
[Team LiB]

• Table of Contents
• Index
• Examples
Sams Teach Yourself PHP, MySQL™ and Apache in 24 Hours

By Julie C Meloni

Publisher: Sams Publishing

Pub Date: December 11, 2002

ISBN: 0-6723-2489-X

Pages: 528

Sams Teach Yourself PHP, MySQL, and Apache in 24 Hours combines coverage of these three popular open-source Web
development tools into one easy-to-understand book -- and it comes with one easy-to-use Starter Kit CD-ROM for
Windows or Linux.

The book teaches the reader to install, configure and set up the PHP scripting language, the MySQL database system,
and the Apache Web server.

By the end of this book the reader will understand how these technologies work, and -- more importantly -- how they
can work together to create a dynamic Web site.

After creating a simple Web site using these tools, the reader will be able to manage a simple mailing list, and to create
an online address book, shopping cart, and storefront.

The book also teaches the reader how to fine tune Apache and MySQL, and covers simple Web server security.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Examples
Sams Teach Yourself PHP, MySQL™ and Apache in 24 Hours

By Julie C Meloni

Publisher: Sams Publishing

Pub Date: December 11, 2002

ISBN: 0-6723-2489-X

Pages: 528

 Copyright

 Lead Author

 Contributing Authors

 Acknowledgments

 We Want to Hear from You!

 Reader Services

 Introduction

 Who Should Read This Book?

 How This Book Is Organized

 Conventions Used in This Book

 Part I: Getting Up and Running

 Hour 1. Installing and Configuring MySQL

 How to Get MySQL

 Installing MySQL on Linux/Unix

 Installing MySQL on Windows

 Troubleshooting Your Installation

 Basic Security Guidelines

 Introducing the MySQL Privilege System

 Working with User Privileges

 Summary

 Q&A

 Workshop

 Hour 2. Installing and Configuring Apache

 Choosing the Appropriate Installation Method

 Installing Apache on Linux/Unix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Installing Apache on Windows

 Apache Configuration File Structure

 Apache Log Files

 Apache-Related Commands

 Starting Apache for the First Time

 Troubleshooting

 Summary

 Q&A

 Workshop

 Hour 3. Installing and Configuring PHP

 Building PHP on Linux/Unix with Apache

 Installing PHP Files on Windows

 php.ini Basics

 Testing Your Installation

 Getting Installation Help

 The Basics of PHP Scripts

 Summary

 Q&A

 Workshop

 Part II: Basic Language Elements

 Hour 4. The Building Blocks of PHP

 Variables

 Data Types

 Operators and Expressions

 Constants

 Summary

 Q&A

 Workshop

 Hour 5. Flow Control Functions in PHP

 Switching Flow

 Loops

 Code Blocks and Browser Output

 Summary

 Q&A

 Workshop

 Hour 6. Working with Functions

 What Is a Function?

 Calling Functions

 Defining a Function

 Returning Values from User-Defined Functions

 Dynamic Function Calls

 Variable Scope

 Saving State Between Function Calls with the static Statement

 More About Arguments

 Creating Anonymous Functions

 Testing for the Existence of a Function

 Summary

 Q&A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Workshop

 Hour 7. Learning Basic SQL Commands

 Learning the MySQL Data Types

 Learning the Table Creation Syntax

 Using the INSERT Command

 Using the SELECT Command

 Using WHERE in Your Queries

 Selecting from Multiple Tables

 Using JOIN
 Using the UPDATE Command to Modify Records

 Using the REPLACE Command

 Using the DELETE Command

 Summary

 Q&A

 Workshop

 Hour 8. Interacting with MySQL Using PHP

 Connecting to MySQL with PHP

 Working with MySQL Data

 Summary

 Workshop

 Part III: Getting Involved with the Code

 Hour 9. Working with Forms

 Predefined Variables

 Creating a Simple Input Form

 Accessing Form Input with User-Defined Arrays

 Combining HTML and PHP Code on a Single Page

 Using Hidden Fields to Save State

 Redirecting the User

 Sending Mail on Form Submission

 Creating the Form

 Creating the Script to Send the Mail

 Working with File Uploads

 Summary

 Workshop

 Hour 10. Working with Files

 Including Files with include()
 include_once()
 Testing Files

 Creating and Deleting Files

 Opening a File for Writing, Reading, or Appending

 Reading from Files

 Writing or Appending to a File

 Working with Directories

 Summary

 Q&A

 Workshop

 Hour 11. Working with Dates and Times

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Using Date and Time Functions in PHP

 Using Date and Time Functions in MySQL

 Summary

 Workshop

 Hour 12. Creating a Simple Calendar

 Building a Simple Display Calendar

 Creating a Calendar Library

 Summary

 Q&A

 Workshop

 Hour 13. Working with Strings

 Formatting Strings with PHP

 Investigating Strings in PHP

 Manipulating Strings with PHP

 Frequently Used String Functions in MySQL

 Summary

 Q&A

 Workshop

 Hour 14. Creating a Simple Discussion Forum

 Types of Table Relationships

 Understanding Normalization

 Following the Design Process

 Creating a Discussion Forum

 Summary

 Q&A

 Workshop

 Hour 15. Restricting Access to Your Applications

 Authentication Overview

 Apache Authentication Module Functionality

 Using Apache for Access Control

 Combining Apache Access Methods

 Limiting Access Based on HTTP Methods

 Introducing Cookies

 Setting a Cookie with PHP

 Restricting Access Based on Cookie Values

 Summary

 Q&A

 Workshop

 Hour 16. Working with User Sessions

 Session Function Overview

 Starting a Session

 Working with Session Variables

 Passing Session IDs in the Query String

 Destroying Sessions and Unsetting Variables

 Summary

 Q&A

 Workshop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Hour 17. Logging and Monitoring Server Activity

 Standard Apache Access Logging

 Standard Apache Error Logging

 Managing Apache Logs

 Logging Custom Information to a Database

 Summary

 Q&A

 Workshop

 Part IV: Simple Projects

 Hour 18. Managing a Simple Mailing List

 Developing the Subscription Mechanism

 Developing the Mailing Mechanism

 Summary

 Q&A

 Workshop

 Hour 19. Creating an Online Address Book

 Planning and Creating the Database Tables

 Creating a Menu

 Creating the Record Addition Mechanism

 Viewing Records

 Creating the Record Deletion Mechanism

 Adding Subentries to a Record

 Summary

 Workshop

 Hour 20. Creating an Online Storefront

 Planning and Creating the Database Tables

 Displaying Categories of Items

 Displaying Items

 Summary

 Workshop

 Hour 21. Creating a Shopping Cart Mechanism

 Planning and Creating the Database Tables

 Integrating the Cart with Your Storefront

 Payment Methods and the Checkout Sequence

 Summary

 Workshop

 Part V: Administration and Fine-Tuning

 Hour 22. Apache Performance Tuning and Virtual Hosting

 Scalability Issues

 Load Testing with ApacheBench

 Proactive Performance Tuning

 Preventing Abuse

 Implementing Virtual Hosting

 Summary

 Q&A

 Workshop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Hour 23. Setting Up a Secure Web Server

 The Need for Security

 The SSL Protocol

 Installing SSL

 Managing Certificates

 SSL Configuration

 Summary

 Q&A

 Workshop

 Hour 24. Optimizing and Tuning MySQL

 Building an Optimized Platform

 MySQL Startup Options

 Optimizing Your Table Structure

 Optimizing Your Queries

 Using the FLUSH Command

 Using the SHOW Command

 Summary

 Q&A

 Workshop

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2003 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2002115016

Printed in the United States of America

First Printing: December 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book or from the use of the CD or programs accompanying it.

Credits
ACQUISITIONS EDITOR

Shelley Johnston

DEVELOPMENT EDITOR

Chris Newman

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Tricia Liebig

COPY EDITORS

Chip Gardner

Mike Henry

Chuck Hutchinson

Matt Wynalda

INDEXER

Sharon Shock

PROOFREADER

Wendy Ott

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Wendy Ott

TECHNICAL EDITOR

Chris Newman

TEAM COORDINATOR

Lynne Williams

MULTIMEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Alan Clements

PAGE LAYOUT

Point 'n Click Publishing, LLC.

GRAPHICS

Tammy Graham

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Lead Author
Julie C. Meloni is the technical director for i2i Interactive (www.i2ii.com), a multimedia company located in Los Altos,
California. She's been developing Web-based applications since the Web first saw the light of day and remembers the
excitement surrounding the first GUI Web browser. She has authored several books and articles on Web-based
programming languages and database topics, and you can find translations of her work in several languages, including
Chinese, Italian, Portuguese, Polish, and even Serbian!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Contributing Authors
Daniel López Ridruejo is a senior developer with Covalent Technologies, Inc., which provides Apache software,
support, and services for the enterprise. He is the author of several popular Apache and Linux guides and of Comanche,
a GUI configuration tool for Apache. Daniel is a regular speaker at open source conferences such as LinuxWorld,
ApacheCon, and the O'Reilly Open Source Convention. He holds a Master of Science degree in telecommunications from
the Escuela Superior de Ingenieros de Sevilla and Danmarks Tekniske Universitet. Daniel is a member of the Apache
Software Foundation.

Matt Zandstra (matt@corrosive.co.uk) is a technical consultant. With his business partner, Max Guglielmino, he runs
Corrosive Web Design (http://www.corrosive.co.uk), a company specializing in information design, usablity, and the
creation of dynamic environments. Before this book took over his life once again, Matt was writing an XML/Java-based
scripting language and interpreter for extracting content from Web pages. He is currently keen on design patterns, unit
tests, extreme programming, and space operas. Matt is fatter than he was, but is still an urban cyclist. He says he is
working on a novel, but he has been saying that for a long time. He lives by the sea in Brighton, Great Britain, with his
partner, Louise McDougall, and their daughter, Holly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
The Apache Foundation, the PHP Group, and MySQL AB deserve much more recognition than they ever get for creating
these super products that drive a great portion of the Web.

Daniel Lopez (author of Sams Teach Yourself Apache 2 in 24 Hours) and Matt Zandstra (author of Sams Teach Yourself
PHP in 24 Hours) wrote super books, which form a significant portion of this book. Obviously, this book would not exist
without them!

Great thanks especially to all the editors and layout folks at Sams who were involved with this book, for their hard work
in seeing this through!

Thanks as always to everyone at i2i Interactive for their never-ending support and encouragement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well as what we can
do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high
volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone number or email
address. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Reader Services
For more information about this book or others from Sams Publishing, visit our Web site at www.samspublishing.com.
Type the ISBN (excluding hyphens) or the title of the book in the Search box to find the book you're looking for.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introduction
Welcome to Sams Teach Yourself PHP, MySQL, and Apache in 24 Hours! This book combines the hours found in Sams
Teach Yourself PHP in 24 Hours, Sams Teach Yourself MySQL in 24 Hours, and Sams Teach Yourself Apache in 24
Hours, to provide you with a solid and painless introduction to the world of developing Web-based applications using
these three technologies.

Through a series of 24 easy hours, you'll learn the basics of programming in PHP, the methods for using and
administering the MySQL relational database system, and the concepts necessary for configuring and managing Apache.
The overall goal of the book is to provide you with the foundation you need to understand how seamlessly these
technologies integrate with one another, and to give you practical knowledge of how to integrate them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who Should Read This Book?
This book is geared toward individuals who possess a general understanding of the concepts of working in a Web-based
development environment, be it Linux/Unix or Windows. Installation and configuration lessons assume that you have
familiarity with your operating system and the basic methods of building (on Linux/Unix systems) or installing (on
Windows systems) software.

The lessons that delve into programming with PHP assume no previous knowledge of the language, but if you have
experience with other programming languages such as C or Perl, you will find the going much easier. Similarly, if you
have worked with other databases before, such as Oracle or Microsoft SQL Server, you will have a good foundation for
working through the MySQL-related lessons.

The only real requirement is that you understand static Web content creation with HTML. If you are just starting out in
the world of Web development, you will still be able to use this book, though you should consider working through an
HTML tutorial. If you are comfortable creating basic documents and can build a basic HTML table, you will be fine.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Is Organized
This book is divided into five parts, corresponding to particular topics. The lessons within each part are designed to be
read one right after another, with each lesson essentially building on the information found in those before it:

Part I, "Getting Up and Running," will walk you through the installation and configuration of PHP, MySLQ, and
Apache. You'll need to complete the lessons in Part I before moving on to the remaining lessons, unless you
already have access to a working installation of these technologies. Even if you don't need to install and
configure PHP, MySQL, and Apache in your environment, you should still skim these lessons so that you
understand the basics.

Part II, "Basic Language Elements," is predominantly devoted to teaching you the basics of the PHP language,
and will get you in the habit of writing code, uploading it to your server, and testing the results. One of the
lessons offers a basic SQL primer, and this part wraps up with an hour devoted to the integration of PHP and
MySQL.

Part III, "Getting Involved with the Code," consists of lessons that cover intermediatelevel application
development topics, including working with forms and files, access restriction, and other small projects designed
to introduce a specific concept.

Part IV, "Simple Projects," contains lessons devoted to performing a particular task. These lessons consist of
projects that integrate all the knowledge you have gained so far, and walk you through the process of building
and testing the elements you will create.

Part V, "Administration and Fine-Tuning," is devoted to administering and tuning MySQL and Apache, and also
includes information on virtual hosting and setting up a secure Web server.

If you find that you are already familiar with a topic, you can skip ahead to the next lesson. However, in some
instances, lessons will refer to specific concepts learned in previous hours, so be aware that you may have to skim
through a skipped lesson so that your development environment remains consistent with the book.

At the end of each hour, there are a few quiz questions that will test how well you've learned the material. Additional
activities provide another way to apply the information learned in the lesson and guide you toward using this newfound
knowledge in the next hour.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
This book uses different typefaces to differentiate between code and plain English and also to help you identify
important concepts. Throughout the lessons, code, commands, and text you type or see onscreen appear in a
computer typeface. New terms appear in italics at the point in the text where they are defined. Additionally, icons
accompany special blocks of information:

A Note presents an interesting piece of information related to the current topic.

A Tip offers advice or teaches an easier method for performing a task.

A Caution warns you about potential pitfalls and explains how to avoid them.

A new term icon will appear next to text introducing terms to the reader for the first time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Getting Up and Running
Hour

 1 Installing and Configuring MySQL

 2 Installing and Configuring Apache

 3 Installing and Configuring PHP

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 1. Installing and Configuring MySQL
Welcome to the first hour of Sams Teach Yourself PHP, MySQL, and Apache in 24 Hours. This is the first of three
"installation" hours, in which you will learn how to set up your development environment. We'll tackle the MySQL
installation first, because the PHP installation is much simpler when MySQL is already installed.

In this hour, you will learn

How to install MySQL

Basic security guidelines for running MySQL

How to work with the MySQL user privilege system

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How to Get MySQL
The method you'll use to get MySQL depends on which distribution you want. Methods range from downloading a large
file (or several large files) to buying an off-the-shelf product.

MySQL AB distributes the open source version of MySQL on their Web site: http://www.mysql.com/. There is no
shrink-wrapped product; what you get is what you download from the site, which includes binary distributions
for Windows and Linux/Unix, as well as RPMs and source distributions.

NuSphere Corporation sells a variety of products including the NuSphere Technology Platform, which includes a
version of MySQL with NuSphere-specific enhancements, such as the Gemini table type. NuSphere's products
are available for purchase from their Web site: http://www.nusphere.com/.

AbriaSoft distributes MySQL as part of their Merlin Server (a Web development platform), which is available for
download and purchase at their Web site: http://www.abriasoft.com/.

Linux distribution CDs usually contain some version or another of the open source MySQL distribution, although
it's usually a bit out-of-date.

The installation instructions in this hour are based on the official MySQL-Pro 4.0 distributions from MySQL AB. The
process of installing the 3.23 version of MySQL is virtually identical, but if you choose to install that version, read the
instructions that ship with the distribution just to be on the safe side. Any functional differences between versions 3.23
and 4.0 will be noted in later hours.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing MySQL on Linux/Unix
The process of installing MySQL on Linux/Unix is straightforward, whether you use RPMs or install the binaries. If you
choose to install from RPMs, there are several that make up a full distribution. For a minimal installation you need

MySQL-VERSION.i386.rpm— The MySQL server

MySQL-client-VERSION.i386.rpm— The standard MySQL client programs

To perform the minimal installation, type the following at the prompt:

#> rpm -i MySQL-VERSION.i386.rpm MySQL-client-VERSION.i386.rpm

Replace VERSION in the filename with the actual version you downloaded. For
example, the current MySQL-Pro 4.0 server RPM is called MySQL-4.0.4-
0.i386.rpm.

Another painless installation method is to install MySQL from a binary distribution. This method requires gunzip and tar
to uncompress and unpack the distribution and also requires the ability to create groups and users on the system. The
first series of commands in the binary distribution installation process has you adding a group and a user and unpacking
the distribution, as follows:

#> groupadd mysql
#> useradd -g mysql mysql
#> cd /usr/local
#> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Next, the instructions tell you to create a link with a shorter name:

#> ln -s mysql-VERSION-OS mysql
#> cd mysql

Once unpacked, the README and INSTALL files will walk you through the remainder of the installation process for the
version of MySQL you've chosen. In general, the following series of commands will be used:

#> scripts/mysql_install_db
#> chown -R root /usr/local/mysql
#> chown -R mysql /usr/local/mysql/data
#> chgrp -R mysql /usr/local/mysql
#> chown -R root /usr/local/mysql/bin

You're now ready to start the MySQL server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing MySQL on Windows
The MySQL installation process on Windows is also quite simple—the developers from MySQL AB have packaged up
everything you need in one zip file with a setup program! Once you download the zip file, extract its contents into a
temporary directory and run the setup.exe application. After the setup.exe application installs the MySQL server and
client programs, you're ready to start the MySQL server.

The following steps detail the installation of MySQL 4.0 from MySQL AB on Windows, and show you what you can expect
if you install MySQL in a Windows 95/98/NT/2000/XP environment for testing and development. Many users install
MySQL on personal Windows machines, to get a feel for working with the database before deploying MySQL in a
production environment.

1. Visit the MySQL-Pro 4.0 download page at http://www.mysql.com/downloads/mysql-pro-4.0.html and find the
Windows section. You want to download the file under the "Installation files (zip)" heading rather than the one
under the "Cygwin downloads (tar.bz2)" heading.

If you have the tools and skills to compile your own Windows binary files,
select the Cygwin source download and follow the instructions contained in
the source distribution.

2. Clicking the Download link will take you to a page of mirror sites. Select the mirror site closest to you, and
download the file. It is a large file, so you may be waiting awhile, depending on your connection speed.

3. Once the zip file is on your hard drive, extract its contents to a temporary directory.

4. From the temporary directory, find the setup.exe file and double-click it to start the installation. You will see
the first screen of the installation wizard, as shown in Figure 1.1. Click Next to continue.

Figure 1.1. The first step of the MySQL installation wizard.

5. The second screen in the installation process contains valuable information regarding the installation location
(see Figure 1.2). The default installation location is C:\mysql. If you plan to install MySQL in a different
location, this screen shows you a few changes that you will have to make on your own. The information on this
screen is also important for Windows NT users who wish to start MySQL as a service. Read the information and
note anything relevant to your situation, then click Next to continue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

note anything relevant to your situation, then click Next to continue.

Figure 1.2. Step 2 of the MySQL installation wizard. Note any relevant
information before continuing.

6. The third screen in the installation process has you select the installation location (see Figure 1.3). If you want
to install MySQL in the default location, click Next to continue. Otherwise, click Browse and navigate to the
location of your choice, then click Next to continue.

Figure 1.3. Step 3 of the MySQL installation wizard. Select an installation
location.

7. The fourth screen asks you to select the installation method—Typical, Compact, or Custom (see Figure 1.4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. The fourth screen asks you to select the installation method—Typical, Compact, or Custom (see Figure 1.4).
The Custom option allows you to select elements of MySQL to install, such as documentation and help files.
Select Typical as the installation method, and click Next to continue.

Figure 1.4. Step 4 of the MySQL installation wizard. Select an installation
type.

8. The installation process will now take over and install files in their proper locations. When the process is
finished, you will see a confirmation of completion, as in Figure 1.5. Click Finish to complete the setup process.

Figure 1.5. MySQL has been installed.

There are no fancy shortcuts installed in your Windows Start menu after an installation of MySQL from MySQL AB, so
now you must start the process yourself. If you navigate to the MySQL applications directory (usually C:\mysql\bin\

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

now you must start the process yourself. If you navigate to the MySQL applications directory (usually C:\mysql\bin\
unless you changed your installation path), you will find numerous applications ready for action (see Figure 1.6).

Figure 1.6. A directory listing of MySQL applications.

The winmysqladmin.exe application is a great friend to Windows users who are just getting started with MySQL. If
you double-click this file, it will start the MySQL server and place a stoplight icon in your taskbar.

When you start WinMySQLadmin for the first time, you will be prompted for a username and password (see Figure 1.7).
The application will create the initial MySQL user account on a Windows system.

Figure 1.7. Creating the initial MySQL account.

When you are finished creating the account, or whenever you right-click the stoplight icon in your taskbar, the graphical
user interface will launch. This interface, shown in Figure 1.8, provides an easy way to maintain and monitor your new
server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server.

Figure 1.8. WinMySQLadmin started and ready for action.

WinMySQLadmin will automatically interpret environment information, such as IP address and machine name. The tabs
across the top allow you to view system information and edit MySQL configuration options.

For example, if you select the Variables tab, as shown in Figure 1.9, you can also view server configuration information.
This information is similar to the output of the MySQL SHOW VARIABLES command.

Figure 1.9. Server configuration information.

To shut down the MySQL server and/or the WinMySQLadmin tool, right-click again on the stoplight icon in your taskbar
and select the appropriate option (stop or start). As long as the MySQL server is running, you can run additional
applications through a console window, such as the MySQL monitor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Troubleshooting Your Installation
If you have any problems during the installation of MySQL, the first place you should look is the "Problems and
Common Errors" chapter of the MySQL manual, which is located at http://www.mysql.com/doc/P/r/Problems.html.

The following are some common problems:

On Linux/Unix, Incorrect permissions do not allow you to start the MySQL daemon. If this is the case, be sure
you have changed owners and groups to match those indicated in the installation instructions.

If you see the message "Access denied" when connecting to MySQL, be sure you are using the correct
username and password.

If you see the message "Can't connect to server", make sure the MySQL daemon is running.

When defining tables, if you specify a length for a field whose type does not require a length, the table will not
be created. For example, you should not specify a length when defining a field as TEXT (as opposed to CHAR
or VARCHAR).

If you still have trouble after reading the manual, sending e-mail to the MySQL mailing list (see
http://www.mysql.com/documentation/lists.html for more information) will likely produce results. You can also
purchase support contracts from MySQL AB for a very low fee. If you have purchased a version of MySQL other than
the one distributed by MySQL AB, you should turn to the documentation and support options for that product. The
companies that sell other versions of MySQL usually have additional support contracts that you can purchase.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Basic Security Guidelines
Regardless of whether you are running MySQL on Windows or Linux/Unix, and no matter whether you administer your
own server or use a system provided by your Internet service provider, every developer needs to understand basic
security guidelines. If you are accessing MySQL through your Internet service provider, there are several aspects of
server security that you, as a non-root user, should not be able to modify or circumvent. Unfortunately, many Internet
service providers pay no mind to security guidelines, leaving their clients exposed—and for the most part, unaware of
the risk.

Starting MySQL

Securing MySQL begins with the server startup procedure. If you are not the administrator of the server, you won't be
able to change this, but you can certainly check it out and report vulnerabilities to your Internet service provider.

If your MySQL installation is on Linux/Unix, your primary concern should be the owner of the MySQL daemon—it should
not be root. Running the daemon as a non-root user such as mysql or database will limit the ability of malicious
individuals to gain access to the server and overwrite files.

You can verify the owner of the process using the ps (process status) command on your Linux/Unix system. The
following output shows MySQL running as a non-root user (see the first entry on the second line):

#> ps auxw | grep mysqld
mysql 153 0.0 0.6 12068 2624 ? S Nov16 0:00
/usr/local/bin/mysql/bin/mysqld
--defaults-extra-file=/usr/local/bin/mysql/data/my.cnf
--basedir=/usr/local/bin/mysql --datadir=/usr/local/bin/mysql/data
--user=mysql --pid-file=/usr/local/bin/mysql/data/mike.pid --skip-locking

The following output shows MySQL running as the root user (see the first entry on the second line):

#> ps auxw | grep mysqld
root 21107 0.0 1.1 11176 1444 ? S Nov 27 0:00
/usr/local/mysql/bin/mysqld
--basedir=/usr/local/mysql --datadir=/usr/local/mysql/data --skip-locking

If you see that MySQL is running as root on your system, immediately contact your Internet service provider and
complain. If you are the server administrator, you should start the MySQL process as a non-root user or specify the
username in the startup command line:

mysqld --user=non_root_user_name

For example, if you want to run MySQL as user mysql, use

mysqld --user=mysql

Securing Your MySQL Connection

You can connect to the MySQL monitor or other MySQL applications in several different ways, each of which has its own
security risks. If your MySQL installation is on your own workstation, you have less to worry about than users who have
to use a network connection to reach their server.

If MySQL is installed on your workstation, your biggest security concern is leaving your workstation unattended with
your MySQL monitor or MySQL GUI administration tool up and running. In this type of situation, anyone can walk over
and delete data, insert bogus data, or shut down the server. Utilize a screen saver or lock screen mechanism with a
password if you must leave your workstation unattended in a public area.

If MySQL is installed on a server outside your network, the security of the connection should be of some concern. As
with any transmission of data over the Internet, it can be intercepted. If the transmission is unencrypted, the person
who intercepted it can piece it together and use the information. Suppose the unencrypted transmission is your MySQL
login information—a rogue individual now has access to your database, masquerading as you.

One way to prevent this from happening is to connect to MySQL through a secure connection. Instead of using Telnet to
reach the remote machine, use SSH. SSH looks and acts like Telnet, but all transmissions to and from the remote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reach the remote machine, use SSH. SSH looks and acts like Telnet, but all transmissions to and from the remote
machine are encrypted. Similarly, if you use a Web-based administration interface, such as phpMyAdmin (see
http://phpmyadmin.sourceforge.net for more information) or another tool used by your Internet service provider,
access that tool over a secure HTTP connection.

In the next section, you'll learn about the MySQL privilege system, which helps secure your database even further.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing the MySQL Privilege System
The MySQL privilege system is always "on." The first time you try to connect and for each subsequent action, MySQL
checks the following three things:

Where you are accessing from (your host)

Who you say you are (your username and password)

What you're allowed to do (your command privileges)

All this information is stored in the database called mysql, which is automatically created when MySQL is installed.
There are several tables in the mysql database:

columns_priv— Defines user privileges for specific fields within a table.

db— Defines the permissions for all databases on the server.

func— Defines user-created functions.

host— Defines the acceptable hosts that can connect to a specific database.

tables_priv— Defines user privileges for specific tables within a database.

user— Defines the command privileges for a specific user.

These tables will become more important to you later in this hour as you add a few sample users to MySQL. For now,
just remember that these tables exist and must have relevant data in them in order for users to complete actions.

The Two-Step Authentication Process

As you've learned, MySQL checks three things during the authentication process. The actions associated with these
three things are performed in two steps:

1. MySQL looks at the host you are connecting from and the username and password pair that you are using. If
your host is allowed to connect, your password is correct for your username, and the username matches one
assigned to the host, MySQL moves to the second step.

2. For whichever SQL command you are attempting to use, MySQL verifies that you have the ability to perform
that action for that database, table, and field.

If step 1 fails, you'll see an error about it and you won't be able to continue on to step 2. For example, suppose you are
connecting to MySQL with a username of joe and a password of abc123 and you want to access a database called
myDB. You will receive an error message if any of those connection variables are incorrect for any of the following
reasons:

Your password is incorrect.

Username joe doesn't exist.

User joe can't connect from localhost.

User joe can connect from localhost but cannot use the myDB database.

You may see an error like the following:

#> /usr/local/bin/mysql/bin/mysql -h localhost -u joe -pabc123 test
Error 1045: Access denied for user: 'joe@localhost' (Using password: YES)

If user joe with a password of abc123 is allowed to connect from localhost to the myDB database, MySQL will check
the actions that joe can perform in step 2 of the process. For our purposes, suppose that joe is allowed to select data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the actions that joe can perform in step 2 of the process. For our purposes, suppose that joe is allowed to select data
but is not allowed to insert data. The sequence of events and errors would look like the following:

#> /usr/local/bin/mysql/bin/mysql -h localhost -u joe -pabc123 test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 61198 to server version: 4.0.2-alpha-log
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> select * from test_table;
+----+------------+
| id | test_field |
+----+------------+
| 1 | blah |
| 2 | blah blah |
+----+------------+
2 rows in set (0.0 sec)

mysql> insert into test_table values ('', 'my text');
Error 1044: Access denied for user: 'joe@localhost' (Using password: YES)

Action-based permissions are common in applications with several levels of administration. For example, if you have
created an application containing personal financial data, you might grant only SELECT privileges to entry-level staff
members, but INSERT and DELETE privileges to executive-level staff with security clearances.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with User Privileges
In most cases when you are accessing MySQL through an Internet service provider, you will have only one user and
one database available to you. By default, that one user will have access to all tables in that database and will be
allowed to perform all commands.

In this case, the responsibility is yours as the developer to create a secure application through your programming.

If you are the administrator of your own server or have the ability to add as many databases and users as you want, as
well as modify the access privileges of your users, these next few sections will take you through the processes of doing
so.

Adding Users

Administering your server through a third-party application may afford you a simple method for adding users, using a
wizard-like process or a graphical interface. However, adding users through the MySQL monitor is not difficult,
especially if you understand the security checkpoints used by MySQL, which you just learned.

The simplest method for adding new users is the GRANT command. By connecting to MySQL as the root user, you can
issue one command to set up a new user. The other method is to issue INSERT statements into all the relevant tables
in the mysql database, which requires you to know all the fields in the tables used to store permissions. This method
works just as well but is more complicated than the simple GRANT command.

The simple syntax of the GRANT command is

GRANT privileges
ON databasename.tablename
TO username@host
IDENTIFIED BY "password";

The privileges you can grant are

ALL— Gives the user all of the following privileges

ALTER— User can alter (modify) tables, columns, and indexes

CREATE— User can create databases and tables

DELETE— User can delete records from tables

DROP— User can drop (delete) tables and databases

FILE— User can read and write files; this is used to import or dump data

INDEX— User can add or delete indexes

INSERT— User can add records to tables

PROCESS— User can view and stop system processes; only trusted users should be able to do this

REFERENCES— Not currently used by MySQL, but a column for REFERENCES privileges exists in the user
table

RELOAD— User can issue FLUSH statements; only trusted users should be able to do this

SELECT— User can select records from tables

SHUTDOWN— User can shut down the MySQL server; only trusted users should be able to do this

UPDATE— User can update (modify) records in tables

USAGE— User can connect to MySQL but has no privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USAGE— User can connect to MySQL but has no privileges

If, for instance, you want to create a user called john with a password of 99hjc, with SELECT and INSERT privileges
on all tables in the database called myDB, and you want this user to be able to connect from any host, use

GRANT SELECT, INSERT
ON myDB.*
TO john@"%"
IDENTIFIED BY "99hjc";

Note the use of two wildcards: * and %. These wildcards are used to replace values. In this example, * replaces the
entire list of tables, and % replaces a list of all hosts in the known world—a very long list indeed.

Here's another example of adding a user using the GRANT command, this time to add a user called jane with a
password of 45sdg11, with ALL privileges on a table called employees in the database called myCompany. This new
user can connect only from a specific host:

GRANT ALL
ON myCompany.employees
TO jane@janescomputer.company.com
IDENTIFIED BY "45sdg11";

If you know that janescomputer.company.com has an IP address of 63.124.45.2, you can substitute that address in
the hostname portion of the command, as follows:

GRANT ALL
ON myCompany.employees
TO jane@'63.124.45.2'
IDENTIFIED BY "45sdg11";

One note about adding users: Always use a password and make sure that the password is a good one! MySQL allows
you to create users without a password, but that leaves the door wide open should someone with bad intentions guess
the name of one of your users with full privileges granted to them!

If you use the GRANT command to add users, the changes will immediately take effect. To make absolutely sure of
this, you can issue the FLUSH PRIVILEGES command in the MySQL monitor to reload the privilege tables.

Removing Privileges

Removing privileges is as simple as adding them; instead of a GRANT command, you use REVOKE. The REVOKE
command syntax is

REVOKE privileges
ON databasename.tablename
FROM username@hostname;

In the same way that you can grant permissions using INSERT commands, you can also revoke permissions by issuing
DELETE commands to remove records from tables in the mysql database. However, this requires that you be familiar
with the fields and tables, and it's just much easier and safer to use REVOKE.

To revoke the ability for user john to INSERT items in the myCompany database, you would issue this REVOKE
statement:

REVOKE INSERT
ON myDB.*
FROM john@"%";

Changes made to the data in the privilege tables happen immediately, but in order for the server to be aware of your
changes, issue the FLUSH PRIVILEGES command in the MySQL monitor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Installing MySQL on Windows is a very simple process due to a wizard-based installation method. MySQL AB provides a
GUI-based administration tool for Windows users, called WinMySQLadmin. Linux/Unix users do not have a wizard-based
installation process, but it's not difficult to follow a simple set of commands to unpack the MySQL client and server.
Linux/Unix users can also use RPMs for installation.

Security is always a priority, and there are several steps you can take to ensure a safe and secure installation of
MySQL. Even if you are not the administrator of the server, you should be able to recognize breaches and raise a
ruckus with the server administrator!

The MySQL server should not run as the root user. Additionally, named users within MySQL should always have a
password, and their access privileges should be well defined.

MySQL uses the privilege tables in a two-step process for each request that is made. MySQL needs to know who you
are and where you are connecting from, and each of these pieces of information must match an entry in its privilege
tables. Also, the user whose identity you are using must have specific permission to perform the type of request you
are making.

You can add user privileges using the GRANT command, which uses a simple syntax to add entries to the user table in
the mysql database. The REVOKE command, which is equally simple, is used to remove those privileges.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: How do I completely remove a user? The REVOKE command just eliminates the privileges.

A1: To completely remove a user from the privilege table, you have to issue a specific DELETE command
from the user table in the mysql database.

Q2: What if I tell my Internet service provider to stop running MySQL as root, and they won't?

A2: Switch providers. If your Internet service provider doesn't recognize the risks of running something as
important as your database as the root user, and doesn't listen to your request, find another provider.
There are providers with plans as low as $9.95/month that don't run important processes as root!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: True or False: Telnet is a perfectly acceptable method to securely connect to MySQL from a remote host.

A1: False. The key word is "secure," and Telnet does not encrypt data between hosts. Instead, use SSH to
connect to your server.

2: Which three pieces of information does MySQL check each time a request is made?

A2: Who you are, where you are accessing from, and what actions you're allowed to perform.

3: What command would you use to grant SELECT, INSERT, and UPDATE privileges to a user named bill
on localhost to all tables on the BillDB database? Also, what piece of information is missing from this
statement that is recommended for security purposes?

A3: The command is

GRANT SELECT, INSERT, UPDATE
ON BillDB.*
TO bill@localhost;

The important missing piece is a password for the user!

Activities

1. Think of situations in which you might want to restrict command access at the table level. For example, you
wouldn't want the intern-level administrator to have shutdown privileges for the corporate database.

2. If you have administrative privileges in MySQL, issue several GRANT commands to create dummy users. It
doesn't matter whether the tables and databases you name are actually present.

3. Use REVOKE to remove some of the privileges of the users you created in activity 2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 2. Installing and Configuring Apache
In this second of three "installation" hours, you will install the Apache Web server and familiarize yourself with its main
components, including log and configuration files. In this hour, you will learn

How to install the Apache server on Linux/Unix

How to install the Apache server on Windows

How to make configuration changes to Apache

Where Apache log and configuration files are stored

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Choosing the Appropriate Installation Method
You have several options when it comes to getting a basic Apache installation in place. Apache is open source, meaning
that you can have access to the full source code of the software, which in turn enables you to build your own custom
server. Additionally, pre-built Apache binary distributions are available for most modern Unix platforms. Finally, Apache
comes already bundled with a variety of Linux distributions, and you can purchase commercial versions from software
vendors such as Covalent Technologies and IBM. The examples in this hour will teach you how to build Apache from
source if you are using Linux/Unix, and how to use the installer if you plan to run Apache on a Windows system.

Building from Source

Building from source gives you the greatest flexibility, as it enables you to build a custom server, remove modules you
do not need, and extend the server with third-party modules. Building Apache from source code enables you to easily
upgrade to the latest versions and quickly apply security patches, whereas updated versions from vendors can take
days or weeks to appear.

The process of building Apache from the source code is not especially difficult for simple installations, but can grow in
complexity when third-party modules and libraries are involved.

Installing a Binary

Linux/Unix binary installations are available from vendors and can also be downloaded from the Apache Software
Foundation Web site. They provide a convenient way to install Apache for users with limited system administration
knowledge, or with no special configuration needs. Third-party commercial vendors provide prepackaged Apache
installations together with an application server, additional modules, support, and so on.

The Apache Software Foundation provides an installer for Windows systems—a platform where a compiler is not as
commonly available as in Linux/Unix systems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing Apache on Linux/Unix
This section explains how to install a fresh build of Apache 2.0 on Linux/Unix. The steps necessary to successfully install
Apache from source are

1. Downloading the software

2. Running the configuration script

3. Compiling the code and installing it

The following sections describe these steps in detail.

Downloading the Apache Source Code

The official Apache download site is located at http://www.apache.org/dist/httpd. You can find several Apache versions,
packaged with different compression methods. The distribution files are first packed with the tar utility and then
compressed either with the gzip tool or the compress utility. Download the .tar.gz version if you have the gunzip
utility installed in your system. This utility comes installed by default in open source operating systems such as FreeBSD
and Linux. Download the tar.Z file if gunzip is not present in your system. (It isn't included in the default installation of
many commercial Unix operating systems.)

The file you want to download will be named something similar to httpd-2.0. version.tar.Z or httpd-2.0.
version.tar.gz, where version is the most recent release version of Apache. For example, Apache version 2.0.43 is
downloaded as a file named httpd-2.0.43.tar.gz. Keep the downloaded file in a directory reserved for source files,
such as /usr/src/ or /usr/local/src/.

Uncompressing the Source Code

If you downloaded the tarball compressed with gzip (it will have a tar.gz suffix), you can uncompress it using the
gunzip utility (part of the gzip distribution).

Tarball is a commonly used nickname for software packed using the tar utility.

You can uncompress and unpack the software by typing the following command:

#> gunzip < httpd-2.0*.tar.gz | tar xvf -

If you downloaded the tarball compressed with compress (tar.Z suffix), you can issue the following command:

#> cat httpd-2.0*.tar.Z | uncompress | tar xvf -

Uncompressing the tarball creates a structure of directories, with the top-level directory named httpd-2.0_version.
Change your current directory to this top-level directory to prepare for configuring the software.

Preparing to Build Apache

You can specify which features the resulting binary will have by using the configure script in the top-level distribution
directory. By default, Apache will be compiled with a set of standard modules compiled statically and will be installed in
the /usr/local/apache2 directory. If you are happy with these settings, you can issue the following command to
configure Apache:

#> ./configure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#> ./configure

However, in preparation for the PHP installation in Hour 3, you will need to make sure that mod_so is compiled into
Apache. This module, named for the Unix shared object (*.so) format, enables the use of dynamic modules such as
PHP with Apache. To configure Apache to install itself in a specific location (in this case /usr/local/apache2/) and to
enable the use of mod_so, issue the following command:

#> ./configure --prefix=/usr/local/apache2 --enable-module=so

The purpose of the configure script is to figure out everything related to finding libraries, compile-time options,
platform-specific differences, and so on, and to create a set of special files called makefiles. Makefiles contain
instructions to perform different tasks, called targets. such as building Apache. These files will be read by the make
utility, which will carry out those tasks. If everything goes well, after executing configure, you will see a set of
messages related to the different checks just performed, and will be returned to the prompt:

...
creating test/Makefile
config.status: creating docs/conf/httpd-std.conf
config.status: creating include/ap_config_layout.h
config.status: creating support/apxs
config.status: creating support/apachectl
config.status: creating support/dbmmanage
config.status: creating support/envvars-std
config.status: creating support/log_server_status
config.status: creating support/logresolve.pl
config.status: creating support/phf_abuse_log.cgi
config.status: creating support/split-logfile
config.status: creating build/rules.mk
config.status: creating include/ap_config_auto.h
config.status: executing default commands
#>

If the configure script fails, warnings will appear, alerting you to track down additional software that must be installed,
such as compilers or libraries. After you install any missing software, you can try the configure command again, after
deleting the config.log and config.status files from the top-level directory.

Building and Installing Apache

The make utility reads the information stored in the makefiles and builds the server and modules. Type make at the
command line to build Apache. You will see several messages indicating the progress of the compilation, and you will
end up back at the prompt. After compilation is finished, you can install Apache by typing make install at the prompt.
The makefiles will install files and directories, and return you to the prompt:

...
Installing header files
Installing man pages and online manual
mkdir /usr/local/apache2/man
mkdir /usr/local/apache2/man/man1
mkdir /usr/local/apache2/man/man8
mkdir /usr/local/apache2/manual
Installing build system files
make[1]: Leaving directory '/usr/local/src/httpd-2.0.43'
#>

The Apache distribution files should now be in the /usr/local/apache2 directory, as specified by the --prefix switch in
the configure command. To test that the httpd binary has been correctly built, type the following at the prompt:

#> /usr/local/apache2/bin/httpd -v

You should see the following output (your version and build date will be different):

Server version: Apache/2.0.43
Server built: Sep 1 2002 09:20:47

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Server built: Sep 1 2002 09:20:47

Unless you want to learn how to install Apache on Windows, skip ahead to the "Apache Configuration File Structure"
section to learn about the Apache configuration file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing Apache on Windows
Apache 2.0 runs on most Windows platforms and offers increased performance and stability over the 1.3 versions for
Windows. You can build Apache from source, but because not many Windows users have compilers, this section deals
with the binary installer.

Before installing Apache, you'll probably want to make sure that you are not currently running a Web server (for
instance, a previous version of Apache, Microsoft Internet Information Server, or Microsoft Personal Web Server) in
your machine. You might want to uninstall or otherwise disable existing servers. You can run several Web servers, but
they will need to run in different address and port combinations.

You can download an installer from http://www.apache.org/dist/httpd/binaries/win32.

After you download the installer, double-click on the file to start the installation process. You will get a welcome screen,
as shown in Figure 2.1. Select Next to continue the installation process, and you will be prompted to accept the Apache
license. Basically the license says that you can do whatever you want with the software—including making proprietary
modifications—except claim that you wrote it, but be sure to read the license so that you fully understand the terms.

Figure 2.1. The Windows installer welcome screen.

After you accept the license, the installer presents you with a brief introduction to Apache. Following that, it asks you to
provide basic information about your computer, as shown in Figure 2.2. This includes the full network address for the
server (for instance, mycomputer.mydomain.com) and the administrator's email address. The server name will be
the name that your clients will use to access your server, and the administrator email address will be added to error
messages so that visitors know how to contact you when something goes wrong.

Figure 2.2. The basic information screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.2. The basic information screen.

If your machine does not have a full network address, use localhost or
127.0.0.1 as the ServerName.

In the next step, you can install Apache as a service or require it to be started manually. Installing Apache as a service
will cause it to run every time Windows is started, and you can control it through the usual Windows service
administration tools. Choose this option if you plan to run Apache in a production environment or otherwise require
Apache to run continuously. Installing Apache for the current user will require you to start Apache manually and set the
default port on which Apache listens to requests to 8080. Choose this option if you use Apache for testing or if you
already have a Web server running on port 80.

The next screen enables you to choose the type of installation, as shown in Figure 2.3. Typical installation means that
Apache binaries and documentation will be installed, but headers and libraries will not. This is the best option to choose
unless you plan to compile your own modules.

Figure 2.3. The installation type selection screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A custom installation enables you to choose whether to install header files or documentation. After selecting the target
installation directory, which defaults to c:\Program Files\Apache Group, the program will proceed with the
installation process. If everything goes well, it will present you with the final screen shown in Figure 2.4.

Figure 2.4. The successful installation screen.

In the next section, you'll learn about the Apache configuration file, and eventually start up your new server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Apache Configuration File Structure

Apache keeps all of its configuration information in text files. The main file is called httpd.conf. This file contains
directives and containers, which enable you to customize your Apache installation. Directives configure specific settings
of Apache, such as authorization, performance, and network parameters. Containers specify the context to which those
settings refer. For example, authorization configuration can refer to the server as a whole, a directory, or a single file.

Directives

The following rules apply for Apache directive syntax:

The directive arguments follow the directive name.

Directive arguments are separated by spaces.

The number and type of arguments vary from directive to directive; some have no arguments.

A directive occupies a single line, but you can continue it on a different line by ending the previous line with a
backslash character (\).

The pound sign (#) should precede the directive, and must appear on its own line.

In the Apache server documentation, found online at http://httpd.apache.org/docs-2.0/, you can browse the directives
in alphabetical order or by the module to which they belong. You'll soon learn about some of the basic directives, but
you should supplement your knowledge using the online documentation.

Figure 2.5 shows an entry from the documentation for the ServerName directive description. You can read this
description in the online documentation at http://httpd.apache.org/docs-2.0/mod/core.html#servername.

Figure 2.5. Directive description example.

The schema, as detailed in the documentation at http://httpd.apache.org/docs-2.0/mod/directive-dict.html, is the same
for all directives:

Syntax— This entry explains the format of the directive options. Compulsory parameters appear in italics,
optional parameters appear in italics and brackets.

Default— If the directive has a default value, it will appear here.

Context— This entry details the containers or sections in which the directive can appear. Containers are
explained in the next section. The possible values are server config, virtual host, directory, and .htaccess.

Status— This entry indicates whether the directive is built in Apache (core), belongs to one of the bundled
modules (base or extension, depending on whether they are compiled by default), is part of a Multi-Processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modules (base or extension, depending on whether they are compiled by default), is part of a Multi-Processing
Module (MPM), or is bundled with Apache but not ready for use in a production server (experimental).

Module— This entry indicates the module to which the directive belongs.

Compatibility— This entry contains information about which versions of Apache support the directive.

Override— Apache directives belong to different categories. The override field is used to specify which directive
categories can appear in .htaccess per-directory configuration files.

A brief explanation of the directive follows these entries in the documentation, and a reference to related directives or
documentation may appear at the end.

Containers

Directive containers, also called sections, limit the scope for which directives apply. If directives are not inside a
container, they belong to the default server scope (server config) and apply to the server as a whole.

These are the default Apache directive containers:

<VirtualHost>— A VirtualHost directive specifies a virtual server. Apache enables you to host different Web
sites with a single Apache installation. Directives inside this container apply to a particular Web site. This
directive accepts a domain name or IP address and an optional port as arguments. You will learn more about
virtual hosts in Hour 22, "Apache Performance Tuning and Virtual Hosting."

<Directory>, <DirectoryMatch>— These containers allow directives to apply to a certain directory or group
of directories in the file system. Directory containers take a directory or directory pattern argument. Enclosed
directives apply to the specified directories and their subdirectories. The DirectoryMatch container allows
regular expression patterns to be specified as an argument. For example, the following allows a match of all
subdirectories of the www directory that are made up of four numbers, such as a directory named after a year
and month (0902 for September 2002):

<DirectoryMatch "^/www/.*/[0-9]{4}">

<Location>, <LocationMatch>— These containers allow directives to apply to certain requested URLs or
URL patterns. They are similar to their Directory counterparts. LocationMatch takes a regular expression as
an argument. For example, the following matches directories containing either "/my/data" or "/your/data":

<LocationMatch "/(my|your)/data">

<Files>, <FilesMatch>— Similar to Directory and Location containers, Files sections allow directives to
apply to certain files or file patterns.

Containers surround directives, as shown in Listing 2.1.

Listing 2.1 Sample Container Directives

 1: <Directory "/some/directory">
 2: SomeDirective1
 3: SomeDirective2
 4: </Directory>
 5: <Location "/downloads/*.html">
 6: SomeDirective3
 7: </Location>
 8: <Files "\.(gif|jpg)">
 9: SomeDirective4
 10: </Files>

Sample directives SomeDirective1 and SomeDirective2 will apply to the directory /www/docs and its
subdirectories. SomeDirective3 will apply to URLs referring to pages with the .html extension under the /download/
URL. SomeDirective4 will apply to all files with .gif or .jpg extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conditional Evaluation

Apache provides support for conditional containers. Directives enclosed in these containers will be processed only if
certain conditions are met.

<IfDefine>— Directives in this container will be processed if a specific command-line switch is passed to the
Apache executable. The directive in Listing 2.2 will be processed only if the -DMyModule switch was passed to
the Apache binary being executed. You can pass this directly or by modifying the apachectl script, as described
in the "Apache-Related Commands" section later in this hour.

IfDefine containers allow the argument to be negated. That is, directives inside a <IfDefine !MyModule>
section will be processed only if no -DMyModule parameter was passed as a command-line argument. For
example, if -DSSL is not passed, listening on the SSL port (usually 443) will not occur.

<IfModule>— Directives in an IfModule section will be processed only if the module passed as an argument
is present in the Web server. For example, Apache ships with a default httpd.conf configuration file that
provides support for different MPMs. Only the configuration belonging to the MPM compiled in will be processed,
as you can see in Listing 2.3. The purpose of the example is to illustrate that only one of the directive groups
will be evaluated.

Listing 2.2 IfDefine Example

 1: <IfDefine MyModule>
 2: LoadModule my_module modules/libmymodule.so
 3: </IfDefine>

Listing 2.3 IfModule Example

 1: <IfModule prefork.c>
 2: StartServers 5
 3: MinSpareServers 5
 4: MaxSpareServers 10
 5: MaxClients 20
 6: MaxRequestsPerChild 0
 7: </IfModule>
 8:
 9: <IfModule worker.c>
 10: StartServers 3
 11: MaxClients 8
 12: MinSpareThreads 5
 13: MaxSpareThreads 10
 14: ThreadsPerChild 25
 15: MaxRequestsPerChild 0
 16: </IfModule>

ServerRoot

The ServerRoot directive takes a single argument: a directory path pointing to the directory where the server lives. All
relative path references in other directives are relative to the value of ServerRoot. If you compiled Apache from source
on Linux/Unix, as described earlier in this hour, the default value of ServerRoot is /usr/local/apache2. If you used
the Windows installer, the ServerRoot is c:\Program Files\Apache Group.

Per-Directory Configuration Files

Apache uses per-directory configuration files to allow directives to exist outside the main configuration file httpd.conf.
These special files can be placed in the file system. Apache will process the content of these files if a document is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These special files can be placed in the file system. Apache will process the content of these files if a document is
requested in a directory containing one of these files or any subdirectories under it. The contents of all the applicable
per-directory configuration files are merged and processed. For example, if Apache receives a request for the
/usr/local/apache2/htdocs/index.html file, it will look for per-directory configuration files in the /, /usr, /usr/local,
/usr/local/apache2, and /usr/local/apache2/htdocs directories, in that order.

Enabling per-directory configuration files has a performance penalty. Apache must perform expensive disk operations
looking for these files in every request, even if the files do not exist.

Per-directory configuration files are called .htaccess by default. This is for historical reasons; they were originally used
to protect access to directories containing HTML files.

The directive AccessFileName enables you to change the name of the per-directory configuration files from .htaccess
to something else. It accepts a list of filenames that Apache will use when looking for per-directory configuration files.

To determine whether a directive can be overridden in the per-directory configuration file, check whether the Context:
field of the directive syntax definition contains .htaccess.

Apache directives belong to different groups, specified in the Override: field in the directive syntax description.
Possible values are

AuthConfig— Authorization directives

FileInfo— Directives controlling document types

Indexes— Directives controlling directory indexing

Limit— Directives controlling host access

Options— Directives controlling specific directory features

You can control which of these directive groups can appear in per-directory configuration files by using the
AllowOverride directive. AllowOverride can also take an All or a None argument. All means that directives
belonging to all groups can appear in the configuration file. None disables per-directory files in a directory and any of
its subdirectories. Listing 2.4 shows how to disable per-directory configuration files for the server as a whole. This
improves performance and is the default Apache configuration.

Listing 2.4 Disabling Per-Directory Configuration Files

 1: <Directory />
 2: AllowOverride none
 3: </Directory>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Apache Log Files

Apache includes two log files by default. The access_log file is used to track client requests. The error_log is used to
record important events, such as errors or server restarts. These files don't exist until you start Apache for the first
time. The files are named access.log and error.log in Windows platforms.

access_log

When a client requests a file from the server, Apache records several parameters associated with the request, including
the IP address of the client, the document requested, the HTTP status code, and the current time. Listing 2.5 shows
sample log file entries. Hour 17, "Logging and Monitoring Server Activity," will show you how to modify which
parameters are logged.

Listing 2.5 Sample access_log Entries

 1: 127.0.0.1 - - [01/Sep/2002:09:43:37 -0700] "GET / HTTP/1.1" 200 1494
 2: 127.0.0.1 - - [01/Sep/2002:09:43:40 -0700] "GET /manual/ HTTP/1.1" 200 10383

error_log

This file includes error messages, startup messages, and any other significant events in the life cycle of the server. This
is the first place to look when you have a problem with Apache. Listing 2.6 shows sample error_log entries.

Listing 2.6 Sample error_log Entries

 1: [Sun Sep 01 09:42:59 2002] [notice] Parent: Created child process -2245
 2: [Sun Sep 01 09:42:59 2002] [notice] Child -2242: Child process is running
 3: [Sun Sep 01 09:42:59 2002] [notice] Child -2242: Acquired the start mutex.
 4: [Sun Sep 01 09:42:59 2002] [notice] Child -2242: Starting 250 worker threads.

Additional Files

The httpd.pid file contains the process ID of the running Apache server. You can use this number to send signals to
Apache manually, as described in the next section.

The scoreboard file, present on Linux/Unix Apache, is used by the process-based MPMs to communicate with their
children.

In general, you do not need to worry about these files.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Apache-Related Commands
The Apache distribution includes several executables. This section covers only the server binary and related scripts.
Hour 15, "Restricting Access to Your Applications," and Hour 22, "Apache Performance Tuning and Virtual Hosting,"
cover additional utilities included with the Apache distribution.

Apache Server Binary

The Apache executable is named httpd in Linux/Unix and apache.exe in Windows. It accepts several command-line
options, which are described in Table 2.1. You can get a complete listing of options by typing
/usr/local/apache2/bin/httpd -h on Linux/Unix, or by typing apache.exe -h from a command prompt on Windows.

Table 2.1. httpd Options
Option Meaning

-D Allows you to pass a parameter that can be used for <IfDefine> section processing

-l Lists compiled-in modules

-v Shows version number and server compilation time

-f Allows you to pass the location of httpd.conf if it is different from the compiletime default

After Apache is running, you can use the kill command on Linux/Unix to send signals to the parent Apache process.
Signals provide a mechanism to send commands to a process. To send a signal, execute the following command:

#> kill -SIGNAL pid

where pid is the process ID and SIGNAL is one of the following:

HUP— Stop the server

USR1 or WINCH— Graceful restart; which signal to use depends on the underlying operating system

SIGHUP— Restart

If you make some changes to the configuration files and you want them to take effect, you must signal Apache that the
configuration has changed. You can do this by stopping and starting the server or by sending a restart signal. This tells
Apache to reread its configuration.

A normal restart can result in a momentary pause in service. A graceful restart takes a different approach. Each thread
or process serving a client will keep processing the current request, but when it is finished, it will be killed and replaced
by a new thread or process with the new configuration. This allows seamless operation of the Web server with no
downtime.

On Windows, you can signal Apache using the apache.exe executable:

apache.exe -k restart— Tells Apache to restart

apache.exe -k graceful— Tells Apache to do a graceful restart

apache.exe -k stop— Tells Apache to stop

You can access shortcuts to these commands in the Start menu entries that the Apache installer created. If you
installed Apache as a service, you can start or stop Apache by using the Windows service interface: In Control Panel,
select Administrative Tasks and then click on the Services icon.

Apache Control Script

Although it is possible to control Apache on Linux/Unix using the httpd binary, it is recommended that you use the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although it is possible to control Apache on Linux/Unix using the httpd binary, it is recommended that you use the
apachectl tool. The apachectl support program wraps common functionality in an easy-to-use script. To use
apachectl, type

#> ./apachectl command

where command is stop, start, restart, or graceful. You can also edit the contents of the apachectl script to add
extra command-line options.

Some OS distributions provide you with additional scripts to control Apache; please check the documentation included
with your distribution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Starting Apache for the First Time
Before you start Apache, you should verify that the minimal set of information is present in the Apache configuration
file, httpd.conf. The following sections describe the basic information needed to configure Apache, and how to start the
server.

Check Your Configuration File

You can edit the Apache httpd.conf file with your favorite text editor. In Linux/Unix, this probably means vi or emacs.
In Windows, you can use Notepad or WordPad. You must remember to save the configuration file in plain text, which is
the only format Apache will understand.

There are only two parameters that you might need to change to enable you to start Apache for the first time: the
name of the server and the address and port to which it is listening. The name of the server is the one Apache will use
when it needs to refer to itself (for example, when redirecting requests).

Apache can usually figure out its server name from the IP address of the machine, but this is not always the case. If the
server does not have a valid DNS entry, you might need to specify one of the IP addresses of the machine. If the server
is not connected to a network (you might want to test Apache on a standalone machine), you can use the value
127.0.0.1, which is the loopback address. The default port value is 80. You might need to change this value if there is
already a server running in the machine at port 80, or if you do not have administrator permissions—on Linux/Unix
systems, only the root user can bind to privileged ports (those with port numbers lower than 1024).

You can change both the listening address and the port values with the Listen directive. The Listen directive takes
either a port number or an IP address and a port, separated by a semicolon. If only the port is specified, Apache will
listen on that port at all available IP addresses in the machine. If an additional IP address is provided, Apache will listen
at only that address and port combination. For example, Listen 80 tells Apache to listen for requests at all IP
addresses on port 80. Listen 10.0.0.1:443 tells Apache to listen only at 10.0.0.1 on port 443.

The ServerName directive enables you to define the name the server will report in any self-referencing URLs. The
directive accepts a DNS name and an optional port, separated by a colon. Make sure that ServerName has a valid
value. Otherwise, the server will not function properly; for example, it will issue incorrect redirects.

On Linux/Unix platforms, you can use the User and Group directives to specify which user and group IDs the server
will run as. The nobody user is a good choice for most platforms. However, there are problems in the HP-UX platform
with this user ID, so you must create and use a different user ID, such as www.

Starting Apache

To start Apache on Linux/Unix, change to the directory containing the apachectl script and execute the following
command:

#> ./apachectl start

To start Apache on Windows, click on the Start Apache link in the Control Apache section in the Start menu. If you
installed Apache as a service, you must start the Apache service instead.

If everything goes well, you can access Apache using a browser. The default installation page will be displayed, as
shown in Figure 2.6. If you cannot start the Web server or an error page appears instead, please consult the
"Troubleshooting" section that follows. Make sure that you are accessing Apache in one of the ports specified in the
Listen directive—usually 80 or 8080.

Figure 2.6. Apache default installation page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.6. Apache default installation page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Troubleshooting
The following subsections describe several common problems that you might encounter the first time you start Apache.

Already an Existing Web Server

If there is already a server running in the machine and listening to the same IP address and port combination, Apache
will not be able to start successfully. You will get an entry in the error log file indicating that Apache cannot bind to the
port:

[crit] (48)Address already in use: make_sock: could not bind to address 10.0.0.2:80
[alert] no listening sockets available, shutting down

To solve this problem, you need to stop the running server or change the Apache configuration to listen on a different
port.

No Permission to Bind to Port

You will get an error if you do not have administrator permissions and you try to bind to a privileged port (between 0
and 1024):

[crit] (13)Permission denied: make_sock: could not bind to address 10.0.0.2:80
[alert] no listening sockets available, shutting down

To solve this problem, you must either log on as the administrator before starting Apache or change the port number
(8080 is a commonly used nonprivileged port).

Access Denied

You might not be able to start Apache if you do not have permission to read the configuration files or to write to the log
files. You will get an error similar to the following:

[View full width]

(13)Permission denied: httpd: could not open error log file /usr/local/apache2/logs/
error_log.

This problem can arise if Apache was built and installed by a different user than the one trying to run it.

Wrong Group Settings

You can configure Apache to run under a certain username and group. Apache has default values for the running server
username and group. Sometimes the default value is not valid, and you will get an error containing setgid: unable to
set group id.

To solve this problem on Linux/Unix, you must change the value of the Group directive in the configuration file to a
valid value. Check the /etc/groups file for existing groups.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
This hour explained different ways of getting an Apache 2.0 server installed on your Linux/Unix or Windows machine. It
covered both binary and source installation and explained the basic build-time options. Additionally, you learned the
location of the server configuration files, and the syntax of the commands used to modify your Apache configuration.
You learned about the two main log files—access_log and error_log. Finally, you saw how to start and stop the server
using the Apache control scripts or the Apache server binary on Linux/Unix and Windows platforms.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: How can I start a clean build?

A1: If you need to build a new Apache from source and do not want the result of earlier builds to affect the
new one, it is always a good idea to run the make clean command. That will take care of cleaning up any
existing binaries, intermediate object files, and so on.

Q2: Why are per-directory configuration files useful?

A2: Although per-directory configuration files have an impact on server performance, they can be useful for
delegated administration. Because per-directory configuration files are read every time a request is made,
there is no need to restart the server when a change is made to the configuration.

You can allow users of your Web site to make configuration changes on their own without granting them
administrator privileges. In this way, they can password-protect sections of their home pages, for
example.

Q3: What do you mean by a valid ServerName directive?

A3: The DNS system is used to associate IP addresses with domain names. The value of ServerName is
returned when the server generates a URL. If you are using a certain domain name, you must make sure
that it is included in your DNS system and will be available to clients visiting your site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: How can you specify the location where you want to install Apache?

A1: Linux/Unix users can use the --prefix option of the configure script. If an existing installation is present
at that location, the configuration files will be preserved but the binaries will be replaced. On Windows, this
location is set in the installation wizard.

2: What is the main difference between <Location> and <Directory> sections?

A2: Directory sections refer to file system objects; Location sections refer to elements in the address bar of
the Web page (also called the URI).

3: What is the difference between a restart and a graceful restart?

A3: During a normal restart, the server is stopped and then started, causing some requests to be lost. A
graceful restart allows Apache children to continue to serve their current requests until they can be
replaced with children running the new configuration.

Activities

1. Practice the various types of server shutdown and restart procedures.

2. Make some configuration changes such as different port assignments and ServerName changes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 3. Installing and Configuring PHP
In the last of the three "installation" hours, you will acquire, install, and configure PHP and make some basic changes to
your Apache installation. In this hour, you will learn

How to install PHP with Apache on Linux/Unix

How to install PHP with Apache server on Windows

How to test your PHP installation

How to find help when things go wrong

The basics of the PHP language

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Building PHP on Linux/Unix with Apache
In this section, we will look at one way of installing PHP with Apache on Linux/Unix. The process is more or less the
same for any Unix operating system. While you might be able to find pre-built versions of PHP for your system,
compiling PHP from the source gives you greater control over the features built into your binary.

To download the PHP distribution files, go to the home of PHP, http://www.php.net/, and follow the link to the
Downloads section. Grab the latest version of the source code—for this example, we are using 4.2.3. Your distribution
will be named something similar to php-version.tar.gz, where version is the most recent release number. This
archive will be a compressed tar file, so you will need to unpack it:

#> tar -xvzf php- version.tar.gz

Keep the downloaded file in a directory reserved for source files, such as /usr/src/ or /usr/local/src/. After your
distribution is unpacked, you should move to the PHP distribution directory:

#> cd php-version

Within your distribution directory you will find a script called configure. This script accepts additional information that
is provided when the configure script is run from the command line. These "command-line arguments" will control the
features that PHP will support. For this example, we will include the basic options you need to use to install PHP with
Apache and MySQL support. We will discuss some of the available configure options later in the hour.

#> ./configure --prefix=/usr/local/php \
--with-mysql=/usr/local/bin/mysql \
--with-apxs2=/usr/local/apache2/bin/apxs

Once the configure script has run, you will be returned to the prompt after receiving several informational notes from
the PHP Group:

+--+
| > WARNING > |
| |
| Apache 2 Support is EXPERIMENTAL and should NOT be used in |
| production environment. Before submitting bug reports, try the |
| latest CVS snapshot from http://snaps.php.net |
+--+
| License: |
| This software is subject to the PHP License, available in this |
| distribution in the file LICENSE. By continuing this installation |
| process, you are bound by the terms of this license agreement. |
| If you do not agree with the terms of this license, you must abort |
| the installation process at this point. |
+--+
| > NOTE > |
| The default for register_globals is now OFF! |
| |
| If your application relies on register_globals being ON, you |
| should explicitly set it to on in your php.ini file. |
| Note that you are strongly encouraged to read |
| http://www.php.net/manual/en/security.registerglobals.php |
| about the implications of having register_globals set to on, and |
| avoid using it if possible. |
+--+
#>

Depending on the PHP version you install, you may or may not receive the
warning regarding the status of Apache 2 support. As of this writing, Apache 2
and PHP work splendidly together for all functionality in this book. However,
you should run your own tests to determine whether you wish to use these
versions in production.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, issue the make command, followed by the make install command. These commands should end the process of
PHP compilation and installation and return you to your prompt.

You will need to ensure that two very important files are copied to their correct locations. First, issue the following
command to copy the distributed version of php.ini to its default location. You will learn more about php.ini later in
this hour.

#> cp php.ini-dist /usr/local/php/lib/php.ini

Next, copy the PHP shared object file to its proper place in the Apache installation directory, if it has not already been
placed there by the installation process:

#> cp libs/libphp4.so /usr/local/apache2/modules/

You should now be able to configure and run Apache, but let's cover some additional configuration options before
heading on to the "Integrating PHP with Apache on Linux/Unix" section.

Additional Configuration Options

When we ran the configure script, we included some command-line arguments that determined some features that the
PHP engine will include. The configure script itself gives you a list of available options, including the ones we used.
From the PHP distribution directory, type the following:

#> ./configure --help

This produces a long list, so you might want to add it to a file and read it at your leisure:

#> ./configure --help > configoptions.txt

If you discover additional functionality you wish to add to PHP after it has been installed, simply run the configuration
and build process again. Doing so will create a new version of libphp4.so and place it in the Apache directory
structure. All you have to do is restart Apache in order for the new file to be loaded.

Integrating PHP with Apache on Linux/Unix

To ensure that PHP and Apache get along with one another, you need to check for—and potentially add—a few items to
the httpd.conf configuration file. First, look for a line like the following:

LoadModule php4_module modules/libphp4.so

If this line is not present, or only appears with a pound sign (#) at the beginning of the line, you must add the line or
remove the #. This line tells Apache to use the PHP shared object file that was created by the PHP build process
(libphp4.so).

Next, look for this section:

#
AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.
#

Add the following lines:

AddType application/x-httpd-php .php .phtml .html
AddType application/x-httpd-php-source .phps

This ensures that the PHP engine will parse files that end with the .php, .phtml, and .html extensions. Your selection
of filenames may differ, and you may wish to add .php3 as an extension, for backwards compatibility with any very old
scripts you may have.

Any files with the .phps extension will be output as PHP source (that is, the source code will be converted to HTML and
color-coded). This can be useful for debugging your scripts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color-coded). This can be useful for debugging your scripts.

Save this file, and then restart Apache. When you look in your error_log, you should see something like the following
line:

[Sun Sep 29 10:42:47 2002] [notice] Apache/2.0.43 (Unix) PHP/4.2.3 configured

PHP is now part of the Apache Web server. If you want to learn how to install PHP on a Windows platform, keep
reading. Otherwise, you can skip ahead to the "Testing Your Installation" section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing PHP Files on Windows
Unlike building and installing PHP on Linux/Unix, installing PHP on Windows requires nothing more than downloading the
distribution and moving a few files around. To download the PHP distribution files, go to the home of PHP,
http://www.php.net/, and follow the link to the Downloads section. Grab the latest version of the zip package from the
Windows Binaries section—for this example we are using 4.2.3. Your distribution will be named something similar to
php-version.zip, where version is the most recent release number.

Once the file is downloaded to your system, double-click on it to launch your unzipper. The distribution is packed up
with pathnames already in place, so if you extract the files to the root of your drive, it will create a directory called
php-version-Win32, and place all the files and subdirectories under that new directory.

Now that you have all the basic PHP distribution files, you just need to move a few of them around:

1. In the PHP installation directory, find the php.ini-dist file and rename it php.ini.

2. Move the php.ini file to C:\WINDOWS\ or wherever you usually put your *.ini files.

3. Move the php4ts.dll file to C:\WINDOWS\SYSTEM\ or wherever you usually put your *.dll files.

To get a basic version of PHP working with Apache, you'll need to make a few minor modifications to the Apache
configuration file.

Integrating PHP with Apache on Windows

To ensure that PHP and Apache get along with one another, you need to add a few items to the httpd.conf
configuration file. First, find a section that looks like this:

Example:
LoadModule foo_module modules/mod_foo.so
#
LoadModule access_module modules/mod_access.so
LoadModule actions_module modules/mod_actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule asis_module modules/mod_asis.so
LoadModule auth_module modules/mod_auth.so
#LoadModule auth_anon_module modules/mod_auth_anon.so
#LoadModule auth_dbm_module modules/mod_auth_dbm.so
#LoadModule auth_digest_module modules/mod_auth_digest.so
LoadModule autoindex_module modules/mod_autoindex.so
#LoadModule cern_meta_module modules/mod_cern_meta.so
LoadModule cgi_module modules/mod_cgi.so
#LoadModule dav_module modules/mod_dav.so
#LoadModule dav_fs_module modules/mod_dav_fs.so
LoadModule dir_module modules/mod_dir.so
LoadModule env_module modules/mod_env.so
#LoadModule expires_module modules/mod_expires.so
#LoadModule file_cache_module modules/mod_file_cache.so
#LoadModule headers_module modules/mod_headers.so

At the end of this section, add the following:

LoadModule php4_module c:/php-version/sapi/php4apache2.dll

Next, look for this section:

#
AddType allows you to add to or override the MIME configuration
file mime.types for specific file types.
#

Add the following lines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the following lines:

AddType application/x-httpd-php .php .phtml .html
AddType application/x-httpd-php-source .phps

This ensures that the PHP engine will parse files that end with the .php, .phtml, and .html extensions. Your selection
of filenames may differ, and you may wish to add .php3 as an extension, for backwards compatibility with any very old
scripts you may have.

Any files with the .phps extension will be output as PHP source. That is, the source code will be converted to HTML and
color-coded. This can be useful for debugging your scripts.

Save this file, and then restart Apache. If the server starts, PHP is now part of the Apache Web server.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

php.ini Basics

After you have compiled or installed PHP, you can still change its behavior with the php.ini file. On Unix systems, the
default location for this file is /usr/local/php/lib, or the lib subdirectory of the PHP installation location you used at
configuration time. On a Windows system, this file should be in the Windows directory.

Directives in the php.ini file come in two forms: values and flags. Value directives take the form of a directive name
and a value separated by an equals sign. Possible values vary from directive to directive. Flag directives take the form
of a directive name and a positive or negative term separated by an equals sign. Positive terms include 1, On, Yes, and
True. Negative terms include 0, Off, No, and False. Whitespace is ignored.

You can change your php.ini settings at any time, but after you do, you'll need to restart the server for the changes to
take effect. At some point, take time to read through the php.ini file on your own, to see the types of things that can
be configured.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Testing Your Installation

The simplest way to test your PHP installation is to create a small test script utilizing the phpinfo() function. This
function will produce a long list of configuration information. Open a text editor and type the following line:

<? phpinfo(); ?>

Save this file as phpinfo.php and place it in the document root of your Web server—the htdocs subdirectory of your
Apache installation. Access this file via your Web browser and you should see something like Figure 3.1 or Figure 3.2.

Figure 3.1. The results of phpinfo() on a Linux/Unix system.

Figure 3.2. The results of phpinfo() on a Windows system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Getting Installation Help
Help is always at hand on the Internet, particularly for problems concerning open source software. Wait a moment
before you click the send button, however. No matter how intractable your installation, configuration, or programming
problem might seem, chances are you are not alone. Someone has probably already answered your question.

When you hit a brick wall, your first recourse should be to the official PHP site at http://www.php.net/ (particularly the
annotated manual at http://www.php.net/manual/).

If you still can't find your answer, don't forget that the PHP site is searchable. The advice you are seeking may be
lurking in a press release or a Frequently Asked Questions file. You can also search the mailing list archives at
http://www.php.net/search.php. These archives represent a huge information resource with contributions from many of
the great minds in the PHP community. Spend some time trying out a few keyword combinations.

If you are still convinced that your problem has not been addressed, you may well be doing the PHP community a
service by exposing it. You can join the PHP mailing lists at http://www.php.net/support.php. Although these lists often
have high volume, you can learn a lot from them. If you are serious about PHP scripting, you should certainly subscribe
to at least a digest list. Once you've subscribed to the list that matches your concerns, you might consider posting your
problem.

When you post a question, it is a good idea to include as much information as possible (without writing a novel). The
following items are often pertinent:

Your operating system

The version of PHP you are running or installing

The configuration options you chose

Any output from the configure or make commands that preceded an installation failure

A reasonably complete example of the code that is causing problems

Why all these cautions about posting a question to a mailing list? First, developing research skills will stand you in good
stead. A good researcher can generally solve a problem quickly and efficiently. Posting a naive question to a technical
list often results in a wait rewarded only by a message or two referring you to the archives where you should have
begun your search for answers in the first place.

Second, remember that a mailing list is not analogous to a technical support call center. No one is paid to answer your
questions. Despite this, you have access to an impressive pool of talent and knowledge, including that of some of the
creators of PHP itself. A good question and its answer will be archived to help other coders. Asking a question that has
been answered several times just adds more noise.

Having said this, don't be afraid to post a problem to the list. PHP developers are a civilized and helpful breed, and by
bringing a problem to the attention of the community, you might be helping others to solve the same problem.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Basics of PHP Scripts
Let's jump straight in with a PHP script. To begin, open your favorite text editor. Like HTML documents, PHP files are
made up of plain text. You can create them with any text editor, such as Notepad on Windows, Simple Text and BBEdit
on Mac OS, or vi and Emacs on Unix operating systems. Most popular HTML editors provide at least some support for
PHP.

