record type is WKS. All of the information that follows is variable information
for the WKS record.

address

The IP address of the host written in dotted decimal format, e.g., 172.16.12.2.

protocol

The transport-level protocol through which the service communicates—either TCP or UDP.

services

The list of services provided by this host. As few or as many services as you choose may
be advertised, but the names used to advertise the services must be the names found in
the /etc/services file. Items in the list of services are separated by spaces. Parentheses are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the /etc/services file. Items in the list of services are separated by spaces. Parentheses are
used to continue the list beyond a single line.

There are no widely used applications that make use of this record. It is used only to provide
general information about the system. Again, security-conscious sites may not wish to advertise
their services. Some protocols, such as tftp and finger, are prime targets for intruders. The
SRV record is more useful for providing information about the services offered by a specific
server.

C.3.1.11 Server Selection record

The Server Selection (SRV) record provides a standardized way to locate network servers. The
SRV record provides a standard convention for creating generic server names, and it adds
features for server selection and load-balancing. The format of the SRV record is:

name [ttl] IN SRV preference weight port server

name

The SRV record has a unique _service._protocol.name format. Dots are used to
separate the components in the name field just as in any domain name. The underscore
characters (_) are used to prevent the service name and the protocol name from colliding
with real domain names. service is the name of the offered service as listed in the
/etc/services file. protocol is the protocol name associated with that service in the
/etc/services file. name is a standard host or domain name that would be found in any
name field. Using these criteria, the name that could be used to find the FTP servers for the
wrotethebook.com domain would be _ftp._tcp.wrotethebook.com.

ttl

Time-to-live is usually blank.

IN

The address class is IN.

SRV

The resource record type is SRV.

preference

A number used to select the most preferred server when multiple SRV records exist for the
same service. The server with the lowest number is the most preferred. All traffic is sent to
the most preferred servers; servers with a higher preference number are used only if the
preferred servers are not available.

weight

A number that defines the share of traffic sent to a server, with 1 being the base. If server A
has a weight of 1 and server B has a weight of 2, B gets twice as much traffic as A.
weight is used only to balance the load among servers with the same preference number.

port

The port number used for the specified service. Normally, this is the port number defined in
the /etc/services file for the specified service. But it is possible to specify a nonstandard
port number for services equipped to use nonstandard numbers.

server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server

The canonical hostname of the computer running the requested service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. A dhcpd Reference
This appendix covers the syntax of the dhcpd command and the dhcpd.conf configuration file. It
is a reference to the Internet Software Consortium (ISC) Dynamic Host Configuration Protocol
(DHCP) server, dhcpd. To fully understand how to configure and use dhcpd in realistic network
environments, see the tutorial and sample configuration files in Chapter 9.

The information in this appendix is based on the version of dhcpd available at this writing. As a
beta release, this software is bound to be upgraded and changed. Refer to the web page
http://www.isc.org/dhcp.html for the most recent information about dhcpd. And remember, a
DHCP implementation from another vendor will probably be configured in a completely different
manner.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.1 Compiling dhcpd

The source code for dhcpd can be obtained through the ISC web site at http://www.isc.org or via anonymous FTP at
ftp://ftp.isc.org/isc/dhcp. The name of the compressed tar file will change as new versions are released. However, the
latest release should be stored as dhcp-latest.tar.gz. Download, gunzip, and untar the file:

> ftp ftp.isc.org
Connected to pub1.bryant.vix.com.

220 pub1.bryant.vix.com FTP server ready.

Name (ftp.isc.org:craig): anonymous

331 Guest login ok, send your complete email address as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> cd isc/dhcp
250 CWD command successful.

ftp> binary
200 Type set to I.

ftp> get dhcp-latest.tar.gz
200 PORT command successful.

150 Opening BINARY mode data connection for dhcp-latest.tar.gz

226 Transfer complete.

181892 bytes received in 17 secs (10 Kbytes/sec)

ftp> quit
221 Goodbye.

> gunzip dhcp-latest.tar.gz
> tar -xvf dhcp-latest.tar
drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:41 dhcp-3.0/

drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:32 dhcp-3.0/doc/

...

-rw-rw-r-- mellon/engsrc 150274 2001-08-23 12:25:51 dhcp-3.0/server/failover.c

-rw-rw-r-- mellon/engsrc 67711 2001-08-23 12:30:58 dhcp-3.0/server/mdb.c

-rw-rw-r-- mellon/engsrc 62087 2001-06-21 22:28:51 dhcp-3.0/server/omapi.c

-rw-rw-r-- mellon/engsrc 7612 2001-06-21 22:31:39 dhcp-3.0/server/salloc.c

-rw-rw-r-- mellon/engsrc 34248 2001-06-21 22:35:08 dhcp-3.0/server/stables.c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-rw-rw-r-- mellon/engsrc 34248 2001-06-21 22:35:08 dhcp-3.0/server/stables.c

drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:42 dhcp-3.0/tests/

drwxrwxr-x mellon/engsrc 0 2001-10-05 00:22:42 dhcp-3.0/tests/failover/

-rw-rw-r-- mellon/engsrc 3585 2001-05-31 16:16:05 dhcp-3.0/tests/failover/dhcp-1.cf

-rw-rw-r-- mellon/engsrc 3463 2001-05-31 16:16:06 dhcp-3.0/tests/failover/dhcp-2.cf

-rwxrwxr-x mellon/engsrc 537 2001-05-31 16:16:07 dhcp-3.0/tests/failover/new-failover

Change to the newly created directory and run configure. configure determines the type of Unix system you're
running and creates the correct Makefile for that system. If configure cannot determine what version of Unix you're
running, you must build your own Makefile by hand. Next, type make to compile the daemon. Finally, copy the daemon
and the manpages to the correct directories:

cd dhcp-3.0
./configure
System Type: linux

make
cc -g -c dhcpd.c -o dhcpd.o

cc -g -c dhcp.c -o dhcp.o

cc -g -c bootp.c -o bootp.o

...

nroff -man dhcpd.conf.5 >dhcpd.conf.cat5

make install
The DHCP daemon should compile without errors. If you get compile errors or if configure cannot determine your
system configuration, you should consider abandoning the compile and notifying the support group. Join the support
group mailing list by going to http://www.fugue.com/dhcp. Once you join, send mail to the dhcp-server@fugue.com
mailing list describing your configuration and the exact problem you have. The list is read by most of the people using
dhcpd. Someone may have already solved your problem.

Simply installing dhcpd may not be all that is required. Read the README file very carefully. dhcpd
variety of systems, including OSF/1, most recent BSD derivatives, Solaris, and Linux. It runs best on OSF/1 and BSD;
on other systems it may have some limitations. For example, on both Solaris and Linux, it can support only one
network interface. dhcpd also may require some system-specific configuration. Old systems with the Linux 2.0.0
are an excellent example of this. To successfully run dhcpd on one of these old systems, add the following entry to the
/etc/hosts table:

255.255.255.255 all-ones

Next, add a specific route for the limited broadcast address, 255.255.255.255:

route add -host all-ones dev eth0
To reinstall the limited broadcast address in the kernel routing table after each boot, add the following code to a startup
script:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Install the limited broadcast route and start DHCP

 if [-f /etc/dhcpd.conf]; then

 echo -n " dhcpd"

 route add -host all-ones dev eth0

 /usr/sbin/dhcpd fi

The information needed to complete these extra configuration steps is clearly defined in the README
before you try to run dhcpd. Of course, this is not required for current versions of Linux, but it provides a good
of the type of special configuration that is sometimes required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.2 The dhcpd Command

The syntax of the dhcpd command is:

 dhcpd [-p port] [-f] [-d] [-cf config-file] [-lf lease-file] [if0 [ifn]]

dhcpd usually is run without any command-line arguments. Most of the arguments are used only
when testing and debugging. Two of the command-line arguments handle special configuration
requirements:

-f

Runs dhcpd in foreground mode. By default, dhcpd runs as a background daemon process.
Use -f when dhcpd is started from inittab on a System V Unix system.

if0 [... ifn]

Lists the interfaces on which dhcpd should listen for BOOTREQUEST packets. This is a
whitespace-separated list of interface names. For example, dhcpd ec0 ec1 wd0 tells
dhcpd to listen to interfaces ec0, ec1, and wd0. Normally this argument is not required. In
most cases dhcpd locates all installed interfaces and eliminates the no-broadcast interfaces
automatically. Use this argument only if it appears that dhcpd is failing to locate the correct
interfaces.

All of the remaining command-line arguments are used for debugging or testing:

-p port

Causes dhcpd to listen to a nonstandard port. The well-known port for DHCP is 67. Changing
it means that clients cannot talk to the server. On rare occasions this is done during testing.

-d

Routes error messages to stderr. Normally error messages are written via syslog with facility
set to DAEMON.

-cf config-file

Causes dhcpd to read the configuration from the file identified by config-file instead of
from dhcpd.conf. Use this only to test a new configuration before it is installed in dhcpd.conf.
Use the standard file for production.

-lf lease-file

Causes dhcpd to write the address lease information to the file identified by lease-file
instead of to dhcpd.leases. Use this only for testing. Changing the name of the lease file
could cause dynamic addresses to be misallocated. Use this argument with caution.

Kill the dhcpd daemon with the SIGTERM signal. The process ID (PID) of the dhcpd daemon is
found in the /var/run/dhcpd.pid file. For example:

 # kill -TERM 'cat /var/run/dhcpd.pid'
dhcpd uses three files. It writes its PID to /var/run/dhcpd.pid, maintains a record of dynamic address
leases in /var/db/dhcpd.leases, and reads its configuration from /etc/dhcpd.conf. These last two files
are created by you. Create an empty lease file before you run dhcpd the first time, e.g., touch
/var/db/dhcpd.leases. Create a configuration and store it in dhcpd.conf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.3 The dhcpd.conf Configuration File

When it starts, dhcpd reads its configuration from the /etc/dhcpd.conf file. dhcpd.conf defines the
network being served by the DHCP server and the configuration information the server provides
to its clients.

dhcpd.conf is an ASCII text file. Comments in the file begin with a sharp sign (#). Keywords are
case-insensitive. Whitespace can be used to format the file. Related statements are enclosed in
curly braces. IP addresses can be entered as numeric addresses or as hostnames that resolve to
addresses.

Statements in the configuration file define the topology of the network being served. In the
documentation these statements are called "declarations" because they declare something about
the network topology. The statements that define the topology are shared-network, subnet,
group, and host. All of these can appear multiple times in the configuration file. The statements
define a hierarchical structure. The shared-network contains subnets, and subnets can contain
hosts.

Parameters and options can be associated with each of these statements. Parameters define
things about the server and the protocol, such as the length of time for an address lease or where
the boot file is located. The options provide the clients with values for the standard DHCP
configuration options defined by the RFCs, for example, whether the client should enable IP
forwarding. Parameters and options specified outside of a specific topology statement apply to all
networks served by this server. Those specified in the group statement apply to all of the shared
networks, subnets, or hosts grouped together by the statement. The shared-network
statement options and parameters apply to all subnets on the shared network. Subnet options
and parameters apply to everything on the subnet. Host options and parameters apply only to the
individual host. Options applied at a general level can be overridden by the same option applied
at a more specific level. Subnet options override global options and host options override
subnet options. This structure allows the network administrator to define configuration
information for the entire network and all of its parts.

In the following sections, we examine the syntax of all of the topology statements and all the
parameters and options that can be associated with them. We include many more parameters
and options than you will ever use, and there is no need to study them all. Use this reference to
look up the details of individual parameters and options when you need them. See Chapter 9 for
examples of how these statements, parameters, and options are actually used in a real-world
configuration.

D.3.1 Topology Statements

group {[parameters] [options]}

The group statement groups together shared-network, subnet, host, or other group
statements to apply a set of parameters or options to all members of the group.

shared-network name {[parameters] [options] }

The shared-network statement is used only if more than one IP subnet shares the same
physical network. In most cases, different subnets are on different physical networks. The
name, which must be provided, can be any descriptive name. It is used only in debugging
messages. Parameters and options associated with the shared network are declared within
the curly braces and apply to all subnets in the shared network. The subnets in a shared
network must be defined within the curly braces of the shared-network statement. It is
assumed that each shared-network statement contains at least two subnet statements;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assumed that each shared-network statement contains at least two subnet statements;
otherwise there is no need to use the shared-subnet statement. dhcpd cannot tell on
which subnet of a shared network a client should boot. Therefore, dynamically allocated
addresses are taken from the available range of all subnets on the shared network and
assigned as needed.

subnet address mask netmask { [parameters] [options] }

The subnet statement defines the IP address and address mask of every subnet the
daemon will serve. The address and mask are used to identify the clients that belong to the
subnet. The parameters and options defined within the curly braces apply to every client on
the subnet. Every subnet physically connected to the server must have a subnet
statement even if the subnet does not have any clients.

host hostname {[parameters] [options] }

The host statement defines parameters and options for individual clients. Every BOOTP
client must have a host statement in the dhcpd.conf file. For DHCP clients, the host
statement is optional. It is matched to an actual DHCP or BOOTP client by matching the
dhcp-client-identifier provided by the client or by matching the hardware
parameter to the hardware address of the client. BOOTP clients do not provide a dhcp-
client-identifier, so use the hardware address for BOOTP clients. DHCP clients can
be identified by either the dhcp-client-identifier or the hardware address.

D.3.2 Configuration Parameters

The parameter statements defined in this section control the operation of the DHCP server and
the DHCP protocol. The standard DHCP configuration values that are passed to clients are
defined in option statements, which are covered in the next section. Some parameter statements
can be associated with any of the topology statements discussed above. Others can be used only
with specific statements. These are noted in the description of the parameter.

range [dynamic-bootp] low-address [high-address] ;

The range parameter defines the scope of addresses that are available for dynamic
assignment by defining the lowest and highest IP addresses available for assignment. The
range parameter must be associated with a subnet statement. All addresses in the scope
of the range parameter must be in the subnet in which the range parameter is declared.
The dynamic-bootp flag is specified if addresses may be automatically assigned to
BOOTP clients as well as DHCP clients. The range parameter must be defined if you
intend to use dynamic address assignment. If the subnet statement does not include a
range parameter, dynamic address assignments are not made to clients on the subnet.

default-lease-time seconds;

The life of an address lease in seconds that is used if the client does not request a specific
lease length.

max-lease-time seconds;

The maximum life of an address lease in seconds regardless of the lease length the client
requests.

hardware type address;

Defines a client's hardware address. At present, type must be either ethernet or
token-ring. address must be an appropriate physical address for the type of hardware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

token-ring. address must be an appropriate physical address for the type of hardware.
The hardware parameter must be associated with a host statement. It is required for a
BOOTP client to be recognized. It is optional for DHCP clients, for which it is an alternative
to the dhcp-client-identifier option.

filename file;

Identifies the boot file for diskless clients. file is an ASCII string enclosed in quotation
marks.

server-name name;

The hostname of the DHCP server that is provided to the client. name is an ASCII string
enclosed in quotation marks.

next-server name;

The hostname or address of the server from which the boot file is to be loaded.

fixed-address address[, address...] ;

Assigns one or more fixed IP addresses to a host. The fixed-address parameter is valid
only when associated with a host statement. If more than one address is supplied, the
client is assigned the address that is valid for the subnet on which it is booting. If none of
the addresses is valid for the subnet, no configuration data is sent to the client.

dynamic-bootp-lease-cutoff date;

Sets a termination date for addresses assigned to BOOTP clients. BOOTP clients don't
have a way of renewing leases and don't know that address leases expire. By default,
dhcpd assigns permanent addresses to BOOTP clients. This parameter changes that
behavior. It is used only in special circumstances where the life of all systems is known in
advance—for example, on a college campus where it is known that all student systems will
be removed by June.

dynamic-bootp-lease-length seconds;

Defines the life of an address lease in seconds for an address automatically assigned to a
BOOTP client. As noted above, BOOTP clients do not understand address leases. This
parameter is used only in special circumstances where clients use a BOOTP boot PROM
and run an operating system that supports DHCP. During the boot the client acts as a
BOOTP client, but once it boots the client runs DHCP and knows how to renew a lease.
Use this parameter, and the previous one, with caution.

get-lease-hostnames flag;

Tells dhcpd if it should send a DNS hostname to the client when it dynamically assigns it
an IP address. If flag is true, dhcpd uses DNS to look up the hostnames for all
dynamically assigned addresses, which dramatically slows DHCP performance. By default
the flag is false, and no lookups are done.

use-host-decl-names flag;

Causes the name provided on the host statement to be supplied to the client as its
hostname.

server-identifier hostname;

Defines the value sent in the server identifier option. The default is to send the first IP
address of the network interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

authoritative;
not authoritative;

Specifies whether or not the DHCP server is authoritative. The default is authoritative.
not authoritative can be used if a DHCP server does not have the authority to set
client addresses. It is possible to have a DHCP server that supports multiple networks and
has address authority for some networks and no address authority for other networks.

use-lease-addr-for-default-route flag;

Causes the leased IP address to be sent to the client as the default route in order to force
Windows 95 clients to ARP for all IP addresses. This parameter is used only when the local
router is the proxy ARP server. The option routers statement overrides this parameter.

always-reply-rfc1048 flag;

Sends responses that comply with RFC 1048 to a BOOTP client, even if that client does
not send requests that comply with RFC 1048. This parameter is used when the server logs
the message "(non-rfc1048)" for a BOOTP client's BOOTREQUEST. This parameter is
generally used on a client-by-client basis. Upgrading the clients to DHCP is preferred.

allow keyword;
deny keyword;

Determines whether or not the server responds to certain types of requests. keyword
defines the type of request that is allowed or denied. There are three possible keyword
values:

unknown-clients

Determines whether the server dynamically assigns addresses to unknown clients.
By default, dynamic addresses are assigned to unknown clients.

bootp

Determines whether the server responds to BOOTP requests. By default, BOOTP
requests are allowed.

booting

Used inside a host declaration to specify whether the server responds to a
particular client. By default, the DHCP server responds to all clients.

D.3.3 DHCP Options

The option statements available with dhcpd cover all of the standard DHCP configuration options
currently defined in the RFCs. Furthermore, the syntax of the dhcpd.conf option statement is
extensible. A new option can be identified by its decimal option code. All options are assigned a
decimal option code, either in the RFC that describes the option, or in the vendor documentation
if it is vendor-specific. The value assigned to the new option can be expressed as a string
enclosed in quotes or as a colon-separated list of hexadecimal numbers. Imagine that a new
DHCP option is created and assigned an option code of 133. Further, imagine that the value
carried by this option is a 16-bit binary mask and that you want your clients to "turn on" the high-
order 4-bits and "turn off" all other bits in the mask. You could add the following option to your
configuration:

 option option-133 F0:00

All option statements begin with the keyword option. The keyword is then followed by the name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All option statements begin with the keyword option. The keyword is then followed by the name
of the option and the value assigned to the option, in that order. In the example above, the option
name is in the form option-nnn, where nnn is the decimal option code assigned to the option.
In this manner, any new option that appears can be added to dhcpd.conf file. The value assigned
to this imaginary option is F000.

Looking at the huge list of standard options, you may well wonder if they will ever need to be
extended. The standard options are listed in the following section. The types of values that are
assigned to options are:

Address

An IP address written in dotted decimal notation, or a hostname that resolves to an
address.

String

A series of characters enclosed in quotation marks.

Number

A numeric value.

Flag

A switch containing either true or false, which can also be set as 1 or 0, or yes or no.

In this book, the list of options is divided into "Commonly used options" and "Other options."

D.3.3.1 Commonly used options

option subnet-mask mask;

Specifies the subnet mask in dotted decimal notation. If the subnet mask option is not
provided, dhcpd uses the network mask from the subnet statement.

option time-offset seconds;

Specifies the number of seconds this time zone is offset from Coordinated Universal Time
(UTC).

option routers address[, address...] ;

Lists the routers the client should use, in order of preference.

option domain-name-servers address[, address...] ;

Lists the Domain Name System (DNS) name servers the client should use, in order of
preference.

option lpr-servers address [, address...] ;

Lists line printer (LPR) servers the client should use, in order of preference.

option host-name host;

Defines the hostname the client should use.

option domain-name domain;

Defines the domain name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option interface-mtu bytes;

Defines the MTU the client should use. The minimum legal value for the MTU is 68.

option broadcast-address address;

Defines the broadcast address for the client's subnet.

option static-routes destination gateway[, destination gateway...] ;

Lists the static routes the client should use. The default route cannot be specified in this
manner. Use the routers option for the default route.

option trailer-encapsulation 0 | 1;

Specifies if the client should use trailer encapsulation. 0 means that the client shouldn't use
trailer encapsulation, and 1 means that the client should use trailer encapsulation.

option nis-domain string;

A character string that defines the name of the Network Information Services (NIS) domain.

option nis-servers address[, address...] ;

Lists IP addresses of the NIS servers the client should use, in order of preference.

option dhcp-client-identifier string;

Used in the host statement to define the DHCP client identifier. dhcpd can use the client
identifier to identify DHCP clients in lieu of the hardware address.

D.3.3.2 Other options

option time-servers address[, address...] ;

Lists the time servers the client should use, in order of preference.

option ien116-name-servers address[, address...];

Lists the IEN 116 name servers the client should use, in order of preference. IEN 116 is an
obsolete name service. Avoid this and use DNS.

option log-servers address[, address...] ;

Lists the MIT-LCS UDP log servers the client should use, in order of preference.

option cookie-servers address[, address...] ;

Lists the cookie servers available to the client, in order of preference.

option impress-servers address[, address...] ;

Lists the Image Impress servers available to the client, in order of preference.

option resource-location-servers address[, address...] ;

Lists the Resource Location servers the client should use, in order of preference.

option boot-size blocks;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option boot-size blocks;

Specifies the number of 512-octet blocks in the boot file.

option merit-dump path;

path is a character string that identifies the location of the file the client should dump core
to in the event of a crash.

option swap-server address;

Specifies the IP address of the client's swap server.

option root-path path;

path is a character string that identifies the location of the client's root disk.

option ip-forwarding 0 | 1;

Specifies if the client should do IP forwarding. 0 disables IP forwarding, and 1 enables it.

option non-local-source-routing 0 | 1;

Specifies if the client should allow non-local source routes. Source routes are a potential
security problem, as they can be used by intruders to route data off the local network in
ways not intended by the local network administrator. 0 disables forwarding of non-local
source-routed datagrams, and 1 enables forwarding. 0 is the more secure setting.

option policy-filter address mask[, address mask...] ;

Lists the IP addresses and masks that specify the only valid destination/mask pairs for
incoming source routes. Any source-routed datagram whose next-hop address does not
match one of the filters is discarded by the client.

option max-dgram-reassembly bytes;

Defines, in bytes, the largest datagram the client should be prepared to reassemble. The
value of bytes cannot be less than 576.

option default-ip-ttl ttl ;

Defines the default time-to-live (TTL) for outgoing datagrams.

option path-mtu-aging-timeout seconds;

Sets the number of seconds for timing out Path MTU values discovered by the mechanism
defined in RFC 1191.

option path-mtu-plateau-table bytes[, bytes...] ;

Defines a table of MTU sizes to use when performing Path MTU Discovery as defined in
RFC 1191. The minimum MTU value cannot be smaller than 68.

option all-subnets-local 0 | 1;

Tells the client if all subnets of the local network use the same MTU. 1 means that all
subnets share the same MTU. 0 means that some subnets have smaller MTUs.

option perform-mask-discovery 0 | 1;

Specifies if the client should use ICMP to discover the subnet mask. enables ICMP mask
discovery, and 1 disables it. Because the DHCP server can provide the correct subnet
mask, ICMP mask discovery is rarely used on networks that have a DHCP server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option mask-supplier 0 | 1;

Specifies if the client should respond to ICMP subnet mask requests. means that the client
shouldn't respond, and 1 means that it should.

option router-discovery 0 | 1;

Specifies if the client should use the Router Discovery mechanism defined in RFC 1256 to
locate routers. 0 means it shouldn't, and 1 means it should perform router discovery.
Because the DHCP server provides the correct list of routers, router discovery is rarely
used on networks that have a DHCP server.

option router-solicitation-address address;

Defines the address to which the client should transmit a router solicitation request if router
discovery is enabled.

option arp-cache-timeout seconds;

Defines the number of seconds entries are maintained in the ARP cache.

option ieee802-3-encapsulation 0 | 1;

Specifies if the client should use Ethernet II (DIX) or IEEE 802.3 Ethernet encapsulation on
the network. 0 tells the client to use Ethernet II and 1 tells the client to use IEEE 802.3
encapsulation.

option default-tcp-ttl ttl;

Defines the default TTL for TCP segments. Possible values are 1 to 255.

option tcp-keepalive-interval seconds;

The number of seconds TCP should wait before sending a keepalive message. 0 means
that TCP should not generate keepalive messages. Keepalive messages are generally
discouraged.

option tcp-keepalive-garbage 0 | 1;

Specifies if the client should send TCP keepalive messages with an octet of garbage for
compatibility with older implementations. 0 means don't send a garbage octet and 1 means
send it. Keepalives are generally discouraged.

option ntp-servers address[, address...] ;

Lists the IP addresses of the Network Time Protocol (NTP) servers the client should use, in
order of preference.

option netbios-name-servers address[, address...] ;

Lists the NetBIOS name servers (NBNS) the client should use, in order of preference.

option netbios-dd-server address[, address...] ;

Lists the NetBIOS datagram distribution servers (NBDD) the client should use, in order of
preference.

option netbios-node-type type;

Defines the NetBIOS node type of the client. A type of 1 is a NetBIOS B-node; 2 is a P-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the NetBIOS node type of the client. A type of 1 is a NetBIOS B-node; 2 is a P-
node; 4 is an M-node; 8 is an H-node.

option netbios-scope string;

A character string that defines the NetBIOS over TCP/IP scope parameter as specified in
RFC 1001/1002.

option font-servers address[, address...] ;

Lists the X Window System Font servers the client should use, in order of preference.

option x-display-manager address[, address...] ;

Lists the systems running the X Window System Display Manager that the client should
use, in order of preference.

option nisplus-domain string;

Defines the NIS+ domain name.

option nisplus-servers ip-address [, ip-address...];

Lists the NIS+ servers' IP addresses. Servers are listed in order of preference.

option tftp-server-name string;

Identifies a TFTP boot server.

option bootfile-name string;

Provides the name of the boot file found on the TFTP boot server.

option mobile-ip-home-agent ip-address [, ip-address...];

Lists the IP addresses of Mobile IP home agents available to the client.

option smtp-server ip-address [, ip-address...];

Lists the IP addresses of the SMTP servers in order of preference.

option pop-server ip-address [, ip-address...];

Lists the IP addresses of POP3 servers in order of preference.

option nntp-server ip-address [, ip-address...];

Lists the IP addresses of Network News Transport Protocol (NNTP) servers in order of
preference.

option www-server ip-address [, ip-address...];

Lists the IP addresses of web servers in order of preference.

option finger-server ip-address [, ip-address...];

Lists the IP addresses of finger servers in order of preference.

option irc-server ip-address [, ip-address...];

Lists the IP addresses of IRC servers in order of preference.

option streettalk-server ip-address [, ip-address...];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option streettalk-server ip-address [, ip-address...];

Lists the IP addresses of StreetTalk servers in order of preference.

option streettalk-directory-assistance-server ip-address [, ip-address...
];

Lists the IP addresses of StreetTalk Directory Assistance (STDA) servers in order of
preference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. A sendmail Reference
This appendix provides details of the syntax of the sendmail command, of the sendmail.cf file,
and of the m4 macros that can be used to build that file. It describes where to obtain the latest
source code for sendmail and how to compile it. This appendix is a reference, not a tutorial. Refer
to Chapter 10 for a tutorial on sendmail configuration.

We start the appendix with information on locating, downloading, and compiling the latest version
of sendmail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.1 Compiling sendmail

The source code for sendmail is available via anonymous FTP from ftp.sendmail.org, where it is stored in the
directory. sendmail is updated constantly. The following examples are based on sendmail 8.11.3. Remember that things will change
for future releases. Always read the README files and installation documents that come with new software before beginning an
installation.

To compile the sendmail program, download the compressed tar file as a binary file, and then uncompress and extract
tar command, shown below:

$ ftp ftp.sendmail.org
Connected to ftp.sendmail.org.

220 pub2.pa.vix.com FTP server ready.

Name (ftp.sendmail.org:craig): anonymous
331 Guest login ok, send your e-mail address as password.

Password:

230 Guest login ok, access restrictions apply.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd pub/sendmail
ftp> get sendmail.8.11.3.tar.gz
local: sendmail.8.11.3.tar.gz remote: sendmail.8.11.3.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for sendmail.8.11.3.tar.gz

 (1347756 bytes).

226 Transfer complete.

1347756 bytes received in 18.68 Seconds (72.42 Kbytes/sec)

ftp> quit

221-You have transferred 1347756 bytes in 1 files.

221-Thank you for using the FTP service on pub2.pa.vix.com.

221 Goodbye.

$ cd /usr/local/src
$ tar -zxvf /home/craig/sendmail.8.11.3.tar.gz
Next, change to the sendmail-8.11.3 directory created by the tar file, and use the Build script to compile the new sendmail
program, as shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cd sendmail-8.11.3
$./Build
Making all in:

/usr/local/src/sendmail-8.11.3/libsmutil

Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2, arch=i586, sfx=, variant=optimized

Using M4=/usr/bin/m4

Creating ../obj.Linux.2.2.10.i586/libsmutil using ../devtools/OS/Linux

Making dependencies in ../obj.Linux.2.2.10.i586/libsmutil

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'

cc -M -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL debug.c

errstring.c lockfile.c safefile.c snprintf.c strl.c >> Makefile

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'

Making in ../obj.Linux.2.2.10.i586/libsmutil

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c debug.c -o debug.o

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c errstring.c -o errstring.o

... Many, many, many lines deleted...

cc -O -I. -I../../sendmail -I../../include -DNEWDB

 -DNOT_SENDMAIL -c vacation.c -o vacation.o

cc -o vacation vacation.o ../libsmdb/libsmdb.a

 ../libsmutil/libsmutil.a -ldb -lresolv -lcrypt -lnsl -ldl

groff -Tascii -man vacation.1 > vacation.0 ||

 cp vacation.0.dist vacation.0

make[1]: Leaving directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'

Build detects the architecture of the system and builds the correct Makefile for your system. It then compiles
newly created Makefile.

According to the documentation, running Build is all you need to do on most systems to compile sendmail. It works on
Linux and Solaris 8 systems. However, there are no guarantees. Your system may use nonstandard directories or lack
libraries. You may need to provide compiler flags that are customized for your system.

If you have experience with compiling sendmail, you may be tempted to look for the compiler options in the Makefile in the sendmail
distribution's source code directory. You may even remember setting compiler options in the Makefile at
that has changed. Now, compiler options are set in the files located in the devtools directory of the sendmail source code
distribution.

The default compiler options are normally set in an operating system-specific file in the devtools/OS
you create specially for your server in the devtools/Site directory. The files in the devtools/OS directory are identified by
system name; for example, the configuration file for Solaris 8 is named SunOS5.8. If your Solaris 8 system varies from the norm,
create your own file in devtools/Site named site.SunOS5.8.m4 that contains the corrected setting. Additionally, you can create a file
named site.config.m4 in the devtools/Site directory if the compiler options you wish to set relate more to the peculiarities of your site
than they do to corrections of operating system settings. Build looks for and uses files with either of

As the .m4 file extension in these filenames implies, the commands that are used to define compiler options are
simple compiler options. Table E-1 lists the m4 commands that are used with sendmail 8.11.3 to control the compile process.

Table E-1. m4 compiler options
Command Purpose

confBEFORE Identifies files that must be created before the compile.

confBLDVARIANT Requests OPTIMIZED, DEBUG, or PURIFY build variants.

confBUILDBIN The path of the build support binaries.

confCC The name of the C compiler.

confCCOPTS Options to pass to the compiler.

confCOPY The name of a program that copies files.

confDEPEND_TYPE Name of a file in devtools/M4/depend that defines how to build dependencies.

confDEPLIBS Dependent libraries for shared objects.

confEBINDIR The path of the program executed by other programs.

confENVDEF The -D flags passed to the compiler.

confFORCE_RMAIL Forces installation of rmail.

confHFDIR Path of the sendmail helpfile.

confHFFILE Name of the helpfile.

confINCDIRS The -I flags passed to the compiler.

confINCGRP The group ID used for include files.

confINCMODE The file permissions used for include files.

confINCOWN The user ID used for include files.

confINCLUDEDIR The path where include files are installed.

confINSTALL The install program.

confINSTALL_RAWMAN Install the unformatted manual pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confLDOPTS Options for the linker.

confLIBDIR Path to the install library files.

confLIBDIRS The -L flags for the linker.

confLIBGRP The group ID used for libraries.

confLIBMODE The file permissions used for libraries.

confLIBOWN The user ID used for libraries.

confLIBS The -l flags passed to linker.

confLIBSEARCH Names of the libraries searched during linking.

confLIBSEARCHPATH Path of the libraries searched during linking.

confLINKS Names of logical links to sendmail, e.g., newaliases.

confLN The command used to create logical links.

confMAN1 The path of man1 files.

confMAN1EXT The filename extension used for man1 files.

confMAN1SRC The source for man1 pages.

confMAN3 The path of man3 files.

confMAN3EXT The filename extension used for man3 files.

confMAN3SRC The source for man3 pages.

confMAN4 The path of man4 files.

confMAN4EXT The filename extension for man4 files.

confMAN4SRC The source for man4 pages.

confMAN5 The path of man5 files.

confMAN5EXT The filename extension used for man5 files.

confMAN5SRC The source for man5 pages.

confMAN8 The path of man8 files.

confMAN8EXT The filename extension used for man8 files.

confMAN8SRC The source for man8 pages.

confMANDOC The macros used to format manpages.

confMANGRP The group ID used for manpage files.

confMANMODE The file permission for manpages.

confMANOWN The user ID used for manpage files.

confMANROOT The root path of the various directories that contain formatted

confMANROOTMAN The root path of the various directories that contain unformatted

confMAPDEF Identifies the types of database support that should be compiled into

confMBINDIR The path in which the sendmail program is installed.

confNO_HELPFILE_INSTALL If defined, no helpfile is installed.

confNO_MAN_BUILD If defined, manpages are not created.

confNO_MAN_INSTALL If defined, manpages are not installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confNO_STATISTICS_INSTALL If defined, no statistics file is installed.

confNROFF Identifies the command used to format manpages.

confOBJADD Identifies objects that should be linked in to sendmail.

confOPTIMIZE Flags passed to the compiler as ${O}.

confRANLIB The path to the ranlib program.

confRANLIBOPTS Options passed to ranlib.

confSBINDIR The path of the directory in which commands such as makemap are

confSBINGRP The group ID used for setuid binaries.

confSBINMODE The file permissions for setuid binaries.

confSBINOWN The user ID used for setuid binaries.

confSHAREDLIB_EXT The filename extension for shared libraries.

confSHAREDLIB_SUFFIX The suffix used for shared objects.

confSHAREDLIBDIR The path of the directory in which shared libraries are installed.

confSHELL The pathname of the shell used inside make.

confSMOBJADD Objects that should be linked in to sendmail.

confSMSRCADD The C source files for the objects identified by confSMOBJADD.

confSMSRCDIR The directory that contains the sendmail source code.

confSRCADD The C source files for the objects identified by confOBJADD.

confSRCDIR The root path of the source directories.

confSONAME Linker flag for recording the shared object name.

confSTDIO_TYPE Identifies the buffered file implementation used, i.e., portable or

confSTDIR The path where the statistics file is stored.

confSTFILE The name of the statistics file.

confSTRIP Identifies the program used to strip executables.

confSTRIPOPTS Options passed to the strip program.

confUBINDIR The path for user-executable programs.

confUBINGRP The group ID used for user-executable binaries.

confUBINMODE The file permissions used for user-executable binaries.

confUBINOWN The user ID used for user-executable binaries.

Once sendmail compiles, it is installed by using the Build command with the install option, as shown here:

./Build install
Making all in:

/usr/local/src/sendmail-8.11.3/libsmutil

Configuration: pfx=, os=Linux, rel=2.2.10, rbase=2, rroot=2.2,

 arch=i586, sfx=, variant=optimized

Making in ../obj.Linux.2.2.10.i586/libsmutil

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/libsmutil'

... Many, many, many lines deleted...

Making in ../obj.Linux.2.2.10.i586/vacation

make[1]: Entering directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'

install -c -o bin -g bin -m 555 vacation /usr/bin

install -c -o bin -g bin -m 444 vacation.0 /usr/man/man1/vacation.1

make[1]: Leaving directory

 `/usr/local/src/sendmail-8.11.3/obj.Linux.2.2.10.i586/vacation'

The Build command installs the manpages, the executables, the help file, and the status file in the correct
system.

sendmail is now ready to run. The next section describes the syntax of the sendmail command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2 The sendmail Command

The syntax of the sendmail command is deceptively simple:

sendmail [arguments] [address ...]

The syntax is deceptive because it hides the fact that there are a very large number of command-
line arguments. Table E-2 lists all of them.

Table E-2. sendmail command-line arguments
Argument Function

-U Indicate initial user submission.

-Venvid Set the envelope ID to envid.

-Ndsn Set delivery status notification to dsn.

-Mxvalue Set macro x to value.

-Rreturn Set the part of the message returned with an error.

-Btype Set the MIME body type.

-pprotocol Set the receiving protocol and hostname.

-Xlogfile Log all traffic in the indicated log file.

-faddr Sender's machine address is addr.

-r addr Obsolete form of -f.

-h cnt Drop mail if forwarded cnt times.

-Fname Set the full name of this user to name.

-n Don't do aliasing or forwarding.

-Tvalue Set the QueueTimeout option to value.

-t Send to everyone listed in To:, Cc:, and Bcc:.

-bm Deliver mail (default).

-bD Run as a daemon in the foreground.

-ba Run in arpanet mode.

-bs Speak SMTP on input side.

-bd Run as a daemon.

-bH Clear the host status directory; equivalent to purgestat.

-bh Display the host status report; equivalent to hoststat.

-bt Run in test mode.

-bv Verify addresses; don't collect or deliver mail.

-bi Initialize the alias database.

-bp Print the mail queue.

-bz Create a parsed copy of the sendmail.cf file.

-q[time] Process queued mail. Repeat at interval time.

-Cfile Use file as the configuration file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-c Set the HoldExpensive option to true.

-dlevel Set debugging level.

-e Set the ErrorMode option.

-Ooption=value Set option option to value.

-oxvalue Set an option using its old single-character name.

-I Alternate way to specify -bi.

-i Ignore dots in incoming messages.

-m Send to me, too.

-v Run in verbose mode.

-saddr Alternate form of -f.

Table E-2 lists over 30 command-line arguments. The table is a quick reference to all possible
arguments, some of which are outdated in the latest version of sendmail. Perhaps the best-known
argument that is now outdated is -bz. At one time it was used to preprocess the sendmail.cf file.
The idea was that storing the processed configuration would enhance speed. This outdated
switch does not work in the newest versions of sendmail. If you used this argument with an older
version of sendmail you might mistakenly believe it is still needed. Attempting to run it with the
current sendmail release will just return an error.

Several arguments are redundant forms of other switches. For example, -c, -e, -I, -m, -r, -T, and
-s are all deprecated switches that have been replaced by newer arguments. All of the
arguments that set sendmail.cf options, even those that are not deprecated, such as -i and -o,
can be replaced with the -O switch. For example, the command line:

sendmail -m -s < mail.file

could be replaced by:

sendmail -OMeToo=true -OSaveFromLine=true < mail.file

The -O argument provides the distinct advantage of being able to set any sendmail.cf option.
Arguments such as -m and -s set only one option each. The -O format is also easier to read and
comprehend, particularly when the sendmail command is included inside a script.

Several of the command-line arguments from Table E-2 are covered in Chapter 10. These are:

-f

Allows trusted users to override the sender address on outgoing messages. For security
reasons, it is disabled on some systems. Obsolete alternative forms of this argument are -
r and -s.

-t

Reads the To:, Cc:, and Bcc: headers from standard input. Used to send a file that contains
these headers or when typing in a test message, as in Chapter 10.

-bd

Runs sendmail in background mode, causing it to collect incoming mail. Use this argument
on the sendmail command in the boot script.

-bt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-bt

Used to test sendmail address rewrite rules.

-bi

Initializes the aliases database. This is the same as the newaliases command covered in
Chapter 10.

-q

Sets the time interval at which the mail queue is processed. Use on the sendmail
command in the boot script.

-C

Loads an alternative sendmail configuration file. Use this to test the configuration before
moving the new file to sendmail.cf.

-v

Permits you to view the exchange of SMTP commands in real time.

-bv

Verifies address processing without actually sending mail.

Other than the two arguments (-bd and -q) used on the sendmail command line in the boot
script to process incoming mail, the most common use for sendmail arguments is debugging.
From the list above, -bt, -C, -bv, -v, and -t are all used in Chapter 10 in debugging examples.
Other debugging arguments are:

-bp

Prints a list of mail that is queued for delivery. It is the same as the mailq command. Mail
is queued when it cannot be delivered immediately because the remote host is temporarily
unable to accept the mail. sendmail periodically processes the queue, based on the time
interval you set with the -q argument, and attempts to deliver the mail in the queue. The
queue can grow large enough to impede sendmail's performance if an important remote
host is down. mailq shows how many items are queued as well as the source and
destination of each piece of mail.

When the queue requires immediate processing, invoke sendmail using -q with no time
interval. This processes the entire queue. Some variations of the -q argument allow you to
selectively process the queue. Use -qIqueue-id to process only those queue entries with
the specified queue identifier; -qRrecipient to process only items being sent to the
specified recipient; or -qSsender to process only mail sent from the specified sender. The
mailq command displays the queue identifier, sender address, and recipient address for
every item in the queue.

-o

Sets a sendmail option for this one instantiation of sendmail, e.g., -oA/tmp/test-
aliases. Use this argument to test alternative option settings without editing the
sendmail.cf file. -o uses the old sendmail option syntax. An alternate form of the argument
is -O, which uses the new option syntax, e.g., -OAilasFile=/tmp/test-aliases. See
Section E.4.3 later in this appendix.

-d

Sets the level of detail displayed when debugging sendmail code. Can be used to debug
rewrite rules or to check configuration settings, e.g., sendmail -bt -d0.4. Most debug

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rewrite rules or to check configuration settings, e.g., sendmail -bt -d0.4. Most debug
settings are useful only for sendmail source code debugging.

-h

Sets the counter used to determine if mail is looping. By default, it is set to 30, which is a
good operational value. When you are debugging a mail loop problem, set the hop count
lower, e.g., -h10, to reduce the number of times a piece of mail is handled by the system.
Otherwise, leave this value alone.

-bh

Displays the persistent host status, if sendmail is configured to maintain this status. The
host status displays the name of each remote host that mail was sent to, the time the status
of that host was last updated, and the result of the last attempt to deliver mail to that host.
The directory of host status files can grow very large. Use -bH to clean out the host status
directory.

The remaining arguments are rarely used on the command line:

-B

Indicates the MIME message body type. Acceptable values are either 7BIT or 8BITMIME.

-N

Requests that the sender be notified of the delivery status of the mail. The default value is
FAILURE, DELAY, which notifies the sender when mail delivery fails or is delayed in the
queue. Other acceptable values are NEVER, to request that no status notifications be
returned to the sender, and SUCCESS, to request notification of successful mail delivery.

-M

Sets a macro value for this instantiation of sendmail. For example, entering the command -
MMwrotethebook.com sets macro M to wrotethebook.com.

-p

Sets the sending protocol and the sending host. This is equivalent to setting the internal s
and r macros. If a system has more than one external mail protocol, for example, UUCP
and SMTP, this forces the system to use a specific protocol for this piece of mail.

-R

Sets the amount of information returned to the sender when a message cannot be
delivered. This can be either HDRS for headers-only, or FULL for the headers and the full
message body.

-U

Indicates that this mail comes directly from a user interface and was not forwarded from a
remote mail handler.

-V

Inserts an "envelope ID" into the outbound message that is returned if message delivery
fails.

-X

Logs all mail messages to the specified log file. This rapidly produces an enormous log file.

-n

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-n

Disables the processing of aliases and mail forwarding.

-bm

Tells sendmail to deliver mail, which it will do anyway.

-ba

Reads the header From: line to find the sender. It uses three-digit reply codes, and ends
error lines with <CRLF>. This is an obsolete argument.

-bs

Tells sendmail to use SMTP for incoming mail. When appropriate, sendmail will do this
even without the -bs argument.

-i

Normally, an SMTP message terminates when a line containing only a dot is encountered.
This argument tells sendmail to ignore the dots in incoming messages.

-m

Sends a copy of the mail to the person sending the mail. Normally this is done with a CC:
or BCC: header in the message, not with the -m argument.

-bD

Runs sendmail as a foreground daemon so that it remains attached to the controlling
terminal.

-F

Sets the sender's full name.

This is a complete list of sendmail command-line arguments at this writing. Some of these
arguments were recently introduced. Others are obsolete in the latest version of sendmail. Check
the manpage for your system to find out exactly what arguments are available on your system.

When the sendmail command is executed, it reads its configuration from the sendmail.cf file. A
basic sendmail.cf file can be built from m4 macros that come with the sendmail source code.
Chapter 10 provides examples of how this is done. The next section provides a complete list of
the m4 macros that come with the sendmail distribution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.3 m4 sendmail Macros

The sendmail distribution comes with several sample configuration files. Chapter 10 provides an
example of how the tcpproto.mc file is modified to produce a configuration file suitable for a Linux
system. The prototype files are m4 macro configuration files that produce usable sendmail.cf files
as output. The prototype files are located in the sendmail/cf/cf directory of the sendmail
distribution. Use those prototypes as examples of reasonable sendmail configurations.

All of the sendmail configuration files are composed of the following m4 macros: [E]

[E] By convention, m4 macros are shown in uppercase, and built-in m4 commands are shown in lowercase.

divert

Directs the output of the m4 process.

dnl

Deletes all characters up to the next newline.

VERSIONID

Defines the version number of the .mc source file. RCS or SCCS version numbers are
commonly used. This command is optional.

OSTYPE

Points to the m4 source file that contains the operating system-specific information for this
configuration. This is required.

DOMAIN

Points to the m4 source file that contains configuration information specific to this domain.
This is optional.

LOCAL_DOMAIN

Defines the hostname aliases for the server.

CANONIFY_DOMAIN

Defines domains that should be converted to canonical format even if the nocanonify
feature is set.

CANONIFY_DOMAIN_FILE

Identifies a file that contains the list of domains that should be converted to canonical
format even if the nocanonify feature is set.

GENERICS_DOMAIN

Defines domain names that should be processed through the genericstable database.

GENERICS_DOMAIN_FILE

Identifies a file that contains the list of domains that should be processed through the
genericstable database.

LDAPROUTE_DOMAIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LDAPROUTE_DOMAIN

Defines domains that should be routed according to directions found in the LDAP directory.

LDAPROUTE_DOMAIN_FILE

Identifies a file that lists the domains that should be routed according to directions found in
the LDAP directory.

RELAY_DOMAIN

Defines the domains for which this server should relay mail.

RELAY_DOMAIN_FILE

Identifies a file that lists the domains for which this server should relay mail.

VIRTUSER_DOMAIN

Defines the virtual domains that should be processed through the virtusertable.

VIRTUSER_DOMAIN_FILE

Identifies a file that lists the virtual domains that should be processed through the
virtusertable.

FEATURE

Points to an m4 source file that defines an optional sendmail feature. This is not required for
m4 to process the .mc source file, but many configurations have multiple FEATURE entries.

MASQUERADE_AS

Defines the domain name used to masquerade outgoing mail.

MASQUERADE_DOMAIN

Defines domains that should be masqueraded.

MASQUERADE_DOMAIN_FILE

Identifies a file that lists the domains that should be masqueraded.

MASQUERADE_EXCEPTION

Defines a host that should not be masqueraded even if the domain is being masqueraded.

EXPOSED_USER

Defines usernames that prevent masquerading. If the user portion of the address contains
one of these names, the host portion of the address is not masqueraded.

HACK

Points to an m4 source file that contains site-specific configuration information. This is a
temporary configuration used to fix a temporary problem. The use of HACK is discouraged.

SITE

Identifies a locally connected UUCP host.

SITECONFIG

Points to a source file that contains m4 SITE commands that define the UUCP sites

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Points to a source file that contains m4 SITE commands that define the UUCP sites
connected to this host. The format of the command is: SITECONFIG(file, local-
hostname, class), which reads the UUCP hostnames from file into class.

UUCPSMTP

Maps a UUCP hostname to an Internet hostname.

define

Defines a local value. Most "defines" are done in the m4 source files that are called by the
.mc file, not in the .mc file itself. It can define a value for a sendmail.cf macro, option, or
other command.

undefine

Clears the value set for a configuration parameter.

MAILER

Points to an m4 source file that contains the configuration commands that define a
sendmail mailer. At least one MAILER command must appear in the configuration file.
Generally more than one MAILER command is used.

MAILER_DEFINITIONS

Heads a section of sendmail.cf commands that define a custom mailer.

MODIFY_MAILER_FLAGS

Overrides the flags defined for a mailer.

MAIL_FILTER

Defines a mail filter.

INPUT_MAIL_FILTER

Defines a mail filter and the variables necessary to call the filter.

DAEMON_OPTIONS

Defines runtime options for the sendmail daemon.

TRUST_AUTH_MECH

Defines a list of trusted authorization mechanisms.

LOCAL_RULE_ n

Heads a section of code to be added to ruleset n, where n is 0, 1, 2, or 3. The code that
follows the LOCAL_RULE_n command is composed of standard sendmail.cf rewrite
rules.[E] The LOCAL_RULE_n command is rarely used.

[E] The one exception to this is the UUCPSMTP macro that can be used in the local rule.

LOCAL_RULESETS

Heads a section of code that defines a custom ruleset.

LOCAL_USER

Defines usernames that should be exempted from relaying even when local mail is being
relayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOCAL_NET_CONFIG

Heads a section of sendmail.cf code that defines how mail destined for the local host is
processed.

LOCAL_CONFIG

Heads a section of code to be added to the sendmail.cf file after the local information
section and before the rewrite rules. The section of code contains standard sendmail.cf
configuration commands. This macro is rarely used.

The built-in m4 commands shown above—those listed in lowercase characters—are divided
between those that control the flow of output and those that set macro values. The two
commands that control the flow of output are dnl and divert. Text following the dnl command
is not sent to the output file. Thus it is used at the beginning of a line on a comment. The
divert(-1) command sends output to the "bit-bucket" and marks the start of a block of
comments. The divert(0) command directs output to standard m4 processing. In addition to -1
and 0, the divert command accepts nine other numeric arguments: the values 1 to 9. These
other values are used in the m4 macro source code to direct data to various parts of the
sendmail.cf file. You will not use these values in your own configuration. Instead you will use other
commands to direct data to specific parts of the sendmail.cf file.

The commands LOCAL_CONFIG, LOCAL_USER, LOCAL_RULESETS, MAILER_DEFINITION,
LOCAL_NET_CONFIG, and LOCAL_RULE allow you to send data to various parts of the
sendmail.cf file without using the various divert values directly. Commands such as
LOCAL_CONFIG and MAILER_DEFINITION mark the start of raw sendmail.cf code that should
be included in some part of the output file. These commands make it possible for you to
customize the sendmail.cf file in any possible way.

The built-in m4 commands define and undefine set macro values. define sets a variable to a
value and undefine resets it to its default value. More configuration parameters can be
controlled through the define command than through any other, and, correspondingly, more of
this appendix is dedicated to define parameters than to anything else.

Almost half of the m4 macros act like the define command and simply set a parameter to a value.
MASQUERADE_AS, MASQUERADE_DOMAIN, RELAY_DOMAIN, and
VIRTUSER_DOMAIN_FILE are all examples of commands used to set variables.

The TRUST_AUTH_MECH macro is a good example of a macro that complements a define. As
you'll see in Section E.3.1 of this appendix, the parameter confAUTH_MECHANISMS can be
used to define the trusted authentication mechanisms your server advertises to other servers.
The TRUST_AUTH_MECH macro is the inverse of this. It identifies the mechanism that your
server accepts from other servers. The same list of keywords used to configure the
confAUTH_MECHANISMS parameter in Section E.3.1 can be used to configure
TRUST_AUTH_MECHANISMS.

The macro names OSTYPE, DOMAIN, FEATURE, MAILER, HACK, and SITECONFIG are all
names of subdirectories within the cf directory. The value passed to each of these macros is the
name of a file within the specified directory. For example, the command FEATURE(nouucp) tells
m4 to load the file nouucp.m4 from the ostype directory and process the m4 source code found
there. The .m4 source files pointed to by the OSTYPE, DOMAIN, FEATURE, and MAILER
commands are built primarily from define and FEATURE commands.

Two of the macros that are also directory names, SITECONFIG and HACK, are rarely used.
SITECONFIG points to a source file that contains SITE macros that define the UUCP sites
connected to the local host. You create the file containing the SITE macros yourself and then
invoke it with the SITECONFIG command. These commands, along with UUCPSMTP, are
obsolete and maintained only for backward compatibility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HACK macro points to an m4 source file that contains a temporary site-specific fix to a
sendmail problem. You create the file in the hack directory and then use the HACK command to
add that file to the configuration. The use of hacks is discouraged and is generally unnecessary.

The following section provides additional information about the OSTYPE, DOMAIN, FEATURE,
and MAILER macros and details of the various commands used to build the m4 source files they
call. Chapter 10 provides an example of building a custom DOMAIN macro source file. The
source files can contain any of the macros we have already mentioned as well as the additional
ones documented below. The macro configuration (.mc) file also can contain any of the
commands documented below. In fact, pretty much any macro can appear in any file.

To bring some order out of this chaos, the commands are organized according to the files they
are most likely to appear in, which is similar to the organization found in the documentation that
comes with the sendmail distribution. Just remember, actual implementation files may have a
different organization. We start by examining the define macros and the FEATURE macros that
are the primary building blocks of all the other files.

E.3.1 define

The syntax of the define macro is:

define(`parameter ', `value ')
where parameter is the keyword name of a sendmail configuration parameter and value is the
value assigned to that configuration parameter. The parameter and the value are normally
enclosed in single quotes to prevent inappropriate macro expansion. These are not balanced
quotes. The opening quote is a grave sign (`), and the closing quote is an apostrophe (').

Many of the configuration parameters that can be set using the define command are shown
below. Most of the parameters correspond to sendmail options, macros, or classes. The name of
the option, macro, or class set by the parameter is listed in the parameter description enclosed in
square brackets ([]). Macro names begin with a dollar sign ($j), class names begin with a dollar
sign and an equals sign ($=w), and options are shown with long option names
(SingleThreadDelivery). To find out more about these parameters, see the descriptions of
the macros, options, and classes they represent that are provided later in this appendix.

Because many define parameters are equivalent to options, macros, and classes, the
command:

define(`confDOMAIN_NAME', `rodent.wrotethebook.com')

placed in an m4 source file has the same effect as:

Djrodent.wrotethebook.com

placed directly in the sendmail.cf file. If you compile and install a new version of sendmail, build
your configuration with m4 and set values for macros, classes, and options with the m4 define
macro.

The list of define parameters is quite long. However, because most of the parameters default to
a reasonable value, they do not have to be explicitly set in the m4 source file. The default value of
each parameter is shown in the listing—unless there is no default.

confMAILER_NAME

Default is MAILER-DAEMON. The sender name used on error messages. [$n]

confDOMAIN_NAME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confDOMAIN_NAME

The full hostname. [$j]

confCF_VERSION

The configuration file's version number. [$Z]

confFROM_HEADER

Default is $?x$x <$g>$|g. . The From: header format.

confRECEIVED_HEADER

Default is $?sfrom $s $.$?_($?s$|from $.$_) $.by $j ($v/$Z)$?r with
r. id i?u for u.; $b . The Received: header format.

confCW_FILE

Default is /etc/sendmail.cw. The file of local host aliases. [$=w]

confCT_FILE

Default is /etc/sendmail.ct. The file of trusted usernames. [$=t]

confTRUSTED_USERS

Trusted usernames to add to root, uucp, and daemon.

confSMTP_MAILER

Default is esmtp. The mailer used for SMTP connections; must be smtp, smtp8, or esmtp.

confUUCP_MAILER

Default is uucp-old. The default UUCP mailer.

confLOCAL_MAILER

Default is local. The mailer used for local connections.

confRELAY_MAILER

Default is relay. The default mailer name for relaying.

confSEVEN_BIT_INPUT

Default is False. Forces input to seven bits. [SevenBitInput]

confEIGHT_BIT_HANDLING

Default is pass8. Defines how 8-bit data is handled. [EightBitMode]

confALIAS_WAIT

Default is 10m. The amount of time to wait for alias file rebuild. [AliasWait]

confMIN_FREE_BLOCKS

Default is 100. The minimum number of free blocks on the queue filesystem that must be
available to accept SMTP mail. [MinFreeBlocks]

confMAX_MESSAGE_SIZE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confMAX_MESSAGE_SIZE

Default is infinite. The maximum message size. [MaxMessageSize]

confBLANK_SUB

The character used to replace unquoted blank characters in email addresses. [BlankSub]

confCON_EXPENSIVE

Default is False. Tells system to hold mail bound for mailers that have the e flag set until
the next queue run. [HoldExpensive]

confCHECKPOINT_INTERVAL

Default is 10. Tells system to checkpoint the queue files after this number of queued items
are processed. [CheckpointInterval]

confDELIVERY_MODE

Default is background. Sets the default delivery mode. [DeliveryMode]

confAUTO_REBUILD

Default is False. Automatically rebuilds alias file. [AutoRebuildAliases]

confERROR_MODE

Default is print. Defines how errors are handled. [ErrorMode]

confERROR_MESSAGE

Points to a file containing a message that is prepended to error messages. [ErrorHeader]

confSAVE_FROM_LINES

Tells system not to discard Unix From: lines. They are discarded if this is not set.
[SaveFromLine]

confTEMP_FILE_MODE

Default is 0600. File mode for temporary files. [TempFileMode]

confMATCH_GECOS

Tells system to match the email username to the GECOS field. This match is not done if
this is not set. [MatchGECOS]

confMAX_HOP

Default is 25. The counter used to determine mail loops. [MaxHopCount]

confIGNORE_DOTS

Default is False. Tells system to ignore dots in incoming messages. [IgnoreDots]

confBIND_OPTS

Default is undefined. Sets options for DNS resolver. [ResolverOptions]

confMIME_FORMAT_ERRORS

Default is True. Tells system to send MIME-encapsulated error messages.
[SendMimeErrors]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confFORWARD_PATH

Default is $z/.forward.$w:$z/.forward. Places to search for .forward files. [ForwardPath]

confMCI_CACHE_SIZE

Default is 2. The number of open connections that can be cached. [ConnectionCacheSize]

confMCI_CACHE_TIMEOUT

Default is 5m. The amount of time inactive open connections are held in the cache.
[ConnectionCacheTimeout]

confHOST_STATUS_DIRECTORY

Directory in which host status is saved. [HostStatusDirectory]

confUSE_ERRORS_TO

Default is False. Delivers errors using the Errors-To: header. [UseErrorsTo]

confLOG_LEVEL

Default is 9. Level of detail for the log file. [LogLevel]

confME_TOO

Default is False. Sends a copy to the sender. [MeToo]

confCHECK_ALIASES

Default is False. Looks up every alias during alias file build. [CheckAliases]

confOLD_STYLE_HEADERS

Default is True. Treats headers without special characters as old style. [OldStyleHeaders]

confDAEMON_OPTIONS

SMTP daemon options. [DaemonPortOptions]

confPRIVACY_FLAGS

Default is authwarnings. These flags restrict the use of some mail commands.
[PrivacyOptions]

confCOPY_ERRORS_TO

Address to receive copies of error messages. [PostmasterCopy]

confQUEUE_FACTOR

Default is 600000. Used to calculate when a loaded system should queue mail instead of
attempting delivery. [QueueFactor]

confDONT_PRUNE_ROUTES

Default is False. Don't prune route-addresses to the minimum possible. [DontPruneRoutes]

confSAFE_QUEUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confSAFE_QUEUE

Create a queue file, then attempt delivery. This is not done unless this parameter is
specified. [SuperSafe]

confTO_INITIAL

Default is 5m. Maximum time to wait for the initial connect response. [Timeout.initial]

confTO_CONNECT

Default is 0. Maximum time to wait for a connect to complete. [Timeout.connect]

confTO_ICONNECT

Maximum time to wait for the very first connect attempt to a host. [Timeout.iconnect]

confTO_HELO

Default is 5m. Maximum time to wait for a HELO or EHLO response. [Timeout.helo]

confTO_MAIL

Default is 10m. Maximum time to wait for a MAIL command response. [Timeout.mail]

confTO_RCPT

Default is 1h. Maximum time to wait for a RCPT command response. [Timeout.rcpt]

confTO_DATAINIT

Default is 5m. Maximum time to wait for a DATA command response. [Timeout.datainit]

confTO_DATABLOCK

Default is 1h. Maximum time to wait for a block during DATA phase. [Timeout.datablock]

confTO_DATAFINAL

Default is 1h. Maximum time to wait for a response to the terminating ".".
[Timeout.datafinal]

confTO_RSET

Default is 5m. Maximum time to wait for a RSET command response. [Timeout.rset]

confTO_QUIT

Default is 2m. Maximum time to wait for a QUIT command response. [Timeout.quit]

confTO_MISC

Default is 2m. Maximum time to wait for other SMTP command responses. [Timeout.misc]

confTO_COMMAND

Default is 1h. Maximum time to wait for a command to be issued. [Timeout.command]

confTO_IDENT

Default is 30s. Maximum time to wait for an IDENT query response. [Timeout.ident]

confTO_FILEOPEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confTO_FILEOPEN

Default is 60s. Maximum time to wait for a file open. [Timeout.fileopen]

confTO_QUEUERETURN

Default is 5d. Time until a message is returned from the queue as undeliverable.
[Timeout.queuereturn]

confTO_QUEUERETURN_NORMAL

"Undeliverable" timeout for normal priority messages. [Timeout.queuereturn.normal]

confTO_QUEUERETURN_URGENT

"Undeliverable" timeout for urgent priority messages. [Timeout.queuereturn.urgent]

confTO_QUEUERETURN_NONURGENT

"Undeliverable" timeout for low priority messages. [Timeout.queuereturn.non-urgent]

confTO_QUEUEWARN

Default is 4h. Time until a "still queued" warning is sent about a message.
[Timeout.queuewarn]

confTO_QUEUEWARN_NORMAL

Time until a "still queued" warning is sent for normal priority messages.
[Timeout.queuewarn.normal]

confTO_QUEUEWARN_URGENT

Time until a "still queued" warning is sent for urgent priority messages.
[Timeout.queuewarn.urgent]

confTO_QUEUEWARN_NONURGENT

Time until a "still queued" warning is sent for low priority messages.
[Timeout.queuewarn.non-urgent]

confTO_HOSTSTATUS

Default is 30m. Time for stale host status information. [Timeout.hoststatus]

confTIME_ZONE

Default is USE_SYSTEM. Sets time zone from the system (USE_SYSTEM) or the TZ
variable (USE_TZ). [TimeZoneSpec]

confDEF_USER_ID

Default is 1:1. Default user ID and group ID. [DefaultUser]

confUSERDB_SPEC

Path of the user database file. [UserDatabaseSpec]

confFALLBACK_MX

Backup MX host. [FallbackMXhost]

confTRY_NULL_MX_LIST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confTRY_NULL_MX_LIST

Default is False. Instructs system to connect to the remote host directly if the MX points to
the local host. [TryNullMXList]

confQUEUE_LA

Default is 8. Sends mail directly to the queue when this load average is reached.
[QueueLA]

confREFUSE_LA

Default is 12. Refuses incoming SMTP connections at this load average. [RefuseLA]

confMAX_DAEMON_CHILDREN

If set, refuses connection when this number of children is reached. [MaxDaemonChildren]

confCONNECTION_RATE_THROTTLE

Maximum number of connections permitted per second, if set. [ConnectionRateThrottle]

confWORK_RECIPIENT_FACTOR

Default is 30000. Factor used to lower the priority of a job for each additional recipient.
[RecipientFactor]

confSEPARATE_PROC

Default is False. Delivers messages with separate processes. [ForkEachJob]

confWORK_CLASS_FACTOR

Default is 1800. The factor used to favor a high-priority job. [ClassFactor]

confWORK_TIME_FACTOR

Default is 90000. Factor used to lower the priority of a job for each delivery attempt.
[RetryFactor]

confQUEUE_SORT_ORDER

Default is Priority. Sorts queue by Priority or Host order. [QueueSortOrder]

confMIN_QUEUE_AGE

Default is 0. Minimum time a job must be queued. [MinQueueAge]

confDEF_CHAR_SET

Default is unknown-8bit. Default character set for unlabeled 8-bit MIME data.
[DefaultCharSet]

confSERVICE_SWITCH_FILE

Default is /etc/service.switch. The path to the service switch file. [ServiceSwitchFile]

confHOSTS_FILE

Default is /etc/hosts. The path to the hostnames file. [HostsFile]

confDIAL_DELAY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confDIAL_DELAY