Keith Edmunds maintains a handy list of PHP-friendly editors at
http://www.itworks.demon.co.uk/phpeditors.htm.

Type in the example in Listing 3.1 and save the file, calling it something like first.php.

Listing 3.1 A Simple PHP Script

 1: <?php
 2: print "Hello Web!";
 3: ?>

If you are not working directly on the machine that will be serving your PHP script, you will probably need to use an FTP
client such as WS-FTP for Windows or Fetch for Mac OS to upload your saved document to the server.

Once the document is in place, you should be able to access it via your browser. If all has gone well, you should see the
script's output. Figure 3.3 shows the output from the first.php script.

Figure 3.3. Success: the output from Listing 3.1.

Beginning and Ending a Block of PHP Statements

When writing PHP, you need to inform the PHP engine that you want it to execute your commands. If you don't do this,
the code you write will be mistaken for HTML and will be output to the browser. You can designate your code as PHP
with special tags that mark the beginning and end of PHP code blocks. Table 3.1 shows four such PHP delimiter tags.

Table 3.1. PHP Start and End Tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3.1. PHP Start and End Tags
Tag Style Start Tag End Tag

Standard tags <?php ?>
Short tags <? ?>
ASP tags <% %>
Script tags <SCRIPT LANGUAGE="php"> </SCRIPT>

Of the tags in Table 3.1, only the standard and script tags are guaranteed to work on any configuration. The short and
ASP style tags must be explicitly enabled in your php.ini.

To activate recognition for short tags, you must make sure that the short_open_tag switch is set to On in php.ini:

short_open_tag = On;

Short tags are enabled by default, so you only need to edit php.ini if you want to disable them.

To activate recognition for the ASP style tags, you must enable the asp_tags setting:

asp_tags = On;

After you have edited php.ini, you should be able to use any of the four styles in your scripts. This is largely a matter
of preference, although if you intend to include XML in your script, you should disable the short tags (<? ?>) and work
with the standard tags (<?php ?>).

The character sequence <? tells an XML parser to expect a processing instruction
and is therefore frequently included in XML documents. If you include XML in your
script and have short tags enabled, the PHP engine is likely to confuse XML
processing instructions and PHP start tags. Disable short tags if you intend to
incorporate XML in your document.

Let's run through some of the ways in which you can legally write the code in Listing 3.1. You can use any of the four
PHP start and end tags that you have seen:

<?
print("Hello Web!");
?>

<?php
print("Hello Web!");
?>

<%
print("Hello Web!");
%>

<SCRIPT LANGUAGE="php">
print("Hello Web!");
</SCRIPT>

You can also put single lines of code in PHP on the same line as the PHP start and end tags:

<? print("Hello Web!"); ?>

Now that you know how to define a block of PHP code, let's take a closer look at the code in Listing 3.1 itself.

The print() Function

print() is a function that outputs data. In most cases, anything output by print() ends up in the browser window. A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print() is a function that outputs data. In most cases, anything output by print() ends up in the browser window. A
function is a command that performs an action, usually modified in some way by data provided for it. Data sent to a
function is almost always placed in parentheses after the function name. In this case, you sent the print() function a
collection of characters, or a string. Strings must always be enclosed in quotation marks, either single or double.

Function calls generally require parentheses after their names regardless of
whether or not they demand that data be passed to them. print() is an
exception—enclosing the data you want to print to the browser in parentheses
is optional. print is a more common syntax than print(), so we will usually
omit the parentheses in our examples.

The only line of code in Listing 3.1 ended with a semicolon. The semicolon informs the PHP engine that you have
completed a statement.

A statement represents an instruction to the PHP engine. Broadly, it is to PHP what a sentence is to written or spoken
English. A sentence should end with a period; a statement should usually end with a semicolon. Exceptions to this
include statements that enclose other statements, and statements that end a block of code. In most cases, however,
failure to end a statement with a semicolon will confuse the PHP engine and result in an error.

Combining HTML and PHP

The script in Listing 3.1 is pure PHP. You can incorporate this into an HTML document by simply adding HTML outside
the PHP start and end tags, as shown in Listing 3.2.

Listing 3.2 A PHP Script Incorporated into HTML

 1: <html>
 2: <head>
 3: <title>Listing 3.2 A PHP script including HTML</title>
 4: </head>
 5: <body>
 6:
 7: <?php
 8: print "hello world";
 9: ?>
 10:
 11: </body>
 12: </html>

As you can see, incorporating PHP code into a predominantly HTML document is simply a matter of typing in the code.
The PHP engine ignores everything outside the PHP open and close tags. If you were to view Listing 3.2 with a browser,
as shown in Figure 3.4, you would see the string "hello world" in bold. If you were to view the document source, as
shown in Figure 3.5, the listing would look exactly like a normal HTML document.

Figure 3.4. The output of Listing 3.2 as viewed in a browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.5. The output of Listing 3.2 as HTML source code.

You can include as many blocks of PHP code as you need in a single document, interspersing them with HTML as
required. Although you can have multiple blocks of code in a single document, they combine to form a single script. Any
variables defined in the first block will usually be available to subsequent blocks.

Adding Comments to PHP Code

Code that seems clear at the time of writing can seem like a hopeless tangle when you try to amend it six months later.
Adding comments to your code as you write can save you time later on and make it easier for other programmers to
work with your code.

A comment is text in a script that is ignored by the PHP engine. Comments can be used to make code more readable, or
to annotate a script.

Single-line comments begin with two forward slashes (//) or a single hash sign (#). The PHP engine ignores all text
between these marks and either the end of the line or the PHP close tag:

// this is a comment
this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end with an asterisk followed by a
forward slash (*/):

/*
this is a comment
none of this will
be parsed by the
PHP engine
*/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you learned how to install and configure PHP for use with Apache on either Linux/Unix or Windows. You
learned that various configure options in the Linux/Unix build script can change the features that are supported. You
learned about php.ini and how to change the values of its directives. Using the phpinfo() function, you tested your
installation and produced a list of its configuration values. You created a simple PHP script using a text editor. You
examined four sets of tags that you can use to begin and end blocks of PHP code. Finally, you learned how to use the
print() function to send data to the browser, and you brought HTML and PHP together into the same script. In the next
hour, you will use these skills to test some of the fundamental building blocks of the PHP language, including variables,
data types, and operators.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: You have covered an installation for Linux/Unix or Windows, and the Apache Web server. Does
this mean that the material presented in this book will not apply to my server and operating
system?

A1: No, one of PHP's great strengths is that it runs on multiple platforms. You can find installation instructions
for different Web servers and configuration directives for database support in the PHP Manual. While the
examples throughout this book are specifically geared toward the combination of PHP, MySQL, and
Apache, only slight modifications would be needed to work with the examples using different Web servers
or databases.

Q2: Which are the best start and end tags to use?

A2: It is largely a matter of preference. For the sake of portability, the standard tags (<?php ?>) are
probably the safest bet. Short tags are enabled by default and have the virtue of brevity, but with the
increasing popularity of XML, it is safest to avoid them.

Q3: What editors should I avoid when creating PHP code?

A3: Do not use word processors that format text for printing (such as Word, for example). Even if you save
files created using this type of editor in plain text format, hidden characters are likely to creep into your
code.

Q4: When should I comment my code?

A4: Once again, this is a matter of preference. Some short scripts will be self-explanatory, even after a long
interval. For scripts of any length or complexity, you should comment your code. This often saves you
time and frustration in the long run.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: From a Linux/Unix operating system, how would you get help on configuration options (the options that
you pass to the configure script in your PHP distribution)?

A1: You can get help on configuration options by calling the configure script in the PHP distribution folder and
passing it the --help argument:

./configure --help

2: What line should you add to the Apache configuration file to ensure that the .php extension is recognized?

A2: The line

AddType application/x-httpd-php .php

ensures that Apache will treat files ending with the .php extension as PHP scripts.

3: What is PHP's configuration file called?

A3: PHP's configuration file is called php.ini.

4: Can a user read the source code of PHP script you have successfully installed?

A4: No, the user will only see the output of your script. The exception to this is if you have explicitly created a
copy of the script with a .phps extension, which will show the color-coded source.

Activities

1. Install PHP on your system. If it is already in place, review your php.ini file and check your configuration.

2. Familiarize yourself with the process of creating, uploading, and running PHP scripts. In particular, create your
own "hello world" script. Add HTML code to it, and additional blocks of PHP. Experiment with the different PHP
delimiter tags. Which ones are enabled in your configuration? Take a look at your php.ini file to confirm your
findings. Don't forget to add some comments to your code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: Basic Language Elements
Hour

 4 The Building Blocks of PHP

 5 Flow Control Functions in PHP

 6 Working with Functions

 7 Learning Basic SQL Commands

 8 Interacting with MySQL Using PHP

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 4. The Building Blocks of PHP
In this hour, you will get your hands dirty with some of the nuts and bolts of the PHP scripting language. Those of you
new to programming may feel overwhelmed at times, but don't worry—you can always refer back to this hour later on.
Concentrate on understanding the concepts rather than memorizing the features covered.

If you're already an experienced programmer, you should at least skim this hour's lesson, as it covers a few PHP-
specific features.

In this hour, you will learn

About variables—what they are, why you need to use them, and how to use them

How to define and access variables

About data types

About some of the more commonly used operators

How to use operators to create expressions

How to define and use constants

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Variables
A variable is a special container that you can define to "hold" a value. Variables are fundamental to programming.
Without variables, we would be forced to hard-code all the values in our scripts. By adding two numbers together and
printing the result, you can achieve something useful:

print (2 + 4);

This script will only be useful for people who want to know the sum of 2 and 4, however. To get past this, you could
write a script for finding the sum of another set of numbers, say 3 and 5. However, this approach to programming is
clearly absurd, and this is where variables come into play.

Variables allow us to create templates for operations (adding two numbers, for example), without worrying about what
values the variables contain. Values will be given to the variables when the script is run, possibly through user input, or
through a database query.

You should use a variable whenever the data that you are subjecting to an operation in your script is liable to change
from one script execution to another, or even within the lifetime of the script itself.

A variable consists of a name of your choosing, preceded by a dollar sign ($). Variable names can include letters,
numbers, and the underscore character (_). They cannot include spaces. They must begin with a letter or an
underscore. The following code defines some legal variables:

$a;
$a_longish_variable_name;
$2453;
$sleepyZZZZ;

Your variable names should be meaningful as well as consistent in style. For
example, if your script deals with name and password values, don't create a
variable called $n for the name and $p for the password—those are not
meaningful names. If you pick up that script weeks later, you might think that
$n is the variable for "number" rather than "name" and that $p stands for
"page" rather than "password."

A semicolon (;)—also known as the instruction terminator—is used to end a PHP statement. The semicolons in the
previous fragment of code are not part of the variable names.

A variable is a holder for a type of data. It can hold numbers, strings of
characters, objects, arrays, or Booleans. The contents of a variable can be
changed at any time.

As you can see, you have plenty of choices when naming variables. To declare a variable, you need only include it in
your script. When you declare a variable, you usually assign a value to it in the same statement, as shown here:

$num1 = 8;
$num2 = 23;

The preceding lines declare two variables, using the assignment operator (=) to give them values. You will learn about
assignment in more detail in the "Operators and Expressions" section later in this hour. After you give your variables
values, you can treat them exactly as if they were the values themselves. In other words

print $num1;

is equivalent to

print 8;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print 8;

as long as $num1 contains 8.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Data Types
Different types of data take up different amounts of memory and may be treated differently when they are manipulated
in a script. Some programming languages therefore demand that the programmer declare in advance which type of
data a variable will contain. By contrast, PHP is loosely typed, meaning that it will calculate data types as data is
assigned to each variable. This is a mixed blessing. On the one hand, it means that variables can be used flexibly,
holding a string at one point and an integer at another. On the other hand, this can lead to problems in larger scripts if
you expect a variable to hold one data type when in fact it holds something completely different. For example, suppose
you have created code that is designed to work with an array variable. If the variable in question instead contains a
number value, errors might occur when the code attempts to perform array-specific operations on the variable.

Table 4.1 shows the six standard data types available in PHP.

Table 4.1. Standard Data Types
Type Example Description

Integer 5 A whole number

Double 3.234 A floating-point number

String "hello" A collection of characters

Boolean true One of the special values true or false
Object An instance of a class

Array An ordered set of keys and values

PHP also provides two special data types, listed in Table 4.2.

Table 4.2. Special Data Types
Type Description

Resource Reference to a third-party resource (a database, for example)

NULL An uninitialized variable

Resource types are often returned by functions that deal with external applications or files. The type NULL is reserved
for variables that have not been initialized (that is, variables that have not yet had a value assigned to them).

You can use PHP's built-in function gettype() to test the type of any variable. If you place a variable between the
parentheses of the function call, gettype() returns a string representing the relevant type. Listing 4.1 assigns five
different data types to a single variable, testing it with gettype() each time.

You can read more about calling functions in Hour 6, "Working with Functions,"

Listing 4.1 Testing the Type of a Variable

 1: <html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <html>
 2: <head>
 3: <title>Listing 4.1 Testing the type of a variable</title>
 4: </head>
 5: <body>
 6: <?php
 7: $testing; // declare without assigning
 8: print gettype($testing); // null
 9: print "
";
 10: $testing = 5;
 11: print gettype($testing); // integer
 12: print "
";
 13: $testing = "five";
 14: print gettype($testing); // string
 15: print("
");
 16: $testing = 5.0;
 17: print gettype($testing); // double
 18: print("
");
 19: $testing = true;
 20: print gettype($testing); // boolean
 21: print "
";
 22: ?>
 23: </body>
 24: </html>

Put these lines into a text file called gettype.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

NULL
integer
string
double
boolean

When we declare the $testing variable in line 7, we do not assign a value to it, so when we first use the gettype()
function to test the variable in line 8, we get the string NULL. After this, we assign values to $testing by using the =
sign before passing it to gettype(). An integer, assigned to the $testing variable in line 10, is a whole or real number.
In simple terms, you can think of it as a number without a decimal point. A string, assigned to the $testing variable in
line 13, is a collection of characters. When you work with strings in your scripts, they should always be surrounded by
double or single quotation marks (" or '). A double, assigned to the $testing variable in line 16, is a floating-point
number (that is, a number that includes a decimal point). A Boolean, assigned to the $testing variable in line 19, can
have one of two special values, true or false.

Changing Type with settype()

PHP provides the function settype() to change the type of a variable. To use settype(), you must place the variable to
change and the type to change it to between the parentheses and separate them with a comma. Listing 4.2 converts
the value 3.14 (a double) to each of the four types that we are focusing on in this hour.

Listing 4.2 Changing the Type of a Variable with settype()

 1: <html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <html>
 2: <head>
 3: <title>Listing 4.2 Changing the type of a variable with settype()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $undecided = 3.14;
 8: print gettype($undecided); // double
 9: print " is $undecided
"; // 3.14
 10: settype($undecided, 'string');
 11: print gettype($undecided); // string
 12: print " is $undecided
"; // 3.14
 13: settype($undecided, 'integer');
 14: print gettype($undecided); // integer
 15: print " is $undecided
"; // 3
 16: settype($undecided, 'double');
 17: print gettype($undecided); // double
 18: print " is $undecided
"; // 3.0
 19: settype($undecided, 'boolean');
 20: print gettype($undecided); // boolean
 21: print " is $undecided
"; // 1
 22: ?>
 23: </body>
 24: </html>

In each case, we use gettype() to confirm that the type change worked and then print the value of the variable
$undecided to the browser. When we convert the string "3.14" to an integer in line 13, any information beyond the
decimal point is lost forever. That's why $undecided contains 3.0 after we change it back to a double in line 16.
Finally, in line 19, we convert $undecided to a Boolean. Any number other than 0 becomes true when converted to a
Boolean. When printing a Boolean in PHP, true is represented as 1 and false is represented as an empty string, so in
line 21, $undecided is printed as 1.

Put these lines into a text file called settype.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

double is 3.14
string is 3.14
integer is 3
double is 3
boolean is 1

Changing Type by Casting

By placing the name of a data type in parentheses in front of a variable, you create a copy of that variable's value
converted to the data type specified.

The principal difference between a settype() and a cast is the fact that casting produces a copy, leaving the original
variable untouched. Listing 4.3 illustrates this.

Listing 4.3 Casting a Variable

 1: <html>
 2: <head>
 3: <title>Listing 4.3 Casting a variable</title>
 4: </head>
 5: <body>
 6: <?php
 7: $undecided = 3.14;
 8: $holder = (double) $undecided;
 9: print gettype($holder) ; // double
 10: print " is $holder
"; // 3.14
 11: $holder = (string) $undecided;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11: $holder = (string) $undecided;
 12: print gettype($holder); // string
 13: print " is $holder
"; // 3.14
 14: $holder = (integer) $undecided;
 15: print gettype($holder); // integer
 16: print " is $holder
"; // 3
 17: $holder = (double) $undecided;
 18: print gettype($holder); // double
 19: print " is $holder
"; // 3.14
 20: $holder = (boolean) $undecided;
 21: print gettype($holder); // boolean
 22: print " is $holder
"; // 1
 23: print "<hr>";
 24: print "original variable type: ";
 25: print gettype($undecided); // double
 26: ?>
 27: </body>
 28: </html>

We never actually change the type of $undecided, which remains a double throughout. This is illustrated on line 25,
where we use the gettype() function to output the type of $undecided.

In fact, by casting $undecided, we create a copy that is then converted to the type we specify. This new value is
stored in the variable $holder, first in line 8, and also in lines 11, 14, 17, and 20. Because we are working with a copy
of $undecided, we never discard any information from it as we did in lines 13 and 19 of Listing 4.2.

Put these lines into a text file called testcast.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

double is 3.14
string is 3.14
integer is 3
double is 3.14
boolean is 1
original variable type: double

Now that we can change the contents of a variable from one type to another, using either settype() or a cast, we
should consider why this might be useful. It is certainly not a procedure that you will use often because PHP will
automatically cast for you when the context requires. However, an automatic cast is temporary, and you might wish to
make a variable persistently hold a particular data type.

Numbers that a user types into an HTML form will be made available to your script as a string. If you try to add two
strings containing numbers, PHP will helpfully convert the strings into numbers while the addition is taking place. So

"30cm" + "40cm"

will give the integer 70. In casting the strings, PHP will ignore the non-numeric characters. However, you might want to
clean up the user input yourself. Imagine that the user has been asked to submit a number. We can simulate this by
declaring a variable and assigning to it:

$test = "30cm";

As you can see, the user has added units to the number. We can make sure that the user input is clean by casting it to
an integer:

$test = (integer)$test;
print "Your imaginary box has a width of $test centimeters";

Why Test Type?

Why might it be useful to know the type of a variable? There are often circumstances in programming in which data is
passed to you from another source. In Hour 6, for example, you will learn how to create functions in your scripts.
Functions can accept information from calling code in the form of arguments. For the function to work with the data it is
given, it is often a good idea to first verify that it has been given values of the correct data type. A function that is
expecting a resource, for example, will not work well when passed a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expecting a resource, for example, will not work well when passed a string.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Operators and Expressions
With what you have learned so far, you can assign data to variables. You can even investigate and change the data
type of a variable. A programming language isn't very useful, though, unless you can manipulate the data you can
store. Operators are symbols that make it possible to use one or more values to produce a new value. A value that is
operated on by an operator is referred to as an operand.

An operator is a symbol or series of symbols that, when used in conjunction
with values, performs an action and usually produces a new value.

An operand is a value used in conjunction with an operator. There are usually
two operands to one operator.

Let's combine two operands with an operator to produce a new value:

4 + 5

4 and 5 are operands. They are operated on by the addition operator (+) to produce 9. Operators almost always sit
between two operands, though you will see a few exceptions later in this hour.

The combination of operands with an operator to produce a result is called an expression. Although most operators
form the basis of expressions, an expression need not contain an operator. In fact, in PHP, an expression is defined as
anything that can be used as a value. This includes integer constants such as 654, variables such as $user, and
function calls such as gettype(). (4 + 5), for example, is an expression that consists of two further expressions and
an operator. When an expression produces a value, it is often said to "resolve to" that value. That is, when all
subexpressions are taken into account, the expression can be treated as if it were a code for the value itself.

An expression is any combination of functions, values, and operators that
resolve to a value. As a rule of thumb, if you can use it as if it were a value, it is
an expression.

Now that we have the principles out of the way, it's time to take a tour of PHP's more common operators.

The Assignment Operator

You have seen the assignment operator each time we have initialized a variable. It consists of the single character =.
The assignment operator takes the value of its right-hand operand and assigns it to its left-hand operand:

$name = "matt";

The variable $name now contains the string "matt". Interestingly, this construct is an expression. It might appear at
first glance that the assignment operator simply changes the variable $name without producing a value, but in fact, a
statement that uses the assignment operator always resolves to a copy of the value of the right operand. Thus

print ($name = "matt");

prints the string "matt" to the browser in addition to assigning "matt" to $name.

Arithmetic Operators

The arithmetic operators do exactly what you would expect—they perform arithmetic operations. Table 4.3 lists these
operators. The addition operator adds the right operand to the left operand. The subtraction operator subtracts the
right-hand operand from the left. The division operator divides the left-hand operand by the right. The multiplication
operator multiplies the left-hand operand by the right. The modulus operator returns the remainder of the left operand
divided by the right.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

divided by the right.

Table 4.3. Arithmetic Operators
Operator Name Example Example Result

+ Addition 10+3 13

- Subtraction 10-3 7

/ Division 10/3 3.3333333333333

* Multiplication 10*3 30

% Modulus 10%3 1

The Concatenation Operator

The concatenation operator is represented by a single period. Treating both operands as strings, it appends the right-
hand operand to the left. So

"hello"." world"

returns

"hello world"

Regardless of the data types of the operands, they are treated as strings, and the result is always a string. We will
encounter concatenation frequently throughout this book when we need to combine the results of an expression of
some kind with a string.

$centimeters = 212;
print "the width is ".($centimeters/100)." meters";

Combined Assignment Operators

Although there is really only one assignment operator, PHP provides a number of combination operators that transform
the left-hand operand and return a result. As a rule, operators use their operands without changing their values.
Assignment operators break this rule. A combined assignment operator consists of a standard operator symbol followed
by an equals sign. Combination assignment operators save you the trouble of using two operators yourself. For example

$x = 4;
$x = $x + 4; // $x now equals 8

may instead be written as

$x = 4;
$x += 4; // $x now equals 8

There is an assignment operator for each of the arithmetic operators and one for the concatenation operator. Table 4.4
lists some of the most common.

Table 4.4. Some Combined Assignment Operators
Operator Example Equivalent To

+= $x += 5 $x = $x + 5

-= $x -= 5 $x = $x - 5

/= $x /= 5 $x = $x / 5

*= $x *= 5 $x = $x * 5

%= $x %= 5 $x = $x % 5

.= $x .= " test" $x = $x." test"

Each of the examples in Table 4.4 transforms the value of $x using the value of the right-hand operand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of the examples in Table 4.4 transforms the value of $x using the value of the right-hand operand.

Automatically Incrementing and Decrementing an Integer Variable

When coding in PHP, you will often find it necessary to increment or decrement an integer variable. You will usually
need to do this when you are counting the iterations of a loop. You have already learned two ways of doing this. We can
increment the integer contained by $x with the addition operator

$x = $x + 1; // $x is incremented

or with a combined assignment operator

$x += 1; // $x is incremented

In both cases, the resultant integer is assigned to $x. Because expressions of this kind are so common, PHP provides
some special operators that allow you to add or subtract the integer constant 1 from an integer variable, assigning the
result to the variable itself. These are known as the post-increment and post-decrement operators. The post-increment
operator consists of two plus symbols appended to a variable name:

$x++; // $x is incremented

This expression increments the variable $x by one. Using two minus symbols in the same way decrements the variable:

$x-; // $x is decremented

If you use the post-increment or post-decrement operators in conjunction with a conditional operator, the operand will
only be modified after the test has been completed:

$x = 3;
$x++ < 4; // true

In the previous example, $x contains 3 when it is tested against 4 with the less than operator, so the test expression
returns true. After this test is complete, $x is incremented.

In some circumstances, you might want to increment or decrement a variable in a test expression before the test is
carried out. PHP provides the pre-increment and pre-decrement operators for this purpose. These operators behave in
exactly the same way as the post-increment and post-decrement operators, but they are written with the plus or minus
symbols preceding the variable:

++$x; // $x is incremented
-$x; // $x is decremented

If these operators are used as part of a test expression, the incrementation occurs before the test is carried out.

$x = 3;
++$x < 4; // false

In the previous fragment, $x is incremented before it is tested against 4. The test expression returns false because 4
is not smaller than 4.

Comparison Operators

Comparison operators perform tests on their operands. They return the Boolean value true if the test is successful, or
false otherwise. This type of expression is useful in control structures, such as if and while statements. We will cover
these in Hour 5, "Flow Control Functions in PHP."

To test whether the value contained in $x is smaller than 5, for example, you can use the less-than operator:

$x < 5

If $x contains the value 3, this expression has the value true. If $x contains 7, the expression resolves to false.

Table 4.5 lists the comparison operators.

Table 4.5. Comparison Operators
Operator Name Returns True If... Example ($x is Result

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Operator Name Returns True If... Example ($x is
4)

Result

== Equivalence Left is equivalent to right $x == 5 false

!= Non-equivalence Left is not equivalent to right $x != 5 true

=== Identical Left is equivalent to right and they are the same
type

$x === "7" false

> Greater than Left is greater than right $x > 4 false

>= Greater than or equal
to

Left is greater than or equal to right $x >= 4 true

< Less than Left is less than right $x < 4 false

<= Less than or equal to Left is less than or equal to right $x <= 4 true

These operators are most commonly used with integers or doubles, although the equivalence operator is also used to
compare strings. Be very sure you understand the difference between the == and = operators. The == operator tests
equivalence, while the = operator assigns value.

Creating More Complex Test Expressions with the Logical Operators

The logical operators test combinations of Booleans. For example, the or operator, which is indicated by two pipe
characters (||) or simply the word or, returns true if either the left or the right operand is true:

true || false

This expression returns true.

The and operator, which is indicated by two ampersand characters (&&) or simply the word and, only returns true if
both the left and right operands are true:

true && false

This expression returns false. It's unlikely that you will use a logical operator to test Boolean constants, however. It
makes more sense to test two or more expressions that resolve to a Boolean. For example

($x > 2) && ($x < 15)

returns true if $x contains a value that is greater than 2 and smaller than 15. We include the parentheses to make the
code easier to read. Table 4.6 lists the logical operators.

Table 4.6. Logical Operators
Operator Name Returns True If... Example Result

|| Or Left or right is true true || false true

or Or Left or right is true true or false true

xor Xor Left or right is true but not both true xor true false

&& And Left and right are true true && false false

and And Left and right are true true and false false

! Not The single operand is not true ! true false

Why are there two versions of both the or and the and operators? The answer lies in operator precedence, which we
will look at later in this section.

Operator Precedence

When you use an operator, the PHP engine usually reads your expression from left to right. For complex expressions
that use more than one operator, though, the waters can become a little murky. First, consider a simple case:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that use more than one operator, though, the waters can become a little murky. First, consider a simple case:

4 + 5

There's no room for confusion here. PHP simply adds 4 to 5. But what about the following fragment?

4 + 5 * 2

This presents a problem. Does it mean the sum of 4 and 5, multiplied by 2, giving the result 18? Or does it mean 4
plus the result of 5 multiplied by 2, resolving to 14? If you were to simply read from left to right, the former would be
true. However, PHP attaches different precedence to operators. Because the multiplication operator has higher
precedence than the addition operator does, the second solution to the problem is the correct one.

You can use parentheses to force PHP to execute the addition expression before the multiplication expression:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea to use parentheses to make your
code clearer and to save you from obscure bugs. The following is a list of the operators covered in this hour in
precedence order (those with highest precedence are listed first):

++, -, (cast)
/, *, %
+, -
<, <=, =>, >
==, ===, !=
&&
||
=, +=, -=, /=, *=, %=, .=
and
xor
or

As you can see, or has a lower precedence than || and and has a lower precedence than &&, so you can use the
lower-precedence logical operators to change the way a complex test expression is read. This is not necessarily a good
idea. The following two expressions are equivalent, but the second is much easier to read:

$x and $y || $z
$x && ($y || $z)

Taking it one step further, the following example is easier still:

$x and ($y or $z)

The three examples are all equivalent.

The order of precedence is the only reason that both && and and are present in PHP. The same is true of || and or. In
most, if not all circumstances, however, use of parentheses will make for clearer code and fewer bugs than code that
takes advantage of the difference in precedence of these operators. Throughout this book, we will tend to use the more
common || and && operators.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Constants
Variables offer a flexible way of storing data. You can change their values and the type of data they store at any time.
If, however, you want to work with a value that you do not want to alter throughout your script's execution, you can
define a constant. You must use PHP's built-in define() function to create a constant. After you have done this, the
constant cannot be changed. To use the define() function, you must place the name of the constant and the value you
want to give it within the call's parentheses. These values must be separated by a comma:

define("CONSTANT_NAME", 42);

The value you want to set can be a number, a string, or a Boolean. By convention, the name of the constant should be
in capital letters. Constants are accessed with the constant name only; no dollar symbol is required. Listing 4.4 defines
and accesses a constant.

Listing 4.4 Defining a Constant

 1: <html>
 2: <head>
 3: <title>Listing 4.4 Defining a constant</title>
 4: </head>
 5: <body>
 6: <?php
 7: define("USER", "Gerald");
 8: print "Welcome ".USER;
 9: ?>
 10: </body>
 11: </html>

Notice that in line 8 we used the concatenation operator to append the value held by our constant to the string
"Welcome". This is because the PHP engine has no way of distinguishing between a constant and a string within
quotation marks.

Put these lines into a text file called constants.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Welcome Gerald

The define() function can accept a third Boolean argument that determines whether or not the constant name should
be case-independent. By default, constants are case-dependent. However, by passing true to the define() function, we
can change this behavior, so if we were to set up our USER constant as

define("USER", "Gerald", true);

we could access its value without worrying about case:

print User;
print usEr;
print USER;

These expressions are all equivalent. This feature can make scripts a little friendlier for programmers who work with our
code, in that they will not need to consider case when accessing a constant that we have defined. On the other hand,
given the fact that other constants are case-sensitive, this might make for more rather than less confusion as
programmers forget which constants to treat in which way. Unless you have a compelling reason to do otherwise, the
safest course is probably to keep your constants case-sensitive and define them using uppercase characters, which is
an easy-to-remember convention.

Predefined Constants

PHP automatically provides some built-in constants for you. __FILE__, for example, returns the name of the file that
the PHP engine is currently reading. __LINE__ returns the line number of the file. These constants are useful for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the PHP engine is currently reading. __LINE__ returns the line number of the file. These constants are useful for
generating error messages. You can also find out which version of PHP is interpreting the script with PHP_VERSION.
This can be useful if you need version information included in script output when sending a bug report.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you covered some of the basic features of the PHP language. You learned about variables and how to
assign to them using the assignment operator. You got an introduction to operators and learned how to combine some
of the most common of these into expressions. Finally, you learned how to define and access constants.

Now that you have mastered some of the fundamentals of PHP, the next hour will really put you in the driver's seat.
You will learn how to make scripts that can make decisions and repeat tasks, with help from variables, expressions, and
operators.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Why is it useful to know the type of data a variable holds?

A1: Often the data type of a variable constrains what you can do with it. You may want to make sure that a
variable contains an integer or a double before using it in a mathematical calculation, for example.

Q2: Should I obey any conventions when naming variables?

A2: Your goal should always be to make your code easy to read and understand. A variable such as
$ab123245 tells you nothing about its role in your script and invites typos. Keep your variable names
short and descriptive.

A variable named $f is unlikely to mean much to you when you return to your code after a month or so. A
variable named $filename, on the other hand, should make more sense.

Q3: Should I learn the operator precedence table?

A3: There is no reason that you shouldn't, but I would save the effort for more useful tasks. By using
parentheses in your expressions, you can make your code easy to read while defining your own order of
precedence.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: Which of the following variable names is not valid?

$a_value_submitted_by_a_user
$666666xyz
$xyz666666
$___counter___
$the first
$file-name

A1: The variable name $666666xyz is not valid because it does not begin with a letter or an underscore
character. The variable name $the first is not valid because it contains a space. $file-name is also
invalid because it contains a nonalphanumeric character.

2: What will the following code fragment output?

$num = 33;
(boolean) $num;
print $num;

A2: The fragment will print the integer 33. The cast to Boolean produces a converted copy of the value stored
in $num. It does not alter the value actually stored there.

3: What will the following statement output?

print gettype("4");

A3: The statement will output the string "string".

4: What will be the output from the following code fragment?

$test_val = 5.5466;
settype($test_val, "integer");
print $test_val;

A4: The code will output the value 5. When a double is converted to an integer, any information beyond the
decimal point is lost.

5: Which of the following statements does not contain an expression?

4;
gettype(44);
5/12;

A5: They are all expressions because they all resolve to values.

6: Which of the statements in question 5 contains an operator?

A6: The statement 5/12; contains a division operator.

7: What value will the following expression return?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7: What value will the following expression return?

5 < 2

What data type will the returned value be?

A7: The expression will resolve to false, which is a Boolean value.

Activities

1. Create a script that contains at least five different variables. Populate them with values of different data types
and use the gettype() function to print each type to the browser.

2. Assign values to two variables. Use comparison operators to test whether the first value is

The same as the second

Less than the second

Greater than the second

Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 5. Flow Control Functions in PHP
The scripts created in the last hour flow only in a single direction. The same statements are executed in the same order
every time a script is run. This does not allow for much flexibility.

You will now look at some structures that enable your scripts to adapt to circumstances. In this hour, you will learn

How to use the if statement to execute code if a test expression evaluates to true

How to execute alternative blocks of code when the test expression of an if statement evaluates to false

How to use the switch statement to execute code based on the value returned by a test expression

How to repeat execution of code using a while statement

How to use for statements to make neater loops

How to break out of loops

How to nest one loop within another

How to use PHP start and end tags within control structures

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Switching Flow
Most scripts evaluate conditions and change their behavior accordingly. The capability to make decisions makes your
PHP pages dynamic, able to change their output according to circumstances. Like most programming languages, PHP
allows you to do this with an if statement.

The if Statement

An if statement is a way of controlling the execution of a statement that follows it (that is, a single statement or a block
of code inside braces). The if statement evaluates an expression between parentheses. If this expression results in a
true value, the statement is executed. Otherwise, the statement is skipped entirely. This enables scripts to make
decisions based on any number of factors:

if (expression) {
 // code to execute if the expression evaluates to true
}

Listing 5.1 executes a block of code only if a variable contains the string "happy".

Listing 5.1 An if Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.1</title>
 4: </head>
 5: <body>
 6: <?php
 7: $mood = "happy";
 8: if ($mood == "happy") {
 9: print "Hooray, I'm in a good mood";
 10: }
 11: ?>
 12: </body>
 13: </html>

You use the comparison operator == to compare the variable $mood with the string "happy". If they match, the
expression evaluates to true, and the code block below the if statement is executed.

Put these lines into a text file called testif.php, and place this file in your Web server document root. When you access
this script through your Web browser, it produces the following:

Hooray, I'm in a good mood

If you change the value of $mood to "sad" and run the script, the expression in the if statement evaluates to false,
and the code block is skipped. The script remains silent.

Using the else Clause with the if Statement

When working with the if statement, you will often want to define an alternative block of code that should be executed
if the expression you are testing evaluates to false. You can do this by adding else to the if statement followed by a
further block of code:

if (expression) {
 // code to execute if the expression evaluates to true
} else {
 // code to execute in all other cases
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Listing 5.2 amends the example in Listing 5.1 so that a default block of code is executed if $mood is not equivalent to
"happy".

Listing 5.2 An if Statement That Uses else

 1: <html>
 2: <head>
 3: <title>Listing 5.2</title>
 4: </head>
 5: <body>
 6: <?php
 7: $mood = "sad";
 8: if ($mood == "happy") {
 9: print "Hooray, I'm in a good mood";
 10: } else {
 11: print "Not happy but $mood";
 12: }
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called testifelse.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Not happy but sad

Notice in line 7 that $mood contains the string "sad", which is not equal to "happy", so the expression in the if
statement in line 8 evaluates to false. This means that the first block of code (line 9) is skipped. The block of code after
else is executed, and the message "Not happy but sad" is printed to the browser.

Using the else clause with the if statement allows scripts to make sophisticated decisions, but your options are
currently limited to an either-or branch. PHP allows you to evaluate multiple expressions one after another.

Using the elseif Clause with the if Statement

You can use an if...elseif...else construct to test multiple expressions before offering a default block of code:

if (expression) {
 // code to execute if the expression evaluates to true
} elseif (another expression) {
 // code to execute if the previous expression failed
 // and this one evaluates to true
} else {
 // code to execute in all other cases
}

If the first expression does not evaluate to true, the first block of code is ignored. The elseif clause then causes
another expression to be evaluated. Once again, if this expression evaluates to true, the second block of code is
executed. Otherwise, the block of code associated with the else clause is executed. You can include as many elseif
clauses as you want, and if you don't need a default action, you can omit the else clause.

The elseif clause can also be written as two separate words (else if). The
syntax you employ is a matter of taste.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.3 adds an elseif clause to the previous example.

Listing 5.3 An if Statement That Uses else and elseif

 1: <html>
 2: <head>
 3: <title>Listing 5.3</title>
 4: </head>
 5: <body>
 6: <?php
 7: $mood = "sad";
 8: if ($mood == "happy") {
 9: print "Hooray, I'm in a good mood";
 10: } elseif ($mood == "sad") {
 11: print "Awww. Don't be down!";
 12: } else {
 13: print "Neither happy nor sad but $mood";
 14: }
 15: ?>
 16: </body>
 17: </html>

Once again, $mood holds a string, "sad", in line 7. This is not equal to "happy", so the first block in line 9 is ignored.
The elseif clause in line 10 tests for equivalence between the contents of $mood and the value "sad", which evaluates
to true. This block of code is therefore executed. In lines 12, 13, and 14, we provide default behavior. If none of the
test conditions have been fulfilled, we simply print out a message including the actual value of the $mood variable.

Put these lines into a text file called testifelseif.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Awww. Don't be down!

Change the value of $mood to "unknown" and run the script, and it will produce the following:

Neither happy nor sad but unknown

The switch Statement

The switch statement is an alternative way of changing program flow according to the evaluation of an expression.
There are some key differences between the switch and if statements. Using the if statement in conjunction with
elseif, you can evaluate multiple expressions. The switch statement evaluates only one expression, executing different
code according to the result of that expression, as long as the expression evaluates to a simple type (a number, a
string, or a Boolean). The result of an expression evaluated as part of an if statement is read as either true or false.
The expression of a switch statement yields a result that is tested against any number of values:

switch (expression) {
 case result1:
 // execute this if expression results in result1
 break;
 case result2:
 // execute this if expression results in result2
 break;
 default:
 // execute this if no break statement
 // has been encountered hitherto
}

The switch statement's expression is often simply a variable. Within the switch statement's block of code, you find a
number of case statements. Each of these tests a value against the result of the switch statement's expression. If
these are equivalent, the code after the case statement is executed. The break statement ends execution of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these are equivalent, the code after the case statement is executed. The break statement ends execution of the
switch statement altogether. If this is left out, the next case statement's expression is evaluated. If the optional
default statement is reached, its code is executed.

Don't forget to include a break statement at the end of any code that will be
executed as part of a case statement. Without break, the program flow will
continue to the next case statement and ultimately to the default statement. In
most cases, this will not be the behavior that you are expecting.

Listing 5.4 re-creates the functionality of the if statement example, using the switch statement.

Listing 5.4 A switch Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.4</title>
 4: </head>
 5: <body>
 6: <?php
 7: $mood = "sad";
 8: switch ($mood) {
 9: case "happy":
 10: print "Hooray, I'm in a good mood";
 11: break;
 12: case "sad":
 13: print "Awww. Don't be down!";
 14: break;
 15: default:
 16: print "Neither happy nor sad but $mood";
 17: }
 18: ?>
 19: </body>
 20: </html>

Once again, in line 7 the $mood variable is initialized to "sad". The switch statement in line 8 uses this variable as its
expression. The first case statement in line 9 tests for equivalence between "happy" and the value of $mood. There
is no match, so script execution moves on to the second case statement in line 12. The string "sad" is equivalent to
the value of $mood, so this block of code is executed. The break statement in line 14 ends the process.

Put these lines into a text file called testswitch.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Awww. Don't be down!

Change the value of $mood to "happy" and run the script, and it will produce the following:

Hooray, I'm in a good mood

To emphasize the caution regarding the importance of the break statement, try running this script with the second
break statement commented out. Your output will be

Awww. Don't be down!Neither happy nor sad but sad

This is definitely not the desired output, so be sure to include break statements where appropriate.

Using the ? Operator

The ? or ternary operator is similar to the if statement but returns a value derived from one of two expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ? or ternary operator is similar to the if statement but returns a value derived from one of two expressions
separated by a colon. This construct will provide you with three parts of the whole, hence the name "ternary." Which
expression is used to generate the value returned depends on the result of a test expression:

(expression)?returned_if_expression_is_true:returned_if_expression_is_false;

If the test expression evaluates to true, the result of the second expression is returned; otherwise, the value of the
third expression is returned. Listing 5.5 uses the ternary operator to set the value of a variable according to the value
of $mood.

Listing 5.5 Using the ? Operator

 1: <html>
 2: <head>
 3: <title>Listing 5.5</title>
 4: </head>
 5: <body>
 6: <?php
 7: $mood = "sad";
 8: $text = ($mood=="happy") ? "I'm in a good mood" : "Not happy but $mood";
 9: print "$text";
 10: ?>
 11: </body>
 12: </html>

In line 7, $mood is set to "sad". In line 8, $mood is tested for equivalence to the string "happy". Because this test
returns false, the result of the third of the three expressions is returned.

Put these lines into a text file called testtern.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Not happy but sad

The ternary operator can be difficult to read but is useful if you are dealing with only two alternatives and like to write
compact code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Loops
So far we've looked at decisions that a script can make about what code to execute. Scripts can also decide how many
times to execute a block of code. Loop statements are designed to enable you to achieve repetitive tasks. Almost
without exception, a loop continues to operate until a condition is achieved, or you explicitly choose to exit the loop.

The while Statement

The while statement looks similar in structure to a basic if statement:

while (expression) {
 // do something
}

As long as a while statement's expression evaluates to true, the code block is executed over and over again. Each
execution of the code block in a loop is called an iteration. Within the block, you usually change something that affects
the while statement's expression; otherwise, your loop continues indefinitely. Listing 5.6 creates a while loop that
calculates and prints multiples of 2 up to 24.

Listing 5.6 A while Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.6</title>
 4: </head>
 5: <body>
 6: <?php
 7: $counter = 1;
 8: while ($counter <= 12) {
 9: print "$counter times 2 is ".($counter*2)."
";
 10: $counter++;
 11: }
 12: ?>
 13: </body>
 14: </html>

In this example, we initialize a variable $counter in line 7. The while statement in line 8 tests the $counter variable.
As long as the integer that $counter contains is less than or equal to 12, the loop continues to run. Within the while
statement's code block, the value contained by $counter is multiplied by two, and the result is printed to the browser.
Then line 10 increments $counter. This last stage is extremely important. If you were to forget to change $counter,
the while expression would never resolve to false, and the loop would never end.

Put these lines into a text file called testwhile.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

1 times 2 is 2
2 times 2 is 4
3 times 2 is 6
4 times 2 is 8
5 times 2 is 10
6 times 2 is 12
7 times 2 is 14
8 times 2 is 16
9 times 2 is 18
10 times 2 is 20
11 times 2 is 22
12 times 2 is 24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12 times 2 is 24

The do...while Statement

A do...while statement looks a little like a while statement turned on its head. The essential difference between the
two is that the code block is executed before the truth test and not after it:

do {
 // code to be executed
} while (expression);

The test expression of a do...while statement should always end with a
semicolon.

This statement might be useful if you want the code block to be executed at least once even if the while expression
evaluates to false. Listing 5.7 creates a do...while statement. The code block is executed a minimum of one time.

Listing 5.7 The do...while Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.7</title>
 4: </head>
 5: <body>
 6: <?php
 7: $num = 1;
 8: do {
 9: print "Execution number: $num
\n";
 10: $num++;
 11: } while ($num > 200 && $num < 400);
 12: ?>
 13: </body>
 14: </html>

The do...while statement tests whether the variable $num contains a value that is greater than 200 and less than
400. In line 7, we have initialized $num to 1, so this expression returns false. Nonetheless, the code block is executed
before the expression is evaluated, so the statement will print a single line to the browser.

Put these lines into a text file called testdowhile.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

Execution number: 1

The for Statement

You cannot achieve anything with a for statement that you cannot do with a while statement. On the other hand, the
for statement is often a neater and safer way of achieving the same effect. Earlier, Listing 5.6 initialized a variable
outside the while statement. The while statement then tested the variable in its expression. The variable was
incremented within the code block. The for statement allows you to achieve this on a single line. This allows for more
compact code and makes it less likely that you will forget to increment a counter variable, thereby creating an infinite
loop:

for (initialization expression; test expression; modification expression) {
 // code to be executed
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Infinite loops are, as the name suggests, loops that run without bounds. If your
loop is running infinitely, your script is running for an infinite amount of time.
This is very stressful on your Web server, and renders the Web page in
question unusable.

The expressions within the parentheses of the for statement are separated by semicolons. Usually, the first expression
initializes a counter variable, the second expression is the test condition for the loop, and the third expression
increments the counter. Listing 5.8 shows a for statement that re-creates the example in Listing 5.6, which multiplies
12 numbers by 2.

Listing 5.8 Using the for Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.8</title>
 4: </head>
 5: <body>
 6: <?php
 7: for ($counter=1; $counter<=12; $counter++) {
 8: print "$counter times 2 is ".($counter*2)."
";
 9: }
 10: ?>
 11: </body>
 12: </html>

Put these lines into a text file called testfor.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

1 times 2 is 2
2 times 2 is 4
3 times 2 is 6
4 times 2 is 8
5 times 2 is 10
6 times 2 is 12
7 times 2 is 14
8 times 2 is 16
9 times 2 is 18
10 times 2 is 20
11 times 2 is 22
12 times 2 is 24

The results of Listings 5.6 and 5.8 are exactly the same. The for statement, though, makes the code more compact.
Because $counter is initialized and incremented at the top of the statement, the logic of the loop is clear at a glance.
In line 7, within the for statement's parentheses, the first expression initializes the $counter variable and sets it to 1.
The test expression verifies that $counter contains a value that is less than or equal to 12. The final expression
increments the $counter variable.

When program flow reaches the for loop, the $counter variable is initialized, and the test expression is evaluated. If
the expression evaluates to true, the code block is executed. The $counter variable is then incremented and the test
expression is evaluated again. This process continues until the test expression evaluates to false.

Breaking Out of Loops with the break Statement

Both while and for statements incorporate a built-in test expression with which you can end a loop. The break
statement, though, enables you to break out of a loop based on the results of additional tests. This can provide a
safeguard against error. Listing 5.9 creates a simple for statement that divides a large number by a variable that is
incremented, printing the result to the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

incremented, printing the result to the screen.

Listing 5.9 A for Loop That Divides 4000 by 10 Incremental Numbers

 1: <html>
 2: <head>
 3: <title>Listing 5.9</title>
 4: </head>
 5: <body>
 6: <?php
 7: for ($counter=1; $counter <= 10; $counter++) {
 8: $temp = 4000/$counter;
 9: print "4000 divided by $counter is... $temp
";
 10: }
 11: ?>
 12: </body>
 13: </html>

In line 7, this example initializes the variable $counter to 1. The for statement's test expression verifies that
$counter is less than or equal to 10. Within the code block, 4000 is divided by $counter, printing the result to the
browser.

Put these lines into a text file called testfor2.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

4000 divided by 1 is... 4000
4000 divided by 2 is... 2000
4000 divided by 3 is... 1333.33333333
4000 divided by 4 is... 1000
4000 divided by 5 is... 800
4000 divided by 6 is... 666.666666667
4000 divided by 7 is... 571.428571429
4000 divided by 8 is... 500
4000 divided by 9 is... 444.444444444
4000 divided by 10 is... 400

This seems straightforward enough. But what if the value you place in $counter comes from user input? The value
could be a negative number, or even a string. Let's take the first instance. Changing the initial value of $counter from
1 to -4 causes 4000 to be divided by 0 when the code block is executed for the fifth time. It is generally not a good
idea for your code to divide by zero, and Listing 5.10 guards against this by breaking out of the loop if the $counter
variable equals zero.

Listing 5.10 Using the break Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.10</title>
 4: </head>
 5: <body>
 6: <?php
 7: $counter = -4;
 8: for (; $counter <= 10; $counter++) {
 9: if ($counter == 0)
 10: break;
 11: $temp = 4000/$counter;
 12: print "4000 divided by $counter is... $temp
";
 13: }
 14: ?>
 15: </body>
 16: </html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 16: </html>

Dividing a number by zero does not cause a fatal error in PHP. Instead, PHP
generates a warning and execution continues.

We use an if statement, shown in line 9, to test the value of $counter. If it is equal to zero, the break statement
immediately halts execution of the code block, and program flow continues after the for statement.

Put these lines into a text file called testfor3.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

4000 divided by -4 is... -1000
4000 divided by -3 is... -1333.33333333
4000 divided by -2 is... -2000
4000 divided by -1 is... -4000

Notice that we initialize the $counter variable in line 7, outside the for statement's parentheses, to simulate a situation
in which the value of $counter is set according to form input or a database lookup.

You can omit any of the expressions from a for statement, but you must remember
to retain the semicolons.

Skipping an Iteration with the continue Statement

The continue statement ends execution of the current iteration but doesn't cause the loop as a whole to end. Instead,
the next iteration begins immediately. Using the break statement as we did in Listing 5.10 is a little drastic. With the
continue statement in Listing 5.11, you can avoid a divide by zero error without ending the loop completely.

Listing 5.11 Using the continue Statement

 1: <html>
 2: <head>
 3: <title>Listing 5.11</title>
 4: </head>
 5: <body>
 6: <?php
 7: $counter = -4;
 8: for (; $counter <= 10; $counter++) {
 9: if ($counter == 0) {
 10: continue;
 11: }
 12: $temp = 4000/$counter;
 13: print "4000 divided by $counter is... $temp
";
 14: }
 15: ?>
 16: </body>
 17: </html>

In line 10, we have swapped the break statement for a continue statement. If the $counter variable is equivalent to
zero, the iteration is skipped, and the next one starts immediately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Put these lines into a text file called testcontinue.php, and place this file in your Web server document root. When
you access this script through your Web browser, it produces the following:

4000 divided by -4 is... -1000
4000 divided by -3 is... -1333.33333333
4000 divided by -2 is... -2000
4000 divided by -1 is... -4000
4000 divided by 1 is... 4000
4000 divided by 2 is... 2000
4000 divided by 3 is... 1333.33333333
4000 divided by 4 is... 1000
4000 divided by 5 is... 800
4000 divided by 6 is... 666.666666667
4000 divided by 7 is... 571.428571429
4000 divided by 8 is... 500
4000 divided by 9 is... 444.444444444

The break and continue statements can make code more difficult to read.
Because they often add layers of complexity to the logic of the loop statements
that contain them, you should use them with care.

Nesting Loops

Loop statements can contain other loop statements. The combination of such statements is particularly useful when
working with dynamically created HTML tables. Listing 5.12 uses two for statements to print a multiplication table to
the browser.

Listing 5.12 Nesting Two for Loops

 1: <html>
 2: <head>
 3: <title>Listing 5.12</title>
 4: </head>
 5: <body>
 6: <?php
 7: print "<table border=\"1\">\n";
 8: for ($y=1; $y<=12; $y++) {
 9: print "<tr>\n";
 10: for ($x=1; $x<=12; $x++) {
 11: print "\t<td>";
 12: print ($x*$y);
 13: print "</td>\n";
 14: }
 15: print "</tr>\n";
 16: }
 17: print "</table>";
 18: ?>
 19: </body>
 20: </html>

Before we examine the for loops, let's take a closer look at line 7 in Listing 5.12:

print "<table border=\"1\">\n";

Notice that we have used the backslash character (\) before each of the quotation marks within the string. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that we have used the backslash character (\) before each of the quotation marks within the string. This is
necessary in order to tell the PHP engine that we wish to use the quotation mark character, rather than interpret it as
the beginning or end of a string. If we did not do this, the statement would not make sense to the engine, which would
read it as a string followed by a number followed by another string. This would generate an error. In this listing, we use
\n to represent a newline character, and \t to represent a tab character.

The outer for statement (line 8) initializes a variable called $y, setting its starting value to 1. It defines an expression
that verifies that $y is less than or equal to 12 and defines the increment for $y. For each iteration, the code block
prints a tr (table row) HTML element (line 9) and defines another for statement (line 10). This inner loop initializes a
variable called $x and defines expressions along the same lines as for the outer loop. For each iteration, the inner loop
prints a td (table cell) element to the browser (line 11), as well as the result of $x multiplied by $y (line 12). In line 13,
we close the table cell. After the inner loop has finished, we fall back through to the outer loop, where we close the
table row on line 15, ready for the process to begin again. When the outer loop has finished, the result is a neatly
formatted multiplication table. We wrap things up by closing the table on line 17.

Put these lines into a text file called testnestfor.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 5.1.

Figure 5.1. Output of Listing 5.12.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Code Blocks and Browser Output
In Hour 3, "Installing and Configuring PHP,"you learned that you can slip in and out of HTML mode at will, using the PHP
start and end tags. In this hour, you have discovered that you can present distinct output to the user according to a
decision-making process that we can control with if and switch statements. In this section, we will combine these two
techniques.

Imagine a script that outputs a table of values only when a variable is set to the Boolean value true. Listing 5.13 shows
a simplified HTML table constructed with the code block of an if statement.

Listing 5.13 A Code Block Containing Multiple print() Statements

 1: <html>
 2: <head>
 3: <title>Listing 5.13</title>
 4: </head>
 5: <body>
 6: <?php
 7: $display_prices = true;
 8: if ($display_prices) {
 9: print "<table border=\"1\">";
 10: print "<tr><td colspan=\"3\">";
 11: print "today's prices in dollars";
 12: print "</td></tr>";
 13: print "<tr><td>14</td><td>32</td><td>71</td></tr>";
 14: print "</table>";
 15: }
 16: ?>
 17: </body>
 18: </html>

If $display_prices is set to true in line 7, the table is printed. For the sake of readability, we split the output into
multiple print() statements, and once again escape any quotation marks.

Put these lines into a text file called testmultiprint.php, and place this file in your Web server document root. When
you access this script through your Web browser, it should look like Figure 5.2.

Figure 5.2. Output of Listing 5.13.

There's nothing wrong with the way this is coded, but we can save ourselves some typing by simply slipping back into
HTML mode within the code block. In Listing 5.14 we do just that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML mode within the code block. In Listing 5.14 we do just that.

Listing 5.14 Returning to HTML Mode Within a Code Block

 1: <html>
 2: <head>
 3: <title>Listing 5.14</title>
 4: </head>
 5: <body>
 6: <?php
 7: $display_prices = true;
 8: if ($display_prices) {
 9: ?>
 10: <table border="1">
 11: <tr><td colspan="3">today's prices in dollars</td></tr>
 12: <tr><td>14</td><td>32</td><td>71</td>
 13: </table>
 14: <?php
 15: }
 16: ?>
 17: </body>
 18: </html>

The important thing to note here is that the shift to HTML mode on line 9 only occurs if the condition of the if statement
is fulfilled. This can save us the bother of escaping quotation marks and wrapping our output in print() statements. It
might, however, affect the readability of our code in the long run, especially as our script grows larger.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you learned about control structures and the ways in which they can help to make your scripts flexible and
dynamic. Most of these structures will reappear regularly throughout the rest of the book.

You learned how to define an if statement and how to provide for alternative actions with the elseif and else clauses.
You learned how to use the switch statement to change flow according to multiple equivalence tests on the result of an
expression. You learned about loops—in particular, the while and for statements—and you learned how to use break
and continue to prematurely end the execution of a loop or to skip an iteration. You learned how to nest one loop
within another and saw a typical use for this structure. Finally, you looked at a technique for using PHP start and end
tags in conjunction with conditional code blocks.

You should now have enough information to write scripts of your own. These scripts can make decisions and perform
repetitive tasks. In the next hour, we will be looking at a way of adding even more power to your applications. You will
learn how functions enable you to organize your code, preventing duplication and improving reusability.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Must a control structure's test expression result in a Boolean value?

A1: Ultimately, yes, but in the context of a test expression, zero, an undefined variable, or an empty string will
be converted to false. All other values will evaluate to true.

Q2: Must I always surround a code block in a control statement with brackets?

A2: If the code you want executed as part of a control structure consists of only a single line, you can omit the
brackets.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: How would you use an if statement to print the string "Youth message" to the browser if an integer
variable, $age, is between 18 and 35? If $age contains any other value, the string "Generic message"
should be printed to the browser.

A1: $age = 22;

if ($age >= 18 && $age <= 35) {
 print "Youth message
\n";
} else {
 print "Generic message
\n";
}

2: How would you extend your code in question 1 to print the string "Child message" if the $age variable is
between 1 and 17?

A2: $age = 12;

if ($age >= 18 && $age <= 35) {
 print "Youth message
\n";
} elseif ($age >= 1 && $age <= 17) {
 print "Child message
\n";
} else {
 print "Generic message
\n";
}

3: How would you create a while statement that increments through and prints every odd number between 1
and 49?

A3: $num = 1;

while ($num <= 49) {
 print "$num
\n";
 $num += 2;
}

4: How would you convert the while statement you created in question 3 into a for statement?

A4: for ($num = 1; $num <= 49; $num += 2) {
 print "$num
\n";
}

Activity

Review the syntax for control structures. Think about how the techniques you've learned will help you in your scripting.
Perhaps some of the script ideas you develop will be able to behave in different ways according to user input, or will
loop to display an HTML table. Start to build the control structures you will be using. Use temporary variables to mimic
user input or database queries for the time being.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user input or database queries for the time being.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 6. Working with Functions
Functions are at the heart of a well-organized script, making code easy to read and reuse. No large project would be
manageable without them. Throughout this hour, we will investigate functions and demonstrate some of the ways in
which they can save you from repetitive work. In this hour, you will learn

How to define and call functions

How to pass values to functions and receive values in return

How to call a function dynamically using a string stored in a variable

How to access global variables from within a function

How to give a function a "memory"

How to pass data to functions by reference

How to create anonymous functions

How to verify that a function exists before calling it

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What Is a Function?
You can think of a function as a machine. A machine takes the raw materials you feed it and works with them to
achieve a purpose or to produce a product. A function accepts values from you, processes them, and then performs an
action (printing to the browser, for example), returns a new value, or both.

If you needed to bake a single cake, you would probably do it yourself. If you needed to bake thousands of cakes, you
would probably build or acquire a cake-baking machine. Similarly, when deciding whether to create a function, the most
important factor to consider is the extent to which it can save you from repetition.

A function is a self-contained block of code that can be called by your scripts. When called, the function's code is
executed. You can pass values to functions, which will then work with them. When finished, a function can pass a value
back to the calling code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Calling Functions
Functions come in two flavors—those built in to the language and those you define yourself. PHP has hundreds of built-
in functions. The very first script in this book, which appears in Hour 3, "Installing and Configuring PHP," consists of a
single function call:

print "Hello Web!";

In this example, we call the print() function, passing it the string "Hello Web!". The function then goes about the
business of writing the string. A function call consists of the function name (print in this case) followed by parentheses.
If you want to pass information to the function, you place it between these parentheses. A piece of information passed
to a function in this way is called an argument. Some functions require that more than one argument be passed to
them. Arguments in such cases must be separated by commas:

some_function($an_argument, $another_argument);

print() is typical in that it returns a value. Most functions give you some information back when they've completed their
task—they usually at least tell whether their mission was successful. print() returns a Boolean.

The abs() function, for example, requires a signed numeric value and returns the absolute value of that number. Let's
try it out in Listing 6.1.

print() is not a typical function in that it does not require parentheses in order
to run successfully:

print("Hello Web!");

and

print "Hello Web!";

are equally valid. This is an exception. All other functions require parentheses,
whether or not they accept arguments.

Listing 6.1 Calling the Built-in abs() Function

 1: <html>
 2: <head>
 3: <title>Listing 6.1</title>
 4: </head>
 5: <body>
 6: <?php
 7: $num = -321;
 8: $newnum = abs($num);
 9: print $newnum;
 10: // prints "321"
 11: ?>
 12: </body>
 13: </html>

In this example, we assign the value -321 to a variable $num. We then pass that variable to the abs() function, which
makes the necessary calculation and returns a new value. We assign this to the variable $newnum and print the
result.

Put these lines into a text file called abs.php, and place this file in your Web server document root. When you access
this script through your Web browser, it produces the following:

321

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

321

In fact, we could have dispensed with temporary variables altogether, passing our number straight to abs(), and
directly printing the result:

print(abs(-321));

We used the temporary variables $num and $newnum, though, to make each step of the process as clear as possible.
Sometimes you can make your code more readable by breaking it up into a greater number of simple expressions.

You can call user-defined functions in exactly the same way that we have been calling built-in functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Defining a Function

You can define a function using the function statement:

function some_function($argument1, $argument2) {
 // function code here
}

The name of the function follows the function statement and precedes a set of parentheses. If your function requires
arguments, you must place comma-separated variable names within the parentheses. These variables will be filled by
the values passed to your function. Even if your function doesn't require arguments, you must nevertheless supply the
parentheses.

The naming rules for functions are similar to the naming rules for variables,
which you learned in Hour 4, "The Building Blocks of PHP." Names cannot
include spaces, and they must begin with a letter or an underscore.

Listing 6.2 declares a function.

Listing 6.2 Declaring a Function

 1: <html>
 2: <head>
 3: <title>Listing 6.2</title>
 4: </head>
 5: <body>
 6: <?php
 7: function bighello() {
 8: print "<h1>HELLO!</h1>";
 9: }
 10: bighello();
 11: ?>
 12: </body>
 13: </html>

The script in Listing 6.2 simply outputs the string "HELLO" wrapped in an HTML <h1> element.

Put these lines into a text file called bighello.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.1.

Figure 6.1. Output of Listing 6.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We declare a function bighello() that requires no arguments. Because of this, we leave the parentheses empty.
bighello() is a working function but is not terribly useful. Listing 6.3 creates a function that requires an argument and
actually does something helpful with it.

Listing 6.3 Declaring a Function That Requires Arguments

 1: <html>
 2: <head>
 3: <title>Listing 6.3</title>
 4: </head>
 5: <body>
 6: <?php
 7: function printBR($txt) {
 8: print ("$txt
\n");
 9: }
 10: printBR("This is a line");
 11: printBR("This is a new line");
 12: printBR("This is yet another line");
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called printbr.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.2.

Figure 6.2. A function that prints a string with an appended
 tag.

In line 7, the printBR() function expects a string, so we place the variable name $txt between the parentheses when
we declare the function. Whatever is passed to printBR() will be stored in $txt. Within the body of the function, in line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

we declare the function. Whatever is passed to printBR() will be stored in $txt. Within the body of the function, in line
8, we print the $txt variable, appending a
 element and a newline character to it.

When we want to write a line to the browser, such as in line 10, 11, or 12, we can call printBR() instead of the built-in
print(), saving us the bother of typing the
 element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Returning Values from User-Defined Functions

In the previous example, we output an amended string to the browser within the printBR() function. Sometimes,
however, you will want a function to provide you with a value that you can work with yourself. If your function has
transformed a string that you have provided, you may wish to get the amended string back so that you can pass it to
other functions. A function can return a value using the return statement in conjunction with a value. The return
statement stops the execution of the function and sends the value back to the calling code.

Listing 6.4 creates a function that returns the sum of two numbers.

Listing 6.4 A Function That Returns a Value

 1: <html>
 2: <head>
 3: <title>Listing 6.4</title>
 4: </head>
 5: <body>
 6: <?php
 7: function addNums($firstnum, $secondnum) {
 8: $result = $firstnum + $secondnum;
 9: return $result;
 10: }
 11: print addNums(3,5);
 12: // will print "8"
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called addnums.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

8

Notice in line 7 that addNums() should be called with two numeric arguments (line 11 shows those to be 3 and 5 in
this case). These are stored in the variables $firstnum and $secondnum. Predictably, addNums() adds the numbers
contained in these variables together and stores the result in a variable called $result.

The return statement can return a value or nothing at all. How we arrive at a value passed by return can vary. The
value can be hard-coded:

return 4;

It can be the result of an expression:

return ($a/$b);

It can be the value returned by yet another function call:

return (another_function($an_argument));

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dynamic Function Calls
It is possible to assign function names as strings to variables and then treat these variables exactly as you would the
function names themselves. Listing 6.5 shows a simple example of this.

Listing 6.5 Calling a Function Dynamically

 1: <html>
 2: <head>
 3: <title>Listing 6.5</title>
 4: </head>
 5: <body>
 6: <?php
 7: function sayHello() {
 8: print "hello
";
 9: }
 10: $function_holder = "sayHello";
 11: $function_holder();
 12: ?>
 13: </body>
 14: </html>

A string identical to the name of the sayHello() function is assigned to the $function_holder variable on line 10.
Once this is done, we can use this variable in conjunction with parentheses to call the sayHello() function. We do this
on line 11.

Put these lines into a text file called sayhello.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

hello

Why would we want to do this? In the example, we simply make more work for ourselves by assigning the string
"sayHello" to $function_holder. Dynamic function calls are useful when you want to alter program flow according to
changing circumstances. We might want our script to behave differently according to a parameter set in a URL's query
string, for example. We can extract the value of this parameter and use it to call one of a number of functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Variable Scope
A variable declared within a function remains local to that function. In other words, it will not be available outside the
function or within other functions. In larger projects, this can save you from accidentally overwriting the contents of a
variable when you declare two variables with the same name in separate functions.

Listing 6.6 creates a variable within a function and then attempts to print it outside the function.

Listing 6.6 Variable Scope: A Variable Declared Within a Function Is Unavailable
Outside the Function

 1: <html>
 2: <head>
 3: <title>Listing 6.6</title>
 4: </head>
 5: <body>
 6: <?php
 7: function test() {
 8: $testvariable = "this is a test variable";
 9: }
 10: print "test variable: $testvariable
";
 11: ?>
 12: </body>
 13: </html>

Put these lines into a text file called scopetest.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.3.

Figure 6.3. Output of Listing 6.6.

The value of the variable $testvariable is not printed. This is because no such variable exists outside the test()
function. Note that the attempt in line 10 to access a nonexistent variable does not cause an error.

Similarly, a variable declared outside a function will not automatically be available within it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accessing Variables with the global Statement

From within a function, it is not possible by default to access a variable that has been defined elsewhere. If you attempt
to use a variable with the same name, you will only set or access a local variable. Let's put this to the test in Listing
6.7.

Listing 6.7 Variables Defined Outside Functions Are Inaccessible from Within a
Function by Default

 1: <html>
 2: <head>
 3: <title>Listing 6.7</title>
 4: </head>
 5: <body>
 6: <?php
 7: $life = 42;
 8: function meaningOfLife() {
 9: print "The meaning of life is $life
";
 10: }
 11: meaningOfLife();
 12: ?>
 13: </body>
 14: </html>

Put these lines into a text file called scopetest2.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.4.

Figure 6.4. Attempting to reference a variable from outside the scope of a
function.

As you might expect, the meaningOfLife() function does not have access to the $life variable in line 7; $life is empty
when the function attempts to print it. On the whole, this is a good thing; it saves us from potential clashes between
identically named variables, and a function can always demand an argument if it needs information about the outside
world. Occasionally, however, you may want to access an important global variable from within a function without
passing it in as an argument. This is where the global statement comes into its own. Listing 6.8 uses global to restore
order to the universe.

Listing 6.8 Accessing Global Variables with the global Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.8 Accessing Global Variables with the global Statement

 1: <html>
 2: <head>
 3: <title>Listing 6.8</title>
 4: </head>
 5: <body>
 6: <?php
 7: $life=42;
 8: function meaningOfLife() {
 9: global $life;
 10: print "The meaning of life is $life
";
 11: }
 12: meaningOfLife();
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called scopetest3.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.5.

Figure 6.5. Successfully accessing a global variable from within a function using
the global keyword.

By placing global in front of the $life variable when we declare it in the meaningOfLife() function (line 9), we make it
refer to the global $life variable declared outside the function (line 7).

You will need to use the global statement for every function that you want to access for a particular global variable.

Be careful, though. If we manipulate the contents of the variable within the function, $life will be changed for the script
as a whole.

You can declare more than one variable at a time with the global statement by simply separating each of the variables
you wish to access with commas.

global $var1, $var2, $var3;

Usually, an argument is a copy of whatever value is passed by the calling code;
changing it in a function has no effect beyond the function block. Changing a global
variable within a function, on the other hand, changes the original and not a copy.
Use the global statement sparingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the global statement sparingly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Saving State Between Function Calls with the static Statement
Variables within functions have a short but happy life on the whole. They come into being when the function is called
and die when execution is finished. Once again, this is as it should be. It is usually best to build a script as a series of
self-contained blocks, each with as little knowledge of others as possible. Occasionally, however, you may want to give
a function a rudimentary memory.

Let's assume that we want a function to keep track of the number of times it has been called. Why? In our examples,
the function is designed to create numbered headings in a script that dynamically builds online documentation.

We could, of course, use the global statement to do this. We have a crack at this in Listing 6.9.

Listing 6.9 Using the global Statement to Remember the Value of a Variable
Between Function Calls

 1: <html>
 2: <head>
 3: <title>Listing 6.9</title>
 4: </head>
 5: <body>
 6: <?php
 7: $num_of_calls = 0;
 8: function numberedHeading($txt) {
 9: global $num_of_calls;
 10: $num_of_calls++;
 11: print "<h1>$num_of_calls. $txt</h1>";
 12: }
 13: numberedHeading("Widgets");
 14: print("We build a fine range of widgets<p>");
 15: numberedHeading("Doodads");
 16: print("Finest in the world<p>");
 17: ?>
 18: </body>
 19: </html>

Put these lines into a text file called numberedheading.php, and place this file in your Web server document root.
When you access this script through your Web browser, it should look like Figure 6.6.

Figure 6.6. Using the global statement to keep track of the number of times a
function has been called.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This does the job. We declare a variable, $num_of_calls, in line 7, outside the function numberedHeading(). We
make this variable available to the function using the global statement in line 9.

Every time numberedHeading() is called, $num_of_calls is incremented (line 10). We can then print out a heading
complete with a heading number.

This is not the most elegant solution, however. Functions that use the global statement cannot be read as standalone
blocks of code. In reading or reusing them, we need to look out for the global variables that they manipulate.

This is where the static statement can be useful. If you declare a variable within a function in conjunction with the
static statement, the variable remains local to the function, and the function "remembers" the value of the variable
from execution to execution. Listing 6.10 adapts the code from Listing 6.9 to use the static statement.

Listing 6.10 Using the static Statement to Remember the Value of a Variable
Between Function Calls

 1: <html>
 2: <head>
 3: <title>Listing 6.10</title>
 4: </head>
 5: <body>
 6: <?php
 7: function numberedHeading($txt) {
 8: static $num_of_calls = 0;
 9: $num_of_calls++;
 10: print "<h1>$num_of_calls. $txt</h1>";
 11: }
 12: numberedHeading("Widgets");
 13: print("We build a fine range of widgets<p>");
 14: numberedHeading("Doodads");
 15: print("Finest in the world<p>");
 16: ?>
 17: </body>
 18: </html>

numberedHeading() has become entirely self-contained. When we declare the $num_of_calls variable on line 8, we
assign an initial value to it. This assignment is made when the function is first called on line 12. This initial assignment
is ignored when the function is called a second time on line 14. Instead, the code remembers the previous value of
$num_of_calls. We can now paste the numberedHeading() function into other scripts without worrying about global
variables. Although the output of Listing 6.10 is exactly the same as that of Listing 6.9 (try it and see!), we have made
the code more elegant.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

More About Arguments
You've already seen how to pass arguments to functions, but there's more to cover yet. In this section, you'll look at a
technique for giving your arguments default values and explore a method of passing variables by reference rather than
by value. This means that the function is given an "alias" of the original value rather than a copy of it.

Setting Default Values for Arguments

PHP gives you a nifty feature to help build flexible functions. Until now, we've said that some functions "demand" one or
more arguments. By making some arguments optional, you can render your functions a little less autocratic.

Listing 6.11 creates a useful little function that wraps a string in an HTML font element. We want to give the user of the
function the chance to change the font element's size attribute, so we demand a $size argument in addition to the
string (line 7).

Listing 6.11 A Function Requiring Two Arguments

 1: <html>
 2: <head>
 3: <title>Listing 6.11</title>
 4: </head>
 5: <body>
 6: <?php
 7: function fontWrap($txt, $size) {
 8: print "<font size=\"$size\"
 9: face=\"Helvetica,Arial,Sans-Serif\">
 10: $txt";
 11: }
 12: fontWrap("A heading
",5);
 13: fontWrap("some body text
",3);
 14: fontWrap("some more body text
",3);
 15: fontWrap("yet more body text
",3);
 16: ?>
 17: </body>
 18: </html>

Put these lines into a text file called fontwrap.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 6.7.

Figure 6.7. A function that formats and outputs strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Useful though this function is, we really only need to change the font size occasionally. Most of the time we use the
default value of 3. By assigning a value to an argument variable within the function definition's parentheses, we can
make the $size argument optional. If the function call doesn't define an argument for this, the value we have assigned
to the argument is used instead. Listing 6.12 uses this technique to make the $size argument optional.

Listing 6.12 A Function with an Optional Argument

 1: <html>
 2: <head>
 3: <title>Listing 6.12</title>
 4: </head>
 5: <body>
 6: <?php
 7: function fontWrap($txt, $size=3) {
 8: print "<font size=\"$size\"
 9: face=\"Helvetica,Arial,Sans-Serif\">
 10: $txt";
 11: }
 12: fontWrap("A heading
",5);
 13: fontWrap("some body text
");
 14: fontWrap("some more body text
");
 15: fontWrap("yet more body text
");
 16: ?>
 17: </body>
 18: </html>

When the fontWrap() function is called with a second argument, as in line 12, this value is used to set the size
attribute of the font element. When we omit this argument, as in lines 13, 14, and 15, the default value of 3 is used
instead. You can create as many optional arguments as you want, but when you've given an argument a default value,
all subsequent arguments should also be given defaults.