Default is 0s. Amount of time to delay before retrying a "dial on demand" connection. 0s
means "don't retry." [DialDelay]

confNO_RCPT_ACTION

Default is none. Handling for mail with no recipient headers: do nothing (none); add To:
header (add-to); add Apparently-To: header (add-apparently-to); add a Bcc: header (add-
bcc); add "To: undisclosed-recipients" header (add-to-undisclosed). [NoRecipientAction]

confSAFE_FILE_ENV

Default is undefined. chroot() to this directory before writing files.
[SafeFileEnvironment]

confCOLON_OK_IN_ADDR

Default is True. Treats colons as regular characters in addresses. [ColonOkInAddr]

confMAX_QUEUE_RUN_SIZE

Default is 0. Limits the number of entries processed in a queue run. means no limit.
[MaxQueueRunSize]

confDONT_EXPAND_CNAMES

Default is False. If true, don't convert nicknames to canonical names. False means to
convert. [DontExpandCnames]

confFROM_LINE

Default is From $g $d. The format of the Unix From: line. [UnixFromLine]

confOPERATORS

Default is .:%@!^/[]+. Address operator characters. [OperatorChars]

confSMTP_LOGIN_MSG

Default is $j sendmail $v/$Z; $b. The SMTP greeting message.
[SmtpGreetingMessage]

confDONT_INIT_GROUPS

Default is False. If true, disable the initgroups(3) routine. False means to use the
initgroups(3) routine. [DontInitGroups]

confUNSAFE_GROUP_WRITES

Default is False. If true, don't reference programs or files from group-writable :include: and
.forward files. [UnsafeGroupWrites]

confDOUBLE_BOUNCE_ADDRESS

Default is postmaster. When errors occur sending an error message, send the second error
message to this address. [DoubleBounceAddress]

confRUN_AS_USER

Default is undefined. Run as this user to read and deliver mail. [RunAsUser]

confSINGLE_THREAD_DELIVERY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confSINGLE_THREAD_DELIVERY

Default is False. Force single-threaded mail delivery when set with HostStatusDirectory.
[SingleThreadDelivery]

confALLOW_BOGUS_HELO

Defines normally illegal special characters that will be allowed in the DNS hostname on a
HELO or EHLO command line. [AllowBogusHELO]

confAUTH_MECHANISMS

Defines a space-separated list of authentication mechanisms that will be advertised by this
server. Possible values are GSSAPI, KERBEROS_V4, DIGEST-MD5, and CRAM-MD5.
[AuthMechanisms]

confAUTH_OPTIONS

The AUTH= argument is added to the MAIL FROM header only when authentication
succeeds if this is set to A. [AuthOptions]

confCACERT

Identifies a file containing a cryptographic certificate from a certificate authority.
[CACERTFile]

confCACERT_PATH

Defines the path to the directory that contains the cryptographic certificates. [CACERTPath]

confCLIENT_CERT

Identifies the file containing the cryptographic certificate sendmail uses when it acts as
client. [ClientCertFile]

confCLIENT_KEY

Identifies the file containing the private key associated with the certificate used when
sendmail acts as a client. [ClientKeyFile]

confCLIENT_OPTIONS

Defines the port options used for outbound SMTP client connections. [ClientPortOptions]

confCONNECT_ONLY_TO

Limits connectivity. Used for testing by the sendmail developers. This is not used in
production environments. [ConnectOnlyTo]

confCONTROL_SOCKET_NAME

Defines a socket used for managing the sendmail daemon. [ControlSocketName]

confCR_FILE

Points to the file that lists the hosts for which this server will relay mail. Defaults to
/etc/mail/relay-domains. [$=R]

confDEAD_LETTER_DROP

Defines the file where failed messages that could not be returned to the sender or sent to
the postmaster are saved. [DeadLetterDrop]

confDEF_AUTH_INFO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confDEF_AUTH_INFO

Identifies the file that contains the authentication information used for outbound
connections. [DefaultAuthInfo]

confDF_BUFFER_SIZE

Defines the maximum amount of buffer memory that will be used before a disk file is used.
[DataFileBufferSize]

confDH_PARAMETERS

Identifies the file that contains the DH parameters for the DSA/DH digital signature
algorithm. [DHParameters]

confDONT_BLAME_SENDMAIL

Tells sendmail to perform certain file security checks. By default, all checks are performed.
This option weakens the security of your server. See the DontBlameSendmail option later
in this appendix for a full list of the values that can be used with this parameter.
[DontBlameSendmail]

confDONT_PROBE_INTERFACES

Tells sendmail not to automatically accept the addresses of the server's network interfaces
as valid addresses if set to true. Defaults to false. [DontProbeInterface]

confEBINDIR

Defines the directory where executables for FEATURE(`local_lmtp') and
FEATURE(`smrsh') are stored. The default directory is /usr/libexec.

confLDAP_DEFAULT_SPEC

Defines the defaults used for LDAP databases unless specifically overridden by a K
command for an individual map. [LDAPDefaultSpec]

confMAX_ALIAS_RECURSION

Aliases can refer to other aliases. This sets the maximum depth that alias references can
be nested. The default is 10. [MaxAliasRecursion]

confMAX_HEADERS_LENGTH

Defines the maximum length of the sum of all headers in bytes. [MaxHeadersLength]

confMAX_MIME_HEADER_LENGTH

Defines the maximum length of MIME headers. [MaxMimeHeaderLength]

confMAX_RCPTS_PER_MESSAGE

Defines the maximum number of recipients allowed for a piece of mail.
[MaxRecipientsPerMessage]

confMUST_QUOTE_CHARS

Adds characters to the list of characters that must be quoted when they are included in the
user's full name ($x). The characters @,;:\()[] are always quoted. By default . and ` are
added to the list. [MustQuoteChars]

confPID_FILE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confPID_FILE

Specifies the path of the PID file. [PidFile]

confPROCESS_TITLE_PREFIX

Identifies the string used on this system as the prefix for the process title in ps listings.
[ProcessTitlePrefix]

confRAND_FILE

Identifies the file that contains random data needed by STARTTLS if sendmail was not
compiled with the HASURANDOM flag. [RandFile]

confREJECT_MSG

Defines the message displayed when mail is rejected because of the access control
database. Defaults to "550 Access denied".

confRRT_IMPLIES_DSN

True tells sendmail to interpret a Return-Receipt-To: header as a request for delivery status
notification (DSN). The default is false. [RrtImpliesDsn]

confSERVER_CERT

Identifies the file that contains the cryptographic certificate used when this system acts as
server. [ServerCertFile]

confSERVER_KEY

Identifies the file that contains the private key associated with the cryptographic certificate
used when this system acts as server. [ServerKeyFile]

confSINGLE_LINE_FROM_HEADER

True forces a multiline From: line to a single line. The default is false.
[SingleLineFromHeader]

confTO_RESOLVER_RETRANS

Defines, in seconds, the retransmission timer for all resolver lookups.
[Timeout.resolver.retrans]

confTO_RESOLVER_RETRANS_FIRST

Defines, in seconds, the retransmission timer for the resolver lookup for the first attempt to
deliver a message. [Timeout.resolver.retrans.first]

confTO_RESOLVER_RETRANS_NORMAL

Defines, in seconds, the retransmission timer for all resolver lookups after the first attempt
to deliver a message. [Timeout.resolver.retrans.normal]

confTO_RESOLVER_RETRY

Defines the total number of times to retry a resolver query. [Timeout.resolver.retry]

confTO_RESOLVER_RETRY_FIRST

Defines the number of times the resolver query for the first delivery attempt is retried.
[Timeout.resolver.retry.first]

confTO_RESOLVER_RETRY_NORMAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

confTO_RESOLVER_RETRY_NORMAL

Defines the number of times to retry resolver queries after the first delivery attempt.
[Timeout.resolver.retry.normal]

confTRUSTED_USER

Defines the user who controls the sendmail daemon and owns the files created by
sendmail. Do not confuse this option with confTRUSTED_USERS. [TrustedUser]

confXF_BUFFER_SIZE

Defines the maximum amount of buffer memory that can be used for a transcript file before
the file must be written to disk. The default is 4096 bytes. [XScriptFileBufferSize]

define macros are the most common macros in the m4 source files. The next most commonly
used macro is the FEATURE macro.

E.3.2 FEATURE

The FEATURE macro processes m4 source code from the cf/feature directory. Source files in that
directory define optional sendmail features that you may wish to include in your configuration. The
syntax of the FEATURE macro is:

FEATURE(name, [argument])

The FEATURE source file can be called with or without an optional argument. If an argument is
passed to the source file, the argument is used by the source file to generate code for the
sendmail.cf file. For example:

FEATURE(`mailertable', `hash /etc/mail/mailertable')

generates the code for accessing the mailertable and defines that table as being a hash database
located in the file /etc/mail/mailertable.

There are several features available in sendmail V8. They are all listed in Table E-3. The table
provides the name of each feature and its purpose.

Table E-3. sendmail features
Name Purpose

use_cw_file Load $=w from /etc/mail/local-host-names.

use_ct_file Load $=t from /etc/mail/trusted-users.

relay_based_on_MX Relay mail for any site whose MX points to this server.

relay_entire_domain Relay mail for any host in your domain.

relay_hosts_only Only relay mail for hosts listed in the access database.

relay_local_from Relay mail if the source is a local host.

relay_mail_from Relay mail if the sender is listed as RELAY in the access
database.

promiscuous_relay Relay mail from any site to any site.

rbl The obsolete Realtime Blackhole List feature has been replaced
by dnsbl.

dnsbl Reject mail from hosts listed in a DNS-based rejection list.
Replaces rbl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blacklist_recipients Filter incoming mail based on values set in the access
database.

delay_checks Delay the check_mail and check_relay rulesets until check_rcpt
is called.

loose_relay_check Disable validity checks for addresses that use the % hack.

redirect Support the .REDIRECT pseudo-domain.

no_default_msa Allow the default configuration of the Message Submission
Agent to be overridden by the DAEMON_OPTIONS macro.

nouucp Don't include UUCP address processing.

nocanonify Don't convert names with $[name$] syntax.

stickyhost Treat "user" differently than "user@local.host".[E]

mailertable Mail routing using a mailer table.

domaintable Domain name mapping using a domain table.

access_db Relay control using the access database.

bitdomain Use a table to map bitnet hosts to Internet addresses.

uucpdomain Use a table to map UUCP hosts to Internet addresses.

accept_unqualified_senders Allow network mail from addresses that do not include a valid
hostname.

accept_unresolvable_domains Accept mail from hosts that are unknown to DNS.

always_add_domain Add the local hostname to all locally delivered mail.

allmasquerade Also masquerade recipient addresses.

limited_masquerade Only masquerade hosts listed in $=M.

masquerade_entire_domain Masquerade all hosts within the masquerading domains.

masquerade_envelope Also masquerade envelope addresses. The default is to
masquerade only header addresses.

genericstable Use a table to rewrite local addresses.

generics_entire_domain Map domain names identified in class G through the
genericstable.

virtusertable Map virtual domain names to real mail addresses.

virtuser_entire_domain Map domain names through the virtusertable.

ldap_routing Enable LDAP-based email routing.

nodns Don't include DNS support.

nullclient Forward all mail to a central server.

local_lmtp Use mail.local with LMTP support.

local_procmail Use procmail as the local mailer.

bestmx_is_local Accept mail as local when it is addressed to a host that lists us
as its MX server.

smrsh Use smrsh as the prog mailer.

[E] See the discussion of "stickyhost" in the "DOMAIN" section later in this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The use_cw_file and the use_ct_file features are equivalent to Fw/etc/sendmail.cw and
Fw/etc/sendmail.ct commands in the sendmail.cf file. See Chapter 10 for descriptions of
host aliases ($=w) and trusted users ($=t).

The .REDIRECT pseudo-domain code returns an error message to the sender telling the sender
to try a new address for the recipient. This is used to handle mail for people who no longer read
mail at your site but who are still getting mail sent to a very old address. Enable this feature with
the FEATURE(redirect) command and then add aliases for each obsolete mailing address in the
form:

 old-address new-address.REDIRECT

For example, assume that Edward Winslow is no longer a valid user of crab.wrotethebook.com.
Therefore, his old username, ed, should no longer accept mail. His new mailing address is
WinslowE@industry.com. We enter the following alias in the /etc/aliases file:

 ed WinslowE@industry.com.REDIRECT

Now when mail is sent to the ed account on crab, the following error is returned to the sender:

 551 User not local; please try <WinslowE@industry.com>

Several of the FEATURE macros actually remove features from the sendmail.cf file instead of
adding them. nouucp removes the code to handle UUCP addresses for systems that do not have
access to UUCP networks, and nodns removes the code for DNS lookups for systems that do not
have access to DNS. nocanonify disables the $[name]$ syntax that converts nicknames and IP
addresses to canonical names. Finally, the nullclient feature strips everything out of the
configuration except for the ability to forward mail to a single mail server via a local SMTP link.
The name of the mail server is provided as the argument on the nullclient command line. For
example, FEATURE(nullclient, ms.big.com) forwards all mail to ms.big.com without any
local mail processing.

Several features relate to mail relaying and masquerading. Examples include stickyhost,
relay_based_on_MX, allmasquerade, limited_masquerade, and masquerade_entire_domain. All
of these features are covered in the "DOMAIN" section later in this appendix.

Several of the features define databases that are used to perform special address processing. All
of these features accept an optional argument that defines the database. (See the sample
mailertable command at the beginning of this section for an example of defining the database
with the optional argument.) If the optional argument is not provided, the database description
always defaults to hash -o /etc/mail/filename, where filename matches the name of the
feature. For example, mailertable defaults to the definition hash -o
/etc/mail/mailertable. The database features are:

mailertable

Maps host and domain names to specific mailer:host pairs. If the host or domain name in
the recipient addresses matches a key field in the mailertable database, it returns the
mailer and host for that address. The format of mailertable entries is:

domain-name mailer:host
where domain-name is either a full hostname (host plus domain) or a domain name. If a
domain name is used it must start with a dot (.), and it will match every host in the specified
domain.

domaintable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domaintable

Converts an old domain name to a new domain name. The old name is the key and the
new name is the value returned for the key.

bitdomain

Converts a Bitnet hostname to an Internet hostname. The Bitnet name is the key and the
Internet hostname is the value returned. The bitdomain program that comes with
sendmail can be used to build this database.

uucpdomain

Converts a UUCP name to an Internet hostname. The key is the UUCP hostname and the
value returned is the Internet hostname.

genericstable

Converts a sender email address. The key to the database is either a username or a full
email address (username and hostname). The value returned by the database is the new
email address. genericstable is often used to convert the same address as those
processed for masquerading and thus the features that affect masquerading and those that
affect the genericstable conversion are set to exactly the same values. If you use the
genericstable and you use masquerading, set GENERICS_DOMAIN and
GENERICS_DOMAIN_FILE to the same values as MASQUERADE_DOMAIN and
MASQUERADE_DOMAIN_FILE.

virtusertable

Aliases incoming email addresses. Essentially, this is an extended alias database for
aliasing addresses that are not local to this host. The key to the database is a full email
address or a domain name. The value returned by the database is the recipient address to
which the mail is delivered. If a domain name is used as a key, it must begin with an at-sign
(@). Mail addressed to any user in the specified domain is sent to the recipient defined by
the virtusertable database. Any hostname used as a key in the virtusertable database must
also be defined in class w or class {VirtHost}. A hostname can be added to class w with the
LOCAL_DOMAIN macro. Hostnames can be added to the {VirtHost} class using the
VIRTUSER_DOMAIN macro. The {VirtHost} class can be loaded from a file using the
VIRTUSER_DOMAIN_FILE macro.

Some features are important in the fight against spam because they help you control what mail
your server will deliver or forward on for delivery. These are accept_unqualified_senders,
accept_unresolvable_domains, access_db, blacklist_recipients, and dnsbl. The access database
lists email sources and how mail from these sources should be treated. The dnsbl uses a special
DNS database to reject mail from specific sources. The blacklist_recipients feature extends the
access_db and dnsbl controls to email destinations as well as email sources. Two of the features,
accept_unqualified_senders and accept_unresolvable_domains, weaken relay controls by
allowing relaying for hosts or domains that cannot be found via DNS. Use care when adjusting
these controls.

Two of the remaining FEATURE commands relate to domains. The always_add_domain macro
makes sendmail add the local hostname to all locally delivered mail, even to those pieces of mail
that would normally have just a username as an address. The bestmx_is_local feature accepts
mail addressed to a host that lists the local host as its preferred MX server as if the mail was local
mail. If this feature is not used, mail bound for a remote host is sent directly to the remote host
even if its MX record lists the local host as its preferred MX server. The bestmx_is_local feature
should not be used if you use a wildcard MX record for your domain.

The last two features are used to select optional programs for the local and the prog mailers.
local_procmail selects procmail as the local mailer. Provide the path to procmail as the
argument in the FEATURE command. The smrsh feature selects the sendmail Restricted SHell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

argument in the FEATURE command. The smrsh feature selects the sendmail Restricted SHell
(smrsh) as the prog mailer. smrsh provides improved security over /bin/sh, which is normally
used as the prog mailer. Provide the path to smrsh as the argument in the FEATURE command.

The FEATURE commands discussed in this section and the define macros discussed
previously are used to build the m4 source files. The following sections describe the purpose and
structure of the OSTYPE, DOMAIN, and MAILER source files.

E.3.3 OSTYPE

The source file for the OSTYPE macro defines operating system-specific parameters. Many
operating systems are predefined. Look in the sendmail/cf/ostype directory for a full listing of the
systems that are already defined.

OSTYPE source files are mostly composed of define macros. Table E-4 lists the define
parameters most frequently associated with the OSTYPE source file and the function of each
parameter. If a default value is assigned to a parameter, it is shown enclosed in square brackets
after the functional description.

Table E-4. OSTYPE defines
Parameter Function

ALIAS_FILE Name of the alias file. [/etc/mail/aliases]

HELP_FILE Name of the help file. [/etc/mail/helpfile]

QUEUE_DIR Directory containing queue files.
[/var/spool/mqueue]

STATUS_FILE Name of the status file. [/etc/mail/statistics]

LOCAL_MAILER_PATH The local mail delivery program. [/bin/mail]

LOCAL_MAILER_FLAGS Local mailer flags added to "lsDFMAW5:/|@q".
[Prmn9]

LOCAL_MAILER_ARGS Arguments for local mail delivery. [mail -d $u]

LOCAL_MAILER_MAX Maximum size of local mail.

LOCAL_MAILER_CHARSET Character set for local 8-bit MIME mail.

LOCAL_MAILER_DSN_DIAGNOSTIC_CODE The delivery status notification code used for
local mail. [X-Unix]

LOCAL_MAILER_EOL The end-of-line character for local mail.

LOCAL_MAILER_MAXMSG The maximum number of messages delivered
with a single connection.

LOCAL_SHELL_PATH Shell used to deliver piped email. [/bin/sh]

LOCAL_SHELL_FLAGS Flags added to lsDFM for the shell mailer. [eu9]

LOCAL_SHELL_ARGS Arguments for the "prog" mail. [sh -c $u]

LOCAL_SHELL_DIR Directory in which the shell should run. [$z:/]

USENET_MAILER_PATH Program used for news. [/usr/lib/news/inews]

USENET_MAILER_FLAGS Usenet mailer flags. [rDFMmn]

USENET_MAILER_ARGS Arguments for the usenet mailer. [-m -h -n]

USENET_MAILER_MAX Maximum size of usenet mail messages.
[100000]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SMTP_MAILER_FLAGS Flags added to "mDFMuX" for all SMTP mailers.

SMTP_MAILER_MAX Maximum size of messages for all SMTP
mailers.

SMTP_MAILER_ARGS smtp mailer arguments. [IPC $h]

ESMTP_MAILER_ARGS esmtp mailer arguments. [IPC $h]

DSMTP_MAILER_ARGS dsmtp mailer arguments. [IPC $h]

SMTP8_MAILER_ARGS smtp8 mailer arguments. [IPC $h]

RELAY_MAILER_ARGS relay mailer arguments. [IPC $h]

RELAY_MAILER_FLAGS Flags added to "mDFMuX" for the relay mailer.

RELAY_MAIL_MAXMSG The maximum number of messages for the relay
mailer delivered by a single connection.

SMTP_MAILER_CHARSET Character set for SMTP 8-bit MIME mail.

SMTP_MAIL_MAXMSG The maximum number of SMTP messages
delivered by a single connection.

UUCP_MAILER_PATH Path to the UUCP mail program. [/usr/bin/uux]

UUCP_MAILER_FLAGS Flags added to "DFMhuU" for the UUCP mailer.

UUCP_MAILER_ARGS UUCP mailer arguments. [uux - -r -z -a$g -gC
$h!rmail ($u)]

UUCP_MAILER_MAX Maximum size for UUCP messages. [100000]

UUCP_MAILER_CHARSET Character set for UUCP 8-bit MIME mail.

FAX_MAILER_PATH Path to the FAX program.
[/usr/local/lib/fax/mailfax]

FAX_MAILER_ARGS FAX mailer arguments. [mailfax $u $h $f]

FAX_MAILER_MAX Maximum size of a FAX. [100000]

POP_MAILER_PATH Path of the POP mailer. [/usr/lib/mh/spop]

POP_MAILER_FLAGS Flags added to "lsDFMq" for the POP mailer.
[Penu]

POP_MAILER_ARGS POP mailer arguments. [pop $u]

PROCMAIL_MAILER_PATH Path to the procmail program.
[/usr/local/bin/procmail]

PROCMAIL_MAILER_FLAGS Flags added to "DFM" for the Procmail mailer.
[SPhnu9]

PROCMAIL_MAILER_ARGS Procmail mailer arguments. [procmail -Y -m $h
$f $u]

PROCMAIL_MAILER_MAX Maximum size message for the Procmail mailer.

MAIL11_MAILER_PATH Path to the mail11 mailer. [/usr/etc/mail11]

MAIL11_MAILER_FLAGS Flags for the mail11 mailer. [nsFx]

MAIL11_MAILER_ARGS mail11 mailer arguments. [mail11 $g $x $h $u]

PH_MAILER_PATH Path to the phquery program.
[/usr/local/etc/phquery]

PH_MAILER_FLAGS Flags for the phquery mailer. [ehmu]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PH_MAILER_ARGS phquery mailer arguments. [phquery -- $u]

QPAGE_MAILER_ARGS qpage mailer arguments. [qpage -10 -m -P$u]
QPAGE_MAILER_FLAGS Flags for the qpage mailer. [mDFMs]

QPAGE_MAILER_MAX Maximum qpage mailer message size. [4096]

QPAGE_MAILER_PATH Path to the qpage mailer. [/usr/local/bin/qpage]

CYRUS_MAILER_FLAGS Flags added to "lsDFMnPq" for the cyrus mailer.
[A5@/:|]

CYRUS_MAILER_PATH Path to the cyrus mailer. [/usr/cyrus/bin/deliver]

CYRUS_MAILER_ARGS cyrus mailer arguments. [deliver -e -m $h -- $u]

CYRUS_MAILER_MAX Maximum size message for the cyrus mailer.

CYRUS_MAILER_USER User and group used for the cyrus mailer.
[cyrus:mail]

CYRUS_BB_MAILER_FLAGS Flags added to "lsDFMnP" for the cyrusbb
mailer.

CYRUS_BB_MAILER_ARGS cyrusbb mailer arguments. [deliver -e -m $u]

Despite the long list of parameters in Table E-4, most OSTYPE macros are very short. There are
a few reasons for this. First, many of the parameters in the table are redundant. They define the
same things for different mailers, and no operating system uses all of the mailers. Second, the
default values are often correct. A define only needs to be made if the operating system
requires a value different from the default.

E.3.4 DOMAIN

The DOMAIN source file defines configuration parameters that are related to the local domain.
Chapter 10 provides an example of a DOMAIN file built for the imaginary wrotethebook.com
domain.

Table E-5 shows some define macros that commonly appear in DOMAIN files. (See the syntax
of the define macro earlier.) This table lists the parameters and the function of each parameter.
All of these parameters are used to define mail relay hosts. The value provided for each
parameter is either a hostname, i.e., the name of a mail relay server, or a mailer:hostname pair
where the mailer is the internal name of a local sendmail mailer and the hostname is the name of
the remote mail relay server. If only a hostname is used, the mailer defaults to relay, which is the
name of the SMTP relay mailer. If no values are provided for these parameters, the BITNET,
DECNET, and FAX pseudo-domains are not used, and the local host must be able to handle its
own UUCP and "local" mail.

Table E-5. Mail relay define macros
Parameter Function

UUCP_RELAY Server for UUCP-addressed email

BITNET_RELAY Server for BITNET-addressed email

DECNET_RELAY Server for DECNET-addressed email

FAX_RELAY Server for mail to the .FAX pseudo-domain[E]

LOCAL_RELAY Server for unqualified names

LUSER_RELAY Server for apparently local names that really aren't local

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAIL_HUB Server for all incoming mail

SMART_HOST Server for all outgoing mail

[E] The "fax" mailer overrides this value.

The precedence of the relays defined by these parameters is from the most specific to the least
specific. If both the UUCP_RELAY and the SMART_HOST relay are defined, the UUCP_RELAY
is used for outgoing UUCP mail even though the SMART_HOST relay is defined as handling "all"
outgoing mail. If you define both LOCAL_RELAY and MAIL_HUB, you must also use the
FEATURE(stickyhost) command to get the expected behavior.

When the stickyhost feature is specified, LOCAL_RELAY handles all local addresses that do not
have a host part, and MAIL_HUB handles all local addresses that do have a host part. If
stickyhost is not specified and both relays are defined, the LOCAL_RELAY is ignored and
MAIL_HUB handles all local addresses.

In addition to the defines shown in Table E-5, there is a group of macros that relate to
masquerading and relaying that also appear in the DOMAIN source file. Some of these are used
in the examples in Chapter 10. The macros are:

LOCAL_USER(usernames)

Defines local usernames that should not be relayed even if LOCAL_RELAY or MAIL_HUB
is defined. This command is the same as adding usernames to class L in the sendmail.cf
file.

MASQUERADE_AS(host.domain)

Converts the host portion of the sender address on outgoing mail to the domain name
defined by host.domain. Sender addresses that have no hostname or that have a
hostname found in the w class are converted. This has the same effect as defining
host.domain for the M macro in the sendmail.cf file. See examples of
MASQUERADE_AS and macro M in Chapter 10.

MASQUERADE_DOMAIN(otherhost.domain)

Converts the host portion of the sender address on outgoing mail to the domain name
defined by the MASQUERADE_AS command, if the host portion of the sender address
matches otherhost.domain. This command must be used in conjunction with
MASQUERADE_AS. Its effect is the same as adding hostnames to class M in the
sendmail.cf file. See Chapter 10.

MASQUERADE_DOMAIN_FILE(filename)

Loads otherhost.domain hostnames from the file identified by filename. This can be
used in place of multiple MASQUERADE_DOMAIN commands. Its effect is the same as
loading class M from a file by using the FMfilename command in the sendmail.cf file.

MASQUERADE_EXCEPTION(host. domain)

This macro defines a host that is not masqueraded, even if it belongs to a domain that is
being masqueraded. This allows you to masquerade an entire domain with the
MASQUERADE_DOMAIN macro and then exempt a few hosts that should be exposed to
the outside world.

EXPOSED_USER(username)

Disables masquerading when the user portion of the sender address matches username.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Disables masquerading when the user portion of the sender address matches username.
Some usernames, such as root, occur on many systems and are therefore not unique
across a domain. For those usernames, converting the host portion of the address makes it
impossible to sort out where the message really came from and makes replies impossible.
This command prevents the MASQUERADE_AS command from having an effect on the
sender addresses for specific users. This is the same as setting the values in class E in the
sendmail.cf file.

RELAY_DOMAIN(otherhost. domain)

This macro identifies a host for which mail should be relayed. The host identified in this
manner is added to class R.

RELAY_DOMAIN_FILE(filename)

This macro identifies a file that contains a list of hosts for which mail should be relayed.
This macro loads class R from the specified file.

There are several features that affect relaying and masquerading. We have already discussed
FEATURE(stickyhost). Others are:

FEATURE(masquerade_envelope)

Causes envelope addresses to be masqueraded in the same way that sender addresses
are masqueraded. See Chapter 10 for an example of this command.

FEATURE(allmasquerade)

Causes recipient addresses to be masqueraded in the same way that sender addresses
are masqueraded. Thus, if the host portion of the recipient address matches the
requirements of the MASQUERADE_AS command, it is converted. Don't use this feature
unless you are positive that every alias known to the local system is also known to the mail
server that handles mail for the masquerade domain.

FEATURE(limited_masquerade)

Limits masquerading to those hosts defined in class M. The hosts defined in class w are
not masqueraded.

FEATURE(masquerade_entire_domain)

Causes MASQUERADE_DOMAIN to be interpreted as referring to all hosts within an entire
domain. If this feature is not used, only an address that exactly matches the value defined
by MASQUERADE_DOMAIN is converted. If this feature is used, all addresses that end
with the value defined by MASQUERADE_DOMAIN are converted. For example, assume
that the options MASQUERADE_AS(wrotethebook.com) and
MASQUERADE_DOMAIN(sales.wrotethebook.com) are defined. If
FEATURE(masquerade_entire_domain) is set, every hostname in the
sales.wrotethebook.com domain is converted to wrotethebook.com on outgoing email.
Otherwise, only the hostname sales.wrotethebook.com is converted.

Some features define how the server handles mail if it is the mail relay server. These features,
which are mentioned in the "FEATURE" section earlier in this appendix, are:

FEATURE(access_db)

Adds the code necessary to use the access database. The access database maps a user,
a domain name, or an IP address to a keyword that tells sendmail how to handle relaying
for the host, domain, or network.

FEATURE(blacklist_recipient)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FEATURE(blacklist_recipient)

Uses the access database to control delivery of mail based on the recipient address. The
basic access_db feature controls relaying and delivery based on the source of the
message. This feature adds to that the ability to control mail relaying and delivery based on
the destination.

FEATURE(dnsbl)

Controls mail delivery based on a DNS blacklist. Source addresses and destination
addresses listed in the DNS blacklist database may be denied mail delivery or relay
services.

FEATURE(promiscuous_relay)

Relays mail from any site to any site. Normally, sendmail does not relay mail. Mail relays
can be abused by spammers and spoofers. Enable them with caution.

FEATURE(relay_entire_domain)

Relays mail from any domain defined in class M to any site.

FEATURE(relay_hosts_only)

Relays mail from any host defined in the access database or in class R.

FEATURE(relay_based_on_MX)

Relays mail from any site for which your system is the MX server.

FEATURE(relay_local_from)

Relays mail with a sender address that contains your local domain name.

Inbound mail can also be filtered to reduce the impact of spammers. Two macros are available for
this purpose:

MAIL_FILTER(` name', ` equates')

This macro defines a mail filter using the Sendmail Mail Filter API syntax.

INPUT_MAIL_FILTER(` name', ` equates')

This macro defines a mail filter and sets up the call for that mail filter.

The DOMAIN source file is also used for features and macros that directly relate to DNS. These
features are:

FEATURE(accept_unqualified_senders)

This feature accepts mail even if the sender address does not include a hostname.
Normally, only mail from a user directly logged on to the system is accepted without a
hostname. This is a dangerous feature that should be used only on an isolated network.

FEATURE(accept_unresolvable_domains)

This feature accepts mail from hostnames that cannot be resolved by DNS. This is a
dangerous feature that is used only on systems that lack full-time DNS service.

FEATURE(always_add_domain)

This feature adds the hostname of the system to all local mail. With this feature enabled on
a server named crab@wrotethebook.com, mail from the local user craig to the local user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a server named crab@wrotethebook.com, mail from the local user craig to the local user
kathy would be delivered as mail from craig@crab@wrotethebook.com to
kathy@crab@wrotethebook.com.

FEATURE(bestmx_is_local)

With this feature, mail addressed to any host that lists the local server as its MX server is
accepted by the server as local mail.