Passing Variable References to Functions

When you pass arguments to functions, they are stored as copies in parameter variables. Any changes made to these
variables in the body of the function are local to that function and are not reflected beyond it. This is illustrated in
Listing 6.13.

Listing 6.13 Passing an Argument to a Function by Value

 1: <html>
 2: <head>
 3: <title>Listing 6.13</title>
 4: </head>
 5: <body>
 6: <?php
 7: function addFive($num) {
 8: $num += 5;
 9: }
 10: $orignum = 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 10: $orignum = 10;
 11: addFive(&$orignum);
 12: print($orignum);
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called addfive.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

10

The addFive() function accepts a single numeric value and adds 5 to it. It returns nothing. We assign a value to a
variable $orignum in line 10, and then pass this variable to addFive() in line 11. A copy of the contents of $orignum
is stored in the variable $num. Although we increment $num by 5, this has no effect on the value of $orignum. When
we print $orignum, we find that its value is still 10. By default, variables passed to functions are passed by value. In
other words, local copies of the values of the variables are made.

We can change this behavior by creating a reference to our original variable. You can think of a reference as a signpost
that points to a variable. In working with the reference, you are manipulating the value to which it points.

Listing 6.14 shows this technique in action. When you pass an argument to a function by reference, as in line 11, the
contents of the variable you pass ($orignum) are accessed by the argument variable and manipulated within the
function, rather than just a copy of the variable's value (10). Any changes made to an argument in these cases will
change the value of the original variable. You can pass an argument by reference by adding an ampersand to the
argument name in the function definition, as shown in line 7.

Listing 6.14 Using a Function Definition to Pass an Argument to a Function by
Reference

 1: <html>
 2: <head>
 3: <title>Listing 6.14</title>
 4: </head>
 5: <body>
 6: <?php
 7: function addFive(&$num) {
 8: $num += 5;
 9: }
 10: $orignum = 10;
 11: addFive($orignum);
 12: print($orignum);
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file called addfive2.php, and place this file in your Web server document root. When you
access this script through your Web browser, it produces the following:

15
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Anonymous Functions
It is possible to create functions on the fly during script execution. Because such functions are not themselves given a
name, but are stored in variables or passed to other functions, they are known as anonymous functions. PHP provides
the create_function() function for creating anonymous functions. create_function() requires two string arguments.
The first argument should contain a comma-delimited list of argument variables, exactly the same as the argument
variables you would include in a standard function declaration. The second argument should contain the function body.

Listing 6.15 creates a simple anonymous function to add two numbers together.

Listing 6.15 A Simple Anonymous Function

 1: <html>
 2: <head>
 3: <title>Listing 6.15</title>
 4: </head>
 5: <body>
 6: <?php
 7: $my_anon = create_function('$a, $b', 'return $a+$b;');
 8: print $my_anon(3, 9);
 9: // prints 12
 10: ?>
 11: </body>
 12: </html>

As of this writing, the use of anonymous functions will cause a segmentation
fault when running the Zend Optimizer.

Put these lines into a text file called anon.php, and place this file in your Web server document root. When you access
this script through your Web browser, it produces the following:

12

Note that we use single quotes when passing arguments to create_function(). That saves us from having to escape
the variable names within the arguments. We could have used double quotes, but the function call would have been a
little more involved:

$my_anon = create_function("\$a, \$b", "return \$a+\$b;");

So what is the use of anonymous functions? In practical terms, you will probably only use them when you need to pass
callback functions to built-in functions. A callback function is generally written by the user and is designed to be invoked
(usually repeatedly) by the function to which it is passed.

The second argument to create_function() is the function body. Don't forget to
end the last statement in this string with a semicolon. The interpreter will complain
and your anonymous function will not be executed if you omit it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Testing for the Existence of a Function
You have seen that we do not always know that a function exists before we try to invoke it. If our code were to work
with a function name stored in a variable, for example, it would be useful to be able to test whether or not the function
exists before we attempt to call it. Furthermore, different builds of the PHP engine may include different functionality. If
you are writing a script that may be run on multiple servers, you might want to verify that key features are available.
You might write code that will use MySQL if MySQL-related functions are available, but simply log data to a text file
otherwise.

You can use function_exists() to check for the availability of a function. function_exists() requires a string
representing a function name. It will return true if the function can be located and false otherwise.

Listing 6.16 shows function_exists() in action, and illustrates some of the other topics we have covered in this hour.

Listing 6.16 Testing for a Function's Existence

 1: <html>
 2: <head>
 3: <title>Listing 6.16</title>
 4: </head>
 5: <body>
 6: <?php
 7:
 8: function tagWrap($tag, $txt, $func="") {
 9: if (! empty($txt) && function_exists($func)) {
 10: $txt = $func($txt);
 11: return "<$tag>$txt</$tag>\n";
 12: }
 13: }
 14:
 15: function underline($txt) {
 16: return "<u>$txt</u>";
 17: }
 18:
 19: print tagWrap('b', 'make me bold');
 20: // make me bold
 21:
 22: print tagWrap('i', 'underline me too', "underline");
 23: // <i><u>underline me too</u></i>
 24:
 25: print tagWrap('i', 'make me italic and quote me',
 26: create_function('$txt', 'return ""$txt"";'));
 27: // <i>"make me italic and quote me"</i>
 28:
 29: ?>
 30: </body>
 31: </html>

We define two functions, tagWrap() (line 8) and underline() (line 15). The tagWrap() function accepts three strings:
a tag, the text to be formatted, and an optional function name. It returns a formatted string. underline() requires a
single argument—the text to be formatted—and returns the text wrapped in <u> tags.

When we first call tagWrap() on line 19, we pass it the character b and the string make me bold. Because we
haven't passed a value for the function argument, the default value (an empty string) is used. On line 9, we check
whether the $func variable contains characters and, if it is not empty, we call function_exists() to check for a
function by that name. Of course, the $func variable is empty, so we wrap the $txt variable in tags on line 11
and return the result.

We call tagWrap() on line 22 with the string 'i', some text, and a third argument: "underline". function_exists()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We call tagWrap() on line 22 with the string 'i', some text, and a third argument: "underline". function_exists()
finds a function called underline() (line 15), so it calls this function and passes the $txt argument variable to it before
any further formatting is done. The result is an italicized, underlined string.

Finally, on line 25, we call tagWrap(), which wraps text in quotation entities. Of course, it would be quicker to simply
add the entities to the text to be transformed ourselves, but this illustrates the point that function_exists() works as
well on anonymous functions as it does on strings representing function names.

Put these lines into a text file called exists.php, and place this file in your Web server document root. When you access
this script through your Web browser, it should look like Figure 6.8.

Figure 6.8. Output of Listing 6.16.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
This hour taught you about functions and how to deploy them. You learned how to define and pass arguments to a
function, how to use the global and static statements, how to pass references to functions, and how to create default
values for function arguments. Finally, you learned how to create anonymous functions and test for the existence of
functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can you include a function call within a double- or single-quoted string, as you can with a
variable?

A1: No. You must call functions outside quotation marks. However, you can break the string apart and place
the function call between the parts of the string, using the concatenation operator to tie them together.
For example:

$newstring = "I purchased".numPurchase($somenum)." items.";

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: True or false: If a function doesn't require an argument, you can omit the parentheses in the function call.

A1: The statement is false. You must always include the parentheses in your function calls, whether you are
passing arguments to the function or not.

2: How do you return a value from a function?

A2: You must use the return keyword.

3: What would the following code fragment print to the browser?

$number = 50;

function tenTimes() {
 $number = $number * 10;
}

tenTimes();
print $number;

A3: It would print 50. The tenTimes() function has no access to the global $number variable. When it is
called, it will manipulate its own local $number variable.

4: What would the following code fragment print to the browser?

$number = 50;

function tenTimes() {
 global $number;
 $number = $number * 10;
}

tenTimes();
print $number;

A4: It would print 500. We have used the global statement, which gives the tenTimes() function access to
the $number variable.

5: What would the following code fragment print to the browser?

$number = 50;

function tenTimes(&$n) {
 $n = $n * 10;
}

tenTimes($number);
print $number;

A5: It would print 500. By adding the ampersand to the parameter variable $n, we ensure that this argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It would print 500. By adding the ampersand to the parameter variable $n, we ensure that this argument
is passed by reference. $n and $number point to the same value, so any changes to $n will be reflected
when you access $number.

Activity

Create a function that accepts four string variables and returns a string that contains an HTML table element, enclosing
each of the variables in its own cell.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 7. Learning Basic SQL Commands
This hour takes a break from all that PHP you've been learning and provides a primer on SQL syntax, which you will use
to create and manipulate your MySQL database tables. This is a very hands-on hour, and it assumes that you are able
to issue queries through the MySQL monitor on Windows or Linux/Unix. Alternatively, if you use a GUI to MySQL, this
hour assumes you know the methods for issuing queries through those interfaces.

In this hour, you will learn

The basic MySQL data types

How to use the CREATE TABLE command to create a table

How to use the INSERT command to enter records

How to use the SELECT command to retrieve records

How to use basic functions, the WHERE clause, and the GROUP BY clause in SELECT expressions

How to select from multiple tables, using JOIN

How to use the UPDATE and REPLACE commands to modify existing records

How to use the DELETE command to remove records

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Learning the MySQL Data Types
Properly defining the fields in a table is important to the overall optimization of your database. You should use only the
type and size of field you really need to use. These types of fields (or columns) are also referred to as data types
because it's the type of data you will be storing in those fields.

MySQL uses many different data types, which are broken into three categories: numeric, date and time, and string
types. Pay close attention because defining the data type is more important than any other part of the table creation
process.

Numeric Data Types

MySQL uses all the standard ANSI SQL numeric data types, so if you're coming to MySQL from a different database
system, these definitions will look familiar to you. The following list shows the common numeric data types and their
descriptions.

The terms signed and unsigned will be used in the list of numeric data types. If
you remember your basic algebra, you'll recall that a signed integer is a
positive or negative integer, whereas an unsigned integer is a non-negative
integer.

INT— A normal-sized integer that can be signed or unsigned. If signed, the allowable range is from –
2147483648 to 2147483647. If unsigned, the allowable range is from 0 to 4294967295. You can specify a
width of up to 11 digits.

INT and INTEGER are synonymous. If it helps you to remember the
data type by using INTEGER instead of INT, go for it.

TINYINT— A very small integer that can be signed or unsigned. If signed, the allowable range is from –128 to
127. If unsigned, the allowable range is from 0 to 255. You can specify a width of up to 4 digits.

SMALLINT— A small integer that can be signed or unsigned. If signed, the allowable range is from –32768 to
32767. If unsigned, the allowable range is from 0 to 65535. You can specify a width of up to 5 digits.

MEDIUMINT— A medium-sized integer that can be signed or unsigned. If signed, the allowable range is from
–8388608 to 8388607. If unsigned, the allowable range is from 0 to 16777215. You can specify a width of up to
9 digits.

BIGINT— A large integer that can be signed or unsigned. If signed, the allowable range is from –
9223372036854775808 to 9223372036854775807. If unsigned, the allowable range is from 0 to
18446744073709551615. You can specify a width of up to 11 digits.

FLOAT(M,D)— A floating-point number that cannot be unsigned. You can define the display length (M) and the
number of decimals (D). This is not required and will default to 10,2, where 2 is the number of decimals and 10
is the total number of digits (including decimals). Decimal precision can go to 24 places for a FLOAT.

DOUBLE(M,D)— A double precision floating-point number that cannot be unsigned. You can define the display
length (M) and the number of decimals (D). This is not required and will default to 16,4, where 4 is the number
of decimals. Decimal precision can go to 53 places for a DOUBLE. REAL is a synonym for DOUBLE.

DECIMAL(M,D)— An unpacked floating-point number that cannot be unsigned. In unpacked decimals, each
decimal corresponds to one byte. Defining the display length (M) and the number of decimals (D) is required.
NUMERIC is a synonym for DECIMAL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NUMERIC is a synonym for DECIMAL.

Of all the MySQL numeric data types, you will likely use INT most often. You can run into problems if you define your
fields to be smaller than you actually need; for example, if you define an id field as an unsigned TINYINT, you won't
be able to successfully insert that 256th record if ID is a primary key (and thus required).

Date and Time Types

MySQL has several data types available for storing dates and times, and these data types are flexible in their input. In
other words, you can enter dates that are not really days, such as February 30—February has only 28 or 29 days, never
30. Also, you can store dates with missing information. If you know that someone was born sometime in November of
1980, you can use 1980-11-00, where "00" would have been for the day, if you knew it.

The flexibility of MySQL's date and time types also means that the responsibility for date checking falls on the
application developer. MySQL checks only two elements for validity: that the month is between 0 and 12 and the day is
between 0 and 31. MySQL does not automatically verify that the 30th day of the second month (February 30th) is a
valid date.

The MySQL date and time data types are

DATE— A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31. For example, December 30th,
1973 would be stored as 1973-12-30.

DATETIME— A date and time combination in YYYY-MM-DD HH:MM:SS format, between 1000-01-01 00:00:00
and 9999-12-31 23:59:59. For example, 3:30 in the afternoon on December 30th, 1973 would be stored as
1973-12-30 15:30:00.

TIMESTAMP— A timestamp between midnight, January 1, 1970 and sometime in 2037. You can define
multiple lengths to the TIMESTAMP field, which directly correlates to what is stored in it. The default length
for TIMESTAMP is 14, which stores YYYYMMDDHHMMSS. This looks like the previous DATETIME format, only
without the hyphens between numbers; 3:30 in the afternoon on December 30th, 1973 would be stored as
19731230153000. Other definitions of TIMESTAMP are 12 (YYMMDDHHMMSS), 8 (YYYYMMDD), and 6
(YYMMDD).

TIME— Stores the time in HH:MM:SS format.

YEAR(M)— Stores a year in 2 digit or 4 digit format. If the length is specified as 2 (for example, YEAR(2)),
YEAR can be 1970 to 2069 (70 to 69). If the length is specified as 4, YEAR can be 1901 to 2155. The default
length is 4.

You will likely use DATETIME or DATE more often than any other date- or time-related data type.

String Types

Although numeric and data types are fun, most data you'll store will be in string format. This list describes the common
string data types in MySQL.

CHAR(M)— A fixed-length string between 1 and 255 characters in length (for example, CHAR(5)), right-
padded with spaces to the specified length when stored. Defining a length is not required, but the default is 1.

VARCHAR(M)— A variable-length string between 1 and 255 characters in length, for example,
VARCHAR(25). You must define a length when creating a VARCHAR field.

BLOB or TEXT— A field with a maximum length of 65535 characters. BLOBs are "Binary Large Objects" and
are used to store large amounts of binary data, such as images or other types of files. Fields defined as TEXT
also hold large amounts of data; the difference between the two is that sorts and comparisons on stored data
are case sensitive on BLOBs and are not case sensitive in TEXT fields. You do not specify a length with BLOB
or TEXT.

TINYBLOB or TINYTEXT— A BLOB or TEXT column with a maximum length of 255 characters. You do not
specify a length with TINYBLOB or TINYTEXT.

MEDIUMBLOB or MEDIUMTEXT— A BLOB or TEXT column with a maximum length of 16777215
characters. You do not specify a length with MEDIUMBLOB or MEDIUMTEXT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters. You do not specify a length with MEDIUMBLOB or MEDIUMTEXT.

LONGBLOB or LONGTEXT— A BLOB or TEXT column with a maximum length of 4294967295 characters.
You do not specify a length with LONGBLOB or LONGTEXT.

ENUM— An enumeration, which is a fancy term for "list." When defining an ENUM, you are creating a list of
items from which the value must be selected (or it can be NULL). For example, if you wanted your field to
contain either "A" or "B" or "C", you would define your ENUM as ENUM ('A', 'B', 'C') and only those values (or
NULL) could ever populate that field. ENUMs can have 65535 different values.

The SET type is similar to ENUM in that it is defined as a list. However, the
SET type is stored as a full value rather than an index of a value, as with
ENUMs.

You will probably use VARCHAR and TEXT fields more often than other field types, and ENUMs are useful as well.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Learning the Table Creation Syntax
The table creation command requires

Name of the table

Names of fields

Definitions for each field

The generic table creation syntax is

CREATE TABLE table_name (column_name column_type);

The table name is up to you of course, but should be a name that reflects the usage of the table. For example, if you
have a table that holds the inventory of a grocery store, you wouldn't name the table s. You would probably name it
something like grocery_inventory. Similarly, the field names you select should be as concise as possible and relevant
to the function they serve and data they hold. For example, you might call a field holding the name of an item
item_name, not n.

This example creates a generic grocery_inventory table with fields for ID, name, description, price, and quantity:

mysql> CREATE TABLE grocery_inventory (
 -> id int not null primary key auto_increment,
 -> item_name varchar (50) not null,
 -> item_desc text,
 -> item_price float not null,
 -> curr_qty int not null
 ->);
Query OK, 0 rows affected (0.02 sec)

The id field is defined as a primary key. You will learn more about keys in later
hours, in the context of creating specific tables as parts of sample applications.
By using auto_increment as an attribute of the field, you are telling MySQL to
go ahead and add the next available number to the id field for you.

The MySQL server will respond with Query OK each time a query, regardless of type, is successful. Otherwise, an error
message will be displayed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the INSERT Command

After you have created some tables, you'll use the SQL command INSERT for adding new records to these tables. The
basic syntax of INSERT is

INSERT INTO table_name (column list) VALUES (column values);

Within the parenthetical list of values, you must enclose strings within quotation marks. The SQL standard is single
quotes, but MySQL enables the usage of either single or double quotes. Remember to escape the type of quotation
mark used, if it's within the string itself.

Integers do not require quotation marks around them.

Here is an example of a string where escaping is necessary:

O'Connor said "Boo"

If you enclose your strings in double quotes, the INSERT statement would look like this:

INSERT INTO table_name (column_name) VALUES ("O'Connor said \"Boo\"");

If you enclose your strings in single quotes instead, the INSERT statement would look like this:

INSERT INTO table_name (column_name) VALUES ('O\'Connor said "Boo"');

A Closer Look at INSERT

Besides the table name, there are two main parts of the INSERT statement—the column list and the value list. Only
the value list is actually required, but if you omit the column list, you must specifically name each column in your values
list in order.

Using the grocery_inventory table as an example, you have five fields: id, item_name, item_desc, item_price,
and curr_qty. To insert a complete record, you could use either of these statements:

1. A statement with all columns named:

insert into grocery_inventory (id, item_name, item_desc, item_price,
curr_qty) values ('1', 'Apples', 'Beautiful, ripe apples.', '0.25', 1000);

2. A statement that uses all columns but does not explicitly name them:

insert into grocery_inventory values ('2', 'Bunches of Grapes',
'Seedless grapes.', '2.99', 500);

Give both of them a try and see what happens. You should get results like this:

mysql> insert into grocery_inventory
 -> (id, item_name, item_desc, item_price, curr_qty)
 -> values
 -> (1, 'Apples', 'Medium-sized Granny Smith apples.', 0.25, 1000);
Query OK, 1 row affected (0.01 sec)

mysql> insert into grocery_inventory values (2, 'Bunches of Grapes',
 -> 'Seedless grapes.', 2.99, 500);
Query OK, 1 row affected (0.01 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Query OK, 1 row affected (0.01 sec)

Now for some more interesting methods of using INSERT. Because id is an auto-incrementing integer, you don't have
to put it in your values list. However, if there's a value you specifically don't want to list (such as id), you then must list
the remaining columns in use. For example, the following statement does not list the columns and also does not give a
value for id, and it will produce an error:

mysql> insert into grocery_inventory values
 -> ('Bottled Water (6-pack)', '500ml spring water.', 2.29, 250);
ERROR 1136: Column count doesn't match value count at row 1

Because you didn't list any columns, MySQL expects all of them to be in the value list, causing an error on the previous
statement. If the goal was to let MySQL do the work for you by auto-incrementing the id field, you could use either of
these statements:

1. A statement with all columns named except id:

insert into grocery_inventory (item_name, item_desc, item_price, curr_qty)
values ('Bottled Water (6-pack)', '500ml spring water.', '2.29', 250);

2. A statement that uses all columns, but does not explicitly name them and indicates a NULL entry for id (so one
is filled in for you):

insert into grocery_inventory values ('NULL', 'Bottled Water (6-pack)',
'500ml spring water.', 2.29, 250);

Go ahead and pick one to use so that your grocery_inventory table has three records in total. It makes no different to
MySQL, but as with everything that is a preference, be consistent in your application development. Consistent
structures will be easier for you to debug later because you'll know what to expect.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the SELECT Command

SELECT is the SQL command used to retrieve records. This command syntax can be totally simplistic or very
complicated. As you become more comfortable with database programming, you will learn to enhance your SELECT
statements, ultimately making your database do as much work as possible and not overworking your programming
language of choice.

The most basic SELECT syntax looks like this:

SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT offset, rows]

Start with the first line:

SELECT expressions_and_columns FROM table_name

One handy expression is the * symbol, which stands for "everything." So, to select "everything" (all rows, all columns)
from the grocery_inventory table, your SQL statement would be

SELECT * FROM grocery_inventory;

Depending on how much data you inserted into the grocery_inventory table during the previous hour, your results
will vary, but it might look something like this:

mysql> select * from grocery_inventory;
+---+-----------------------+------------------------+-----------+---------+
| id| item_name | item_desc | item_price| curr_qty|
+---+-----------------------+------------------------+-----------+---------+
1	Apples	Beautiful, ripe apples.	0.25	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
+---+-----------------------+------------------------+-----------+---------+
3 rows in set (0.00 sec)

As you can see, MySQL creates a lovely table with the names of the columns along the first row as part of the result
set. If you only want to select specific columns, replace the * with the names of the columns, separated by commas.
The following statement selects just the id, item_name, and curr_qty fields from the grocery_inventory table.

mysql> select id, item_name, curr_qty from grocery_inventory;
+----+------------------------+----------+
| id | item_name | curr_qty |
+----+------------------------+----------+
1	Apples	1000
2	Bunches of Grapes	500
3	Bottled Water (6-pack)	250
+----+------------------------+----------+
3 rows in set (0.00 sec)

Ordering SELECT Results

By default, results of SELECT queries are ordered as they were inserted into the table, and shouldn't be relied upon as
a meaningful ordering system. If you want to order results a specific way, such as by date, ID, name, and so on,
specify your requirements using the ORDER BY clause. In the following statement, results are ordered by
item_name:

mysql> select id, item_name, curr_qty from grocery_inventory
 -> order by item_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> order by item_name;
+----+------------------------+----------+
| id | item_name | curr_qty |
+----+------------------------+----------+
1	Apples	1000
3	Bottled Water (6-pack)	250
2	Bunches of Grapes	500
+----+------------------------+----------+
3 rows in set (0.04 sec)

When selecting results from a table without specifying a sort order, the results may
or may not be ordered by their key value. This occurs because MySQL reuses the
space taken up by previously deleted rows. In other words, if you add records with
ID values of 1 through 5, delete the record with ID number 4, then add another
record (ID number 6), the records might appear in the table in this order: 1, 2, 3,
6, 5.

The default sorting of ORDER BY results is ascending (ASC); strings sort from A to Z, integers start at 0, dates sort
from oldest to newest. You can also specify a descending sort, using DESC:

mysql> select id, item_name, curr_qty from grocery_inventory
 -> order by item_name desc;
+----+------------------------+----------+
| id | item_name | curr_qty |
+----+------------------------+----------+
2	Bunches of Grapes	500
3	Bottled Water (6-pack)	250
1	Apples	1000
+----+------------------------+----------+
3 rows in set (0.00 sec)

You're not limited to sorting by just one field—you can specify as many fields as you want, separated by a comma. The
sorting priority is the order in which you list the fields.

Limiting Your Results

You can use the LIMIT clause to return only a certain number of records in your SELECT query result. There are two
requirements when using the LIMIT clause: offset and number of rows. The offset is the starting position, and the
number of rows should be self-explanatory.

For the most part, counting while programming always starts at 0, not 1. For
example: 0, 1, 2, 3 instead of 1, 2, 3, 4.

Suppose you had more than 2 or 3 records in the grocery_inventory table, and you wanted to select the id, name,
and quantity of the first 3, ordered by curr_qty. In other words, you want to select the 3 items with the least
inventory, the following single-parameter limit will start at the 0 position and go to the third record:

mysql> select id, item_name, curr_qty from grocery_inventory
 -> order by curr_qty limit 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> order by curr_qty limit 3;
+----+------------------------+----------+
| id | item_name | curr_qty |
+----+------------------------+----------+
4	Bananas	150
3	Bottled Water (6-pack)	250
2	Bunches of Grapes	500
+----+------------------------+----------+
3 rows in set (0.00 sec)

The LIMIT clause can be quite useful in an actual application. For example, you can use the LIMIT clause within a
series of SELECT statements to essentially page through results in steps:

1. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 0, 3;

2. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 3, 3;

3. SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 6, 3;
If you specify an offset and number of rows in your query and no results are found, you won't see an error—just an
empty result set. For example, if the grocery_inventory table contains only 6 records, a query with a LIMIT offset of
6 will produce no results:

mysql> select id, item_name, curr_qty from grocery_inventory
 -> order by curr_qty limit 6, 3;
Empty set (0.00 sec)

In Web-based applications, when lists of data are displayed with links such as "previous 10" and "next 10," it's a safe
bet that a LIMIT clause is at work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using WHERE in Your Queries
You have learned numerous ways to retrieve particular columns from your tables, but not specific rows. This is when
the WHERE clause comes in to play. From the basic SELECT syntax, you see that WHERE is used to specify a
particular condition:

SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]

An example would be to retrieve all the records for items with a quantity of 500:

mysql> select * from grocery_inventory where curr_qty = 500;
+----+-------------------+------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-------------------+------------------------+------------+----------+
| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |
| 5 | Pears | Anjou, nice and sweet. | 0.5 | 500 |
+----+-------------------+------------------------+------------+----------+
2 rows in set (0.00 sec)

As shown previously, if you use an integer as the WHERE clause comes in to play. From part of your WHERE clause,
quotation marks are not required. Quotation marks are required around strings, and the same rules apply with regard
to escaping characters, as you learned in the section on INSERT.

Using Operators in WHERE Clauses

You've used the equal sign (=) in your WHERE clauses to determine the truth of a condition—is one thing equal to
another. You can use many types of operators, with comparison operators and logical operators being the most popular
types.

Comparison operators, shown in Table 7.1, should look familiar to you if you think about the first day of algebra class.

Table 7.1. Basic Comparison Operators and Their Meanings
Operator Meaning

= Equal to

!= Not equal to

<= Less than or equal to

< Less than

>= Greater than or equal to

> Greater than

There's also a handy operator called BETWEEN, which is useful with integer or data comparisons because it searches
for results between a minimum and maximum value. For example

mysql> select * from grocery_inventory where item_price
 -> between 1.50 and 3.00;
+----+------------------------+---------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+------------------------+---------------------+------------+----------+
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bananas	Bunches, green.	1.99	150
+----+------------------------+---------------------+------------+----------+
3 rows in set (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3 rows in set (0.00 sec)

Other operators include logical operators, which enable you to use multiple comparisons within your WHERE clause.
The basic logical operators are AND and OR. When using AND, all comparisons in the clause must be true to the
WHERE clause comes in to play. From retrieve results, whereas using OR allows a minimum of one comparison to be
true.

String Comparison Using LIKE

You were introduced to matching strings within a WHERE clause by using = or !=, but there's another useful operator
for the WHERE clause comes in to play. From string comparisons: LIKE. This operator uses two characters as
wildcards in pattern matching.

%— Matches multiple characters

_— Matches exactly one character

If you want to find records in the grocery_inventory table where the first name of the item starts with the letter "A",
use

mysql> select * from grocery_inventory where item_name like 'A%';
+----+-----------+-------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-----------+-------------------------+------------+----------+
| 1 | Apples | Beautiful, ripe apples. | 0.25 | 1000 |
| 6 | Avocado | Large Haas variety. | 0.99 | 750 |
+----+-----------+-------------------------+------------+----------+

Unless performing a LIKE comparison on a binary string, the comparison is not
case sensitive.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Selecting from Multiple Tables
You're not limited to selecting only one table at a time. That would certainly make application programming a long and
tedious task! When you select from more than one table in one SELECT statement, you are said to be joining the
tables together.

Suppose you have two tables, fruit and color. You can select all rows from each of the two tables, using two separate
SELECT statements:

mysql> select * from fruit;
+----+-----------+
| id | fruitname |
+----+-----------+
1	apple
2	orange
3	grape
4	banana
+----+-----------+
4 rows in set (0.00 sec)

mysql> select * from color;
+----+-----------+
| id | colorname |
+----+-----------+
1	red
2	orange
3	purple
4	yellow
+----+-----------+
4 rows in set (0.00 sec)

When you want to select from both tables at once, there are a few differences in the syntax of the SELECT statement.
First, you must ensure that all the tables you're using in your query appear in the FROM clause of the SELECT
statement. Using the fruit and color example, if you simply want to select all columns and rows from both tables, you
might think you would use the following SELECT statement:

mysql> select * from fruit, color;
+----+-----------+----+-----------+
| id | fruitname | id | colorname |
+----+-----------+----+-----------+
1	apple	1	red
2	orange	1	red
3	grape	1	red
4	banana	1	red
1	apple	2	orange
2	orange	2	orange
3	grape	2	orange
4	banana	2	orange
1	apple	3	purple
2	orange	3	purple
3	grape	3	purple
4	banana	3	purple
1	apple	4	yellow
2	orange	4	yellow
3	grape	4	yellow
4	banana	4	yellow
+----+-----------+----+-----------+
16 rows in set (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16 rows in set (0.00 sec)

Sixteen rows of repeated information is probably not what you were going for! What this query did is literally join a row
in the color table to each row in the fruit table. Because there are four records in the fruit table and four entries in the
color table, that's 16 records returned to you.

When you select from multiple tables, you must build proper WHERE clauses to ensure you really get what you want.
In the case of the fruit and color tables, what you really want is to see the fruitname and colorname records from
these two tables where the IDs of each match up. This brings us to the next nuance of the query—how to indicate
exactly which field you want when the fields are named the same in both tables!

Simply, you append the table name to the field name, like this:

tablename.fieldname

So, the query for selecting fruitname and colorname from both tables where the IDs match would be

mysql> select fruitname, colorname from fruit, color where fruit.id = color.id;
+-----------+-----------+
| fruitname | colorname |
+-----------+-----------+
apple	red
orange	orange
grape	purple
banana	yellow
+-----------+-----------+
4 rows in set (0.00 sec)

However, if you attempt to select a column that appears in both tables with the same name, you will get an ambiguity
error:

mysql> select id, fruitname, colorname from fruit, color
 -> where fruit.id = color.id;
ERROR 1052: Column: 'id' in field list is ambiguous

If you mean to select the id from the fruit table, you would use

mysql> select fruit.id, fruitname, colorname from fruit,
 -> color where fruit.id = color.id;
+------+-----------+-----------+
| id | fruitname | colorname |
+------+-----------+-----------+
1	apple	red
2	orange	orange
3	grape	purple
4	banana	yellow
+------+-----------+-----------+
4 rows in set (0.00 sec)

This was a basic example of joining two tables together for use in a single SELECT query. The JOIN keyword is an
actual part of SQL, which enables you to build more complex queries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using JOIN

Several types of JOINs can be used in MySQL, all of which refer to the order in which the tables are put together and
the results are displayed. The type of JOIN used with the fruit and color tables is called an INNER JOIN, although it
wasn't written explicitly as such. To rewrite the SQL statement using the proper INNER JOIN syntax, you would use

mysql> select fruitname, colorname from fruit inner join color
 -> on fruit.id = color.id;
+-----------+-----------+
| fruitname | colorname |
+-----------+-----------+
apple	red
orange	orange
grape	purple
banana	yellow
+-----------+-----------+
4 rows in set (0.00 sec)

The ON clause replaced the WHERE clause, in this instance telling MySQL to join together the rows in the tables where
the IDs match each other. When joining tables using ON clauses, you can use any conditions that you would use in a
WHERE clause, including all the various logical and arithmetic operators.

Another common type of JOIN is the LEFT JOIN. When joining two tables with LEFT JOIN, all rows from the first
table will be returned, no matter if there are matches in the second table or not. Suppose you have two tables in an
address book, one called master_name, containing basic records, and one called email, containing email records. Any
records in the email table would be tied to a particular id of a record in the master_name table. For example

mysql> select name_id, firstname, lastname from master_name;
+---------+-----------+----------+
| name_id | firstname | lastname |
+---------+-----------+----------+
1	John	Smith
2	Jane	Smith
3	Jimbo	Jones
4	Andy	Smith
7	Chris	Jones
45	Anna	Bell
44	Jimmy	Carr
43	Albert	Smith
42	John	Doe
+---------+-----------+----------+		
9 rows in set (0.00 sec)		
mysql> select name_id, email from email;		
+---------+------------------+		
name_id	email	
+---------+------------------+		
42	jdoe@yahoo.com	
45	annabell@aol.com	
+---------+------------------+
2 rows in set (0.00 sec)

Using LEFT JOIN on these two tables, you can see that if a value from the email table doesn't exist, NULL will appear
in place of an email address:

mysql> select firstname, lastname, email fom master_name left join email
 -> on master_name.name_id = email.name_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> on master_name.name_id = email.name_id;
+-----------+----------+------------------+
| firstname | lastname | email |
+-----------+----------+------------------+
John	Smith	NULL
Jane	Smith	NULL
Jimbo	Jones	NULL
Andy	Smith	NULL
Chris	Jones	NULL
Anna	Bell	annabell@aol.com
Jimmy	Carr	NULL
Albert	Smith	NULL
John	Doe	jdoe@yahoo.com
+-----------+----------+------------------+
9 rows in set (0.01 sec)

A RIGHT JOIN works like LEFT JOIN, but with the table order reversed. In other words, when using a RIGHT JOIN,
all rows from the second table will be returned, no matter whether there are matches in the first table or not. However,
in the case of the master_name and email tables, there are only two rows in the email table, whereas there are nine
rows in the master_name table. This means that only two of the nine rows will be returned:

mysql> select firstname, lastname, email from master_name right join email
 -> on master_name.name_id = email.name_id;
+-----------+----------+------------------+
| firstname | lastname | email |
+-----------+----------+------------------+
| John | Doe | jdoe@yahoo.com |
| Anna | Bell | annabell@aol.com |
+------+-----+----------------------------+
2 rows in set (0.00 sec)

Several different types of JOINs are available in MySQL, and you've learned about the most common types. To learn
more about JOINs such as CROSS JOIN, STRAIGHT JOIN and NATURAL JOIN, please visit the MySQL Manual at
http://www.mysql.com/doc/J/O/JOIN.html.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the UPDATE Command to Modify Records

UPDATE is the SQL command used to modify the contents of one or more columns in an existing record. The most
basic UPDATE syntax looks like this:

UPDATE table_name
SET column1='new value',
column2='new value2'
[WHERE some_condition_is_true]

The guidelines for updating a record are similar to those used when inserting a record—the data you're entering must
be appropriate to the data type of the field, and you must enclose your strings in single or double quotes, escaping
where necessary.

For example, assume you have a table called fruit containing an ID, a fruit name, and the status of the fruit (ripe or
rotten):

mysql> SELECT * FROM fruit;
+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	pear	rotten
3	banana	ripe
4	grape	rotten
+----+------------+--------+
4 rows in set (0.00 sec)

To update the status of the fruit to "ripe", use

mysql> update fruit set status = 'ripe';
Query OK, 2 rows affected (0.00 sec)
Rows matched: 4 Changed: 2 Warnings: 0

Take a look at the result of the query. It was successful, as you can tell from the Query OK message. Also note that
only 2 rows were affected—if you try to set the value of a column to the value it already is, the update won't occur for
that column.

The second line of the response shows that 4 rows were matched, and only 2 were changed. If you're wondering
"matched what?" the answer is simple—because you did not specify a particular condition for matching, the match
would be "all rows".

You must be very careful and use a condition when updating a table, unless you really intend to change all the columns
for all records to the same value. For the sake of argument, assume that "grape" is spelled incorrectly in the table, and
you want to use UPDATE to correct this mistake. This query would have horrible results:

mysql> update fruit set fruit_name = 'grape';
Query OK, 4 rows affected (0.00 sec)
Rows matched: 4 Changed: 4 Warnings: 0

When you read the result, you should be filled with dread: 4 of 4 records were changed, meaning your fruit table now
looks like this:

mysql> SELECT * FROM fruit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> SELECT * FROM fruit;
+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	grape	ripe
2	grape	ripe
3	grape	ripe
4	grape	ripe
+----+------------+--------+
4 rows in set (0.00 sec)

All your fruit records are now grapes. Through attempting to correct the spelling of one field, all fields were changed
because no condition was specified! When doling out UPDATE privileges to your users, think about the responsibility
you're giving to someone—one wrong move and your entire table could be grapes.

Conditional UPDATEs

Making a conditional UPDATE means that you are using WHERE clauses to match specific records. Using a WHERE
clause in an UPDATE statement is just like using a WHERE clause in a SELECT statement. All the same comparison
and logical operators can be used, such as "equal to", "greater than", "OR", "AND"—the whole nine yards.

Assume your fruit table has not been completely filled with grapes, but instead contains four records, one with a
spelling mistake ("grappe" instead of "grape"). The UPDATE statement to fix the spelling mistake would be

mysql> update fruit set fruit_name = 'grape' where fruit_name = 'grappe';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

In this case, only one row was matched and one row was changed. Your fruit table should be intact, and all fruit names
should be spelled properly:

mysql> select * from fruit;
+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	pear	ripe
3	banana	ripe
4	grape	ripe
+----+------------+--------+
4 rows in set (0.00 sec)

Using Existing Column Values with UPDATE

Another feature of UPDATE is the capability to use the current value in the record as the base value. For example, go
back to the grocery_inventory table used earlier in this hour:

mysql> select * from grocery_inventory;
+----+-----------------------+------------------------+------+-----+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-----------------------+------------------------+------------+----------+
1	Apples	Beautiful, ripe apples.	0.25	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bananas	Bunches, green.	1.99	150
5	Pears	Anjou, nice and sweet.	0.5	500
6	Avocado	Large Haas variety.	0.99	750
+----+-----------------------+------------------------+------------+----------+
6 rows in set (0.00 sec)

When someone purchases an apple, the inventory table should be updated accordingly. However, you won't know
exactly what number to enter in the curr_qty column, just that you sold one. In this case, use the current value of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exactly what number to enter in the curr_qty column, just that you sold one. In this case, use the current value of the
column and subtract one:

mysql> update grocery_inventory set curr_qty = curr_qty - 1 where id = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

This should give you a new value of 999 in the curr_qty column, and indeed it does:

mysql> select * from grocery_inventory;
+----+-----------------------+------------------------+------------+----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-----------------------+------------------------+------------+----------+
1	Apples	Beautiful, ripe apples.	0.25	999
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bananas	Bunches, green.	1.99	150
5	Pears	Anjou, nice and sweet.	0.5	500
6	Avocado	Large Haas variety.	0.99	750
+----+-----------------------+------------------------+------------+----------+
6 rows in set (0.00 sec)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the REPLACE Command

Another method for modifying records is to use the REPLACE command, which is remarkably similar to the INSERT
command.

REPLACE INTO table_name (column list) VALUES (column values);

The REPLACE statement works like this: if the record you are inserting into the table contains a primary key value that
matches a record already in the table, the record in the table will be deleted and the new record inserted in its place.

The REPLACE command is a MySQL-specific extension to ANSI SQL. This
command mimics the action of a DELETE and re-INSERT of a particular
record. In other words, you get two commands for the price of one.

Using the grocery_inventory table, the following command will replace the entry for Apples:

mysql> replace into grocery_inventory values
 -> (1, 'Granny Smith Apples', 'Sweet!', '0.50', 1000);
Query OK, 2 rows affected (0.00 sec)

In the query result, notice that the result states, "2 rows affected". In this case, because id is a primary key that had
a matching value in the grocery_inventory table, the original row was deleted and the new row inserted—2 rows
affected.

Select the records to verify that the entry is correct, which it is

mysql> select * from grocery_inventory;
+----+-----------------------+-----------------------+-----------+-----------+
| id | item_name | item_desc | item_price | curr_qty |
+----+-----------------------+-----------------------+------------+----------+
1	Granny Smith Apples	Sweet!	0.5	1000
2	Bunches of Grapes	Seedless grapes.	2.99	500
3	Bottled Water (6-pack)	500ml spring water.	2.29	250
4	Bananas	Bunches, green.	1.99	150
5	Pears	Anjou, nice and sweet.	0.5	500
6	Avocado	Large Haas variety.	0.99	750
+----+-----------------------+-----------------------+------------+----------+
6 rows in set (0.00 sec)

If you use a REPLACE statement, and the value of the primary key in the new record does not match a value for a
primary key already in the table, the record would simply be inserted and only one row would be affected.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the DELETE Command

The basic DELETE syntax is

DELETE FROM table_name
[WHERE some_condition_is_true]
[LIMIT rows]

Notice there is no column specification in the delete command—when you use DELETE, the entire record is removed.
You might recall the fiasco earlier in this hour, regarding grapes in the fruit table, when updating a table without
specifying a condition caused all records to be updated. You must be similarly careful when using DELETE.

Assuming the structure and data in a table called fruit:

mysql> select * from fruit;
+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
1	apple	ripe
2	pear	rotten
3	banana	ripe
4	grape	rotten
+----+------------+--------+
4 rows in set (0.00 sec)

This statement will remove all records in the table:

mysql> delete from fruit;
Query OK, 0 rows affected (0.00 sec)

You can always verify the deletion by attempting to SELECT data from the table:

mysql> select * from fruit;
Empty set (0.00 sec)

All your fruit is gone.

Conditional DELETE

A conditional DELETE statement, just like a conditional SELECT or UPDATE statement, means you are using WHERE
clauses to match specific records. You have the full range of comparison and logical operators available to you, so you
can pick and choose which records you want to delete.

A prime example would be to remove all records for rotten fruit from the fruit table:

mysql> delete from fruit where status = 'rotten';
Query OK, 2 rows affected (0.00 sec)

Two records were deleted, and only ripe fruit remains:

mysql> select * from fruit;
+----+------------+--------+
| id | fruit_name | status |
+----+------------+--------+
| 1 | apple | ripe |
| 3 | banana | ripe |
+----+------------+--------+
2 rows in set (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2 rows in set (0.00 sec)

For users of MySQL 4.0 (or later), you can also use ORDER BY clauses in your DELETE statements. Take a look at the
basic DELETE syntax with the ORDER BY clause added to its structure:

DELETE FROM table_name
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT rows]

At first glance, you might wonder, "Why does it matter in what order I delete records?" The ORDER BY clause isn't for
the deletion order, it's for the sorting order of records.

In this example, a table called access_log shows access time and username:

mysql> select * from access_log;
+----+---------------------+----------+
| id | date_accessed | username |
+----+---------------------+----------+
1	2001-11-06 06:09:13	johndoe
2	2001-11-06 06:09:22	janedoe
3	2001-11-06 06:09:39	jsmith
4	2001-11-06 06:09:44	mikew
+----+---------------------+----------+
4 rows in set (0.00 sec)

To remove the oldest record, first use ORDER BY to sort the results appropriately, then use LIMIT to remove just one
record:

mysql> delete from access_log order by date_accessed desc limit 1;
Query OK, 1 row affected (0.01 sec)

Select the record from access_log and verify that only three records exist:

mysql> select * from access_log;
+----+---------------------+----------+
| id | date_accessed | username |
+----+---------------------+----------+
2	2001-11-06 06:09:22	janedoe
3	2001-11-06 06:09:39	jsmith
4	2001-11-06 06:09:44	mikew
+----+---------------------+----------+
3 rows in set (0.00 sec)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you learned the basics of SQL, from table creation to manipulating records. The table creation command
requires three important pieces of information—the table name, the field name, and the field definitions. Field
definitions are important because a well-designed table will help speed along your database. MySQL has three different
categories of data types: numeric, date and time, and string.

The INSERT command, used to add records to a table, names the table and columns you want to populate, and then
defines the values. When placing values in the INSERT statement, strings must be enclosed with single or double
quotes. The SELECT SQL command is used to retrieve records from specific tables. The * character enables you to
easily select all fields for all records in a table, but you can also specify particular column names. If the result set is too
long, the LIMIT clause provides a simple method for extracting slices of results if you indicate a starting position and
the number of records to return. To order the results, use the ORDER BY clause to select the columns to sort. Sorts
can be performed on integers, dates, and strings, in either ascending or descending order. The default order is
ascending. Without specifying an order, results are displayed in the order they appear in the table.

You can pick and choose which records you want to return using WHERE clauses to test for the validity of conditions.
Comparison or logical operators are used in WHERE clauses, and sometimes both types are used for compound
statements. Selecting records from multiple tables within one statement is as advanced as it gets, as these types of
statements—called JOIN—require forethought and planning to produce correct results. Common types of JOIN are
INNER JOIN, LEFT JOIN, and RIGHT JOIN, although MySQL supports many different kinds of JOIN.

The UPDATE and REPLACE commands are used to modify existing data in your MySQL tables. UPDATE is good for
changing values in specific columns or to change values in multiple records based on specific conditions. REPLACE is a
variation of INSERT that deletes, and then reinserts a record with a matching primary key. Be very careful when using
UPDATE to change values in a column because failure to add a condition will result in the given column being updated
throughout all records in the table.

The DELETE command is a simple one—it simply removes whole records from tables. This also makes it very
dangerous, so be sure you give DELETE privileges only to users who can handle the responsibility. You can specify
conditions when using DELETE so that records are removed only if a particular expression in a WHERE clause is true.
Also, you can delete smaller portions of the records in your table using a LIMIT clause. If you have an exceptionally
large table, deleting portions is less resource-intensive than deleting each record in a huge table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: What characters can I use to name my tables and fields, and what is the character limit?

A1: The maximum length of database, table, or field names is 64 characters. Any character that you can use
in a directory or filename, you can use in database and table names—except (/) and (.). These limitations
are in place because MySQL creates directories and files in your file system, which correspond to database
and table names. There are no character limitations (besides length) in field names.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The Workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: The integer 56678685 could be which data type(s)?

A1: MEDIUMINT, INT, or BIGINT.

2: How would you define a field that could only contain the following strings: apple, pear, banana, cherry?

A2: ENUM ('apple', 'pear', 'banana', 'cherry') or SET ('apple', 'pear', 'banana', 'cherry')

3: What would be the LIMIT clauses for selecting the first 25 records of a table? Then the next 25?

A3: LIMIT 0, 25 and LIMIT 26, 25

4: How would you formulate a string comparison using LIKE to match first names of "John" or "Joseph"?

A4: LIKE 'Jo%'

5: How would you explicitly refer to a field called id in a table called table1?

A5: Use table1.id instead of id in your query.

6: Write an SQL statement that joins two tables, orders, and items_ordered, with a primary key in each of
order_id. From the orders table, select the following fields: order_name and order_date. From the
items_ordered table, select the item_description field.

A6: SELECT orders.order_name, orders.order_date, items_ordered.item_description FROM orders LEFT JOIN
items_ordered ON orders.order_id = items_ordered.id.

Activity

Take the time to create some sample tables, and practice using basic INSERT and SELECT commands.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 8. Interacting with MySQL Using PHP
Now that you've learned about PHP and MySQL, you're ready to make the two interact. Think of PHP as a conduit to
MySQL—the commands you learned in the previous hour are the same commands that you will send to MySQL in this
hour, only this time you'll send them with PHP. In this hour, you will learn

How to connect to MySQL using PHP

How to insert and select data through PHP scripts

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Connecting to MySQL with PHP
To successfully use the PHP functions to talk to MySQL, you must have MySQL running at a location to which your Web
server can connect (not necessarily the same machine as your Web server). You also must have created a user (with a
password), and you must know the name of the database to which you want to connect. If you followed the instructions
in Hour 1, "Installing and Configuring MySQL," and Hour 3, "Installing and Configuring PHP," you should already have
taken care of this.

In all sample scripts in this hour, the sample database name is testDB, the sample user is joeuser, and the sample
password is somepass. Substitute your own information when you use these scripts.

You can find the section of the PHP Manual that covers all MySQL-related functions
at http://www.php.net/manual/en/ref.mysql.php. Use it!

Using mysql_connect()

The mysql_connect() function is the first function you must call when utilizing a PHP script to connect to MySQL—
without an open connection to MySQL, you won't get very far! The basic syntax for the connection is

mysql_connect("hostname", "username", "password");

Using actual sample values, the connection function looks like this:

mysql_connect("localhost", "joeuser", "somepass");

This function returns a connection index if the connection is successful or returns false if the connection fails. Listing
8.1 is a working example of a connection script. It assigns the value of the connection index to a variable called $conn,
then prints the value of $conn as proof of a connection.

Listing 8.1 A Simple Connection Script

 1: <?php
 2: $conn = mysql_connect("localhost", "joeuser", "somepass");
 3: echo "$conn";
 4: ?>

Save this script as mysqlconnect.php and place it in the document area of your Web server. Access the script with
your Web browser and you will see something like the following in your Web browser:

Resource id #1

Connecting to MySQL using the mysql_connect() function is pretty straightforward. The connection closes when the
script finishes its execution, but if you would like to explicitly close the connection, simply add the mysql_close()
function at the end of the script, as in Listing 8.2.

Listing 8.2 The Modified Simple Connection Script

 1: <?php
 2: $conn = mysql_connect("localhost", "joeuser", "somepass");
 3: echo "$conn";
 4: mysql_close($conn);
 5: ?>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5: ?>

That's all there is to it. The next section will cover the query execution functions, which are far more interesting than
simply opening a connection and letting it sit there!

Executing Queries

Half the battle in executing MySQL queries using PHP is knowing how to write the SQL. The mysql_query() function in
PHP is used to send your SQL query to MySQL. If it does so successfully, a result index is returned. If a failure occurs,
the function returns false.

When you use the mysql_query() function, you'll notice that one piece of the puzzle is missing: picking the database
to use. When you connect to MySQL through the command-line interface, the database is specified in the connection
string or changed manually after you log in. With PHP, this is done via a separate function called mysql_select_db()
with the following syntax:

mysql_select_db(database name, connection index);

To connect to a database named testDB, first use mysql_connect(), then use mysql_select_db(), as shown in
Listing 8.3.

Listing 8.3 Connecting and Selecting a Database

 1: <?php
 2: $conn = mysql_connect("localhost", "joeuser", "somepass");
 3: mysql_select_db("testDB",$conn);
 4: ?>

You now have two important pieces of information: the connection index ($conn) and the knowledge that PHP will use
testDB as the database throughout the life of this particular script. The connection index is used in mysql_query()
syntax:

mysql_query(query, connection index);

In your script, first make the connection, and then execute a query. The script in Listing 8.4 creates a simple table
called testTable.

Listing 8.4 A Script to Create a Table

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "CREATE TABLE testTable (id int not null primary key auto_increment,
 8: testField varchar (75))";
 9: // execute the SQL statement
 10: $result = mysql_query($sql, $conn);
 11: // echo the result identifier
 12: echo $result;
 13: ?>

When issuing queries using mysql_query(), the semicolon at the end of the
SQL statement is not required. The only semicolon in that line should be at the
end of the PHP command.

Because the mysql_query function only returns a true or false result, the boring output of this script is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the mysql_query function only returns a true or false result, the boring output of this script is

1

The 1 equals true, and indicates that the query was successfully executed. A 0 would have indicated failure. Access
MySQL through the command-line interface to verify the creation of the testTable table:

mysql> describe testTable;
+-----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| testField | varchar(75) | YES | | NULL | |
+-----------+-------------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

Congratulations—you have successfully created a table in your MySQL database using PHP!

Retrieving Error Messages

Take some time to familiarize yourself with the mysql_error() function, as it will become your friend. When used in
conjunction with the PHP die() function, which simply exits the script at the point at which it appears, the
mysql_error() function will return a helpful error message when you make a mistake.

For example, now that you have created a table called testTable, you won't be able to execute that script again
without an error. Let's try to execute the script again, but modify it first to utilize the mysql_error() function (see
Listing 8.5).

Listing 8.5 The Script to Create a Table, with Error Messages

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "CREATE TABLE testTable (id int not null primary key auto_increment,
 8: testField varchar (75))";
 9: // execute the SQL statement
 10: $result = mysql_query($sql, $conn) or die(mysql_error());
 11: // echo the result identifier
 12: echo $result;
 13: ?>

When you execute the script, you should see something like the following in your Web browser:

Table 'testTable' already exists

How exciting! Move on to the next section to start inserting data into your table, and soon you'll be retrieving and
formatting it via PHP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with MySQL Data

Inserting, updating, deleting, and retrieving data all revolve around the use of the mysql_query() function to execute
the basic SQL queries. For INSERT, UPDATE, and DELETE, no additional scripting is required after the query has
been executed because you're not displaying any results (unless you want to). For SELECT, you have a few options for
displaying the data retrieved by your query. Let's start with the basics and insert some data, so you'll have something
to retrieve later on.

Inserting Data with PHP

The easiest method for inserting data is to simply hard-code the INSERT statement, as shown in Listing 8.6.

Listing 8.6 A Script to Insert a Record

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "INSERT INTO testTable values ('', 'some value')";
 8: // execute the SQL statement
 9: $result = mysql_query($sql, $conn) or die(mysql_error());
 10: // echo the result identifier
 11: echo $result;
 12: ?>

You might wonder why you need to echo the result identifier if you're just inserting data. Well, you don't have to; it's
just there for kicks. You can clean this script up a bit by replacing the query execution line so that it simply executes
and prints a relevant statement if successful, as shown in Listing 8.7.

Listing 8.7 The Modified Insert Script

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "INSERT INTO testTable values ('', 'some value')";
 8: // execute the SQL statement
 9: if (mysql_query($sql, $conn)) {
 10: echo "record added!";
 11: } else {
 12: echo "something went wrong";
 13: }
 14: ?>

Running this script will result in the addition of a row to the testTable table. To enter more records than just the one
shown in the script, you can either make a long list of hard-coded SQL statements and use mysql_query() multiple
times to execute these statements, or you can create a form-based interface to the record addition script.

To create the form for this script, you really only need one field because the id field can automatically increment. The
action of the form is the name of the record-addition script; let's call it insert.php. Your HTML form might look
something like Listing 8.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 8.8 An Insert Form

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Insert Form</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <FORM ACTION="insert.php" METHOD=POST>
 7: <P>Text to add:

 8: <input type=text name="testField" size=30>
 9: <p><input type=submit name="submit" value="Insert Record"></p>
 10: </FORM>
 11: </BODY>
 12: </HTML>

Save this file as insert_form.html, and put it in the document root of your Web server. Next, create the insert.php
script shown in Listing 8.9. The value entered in the form will replace the hard-coded values in the SQL query with a
variable called $_POST[testField].

Listing 8.9 An Insert Script Used with the Form

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "INSERT INTO testTable values ('', '$_POST[testField]')";
 8: // execute the SQL statement
 9: if (mysql_query($sql, $conn)) {
 10: echo "record added!";
 11: } else {
 12: echo "something went wrong";
 13: }
 14: ?>

Save the script as insert.php, and put it in the document root of your Web server. In your Web browser, access the
HTML form that you created. It should look something like Figure 8.1.

Figure 8.1. The HTML form for adding a record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter a string in the "Text to add" field, as shown in Figure 8.2.

Figure 8.2. Text typed in the form field.

Finally, press the Insert Record button to execute the insert.php script and insert the record. If successful, you will see
results similar to Figure 8.3.

Figure 8.3. The record has been successfully added.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To verify your work, you can use the MySQL command-line interface to view the records in the table:

mysql> select * from testTable;
+----+--------------------+
| id | testField |
+----+--------------------+
| 1 | some value |
| 2 | this is some text! |
+----+--------------------+
2 rows in set (0.00 sec)

Next, you'll learn how to retrieve and format results with PHP.

Retrieving Data with PHP

Because you have a few rows in your testTable table, you can write a PHP script to retrieve that data. Starting with
the basics, write a script that issues a SELECT query but doesn't overwhelm you with result data; let's just get the
number of rows. To do this, use the mysql_num_rows() function. This function requires a result, so when you
execute the query, put the result index in $result (see Listing 8.10).

Listing 8.10 A Script to Retrieve Data

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "SELECT * FROM testTable";
 8: // execute the SQL statement
 9: $result = mysql_query($sql, $conn) or die(mysql_error());
 10: //get the number of rows in the result set
 11: $number_of_rows = mysql_num_rows($result);
 12: echo "The number of rows is $number_of_rows";
 13: ?>

Save this script as count.php, place it in your Web server document directory, and access it through your Web
browser. You should see a message like this:

The number of rows is 2

The number should be equal to the number of records you inserted during testing. Now that you know there are some
records in the table, you can get fancy and fetch the actual contents of those records. You can do this in a few ways,
but the easiest method is to retrieve each row as an array.

What you'll be doing is using a while statement to go through each record in the resultset, place the values of each
field into a specific variable, then display the results onscreen. The syntax of mysql_fetch_array() is

$newArray = mysql_fetch_array($result);

Follow along using the sample script in Listing 8.11.

Listing 8.11 A Script to Retrieve Data and Display Results

 1: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <?php
 2: // open the connection
 3: $conn = mysql_connect("localhost", "joeuser", "somepass");
 4: // pick the database to use
 5: mysql_select_db("testDB",$conn);
 6: // create the SQL statement
 7: $sql = "SELECT * FROM testTable";
 8: // execute the SQL statement
 9: $result = mysql_query($sql, $conn) or die(mysql_error());
 10: //go through each row in the result set and display data
 11: while ($newArray = mysql_fetch_array($result)) {
 12: // give a name to the fields
 13: $id = $newArray['id'];
 14: $testField = $newArray['testField'];
 15: //echo the results onscreen
 16: echo "The ID is $id and the text is $testField
";
 17: }
 18: ?>

Save this script as select.php, place it in your Web server document directory, and access it through your Web
browser. You should see a message for each record entered into testTable, as shown in Figure 8.4.

Figure 8.4. Selecting records from MySQL.

Essentially, you can create an entire database-driven application using just four or five MySQL functions. This hour has
barely scratched the surface of using PHP with MySQL; there are many more MySQL functions in PHP, as you'll learn in
the next section.

Additional MySQL Functions in PHP

There are approximately 40 MySQL-specific functions in PHP. Most of these functions are simply alternate methods of
retrieving data or are used to gather information about the table structure in question.

For a complete list of functions, with practical examples, visit the MySQL section of the PHP Manual at
http://www.php.net/manual/en/ref.mysql.php.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Using PHP and MySQL to create dynamic, database-driven Web sites is a breeze. Just remember that the PHP functions
are essentially a gateway to the database server; anything you'd enter using the MySQL command-line interface, you
can use with mysql_query().
To connect to MySQL with PHP, you need to know your MySQL username, password, and database name. Using
mysql_connect() and mysql_select_db(), you can connect to and select a database to use throughout the life of the
script.

Once connected, you can issue standard SQL commands with the mysql_query() function. If you have issued a
SELECT command, you can use mysql_numrows() to count the records returned in the resultset. If you want to
display the data found, you can use mysql_fetch_array() to get all the results during a loop and display them
onscreen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin to put your
knowledge into practice.

Quiz

1: What is the primary function used to make the connection between PHP and MySQL, and what information
is necessary?

A1: The mysql_connect() function creates a connection to MySQL and requires the hostname, username,
and password.

2: Which PHP function retrieves a MySQL error message?

A2: The mysql_error() function returns a MySQL error message.

3: Which PHP function is used to count the number of records in a resultset?

A3: The mysql_numrows() function counts the number of records in a resultset.

Activity

Create a PHP script that displays the contents of the grocery_inventory table that was used in the previous hour.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Getting Involved with the Code
Hour

 9 Working with Forms

 10 Working with Files

 11 Working with Dates and Times

 12 Creating a Simple Calendar

 13 Working with Strings

 14 Creating a Simple Discussion Forum

 15 Restricting Access to Your Applications

 16 Working with User Sessions

 17 Logging and Monitoring Server Activity

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 9. Working with Forms
Until now, the PHP examples in this book have been missing a crucial dimension. Sure, you know the basics, can set
variables and arrays, create and call functions, and connect to MySQL to do great things with a database. But that's all
meaningless if users can't reach into a language's environment to offer it information. In this hour, you look at
strategies for acquiring and working with user input. On the World Wide Web, HTML forms are the principal means by
which substantial amounts of information pass from the user to the server.

In this hour, you will learn

How to access information from form fields

How to work with form elements that allow multiple selections

How to create a single document that contains both an HTML form and the PHP code that handles its submission

How to save state with hidden fields

How to redirect the user to a new page

How to build HTML forms and PHP code that send mail

How to build HTML forms that upload files and how to write the PHP code to handle them

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Predefined Variables
Before you actually build a form and use it to acquire data, you must make a small detour and look again at global
variables. You first met global variables in Hour 6, "Working with Functions." To refresh your memory, a global variable
is any variable declared at the top level of a script—that is, declared outside of any function. All functions are made
available in a built-in associative array named $GLOBALS. This is useful in Listing 9.1 because we can take a peek at
all of our script's global variables with a single loop.

Listing 9.1 Looping Through the $GLOBALS Array

 1: <html>
 2: <head>
 3: <title>Listing 9.1 Looping through the $GLOBALS array</title>
 4: </head>
 5: <body>
 6: <?php
 7: $user1 = "Bob";
 8: $user2 = "Harry";
 9: $user3 = "Mary";
 10: foreach ($GLOBALS as $key=>$value) {
 11: print "\$GLOBALS[\"$key\"] == $value
";
 12: }
 13: ?>
 14: </body>
 15: </html>

Put these lines into a text file named listing9.1.php, and place that file in your Web server document root. When you
access this script through your Web browser, it should look something like Figure 9.1 (with your own values, of course).

Figure 9.1. Output of Listing 9.1.

In this listing, we declare three variables (lines 7-9) and then loop through the built-in $GLOBALS associative array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this listing, we declare three variables (lines 7-9) and then loop through the built-in $GLOBALS associative array
(lines 10 and 11), writing both array keys and values to the browser. In the output, we can locate the variables we
defined (look toward the bottom of your screen), but we also see an awful lot more in addition to our variables. PHP
automatically defines global variables that describe both the server and client environments. The availability of these
variables varies according to your system, server, and configuration, but they can be immensely useful.

PHP has several predefined variables called superglobals, which essentially means that they're always present and
available in your scripts. Each of the following superglobals is actually an array of other variables:

$_GET contains any variables provided to a script through the GET method.

$_POST contains any variables provided to a script through the POST method.

$_COOKIE contains any variables provided to a script through a cookie.

$_FILES contains any variables provided to a script through file uploads.

$_ENV contains any variables provided to a script as part of the server environment.

$_REQUEST contains any variables provided to a script via any user input mechanism.

$_SESSION contains any variables that are currently registered in a session.

If you're using a version of PHP earlier than 4.1.x and cannot upgrade to a
newer version, you must adjust the names of the variables when you're
following the scripts in this book. The old names are $HTTP_GET_VARS (for
$_GET), $HTTP_POST_VARS (for $_POST), $HTTP_COOKIE_VARS (for
$_COOKIE), $HTTP_POST_FILES (for $_FILES), $HTTP_ENV_VARS (for
$_ENV), and $HTTP_SESSION_VARS (for $_SESSION). These are not
superglobals, however, so you must declare them as such, or pass them as
parameters, when using functions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating a Simple Input Form
For now, let's keep our HTML separate from our PHP code. Listing 9.2 builds a simple HTML form.

Listing 9.2 A Simple HTML Form

 1: <html>
 2: <head>
 3: <title>Listing 9.2 A simple HTML form</title>
 4: </head>
 5: <body>
 6: <form action="listing9.3.php" method="POST">
 7: Name:

 8: <input type="text" name="user">
 9:

 10: Address:

 11: <textarea name="address" rows="5" cols="40"></textarea>
 12:

 13: <input type="submit" value="hit it!">
 14: </form>
 15: </body>
 16: </html>

Put these lines into a text file called listing9.2.php, and place that file in your Web server document root. This listing
defines a form that contains a text field with the name "user" on line 8, a text area with the name "address" on line
11, and a submit button on line 13. The FORM element's ACTION argument points to a file called listing9.3.php,
which processes the form information. The method of this form is POST, so the variables are stored in the $_POST
superglobal.

Listing 9.3 creates the code that receives our users' input.

Listing 9.3 Reading Input from the Form in Listing 9.2

 1: <html>
 2: <head>
 3: <title>Listing 9.3 Reading input from the form in Listing 9.2</title>
 4: </head>
 5: <body>
 6: <?php
 7: print "Welcome $_POST[user]<P>\n\n";
 8: print "Your address is:<P>\n\n$_POST[address]";
 9: ?>
 10: </body>
 11: </html>

Put these lines into a text file called listing9.3.php, and place that file in your Web server document root. Now access
the form itself with your Web browser, and you should see something like Figure 9.2.

Figure 9.2. Form created in Listing 9.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.2. Form created in Listing 9.2.

The script in Listing 9.3 is the first script in this book that isn't designed to be called by clicking a link or typing directly
into the browser's location field. Instead, this file is called when a user submits the form defined in Listing 9.2.

In the code, we access two variables: $_POST[user] and $_POST[address]. These are references to the variables in
the $_POST superglobal, which contain the values that the user added to the "user" text field and the "address" text
area. Forms in PHP really are as simple as that.

Enter some information in the form fields, and click the Hit It! button. You should see your input echoed to the screen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Accessing Form Input with User-Defined Arrays
The examples so far enable us to gather information from HTML elements that submit a single value per element name.
This leaves us with a problem when working with SELECT elements. These elements make it possible for the user to
choose multiple items. If we name the SELECT element with a plain name, like so

<select name="products" multiple>

the script that receives this data has access to only a single value corresponding to this name. We can change this
behavior by renaming an element of this kind so that its name ends with an empty set of square brackets. We do this in
Listing 9.4.

Listing 9.4 An HTML Form Including a SELECT Element

 1: <html>
 2: <head>
 3: <title>Listing 9.4 An HTML form including a SELECT element</title>
 4: </head>
 5: <body>
 6: <form action="listing9.5.php" method="POST">
 7: Name:

 8: <input type="text" name="user">
 9:

 10: Address:

 11: <textarea name="address" rows="5" cols="40"></textarea>
 12:

 13: Pick Products:

 14: <select name="products[]" multiple>
 15: <option>Sonic Screwdriver</option>
 16: <option>Tricorder</option>
 17: <option>ORAC AI</option>
 18: <option>HAL 2000</option>
 19: </select>
 20:

 21: <input type="submit" value="hit it!">
 22: </form>
 23: </body>
 24: </html>

Put these lines into a text file called listing9.4.php, and place that file in your Web server document root. Next, in the
script that processes the form input, we find that input from the "products[]" form element created on line 14 is
available in an array called $_POST[products]. Because products[] is a SELECT element, we offer the user multiple
choices using the option elements on lines 15 through 18. We demonstrate that the user's choices are made available in
an array in Listing 9.5.

Listing 9.5 Reading Input from the Form in Listing 9.4

 1: <html>
 2: <head>
 3: <title>Listing 9.5 Reading input from the form in Listing 9.4</title>
 4: </head>
 5: <body>
 6: <?php
 7: print "Welcome $_POST[user]<p>\n\n";
 8: print "Your address is:<p>\n\n$_POST[address]<p>\n\n";
 9: print "Your product choices are:<p>\n\n";
 10: if (!empty($_POST[products])) {
 11: print "\n\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11: print "\n\n";
 12: foreach ($_POST[products] as $value) {
 13: print "$value\n";
 14: }
 15: print "";
 16: }
 17: ?>
 18: </body>
 19: </html>

Put these lines into a text file called listing9.5.php, and place that file in your Web server document root. Now access
the form in Listing 9.4 with your Web browser and fill out the fields. Figure 9.3 shows an example.

Figure 9.3. Form created in Listing 9.4.

On line 7 of the script in Listing 9.5, we access the $_POST[user] variable, which is derived from the user form
element. On line 10, we test for the $_POST[products] variable. If $_POST[products] is present, we loop through it
on line 12, and output each choice to the browser on line 13.

Submit the form and you might see something like that shown in Figure 9.4.

Figure 9.4. Sample output of Listing 9.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the looping technique is particularly useful with the SELECT element, it works with every form element. For
example, by giving a number of check boxes the same name, you can enable a user to choose many values within a
single field name. As long as the name you choose ends with empty square brackets, PHP compiles the user input for
this field into an array. We can replace the SELECT elements from lines 15-18 in Listing 9.4 with a series of check
boxes to achieve the same effect:

<input type="checkbox" name="products[]" value="Sonic
 Screwdriver">Sonic Screwdriver

<input type="checkbox" name="products[]" value="Tricorder">Tricorder

<input type="checkbox" name="products[]" value="ORAC AI">ORAC AI

<input type="checkbox" name="products[]" value="HAL 2000">HAL 2000

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Combining HTML and PHP Code on a Single Page
In some circumstances, you might want to include form-parsing code on the same page as a hard-coded HTML form.
Such a combination can be useful if you need to present the same form to the user more than once. You would have
more flexibility if you were to write the entire page dynamically, of course, but you would miss out on one of the great
strengths of PHP. The more standard HTML you can leave in your pages, the easier they are for designers and page
builders to amend without reference to you. You should avoid scattering substantial chunks of PHP code throughout
your documents, however. Doing so makes them hard to read and maintain. Where possible, you should create
functions that can be called from within your HTML code and can be reused in other projects.

For the following examples, imagine that we're creating a site that teaches basic math to preschool children, and have
been asked to create a script that takes a number from form input and tells the user whether it's larger or smaller than
a predefined integer.

Listing 9.6 creates the HTML. For this example, we need only a single text field, but even so, we'll include a little PHP.

Listing 9.6 An HTML Form That Calls Itself

 1: <html>
 2: <head>
 3: <title>Listing 9.6 An HTML form that calls itself</title>
 4: </head>
 5: <body>
 6: <form action="<?php print $_SERVER[PHP_SELF] ?>" method="POST">
 7: Type your guess here: <input type="text" name="guess">
 8: </form>
 9: </body>
 10: </html>

The action of this script is $_SERVER[PHP_SELF]. This variable is the equivalent of the name of the current script. In
other words, the action tells the script to reload itself.

The script in Listing 9.6 doesn't produce any output. In Listing 9.7, we begin to build up the PHP element of the page.
First, we must define the number that the user guesses. In a fully working version, we'd probably randomly generate
this number, but for now, we keep it simple. We assign 42 to the $num_to_guess variable on line 2. Next, we must
determine whether the form has been submitted; otherwise, we'd attempt to assess variables that aren't yet made
available. We can test for submission by testing for the existence of the variable $_POST[guess], which is made
available if your script has been sent a "guess" parameter. If $_POST[guess] isn't present, we can safely assume
that the user arrived at the page without submitting a form. If the value is present, we can test the value it contains.
The test for the presence of the $_POST[guess] variable takes place on line 4.

Listing 9.7 A PHP Number-Guessing Script

 1: <?php
 2: $num_to_guess = 42;
 3: $message = "";
 4: if (!isset($_POST[guess])) {
 5: $message = "Welcome to the guessing machine!";
 6: } elseif ($_POST[guess] > $num_to_guess) {
 7: $message = "$_POST[guess] is too big! Try a smaller number";
 8: } elseif ($_POST[guess] < $num_to_guess) {
 9: $message = "$_POST[guess] is too small! Try a larger number";
 10: } else { // must be equivalent
 11: $message = "Well done!";
 12: `}
 13: ?>
 14: <html>
 15: <head>
 16: <title>Listing 9.7 A PHP number guessing script</title>
 17: </head>
 18: <body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 18: <body>
 19: <h1>
 20: <?php print $message ?>
 21: </h1>
 22: <form action="<?php print $_SERVER[PHP_SELF] ?>" method="POST">
 23: Type your guess here: <input type="text" name="guess">
 24: </form>
 25: </body>
 26: </html>

Put these lines into a text file called listing9.7.php, and place this file in your Web server document root. Now access
the script with your Web browser, and you should see something like Figure 9.5.

Figure 9.5. Form created in Listing 9.7.

The bulk of this script consists of an if statement that determines which string to assign to the variable $message. If
the $_POST[guess] variable hasn't been set, we assume that the user has arrived for the first time and assign a
welcome string to the $message variable on line 5.

Otherwise, we test the $_POST[guess] variable against the number we stored in $num_to_guess, and assign advice
to $message accordingly. We test whether $_POST[guess] is larger than $num_to_guess on line 6, and whether
it's smaller than $num_to_guess on line 8. If $_POST[guess] is neither larger nor smaller than $num_to_guess,
we can assume that it's equivalent and assign a congratulations message to the variable (line 11). Now all we must do
is print the $message variable within the body of the HTML.

There are still a few more additions, but you can probably see how easy it would be to hand this page over to a
designer. He can make it beautiful without having to disturb the programming in any way.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Hidden Fields to Save State
The script in Listing 9.7 has no way of knowing how many guesses a user has made, but we can use a hidden field to
keep track of this. A hidden field behaves exactly the same as a text field, except that the user cannot see it unless he
views the HTML source of the document that contains it. Listing 9.8 adds a hidden field to the number-guessing script
and some PHP to work with it.

Listing 9.8 Saving State with a Hidden Field

 1: <?php
 2: $num_to_guess = 42;
 3: $num_tries = (isset($_POST[num_tries])) ? $num_tries + 1 : 0;
 4: $message = "";
 5: if (!isset($_POST[guess])) {
 6: $message = "Welcome to the guessing machine!";
 7: } elseif ($_POST[guess] > $num_to_guess) {
 8: $message = "$_POST[guess] is too big! Try a smaller number";
 9: } elseif ($_POST[guess] < $num_to_guess) {
 10: $message = "$_POST[guess] is too small! Try a larger number";
 11: } else { // must be equivalent
 12: $message = "Well done!";
 13: }
 14: $guess = $_POST[guess];
 15: ?>
 16: <html>
 17: <head>
 18: <title>Listing 9.8 Saving state with a hidden field</title>
 19: </head>
 20: <body>
 21: <h1>
 22: <?php print $message ?>
 23: </h1>
 24: Guess number: <?php print $num_tries?>
 25: <form action="<?php print $_SERVER[PHP_SELF] ?>" method="POST">
 26: Type your guess here:
 27: <input type="text" name="guess" value="<?php print $guess?>">
 28: <input type="hidden" name="num_tries" value="<?php print $num_tries?>">
 29: </form>
 30: </body>
 31: </html>

The hidden field on line 28 is given the name "num_tries". We also use PHP to write its value. While we're at it, we do
the same for the "guess" field on line 27 so that the user can always see his last guess. This technique is useful for
scripts that parse user input. If we reject a form submission for some reason, we can at least allow our user to edit his
previous query.