The DNS macros are:

CANONIFY_DOMAIN(domain)

This macro defines a domain name that will be passed to DNS for conversion to its
canonical form even if the nocanonify feature is in use. Computers can be known by
aliases. The official domain name of a host stored in DNS is called its canonical name. This
macro is generally used to enable canonification of the local domain when nocanonify is in
use.

CANONIFY_DOMAIN_FILE(filename)

This macro identifies a file containing a list of domain names that should be converted to
canonical form even if nocanonify has been selected.

LOCAL_DOMAIN(alias-hostname)

This macro defines an alias for the local host. Mail addressed to the alias will be accepted
as if it were addressed directly to the local host.

The macros and features described in this section are not limited to the DOMAIN source file. They
can appear in any m4 source file, and, in fact, are often found in the macro control file. However,
they are most naturally associated with the DOMAIN file as indicated by the documentation in the
cf/cf/README file.

E.3.5 MAILER

It is possible that you will need to customize a file location in an OSTYPE file or that define
domain-specific information in a DOMAIN file, but unless you develop your own mail delivery
program you will not need to create a MAILER source file. Instead, you will need to invoke one or
more existing files in your macro configuration file.

The available MAILER files are listed in Table E-6. This table lists each MAILER value and its
function. These are invoked using the MAILER(value) command in the macro configuration
(.mc) file, where value is one of the mailer names from the table.

Table E-6. MAILER values
Name Function

local The local and prog mailers

smtp All SMTP mailers: smtp, esmtp, smtp8, and relay

uucp All UUCP mailers: uucp-old (uucp) and uucp-new (suucp)

usenet Usenet news support

fax Fax support using FlexFAX software

pop Post Office Protocol (POP) support

procmail An interface for procmail

mail11 The DECnet mail11 mailer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

phquery The phquery program for CSO phone book

qpage The QuickPage mailer used to send email to a pager

cyrus The cyrus and cyrusbb mailers

Your macro configuration file should have a MAILER(local) and a MAILER(smtp) entry. This gives
you the local and prog mailers required by sendmail, the smtp mailer for standard SMTP mail, the
esmtp mailer for Extended SMTP, the smtp8 mailer for 8-bit MIME mail, and the relay mailer for
the various mail relay servers mentioned in the "DOMAIN" section of this appendix. Selecting
local and smtp provides everything you need for a standard TCP/IP installation.

Of all the remaining mailers, only uucp is widely used. uucp provides UUCP mail support for
systems directly connected to UUCP networks. The uucp-old mailer supports standard UUCP
mail, and the uucp-new mailer is used for remote sites that can handle multiple recipients in one
transfer. The system needs the mailer that is correct for the capabilities of the remote site. Use
class U to define the hostnames of systems that need the old mailer, and class Y for the names of
remote systems that can work with the new mailer. Specify MAILER(uucp) after the
MAILER(smtp) entry if your system has both TCP/IP and UUCP connections. Ordering the
MAILER statements in this way adds two more mailers to the two standard UUCP mailers: the
uucp-dom mailer to support standard domain names, and the uucp-uudom mailer to support
standard domain names with a standard UUCP envelope.

The other mailers are rarely used:

usenet

Modifies the sendmail rewrite rules to send local mail that contains ".usenet" in the
username to the program inews. Instead of this mailer, choose a user mail agent that
supports Usenet news. Don't hack sendmail to handle it.

fax

This is an experimental mailer that supports HylaFax software.

pop

On most systems, POP support is provided separately by the popd daemon, and the
MAILER(pop) command is not used.

procmail

Only provides an interface to procmail for use in the mailertable. The sendmail V8
distribution does not provide procmail. Even when procmail is used as the local mailer, as it
is in Slackware Linux, the MAILER(procmail) command is not required.

mail11

Only used on DECNET mail networks that use the mail11 mailer.

phquery

Provides a name lookup program for the CSO phone book (ph) directory service. User
directory services are usually configured in the user mail agent, not in sendmail.

qpage

Provides an interface from email to pagers using the QuickPage program.

cyrus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cyrus

This is a local mail delivery program with a mailbox architecture. cyrus and cyrusbb mailers
are not widely used.

This concludes our discussion of m4 macros. The output of all of the files and commands that go
into the m4 processor is a sendmail.cf file. The remainder of this appendix provides additional
details about the sendmail.cf configuration. The bulk of information about sendmail.cf is found in
Chapter 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.4 More sendmail.cf

Many options and flags can be used in configuring the sendmail.cf file. All of the important
configuration parameters are covered in Chapter 10. But if you are unlucky enough to have a
configuration that requires you to tweak one of the more obscure parameters, you will find all of
them in the following tables.

E.4.1 sendmail Macros

The sendmail.cf file contains a large number of macro variables. Macros are useful because they
can store values specific to your configuration and yet be referenced by a macro name that is
independent of your configuration. This makes it possible to use a configuration file that is
essentially the same on many different systems simply by varying the value stored in the macro.
This appendix lists all of the internal sendmail macros in two tables. Table E-7 lists all of the
macros that use single-character names.

Table E-7. Macros with single-character names
Macro Contents

a The date and time the mail was sent.

b The current date in RFC 822 format.

B The name of the Bitnet relay.

c The number of times the mail has been forwarded.

C The name of the DECnet relay.

d The current date and time in ctime format.

E Reserved for an X.400 relay.

f The sender address.

F The name of the FAX relay.

g The sender address written as a full return address.

h The recipient host.

H The name of the mail hub.

i The queue identifier.

j The fully qualified domain name of the local computer.

k The local system's UUCP node name.

L The name of the LUSER_RELAY.

m The name of the local domain.

M The name used to masquerade outbound mail.

n The sender name used for error messages.

p The PID of the sendmail process running as a mail delivery agent.

r The protocol used when the message was first received.

R The name of the LOCAL_RELAY.

s The hostname of the sender's machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

S The name of the SMART_HOST relay.

t A numeric representation of the current date and time.

u The username of the recipient.

U A local UUCP name that overrides the value of $k.

v The version number of sendmail that is running.

V The name of the UUCP relay for class V hosts.

w The hostname of the local system.

W The name of the UUCP relay for class W hosts.

x The full name of the sender.

X The name of the UUCP relay for class X hosts.

Y The name of the UUCP relay for all other hosts.

z The home directory of the recipient.

Z The version number.

_ Sender address validated by identd.

The current version of sendmail allows macros to have multi-character names. Table E-8 lists the
macros that use long names.

Table E-8. Reserved macros with long names
Macro Contents

{auth_authen} Identity of the authenticated user.

{auth_author} Source of the authentication.

{auth_ssf} The number of bits in the encryption key used by AUTH.

{auth_type} The type of authentication mechanism used.

{bodytype} The values from the ESMTP BODY parameter.

{cert_issuer} The distinguished name of the certificate authority.

{cert_subject} The distinguished name of the subject of the certificate.

{cipher_bits} The length of the encryption key used for the connection.

{cipher} The encryption technique used for the connection.

{client_addr} The IP address of the remote client connected to TCP port 25.

{client_name} The canonical name of the client connected to TCP port 25.

{client_port} The source port number used by the remote client.

{client_resolve} The keyword OK, FAIL, Forged or TEMP that indicates the result of a
reverse DNS lookup using the client's IP address.

{currHeader} The contents of the current header during header processing.

{daemon_addr} The IP address of the network interface from which the daemon accepts
mail. Normally 0.0.0.0 to indicate all interfaces.

{daemon_family} The protocol family being used. Normally inet to indicate TCP/IP. Other
values are inet6, iso, and ns.

{daemon_flags} The flags set by the DaemonPortOption command, if any.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{daemon_info} General information about the daemon.

{daemon_name} The daemon name, which is usually Daemon1 unless a daemon name is
defined by the DaemonPortOptions command.

{daemon_port} The port that the daemon is listening on, usually 25.

{deliveryMode} The current delivery mode.

{envid} The DSN ENVID value from the Mail From: header.

{hdrlen} The length of the string stored in {currHeader}.

{hdr_name} The name of the current header during header processing.

{if_addr} The IP address of the network interface used by the current incoming
connection.

{if_name} The hostname assigned to the network interface used by the current
incoming connection.

{mail_addr} The user's mail address from the mail delivery triple created from the MAIL
From: envelope header.

{mail_host} The hostname from the mail delivery triple created from the MAIL From:
envelope header.

{mail_mailer} The mailer name from the mail delivery triple created from the MAIL From:
envelope header.

{MessageIdCheck} The value from the incoming Message-Id: header.

{ntries} The number of delivery attempts.

{opMode} The operating mode from the sendmail command line.

{queue_interval} The length of time between queue runs defined by the -q command-line
option.

{rcpt_addr} The user's mail address from the mail delivery triple created from the RCPT
To: envelope header.

{rcpt_host} The hostname from the mail delivery triple created from the RCPT To:
envelope header.

{rcpt_mailer} The mailer name from the mail delivery triple created from the RCPT To:
envelope header.

{server_addr} The IP address of the remote server for the outgoing connection.

{server_name} The name of the remote server for the outgoing connection.

{tls_version} The TLS/SSL version used for the connection.

{verify} The result of the verification process.

E.4.2 sendmail Classes

As the previous tables show, sendmail has many internal macros. It also has several internal
classes. Most of these classes still use single-character names. A few use the newer long names.
The full list of internal classes is shown in Table E-9.

Table E-9. Internal sendmail classes
Name Contents

B Domain names included in the bestmx-is-local process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E Usernames that should not be masqueraded.

G Domains that should be looked up in the genericstable.

L Local users that are not forwarded to MAIL_HUB or LOCAL_RELAY.

e Supported MIME Content-Transfer-Encodings. Initialized to 7bit, 8bit, and binary.

k The system's UUCP node names.

M Domains that should be masqueraded.

m All local domains for this host.

n MIME body types that should never be 8- to 7-bit encoded. Initialized to
multipart/signed.

q MIME Content-Types that should not be Base64-encoded. Initialized to text/plain.

N Hosts and domains that should not be masqueraded.

O Characters that cannot be used in local usernames.

P Pseudo-domain names, such as REDIRECT.

R Domains for which this system will relay mail.

s MIME message subtypes that can be processed recursively. Initialized to rfc822.

t The list of trusted users.

U The UUCP hosts that are locally connected.

V The UUCP hosts reached via the relay defined by $V.

W The UUCP hosts reached via the relay defined by $W.

X The UUCP hosts reached via the relay defined by $X.

Y Directly connected "smart" UUCP hosts.

Z Directly connected UUCP hosts that use domain names.

. A literal dot (.).

[A literal left bracket ([).

{LDAPRoute} A list of domains that can be rerouted based on LDAP lookups.

{VirtHost} A list of hosts and domains that are valid virtual hostnames.

w All hostnames this system will accept as its own.

E.4.3 sendmail Options

A large number of sendmail options can be set inside the sendmail configuration file. Chapter 10
provides the syntax of the option command in Table 10-1 and several examples of options. The
complete list of options is:

AliasFile=[class:] file, [class:] file...

Identifies the alias file(s). class is optional and defaults to implicit. Valid classes are
implicit, hash, dbm, stab (internal symbol table) or nis. The selected database class
must be a database type that was compiled into sendmail on your system. file is the
pathname of the alias file.

AliasWait= timeout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AliasWait= timeout

Wait timeout minutes for an "@:@" entry to appear in the alias database before starting
up. When timeout expires, automatically rebuild the database if AutoRebuildAliases
is set; otherwise, issue a warning.

AuthMechanisms= list

Advertise the listed authentication mechanisms.

AuthOptions= list

Lists the options supported with the SMTP AUTH argument.

AllowBogusHELO

Accept illegal HELO SMTP commands that don't contain a hostname.

AutoRebuildAliases

Automatically rebuild the alias database when necessary. The preferred method is to
rebuild the alias database with an explicit newaliases command.

BlankSub= c

Use c as the blank substitution character to replace unquoted spaces in addresses. The
default is to leave the spaces unchanged.

CACERTFile= filename

Identifies the file that contains the certificate of a certificate authority.

CACERTPath= path

Defines the path to the directory that contains the certificates of various certificate
authorities.

CheckAliases

Check that the delivery address in each alias is valid when rebuilding the alias database.
Normally this check is not done. Adding this check slows the database build substantially.
This is a Boolean.

CheckpointInterval= n

Checkpoint the queue after every n items are processed to simplify recovery if your system
crashes during queue processing. The default is 10.

ClassFactor= fact

The multiplier used to favor messages with a higher value in the Priority: header. Defaults
to 1800.

ClientCertFile= file

Identifies the file that contains the certificate used when this system acts as a client.

ClientKeyFile= file

Identifies the file that contains the private key used when this system acts as a client.

ClientPortOptions= options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClientPortOptions= options

Defines nonstandard settings used when this system acts as an SMTP client. options is a
comma-separated list of keyword=value pairs. Valid keyword=value pairs are:

Port= port

Defines the source port number the client uses for outbound connections. port can
be specified by number or name. If a name is used, the name must be defined in
/etc/services. By default, the source port for an outbound connection is generated by
the system for the connection.

Addr= address

Defines the address of the network interface the client uses for outbound
connections. The value for address can be written in dotted decimal notation or as
a name. By default, any available interface is used.

Family= protocol

Defines the protocol family used for the connection. inet, which is the default, is the
protocol family for TCP/IP.

SndBufSize= bytes

Defines the size of the send buffer.

RcvBufSize= bytes

Defines the size of the receive buffer.

Modifier= flags

Defines the daemon flags for the client. Only one flag, h, is available. The h flag tells
the client to use the name assigned to the interface on the SMTP HELO or EHLO
command.

ColonOkInAddr

Accept colons in email addresses (e.g., host:user). Colons are always accepted in pairs in
mail routing (nodename::user) or in RFC 822 group constructs (groupname: member1,
member2, ...;). By default, this option is "on" if the configuration version level is less than 6.

ConnectionCacheSize= n

The number of connections that can be held open (cached) by this instantiation of
sendmail. The default is 1. The maximum is 4. 0 causes connections to be closed
immediately after the data is sent, which is the traditional way sendmail operated.

ConnectionCacheTimeout= timeout

The amount of time an inactive cached connection is held open. After timeout minutes of
inactivity, it is closed. The default is 5 minutes.

ConnectionRateThrottle= n

Limits the number of incoming connections accepted in any 1-second period to n. The
default is 0, which means no limit.

ConnectOnlyTo= address

Limits all SMTP connections to a single destination address. Used only for testing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ControlSocketName= path

Defines the path of the Unix control socket used to manage daemon connections. By
default, this is not defined.

DaemonPortOptions= options

Sets SMTP server options. The options are key=value pairs. The options are:

Port= portnumber

where portnumber is any valid port number. It can be specified with the number or the
name found in /etc/services. The default is port 25, SMTP.

Addr= mask

where mask is an IP address mask specified either in dotted decimal notation or as a
network name. The default is INADDR-ANY, which accepts all addresses.

Family= addressfamily

where addressfamily is a valid address family (see the ifconfig command). The
default is INET, which allows IP addresses to be used.

Listen= n

where n is the number of queued connections allowed. The default is 10.

SndBufSize= n

where n is the send buffer size.

RcvBufSize= n

where n is the receive buffer size.

DataFileBufferSize= bytes

Defines the maximum amount of memory that can be used to buffer a data file.

DeadLetterDrop= file

Defines the file where messages that cannot be returned to the sender or sent to the
postmaster account are stored.

DefaultAuthInfo= file

Defines the file that contains the authentication information needed for outbound
connections.

DefaultCharSet= charset

The character set placed in the Content-Type: header when 8-bit data is converted to
MIME format. The default is unknown-8bit. This option is overridden by the Charset=
field of the mailer descriptor.

DefaultUser= user[: group]

The default user ID and group ID for mailers without the S flag in their definitions. If group
is omitted, the group associated with user in the /etc/passwd file is used. The default is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is omitted, the group associated with user in the /etc/passwd file is used. The default is
1:1.

DeliveryMode= x

Deliver in mode x, where x is i (interactive delivery), b (background delivery), q (queue the
message), or d (defer until the queue run). The default is b.

DHParameters= parameters

Defines the DH parameters used for DSA/DH encryption.

DialDelay= delaytime

Delay delaytime seconds before redialing a failed connection on dial-on-demand
networks. The default is 0 (no redial).

DontBlameSendmail= options

Disables sendmail's file security checks. options is a comma-separated list of keywords
that disable specific security checks. The values for this option are set by the
confDONT_BLAME_SENDMAIL define command in the m4 source file. The valid
keywords for the options list are:

AssumeSafeChown

Allow the chown command because it is only available to the root user.

ClassFileInUnsafeDirPath

Accept any directory path in an F command.

DontWarnForwardFileInUnsafeDirPath

Don't issue a warning about an unsafe path for the .forward file.

ErrorHeaderInUnsafeDirPath

Accept the error header file regardless of its directory path.

FileDeliveryToHardLink

Permit delivery to a file that is really a hard link.

FileDeliveryToSymLink

Permit delivery to a file that is really a symbolic link.

ForwardFileInUnsafeDirPath

Accept a .forward file even if it is in an unsafe directory.

ForwardFileInUnsafeDirPathSafe

Accept program and file references from a .forward file even if it is in an unsafe
directory.

ForwardFileIngroupWritableDirPath

Accept a .forward file even if it is in a group-writable directory.

GroupWritableAliasFile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GroupWritableAliasFile

Accept the aliases file even if it is group-writable.

GroupWritableDirPathSafe

Accept all group-writable directories as "safe."

GroupWritableForwardFileSafe

Accept a .forward file even if it is group-writable.

GroupWritableIncludeFileSafe

Accept :include: files even if they are group-writable.

HelpFileinUnsafeDirPath

Accept the help file even if it is in an unsafe directory.

IncludeFileInUnsafeDirPath

Accept :include: files even if they are from unsafe directories.

IncludeFileInUnsafeDirPathSafe

Accept program and file references from :include: files even if they are in an unsafe
directory.

IncludeFileIngroupWritableDirPath

Accept :include: files even if they are in a group-writable directory.

InsufficientEntropy

Use STARTTLS even if the random seed generator for SSL is inadequate.

LinkedAliasFileInWritableDir

Accept an aliases file that is a link in a writable directory.

LinkedClassFileInWritableDir

Load class values from files that are links in writable directories.

LinkedForwardFileInWritableDir

Accept .forward files that are links in writable directories.

LinkedIncludeFileInWritableDir

Accept :include: files that are links in writable directories.

LinkedMapInWritableDir

Accept database files that are links in writable directories.

LinkedServiceSwitchFileInWritableDir

Accept a service switch file that is a link in a writable directory.

MapInUnsafeDirPath

Accept database files that are in unsafe directories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NonRootSafeAddr

Don't flag file and program deliveries as unsafe when sendmail is not running as
root.

RunProgramInUnsafeDirPath

Run programs that are in writable directories.

RunWritableProgram

Run programs that are group- or world-writable.

Safe

Leave all of the safety checks on. This is the default.

TrustStickyBit

Trust group- and world-writable directories if the sticky bit is set.

WorldWritableAliasFile

Accept the aliases file even if it is world-writable.

WriteMapToHardLink

Write to database files even if they are really hard links.

WriteMapToSymLink

Write to database files even if they are really symbolic links.

WriteStatsToHardLink

Write to the status file even if it is really a hard link.

WriteStatsToSymLink

Write to the status file even if it is really a symbolic link.

DontExpandCnames

Disable the $[name$] syntax used to convert nicknames to canonical names.

DontInitGroups

Don't use the initgroups(3) call. This setting reduces NIS server load, but limits a user to
the group associated with that user in /etc/passwd.

DontProbeInterfaces

If set to true, this stops sendmail from adding the names and addresses of the network
interfaces to class w. The default is false, so interface names and addresses are stored in
class w.

DontPruneRoutes

Don't optimize explicit mail routes. Normally, sendmail makes a route as direct as possible.
However, optimizing the route may not be appropriate for systems located behind a firewall.

DoubleBounceAddress= error-address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DoubleBounceAddress= error-address

Send the report of an error that occurs when sending an error message to error-
address. The default is postmaster.

EightBitMode= action

Handle undeclared 8-bit data by following the specified action. The possible actions are:
s (strict), reject undeclared 8-bit data; m (mime), convert it to MIME; and p (pass), pass it
through unaltered.

ErrorHeader= file-or-message

Prepend file-or-message to outgoing error messages. If file-or-message is the
path to a text file that is to be prepended, it must begin with a slash. If this option is not
defined, nothing is prepended to error messages.

ErrorMode= x

Handle errors messages according to x, where x is: p (print messages); q (give exit status
but no messages); m (mail back messages); w (write messages to the user's terminal); or e
(mail back messages and always give zero exit status). If this option is not defined, error
messages are printed.

FallbackMXhost= fallbackhost

Use fallbackhost as a backup MX server for every host.

ForkEachJob

Run a separate process for every item delivered from the queue. This option reduces the
amount of memory needed to process the queue.

ForwardPath= path

The path to search for .forward files. Multiple paths can be defined by separating them
with colons. The default is $z/.forward.

HelpFile= file

The path to the help file.

HoldExpensive

Queue mail for outgoing mailers that have the e (expensive) mailer flag. Normally mail is
delivered immediately.

HostsFile= path

The path to the hosts file. The default is /etc/hosts.

HostStatusDirectory= path

Directory in which host status information is stored so that it can be shared between
sendmail processes. Normally, the status of a host or connection is only known by the
process that discovers that status. To function, this option requires that
ConnectionCacheSize be set to at least 1.

IgnoreDots

Ignore dots in incoming messages. Dots cannot be ignored by SMTP mail because they
are used to mark the end of a mail message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LDAPDefaultSpec= specification

The default specification used for LDAP databases.

LogLevel= n

n indicates the level of detail stored in the log file. n defaults to 9, which is normally plenty
of detail.

MatchGECOS

Check the username from the email address against the GECOS field of the passwd file if it
was not found in the alias database or in the username field of the passwd file. This option
is not recommended.

MaxAliasRecursion= n

Aliases can point to other aliases before finally resolving to the actual mail address. This
option defines how deep aliases can be nested before resolving to a mail address. The
default for n is 10.

MaxDaemonChildren= n

Refuse connections when n children are processing incoming mail. Normally sendmail sets
no arbitrary limit on child processes.

MaxHeadersLength= bytes

The maximum length allowed for all of the headers taken together.

MaxHopCount= n

Assume a message is looping when it has been processed more than n times. The default
is 25.

MaxHostStatAge= n

Retain host status information for n minutes.

MaxMessageSize= n

The maximum message size advertised in response to the ESMTP EHLO. Messages
larger than this are rejected.

MaxMimeHeaderLength= size

The maximum length of MIME header fields.

MaxQueueRunSize= n

The maximum number of items that can be processed in a single queue run. The default is
no limit.

MaxRecipientsPerMessage= n

n limits the maximum number of recipients for a single message. If it is not specified, there
is no limit.

MeToo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MeToo

Send a copy to the sender.

MinFreeBlocks= n

Don't accept incoming mail unless n blocks are free in the queue filesystem.

MinQueueAge= n

Don't process any jobs that have been in the queue less than n minutes.

MustQuoteChars= s

The list of characters added to the set "@,;:\()[]" that must be quoted when used in the
username part of an address. If MustQuoteChars is specified without an s value, it adds "."
to the standard set of quoted characters.

NoRecipientAction= action

The action taken when a message has no valid recipient headers. action can be none
to pass the message on unmodified, add-to to add a To: header using the recipient
addresses from the envelope, add-apparently-to to add an Apparently-To: header,
add-to-undisclosed to add a "To: undisclosed-recipients:;" header, or add-bcc to add
an empty Bcc: header.

OldStyleHeaders

Allow spaces to delimit names. Normally, commas delimit names.

OperatorChars= charlist

The list of operator characters that are normally defined in macro o. The default is the
standard set of operators. See the discussion of rewrite tokens and the use of operators in
determining tokens in Chapter 10.

ProcessTitlePrefix= prefix

A string used on the heading of process status reports.

PostmasterCopy= username

Copy error messages to username. The default is not to send copies of error messages to
the postmaster.

PrivacyOptions= options

Set SMTP protocol options, where options is a comma-separated list containing one or
more of these keywords:

public

allow all commands

needmailhelo

require HELO or EHLO before MAIL

needexpnhelo

require HELO or EHLO before EXPN

noexpn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

noexpn

disable EXPN

needvrfyhelo

require HELO or EHLO before VRFY

novrfy

disable VRFY

restrictmailq

restrict mailq to users with group access to the queue directory

restrictqrun

only root and the owner of the queue directory are allowed to run the queue

noreceipts

don't return successful delivery messages

goaway

disable all SMTP status queries

authwarnings

put X-Authentication-Warning: headers in messages

QueueDirectory= directory

The pathname of the queue directory.

QueueFactor= factor

The factor used with the difference between the current load and the load average limit and
with the message priority to determine if a message should be queued or sent immediately.
The idea is to queue low-priority messages if the system is currently heavily loaded. It
defaults to 600000.

QueueLA= n

Queue messages when the system load average exceeds n. The default is 8.

QueueSortOrder= sequence

Sort the queue in the sequence specified, where sequence is: h (hostname sequence); t
(submission time sequence); or p (message priority order). Priority ordering is the default.

RandFile= file

Points to a file that provides pseudo-random data for certain encryption techniques. This is
used only if the compile option HASURANDOM is not available.

ResolverOptions= options

Set resolver options. Available option values are: debug, aaonly, usevc, primary,
igntc, recurse, defnames, stayopen, and dnsrch. The option can be preceded by a
plus (+) to turn it on or a minus (-) to turn it off. One other option, HasWildcardMX, is
specified without a + or -. Simply adding HasWildcardMX turns the option on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specified without a + or -. Simply adding HasWildcardMX turns the option on.

RrtImpliesDsn

If set to true, treat a Return-Receipt-To: header as a request for delivery service notification
(DSN). The default is false.

RunAsUser= userid[:groupid]

Run sendmail under this user ID and group ID instead of under root. This may enhance
security when sendmail is running on a well-maintained firewall. On general-purpose
systems, this may decrease security because it requires that many files be readable or
writable by this user ID.

RecipientFactor= factor

The priority of a job is lowered by this factor for each recipient so that jobs with large
numbers of recipients have lower priority. Defaults to 30000.

RefuseLA= n

Refuse incoming SMTP connections when the system load average exceeds n. The default
is 12.

RetryFactor= factor

The factor used to decrease the priority of a job every time it is processed, so that mail that
cannot be delivered does not keep popping to the top of the queue. The default is 90000.

SafeFileEnvironment= directory

chroot(2) to directory before writing a file and refuse to deliver to symbolic links.

SaveFromLine

Save Unix-style From: lines at the front of headers. Normally they are discarded.

SendMIMEErrors

Send error messages in MIME format.

ServerCertFile= file

Identifies the file that contains the certificate used when this system acts as a mail server.

ServerKeyFile= file

Identifies the file that contains the private key used when this system acts as a mail server.

ServiceSwitchFile= path

Identifies the path to a file that lists the methods used for various services. The
ServiceSwitchFile contains entries that begin with the service name followed by the service
method. sendmail checks for services named "aliases" and "hosts" and supports "dns",
"nis", "nisplus", or "files" as possible service methods, assuming that support for all of these
methods is compiled into this copy of sendmail. ServiceSwitchFile defaults to
/etc/service.switch. If that file does not exist, sendmail uses the following service methods:
aliases are looked up in the aliases files, and hosts are looked up first using dns, then nis,
and finally the hosts file. If the operating system has a built-in service switch feature, it is
used and this option is ignored. See the description of the nsswitch.conf file in Chapter 9. It
is a service switch file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SevenBitInput

Strip input to 7 bits for compatibility with old systems. This shouldn't be necessary.

SingleLineFromHeader

For compatibility with some versions of Lotus Notes, unwrap From: lines that have
embedded newlines into one long line.

SingleThreadDelivery

Don't open more than one SMTP connection to a remote host at the same time. This option
requires the HostStatusDirectory option.

SmtpGreetingMessage= message

The greeting sent to the remote host when it connects to the SMTP server port. This is the
value defined in macro e.

StatusFile= file

Log summary statistics in file. By default, summary statistics are not logged.

SuperSafe

Create a queue file, even when attempting immediate delivery.

TempFileMode= mode

Use mode to set the access permissions for queue files. mode is an octal value. It defaults
to 0600.

Timeout. type= timeout

Set timeout values, where type is the thing being timed and timeout is the time interval
before the timer expires. Table E-10 lists the valid type values, the event being timed, and
the default timeout value for each type.

Table E-10. Timeout types
Type Waiting for Default

connect A connection to complete 1m

control A control socket transmission to complete 2m

iconnect The connection to the first host in a message 5m

initial Initial greeting message 5m

helo Reply to HELO or EHLO command 5m

mail Reply to MAIL command 10m

rcpt Reply to RCPT command 1h

datainit Reply to DATA command 5m

datablock Data block read 1h

datafinal Reply to terminating "." 1h

rset Reply to RSET command 5m

quit Reply to QUIT command 2m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

misc Reply to NOOP and VERB commands 2m

ident IDENT protocol response 30s

fileopen Open on a .forward or :include: file 60s

command Command read 1h

queuereturn Returning a queued message as undeliverable 5d

queuereturn.normal Returning a normal message from the queue as undeliverable 5d

queuereturn.non-
urgent

Returning a non-urgent message from the queue as
undeliverable 7d

queuereturn.urgent Returning an urgent message from the queue as
undeliverable 2d

queuewarn Warning that a message is still queued 4h

queuewarn.normal Warning that a normal message is still queued 4h

queuewarn.non-urgent Warning that a non-urgent message is still queued 12h

queuewarn.urgent Warning that an urgent message is still queued 1h

resolver.retrans A response to a resolver query 5s

resolver.retrans.first A response to the first resolver query 5s

resolver.retrans.normal A response to a normal resolver query 5s

resolver.retry Sets the number of times to retry a resolver query 4

resolver.retry.first Sets the number of times to retry the first resolver query 4

resolver.retry.normal Sets the number of times to retry a normal resolver query 4

hoststatus Removing stale host status 30m

TimeZoneSpec= tzinfo

Set the local time zone information to tzinfo. If TimeZoneSpec is not set, the system
default is used; if set to null, the user's TZ variable is used.

TrustedUser= users

The list of users trusted to send mail using another user's name.

TryNullMXList

Connect directly to any remote host that lists the local system as its most preferred MX
server, as if the remote host had no MX records. You are discouraged from using this
option.

UnixFromLine= fromline

Defines the format for Unix-style From: lines. This is the same as the value stored in macro
l.

UnsafeGroupWrites

Group-writable :include: and .forward files cannot reference programs or write directly to
files. World-writable files always have these restrictions.

UseErrorsTo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UseErrorsTo

Send error messages to the addresses listed in the Errors-To: header. Normally, errors are
sent to the sender address from the envelope.

UserDatabaseSpec= udbspec

The user database specification.

UserSubmission

Indicates that this is not relayed mail, but an initial submission directly from a Mail User
Agent.

Verbose

Run in verbose mode.

See Chapter 10 for examples of setting options.

E.4.4 sendmail Mailer Flags

Mailer flags are declared in the F field of the mailer definition. Each mailer flag is set by a single
character that represents that flag. For example, F=lsDFMe sets six different flags. Table E-11
lists the single-character name and function of each flag.

Table E-11. sendmail mailer flags
Name Function

C Add @domain to addresses that do not have an @.

D The mailer wants a Date: header line.

E Add > to message lines that begin with From:.

e This is an expensive mailer. See sendmail option c.

F The mailer wants a From: header line.

f The mailer accepts an -f flag from trusted users.

h Preserve uppercase in hostnames.

I The mailer will be speaking SMTP to another sendmail.

L Limit the line lengths as specified in RFC 821.

l This is a local mailer.

M The mailer wants a Message-Id: header line.

m The mailer can send to multiple users in one transaction.

n Don't insert a Unix-style From: line in the message.

P The mailer wants a Return-Path: line.

R Use the MAIL FROM: return path rather than the return address.

r The mailer accepts an -r flag from trusted users.

S Don't reset the userid before calling the mailer.

s Strip quotes off of the address before calling the mailer.

U The mailer wants Unix-style From: lines.

u Preserve uppercase in usernames.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

X Prepend a dot to lines beginning with a dot.

x The mailer wants a Full-Name: header line.

See Chapter 10 for examples of mailer flag declaration within mailer definitions.