Within the main PHP code, we use a ternary operator to increment the $num_tries variable. If the $num_tries
variable is set, we add one to it and reassign this incremented value; otherwise, we initialize $num_tries to 0. Within
the body of the HTML, we can now report to the user how many guesses he's made.

Put these lines into a text file called listing9.8.php, and place that file in your Web server document root. Access the
form a few times with your Web browser, and try to guess the number (pretend you don't already know it).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Redirecting the User
Our simple script still has one major drawback. The form is rewritten whether or not the user guesses correctly. The
fact that the HTML is hard-coded makes it difficult to avoid writing the entire page. We can, however, redirect the user
to a congratulations page, thereby sidestepping the issue altogether.

When a server script communicates with a client, it must first send some headers that provide information about the
document to follow. PHP usually handles this for you automatically, but you can choose to send your own header lines
with PHP's header() function.

To call the header() function, you must be sure that absolutely no output has been sent to the browser. The first time
content is sent to the browser, PHP sends out headers and it's too late for you to send your own. Any output from your
document, even a line break or a space outside of your script tags, causes headers to be sent. If you intend to use the
header() function in a script, you must make certain that nothing precedes the PHP code that contains the function
call. You should also check any libraries that you might be using.

Listing 9.9 shows typical headers sent to the browser by PHP, beginning with line 3, in response to the request in line 1.

Listing 9.9 Typical Server Headers Sent from a PHP Script

 1: HEAD /listing9.9.php HTTP/1.0
 2:
 3: HTTP/1.1 200 OK
 4: Date: Sun, 15 Sep 2002 12:32:28 GMT
 5: Server: Apache/2.0.43 (Unix) PHP/4.2.3 mod_ssl/2.8.9 OpenSSL/0.9.6
 6: X-Powered-By: PHP/4.2.3
 7: Connection: close
 8: Content-Type: text/html

By sending a "Location" header instead of PHP's default, you can cause the browser to be redirected to a new page:

header("Location: http://www.samspublishing.com");

Assuming that we've created a suitably upbeat page called "congrats.html", we can amend our number-guessing
script to redirect the user if she guesses correctly, as shown in Listing 9.10.

Listing 9.10 Using header() to Send Raw Headers

 1: <?php
 2: $num_to_guess = 42;
 3: $num_tries = (isset($_POST[num_tries])) ? $num_tries + 1: 0;
 4: $message = "";
 5: if (!isset($_POST[guess])) {
 6: $message = "Welcome to the guessing machine!";
 7: } elseif ($_POST[guess] > $num_to_guess) {
 8: $message = "$_POST[guess] is too big! Try a smaller number";
 9: } elseif ($_POST[guess] < $num_to_guess) {
 10: $message = "$_POST[guess] is too small! Try a larger number";
 11: } else { // must be equivalent
 12: header("Location: congrats.html");
 13: exit;
 14: }
 15: $guess = $_POST[guess];
 16: ?>
 17: <html>
 18: <head>
 19: <title>Listing 9.10 Saving state with a hidden field</title>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 19: <title>Listing 9.10 Saving state with a hidden field</title>
 20: </head>
 21: <body>
 22: <h1>
 23: <?php print $message ?>
 24: </h1>
 25: Guess number: <?php print $num_tries?>
 26: <form action="<?php print $_SERVER[PHP_SELF] ?>" method="POST">
 27: Type your guess here:
 28: <input type="text" name="guess" value="<?php print $guess?>">
 29: <input type="hidden" name="num_tries" value="<?php print $num_tries?>">
 30: </form>
 31: </body>
 32: </html>

The else clause of our if statement on line 11 now causes the browser to request congrats.html. We ensure that all
output from the current page is aborted with the exit statement on line 13, which immediately ends execution and
output, whether HTML or PHP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Sending Mail on Form Submission
You've already seen how to take form responses and print the results to the screen. You're only one step away from
sending those responses in an email message, as you'll soon see. Before learning about sending mail, however, read
through the next section to make sure that your system is properly configured.

System Configuration for the mail() Function

Before you can use the mail() function to send mail, a few directives must be set up in the php.ini file so that the
function works properly. Open php.ini with a text editor and look for these lines:

[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
sendmail_from = me@localhost.com

; For Unix only. You may supply arguments as well (default: "sendmail -t -i").
;sendmail_path =

If you're using Windows as your Web server platform, the first two directives apply to you. For the mail() function to
send mail, it must be able to access a valid outgoing mail server. If you plan to use the outgoing mail server of your ISP
(in the following example, we use EarthLink), the entry in php.ini should look like this:

SMTP = mail.earthlink.net

The second configuration directive is sendmail_from, which is the email address used in the From header of the
outgoing email. It can be overwritten in the mail script itself, but normally operates as the default value. For example:

sendmail_from = youraddress@yourdomain.com

A good rule of thumb for Windows users is that whatever outgoing mail server you've set up in your email client on that
machine, you should also use as the value of SMTP in php.ini.

If your Web server is running on a Linux/Unix platform, you use the sendmail functionality of that particular machine.
In this case, only the last directive applies to you: sendmail_path. The default is sendmail -t -i, but if sendmail is in
an odd place or if you need to specify different arguments, feel free to do so, as in the following example:

sendmail_path = /opt/sendmail -odd -arguments

After making any changes to php.ini on any platform, you must restart the Web server process for the changes to take
effect.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating the Form

In Listing 9.11, you see the basic HTML for creating a simple feedback form. This form has an action of
listing9.12.php, which we create in the next section. The fields are very simple: Line 7 contains a name field, line 8
contains the return email address field, and line 10 contains the text area for the user's message.

Listing 9.11 Creating a Simple Feedback Form

 1: <HTML>
 2: <HEAD>
 3: <TITLE>E-Mail Form</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <FORM action="listing9.12.php" method="POST">
 7: Your Name: <INPUT type="text" name="name">

 8: Your E-Mail Address: <INPUT type="text" name="email">

 9: Message:

 10: <textarea name="message" cols=30 rows=5></textarea>

 11: <INPUT type="submit" value="Send Form">
 12: </FORM>
 13: </BODY>
 14: </HTML>

Put these lines into a text file called listing9.11.php, and place this file in your Web server document root. Now access
the script with your Web browser, and you should see something like Figure 9.6.

Figure 9.6. Form created in Listing 9.11.

In the next section, you create the script that sends this form to a recipient.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating the Script to Send the Mail
This script is only slightly different in concept than the script in Listing 9.5, which simply printed form responses to the
screen. In this script, in addition to printing the responses to the screen, you send them to an email address as well.

Listing 9.12 Sending the Simple Feedback Form

 1: <html>
 2: <head>
 3: <title>Listing 9.12 Sending mail from the form in Listing 9.11</title>
 4: </head>
 5: <body>
 6: <?php
 7: print "Thank you, $_POST[name], for your message!

\n\n";
 8: print "Your e-mail address is: $_POST[email]

\n\n";
 9: print "Your message was:

\n\n";
 10: print "$_POST[message]

";
 11: //start building the mail string
 12: $msg = "Name: $_POST[name]\n";
 13: $msg .= "E-Mail: $_POST[email]\n";
 14: $msg .= "Message: $_POST[message]\n";
 15: //set up the mail
 16: $recipient = "you@yourdomain.com";
 17: $subject = "Form Submission Results";
 18: $mailheaders = "From: My Web Site <defaultaddress@yourdomain.com> \n";
 19: $mailheaders .= "Reply-To: $_POST[email]";
 20: //send the mail
 21: mail($recipient, $subject, $msg, $mailheaders);
 22: ?>
 23: </body>
 24: </html>

The variables you use in lines 7-9 are $_POST[name], $_POST[email], and $_POST[message]—the names of the
fields in the form, as part of the $_POST superglobal. That's all well and good for printing the information to the
screen, but in this script, you also want to create a string that's sent in email. For this task, you essentially build the
email by concatenating strings to form one long message string, using the newline (\n) character to add line breaks
where appropriate.

Lines 12 through 14 create the $msg string, which contains the values typed by the user in the form fields. This string
is the one sent in the email. Note the use of the concatenation operator (.=) when adding to the variable $msg, in
lines 13 and 14.

Lines 16 and 17 are hard-coded variables for the email recipient and the subject of the email message. Replace
you@yourdomain.com with your own email address, obviously. If you want to change the subject, feel free!

Lines 18 and 19 set up some mail headers, namely From: and Reply-to: headers. You could put any value in the
From: header; this is the information that displays in the From or Sender column of your email application when you
receive this mail.

The mail() function takes four parameters: the recipient, the subject, the message, and any additional mail headers.
The order of these parameters is shown in line 21, and your script is complete after you close up your PHP block and
your HTML elements in lines 22-24.

Put these lines into a text file called listing9.12.php, and place that file in your Web server document root. Use your
Web browser and go back to the form, enter some information, and press the submission button. You should see
something like Figure 9.7 in your browser.

Figure 9.7. Sample results from Listing 9.12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.7. Sample results from Listing 9.12.

If you then check your email, you should have a message waiting for you. It might look something like Figure 9.8.

Figure 9.8. Email sent from Listing 9.12.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with File Uploads
So far, we've looked at simple form input. However, all popular Web browsers support file uploads, and so, of course,
does PHP. In this section, you examine the features that PHP makes available to deal with this kind of input.

Information about the uploaded file becomes available to you in the $_FILES superglobal, which is indexed by the
name of the upload field (or fields) in the form. The corresponding value for each of these keys is an associative array.
These fields are described in Table 9.2, using fileupload as the name of the form field used for the upload.

Table 9.2. File Upload Global Variables
Element Contains Example

$_FILES['fileupload']['name'] Original name of uploaded file test.gif

$_FILES['fileupload']['tmp_name'] Path to temporary file /tmp/phprDfZvN

$_FILES['fileupload']['size'] Size (in bytes) of uploaded file 6835

$_FILES['fileupload']['type'] MIME type of uploaded file (where given by client) image/gif

Keep these elements in the back of your mind for a moment, while we create the upload form in the next section.

Creating the File Upload Form

First, we must create the HTML form to handle the upload. HTML forms that include file upload fields must include an
ENCTYPE argument:

ENCTYPE="multipart/form-data"

PHP also works with an optional hidden field that can be inserted before the file upload field. This field must be called
MAX_FILE_SIZE and should have a value representing the maximum size in bytes of the file that you're willing to
accept. This size cannot override the maximum size set in the upload_max_filesize field in your php.ini file that
defaults to 2MB. The MAX_FILE_SIZE field is obeyed at the browser's discretion, so you should rely on the php.ini
setting to cap unreasonable uploads. After the MAX_FILE_SIZE field has been entered, you're ready to add the upload
field itself. This is simply an INPUT element with a TYPE argument of "file". You can give it any name you want.
Listing 9.13 brings all this together into an HTML upload form.

Listing 9.13 A Simple File Upload Form

 1: <html>
 2: <head>
 3: <title>Listing 9.13 A simple file upload form</title>
 4: </head>
 5: <body>
 6: <form action="listing9.14.php" enctype="multipart/form-data" method="POST">
 7: <input type="hidden" name="MAX_FILE_SIZE" value="51200">
 8: File to Upload: <input type="file" name="fileupload">

 9: <input type="submit" value="upload!">
 10: </form>
 11: </body>
 12: </html>

As you can see, file uploads are limited to 50KB on line 7, and the name of the file upload field is fileupload, as shown
on line 8. Save this listing in a text file called listing9.13.php, and place that file in your Web server document root.
Use your Web browser to access this form and you should see something like Figure 9.9.

Figure 9.9. Form created by Listing 9.13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.9. Form created by Listing 9.13.

This form calls the listing9.14.php script, which we create next.

Creating the File Upload Script

If you remember the information regarding the $_FILES superglobal, you have all the information you need to write a
simple file upload script. This script is the backend for the form created in Listing 9.13.

Listing 9.14 A File Upload Script

 1: <html>
 2: <head>
 3: <title>Listing 9.14 A file upload script</title>
 4: </head>
 5: <body>
 6: <h1>File Upload Results</h1>
 7: <?php
 8: $file_dir = "/path/to/upload/directory";
 9:
 10: foreach($_FILES as $file_name => $file_array) {
 11: print "path: ".$file_array['tmp_name']."
\n";
 12: print "name: ".$file_array['name']."
\n";
 13: print "type: ".$file_array['type']."
\n";
 14: print "size: ".$file_array['size']."
\n";
 15:
 16: if (is_uploaded_file($file_array['tmp_name'])) {
 17: move_uploaded_file($file_array['tmp_name'],
 18: "$file_dir/$file_array[name]") or die ("Couldn't copy");
 19: print "file was moved!

";
 20: }
 21: }
 22: ?>
 23: </body>
 24: </html>

In Listing 9.14, we first create the $file_dir variable on line 8 to store path information. This path should be one that
exists on your system, and you must have write permissions for it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exists on your system, and you must have write permissions for it.

The path used in line 8 is a Linux/Unix path. Windows users would use
backslashes, such as \My Documents\.

Line 10 begins a foreach statement that loops through every element in the $_FILES array. A loop is used rather than
an if statement to make our script capable of scaling to deal with multiple uploads on the same page. The foreach loop
on line 10 stores the upload file's name in the $file_name variable and the file information in the $file_array variable.
We can then output the information we have about the upload.

Before moving the uploaded file from its temporary position to the location specified in line 8, first check that it exists.
We do so on line 16, using the is_uploaded_file() function. This function accepts a path to an uploaded file and
returns true only if the file in question is a valid upload file. This function therefore enhances the security of your
scripts.

Assuming that all is well, the file is copied from its temporary home to a new directory on lines 17 and 18. We use
another function, move_uploaded_file(), for this purpose. This function copies a file from one place to another, first
performing the same security checks as those performed by is_uploaded_file(). The move_uploaded_file() function
requires a path to the source file and a path to the destination. It returns true if the move is successful and false if the
file isn't a valid upload file or if the file couldn't be found.

Beware of the names of uploaded files. Operating systems such as Mac OS and
Windows are pretty relaxed when it comes to file naming, so expect uploaded files
to come complete with spaces, quotation marks, and all manner of other
unexpected characters. Therefore, it's a good idea to filter filenames. You can learn
more about techniques for testing and checking strings in Hour 13, "Working with
Strings."

Put these lines into a text file called listing9.14.php, and place that file in your Web server document root. Use your
Web browser to go back to the form, and try to upload a file. If successful, you should see something like Figure 9.10 in
your browser.

Figure 9.10. Sample results from Listing 9.14.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Things are really getting exciting now! You have the tools to create truly sophisticated and interactive environments. A
few things are still missing, of course. Now that you can get information from the user, it would be nice to be able to do
something with it. Write it to a file, perhaps. That's the subject of the next hour.

Throughout this hour, you learned how to work with various superglobals and form input. You also learned how to send
raw headers to the client to redirect a browser. You learned how to acquire list information from form submissions and
how to pass information from script call to script call using hidden fields. Finally, you learned how to send your form
results in email, and also how to upload files through your Web browser via a PHP script.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: Which predefined variable do you use to find the name of the script?

A1: The variable $_SERVER['PHP_SELF']' holds the name of the script.

2: Which built-in associative array contains all values submitted as part of a POST request?

A2: The $_POST superglobal.

3: Which built-in associative array contains all values submitted as part of a file upload?

A3: The $_FILES superglobal.

4: What function do you use to redirect the browser to a new page?

A4: The header() function.

5: What are the four arguments used by the mail() function?

A5: The recipient, the subject, the message string, and additional headers.

6: How do you limit the size of a file that a user can submit via a particular upload form?

A6: Use a hidden field called MAX_FILE_SIZE in your form.

Activities

1. Create a calculator script that enables the user to submit two numbers and choose an operation (addition,
multiplication, division, or subtraction) to perform on them.

2. Use hidden fields with the script you created in activity 1 to store and display the number of requests that the
user submitted.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 10. Working with Files
Testing, reading, and writing to files are staple activities for any full-featured programming language. PHP is no
exception, providing you with functions that make the process straightforward. In this hour, you will learn

How to include files in your documents

How to test files and directories

How to open a file before working with it

How to read data from files

How to write or append to a file

How to lock a file

How to work with directories

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Including Files with include()

The include() statement enables you to incorporate files into your PHP documents. PHP code in these files can be
executed as if it were part of the main document. This can be useful for including library code in multiple pages.

Having created a killer function, your only option until now would have been to paste it into every document that needs
to use it. Of course, if you discover a bug or want to add a feature, you would have to find every page that uses the
function to make the change. The include() statement can save you from this chore. You can add the function to a
single document and, at runtime, read it into any page that needs it. The include() statement requires a single
argument: a relative path to the file to be included. Listing 10.1 creates a simple PHP script that uses include() to
incorporate and output the contents of a file.

Listing 10.1 Using include()

 1: <html>
 2: <head>
 3: <title>Listing 10.1 Using include()</title>
 4: </head>
 5: <body>
 6: <?php
 7: include("listing10.2.php");
 8: ?>
 9: </body>
 10: </html>

The include() statement in Listing 10.1 incorporates the document listing10.2.php, the contents of which you can see
in Listing 10.2.

Listing 10.2 The File Included in Listing 10.1

 1: I have been included!!

Put the contents of Listing 10.1 in a file named listing10.1.php, and the contents of Listing 10.2 in a file named
listing10.2.php. Place both files in your Web server document root. When you access listing10.1.php through your
Web browser, the output on the screen is

I have been included!!

This might seem strange to you, given that we've included plain text within a block of PHP code. In fact, the contents of
an included file are displayed as text by default. If you want to execute PHP code in an included file, you must enclose it
in PHP start and end tags. In Listings 10.3 and 10.4, we amend the previous example so that code is executed in the
included file.

Listing 10.3 Using the include() Statement to Execute PHP in Another File

 1: <html>
 2: <head>
 3: <title>Listing 10.3 Using include to execute PHP in another file</title>
 4: </head>
 5: <body>
 6: <?php
 7: include("listing10.4.php");
 8: ?>
 9: </body>
 10: </html>

Listing 10.4 An Include File Containing PHP Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 10.4 An Include File Containing PHP Code

 1: <?php
 2: print "I have been included!!
";
 3: print "But now I can add up... 4 + 4 = ".(4 + 4);
 4: ?>

Put the contents of Listing 10.3 in a file named listing10.3.php, and the contents of Listing 10.4 in a file named
listing10.4.php. Place both these files in your Web server document root. When you access listing10.3.php through
your Web browser, the output on the screen is

I have been included!!

But now I can add up... 4 + 4 = 8

Returning a Value from an Included Document

Included files in PHP can return a value in the same way that functions do. As in a function, using the return statement
ends the execution of code within the included file. Additionally, no further HTML is included. In Listings10.5 and 10.6
we include a file and assign its return value to a variable.

Listing 10.5 Using include() to Execute PHP and Assign the Return Value

 1: <html>
 2: <head>
 3: <title>Listing 10.5 Using include() to execute PHP and
 4: assign the return value</title>
 5: </head>
 6: <body>
 7: <?php
 8: $addResult = include("listing10.6.php");
 9: print "The include file returned $addResult";
 10: ?>
 11: </body>
 12: </html>

Listing 10.6 An Include File That Returns a Value

 1: <?php
 2: $retval = (4 + 4);
 3: return $retval;
 4: ?>
 5: This HTML will never be displayed because it comes after a return statement!

Put the contents of Listing 10.5 in a file named listing10.5.php, and the contents of Listing 10.6 in a file named
listing10.6.php. Place both of these files in your Web server document root. When you access listing10.5.php
through your Web browser, the output is

The include file returned 8

Using include() Within Control Structures

You can use an include() statement in a conditional statement, and the referenced file is read only if the condition is
met. For example, the include() statement in the following fragment will never be called:

$test = false;
if ($test) {
include("a_file.txt"); // won't be included
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

If you use an include() statement within a loop, it's replaced with the contents of the referenced file each time the
include() statement is called. This content is executed for every call. Listing 10.7 illustrates this concept by using an
include() statement in a for loop. The include() statement references a different file for each iteration.

Listing 10.7 Using include() Within a Loop

 1: <html>
 2: <head>
 3: <title>Listing 10.7 Using include() within a loop</title>
 4: </head>
 5: <body>
 6: <?php
 7: for ($x = 1; $x<=3; $x++) {
 8: $incfile = "incfile$x".".txt";
 9: print "Attempting include $incfile
";
 10: include("$incfile");
 11: print "<p>";
 12: }
 13: ?>
 14: </body>
 15: </html>

When Listing 10.7 is run, it includes the content of three different files: "incfile1.txt", "incfile2.txt", and
"incfile3.txt". Assuming that each of these files simply contains a confirmation of its own name, the output should look
like Figure 10.1.

Figure 10.1. Output of Listing 10.7.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

include_once()

One of the problems caused by using multiple libraries within your code is the danger of calling include() twice on the
same file. This can occur in larger projects when different library files call include() on a common file. Including the
same file twice often results in repeated declarations of functions and classes, thereby causing the PHP engine great
unhappiness.

The situation is saved by the include_once() statement. include_once() requires the path to an include file and
behaves the same way as include() the first time it's called. However, if include_once() is called again for the same
file during script execution, the file is not included again. This makes include_once() an excellent tool for the creation
of reusable code libraries!

The include_path Directive

Using include() and include_once() to access libraries can increase the flexibility and reusability of your projects.
However, there are still headaches to overcome. Portability in particular can suffer if you hard-code the paths to
included files. Imagine that you create a lib directory and reference it throughout your project:

include_once("/home/user/bob/htdocs/project4/lib/mylib.inc.php");

When you move your project to a new server, you might find that you have to change a hundred or more include
paths. You can escape this fate by setting the include_path directive in your php.ini file:

include_path .:/home/user/bob/htdocs/project4/lib/

The include_path can include as many directories as you want, separated by colons (semicolons in Windows). The first
dot (.) before the first colon indicates "current directory." You can then reference your library file by only its name:

include_once("mylib.inc.php");

When you move your project, you need to change only the include_path directive.

PHP has both a require() statement, which performs a similar function to
include(), and a require_once() statement. require() is executed regardless
of a script's flow, and therefore shouldn't be used as part of conditional or loop
structures.

A file included as a result of a require() statement cannot return a value.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Testing Files
Before you work with a file or directory, it's often a good idea to learn more about it. PHP provides many functions to
help you to discover information about files on your system. This section briefly covers some of the most useful
functions.

Checking for Existence with file_exists()

You can test for the existence of a file with the file_exists() function. This function requires a string representing an
absolute or relative path to a file that might or might not be there. If the file is found, file_exists() returns true;
otherwise, it returns false.

if (file_exists("test.txt")) {
 print "The file exists!";
}

A File or a Directory?

You can confirm that the entity you're testing is a file, as opposed to a directory, with the is_file() function. is_file()
requires the file path and returns a Boolean value.

if (is_file("test.txt")) {
 print "test.txt is a file!";
}

Conversely, you might want to check that the entity you're testing is a directory. You can do this with the is_dir()
function. is_dir() requires the path to the directory and returns a Boolean value.

if (is_dir("/tmp")) {
 print "/tmp is a directory";
}

Checking the Status of a File

When you know that a file exists, and it's what you expect it to be, you can find out some things that you can do with it.
Typically, you might want to read, write to, or execute a file. PHP can help you with all of these operations.

is_readable() tells you whether you can read a file. On Unix systems, you might be able to see a file but still be barred
from reading its contents. is_readable() accepts the file path as a string and returns a Boolean value.

if (is_readable("test.txt")) {
 print "test.txt is readable";
}

is_writable() tells you whether you can write to a file. As with is_readable(), the is_writable() function requires the
file path and returns a Boolean value.

if (is_writable("test.txt")) {
 print "test.txt is writable";
}

is_executable() tells you whether you can run a file, relying on either the file's permissions or its extension depending
on your platform. It accepts the file path and returns a Boolean value.

if (is_executable("test.txt")) {
 print "test.txt is executable";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Determining File Size with filesize()

Given the path to a file, filesize() attempts to determine and return its size in bytes. It returns false if it encounters
problems.

print "The size of test.txt is.. ";
print filesize("test.txt");

Getting Date Information About a File

Sometimes you need to know when a file was last written to or accessed. PHP provides several functions that can
provide this information.

You can find out when a file was last accessed with fileatime(). This function requires the file path and returns the date
that the file was last accessed. To access a file means either to read or write to it. Dates are returned from all the date
information functions in Unix epoch format—that is, the number of seconds since January 1, 1970. In our examples, we
use the date() function to translate this into human-readable form. You learn more about date functions in Hour 11,
"Working with Dates and Times."

$atime = fileatime("test.txt");
print "test.txt was last accessed on ";
print date("D d M Y g:i A", $atime);
// Sample output: Sat 14 Sep 2002 9:54 PM

You can discover the modification date of a file with the function filemtime(), which requires the file path and returns
the date in Unix epoch format. To modify a file means to change its contents in some way.

$mtime = filemtime("test.txt");
print "test.txt was last modified on ";
print date("D d M Y g:i A", $mtime);
// Sample output: Sat 14 Sep 2002 9:54 PM

PHP also enables you to test the change time of a document with the filectime() function. On Unix systems, the
change time is set when a file's contents are modified or changes are made to its permissions or ownership. On other
platforms, the filectime() returns the creation date.

$ctime = filectime("test.txt");
print "test.txt was last changed on ";
print date("D d M Y g:i A", $ctime);
// Sample output: Sat 14 Sep 2002 9:54 PM

Creating a Function That Performs Multiple File Tests

Listing 10.8 creates a function that brings together the file test functions we've looked at into one script.

Listing 10.8 A Function to Output the Results of Multiple File Tests

 1: <html>
 2: <head>
 3: <title>Listing 10.8 A function to output the results of
 4: multiple file tests</title>
 5: </head>
 6: <body>
 7: <?php
 8: $file = "test.txt";
 9: outputFileTestInfo($file);
 10:
 11: function outputFileTestInfo($f) {
 12: if (!file_exists($f)) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 12: if (!file_exists($f)) {
 13: print "$f does not exist
";
 14: return;
 15: }
 16: print "$f is ".(is_file($f)?"":"not ")."a file
";
 17: print "$f is ".(is_dir($f)?"":"not ")."a directory
";
 18: print "$f is ".(is_readable($f)?"":"not ")."readable
";
 19: print "$f is ".(is_writable($f)?"":"not ")."writable
";
 20: print "$f is ".(is_executable($f)?"":"not ")."executable
";
 21: print "$f is ".(filesize($f))." bytes
";
 22: print "$f was accessed on ".date("D d M Y g:i A",fileatime($f))."
";
 23: print "$f was modified on ".date("D d M Y g:i A",filemtime($f))."
";
 24: print "$f was changed on ".date("D d M Y g:i A",filectime($f))."
";
 25: }
 26:
 27: ?>
 28: </body>
 29: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output would
look something like Figure 10.2.

Figure 10.2. Output of Listing 10.8.

Notice that we used the ternary operator as a compact way of working with some of these tests. Let's look at one such
test, found in line 16, in more detail:

print "$f is ".(is_file($f)?"":"not ")."a file
";

We use the is_file() function as the right-side expression of the ternary operator. If it returns true, an empty string is
returned. Otherwise, the string "not" is returned. The return value of the ternary expression is added to the string to
be printed with concatenation operators. This statement could be made clearer, but less compact, as follows:

$is_it = is_file($f)?"":"not ";
print "$f is $is_it a file";

We could, of course, be even clearer with an if statement, but imagine how large the function would become if we used
the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (is_file($f)) {
 print "$f is a file
";
} else {
 print "$f is not a file
";
}

Because the result of these three approaches is the same, the approach you take becomes a matter of preference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating and Deleting Files

If a file does not yet exist, you can create it with the touch() function. Given a string representing a file path, touch()
attempts to create an empty file of that name. If the file already exists, the contents aren't disturbed, but the
modification date is updated to the time at which the function executed.

touch("myfile.txt");

You can remove an existing file with the unlink() function. As did the touch() function, unlink() accepts a file path:

unlink("myfile.txt");

All functions that create, delete, read, write, and modify files on Unix systems require the correct file or directory
permissions to be set.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Opening a File for Writing, Reading, or Appending

Before you can work with a file, you must first open it for reading, writing, or both. PHP provides the fopen() function
for doing so. fopen() requires a string that contains the file path followed by a string containing the mode in which the
file is to be opened. The most common modes are read (r), write (w), and append (a). fopen() returns a file resource
you'll use later to work with the open file. To open a file for reading, you use the following:

$fp = fopen("test.txt", 'r');

You use the following to open a file for writing:

$fp = fopen("test.txt", 'w');

To open a file for appending (that is, to add data to the end of a file), you use this:

$fp = fopen("test.txt", 'a');

fopen() returns false if the file cannot be opened for any reason. Therefore, it's a good idea to test the function's
return value before proceeding to work with it. You can do so with an if statement:

if ($fp = fopen("test.txt", "w")) {
// do something with $fp
}

Or you can use a logical operator to end execution if an essential file can't be opened:

($fp = fopen("test.txt", "w")) or die ("Couldn't open file, sorry");

If the fopen() function returns true, the rest of the expression won't be parsed, and the die() function (which writes a
message to the browser and ends the script) is never reached. Otherwise, the right side of the or operator is parsed
and the die() function is called.

Assuming that all is well and you go on to work with your open file, you should remember to close it when you finish.
You can do so by calling fclose(), which requires the file resource returned from a successful fopen() call as its
argument:

fclose($fp);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Reading from Files
PHP provides a number of functions for reading data from files. These enable you to read by the byte, the line, and
even by the character.

Reading Lines from a File with fgets() and feof()

After you open a file for reading, you often need to access it line by line. To read a line from an open file, you can use
fgets(), which requires the file resource returned from fopen() as an argument. You must also pass fgets() an integer
as a second argument. The integer argument specifies the number of bytes that the function should read if it doesn't
first encounter a line end or the end of the file. The fgets() function reads the file until it reaches a newline character
("\n"), the number of bytes specified in the length argument, or the end of the file.

$line = fgets($fp, 1024); // where $fp is the file resource returned by fopen()

Although you can read lines with fgets(), you need some way to tell when you reach the end of the file. The feof()
function does this by returning true when the end of the file has been reached and false otherwise. feof() requires a
file resource as its argument.

feof($fp); // where $fp is the file resource returned by fopen()

You now have enough information to read a file line by line, as shown in Listing 10.9.

Listing 10.9 Opening and Reading a File Line by Line

 1: <html>
 2: <head>
 3: <title>Listing 10.9 Opening and reading a file line by line</title>
 4: </head>
 5: <body>
 6: <?php
 7: $filename = "test.txt";
 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");
 9: while (!feof($fp)) {
 10: $line = fgets($fp, 1024);
 11: print "$line
";
 12: }
 13: ?>
 14: </body>
 15: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output would
look something like Figure 10.3 (the contents of your sample text file might be different).

Figure 10.3. Output of Listing 10.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We call fopen() on line 8 with the name of the file that we want to read, using the or operator to ensure that script
execution ends if the file cannot be read. This usually occurs if the file does not exist, or (on a Unix system) if the file's
permissions don't allow the script read access to the file. The actual reading takes place in the while statement on line
9. The while statement's test expression calls feof() for each iteration, ending the loop when it returns true. In other
words, the loop continues until the end of the file is reached. Within the code block, we use fgets() on line 10 to
extract a line (or 1024 bytes) of the file. We assign the result to $line and print it to the browser on line 11, appending
a
 tag for the sake of readability.

Reading Arbitrary Amounts of Data from a File with fread()

Rather than reading text by the line, you can choose to read a file in arbitrarily defined chunks. The fread() function
accepts a file resource as an argument, as well as the number of bytes you want to read. fread() returns the amount
of data you requested, unless the end of the file is reached first.

$chunk = fread($fp, 16);

Listing 10.10 amends our previous example so that it reads data in chunks of 16 bytes rather than by the line.

Listing 10.10 Reading a File with fread()

 1: <html>
 2: <head>
 3: <title>Listing 10.10 Reading a file with fread()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $filename = "test.txt";
 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");
 9: while (!feof($fp)) {
 10: $chunk = fread($fp, 16);
 11: print "$chunk
";
 12: }
 13: ?>
 14: </body>
 15: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output could
look something like Figure 10.4.

Figure 10.4. Output of Listing 10.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although fread() enables you to define the amount of data acquired from a file, it doesn't let you decide the position
from which the acquisition begins. You can set this manually with the fseek() function. fseek() enables you to change
your current position within a file. It requires a file resource and an integer that represents the offset from the start of
the file (in bytes) to which you want to jump:

fseek($fp, 64);

Listing 10.11 uses fseek() and fread() to output the second half of a file to the browser.

Listing 10.11 Moving Around a File with fseek()

 1: <html>
 2: <head>
 3: <title>Listing 10.11 Moving around a file with fseek()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $filename = "test.txt";
 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");
 9: $fsize = filesize($filename);
 10: $halfway = (int)($fsize / 2);
 11: print "Halfway point: $halfway
\n";
 12: fseek($fp, $halfway);
 13: $chunk = fread($fp, ($fsize - $halfway));
 14: print $chunk;
 15: ?>
 16: </body>
 17: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output could
look something like Figure 10.5.

Figure 10.5. Output of Listing 10.11.

We calculate the halfway point of our file by dividing the return value of filesize() by 2 on line 10. We use this as the
second argument to fseek() on line 12, jumping to the halfway point. Finally, we call fread() on line 13 to extract the
second half of the file and then print the result to the browser.

Reading Characters from a File with fgetc()

fgetc() is similar to fgets() except that it returns only a single character from a file every time it is called. Because a
character is always one byte in size, fgetc() doesn't require a length argument. You must simply pass it a file resource:

$char = fgetc($fp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$char = fgetc($fp);

Listing 10.12 creates a loop that reads the file "test.txt" one character at a time, outputting each character to the
browser on its own line.

Listing 10.12 Moving Around a File with fseek()

 1: <html>
 2: <head>
 3: <title>Listing 10.12</title>
 4: </head>
 5: <body>
 6: <?php
 7: $filename = "test.txt";
 8: $fp = fopen($filename, "r") or die("Couldn't open $filename");
 9: while (!feof($fp)) {
 10: $char = fgetc($fp);
 11: print "$char
";
 12: }
 13: ?>
 14: </body>
 15: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output could
look something like Figure 10.6.

Figure 10.6. Output of Listing 10.12.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Writing or Appending to a File

The processes for writing to and appending to a file are the same. The difference lies in the fopen() call. When you
write to a file, you use the mode argument "w" when you call fopen():

$fp = fopen("test.txt", "w");

All subsequent writing occurs from the start of the file. If the file doesn't already exist, it is created. If the file already
exists, any prior content is destroyed and replaced by the data you write.

When you append to a file, you use mode argument "a" in your fopen() call:

$fp = fopen("test.txt", "a");

Any subsequent writes to your file are added to the existing content, but if you attempt to append content to a
nonexistent file, the file is first created.

Writing to a File with fwrite() or fputs()

fwrite() accepts a file resource and a string, and then writes the string to the file. fputs() works in exactly the same
way.

fwrite($fp, "hello world");
fputs($fp, "hello world");

Writing to files is as straightforward as that. Listing 10.13 uses fwrite() to print to a file. We then append a further
string to the same file using fputs().

Listing 10.13 Writing and Appending to a File

 1: <html>
 2: <head>
 3: <title>Listing 10.13 Writing and appending to a file</title>
 4: </head>
 5: <body>
 6: <?php
 7: $filename = "test.txt";
 8: print "Writing to $filename
";
 9: $fp = fopen($filename, "w") or die("Couldn't open $filename");
 10: fwrite($fp, "Hello world\n");
 11: fclose($fp);
 12: print "Appending to $filename
";
 13: $fp = fopen($filename, "a") or die("Couldn't open $filename");
 14: fputs($fp, "And another thing\n");
 15: fclose($fp);
 16: ?>
 17: </body>
 18: </html>

The screen output of this script, when run from your Web browser, is

Writing to test.txt

Appending to test.txt

If you open the test.txt file or use listing10.9.php to read its contents, you'll find the file now contains:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you open the test.txt file or use listing10.9.php to read its contents, you'll find the file now contains:

Hello world

And another thing

Locking Files with flock()

The techniques you learned for reading and amending files work fine if you're presenting your script to only a single
user. In the real world, however, you'd expect many users to access your projects at more or less the same time.
Imagine what would happen if two users were to execute a script that writes to one file at the same moment. The file
would quickly become corrupt.

PHP provides the flock() function to forestall this eventuality. flock() locks a file to warn other processes against
writing to or reading from that file while the current process is working with it. flock() requires a valid file resource and
an integer representing the kind of lock you want to set. PHP provides predefined constants for each of the integers
you're likely to need. Table 10.1 lists three kinds of locks you can apply to a file.

Table 10.1. Integer Arguments to the flock() Function
Constant Integer Lock

Type
Description

LOCK_SH 1 Shared Allows other processes to read the file but prevents writing (used when reading a
file)

LOCK_EX 2 Exclusive Prevents other processes from either reading from or writing to a file (used when
writing to a file)

LOCK_UN 3 Release Releases a shared or exclusive lock

You should call flock() directly after calling fopen() and call it again to release the lock before closing the file. If the
lock is not released, you will not be able to read from or write to the file.

$fp = fopen("test.txt", "a") or die("couldn't open");
flock($fp, LOCK_EX); // exclusive lock
// write to the file
flock($fp, LOCK_UN); // release the lock
fclose($fp);

For more information on file locking, see the PHP Manual entry for the flock()
function, at http://www.php.net/manual/en/function.flock.php.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with Directories
Now that you can test, read, and write to files, let's turn our attention to directories. PHP provides many functions for
working with directories. Let's look at how to create, remove, and read them.

Creating Directories with mkdir()

mkdir() enables you to create a directory. mkdir() requires a string that represents the path to the directory you want
to create, and an octal number integer that represents the mode you want to set for the directory. You specify an octal
(base 8) number with a leading 0. The mode argument has an effect only on Unix systems. The mode should consist of
three numbers between 0 and 7, representing permissions for the directory owner, group, and everyone, respectively.
mkdir() returns true if it successfully creates a directory, or false if it doesn't. If mkdir() fails, it's usually because the
containing directory has permissions that preclude processes with the script's user ID from writing. If you're not
comfortable setting Unix directory permissions, you should find that one of the following examples fits your needs.
Unless you really need your directory to be world writable, you should probably use 0755, which allows the world to
read your directory but not to write to it.

mkdir("testdir", 0777); // global read/write/execute permissions
mkdir("testdir", 0755); // world and group: read/execute only
 // owner: read/write/execute

Removing a Directory with rmdir()

rmdir() enables you to remove a directory from the file system if the process running your script has the right to do so
and if the directory is empty. rmdir() requires only a string representing the path to the directory you want to create.

rmdir("testdir");

Opening a Directory for Reading with opendir()

Before you can read the contents of a directory, you must first obtain a directory resource. You can do so with the
opendir() function. opendir() requires a string that represents the path to the directory you want to open. opendir()
returns a directory handle unless the directory isn't present or readable; in that case, it returns false.

$dh = opendir("testdir");

Reading the Contents of a Directory with readdir()

Just as you use gets() to read a line from a file, you can use readdir() to read a file or directory name from a
directory. readdir() requires a directory handle and returns a string containing the item name. If the end of the
directory is reached, readdir() returns false. Note that readdir() returns only the names of its items, rather than full
paths. Listing 10.14 shows the contents of a directory.

Listing 10.14 Listing the Contents of a Directory with readdir()

 1: <html>
 2: <head>
 3: <title>Listing 10.14 Listing the contents
 4: of a directory with readdir()</title>
 5: </head>
 6: <body>
 7: <?php
 8: $dirname = ".";
 9: $dh = opendir($dirname) or die("couldn't open directory");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9: $dh = opendir($dirname) or die("couldn't open directory");
 10:
 11: while (!(($file = readdir($dh)) === false)) {
 12: if (is_dir("$dirname/$file")) {
 13: print "(D) ";
 14: }
 15: print "$file
";
 16: }
 17: closedir($dh);
 18: ?>
 19: </body>
 20: </html>

If this code were saved to the document root of your Web server and run through your Web browser, the output could
look something like Figure 10.7.

Figure 10.7. Output of Listing 10.14.

We open our directory for reading with the opendir() function on line 9 and use a while statement to loop through
each of its elements on line 11. We call readdir() as part of the while statement's test expression and assign its result
to the $file variable. Within the body of the while statement, we use the $dirname variable in conjunction with the
$file variable to create a full file path, which we can then test on line 12. If the path leads to a directory, we print ("D")
to the browser on line 13. Finally, we print the filename on line 15.

We used a cautious construction in the test of the while statement. Most PHP programmers (myself included) would
use something like the following:

while ($file = readdir($dh)) {
 print "$file
\n";
}

The value returned by readdir() is tested. Because any string other than "0" resolves to true, there should be no
problem. Imagine, however, a directory that contains four files: "0", "1", "2", and "3". On my system, the output from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

problem. Imagine, however, a directory that contains four files: "0", "1", "2", and "3". On my system, the output from
the preceding code is as follows:

.

..

When the loop reaches the file named "0", the string returned by readdir() resolves to false, which causes the loop to
end. The approach in Listing 10.14 uses === to check that the return value returned by readdir() is not exactly
equivalent to false. 0 only resolves to false in the test, so we circumvent the problem.

If you find the ordering of items in a directory listing to be arbitrary, it's
because the order is determined by the file system. If you want the items
ordered in a specific fashion, you must read the contents into an array, which
can then be sorted to your liking and subsequently displayed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary

In this hour, you learned how to use include() to incorporate files into your documents and to execute any PHP code
contained in include files. You learned how to use some of PHP's file test functions. You explored functions for reading
files by the line, by the character, and in arbitrary chunks. You learned how to write to files, either replacing or
appending to existing content. Finally, you learned how to create, remove, and read directories.

Now that we can work with files, we can save and access substantial amounts of data. If we need to look up data from
large files, however, our scripts begin to slow down quite considerably. What we need is some kind of database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Does the include() statement slow down my scripts?

A1: Because an included file must be opened and parsed by the engine, it adds some overhead. However, the
benefits of reusable code libraries often outweigh the relatively low performance overhead.

Q2: Should I always end script execution if a file cannot be opened for writing or reading?

A2: You should always allow for this possibility. If your script absolutely depends on the file you want to work
with, you might want to use the die() function, writing an informative error message to the browser. In
less critical situations, you still need to allow for the failure, perhaps by adding it to a log file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: What functions do you use to add library code to the currently running script?

A1: You can use the require() or include() statement to incorporate PHP files into the current document. You
could also use include_once() or require_once().

2: What function do you use to find out whether a file is present on your file system?

A2: You can test for the existence of a file with the file_exists() function.

3: How do you determine the size of a file?

A3: The filesize() function returns a file's size in bytes.

4: What function do you use to open a file for reading or writing?

A4: The fopen() function opens a file. It accepts the path to a file and a character representing the mode. It
returns a file resource.

5: What function do you use to read a line of data from a file?

A5: The fgets() function reads data up to the buffer size you pass it, the end of the line, or the end of the
document, whichever comes first.

6: How can you tell when you've reached the end of a file?

A6: The feof() function returns true when the file resource it's passed reaches the end of the file.

7: What function do you use to write a line of data to a file?

A7: You can write data to a file with the fputs() function.

8: How do you open a directory for reading?

A8: The opendir() function enables you to open a directory for reading.

9: What function do you use to read the name of a directory item after you've opened a directory for
reading?

A9: The readdir() function returns the name of a directory item from an opened directory.

Activities

1. Create a form that accepts a user's first and second name. Create a script that saves this data to a file.

2. Create a script that reads the data file you created in activity 1. In addition to writing its contents to the
browser (adding a
 tag to each line), print a summary that includes the number of lines in the file and
the file's size.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 11. Working with Dates and Times
Dates are so much a part of everyday life that it becomes easy to work with them without thinking. However, the quirks
of the Gregorian calendar can be difficult to work with in programs. Fortunately, PHP provides powerful tools for date
arithmetic that make date manipulation an easy task. Similarly, MySQL comes with its own set of date-related
functions. You learn about these in this hour as well, and find that MySQL can take a lot of the programming burden off
your hands.

In this hour, you will learn

How to acquire the current date and time

How to get information about a date

How to format date information

How to test dates for validity

How to set dates

How to use MySQL's date and time-related functions

How to format date and time results in MySQL

How to find and express intervals between dates and times using MySQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Date and Time Functions in PHP
The several sections that follow introduce you to the date- and time-related functions specifically in PHP. You learn
about the MySQL functions later in this hour. Try each listing yourself, as you march along through this hour.

Getting the Date with time()

PHP's time() function gives you all the information that you need about the current date and time. It requires no
arguments and returns an integer. For us humans, the returned number is a little hard on the eyes, but it's extremely
useful nonetheless.

print time();
// sample output: 1127732399

The integer returned by time() represents the number of seconds elapsed since midnight GMT on January 1, 1970. This
moment is known as the Unix epoch, and the number of seconds that have elapsed since then is referred to as a
timestamp. PHP offers excellent tools to convert a timestamp into a form that humans are comfortable with. Even so,
isn't a timestamp a needlessly convoluted way of storing a date? In fact, the opposite is true. From just one number,
you can extract enormous amounts of information. Even better, a timestamp can make date arithmetic much easier
than you might imagine.

Think of a homegrown date system in which you record days of the month as well as months and years. Now imagine a
script that must add one day to a given date. If this date happened to be 31 December 1999, rather than adding 1 to
the date, you'd have to write code to set the day of the month to 1, the month to January, and the year to 2000. Using
a timestamp, you need only add a day's worth of seconds to your current figure and you're done. You can convert this
new figure into something more friendly at your leisure.

Converting a Timestamp with getdate()

Now that you have a timestamp to work with, you must convert it before you present it to the user. getdate()
optionally accepts a timestamp and returns an associative array containing information about the date. If you omit the
timestamp, getdate() works with the current timestamp as returned by time(). Table 11.1 lists the elements
contained in the array returned by getdate().

Table 11.1. The Associative Array Returned by getdate()
Key Description Example

seconds Seconds past the minute (0–59) 28

minutes Minutes past the hour (0–59) 7

hours Hours of the day (0–23) 12

mday Day of the month (1–31) 20

wday Day of the week (0–6) 4

mon Month of the year (1–12) 1

year Year (4 digits) 2000

yday Day of year (0–365) 19

weekday Day of the week (name) Thursday

month Month of the year (name) January

0 Timestamp 948370048

Listing 11.1 uses getdate() (line 7) to extract information from a timestamp, employing a foreach statement to print
each element (line 8). You can see typical output in Figure 11.1. getdate() returns the date according to the local time
zone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zone.

Figure 11.1. Using getdate().

Listing 11.1 Acquiring Date Information with getdate()

 1: <html>
 2: <head>
 3: <title>Listing 11.1 Acquiring date information with getdate()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $date_array = getdate(); // no argument passed so today's date will be used
 8: foreach ($date_array as $key => $val) {
 9: print "$key = $val
";
 10: }
 11: ?>
 12: <hr>
 13: <?
 14: print "Today's date: ".$date_array['mday']."/".$date_array['mon']."/".
 15: $date_array['year']."<p>";
 16: ?>
 17: </body>
 18: </html>

Converting a Timestamp with date()

You can use getdate() when you want to work with the elements that it outputs. Sometimes, though, you want to
display the date as a string. The date() function returns a formatted string that represents a date. You can exercise an
enormous amount of control over the format that date() returns with a string argument that you must pass to it. In
addition to the format string, date() optionally accepts a timestamp. Table 11.2 lists the codes that a format string can
contain. Any other data you include in the format string passed to date() is included in the return value.

Table 11.2. Format Codes for Use with date()
Format Description Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a am or pm (lowercase) pm

A AM or PM (uppercase) PM

d Day of month (number with leading zeroes) 20

D Day of week (three letters) Thu

F Month name January

h Hour (12-hour format—leading zeroes) 12

H Hour (24-hour format—leading zeroes) 12

g Hour (12-hour format—no leading zeroes) 12

G Hour (24-hour format—no leading zeroes) 12

i Minutes 47

j Day of the month (no leading zeroes) 20

l Day of the week (name) Thursday

L Leap year (1 for yes, 0 for no) 1

m Month of year (number—leading zeroes) 01

M Month of year (three letters) Jan

n Month of year (number—no leading zeroes) 1

s Seconds of hour 24

r Full date standardized to RFC 822
(http://www.faqs.org/rfcs/rfc822.html)

Wed, 26 Sep 2001 15:15:14
+0100

U Timestamp 948372444

y Year (two digits) 00

Y Year (four digits) 2000

z Day of year (0–365) 19

Z Offset in seconds from GMT 0

Listing 11.2 puts a few of these format codes to the test.

Listing 11.2 Formatting a Date with date()

 1: <html>
 2: <head>
 3: <title>Listing 11.2 Formatting a date with date()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $time = time();
 8: print date("m/d/y G.i:s", $time);
 9: print "
";
 10: print "Today is ";
 11: print date("j of F Y, \a\\t g.i a", $time);
 12: ?>
 13: </body>
 14: </html>

Listing 11.2 calls date() twice: the first time on line 8 to output an abbreviated date format, and the second time on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.2 calls date() twice: the first time on line 8 to output an abbreviated date format, and the second time on
line 11 for a longer format. Save the text of this listing in a file called listing11.2.php and open it in your Web
browser. Your date will differ from the following, obviously, but here's some sample output:

09/16/02 8.52:06

Today is 16 of September 2002, at 8.52 am

Although the format string looks arcane, it's easy to build. If you want to add a string that contains letters that are also
format codes to the format, you can escape them by placing a backslash (\) in front of them. For characters that
become control characters when escaped, you must escape the backslash that precedes them. For example, \t is a
format code for a tab, so to ensure that the tab prints, use \\t as in the previous example.

Also note that the date() function returns information according to your local time zone. If you want to format a date in
GMT, you use the gmdate() function, which works in exactly the same way.

Creating Timestamps with mktime()

You can already get information about the current time, but you cannot yet work with arbitrary dates. mktime()
returns a timestamp that you can then use with date() or getdate(). mktime() accepts up to six integer arguments in
the following order:

Hour

Minute

Second

Month

Day of month

Year

Listing 11.3 uses mktime() to get a timestamp that we then use with the date() function.

Listing 11.3 Creating a Timestamp with mktime()

 1: <html>
 2: <head>
 3: <title>Listing 11.3 Creating a timestamp with mktime()</title>
 4: </head>
 5: <body>
 6: <?php
 7: // make a timestamp for Aug 23 2002 at 4.15 am
 8: $ts = mktime(4, 15, 0, 8, 23, 2002);
 9: print date("m/d/y G.i:s
", $ts);
 10: print "
";
 11: print "The date is ";
 12: print date("j of F Y, \a\\t g.i a", $ts);
 13: ?>
 14: </body>
 15: </html>

We call mktime() on line 8 and assign the returned timestamp to the $ts variable. We then use date() on lines 9 and
12 to output formatted versions of the date using $ts. You can choose to omit some or all the arguments to mktime(),
and the value appropriate to the current time is used instead. mktime() also adjusts for values that go beyond the
relevant range, so an hour argument of 25 translates to 1:00 a.m. on the day after that specified in the month, day,
and year arguments.

Save the text of this listing in a file called listing11.2.php and open it in your Web browser. You should see:

08/23/02 4.15:00

The date is 23 of August 2002, at 4.15 am

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The date is 23 of August 2002, at 4.15 am

Testing a Date with checkdate()

You might need to accept date information from user input. Before you work with a user-entered date or store it in a
database, you should check that the date is valid. checkdate() accepts three integers: month, day, and year.
checkdate() returns true if the month is between 1 and 12, the day is acceptable for the given month and year
(accounting for leap years), and the year is between 0 and 32767. Be careful, though: A date might be valid but not
acceptable to other date functions. For example, the following line returns true:

checkdate(4, 4, 1066)

If you were to attempt to build a date with mktime() using these values, you'd end up with a timestamp of -1. As a
rule of thumb, don't use mktime() with years before 1902, and be cautious of using date functions with any date
before 1970. You learn more about using checkdate() in Hour 12, "Creating a Simple Calendar."

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Date and Time Functions in MySQL

MySQL's built-in date-related functions can be used in SELECT statements, with or without specifying a table, to
retrieve a result of the function. Or you can use the functions with any type of date field: date, datetime, timestamp,
and year. Depending on the type of field in use, the results of the date-related functions are more or less useful.

Working with Days

The DAYOFWEEK() and WEEKDAY() functions do similar things with slightly different results. Both functions are
used to find the weekday index of a date, but the difference lies in the starting day and position.

If you use DAYOFWEEK(), the first day of the week is Sunday, at position 1, and the last day of the week is Saturday,
at position 7. For example:

mysql> select dayofweek('2001-11-13');
+-------------------------+
| DAYOFWEEK('2001-11-13') |
+-------------------------+
| 3 |
+-------------------------+
1 row in set (0.00 sec)

The result shows that November 13, 2001 was weekday index 3, or Tuesday. Using the same date with WEEKDAY()
gives you a different result with the same meaning:

mysql> select weekday('2001-11-13');
+-----------------------+
| WEEKDAY('2001-11-13') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

The result shows that November 13, 2001 was weekday index 1. Because WEEKDAY() uses Monday as the first day of
the week at position 0 and Sunday as the last day at position 6, 1 is accurate: Tuesday.

The DAYOFMONTH() and DAYOFYEAR() functions are more straightforward, with only one result and a range that
starts at 1 and ends at 31 for DAYOFMONTH() and 366 for DAYOFYEAR(). Some examples follow:

mysql> select dayofmonth('2001-11-13');
+--------------------------+
| DAYOFMONTH('2001-11-13') |
+--------------------------+
| 13|
+--------------------------+
1 row in set (0.00 sec)

mysql> select dayofyear('2001-11-13');
+-------------------------+
| DAYOFYEAR('2001-11-13') |
+-------------------------+
| 317|
+-------------------------+
1 row in set (0.00 sec)

It might seem odd to have a function that returns the day of the month on a particular date because the day is right
there in the string. But think about using these types of functions in WHERE clauses to perform comparisons on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

there in the string. But think about using these types of functions in WHERE clauses to perform comparisons on
records. If you have a table that holds online orders with a field containing the date the order was placed, you can
quickly get a count of the orders placed on any given day of the week, or see how many orders were placed during the
first half of the month versus the second half.

The following two queries show how many orders were placed during the first three days of the week (throughout all
months) and then the remaining days of the week:

mysql> select count(id) from orders where dayofweek(date_ordered) < 4;
+-----------+
| COUNT(id) |
+-----------+
| 3|
+-----------+
1 row in set (0.00 sec)

mysql> select count(id) from orders where dayofweek(date_ordered) > 3;
+-----------+
| COUNT(id) |
+-----------+
| 5 |
+-----------+
1 row in set (0.00 sec)

Using DAYOFMONTH(), the following examples show the number of orders placed during the first half of any month
versus the second half:

mysql> select count(id) from orders where dayofmonth(date_ordered) < 16;
+-----------+
| COUNT(id) |
+-----------+
| 6 |
+-----------+
1 row in set (0.00 sec)

mysql> select count(id) from orders where dayofmonth(date_ordered) > 15;
+-----------+
| COUNT(id) |
+-----------+
| 2 |
+-----------+
1 row in set (0.00 sec)

You can use the DAYNAME() function to add more life to your results because it returns the name of the weekday for
any given date:

mysql> select dayname(date_ordered) from orders;
+-----------------------+
| DAYNAME(date_ordered) |
+-----------------------+
| Thursday |
| Monday |
| Thursday |
| Thursday |
| Wednesday |
| Thursday |
| Sunday |
| Sunday |
+-----------------------+
8 rows in set (0.00 sec)

Functions aren't limited to WHERE clauses—you can use them in ORDER BY clauses as well:

mysql> select dayname(date_ordered) from orders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select dayname(date_ordered) from orders
 -> order by dayofweek(date_ordered);
+-----------------------+
| DAYNAME(date_ordered) |
+-----------------------+
| Sunday |
| Sunday |
| Monday |
| Wednesday |
| Thursday |
| Thursday |
| Thursday |
| Thursday |
+-----------------------+
8 rows in set (0.00 sec)

Working with Months and Years

Days of the week aren't the only parts of the calendar, and MySQL has functions specifically for months and years as
well. Just like the DAYOFWEEK() and DAYNAME() functions, MONTH() and MONTHNAME() return the number of
the month in a year and the name of the month for a given date. For example:

mysql> select month('2001-11-13'), monthname('2001-11-13');
+---------------------+-------------------------+
| MONTH('2001-11-13') | MONTHNAME('2001-11-13') |
+---------------------+-------------------------+
| 11 | November |
+---------------------+-------------------------+
1 row in set (0.00 sec)

Using MONTHNAME() on the sample orders table shows the proper results but a lot of repeated data:

mysql> select monthname(date_ordered) from orders;
+-------------------------+
| MONTHNAME(date_ordered) |
+-------------------------+
| November |
| November |
| November |
| November |
| November |
| November |
| November |
| October |
+-------------------------+
8 rows in set (0.00 sec)

You can use DISTINCT to get nonrepetitive results:

mysql> select distinct monthname(date_ordered) from orders;
+-------------------------+
| MONTHNAME(date_ordered) |
+-------------------------+
| November |
| October |
+-------------------------+
2 rows in set (0.00 sec)

For work with years, the YEAR() function will return the year of a given date:

mysql> select distinct year(date_ordered) from orders;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select distinct year(date_ordered) from orders;
+--------------------+
| YEAR(date_ordered) |
+--------------------+
| 2001 |
+--------------------+
1 row in set (0.00 sec)

Working with Weeks

Weeks can be tricky things—there can be 53 weeks in a year if Sunday is the first day of the week and December hasn't
ended. For example, December 30th of 2001 was a Sunday:

mysql> select dayname('2001-12-30');
+-----------------------+
| DAYNAME('2001-12-30') |
+-----------------------+
| Sunday |
+-----------------------+
1 row in set (0.00 sec)

That fact made December 30th of 2001 part of the 53rd week of the year:

mysql> select week('2001-12-30');
+--------------------+
| WEEK('2001-12-30') |
+--------------------+
| 53 |
+--------------------+
1 row in set (0.00 sec)

The 53rd week contains December 30th and 31st, and is only two days long; the first week of 2002 begins with January
1st.

If you want your weeks to start on Mondays but still want to find the week of the year, the optional second argument
enables you to change the start day. A 1 indicates a week that starts on Monday. In the following examples, a Monday
start day makes December 30th part of the 52nd week of 2001, but December 31 is still part of the 53rd week of 2001.

mysql> select week('2001-12-30',1);
+----------------------+
| WEEK('2001-12-30',1) |
+----------------------+
| 52 |
+----------------------+
1 row in set (0.00 sec)

mysql> select week('2001-12-31',1);
+----------------------+
| WEEK('2001-12-31',1) |
+----------------------+
| 53 |
+----------------------+
1 row in set (0.00 sec)

Working with Hours, Minutes, and Seconds

If you're using a date that includes the exact time, such as datetime or timestamp, or even just a time field, there
are functions to find the hours, minutes, and seconds from that string. Not surprisingly, these functions are called
HOUR(), MINUTE(), and SECOND(). HOUR() returns the hour in a given time, which is between 0 and 23. The
range for MINUTE() and SECOND() is 0 to 59.

Here are some examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here are some examples:

mysql> select hour('2001-11-13 07:27:49') as hour,minute('2001-11-13 07:27:49')
-> as minute,second('2001-11-13 07:27:49') as second;
+------+--------+--------+
| hour | minute | second |
+------+--------+--------+
| 7 | 27 | 49 |
+------+--------+--------+
1 row in set (0.00 sec)

That's a lot of queries to get at one time from a datetime field—you can put the hour and minute together and even
use CONCAT_WS() to put the : between the results and get a representation of the time:

mysql> select concat_ws(':',hour('2001-11-13 07:27:49'),
-> minute('2001-11-13 07:27:49')) as sample_time;
+-------------+
| sample_time |
+-------------+
| 7:27 |
+-------------+
1 row in set (0.00 sec)

If you use field names instead of strings, remember not to use quotation marks. Here's an example that uses the
dateadded field from the sometable table:

mysql> select concat_ws(':',hour(dateadded), minute(dateadded))
-> as sample_time from sometable;
+-------------+
| sample_time |
+-------------+
| 13:11 |
| 13:11 |
| 13:11 |
| 13:11 |
| 14:16 |
| 10:12 |
| 10:12 |
| 10:12 |
| 10:12 |
+-------------+
9 rows in set (0.00 sec)

This is cheating because it's not the actual time—it's just two numbers stuck together to look like a time. If you used
the concatenation trick on a time such as 02:02, the result would be 2:2, as shown here:

mysql> select concat_ws(':',hour('02:02'), minute('02:02')) as sample_time;
+-------------+
| sample_time |
+-------------+
| 2:2 |
+-------------+
1 row in set (0.00 sec)

This result is obviously not the intended result. In the next section, you learn how to use the DATE_FORMAT()
function to properly format dates and times.

Formatting Dates and Times with MySQL

The DATE_FORMAT() function formats a date, datetime, or timestamp field into a string by using options that tell
it exactly how to display the results. The syntax of DATE_FORMAT() is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it exactly how to display the results. The syntax of DATE_FORMAT() is

DATE_FORMAT(date,format)

There are many formatting options, as shown in Table 11.3, which should look somewhat similar to Table 11.2. It's the
same concept as the PHP date() function.

Table 11.3. DATE_FORMAT() Format String Options
Option Result

%M Month name (January through December)

%b Abbreviated month name (Jan through Dec)

%m Month, padded digits (01 through 12)

%c Month (1 through 12)

%W Weekday name (Sunday through Saturday)

%a Abbreviated weekday name (Sun through Sat)

%D Day of the month using the English suffix, such as first, second, third, and so on

%d Day of the month, padded digits (00 through 31)

%e Day of the month (0 through 31)

%j Day of the year, padded digits (001 through 366)

%Y Year, four digits

%y Year, two digits

%X Four-digit year for the week where Sunday is the first day; used with %V

%x Four-digit year for the week where Monday is the first day; used with %v

%w Day of the week (0=Sunday...6=Saturday)

%U Week (0 through 53) where Sunday is the first day of the week

%u Week (0 through 53) where Monday is the first day of the week

%V Week (1 through 53) where Sunday is the first day of the week; used with %X

%v Week (1 through 53) where Monday is the first day of the week; used with %x

%H Hour, padded digits (00 through 23)

%k Hour (0 through 23)

%h Hour, padded digits (01 through 12)

%l Hour (1 through 12)

%i Minutes, padded digits (00 through 59)

%S Seconds, padded digits (00 through 59)

%s Seconds, padded digits (00 through 59)

%r Time, 12-hour clock (hh:mm:ss [AP]M)

%T Time, 24-hour clock (hh:mm:ss)

%p AM or PM

Any other characters used in the DATE_FORMAT() option string appear
literally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To display the 02:02 result that we rigged in the previous section, you'd use the %h and %i options to return the hour
and minute from the date with a : between the two options. For example:

mysql> select date_format('2001-11-13 02:02:00', '%h:%i') as sample_time;
+-------------+
| sample_time |
+-------------+
| 02:02 |
+-------------+
1 row in set (0.00 sec)

The following are just a few more examples of the DATE_FORMAT() function in use, but this function is best
understood by practicing it yourself.

mysql> select date_format('2001-11-13', '%W, %M %D, %Y') as sample_time;
+------------------------------+
| sample_time |
+------------------------------+
| Tuesday, November 13th, 2001 |
|------------------------------+
1 row in set (0.00 sec)

mysql> select date_format(now(),'%W the %D of %M, %Y around %l o\'clock %p')
-> as sample_time;
+--+
| sample_time |
+--+
| Tuesday the 13th of November, 2001 around 8 o'clock AM |
+--+
1 row in set (0.00 sec)

If you're working specifically with time fields, the TIME_FORMAT() function works just like the DATE_FORMAT()
function. Only the format options for hours, minutes, and seconds are allowed:

mysql> select time_format('02:02:00', '%h:%i') as sample_time;
+-------------+
| sample_time |
+-------------+
| 02:02 |
+-------------+
1 row in set (0.00 sec)

Performing Date Arithmetic with MySQL

MySQL has several functions to help perform date arithmetic, and this is one of the areas where it might be quicker to
allow MySQL to do the math than your PHP script. The DATE_ADD() and DATE_SUB() functions return a result given
a starting date and an interval. The syntax for both functions is

DATE_ADD(date,INTERVAL value type)

DATE_SUB(date,INTERVAL value type)

Table 11.4 shows the possible types and their expected value format.

Table 11.4. Values and Types in Date Arithmetic
Value Type

Number of seconds SECOND

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SECOND
Number of minutes MINUTE
Number of hours HOUR
Number of days DAY
Number of months MONTH
Number of years YEAR

"minutes:seconds" MINUTE_SECOND

"hours:minutes" HOUR_MINUTE

"days hours" DAY_HOUR

"years-months" YEAR_MONTH

"hours:minutes:seconds" HOUR_SECOND

"days hours:minutes" DAY_MINUTE

"days hours:minutes:seconds" DAY_SECOND

For example, to find the date of the current day plus 21 days, use the following:

mysql> select date_add(now(), interval 21 day);
+---------------------------------+
| date_add(now(), interval 21 day)|
+---------------------------------+
| 2002-10-07 09:12:08 |
+---------------------------------+
1 row in set (0.00 sec)

To subtract 21 days, use

mysql> select date_sub(now(), interval 21 day);
+----------------------------------+
| date_sub(now(), interval 21 day) |
+----------------------------------+
| 2002-08-26 09:12:24 |
+----------------------------------+
1 row in set (0.00 sec)

Use the expression as it's shown in Table 11.4, despite what might be a natural tendency to use DAYS instead of DAY.
Using DAYS results in an error:

mysql> select date_add(now(), interval 21 days);
ERROR 1064: You have an error in your SQL syntax near 'days)' at line 1

If you're using DATE_ADD() or DATE_SUB() with a date value instead of a datetime value, the result will be shown
as a date value unless you use expressions related to hours, minutes, and seconds. In that case, your result will be a
datetime result.

For example, the result of the first query remains a date field, whereas the second becomes a datetime:

mysql> select date_add("2001-12-31", interval 1 day);
+--+
| DATE_ADD("2001-12-31", INTERVAL 1 DAY) |
+--+
| 2002-01-01 |
+--+
1 row in set (0.00 sec)

mysql> select date_add("2001-12-31", interval 12 hour);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select date_add("2001-12-31", interval 12 hour);
+--+
| DATE_ADD("2001-12-31", INTERVAL 12 HOUR) |
+--+
| 2001-12-31 12:00:00 |
+--+
1 row in set (0.00 sec)

Starting with MySQL version 3.23, you can also perform date arithmetic using the + and - operators instead of
DATE_ADD() and DATE_SUB() functions:

mysql> select "2001-12-31" + interval 1 day;
+-------------------------------+
| "2001-12-31" + INTERVAL 1 DAY |
+-------------------------------+
| 2002-01-01 |
+-------------------------------+
1 row in set (0.00 sec)

mysql> select "2001-12-31" - interval 14 hour;
+---------------------------------+
| "2001-12-31" - INTERVAL 14 HOUR |
+---------------------------------+
| 2001-12-30 10:00:00 |
+---------------------------------+
1 row in set (0.00 sec)

Special Functions and Conversion Features

The MySQL NOW() function returns a current datetime result, and is useful for timestamping login or access times, as
well as numerous other tasks. MySQL has a few other functions that perform similarly.

The CURDATE() and CURRENT_DATE() functions are synonymous, and each returns the current date in YYYY-MM-
DD format:

mysql> select curdate(), current_date();
+------------+----------------+
| curdate() | current_date() |
+------------+----------------+
| 2002-09-16 | 2002-09-16 |
+------------+----------------+
1 row in set (0.01 sec)

Similarly, the CURTIME() and CURRENT_TIME() functions return the current time in HH:MM:SS format:

mysql> select curtime(), current_time();
+-----------+----------------+
| curtime() | current_time() |
+-----------+----------------+
| 09:14:26 | 09:14:26 |
+-----------+----------------+
1 row in set (0.00 sec)

The NOW(), SYSDATE(), and CURRENT_TIMESTAMP() functions return values in full datetime format (YYYY-
MM-DD HH:MM:SS):

mysql> select now(), sysdate(), current_timestamp();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select now(), sysdate(), current_timestamp();
+---------------------+---------------------+---------------------+
| now() | sysdate() | current_timestamp() |
+---------------------+---------------------+---------------------+
| 2002-09-16 09:14:50 | 2002-09-16 09:14:50 | 2002-09-16 09:14:50 |
+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)

The UNIX_TIMESTAMP() function returns the current date in—or converts a given date to—Unix timestamp format.
Unix timestamp format is in seconds since the epoch, or seconds since midnight, January 1, 1970. For example:

mysql> select unix_timestamp();
+------------------+
| UNIX_TIMESTAMP() |
+------------------+
| 1032192914 |
+------------------+
1 row in set (0.00 sec)

mysql> select unix_timestamp('1973-12-30');
+------------------------------+
| UNIX_TIMESTAMP('1973-12-30') |
+------------------------------+
| 126086400 |
+------------------------------+
1 row in set (0.00 sec)

The FROM_UNIXTIME() function performs a conversion of a Unix timestamp to a full datetime format when used
without any options:

mysql> select from_unixtime('1032192914');
+-----------------------------+
| from_unixtime('1032192914') |
+-----------------------------+
| 2002-09-16 09:15:14 |
+-----------------------------+
1 row in set (0.00 sec)

You can use the format options from the DATE_FORMAT() functions to display a timestamp in a more appealing
manner:

mysql> select from_unixtime(unix_timestamp(), '%D %M %Y at %h:%i:%s');
+---+
| from_unixtime(unix_timestamp(), '%D %M %Y at %h:%i:%s') |
+---+
| 16th September 2002 at 09:16:48 |
+---+
1 row in set (0.00 sec)

If you're working with a number of seconds and want to convert the seconds to a time-formatted result, you can use
SEC_TO_TIME() and TIME_TO_SEC() to convert values back and forth.

For example, 1440 seconds is equal to 24 minutes and vice versa:

mysql> select sec_to_time('1440'), time_to_sec('00:24:00');
+---------------------+-------------------------+
| SEC_TO_TIME('1440') | TIME_TO_SEC('00:24:00') |
+---------------------+-------------------------+
| 00:24:00 | 1440 |
+---------------------+-------------------------+
1 row in set (0.01 sec)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary

In this hour, you learned how to use various PHP functions to perform date- and time-related actions. The time()
function gets a date stamp for the current date and time, and you can use getdate() to extract date information from a
timestamp and date() to convert a timestamp into a formatted string. You learned how to create a timestamp using
mktime(), and how to test a date for validity with checkdate().
Additionally, you discovered that MySQL's built-in date and time functions can definitely take some of the load off your
application by internally formatting dates and times and performing the date and time arithmetic. The formatting
options used for the DATE_FORMAT() function provide a simple method to produce a custom display string from any
sort of date field. The DATE_ADD() and DATE_SUB() functions and their numerous available interval types help you
determine dates and times in the past or future. Additionally, functions such as DAY(), WEEK(), MONTH(), and
YEAR() are useful for extracting parts of dates for use in WHERE or ORDER BY clauses.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin putting your
knowledge into practice.

Quiz

1: Using PHP, how do you acquire a Unix timestamp that represents the current date and time? What about
using MySQL?

A1: In PHP, use time(). In MySQL, use UNIX_TIMESTAMP().

2: Which PHP function accepts a timestamp and returns an associative array that represents the given date?

A2: The getdate() function returns an associative array whose elements contain aspects of the given date.

3: Which PHP function do you use to format date information? What about using MySQL?

A3: In PHP, use date(). In MySQL, use DATE_FORMAT().

4: Which PHP function could you use to check the validity of a date?

A4: You can check a date with the checkdate() function.

Activity

Create a birthday countdown script. Given form input of month, day, and year, output a message that tells the user
how many days, hours, minutes, and seconds until the big day. Use whatever combination of PHP and MySQL functions
you want.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 12. Creating a Simple Calendar
This hour continues the date and time lesson from the previous hour, this time in the context of creating a small
calendar.

In this hour, you will learn

How to build a simple calendar script

How to build a class library to generate date pull-downs in HTML forms

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Building a Simple Display Calendar
Let's bring together the date and time functions you learned in the previous hour, and use them to build a calendar that
can display the dates for any month between 1980 and 2010. The user will be able to select both month and year with
pull-down menus, and the dates for the selected month will be organized according to the days of the week. We will be
working with two variables—one for month and one for year—which the user will supply.

These pieces of information will be used to build a timestamp based on the first day of the month defined. If the user
input is invalid or absent, we will default to the first day of the current month.

Checking User Input

When the user opens our calendar application for the first time, he or she will not be submitting any information. We
must therefore make sure that our script can handle the fact that the variables for month and year may not be defined.
We could use the isset() function for this. (isset() returns false if the variable passed to it has not been defined.)
However, let's use checkdate() instead. Listing 12.1 shows the fragment of code that checks for month and year
variables coming from a form, and builds a timestamp based on them.

Listing 12.1 Checking User Input for the Calendar Script

 1: <?php
 2: if (!checkdate($_POST[month], 1, $_POST[year])) {
 3: $nowArray = getdate();
 4: $month = $nowArray['mon'];
 5: $year = $nowArray['year'];
 6: } else {
 7: $month = $_POST[month];
 8: $year = $_POST[year];
 9: }
 10: $start = mktime (12, 0, 0, $month, 1, $year);
 11: $firstDayArray = getdate($start);
 12: ?>

Listing 12.1 is a fragment of a larger script, so it does not produce any output itself. In the if statement on line 2, we
use checkdate() to test whether the month and year have been provided by a form. If they have not been defined,
checkdate() returns false because the script cannot make a valid date from undefined month and year arguments.
This approach has the added bonus of ensuring that the data submitted by the user constitutes a valid date.

If the date is not valid, we use getdate() on line 3 to create an associative array based on the current time. We then
set values for $month and $year ourselves, using the array's mon and year elements (lines 4 and 5). If the variables
have been set from the form, we put the data into $month and $year variables so as not to touch the values in the
original $_POST superglobal.

Now that we are sure that we have valid data in $month and $year, we can use mktime() to create a timestamp for
the first day of the month (line 10). We will need information about this timestamp later on, so on line 11 we create a
variable called $firstDayArray that will store an associative array returned by getdate() and based on this timestamp.

Building the HTML Form

We need to create an interface by which users can ask to see data for a month and year. For this, we will use SELECT
elements. Although we could hard-code these in HTML, we must also ensure that the pull-downs default to the currently
chosen month, so we will dynamically create these pull-downs, adding a SELECT attribute to the OPTION element
where appropriate. The form is generated in Listing 12.2.

Listing 12.2 Building the HTML Form for the Calendar Script

 1: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <?php
 2: if (!checkdate($_POST[month], 1, $_POST[year])) {
 3: $nowArray = getdate();
 4: $month = $nowArray['mon'];
 5: $year = $nowArray['year'];
 6: } else {
 7: $month = $_POST[month];
 8: $year = $_POST[year];
 9: }
 10: $start = mktime (12, 0, 0, $month, 1, $year);
 11: $firstDayArray = getdate($start);
 12: ?>
 13: <html>
 14: <head>
 15: <title><?php print "Calendar:
 16: ".$firstDayArray['month']." ".$firstDayArray['year'] ?></title>
 17: <head>
 18: <body>
 19: <form method="post" action="<?php print "$_SERVER[PHP_SELF]"; ?>">
 20: <select name="month">
 21: <?php
 22: $months = Array("January", "February", "March", "April", "May",
 23: "June", "July", "August", "September", "October", "November", "December");
 24:
 25: for ($x=1; $x <= count($months); $x++) {
 26: print "\t<option value=\"$x\"";
 27: print ($x == $month)?" SELECTED":"";
 28: print ">".$months[$x-1]."\n";
 29: }
 30: ?>
 31: </select>
 32: <select name="year">
 33: <?php
 34: for ($x=1980; $x<=2010; $x++) {
 35: print "\t<option";
 36: print ($x == $year)?" SELECTED":"";
 37: print ">$x\n";
 38: }
 39: ?>
 40: </select>
 41: <input type="submit" value="Go!">
 42: </form>
 43: </body>
 44: </html>

Having created the $start timestamp and the $firstDayArray date array (lines 2–11), let's write the HTML for the
page. Notice that we use $firstDayArray to add the month and year to the TITLE element on lines 15 and 16.

Line 19 is the beginning of our form. To create the SELECT element for the month pull-down, we drop back into PHP
mode on line 21 to write the individual OPTION tags. First, we create an array called $months on line 22 that
contains the 12 month names. We then loop through this array, creating an OPTION tag for each name (lines 25–29).
This would probably be an overcomplicated way of writing a simple SELECT element were it not for the fact that we
are testing $x (the counter variable in the for statement) against the $month variable on line 27. If $x and $month
are equivalent, we add the string SELECTED to the OPTION tag, ensuring that the correct month will be selected
automatically when the page loads. We use a similar technique to write the year pull-down on lines 34–38. Finally, back
in HTML mode, we create a submit button on line 41.

We now have a form that can send the month and year parameters to itself, and will default either to the current
month and year, or the month and year previously chosen. If you save this listing as listing12.2.php, place it in your
Web server document root, and access it with your Web browser, you should see something like Figure 12.1 (your
month and year may differ).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.1. The calendar form.

Creating the Calendar Table

We now need to create a table and populate it with dates for the chosen month. We do this in Listing 12.3, which
represents the complete calendar script.

Listing 12.3 The Complete Calendar Script

 1: <?php
 2: define("ADAY", (60*60*24));
 3: if (!checkdate($_POST[month], 1, $_POST[year])) {
 4: $nowArray = getdate();
 5: $month = $nowArray['mon'];
 6: $year = $nowArray['year'];
 7: } else {
 8: $month = $_POST[month];
 9: $year = $_POST[year];
 10: }
 11: $start = mktime (12, 0, 0, $month, 1, $year);
 12: $firstDayArray = getdate($start);
 13: ?>
 14: <html>
 15: <head>
 16: <title><?php print "Calendar:
 17: ".$firstDayArray['month']." ".$firstDayArray['year'] ?></title>
 18: <head>
 19: <body>
 20: <form method="post" action="<?php print "$_SERVER[PHP_SELF]"; ?>">
 21: <select name="month">
 22: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 22: <?php
 23: $months = Array("January", "February", "March", "April", "May",
 24: "June", "July", "August", "September", "October", "November", "December");
 25:
 26: for ($x=1; $x <= count($months); $x++) {
 27: print "\t<option value=\"$x\"";
 28: print ($x == $month)?" SELECTED":"";
 29: print ">".$months[$x-1]."\n";
 30: }
 31: ?>
 32: </select>
 33: <select name="year">
 34: <?php
 35: for ($x=1980; $x<2010; $x++) {
 36: print "\t<option";
 37: print ($x == $year)?" SELECTED":"";
 38: print ">$x\n";
 39: }
 40: ?>
 41: </select>
 42: <input type="submit" value="Go!">
 43: </form>
 44:

 45: <?php
 46: $days = Array("Sunday", "Monday", "Tuesday", "Wednesday",
 47: "Thursday", "Friday", "Saturday");
 48:
 49: print "<TABLE BORDER = 1 CELLPADDING=5>\n";
 50: foreach ($days as $day) {
 51: print "\t<td>$day</td>\n";
 52: }
 53: for ($count=0; $count < (6*7); $count++) {
 54: $dayArray = getdate($start);
 55: if (($count % 7) == 0) {
 56: if ($dayArray['mon'] != $month) {
 57: break;
 58: } else {
 59: print "</tr><tr>\n";
 60: }
 61: }
 62: if ($count < $firstDayArray['wday'] || $dayArray['mon'] != $month) {
 63: print "\t<td>
</td>\n";
 64: } else {
 65: print "\t<td>".$dayArray['mday']." </td>\n";
 66: $start += ADAY;
 67: }
 68: }
 69: print "</tr></table>";
 70: ?>
 71: </body>
 72: </html>

Because the table will be indexed by days of the week, we loop through an array of day names created on lines 50–52,
printing each to its own cell on line 51. All the real magic of the script happens in the final for statement on line 53.

We initialize a variable called $count and ensure that the loop will end after 42 iterations. This is to make sure that we
will have enough cells to populate with date information. Within the loop, we transform the $start variable into a date
array with getdate(), assigning the result to $dayArray (line 54). Although $start is the first day of the month during
the loop's initial execution, we will increment this timestamp by 24 hours for every iteration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the loop's initial execution, we will increment this timestamp by 24 hours for every iteration.

Adding 24 hours to a day is not necessarily the same as adding one whole day.
Since the start date and time is not midnight, this format works for introducing
the concept of adding time.

On line 55, we test the $count variable against the number 7 using the modulus operator. The block of code belonging
to this if statement will therefore only be run when $count is either zero or a multiple of 7. This is our way of knowing
whether we should end the loop altogether or start a new row.

After we have established that we are in the first iteration or at the end of a row, we can go on to perform another test
on line 56. If the mon (month number) element of the $dayArray is no longer equivalent to the $month variable, we
are finished. Remember that $dayArray contains information about the $start timestamp, which is the current place in
the month that we are displaying. When $start goes beyond the current month, $dayArray['mon'] will hold a
different figure than the $month number provided by user input. Our modulus test demonstrated that we are at the
end of a row, and the fact that we are in a new month means that we can leave the loop altogether. Assuming,
however, that we are still in the month that we are displaying, we end the row and start a new one on line 59.

In the next if statement, on line 62, we determine whether to write date information to a cell. Not every month begins
on a Sunday, so it's likely that we will start with an empty cell or two. Few months will finish at the end of one of our
rows, so it's also likely that we will need to write a few empty cells before we close the table. We have stored
information about the first day of the month in $firstDayArray; in particular, we can access the number of the day of
the week in $firstDayArray['wday']. If $count is smaller than this number, we know that we haven't yet reached the
correct cell for writing. By the same token, if the $month variable is no longer equal to $dayArray['mon'], we know
that we have reached the end of the month (but not the end of the row, as we determined in our earlier modulus test).
In either case, we write an empty cell to the browser on line 63.

In the final else clause on line 64, we can do the fun stuff. We have already ascertained that we are within the month
that we want to list and that the current day column matches the day number stored in $firstDayArray['wday']. Now
we must use the $dayArray associative array that we established early in the loop to write the day of the month and
some blank space into a cell.

Finally, on line 66, we need to increment the $start variable, which contains our date stamp. We simply add the
number of seconds in a day to it (we defined this value in line 2), and we're ready to begin the loop again with a new
value in $start to be tested.

If you save this listing as listing12.3.php, place it in your Web server document root, and access it with your Web
browser, you should see something like Figure 12.2 (your month and year may differ).

Figure 12.2. The calendar form and script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating a Calendar Library
Because dates are ubiquitous in Web interfaces, and because working with dates is often comparatively complicated,
let's look at creating a class library to automate some of the work that dates can present. Along the way we will revisit
some of the techniques we have already covered.

If the concept of classes is completely foreign to you, you can supplement your
knowledge by reading through Chapter 14 of the PHP Manual. It is titled
"Classes and Objects," and you can find it at
http://www.php.net/manual/en/language.oop.php.

The simple date_pulldown library we will look at was born during the creation of a freelance job listing site. The
project necessarily involved the presentation of multiple date pull-downs allowing employers to select both the start and
end of contract periods, and for candidates to indicate periods of availability. A date pull-down, in this instance, consists
of three separate select elements, one for day of the month, one for month, and one for year.

When a user submits a page, the script will check his input. If there is a problem, we will need to represent the page
with the user's input still in place. This is very easy to accomplish with text boxes but is more of a chore with pull-down
menus. Pages that display information pulled from a database present a similar problem. Data can be entered straight
into the value attributes of text type input elements. Dates will need to be split into month, day, and year values, and
then the correct option elements selected.

The date_pulldown class aims to make date pull-downs sticky (so they will remember settings from page to page)
and easy to set. In order to create our class, we first need to declare it and create a constructor.

A constructor is a function that exists within a class, and which is automatically
called when a new instance of the class is created.

We can also declare some class properties. The following snippet shows the beginning of the class:

 1: class date_pulldown
 2: var $name;
 3: var $timestamp = -1;
 4: var $months = array("Jan", "Feb", "Mar", "Apr", "May", "Jun",
 5: "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
 6: var $yearstart = -1;
 7: var $yearend = -1;
 8:
 9: function date_pulldown($name) {
 10: $this->name = $name;
 11: }

We first declare the $name property. This will be used to name the HTML select elements. The $timestamp property
will hold a Unix timestamp. The $months array property contains the strings we will display in our month pull-down.
The $yearstart and $yearend properties are both set to –1 pending initialization. They will eventually hold the first
and last years of the range that will be presented in the year pull-down.

The constructor is very simple. It accepts a string, which we assign to the $name property. Now that we have the basis
of our class, we need a set of methods by which the client code can set the date. The snippet continues as follows:

 12: function setDate_global() {
 13: if (!$this->setDate_array($GLOBALS[$this->name])) {
 14: return $this->setDate_timestamp(time());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 14: return $this->setDate_timestamp(time());
 15: }
 16:
 17: return true;
 18: }
 19:
 20: function setDate_timestamp($time) {
 21: $this->timestamp = $time;
 22: return true;
 23: }
 24:
 25: function setDate_array($inputdate) {
 26: if (is_array($inputdate) &&
 27: isset($inputdate['mon']) &&
 28: isset($inputdate['mday']) &&
 29: isset($inputdate['year'])) {
 30:
 31: $this->timestamp = mktime(11, 59, 59,
 32: $inputdate['mon'], $inputdate['mday'], $inputdate['year']);
 33:
 34: return true;
 35: }
 36:
 37: return false;
 38: }

Of these methods, setDate_timestamp() is the simplest. It requires a Unix timestamp, which it assigns to the
$timestamp property.

The setDate_array() method expects an associative array with at least three keys: 'mon', 'mday', and 'year'. These
fields will contain data in the same format as in the array returned by getdate(). This means that setDate_array()
will accept a hand-built array such as

array('mday'=> 20, 'mon'=>9, 'year' => 2002);

or the result of a call to getdate():

getdate(1032787181);

It is no accident that the pull-downs we will build later will be constructed to produce an array containing 'mon',
'mday', and 'year' fields. The method uses the mktime() function to construct a timestamp, which is then assigned to
the $timestamp variable.

The setDate_global() method is called by default. It attempts to find a global variable with the same name as the
object's $name property. This is passed to setDate_array(). If this method discovers a global variable of the right
structure, it uses that variable to create the $timestamp variable. Otherwise, the current date is used.

The ranges for days and months are fixed, but years are a different matter. We create a few methods to allow the client
coder to set her own range of years (although we also provide default behavior):

 39: function setYearStart($year) {
 40: $this->yearstart = $year;
 41: }
 42:
 43: function setYearEnd($year) {
 44: $this->yearend = $year;
 45: }
 46:
 47: function getYearStart() {
 48: if ($this->yearstart < 0) {
 49: $nowarray = getdate(time());
 50: $this->yearstart = $nowarray[year]-5;
 51: }
 52:
 53: return $this->yearstart;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 53: return $this->yearstart;
 54: }
 55:
 56: function getYearEnd() {
 57: if ($this->yearend < 0) {
 58: $nowarray = getdate(time());
 59: $this->yearend = $nowarray[year]+5;
 60: }
 61: return $this->yearend;
 62: }

The setYearStart() and setYearEnd() methods are straightforward. A year is directly assigned to the appropriate
property. The getYearStart() method tests whether or not the $yearstart property has been set. If it has not been
set, getYearStart() assigns a $yearstart value five years before the current year. The getYearEnd() method
performs a similar operation. We're now ready to create the business end of the class:

 63: function output() {
 64: if ($this->timestamp < 0) {
 65: $this->setDate_global();
 66: }
 67: $datearray = getdate($this->timestamp);
 68: $out = $this->day_select($this->name, $datearray);
 69: $out .= $this->month_select($this->name, $datearray);
 70: $out .= $this->year_select($this->name, $datearray);
 71: return $out;
 72: }
 73:
 74: function day_select($fieldname, $datearray) {
 75: $out = "<select name=\"$fieldname"."[mday]\">\n";
 76: for ($x=1; $x<=31; $x++) {
 77: $out .= "<option value=\"$x\"".($datearray['mday']==($x)
 78: ?" SELECTED":"").">".sprintf("%02d", $x) ."\n";
 79: }
 80: $out .= "</select>\n";
 81: return $out;
 82: }
 83:
 84: function month_select($fieldname, $datearray) {
 85: $out = "<select name=\"$fieldname"."[mon]\">\n";
 86: for ($x = 1; $x <= 12; $x++) {
 87: $out .= "<option value=\"".($x)."\"".($datearray['mon']==($x)
 88: ?" SELECTED":"")."> ".$this->months[$x-1]."\n";
 89: }
 90: $out .= "</select>\n";
 91: return $out;
 92: }
 93:
 94: function year_select($fieldname, $datearray) {
 95: $out = "<select name=\"$fieldname"."[year]\">";
 96: $start = $this->getYearStart();
 97: $end = $this->getYearEnd();
 98: for ($x= $start; $x < $end; $x++) {
 99: $out .= "<option value=\"$x\"".($datearray['year']==($x)
100: ?" SELECTED":"").">$x\n";
101: }
102: $out .= "</select>\n";
103: return $out;
104: }
105: }

The output() method orchestrates most of this code. It first checks the $timestamp property. Unless the client coder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output() method orchestrates most of this code. It first checks the $timestamp property. Unless the client coder
has called one of the setDate methods, $timestamp will be set to –1 and setDate_global() will be called by default.
The timestamp is passed to the getdate() function to construct a date array, and a method is called for each pull-down
to be produced.

The day_select() method simply constructs an HTML select element with an option element for each of the 31
possible days in a month. The object's current date is stored in the $datearray argument variable, which is used
during the construction of the element to set the selected attribute of the relevant option element. The sprintf()
function formats the day number, adding a leading zero to days 1–9. The month_select() and year_select()
methods use similar logic to construct the month and year pull-downs.

Why did we break down the output code into four methods, rather than simply creating one block of code? When we
build a class, we have two kinds of user in mind: the client coder who will want to instantiate a date_pulldown object,
and the client coder who will want to subclass the date_pulldown class to refine its functionality. For the former, we
want to provide a simple and clear interface to the class's functionality. The coder can instantiate an object, set its date,
and call the output() method. For the latter, we want to make it easy to change discrete elements of the class's
functionality. By putting all the output code into one method, we would force a child class that needed to tweak output
to reproduce a lot of code that is perfectly usable. By breaking this code into discrete methods, we allow for subclasses
that can change limited aspects of functionality without disturbing the whole. If a child class needs to represent the year
pull-down as two radio buttons, for example, the coder can simply override the year_select() method.

Listing 12.4 contains some code that calls the library class. Before you try to execute this code, take all the class
snippets we've covered and put them into a file called date_pulldown.class.php, and place this file in the document
root of your Web server. You'll be calling it in a moment, so it had better be there!

Listing 12.4 Using the date_pulldown Class

 1: <html>
 2: <head>
 3: <title>Listing 12.4 Using the date_pulldown Class</title>
 4: </head>
 5: <?php
 6: include("date_pulldown.class.php");
 7: $date1 = new date_pulldown("fromdate");
 8: $date2 = new date_pulldown("todate");
 9: $date3 = new date_pulldown("foundingdate");
 10: $date3->setYearStart(1972);
 11: if (empty($foundingdate))
 12: $date3->setDate_array(array('mday'=>26, 'mon'=>4, 'year'=>1984));
 13: ?>
 14: <body>
 15:
 16: <form>
 17: From:

 18: <?php print $date1->output(); ?><p>
 19:
 20: To:

 21: <?php print $date2->output(); ?><p>
 22:
 23: Company founded:

 24: <?php print $date3->output(); ?><p>
 25:
 26: <input type="submit">
 27: </form>
 28:
 29: </body>
 30: </html>

We include the date_pulldown.class.php on line 6 (see Figure 12.3). Once we have included the class file, we can
use all of its methods. We use the class's default behavior for all the pull-downs apart from "foundingdate". For this
object, we override the default year start, setting it to 1972 on line 10. On line 12, we assign this pull-down an
arbitrary date that will be displayed until the form is submitted. Note that this is only the front end of a form, with no
action or method; you need to supply your own action or method in order for this to actually do something!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.3. The pull-downs generated by the date_pulldown class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you pulled together the PHP date-related functions you learned about in the previous hour to work within a
calendar application. You learned how to test the validity of an input date using checkdate(). You worked through an
example script, which applies some of the tools you have looked at, and built a class library that automates some of the
more tedious aspects of working with dates in forms.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Are there any functions for converting between different calendars?

A1: Yes. PHP provides an entire suite of functions that cover alternative calendars. You can read about these
in the official PHP Manual at http://www.php.net/manual/en/ref.calendar.php.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: What PHP function did we use to check the validity of a date?

A1: checkdate()

2: What PHP function did we use to create a timestamp?

A2: mktime()

3: What PHP function did we use to create an associative array of date-related information?

A3: getdate()

Activity

Use your fancy new date pull-down class in the context of your own form. Create a back-end script that takes the
selected dates and displays their input.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 13. Working with Strings
The World Wide Web is very much a plain text environment. No matter how rich Web content becomes, HTML lies
behind it all. It is no accident, then, that PHP provides many functions with which you can format, investigate, and
manipulate strings. As you might expect, MySQL also comes with its own set of string-related functions, which you will
also learn about in this hour.

In this hour, you will learn

How to format strings

How to determine the length of a string

How to find a substring within a string

How to break a string down into component parts

How to remove whitespace from the beginning or end of a string

How to replace substrings

How to change the case of a string

How to use MySQL to put strings together or extract pieces of strings

How to use MySQL to create variations of original strings

How to use MySQL to find alternate representations of strings, in different bases

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Strings with PHP
Until now, we have simply printed any strings that we want to display directly to the browser. PHP provides two
functions that allow you first to apply formatting, whether to round doubles to a given number of decimal places, define
alignment within a field, or display data according to different number systems. In this section, you will look at a few of
the formatting options provided by printf() and sprintf().

Working with printf()

If you have any experience with C, you will be familiar with the printf() function. The PHP version is similar but not
identical. printf() requires a string argument, known as a format control string. It also accepts additional arguments of
different types. The format control string contains instructions indicating how to display these additional arguments. The
following snippet, for example, uses printf() to output an integer as a decimal:

printf("This is my number: %d", 55);
// prints "This is my number: 55"

Within the format control string (the first argument), we have included a special code, known
as a conversion specification.

A conversion specification begins with a percent (%) symbol and defines how to treat the corresponding argument to
printf(). You can include as many conversion specifications as you want within the format control string, as long as you
send an equivalent number of arguments to printf().

The following snippet outputs two numbers using printf():

printf("First number: %d
\nSecond number: %d
\n", 55, 66);
// Output:
// First number: 55
// Second number: 66

The first conversion specification corresponds to the first of the additional arguments to printf(), which is 55. The
second conversion specification corresponds to 66. The d following the percent symbol requires that the data be treated
as a decimal integer. This part of a conversion specification is a type specifier.

printf() and Type Specifiers

You have already come across one type specifier, d, which displays data in decimal format. Table 13.1 lists the other
available type specifiers.

Table 13.1. Type Specifiers
Specifier Description

d Display argument as a decimal number

b Display an integer as a binary number

c Display an integer as ASCII equivalent

f Display an integer as a floating-point number (double)

o Display an integer as an octal number (base 8)

s Display argument as a string

x Display an integer as a lowercase hexadecimal number (base 16)

X Display an integer as an uppercase hexadecimal number (base 16)

Listing 13.1 uses printf() to display a single number according to some of the type specifiers listed in Table 13.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 13.1 uses printf() to display a single number according to some of the type specifiers listed in Table 13.1.

Listing 13.1 Demonstrating Some Type Specifiers

 1: <html>
 2: <head>
 3: <title>Listing 13.1 Demonstrating some type specifiers</title>
 4: </head>
 5: <body>
 6: <?php
 7: $number = 543;
 8: printf("Decimal: %d
", $number);
 9: printf("Binary: %b
", $number);
 10: printf("Double: %f
", $number);
 11: printf("Octal: %o
", $number);
 12: printf("String: %s
", $number);
 13: printf("Hex (lower): %x
", $number);
 14: printf("Hex (upper): %X
", $number);
 15: ?>
 16: </body>
 17: </html>

Put these lines into a text file called listing 13.1.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look something like Figure 13.1. As you can see, printf() is a
quick way of converting data from one number system to another and outputting the result.

Figure 13.1. Demonstrating conversion specifiers.

When you specify a color in HTML, you combine three hexadecimal numbers between 00 and FF, representing the
values for red, green, and blue. You can use printf() to convert three decimal numbers between 0 and 255 to their
hexadecimal equivalents:

$red = 204;
$green = 204;
$blue = 204;
printf("#%X%X%X", $red, $green, $blue);
// prints "#CCCCCC"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// prints "#CCCCCC"

Although you can use the type specifier to convert from decimal to hexadecimal numbers, you can't use it to determine
how many characters the output for each argument should occupy. Within an HTML color code, each hexadecimal
number should be padded to two characters, which would become a problem if we changed our $red, $green, and
$blue variables in the preceding snippet to contain 1, for example. We would end up with the output "#111". You can
force the output of leading zeros by using a padding specifier.

Padding Output with the Padding Specifier

You can require that output be padded by leading characters. The padding specifier should directly follow the percent
sign that begins a conversion specification. To pad output with leading zeros, the padding specifier should consist of a
zero followed by the number of characters you want the output to take up. If the output occupies fewer characters than
this total, the difference will be filled with zeros:

printf("%04d", 36);
// prints "0036"

To pad output with leading spaces, the padding specifier should consist of a space character followed by the number of
characters that the output should occupy:

printf("% 4d", 36)
// prints " 36"

A browser will not display multiple spaces in an HTML document. You can force
the display of spaces and newlines by placing <PRE> tags around your output
as follows:

<pre>
<?php
print "The spaces will be visible";
?>
</pre>

If you want to format an entire document as text, you can use the header()
function to change the Content-Type header:

header("Content-Type: text/plain");

Remember that your script must not have sent any output to the browser for
the header() function to work as desired.

You can specify any character other than a space or a zero in your padding specifier with a single quotation mark
followed by the character you want to use:

printf ("%'x4d", 36);
// prints "xx36"

We now have the tools we need to complete our HTML code example. Until now, we could convert three numbers, but
we could not pad them with leading zeros:

$red = 1;
$green = 1;
$blue = 1;
printf("#%02X%02X%02X", $red, $green, $blue);
// prints "#010101"

Each variable is output as a hexadecimal number. If the output occupies fewer than two spaces, leading zeros will be
added.

Specifying a Field Width

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify the number of spaces within which your output should sit. The field width specifier is an integer that
should be placed after the percent sign that begins a conversion specification (assuming that no padding specifier is
defined). The following snippet outputs a list of four items, all of which sit within a field of 20 spaces. To make the
spaces visible on the browser, we place all our output within a PRE element:

print "<pre>";
printf("%20s\n", "Books");
printf("%20s\n", "CDs");
printf("%20s\n", "Games");
printf("%20s\n", "Magazines");
print "</pre>";

Figure 13.2 shows the output of this snippet.

Figure 13.2. Aligning with field width specifiers.

By default, output is right-aligned within the field you specify. You can make it left-aligned by prepending a minus (–)
symbol to the field width specifier:

printf("%-20s\n", "Left aligned");

Note that alignment applies to the decimal portion of any number that you output. In other words, only the portion
before the decimal point of a double will sit flush to the end of the field width when right-aligned.

Specifying Precision

If you want to output data in floating-point format, you can specify the precision to which you want to round your data.
This capability is particularly useful when you are dealing with currency. The precision identifier should be placed
directly before the type specifier. It consists of a dot (.) followed by the number of decimal places to which you want to
round. This specifier has an effect only on data that is output with the f type specifier:

printf("%.2f", 5.333333);
// prints "5.33"

In the C language, you can use a precision specifier with printf() to specify
padding for decimal output. The precision specifier has no effect on decimal
output in PHP. Use the padding specifier to add leading zeros to integers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conversion Specifications: A Recap

Table 13.2 lists the specifiers that can make up a conversion specification in the order that they would be included. Note
that it is difficult to use both a padding specifier and a field width specifier. You should choose to use one or the other,
but not both.

Table 13.2. Components of Conversion Specification
Name Description Example

Padding specifier Determines the number of characters that output should occupy, and the characters to
add otherwise

'4'

Field width
specifier

Determines the space within which output should be formatted '20'

Precision
specifier

Determines the number of decimal places to which a double should be rounded '.4'

Type specifier Determines the data type that should be output 'd'

Listing 13.2 uses printf() to output a list of products and prices.

Listing 13.2 Using printf() to Format a List of Product Prices

 1: <html>
 2: <head>
 3: <title>Listing 13.2 Using printf() to format
 4: a list of product prices</title>
 5: </head>
 6: <body>
 7: <?php
 8: $products = array("Green armchair"=>222.4,
 9: "Candlestick"=>"4",
 10: "Coffee table"=>80.6
 11:);
 12: print "<pre>";
 13: printf("%-20s%23s\n", "Name", "Price");
 14: printf("%'-43s\n", "");
 15: foreach ($products as $key=>$val) {
 16: printf("%-20s%20.2f\n", $key, $val);
 17: }
 18: print("</pre>");
 19: ?>
 20: </body>
 21: </html>

We first define an associative array containing product names and prices on line 8. We open print a PRE element so
that the browser will recognize our spaces and newlines. Our first printf() call on line 13 defines the following format
control string:

"%-20s%23s\n"

The first conversion specification ("%-20s") uses a field width specifier of 20 characters, with the output left-justified.
We use a string type specifier. The second conversion specification ("%23s") sets up a right-aligned field width. This
printf() call will output our field headers.

Our second printf() function call on line 14 draws a line of - characters across a field of 43 characters. We achieve this
result with a padding specifier, which adds padding to an empty string.

The final printf() call on line 16 is part of a foreach statement that loops through our product array. We use two
conversion specifications. The first ("%-20s") prints the product name as a string left-justified within a 20-character
field. The second conversion specification ("%20.2f") uses a field width specifier to ensure that output will be right-
aligned within a 20-character field, and a precision specifier to ensure that the double we output is rounded to two
decimal places.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decimal places.

Put these lines into a text file called listing13.2.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 13.3.

Figure 13.3. Products and prices formatted with printf().

Argument Swapping

As of PHP 4.0.6, it became possible to use the format control string to change the order in which the provided
arguments are incorporated into output.

Imagine, for example, that you are printing dates to the browser. You have the dates in a multidimensional array and
are using printf() to format the output:

<?
$dates = array(
 array('mon'=> 12, 'mday'=>25, 'year'=>2001),
 array('mon'=> 5, 'mday'=>23, 'year'=>2000),
 array('mon'=> 10, 'mday'=>29, 'year'=>2001)
);

$format = include("local_format.php");

foreach($dates as $date) {
 printf("$format", $date['mon'], $date['mday'], $date['year']);
}
?>

In the preceding snippet, we get our format control string from an include file called local_format.php. Assume that
this file contains only the following:

<?php
return "%02d/%02d/%d
";
?>

In that case, our output will be in the format mm/dd/yyyy:

12/25/2001
05/23/2000
10/29/2001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10/29/2001

Imagine now that we are installing our script for a British site. In the United Kingdom dates are commonly presented
with days before months (dd/mm/yyyy). The core code cannot be changed, but configuration files such as
local_format.php can. Luckily, we can now alter the order in which the arguments are presented from within the
format control code:

return "%2\$02d/%1\$02d/%3\$d
";

We can insert the argument number we are interested in after the initial percentage character that marks each
conversion specification, followed by an escaped dollar ($) character. So, in the preceding snippet, we are demanding
that the second argument be presented, followed by the first, followed by the third. The result is a list of dates in British
format:

25/12/2001
23/05/2000
29/10/2001

Storing a Formatted String

The printf() function outputs data to the browser, which means that the results are not available to your scripts. You
can, however, use the function sprintf(), which works in exactly the same way as printf() except that it returns a
string that you can then store in a variable for later use. The following snippet uses sprintf() to round a double to two
decimal places, storing the result in $dosh:

$dosh = sprintf("%.2f", 2.334454);
print "You have $dosh dollars to spend";

A particular use of sprintf() is to write formatted data to a file. You can call sprintf() and assign its return value to a
variable that can then be printed to a file with fputs().
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Investigating Strings in PHP
You do not always know everything about the data that you are working with. Strings can arrive from many sources,
including user input, databases, files, and Web pages. Before you begin to work with data from an external source, you
often will need to find out more about it. PHP provides many functions that enable you to acquire information about
strings.

A Note About Indexing Strings

We will frequently use the word index in relation to strings. You will have come across the word more frequently in the
context of arrays. In fact, strings and arrays are not as different as you might imagine. You can think of a string as an
array of characters. So you can access individual characters of a string as if they were elements of an array:

$test = "scallywag";
print $test[0]; // prints "s"
print $test[2]; // prints "a"

It is important to remember, therefore, that when we talk about the position or index of a character within a string,
characters, like array elements, are indexed from 0.

Finding the Length of a String with strlen()

You can use strlen() to determine the length of a string. strlen() requires a string and returns an integer representing
the number of characters in the variable you have passed it. strlen() might typically be used to check the length of
user input. The following snippet tests a membership code to ensure that it is four characters long:

if (strlen($membership) == 4) {
 print "Thank you!";
} else {
 print "Your membership number must have 4 digits<P>";
}

The user is thanked for his input only if the global variable $membership contains four characters; otherwise, an error
message is generated.

Finding a Substring Within a String with strstr()

You can use strstr() to test whether a string exists embedded within another string. strstr() requires two arguments: a
source string and the substring you want to find within it. The function returns false if the substring is absent.
Otherwise, it returns the portion of the source string beginning with the substring. For the following example, imagine
that we want to treat membership codes that contain the string AB differently from those that do not:

$membership = "pAB7";
if (strstr($membership, "AB")) {
 print "Thank you. Don't forget that your membership expires soon!";
} else {
 print "Thank you!";
}

Because our test variable $membership does contain the string AB, strstr() returns the string AB7. This resolves to
true when tested, so we print a special message. What happens if our user enters "pab7"? Because strstr() is case
sensitive, AB will not be found. The if statement's test will fail, and the default message will be printed to the browser.
If we want to search for either AB or ab within the string, we must use stristr(), which works in exactly the same way
but is not case sensitive.

Finding the Position of a Substring with strpos()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The strpos() function tells you both whether a string exists within a larger string and where it is to be found. strpos()
requires two arguments: the source string and the substring you are seeking. The function also accepts an optional
third argument, an integer representing the index from which you want to start searching. If the substring does not
exist, strpos() returns false; otherwise, it returns the index at which the substring begins. The following snippet uses
strpos() to ensure that a string begins with the string mz:

$membership = "mz00xyz";
if (strpos($membership, "mz") === 0) {
 print "hello mz";
}

Notice the trick we had to play to get expected results. strpos() finds mz in our string but finds it at the first element
of the string. This means that it will return zero, which will resolve to false in our test. To work around this problem, we
use PHP's equivalence operator ===, which returns true if the left- and right-hand operands are equivalent and of the
same type.

Extracting Part of a String with substr()

The substr() function returns a portion of a string based on the start index and length of the portion you are looking
for. This function demands two arguments: a source string and the starting index. It returns all characters from the
starting index to the end of the string you are searching. It optionally accepts a third argument, which should be an
integer representing the length of the string you want returned. If this argument is present, substr() returns only the
number of characters specified from the start index onward.

$test = "scallywag";
print substr($test,6); // prints "wag"
print substr($test,6,2) // prints "wa"

If you pass substr() a negative number as its second (starting index) argument, it will count from the end rather than
the beginning of the string. The following snippet writes a specific message to people who have submitted an e-mail
address ending in .uk:

$test = "matt@corrosive.co.uk";
if ($test = substr($test, -3) == ".uk") {
 print "Don't forget our special offers for British customers";
} else {
 print "Welcome to our shop!";
}

Tokenizing a String with strtok()

You can parse a string word by word using strtok(). The strtok() function initially requires two arguments: the string
to be tokenized and the delimiters by which to split the string. The delimiter string can include as many characters as
you want, and the function will return the first token found. After strtok() has been called for the first time, the source
string will be cached. For subsequent calls, you should pass strtok() only the delimiter string. The function will return
the next found token every time it is called, returning false when the end of the string is reached. strtok() will usually
be called repeatedly within a loop.

Listing 13.3 uses strtok() to tokenize a URL, splitting the host and path from the query string, and further dividing the
name/value pairs of the query string.

Listing 13.3 Dividing a String into Tokens with strtok()

 1: <html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <html>
 2: <head>
 3: <title>Listing 13.3 Dividing a string into tokens with strtok()</title>
 4: </head>
 5: <body>
 6: <?php
 7: $test = "http://www.deja.com/qs.xp?";
 8: $test .= "OP=dnquery.xp&ST=MS&DBS=2&QRY=developer+php";
 9: $delims = "?&";
 10: $word = strtok($test, $delims);
 11: while (is_string($word)) {
 12: if ($word) {
 13: print "$word
";
 14: }
 15: $word = strtok($delims);
 16: }
 17: ?>
 18: </body>
 19: </html>

Put these lines into a text file called listing 13.3.php, and place this file in your Web server document root. When you
access this script through your Web browser, it should look like Figure 13.4.

Figure 13.4. Output of Listing 13.3, a tokenized string.

The strtok() function is something of a blunt instrument, and a few tricks are required to work with it. We first store
the delimiters that we want to work with in a variable, $delims on line 9. We call strtok() on line 10, passing it the
URL we want to tokenize and the $delims string. We store the first result in $word. Within the conditional expression
of the while loop on line 11, we test whether $word is a string. If it isn't, we know that the end of the string has been
reached and no further action is required.

We are testing the return type because a string containing two delimiters in a row would cause strtok() to return an
empty string when it reaches the first of these delimiters. So a more conventional test such as

while ($word) {
 $word = strtok($delims);
}

would fail if $word is an empty string, even if the end of the source string has not yet been reached.

Having established that $word contains a string, we can go on to work with it. If $word does not contain an empty
string, we print it to the browser on line 13. We must then call strtok() again on line 15 to repopulate the $word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string, we print it to the browser on line 13. We must then call strtok() again on line 15 to repopulate the $word
variable for the next test. Notice that we don't pass the source string to strtok() a second time. If we were to do this,
the first word of the source string would be returned once again, and we would find ourselves in an infinite loop.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Manipulating Strings with PHP
PHP provides many functions that will transform a string argument, subtly or radically, as you'll soon see.

Cleaning Up a String with trim() and strip_tags()

When you acquire text from the user or a file, you can't always be sure that you haven't also picked up whitespace at
the beginning and end of your data. The trim() function shaves any whitespace characters, including newlines, tabs,
and spaces, from both the start and end of a string. It accepts the string to be modified, returning the cleaned-up
version:

$text = "\t\t\tlots of room to breathe ";
$text = trim($text);
print $text;
// prints "lots of room to breathe";

Of course, removing all the whitespace might be more work than you require. You might want to keep whitespace at
the beginning of a string but remove it from the end. You can use PHP's rtrim() function exactly the same as you would
use trim(). Only whitespace at the end of the string argument is removed, however:

$text = "\t\t\tlots of room to breathe ";
$text = rtrim($text);
print $test;
// prints " lots of room to breathe";

PHP provides the ltrim() function to strip whitespace only from the beginning of a string. Once again, this is called with
the string you want to transform and returns a new string, shorn of tabs, newlines, and spaces:

$text = "\t\t\tlots of room to breathe ";
$text = ltrim($text);
print $test;
// prints "lots of room to breathe ";

PHP, by its nature, tends to work with markup text. It is not unusual to have to remove tags from a block to be able to
present it without formatting. PHP provides the strip_tags() function for this purpose. The strip_tags() function
accepts two arguments. The first is the text to transform. The second argument is optional and should be a list of HTML
tags that strip_tags() can leave in place. The tags in the exception list should not be separated by any characters.

$string = "I <i>simply</i> will not have it,
said Mr Dean<p>The end";
print strip_tags($string, "
<p>");

In the preceding code snippet, we create an HTML-formatted string. When we call strip_tags(), we pass it the $string
variable and a list of exceptions. The result is that the <p> and
 tags are left in place and all other tags are
stripped out.

Replacing a Portion of a String Using substr_replace()

The substr_replace() function works similarly to substr() except that it allows you replace the portion of a string that
you extract. The function requires three arguments: the string you are transforming, the text you want to add to it, and
the starting index. It also accepts an optional length argument. The substr_replace() function finds the portion of a
string specified by the starting index and length arguments, replacing this portion with the string provided in the replace
string argument and returning the entire transformed string.

In the following code snippet used to renew a user's membership code, we must change its second two characters:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the following code snippet used to renew a user's membership code, we must change its second two characters:

<?
$membership = "mz01xyz";
$membership = substr_replace($membership, "02", 2, 2);
print "New membership number: $membership<p>";
// prints "New membership number: mz02xyz"
?>

The result of this code is that the old membership number, "mz01xyz", becomes the new membership number
"mz02xyz".

Replacing Substrings Using str_replace

The str_replace() function replaces all instances of a string within another string. It requires three arguments: a
search string, the replacement string, and the string on which this transformation is to be effected. The function returns
the transformed string. The following example uses str_replace() to change all references from 2001 to 2002 within a
string:

$string = "Site contents copyright 2001. ";
$string .= "The 2001 Guide to All Things Good in Europe";
print str_replace("2001","2002",$string);

As of PHP 4.0.5, str_replace() has been enhanced to accept arrays as well as strings for all its arguments. This allows
us to perform multiple search-and-replace operations on a subject string and even on more than one subject string.
Consider the following snippet, for instance:

<?php
$source = array(
 "The package which is at version 4.2 was released in 2001",
 "The year 2001 was an excellent period for PointyThing4.2");
$search = array("4.2", "2001");
$replace = array("5.0", "2002");
$source = str_replace($search, $replace, $source);
foreach($source as $str) {
 print "$str
";
}
// prints:
// The package which is at version 5.0 was released in 2002
// The year 2002 was an excellent period for PointyThing5.0
?>

When str_replace() is passed an array of strings for its first and second arguments, it attempts to switch each search
string with its corresponding replace string in the text to be transformed. When the third argument is an array,
str_replace() returns an array of strings. The search-and-replace operation is executed on each string in the array.

Converting Case

PHP provides several functions that allow you to convert the case of a string. Changing case is often useful for string
comparisons. To get an uppercase version of a string, use the function strtoupper(). This function requires only the
string that you want to convert and returns the converted string:

$membership = "mz02xyz";
$membership = strtoupper($membership);
print "$membership
"; // prints "MZ02XYZ"

To convert a string to lowercase characters, use the function strtolower(). Once again, this function requires the string
you want to convert and returns a converted version:

$membership = "MZ02XYZ";
$membership = strtolower($membership);
print "$membership
"; // prints "mz02xyz"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print "$membership
"; // prints "mz02xyz"

PHP also provides a case function that has a useful cosmetic purpose. The ucwords() function makes the first letter of
every word in a string uppercase. In the following snippet, we make the first letter of every word in a user-submitted
string uppercase:

$full_name = "violet elizabeth bott";
$full_name = ucwords($full_name);
print $full_name; // prints "Violet Elizabeth Bott"

Although this function makes the first letter of each word uppercase, it does not touch any other letters. So if the user
had had problems with her Shift key in the previous example and submitted VIolEt eLIZaBeTH bOTt, our approach
would not have done much to fix the string. We would have ended up with VIolEt ELIZaBeTH BOTt, which isn't much
of an improvement. We can deal with this problem by making the submitted string lowercase with strtolower() before
invoking ucwords():

$full_name = "VIolEt eLIZaBeTH bOTt";
$full_name = ucwords(strtolower($full_name));
print $full_name; // prints "Violet Elizabeth Bott"

Wrapping Text with wordwrap() and nl2br()

When you present plain text within a Web page, you are often faced with the problem that newlines are not displayed,
and your text runs together into a featureless blob. The nl2br() function is a convenience method that converts every
newline into an HTML break. So

$string = "one line\n";
$string .= "another line\n";
$string .= "a third for luck\n";
print nl2br($string);

will print

one line

another line

a third for luck

Notice that the
 tags are output in XHTML-compliant form. This feature was introduced in PHP 4.0.5.

The nl2br() function is great for honoring newlines that are already in the text you are converting. Occasionally,
though, you may want to add arbitrary line breaks to format a column of text. The wordwrap() function is perfect for
this task. wordwrap() requires one argument: the string to be transformed. By default, wordwrap() wraps lines
every 75 characters and uses '\n' as its line break character. So the code snippet

$string = "Given a long line, wordwrap() is useful as a means of ";
$string .= "breaking it into a column and thereby making it easier to read";
print wordwrap($string);

would output

Given a long line, wordwrap() is useful as a means of breaking it into a
column and thereby making it easier to read

Because the lines are broken with the character '\n', the formatting does not show up in HTML mode, of course.
wordwrap() has two more optional arguments: a number representing the maximum number of characters per line
and a string representing the end of line string you would like to use. So applying the function call

print wordwrap($string, 24, "
\n");

to our $string variable, our output would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to our $string variable, our output would be

Given a long line,

wordwrap() is useful as

a means of breaking it

into a column and

thereby making it easier

to read

The wordwrap() function doesn't automatically break at your line limit if a word has more characters than the limit.
You can, however, use an optional fourth argument to enforce such a break. The argument should be a positive integer.
So using wordwrap() in conjunction with the fourth argument, we can now wrap a string, even where it contains
words that extend beyond the limit we are setting. This snippet

$string = "As usual you will find me at http://www.witteringonaboutit.com/";
$string .= "chat/eating_green_cheese/forum.php. Hope to see you there!";
print wordwrap($string, 24, "
\n", 1);

will output

As usual you will find

me at

http://www.witteringonab

outit.com/chat/eating_gr

een_cheese/forum.php.

Hope to see you there!

instead of

As usual you will find

me at

http://www.witteringonaboutit.com/chat/eating_green_cheese/forum.php.

Hope to see you there!

Breaking Strings into Arrays with explode()

The delightfully named explode() function is similar in some ways to strtok(). But explode() will break up a string
into an array, which you can then store, sort, or examine as you want. The explode() function requires two
arguments: the delimiter string that you want to use to break up the source string and the source string itself. The
function optionally accepts a third argument, which will determine the maximum number of pieces the string can be
broken into. The delimiter string can include more than one character, all of which will form a single delimiter (unlike
multiple delimiter characters passed to strtok(), each of which will be a delimiter in its own right). The following
snippet breaks up a date and stores the result in an array:

$start_date = "2002-01-12";
$date_array = explode("-", $start_date);
// $date[0] == "2002"
// $date[1] == "01"
// $date[2] == "12"

Now that your head is filled with PHP string functions, let's move on to MySQL string functions, many of which perform
the same tasks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Frequently Used String Functions in MySQL

MySQL's built-in string-related functions can be used several ways. You can use functions in SELECT statements
without specifying a table to retrieve a result of the function. Or you can use functions to enhance your SELECT results
by concatenating two fields to form a new string.

Even if you never use these functions in your applications, it's good to know they exist, and, if nothing else, you'll get
some good practice in this hour using the MySQL monitor's command-line interface.

Length and Concatenation Functions

The group of length and concatenation functions focuses on the length of strings and concatenating strings together.
Length-related functions include LENGTH(), OCTET_LENGTH(), CHAR_LENGTH(), and CHARACTER_LENGTH(),
which do virtually the same thing—count characters in a string.

mysql> select length('This is cool!');
+-------------------------+
| LENGTH('This is cool!') |
+-------------------------+
| 13 |
+-------------------------+

1 row in set (0.00 sec)

The fun begins with the CONCAT() function, which is used to concatenate two or more strings:

mysql> select concat('My', 'S', 'QL');
+-------------------------+
| CONCAT('My', 'S', 'QL') |
+-------------------------+
| MySQL |
+-------------------------+
1 row in set (0.00 sec)

Imagine using this function with a table containing names, split into firstname and lastname fields. Instead of using
two strings, use two field names to concatenate the firstname and the lastname fields. By concatenating the fields,
you reduce the lines of code necessary to achieve the same result in your application:

mysql> select concat(firstname, lastname) from table_name;
+-----------------------------+
| CONCAT(firstname, lastname) |
+-----------------------------+
| JohnSmith |
| JaneSmith |
| JimboJones |
| AndySmith |
| ChrisJones |
| AnnaBell |
| JimmyCarr |
| AlbertSmith |
| JohnDoe |
+-----------------------------+
9 rows in set (0.00 sec)

If you're using a field name and not a string in a function, don't enclose the field
name within quotation marks. If you do, MySQL will interpret the string literally. In
the CONCAT() example, you would get the following result:

mysql> select concat('firstname', 'lastname') FROM table_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select concat('firstname', 'lastname') FROM table_name;
+---------------------------------+
| CONCAT('firstname', 'lastname') |
+---------------------------------+
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
| firstnamelastname |
+---------------------------------+
9 rows in set (0.00 sec)

The CONCAT() function would be useful if there were some sort of separator between the names, and that's where the
next function comes in: CONCAT_WS().

As you may have figured out, CONTACT_WS() stands for "concatenate with separator." The separator can be
anything you choose, but the following example uses whitespace:

mysql> select concat_ws(' ', firstname, lastname) FROM table_name;
+-------------------------------------+
| CONCAT_WS(' ', firstname, lastname) |
+-------------------------------------+
| John Smith |
| Jane Smith |
| Jimbo Jones |
| Andy Smith |
| Chris Jones |
| Anna Bell |
| Jimmy Carr |
| Albert Smith |
| John Doe |
+-------------------------------------+
9 rows in set (0.00 sec)

If you want to shorten the width of your result table, you can use AS to name the custom result field:

mysql> select concat_ws(' ', firstname, lastname) AS fullname FROM table_name;
+----------------+
| fullname |
+----------------+
| John Smith |
| Jane Smith |
| Jimbo Jones |
| Andy Smith |
| Chris Jones |
| Anna Bell |
| Jimmy Carr |
| Albert Smith |
| John Doe |
+----------------+
9 rows in set (0.00 sec)

Trimming and Padding Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL provides several functions for adding and removing extra characters (including whitespace) from strings. The
RTRIM() and LTRIM() functions remove whitespace from either the right or left side of a string:

mysql> select rtrim('stringstring ');
+------------------------+
| RTRIM('stringstring ') |
+------------------------+
| stringstring |
+------------------------+
1 row in set (0.00 sec)

mysql> select ltrim(' stringstring');
+------------------------+
| LTRIM(' stringstring') |
+------------------------+
| stringstring |
+------------------------+
1 row in set (0.00 sec)

You may have padded strings to trim if the string is coming out of a fixed-width field, and either doesn't need to carry
along the additional padding or is being inserted into a varchar or other non–fixed-width field. If your strings are
padded with a character besides whitespace, use the TRIM() function to name the characters you want to remove. For
example, to remove the leading "X" characters from the string XXXneedleXXX, use

mysql> select trim(leading 'X' from 'XXXneedleXXX');
+---------------------------------------+
| TRIM(LEADING 'X' from 'XXXneedleXXX') |
+---------------------------------------+
| needleXXX |
+---------------------------------------+
1 row in set (0.00 sec)

Use TRAILING to remove the characters from the end of the string:

mysql> select trim(trailing 'X' from 'XXXneedleXXX');
+--+
| TRIM(TRAILING 'X' from 'XXXneedleXXX') |
+--+
| XXXneedle |
+--+
1 row in set (0.00 sec)

If neither LEADING nor TRAILING is indicated, both are assumed:

mysql> select trim('X' from 'XXXneedleXXX');
+-------------------------------+
| TRIM('X' from 'XXXneedleXXX') |
+-------------------------------+
| needle |
+-------------------------------+
1 row in set (0.00 sec)

Just like RTRIM() and LTRIM() remove padding characters, RPAD() and LPAD() add characters to a string. For
example, you may want to add specific identification characters to a string that is part of an order number, in a
database used for sales. When you use the padding functions, the required elements are the string, the target length,
and the padding character. For example, pad the string needle with the X character until the string is 10 characters
long:

mysql> select rpad('needle', 10, 'X');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select rpad('needle', 10, 'X');
+-------------------------+
| RPAD('needle', 10, 'X') |
+-------------------------+
| needleXXXX |
+-------------------------+
1 row in set (0.00 sec)

mysql> select lpad('needle', 10, 'X');
+-------------------------+
| LPAD('needle', 10, 'X') |
+-------------------------+
| XXXXneedle |
+-------------------------+
1 row in set (0.00 sec)

Location and Position Functions

The group of location and position functions is useful for finding parts of strings within other strings. The LOCATE()
function returns the position of the first occurrence of a given substring within the target string. For example, you can
look for a needle in a haystack:

mysql> select locate('needle', 'haystackneedlehaystack');
+--+
| LOCATE('needle', 'haystackneedlehaystack') |
+--+
| 9 |
+--+
1 row in set (0.00 sec)

The substring needle begins at position 9 in the target string. If the substring cannot be found in the target string,
MySQL returns 0 as a result.

Unlike position counting within most programming languages, which starts at 0,
position counting using MySQL starts at 1.

An extension of the LOCATE() function is to use a third argument for starting position. If you start looking for needle
in haystack before position 9, you'll receive a result. Otherwise, because needle starts at position 9, you'll receive a 0
result if you specify a greater starting position:

mysql> select locate('needle', 'haystackneedlehaystack',6);
+--+
| LOCATE('needle', 'haystackneedlehaystack',9) |
+--+
| 9 |
+--+
1 row in set (0.00 sec)
mysql> select locate('needle', 'haystackneedlehaystack',12);
+---+
| LOCATE('needle', 'haystackneedlehaystack',12) |
+---+
| 0 |
+---+
1 row in set (0.00 sec)

Substring Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your goal is to extract a substring from a target string, several functions fit the bill. Given a string, starting position,
and length, you can use the SUBSTRING() function. This example gets three characters from the string MySQL,
starting at position 2:

mysql> select substring("MySQL", 2, 3);
+--------------------------+
| SUBSTRING("MySQL", 2, 3) |
+--------------------------+
| ySQ |
+--------------------------+
1 row in set (0.00 sec)

If you just want a few characters from the left or right ends of a string, use the LEFT() and RIGHT() functions:

mysql> select left("MySQL", 2);
+------------------+
| LEFT("MySQL", 2) |
+------------------+
| My |
+------------------+
1 row in set (0.00 sec)

mysql> select right("MySQL", 3);
+-------------------+
| RIGHT("MySQL", 3) |
+-------------------+
| SQL |
+-------------------+
1 row in set (0.00 sec)

One of the many common uses of substring functions is to extract parts of order numbers, to find out who placed the
order. In some applications, the system is designed to automatically generate an order number, containing a date,
customer identification, and other information. If this order number always follows a particular pattern, such as XXXX-
YYYYY-ZZ, you can use substring functions to extract the individual parts of the whole. For example, if ZZ always
represents the state to which the order was shipped, you can use the RIGHT() function to extract these characters and
report the number of orders shipped to a particular state.

String Modification Functions

Your programming language of choice likely has functions to modify the appearance of strings, but if you can perform
the task as part of the SQL statement, all the better.

The MySQL LCASE() and UCASE() functions transform a string into lowercase or uppercase:

mysql> select lcase('MYSQL');
+--+
| LCASE(' MYSQL') |
+--+
| mysql |
+--+
1 row in set (0.00 sec)

mysql> select ucase('mysql');
+--+
| UCASE(' mysql') |
+--+
| MYSQL |
+--+
1 row in set (0.00 sec)

Remember, if you use the functions with field names, don't use quotation marks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remember, if you use the functions with field names, don't use quotation marks:

mysql> select ucase(lastname) from table_name;
+-----------------+
| UCASE(lastname) |
+-----------------+
| BELL |
| CARR |
| DOE |
| JONES |
| JONES |
| SMITH |
| SMITH |
| SMITH |
| SMITH |
+-----------------+
9 rows in set (0.00 sec)

Another fun string-manipulation function is REPEAT(), which does just what it sounds like—repeats a string for a given
number of times:

mysql> select repeat("bowwow", 4);
+--------------------------+
| REPEAT("bowwow", 4) |
+--------------------------+
| bowwowbowwowbowwowbowwow |
+--------------------------+
1 row in set (0.00 sec)

The REPLACE() function replaces all occurrences of a given string with another string:

mysql> select replace('bowwowbowwowbowwowbowwow', 'wow', 'WOW');
+---+
| REPLACE('bowwowbowwowbowwowbowwow', 'wow', 'WOW') |
+---+
| bowWOWbowWOWbowWOWbowWOW |
+---+
1 row in set (0.00 sec)

Obscure String Functions

The group of obscure string functions focuses on gathering more information about characters or converting characters
to different bases—far and away the least common usage of string functions in MySQL, but important nonetheless if
you're into such things. The first function is the ASCII() function, which gets the ASCII code value of a given character.
This example gets the ASCII value of the ampersand (&) character:

mysql> select ascii('&');
+----------------+
| ASCII('&') |
+----------------+
| 38 |
+----------------+
1 row in set (0.04 sec)

If a string contains multiple characters, the function gets the value of the left-most character:

mysql> select ascii('def');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select ascii('def');
+--------------+
| ASCII('def') |
+--------------+
| 100 |
+--------------+
1 row in set (0.00 sec)

In this case, "100" is the ASCII value of "d."

The next three functions return string representations of binary, octal, and hexadecimal values. Like the ASCII()
function, the BIN(), OCT(), and HEX() functions do not require a table selection but return values without a specified
table.

The following example gets a string representation of the binary value of the integer 56895:

mysql> select bin(56895);
+------------------+
| BIN(56895) |
+------------------+
| 1101111000111111 |
+------------------+
1 row in set (0.00 sec)

The following example gets a string representation of the octal value of the integer 56895:

mysql> select oct(56895);
+------------+
| OCT(56895) |
+------------+
| 157077 |
+------------+
1 row in set (0.00 sec)

The following example gets a string representation of the hexadecimal value of the integer 56895:

mysql> select hex(56895);
+------------+
| HEX(56895) |
+------------+
| DE3F |
+------------+
1 row in set (0.00 sec)

You can also use the CONV() function to convert numbers between bases. This function has three parts: the number,
the base you're converting from, and the base you're converting to.

For example, to convert the integer 56895 from base 10 to base 8 and return its value, use

mysql> select conv(56895,10,8);
+------------------+
| CONV(56895,10,8) |
+------------------+
| 157077 |
+------------------+
1 row in set (0.00 sec)

This result is equivalent to the OCT() function. Similarly, to convert an integer from base 10 to base 16, use

mysql> select conv(56895,10,16);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select conv(56895,10,16);
+-------------------+
| CONV(56895,10,16) |
+-------------------+
| DE3F |
+-------------------+
1 row in set (0.00 sec)

This result is equivalent to the HEX() function.

You can also convert from base 8 to base 16:

mysql> select conv(157077,8,16);
+-------------------+
| CONV(157077,8,16) |
+-------------------+
| DE3F |
+-------------------+
1 row in set (0.00 sec)

And so on. The minimum base is 2 and the maximum base is 36.

Another function for working with characters and ASCII codes is the CHAR() function, which takes a series of integers
representing ASCII codes and returns a string made up of the results:

mysql> select char(84,104,105,115,32,105,115,32,99,111,111,108,33);
+--+
| CHAR(84,104,105,115,32,105,115,32,99,111,111,108,33) |
+--+
| This is cool! |
+--+
1 row in set (0.00 sec)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you examined some of the functions that enable you to take control of the strings in your PHP scripts. You
learned how to format strings with printf() and sprint(). You should be able to use these functions both to create
strings that transform data and lay it out. You learned about functions that investigate strings. You should be able to
discover the length of a string with strlen(), determine the presence of a substring with strpos(), or extract a
substring with substr(). You should be able to tokenize a string with strtok().
You also learned about functions that transform strings. You can now remove whitespace from the beginning or end of a
string with trim(), ltrim(), or rtrim(). You can change case with strtoupper(), strtolower(), or ucwords(). You can
replace all instances of a string with str_replace().
After learning the PHP methods for string manipulation, you were introduced to MySQL functions that perform actions
on strings. If you have strings in MySQL you want to concatenate or for which you want to count characters, you can
use functions such as CONCAT(), CONCAT_WS(), and LENGTH(). To pad or remove padding from strings, use
RPAD(), LPAD(), TRIM(), LTRIM(), and RRIM() to get just the strings you want. You can also find the location of a
string within another, or to return a part of a given string, using the LOCATE(), SUBSTRING(), LEFT(), and
RIGHT() functions. Functions such as LCASE(), UCASE(), REPEAT(), and REPLACE() also return variations of the
original strings. MySQL also has numerous functions for representing strings, such as ASCII(), BIN(), OCT(), HEX(),
and CONV() for converting between bases.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Are there any other string functions that might be useful to me?

A1: Yes. PHP has more than 60 string functions! You can read about them all in the PHP Manual online at
http://www.php.net/manual/ref.strings.php.

Q2: Can I use multiple functions in one statement, such as making a concatenated string all
uppercase?

A2: Sure—just be mindful of your opening and closing parentheses. This example shows how to uppercase the
concatenated first and last names from the master name table:

mysql> SELECT UCASE(CONCAT_WS(' ', firstname, lastname)) FROM table_name;
+--+
| UCASE(CONCAT_WS(' ', firstname, lastname)) |
+--+
| JOHN SMITH |
| JANE SMITH |
| JIMBO JONES |
| ANDY SMITH |
| CHRIS JONES |
| ANNA BELL |
| JIMMY CARR |
| ALBERT SMITH |
| JOHN DOE |
+--+
9 rows in set (0.00 sec)

If you want to uppercase just the last name, use

mysql> SELECT CONCAT_WS(' ', firstname, UCASE(lastname)) FROM master_name;
+--+
| CONCAT_WS(' ', firstname, UCASE(lastname)) |
+--+
| John SMITH |
| Jane SMITH |
| Jimbo JONES |
| Andy SMITH |
| Chris JONES |
| Anna BELL |
| Jimmy CARR |
| Albert SMITH |
| John DOE |
+--+
9 rows in set (0.00 sec)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: What conversion specifier would you use with printf() to format an integer as a double? Indicate the full
syntax required to convert the integer 33.

A1: You use the conversion specifier f to format an integer as a double:

printf("%f", 33);

2: How would you pad the conversion you effected in question 1 with zeros so that the part before the
decimal point is four characters long?

A2: You can pad the output from printf() with the padding specifier—that is, a space or a zero followed by a
number representing the number of characters you want to pad by.

printf("%04f", 33);

3: How would you specify a precision of two decimal places for the floating-point number you have been
formatting in the previous questions?

A3: The precision specifier consists of a dot (.) followed by a number representing the precision you want to
apply. It should be placed before the conversion specifier:

printf("%04.2f", 33);

4: What function would you use to extract a substring from a string?

A4: The substr() function extracts and returns a substring.

5: How might you remove whitespace from the beginning of a string?

A5: The ltrim() function removes whitespace from the start of a string.

6: How would you break up a delimited string into an array of substrings?

A6: The explode() function splits up a string into an array.

7: Write an SQL query to find the starting position of a substring "grape" in a string
"applepearbananagrape".

A7: SELECT LOCATE('grape', 'applepearbananagrape');

8: Write a query that selects the last 5 characters from the string "applepearbananagrape".

A8: SELECT RIGHT("applepearbananagrape", 5);

Activities

1. Create a feedback form that accepts a user's full name and an email address. Use case conversion functions to
capitalize the first letter of each name the user submits and print the result back to the browser. Check that the
user's email address contains the @ symbol and print a warning otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Create an array of doubles and integers. Loop through the array converting each element to a floating-point
number with a precision of 2. Right-align the output within a field of 20 characters.

3. Using both PHP and MySQL, practice using functions within functions, such as making case changes on
substrings and concatenating strings.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 14. Creating a Simple Discussion Forum
Although the ultimate goal of this hour is to create a simple discussion forum, a majority of the hour is devoted to
understanding the thought processes behind designing an application using a relational database.

In this hour, you will learn

Three types of table relationships

How to normalize your database

How to implement a good database design process

How to create the tables, input forms, and display of a simple discussion forum

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Types of Table Relationships
Table relationships come in several forms:

One-to-one relationships

One-to-many relationships

Many-to-many relationships

For example, suppose you have a table called employees that contains each person's Social
Security number, name, and the department in which he or she works. Suppose you also have
a separate table called departments, containing the list of all available departments, made
up of a Department ID and a name. In the employees table, the Department ID field
matches an ID found in the departments table. You can see this type of relationship in
Figure 14.1. The "PK" next to the field named stands for primary key, which you'll learn about
during this hour.

Figure 14.1. The employees and departments tables are related through the
DeptID.

In the following sections, you will take a closer look at each of the relationship types.

One-to-One Relationships

In a one-to-one relationship, a key appears only once in a related table. The employees and departments tables do
not have a one-to-one relationship because many employees undoubtedly belong to the same department. A one-to-
one relationship exists, for example, if each employee is assigned one computer within a company. Figure 14.2 shows
the one-to-one relationship of employees to computers.

Figure 14.2. One computer is assigned to each employee.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.2. One computer is assigned to each employee.

The employees and computers tables in your database would look something like Figure 14.3, which represents a
one-to-one relationship.

Figure 14.3. One-to-one relationship in the data model.

One-to-Many Relationships

In a one-to-many relationship, keys from one table appear multiple times in a related table. The example shown in
Figure 14.1, indicating a connection between employees and departments, illustrates a one-to-many relationship. A
real-world example would be an organizational chart of the department, as shown in Figure 14.4.

Figure 14.4. One department contains many employees.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.4. One department contains many employees.

The one-to-many relationship is the most common type of relationship. Another practical example is the use of a state
abbreviation in an address database; each state has a unique identifier (CA for California, PA for Pennsylvania, and so
on), and each address in the United States has a state associated with it.

If you have eight friends in California and five in Pennsylvania, you will use only two distinct abbreviations in your table.
One abbreviation represents a one-to-eight relationship (CA), and the other represents a one-to-five (PA) relationship.

Many-to-Many Relationships

The many-to-many relationship often causes problems in practical examples of normalized databases, so much so that
it is common to simply break many-to-many relationships into a series of one-to-many relationships. In a many-to-
many relationship, the key value of one table can appear many times in a related table. So far, it sounds like a one-to-
many relationship, but here's the curveball: The opposite is also true, meaning that the primary key from that second
table can also appear many times in the first table.

Think of such a relationship this way, using the example of students and classes. A student has an ID and a name. A
class has an ID and a name. A student usually takes more than one class at a time, and a class always contains more
than one student, as you can see in Figure 14.5.

Figure 14.5. Students take classes, classes contain students.

As you can see, this sort of relationship doesn't present an easy method for relating tables. Your tables could look like
Figure 14.6, seemingly unrelated.

Figure 14.6. The students table and the classes table, unrelated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.6. The students table and the classes table, unrelated.

To make the theoretical many-to-many relationship, you would create an intermediate table, one that sits between the
two tables and essentially maps them together. You might build one similar to the table in Figure 14.7.

Figure 14.7. The students_classes_map table acts as an intermediary.

If you take the information in Figure 14.5 and put it into the intermediate table, you would have something like Figure
14.8.

Figure 14.8. The students_ classes_map table populated with data.

As you can see, many students and many classes happily coexist within the students_classes_map table.

With this introduction to the types of relationships, learning about normalization should be a snap.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Understanding Normalization
Normalization is simply a set of rules that will ultimately make your life easier when you're acting as a database
administrator. It's the art of organizing your database in such a way that your tables are related where appropriate and
flexible for future growth.

The sets of rules used in normalization are called normal forms. If your database design follows the first set of rules, it's
considered in the first normal form. If the first three sets of rules of normalization are followed, your database is said to
be in the third normal form.

Throughout this hour, you'll learn about each rule in the first, second, and third normal forms and, we hope, will follow
them as you create your own applications. You'll be using a sample set of tables for a students and courses database
and taking it to the third normal form.

Problems with the Flat Table

Before launching into the first normal form, you have to start with something that needs to be fixed. In the case of a
database, it's the flat table. A flat table is like a spreadsheet—it has many, many columns. There are no relationships
between multiple tables; all the data you could possibly want is right there in that flat table. This scenario is inefficient
and consumes more physical space on your hard drive than a normalized database.

In your students and courses database, assume you have the following fields in your flat table:

StudentName— The name of the student.

CourseID1— The ID of the first course taken by the student.

CourseDescription1— The description of the first course taken by the student.

CourseInstructor1— The instructor of the first course taken by the student.

CourseID2— The ID of the second course taken by the student.

CourseDescription2— The description of the second course taken by the student.

CourseInstructor2— The instructor of the second course taken by the student.

Repeat CourseID, CourseDescription, and CourseInstructor columns many more times to account for all
the classes students can take during their academic career.

With what you've learned so far, you should be able to identify the first problem area: CourseID, CourseDescription,
and CourseInstructor columns are repeated groups.

Eliminating redundancy is the first step in normalization, so next you'll take this flat table to first normal form. If your
table remained in its flat format, you could have a lot of unclaimed space, and a lot of space being used unnecessarily—
not an efficient table design.

First Normal Form

The rules for the first normal form are as follows:

Eliminate repeating information.

Create separate tables for related data.

If you think about the flat table design, with many repeated sets of fields for the students and courses database, you
can identify two distinct topics: students and courses. Taking your students and courses database to the first normal
form would mean that you create two tables: one for students and one for courses, as shown in Figure 14.9.

Figure 14.9. Breaking the flat table into two tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.9. Breaking the flat table into two tables.

Your two tables now represent a one-to-many relationship of one student to many courses. Students can take as many
courses as they want and are not limited to the number of CourseID/CourseDescription/CourseInstructor
groupings that existed in the flat table.

The next step is to put the tables into second normal form.

Second Normal Form

The rule for the second normal form is

No non-key attributes depend on a portion of the primary key.

In plain English, this means that if fields in your table are not entirely related to a primary key, you have more work to
do. In the students and courses example, you need to break out the courses into their own table and modify the
students_courses table. CourseID, CourseDesc, and CourseInstructor can become a table called courses with a
primary key of CourseID. The students_courses table should then just contain two fields: StudentID and
CourseID. You can see this new design in Figure 14.10.

Figure 14.10. Taking your tables to second normal form.

This structure should look familiar to you as a many-to-many relationship using an intermediary mapping table. The
third normal form is the last form we'll look at, and you'll find it's just as simple to understand as the first two.

Third Normal Form

The rule for the third normal form is

No attributes depend on other non-key attributes.

This rule simply means that you need to look at your tables and see whether you have more fields that can be broken
down further and that aren't dependent on a key. Think about removing repeated data and you'll find your answer—
instructors. Inevitably, an instructor will teach more than one class. However, CourseInstructor is not a key of any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instructors. Inevitably, an instructor will teach more than one class. However, CourseInstructor is not a key of any
sort. So, if you break out this information and create a separate table purely for the sake of efficiency and maintenance
(as shown in Figure 14.11), that's the third normal form.

Figure 14.11. Taking your tables to third normal form.

Third normal form is usually adequate for removing redundancy and allowing for flexibility and growth. The next section
will give you some pointers for the thought process involved in database design and where it fits in the overall design
process of your application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Following the Design Process
The greatest problem in application design is a lack of forethought. As it applies to database-driven applications, the
design process must include a thorough evaluation of your database—what it should hold, how data relates to each
other, and most importantly, whether it is scalable.

The general steps in the design process are

Define the objective.

Design the data structures (tables, fields).

Discern relationships.

Define and implement business rules.

Create the application.

Creating the application is the last step—not the first! Many developers take an idea for an application, build it, and
then go back and try to make a set of database tables fit into it. This approach is completely backward, inefficient, and
will cost a lot of time and money.

Before you start any application design process, sit down and talk it out. If you can't describe your application—
including the objectives, audience, and target market—then you're not ready to build it, let alone model the database.

After you can describe the actions and nuances of your application to other people and have it make sense to them, you
can start thinking about the tables you want to create. Start with big flat tables because, after you write them down,
your newfound normalization skills will take over. You will be able to find your redundancies and visualize your
relationships.

The next step is to do the normalization. Go from flat table to first normal form and so on up to the third normal form if
possible. Use paper, pencils, sticky notes, or whatever helps you to visualize the tables and relationships. There's no
shame in data modeling on sticky notes until you're ready to create the tables themselves. Plus, using them is a lot
cheaper than buying software to do it for you; software ranges from one hundred to several thousands of dollars!

After you have a preliminary data model, look at it from the application's point of view. Or look at it from the point of
view of the person using the application you're building. This is the point where you define business rules and see
whether your data model will break. An example of a business rule for an online registration application is, "Each user
must have one e-mail address, and it must not belong to any other user." If EmailAddress wasn't a unique field in
your data model, your model would be broken based on the business rule.

After your business rules have been applied to your data model, only then can application programming begin. You can
rest assured that your data model is solid and you will not be programming yourself into a brick wall. The latter event is
all too common.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating a Discussion Forum
In the following sections, you'll learn the design process behind a simple discussion forum. This includes developing the
database tables, user input forms, and display of the results. When broken into pieces like this, such a task seems quite
simple—and it is!

Designing the Database Tables

Think of the basic components of a forum: topics and posts. A forum—if properly used by its patrons—should have
several topics, and each of those topics will have one or more posts by users. Knowing that, you should realize that the
posts are tied to the topics through a key field. This key forms the relationship between the two tables.

Think about the requirements for the topics themselves. You definitely need a field for the title, and subsequently you
may want fields to hold the creation time and the identification of the user who created the topic. Similarly, think of the
requirements for the posts: You want the text of the post, the time it was created, and the person creating it. Most
importantly, you need that key to tie the post to the topic.

The following two table creation statements create these tables, called forum_topics and forum_posts:

mysql> create table forum_topics (
 -> topic_id int not null primary key auto_increment,
 -> topic_title varchar (150),
 -> topic_create_time datetime,
 -> topic_owner varchar (150)
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> create table forum_posts (
 -> post_id int not null primary key auto_increment,
 -> topic_id int not null,
 -> post_text text,
 -> post_create_time datetime,
 -> post_owner varchar (150)
 ->);
Query OK, 0 rows affected (0.00 sec)

In this forum example, we will identify users by their e-mail addresses and not
require any sort of login sequence. In the activity at the end of this hour, you'll
be given some hints on extending this forum example to fit within an
environment of registered users.

You should now have two empty tables, waiting for some input. In the next section, you'll create the input forms for
adding a topic and a post.

Creating the Input Forms and Scripts

Before you can add any posts, you must add a topic to the forum. It is common practice in forum creation to add the
topic and the first post in that topic at the same time. From a user's point of view, it doesn't make much sense to add a
topic and then go back, select the topic, and add a reply. You want the process to be as smooth as possible.

Listing 14.1 shows the form for a new topic creation, which includes a space for the first post in the topic.

Listing 14.1 Form for Adding a Topic

 1: <html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <html>
 2: <head>
 3: <title>Add a Topic</title>
 4: </head>
 5: <body>
 6: <h1>Add a Topic</h1>
 7: <form method=post action="do_addtopic.php">
 8: <p>Your E-Mail Address:

 9: <input type="text" name="topic_owner" size=40 maxlength=150>
 10: <p>Topic Title:

 11: <input type="text" name="topic_title" size=40 maxlength=150>
 12: <P>Post Text:

 13: <textarea name="post_text" rows=8 cols=40 wrap=virtual></textarea>
 14: <P><input type="submit" name="submit" value="Add Topic"></p>
 15: </form>
 16: </body>
 17: </html>

Seems simple enough—the three fields shown in the form, which you can see in Figure 14.12, are all you need to
complete both tables; your script and database can fill in the rest. Save Listing 14.1 as something like addtopic.html
and put it in your Web server document root so that you can follow along.

Figure 14.12. The topic creation form.

To create the entry in the forum_topics table, you use the topic_title and topic_owner fields from the input form.
The topic_id and topic_create_time fields will be filled in automatically. Similarly, in the forum_posts table, you use
the post_text and topic_owner fields from the input form, and the post_id, post_create_time, and the topic_id
fields will be filled in automatically. Because you need a value for the topic_id field to be able to complete the entry in
the forum_posts table, you know that query must happen after the query to insert the record in the forum_topics
table.