E.4.5 The sendmail K Command

The sendmail K command is used to define a database within the sendmail.cf file. The K
command syntax is:

Kname type [arguments]

Chapter 10 provides examples of defining and using a sendmail database, and it describes the K
command syntax. This appendix lists the valid type values and arguments that can be used
with a K command.

The type field of the K command identifies what kind of database is being defined. There are
several internal database types that are specific to sendmail, and several external types that rely
on external database libraries. Support for the external database types must be compiled into
sendmail by explicitly specifying the supported database types using the confMAPDEF command
in a devtools/OS or devtools/Site file used by Build to compile sendmail. See the example of
compiling sendmail earlier in this appendix.

The possible values for type are:

dbm

The "new dbm" database format. It is accessed using the ndbm(3) library. Only supported if
sendmail is compiled with NDBM defined.

btree

The btree database format. It is accessed using the Berkeley db(3) library. Only supported
if sendmail is compiled with NEWDB defined.

hash

The hash database format. It is accessed using the Berkeley db(3) library. Only supported
if sendmail is compiled with NEWDB defined.

nis

NIS server lookups. sendmail must be compiled with NIS defined to support this.

nisplus

NIS+ server lookups. sendmail must be compiled with NISPLUS defined to support this.

hesiod

MIT hesiod server lookups. Support requires that sendmail is compiled with HESIOD
defined.

ldap

Searches using LDAP. sendmail must be compiled with LDAPMAP defined to support this.
sendmail supports most of the standard command-line arguments of the ldapsearch
program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

netinfo

NeXT NetInfo lookups. Only supported if sendmail is compiled with NETINFO defined.

text

Text file lookups. Requires no external database libraries or compile options. The format of
the text database is defined with the key field, value field, and field delimiter flags. See the
next section for a description of the K command flags.

ph

CCSO Nameserver lookups.

program

Queries are passed to an external program for resolution.

stab

An internal symbols table database.

implicit

The default internal sendmail format used for an alias file, if no type is defined for the file.

user

A special sendmail type used to verify the existence of a user by using getpwnam(3).

host

A special sendmail type used to convert nicknames and IP addresses to canonical names
via the domain name server. This is an alternative form of the $[name]$ syntax.

sequence

A special sendmail type used to define the order in which previously defined databases are
searched. For example, assume that three databases (file1, file2, and file3) are defined by
K commands. It is possible to add a fourth K command, Kallfiles sequence file3
file1 file2, that "combines" them together as allfiles and specifies that file3 is
searched first, file1 second, and file2 third.

switch

A special sendmail type that uses the service switch file to set the order in which database
files are searched. The argument on a K command with a type of "switch" must be the
name of a service in the service switch file. The values associated with the service name in
the service switch file are used to create the names of databases that are searched in the
order in which they are defined. For example, the command Kali switch aliases
looks up the service switch entry for aliases. If it contains the value nis files, sendmail
searches databases named ali.nis and ali.files in that order.

dequote

A special sendmail type used to strip unwanted double quotes (") from email addresses.

arith

An internal routine used for doing specific arithmetic functions.

bestmx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bestmx

An internal routine that retrieves the MX record for a host.

dns

An internal routine that retrieves the address for a hostname.

null

An internal routine that returns "Not found" for all lookups.

regex

An internal routine that handles regular expressions.

Many of the possible type values do not refer to real databases. Several types are special values
used only inside sendmail. Some refer to internal sendmail routines that are accessed from
rewrite rules using the same syntax that would be used to access a database.

The argument that follows most of the real database types is a filename. The filename identifies
the external file that contains the database. Only the basic filename is provided. sendmail adds an
extension appropriate for the database type. For example, Krealname dbm /usr/etc/names
becomes /usr/etc/names.db because .db is the correct extension for dbm databases.

In addition to a filename, the arguments field can contain optional flags:

-o

This is an optional database. sendmail proceeds without error if the file is not found.

-N

Valid database keys are terminated with a NULL character.

-O

Valid database keys are never terminated with a NULL character. Never specify both -N
and -O, which indicates that no keys are valid! It is safest to avoid both -N and -O and let
sendmail determine the correct key structure unless you are positive about the correct flag.

-a x

Append the string x to the value returned by a successful match.

-f

Do not convert uppercase to lowercase before attempting to match the key.

-m

Check that the key exists in the database, but do not replace the key with the value
returned by the database.

-k keycol

The location of the key within a database entry. For most databases, the key is the first field
and this flag is not needed. For text file lookups, this flag is required and keycol is the
column number in which the key begins.

-v valcol

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-v valcol

The location of the value within a database entry. For most databases, the value follows the
key and the -v flag is not used. For text file lookups, this flag is required and specifies the
column in which the value field begins.

-z delim

The character that delimits fields within the database. By default, it is whitespace.

-t

Allow database lookups that depend on remote servers to fail instead of queuing the mail
for later processing. This is primarily used when you have DNS server problems. Normally,
when a remote server fails to respond, the mail is put in the queue for later delivery. Setting
this flag causes the mail to be immediately returned to the sender as undeliverable.

-s spacesub

Use spacesub to replace space characters after processing an address against the
dequote database.

-A

Accept values from duplicate keys. Most databases do not allow duplicate keys.

-q

Preserve any quotes contained in the key. Normally quotes are removed.

The full lists of database types and flags provided in this appendix will help you understand the K
commands inserted into the sendmail.cf file by the m4 processor. Your own K commands will be
much simpler. You will stick with a database type that is supported by your sendmail and
makemap commands, and you will build simple databases designed to fulfill specific purposes.
Chapter 10 provides examples of such databases, and the next section contains some simple
scripts used to build those example databases.

E.4.5.1 Sample script

In Chapter 10, the realnames database is used to rewrite login usernames to the "firstname dot
lastname" format for outbound email. The script shown below builds the realnames database from
the /etc/passwd file.

#! /bin/sh

Eliminate "non-login" accounts

grep -v ':*:' /etc/passwd | \

Eliminate "exposed" usernames, i.e. usernames defined

in class E as names that should not be re-written

grep -v ' root:' | \

Replace delimiting colons with whitespace

sed 's/:/ /g' | \

Output the username followed by firstname.lastname

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Output the username followed by firstname.lastname

awk '{ print $1, $5"."$6 }' > realnames

Build the realnames database

makemap dbm realnames < realnames

Building realnames from the passwd file is completely dependent on the format of that file. The
passwd file must have a consistent format for the GECOS field and a consistent way to identify a
"non-user" account. A "non-user" account is not accessed by a user to log in or to collect email. It
is normally a system account used by system or application software. A classic example is the
uucp account. Every system has some way to mark that these accounts are not used for user
logins. Some systems use an asterisk in the password field, while others use an exclamation
mark, the letters NP, an x, or something else. The sample script assumes that an asterisk is used,
which is the case on my Linux system. (My Solaris system uses an x.) Print out your passwd file
to find out what it uses and modify the script accordingly.

The sample script also assumes that the first two values in the GECOS field are the user's first
and last names separated by a blank. If the beginning of the GECOS field is in any other format,
the script produces garbage. The procedure you use to add new users to your system should
produce a consistent GECOS field. Inconsistency is the enemy of automation. The sample below
shows a file that has inconsistencies, and the bad data it produces:

% cat /etc/passwd
root:oRd1L/vMzzxno:0:1:System Administrator:/:/bin/csh

nobody:*:65534:65534::/:

daemon:*:1:1::/:

sys:*:2:2::/:/bin/csh

bin:*:3:3::/bin:

uucp:*:4:8::/var/spool/uucppublic:

news:*:6:6::/var/spool/news:/bin/csh

ingres:*:7:7::/usr/ingres:/bin/csh

audit:*:9:9::/etc/security/audit:/bin/csh

craig:1LrpKlz8sYjw:198:102:Craig Hunt:/home/craig:/bin/csh

dan:RSU.NYlKuFqzh2:214:885:Dan Scribner:/home/dan:/bin/csh

becca:monfTHdnjj:101:102:"Becky_Hunt":/home/becca:/bin/csh

dave:lniuhugfds:121:885:David H. Craig:/home/dave:/bin/csh

kathy:TUVigddehh:101:802:Kathleen S McCafferty:/home/kathy:/bin/csh

% build.realnames
% cat realnames

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat realnames
craig Craig.Hunt

dan Dan.Scribner

becca "Becky_Hunt"./home/becca

dave David.H. kathy Kathleen.S

Your passwd file may have grown over time under the control of several different system
administrators. It may be full of inconsistencies. If it is, clean it up before you run the script to build
email aliases, and then maintain it consistently.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix F. Solaris httpd.conf File
The web server configuration described in Chapter 11 is based on the default httpd.conf file delivered with
Solaris 8. That file is listed in its entirety in this appendix for those readers who want to see the complete
configuration and examples of the individual directives described in Chapter 11.

Lines that begin with # are comments. Many of the comments describe the function and syntax of individual
configuration directives. Use the comments as an additional source of information about the directives
covered in Chapter 11.

The complete contents of the Solaris 8 httpd.conf file are listed here.

#

Based upon the NCSA server configuration files originally by Rob McCool.

#

This is the main Apache server configuration file. It contains the

configuration directives that give the server its instructions.

See <URL:http://www.apache.org/docs/> for detailed information about

the directives.

#

Do NOT simply read the instructions in here without understanding

what they do. They're here only as hints. If you are unsure

consult the online docs. You have been warned.

#

After this file is processed, the server will look for and process

/etc/apache/srm.conf and then /etc/apache/access.conf

unless you have overridden these with ResourceConfig and/or

AccessConfig directives here.

#

The configuration directives are grouped into three basic sections:

1. Directives that control the operation of the Apache server process

as a whole (the 'global environment').

2. Directives that define the parameters of the 'main' or 'default'

server, which responds to requests that aren't handled by a virtual

host. These directives also provide default values for the settings

of all virtual hosts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of all virtual hosts.

3. Settings for virtual hosts, which allow Web requests to be sent to

different IP addresses or hostnames and have them handled by the

same Apache server process.

#

Configuration and logfile names: If the filenames you specify for many

of the server's control files begin with "/" (or "drive:/" for Win32),

the server will use that explicit path. If the filenames do *not* begin

with "/", the value of ServerRoot is prepended -- so "logs/foo.log"

with ServerRoot set to "/usr/local/apache" will be interpreted by the

server as "/usr/local/apache/logs/foo.log".

#

Section 1: Global Environment

#

The directives in this section affect the overall operation of Apache,

such as the number of concurrent requests it can handle or where it

can find its configuration files.

#

#

ServerType is either inetd, or standalone. Inetd mode is only supported

on Unix platforms.

#

ServerType standalone

#

ServerRoot: The top of the directory tree under which the server's

configuration, error, and log files are kept.

#

NOTE! If you intend to place this on an NFS (or otherwise network)

mounted filesystem then please read the LockFile documentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mounted filesystem then please read the LockFile documentation

(available at <URL:http://www.apache.org/docs/mod/core.html#lockfile>);

you will save yourself a lot of trouble.

#

Do NOT add a slash at the end of the directory path.

#

ServerRoot "/var/apache"

#

The LockFile directive sets the path to the lockfile used when Apache

is compiled with either USE_FCNTL_SERIALIZED_ACCEPT or

USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left at

its default value. The main reason for changing it is if the logs

directory is NFS mounted, since the lockfile MUST BE STORED ON A LOCAL

DISK. The PID of the main server process is automatically appended to

the filename.

#

#LockFile /var/apache/logs/accept.lock

#

PidFile: The file in which the server should record its process

identification number when it starts.

#

PidFile /var/run/httpd.pid

#

ScoreBoardFile: File used to store internal server process information.

Not all architectures require this. But if yours does (you'll know

because this file will be created when you run Apache) then you *must*

ensure that no two invocations of Apache share the same scoreboard file.

#

ScoreBoardFile /var/run/httpd.scoreboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScoreBoardFile /var/run/httpd.scoreboard

#

In the standard configuration, the server will process this file,

srm.conf, and access.conf in that order. The latter two files are

now distributed empty, as it is recommended that all directives

be kept in a single file for simplicity. The commented-out values

below are the built-in defaults. You can have the server ignore

these files altogether by using "/dev/null" (for Unix) or

"nul" (for Win32) for the arguments to the directives.

#

#ResourceConfig /etc/apache/srm.conf

#AccessConfig /etc/apache/access.conf

#

Timeout: The number of seconds before receives and sends time out.

#

Timeout 300

#

KeepAlive: Whether or not to allow persistent connections (more than

one request per connection). Set to "Off" to deactivate.

#

KeepAlive On

#

MaxKeepAliveRequests: The maximum number of requests to allow

during a persistent connection. Set to 0 to allow an unlimited amount.

We recommend you leave this number high, for maximum performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We recommend you leave this number high, for maximum performance.

#

MaxKeepAliveRequests 100

#

KeepAliveTimeout: Number of seconds to wait for the next request from

the same client on the same connection.

#

KeepAliveTimeout 15

#

Server-pool size regulation. Rather than making you guess how many

server processes you need, Apache dynamically adapts to the load it

sees --- that is, it tries to maintain enough server processes to

handle the current load, plus a few spare servers to handle transient

load spikes (e.g., multiple simultaneous requests from a single

Netscape browser).

#

It does this by periodically checking how many servers are waiting

for a request. If there are fewer than MinSpareServers, it creates

a new spare. If there are more than MaxSpareServers, some of the

spares die off. The default values are probably OK for most sites.

#

MinSpareServers 5

MaxSpareServers 10

#

Number of servers to start initially --- should be a reasonable ballpark

figure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

figure.

#

StartServers 5

#

Limit on total number of servers running, i.e., limit on the number

of clients who can simultaneously connect --- if this limit is ever

reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.

It is intended mainly as a brake to keep a runaway server from taking

the system with it as it spirals down...

#

MaxClients 150

#

MaxRequestsPerChild: the number of requests each child process is

allowed to process before the child dies. The child will exit so

as to avoid problems after prolonged use when Apache (and maybe the

libraries it uses) leak memory or other resources. On most systems,

this isn't really needed, but a few do have notable leaks

in the libraries. For these platforms, set to something like 10000

or so; a setting of 0 means unlimited.

#

NOTE: This value does not include keepalive requests after the initial

request per connection. For example, if a child process handles

an initial request and 10 subsequent "keptalive" requests, it

would only count as 1 request towards this limit.

#

MaxRequestsPerChild 0

#

Listen: Allows you to bind Apache to specific IP addresses and/or

ports, in addition to the default. See also the <VirtualHost>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ports, in addition to the default. See also the <VirtualHost>

directive.

#

#Listen 3000

#Listen 12.34.56.78:80

#

BindAddress: You can support virtual hosts with this option. This

directive is used to tell the server which IP address to listen to. It

can either contain "*", an IP address, or a fully qualified Internet

domain name. See also the <VirtualHost> and Listen directives.

#

#BindAddress *

#

Dynamic Shared Object (DSO) Support

#

To be able to use the functionality of a module which was built as a DSO

you have to place corresponding `LoadModule' lines at this location so

the directives contained in it are actually available _before_ they are

used. Please read the file README.DSO in the Apache 1.3 distribution for

more details about the DSO mechanism and run `httpd -l' for the list of

already built-in (statically linked and thus always available) modules

in your httpd binary.

#

Note: The order is which modules are loaded is important. Don't change

the order below without expert advice.

#

Example:

LoadModule foo_module libexec/mod_foo.so

LoadModule vhost_alias_module /usr/apache/libexec/mod_vhost_alias.so

LoadModule env_module /usr/apache/libexec/mod_env.so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoadModule env_module /usr/apache/libexec/mod_env.so

LoadModule config_log_module /usr/apache/libexec/mod_log_config.so

LoadModule mime_magic_module /usr/apache/libexec/mod_mime_magic.so

LoadModule mime_module /usr/apache/libexec/mod_mime.so

LoadModule negotiation_module /usr/apache/libexec/mod_negotiation.so

LoadModule status_module /usr/apache/libexec/mod_status.so

LoadModule info_module /usr/apache/libexec/mod_info.so

LoadModule includes_module /usr/apache/libexec/mod_include.so

LoadModule autoindex_module /usr/apache/libexec/mod_autoindex.so

LoadModule dir_module /usr/apache/libexec/mod_dir.so

LoadModule cgi_module /usr/apache/libexec/mod_cgi.so

LoadModule asis_module /usr/apache/libexec/mod_asis.so

LoadModule imap_module /usr/apache/libexec/mod_imap.so

LoadModule action_module /usr/apache/libexec/mod_actions.so

LoadModule speling_module /usr/apache/libexec/mod_speling.so

LoadModule userdir_module /usr/apache/libexec/mod_userdir.so

LoadModule alias_module /usr/apache/libexec/mod_alias.so

LoadModule rewrite_module /usr/apache/libexec/mod_rewrite.so

LoadModule access_module /usr/apache/libexec/mod_access.so

LoadModule auth_module /usr/apache/libexec/mod_auth.so

LoadModule anon_auth_module /usr/apache/libexec/mod_auth_anon.so

LoadModule dbm_auth_module /usr/apache/libexec/mod_auth_dbm.so

LoadModule digest_module /usr/apache/libexec/mod_digest.so

LoadModule proxy_module /usr/apache/libexec/libproxy.so

LoadModule cern_meta_module /usr/apache/libexec/mod_cern_meta.so

LoadModule expires_module /usr/apache/libexec/mod_expires.so

LoadModule headers_module /usr/apache/libexec/mod_headers.so

LoadModule usertrack_module /usr/apache/libexec/mod_usertrack.so

LoadModule unique_id_module /usr/apache/libexec/mod_unique_id.so

LoadModule setenvif_module /usr/apache/libexec/mod_setenvif.so

LoadModule perl_module /usr/apache/libexec/libperl.so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoadModule perl_module /usr/apache/libexec/libperl.so

Reconstruction of the complete module list from all available modules

(static and shared ones) to achieve correct module execution order.

[WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO]

ClearModuleList

AddModule mod_vhost_alias.c

AddModule mod_env.c

AddModule mod_log_config.c

AddModule mod_mime_magic.c

AddModule mod_mime.c

AddModule mod_negotiation.c

AddModule mod_status.c

AddModule mod_info.c

AddModule mod_include.c

AddModule mod_autoindex.c

AddModule mod_dir.c

AddModule mod_cgi.c

AddModule mod_asis.c

AddModule mod_imap.c

AddModule mod_actions.c

AddModule mod_speling.c

AddModule mod_userdir.c

AddModule mod_alias.c

AddModule mod_rewrite.c

AddModule mod_access.c

AddModule mod_auth.c

AddModule mod_auth_anon.c

AddModule mod_auth_dbm.c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddModule mod_auth_dbm.c

AddModule mod_digest.c

AddModule mod_proxy.c

AddModule mod_cern_meta.c

AddModule mod_expires.c

AddModule mod_headers.c

AddModule mod_usertrack.c

AddModule mod_unique_id.c

AddModule mod_so.c

AddModule mod_setenvif.c

AddModule mod_perl.c

#

ExtendedStatus controls whether Apache will generate "full" status

information (ExtendedStatus On) or just basic information

(ExtendedStatus Off) when the "server-status" handler is called. The

default is Off.

#

#ExtendedStatus On

Section 2: 'Main' server configuration

#

The directives in this section set up the values used by the 'main'

server, which responds to any requests that aren't handled by a

<VirtualHost> definition. These values also provide defaults for

any <VirtualHost> containers you may define later in the file.

#

All of these directives may appear inside <VirtualHost> containers,

in which case these default settings will be overridden for the

virtual host being defined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

virtual host being defined.

#

#

If your ServerType directive (set earlier in the 'Global Environment'

section) is set to "inetd", the next few directives don't have any

effect since their settings are defined by the inetd configuration.

Skip ahead to the ServerAdmin directive.

#

#

Port: The port to which the standalone server listens. For

ports < 1023, you will need httpd to be run as root initially.

#

Port 80

#

If you wish httpd to run as a different user or group, you must run

httpd as root initially and it will switch.

#

User/Group: The name (or #number) of the user/group to run httpd as.

. On SCO (ODT 3) use "User nouser" and "Group nogroup".

. On HPUX you may not be able to use shared memory as nobody, and the

suggested workaround is to create a user www and use that user.

NOTE that some kernels refuse to setgid(Group) or semctl(IPC_SET)

when the value of (unsigned)Group is above 60000;

don't use Group #-1 on these systems!

#

User nobody

Group nobody

#

ServerAdmin: Your address, where problems with the server should be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ServerAdmin: Your address, where problems with the server should be

e-mailed. This address appears on some server-generated pages, such

as error documents.

#

ServerAdmin you@your.address

#

ServerName allows you to set a host name which is sent back to clients

for your server if it's different than the one the program would get

(i.e., use "www" instead of the host's real name).

#

Note: You cannot just invent host names and hope they work. The name you

define here must be a valid DNS name for your host. If you don't

understand this, ask your network administrator. If your host

doesn't have a registered DNS name, enter its IP address here.

You will have to access it by its address (e.g., http://123.45.67.89/)

anyway, and this will make redirections work in a sensible way.

#

#ServerName new.host.name

#

DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but

symbolic links and aliases may be used to point to other locations.

#

DocumentRoot "/var/apache/htdocs"

#

Each directory to which Apache has access, can be configured with

respect to which services and features are allowed and/or disabled in

that directory (and its subdirectories).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that directory (and its subdirectories).

#

First, we configure the "default" to be a very restrictive set of

permissions.

#

<Directory />

 Options FollowSymLinks

 AllowOverride None

</Directory>

#

Note that from this point forward you must specifically allow

particular features to be enabled - so if something's not working as

you might expect, make sure that you have specifically enabled it

below.

#

#

This should be changed to whatever you set DocumentRoot to.

#

<Directory "/var/apache/htdocs">

#

This may also be "None", "All", or any combination of "Indexes",

"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

#

Note that "MultiViews" must be named *explicitly* --- "Options All"

doesn't give it to you.

#

 Options Indexes FollowSymLinks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Options Indexes FollowSymLinks

#

This controls which options the .htaccess files in directories can

override. Can also be "All", or any combination of "Options",

"FileInfo", "AuthConfig", and "Limit"

#

 AllowOverride None

#

Controls who can get stuff from this server.

#

 Order allow,deny

 Allow from all

</Directory>

#

UserDir: The name of the directory which is appended onto a user's home

directory if a ~user request is received.

#

UserDir public_html

#

Control access to UserDir directories. The following is an example

for a site where these directories are restricted to read-only.

#

#<Directory /home/*/public_html>

AllowOverride FileInfo AuthConfig Limit

Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec

<Limit GET POST OPTIONS PROPFIND>

Order allow,deny

Allow from all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allow from all

</Limit>

<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>

Order deny,allow

Deny from all

</Limit>

#</Directory>

#

DirectoryIndex: Name of the file or files to use as a pre-written HTML

directory index. Separate multiple entries with spaces.

#

DirectoryIndex index.html

#

AccessFileName: The name of the file to look for in each directory

for access control information.

#

AccessFileName .htaccess

#

The following lines prevent .htaccess files from being viewed by

Web clients. Since .htaccess files often contain authorization

information, access is disallowed for security reasons. Comment

these lines out if you want Web visitors to see the contents of

.htaccess files. If you change the AccessFileName directive above,

be sure to make the corresponding changes here.

#

Also, folks tend to use names such as .htpasswd for password

files, so this will protect those as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

files, so this will protect those as well.

#

<Files ~ "^\.ht">

 Order allow,deny

 Deny from all

</Files>

#

CacheNegotiatedDocs: By default, Apache sends "Pragma: no-cache" with

each document that was negotiated on the basis of content. This asks

proxy servers not to cache the document. Uncommenting the following line

disables this behavior, and proxies will be allowed to cache the

documents.

#

#CacheNegotiatedDocs

#

UseCanonicalName: (new for 1.3) With this setting turned on, whenever

Apache needs to construct a self-referencing URL (a URL that refers back

to the server the response is coming from) it will use ServerName and

Port to form a "canonical" name. With this setting off, Apache will

use the hostname:port that the client supplied, when possible. This

also affects SERVER_NAME and SERVER_PORT in CGI scripts.

#

UseCanonicalName On

#

TypesConfig describes where the mime.types file (or equivalent) is

to be found.

#

TypesConfig /etc/apache/mime.types

#

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#

DefaultType is the default MIME type the server will use for a document

if it cannot otherwise determine one, such as from filename extensions.

If your server contains mostly text or HTML documents, "text/plain" is

a good value. If most of your content is binary, such as applications

or images, you may want to use "application/octet-stream" instead to

keep browsers from trying to display binary files as though they are

text.

#

DefaultType text/plain

#

The mod_mime_magic module allows the server to use hints from the

contents of the file itself to determine its type. The MIMEMagicFile

directive tells the module where the hint definitions are located.

mod_mime_magic is not part of the default server (you have to add

it yourself with a LoadModule [see the DSO paragraph in the 'Global

Environment' section], or recompile the server and include

mod_mime_magic as part of the configuration), so it's enclosed in an

<IfModule> container. This means that the MIMEMagicFile directive will

only be processed if the module is part of the server.

#

<IfModule mod_mime_magic.c>

 MIMEMagicFile /etc/apache/magic

</IfModule>

#

HostnameLookups: Log the names of clients or just their IP addresses

e.g., www.apache.org (on) or 204.62.129.132 (off).

The default is off because it'd be overall better for the net if people

had to knowingly turn this feature on, since enabling it means that

each client request will result in AT LEAST one lookup request to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

each client request will result in AT LEAST one lookup request to the

nameserver.

#

HostnameLookups Off

#

ErrorLog: The location of the error log file.

If you do not specify an ErrorLog directive within a <VirtualHost>

container, error messages relating to that virtual host will be

logged here. If you *do* define an error logfile for a <VirtualHost>

container, that host's errors will be logged there and not here.

#

ErrorLog /var/apache/logs/error_log

#

LogLevel: Control the number of messages logged to the error_log.

Possible values include: debug, info, notice, warn, error, crit,

alert, emerg.

#

LogLevel warn

#

The following directives define some format nicknames for use with

a CustomLog directive (see below).

#

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

#

The location and format of the access logfile (Common Logfile Format).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The location and format of the access logfile (Common Logfile Format).

If you do not define any access logfiles within a <VirtualHost>

container, they will be logged here. Contrariwise, if you *do*

define per-<VirtualHost> access logfiles, transactions will be

logged therein and *not* in this file.

#

CustomLog /var/apache/logs/access_log common

#

If you would like to have agent and referer logfiles, uncomment the

following directives.

#

#CustomLog /var/apache/logs/referer_log referer

#CustomLog /var/apache/logs/agent_log agent

#

If you prefer a single logfile with access, agent, and referer

information (Combined Logfile Format) you can use the following

directive.

#

#CustomLog /var/apache/logs/access_log combined

#

Optionally add a line containing the server version and virtual host

name to server-generated pages (error documents, FTP directory listings,

mod_status and mod_info output etc., but not CGI generated documents).

Set to "EMail" to also include a mailto: link to the ServerAdmin.

Set to one of: On | Off | EMail

#

ServerSignature On

#

Aliases: Add here as many aliases as you need (with no limit). The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aliases: Add here as many aliases as you need (with no limit). The

format is Alias fakename realname

#

Note that if you include a trailing / on fakename then the server will

require it to be present in the URL. So "/icons" isn't aliased in this

example, only "/icons/"..

#

Alias /icons/ "/var/apache/icons/"

<Directory "/var/apache/icons">

 Options Indexes MultiViews

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

Alias /manual/ "/usr/apache/htdocs/manual/"

#

ScriptAlias: This controls which directories contain server scripts.

ScriptAliases are essentially the same as Aliases, except that

documents in the realname directory are treated as applications and

run by the server when requested rather than as documents sent to the

client. The same rules about trailing "/" apply to ScriptAlias

directives as to Alias.

#

ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

#

"/var/apache/cgi-bin" should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CGI directory exists, if you have that configured.

#

<Directory "/var/apache/cgi-bin">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

#

Redirect allows you to tell clients about documents which used to exist

in your server's namespace, but do not anymore. This allows you to tell

the clients where to look for the relocated document.

Format: Redirect old-URI new-URL

#

#

Directives controlling the display of server-generated directory

listings.

#

#

FancyIndexing is whether you want fancy directory indexing or standard

#

IndexOptions FancyIndexing

#

AddIcon* directives tell the server which icon to show for different

files or filename extensions. These are only displayed for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

files or filename extensions. These are only displayed for

FancyIndexed directories.

#

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*

AddIconByType (IMG,/icons/image2.gif) image/*

AddIconByType (SND,/icons/sound2.gif) audio/*

AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe

AddIcon /icons/binhex.gif .hqx

AddIcon /icons/tar.gif .tar

AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv

AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip

AddIcon /icons/a.gif .ps .ai .eps

AddIcon /icons/layout.gif .html .shtml .htm .pdf

AddIcon /icons/text.gif .txt

AddIcon /icons/c.gif .c

AddIcon /icons/p.gif .pl .py

AddIcon /icons/f.gif .for

AddIcon /icons/dvi.gif .dvi

AddIcon /icons/uuencoded.gif .uu

AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl

AddIcon /icons/tex.gif .tex

AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..

AddIcon /icons/hand.right.gif README

AddIcon /icons/folder.gif ^^DIRECTORY^^

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddIcon /icons/folder.gif ^^DIRECTORY^^

AddIcon /icons/blank.gif ^^BLANKICON^^

#

DefaultIcon is which icon to show for files which do not have an icon

explicitly set.

#

DefaultIcon /icons/unknown.gif

#

AddDescription allows you to place a short description after a file in

server-generated indexes. These are only displayed for FancyIndexed

directories.

Format: AddDescription "description" filename

#

#AddDescription "GZIP compressed document" .gz

#AddDescription "tar archive" .tar

#AddDescription "GZIP compressed tar archive" .tgz

#

ReadmeName is the name of the README file the server will look for by

default, and append to directory listings.

#

HeaderName is the name of a file which should be prepended to

directory indexes.

#

The server will first look for name.html and include it if found.

If name.html doesn't exist, the server will then look for name.txt

and include it as plaintext if found.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and include it as plaintext if found.

#

ReadmeName README

HeaderName HEADER

#

IndexIgnore is a set of filenames which directory indexing should ignore

and not include in the listing. Shell-style wildcarding is permitted.

#

IndexIgnore .??* *~ *# HEADER* README* RCS CVS *,v *,t

#

AddEncoding allows you to have certain browsers (Mosaic/X 2.1+)

uncompress information on the fly. Note: Not all browsers support this.

Despite the name similarity, the following Add* directives have nothing

to do with the FancyIndexing customization directives above.

#

AddEncoding x-compress Z

AddEncoding x-gzip gz tgz

#

AddLanguage allows you to specify the language of a document. You can

then use content negotiation to give a browser a file in a language

it can understand. Note that the suffix does not have to be the same

as the language keyword --- those with documents in Polish (whose

net-standard language code is pl) may wish to use "AddLanguage pl .po"

to avoid the ambiguity with the common suffix for perl scripts.

#

AddLanguage en .en

AddLanguage fr .fr

AddLanguage de .de

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddLanguage de .de

AddLanguage da .da

AddLanguage el .el

AddLanguage it .it

#

LanguagePriority allows you to give precedence to some languages

in case of a tie during content negotiation.

Just list the languages in decreasing order of preference.

#

LanguagePriority en fr de

#

AddType allows you to tweak mime.types without actually editing it, or

to make certain files to be certain types.

#

For example, the PHP3 module (not part of the Apache distribution - see

http://www.php.net) will typically use:

#

#AddType application/x-httpd-php3 .php3

#AddType application/x-httpd-php3-source .phps

AddType application/x-tar .tgz

#

AddHandler allows you to map certain file extensions to "handlers",

actions unrelated to filetype. These can be either built into the server

or added with the Action command (see below)

#

If you want to use server side includes, or CGI outside

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to use server side includes, or CGI outside

ScriptAliased directories, uncomment the following lines.

#

To use CGI scripts:

#

#AddHandler cgi-script .cgi

#

To use server-parsed HTML files

#

#AddType text/html .shtml

#AddHandler server-parsed .shtml

#

Uncomment the following line to enable Apache's send-asis HTTP file

feature

#

#AddHandler send-as-is asis

#

If you wish to use server-parsed imagemap files, use

#

#AddHandler imap-file map

#

To enable type maps, you might want to use

#

#AddHandler type-map var

#

Action lets you define media types that will execute a script whenever

a matching file is called. This eliminates the need for repeated URL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a matching file is called. This eliminates the need for repeated URL

pathnames for oft-used CGI file processors.