Listing 14.2 creates the script to add these records to the table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 14.2 Script for Adding a Topic

 1: <?php
 2: //check for required fields from the form
 3: if ((!$_POST[topic_owner]) || (!$_POST[topic_title])
 4: || (!$_POST[post_text])) {
 5: header("Location: addtopic.html");
 6: exit;
 7: }
 8:
 9: //connect to server and select database
 10: $conn = mysql_connect("localhost", "joeuser", "somepass")
 11: or die(mysql_error());
 12: mysql_select_db("testDB",$conn) or die(mysql_error());
 13:
 14: //create and issue the first query
 15: $add_topic = "insert into forum_topics values ('', '$_POST[topic_title]',
 16: now(), '$_POST[topic_owner]')";
 17: mysql_query($add_topic,$conn) or die(mysql_error());
 18:
 19: //get the id of the last query
 20: $topic_id = mysql_insert_id();
 21:
 22: //create and issue the second query
 23: $add_post = "insert into forum_posts values ('', '$topic_id',
 24: '$_POST[post_text]', now(), '$_POST[topic_owner]')";
 25: mysql_query($add_post,$conn) or die(mysql_error());
 26:
 27: //create nice message for user
 28: $msg = "<P>The $topic_title topic has been created.</p>";
 29: ?>
 30: <html>
 31: <head>
 32: <title>New Topic Added</title>
 33: </head>
 34: <body>
 35: <h1>New Topic Added</h1>
 36: <?php print $msg; ?>
 37: </body>
 38: </html>

Lines 3–7 check for the three required fields we need to complete both tables. If either one of these fields is not
present, the user is redirected to the original form.

Lines 10–12 form the database connection, which should be familiar to you by now. Lines 15–17 create and insert the
first query, which adds the topic to the forum_topics table. Note that the first field is left blank, so the automatically
incrementing number is added by the system. Similarly, the now() function is used to time stamp the record with the
current time. The other fields in the record are completed using values from the form.

Line 20 shows the use of a very handy function: mysql_insert_id(). This function retrieves the primary key ID of the
last record inserted into the database by this script. In this case, mysql_insert_id() gets the id value from the
forum_topics table, which will become the entry for the topic_id field in the forum_posts table.

Lines 23–25 create and insert the second query, again using a mixture of information known and supplied by the
system. Line 28 simply creates a message for the user, and the rest of the script rounds out the display.

Save this listing as do_addtopic.php—the name of the action in the previous script—and place it in the document root
of your Web server. Complete the form and then submit it, and you should see the "New Topic Added" message.
Figures 14.13 and 14.14 show the sequence of events.

Figure 14.13. Adding a topic and first post.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.13. Adding a topic and first post.

Figure 14.14. Successful addition of a topic and first post.

In the next section, you'll put together two more pieces of the puzzle: displaying the topics and posts, and replying to a
topic.

Displaying the Topic List

Now that you have a topic and at least one post in your database, you can display this information and let people add
new topics or reply to existing ones. In Listing 14.3, we take a step back and create a topic listing page. This page will
show the basic information of each topic and provide the user with a link to add a new topic; you already have the form
and script for that. This script would actually be an entry page for your forum.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and script for that. This script would actually be an entry page for your forum.

Listing 14.3 Topic Listing Script

 1: <?php
 2: //connect to server and select database
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: mysql_select_db("testDB",$conn) or die(mysql_error());
 6:
 7: //gather the topics
 8: $get_topics = "select topic_id, topic_title,
 9: date_format(topic_create_time, '%b %e %Y at %r') as fmt_topic_create_time,
 10: topic_owner from forum_topics order by topic_create_time desc";
 11: $get_topics_res = mysql_query($get_topics,$conn) or die(mysql_error());
 12: if (mysql_num_rows($get_topics_res) < 1) {
 13: //there are no topics, so say so
 14: $display_block = "<P>No topics exist.</p>";
 15: } else {
 16: //create the display string
 17: $display_block = "
 18: <table cellpadding=3 cellspacing=1 border=1>
 19: <tr>
 20: <th>TOPIC TITLE</th>
 21: <th># of POSTS</th>
 22: </tr>";
 23:
 24: while ($topic_info = mysql_fetch_array($get_topics_res)) {
 25: $topic_id = $topic_info['topic_id'];
 26: $topic_title = stripslashes($topic_info['topic_title']);
 27: $topic_create_time = $topic_info['fmt_topic_create_time'];
 28: $topic_owner = stripslashes($topic_info['topic_owner']);
 29:
 30: //get number of posts
 31: $get_num_posts = "select count(post_id) from forum_posts
 32: where topic_id = $topic_id";
 33: $get_num_posts_res = mysql_query($get_num_posts,$conn)
 34: or die(mysql_error());
 35: $num_posts = mysql_result($get_num_posts_res,0,'count(post_id)');
 36:
 37: //add to display
 38: $display_block .= "
 39: <tr>
 40: <td>
 41: $topic_title

 42: Created on $topic_create_time by $topic_owner</td>
 43: <td align=center>$num_posts</td>
 44: </tr>";
 45: }
 46:
 47: //close up the table
 48: $display_block .= "</table>";
 49: }
 50: ?>
 51: <html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 51: <html>
 52: <head>
 53: <title>Topics in My Forum</title>
 54: </head>
 55: <body>
 56: <h1>Topics in My Forum</h1>
 57: <?php print $display_block; ?>
 58: <P>Would you like to add a topic?</p>
 59: </body>
 60: </html>

Although Listing 14.3 looks like a lot of code, it's actually many small, simple concepts you've already encountered.
Lines 3–5 make the connection to the database, in preparation for issuing queries. Lines 8–10 show the first of these
queries, and this particular one selects all the topic information, in order by descending date. In other words, display
the topic that was created last (the newest topic) at the top of the list. In the query, notice the use of the
date_format() function to create a much nicer date display than the one stored in the database.

Line 12 checks for the presence of any records returned by the query. If no records are returned, and therefore no
topics are in the table, you'll want to tell the user. Line 14 creates this message. At this point, if no topics existed, the
script would break out of the if...else construct and be over with, the next action occurring at line 51, which is the start
of the static HTML. If the script ended here, the message created in line 14 would be printed in line 57, and you would
see something like Figure 14.15.

Figure 14.15. No topics found.

If, however, you have topics in your forum_topics table, the script continues at line 15. At line 17 a block of text is
started, containing the beginnings of an HTML table. Lines 18–22 set up a table with two columns: one for the title and
one for the number of posts. The text block is stopped momentarily, and at line 24 we begin to loop through the results
of the original query.

The while loop in line 24 says that while there are elements to be extracted from the result set, extract each row as an
array called $topic_info, and use the field names as the array element to assign the value to a new variable. So, the
first element we try to extract is the topic_id field, on line 25. We set the value of $topic_id to
$topic_info['topic_id'], meaning that we get a local value for $topic_id from an array called $topic_info, containing
a slot called topic_id. Continue doing this for the $topic_title, $topic_create_time, and $topic_owner variables in
lines 26–28. The stripslashes() function removes any escape characters that were input into the table at the time of
record insertion.

In lines 31–35 we issue another query, in the context of the while loop, to get the number of posts for that particular
topic. In line 38 we continue the creation of the $display_block string, using the concatenation operator (.=) to make
sure this string is tacked on to the end of the string we have created so far. In line 40 we create the HTML table column
to display the link to the file that will show the topic (showtopic.php), and also print the topic owner and creation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to display the link to the file that will show the topic (showtopic.php), and also print the topic owner and creation
time. The second HTML table column, on line 43, shows the number of posts. On line 45 we break out of the while loop
and in line 48 add the last bit to the $display_block string, to close the table. The remaining lines print the HTML for
the page, including the value of the $display_block string.

If you save this file as topiclist.php and place it in your Web server document root, and if you have topics in your
database tables, you may see something like Figure 14.16.

Figure 14.16. Topics are available.

Displaying the Posts in a Topic

As you may have guessed, the next item on the task list is to build that showtopic.php file, to show the topic's postings.
Listing 14.4 does just that.

Listing 14.4 Script to Show Topic Posts

 1: <?php
 2: //check for required info from the query string
 3: if (!$_GET[topic_id]) {
 4: header("Location: topiclist.php");
 5: exit;
 6: }
 7:
 8: //connect to server and select database
 9: $conn = mysql_connect("localhost", "joeuser", "somepass")
 10: or die(mysql_error());
 11: mysql_select_db("testDB",$conn) or die(mysql_error());
 12:
 13: //verify the topic exists
 14: $verify_topic = "select topic_title from forum_topics where
 15: topic_id = $_GET[topic_id]";
 16: $verify_topic_res = mysql_query($verify_topic, $conn)
 17: or die(mysql_error());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 17: or die(mysql_error());
 18:
 19: if (mysql_num_rows($verify_topic_res) < 1) {
 20: //this topic does not exist
 21: $display_block = "<P>You have selected an invalid topic.
 22: Please try again.</p>";
 23: } else {
 24: //get the topic title
 25: $topic_title = stripslashes(mysql_result($verify_topic_res,0,
 26: 'topic_title'));
 27:
 28: //gather the posts
 29: $get_posts = "select post_id, post_text, date_format(post_create_time,
 30: '%b %e %Y at %r') as fmt_post_create_time, post_owner from
 31: forum_posts where topic_id = $_GET[topic_id]
 32: order by post_create_time asc";
 33:
 34: $get_posts_res = mysql_query($get_posts,$conn) or die(mysql_error());
 35:
 36: //create the display string
 37: $display_block = "
 38: <P>Showing posts for the $topic_title topic:</p>
 39:
 40: <table width=100% cellpadding=3 cellspacing=1 border=1>
 41: <tr>
 42: <th>AUTHOR</th>
 43: <th>POST</th>
 44: </tr>";
 45:
 46: while ($posts_info = mysql_fetch_array($get_posts_res)) {
 47: $post_id = $posts_info['post_id'];
 48: $post_text = nl2br(stripslashes($posts_info['post_text']));
 49: $post_create_time = $posts_info['fmt_post_create_time'];
 50: $post_owner = stripslashes($posts_info['post_owner']);
 51:
 52: //add to display
 53: $display_block .= "
 54: <tr>
 55: <td width=35% valign=top>$post_owner
[$post_create_time]</td>
 56: <td width=65% valign=top>$post_text

 57: REPLY TO
 58: POST</td>
 59: </tr>";
 60: }
 61:
 62: //close up the table
 63: $display_block .= "</table>";
 64: }
 65: ?>
 66: <html>
 67: <head>
 68: <title>Posts in Topic</title>
 69: </head>
 70: <body>
 71: <h1>Posts in Topic</h1>
 72: <?php print $display_block; ?>
 73: </body>
 74: </html>

In Listing 14.4, lines 3–6 check for the existence of a value for topic_id in the GET query string. Because we're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Listing 14.4, lines 3–6 check for the existence of a value for topic_id in the GET query string. Because we're
showing all the posts in a selected topic, we need to know which topic, and this is the manner in which the information
is given to us. If a value in $_GET[topic_id] does not exist, the user is redirected to the topic listing page.

If you made it past the check for a topic_id, Lines 9–11 make the connection to the database, in preparation for
issuing queries. Lines 14–17 show the first of these queries, and this one is used to validate that the topic_id sent in
the query string is actually a valid entry, by selecting the associated topic_title for the topic in question. If the
validation fails the test in line 19, a message is created in lines 21–22, and the script breaks out of the if...else
statement and finishes up by printing HTML. This output looks like Figure 14.17.

Figure 14.17. Invalid topic selected.

If, however, the topic is valid, we extract the value of topic_title in line 25, again using stripslashes() to remove any
escape characters. Next, the query is issued in lines 29–32 to gather all the posts associated with that topic, in
ascending order by time. In this case, newest posts are at the bottom of the list. At line 37 a block of text is started,
containing the beginnings of an HTML table. Lines 40–44 set up a table with two columns: one for the author of the
post and one for the post text itself. The text block is stopped momentarily and at line 46 we begin to loop through the
results of the original query.

The while loop in line 46 says that while there are elements to be extracted from the result set, extract each row as an
array called $posts_info, and use the field names as the array element to assign the value to a new variable. So, the
first element we try to extract is the post_id field, on line 47. We set the value of $post_id to
$posts_info['post_id'], meaning that we get a local value for $post_id from an array called $posts_info, containing
a slot called post_id. Continue doing this for the $post_text, $post_create_time, and $post_owner variables in
lines 48–50. The stripslashes() function is again used to remove any escape characters, and the nl2br() function is
used on the value of $posts_info[post_text], to replace all newline characters with HTML
 characters.

In line 53 we continue the creation of the $display_block string, using the concatenation operator (.=) to make sure
this string is tacked on to the end of the string we have created so far. In line 54 we create the HTML table column to
display the author and creation time of the post. The second HTML table row, on line 56, shows the text of the post as
well as a link to reply to the post. On line 60 we break out of the while loop and on line 63 add the last bit to the
$display_block string, to close the table. The remaining lines print the HTML for the page, including the value of the
$display_block string.

If you save this file as showtopic.php and place it in your Web server document root, and if you have posts in your
database tables, you may see something like Figure 14.18.

Figure 14.18. Posts in a topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.18. Posts in a topic.

A one-post topic is boring, so let's finish up this hour by creating the script to add a post to a topic.

Adding Posts to a Topic

In this final step, you will create replytopost.php, which will look remarkably similar to the form and script used to add a
topic. Listing 14.5 shows the code for this all-in-one form and script.

Listing 14.5 Script to Add Replies to a Topic

 1: <?php
 2: //connect to server and select database; we'll need it soon
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: mysql_select_db("testDB",$conn) or die(mysql_error());
 6:
 7: //check to see if we're showing the form or adding the post
 8: if ($_POST[op] != "addpost") {
 9: // showing the form; check for required item in query string
 10: if (!$_GET[post_id]) {
 11: header("Location: topiclist.php");
 12: exit;
 13: }
 14:
 15: //still have to verify topic and post
 16: $verify = "select ft.topic_id, ft.topic_title from
 17: forum_posts as fp left join forum_topics as ft on
 18: fp.topic_id = ft.topic_id where fp.post_id = $_GET[post_id]";
 19:
 20: $verify_res = mysql_query($verify, $conn) or die(mysql_error());
 21: if (mysql_num_rows($verify_res) < 1) {
 22: //this post or topic does not exist
 23: header("Location: topiclist.php");
 24: exit;
 25: } else {
 26: //get the topic id and title
 27: $topic_id = mysql_result($verify_res,0,'topic_id');
 28: $topic_title = stripslashes(mysql_result($verify_res,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 28: $topic_title = stripslashes(mysql_result($verify_res,
 29: 0,'topic_title'));
 30:
 31: print "
 32: <html>
 33: <head>
 34: <title>Post Your Reply in $topic_title</title>
 35: </head>
 36: <body>
 37: <h1>Post Your Reply in $topic_title</h1>
 38: <form method=post action=\"$_SERVER[PHP_SELF]\">
 39:
 40: <p>Your E-Mail Address:

 41: <input type=\"text\" name=\"post_owner\" size=40 maxlength=150>
 42:
 43: <P>Post Text:

 44: <textarea name=\"post_text\" rows=8 cols=40 wrap=virtual></textarea>
 45:
 46: <input type=\"hidden\" name=\"op\" value=\"addpost\">
 47: <input type=\"hidden\" name=\"topic_id\" value=\"$topic_id\">
 48:
 49: <P><input type=\"submit\" name=\"submit\" value=\"Add Post\"></p>
 50:
 51: </form>
 52: </body>
 53: </html>";
 54: }
 55: } else if ($_POST[op] == "addpost") {
 56: //check for required items from form
 57: if ((!$_POST[topic_id]) || (!$_POST[post_text]) ||
 58: (!$_POST[post_owner])) {
 59: header("Location: topiclist.php");
 60: exit;
 61: }
 62:
 63: //add the post
 64: $add_post = "insert into forum_posts values ('', '$_POST[topic_id]',
 65: '$_POST[post_text]', now(), '$_POST[post_owner]')";
 66: mysql_query($add_post,$conn) or die(mysql_error());
 67:
 68: //redirect user to topic
 69: header("Location: showtopic.php?topic_id=$topic_id");
 70: exit;
 71: }
 72: ?>

Lines 3–5 make the database connection at the outset of the script. Although you're performing multiple tasks
depending on the status of the form (whether it's being shown or submitted), both conditions require database
interaction at some point.

Line 8 checks to see whether the form is being submitted. If the value of $_POST[op] is not "addpost", the form has
not yet been submitted. Therefore, it must be shown. Before showing the form, however, you must check for that one
required item; lines 10–13 check for the existence of a value for post_id in the GET query string. If a value in
$_GET[post_id] does not exist, the user is redirected to the topic listing page.

If you made it past the check for a topic_id, lines 17–20 issue a complicated-looking query that gets the topic_id and
topic_title from the forum_topics table, based on the only value that you know: the value of the post_id. This query
both validates the existence of the post and gets information you will need later in the script. Lines 21–24 act on the
results of this validity test, again redirecting the user back to the topiclist.php page.

If the post is valid, you extract the value of topic_id and topic_title in lines 27–29, again using stripslashes() to
remove any escape characters. Next, the entirety of the form for adding a post is printed to the screen, and that's it for
this script until the form submission button is pressed. In the form, you see that the action is $_SERVER[PHP_SELF]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this script until the form submission button is pressed. In the form, you see that the action is $_SERVER[PHP_SELF]
on line 38, indicating that this script will be recalled into action. Two hidden fields are present, in lines 46 and 47, which
hold the information that needs to be passed along to the next iteration of the script.

Moving along to line 55, this block of code is executed when the script is reloaded and the value of $_POST[op] (one
of the hidden fields in the form) is "addpost". This block checks for the presence of all required fields from the form
(lines 57–61) and then, if they are all present, issues the query to add the post to the database (lines 64–66). After the
post is added to the database, the showtopic.php page is reloaded (lines 69–70), showing the user's new post along in
the line.

If you save this file as replytopost.php and place it in your Web server document root, try it out and you may see
something like Figures 14.19 and 14.20

Figure 14.19. Preparing to add a post.

Figure 14.20. A post was added to the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Following proper database design is the only way your application will be efficient, flexible, and easy to manage and
maintain. An important aspect of database design is to use relationships between tables instead of throwing all your
data into one long flat file. Types of relationships include one-to-one, one-to-many, and many-to-many.

Using relationships to properly organize your data is called normalization. There are many levels of normalization, but
the primary levels are the first, second, and third normal forms. Each level has a rule or two that you must follow.
Following all the rules helps ensure that your database is well organized and flexible.

To take an idea from inception through to fruition, you should follow a design process. This process essentially says
"think before you act." Discuss rules, requirements, and objectives; then create the final version of your normalized
tables. In this hour, you applied this knowledge to the creation of a simple discussion form, using PHP and MySQL to
create input forms and display pages for topics and posts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Are there only three normal forms?

A1: No, there are more than three normal forms. Additional forms are the Boyce-Codd normal form, fourth
normal form, and fifth normal form/Join-Projection normal form. These forms are not often followed
because the benefits of doing so are outweighed by the cost in man-hours and database efficiency.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Name three types of data relationships.

A1: One-to-one, one-to-many, many-to-many.

2: Because many-to-many relationships are difficult to represent in an efficient database design, what should
you do?

A2: Create a series of one-to-many relationships using intermediary mapping tables.

Activity

Explain each of the three normal forms to a person who works with spreadsheets and flat tables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 15. Restricting Access to Your Applications
This hour explains how to use Apache to restrict access to parts of a Web site based on the identity of the user or on
information about the request. On the application side, you can create your own mechanism for user validation and
check the validity of your users through cookies.

In this hour, you will learn

How to restrict access based on the user, client IP address, domain name, and browser version

How to use the user management tools provided with Apache

How to store and retrieve cookie information

How to use cookies for authentication

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Authentication Overview
Authorization and authentication are common requirements for many Web sites. Authentication establishes the identity
of parties in a communication.

You can authenticate yourself by something you know (a password, a cookie), something you have (an ID card, a key),
something you are (your fingerprint, your retina), or a combination of these elements. In the context of the Web,
authentication is usually restricted to the use of passwords and certificates.

Authorization deals with protecting access to resources. You can authorize based on several factors, such as the IP
address the user is coming from, the user's browser, the content the user is trying to access, or who the user is (which
is previously determined via authentication).

Apache includes several modules that provide authentication and access control and that can be used to protect both
dynamic and static content. You can either use one of these modules or implement your own access control at the
application level and provide customized login screens, single sign-on, and other advanced functionality.

Client Authentication

Users are authenticated for tracking or authorization purposes. The HTTP specification provides two authentication
mechanisms: basic. and digest. In both cases, the process is the following:

1. A client tries to access restricted content in the Web server.

2. Apache checks whether the client is providing a username and password. If not, Apache returns an HTTP 401
status code, indicating user authentication is required.

3. The client reads the response and prompts the user for the required username and password (usually with a
pop-up window).

4. The client retries accessing the Web page, this time transmitting the username and password as part of the
HTTP request. The client remembers the username and password and transmits them in later requests to the
same site, so the user does not need to retype them for every request.

5. Apache checks the validity of the credentials and grants or denies access based on the user identity and other
access rules.

In the basic authentication scheme, the username and password are transmitted in clear text, as part of the HTTP
request headers. This poses a security risk because an attacker could easily peek at the conversation between server
and browser, learn the username and password, and reuse them freely afterward.

The digest authentication provides increased security because it transmits a digest instead of the clear text password.
The digest is based on a combination of several parameters, including the username, password, and request method.
The server can calculate the digest on its own and check that the client knows the password, even when the password
itself is not transmitted over the network.

A digest algorithm is a mathematical operation that takes a text and returns
another text, a digest, which uniquely identifies the original one. A good digest
algorithm should make sure that, at least for practical purposes, different input
texts produce different digests and that the original input text cannot be
derived from the digest. MD5 is the name of a commonly used digest algorithm.

Unfortunately, although the specification has been available for quite some time, only very recent browsers support
digest authentication. This means that for practical purposes, digest authentication is restricted to scenarios in which
you have control over the browser software of your clients, such as in a company intranet.

In any case, for both digest and basic authentication, the requested information itself is transmitted unprotected over
the network. A better choice to secure access to your Web site involves using the HTTP over SSL protocol, as described
in Hour 23, "Setting Up a Secure Web Server."

User Management Methods

When the authentication module receives the username and password from the client, it needs to verify that they are
valid against an existing repository of users. The usernames and passwords can be stored in a variety of back ends.
Apache bundles support for file- and database-based authentication mechanisms. Third-party modules provide support
for additional mechanisms such as Lightweight Directory Access Protocol (LDAP) and Network Information Services

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for additional mechanisms such as Lightweight Directory Access Protocol (LDAP) and Network Information Services
(NIS.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Apache Authentication Module Functionality
Apache provides the basic framework and directives to perform authentication and access control. The authentication
modules provide support for validating passwords against a specific back end. Users can optionally be organized in
groups, easing management of access control rules.

Apache provides three built-in directives related to authentication that will be used with any of the authentication
modules: AuthName, AuthType, and Require.

AuthName accepts a string argument, the name for the authentication realm. A realm is a logical area of the Web
server that you are asking the password for. It will be displayed in the browser pop-up window.

AuthType specifies the type of browser authentication: basic or digest.

Require enables you to specify a list of users or groups that will be allowed access. The syntax is Require user
followed by one or more usernames, or Require group followed by one or more group names. For example:

Require user joe bob

or

Require group employee contractor

If you want to grant access to anyone who provides a valid username and password, you can do so with

Require valid-user

With the preceding directives, you can control who has access to specific virtual hosts, directories, files, and so on.
Although authentication and authorization are separate concepts, in practice they are tied together in Apache. Access is
granted based on specific user identity or group membership. Some third-party modules, such as certain LDAP-based
modules, allow for clearer separation between authentication and authorization.

The authentication modules included with Apache provide

Back-end storage— Provide text or database files containing the username and group information

User management— Supply tools for creating and managing users and groups in the back-end storage

Authoritative information— Specify whether the results of the module are authoritative

Sometimes users will not be allowed access because their information is not
found in the user database provided by the module, or because no
authentication rules matched their information. In that case, one of two
situations will occur:

If the module specifies its results as authoritative, a user will be denied
access and Apache will return an error.

If the module specifies its results as not authoritative, other modules
can have a chance of authenticating the user.

This enables you to have a main authorization module that knows about most
users, and to be able to have additional modules that can authenticate the rest
of the users.

File-Based Authentication

The mod_auth Apache module provides basic authentication via text files containing usernames and passwords,
similar to how traditional Unix authentication works with the /etc/passwd and /etc/groups files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

similar to how traditional Unix authentication works with the /etc/passwd and /etc/groups files.

Back-End Storage

You need to specify the file containing the list of usernames and passwords and, optionally, the file containing the list of
groups.

The users file is a Unix-style password file, containing names of users and encrypted passwords. The entries look like
the following, on Unix, using the crypt algorithm:

admin:iFrlxqg0Q6RQ6

and on Windows, using the MD5 algorithm:

admin:$apr1$Ug3.....$jVTedbQWBKTfXsn5jK6UX/

The groups file contains a list of groups and the users that belong to each one of them, separated by spaces, such as in
the following entry:

web: admin joe Daniel

The AuthUserFile and the AuthGroupFile directives take a path argument, pointing to the users file and the groups
file. The groups file is optional.

User Management

Apache includes the htpasswd utility on Unix and htpasswd.exe on Windows; they are designed to help you manage
user password files. Both versions are functionally identical, but the Windows version uses a different method to
encrypt the password. The encryption is transparent to the user and administrator. The first time you add a user, you
need to type

#> htpasswd -c file userid

where file is the password file that will contain the list of usernames and passwords, and userid is the username you
want to add. You will be prompted for a password, and the file will be created. For example, on Linux/Unix, the line

#> htpasswd -c /usr/local/apache2/conf/htusers admin

will create the password file /usr/local/apache2/conf/htusers and add the admin user.

Similar functionality exists on Windows, where the command-line operation might look something like the following:

htpasswd -c "C:\Program Files\Apache Group\Apache2\conf\htusers" admin

The -c command-line option tells htpasswd that it should create the file. When you want to add users to an existing
password file, do not use the -c option; otherwise, the file will be overwritten.

It is important that you store the password file outside the document root and thus make it inaccessible via a Web
browser. Otherwise, an attacker could download the file and get a list of your usernames and passwords. Although the
passwords are encrypted, when you have the file, it is possible to perform a brute-force attack to try to guess them.

Authoritative

The AuthAuthoritative directive takes a value of on or off. By default, it is on, meaning that the module
authentication results are authoritative. That is, if the user is not found or does not match any rules, access will be
denied.

Using mod_auth

Listing 15.1 shows a sample configuration, restricting access to the private directory in the document root to
authenticated users present in the htusers password file. Note that the optional AuthGroupFile directive is not
present.

Listing 15.1 File-Based Authentication Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 15.1 File-Based Authentication Example

 1: <Directory /usr/local/apache2/htdocs/private>
 2: AuthType Basic
 3: AuthName "Private Area"
 4: AuthUserFile /usr/local/apache2/conf/htusers
 5: AuthAuthoritative on
 6: Require valid-user
 7: </Directory>

Database File-Based Access Control

Storing usernames and passwords in plain text files is convenient, but they do not scale well. Apache needs to open and
read the files sequentially to look for a particular user. When the number of users grows, this operation becomes very
time-consuming. The mod_auth_dbm module enables you to replace the text-based files with indexed database files,
which can handle a much greater number of users without performance degradation. mod_auth_dbm is included with
Apache but is not enabled by default.

Back-End Storage

The mod_auth_dbm module provides two directives, AuthDBMUserFile and AuthDBMGroupFile, that point to the
database files containing the usernames and groups. Unlike plain text files, both directives can point to the same file,
which combines both users and groups.

User Management

Apache provides a Perl script (dbmmanage on Unix and dbmmanage.pl on Windows) that allows you to create and
manage users and groups stored in a database file. Under Unix, you might need to edit the first line of the script to
point to the location of the Perl interpreter in your system. On Windows, you need to install the additional MD5
password package. If you are using ActiveState Perl, start the Perl package manager and type

install Crypt-PasswdMD5

To add a user to a database on Unix, type

#> ./dbmmanage dbfile adduser userid

On Windows, type

perl ./dbmmanage.pl dbfile adduser userid

You will be prompted for the password, and the user will be added to the existing database file or a new file will be
created if one does not exist.

When adding a user, you can optionally specify the groups it belongs to as commaseparated arguments. The following
command adds the user daniel to the database file /usr/local/apache2/conf/dbmusers and makes it a member of
the groups employee and engineering:

#> dbmmanage /usr/local/apache2/conf/dbmusers adduser daniel employee,engineering

If you ever need to delete the user daniel, you can issue the following command:

#> dbmmanage dbfile delete daniel

The dbmmanage program supports additional options. You can find complete syntax information in the dbmmanage
manual page or by invoking dbmmanage without any arguments.

Apache 2.0 provides an additional utility, htdbm, that does not depend on Perl
and provides all the functionality that dbmmanage does.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Apache for Access Control

The mod_access module, enabled by default, allows you to restrict access to resources based on parameters of the
client request, such as the presence of a specific header or the IP address or hostname of the client.

Implementing Access Rules

You can specify access rules using the Allow and Deny directives. Each of these directives takes a list of arguments
such as IP addresses, environment variables, and domain names.

Allow/Deny Access by IP Addresses

You can deny or grant access to a client based on its IP address:

Allow from 10.0.0.1 10.0.0.2 10.0.0.3

You can also specify IP address ranges, with a partial IP address or a network/mask pair. Additionally, you can specify
the first one, two, or three bytes of an IP address. Any IP address containing those will match this rule. For example,
the rule

Deny from 10.0

will match any address starting with 10.0, such as 10.0.1.0 and 10.0.0.1.

You can also utilize the IP address and the netmask; the IP address specifies the network and the mask specifies which
bits belong to the network prefix and which ones belong to the nodes. The rule

Allow from 10.0.0.0/255.255.255.0

will match IP addresses 10.0.0.1, 10.0.0.2, and so on, to 10.0.0.254.

You can also specify the network mask via high-order bits. For example, you could write the previous rule as

Allow from 10.0.0.0/24

Allow/Deny Access by Domain Name

You can control access based on specific hostnames or partial domain names. For example, Allow from example.com
will match www.example.com, foo.example.com, and so on.

Enabling access rules based on domain names forces Apache to do a reverse
DNS lookup on the client address, bypassing the settings of the
HostNameLookups directive. This has performance implications.

Allow/Deny Access Based on Environment Variables

You can specify access rules based on the presence of a certain environment variable, prefixing the name of the
variable with env=. You can use this feature to grant or deny access to certain browsers or browser versions, to
prevent specific sites from linking to your resources, and so on. For this example to work as intended, the client needs
to transmit the User-Agent header.

For example:

BrowserMatch MSIE iexplorer
Deny from env=iexplorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deny from env=iexplorer

Because the client sends the User-Agent header, it could possibly be omitted or manipulated, but most users will not
do so and this technique will work in most cases.

Allow/Deny Access to All Clients

The keyword all matches all clients. You can specify Allow from all or Deny from all to grant or deny access to all
clients.

Evaluating Access Rules

You can have several Allow and Deny access rules. You can choose the order in which the rules are evaluated by using
the Order directive. Rules that are evaluated later have higher precedence. Order accepts one argument, which can be
Deny,Allow, Allow,Deny, or Mutual-Failure. Deny,Allow is the default value for the Order directive. Note that
there is no space in the value.

Deny,Allow

Deny,Allow specifies that Deny directives are evaluated before Allow directives. With Deny,Allow, the client is
granted access by default if there are no Allow or Deny directives or the client does not match any of the rules. If the
client matches a Deny rule, it will be denied access unless it also matches an Allow rule, which will take precedence
because Allow directives are evaluated last and have greater priority.

Listing 15.2 shows how to configure Apache to allow access to the /private location to clients coming from the internal
network or the domain example.com and deny access to everyone else.

Listing 15.2 Sample Deny,Allow Access Control Configuration

 1: <Location /private>
 2: Order Deny,Allow
 3: Deny from all
 4: Allow from 10.0.0.0/255.255.255.0 example.com
 5: </Location>

Allow,Deny

Allow,Deny specifies that Allow directives are evaluated before Deny directives. With Allow,Deny, the client is
denied access by default if there are no Allow or Deny directives or if the client does not match any of the rules. If the
client matches an Allow rule, it will be granted access unless it also matches a Deny rule, which will take precedence.

Note that the presence of Order Allow,Deny without any Allow or Deny rules causes all requests to the specified
resource to be denied because the default behavior is to deny access.

Listing 15.3 allows access to everyone except a specific host.

Listing 15.3 Sample Allow,Deny Access Control Configuration

 1: <Location /some/location/>
 2: Order Allow,Deny
 3: Allow from all
 4: Deny from host.example.com
 5: </Location>

Mutual-Failure

In the case of Mutual-Failure, the host will be granted access only if it matches an Allow directive and does not match
any Deny directive.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Combining Apache Access Methods

In previous sections, you learned how to restrict access based on user identity or request information. The Satisfy
directive enables you to determine whether both types of access restrictions must be satisfied in order to grant access.
Satisfy accepts one parameter, which can be either all or any.

Satisfy all means that the client will be granted access if it provides a valid username and password and passes the
access restrictions. Satisfy any means the client will be granted access if it provides a valid username and password or
passes the access restrictions.

Why is this directive useful? For example, you might want to provide free access to your Web site to users coming from
an internal, trusted address, but require users coming from the Internet to provide a valid username and password.
Listing 15.4 demonstrates just that.

Listing 15.4 Mixing Authentication and Access Control Rules

 1: <Location /restricted>
 2: Allow from 10.0.0.0/255.255.255.0
 3: AuthType Basic
 4: AuthName "Intranet"
 5: AuthUserFile /usr/local/apache2/conf/htusers
 6: AuthAuthoritative on
 7: Require valid-user
 8: Satisfy any
 9: </Location>

Access control based on connection or request information is not completely
secure. Although it provides an appropriate level of protection for most cases,
the rules rely on the integrity of your DNS servers and your network
infrastructure. If an attacker gains control of your DNS servers, or your routers
or firewalls are incorrectly configured, he can easily change authorized domain
name records to point to his machine or pretend he is coming from an
authorized IP address.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Limiting Access Based on HTTP Methods
In general, you want your access control directives to apply to all types of client requests, and this is the default
behavior. In some cases, however, you want to apply authentication and access rules to only certain HTTP methods
such as GET and HEAD.

The <Limit> container takes a list of methods and contains the directives that apply to requests containing those
methods. The complete list of methods that can be used is GET, POST, PUT, DELETE, CONNECT, OPTIONS,
TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK.

The <LimitExcept> section provides complementary functionality, containing directives that will apply to requests not
containing the listed methods.

Listing 15.5 shows an example from the default Apache configuration file. The <Limit> and <LimitExcept> sections
allow read-only methods but deny requests to any other methods that can modify the content of the file system, such
as PUT.

Listing 15.5 Restricting Access Based on Rule

 1: <Directory /home/*/public_html>
 2: AllowOverride FileInfo AuthConfig Limit
 3: Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
 4: <Limit GET POST OPTIONS PROPFIND>
 5: Order Allow,Deny
 6: Allow from all
 7: </Limit>
 8: <LimitExcept GET POST OPTIONS PROPFIND>
 9: Order Deny,Allow
 10: Deny from all
 11: </LimitExcept>
 12: </Directory>

In the next section, you'll learn about restricting access on the application side based on information found in cookies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing Cookies
On the application side, you can use cookies in your PHP scripts to control access to certain areas of your Web site. A
cookie is a small amount of data stored by the user's browser in compliance with a request from a server or script. A
host can request that up to 20 cookies be stored by a user's browser. Each cookie consists of a name, value, and expiry
date, as well as host and path information. An individual cookie is limited to 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the user's privacy is respected.
Furthermore, the user can configure her browser to notify her of all cookies set, or even to refuse all cookie requests.
For this reason, cookies should be used in moderation and should not be relied on as an essential element of an
environment design without first warning the user.

The Anatomy of a Cookie

A PHP script that sets a cookie might send headers that look something like this:

HTTP/1.1 200 OK
Date: Tue, 02 Oct 2001 13:39:58 GMT
Server: Apache/1.3.26 (Unix) PHP/4.2.3
X-Powered-By: PHP/4.2.3
Set-Cookie: vegetable=artichoke; path=/; domain=yourdomain.com
Connection: close
Content-Type: text/html

As you can see, this Set-Cookie header contains a name/value pair, path, and domain. The name and value will be
URL encoded. Should it be present, an expires field is an instruction to the browser to "forget" the cookie after the
given time and date. The path field defines the position on a Web site below which the cookie should be sent back to
the server. The domain field determines the Internet domains to which the cookie should be sent. The domain cannot
be different from the domain from which the cookie was sent, but can nonetheless specify a degree of flexibility. In the
preceding example, the browser will send the cookie to the server yourdomain.com and the server
www.yourdomain.com.

If the browser is configured to store cookies, it will then keep this information until the expiry date. If the user points
the browser at any page that matches the path and domain of the cookie, it will resend the cookie to the server. The
browser's headers might look something like this:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Host: www.yourdomain.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en,pdf
Accept-Charset: iso-8859-1,*,utf-8
Cookie: vegetable=artichoke

A PHP script will then have access to the cookie in the environment variable HTTP_COOKIE or as part of the
$_COOKIE superglobal:

print "$_SERVER[HTTP_COOKIE]
"; // prints "vegetable=artichoke"
print getenv("HTTP_COOKIE")."
"; // prints "vegetable=artichoke"
print $_COOKIE['vegetable']."
"; // prints "artichoke"

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Setting a Cookie with PHP

You can set a cookie in a PHP script in two ways. You can use the header() function to set the Set-Cookie header. The
header() function requires a string that will then be included in the header section of the server response. Because
headers are sent automatically for you, header() must be called before any output at all is sent to the browser:

header ("Set-Cookie: vegetable=artichoke; expires=Wed, 19-Sep-02 14:39:58 GMT;
path=/; domain=yourdomain.com");

Although not difficult, this method of setting a cookie would require you to build a function to construct the header
string. Formatting the date as in this example and URL encoding the name/value pair would not be a particularly
arduous task. It would, however, be an exercise in wheel reinvention because PHP provides a function that does just
that.

The setcookie() function does what the name suggests—it outputs a Set-Cookie header. For this reason, it should be
called before any other content is sent to the browser. The function accepts the cookie name, cookie value, expiry date
in Unix epoch format, path, domain, and integer that should be set to 1 if the cookie is only to be sent over a secure
connection. All arguments to this function are optional apart from the first (cookie name) parameter.

Listing 15.6 uses setcookie() to set a cookie.

Listing 15.6 Setting and Printing a Cookie Value

 1: <?php
 2: setcookie("vegetable", "artichoke", time()+3600, "/", "yourdomain.com", 0);
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 15.6 Setting and printing a cookie value</title>
 7: </head>
 8: <body>
 9: <?php
 10: if (isset($_COOKIE[vegetable])) {
 11: print "<p>Hello again, your chosen vegetable is $_COOKIE[vegetable]</p>";
 12: } else {
 13: print "<p>Hello you. This may be your first visit</p>";
 14: }
 15: ?>
 16: </body>
 17: </html>

Even though we set the cookie (line 2) when the script is run for the first time, the $_COOKIE[vegetable] variable
will not be created at this point. A cookie is read only when the browser sends it to the server. This will not happen until
the user revisits a page in your domain. We set the cookie name to "vegetable" on line 2 and the cookie value to
"artichoke". We use the time() function to get the current time stamp and add 3600 to it (there are 3600 seconds in
an hour). This total represents our expiry date. We define a path of "/", which means that a cookie should be sent for
any page within our server environment. We set the domain argument to "yourdomain.com", which means that a
cookie will be sent to any server in that group. Finally, we pass 0 to setcookie(), signaling that cookies can be sent in
an insecure environment.

Passing setcookie() an empty string ("") for string arguments or 0 for integer fields will cause these arguments to be
skipped.

Deleting a Cookie

Officially, to delete a cookie, you should call setcookie() with the name argument only:

setcookie("vegetable");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setcookie("vegetable");

This approach does not always work well, however, and should not be relied on. It is safest to set the cookie with a
date that has already expired:

setcookie("vegetable", "", time()-60, "/", "yourdomain.com", 0);

You should also ensure that you pass setcookie() the same path, domain, and secure parameters as you did when
originally setting the cookie.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Restricting Access Based on Cookie Values
Now for the fun part—using your cookie skills to restrict access to parts of your Web site! Suppose you created a login
form that checked for values against a database. If the user is authorized, you send a cookie that says as much. Then,
for all pages you want to restrict only to authorized users, you check for the specific cookie. If the cookie is present, the
user can see the page. If the cookie is not present, the user is either sent back to the login form, or a message
regarding access restrictions can be printed to the screen.

We'll go through each of these steps in the next few sections.

Creating the Authorized Users Table

When you're integrating user accounts into a Web-based application, it is most common to store the user-specific
information in a database table. The information in this table can then be used to authorize the user and grant access to
areas of the site that are specifically for these "special" users.

The following table creation command will create a table called auth_users in your MySQL database, with fields for the
ID, first name, last name, email address, username, and password:

create table auth_users (
 id int not null primary key auto_increment,
 f_name varchar(50),
 l_name varchar(50),
 email varchar(150),
 username varchar(25),
 password varchar (75)
);

The following INSERT command puts a record in the auth_users table for a user named John Doe, with an email
address of john@doe.com, a username of jdoe, and a password of doepass:

mysql> insert into auth_users values ('', 'John', 'Doe', 'john@doe.com',
 -> 'jdoe', password('doepass'));
Query OK, 1 row affected (0.00 sec)

This INSERT command should be self-explanatory, with the exception of the use of the password() function. When
this function is used in the INSERT command, what is stored in the table is in fact not the actual password, but a hash
of the password.

When you view the contents of the auth_users table, you will see the hash in the password field, as follows:

mysql> select * from auth_users;
+ - - + - - - - + - - - - + - - - - - - - + - - - - - + - - - - - - - - - +
| id | f_name | l_name | email | username | password |
+ - - + - - - - + - - - - + - - - - - - - + - - - - - + - - - - - - - - - +
| 1 | John | Doe | john@doe.com | jdoe | 2fae5c9d478ec4b1 |
+ - - + - - - - + - - - - + - - - - - - - + - - - - - + - - - - - - - - - +
1 row in set (0.01 sec)

Although it may look like it is encrypted, a hash is in fact not an encrypted bit of information.
Instead, it is a "fingerprint" of the original information. Hashes are generally used, like
fingerprints, to perform matches. In this case, when you check your user's password, you will
be checking that the hash of the input matches the stored hash. Using hashes alleviates the
need—and security risk—of storing actual passwords.

Creating the Login Form and Script

After you authorize users in your table, you need to give them a mechanism for proving their authenticity. In this case,
a simple two-field form will do, as shown in Listing 15.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 15.7 User Login Form

 1: <html>
 2: <head>
 3: <title>Listing 15.7 User Login Form</title>
 4: </head>
 5: <body>
 6: <H1>Login Form</H1>
 7: <FORM METHOD="POST" ACTION="listing15.8.php">
 8: <P>Username:

 9: <INPUT TYPE="text" NAME="username"></p>
 10: <P>Password:

 11: <INPUT TYPE="password" NAME="password"></p>
 12: <P><INPUT TYPE="SUBMIT" NAME="submit" VALUE="Login"></P>
 13: </FORM>
 14: </body>
 15: </html>

Put these lines into a text file called listing 15.7.php, and place this file in your Web server document root. Next, you'll
create the script itself, which the form expects to be called listing 15.8.php.

Listing 15.8 User Login Script

 1: <?php
 2: //check for required fields from the form
 3: if ((!$_POST[username]) || (!$_POST[password])) {
 4: header("Location: listing15.7.php");
 5: exit;
 6: }
 7:
 8: //connect to server and select database
 9: $conn = mysql_connect("localhost", "joeuser", "somepass")
 10: or die(mysql_error());
 11: mysql_select_db("testDB",$conn) or die(mysql_error());
 12:
 13: //create and issue the query
 14: $sql = "select f_name, l_name from auth_users where username =
 15: '$_POST[username]' AND password = password('$_POST[password]')";
 16: $result = mysql_query($sql,$conn) or die(mysql_error());
 17:
 18: //get the number of rows in the result set; should be 1 if a match
 19: if (mysql_num_rows($result) == 1) {
 20:
 21: //if authorized, get the values of f_name l_name
 22: $f_name = mysql_result($result, 0, 'f_name');
 23: $l_name = mysql_result($result, 0, 'l_name');
 24:
 25: //set authorization cookie
 26: setcookie("auth", "1", 0, "/", "yourdomain.com", 0);
 27:
 28: //prepare message for printing, and user menu
 29: $msg = "<P>$f_name $l_name is authorized!</p>";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 29: $msg = "<P>$f_name $l_name is authorized!</p>";
 30: $msg .= "<P>Authorized Users' Menu:";
 31: $msg .= "secret page";
 32:
 33: } else {
 34:
 35: //redirect back to login form if not authorized
 36: header("Location: listing15.7.php");
 37: exit;
 38: }
 39: ?>
 40: <HTML>
 41: <HEAD>
 42: <TITLE>Listing 15.8 User Login</TITLE>
 43: </HEAD>
 44: <BODY>
 45: <? print "$msg"; ?>
 46: </BODY>
 47: </HTML>

Put these lines into a text file called listing15.8.php, and place this file in your Web server document root. In a
moment, you'll try it out, but first let's examine what the script is doing.

Line 3 checks for the two required fields from the form. They are the only two fields in the form: username and
password. If either one of these fields is not present, the script will redirect the user back to the login form. If the two
fields are present, the script moves along to lines 9–11, which connect to the database server and select the database
to use, in preparation for issuing the SQL query to check the authenticity of the user. This query, and its execution, is
found in lines 14–16. Note that the query checks the hash of the password input from the form against the password
stored in the table. These two elements must match each other, and also belong to the username in question, in order
to authorize the user.

Line 19 tests the result of the query by counting the number of rows in the resultset. The row count should be exactly 1
if the username and password pair represents a valid login. If this is the case, the mysql_result() function is used in
lines 22–23 to extract the first and last names of the user. These names are used for aesthetic purposes only. Line 26
sets the authorization cookie. The name of the cookie is auth and the value is 1. If a 0 is put in the time slot, the
cookie will last as long as this user's Web browser session is open. When the user closes the browser, the cookie will
expire. Lines 29–31 create a message for display, including a link to a file we will create in a moment.

Finally, lines 33–38 handle a failed login attempt. In this case, the user is simply redirected back to the login form.

Go ahead and access the login form, and input the valid values for the John Doe user. When you submit the form, the
result should look like Figure 15.1.

Figure 15.1. Successful login result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try to log in with an invalid username and password pair, and you should be redirected to the login form. In the next
(and final) section, you will create the listing15.9.php script, which will read the authentication cookie you have just
set and act accordingly.

Testing for the auth Cookie

The last piece of this puzzle is to use the value of the auth cookie to allow a user to access a private file. In this case,
the file in question is shown in Listing 15.9.

Listing 15.9 Checking for auth Cookie

 1: <?php
 2: if ($_COOKIE[auth] == "1") {
 3: $msg = "<p>You are an authorized user.</p>";
 4: } else {
 5: //redirect back to login form if not authorized
 6: header("Location: listing15.6.php");
 7: exit;
 8: }
 9: ?>
 10: <html>
 11: <head>
 12: <title>Listing 15.8 Accessing a restricted page </title>
 13: </head>
 14: <body>
 15: <?php print "$msg"; ?>
 16: </body>
 17: </html>

From the menu shown in Figure 15.1, click the secret page link. Because you are an authorized user, you should see a
result like Figure 15.2.

Figure 15.2. Accessing the secret page as an authorized user.

Close your browser and attempt to access listing15.9.php directly. You will find that you cannot, and will be redirected
to the login form because the cookie is not set.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
This hour explained how to use Apache features to restrict access to your Web site based on the identity of the remote
user and information from the HTTP request or network connection. It also covered some authentication modules
included with Apache and additional tools that you can use to create and manage your user and group databases.

Additionally, you were introduced to using cookies and learned to use the setcookie() function to set cookies on the
user's browser. You then learned to use cookie values to allow access to specific parts of your PHP application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: I have a Unix system. Can I use /etc/passwd as my user database?

A1: Although using /etc/passwd might seem convenient, it is advisable that you do not use the existing
/etc/passwd file for authenticating users of your Web site. Otherwise, an attacker who gains access to a
user of your Web site will also gain access to the system. Keep separate databases and encourage users
to choose different passwords for their system accounts and Web access. Periodically run password
checkers that scan for weak passwords and accounts in which the username is also the password.

Q2: Why am I asked for my password twice in some Web sites?

A2: Your browser keeps track of your password so that you do not have to type it for every request. The
stored password is based on the realm (AuthName directive) and the hostname of the Web site.
Sometimes you can access a Web site via different names, such as yourdomain.com and
www.yourdomain.com. If you are authorized to access a certain restricted area of yourdomain.com
but are redirected or follow a link to www.yourdomain.com, you will be asked again to provide the
username and password because your browser thinks it is a completely different Web site.

Q3: Are there any serious security or privacy issues raised by cookies?

A3: A server can access a cookie set only from its own domain. Although a cookie can be stored on the user's
hard drive, there is no other access to the user's file system. It is possible, however, to set a cookie in
response to a request for an image. So if many sites include images served from a third-party ad server or
counter script, the third party may be able to track a user across multiple domains.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: What are the advantages of database files over plain text files for storing user authentication information?

A1: Database files are much more scalable because they can be indexed. This means that Apache does not
need to read the file sequentially until a match is found for a particular user, but rather can jump to the
exact location.

2: Can you name some disadvantages of HTTP basic authentication?

A2: One disadvantage is that the information is transmitted in clear text over the network. This means that
unless you are using SSL, it is possible for an attacker to read the packets your browser sends to the
server and steal your password. Another disadvantage is that HTTP authentication does not provide a
means for customizing the login (except the realm name). It is very common for Web sites to implement
custom login mechanisms using HTML forms and cookies.

3: What function is designed to allow you to set a cookie on a visitor's browser?

A3: The setcookie() function allows you to set a cookie (although you could also output a Set-Cookie header
using the header() function).

Activity

Practice using the various types of authentication—both server-based and with PHP—on your development server. Get a
feel for the differences between basic HTTP authentication and something you devise on your own.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 16. Working with User Sessions
In Hour 15, "Restricting Access to Your Applications," we looked at using cookies to store user-related values, but once
again, PHP is one step ahead of us. PHP contains numerous functions for managing user sessions, which can be stored
in the $_SESSION superglobal. Sessions use techniques similar to those explored in the preceding hour but build them
into the language; thus, saving state is as easy as calling a function.

In this hour, you will learn

What session variables are and how they work

How to start or resume a session

How to store variables in a session

How to destroy a session

How to unset session variables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Session Function Overview
Session functions implement a concept that you have already seen; that is, the provision to users of a unique identifier,
which can then be used from access to access to acquire information linked to that ID. The difference is that most of
the work is already done for you. When a user accesses a session-enabled page, the user is either allocated a new
identifier or re-associated with one that was already established in a previous access. Any variables that have been
associated with the session will become available to your code, through the $_SESSION superglobal.

When you use sessions, cookies are used by default to store the session identifier, but you can ensure success for all
clients by encoding the session ID into all links in your session-enabled pages.

Session state is usually stored in a temporary file, though you can implement database storage using a function called
session_set_save_handler(). The use of session_set_save_handler() is beyond the scope of this book, but you
can find more information at http://www.php.net/session-set-save-handler.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Starting a Session
To work with a session, you need to explicitly start or resume that session unless you have changed your php.ini
configuration file. By default, sessions do not start automatically. If you want to start a session this way, you will have
to find the following line in your php.ini file and change the value from 0 to 1 (and restart the Web server):

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session is initiated for every PHP document. If
you don't change this setting, you need to call the session_start() function in each script.

After a session is started, you instantly have access to the user's session ID via the session_id() function.
session_id() allows you to either set or get a session ID. Listing 16.1 starts a session and prints the session ID to the
browser.

Listing 16.1 Starting or Resuming a Session

 1: <?php
 2: session_start();
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 16.1 Starting or resuming a session</title>
 7: </head>
 8: <body>
 9: <?php
 10: print "<p>Your session ID is ".session_id()."</p>\n\n";
 11: ?>
 12: </body>
 13: </html>

When this script is run for the first time from a browser, a session ID is generated by the session_start() function call
on line 2. If the page is later reloaded or revisited, the same session ID is allocated to the user. This action assumes
that the user has cookies enabled. For example, when I run this script the first time, the output is

Your session ID is fa963e3e49186764b0218e82d050de7b

When I reload the page, the output is still

Your session ID is fa963e3e49186764b0218e82d050de7b

because I have cookies enabled and the session ID still exists.

Because start_session() attempts to set a cookie when initiating a session for the first time, it is imperative that you
call this function before you output anything else at all to the browser. If you do not follow this rule, your session will
not be set, and you will likely see warnings on your page.

Sessions remain current as long as the Web browser is active. When the user restarts the browser, the cookie is no
longer stored. You can change this behavior by altering the session.cookie_lifetime setting in your php.ini file. The
default value is 0, but you can set an expiry period in seconds.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with Session Variables
Accessing a unique session. identifier in each of your PHP documents is only the start of session functionality. When a
session is started, you can store any number of variables in the $_SESSION superglobal and then access them on any
session-enabled page.

If you are using a pre-4.1.x version of PHP, the $_SESSION superglobal is not
present, and session functionality is much different. If you cannot upgrade to
the current version of PHP, read the PHP manual section on sessions, which
includes notes for early releases.

Listing 16.2 adds two variables into the. $_SESSION superglobal: product1 and product2 (lines 10 and 11).

Listing 16.2 Storing Variables in a Session

 1: <?php
 2: session_start();
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 16.2 Storing variables in a session</title>
 7: </head>
 8: <body>
 9: <?php
 10: $_SESSION[product1] = "Sonic Screwdriver";
 11: $_SESSION[product2] = "HAL 2000";
 12: print "The products have been registered.";
 13: ?>
 14: </body>
 15: </html>

The magic in Listing 16.2 will not become apparent until the user moves to a new page. Listing 16.3 creates. a separate
PHP script that accesses the variables stored in the $_SESSION superglobal in Listing 16.2.

Listing 16.3 Accessing Stored Session Variables

 1: <?php
 2: session_start();
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 16.3 Accessing stored session variables</title>
 7: </head>
 8: <body>
 9: <?php
 10: print "Your chosen products are:\n\n";
 11: print "$_SESSION[product1]\n$_SESSION[product2]\n\n";
 12: ?>
 13: </body>
 14: </html>

Figure 16.1 shows the output from Listing 16.3. As you can see, we have access to the $_SESSION[product1] and
$_SESSION[product2] variables in an entirely new page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$_SESSION[product2] variables in an entirely new page.

Figure 16.1. Accessing stored session variables.

So how does the magic work? Behind the scenes, PHP 4 writes to a temporary file. You can find out where this file is
being written on your system by using the session_save_path() function. This function optionally accepts a path to a
directory and then writes all session files to it. If you pass it no arguments, it returns a string representing the current
directory to which session files are saved. On my system,

print session_save_path();

prints /tmp. A glance at my /tmp directory reveals a number of files with names like the following:

sess_fa963e3e49186764b0218e82d050de7b
sess_76cae8ac1231b11afa2c69935c11dd95
sess_bb50771a769c605ab77424d59c784ea0

Opening the file that matches the session ID I was allocated when I first ran Listing 16.1, I can see how the registered
variables have been stored:

product1|s:17:"Sonic Screwdriver";product2|s:8:"HAL 2000";

When a value is placed in the $_SESSION superglobal, PHP writes the variable name and value to a file. This
information can be read and the variables resurrected later—as you have already seen. After you add a variable to the
$_SESSION superglobal, you can still change its value at any time during the execution of your script, but the altered
value won't be reflected in the global setting until you reassign the variable to the $_SESSION superglobal.

The example in Listing 16.2 demonstrates the process of adding variables to the $_SESSION superglobal. This
example is not very flexible, however. Ideally, you should be able to register a varying number of values. You might
want to let users pick products from a list, for example. In this case, you can use the serialize() function to store an
array in your session.

Listing 16.4 creates a form that allows a user to choose multiple products. You should then be able to use session
variables to create a rudimentary shopping cart.

Listing 16.4 Adding an Array Variable to a Session Variable

 1: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <?php
 2: session_start();
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 16.4 Storing an array with a session</title>
 7: </head>
 8: <body>
 9: <h1>Product Choice Page</h1>
 10: <?php
 11: if (isset($_POST[form_products])) {
 12: if (!empty($_SESSION[products])) {
 13: $products = array_unique(
 14: array_merge(unserialize($_SESSION[products]),
 15: $_POST[form_products]));
 16: }
 17: $_SESSION[products] = serialize($products);
 18: print "<p>Your products have been registered!</p>";
 19: }
 20: ?>
 21: <form method="POST" action="<?php $_SERVER[PHP_SELF] ?>">
 22: <P>Select some products:

 23: <select name="form_products[]" multiple size=3>
 24: <option>Sonic Screwdriver</option>
 25: <option>Hal 2000</option>
 26: <option>Tardis</option>
 27: <option>ORAC</option>
 28: <option>Transporter bracelet</option>
 29: </select>
 30:

 31: <input type="submit" value="choose">
 32: </form>
 33:

 34: content page
 35: </body>
 36: </html>

We start or resume a session by calling session_start() on line 2. This should give us access to any previously set
session variables. We begin an HTML form on line 21 and, on line 23, create a SELECT element named
form_products[], which contains OPTION elements for a number of products. Remember that HTML form elements
that allow multiple selections should have square brackets appended to the value of their NAME arguments. This
makes the user's choices available in an array.

Within the block of PHP code beginning on line 10, we test for the presence of the $_POST[form_products] array
(line 11). If the variable is present, we can assume that the form has been submitted and information has already been
stored in the $_SESSION superglobal. We then test for an array called $_SESSION[products] on line 12. If the
array exists, it was populated on a previous visit to this script, so we merge it with the $_POST[form_products]
array, extract the unique elements, and assign the result back to the $products array (lines 13–15). We then add the
$products array to the $_SESSION superglobal on line 17.

Line 34 contains a link to another script, which we will use to demonstrate our access to the products the user has.
chosen. We create this new script in Listing 16.5.

Listing 16.5 Accessing Session Variables

 1: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <?php
 2: session_start();
 3: ?>
 4: <html>
 5: <head>
 6: <title>Listing 16.5 Accessing session variables</title>
 7: </head>
 8: <body>
 9: <h1> Content Page</h1>
 10: <?php
 11: if (isset($_SESSION[products])) {
 12: print "Your cart:\n";
 13: foreach (unserialize($_SESSION[products]) as $p) {
 14: print "$p";
 15: }
 16: print "";
 17: }
 18: ?>
 19: Back to product choice page
 20: </body>
 21: </html>

Once again, we use session_start() to resume the session on line 2. We test for the presence of the
$_SESSION[products] variable on line 11. If it exists, we unserialize it and loop through it on lines 13–15, printing
each of the user's chosen items to the browser. An example is shown in Figure 16.2.

Figure 16.2. Accessing an array of session variables.

For a real shopping cart program, of course, you would keep product details in a database and test user input, rather
than blindly store and present it, but Listing 16.4 and 16.5 demonstrate the ease with which you can use session
functions to access array variables set in other pages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Passing Session IDs in the Query String
So far you have relied on a cookie to save the session ID between script requests. On its own, this method is not the
most reliable way of saving state because you cannot be sure that the browser will accept cookies. You can build in a
failsafe, however, by passing the session ID from script to script embedded in a query string. PHP makes a name/value
pair available in a constant called SID if a cookie value for a session ID cannot be found. You can add this string to any
HTML links in session-enabled pages:

<a href="anotherpage.html?<?php print SID; ?>">Another page

It will reach the browser as

Another
page

The session ID passed in this way will automatically be recognized in the target page when session_start() is called,
and you will have access to session variables in the usual way.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Destroying Sessions and Unsetting Variables

You can use session_destroy() to end a session, erasing all session variables. The session_destroy() function
requires no arguments. You should have an established session for this function to work as expected. The following
code fragment resumes a session and abruptly destroys it:

session_start();
session_destroy();

When you move on to other pages that work with a session, the session you have destroyed will not be available to
them, forcing them to initiate new sessions of their own. Any registered variables will be lost.

The session_destroy() function does not instantly destroy registered variables, however. They remain accessible to
the script in which session_destroy() is called (until it is reloaded). The following code fragment resumes or initiates a
session and registers a variable called test, which we set to 5. Destroying the session does not destroy the registered
variable.

session_start();
$_SESSION[test] = 5;
session_destroy();
print $_SESSION[test]; // prints 5

To remove all registered variables from a session, you simply unset the variable:

session_start();
$_SESSION[test] = 5;
session_destroy();
unset($_SESSION[test]);
print $_SESSION[test]; // prints nothing.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hour, you looked at different ways of saving state in a stateless protocol. All methods use some combination of
cookies and query strings, sometimes combined with the use of files or databases. These approaches all have their
benefits and problems.

You learned that a cookie alone is not intrinsically reliable and cannot store much information. On the other hand, it can
persist over a long period of time. Approaches that write information to a file or database involve some cost to speed
and might become a problem on a popular site. Nonetheless, a simple ID can unlock large amounts of data stored on
disk. To ensure that as many users as possible get the benefit of your session-enabled environment, you can use the
SID constant to pass a session ID to the server as part of a query string.

With regards to sessions themselves, you learned how to initiate or resume a session with session_start(). When in a
session, you learned how to add variables to the $_SESSION superglobal, check that they exist, unset them if you
want, and destroy the entire session.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Should I be aware of any pitfalls with session functions?

A1: The session functions are generally reliable. However, remember that cookies cannot be read across
multiple domains, so if your project uses more than one domain name on the same server (perhaps as
part of an e-commerce environment), you might need to consider disabling cookies for sessions by setting
the

session.use_cookies

directive to 0 in the php.ini file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Which function would you use to start or resume a session?

A1: You can start a session by using the session_start() function.

2: Which function contains the current session's ID?

A2: You can access the session's ID by using the session_id() function.

3: How would you end a session and erase all traces of it for future visits?

A3: The session_destroy() function removes all traces of a session for future requests.

4: What does the SID constant return?

A4: If cookies are not available, the SID constant contains a name/value pair that can be incorporated in a
query string. It will pass the session ID from script request to script request.

Activity

Create a script that uses session functions to remember which pages in your environment the user has visited. Provide
the user with a list of links on each page to make it easy for her to retrace her steps.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 17. Logging and Monitoring Server Activity
This hour describes how the logging system in Apache works and how you can customize it—which information to store
and where to do it. Additionally, you will learn to use PHP and MySQL to log specific items of interest to you, outside the
realm of the Apache log files.

In this hour, you will learn how to

Understand Apache log formats and logging levels

Rotate and analyze Apache logs

Interpret common errors that might appear in your logs

Create scripts that log specific items to database tables

Create custom reports based on these logging tables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Standard Apache Access Logging
Using Apache's basic logging features, you can keep track of who visits your Web sites by logging accesses to the
servers hosting them. You can log every aspect of the requests and responses, including the IP address of the client,
user, and resource accessed. You need to take three steps to create a request log:

1. Define what you want to log—your log format.

2. Define where you want to log it—your log files, a database, an external program.

3. Define whether or not to log—conditional logging rules.

Deciding What to Log

You can log nearly every aspect associated with the request. You can define how your log entries look by creating a log
format. A log format is a string that contains text mixed with log formatting directives. Log formatting directives start
with a % and are followed by a directive name or identifier, usually a letter indicating the piece of information to be
logged. When Apache logs a request, it scans the string and substitutes the value for each directive. For example, if the
log format is This is the client address %a, the log entry is something like This is the client address 10.0.0.2.
That is, the logging directive %a is replaced by the IP address of the client making the request. Table 17.1 provides a
comprehensive list of all formatting directives.

Table 17.1. Log Formatting Directives
Formatting

Options
Explanation

Data from the Client

%a Remote IP address, from the client.

%h Hostname or IP address of the client making the request. Whether the hostname is logged
depends on two factors: The IP address of the client must be able to resolve to a hostname using
a reverse DNS lookup, and Apache must be configured to do that lookup using the
HostNameLookups directive, explained later in this hour. If these conditions are not met, the IP
address of the client will be logged instead.

%l Remote user, obtained via the identd protocol. This option is not very useful because this
protocol is not supported on the majority of the client machines, and the results can't be trusted
anyway because the client provides them.

%u Remote user from the HTTP basic authentication protocol.

Data from the Server

%A Local IP address, from the server.

%D Time it took to serve the request in microseconds.

%{
env_variable}e

Value for an environment variable named env_variable.

Data from the Server

%{
time_format} t

Current time. If {time_format} is present, it will be interpreted as an argument to the Unix
strftime function. See the logresolve Apache manual page for details.

%T Time it took to serve the request, in seconds.

%v Canonical name of the server that answered the request.

%V Server name according to the UserCanonicalName directive.

%X Status of the connection in the server. A value of x means the connection was aborted before the
server could send the data. A + means the connection will be kept alive for further requests from
the same client. A - means the connection will be closed.

Data from the Request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%
{cookie_name}
C

Value for a cookie named cookie_name.

%H Request protocol, such as HTTP or HTTPS.

%m Request method such as GET, POST, PUT, and so on.

%
{header_name}
i

Value for a header named header_name in the request from the client. This information can be
useful, for example, to log the names and versions of your visitors' browsers.

%r Text of the original HTTP request.

%q Query parameters, if any, prefixed by a ?.

%U Requested URL, without query parameters.

%y Username for the HTTP authentication (basic or digest).

Data from the Response

%b, %B Size, in bytes, of the body of the response sent back to the client (excluding headers). The only
difference between the options is that if no data was sent, %b will log a - and %B will log 0.

%f Path of the file served, if any.

%t Time when the request was served.

%
{header_name}
o

Value for a header named header_name in the response to the client.

%>s Final status code. Apache can process several times the same request (internal redirects). This is
the status code of the final response.

The Common Log Format (CLF) is a standard log format. Most Web sites can log requests using this format, and the
format is understood by many log processing and reporting tools. Its format is the following:

"%h %l %u %t \"%r\" %>s %b"

That is, it includes the hostname or IP address of the client, remote user via identd, remote user via HTTP
authentication, time when the request was served, text of the request, status code, and size in bytes of the content
served.

You can read the Common Log Format documentation of the original W3C
server at http://www.w3.org/Daemon/User/Config/Logging.html.

The following is a sample CLF entry:

10.0.0.1 - - [21/Sep/2001:11:27:56 -0800] "GET / HTTP/1.1" 200 1456

You are now ready to learn how to define log formats using the LogFormat directive. This directive takes two
arguments: The first argument is a logging string, and the second is a nickname that will be associated with that
logging string.

For example, the following directive from the default Apache configuration file defines the Common Log Format and
assigns it the nickname common:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

You can also use the LogFormat directive with only one argument, either a log format string or a nickname. This will
have the effect of setting the default value for the logging format used by the TransferLog directive, explained in
"Logging Accesses to Files" later in this hour.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"Logging Accesses to Files" later in this hour.

The HostNameLookups Directive

When a client makes a request, Apache knows only the IP address of the client. Apache must perform what is called a
reverse DNS lookup to find out the hostname associated with the IP address. This operation can be time-consuming and
can introduce a noticeable lag in the request processing. The HostNameLookups directive allows you to control
whether to perform the reverse DNS lookup.

HostNameLookups can take one of the following arguments: on, off, or double. The default is off. The double
lookup argument means that Apache will find out the hostname from the IP and then will try to find the IP from the
hostname. This process is necessary if you are really concerned with security, as described in
http://httpd.apache.org/docs-2.0/dns-caveats.html. If you are using hostnames as part of your Allow and Deny rules,
a double DNS lookup is performed regardless of the HostNameLookups settings.

If HostNameLookups is enabled (on or double), Apache will log the hostname. This does cause extra load on your
server, which you should be aware of when making the decision to turn HostNameLookups on or off. If you choose to
keep HostNameLookups off, which would be recommended for medium-to-high traffic sites, Apache will log only the
associated IP address. There are plenty of tools to resolve the IP addresses in the logs later. Refer to the "Managing
Apache Logs" section later in this hour. Additionally, the result will be passed to CGI scripts via the environment
variable REMOTE_HOST.

The IdentityCheck Directive

At the beginning of the hour, we explained how to log the remote username via the identd protocol using the %l log
formatting directive. The IdentityCheck directive takes a value of on or off to enable or disable checking for that
value and making it available for inclusion in the logs. Because the information is not reliable and takes a long time to
check, it is switched off by default and should probably never be enabled. We mentioned %l only because it is part of
the Common Log Format.

Environment Variables

The CustomLog directive accepts an environment variable as a third argument. If the environment variable is present,
the entry will be logged; otherwise, it will not. If the environment variable is negated by prefixing an ! to it, the entry
will be logged if the variable is not present.

The following example shows how to avoid logging images in GIF and JPEG format in your logs:

SetEnvIf Request_URI "(\.gif|\.jpg)$" image
CustomLog logs/access_log common env=!image

Status Code

You can specify whether to log specific elements in a log entry. At the beginning of the hour, you learned that log
directives start with a %, followed by a directive identifier. In between, you can insert a list of status codes, separated
by commas. If the request status is one of the listed codes, the parameter will be logged; otherwise, a - will be logged.

For example, the directive identifier %400,501{User-agent}i logs the browser name and version for malformed
requests (status code 400) and requests with methods not implemented (status code 501). This information can be
useful for tracking which clients are causing problems.

You can precede the method list with an ! to log the parameter if the methods are implemented:

%!400,501{User-agent}i

Logging Accesses to Files

Logging to files is the default way of logging requests in Apache. You can define the name of the file using the
TransferLog and CustomLog directives.

The TransferLog directive takes a file argument and uses the latest log format defined by a LogFormat directive with
a single argument (the nickname or the format string). If no log format is present, it defaults to the Common Log
Format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format.

The following example shows how to use the LogFormat and TransferLog directives to define a log format that is
based on the CLF but that also includes the browser name:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{User-agent}i\""
TransferLog logs/access_log

The CustomLog directive enables you to specify the logging format explicitly. It takes at least two arguments: a
logging format and a destination file. The logging format can be specified as a nickname or as a logging string directly.

For example, the directives

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{User-agent}i\"" myformat
CustomLog logs/access_log myformat

and

CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b \"%{User-agent}i\""

are equivalent.

The CustomLog format can take an optional environment variable as a third argument, as explained in the
"Environment Variables" section earlier in the hour.

Logging Accesses to a Program

Both TransferLog and CustomLog directives can accept a program, prefixed by a pipe sign |, as an argument.
Apache will write the log entries to the standard input of the program. The program will, in turn, process them by
logging the entries to a database, transmitting them to another system, and so on.

If the program dies for some reason, the server makes sure that it is restarted. If the server stops, the program is
stopped as well.

The rotatelogs utility, bundled with Apache and explained later in this hour, is an example of a logging program.

As a general rule, unless you have a specific requirement for using a particular program, it is easier and more reliable to
log to a file on disk and do the processing, merging, analysis of logs, and so on, at a later time, possibly on a different
machine.

Make sure that the program you use for logging requests is secure because it
runs as the user Apache was started with. On Unix, this usually means root
because the external program will be started before the server changes its user
ID to the value of the User directive, typically nobody.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Standard Apache Error Logging
Apache can be configured to log error messages and debug information. In addition to errors generated by Apache
itself, CGI errors also will be logged.

Each error log entry is prefixed by the time the error occurred and the client IP address or hostname, if available. As
with HTTP request logging, you can log error information to a file or program. On Unix systems, you can also log to the
syslog daemon. Modules for Apache 1.3 allow you to log to the Windows event log and will likely be ported to Apache
2.0 over time.

You can use the ErrorLog directive to define where you want your logs to go. This directive takes one argument, which
can be a file, a program, or the syslog daemon.

Logging Errors to a File

A file argument indicates the path to the error log file. If the path is relative, it is assumed to be relative to the server
root. By default, the error log file will be located in the logs directory and will be named error_log on Unix and
error.log on Windows. The following is an example:

ErrorLog logs/my_error_log

Logging Errors to a Program

You can specify the path to a program, prefixed by a pipe |. Apache will log errors to the standard input of the program,
and the program will further process them. The following is an example:

ErrorLog "|/usr/local/bin/someprogram"

The syslog Daemon Argument

On a Unix system, if you specify syslog as an argument, you can log error messages to the Unix system log daemon
syslogd. By default, log errors are logged to the syslog facility local7. The facility is the part of the system generating
the error. You can specify a facility by providing syslog:facility as an argument. Examples of syslog facilities are mail,
uucp, local0, local1, and so on. For a complete list, look at the documentation for syslog included with your system
(try man syslogd or man syslogd.conf at the command line). The following is an example of logging to syslog:

ErrorLog syslog:local6

The LogLevel Directive

The error information provided by Apache has several degrees of importance. You can choose to log only important
messages and disregard informational or trivial warning messages. The LogLevel directive takes an error-level
argument. Only errors of that level of importance or higher will be logged.

Table 17.2 specifies the valid values for the LogLevel directive, as specified by the Apache documentation. By default,
the LogLevel value is warn. That should be enough for most Apache installations. If you are trying to troubleshoot a
specific configuration, you can alter the level to debug.

Table 17.2. LogLevel Options as Described in the Apache Documentation
Setting Description Example

emerg Emergencies—system is
unusable

Child cannot open lock file. Exiting.

alert Action must be taken
immediately

getpwuid: couldn't determine user name from uid.

crit Critical conditions socket: Failed to get a socket, exiting child.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error Error conditions Premature end of script headers.

warn Warning conditions Child process 1234 did not exit, sending another SIGHUP.

notice Normal but significant
conditions

httpd: caught SIGBUS, attempting to dump core in...

info Informational Server seems busy, (You may need to increase StartServers, or
Min/MaxSpareServers)...

debug Debug-level messages Opening config file...

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Managing Apache Logs
Apache provides several tools for managing your logs. Other Apache-specific third-party tools are available and are
mentioned here. Because Apache can log requests in the Common Log Format, most generic log processing tools can
be used with Apache as well.

Resolving Hostnames

Earlier in the hour, you learned how to use the HostNameLookups directive to enable or disable hostname resolution
at the time the request is made. If HostNameLookups is set to off (the default), the log file will contain only IP
addresses. Later, you can use the command-line logresolve utility on Unix or logresolve.exe on Windows to process
the log file and convert the IP addresses to hostnames.

logresolve reads log entries from standard input and outputs the result to its standard output. To read to and from a
file, you can use redirection, on both Unix and Windows:

logresolve < access.log > resolved.log

Log-resolving tools are efficient because they can cache results and they do not cause any delay when serving requests
to clients.

Fastresolve is an alternative, freely available log-resolving utility that can be found at
http://www.pix.net/staff/djm/sw/fastresolve/.

Log Rotation

In Web sites with high traffic, the log files can quickly grow in size. You need to have a mechanism to rotate logs
periodically, archiving and compressing older logs at well-defined intervals.

Log files cannot be removed directly while Apache is running because the server is writing directly to them. The solution
is to use an intermediate program to log the requests. The program will, in turn, take care of rotating the logs.

Apache provides the rotatelogs program on Unix and rotatelogs.exe on Windows for this purpose. It accepts three
arguments: a filename, a rotate interval in seconds, and an optional offset in minutes against UTC (Coordinated
Universal Time).

For example,

TransferLog "|bin/rotatelogs /var/logs/apachelog 86400"

will create a new log file and move the current log to the /var/logs directory daily. (At the end of the command, 86400
is the number of seconds in one day.)

If the path to the program includes spaces, you might need to escape them by
prefixing them with a \ (backslash)—for example, My\ Documents. This is
especially common in the Windows platform.

If the name of the file includes % prefixed options, the name will be treated as input to the strftime function that
converts the % options to time values. The manual page for rotatelogs contains a complete listing of options, but
here's an example:

TransferLog "|bin/rotatelogs /var/logs/apachelog%m_%d_%y 86400"

This command will add the current month, day, and year to the log filename.

If the name does not include any %-formatted options, the current time in seconds is added to the name of the
archived file.

cronolog and httplog are additional log-rotating programs. httplog adds support for additional compression of log files.
You can find them at http://www.cronolog.org/ and http://nutbar.chemlab.org/downloads/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can find them at http://www.cronolog.org/ and http://nutbar.chemlab.org/downloads/.

Merging and Splitting Logs

When you have a cluster of Web servers serving similar content, maybe behind a load balancer, you often need to
merge the logs from all the servers in a unique log stream before passing it to analysis tools.

Similarly, if a single Apache server instance handles several virtual hosts, sometimes it is useful to split a single log file
into different files, one per each virtual host.

Logtools is a collection of log-manipulation tools that can be found at http://www.coker.com.au/logtools/.

Apache includes the split-file Perl script for splitting logs. You can find it in the support subdirectory of the Apache
distribution.

Log Analysis

After you collect the logs, you can analyze them and gain information about traffic and visitor behavior.

Many commercial and freely available applications are available for log analysis and reporting. Two of the most popular
open source applications are Webalizer (http://www.mrunix.net/webalizer/) and awstats
(http://awstats.sourceforge.net).

Wusage is a nice, inexpensive commercial alternative and can be found at http://www.boutell.com/wusage/.

Monitoring Error Logs

If you run Apache on a Unix system, you can use the tail command-line utility to monitor, in real-time, log entries both
to your access and error logs. The syntax is

tail -f logname

where logname is the path to the Apache log file. It will print onscreen the last few lines of the log file and will
continue to print entries as they are added to the file.

You can find additional programs that enable you to quickly identify problems by scanning your error log files for
specific errors, malformed requests, and so on, and reporting on them:

Logscan can be found at http://www.garandnet.net/security.php.

ScanErrLog can be found at http://www.librelogiciel.com/software/.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Logging Custom Information to a Database
Creating your own logging tables in MySQL, matched up with snippets of PHP code, can help you to capture access-
related information for specific pages of your site. Using this information, you can create customized reports. This
method can be much less cumbersome than wading through Apache log files, especially when you are just searching for
a subset of access information.

Creating the Database Table

The first step in your custom logging method is to create the database table. The following table creation command will
create a table called access_tracker in your MySQL database, with fields for an ID, page title, user agent, and date of
access:

create table access_tracker (
 id int not null primary key auto_increment,
 page_title varchar(50),
 user_agent text,
 date_accessed date
);

Next, you'll create the code snippet that will write to this table.

Creating the PHP Code Snippet

As you may have gathered already, "code snippet" essentially means "a little bit of code." In other words, something
that doesn't qualify as a long script, but just serves a simple purpose. In this case, the code snippet in Listing 17.1 will
write some basic information to the access_tracker table.

Listing 17.1 Code Snippet for Access Tracking

 1: <?
 2: //set up static variables
 3: $page_title = "sample page A";
 4: $user_agent = getenv("HTTP_USER_AGENT");
 5: $date_accessed = date("Y-m-d");
 6:
 7: //connect to server and select database
 8: $conn = mysql_connect("localhost", "joeuser", "somepass")
 9: or die(mysql_error());
 10: $db = mysql_select_db("testDB", $conn) or die(mysql_error());
 11:
 12: //create and issue query
 13: $sql = "insert into access_tracker values
 14: ('', '$page_title', '$user_agent', '$date_accessed')";
 15: mysql_query($sql,$conn);
 16: ?>

What you'll do with this snippet is simple: Place it at the beginning of every page you want to track. For each page,
change the value of $page_title in the snippet to represent the actual title of the page.

Now create a sample script called sample1.php, containing the contents of Listing 17.1 and then the content in Listing
17.2.

Listing 17.2 Sample HTML Page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 17.2 Sample HTML Page

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Sample Page A</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <h1>Sample Page A</h1>
 7: <P>Blah blah blah.</p>
 8: </BODY>
 9: </HTML>

Create a few copies of this file, with different filenames and values for $page_title. Then access these different pages
with your Web browser to fill up your logging table.

Creating Sample Reports

When you have the data in your access_tracker table, you can create a simple report screen to disseminate this
information. The code in Listing 17.3 creates a report that issues queries to count total results as well as the breakdown
of browsers in use.

Listing 17.3 Creating an Access Report

 1: <?php
 2: //connect to server and select database
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: $db = mysql_select_db("testDB", $conn) or die(mysql_error());
 6:
 7: //issue query and select results for counts
 8: $count_sql = "select count(page_title) from access_tracker ";
 9: $count_res = mysql_query($count_sql, $conn) or die(mysql_error());
 10: $all_count = mysql_result($count_res, 0, "count(page_title)");
 11:
 12: //issue query and select results for user agents
 13: $user_agent_sql = "select distinct user_agent, count(user_agent) as count
 14: from access_tracker group by user_agent order by count desc";
 15: $user_agent_res = mysql_query($user_agent_sql, $conn)
 16: or die(mysql_error());
 17: //start user agent display block
 18: $user_agent_block = "";
 19:
 20: //loop through user agent results
 21: while ($row_ua = mysql_fetch_array($user_agent_res)) {
 22: $user_agent = $row_ua['user_agent'];
 23: $user_agent_count = $row_ua['count'];
 24: $user_agent_block .= "
 25: $user_agent
 26:
 27: accesses per browser: $user_agent_count
 28: ";
 29: }
 30:
 31: //finish up the user agent block
 32: $user_agent_block .= "";
 33:
 34: //issue query and select results for pages
 35: $page_title_sql = "select distinct page_title, count(page_title) as count
 36: from access_tracker group by page_title order by count desc";
 37: $page_title_res = mysql_query($page_title_sql, $conn)
 38: or die(mysql_error());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 38: or die(mysql_error());
 39: //start page title display block
 40: $page_title_block = "";
 41:
 42: //loop through results
 43: while ($row_pt = mysql_fetch_array($page_title_res)) {
 44: $page_title = $row_pt['page_title'];
 46: $page_count = $row_pt['count'];
 47: $page_title_block .= "
 48: $page_title
 49:
 50: accesses per page: $page_count
 51: ";
 52: }
 53:
 54: //finish up the page title block
 55: $page_title_block .= "";
 56:
 57: ?>
 58: <HTML>
 59: <HEAD>
 60: <TITLE>Access Report</TITLE>
 61: </HEAD>
 62: <BODY>
 63: <h1>Access Report</h1>
 64: <P>Total Accesses Tracked: <? echo "$all_count"; ?></p>
 65: <P>Web Browsers Used:
 66: <?php print "$user_agent_block"; ?>
 67: <P>Individual Pages:
 68: <?php print "$page_title_block"; ?>
 69: </BODY>
 70: </HTML>

Lines 3–5 connect to the database so that you can issue the queries against the access_tracker table. Lines 8–10
issue the query to select the count of all pages, and lines 13–15 count the user agent accesses. Line 18 starts an
unordered list block for the results of the user agent query, while lines 21–29 loop through the results and create the
list, which is closed in line 32.

Lines 35–37 create and issue the query to count the individual pages. Line 40 starts an unordered list block for the
results of this query, while lines 43–52 loop through the results and create the list of accessed pages, which is closed in
line 55.

Put these lines into a text file called accessreport.php, and place this file in your Web server document root. When
you access this report, you will see something like Figure 17.1—your page names, counts, and browsers will be
different, but you get the idea.

Figure 17.1. Custom access report for tracked pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This sort of tracking is a lot easier than wading through Apache access logs, but I wouldn't recommend completely
replacing your access logs with a database-driven system. That's a bit too much database-connection overhead, even if
MySQL is particularly nice on your system. Instead, target your page tracking to something particularly important.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
This hour's lesson explained how to log specific information about the requests and errors generated by Apache. You
can store the logs in files or databases, or pass them to external programs. You learned about the different utilities
available for managing, processing, and analyzing logs, both the ones included with Apache and those available from
third parties.

Finally, you saw a simple method for using PHP code snippets and a MySQL database to perform simple access tracking
of specific pages. This information was then displayed in a simple access report, built with PHP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Why wouldn't I want to log images?

A1: In heavily loaded servers, logging can become a bottleneck. If the purpose of logging is to count the
number of visitors and analyze their usage of the Web site, you can achieve this result by logging only the
HTML pages, not the images contained in them. This reduces the number of hits stored in the logs and the
time spent writing them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: How would you avoid logging hits from a client accessing your Web site from a particular network?

A1: In some situations, you may want to ignore requests coming from a particular network, such as your own,
so that they do not skew the results. You can do this either by post-processing the logs and removing
them or by using the SetEnvIf directive:

SetEnvIf Remote_Addr 10\.0\.0\. intranet
CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b" !intranet

2: How can you log images to a different file?

A2: Earlier in the hour, you learned how to avoid logging images. Instead of ignoring images altogether, you
can easily log them to a separate file, using the same environment variable mechanism:

SetEnvIf Request_URI "(\.gif|\.jpeg)$" image
CustomLog logs/access_log common env=!image
CustomLog logs/images_log common env=image

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part IV: Simple Projects
Hour

 18 Managing a Simple Mailing List

 19 Creating an Online Address Book

 20 Creating an Online Storefront

 21 Creating a Shopping Cart Mechanism

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 18. Managing a Simple Mailing List
This hour provides the first of several hands-on, small projects designed to pull together your PHP and MySQL
knowledge. In this hour, you'll learn the methods for creating a managed distribution list, which can be used to send
out newsletters or anything else that you want to send, to a list of email addresses in a database.

The mailing mechanism you'll use in this hour is not meant to be a replacement for mailing list software, which is
specifically designed for bulk messages. The type of system you'll build in this lesson should be used for only small lists
of fewer than a few hundred email addresses.

In this hour, you will learn how to

Create a subscribe/unsubscribe form and script

Create a front end for sending your message

Create the script that sends your message

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Developing the Subscription Mechanism
You learned in earlier lessons that planning is the most important aspect of creating any product. In this case, think of
the elements you will need for your subscription mechanism:

A table to hold email addresses

A way for users to add or remove their email addresses

A form and script for sending the message

The following sections will describe each item individually.

Creating the subscribers Table

You really need only one field in the subscribers table: to hold the email address of the user. However, you should
have an ID field just for consistency among your tables, and also because referencing an ID is a lot simpler than
referencing a long email address in where clauses. So, in this case, your MySQL query would look something like

mysql> create table subscribers (
 -> id int not null primary key auto_increment,
 -> email varchar (150) unique not null
 ->);
Query OK, 0 rows affected (0.00 sec)

Note the use of unique in the field definition for email. This means that although id is the primary key, duplicates
should not be allowed in the email field either. The email field is a unique key, and id is the primary key.

This relationship is represented in the table information as MUL (or "multiple") in the Key field:

mysql> describe subscribers;
+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| email | varchar(150) | YES | MUL | NULL | |
+-------+--------------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

Now that you have a table, you can create the form and script that place values in there.

Creating the Subscription Form

The subscription form will actually be an all-in-one form and script called manage.php, which will handle both subscribe
and unsubscribe requests. Listing 18.1 shows the code for manage.php, which uses a few user-defined functions to
eliminate repetitious code.

Listing 18.1 Subscribe and Unsubscribe with manage.php

 1: <?php

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1: <?php
 2: //set up a couple of functions
 3: function doDB() {
 4: global $conn;
 5: //connect to server and select database; you may need it
 6: $conn = mysql_connect("localhost", "joeuser", "somepass")
 7: or die(mysql_error());
 8: mysql_select_db("testDB",$conn) or die(mysql_error());
 9: }
 10:
 11: function emailChecker($email) {
 12: global $conn, $check_result;
 13: //check that email is not already in list
 14: $check = "select id from subscribers where email = '$email'";
 15: $check_result = mysql_query($check,$conn) or die(mysql_error());
 16: }
 17:
 18: //determine if they need to see the form or not
 19: if ($_POST[op] != "ds") {
 20: //they do, so create form block
 21: $display_block = "
 22: <form method=POST action=\"$_SERVER[PHP_SELF]\">
 23:
 24: <p>Your E-Mail Address:

 25: <input type=text name=\"email\" size=40 maxlength=150>
 26:
 27: <p>Action:

 28: <input type=radio name=\"action\" value=\"sub\" checked> subscribe
 29: <input type=radio name=\"action\" value=\"unsub\"> unsubscribe
 30:
 31: <input type=\"hidden\" name=\"op\" value=\"ds\">
 32:
 33: <p><input type=submit name=\"submit\" value=\"Submit Form\"></p>
 34: </form>";
 35:
 36: } else if (($_POST[op] == "ds") && ($_POST[action] == "sub")) {
 37: //trying to subscribe; validate email address
 38: if ($_POST[email] == "") {
 39: header("Location: manage.php");
 40: exit;
 41: }
 42: //connect to database
 43: doDB();
 44: //check that email is in list
 45: emailChecker($_POST[email]);
 46:
 47: //get number of results and do action
 48: if (mysql_num_rows($check_result) < 1) {
 49: //add record
 50: $sql = "insert into subscribers values('', '$_POST[email]')";
 51: $result = mysql_query($sql,$conn) or die(mysql_error());
 52: $display_block = "<P>Thanks for signing up!</P>";
 53: } else {
 54: //print failure message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 54: //print failure message
 55: $display_block = "<P>You're already subscribed!</P>";
 56: }
 57: } else if (($_POST[op] == "ds") && ($_POST[action] == "unsub")) {
 58: //trying to unsubscribe; validate email address
 59: if ($_POST[email] == "") {
 60: header("Location: manage.php");
 61: exit;
 62: }
 63: //connect to database
 64: doDB();
 65: //check that email is in list
 66: emailChecker($_POST[email]);
 67:
 68: //get number of results and do action
 69: if (mysql_num_rows($check_result) < 1) {
 70: //print failure message
 71: $display_block = "<P>Couldn't find your address!</P>
 72: <P>No action was taken.</P>";
 73: } else {
 74: //unsubscribe the address
 75: $id = mysql_result($check_result, 0, "id");
 76: $sql = "delete from subscribers where id = '$id'";
 77: $result = mysql_query($sql,$conn) or die(mysql_error());
 78: $display_block = "<P>You're unsubscribed!</p>";
 79: }
 80: }
 81: ?>
 82: <HTML>
 83: <HEAD>
 84: <TITLE>Subscribe/Unsubscribe</TITLE>
 85: </HEAD>
 86: <BODY>
 87: <h1>Subscribe/Unsubscribe</h1>
 88: <?php echo "$display_block"; ?>
 89: </BODY>
 90: </HTML>

Listing 18.1 may be long, but it's not complicated. In fact, it could be longer, were it not for the user-defined functions
at the top of the script. One of the reasons for creating your own functions is that you know you will be reusing a bit of
code and don't want to continually retype it. Lines 3–9 set up the first function, doDB(), which is simply the database
connection you've been making in your lessons for a while now. Lines 11–16 define a function called emailChecker(),
which takes an input and returns an output—like most functions do. We'll look at this one in the context of the script, as
we get to it.

Line 19 starts the main logic of the script. Because this script performs several actions, we need to determine which
action it is currently attempting. If the value of $_POST[op] is not "ds", we know the user has not submitted the
form; therefore, we must show it to the user. Lines 21–34 create the subscribe/unsubscribe form, using
$_SERVER[PHP_SELF] as the action (line 22), creating a text field called email for the user's email address, and
setting up a set of radio buttons (lines 28–29) to find the desired task. At this point, the script breaks out of the
if...else construct, skips down to line 82, and proceeds to print the HTML. The form is displayed as shown in Figure
18.1.

Figure 18.1. The subscribe/ unsubscribe form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the value of $_POST[op] is indeed "ds", however, we need to do something. We have two possibilities: subscribe
and unsubscribe. We determine which action to take by looking at the value of $_POST[action]—the radio button
group.

In line 36, if $_POST[op] is "ds" and $_POST[action] is "sub", we know the user is trying to subscribe. To
subscribe, he will need an email address, so we check for one in lines 38–41. If no address is present, the user is sent
back to the form.

If an address is present, we call the doDB() function in line 43 to connect to the database because we need to perform
a query (or two). In line 45, we call the second of our user-defined functions, emailChecker(). This function takes an
input ($_POST[email]) and processes it. If we look back to lines 12–15, we see that the function is checking for an id
value in the subscribers table that matches the value of the input. The function then returns the resultset,
$check_result, for use within the larger script.

Note the definition of global variables at the beginning of both user-defined
functions in Listing 18.1. These variables need to be shared with the entire
script, and so are declared global.

Jump down to line 48 to see how $check_result is used: The number of records in $check_result is counted to
determine whether the email address already exists in the table. If the number of rows is less than 1, the address is not
in the list, and it can be added. The record is added and the response is stored in lines 50–52, and the failure message
(if the address is already in the table) is stored in line 55. At that point, the script breaks out of the if...else construct,
skips down to line 82, and proceeds to print the HTML. You'll test this functionality later.

The last combination of inputs occurs if the value of $_POST[op] is "ds" and $_POST[action] is "unsub". In this
case, the user is trying to unsubscribe. To unsubscribe, he will need an email address, so we check for one in lines 59–
61. If no address is present, the user is sent back to the form.

If an address is present, we call the doDB() function in line 64 to connect to the database. Then, in line 66, we call
emailChecker(), which again will return the resultset, $check_result. The number of records in the resultset is
counted in line 69, to determine whether the email address already exists in the table. If the number of rows is less
than 1, the address is not in the list, and it cannot be unsubscribed. In this case, the response message is stored in
lines 71–72. The user is unsubscribed(the record deleted) and the response is stored in lines 75–77, and the failure
message (if the address is already in the table) is stored in line 78. At that point, the script breaks out of the if...else
construct, skips down to line 82, and proceeds to print the HTML.

Figures 18.2 through 18.5 show the various results of the script, depending on the actions selected and the status of
email addresses in the database.

Figure 18.2. Successful subscription.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18.2. Successful subscription.

Figure 18.3. Subscription failure.

Figure 18.4. Successful unsubscribe action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18.4. Successful unsubscribe action.

Figure 18.5. Unsuccessful unsubscribe action.

Next, you'll create the form and script that sends along mail to each of your subscribers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Developing the Mailing Mechanism
With the subscription mechanism in place, you can create a basic form interface for a script that will take the contents
of your form and send it to every address in your subscribers table. This is another one of those all-in-one scripts,
called sendmymail.php, and it is shown in Listing 18.2.

Listing 18.2 Send Mail to Your List of Subscribers

 1: <?php
 2: if ($_POST[op] != "send") {
 3: //haven't seen the form, so show it
 4: print "
 5: <HTML>
 6: <HEAD>
 7: <TITLE>Send a Newsletter</TITLE>
 8: </HEAD>
 9: <BODY>
 10: <h1>Send a Newsletter</h1>
 11: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">
 12: <P>Subject:

 13: <input type=\"text\" name=\"subject\" size=30></p>
 14: <P>Mail Body:

 15: <textarea name=\"message\" cols=50 rows=10 wrap=virtual></textarea>
 16: <input type=\"hidden\" name=\"op\" value=\"send\">
 17: <p><input type=\"submit\" name=\"submit\" value=\"Send It\"></p>
 18: </FORM>
 19: </BODY>
 20: </HTML>";
 21:
 22: } else if ($_POST[op] == "send") {
 23: //want to send form, so check for required fields
 24: if (($_POST[subject] =="") || ($_POST[message] == "")) {
 25: header("Location: sendmymail.php");
 26: exit;
 27: }
 28:
 29: //connect to database
 30: $conn = mysql_connect("localhost", "joeuser", "somepass")
 31: or die(mysql_error());
 32: mysql_select_db("testDB",$conn) or die(mysql_error());
 33:
 34: //get emails from subscribers list
 35: $sql = "select email from subscribers";
 36: $result = mysql_query($sql,$conn) or die(mysql_error());
 37:
 38: //create a From: mailheader
 39: $headers = "From: Your Mailing List <you@yourdomain.com>\n";
 40:
 41: //loop through results and send mail
 42: while ($row = mysql_fetch_array($result)) {
 43: set_time_limit(0);
 44: $email = $row['email'];
 45: mail("$email", stripslashes($_POST[subject]),
 46: stripslashes($_POST[message]), $headers);
 47: print "newsletter sent to: $email
";
 48: }
 49: }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 49: }
 50: ?>

The main logic of the script starts right there at line 2, where we determine whether the user has seen the form yet. If
the value of $_POST[op] is not "send", we know the user has not submitted the form; therefore, we must show it to
her. Lines 4–20 create the form for sending the newsletter, which uses $_SERVER[PHP_SELF] as the action (line
11), creates a text field called subject for the subject of the mail, and creates a textarea called message for the body
of the mail to be sent. At this point, the script breaks out of the if...else construct and the HTML is printed. The form is
displayed as in Figure 18.6.

Figure 18.6. Form for sending the bulk mail.

If the value of $_POST[op] is indeed "send", however, we have to send the form to the recipients. Before we send,
we must check for the two required items: $_POST[subject] and $_POST[message]. If either of these items is not
present, the user is redirected to the form again.

If the required items are present, the script moves on to lines 30–32, which connect to the database. The query is
issued in line 36, which grabs all the email addresses from the subscribers table. There is no order to these results,
although you could throw an order by clause in there if you want to send them out in alphabetical order.

Line 39 creates a From: mail header, which is used inside the upcoming while loop, when mail is sent. This header
ensures that the mail looks like it is from a person and not a machine. The while loop, which begins on line 42, extracts
the email addresses from the resultset one at a time. On line 43, we use the set_time_limit() function to set the time
limit to 0, or "no limit." Doing so allows the script to run for as long as it needs to.

Because all the script in Listing 18.2 does is execute the mail() function
numerous times, it does not take into account the queuing factors in actual
mailing list software, which are designed to ease the burden on your outgoing
mail server. Using set_time_limit() does not ease its burden; it just allows the
script to continue to run when it might have timed out before.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In line 45, the mail is sent using the mail() function, inserting the values from the form where appropriate. Line 46
prints a message to the screen for you, to show who should have received the mail. In Figure 18.7 and 18.8, you can
see the outcome of the script.

Figure 18.7. Mail has been sent!

Figure 18.8. The mail arrived safely.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hands-on hour, you applied your basic PHP and MySQL knowledge to the creation of a personal mailing list.
Included were the database table creation, the subscribe and unsubscribe mechanisms, and the form and script for
sending the mail.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: How can I ease the burden on my mail server?

A1: Besides looking into package mailing list software, you can bypass the mail() function and talk directly to
your SMTP server via a socket connection. Such an example is shown in the PHP Manual for the
fsockopen() function (http://www.php.net/manual/en/function.fsockopen.php), as well as in other
developer resource sites.

Q2: Where do bounced messages go?

A2: Bounces go to whatever address you specify in your From: or Reply-to: mail headers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: What function sends mail?

A1: This is not a trick question. It's the mail() function!

2: What function call causes the script to execute for as long as it needs to run?

A2: set_time_limit(0)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 19. Creating an Online Address Book
In this hour's hands-on lesson, the project is creating a managed, online address book. You will learn the methods for
creating the relevant database tables, as well as the forms and scripts for adding, deleting, and viewing database
records.

In this hour, you will learn how to

Create relational tables for an online address book

Create the forms and scripts for adding and deleting records in the address book

Create the forms and scripts for viewing records

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Planning and Creating the Database Tables
When you think of an address book, the obvious fields come to mind—name, address, telephone number, email
address. However, if you look at your own paper-based address book, you may note that you have several entries for
one person. Maybe that person has three telephone numbers, or two email addresses, and so forth. In your online
address book, a set of related tables will help alleviate the redundancy and repetition of information.

Table 19.1 shows sample table and field names to use for your online address book. In a minute, you'll create the
actual SQL statements, but first you should look at this information and try to see the relationships appear. Ask yourself
which of the fields should be primary or unique keys.

Table 19.1. Address Book Table and Field Names
Table Name Field Names

master_name id, date_added, date_modified, f_name, l_name

address id, master_id, date_added, date_modified, address, city, state, zipcode, type

telephone id, master_id, date_added, date_modified, tel_number, type

fax id, master_id, date_added, date_modified, fax_number, type

email id, master_id, date_added, date_modified, email, type

personal_notes id, master_id, date_added, date_modified, note

Notice the use of date-related fields; each table has a date_added and date_modified field in it. The fields will help
maintain your data; you may at some point want to issue a query that removes all records that are older than a certain
number of months or years, or that removes all records that haven't been updated within a certain period of time.

As you can see in the following SQL statements, the master_name table has two fields besides the ID and date-
related fields: f_name and l_name, for first name and last name. The id field is the primary key. No other keys need
to be primary or unique, unless you really want to limit your address book to one John Smith, one Mary Jones, and so
forth.

The field lengths for the text fields in the following statements are arbitrary;
you can make them as long or as short as you want, within the allowable
definition of the field type.

mysql> create table master_name (
 -> id int not null primary key auto_increment,
 -> date_added datetime,
 -> date_modified datetime,
 -> f_name varchar (75),
 -> l_name varchar (75)
 ->);
Query OK, 0 rows affected (0.01 sec)

The address table has the basic primary key id field and the date_added and date_modified fields. In addition, you
should now see where the relationship will be made—through the use of the master_id field. The master_id will be
equal to the id field in the master_name table, matching the person whose address this is. The master_id field is not
a unique key because it is a perfectly valid assumption that one person may have several address entries. We see this
in the type field, which is defined as an enumerated list containing three options: home, work, or other. A person
may have one or more of all three types, so no other keys are present in this table besides the primary key id.
Assuming this particular address book contains only United States addresses, we round out the table with address,
city, state, and zipcode fields.

mysql> create table address (

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> create table address (
 -> id int not null primary key auto_increment,
 -> master_id int not null,
 -> date_added datetime,
 -> date_modified datetime,
 -> address varchar (255),
 -> city varchar (30),
 -> state char (2),
 -> zipcode varchar (10),
 -> type enum ('home', 'work', 'other')
 ->);
Query OK, 0 rows affected (0.01 sec)

The telephone, fax, and email tables are all variations on the same theme:

mysql> create table telephone (
 -> id int not null primary key auto_increment,
 -> master_id int not null,
 -> date_added datetime,
 -> date_modified datetime,
 -> tel_number varchar (25),
 -> type enum ('home', 'work', 'other')
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> create table fax (
 -> id int not null primary key auto_increment,
 -> master_id int not null,
 -> date_added datetime,
 -> date_modified datetime,
 -> fax_number varchar (25),
 -> type enum ('home', 'work', 'other')
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> create table email (
 -> id int not null primary key auto_increment,
 -> master_id int not null,
 -> date_added datetime,
 -> date_modified datetime,
 -> email varchar (150),
 -> type enum ('home', 'work', 'other')
 ->);
Query OK, 0 rows affected (0.00 sec)

The personal_notes table also follows the same sort of pattern, except that master_id a unique key and allows only
one notes record per person:

mysql> create table personal_notes (
 -> id int not null primary key auto_increment,
 -> master_id int not null unique,
 -> date_added datetime,
 -> date_modified datetime,
 -> note text
 ->);
Query OK, 0 rows affected (0.00 sec)

Now that your tables are created, you can work through the forms and scripts for managing and viewing your records.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating a Menu
Your online address book will contain several actions, so it makes sense to create a menu for your links. Listing 19.1
creates a menu for all the scripts you will create in this section, called mymenu.php.

Listing 19.1 Address Book Menu

 1: <html>
 2: <head>
 3: <title>My Address Book</title>
 4: </head>
 5: <body>
 6: <h1>My Address Book</h1>
 7:
 8: <P>Management
 9:
 10: Add an Entry
 11: Delete an Entry
 12:
 13:
 14: <P>Viewing
 15:
 16: Select a Record
 17:
 18: </body>
 19: </html>

Figure 19.1 shows the output of Listing 19.1. You'll tackle each of these items in order, starting with "Add an Entry" in
the next section.

Figure 19.1. Address book menu.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating the Record Addition Mechanism
Just because you'll potentially be adding information to six different tables doesn't mean your form or script will be
monstrous. In fact, your scripts won't look much different from any of the ones you created in previous lessons, and
with practice, you will be able to make these verbose scripts much more streamlined and efficient.

In Listing 19.2, you can see a basic record addition script, called addentry.php.

Listing 19.2 Basic Record Addition Script Called addentry.php

 1: <?php
 2: if ($_POST[op] != "add") {
 3: //haven't seen the form, so show it
 4: $display_block = "<h1>Add an Entry</h1>
 5: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">
 6: <P>First/Last Names:

 7: <input type=\"text\" name=\"f_name\" size=30 maxlength=75>
 8: <input type=\"text\" name=\"l_name\" size=30 maxlength=75>
 9:
 10: <P>Address:

 11: <input type=\"text\" name=\"address\" size=30>
 12:
 13: <P>City/State/Zip:

 14: <input type=\"text\" name=\"city\" size=30 maxlength=50>
 15: <input type=\"text\" name=\"state\" size=5 maxlength=2>
 16: <input type=\"text\" name=\"zipcode\" size=10 maxlength=10>
 17:
 18: <P>Address Type:

 19: <input type=\"radio\" name=\"add_type\" value=\"home\" checked> home
 20: <input type=\"radio\" name=\"add_type\" value=\"work\"> work
 21: <input type=\"radio\" name=\"add_type\" value=\"other\"> other
 22:
 23: <P>Telephone Number:

 24: <input type=\"text\" name=\"tel_number\" size=30 maxlength=25>
 25: <input type=\"radio\" name=\"tel_type\" value=\"home\" checked> home
 26: <input type=\"radio\" name=\"tel_type\" value=\"work\"> work
 27: <input type=\"radio\" name=\"tel_type\" value=\"other\"> other
 28:
 29: <P>Fax Number:

 30: <input type=\"text\" name=\"fax_number\" size=30 maxlength=25>
 31: <input type=\"radio\" name=\"fax_type\" value=\"home\" checked> home
 32: <input type=\"radio\" name=\"fax_type\" value=\"work\"> work
 33: <input type=\"radio\" name=\"fax_type\" value=\"other\"> other
 34:
 35: <P>Email Address:

 36: <input type=\"text\" name=\"email\" size=30 maxlength=150>
 37: <input type=\"radio\" name=\"email_type\" value=\"home\" checked> home
 38: <input type=\"radio\" name=\"email_type\" value=\"work\"> work
 39: <input type=\"radio\" name=\"email_type\" value=\"other\"> other
 40:
 41: <P>Personal Note:

 42: <textarea name=\"note\" cols=35 rows=5 wrap=virtual></textarea>
 43: <input type=\"hidden\" name=\"op\" value=\"add\">
 44:
 45: <p><input type=\"submit\" name=\"submit\" value=\"Add Entry\"></p>
 46: </FORM>";
 47:
 48: } else if ($_POST[op] == "add") {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 48: } else if ($_POST[op] == "add") {
 49: //time to add to tables, so check for required fields
 50: if (($_POST[f_name] == "") || ($_POST[l_name] == "")) {
 51: header("Location: addentry.php");
 52: exit;
 53: }
 54:
 55: //connect to database
 56: $conn = mysql_connect("localhost", "joeuser", "somepass")
 57: or die(mysql_error());
 58: mysql_select_db("testDB",$conn) or die(mysql_error());
 59:
 60: //add to master_name table
 61: $add_master = "insert into master_name values ('', now(), now(),
 62: '$_POST[f_name]', '$_POST[l_name]')";
 63: mysql_query($add_master) or die(mysql_error());
 64:
 65: //get master_id for use with other tables
 66: $master_id = mysql_insert_id();
 67:
 68: if (($_POST[address]) || ($_POST[city]) || ($_POST[state]) ||
 69: ($_POST[zipcode])) {
 70: //something relevant, so add to address table
 71: $add_address = "insert into address values ('', $master_id,
 72: now(), now(), '$_POST[address]', '$_POST[city]',
 73: '$_POST[state]', '$_POST[zipcode]', '$_POST[add_type]')";
 74: mysql_query($add_address) or die(mysql_error());
 75: }
 76:
 77: if ($_POST[tel_number]) {
 78: //something relevant, so add to telephone table
 79: $add_tel = "insert into telephone values ('', $master_id,
 80: now(), now(), '$_POST[tel_number]', '$_POST[tel_type]')";
 81: mysql_query($add_tel) or die(mysql_error());
 82: }
 83:
 84: if ($_POST[fax_number]) {
 85: //something relevant, so add to fax table
 86: $add_fax = "insert into fax values ('', $master_id, now(),
 87: now(), '$_POST[fax_number]', '$_POST[fax_type]')";
 88: mysql_query($add_fax) or die(mysql_error());
 89: }
 90:
 91: if ($_POST[email]) {
 92: //something relevant, so add to email table
 93: $add_email = "insert into email values ('', $master_id,
 94: now(), now(), '$_POST[email]', '$_POST[email_type]')";
 95: mysql_query($add_email) or die(mysql_error());
 96: }
 97:
 98: if ($_POST[note]) {
 99: //something relevant, so add to notes table
100: $add_note = "insert into personal_notes values ('', $master_id,
101: now(), now(), '$_POST[note]')";
102: mysql_query($add_note) or die(mysql_error());
103: }
104:
105: $display_block = "<h1>Entry Added</h1>
106: <P>Your entry has been added. Would you like to
107: add another?</p>";
108: }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

108: }
109: ?>
110: <HTML>
111: <HEAD>
112: <TITLE>Add an Entry</TITLE>
113: </HEAD>
114: <BODY>
115: <? print $display_block; ?>
116: </BODY>
117: </HTML>

This script will perform one of two tasks at any given time: It either shows the record addition form, or it performs all
the SQL queries related to adding the record. The logic that determines the task begins at line 2, with a test for the
value of $_POST[op]. If the value of $_POST[op] is not "add", the user is not coming from the form and therefore
needs to see the form. The HTML for the form is placed in a string called $display_block, from lines 4–55. The script
then breaks out of the if...else construct and jumps down to line 110, which outputs the HTML and prints the value of
$display_block, in this case the form. This outcome is shown in Figure 19.2.

Figure 19.2. The record addition form.

Line 48 begins the second condition if the value of $_POST[op] is "add", meaning the user has submitted the form.
For the sake of argument, two fields have been designated as required fields: the first name and last name of the
person. So, lines 50–53 check for values in $_POST[f_name] and $_POST[l_name] and redirect the user back to
the form if either value is missing.

After making it through the check for required fields, we connect to the database in lines 56–59. Next comes the
multitude of insertion statements, only one of which is required—the insertion of a record into the master_name table.
This occurs on lines 61–63. After the insertion is made, the id of this record is extracted using mysql_insert_id() on
line 66. We use this value, now referred to as $master_id, in our remaining SQL queries.

The SQL queries for inserting records into the remaining tables are all conditional. This means that they occur only if
some condition is true. In lines 68–69, we see that the condition that must be met is that a value exists for any of the
following variables: $_POST[address], $_POST[city], $_POST[state], $_POST[zipcode]. Lines 70–74 create and
issue the query if the condition is met.

The same principle holds true for adding to the telephone table (lines 77–82), the fax table (lines 84–89), the email
table (lines 91–96), and the personal_notes table (lines 98–103). Once through this set of conditions, the message
for the user is placed in the $display_block variable, and the script exits this if...else construct and prints HTML from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for the user is placed in the $display_block variable, and the script exits this if...else construct and prints HTML from
lines 110–117.

An output of the record addition script is shown in Figure 19.3.

Figure 19.3. Adding a record.

Add a few records using this form so that you have some values to play with in the following sections. On your own, try
to modify this script in such a way that the values entered in the form are printed to the screen after successful record
insertion.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Viewing Records
If you verified your work in the preceding section by issuing queries through the MySQL monitor or other interface, you
probably became tired of typing SELECT * FROM... for every table. In this section, you'll create the two-part script
that shows you how to select and view records in your database.

Listing 19.3 shows the select-and-view script called selentry.php.

Listing 19.3 Script Called selentry.php for Selecting and Viewing a Record

 1: <?php
 2: //connect to database
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: mysql_select_db("testDB",$conn) or die(mysql_error());
 6:
 7: if ($_POST[op] != "view") {
 8: //haven't seen the form, so show it
 9: $display_block = "<h1>Select an Entry</h1>";
 10:
 11: //get parts of records
 12: $get_list = "select id, concat_ws(', ', l_name, f_name) as display_name
 13: from master_name order by l_name, f_name";
 14: $get_list_res = mysql_query($get_list) or die(mysql_error());
 15:
 16: if (mysql_num_rows($get_list_res) < 1) {
 17: //no records
 18: $display_block .= "<p>Sorry, no records to select!</p>";
 19:
 20: } else {
 21: //has records, so get results and print in a form
 22: $display_block .= "
 23: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">
 24: <P>Select a Record to View:

 25: <select name=\"sel_id\">
 26: <option value=\"\">— Select One —</option>";
 27:
 28: while ($recs = mysql_fetch_array($get_list_res)) {
 29: $id = $recs['id'];
 30: $display_name = stripslashes($recs['display_name']);
 31:
 32: $display_block .= "<option value=\"$id\">
 33: $display_name</option>";
 34: }

 35: $display_block .= "
 36: </select>
 37: <input type=\"hidden\" name=\"op\" value=\"view\">
 38: <p><input type=\"submit\" name=\"submit\"
 39: value=\"View Selected Entry\"></p>
 40: </FORM>";
 41: }
 42:
 43: } else if ($_POST[op] == "view") {
 44:
 45: //check for required fields
 46: if ($_POST[sel_id] == "") {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 46: if ($_POST[sel_id] == "") {
 47: header("Location: selentry.php");
 48: exit;
 49: }
 50:
 51: //get master_info
 52: $get_master = "select concat_ws(' ', f_name, l_name) as display_name
 53: from master_name where id = $_POST[sel_id]";
 54: $get_master_res = mysql_query($get_master);
 55: $display_name = stripslashes(mysql_result($get_master_res,
 56: 0,'display_name'));

 57: $display_block = "<h1>Showing Record for $display_name</h1>";
 58: //get all addresses
 59: $get_addresses = "select address, city, state, zipcode, type
 60: from address where master_id = $_POST[sel_id]";
 61: $get_addresses_res = mysql_query($get_addresses);
 62:
 63: if (mysql_num_rows($get_addresses_res) > 0) {
 64:
 65: $display_block .= "<P>Addresses:

 66: ";
 67:
 68: while ($add_info = mysql_fetch_array($get_addresses_res)) {
 69: $address = $add_info[address];
 70: $city = $add_info[city];
 71: $state = $add_info[state];
 72: $zipcode = $add_info[zipcode];
 73: $address_type = $add_info[type];
 74:
 75: $display_block .= "$address $city $state $zipcode
 76: ($address_type)";
 77: }
 78:
 79: $display_block .= "";
 80: }
 81:
 82: //get all tel
 83: $get_tel = "select tel_number, type from telephone where
 84: master_id = $_POST[sel_id]";
 85: $get_tel_res = mysql_query($get_tel);
 86:
 87: if (mysql_num_rows($get_tel_res) > 0) {
 88:
 89: $display_block .= "<P>Telephone:

 90: ";
 91:
 92: while ($tel_info = mysql_fetch_array($get_tel_res)) {
 93: $tel_number = $tel_info[tel_number];
 94: $tel_type = $tel_info[type];
 95:
 96: $display_block .= "$tel_number ($tel_type)";
 97: }
 98:
 99: $display_block .= "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 99: $display_block .= "";
100: }
101:
102: //get all fax
103: $get_fax = "select fax_number, type from fax where
104: master_id = $_POST[sel_id]";
105: $get_fax_res = mysql_query($get_fax);
106:
107: if (mysql_num_rows($get_fax_res) > 0) {
108:
109: $display_block .= "<P>Fax:

110: ";
111:
112: while ($fax_info = mysql_fetch_array($get_fax_res)) {
113: $fax_number = $fax_info[fax_number];
114: $fax_type = $fax_info[type];
115:
116: $display_block .= "$fax_number ($fax_type)";
117: }
118:
119: $display_block .= "";
120: }
121:
122: //get all email
123: $get_email = "select email, type from email where
124: master_id = $_POST[sel_id]";
125: $get_email_res = mysql_query($get_email);
126:
127: if (mysql_num_rows($get_email_res) > 0) {
128:
129: $display_block .= "<P>Email:

130: ";
131:
132: while ($email_info = mysql_fetch_array($get_email_res)) {
133: $email = $email_info[email];
134: $email_type = $email_info[type];
135:
136: $display_block .= "$email ($email_type)";
137: }
138:
139: $display_block .= "";
140: }
141:
142: //get personal note
143: $get_notes = "select note from personal_notes where
144: master_id = $_POST[sel_id]";
145: $get_notes_res = mysql_query($get_notes);
146:
147: if (mysql_num_rows($get_notes_res) == 1) {
148: $note = nl2br(stripslashes(mysql_result($get_notes_res,0,'note')));
149:
150: $display_block .= "<P>Personal Notes:
$note";
151: }
152:
153: $display_block .= "

<P align=center>
154: select another</p>";
155: }
156: ?>
157: <HTML>
158: <HEAD>
159: <TITLE>My Records</TITLE>
160: </HEAD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

160: </HEAD>
161: <BODY>
162: <? print $display_block; ?>
163: </BODY>
164: </HTML>

As with the addentry.php script, the selentry.php script will perform one of two tasks at any given time: it either
shows the selection form, or it performs all the SQL queries related to viewing the record. No matter which of the two
tasks will be performed, the database still comes into play. Given that, we connect to it in lines 3–5.

The logic that determines the task begins at line 7, with a test for the value of $_POST[op]. If the value of
$_POST[op] is not "view", the user is not coming from the form and therefore needs to see the selection form. A
string called $display_block is started in line 9, and this string will be added to throughout this task. We hope that it
will ultimately hold a selection form.

In lines 12–14, we select part of the master_name records to build the selection option in the form. For this step, you
need only the name and ID of the person whose record you want to select. Line 16 tests for results of the query. If the
query has no results, you can't build a form. In this case, the value of $display_block would be filled with an error
message and the script would end, printing the resulting HTML to the screen.

However, assume you have a few records in the master_name table. In this case, you have to extract the information
from the query results to be able to build the form. This is done in lines 28–33, with form elements written to the
$display_block string both above and below it. The script then breaks out of the if...else construct and jumps down
to line 110, which outputs the HTML and prints the value of $display_block, in this case the form. This outcome is
shown in Figure 19.4.

Figure 19.4. The record selection form.

Line 43 begins the second condition if the value of $_POST[op] is "view", meaning the user has submitted the form
and wants to see a specific record. The required field in this section of the script is $_POST[sel_id], holding the ID
from the master_name table of the user selected in the form. If that value does not exist, the user is redirected to the
selection form. In lines 52–55, a query obtains the name of the user whose record you want to view. This information is
placed in the now-familiar $display_block string, which will continue to be built as the script continues.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placed in the now-familiar $display_block string, which will continue to be built as the script continues.

Lines 59–80 represent the query against the address table. If the selected individual has no records in the address
table, nothing is added to the $display_block string. However, if there are one or more entries, they are placed in
$display_block as unordered list elements, as shown in lines 65–79.

The same principle is followed for records in the telephone (lines 83–100), fax (lines 103–120), and email (lines 123–
140) tables. If there are one or more entries, place the results in $display_block. Otherwise, the script moves on.
Because there can be only one entry per individual in the personal_notes table, the script checks for the entry
beginning in line 143, and moves on if it doesn't exist. If a note exists, it's written in $display_block in lines 147–151.

The final action in this part of the script is to print a link in lines 153–154, in case the user wants to return to the
selection screen. After this point, the script exits from the if...else construct and prints the HTML to the screen. Figure
19.5 shows a record from the record selection script, with one entry in each table.

Figure 19.5. An individual's record.

Try this script yourself. You should see data only for individuals who have data associated with them. For example, if
you have an entry for a friend, and all you have is an email address for that person, you shouldn't see any text relating
to address, telephone, fax, or personal notes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating the Record Deletion Mechanism
The record deletion mechanism is virtually identical to the script used to view a record. In fact, you can just take the
first 42 lines of Listing 19.3 and paste them into a new file, called delentry.php, and make the following changes:

In lines 7, 37, and 43, change "view" to "delete"

In lines 24 and 39, change "View" to "Delete"

Starting with a new line 45, the remainder of the code for delentry.php is shown in Listing 19.4.

Listing 19.4 Script Called delentry.php for Selecting and Deleting a Record

 45: //check for required fields
 46: if ($_POST[sel_id] == "") {
 47: header("Location: delentry.php");
 48: exit;
 49: }
 50:
 51: //issue queries
 52: $del_master = "delete from master_name where id = $_POST[sel_id]";
 53: mysql_query($del_master);
 54:
 55: $del_address = "delete from address where id = $_POST[sel_id]";
 56: mysql_query($del_address);
 57:
 58: $del_tel = "delete from telephone where id = $_POST[sel_id]";
 59: mysql_query($del_tel);
 60:
 61: $del_fax = "delete from fax where id = $_POST[sel_id]";
 62: mysql_query($del_fax);
 63:
 64: $del_email = "delete from email where id = $_POST[sel_id]";
 65: mysql_query($del_email);
 66:
 67: $del_note = "delete from personal_notes where id = $_POST[sel_id]";
 68: mysql_query($del_master);
 69:
 70: $display_block = "<h1>Record(s) Deleted</h1>
 71: <P>Would you like to
 72: delete another?</p>";
 73: }
 74: ?>
 75: <HTML>
 76: <HEAD>
 77: <TITLE>My Records</TITLE>
 78: </HEAD>
 79: <BODY>
 80: <? print $display_block; ?>
 81: </BODY>
 82: </HTML>

Picking up with Line 45, the script looks for the required field, $_POST[sel_id]. If that value does not exist, the user is
redirected to the selection form. In lines 52–68, queries delete all information related to the selected individual, from all
tables. Lines 70–72 place a nice message in $display_block, and the script exits and prints the HTML to the screen. An
output of the record deletion script is shown in Figure 19.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

output of the record deletion script is shown in Figure 19.6.

Figure 19.6. Deleting a record.

Now go back to the record selection form and note that the individual you deleted is no longer in the selection menu.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Adding Subentries to a Record
At this point, you've learned to add, delete, and view records. What's missing is adding those additional entries to the
related tables—entries for home versus work telephone number, for example. All you need to do is make a few changes
to existing scripts.

In the selentry.php script in Listing 19.3, change lines 153–154 to read

$display_block .= "<P align=center>
add info ...
select another</p>";

This change simply adds a link to the addentry.php script and also passes it a variable called $master_id.

Now we need to modify the addentry.php script in Listing 19.2 to account for its dual purposes. Here is a summary of
the changes to the original script.

Replace the first 10 lines of the original addentry.php script with the following snippet:

<?php
if (($_POST[op] != "add") || ($_GET[master_id] != "")) {
//haven't seen the form, so show it
$display_block = "
<h1>Add an Entry</h1>
<form method=\"post\" action=\"$_SERVER[PHP_SELF]\">";

if ($_GET[master_id] != "") {
 //connect to database
 $conn = mysql_connect("localhost", "joeuser", "somepass")
 or die(mysql_error());
 mysql_select_db("testDB",$conn) or die(mysql_error());

 //get first, last names for display/tests validity
 $get_names = "select concat_ws(' ', f_name, l_name) as
 display_name from master_name where id = $_GET[master_id]";
 $get_names_res = mysql_query($get_names) or die(mysql_error());

 if (mysql_num_rows($get_names_res) == 1) {
 $display_name = mysql_result($get_names_res,0,'display_name');
 }
}

if ($display_name != "") {
 $display_block .= "<P>Adding information for
 $display_name:</p>";
} else {
 $display_block .= "
 <P>First/Last Names:

 <input type=\"text\" name=\"f_name\" size=30 maxlength=75>
 <input type=\"text\" name=\"l_name\" size=30 maxlength=75>";
}
$display_block .= "<P>Address:

This snippet simply moves around the form elements, printing the first and last name fields only if they contain a new
record. If they contain an addition to a record, the individual's name is extracted from the database for aesthetic
purposes as well as for a validity check of the ID.

Next, find this line:

<input type=\"hidden\" name=\"op\" value=\"add\">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<input type=\"hidden\" name=\"op\" value=\"add\">

Beneath it, add the following:

<input type=\"hidden\" name=\"master_id\" value=\"$_GET[master_id]\">

This modification ensures the known value of master_id is passed along to the next task.

Identify what were lines 49–67 of the original script, beginning with the comment time to add to tables and ending
with obtaining the value of $master_id. These lines should be replaced with the following:

//time to add to tables, so check for required fields
if ((($_POST[f_name] == "") || ($_POST[l_name] == "")) &&
 ($_POST[master_id] == "")) {
 header("Location: addentry.php");
 exit;
}

//connect to database
$conn = mysql_connect("localhost", "joeuser", "somepass")
 or die(mysql_error());
mysql_select_db("testDB",$conn) or die(mysql_error());

if ($_POST[master_id] == "") {
 //add to master_name table
 $add_master = "insert into master_name values ('', now(),
 now(), '$_POST[f_name]', '$_POST[l_name]')";
 mysql_query($add_master) or die(mysql_error());
 //get master_id for use with other tables
 $master_id = mysql_insert_id();
} else {
 $master_id = $_POST[master_id];
}

These lines modify the check for required fields, allowing the script to continue without values for first and last names,
but only if it has a $_POST[master_id] value. Then the script connects to the database to perform all the additions
we want it to, but it skips the addition to the master_name table if a value for $_POST[master_id] exists.

Finally, in the section of the script that handles the insertion into the personal_notes table, change insert into to
replace into to handle an update of the notes field.

The new script should look Listing 19.5.

Listing 19.5 New addentry.php Script

 1: <?php
 2: if (($_POST[op] != "add") || ($_GET[master_id] != "")) {
 3: //haven't seen the form, so show it
 4: $display_block = "
 5: <h1>Add an Entry</h1>
 6: <form method=\"post\" action=\"$_SERVER[PHP_SELF]\">";
 7:
 8: if ($_GET[master_id] != "") {
 9: //connect to database
 10: $conn = mysql_connect("localhost", "joeuser", "somepass")
 11: or die(mysql_error());
 12: mysql_select_db("testDB",$conn) or die(mysql_error());
 13:
 14: //get first, last names for display/tests validity
 15: $get_names = "select concat_ws(' ', f_name, l_name) as
 16: display_name from master_name where id = $_GET[master_id]";
 17: $get_names_res = mysql_query($get_names) or die(mysql_error());
 18:
 19: if (mysql_num_rows($get_names_res) == 1) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 19: if (mysql_num_rows($get_names_res) == 1) {
 20: $display_name = mysql_result($get_names_res,0,'display_name');
 21: }
 22: }
 23:
 24: if ($display_name != "") {
 25: $display_block .= "<P>Adding information for
 26: $display_name:</p>";
 27: } else {
 28: $display_block .= "
 29: <P>First/Last Names:

 30: <input type=\"text\" name=\"f_name\" size=30 maxlength=75>
 31: <input type=\"text\" name=\"l_name\" size=30 maxlength=75>";
 32: }
 33: $display_block .= "<P>Address:

 34: <input type=\"text\" name=\"address\" size=30>
 35:
 36: <P>City/State/Zip:

 37: <input type=\"text\" name=\"city\" size=30 maxlength=50>
 38: <input type=\"text\" name=\"state\" size=5 maxlength=2>
 39: <input type=\"text\" name=\"zipcode\" size=10 maxlength=10>
 40:
 41: <P>Address Type:

 42: <input type=\"radio\" name=\"add_type\" value=\"home\" checked> home
 43: <input type=\"radio\" name=\"add_type\" value=\"work\"> work
 44: <input type=\"radio\" name=\"add_type\" value=\"other\"> other
 45:
 46: <P>Telephone Number:

 47: <input type=\"text\" name=\"tel_number\" size=30 maxlength=25>
 48: <input type=\"radio\" name=\"tel_type\" value=\"home\" checked> home
 49: <input type=\"radio\" name=\"tel_type\" value=\"work\"> work
 50: <input type=\"radio\" name=\"tel_type\" value=\"other\"> other
 51:
 52: <P>Fax Number:

 53: <input type=\"text\" name=\"fax_number\" size=30 maxlength=25>
 54: <input type=\"radio\" name=\"fax_type\" value=\"home\" checked> home
 55: <input type=\"radio\" name=\"fax_type\" value=\"work\"> work
 56: <input type=\"radio\" name=\"fax_type\" value=\"other\"> other
 57:
 58: <P>Email Address:

 59: <input type=\"text\" name=\"email\" size=30 maxlength=150>
 60: <input type=\"radio\" name=\"email_type\" value=\"home\" checked> home
 61: <input type=\"radio\" name=\"email_type\" value=\"work\"> work
 62: <input type=\"radio\" name=\"email_type\" value=\"other\"> other
 63:
 64: <P>Personal Note:

 65: <textarea name=\"note\" cols=35 rows=5 wrap=virtual></textarea>
 66: <input type=\"hidden\" name=\"op\" value=\"add\">
 67: <input type=\"hidden\" name=\"master_id\" value=\"$_GET[master_id]\">
 68:
 69: <p><input type=\"submit\" name=\"submit\" value=\"Add Entry\"></p>
 70: </FORM>";
 71:
 72: } else if ($_POST[op] == "add") {
 73: //time to add to tables, so check for required fields
 74: if ((($_POST[f_name] == "") || ($_POST[l_name] == "")) &&
 75: ($_POST[master_id] == "")) {
 76: header("Location: addentry.php");
 77: exit;
 78: }
 79:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 79:
 80: //connect to database
 81: $conn = mysql_connect("localhost", "joeuser", "somepass")
 82: or die(mysql_error());
 83: mysql_select_db("testDB",$conn) or die(mysql_error());
 84:
 85: if ($_POST[master_id] == "") {
 86: //add to master_name table
 87: $add_master = "insert into master_name values ('', now(),
 88: now(), '$_POST[f_name]', '$_POST[l_name]')";
 89: mysql_query($add_master) or die(mysql_error());
 90: //get master_id for use with other tables
 91: $master_id = mysql_insert_id();
 92: } else {
 93: $master_id = $_POST[master_id];
 94: }
 95:
 96: if (($_POST[address]) || ($_POST[city]) || ($_POST[state]) ||
 97: ($_POST[zipcode])) {
 98: //something relevant, so add to address table
 99: $add_address = "insert into address values ('', $master_id,
100: now(), now(), '$_POST[address]', '$_POST[city]',
101: '$_POST[state]', '$_POST[zipcode]', '$_POST[add_type]')";
102: mysql_query($add_address) or die(mysql_error());
103: }
104:
105: if ($_POST[tel_number]) {
106: //something relevant, so add to telephone table
107: $add_tel = "insert into telephone values ('', $master_id,
108: now(), now(), '$_POST[tel_number]', '$_POST[tel_type]')";
109: mysql_query($add_tel) or die(mysql_error());
110: }
111:
112: if ($_POST[fax_number]) {
113: //something relevant, so add to fax table
114: $add_fax = "insert into fax values ('', $master_id, now(),
115: now(), '$_POST[fax_number]', '$_POST[fax_type]')";
116: mysql_query($add_fax) or die(mysql_error());
117: }
118:
119: if ($_POST[email]) {
120: //something relevant, so add to email table
121: $add_email = "insert into email values ('', $master_id,
122: now(), now(), '$_POST[email]', '$_POST[email_type]')";
123: mysql_query($add_email) or die(mysql_error());
124: }
125:
126: if ($_POST[note]) {
127: //something relevant, so add to notes table
128: $add_note = "replace into personal_notes values ('', $master_id,
129: now(), now(), '$_POST[note]')";
130: mysql_query($add_note) or die(mysql_error());
131: }
132:
133: $display_block = "<h1>Entry Added</h1>
134: <P>Your entry has been added. Would you like to
135: add another?</p>";
136: }
137: ?>
138: <HTML>
139: <HEAD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

139: <HEAD>
140: <TITLE>Add an Entry</TITLE>
141: </HEAD>
142: <BODY>
143: <? print $display_block; ?>
144: </BODY>
145: </HTML>

You can try out this revised script by selecting a record to view and then following the add info link. You should see a
form like Figure 19.7.

Figure 19.7. Adding to a record.

After submitting this form, you can go back through the selection sequence and view the record to verify that your
changes have been made.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hands-on hour, you applied your basic PHP and MySQL knowledge to the creation of a personal address book.
You learned how to create the database table and scripts for record addition, deletion, and simple viewing. You also
learned the process for adding multiple records attached to a single master entry.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: When passing a variable through the query string, which superglobal does it belong in? (Hint: You passed
a variable this way in the last section.)

A1: The $_GET superglobal.

2: How many records in the address, email, telephone, and fax tables can you have for each individual in
your master_name table?

A2: As many as you want—it's relational!

Activities

1. Go through each of the administration scripts and modify the code so that a link to the menu is printed at the
bottom of each screen.

2. Use the second version of the addentry.php script to add secondary contact information to records in your
database. Figure 19.8 shows how a record will look, after secondary contact information is added to it.

Figure 19.8. An individual's record, with multiple entries in tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 20. Creating an Online Storefront
In this hour's hands-on lesson, the project is creating a generic online storefront. You will learn the methods for
creating the relevant database tables, as well as the scripts for displaying the information to the user. The examples
used in this hour represent one of an infinite number of possibilities to complete these tasks, and are meant to provide
a foundation of knowledge rather than a definitive method for completing this task.

In this hour, you will learn how to

Create relational tables for an online store

Create the scripts to display store categories

Create the scripts to display individual items

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Planning and Creating the Database Tables
Before you tackle the process of creating database tables for a store, think about how you shop in real life. When you
walk into a store, items are ordered in some fashion: The hardware and the baby clothes aren't mixed together, the
electronics and the laundry detergent aren't side by side, and so on. Applying that knowledge to database
normalization, already you know that you will need a table to hold categories and a table to hold items. These items will
each belong to one category.

Next, think about the items themselves. Depending on the type of store you have, your items may or may not have
colors, and may or may not have sizes. But all your items will have a name, a description, and a price. Again, thinking
in terms of normalization, you know that you will have one general items table and two additional tables that relate to
the general items table.

Table 20.1 shows sample table and field names to use for your online storefront. In a minute, you'll create the actual
SQL statements, but first you should look at this information and try to see the relationships appear. Ask yourself which
of the fields should be primary or unique keys.

Table 20.1. Storefront Table and Field Names
Table Name Field Names

store_categories id, cat_title, cat_desc

store_items id, cat_id, item_title, item_price, item_desc, item_image

store_item_size item_ id, item_size

store_item_color item_id, item_color

As you can see in the following SQL statements, the store_categories table has two fields besides the id field:
cat_title and cat_desc, for title and description. The id field is the primary key, and cat_title is a unique field because
there's no reason you would have two identical categories.

mysql> create table store_categories (
 -> id int not null primary key auto_increment,
 -> cat_title varchar (50) unique,
 -> cat_desc text
 ->);
Query OK, 0 rows affected (0.03 sec)

The store_items table has five fields besides the id field, none of which are unique keys. The lengths specified in the
field definitions are arbitrary; you should use whatever best fits your store. The cat_id field relates the item to a
particular category in the store_categories table. This field is not unique because you will want more than one item in
each category. The item_title, item_price, and item_desc (for description) fields are self-explanatory. The
item_image field in this case will hold a filename—in this case, the file is assumed to be local to your server—which
you will use to build an HTML tag when it's time to display your item information.

mysql> create table store_items (
 -> id int not null primary key auto_increment,
 -> cat_id int not null,
 -> item_title varchar (75),
 -> item_price float (8,2),
 -> item_desc text,
 -> item_image varchar (50)
 ->);
Query OK, 0 rows affected (0.00 sec)

Both the store_item_size and store_item_color tables contain optional information: If you sell books, they won't
have sizes or colors, but if you sell shirts, they will. For each of these tables, no keys are involved because you can
associate as many colors and sizes with a particular item as you want.

mysql> create table store_item_size (
 -> item_id int not null,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -> item_id int not null,
 -> item_size varchar (25)
 ->);
Query OK, 0 rows affected (0.00 sec)

mysql> create table store_item_color (
 -> item_id int not null,
 -> item_color varchar (25)
 ->);
Query OK, 0 rows affected (0.00 sec)

These are all the tables necessary for a basic storefront—that is, for displaying the items you have for sale. Hour 21,
"Creating a Shopping Cart Mechanism," integrates the user experience into the mix. For now, just concentrate on your
inventory.

In Hour 19, "Creating an Online Address Book," you learned how to use PHP forms and scripts to add or delete records
in your tables. If you apply the same principles to this set of tables, you can easily create an administrative front end to
your storefront. We won't go through that process in this book, but feel free to do it on your own. At this point, you
know enough about PHP and MySQL to complete the tasks.

For now, simply issue MySQL queries via the MySQL monitor or other interface, to add information to your tables.
Following are some examples, if you want to follow along with sample data.

Inserting Records into the store_categories Table

The following queries create three categories in your store_categories table: hats, shirts, and books.

mysql> insert into store_categories values
 -> ('1', 'Hats', 'Funky hats in all shapes and sizes!');
Query OK, 1 row affected (0.01 sec)

mysql> insert into store_categories values ('2', 'Shirts', 'From t-shirts to
sweatshirts to polo shirts and beyond, we have them all.');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_categories values ('3', 'Books', 'Paperback,
hardback, books for school and books for play, you name it, we have it.');
Query OK, 1 row affected (0.00 sec)

In the next section, we'll add some items to the categories.

Inserting Records into the store_items Table

The following queries add three item records to each category. Feel free to add many more.

mysql> insert into store_items values ('1', '1', 'Baseball Hat', '12.00',
'Fancy, low-profile baseball hat.', 'baseballhat.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('2', '1', 'Cowboy Hat', '52.00',
'10 gallon variety', 'cowboyhat.gif');
Query OK, 1 row affected (0.01 sec)

mysql> insert into store_items values ('3', '1', 'Top Hat', '102.00',
'Good for costumes.', 'tophat.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('4', '2', 'Short-Sleeved T-Shirt',
'12.00', '100% cotton, pre-shrunk.', 'sstshirt.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('5', '2', 'Long-Sleeved T-Shirt',
'15.00', 'Just like the short-sleeved shirt, with longer sleeves.',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'15.00', 'Just like the short-sleeved shirt, with longer sleeves.',
'lstshirt.gif');
Query OK, 1 row affected (0.00 sec)
mysql> insert into store_items values ('6', '2', 'Sweatshirt', '22.00',
'Heavy and warm.', 'sweatshirt.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('7', '3', 'Jane\'s Self-Help Book',
'12.00', 'Jane gives advice.', 'selfhelpbook.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('8', '3', 'Generic Academic Book',
'35.00', 'Some required reading for school, will put you to sleep.',
'boringbook.gif');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_items values ('9', '3', 'Chicago Manual of Style',
'9.99', 'Good for copywriters.', 'chicagostyle.gif');
Query OK, 1 row affected (0.00 sec)

Inserting Records into the store_item_size Table

The following queries associate sizes with one of the three items in the shirts category and a generic "one size fits all"
size to each of the hats (assume they're strange hats). On your own, insert the same set of size associations for the
remaining items in the shirts category.

mysql> insert into store_item_size values (1, 'One Size Fits All');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (2, 'One Size Fits All');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (3, 'One Size Fits All');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'S');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'M');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'L');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_size values (4, 'XL');
Query OK, 1 row affected (0.00 sec)

Inserting Records into the store_item_color Table

The following queries associate colors with one of the three items in the shirts category. On your own, insert color
records for the remaining shirts and hats.

mysql> insert into store_item_color values (1, 'red');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_color values (1, 'black');
Query OK, 1 row affected (0.00 sec)

mysql> insert into store_item_color values (1, 'blue');
Query OK, 1 row affected (0.00 sec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Query OK, 1 row affected (0.00 sec)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Displaying Categories of Items
Believe it or not, the most difficult task in this project is finished. Compared to thinking up categories and items,
creating the scripts used to display the information is easy! The first script you will make is one that lists categories and
items. Obviously, you wouldn't want to list all categories and all items all at once as soon as the user walks in the door,
but you do want to give the user the option of immediately picking a category, seeing its items, and then picking
another category. In other words, this script will serve two purposes: It will show the categories and then show the
items in that category.

Listing 20.1 shows the code for seestore.php.

Listing 20.1 Script to View Categories

 1: <?php
 2: //connect to database
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: mysql_select_db("testDB",$conn) or die(mysql_error());
 6:
 7: $display_block = "<h1>My Categories</h1>
 8: <P>Select a category to see its items.</p>";
 9:
 10: //show categories first
 11: $get_cats = "select id, cat_title, cat_desc from
 12: store_categories order by cat_title";
 13: $get_cats_res = mysql_query($get_cats) or die(mysql_error());
 14:
 15: if (mysql_num_rows($get_cats_res) < 1) {
 16: $display_block = "<P>Sorry, no categories to browse.</p>";
 17: } else {
 18:
 19: while ($cats = mysql_fetch_array($get_cats_res)) {
 20: $cat_id = $cats[id];
 21: $cat_title = strtoupper(stripslashes($cats[cat_title]));
 22: $cat_desc = stripslashes($cats[cat_desc]);
 23:
 24: $display_block .= "<p><a
 25: href=\"$_SERVER[PHP_SELF]?cat_id=$cat_id\">$cat_title
 26:
$cat_desc</p>";
 27:
 28: if ($_GET[cat_id] == $cat_id) {
 29: //get items
 30: $get_items = "select id, item_title, item_price
 31: from store_items where cat_id = $cat_id
 32: order by item_title";
 33: $get_items_res = mysql_query($get_items) or die(mysql_error());
 34:
 35: if (mysql_num_rows($get_items_res) < 1) {
 36: $display_block = "<P>Sorry, no items in
 37: this category.</p>";
 38: } else {
 39:
 40: $display_block .= "";
 41:
 42: while ($items = mysql_fetch_array($get_items_res)) {
 43: $item_id = $items[id];
 44: $item_title = stripslashes($items[item_title]);
 45: $item_price = $items[item_price];
 46:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 46:
 47: $display_block .= "<a
 48: href=\"showitem.php?item_id=$item_id\">$item_title
 49: (\$$item_price)";
 50: }
 51:
 52: $display_block .= "";
 53: }
 54: }
 55: }
 56: }
 57: ?>
 58: <HTML>
 59: <HEAD>
 60: <TITLE>My Categories</TITLE>
 61: </HEAD>
 62: <BODY>
 63: <? print $display_block; ?>
 64: </BODY>
 65: </HTML>

Given the length of scripts in Hour 19, these 65 fully functional lines should be a welcome change. In lines 3–5 the
database connection is opened, because regardless of which action the script is taking—showing categories or showing
items in categories—the database is necessary.

In lines 7–8, the $display_block string is started, with some basic page title information. Lines 11–13 create and issue
the query to retrieve the category information. Line 15 checks for categories; if none were in the table, a message is
printed to the user and that's all this script does. However, if categories are found, the script moves on to line 19, which
begins a while loop to extract the information.

In the while loop, lines 20–22 retrieve the ID, title, and description of the category. String operations are performed to
ensure that no slashes are in the text and that the category title is in uppercase for display purposes. Lines 24–26 place
the category information, including a self-referential page link, in the $display_block string. If a user clicks the link,
she will return to this same script, except with a category ID passed in the query string. The script checks for this value
in line 28.

If a $cat_id value has been passed to the script because the user clicked on a category link in hopes of seeing listed
items, the script builds and issues another query (lines 30–33) to retrieve the items in the category. Lines 42–53 check
for items and then build an item string as part of $display_block. Part of the information in the string is a link to a
script called showitem.php, which you'll create in the next section.

After reaching that point, the script has nothing left to do, so it prints the HTML and value of $display_block. Figure
20.1 shows the outcome of the script when accessed directly; only the category information shows.

Figure 20.1. Categories in the store.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 20.2, you see what happens when the user clicked on the HATS link: the script gathered all the items
associated with the category and printed them on the screen. The user can still jump to another category on this same
page, and it will gather the items for that category.

Figure 20.2. Items within a category in the store.

The last piece of the puzzle for this hour is the creation of the item display page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Displaying Items
The item display page in this hour will simply show all the item information. In the next hour, you'll add a few lines to it
to make it function with an "add to cart" button. So for now, just assume this is a paper catalog.

Listing 20.2 shows the code for showitem.php.

Listing 20.2 Script to View Item Information

 1: <?php
 2: //connect to database
 3: $conn = mysql_connect("localhost", "joeuser", "somepass")
 4: or die(mysql_error());
 5: mysql_select_db("testDB",$conn) or die(mysql_error());
 6:
 7: $display_block = "<h1>My Store - Item Detail</h1>";
 8:
 9: //validate item
 10: $get_item = "select c.cat_title, si.item_title, si.item_price,
 11: si.item_desc, si.item_image from store_items as si left join
 12: store_categories as c on c.id = si.cat_id where si.id = $_GET[item_id]";
 13:
 14: $get_item_res = mysql_query($get_item) or die (mysql_error());
 15:
 16: if (mysql_num_rows($get_item_res) < 1) {
 17: //invalid item
 18: $display_block .= "<P>Invalid item selection.</p>";
 19: } else {
 20: //valid item, get info
 21: $cat_title = strtoupper(stripslashes(
 22: mysql_result($get_item_res,0,'cat_title')));
 23: $item_title = stripslashes(mysql_result($get_item_res,0,'item_title'));
 24: $item_price = mysql_result($get_item_res,0,'item_price');
 25: $item_desc = stripslashes(mysql_result($get_item_res,0,'item_desc'));
 26: $item_image = mysql_result($get_item_res,0,'item_image');
 27:
 28: //make breadcrumb trail
 29: $display_block .= "<P>You are viewing:

 30: $cat_title
 31: > $item_title</p>
 32:
 33: <table cellpadding=3 cellspacing=3>
 34: <tr>
 35: <td valign=middle align=center></td>
 36: <td valign=middle><P>Description:
$item_desc</p>
 37: <P>Price: \$$item_price</p>";
 38:
 39: //get colors
 40: $get_colors = "select item_color from store_item_color where
 41: item_id = $item_id order by item_color";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 41: item_id = $item_id order by item_color";
 42: $get_colors_res = mysql_query($get_colors) or die(mysql_error());
 43:
 44: if (mysql_num_rows($get_colors_res) > 0) {
 45:
 46: $display_block .= "<P>Available Colors:
";
 47:
 48: while ($colors = mysql_fetch_array($get_colors_res)) {
 49: $item_color = $colors['item_color'];
 50:
 51: $display_block .= "$item_color
";
 52: }
 53: }
 54:
 55: //get sizes
 56: $get_sizes = "select item_size from store_item_size where
 57: item_id = $item_id order by item_size";
 58: $get_sizes_res = mysql_query($get_sizes) or die(mysql_error());
 59:
 60: if (mysql_num_rows($get_sizes_res) > 0) {
 61:
 62: $display_block .= "<P>Available Sizes:
";
 63:
 64: while ($sizes = mysql_fetch_array($get_sizes_res)) {
 65: $item_size = $sizes['item_size'];
 66:
 67: $display_block .= "$item_size
";
 68: }
 69: }
 70:
 71: $display_block .= "
 72: </td>
 73: </tr>
 74: </table>";
 75:
 76: }
 77: ?>
 78: <HTML>
 79: <HEAD>
 80: <TITLE>My Store</TITLE>
 81: </HEAD>
 82: <BODY>
 83: <? print $display_block; ?>
 84: </BODY>
 85: </HTML>

In lines 3–5 the database connection is opened, because information in the database forms all the content of this page.
In line 7, the $display_block string is started, with some basic page title information.

Lines 10–14 create and issue the query to retrieve the category and item information. This particular query is a table
join. Instead of selecting the item information from one table and then issuing a second query to find the name of the
category, this query simply joins the table on the category ID to find the category name.

Line 16 checks for a result; if there is no matching item in the table, a message is printed to the user and that's all this
script does. However, if item information is found, the script moves on and gathers the information in lines 21–26.

In lines 29–31, you create what's known as a "breadcrumb trail." This is simply a navigational device used to get back
to the top-level item in the architecture. Those are fancy words that mean "print a link so you can get back to the
category."

In lines 33–37, you continue to add to the $display_block, setting up a table for information about the item. You use
the values gathered in lines 21–26 to create an image link, print the description, and print the price. What's missing are
the colors and sizes, so lines 39–53 select and print any colors associated with this item, and lines 55–69 gather the
sizes associated with the item.

Lines 71–74 wrap up the $display_block string, and because the script has nothing left to do, it prints the HTML and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lines 71–74 wrap up the $display_block string, and because the script has nothing left to do, it prints the HTML and
value of $display_block. Figure 20.3 shows the outcome of the script when selecting the cowboy hat from the hats
category. Of course, your display will differ from mine, but you get the idea.

Figure 20.3. The cowboy hat item page.

That's all there is to creating a simple item display. In the next hour, you'll modify this script so that it can add the item
to a shopping cart.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hands-on hour, you applied your basic PHP and MySQL knowledge to the creation of a storefront display. You
learned how to create the database table and scripts for viewing categories, item lists, and single items.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Which PHP function was used to uppercase the category title strings?

A1: strtoupper()

2: Why don't the store_item_size and store_item_color tables contain any primary or unique keys?