Format: Action media/type /cgi-script/location

Format: Action handler-name /cgi-script/location

#

#

MetaDir: specifies the name of the directory in which Apache can find

meta information files. These files contain additional HTTP headers

to include when sending the document

#

#MetaDir .web

#

MetaSuffix: specifies the file name suffix for the file containing the

meta information.

#

#MetaSuffix .meta

#

Customizable error response (Apache style)

these come in three flavors

#

1) plain text

#ErrorDocument 500 "The server made a boo boo.

n.b. the (") marks it as text, it does not get output

#

2) local redirects

#ErrorDocument 404 /missing.html

to redirect to local URL /missing.html

#ErrorDocument 404 /cgi-bin/missing_handler.pl

N.B.: You can redirect to a script or a document using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

N.B.: You can redirect to a script or a document using

server-side-includes.

#

3) external redirects

#ErrorDocument 402 http://some.other_server.com/subscription_info.html

N.B.: Many of the environment variables associated with the original

request will *not* be available to such a script.

#

The following directives modify normal HTTP response behavior.

The first directive disables keepalive for Netscape 2.x and browsers

that spoof it. There are known problems with these browsers.

The second directive is for Microsoft Internet Explorer 4.0b2

which has a broken HTTP/1.1 implementation and does not properly

support keepalive when it is used on 301 or 302 (redirect) responses.

#

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#

The following directive disables HTTP/1.1 responses to browsers which

are in violation of the HTTP/1.0 spec by not being able to grok a

basic 1.1 response.

#

BrowserMatch "RealPlayer 4\.0" force-response-1.0

BrowserMatch "Java/1\.0" force-response-1.0

BrowserMatch "JDK/1\.0" force-response-1.0

#

Allow status reports with the URL of http://servername/server-status

Change the ".your_domain.com" to match your domain to enable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Change the ".your_domain.com" to match your domain to enable.

#

#<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Location>

#

Allow remote server configuration reports, with the URL of

http://servername/server-info (requires that mod_info.c be loaded).

Change the ".your_domain.com" to match your domain to enable.

#

#<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Location>

#

There are reports of people trying to abuse an old bug from pre-1.1

days. This bug involved a CGI script distributed as a part of Apache.

By uncommenting these lines you can redirect these attacks to a logging

script on phf.apache.org. Or, you can record them yourself, using the

script support/phf_abuse_log.cgi.

#

#<Location /cgi-bin/phf*>

Deny from all

ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi

#</Location>

#

Proxy Server directives. Uncomment the following lines to

enable the proxy server:

#

#<IfModule mod_proxy.c>

#ProxyRequests On

#

#<Directory proxy:*>

Order deny,allow

Deny from all

Allow from .your_domain.com

#</Directory>

#

Enable/disable the handling of HTTP/1.1 "Via:" headers.

"Full" adds the server version; "Block" removes outgoing Via: headers

Set to one of: Off | On | Full | Block

#

#ProxyVia On

#

To enable the cache as well, edit and uncomment the following lines:

(no cacheing without CacheRoot)

#

#CacheRoot "/var/apache/proxy"

#CacheSize 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#CacheSize 5

#CacheGcInterval 4

#CacheMaxExpire 24

#CacheLastModifiedFactor 0.1

#CacheDefaultExpire 1

#NoCache a_domain.com another_domain.edu joes.garage_sale.com

#</IfModule>

End of proxy directives.

Section 3: Virtual Hosts

#

VirtualHost: If you want to maintain multiple domains/hostnames on your

machine you can setup VirtualHost containers for them.

Please see the documentation at <URL:http://www.apache.org/docs/vhosts/>

for further details before you try to setup virtual hosts.

You may use the command line option '-S' to verify your virtual host

configuration.

#

If you want to use name-based virtual hosts you need to define at

least one IP address (and port number) for them.

#

#NameVirtualHost 12.34.56.78:80

#NameVirtualHost 12.34.56.78

#

VirtualHost example:

Almost any Apache directive may go into a VirtualHost container.

#

#<VirtualHost ip.address.of.host.some_domain.com>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#<VirtualHost ip.address.of.host.some_domain.com>

ServerAdmin webmaster@host.some_domain.com

DocumentRoot /www/docs/host.some_domain.com

ServerName host.some_domain.com

ErrorLog logs/host.some_domain.com-error_log

CustomLog logs/host.some_domain.com-access_log common

#</VirtualHost>

#<VirtualHost _default_:*>

#</VirtualHost>

#<IfModule mod_perl.c>

#

#<Location /perl-status>

SetHandler perl-script

PerlHandler Apache::Status

order deny,allow

deny from all

allow from yourhost

#</Location>

#

#</IfModule

>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix G. RFC Excerpts
Chapter 13 refers to specific TCP/IP headers that are documented here. This is not an exhaustive
list of headers; only the headers used in the troubleshooting examples in Chapter 13 are covered:

IP Datagram Header, as defined in RFC 791, Internet Protocol

TCP Segment Header, as defined in RFC 793, Transmission Control Protocol

ICMP Parameter Problem Message Header, as defined in RFC 792, Internet Control
Message Protocol

Each header is presented using an excerpt from the RFC that defines the header. These are not
exact quotes; the excerpts have been slightly edited to better fit this text. However, the
importance of using primary sources for troubleshooting protocol problems is still emphasized.
These headers are provided here to help you follow the examples in Chapter 13. For real
troubleshooting, use the real RFCs. You can obtain your own copies of the RFCs by following the
instructions at the end of this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G.1 IP Datagram Header

This description is taken from pages 11 to 15 of RFC 791, Internet Protocol.

Internet Header Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |Version| IHL |Type of Service| Total Length |

 +-+

 | Identification |Flags| Fragment Offset |

 +-+

 | Time to Live | Protocol | Header Checksum |

 +-+

 | Source Address |

 +-+

 | Destination Address |

 +-+

 | Options | Padding |

 +-+

 Version: 4 bits

 The Version field indicates the format of the internet header.

 This document describes version 4.

 IHL: 4 bits

 Internet Header Length is the length of the internet header in 32

 bit words. The minimum value for a correct header is 5.

 Type of Service: 8 bits

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Type of Service: 8 bits

 The Type of Service indication the quality of service desired.

 The meaning of the bits is explained below.

 Bits 0-2: Precedence.

 Bit 3: 0 = Normal Delay, 1 = Low Delay.

 Bits 4: 0 = Normal Throughput, 1 = High Throughput.

 Bits 5: 0 = Normal Reliability 1 = High Reliability.

 Bit 6-7: Reserved for Future Use.

 0 1 2 3 4 5 6 7

 +-----+-----+-----+-----+-----+-----+-----+-----+

 | | | | | | |

 | PRECEDENCE | D | T | R | 0 | 0 |

 | | | | | | |

 +-----+-----+-----+-----+-----+-----+-----+-----+

 Precedence

 111 - Network Control

 110 - Internetwork Control

 101 - CRITIC/ECP

 100 - Flash Override

 011 - Flash

 010 - Immediate

 001 - Priority

 000 - Routine

 Total Length: 16 bits

 Total Length is the length of the datagram, measured in octets

 (bytes), including internet header and data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (bytes), including internet header and data.

 Identification: 16 bits

 An identifying value assigned by the sender to aid in assembling

 the fragments of a datagram.

 Flags: 3 bits

 Various Control Flags. The Flag bits are explained below:

 Bit 0: reserved, must be zero

 Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment.

 Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

 0 1 2

 +---+---+---+

 | | D | M |

 | 0 | F | F |

 +---+---+---+

 Fragment Offset: 13 bits

 This field indicates where in the datagram this fragment belongs.

 The fragment offset is measured in units of 8 octets (64 bits).

 The first fragment has offset zero.

 Time to Live: 8 bits

 This field indicates the maximum time the datagram is allowed to

 remain in the internet system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Protocol: 8 bits

 This field indicates the Transport Layer protocol that the data

 portion of this datagram is passed to. The values for various

 protocols are specified in the "Assigned Numbers" RFC.

 Header Checksum: 16 bits

 A checksum on the header only. Since some header fields change

 (e.g., time to live), this is recomputed and verified at each

 point that the internet header is processed. The checksum

 algorithm is:

 The checksum field is the 16 bit one's complement of the one's

 complement sum of all 16 bit words in the header. For purposes

 of computing the checksum, the value of the checksum field is

 zero.

 Source Address: 32 bits

 The source IP address. See Chapter 2 for a

 description of IP addresses.

 Destination Address: 32 bits

 The destination IP address. See Chapter 2 for a description of IP

 addresses.

 Options: variable

 The options may or may not appear in datagrams, but they must be

 implemented by all IP modules (host and gateways). No options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 were used in any of the datagrams examined

in Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G.2 TCP Segment Header

This description is taken from pages 15 to 17 of RFC 793, Transmission Control Protocol.

TCP Header Format

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Source Port | Destination Port |

 +-+

 | Sequence Number |

 +-+

 | Acknowledgment Number |

 +-+

 | Data | |U|A|P|R|S|F| |

 | Offset| Reserved |R|C|S|S|Y|I| Window |

 | | |G|K|H|T|N|N| |

 +-+

 | Checksum | Urgent Pointer |

 +-+

 | Options | Padding |

 +-+

 | data |

 +-+

 Source Port: 16 bits

 The source port number.

 Destination Port: 16 bits

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Destination Port: 16 bits

 The destination port number.

 Sequence Number: 32 bits

 The sequence number of the first data octet (byte) in this segment

 (except when SYN is present). If SYN is present the sequence

 number is the initial sequence number (ISN) and the first data

 octet is ISN+1.

 Acknowledgment Number: 32 bits

 If the ACK control bit is set, this field contains the value of

 the next sequence number the sender of the segment is expecting to

 receive. Once a connection is established this is always sent.

 Data Offset: 4 bits

 The number of 32 bit words in the TCP Header. This indicates

 where the data begins. The TCP header (even one including options)

 is an integral number of 32 bits long.

 Reserved: 6 bits

 Reserved for future use. Must be zero.

 Control Bits: 6 single-bit values (from left to right):

 URG: Urgent Pointer field significant

 ACK: Acknowledgment field significant

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ACK: Acknowledgment field significant

 PSH: Push Function

 RST: Reset the connection

 SYN: Synchronize sequence numbers

 FIN: No more data from sender

 Window: 16 bits

 The number of data octets (bytes) the sender of this segment is

 willing to accept.

 Checksum: 16 bits

 The checksum field is the 16 bit one's complement of the one's

 complement sum of all 16 bit words in the header and text.

 Urgent Pointer: 16 bits

 This field contains the current value of the urgent pointer as a

 positive offset from the sequence number in this segment. The

 urgent pointer points to the sequence number of the octet

 following the urgent data. This field is only be interpreted

 in segments with the URG control bit set.

 Options: variable

 Options may occupy space at the end of the TCP header and are a multiple of 8 bits in length.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G.3 ICMP Parameter Problem Message Header

This description is taken from pages 8 and 9 of RFC 792, Internet Control Message Protocol.

Parameter Problem Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Pointer | unused |

 +-+

 | Internet Header + 64 bits of Original Data Datagram |

 +-+

 Type

 12

 Code

 0 = pointer indicates the error.

 Checksum

 The checksum is the 16-bit ones's complement of the one's

 complement sum of the ICMP message starting with the ICMP Type.

 For computing the checksum , the checksum field should be zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For computing the checksum , the checksum field should be zero.

 Pointer

 If code = 0, identifies the octet where an error was detected.

 Internet Header + 64 bits of Data Datagram

 The internet header plus the first 64 bits of the datagram that elicited this error response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

G.4 Retrieving RFCs

Throughout this book, we have referred to many RFCs. These are the Internet documents used
for everything from general information to the definitions of the TCP/IP protocol standards. As a
network administrator, there are several important RFCs that you'll want to read. This section
describes how you can obtain them.

RFCs are available at http://www.ietf.org. Follow the RFC Pages link from that home page. The
page that appears allows you to retrieve an RFC by specifying its number. The page also has
links to the RFC Index and the RFC Editor Web Pages. The index is useful for general browsing.
It helps you map RFC names to numbers, and it tells you when an RFC has been updated or
replaced. Figure G-1 shows a network administrator scrolling through the index looking for RFC
1122.

Figure G-1. The RFC index

Of even more interest are the RFC Editor Web Pages. Selecting this link takes you to
http://www.rfc-editor.org, where you can select RFC Search and Retrieval. The page that is
displayed provides access to a hyperlinked RFC index and to a search tool that allows you to look
for RFC titles, numbers, authors, or keywords.

Assume you want to find out more about the SMTP service extensions that have been proposed
for Extended SMTP. Figure G-2 shows the first page displayed as a result of this query.

Figure G-2. An RFC web search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Web provides the most popular and best method for browsing through RFCs. However, if you
know what you want, anonymous FTP can be a faster way to retrieve a specific document. RFCs
are stored at ftp://ftp.ietf.org in the rfc directory. This stores the RFCs with filenames in the form
rfcnnnn.txt or rfcnnnn.ps, where nnnn is the RFC number and txt or ps indicates whether the RFC
is ASCII text or PostScript. To retrieve RFC 1122, FTP to ftp://ftp.ietf.org and enter get
rfc/rfc1122.txt at the ftp> prompt. This is generally a very quick way to get an RFC if you
know what you want.

G.4.1 Retrieving RFCs by Mail

While anonymous FTP is the fastest way and the Web is the best way to get an RFC, they are not
the only ways. You can also obtain RFCs through electronic mail. Electronic mail is available to
many users who are denied direct access to Internet services because they are on a
nonconnected network or are sitting behind a restrictive firewall. Also, there are times when email
provides sufficient service because you don't need the document quickly.

Retrieve RFCs through email by sending mail to mailserv@ietf.org. Leave the Subject: line blank.
Request the RFC in the body of the email text, preceding the pathname of the RFC with the
keyword FILE. In this example, we request RFC 1258.

% mail mailserv@ietf.org
Subject:
FILE /rfc/rfc1258.txt
^D
The technique works very well. In the time it took to type these paragraphs, the requested RFC
was already in my mailbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of TCP/IP Network Administration is a land crab. Land crabs are found in
tropical America, West Africa, and the Indo-Pacific region where they can be found living in
burrows in fields, swamps, and mangrove thickets. They occasionally are found as far as five
miles inland, returning to the sea to spawn. Land crabs are a subgroup of over 4,500 species of
crabs. Classified with shrimp, lobster, and crayfish, crabs differ from these in their tail structure.
Unlike the rest of their order, crabs' tails are curled under their thorax. In addition, their carapaces
tend to be unusually broad. Though land crabs in the United States commonly grow to weigh no
more than 18 ounces and measure 4 or 5 inches across, crabs in general range in size from less
than a centimeter across to the largest, the Japanese spider crab, whose claws can span 12 feet.

Emily Quill was the production editor and copyeditor for TCP/IP Network Administration, Third
Edition. Jeffrey Holcomb and Jane Ellin provided quality control. Derek Di Matteo and Sue Willing
provided production assistance. Tom Dinse wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's
ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil Walls
converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced
by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! flag (Linux routing table)
(sharp sign)
 automounter comments
 host table comments
 inittab file comments
$ symbol (sendmail transformation)
$> symbol (sendmail transformation)
$- symbol (sendmail pattern matching)
$@ symbol (sendmail pattern matching)
$GENERATE directive (zone files) 2nd
 reverse domain delegations
$INCLUDE directive (zone files) 2nd
$n symbol (sendmail transformation)
$ORIGIN directive (zone files) 2nd
$TTL directive (zone files) 2nd
--decrypt option (gpg)
--gen-key option (gpg)
--install option (rpm)
--query option (rpm)
--uninstall option (rpm)
-a option (exportfs command)
-nr command
-o option (exportfs command)
-q option (routed command)
-r option (exportfs command)
-u option (exportfs command)
/tryflags command (sendmail)
? option (arp module)
@network option (share command)
7bit (MIME encoding type)
8bit (MIME encoding type)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A flag (Linux routing table)
A records
 named.ca file
 nslookup command
ABORT keyword (chat)
ACCEPT keyword (iptables command)
access control
 Apache
 document level
 file level
 overview
 user authentication
 language extensions
 packet filtering
 security
 overview
 shell command
 tcpd
 wrapper package
 xinetd
access.conf (Apache configuration file)
access_times parameter (xinetd)
AccessFileName directive (Apache)
acdirmax= option (vfstab file)
acdirmin= option (vfstab file)
Acknowledgment Number field (TCP headers)
Acknowledgment Segment (TCP headers)
acl statement (named.conf file)
aclok option (share command)
acquire (EGP trace option)
acquiring a neighbor (EGP)
acregmax= option (vfstab file)
acregmin= option (vfstab file)
actimeo= option (vfstab file)
action field (inittab file)
active keyword (routed command)
active-filter option (pppd)
add keyword (dbmmanage command)
add keyword (route command)
AddEncoding directive (httpd.conf file)
AddIcon directive (Apache)
AddIconByEncoding directive (Apache)
AddIconByType directive (Apache)
Additional (DNS response packets)
additional-from-auth parameter (named BIND 9 options statement)
additional-from-cache (named BIND 9 options statement)
AddLanguage directive (httpd.conf file)
AddModule directive (httpd.conf file)
 Solaris modules
address argument (ifconfig command)
address blocks
address conversion database (sendmail)
address field (chap-secrets file)
Address field (netstat command)
address option (share command)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

address records
address resolution
Address Resolution Protocol [See ARP]
Address value (dhcpd option statement)
address-list option (named)
address_match_list option (named)
addresses 2nd 3rd [See also IP addresses]
 assigning
 contiguous blocks
 ifconfig command
 bit masks 2nd
 broadcast 2nd
 cache initialization file
 CIDR
 classes of
 conversion database (sendmail)
 datagrams
 default gateway, need for
 default masks, identifying
 DHCP, assigning
 dynamic allocation, dhcpd.conf file
 expected utilization rate
 host
 assigning
 interpreting
 IPv6
 limited broadcast
 loopback
 converting to localhost
 localhost
 martians (gated)
 multicast
 natural mask
 Network Access Layer
 network growth, effect on addressing schemes
 obtaining
 official, assessing need for
 overriding (sendmail)
 registries, obtaining from
 reserved
 resolution of
 reverse domains
 rewrite rules, testing (sendmail)
 routing tables, reducing size of
 sendmail
 transformation databases
 transforming 2nd
 share command and
 shortage of
 spoofing
 subnet mask, defining 2nd
 subnet masks
 creating
 RFCs
 subnets
 timing out
 translating
 forward-mapping zone files
 reverse zone files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 troubleshooting
 translation, overview
 unicast
 uniqueness of
 verifying (sendmail)
AddType directive (httpd.conf file)
adduser keyword (dbmmanage command)
admin-c field (RIPE database)
adv (gated)
Advanced Research Projects Agency (ARPA)
advanced router option (Linux kernel configuration)
advertise parameter (gated)
aero domain
aggregate statement (gated)
Alias directive (httpd.conf file)
aliases
 hostnames
 network services
 sendmail, overview
aliases database (sendmail)
aliases file
 email addresses
 NIS map
 sendmail, location of
aliases-nexthop (gated)
AliasFile option (sendmail)
All (Options directive setting)
ALL keyword (security)
Allow from directive (Directory containers)
allow keyword parameter (dhcpd)
allow-ip option (pppd)
allow-notify (named)
allow-query option (named)
allow-recursion option (named)
allow-transfer option (named)
AllowOverride directive (Apache)
AllowOverride directives (Directory containers)
also-notify option (named)
alternative (MIME data subtype)
always-reply-rfc1048 flag parameter (dhcpd)
amd command
American Registry for Internet Numbers (ARIN)
anon=uid option (share command)
Answer (DNS response packets)
Apache
 access controls
 document level
 file level
 overview
 user authentication
 AllowOverride directive
 conditional logging
 configuring
 overview
 Solaris
 directives
 AccessFileName
 AuthName
 AuthType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BrowserMatch
 configuration
 directory indexing
 DocumentRoot
 Group
 HostnameLookups
 httpd process control
 KeepAlive
 KeepAliveTimeout
 LogFileFormat
 MaxKeepAliveRequests
 MaxRequestsPerChild
 MaxSpareServer
 MinSpareServer
 performance tuning
 Require
 StartServer
 Timeout
 User
 directory indexes
 directory-level configuration control
 DocumentRoot directive
 DSO modules
 encryption
 httpd processes, managing
 httpd.conf file
 configuration directives
 dynamically loadable modules
 overview
 installing, overview
 launching
 daemons at bootup
 without rebooting
 MIME file types, defining
 monitoring
 multi-homed servers, options
 obtaining
 OpenSSL
 packages, locating names of
 proxy servers, caching options
 security
 CGI scripts
 overview
 SSI
 server options, controlling
 virtual hosts, defining
Applicability Statements (AS)
application (MIME data content type)
Application Layer 2nd
applications
 port numbers
 protocols for
 security
 removing unnecessary
 updating
architecture
 Internet routing
 TCP/IP models
area auth simple parameter (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

area parameter
 gated isis statement
 gated ospf statement
areas (OSPF hierarchy)
arguments
 gated command
 ifconfig command
 sendmail command 2nd
 sendmail K command
arguments field (inet.conf file)
Argv field (sendmail)
arith (sendmail K command value)
ARP (Address Resolution Protocol)
 enabling and disabling
arp command
 troubleshooting with
arp module, options
arp, diagnostic troubleshooting
ARPA (Advanced Research Projects Agency)
ARPAnet
AS (Applicability Statements)
AS (gated)
as parameter (gated)
AS path (routing policies)
ASCII, MIME encoding
Asian Pacific Network Information Center (APNIC)
ASNs (autonomous system numbers)
 obtaining 2nd
 routing databases, registering
aspath parameter (gated)
aspppd command (Solaris)
asymmetric encryption
Asynchronous PPP Daemon (aspppd)
asyncmap option (pppd)
at command, security considerations
ATTEMPT option (xinetd)
attempts option (resolv.conf file)
audio (MIME data content type)
auth option (pppd) 2nd
 configuring PPP servers
auth-nxdomain option (named)
authentication
 Apache
 document-level access controls
 file-level access controls
 dedicated connections and
 OSPF
 protocols, pppd command
 shadow password files
 share command
 ssh
AuthName directive (Apache)
authoritative parameter (dhcpd)
authoritative servers
 DNS
Authority (DNS response packets)
AuthType directive (Apache)
auto_home map
auto_master file, configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

autofs script
automatically allocating addresses (DHCP)
automounter (NFS)
 configuration files
 daemon
autonomous system external (ASE) routes
autonomous system numbers [See ASNs]
autonomous systems (AS)
autonomoussystem (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B flag (Linux routing table)
backbone parameter (gated)
backbones (OSPF hierarchy)
background mode (sendmail)
background parameter (gated)
base64 (MIME encoding type)
basic (MIME data subtype)
bastion host (firewalls)
beep command (dip)
Berkeley Internet Name Domain [See BIND]
Best Current Practices (BCP) RFCs
bestmx (sendmail K command value)
bg option (vfstab file)
BGP (Border Gateway Protocol) 2nd
 autonomous system numbers
 group types
 peers
bgp parameter (gated)
bgp statement (gated)
bilateral agreements (routing)
binary (MIME encoding type)
binary data
binary files, security considerations
BIND (Berkeley Internet Name Domain) 2nd
 BIND 9
 controls statement
 logging statement
 options statement
 server statement
 view statement
 zone statement
 caching-only servers, configuring
 configurations
 directives
 master name, configuring
 named command, configuring
 named.conf file
 overview
 slave, configuring
 Unix DNS
BindAddress option (multi-homed servers)
bit mask
 addresses
 routing tables
bitdomain (sendmail database feature)
biz domain
blackhole (gated)
blackhole option (named)
blackhole parameter (gated)
Boolean values (printcap file)
BOOTP (Bootstrap Protocol)
 clients, automatic address assignment
 DHCP
bootp command (dip)
BOOTPROTO (Linux configuration value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bootstrap Protocol [See BOOTP]
bootup [See also startup files]
 Apache daemons, launching
 ifconfig command-line, persistence of
 mounted directories and
 share command persistence
 Solaris
Border Gateway Protocol [See BGP]
break command (dip)
brief parameter (gated)
broadcast (gated)
BROADCAST (Linux configuration value)
broadcast address argument (ifconfig command)
broadcast addresses
 assigning, ifconfig command
BROADCAST flag (ifconfig command)
broadcast GRE over IP option (Linux kernel configuration)
broadcast parameter (gated)
 rip statement
 routerdiscovery statement
browseable parameter (smb.config file)
BrowserMatch directive (Apache)
BSD Unix
 configuration file
 devices statement
 options statement
 pseudo-device statement
 default configuration, overriding
 fstab files
 startup files
 static routing, adding to startup scripts
bsdcomp option (pppd)
btree (sendmail K command value)
buffer overruns, avoiding
Bugtraq web site
Build script, sendmail, compiling
byte numbering, synchronizing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C command (sendmail)
C flag (Linux routing table)
cable testers
cables (Ethernet), length restrictions
cache initialization file
CacheDefaultExpire option (proxy server caching)
CacheGcInterval option (proxy server caching)
CacheLastModifiedFactor option (proxy server caching)
CacheMaxExpire option (proxy server caching)
CacheNegotiatedDocs option (proxy server caching)
CacheRoot option (proxy server caching)
caches
 DNS
 dump files
 cache & data section
 hints section
 zone tables
 name servers, troubleshooting
 proxy servers, options
 routing tables
CacheSize option (proxy server caching)
caching-only servers 2nd
 configuration
 configuration files
Caldera Linux httpd.conf file, location
call option (pppd)
cannot connect error (SMTP)
canonical names
CANONIFY_DOMAIN macro (sendmail)
CANONIFY_DOMAIN_FILE macro (sendmail)
CAs (Certificate Authorities)
cat command (gpg)
category clause (named logging statement)
cdtrcts option (pppd)
CERT (Computer Emergency Response Team) web site
certificates
 CAs
 validity of
cf/cf directory (sendmail sample configuration files)
CGI (Common Gateway Interface), security considerations
changed field (RIPE database)
CHAP (Challenge Handshake Authentication Protocol)
chap-interval option (pppd)
chap-max-challenge option (pppd)
chap-restart option (pppd)
chap-secrets file
Charset field (sendmail)
chat
 escape sequences
 keywords
 options
 overview
 syntax
 termination code
chat command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chat scripts, PPP
chatkey command (dip)
check keyword (dbmmanage command)
check-names option (named)
checksums, TCP
chkconfig command (Apache)
CIDR (Classless Inter-Domain Routing)
class (DSN error code)
class field (resource records)
classes
 IP addresses
 sendmail 2nd
 E
 M
 P
 w
classful routing
Classless Inter-Domain Routing (CIDR)
cleaning-interval option (named)
ClearModuleList directive (httpd.conf file)
client field (chap-secrets file)
clients, NFS
CLOSE command (IMAP)
CNAME (Canonical Name) records
 forward-mapping zone files
Collis field (netstat command)
com domain
commands
 IMAP
 POP
 SMTP
 source code
comment parameter (smb.config file)
comments
 automounter configuration file
 host table
 inittab file
Common Gateway Interface [See CGI]
communications, OSI Model
compiler options, sendmail
compiling
 dhcpd
 sendmail
conditionals, sendmail macros
config command (dip)
configuration
 Apache
 overview
 Solaris
 auto_master file
 automounter
 BIND
 caching-only servers
 DHCP
 dhcpd file
 overview
 dip (dial-up IP)
 DNS, resource records
 email networks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 files, Unix startup
 gated
 exterior gateways
 host
 interior gateways
 samples
 testing
 httpd.conf file
 directives
 dynamically loadable modules
 overview
 ifconfig startup files
 IMAP servers
 information, distributing
 interfaces, Linux file locations
 kernel
 dynamically loadable modules
 overview
 Line Printer
 Linux kernel
 Ethernet
 help
 options
 loopback interface, Solaris
 macro configuration file
 master name servers
 named command
 NFS, exports file
 options
 POP servers
 PPP
 chat scripts
 dial-up connections
 servers
 Solaris
 pppd command, dedicated connections
 printcap file
 resolvers
 sample
 routing
 Samba name server
 Samba servers
 sendmail
 define class command
 define macro command
 headers command
 m4 macros
 mailers command
 overview
 precedence command
 set option command
 set ruleset command
 testing
 trusted users command
 version level command
 sendmail.cf file
 creating with m4 macros
 local information
 modifying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Options section
 overview
 samples
 structure
 testing
 testing rewrite rules
 slave servers
 startup files, static routing and
 system, planning
configuration commands (named.conf file)
configuration files
 BSD Unix
 devices statement
 options statement
 pseudo-device statement
 Solaris
 syslog.conf
configuration servers
 DHCP
 overview
 RARP
connect option (pppd command)
connect option (pppd)
connect-delay option (pppd)
connected networks
connection-orientation, TCP
connections
 point-to-point, defining with ifconfig command
 troubleshooting with ping command 2nd
Content-Transfer-Encoding header (MIME)
Content-Type header (MIME)
control script (system initialization)
control statements (gated)
controls statement (named command)
coop domain
core gateways
coresize option (named)
cost
 address translation
 Internet connection considerations
 routing
 routing metric
counting to infinity problem (routing)
 avoiding
cron command, security considerations
crtscts option (pppd command)
 configuring PPP servers
crtscts option (pppd)
Cybercop (automated system monitoring)
cyrus mailer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D command (sendmail)
D flag (Linux routing table)
DAEMON_OPTIONS macro (sendmail)
DARPA (Defense Advanced Research Projects Agency)
DATA command (SMTP)
data delivery
data field (resource records)
Data Link Layer (OSI Model)
Data Link Layer Protocol
data value (DNS resource records)
databases
 address conversion (sendmail)
 Apache, user authentication
 gpg
 sendmail
 address transformation 2nd
 local information section (configuration file)
 Unix r commands
databits command (dip)
datagrams 2nd [See also packets]3rd
 forwarding
 fragmenting
 headers 2nd
 protocol numbers
 martians
 Network Access Layer
 IP addresses
 overview
 routing
datasize option (named)
dbm (sendmail K command value)
dbmmanage command
DCA (Defense Communications Agency)
DDN (Defense Data Network)
DDNS (Dynamic DNS)
deallocate-on-exit option (named)
debug option (pppd)
debug option (resolv.conf file)
debugging [See also testing]
 nslookup tool
 sendmail arguments
dec command (dip)
decentralized network administration
dedicated connections, pppd command, configuring
default command (dip)
default domain names
default gateway
 address
 addresses, need for
default keyword (route command)
default masks, indentifying
default route (network addresses)
default-asyncmap option (pppd)
default-lease-time parameter (dhcp.conf file)
default-lease-time parameter (dhcpd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

default-mru option (pppd)
defaultdomain file
DefaultIcon directive (Apache)
defaultmetric parameter (gated)
defaultroute option (pppd) 2nd
defaults parameter (gated)
DefaultType directive (httpd.conf file)
Defense Advanced Research Projects Agency (DARPA)
Defense Communications Agency (DCA)
Defense Data Network (DDN)
define class command (sendmail)
define macro (sendmail) 2nd
define macro command (sendmail)
definition fields (sendmail mailers)
deflate option (pppd)
DEL command (POP)
DELETE command (IMAP)
delete keyword
 dbmmanage command
 route command
deleting email, POP servers
Delivery Status Notification [See DSN]
demand option (pppd)
denial of service (DoS)
Deny from directive (Directory containers)
deny keyword parameter (dhcpd)
depmod command (Linux)
dequote (sendmail K command value)
descr field (RIPE database)
designated routers (OSPF)
Destination Address
 datagram headers
 TCP headers
Destination field
 Linux routing table
 routing tables
Destination field (Linux routing table)
Destination Port
Destination Port numbers (UDP)
Destination Unreachable Message (ICMP)
destination values (routing tables)
detail
 DSN error code
 gated trace statements
dev/cua3 argument (pppd command)
DEVICE (Linux configuration value)
device drivers
 Ethernet, loading
 installing, pkgadd command
devices statement (BSD Unix kernel configuration)
dgram field (inet.conf file)
dh value (share command)
DHCP (Dynamic Host Configuration Protocol)
 dhcpd file
 operational principles
 overview
 system configuration information, distributing to end-users
dhcpd
 command-line options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 common options
 compiling
 mailing list
 option statement
 other options
 parameter statements
 syntax
dhcpd.conf file 2nd
 parameters
 range parameter
 topology statements
DHCPDISCOVER packet
DHCPOFFER packet
dial command (dip) 2nd
dial-up connections
 dip
 sample script file
 script file
 syntax
 PPP, configuring
 pppd, syntax
 scripts, troubleshooting
dial-up IP [See dip]
dialup option (named)
dig (debugging tool)
digest (MIME data subtype)
Dijkstra Shortest Path First (SPF) algorithm
dip (dial-up IP)
 configuring
 options
 sample script file
 script file
 syntax
dip command
direct delivery (SMTP)
direct map configuration file (automounter)
directed graphs (OSPF)
directives
 Apache
 configuration
 directory-level configuration control
 httpd process control
 log files
 MIME file types
 performance tuning
 user authentication
 web server document locations
 BIND
 httpd.conf file, configuration
 zone files, creating
directories
 Apache, configuration control
 indexing, Apache
Directory containers (Apache)
 server options, controlling
Directory directive (httpd.conf file)
Directory field (sendmail)
directory option (named)
directory sharing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mounting remote directories
 NFS
 daemons
 overview
 Samba
 Unix
DirectoryIndex option (Apache)
disconnect option (pppd)
distance-vector algorithms, routing
Distfiles
distributed servers, managing
divert macro (sendmail)
dmesg command, network interfaces, determining avaliable
dnl command
dnl macro (sendmail)
DNS (Domain Name System)
 authoritative servers
 BIND
 configurations
 configuring resolvers 2nd
 directives
 overview
 caching-only servers, configuring
 compared to NIS
 domain hierarchy
 domains, creating
 host tables and
 master name servers, configuring
 name server record pointers
 named command, configuring
 named.conf file
 overview
 resource records
 slave servers, configuring
 system configuration
 top-level domains
 Unix, BIND
dns (sendmail K command value)
dns proxy option (nmbd command)
dns proxy parameter (smb.config file)
documentation, Internet address requests
DocumentRoot directive (Apache)
 web server document locations
domain administration
domain auth simple parameter (gated)
domain entry (resolv.conf file)
domain field (RIPE database)
DOMAIN macro (sendmail)
Domain Name Pointer (PTR) records
domain name registrars
domain name servers, system configuration
Domain Name System [See DNS]
domain names
 obtaining
 registering
domain names (Linux)
domain option (pppd)
domain option (share command)
domain setting (smb.config file)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMAIN source file
 DNS features
 DNS macros
DOMAIN source file (sendmail)
domainname command
domains
 cache initialization file
 caching-only server
 DNS
 creating
 hierarchy
 top-level
 downloading for inspection, nslookup command
 in-addr.arpa
 master name server
 NIS
 slave server
 zones
domaintable (sendmail database feature)
DoS (denial of service)
dotted decimal notation (IP addresses)
down preference (gated)
draft standards (RFCs)
Driver Options field (printconf-gui)
DROP keyword (iptables command)
dsmtp mailer
DSN (Delivery Status Notification), error codes
DSO (Dynamic Shared Object)
dump files
 cache & data section
 hints section
 zone tables
dump-file option (named)
dumpdb command
DURATION option (xinetd)
dynamic address allocation, dhcpd.conf file
dynamic assignment
Dynamic DNS (DDNS)
Dynamic Host Configuration Protocol [See DHCP]
dynamic routing
dynamic routing tables
Dynamic Shared Object (DSO)
dynamic-bootp argument (dhcpd range parameter)
dynamic-bootp-lease-cutoff parameter
 dhcpd
dynamic-bootp-lease-length parameter
 dhcpd
dynamically allocated ports
dynamically assigning addresses
dynamically loadable modules
 httpd.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

echo command (dip)
Echo Message (ICMP)
edu domain
EGP (Exterior Gateway Protocol) 2nd
 trace options
egp statement (gated)
EHLO command (ESMTP)
elective protocols
email [See also sendmail]
 copies, sending (sendmail)
 deleting, POP servers
 delivery status notification (sendmail)
 encapsulated messages
 IMAP
 logging (sendmail)
 MIME
 POP
 queue processing time
 sendmail
 services, planning
 SMTP
encapsulation
 email messages
 Network Access Layer
 OSI layers
encoding
 binary data (MIME)
 text data (MIME)
encrypt passwords option (smb.config file)
encryption
 Apache
 public key
 stunnel
 tools
 symmetric
end users, system configuration information, distributing to
End-of line field (sendmail)
end-to-end routes
endpoint option (pppd)
enterprise networks
environment variables, LOCALDOMAIN
equal-cost multi-path routing (OSPF)
equivalent hosts
error codes (DSN)
error detection
error messages
 named command
 Unreachable Port
error parameter (gated)
error recovery
errors
 dhcpd, when compiling
 SMTP, cannot connect
escape option (pppd)
escape sequences, chat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ESMTP (Extended SMTP) 2nd
 private extensions
esmtp mailer
Ethernet
 addresses
 translation
 translation, troubleshooting
 BSD Unix, support
 device drivers
 loading
 Red Hat 7.1
 length restrictions
 Linux kernel configuration
 MTU
 networks
 packet fragmentation
 promiscuous mode, enabling and disabling
 Solaris, ifconfig command
 subdividing segments
ethers file
 NIS map
except (gated)
EXCEPT keyword (security)
ExecCGI (Options directive setting)
executable files, security considerations
exit command (dip) 2nd
EXIT option (xinetd)
expected utilization rate (IP addresses)
experimental protocols
EXPN command
 ESMTP
 SMTP
export statement (gated) 2nd
export-defaults level parameter (gated)
export-defaults metric parameter (gated)
export-defaults metric-type parameter (gated)
exportdefault parameter (gated)
exportfs command
exporting directories [See directory sharing]
exportinterval parameter (gated)
exportlimit parameter (gated)
exports file
 exportfs command
 NFS
EXPOSED_USER macro (sendmail) 2nd
EXPUNGE command (IMAP)
Extended Internet Daemon (xinetd)
Extended SMTP (ESMTP)
 private extensions to
ExtendedStatus option (httpd.conf file)
Exterior Gateway Protocol [See EGP]
exterior routing protocols
 BGP
 EGP
 gated sample configuration
 overview
external preference parameter (gated)
External-body (MIME data subtype)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F command (sendmail)
fake-iquery option (named)
FancyIndexing keyword
fax mailer
FEATURE macro (sendmail) 2nd 3rd
features
 DOMAIN source file
 sendmail
FETCH command (IMAP)
fetch-glue option (named)
fg option (vfstab file)
file option (pppd)
file servers
file sharing
 mounting remote directories
 NFS
 daemons
 overview
 Unix
File Transfer Protocol [See FTP]
filename parameter (dhcpd)
FILES = (Distfiles)
Files directive (httpd.conf file)
files option (named)
filtering routers
 iptables command
FIN bit (TCP)
find command, locating httpd.conf file
firewalls
 filtering routers
 functions of
 iptables command
 overview
FIRST (Forum of Incident Response and Security Teams)
fixed-address parameter (dhcpd)
Flag value (dhcpd option statement)
Flags field
 Linux routing table 2nd
 routing tables
 sendmail
flash parameter (gated)
Flg field (netstat command)
flow control
 Acknowledgment Segment
 ICMP
flush command (dip)
FollowSymLinks (Options directive setting)
Format of Headers (generic-linux.cf section)
Forum of Incident Response and Security Teams (FIRST)
forward only option (named.conf file)
forward option (named)
forward-mapping zone file 2nd
forwarders option
 named options statement
 named.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

forwarding datagrams
forwarding, sendmail
FQDN (fully qualified domain name)
Fragmentation Offset field
fragmenting datagrams
frames
 Network Access Layer
FreeBSD, network interface support
fstab files
FTP (File Transfer Protocol)
 distributed servers, managing
fully qualified domain name (FQDN)
FYI (For Your Information) RFCs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G flag (Linux routing table)
gated
 aggregate statement
 bgp statement
 command-line arguments
 command-line options
 configuration language
 definition statements
 directive statements
 interface statements
 options statements
 overview
 protocol statements
 trace statements
 configuration statements
 configuring
 control statements
 egp statement
 export statement 2nd
 generate statement
 icmp statement
 import statement 2nd
 isis statement
 kernel statement
 ospf statement
 overview
 preference values
 redirect statement
 rip statement
 routerdiscovery client statement
 routerdiscovery statement
 routing filters
 sample configurations
 exterior gateways
 host
 interior gateways
 overview
 testing
 signal processing
 smux statement
 startup files
 static statements
 syntax
gated.conf file
gateway addresses, need for
gateway argument (route command)
Gateway field (Linux routing table) 2nd
gateway parameter (gated) 2nd
Gateway to Gateway Protocol (GGP)
gateways
 autonomous system numbers, obtaining
 core
 data delivery
 default
 exterior, gated sample configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 interior, gated sample configuration
 mail
 routing tables
 adding to
 routing, planning
 subnetting, advantages
gateways file (Solaris), routed command
gdc command, testing gated configurations
gendefault (gated)
general (gated)
generate statement (gated)
GENERIC kernel file (BSD Unix)
Generic Routing Encapsulation (GRE)
generic-linux.cf, modifying
 local information
 Options section
 overview
GENERICS_DOMAIN macro (sendmail)
GENERICS_DOMAIN_FILE macro (sendmail)
genericstable (sendmail) 2nd
Genmask field (Linux routing table) 2nd
geographic domains (DNS)
get command (dip) 2nd
get-lease-hostnames (dhcpd) 2nd
GGP (Gateway to Gateway Protocol)
GID (group ID)
 exports file
 mapping users to
Gigabit Ethernet switches
global section (smb.conf file)
GNU Privacy Guard (gpg)
goto command (dip)
gov domain
gpg (GNU Privacy Guard)
graphic images, still
GRE (Generic Routing Encapsulation)
GRE tunnels over IP option (Linux kernel configuration)
grep command, troubleshooting routing
group clause
 gated bgp statement
 gated egp statement
Group directive (Apache)
group statement (dhcpd)
group statements (dhcpd.config file)
group types (BGP)
grpid option (vfstab file)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H command (sendmail)
H flag (Linux routing table)
HACK macro (sendmail)
hand tools, hardware maintenance
handshaking 2nd
 port numbers and
HANGUP command (chat)
hard option (vfstab file)
hardware
 detecting, Solaris reconfigure file and
 distance limitations, subnetting and
 Linux, device driver installation
 maintenance tools
 network interfaces, identifying installed
 OSI Physical Layer
 subnetting and
hardware parameter (dhcpd)
has-old-clients option (named)
hash (sendmail K command value)
hash mark (#) for comments
HDLC (High-level Data Link Control)
Header (DNS response packets)
HeaderName directive (Apache)
headers
 datagrams
 port numbers
 protocol numbers
 ICMP parameter problem
 IP datagrams
 MIME
 Content-Transfer-Encoding
 protocol stack
 sendmail
 H command
 precedence
 TCP segment 2nd
heartbeat-interval option (named)
hello (EGP trace option)
hello command
Hello packets (OSPF)
Hello protocol, overview
help
 dip 2nd
 Linux kernel configuration
HELP command
 ESMTP
 SMTP
hesiod (sendmail K command value)
heterogeneous networks
hide-password option (pppd)
High-level Data Link Control (HDLC)
high-volume end-user (organizational type)
HINFO (Host Information) records
hints (cache initialization file)
historic protocols

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

holdoff option (pppd)
holdtime parameter (gated)
home section (smb.conf file)
hop count, routing
host (sendmail K command value)
host addresses [See also IP addresses]
host addresses, assigning
Host Information (HINFO) records
HOST option (xinetd)
host statement (dhcpd)
host statements (dhcpd.config file)
host tables
 limitations of
host-statistics option (named)
hostname file (Solaris)
hostname option (share command)
HostnameLookups directive (Apache)
hostnames
 aliases
 canonical names
 locating host tables
 selecting
 sendmail, class w
 share command and
hosts
 bastion
 gated configuration
 grouping, dhcpd.conf file
 multi-homed
 peers
 routing tables
 trusted
 values, exports file
 virtual (Apache)
HOSTS = (Distfiles)
hosts file 2nd
 ifconfig command and
 mask values, storing
 NIS maps 2nd
hosts.allow file (security)
hosts.deny (security)
hosts.equiv file, security considerations 2nd
hosts.lpd file, security considerations
htdocs directory (Solaris)
HTTP (Hypertext Transfer Protocol)
http (MIME data subtype)
http_core.c (DSO module)
httpd processes, managing
httpd.conf (Apache configuration file)
 access controls
 document level controls
 file level controls
 overview
 user authentication
 configuration directives
 directives
 configuration
 MIME file types
 dynamically loadable modules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 location of
 overview
 server options, controlling
 Solaris configuration
 web server document locations
httpd.conf file
Hypertext Transfer Protocol (HTTP)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I flag (Linux routing table)
IANA (Internet Assigned Numbers Authority)
 address requests
 protocol and port numbers
ICANN (Internet Corporation for Assigned Names and Numbers)
 domain name registrars
 domain names, registering
ICMP (Internet Control Message Protocol)
 Echo Message
 Redirect Message
 Source Quench Message 2nd
ICMP parameter problem header
ICMP Redirect
icmp statement (gated)
ICMP Unreachable Port message
Identification field
idle option (pppd)
IDRP (InterDomain Routing Protocol)
Ierrs field (netstat command)
IETF (Internet Engineering Task Force)
 IPv6
 protocol development
if command (dip)
Iface field (Linux routing table)
ifcfg file (Linux)
ifcfg-eth0 file (Linux)
ifconfig command 2nd
 arguments
 ARP, enabling and disabling
 broadcast addresses, assigning
 diagnostic troubleshooting
 Ethernet promiscuous mode, enabling and disabling
 IP addresses, assigning
 MTU, changing
 network interfaces
 checking
 determining available
 enabling and disabling
 overview
 routing metric, changing
 Solaris
 configuring PPP
 Ethernet
 startup files
 subnet masks, assigning
 troubleshooting with
iflist (gated)
ignore parameter (gated)
IHL (Internet Header Length) field
image (MIME data content type)
IMAP (Internet Message Access Protocol)
 commands
 servers, configuring
implicit (sendmail K command value)
import keyword (dbmmanage command)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import statement (gated) 2nd
importdefault parameter (gated)
IN value (DNS resource records)
in-addr.arpa domains
inactivity_timeout statement (Solaris PPP)
inc command (dip)
include files, gated
Includes (Options directive setting)
IncludesNOEXEC (Options directive setting)
indefinite tokens (sendmail pattern matching)
indelay parameter (gated)
index.html file (Apache)
index=file option (share command)
Indexes (Options directive setting)
indexes, directory (Apache)
IndexIgnore directive (Apache)
IndexOptions directive (httpd.conf file)
indirect map configuration file (automounter)
ineligible parameter (gated)
inet6 option (resolv.conf file)
inet6 parameter (gated)
inetd
inetd.conf file
 fields
 NFS daemons, starting
info domain
info parameter (gated)
 icmp statement
 kernel statement
information disclosure (security risk)
informational RFCs
init command (dip)
init script option (pppd)
init.d/httpd script (Apache)
Initial Sequence Number (ISN)
inittab file, runlevels and
INPUT_MAIL_FILTER macro (sendmail)
insmod command (Linux)
installation
 Apache, overview
 PPP
 sendmail
int domain
InterDomain Routing Protocol (IDRP)
interface argument (ifconfig command)
interface parameter
 gated isis statement
 gated kernel statement
 gated ospf statement
 gated rip statement
 gated static statements
interface-interval option (named)
interfaces
 configuring
 checking
 ifconfig command
 troubleshooting
 connectors (OSI Physical Layer)
 determining avaliable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 enabling and disabling, ifconfig command
 gated support
 hardware, identifying installed
 serial lines, overview
interior routing protocols
 gated sample configuration
 OSPF
 overview
 RIP
 routed command
Intermediate System to Intermediate System [See IS-IS]
internal classes, sendmail
Internet
 architecture, routing
 growth of
 effect on addressing schemes
 history of
 tier-one providers
Internet Assigned Numbers Authority [See IANA]
Internet Control Message Protocol [See ICMP]
Internet Control Protocol (IPCP)
Internet Corporation for Assigned Names and Numbers [See ICANN]
Internet end user (organizational type)
Internet Engineering Task Force [See IETF]
Internet Header Length (IHL) field
Internet Layer
 ICMP
 IP datagrams
 forwarding
 fragmenting
 routing
Internet Protocol [See IP]
Internet Routing Registry [See IRR]
Internet Service Providers [See ISPs]
Internet standards (RFCs)
intr option (vfstab file)
intranets
 defined
intruder detection
IP (Internet Protocol)
 datagrams
 forwarding datagrams
 fragmenting datagrams
 overview
 RFC 791
 routing datagrams
 versions
IP addresses
 assigning
 contiguous blocks of
 ifconfig command 2nd
 bit masks
 broadcast
 assigning
 CIDR
 classes
 data delivery
 datagrams
 default masks, identifying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dotted decimal notation
 expected utilization rate
 hostnames
 locating with dig
 interpreting
 IPv6
 loopback, localhost
 multicast
 natural mask
 network growth, effect on addressing schemes
 nslookup and
 obtaining 2nd
 official, assessing need for
 pppd command and
 registries, obtaining addresses from
 resolution
 reverse domains
 routing tables, reducing size of
 share command and
 shortage of
 structure
 subnet masks
 assigning
 creating
 RFCs
 subnets
 translation
 forward-mapping zone files
 overview
 reverse zone files
 troubleshooting
 unicast
 uniqueness of
IP datagram header
ip module, ip_forwarding variable
ip_forwarding variable (ip module), configuring
IPADDR (Linux configuration value)
IPCP (Internet Control Protocol)
ipcp-accept-local option (pppd)
ipcp-accept-remote option (pppd)
ipcp-max-configure option (pppd)
ipcp-max-failure option (pppd)
ipcp-max-terminate option (pppd)
ipcp-restart option (pppd)
Ipkts field (netstat command)
ipparam option (pppd)
iptables command
 filtering routers
 samples
IPv4 flag (ifconfig command)
IPv6 2nd
 demand for
 efficiency of
ipv6 option (pppd)
ipv6cp-max-configure option (pppd)
ipv6cp-max-failure option (pppd)
ipv6cp-max-terminate option (pppd)
ipv6cp-restart option (pppd)
ipv6cp-use-ipaddr option (pppd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ipv6cp-use-persistent option (pppd)
IRR (Internet Routing Registry) 2nd
IRs (Internet Registries), address requests
IS-IS (Intermediate System to Intermediate System), overview
isis statement (gated)
ISN (Initial Sequence Number)
ISPs (Internet Service Providers)
 addresses, assigning
 as organizational type
ISS (automated system monitoring)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

j macro (sendmail), inspecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

K command (sendmail)
 address transformation
kdebug option (pppd)
keep all parameter (gated)
KeepAlive directive (Apache)
KEEPALIVE messages (BGP)
keepalivesalways parameter (gated)
KeepAliveTimeout directive (Apache)
kernel
 configuration
 dynamically loadable modules
 overview
 configuring, Linux 2nd 3rd
 recompiling
kernel level autoconfiguration (Linux kernel configuration)
kernel statement (gated)
kernel/drv directory
Kernel/User netlink socket option (Linux kernel configuration)
key statement (named.conf file)
keyword/value pairs, ifconfig syntax
keywords [See also directives]
 chat
 dbmmanage command
 FancyIndexing
 netmask
 route command
KNOWN keyword (tcpd access control)
krb4 value (share command)
ktune option (pppd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

L flag (Linux routing table)
label field (inittab file)
lame-ttl option (named)
LanguagePriority directive (httpd.conf file)
laptop computers, as troubleshooting tool
last command, security and
layers
 OSI Model
 TCP/IP models
lcladdr parameter
 gated bgp statement
 gated egp statement
LCP (Link Control Protocol)
lcp-echo-failure option (pppd)
lcp-echo-interval option (pppd)
lcp-max-configure option (pppd)
lcp-max-failure option (pppd)
lcp-max-terminate option (pppd)
lcp-restart option (pppd)
ldap (sendmail K command value)
LDAPROUTE_DOMAIN macro (sendmail)
LDAPROUTE_DOMAIN_FILEmacro (sendmail)
leases, DHCP
level parameter (gated)
lib/modules directory
lifetime parameter (gated)
limited broadcast addresses
limited use protocols
Line Printer (LP), configuring
Linelimit field (sendmail)
Link Control Protocol (LCP)
Link-State Advertisement (LSA)
link-state database (OSPF)
link-state protocols
linkname option (pppd)
Linux
 broadcast addresses, setting
 commands
 depmod
 dmesg
 insmod
 lsmod
 modprob
 rmmod
 domain names
 Ethernet promiscuous mode, enabling and disabling
 filesystem type, specifying
 fstab files
 ifcfg-eth0 file
 interface configuration files
 kernel configuration 2nd
 Ethernet
 help
 options
 loadable modules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 minicom
 mount options
 named.conf file, caching-only servers
 netstat -in command output
 network interfaces, checking status
 NFS, exports file
 NIS domains
 NIS server, initializing
 point-to-point connections, defining
 printcap configuration tool
 rc.local script
 rc.sysinit script
 routing cache, examining
 routing metric, changing
 routing tables
 adding routes
 runlevels
 sendmail startup script
 serial ports, troubleshooting
 smb.config file, location
 static routing, adding to startup scripts
Listen option (multi-homed servers)
listen-on option (named)
load printers parameter (smb.config file)
LoadModule directive (httpd.conf file)
Local Information (generic-linux.cf section)
Local Internet Registry (organizational type)
LOCAL keyword (security)
local mailer
local option (pppd)
LOCAL_CONFIG macro (sendmail)
LOCAL_DOMAIN macro (sendmail)
local_IP_address\:remote_IP_address option (pppd)
LOCAL_NET_CONFIG macro (sendmail)
LOCAL_RULE_n macro (sendmail)
LOCAL_RULESETS macro (sendmail)
LOCAL_USER
 m4 sendmail macro
 sendmail macro
localas parameter
 gated bgp statement
 gated egp statement
LOCALDOMAIN environment variable
localhost file
localhost, converting from loopback address
Location directive (httpd.conf file)
lock option (pppd command) 2nd
lockd command (NFS)
log file parameter (smb.config file)
log files
 Apache directives
 Apache, conditional logging
 monitoring
 sendmail
 share command
 xinetd
log option (share command)
logfd option (pppd)
logfile option (pppd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LogFormat directive (Apache)
logging statement (named command)
loghost (Solaris hostname)
login activity, security considerations
login option (pppd)
login scripts, PPP servers, configuring
LOGOUT command (IMAP)
logupdown parameter (gated)
loopback addresses
 converting to localhost
 localhost
 named.conf file
 routing tables
loopback interface (Solaris), configuring
loopback route
lp files
lp/Systems file
lpadmin command
lpd
 printcap file
lpq command
lpr command 2nd
lprm command
lpsystem command
LSA (Link-State Advertisement)
lsmod command (Linux)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M command (sendmail)
m configuration option (Linux kernel)
M flag (Linux routing table)
m4 macros
 sendmail compiler options
 sendmail configuration files
 creating
macros
 configuration file
 define
 DNS
 DOMAIN source file
 FEATURE
 m4
 OSTYPE
 sendmail, conditionals
 sendmail.cf file
mail gateways
mail relay servers, sendmail features
mail relays
mail servers
 IMAP servers, configuring
 POP servers, configuring
mail services
 IMAP
 MIME
 POP
 SMTP
MAIL_FILTER macro (sendmail)
mail11 mailer
Mailer Definitions (generic-linux.cf section)
mailer flags, sendmail
MAILER macro (sendmail) 2nd
MAILER source file
MAILER_DEFINITIONS macro (sendmail)
mailers (sendmail)
 definition fields
 definitions
 M command
mailertable (sendmail database feature)
mailing lists, dhcpd
maintain-ixfr-base option (named)
maintenance hand tools
make command, variations of
make config command
make menu config command
make xconfig command
makemap command (sendmail)
manual routing
manually allocating addresses (DHCP)
mapping users to UIDs/GIDs (Linux exports file)
maps
 auto_home
 automounter configuration
 NIS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mark (gated)
martians
 gated
MASQUERADE_AS (sendmail macro) 2nd
MASQUERADE_DOMAIN (sendmail macro) 2nd
MASQUERADE_DOMAIN_FILE (sendmail macro) 2nd
MASQUERADE_EXCEPTION (sendmail macro) 2nd
masquerading
 sendmail features
 sendmail macros
master map configuration file (automounter)
master name server
 configuration
master server
max log size parameter (smb.config file)
max-cache-ttl (named)
max-ixfr-log-size option (named)
max-lease-time parameter (dhcpd) 2nd
max-ncache-ttl option (named)
max-refresh-time (named)
max-retry-time (named)
max-transfer-idle-in (named)
max-transfer-idle-out (named)
max-transfer-time-in option (named)
max-transfer-time-out (named)
maxadvinterval parameter (gated)
MaxClients directive (Apache)
maxconnect option (pppd)
maxfail option (pppd)
maximum transmission unit [See MTU]
MaxKeepAliveRequests directive (Apache)
MaxRequestsPerChild directive (Apache)
Maxsize field (sendmail)
MaxSpareServers directive (Apache)
maxup parameter (gated)
MAXWEEKS (passwd file value)
memstatistics-file option (named)
message (MIME data)
Message Precedence (generic-linux.cf section)
messages
 ICMP
 UDP
metric (routing)
 changing, ifconfig command
 gated preference values
metric argument (route command)
Metric field (Linux routing table) 2nd
metric keyword (routed command)
metricout parameter
 gated bgp statement
 gated egp statement
mil domain
MILNET
MIME (Multipurpose Internet Mail Extensions)
 defining, Apache
 message body type (sendmail)
MIME protocol, Presentation Layer
min-refresh-time (named)
min-retry-time (named)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

min-roots option (named)
minadvinterval parameter (gated)
minhello parameter (gated)
minicom, troubleshooting modems
minpoll parameter (gated)
MinSpareServers directive (Apache)
MINWEEKS (passwd file value)
mixed (MIME data subtype)
mobile systems, dynamic address allocation
mod_auth (Apache module)
mod_so.c (DSO module)
mod_ssl module (Apache)
mode command (dip) 2nd
MODE variable (sendmail)
modem command (dip)
modem option (pppd) 2nd
 configuring PPP servers
modems, troubleshooting
MODIFY_MAILER_FLAGS macro (sendmail)
modlist option (ifconfig command), kernel modules listing
modprobe command (Linux)
module dependencies
modules
 Apache, user authentication
 arp, options
 httpd.conf file, dynamically loadable
 Linux
 listing
 removing 2nd
monitorauthkey parameter (gated)
monitoring
 security considerations
 find command
 intruder detection
 login activity
mount command
mount options, Linux
mountall command
mountd command
mounthost= option (fstab file)
mounting directories
 mount command
 remote
mountport= option (fstab file)
mountprog= option (fstab file)
mountvers= option (fstab file)
mp option (pppd)
mpeg (MIME data subtype)
mpshortseq option (pppd)
mrru option (pppd)
mru option (pppd)
ms-dns option (pppd)
ms-wins option (pppd)
MTU (maximum transmission unit)
 changing, ifconfig command
 DHCP and
Mtu field (netstat command)
mtu option (pppd)
multi-homed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hosts
 servers, options
 sites, ASNs
multi-homed host firewall architecture
multicast (gated)
multicast addresses 2nd
MULTICAST flag (ifconfig command)
multicast parameter (gated)
multicast routing option (Linux kernel configuration)
multicasting option (Linux kernel configuration)
multilink option (pppd)
multipart (MIME data content type)
multiple-cnames option (named)
multiplexing
 data delivery
MultiViews (Options directive setting)
museum domain
MX (mail exchange) records
MX records
 forward-mapping zone files
 nslookup command and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

n configuration option (Linux kernel)
name domain
name field (inet.conf file)
Name field (netstat command)
name field (resource records)
name option (pppd)
name servers 2nd 3rd 4th
 classifications
 dig debugging tool
 Samba
 software
 system configuration
Name Service Switch file
name services
 BIND, overview
 domain names, obtaining
name value (DNS resource records)
named command
 BIND 9 statements
 controls
 logging
 options
 server
 view
 zone
 command-line options
 configuring
 controls statement
 error messages
 logging statement
 running
 signal processing
 syntax
 zone statement
named server daemon
named-xfer option (named)
named.ca file
named.conf file
 caching-only servers
 configuration commands
 overview
named.local file
nameserver entry (resolv.conf file)
namlen= option (fstab file)
NAPs (Network Access Points)
NAT (network address translation)
 compared to proxy servers
 non-connected networks
 overview
 scalability
National Institute of Standards and Technology [See NIST]
National Science Foundation (NSF), NSFNet
natural mask
NBT (NetBIOS over TCP/IP)
NCC (Network Control Center)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ndc command
ndd command, configuration options
ndots option (resolv.conf file)
neighbor clause (gated)
Nessus (automated system monitoring)
net domain
net keyword (routed command)
Net/Dest field (netstat command)
NetBIOS
 file sharing and
 Samba and
NetBIOS over TCP/IP (NBT)
Netfilter Configuration option (Linux kernel configuration)
netgroup option (share command)
netinfo (sendmail K command value)
netmask (gated)
NETMASK (Linux configuration value)
netmask command (dip)
netmask keyword
netmask mask argument (ifconfig command)
netmask option (pppd)
netmasks file (Solaris)
netstat
 -nr command
 diagnostic troubleshooting
netstat -in command
 fields
 Linux output
netstat command
 network interfaces, determining available
 routing, troubleshooting
 troubleshooting with
NETWORK (Linux configuration value)
Network Access Layer 2nd
Network Access Points [See NAPs]
network adapters, Linux kernel configuration
network address translation [See NAT]
network administration
 decentralized
 defined
 hostnames
 remote administrators, contacting
 routing and
 security information resources
Network Control Center (NCC)
Network Control protocols
Network File System [See NFS]
network file, NIS domains
Network Information Center [See NIC]
Network Information Service [See NIS]
Network Layer (OSI Model)
network numbers
Network packet filtering option (Linux kernel configuration)
network services
 configuration servers
 DHCP 2nd
 RARP
 defined
 DNS 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 email, planning
 file servers
 file sharing
 inetd
 Linux kernel configuration
 mail
 IMAP
 MIME
 POP
 SMTP
 name servers, running
 name servers, Samba
 NFS
 configuring
 daemons
 mounting remote directories
 overview
 NIS
 port numbers and
 print servers
 Line Printer
 lpd
 lpr command
 overview
 printcap file
 restoring
 Samba, overview
 sendmail 2nd
Network Terminal Protocol [See telnet]
Network unreachable error (ping command)
networks
 access troubleshooting
 arp command
 ifconfig file
 netstat command
 autonomous systems
 configuring, startup files
 connected vs. non-connected
 enterprise
 heterogeneous
 interconnecting dissimilar physical networks
 interface configuration
 checking
 ifconfig command
 interface support (BSD Unix)
 interfaces
 determining available
 enabling and disabling
 intranets
 MTU (maximum transmission unit)
 packet fragmentation
 packet switching
 private
 routing, planning
 services
 aliases
 port numbers
 sockets
 subnet masks, distributing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 support, FreeBSD
 topology
 traffic, reducing
networks file, NIS map
newaliases command (sendmail)
news (MIME data subtype)
newsgroups, security information
next-server parameter (dhcpd)
NFS (Network File System) 2nd
 automounter
 configuration files
 daemons
 distributed servers, managing
 exports file
 mount command
 overview
 Unix
 configuring
 mounting remote directories
 vfstab files, options
nfs directory
nfs.client file
nfs.server file
nfsd command
nfslogd command
nfsprog= option (fstab file)
nfsvers= option (fstab file)
NIC (Network Information Center), host tables
NIS (Network Information Service)
 domains
 host tables and
 maps 2nd
 initializing
 Name Service Switch file
 NIS+
 overview
nis (sendmail K command value)
nisplus (sendmail K command value)
NIST (National Institute of Standards and Technology), Computer Security Division web site
nmbd command (Samba)
No answer error (ping command)
no-check-names option (resolv.conf file)
no_access parameter (xinetd)
noac option (vfstab file)
noaccomp option (pppd)
noaggregatorid parameter (gated)
noauth option (pppd)
nobsdcomp option (pppd)
NoCache option (proxy server caching)
noccp option (pppd)
nocrtscts option (pppd)
nocto option (fstab file)
nodefaultroute option (pppd)
nodeflate option (pppd)
nodetach option (pppd) 2nd
nodtrcts option (pppd)
noendpoint option (pppd)
nogendefault parameter
 gated bgp statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 gated egp statement
noinstall parameter (gated)
nointr option (vfstab file)
noip option (pppd)
noipdefault option (pppd)
noipv6 option (pppd)
noktune option (pppd)
nolock option (fstab file)
nolog option (pppd)
nomagic option (pppd)
nomp option (pppd)
nompshortseq option (pppd)
nomultilink option (pppd)
non-authoritative servers
non-connected networks
non-encoded binary data
non-standards track protocols, types of
None (Options directive setting)
none value (share command)
nopcomp option (pppd)
nopersist option (pppd)
nopredictor1 option (pppd)
noproxyarp option (pppd)
noquota option (vfstab file)
noresolv (gated)
normal (gated)
nosend (gated)
nostamp (gated)
nosub option (share command)
nosuid option
 share command
 vfstab file
not authoritative parameter (dhcpd)
not recommended protocols
notify option (named)
notify-source (named)
NOTRAILERS flag (ifconfig command)
notty option (pppd)
nov4asloop parameter (gated)
novj option (pppd)
novjccomp option (pppd)
NS (name server) records
 forward-mapping zone files
 named.ca file
 named.local file
 pointers
 reverse zone files
nserver field (RIPE database)
NSFNet
 routing policy database
nslookup (debugging tool)
 diagnostic troubleshooting
 name service, checking with
nsswitch.conf file
null (sendmail K command value)
Number value (dhcpd option statement)
numeric values (printcap file)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O command (sendmail)
octet data, MIME encoding
octet-stream (MIME data subtype)
Oerrs field (netstat command)
official Internet addresses, assessing need for
ONBOOT (Linux configuration value)
one-time passwords
 OPIE
ONEX command (ESMTP)
only_from parameter (xinetd)
OPEN messages (BGP)
Open Shortest Path First [See OSPF]
open standards protocol development
Open Systems Interconnect Reference Model [See OSI]
OpenSSL (Apache)
OPIE (One-time Passwords in Everything)
Opkts field (netstat command)
option statement (dhcpd)
Options directive (Apache)
options entry (resolv.conf file)
Options field (DHCP)
options parameter (gated)
options statement
 BSD Unix kernel configuration
 named.conf file
OPTIONS variable (sendmail)
Order directive (Directory containers)
order_spec option (named)
org domain
organizational domains (DNS)
organizational types
OSI (Open Systems Interconnect Reference Model)
 Application Layer
 Data Link Layer
 layers
 Network Layer
 Physical Layer
 Presentation Layer
 Session Layer
 Transport Layer
OSPF (Open Shortest Path First)
 designated routers
 directional graphs
 equal-cost multi-path routing
 Hello packets
 hierarchy of routing areas
 link-state database
 LSA (Link-State Advertisement)
 overview
 security
ospf statement (gated)
OSTYPE macro (sendmail) 2nd 3rd
other parameter (gated)
outdelay parameter (gated)
overload-bit parameter (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overriding sender addresses (sendmail)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

P command (sendmail)
packages
 Apache, locating names of
 wrapper, security 2nd
packet filtering
 snoop and
Packet socket option (Linux kernel configuration)
packet switching networks
packets 2nd [See also datagrams]
 capturing, BSD Unix support
 DHCPDISCOVER
 DHCPOFFER
 filtering
 fragmentation, avoiding
 gateways
 Hello (OSPF)
 MTU (maximum transmission unit)
 routing
 routing tables
packets option
 BGP
 EGP tracing
packets parameter (gated)
PAP (Password Authentication Protocol)
pap-max-authreq option (pppd)
pap-restart option (pppd)
pap-secrets file
pap-timeout option (pppd)
papcrypt option (pppd)
PAR (Positive Acknowledgment with Re-transmission)
parallel (MIME data subtype)
parameter statements (dhcpd)
parameters
 define m4 macro
 dhcpd.conf file
 gated
 aggregate statement
 bgp statement
 egp statement
 icmp statement
 isis statement
 kernel statement
 ospf statement
 rip statement
 routerdiscovery statement
 smux statement
 static statements
 iptables command
 printcap file
parity command (dip)
parse (gated)
partial (MIME data subtype)
PASS command (POP)
pass-filter option (pppd)
passive (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

passive keyword (routed command)
passive option (pppd command)
 configuring PPP servers
passive parameter (gated)
PASSLENGTH (passwd file value)
passwd command (Solaris)
passwd file
 default values
 PPP servers, configuring
 sample script
 security considerations
Password Authentication Protocol (PAP)
password command (dip) 2nd
password parameter (gated)
passwords
 aging
 authentication, OSPF
 databases, user authentication (Apache)
 one-time
 OPIE
 Samba
 selecting
 user authentication
 shadow password files
Path fields (sendmail)
path section (Solaris PPP configuration)
pattern matching, sendmail rewrite rules
PCM (pulse code modulation)
peer subclause (gated)
peeras parameter (gated)
peers
 BGP 2nd
 network servers
performance
 address translation
 Apache, directives
 packet fragmentation, avoiding
perimeter networks (firewalls)
permanent addresses
 assigning (dhcpd.conf file)
 fixed (DHCP)
persist option (pppd)
ph (sendmail K command value)
phquery mailer
PID option (xinetd)
pid-file option (named)
PidFile directive (httpd.conf file)
ping command
 diagnostic troubleshooting
 implementing
 routing tables and
 troubleshooting with
pkgadd command, Solaris device drivers
plain text (MIME data subtype)
plugin option (pppd)
plumb option (loopback interface configuration)
point-to-point connections, defining (ifconfig command)
Point-to-Point Protocol [See PPP]
pointers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name server record
pointopoint (gated)
poison reverse (routing)
policies
 routing, BGP and
 security, creating
policy (gated)
policy routing database (NFSnet)
polls (EGP)
POP (Post Office Protocol)
 commands
 MAILER command
 servers, configuring
port (named)
port command (dip) 2nd
Port directive (httpd.conf file)
port numbers 2nd 3rd 4th
 data delivery
 Unix
port parameter (gated)
port= option (vfstab file)
portmapper
ports
 DHCP
 DNS
 IMAP
 POP
 sendmail
 SMTP
PortSentry (automated system monitoring)
Positive Acknowledgment with Re-transmission (PAR)
posix option (vfstab file)
PostScript (MIME data subtype)
PPP (Point-to-Point Protocol)
 BSD Unix support
 chat scripts
 configuring Solaris
 dialup connections, configuring
 installing
 overview
 pppd command
 security
 servers, configuring
ppp/options file
ppp/options.device file
pppd command
 authentication protocols
 dedicated connection configuration
 invoking dial-up scripts
 options 2nd
 PPP servers, configuring
 security
 signal processing
 syntax
ppprc file (ppd)
PRDB (policy routing database)
precedence command (sendmail)
predictor1 option (pppd)
preference (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preference parameter
 gated aggregate statement
 gated bgp statement
 gated egp statement
 gated isis statement
 gated rip statement
 gated routerdiscovery statement
 gated static statements
prefix-length (IP addresses)
Presentation Layer (OSI Model)
primary servers
print command (dip)
print jobs, commands
print servers
 network services, print servers
printcap file
printcap name parameter (smb.config file)
printconf-gui
Printer Driver field (printconf-gui)
printer services
 Line Printer, configuring
 lpd
 printcap file
 lpr command
 overview
printers, sharing, Samba
printing parameter (smb.config file)
private key
private networks
privgroup option (pppd)
pro domain
process field (inittab file)
process status command, httpd, locating
processes, httpd, managing
procmail mailer
prog mailer
program (sendmail K command value)
promiscuous mode (Ethernet), enabling and disabling
proposed standards (RFCs)
proto parameter (gated)
proto= option (vfstab file)
protocol field (inet.conf file)
protocol numbers 2nd
 datagram headers
protocols
 Application Layer
 Internet Layer
 ICMP
 IP 2nd 3rd 4th 5th
 Network Access Layer
 non-standards track
 open standards development
 peers
 routing
 BGP
 EGP
 exterior
 gated
 interior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OSPF
 RIP
 RIP-2
 routed command
 selecting
 stack
 headers
 standards 2nd
 tracing, gated
 Transport Layer
 TCP
 UDP
 troubleshooting
 ftp failure
 overview
 snoop
protocols file (/etc/protocols) 2nd
proxy servers
 caching options
 compared to NAT boxes
 non-connected networks
 scalability
 security
proxyarp command (dip)
proxyarp option (pppd)
ProxyRequests option (proxy server caching)
ProxyVia option (proxy server caching)
ps command, Apache software, locating
psend command (dip)
pseudo-device statement, BSD Unix kernel configuration
psn-interval parameter (gated)
PTR (Domain Name Pointer) records
 named.local file
 reverse zone records
pty option (pppd)
public key encryption 2nd
 ssh
 stunnel
 tools
public option
 share command
 vfstab file
pubring.gpg file
pulse code modulation (PCM)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

QoS and/or fair queue option (Linux kernel configuration)
qpage mailer
query authentication parameter (gated)
query types (dig)
query-response applications, UDP and
query-source option (named)
Question (DNS response packets)
Queue field (netstat command)
QUEUE keyword (iptables command)
QUEUEINTERVAL variable (sendmail)
quicktime (MIME data subtype)
QUIT command
 POP
 SMTP
quit command (dip)
quota option (vfstab file)
quoted-printable (MIME encoding type)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R command (sendmail)
r commands (Unix)
 disabling
 security considerations
R flag (Linux routing table)
RADB (Routing Arbiter Database)
 registering in
range parameter (dhcpd) 2nd
RARP (Reverse Address Resolution Protocol)
RAs (Routing Arbiters)
raw field (inet.conf file)
rc.local script
 BSD Unix
 Linux
 routing startup scripts
rc.sysinit script, Linux
rdist command
re-transmission
reachability information
 autonomous systems
 EGP
 exterior routing protocols
read access (filesystems)
ReadmeName directive (Apache)
receive option (pppd)
Recipient field (sendmail)
recommended protocols
reconfigure file (Solaris)
record option (pppd)
RECORD option (xinetd)
recursion option (named)
recursive searches (DNS)
recursive servers (DNS)
recursive-clients (named)
recv (gated)
recvbuffer parameter (gated)
Red Hat Linux
 caching-only servers, configuring
 DSO modules
 Ethernet device drivers
 httpd.conf file, location
 named command, running
 NIS domains
 printcap configuration tool
 sendmail, startup script
 updating
Redirect Message (ICMP) 2nd
redirect parameter (gated) 2nd
redirect statement (gated)
redirection, routing
Ref field (Linux routing table) 2nd
refuse-chap option (pppd)
refuse-pap option (pppd)
regex (sendmail K command value)
Regional Internet Registries (IRs), address requests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registered hosts
registries, addresses, obtaining from
reject (gated)
reject parameter (gated)
relay mailer
RELAY_DOMAIN (sendmail macro) 2nd
RELAY_DOMAIN_FILE (sendmail macro) 2nd
reliability
 address translation
 interface configuration methods
 TCP
remnantholdtime parameter (gated)
remnants parameter (gated)
Remote File Distribution Program
Remote Procedure Calls [See RPCs]
remotename option (pppd)
replace (gated)
REPORT keyword (chat)
request parameter (gated)
Requests for Comments [See RFCs]
Require directive (Apache)
require-chap option (pppd)
require-pap option (pppd)
required protocols
Reseaux IP Europeens [See RIPE]
reserved addresses
reset command (dip) 2nd
resolv.conf file 2nd
 entries
 sample configuration
resolver code
resolver software (name service)
resolver-only configurations
resolvers
 configuring 2nd 3rd
 sample configuration
resource records
 DNS
resources, security
Responsible Person (RP) records
restrict parameter (gated)
retain parameter (gated)
RETR command (POP)
retrans= option (vfstab file)
retry= option (vfstab file)
RETURN keyword (iptables command)
Reverse Address Resolution Protocol (RARP)
reverse domains
reverse zone file
reverse-mapping zone file
rewrite rules (sendmail)
 pattern matching
 transformation field
 transformation with database
Rewriting Rules (generic-linux.cf section)
RFC 1033 2nd 3rd
RFC 1035
RFC 1055
RFC 1172

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RFC 1281 2nd
RFC 1470
RFC 1521
RFC 1661
RFC 1812
RFC 1869
RFC 1878
RFC 1918
RFC 2050
RFC 2060
RFC 2196 2nd
RFC 2901
RFC 791 2nd
RFC 792
RFC 793
RFC 821
RFC 822
RFC 826
RFC 894
RFC 919
rfc2308-type1 option (named)
rfc822 (MIME data subtype)
RFCs (Requests for Comments)
 Network Access Layer
 obtaining on Web
 obtaining through email
 protocol development
 subnet masks
rhosts file, security considerations 2nd
ribs unicast parameter (gated)
richtext text (MIME data subtype)
RIP (Routing Information Protocol) 2nd
 ifconfig command and
 limitations
 overview
 routed command
rip statement (gated)
RIP-2
RIPE (Reseaux IP Europeens)
 database fields
RIPE Network Control Center
RIPE-181 standard
rmmod command (Linux)
ro option
 exports file
 share command
root access
 preventing, exports file
 share command and
root domain (DNS)
root hints file
root servers
 cache initialization files
 DNS
root_squash setting (exports file)
rotate option (resolv.conf file)
route (gated)
route command
route filters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

routed command
 gateways file
 implementing
routerdiscovery parameter (gated) 2nd 3rd
routerid (gated)
routers
 filtering
 iptables command
 interconnecting dissimilar physical networks
 multicast addresses
routes parameter (gated) 2nd
routing 2nd
 bilateral agreements
 classful
 common configurations
 consolidated
 data delivery
 databases, registering
 datagrams
 distance-vector algorithms
 domains
 filters, gated and
 gated
 Internet architecture
 planning
 poison reverse
 policies, AS path
 protocols
 BGP
 EGP
 exterior
 interior
 OSPF
 RIP
 RIP-2
 routed command
 selecting
 system configuration and
 redirection
 slow convergence problem
 split horizon
 triggered updates
 troubleshooting
 traceroute command
Routing Arbiter Database [See RADB]2nd [See RADB]
Routing Arbiters (RAs)
Routing Information Protocol [See RIP]2nd [See RIP]
routing tables
 bit mask
 cache
 contents of
 default gateways
 deleting routes, RIP
 destination values
 dynamic
 end-to-end routes
 informational fields
 Linux
 loopback route

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 metric, changing with ifconfig command
 ping command
 reducing size of
 routd command
 Solaris
 static
 adding routes
 creating
routing updates (RIP)
RP (Responsible Person) records
RPCs (Remote Procedure Calls), port numbers
rquotad command
rrset-order option (named)
RS232C connectors
rsize= option (vfstab file)
rulesets (sendmail)
runlevel field (inittab file)
runlevels
 inittab file
 System V startup
RUNNING flag (ifconfig command)
rw option
 exports file
 share command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S command (sendmail)
SAINT (automated system monitoring)
Samba
 daemon
 directory sharing
 name servers
 overview
 passwords
 printer sharing 2nd
 server, configuring
SANS (System Administration, Networking and Security) Institute web site
SARA (automated system monitoring)
SAY command (chat)
scalability
 address translation compared to proxy servers
 DNS
 gateway hierarchy
 host tables
scaninterval (gated)
ScoreBoardFile directives (httpd.conf file)
scp (secure copy)
screened subnet firewall architecture
ScriptAlias directive (httpd.conf file)
scripts, system initialization
search entry (resolv.conf file)
sec= option (vfstab file)
sec=type option (share command)
secondary servers
secret field (chap-secrets file)
secring.gpg file
secure servers, bastion hosts
security
 access control
 language extensions
 overview
 shell command
 tcpd
 aclok option (share command)
 address spoofing
 address translation
 applications
 removing unnecessary
 updating
 authentication
 shadow password files
 ssh
 chat
 dedicated connections and
 distributing responsibility
 subnets
 encryption
 public key
 public key tools
 stunnel
 symmetric

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 firewalls
 filtering routers
 functions of
 iptables command
 overview
 information resources
 Internet connection considerations
 passwords
 one-time
 OPIE
 selecting
 planning, overview
 policies, creating
 PPP
 proxy servers
 r commands (Unix)
 disabling
 resources
 risks
 types of
 Samba, encrypted passwords
 ssh
 system monitoring
 find command
 intruder detection
 login activity
 trusted hosts
 user authentication
 vendors, information mailing lists
 web servers
 CGI scripts
 overview
 SSI
security parameter (smb.config file)
segment header
segments
 format
 TCP headers
SELECT command (IMAP)
send (gated)
send command (dip) 2nd
sendbuffer parameter (gated)
Sender fields (sendmail)
sendmail [See also email]2nd 3rd
 aliases, overview
 classes
 E
 M
 P
 w
 command-line arguments
 compiling
 configuration commands
 configuration file
 creating with m4 macros
 local information
 modifying
 Options section
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 samples
 structure
 testing
 testing rewrite rules
 configuration options
 configuring
 define class command
 define macro command
 headers command
 mailers command
 overview
 precedence command
 set option command
 set ruleset command
 trusted users command
 version level command
 as daemon
 databases, address transformation
 define m4 macro
 Domain source file
 DOMAIN source file
 DNS features
 DNS macros
 FEATURE macro
 forwarding
 installing
 internal classes
 K command
 m4 macros
 macros, conditionals
 mailer definitions
 mailer flags
 MAILER source file
 masquerading features
 masquerading macros
 options
 OSTYPE macro
 overview
 queue processing time
 relay features
 rewrite rules
 pattern matching
 transformation fields
 transformation with database
 SMTP, receiving
 source code distribution web site
 spam macros
 test commands
sendmail.cf file
 configuring
 creating with m4 macros
 modifying
 local information
 Options section
 overview
 overview
 samples
 structure
 testing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 testing rewrite rules
sequence (sendmail K command value)
Sequence Number field, TCP headers
Serial Line IP protocol, BSD Unix support
serial lines
 connections, troubleshooting
 overview
 protocols, SLIP
serial ports, troubleshooting
serial-queries option (named)
server field
 chap-secrets file
 inet.conf file
Server Message Block (SMB)
Server Selection (SRV) records
server setting (smb.config file)
Server Side Includes [See SSI]
server statement (named.conf file)
server string parameter (smb.config file)
server-identifier parameter (dhcpd)
server-name parameter (dhcpd)
ServerAdmin defines (httpd.conf file)
ServerAdmin values (Apache), changing (Solaris)
ServerName (httpd.conf file)
ServerRoot directive (httpd.conf file)
servers [See also Apache; web servers]
 caching-only
 configuration
 configuration
 DHCP
 RARP
 distributed, management
 DNS, authoritative
 IMAP
 configuring
 testing
 mail
 master name
 configuration
 name, classifications
 NFS
 POP, configuring
 PPP, configuring
 root
 cache initialization files
 Samba, configuring
 slave
 configuration
 TCP/IP networks compared to PC LAN servers
ServerType directive (httpd.conf file)
service extensions, SMTP
services file, NIS map
Session Layer (OSI Model) 2nd
set option command (sendmail)
SetEnvIf directive (Apache)
setgid files, share command and
setuid files, share command and
sftp (secure shell)
shadow password files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

share command
 options
 persistence
share setting (smb.config file)
shared media networks
shared-network statement (dhcpd)
sharp sign (#)
 automounter comments
 comments
 comments in host table
 inittab file
shell command
 dip
 security
shell files, security considerations
show-password option (pppd)
showmount command
showwarnings parameter (gated)
sig-validity-interval (named)
SIGHUP
 gated signal processing
 named signal processing
 pppd signal processing
SIGILL (named signal processing)
SIGINT
 gated signal processing
 named signal processing
 pppd signal processing
SIGKILL (gated signal processing)
signal processing
 gated
 named command
 pppd
SIGSYS (named signal processing)
SIGTERM
 gated signal processing
 named signal processing
SIGUSR1
 gated signal processing
 named signal processing
 pppd signal processing
SIGUSR2
 named signal processing
 pppd signal processing
SIGUSR2 (gated signal processing)
SIGWINCH (named signal processing)
silent option (pppd)
Simple Mail Transfer Protocol [See SMTP]2nd [See SMTP]
simplex (gated)
SITE macro (sendmail)
SITECONFIG macro (sendmail)
size bytes (gated)
size field (lsmod command)
skey command (dip)
slave servers 2nd
 configuring 2nd
sleep 2 command (dip)
sleep command (dip)
SLIP (Serial Line IP)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 limitations
SLIP END character
SLIP ESC character
SMB (Server Message Block)
smb.conf file
 directory sharing
 global section
 home section
 name server configuration
 printer sharing
smbd command
smbpasswd file
SMTP (Simple Mail Transfer Protocol) 2nd
 commands
 source code
 viewing
 ESMTP (Extended SMTP)
 private extensions to
 sendmail
 required macros
 service extensions 2nd
smtp mailer
smtp8 mailer
smux statement (gated)
snoop
 diagnostic troubleshooting
 troubleshooting protocols
 ftp failure
Snort (automated system monitoring)
SOA (Start of Authority) records
 forward-mapping zone files
 named.local file
 reverse zone files
socket options parameter (smb.config file)
sockets 2nd
soft option (vfstab file)
Solaris
 AddModule directive, modules referenced
 Apache
 configuring
 Directory containers
 bootup
 broadcast addresses, setting
 configuration files
 command-line option to override location
 syslog.conf
 device drivers, installing
 dmesg command
 DSO modules
 dynamically loadable modules
 Ethernet, ifconfig command
 filesystem type, specifying
 hostname file
 httpd.conf file
 configuration directives
 location
 ifconfig command, syntax
 IndexOptions directive (Apache)
 kernel configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 loghost alias
 mountall command
 named command, running
 netmasks file
 network interfaces, checking status
 NFS, daemon locations
 physical network address
 ping command option
 point-to-point connections, defining
 PPP, configuring
 printers, configuring
 rc.script files
 routed command, running
 routing metric, changing
 routing tables
 runlevels
 sendmail
 serial ports, troubleshooting
 shadow password files
 share command
 SMTP extensions
 static routing, adding to startup scripts
 System V startup
 vfstab files, options
sortlist command
sortlist entry (resolv.conf file)
sortlist option (named)
source field (RIPE database)
Source Port
Source Port numbers (UDP)
Source Quench Message (ICMP)
sourcegateways parameter (gated)
sourcenet parameter (gated)
spam
 preventing (sendmail features)
 sendmail macros
speed command (dip) 2nd
SPF (Dijkstra Shortest Path First) algorithm
spf-interval parameter (gated)
spoofing IP addresses
squash entries (exports file)
srm.conf (Apache configuration file)
SRV (Server Selection) records
ssh (secure shell)
ssh-keygen (secure shell)
sshd (secure shell daemon)
SSI (Server Side Includes), security considerations
SSL (Secure Sockets Layer)
 Apache
 certificates, creating
ssl CA certFile parameter (smb.config file)
SSLCertificateFile directive (Apache)
SSLCertificateKeyFile directive (Apache)
SSLEngine directive (Apache)
SSLOptions directive (Apache)
stab (sendmail K command value)
stack (protocol)
 headers
stacksize option (named)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard resource records
standards
 categories of
 protocols 2nd
standards track RFCs, maturity levels
start argument (sendmail)
Start of Authority [See SOA records]
StartServers directive (Apache)
startup files [See also bootup]
 gated
 ifconfig command
 inetd
 mountall command
 sendmail
 static routing
 Unix configuration
 xinetd
STAT command (POP)
statd command
state (gated)
static address assignment
static routing
 startup files
 tables
 adding routes
 creating
static statements (gated)
statistics-file option (named)
statistics-interval option (named)
STDs (standards RFCs)
stopbits command (dip)
store and forward protocols
STORE command (IMAP)
stream field (inet.conf file)
streams
strictinterfaces (gated)
String value (dhcpd option statement)
string values (printcap file)
stub areas (OSPF hierarchy)
stubhosts parameter (gated)
stunnel (public key encryption)
subdirectories, share command and
subdividing Ethernet segments
subdomains
subject (DSN error code)
subnet addresses
subnet masks
 assigning, ifconfig command
 creating
 defining 2nd
 distributing
 RFCs
 system configuration
subnet security, distributing responsibility
subnet statement (dhcpd) 2nd
subnetting
 need for
 organization purposes for
 plans, RFCs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 topological reasons for
summary-filter parameter (gated)
summary-originate parameter (gated)
switch (sendmail K command value)
symbols
 gated trace statements
 sendmail pattern matching
SymLinksIfOwnerMatch (Options directive setting)
symmetric encryption 2nd
SYN bit, TCP headers
sync option (pppd)
synchronization, TCP byte numbering
sys value (share command)
syslog (gated)
syslog parameter (gated)
syslog.conf configuration file
system administration
 defined
 distributed servers, managing
system configuration
 end users, distributing to
 initialization scripts
 planning
system file, Solaris configuration
System V
 Line Printer configuration
 vfstab files, options
System V startup model
 inittab file
 runlevels
systemid systemid parameter (gated)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T command (sendmail)
tag parameter (gated)
task (gated)
TCP (Transmission Control Protocol)
TCP Explicit Congestion Notification support option (Linux kernel configuration)
tcp option (fstab file)
TCP segment header
TCP syncookie support option (Linux kernel configuration)
tcp-clients (named)
TCP/IP
 architecture
 defined
 hardware independence
 history
 need for
 serial lines, overview
TCP/IP networking option (Linux kernel configuration)
tcpd (security)
tcpproto.mc file
tech-c field (RIPE database)
Technical Specification (TS) standards
telnet 2nd
TempFileMode option (sendmail)
termination code (chat)
terminfo file
terminology, OSI model
test commands (sendmail)
test mode (dip)
testing
 chat scripts
 IMAP servers
 NIS servers
 routing tables
 sendmail address rewrite rules
 sendmail configuration
 sendmail.cf file
 rewrite rules
text
 MIME data content type
 sendmail K command value
threat assessment (security), types of threat
three-way handshake
tier-one providers
timeo= option (vfstab file)
timeout command (dip)
Timeout directive (Apache)
TIMEOUT keyword (chat)
timeout option (resolv.conf file)
timeout values, sendmail
timeout, Solaris PPP
Timeout.queuereturn option (sendmail)
timer (gated)
tkey-dhkey (named)
tkey-domain (named)
top-level domains (DNS)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

topology
topology option (named)
topology statements (dhcpd)
trace_file (gated)
trace_options (gated)
traceoptions parameter
 gated isis statement
 gated ospf statement
 gated rip statement
 gated smux statement
traceroute command
 diagnostic troubleshooting
tracing protocols, gated
transfer-format option (named)
transfer-source option (named)
transfers-in option (named)
transfers-out option (named)
transfers-per-ns option (named)
transformation field (sendmail rewrite rules)
transformation metasymbols (sendmail)
transforming addresses, sendmail
 creating databases
 databases
translation, IP addresses
Transmission Control Protocol (TCP)
Transport Layer 2nd
 TCP
 UDP
Transport Layer (OSI Model)
treat-cr-as-space option (named)
triggered updates (routing)
Tripwire (automated system monitoring)
troubleshooting
 basic ideas
 cache corruption
 dig debugging tool
 effect on by setting ifconfig values
 name servers
 cache corruption
 slave servers
 spotty service
 network access
 arp command
 ifconfig command
 netstat command
 nslookup tool
 overview
 ping command and
 implementing
 protocols
 ftp failure
 overview
 snoop
 remote administrators, contacting
 routing
 traceroute command
 serial connections
 slave servers
 spotty service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tools
TRUST_AUTH_MECH macro (sendmail)
trusted hosts
Trusted Users (generic-linux.cf section)
trusted users command (sendmail)
trusted-keys statement (named.conf file)
trustedgateways parameter (gated)
TS (Technical Specification) standards
ttl field (resource records)
ttl parameter
 gated bgp statement
 gated egp statement
ttl value (DNS resource records)
tunneling option (Linux kernel configuration)
TXT records
type field
 inet.conf file
 resource records
Type field (sendmail)
type value (DNS resource records)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U flag (Linux routing table)
UDP (User Datagram Protocol)
 Transport Layer
udp option (fstab file)
UID (user ID)
 exports file
 mapping users to
 share command
uid field (inet.conf file)
undefine macro (sendmail)
unicast addresses
unicast multicast parameter (gated)
Unix
 BSD
 configuration file
 devices statement
 options statement
 pseudo-device statement
 configuration files, startup
 dynamically loadable modules
 ifconfig command, overview
 lpr command
 Network Access Layer
 NIS maps
 port numbers
 protocol numbers
 r commands
 disabling
 security considerations
 routing tables
 serial ports, troubleshooting
 services
 TCP/IP and
Unknown host error (ping command)
UNKNOWN keyword (security)
Unreachable Port message
UP flag (ifconfig command)
update (EGP trace option)
update keyword (dbmmanage command)
UPDATE messages (BGP)
updates (EGP)
updetach option (pppd)
Use field (Linux routing table) 2nd
Use Nice field (sendmail)
use-host-decl-names parameter (dhcpd)
use-id-pool option (named)
use-lease-addr-for-default-route parameter (dhcpd)
use_ct_file (sendmail)
use_cw_file (sendmail)
UseCanonicalName directive (httpd.conf file)
usehostname option (pppd command) 2nd
usenet mailer
usepeerdns option (pppd)
user (sendmail K command value)
user authentication [See authentication]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USER command (POP)
User Datagram Protocol [See UDP]
User directive (Apache)
user option (pppd)
user setting (smb.config file)
USERCTL (Linux configuration value)
UserDir directive (httpd.conf file)
Userid field (sendmail)
USERID option (xinetd)
UUCP protocol
uucpdomain (sendmail database feature)
UUCPSMTP macro (sendmail)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

V command (sendmail)
V.35 connectors
v3asloopokay parameter (gated)
variables
 environment, LOCALDOMAIN
 LogFormat directive (Apache)
vendors, security information mailing lists
VERB command (ESMTP)
vers= option (vfstab file)
version level command (sendmail)
version numbers, sendmail configuration file modifications
version option (named)
version parameter (gated)
VERSIONID macro (sendmail) 2nd
vfstab files, options
video (MIME data content type)
view keyword (dbmmanage command)
virtual hosts (Apache)
virtuallink neighborid parameter (gated)
VIRTUSER_DOMAIN macro (sendmail)
VIRTUSER_DOMAIN_FILE macro (sendmail)
virtusertable (sendmail database feature)
VLSM (variable-length subnet masks)
VRFY command (SMTP) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

wait command (dip) 2nd
wait ogin> command (dip)
wait-status field (inet.conf file)
WANs (wide area networks), serial lines and
WARNWEEKS (passwd file value)
web pages, passwords, selecting
web servers
 benefits
 monitoring
 multi-homed, options
 proxies, caching options
 security
 CGI scripts
 overview
 SSI
 SSL
web sites
 Apache
 automated system monitoring tools
 autonomous system numbers (ASNs), applications for
 Bugtraq
 CERT
 dhcpd 2nd
 domain names, registering
 Ethernet device driver source code
 exploits (security)
 FIRST (Forum of Incident Response and Security Teams)
 gated
 IANA
 Internet Registries membership applications
 Linux kernel source code
 NIST Computer Security Division
 OpenSSL
 OPIE
 RADB, registering in
 reverse domains
 RFCs
 Samba
 SANS (System Administration, Networking and Security) Institute
 sendmail 2nd
welcome option (pppd)
well-known ports
well-known services
Well-Known Services (WKS) records
Whisker (automated system monitoring)
who command, security and
whois database
 contacting remote administrators
wide area networks [See WANs]
Window field, TCP headers
window=seconds option (share command)
Windows, Samba overview
wins proxy option (nmbd command)
wins server option (nmbd command)
wins support option (nmbd command)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WKS (Well-Known Services) record
workgroup parameter (smb.config file)
wrapper package, security
 tcpd
writable parameter (smb.config file)
write access (filesystems)
wsize= option (vfstab file)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x-token (MIME encoding type)
X.25 networks, packet fragmentation
X.400 protocol
XDR protocol, Presentation Layer
xinetd (Extended Internet Daemon)
 access control
xinetd.conf file
 security considerations
xonxoff option (pppd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

y configuration option (Linux kernel)
ypbind command
ypcat -x command, NIS maps
ypcat command, testing NIS servers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zone files
 $GENERATE directive
 $INCLUDE directive
 $ORIGIN directive
 $TTL directive
 address records
 CNAME records
 creating
 displaying
 HINFO records
 MX records
 NS records
 PTR
 RP records
 SOA records
 SRV records
 TXT records
 WKS records
zone statement
 named command
 named.conf file 2nd
zone tables (cache dump files)
zone transfers
zone-c field (RIPE database)
zone-statistics (named)
zones
 caching-only server
 master name server
 slave server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