A2: Presumably, you will have items with more than one color and more than one size. Therefore, item_id is
not a primary or unique key. Also, items may have the same colors or sizes, so the item_color and
item_size fields must not be primary or unique either.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 21. Creating a Shopping Cart Mechanism
In the last of the directly hands-on hours, the project is to integrate a shopping cart and checkout procedure into the
storefront you created in the previous hour. You will be shown the methods for creating the relevant database tables as
well as the scripts for adding and deleting cart items. Once again, the examples used in this hour represent one of an
infinite number of possibilities to complete these tasks and are meant as working examples rather than the definitive
guide for building an online store.

In this hour, you will learn

How to create relational tables for the shopping cart and checkout portion of an online store

How to create the scripts to add and remove cart items

Some methods for processing transactions, and how to create your checkout sequence

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Planning and Creating the Database Tables
Because the goal of this hour is to provide the user with a way to select and order items, you can imagine what the
tables will be—first and foremost you need a cart table! In addition to the cart table, you'll need a table to store orders,
along with one to store the items purchased as part of each order.

The following SQL statements were used to create the three new tables, starting with the store_shoppertrack table.
This is the table used to hold items as users add them to their shopping cart.

The field lengths used to define these tables were chosen arbitrarily to try and
accommodate several possible inputs. Please feel free to modify the lengths to
meet your specific needs.

mysql> create table store_shoppertrack (
 -> id int not null primary key auto_increment,
 -> session_id varchar (32),
 -> sel_item_id int,
 -> sel_item_qty smallint,
 -> sel_item_size varchar(25),
 -> sel_item_color varchar(25),
 -> date_added datetime
 ->);
Query OK, 0 rows affected (0.01 sec)

In this table, the only key is the id field for the record. The session_id cannot be unique; otherwise users could only
order one item from your store, which is not a good business practice. The session_id identifies the user. The sel_*
fields are the selections by the user: the selected item, the selected quantity of the item, and the selected color and
size of the item. Finally, there's a date_added field. Many times, users place items in their cart and never go through
the checkout process. This practice leaves straggling items in your tracking table, which you may want to clear out
periodically. For example, you might want to delete all cart items more than a week old—this is where the date_added
field is helpful.

The next table holds the order information:

mysql> create table store_orders (
 -> id int not null primary key auto_increment,
 -> order_date datetime,
 -> order_name varchar (100),
 -> order_address varchar (255),
 -> order_city varchar (50),
 -> order_state char(2),
 -> order_zip varchar(10),
 -> order_tel varchar(25),
 -> order_email varchar(100),
 -> item_total float(6,2),
 -> shipping_total float(6,2),
 -> authorization varchar (50),
 -> status enum('processed', 'pending')
 ->);
Query OK, 0 rows affected (0.00 sec)

The only key field in the store_orders table is the id. For the sake of brevity in this lesson, an assumption is made that
the billing and shipping addresses of the user are the same, and that this store sells only to United States addresses.
It's simple enough to add another block of fields for shipping address information, if you want to do so. Also, this table
assumes that you are not storing credit-card information, which you shouldn't do unless you have super-encrypted the
information and are positive your firewall is secure. This table is based on the idea of real-time, credit-card processing.
You'll learn a few transaction options at the end of this lesson.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll learn a few transaction options at the end of this lesson.

The final table is the table to hold the line items in each order, store_orders_items:

mysql> create table store_orders_itemmap (
 -> id int not null primary key auto_increment,
 -> order_id int,
 -> sel_item_id int,
 -> sel_item_qty smallint,
 -> sel_item_size varchar(25),
 -> sel_item_color varchar(25),
 -> sel_item_price float(6,2)
 ->);
Query OK, 0 rows affected (0.00 sec)

The sel_* fields should look familiar—with the exception of sel_item_price, they are the same fields that appear in
the store_shoppertrack table! The primary key is the id field, and the order_id field is used to tie each line item to
the appropriate record in store_orders. The sel_item_price field is included here, as opposed to simply relating to
the item record because you might have occasion to change the pricing in your item record. If you change the price in
the item record, and you relate the sold line items to the current catalog price, your line item prices won't reflect what
the user actually paid.

With your tables all squared away we can move on to adding an item to the user's shopping cart.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Integrating the Cart with Your Storefront

In this section, you'll make modifications to the showitem.php script from Hour 20, "Creating an Online Storefront."
The goal is to transform the item information page into an item information page with a form for selecting colors, sizes,
and quantities.

In the original script, insert the following before Line 2:

session_start();

Because the shopping cart elements are attached to the user through a session id, the session must be started. The
next changes don't occur until what was line 37 of the original script, so that's where we start Listing 21.1.

Listing 21.1 New Lines in showitem.php

 37: <P>Price: \$$item_price</p>
 38: <form method=post action=\"addtocart.php\">";
 39: //get colors
 40: $get_colors = "select item_color from store_item_color where
 41: item_id = $item_id order by item_color";
 42: $get_colors_res = mysql_query($get_colors) or die(mysql_error());
 43:
 44: if (mysql_num_rows($get_colors_res) > 0) {
 45:
 46: $display_block .= "<P>Available Colors:
 47: <select name=\"sel_item_color\">";
 48:
 49: while ($colors = mysql_fetch_array($get_colors_res)) {
 50: $item_color = $colors['item_color'];
 51: $display_block .=
 52: "<option value=\"$item_color\">$item_color</option>";
 53: }
 54:
 55: $display_block .= "</select>";
 56: }
 57:
 58: //get sizes
 59: $get_sizes = "select item_size from store_item_size where
 60: item_id = $item_id order by item_size";
 61: $get_sizes_res = mysql_query($get_sizes) or die(mysql_error());
 62:
 63: if (mysql_num_rows($get_sizes_res) > 0) {
 64:
 65: $display_block .= "<P>Available Sizes:
 66: <select name=\"sel_item_size\">";
 67:
 68: while ($sizes = mysql_fetch_array($get_sizes_res)) {
 69: $item_size = $sizes['item_size'];
 70: $display_block .= "
 71: <option value=\"$item_size\">$item_size</option>";
 72: }
 73:
 74: $display_block .= "</select>";
 75: }
 76:
 77: $display_block .= "
 78: <P>Select Quantity:
 79: <select name=\"sel_item_qty\">";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 79: <select name=\"sel_item_qty\">";
 80:
 81: for($i=1; $i<11; $i++) {
 82: $display_block .= "<option value=\"$i\">$i</option>";
 83: }
 84:
 85: $display_block .= "
 86: </select>
 87: <input type=\"hidden\" name=\"sel_item_id\" value=\"$_GET[item_id]\">
 88: <P><input type=\"submit\" name=\"submit\" value=\"Add to Cart\"></p>
 89: </form>
 90: </td>
 91: </tr>
 92: </table>";
 93: }
 94: ?>
 95: <HTML>
 96: <HEAD>
 97: <TITLE>My Store</TITLE>
 98: </HEAD>
 99: <BODY>
100: <? print $display_block; ?>
101: </BODY>
102: </HTML>

The first change is at what was line 37, where the $display_block string is continued to include the beginning
<form> element. The action of the form is a script called addtocart.php, which you will create in the next section.

The next change occurs at line 47, where the $display_block string is continued to include the opening tag of a
<select> element, named sel_item_color. In lines 51-52, the colors are put into <option> elements for the user to
choose from, instead of simply printing on the screen. Line 55 closes the <select> element.

The same types of changes are made for item sizes. Lines 66-67 reflect the continuation of the $display_block string
to include the <select> element, named sel_item_size.

Lines 70-71 write the colors in <option> elements, and line 74 closes the <select> element.

Lines 77-83 are additions to the script. These lines create a <select> element, called sel_item_qty, for the user to
pick how many items to purchase. Line 86 closes this <select> element, and line 87 adds a hidden field for the
item_id. Line 88 adds the submit button and line 89 closes the form. The remaining lines are unchanged from the
original script.

When viewing the cowboy hat item using the new version of showitem.php, you would see Figure 21.1, reflecting the
addition of the form elements.

Figure 21.1. The new cowboy hat item page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next step is to create the addtocart.php script.

Adding Items to Your Cart

The addtocart.php script will simply write information to the store_shoppertrack table, and redirect the user to the
view of the shopping cart. We'll create the addtocart.php script first, then tackle the showcart.php script next.

Listing 21.2 The addtocart.php Script

 1: <?php
 2: session_start();
 3:
 4: //connect to database
 5: $conn = mysql_connect("localhost", "joeuser", "somepass")
 6: or die(mysql_error());
 7: mysql_select_db("testDB",$conn) or die(mysql_error());
 8:
 9: if ($_POST[sel_item_id] != "") {
 10: //validate item and get title and price
 11: $get_iteminfo = "select item_title from store_items
 12: where id = $_POST[sel_item_id]";
 13: $get_iteminfo_res = mysql_query($get_iteminfo)
 14: or die(mysql_error());
 15:
 16: if (mysql_num_rows($get_iteminfo_res) < 1) {
 17: //invalid id, send away
 18: header("Location: seestore.php");
 19: exit;
 20: } else {
 21: //get info
 22: $item_title = mysql_result($get_iteminfo_res,0,'item_title');
 24:
 25: //add info to cart table
 26: $addtocart = "insert into store_shoppertrack values
 27: ('', '$PHPSESSID', '$_POST[sel_item_id]', '$_POST[sel_item_qty]',
 28: '$_POST[sel_item_size]', '$_POST[sel_item_color]', now())";
 29:
 30: mysql_query($addtocart);
 31:
 32: //redirect to showcart page
 33: header("Location: showcart.php");
 34: exit;
 35:
 36: }
 37: } else {
 38: //send them somewhere else
 39: header("Location: seestore.php");
 40: exit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 40: exit;
 41: }
 42: ?>

Line 2 continues the user session, which is important because you will need to capture the user's session id, to write to
the store_shoppertrack table. Lines 5-7 make the database connection, and line 9 begins the validation of the
actions.

In line 9, the script verifies that a value is present in $_POST[sel_item_id], meaning the user came to this script
from a form. If there is no value, the script jumps down to line 37 and sends the user away in line 39, and that's it for
the script.

However, if there is a value in $_POST[sel_item_id], the next action is to verify that it is a valid value. Lines 11-14
create and issue an SQL query to gather the title of the selected item. Line 16 checks for a result; if there is no result,
the user is again redirected away in line 18.

If the selected item is a valid item, the script continues on to line 22 and extracts the value from the result set. The
script now has enough information to add the item selection to the store_shoppertrack table, which it does in lines
26-30.

After the query has been issued, the user is redirected to showcart.php, which will contain all cart items. You'll create
this in the next section.

Viewing the Cart

Now that you can add items to a cart, you'll want to see them! Listing 21.3 shows the code for showcart.php.

Listing 21.3 The showcart.php Script

 1: <?php
 2: session_start();
 3: //connect to database
 4: $conn = mysql_connect("localhost", "joeuser", "somepass")
 5: or die(mysql_error());
 6: mysql_select_db("testDB",$conn) or die(mysql_error());
 7:
 8: $display_block = "<h1>Your Shopping Cart</h1>";
 9:
 10: //check for cart items based on user session id
 11: $get_cart = "select st.id, si.item_title, si.item_price, st.sel_item_qty,
 12: st.sel_item_size, st.sel_item_color from store_shoppertrack as st
 13: left join store_items as si on si.id = st.sel_item_id where
 14: session_id = '$PHPSESSID'";
 15:
 16: $get_cart_res = mysql_query($get_cart) or die(mysql_error());
 17:
 18: if (mysql_num_rows($get_cart_res) < 1) {
 19: //print message
 20: $display_block .= "<P>You have no items in your cart.
 21: Please continue to shop!</p>";
 22:
 23: } else {
 24: //get info and build cart display
 25: $display_block .= "
 26: <table celpadding=3 cellspacing=2 border=1 width=98%>
 27: <tr>
 28: <th>Title</th>
 29: <th>Size</th>
 30: <th>Color</th>
 31: <th>Price</th>
 32: <th>Qty</th>
 33: <th>Total Price</th>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 33: <th>Total Price</th>
 34: <th>Action</th>
 35: </tr>";
 36:
 37: while ($cart = mysql_fetch_array($get_cart_res)) {
 38: $id = $cart['id'];
 39: $item_title = stripslashes($cart['item_title']);
 40: $item_price = $cart['item_price'];
 41: $item_qty = $cart['item_qty'];
 42: $item_color = $cart['sel_item_color'];
 43: $item_size = $cart['sel_item_size'];
 44:
 45: $total_price = sprintf("%.02f", $item_price * $item_qty);
 46:
 47: $display_block .= "<tr>
 48: <td align=center>$item_title
</td>
 49: <td align=center>$item_size
</td>
 50: <td align=center>$item_color
</td>
 51: <td align=center>\$ $item_price
</td>
 52: <td align=center>$item_qty
</td>
 53: <td align=center>\$ $total_price</td>
 54: <td align=center>remove</td>
 55: </tr>";
 56: }
 57:
 58: $display_block .= "</table>";
 59: }
 60: ?>
 61: <HTML>
 62: <HEAD>
 63: <TITLE>My Store</TITLE>
 64: </HEAD>
 65: <BODY>
 66: <? print $display_block; ?>
 67: </BODY>
 68: </HTML>

Line 2 continues the user session, which is important because you need to match the user's session id with the records
in the store_shoppertrack table. Lines 4-6 make the database connection, and line 8 begins the $display_block
string, with a heading for the page.

Lines 10-14 represent a joined query, in which the user's saved items are retrieved. The id, sel_item_qty,
sel_item_size, and sel_item_color fields are extracted from store_shoppertrack, and the item_title and
item_price fields are retrieved from the store_items table, based on the matching information from
store_shoppertrack. In other words, instead of printing 2 for the selected item, Cowboy Hat is shown as the title.
Line 16 issues the query, and line 18 checks for results.

If there are no results, the user has no items in the store_shoppertrack table, and a message is written to the
$display_block string and the script exits and shows the message.

If there are indeed results, the beginning of an HTML table is created in lines 25-35, with columns defined for all the
information in the cart (and then some). Line 37 begins the while loop to extract each item from the
store_shoppertrack, and this loop continues until line 56, printing the information in the proper table cell.

In line 54, you see a link created for a removal script, which you will create in the next section. Line 58 closes the table,
and the script finishes up and prints HTML to the screen in lines 59-68.

Now, go back to an item page and add the item to your cart. After the items are written to the store_shoppertrack
table, you should be redirected to the showcart.php page, and your newly selected items should be displayed. Figure
21.2, shows my cart after adding some items.

Figure 21.2. Items added to cart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.2. Items added to cart.

The next step is to create the removefromcart.php script.

Removing Items from Your Cart

The removefromcart.php script is quite short because all it does is issue a query and redirect the user to another
script. Inevitably, a user will want to weed items out of his cart, and this script enables him to do just that. Listing 21.4
shows the complete script.

Listing 21.4 The removefromcart.php Script

 1: <?php
 2: session_start();
 3: //connect to database
 4: $conn = mysql_connect("localhost", "joeuser", "somepass")
 5: or die(mysql_error());
 6: mysql_select_db("testDB",$conn) or die(mysql_error());
 7:
 8: if ($_GET[id] != "") {
 9: $delete_item = "delete from store_shoppertrack where
 10: id = $_GET[id] and session_id = '$PHPSESSID'";
 11: mysql_query($delete_item) or die(mysql_error());
 12:
 13: //redirect to showcart page
 14: header("Location: showcart.php");
 15: exit;
 16:
 17: } else {
 18: //send them somewhere else
 19: header("Location: seestore.php");
 20: exit;
 21: }
 22: ?>

Line 2 continues the user session because you need to match the user's session id with the records in the
store_shoppertrack table. Lines 4-6 make the database connection, and line 8 checks for a value in $_GET[id]. If a
value does not exist in $_GET[id], the user is not clicking the link from her cart and, thus, is sent away in line 19.

If a value exists in $_GET[id], an SQL query (lines 9-10) is issued (line 11) and the user is redirected to the
showcart.php script (line 14), where the item should no longer show up. Try it and see!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

showcart.php script (line 14), where the item should no longer show up. Try it and see!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Payment Methods and the Checkout Sequence
Several commerce methods exist when it comes time to pay for the purchases in the shopping cart. The "right" method
for you depends on your business—merchant accounts through banking institutions often require you to have a
business license, a reseller's permit, and other pieces of paper proving you're a legitimate business. If you're simply a
person who has a few items to sell, you might not want to go through all that paperwork. However, you still have
options!

Regardless of the payment method you choose, one thing is certain—if you are passing credit-card information over the
Web, you must do so over an SSL connection. Obtaining an SSL certificate and installing it on your system is covered in
Hour 23, "Setting Up a Secure Web Server." You do not have to use this secure connection during the user's entire
shopping experience, just from the point at which sensitive information is captured, such as the checkout form.

Creating the Checkout Form

At this point in the book, you should be well versed in creating a simple form. At the beginning of this hour, the
store_orders table was created with fields to be used as a guideline for your form:

order_name

order_address

order_city

order_state

order_zip

order_tel

order_email

Additionally, your form will need fields for the credit-card number, expiration date, and the name on the credit card.
Another nice feature is to repeat the user's shopping cart contents with an item subtotal, so the customer remembers
what he's paying for and approximately how much the order will cost. Also at this point of the checkout sequence, you
offer any shipping options you might have. Shipping and sales tax would be calculated in the next step of the process.

From the point of pressing the submit button on the form, the checkout sequence depends on the payment method you
are using. The next section goes through the basic steps and offers suggestions on various methods of payment
processing.

Performing the Checkout Actions

If you have obtained a merchant account through your bank, you can utilize real-time payment services such as
Verisign's PayFlo Pro. PHP has a built-in set of functions that, when used with the PayFlo libraries from Verisign, enable
you to create a simple script to handle the credit-card transaction. You can learn more about PayFlo Pro at the Verisign
Web site: http://www.verisign.com/products/payflow/pro/index.html. The PHP manual section for PayFlo functions is at
http://www.php.net/manual/en/ref.pfpro.php.

Verisign's product is one of several transaction-processing gateways that exist for use by merchants. Your bank will
usually provide a list of merchants they prefer you to use. If you stray from their list of preferred vendors, be sure to
research your selected vendor thoroughly, to avoid any delays with deposits and to ensure you're getting the best deal.

After you have selected a transaction processor, your checkout script should follow a path like the following:

1. Total the items, add tax, add shipping. This gives you the total amount to authorize from the credit card.

2. Perform credit-card authorization for the total amount.

3. You will receive either a success or failure response from your card processing routine. If the response is a
failure, print a message to the user, and the transaction is over. If the response is a success, continue to Step
4.

4. Write the basic order information to a table like store_orders, including the authorization code you will receive
upon successful authorization. Get the id value of this record using mysql_insert_id().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

upon successful authorization. Get the id value of this record using mysql_insert_id().

5. For each item in the shopping cart that is tied to this user, insert a record into store_orders_itemmap. Each
record will reference the id (as order_id) gathered in the previous step.

6. Delete the shopping cart items for this user.

7. Display the order with authorization code in place of the credit-card information on the screen, so the user can
print it and hold it as a receipt. You can also send this information via email to the user.

Each of the steps listed previously—with the exception of the actual payment authorization code—are the same simple
steps you have been using throughout this book, and there's no reason to make them more difficult than they need to
be!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In this hands-on lesson, you applied your basic PHP and MySQL knowledge to the integration of a shopping cart into the
storefront from the previous chapter. Included were the database table creation, modifications to the item detail page,
and new scripts for adding and removing cart items.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The Workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: When removing an item from the cart, why do you suppose the query validates the session id of the user
against the record?

A1: Users should only be able to remove their own items.

2: What would be a reason not to store the price in a hidden field when adding to the cart?

A2: If you stored the price in a hidden field, a rogue user could change that value before posting the form,
therefore, writing whatever price they wanted into the store_shoppertrack table, as opposed to the
actual price.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part V: Administration and Fine-Tuning
Hour

 22 Apache Performance Tuning and Virtual Hosting

 23 Setting Up a Secure Web Server

 24 Optimizing and Tuning MySQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 22. Apache Performance Tuning and Virtual
Hosting
In this administration-related hour, consideration will be given to increasing the performance and scalability of your
Apache installation. Additionally, you will learn about name-based and IP-based virtual hosting, and DNS and client
issues. It explains different mechanisms that can be used to isolate clients from each other and the associated security
tradeoffs.

In this hour, you will learn

Which operating system and Apache-related settings can limit the server scalability or degrade performance

About several tools for load testing Apache

How to fine-tune Apache for optimum performance

How to configure Apache to detect and prevent abusive behavior from clients

How to configure name-based virtual hosts, IP-based virtual hosts, and the difference between the two

About the dependencies virtual hosting has on DNS

How to set up scaled-up cookie-cutter virtual hosts

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Scalability Issues
This section covers scalability problems and how to prevent them. This is more of a "don't do this" list, explaining
limiting factors that can degrade performance or prevent the server from scaling. We will also investigate the proactive
tuning of Apache for optimal performance.

Operating System Limits

Several operating system factors can prevent Apache from scaling. These factors are related to process creation,
memory limits, and maximum simultaneous number of open files or connections.

The Unix ulimit command enables you to set several of the limits covered in
this section on a per-process basis. Please refer to your operating system
documentation for details on ulimit's syntax.

Processes

Apache provides settings for preventing the number of server processes and threads from exceeding certain limits.
These settings affect scalability because they limit the number of simultaneous connections to the Web server, which in
turn affects the number of visitors that you can service simultaneously.

The Apache MPM settings are in turn constrained by OS settings limiting the number of processes and threads. How to
change those limits varies from operating system to operating system. In Linux 2.0.x and 2.2.x kernels, it requires
changing the NR_TASKS defined in /usr/src/linux/include/linux/tasks.h and recompiling the kernel. In the 2.4.x
series, the limit can be accessed at runtime from the /proc/sys/kernel/threads-max file. You can read the contents
of the file with

cat /proc/sys/kernel/threads-max

and write to it using

echo value > /proc/sys/kernel/threads-max

In Linux (unlike most other Unix versions), there is a mapping between threads and processes, and they are similar
from the point of view of the OS.

In Solaris, those parameters can be changed in the /etc/system file. Those changes don't require rebuilding the
kernel, but might require a reboot to take effect. You can change the total number of processes by changing the
max_nprocs entry and the number of processes allowed for a given user with maxuproc.

File Descriptors

Whenever a process opens a file (or a socket), a structure called a file descriptor is assigned until the file is closed. The
OS limits the number of file descriptors that a given process can open, thus limiting the number of simultaneous
connections the Web server can have. How those settings are changed depends on the operating system. On Linux
systems, you can read or modify /proc/sys/fs/file-max (using echo and cat, as explained in the previous section).
On Solaris systems, you must edit the value for rlim_fd_max in the/etc/system file. This change will require a reboot
to take effect.

You can find additional information at http://httpd.apache.org/docs/misc/descriptors.html.

Controlling External Processes

Apache provides several directives to control the amount of resources external processes use. This applies to CGI
scripts spawned from the server and programs executed via Server Side Includes. Support for the following directives is
available only on Unix and varies from system to system:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

available only on Unix and varies from system to system:

RLimitCPU— Accepts two parameters: the soft limit and the hard limit for the amount of CPU time in seconds
that a process is allowed. If the max keyword is used, it indicates the maximum setting allowed by the
operating system. The hard limit is optional. The soft limit can be changed between restarts, and the hard limit
specifies the maximum allowed value for that setting.

RlimitMem— The syntax is identical to RLimitCPU, but this directive specifies the amount (in bytes) of
memory used per process.

RlimitNProc— The syntax is identical to RLimitCPU, but this directive specifies the number of processes.

These three directives are useful to prevent malicious or poorly written programs from running out of control.

Performance-Related Apache Settings

This section presents you with different Apache settings that affect performance.

File System Access

Accessing files on disk is expensive. You should try to minimize the number of disk accesses required for serving a
request. Symbolic links, per-directory configuration files, and content negotiation are some of factors that affect the
number of disk accesses:

Symbolic links— In Unix, a symbolic link (or symlink) is a special kind of file that points to another file. It is
created with the Unix ln command and is useful for making a certain file appear in different places.

Two of the parameters that the Options directive allows are FollowSymLinks and SymLinksIfOwnerMatch.

By default, Apache won't follow symbolic links because they can be used to bypass security settings. For
example, you can create a symbolic link from a public part of the Web site to a restricted file or directory not
otherwise accessible via the Web. So, also by default, Apache needs to perform a check to verify that the file
isn't a symbolic link. If SymLinksIfOwnerMatch is present, it will follow a symbolic link if the same user sho
created the symbolic link owns the target file. Because those tests must be performed for every path element
and for every path that refers to a filesystem object, they can be expensive. If you control the content creation,
you should add an Options +FollowSymLinks directive to your configuration and avoid the
SymLinksIfOwnerMatch argument. In this way, the tests won't take place and performance isn't affected.

Per-directory configuration files— As explained in Hour 2, "Installing and Configuring Apache," it is possible
to have per-directory configuration files. These files, normally named .htaccess, provide a convenient way of
configuring the server and allow for some degree of delegated administration. However, if this feature is
enabled, Apache has to look for these files in each directory in the path leading to the file being requested,
resulting in expensive filesystem accesses. If you don't have a need for per-directory configuration files, you
can disable this feature by adding AllowOverride none to your configuration. Doing so will avoid the
performance penalty associated with accessing the filesystem looking for .htaccess files.

Content negotiation— Apache can serve different versions of a file depending on client language or
preferences. This can be accomplished with file extensions, but for every request, Apache must access the
filesystem repeatedly looking for files with appropriate extensions. If you need to use content negotiation, make
sure that you at least use a type-map file, minimizing accesses to disk.

Scoreboard file— This is a special file that the main Apache process uses to communicate with its children in
certain older operating systems. You can specify its location with ScoreBoardFile, but most modern platforms
do not require this directive. If this file is required, you might find improved performance if you place it on a
RAM disk. A RAM disk is a mechanism that allows a portion of the system memory to be accessed as a
filesystem. The details on creating a RAM disk vary from system to system.

Network and Status Settings

A number of network-related Apache settings can degrade performance:

HostnameLookups— When HostnameLookups is set to on or double, Apache will perform a DNS lookup
to capture the hostname of the client, introducing a delay. The default setting is HostnameLookups off. If
you need to use the hostnames, you can always process the request logs with a log resolver later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you need to use the hostnames, you can always process the request logs with a log resolver later.

Accept mechanism— Apache can use different mechanisms to control how Apache children arbitrate requests.
The optimal mechanism depends on the specific platform and number of processors. You can find detailed tests
and performance analysis at http://research.covalent.net/projects/osdl1.html. Additional information can be
found at http://httpd.apache.org/docs-2.0/misc/perf-tuning.html.

mod_status— This module collects statistics about the server, connections, and requests, which slows down
Apache. For optimal performance, disable this module, or at least make sure that ExtendedStatus is set to
off, which is the default.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Load Testing with ApacheBench
You can test the scalability and performance of your site with benchmarking and traffic generation tools. There are
many commercial and open-source tools, with varying degrees of sophistication. It is difficult to accurately simulate
real-world request traffic because visitors have different navigation patterns, access the Internet using connections with
different speeds, stop a download if it is taking too long, press the reload button repeatedly if they get impatient, and
so on. That is why some tools record actual network traffic for later replay.

The Apache server comes with a simple, but useful, load-testing tool, called ApacheBench, or ab. You can find it in the
/bin directory of the Apache distribution.

This tool enables you to request a certain URL a number of times and display a summary of the result. The following
command requests the main page of the www.example.com server 1000 times, with 10 simultaneous clients at any
given time:

#> /usr/local/apache2/bin/ab -n 1000 -c 10 http://www.example.com/

If you invoke ab without any arguments, you will get a complete listing of
command-line options and syntax. Additionally, the trailing slash on the target
URL is required, unless a specific page is named.

The result will look similar to the following:

This is ApacheBench, Version 2.0.40 <$Revision: 1.87 $>
Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd,
http://www.zeustech.net/org/
Copyright (c) 1998-2001 The Apache Software Foundation, http://www.apache.org/

Benchmarking www.example.com (be patient)
Completed 100 requests
Completed 200 requests
Completed 300 requests
Completed 400 requests
Completed 500 requests
Completed 600 requests
Completed 700 requests
Completed 800 requests
Completed 900 requests
Finished 1000 requests
Server Software: Apache/2.0.40
Server Hostname: www.example.com
Server Port: 80

Document Path: /
Document Length: 8667 bytes

Concurrency Level: 10
Time taken for tests: 64.525026 seconds
Complete requests: 1000
Failed requests: 0
Write errors: 0
Total transferred: 8911000 bytes
HTML transferred: 8667000 bytes
Requests per second: 15.50 [#/sec] (mean)
Time per request: 0.645 - (mean)
Time per request: 0.065 - (mean, across all concurrent requests)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Time per request: 0.065 - (mean, across all concurrent requests)
Transfer rate: 134.86 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 19 62 59.7 45 727
Processing: 178 572 362.8 478 3151
Waiting: 18 114 176.9 74 1906
Total: 255 634 390.3 536 3301

Percentage of the requests served within a certain time (ms)
50% 536
66% 611
75% 662
80% 693
90% 872
95% 1436
98% 2162
99% 2461
100% 3301 (longest request)

These requests were made over the Internet to a sample server. You should get many more requests per second if you
conduct the test against a server in the same machine or over a local network. The output of the tool is self-
explanatory. Some of the relevant results are the number of requests per second and the average time it takes to
service a request. You can also see how more than 90% of the requests were served in less than one second.

You can play with different settings for the number of requests and with the number of simultaneous clients to find the
point at which your server slows down significantly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Proactive Performance Tuning
Although previous sections explained which settings might prevent Apache from scaling, the following are some
techniques for proactively increasing the performance of your server.

Mapping Files to Memory

As explained previously, accesses to disk affect performance significantly. Although most modern operating systems
keep a cache of the most frequently accessed files, Apache also enables you to explicitly map a file into memory so that
access to disk isn't necessary. The module that performs this mapping is mod_file_cache. You can specify a list of
files to memory map by using the MMapFile directive, which applies to the server as a whole. An additional directive in
Apache 2.0, CacheFile, takes a list of files, caches the file descriptors at startup, and keeps them around between
requests, saving time and resources for frequently requested files.

Distributing the Load

Another way to increase performance is to distribute the load among several servers. This can be done in a variety of
ways:

A hardware load balancer directing network and HTTP traffic across several servers, making it look like a single
server from the outside.

A software load balancer solution using a reverse proxy with mod_rewrite.

Separate servers providing images, large download files, and other static material. For example, you can place
your images in a server called images.example.com and link to them from your main server.

Caching

The fastest way to serve content is not to serve it! This can be achieved by using appropriate HTTP headers that
instruct clients and proxies of the validity in time of the requested resources. In this way, some resources that appear
in multiple pages, but don't change frequently, such as logos or navigation buttons, are transmitted only once for a
certain period of time.

Additionally, you can use mod_cache in Apache 2.0 to cache dynamic content so that it doesn't need to be created for
every request. This is potentially a big performance boost because dynamic content usually requires accessing
databases, processing templates, and so on, which can take significant resources.

As of this writing, mod_cache is still experimental. You can read more about it
at http://httpd.apache.org/docs-2.0/mod/mod_cache.html.

Reduce Transmitted Data

Another way to reduce the load on the servers is to reduce the amount of data being transferred to the client. This in
turn makes your clients'Web site access faster, especially for those over slow links. You can do a number of things to
achieve this:

Reduce the number of images.

Reduce the size of your images.

Compress big downloadable files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compress big downloadable files.

Precompress static HTML and use content negotiation.

Use mod_deflate to compress HTML content. This can be useful if CPU power is available and clients are
connecting over slow links. The content will be delivered quicker and the process will be free sooner to answer
additional requests.

Network Settings

HTTP 1.1 allows multiple requests to be served over a single connection. HTTP 1.0 enables the same thing with keep-
alive extensions. The KeepAliveTimeout directive enables you to specify the maximum time in seconds that the
server will wait before closing an inactive connection. Increasing the timeout means that you will increase the chance of
the connection being reused. On the other hand, it also ties up the connection and Apache process during the waiting
time, which can prevent scalability, as discussed earlier in the hour.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preventing Abuse
Denial of service (DoS) attacks work by swamping your server with a great number of simultaneous requests, slowing
down the server or preventing access altogether to legitimate clients. DoS attacks are difficult to prevent in general,
and usually the most effective way to address them is at the network or operating system level. One example is
blocking specific addresses from making requests to the server; although you can block those addresses at the Web
server level, it is more efficient to block them at the network firewall/router or with the operating system network
filters.

Other kinds of abuse include posting extremely big requests or opening a great number of simultaneous connections.
You can limit the size of requests and timeouts to minimize the effect of attacks. The default request timeout is 300
seconds, but you can change it with the TimeOut directive. A number of directives enable you to control the size of the
request body and headers: LimitRequestBody, LimitRequestFields, LimitRequestFieldSize, LimitRequestLine,
and LimitXMLRequestBody.

To prevent abuse, the mod_bwshare module enables you to limit the number of files or bytes that a given client can
download from the server. You can learn more about mod_bwshare at
http://www.topology.org/src/bwshare/README.html.

Robots

Robots, Web spiders, and Web crawlers are names that define a category of programs that download pages from your
Web site, recursively following your site's links. Web search engines use these programs to scan the Internet for Web
servers, download their content, and index it. Normal users use them to download an entire Web site or portion of a
Web site for later offline browsing. Normally, these programs are well behaved, but sometimes they can be very
aggressive and swamp your Web site with too many simultaneous connections or become caught in cyclic loops.

Well-behaved spiders will request a special file, called robots.txt, that contains instructions about how to access your
Web site and which parts of the Web site won't be available to them. The syntax for the file can be found at
http://www.robotstxt.org/. You can stop the requests at the router or operating system levels.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Implementing Virtual Hosting
Early Web servers were designed to handle the contents of a single site. The standard way of hosting several Web sites
in the same machine was to install and configure different, and separate, Web server instances. As the Internet grew,
so did the need for hosting multiple Web sites and a more efficient solution was developed: virtual hosting. Virtual
hosting allows a single instance of Apache to serve different Web sites, identified by their domain names. IP-based
virtual hosting means that each of the domains is assigned a different IP address; name-based virtual hosting means
that several domains share a single IP address. As is explained later in the hour, name-based virtual hosting requires
HTTP/1.1 support.

Web clients use the domain name server system (DNS) to translate hostnames into IP addresses, and vice versa.
Several mappings are possible:

One to one— Means that each hostname is assigned a single, unique IP address. This is the foundation for IP-
based virtual hosting.

One to many— Means that a single hostname is assigned to several IP addresses. This is useful for having
several Apache instances serving the same Web site. If each of the servers is installed in a different machine, it
is possible to balance the Web traffic among them, improving scalability.

Many to one— Means that you can assign the same IP address to several hostnames. The client will specify the
Web site it is accessing by using the Host: header in the request. This is the foundation for name-based virtual
hosting.

When a many-to-one mapping is in place, a DNS server usually can be
configured to respond with a different IP address for each DNS query, which
helps to distribute the load. This is known as round robin DNS.

IP-Based Virtual Hosting

The simplest virtual host configuration is when each host is assigned a unique IP address. Each IP address maps the
HTTP requests that Apache handles to separate content trees in their own VirtualHost containers, as shown in the
following snippet:

Listen 192.168.128.10:80
Listen 192.168.129.10:80
<VirtualHost 192.168.128.10:80>
 DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.129.10:80>
 DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

If a DocumentRoot is not specified for a given virtual host, the global setting, specified outside any <VirtualHost>
section, will be used. In the previous example, each virtual host has its own DocumentRoot. When a request arrives,
Apache will use the destination IP address to direct the request to the appropriate host. For example, if a request
comes for IP 192.168.128.10, Apache will return the documents from /usr/local/www-docs/host1. If the host
operating system cannot resolve an IP address used as the VirtualHost container's name, and there's no ServerName
directive, Apache will complain at server startup time that it can't map the IP addresses to hostnames. This complaint is
not a fatal error. Apache will still run, but the error indicates that there might be some work to be done with the DNS
configuration so that Web browsers can find your server. A fully qualified domain name (FQDN) can be used instead of
an IP address as the VirtualHost container name and the Listen directive binding (if the domain name resolves in DNS
to an IP address configured on the machine and Apache can bind to it).

Name-Based Virtual Hosts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a way to mitigate the consumption of IP addresses for virtual hosts, the HTTP/1.1 protocol version introduced the
Host: header, which enables a browser to specify the exact host for which the request is intended. This allows several
hostnames to share a single IP address. Most browsers nowadays provide HTTP/1.1 support.

Although Host: usage was standardized in the HTTP/1.1 specification, some
older HTTP/1.0 browsers also provided support for this header.

A typical set of request headers from Microsoft Internet Explorer is shown in Listing 22.1. If the URL were entered with
a port number, it would be part of the Host header contents as well.

Listing 22.1 Request Headers

GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: host1.example.com
Connection: Keep-Alive

Apache uses the Host: header for configurations in which multiple hostnames can be shared by a single IP address—
the many-to-one scenario outlined earlier this hour—thus, the description name-based virtual hosts.

The NameVirtualHost directive enables you to specify IP address and port combinations on which the server will
receive requests for name-based virtual hosts. This is a required directive for name-based virtual hosts. Listing 22.2 has
Apache dispatch all connections to 192.168.128.10 based on the Host header contents.

Listing 22.2 Name-Based Virtual Hosts

 NameVirtualHost 192.168.128.10
 Listen 192.168.128.10:80
 <VirtualHost 192.168.128.10>
 ServerName host1.example.com
 DocumentRoot /usr/local/www-docs/host1
 </VirtualHost>
 <VirtualHost 192.168.128.10>
 ServerName host2.example.com
 DocumentRoot /usr/local/www-docs/host2
 </VirtualHost>

For every hostname that resolves in DNS to 192.168.128.10, Apache can support another name-based virtual host. If a
request comes for that IP address for a hostname that is not included in the configuration file, say
host3.example.com, Apache will simply associate the request to the first container in the configuration file; in this
case, host1.example.com. The same behavior is applied to requests that are not accompanied by a Host header;
whichever container is first in the configuration file is the one that gets the request.

An end user from the example.com domain might have his machine set up with example.com as his default domain.
In that case, he might direct his browser to http://host1/ instead of the fully qualified http://host1.example.com/.
The Host header would simply have host1 in it instead of host1.example.com. To make sure that the correct virtual
host container gets the request, you can use the ServerAlias directive as shown in Listing 22.3.

Listing 22.3 The ServerAlias Directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
<VirtualHost 192.168.128.10>
 ServerName host1.example.com
 ServerAlias host1
 DocumentRoot /usr/local/www-docs/host1
</VirtualHost>
<VirtualHost 192.168.128.10>
 ServerName host2.example.com
 ServerAlias host2
 DocumentRoot /usr/local/www-docs/host2
</VirtualHost>

In fact, you can give ServerAlias a space-separated list of other names that might show up in the Host header so that
you don't need a separate VirtualHost container with a bunch of common directives just to handle all the name
variants.

HTTP 1.1 forces the use of the Host header. If the protocol version is identified as 1.1 in the HTTP request line (that is,
GET / HTTP/1.1), the request must be accompanied by a Host header. In the early days of name-based virtual hosts,
Host headers were considered a tradeoff: Fewer IP resources were required, but legacy browsers that did not send
Host headers were still in use and, therefore, could not access all of the server's virtual hosts. Today, that is not a
consideration; there is no statistically significant number of such legacy browsers in use.

The only reason to opt for IP-based and not use name-based virtual hosts is if there are virtual hosts that must use
SSL. You can learn more about SSL and this limitation in Hour 23, "Setting Up a Secure Web Server."

Mass Virtual Hosting

In the previous listings, the DocumentRoots follow a simple pattern:

DocumentRoot /usr/local/www-docs/ hostname

where hostname is the hostname portion of the fully qualified domain name used in the virtual host's ServerName. For
just a few virtual hosts, this configuration is fine. But what if there are dozens, hundreds, or even thousands of these
virtual hosts? The configuration file can become difficult to maintain. Apache provides a good solution for cookie-cutter
virtual hosts with mod_vhost_alias. You can configure Apache to map the virtual host requests to separate content
trees with pattern-matching rules in the VirtualDocumentRoot directive. This functionality is especially useful for ISPs
that want to provide a virtual host for each one of their users. The following example provides a simple mass virtual
host configuration:

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
VirtualDocumentRoot /usr/local/www-docs/%1

The %1 token used in this example's VirtualDocumentRoot directive will be substituted for the first portion of the
FQDN. mod_vhost_alias directives have a language for mapping FQDN components to filesystem locations. Even
characters within the FQDN can be accessed.

If we eliminated all the VirtualHost containers and simplified our configuration to the one shown here, the server
would serve requests for any subdirectories created in the /usr/local/www-docs directory. If the hostname portion of
the FQDN is matched as a subdirectory, that's where Apache will look for content when it translates the request to a
filesystem location.

Note that although virtual hosts normally inherit directives from the main server context, some of them, such as Alias
directives, do not get propagated. For instance, the virtual hosts will not inherit this filesystem mapping:

Alias /icons /usr/local/apache2/icons

The FollowSymLinks flag for the Options directive is also disabled in this context. However, a variant of the
ScriptAlias directive is supported.

The VirtualScriptAlias directive shown in the following snippet treats requests for any resources under /cgi-bin as
containing CGI scripts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

containing CGI scripts:

NameVirtualHost 192.168.128.10
Listen 192.168.128.10:80
VirtualDocumentRoot /usr/local/vhosts/%1/docs
VirtualScriptAlias /usr/local/vhosts/%1/cgi-bin

Note that cgi-bin is a special token for that directive; calling the directory just cgi won't work; it must be cgi-bin.

For IP-based virtual hosting needs, there are variants of these directives: VirtualDocumentRootIP and
VirtualScriptAliasIP. However, because the primary motivation of IP-based virtual hosts is for SSL and there's no
pattern-matched path support for SSL resources such as certificates and keys, the uses are fairly limited.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
This hour provided you with information on Apache and operating system settings that can affect scalability and
performance. In most cases, however, the problems in Web site scalability relate to dynamic content generation and
database access. Hardware-related improvements, such as high-quality network cards and drivers, increased memory,
and disk arrays can also provide enhanced performance.

With regard to virtual hosting, Apache can be configured to handle virtual hosts in a variety of ways. Whether you need
a large number of cookie-cutter virtual hosts, a varied set of different virtual host configurations, or the number of IP
addresses you can use is limited, there's a way to configure Apache for your application. Name-based virtual hosting is
a common technique for deploying virtual hosts without using up IP addresses. IP-based virtual hosting is still necessary
when a virtual host is used for SSL. If you cannot change your DNS configuration, your only recourse is to use separate
port numbers for your virtual hosts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: How can I measure whether my site is fast enough?

A1: Many developers test their sites locally or over an internal network, but if you run a public Web site,
chances are good that many of your users will access it over slow links. Try navigating your Web site from
a dialup account and make sure that your pages load fast enough, with the rule of thumb being that pages
should load in less than three seconds.

Q2: How can I migrate an existing name-based virtual host to its own machine while maintaining
continuous service?

A2: If a virtual host is destined to move to a neighboring machine, which by definition cannot have the same
IP address, there are some extra measures to take. A common practice is to do the following:

1. Set the time-to-live of the DNS mapping to a very low number. This increases the frequency of
client lookups of the hostname.

2. Configure an IP alias on the old host with the new IP address.

3. Configure the virtual host's content to be served by both name- and IP-address-based virtual
hosts.

4. After all the requests for the virtual host at the old IP address diminish (due to DNS caches
expiring their old lookups), the server can be migrated.

Q3: Can I mix IP- and name-based virtual hosting?

A3: Yes. If multiple IP addresses are bound, you can allocate their usage a number of different ways. A family
of name-based virtual hosts might be associated with each; just use a separate NameVirtualHost
directive for each IP. One IP might be dedicated as an IP-based virtual host for SSL, for instance, whereas
another might be dedicated to a family of name-based virtual hosts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The Workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Name some Apache settings that might limit scalability or affect Apache performance.

A1: Some of the Apache settings that might affect scalability include the FollowSymLinks,
SymLinksIfOwnerMatch arguments to the Options directive, enabling per-directory configuration files,
hostname lookups, having a scoreboard file, and statistics collection with mod_status.

2: Name some operating system settings that might limit scalability.

A2: Some operating system settings that might affect scalability include limits for number of processes, open
file descriptors, and memory allowed per process.

3: Name some approaches to improve performance.

A3: The following are some suggestions for improving performance: load distribution via a hardware load
balancer or reverse proxy, data compression, caching, mapping files to memory, and compiling modules
statically.

4: Which VirtualHost container gets a request if the connection uses NameVirtualHost, but no Host header
is sent?

A4: Reading the configuration top-to-bottom, the first VirtualHost container is favored. The same behavior
occurs if there is a Host header, but no VirtualHost container that matches it.

5: Is the ServerName directive necessary in a VirtualHost container?

A5: Only when name-based virtual hosts are used. The Host header contents are compared to the contents of
the ServerName directive. If a match isn't satisfied, the VirtualHost containers' ServerAlias directive
value(s) are checked for matches.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 23. Setting Up a Secure Web Server
This hour explains how to set up an Apache server capable of secure transactions. In this hour, you will learn

The installation and configuration of the mod_ssl Apache module

The SSL/TLS family of protocols and the underlying cryptography concepts

What certificates are and how to create and manage them

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Need for Security
As the Internet became mainstream and the number of companies, individuals, and government agencies using it grew,
so did the number and type of transactions that needed protection. Those included financial transactions, such as
banking operations and electronic commerce, as well as exchange of sensitive information, such as medical records and
corporate documents. Three requirements are necessary to carry on secure communications on the Internet:
confidentiality, integrity, and authentication.

Confidentiality

Confidentiality is the most obvious requirement for secure communications. If you are transmitting or accessing
sensitive information such as your credit-card number or your personal medical history, you certainly don't want a
stranger to get hold of it.

Integrity

The information contained in the exchanged messages must be protected from external manipulation. That is, if you
place an order online to buy 100 shares of stock, you don't want to allow anyone to intercept the message, change it to
an order to buy 1000 shares, or replace the original message. Additionally, you want to prevent an attacker from
performing replay attacks, which, instead of modifying the original message, simply resend it several times to achieve a
cumulative effect.

Authentication

You need to decide whether to trust the organization or individual you are communicating with. To achieve this, you
must authenticate the identity of the other party in the communication.

The science of cryptography studies the algorithms and methods used to securely transmit messages, ensuring the
goals of confidentiality, integrity, and authenticity. Cryptanalysis is the science of breaking cryptographic systems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The SSL Protocol
SSL stands for Secure Sockets Layer and TLS stands for Transport Layer Security. They are a family of protocols that
were originally designed to provide security for HTTP transactions, but that also can be used for a variety of other
Internet protocols such as IMAP and NNTP. HTTP running over SSL is referred to as secure HTTP.

Netscape released SSL version 2 in 1994 and SSL version 3 in 1995. TLS is an IETF standard designed to standardize
SSL as an Internet protocol. It is just a modification of SSL version 3 with a small number of added features and minor
cleanups. The TLS acronym is the result of arguments between Microsoft and Netscape over the naming of the protocol
because each company proposed its own name. However, the name has not stuck and most people refer to these
protocols simply as SSL. Unless otherwise specified, the rest of this hour refers to SSL/TLS as SSL.

You specify that you want to connect to a server using SSL by replacing http with https in the protocol component of a
URI. The default port for HTTP over SSL is 443.

The following sections explain how SSL addresses the confidentiality, integrity, and authentication requirements
outlined in the previous section. In doing so, it explains, in a simplified manner, the underlying mathematical and
cryptographic principles SSL is based on.

Addressing the Need for Confidentiality

The SSL protocol protects data from eavesdropping by encrypting it. Encryption is the process of converting a message,
the plaintext, into a new encrypted message, the ciphertext. Although the plaintext is readable by everyone, the
ciphertext will be completely unintelligible to an eavesdropper. Decryption is the reverse process, which transforms the
ciphertext into the original plaintext.

Usually, encryption and decryption processes involve an additional piece of information: a key. If both sender and
receiver share the same key, the process is referred to as symmetric cryptography. If sender and receiver have
different, complementary keys, the process is called asymmetric or public key cryptography.

Symmetric Cryptography

If the key used to both encrypt and decrypt the message is the same, the process is known as symmetric cryptography.
DES, Triple-Des, RC4, and RC2 are algorithms used for symmetric key cryptography. Many of these algorithms can
have different key sizes, measured in bits. In general, given an algorithm, the greater the number of bits in the key, the
more secure the algorithm is and the slower it will run because of the increased computational needs of performing the
algorithm.

Symmetric cryptography is relatively fast compared to public key cryptography, which is explained in the next section.
Symmetric cryptography has two main drawbacks, however. One is that keys should be changed periodically to avoid
providing an eavesdropper with access to large amounts of material encrypted with the same key. The other is the key
distribution problem: How to get the keys to each one of the parties in a safe manner? This was one of the original
limiting factors, and before the invention of public key cryptography, the problem was solved by periodically having
people traveling around with suitcases full of keys.

Public Key Cryptography

Public key cryptography takes a different approach. Instead of both parties sharing the same key, there is a pair of
keys: one public and the other private. The public key can be widely distributed, whereas the owner keeps the private
key secret. These two keys are complementary—a message encrypted with one of the keys can be decrypted only by
the other key.

Anyone wanting to transmit a secure message to you can encrypt the message using your public key, assured that only
the owner of the private key—you—can decrypt it. Even if the attacker has access to the public key, he cannot decrypt
the communication. In fact, you want the public key to be as widely available as possible. Public key cryptography can
also be used to provide message integrity and authentication. RSA is the most popular public key algorithm.

People with public keys will place these keys on public key servers or simply send the keys to others with whom they
want to have secure email exchanges. Using the appropriate tools, such as PGP or GnuPG, the sender will encrypt the
outgoing message based on the recipient's public key.

The assertion that only the owner of the private key can decrypt it means that with the current knowledge of
cryptography and availability of computing power, an attacker will not be able to break the encryption by brute force
alone in a reasonable timeframe. If the algorithm or its implementation is flawed, realistic attacks are possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alone in a reasonable timeframe. If the algorithm or its implementation is flawed, realistic attacks are possible.

Public key cryptography is similar to giving away many identical lockpads and
retaining the key that opens them all. Anybody who wants to send you a
message privately can do so by putting it in a safe and locking it with one of
those lockpads (public keys) before sending it to you. Only you have the
appropriate key (private key) to open that lockpad (decrypt the message).

The SSL protocol uses public key cryptography in an initial handshake phase to securely exchange symmetric keys that
can then be used to encrypt the communication.

Addressing the Need for Integrity

Performing a special calculation on the contents of the message and storing the result with the message itself can
preserve data integrity. When the message arrives at its destination, the recipient can perform the same calculation and
compare the results. If the contents of the message changed, the results of the calculation will be different.

Digest algorithms perform just that process, creating message digests. A message digest is a method of creating a
fixed-length representation of an arbitrary message that uniquely identifies it. You can think of it as the fingerprint of
the message. A good message digest algorithm should be irreversible and collision resistant, at least for practical
purposes. Irreversible means that the original message cannot be obtained from the digest and collision resistant
means that no two different messages should have the same digest. Examples of digest algorithms are MD5 and SHA.

Message digests alone, however, do not guarantee the integrity of the message because an attacker could change the
text and the message digest. Message authentication codes, or MACs, are similar to message digests, but incorporate a
shared secret key in the process. The result of the algorithm depends both on the message and the key used. Because
the attacker has no access to the key, he cannot modify both the message and the digest. HMAC is an example of a
message authentication code algorithm.

The SSL protocol uses MAC codes to avoid replay attacks and to assure integrity of the transmitted information.

Addressing the Need for Authentication

SSL uses certificates to authenticate parties in a communication. Public key cryptography can be used to digitally sign
messages. In fact, just by encrypting a message with your secret key, the receiver can guarantee it came from you.
Other digital signature algorithms involve first calculating a digest of the message, and then signing the digest.

You can tell that the person who created that public and private key pair is the one sending the message. But, how can
you tie that key to a person or organization that you can trust in the real world? Otherwise, an attacker could
impersonate his identity and distribute a different public key, claiming it is the legitimate one. Trust can be achieved by
using digital certificates. Digital certificates are electronic documents that contain a public key and information about its
owner (name, address, and so on). To be useful, the certificate must be signed by a trusted third party (certification
authority, or CA) who certifies that the information is correct. There are many different kinds of CAs, as described later
in the hour. Some of them are commercial entities, providing certification services to companies conducting business
over the Internet. Companies providing internal certification services create other CAs.

The CA guarantees that the information in the certificate is correct, and that the key belongs to that individual or
organization. Certificates have a period of validity and can expire or be revoked. Certificates can be chained so that the
certification process can be delegated. For example, a trusted entity can certify companies, which in turn can take care
of certifying its own employees.

If this whole process is to be effective and trusted, the certificate authority must require appropriate proof of identity
from individuals and organizations before it issues a certificate.

By default, browsers include a collection of root certificates for trusted certificate authorities.

SSL and Certificates

The main standard defining certificates is X.509, adapted for Internet usage. An X.509 certificate contains the following
information:

Issuer— The name of the signer of the certificate

Subject— The person holding the key being certified

Subject public key— The public key of the subject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subject public key— The public key of the subject

Control information— Data such as the dates in which the certificate is valid

Signature— The signature that covers the previous data

You can check a real-life certificate by connecting to a secure server with your browser. If the connection has been
successful, a little padlock icon or another visual clue will be added to the status bar of your browser. With Internet
Explorer, you can click the locked padlock icon to open a page containing information on the SSL connection and the
remote server certificate. You can access the same information by selecting Properties, and then Certificates from the
File menu. Other browsers, such as Netscape, Mozilla, and Konqueror provide a similar interface.

Open the https://www.zend.com URL in your browser and analyze the certificate, following the steps outlined in the
preceding paragraph. You can see how the issuer of the certificate is Thawte CA. The page downloaded seamlessly
because Thawte is a trusted CA that has its own certificates bundled with Internet Explorer and Netscape Navigator.

To check which certificates are bundled with your Internet Explorer browser, select Tools, Internet Options, Content,
Certificates, Trusted Root Certification Authorities.

You can see that both issuer and subject are provided as distinguished names (DN), a structured way of providing a
unique identifier for every element on the network. In the case of the Thawte certificate, the DN is C=IL, S=Mehoz Tel
Aviv, L=Ramat Gan, O=Zend Technologies, Ltd., CN=www.zend.com.

C stands for country, S for state, L for locality, O for organization, and CN for common name. In the case of a Web site
certificate, the common name identifies the fully qualified domain name of the Web site (FQDN). This is the server
name part of the URL; in this case, www.zend.com. If this does not match what you typed in the top bar, the browser
will issue an error.

SSL Protocol Summary

You have seen how SSL achieves confidentiality via encryption, integrity via message authentication codes, and
authentication via certificates and digital signatures.

The process to establish an SSL connection is the following:

1. The user uses his browser to connect to the remote Apache server.

2. The handshake phase starts, and the browser and server exchange keys and certificate information.

3. The browser checks the validity of the server certificate, including that it has not expired, that it has been
issued by a trusted CA, and so on.

4. Optionally, the server can require the client to present a valid certificate as well.

5. Server and client use each other's public key to securely agree on a symmetric key.

6. The handshake phase concludes and transmission continues using symmetric cryptography.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Installing SSL
Now that you've learned all about SSL, you need to install SLL support for Apache. SSL support is provided by
mod_ssl, a module that is included with Apache, but is not enabled by default. mod_ssl, in turn, requires the
OpenSSL library—an open-source implementation of the SSL/TLS protocols and a variety of other cryptographic
algorithms. OpenSSL is based on the SSLeay library developed by Eric A. Young and Tim J. Hudson.

OpenSSL

This section explains how to download and install the OpenSSL toolkit for both Windows and Unix variants.

Windows

The required OpenSSL libraries are included with the Windows installer of Apache 2.0 and no further installation or
download is necessary. openssl.exe is included in the bin/ directory of the Apache distribution. It is a utility for
generating certificates, keys, certificate signing requests, and so on.

Unix

If you are running a recent Linux or FreeBSD distribution, OpenSSL might already be installed in your system. Use the
package management tools bundled with your distribution to determine whether that is the case or, otherwise, to install
it.

If you need to install OpenSSL from source, you can download OpenSSL from http://www.openssl.org. After you have
downloaded the software, you need to uncompress it and cd into the created directory:

#> gunzip < openssl*.tar.gz | tar xvf -
#> cd openssl*

OpenSSL contains a config script to help you build the software. You must provide the path to which the software will
install. The path used in this hour is /usr/local/ssl/install, and you probably need to have root privileges to install the
software there. You can install the software as a regular user, but to do so, you will need to change the path. Then, you
must build and install the software:

#> ./config --prefix=/usr/local/ssl/install \
--openssldir=/usr/local/ssl/install/openssl
#> make
#> make install

If everything went well, you have now successfully installed the OpenSSL toolkit. The openssl command-line tool will
be located in /usr/local/ssl/install/bin/.
This tool is used to create and manipulate certificates and keys, and its usage is described in a later section on
certificates.

mod_ssl

In the past, SSL extensions for Apache had to be distributed separately because of export restrictions. These
restrictions no longer exist and mod_ssl is bundled and integrated with Apache 2.0. This section describes the steps
necessary to build and install this module. mod_ssl depends on the OpenSSL library, so a valid OpenSSL installation is
required.

Windows

You can download a binary distribution of Apache 2.0 for the Windows platform from http://httpd.apache.org; it
includes mod_ssl. You might need to uncomment the following line in the configuration file:

LoadModule ssl_module modules/libmodssl.so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoadModule ssl_module modules/libmodssl.so

Unix

If you are using the Apache 2.0 server that came installed with your operating system, chances are that it already
includes mod_ssl. Use the package management tools bundled with your distribution to install mod_ssl if it is not
present in your system.

When you build Apache 2.0 from source, you must pass the following options to enable and build mod_ssl at compile
time. The options are in addition to the options used in Hour 2, "Installing and Configuring Apache," to ensure that PHP
was successfully installed.

--enable-ssl --with-ssl=/usr/local/ssl/install/openssl

This assumes that you installed OpenSSL in the location described in previous sections.

If you compiled mod_ssl statically into Apache, you can check whether it is present by issuing the following command,
which provides a list of compiled-in modules:

#> /usr/local/apache2/bin/httpd -l

The command assumes that you installed Apache in the /usr/local/apache2 directory.

If mod_ssl was compiled as a dynamic loadable module, the following line must be added or uncommented to the
configuration file:

LoadModule ssl_module modules/libmodssl.so

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Managing Certificates
To have a working SSL server implementation, the first step is to create a server certificate. This section explains in
detail how to create and manage certificates and keys by using the openssl command-line tool. For example, if you are
using SSL for an e-commerce site, encryption prevents customer data from eavesdroppers, and the certificate enables
customers to verify that you are who you claim to be.

The examples refer to the Unix version of the command-line program openssl.
If you are running under Windows, you need to use openssl.exe instead and
change the paths of the examples to use backslashes instead of forward
slashes. The examples also assume that OpenSSL was installed in the path
described earlier in the OpenSSL installation section.

Creating a Key Pair

You must have a public/private key pair before you can create a certificate request. Assume that the FQDN for the
certificate you want to create is www.example.com. (You will need to substitute this name for the FQDN of the
machine on which you have installed Apache.) You can create the keys by issuing the following command:

#> ./usr/local/ssl/install/bin/openssl genrsa -des3 -rand file1: file2: file3 \
 -out
www.example.com. key 1024

genrsa indicates to OpenSSL that you want to generate a key pair.

des3 indicates that the private key should be encrypted and protected by a pass phrase.

The rand switch is used to provide OpenSSL with random data to ensure that the generated keys are unique and
unpredictable. Substitute file1, file2, and so on, for the path to several large, relatively random files for this purpose
(such as a kernel image, compressed log files, and so on). You can also use /dev/random if it exists on your system.
The rand switch is not necessary on Windows because the random data is automatically generated by other means.

The out switch indicates where to store the results.

1024 indicates the number of bits of the generated key.

The result of invoking this command looks like this:

625152 semi-random bytes loaded
Generating RSA private key, 1024 bit long modulus
.....++++++
.........................++++++
e is 65537 (0x10001)
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

As you can see, you will be asked to provide a pass phrase; choose a secure one. The pass phrase is necessary to
protect the private key, and you will be asked for it whenever you want to start the server. You can choose not to
protect the key. This is convenient because you will not need to enter the pass phrase during reboots, but it is highly
insecure and a compromise of the server means a compromise of the key as well. In any case, you can choose to
unprotect the key either by leaving out the -des3 switch in the generation phase or by issuing the following command:

#> ./usr/local/ssl/install/bin/openssl rsa -in www.example.com.key \
 -out www.example.com.key.unsecure

It is a good idea to back up the www.example.com.key file. You can learn about the contents of the key file by
issuing the following command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

issuing the following command:

#> ./usr/local/ssl/bin/openssl rsa -noout -text -in www.example.com.key

Creating a Certificate Signing Request

To get a certificate issued by a CA, you must submit what is called a certificate signing request. To create a request,
issue the following command:

#> ./usr/local/ssl/install/bin/openssl req -new -key www.example.com.key \
 -out www.example.com.csr

You will be prompted for the certificate information:

Using configuration from /usr/local/ssl/install/openssl/openssl.cnf
Enter PEM pass phrase:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []: San Francisco
Organization Name (eg, company) [Internet Widgits Pty Ltd]:.
Organizational Unit Name (eg, section) []:.
Common Name (eg, YOUR name) []:www.example.com
Email Address []:administrator@example.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

It is important that the Common Name field entry matches the address that visitors to your Web site will type in their
browsers. This is one of the checks that the browser will perform for the remote server certificate. If the names differ, a
warning indicating the mismatch will be issued to the user.

The certificate is now stored in www.example.com.csr. You can learn about the contents of the certificate via the
following command:

#> ./usr/local/ssl/install/bin/openssl req -noout -text \
 -in www.example.com.csr

You can submit the certificate signing request file to a CA for processing. VeriSign and Thawte are two of those CAs.
You can learn more about their particular submission procedures at their Web sites:

VeriSign— http://digitalid.verisign.com/

Thawte— http://www.thawte.com/

Creating a Self-Signed Certificate

You can also create a self-signed certificate. That is, you can be both the issuer and the subject of the certificate.
Although this is not very useful for a commercial Web site, it will enable you to test your installation of mod_ssl, or to
have a secure Web server while you wait for the official certificate from the CA.

#> ./usr/local/ssl/install/bin/openssl x509 -req -days 30 \
 -in www.example.com.csr -signkey www.example.com.key \
 -out www.example.com.cert

You need to copy your certificate www.example.com.cert (either the one returned by the CA or your self-signed one)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need to copy your certificate www.example.com.cert (either the one returned by the CA or your self-signed one)
to /usr/local/ssl/install/openssl/certs/ and your key to /usr/local/ssl/install/openssl/private/.
Protect your key file by issuing the following command:

#> chmod 400 www.example.com.key

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

SSL Configuration
The previous sections introduced the (not-so-basic) concepts behind SSL, and you have learned how to generate keys
and certificates. Now, finally, you can configure Apache to support SSL. mod_ssl must either be compiled statically or,
if you have compiled as a loadable module, the appropriate LoadModule directive must be present in the file.

If you compiled Apache yourself, a new Apache configuration file, named ssl.conf, should be present in the /conf
directory. That file contains a sample Apache SSL configuration, and is referenced from the main httpd.conf file via an
Include directive.

If you want to start your configuration from scratch, you can add the following configuration snippet to your Apache
configuration file:

Listen 80
Listen 443
<VirtualHost _default_:443>
ServerName www.example.com
SSLEngine on
SSLCertificateFile \
/usr/local/ssl/install/openssl/certs/www.example.com.cert
SSLCertificateKeyFile \
/usr/loca/ssl/install/openssl/certs/www.example.com.key
</VirtualHost>

With the previous configuration, you set up a new virtual host that will listen to port 443 (the default port for HTTPS),
and you enable SSL on that virtual host with the SSLEngine directive.

You need to indicate where to find the server's certificate and the file containing the associated key. You do so by using
SSLCertificateFile and SSLCertificateKeyfile directives.

Starting the Server

Now you can stop the server if it is running, and start it again. If your key is protected by a pass phrase, you will be
prompted for it. After this, Apache will start, and you should be able to connect securely to it via the
https://www.example.com/ URL.

If you compiled and installed Apache yourself, in many of the vendor configuration files, you can see that an
<IFDEFINE SSL> block surrounds the SSL directives. That allows for conditional starting of the server in SSL mode.
If you start the httpd server binary directly, you can pass it the -DSSL flag at startup. You can also use the apachectl
script by issuing the apachectl startssl command. Finally, if you always want to start Apache with SSL support, you
can just remove the <ifDefine> section and start Apache in the usual way.

If you are unable to successfully start your server, check the Apache error log for clues about what might have gone
wrong. For example, if you cannot bind to the port, make sure that another Apache is not running already. You must
have administrator privileges to bind to port 443.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary

This hour explained the fundamentals of the SSL protocol and mod_ssl, the Apache module that implements support
for SSL. You learned how to install and configure mod_ssl and the OpenSSL libraries, and how to use the openssl
command-line tool for certificate and key generation and management. You can access the mod_ssl reference
documentation for in-depth syntax explanation and additional configuration information. Bear in mind also that SSL is
just part of maintaining a secure server, which includes applying security patches, OS configuration, access control,
physical security, and so on.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can I have SSL with name-based virtual hosting?

A1: A question that comes up frequently is how to make name-based virtual hosts work with SSL. The answer
is that you can't, at least currently. Name-based virtual hosts depend on the Host header of the HTTP
request, but the certificate verification happens when the SSL connection is being established and no HTTP
request can be sent. There is a protocol for upgrading an existing HTTP connection to TLS, but it is mostly
unsupported by current browsers (see RFC 2817).

Q2: Can I use SSL with other protocols?

A2: mod_ssl implements the SSL protocol as a filter. Other protocols using the same Apache server can easily
take advantage of the SSL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The Workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Name three requirements to carry on secure communications on the Internet.

A1: Confidentiality, integrity, and authentication

2: How do you start an SSL-enabled instance of Apache?

A2: Use the apachectl control script and the command apachectl startssl.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Hour 24. Optimizing and Tuning MySQL
Proper care and feeding of your MySQL server will keep it running happily and without incident. The optimization of
your system consists of proper hardware maintenance and software tuning. In this hour, you will learn

Basic hardware and software optimization tips for your MySQL server

Key start-up parameters for your MySQL server

How to use the OPTIMIZE TABLE command

How to use the EXPLAIN command

How to use the FLUSH command to clean up tables, caches, and log files

How to use SHOW commands to retrieve information about databases, tables, and indexes

How to use SHOW commands to find system status information

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Building an Optimized Platform
Designing a well-structured, normalized database schema is just half of the optimization puzzle. The other half is
building and fine-tuning a server to run this fine database. Think about the four main components of a server: CPU,
memory, hard drive, and operating system. Each of these better be up to speed or no amount of design or
programming will make your database faster!

CPU— The faster the CPU, the faster MySQL will be able to process your data. There's no real secret to this, but
a 750MHz processor is significantly faster than a 266MHz processor. With processor speeds now more than
1GHz and with reasonable prices all around, it's not difficult to get a good bang for your buck.

Memory— Put as much RAM in your machine as you can. You can never have enough, and RAM prices will be
at rock bottom for the foreseeable future. Having available RAM can help balance out sluggish CPUs.

Hard Drive— The proper hard drive will be both large enough and fast enough to accommodate your database
server and its traffic. An important measurement of hard-drive speed is its seek time, or the amount of time it
takes for the drive to spin around and find a specific piece of information. Seek time is measured in
milliseconds, and an average disk-seek time is around eight or nine milliseconds. When buying a hard drive,
make sure it's big enough to accommodate all the data you'll eventually store in your database and fast enough
to find it quickly.

Operating System— If you use an operating system that's a resource hog, you have two choices: buy enough
resources (that is, RAM) so that it doesn't matter, or use an operating system that doesn't suck away all your
resources just so that you can have windows and pretty colors. Also, if you are blessed with a machine that has
multiple processors, be sure your operating system can handle this condition and handle it well.

If you put the proper pieces together at the system level, you'll have taken several steps toward overall server
optimization.

Using the benchmark() Function

A quick test of your server speed is to use the benchmark() MySQL function to see how long it takes to process a
given expression. You can make the expression something simple, such as 10+10, or something more extravagant,
such as extracting pieces of dates.

No matter the result of the expression, the result of benchmark() will always be 0. The purpose of benchmark() is
not to retrieve the result of the expression, but to see how long it takes to repeat the expression for a specific number
of times. For example, the following command executes the expression 10+10 one million times:

mysql> select benchmark(1000000,10+10);
+--------------------------+
| benchmark(1000000,10+10) |
+--------------------------+
| 0 |
+--------------------------+
1 row in set (0.14 sec)

This command executes the date extraction expression, also one million times:

mysql> select benchmark(1000000, extract(year from now()));
+--+
| benchmark(1000000, extract(year from now())) |
+--+
| 0 |
+--+
1 row in set (0.20 sec)

The important number is the time in seconds, which is the elapsed time for the execution of the function. You might
want to run the same uses of benchmark() multiple times during different parts of day (when your server is under
different loads) to get a better idea of how your server is performing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

MySQL Startup Options
MySQL AB provides a wealth of information regarding the tuning of server parameters, much of which the average user
will never need to use. So, as not to completely overwhelm you with information, this section will contain a few of the
more common startup options for a finely tuned MySQL server.

When you start MySQL, a configuration file called my.cnf is loaded. This file contains information ranging from port
number to buffer sizes, but can be overruled by command-line startup options. At installation time, my.cnf is placed in
the /etc directory, but you can also specify an alternate location for this file during start-up.

In the support-files subdirectory of your MySQL installation directory, you'll find four sample configuration files, each
tuned for a specific range of installed memory:

my-small.cnf— For systems with less than 64MB of RAM, where MySQL is used occasionally.

my-medium.cnf— For systems with less than 64MB of RAM, where MySQL is the primary activity on the
system, or for systems with up to 128MB of RAM, where MySQL shares the box with other processes. This is the
most common configuration, where MySQL is installed on the same box as a Web server and receives a
moderate amount of traffic.

my-large.cnf— For a system with 128MB to 512MB of RAM, where MySQL is the primary activity.

my-huge.cnf— For a system with 1GB to 2GB of RAM, where MySQL is the primary activity.

To use any of these as the base configuration file, simply copy the file of your choice to /etc/my.cnf (or wherever
my.cnf is on your system) and change any system-specific information, such as port or file locations.

Key Startup Parameters

There are two primary start-up parameters that will affect your system the most: key_buffer_size and table_cache.
If you get only two server parameters correctly tuned, make sure they're these two!

The value of key_buffer_size is the size of the buffer used with indexes. The larger the buffer, the faster the SQL
command will finish and a result will be returned. Try to find the fine line between finely tuned and over-optimized; you
might have a key_buffer_size of 256MB on a system with 512MB of RAM, but any more than 256MB could cause
degraded server performance.

A simple way to check the actual performance of the buffer is to examine four additional variables:
key_read_requests, key_reads, key_write_requests, and key_writes. You can find the values of these variables
by issuing the SHOW STATUS command:

mysql> show status;

A long list of variables and values will be returned, listed in alphabetical order. Find the rows that look something like
this (your values will differ):

| Key_read_requests | 602843 |
| Key_reads | 151 |
| Key_write_requests | 1773 |
| Key_writes | 805 |

If you divide the value of key_read by the value of key_reads_requests, the result should be less than 0.01. Also, if
you divide the value of key_write by the value of key_writes_requests, the result should be less than 1. Using the
previous values, we have results of 0.000250479809834401 and 0.454032712915962, respectively, well within the
acceptable parameters. To try to get these numbers even smaller, more tuning could occur by increasing the value of
key_buffer_size, but these numbers would be fine to leave as they are.

The other important server parameter is table_cache, which is the number of open tables for all threads. The default
is 64, but you might need to adjust this number. Using the SHOW STATUS command, look for a variable called
open_tables in the output. If this number is large, the value of table_cache should be increased.

The sample configuration files use various combinations of key_buffer_size and table_cache, which you can use as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sample configuration files use various combinations of key_buffer_size and table_cache, which you can use as a
baseline for any modifications you need to make. Whenever you modify your configuration, you'll be restarting your
server for changes to take effect, sometimes with no knowledge of the consequences of your changes. In this case, be
sure to try your modifications in a development environment before rolling the changes into production.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Optimizing Your Table Structure
An optimized table structure is different from a well-designed table. Table structure optimization has to do with
reclaiming unused space after deletions and basically cleaning up the table after structural modifications have been
made. The OPTIMIZE TABLE SQL command takes care of this, using the following syntax:

OPTIMIZE TABLE table_name[,table_name]

For example, if you want to optimize the grocery_inventory table in the testDB database, use

mysql> optimize table grocery_inventory;
+--------------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+--------------------------+----------+----------+----------+
| testDB.grocery_inventory | optimize | status | OK |
+--------------------------+----------+----------+----------+
1 row in set (0.08 sec)

The output doesn't explicitly state what was fixed, but the text in the Msg_text column shows that the
grocery_inventory table was indeed optimized. If you run the command again, the text will change, showing that it is
a useful message:

mysql> optimize table grocery_inventory;
+-------------------------+----------+----------+-----------------------------+
| Table | Op | Msg_type | Msg_text |
+-------------------------+----------+----------+-----------------------------+
| testDB.grocery_inventory| optimize | status | Table is already up to date |
+-------------------------+----------+----------+-----------------------------+
1 row in set (0.03 sec)

Be aware that the table is locked while it is optimized, so if your table is large, optimize it during scheduled downtime or
when little traffic is flowing to your system.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Optimizing Your Queries

Query optimization has a lot to do with the proper use of indexes. The EXPLAIN command will examine a given
SELECT statement to see whether it's optimized the best that it can be, using indexes wherever possible. This is
especially useful when looking at complex queries involving JOINs. The syntax for EXPLAIN is

EXPLAIN SELECT statement

The output of the EXPLAIN command is a table of information containing the following columns:

table— The name of the table.

type— The join type, of which there are several.

possible_keys— This column indicates which indexes MySQL could use to find the rows in this table. If the
result is NULL, no indexes would help with this query. You should then take a look at your table structure and
see whether there are any indexes that you could create that would increase the performance of this query.

key— The key actually used in this query, or NULL if no index was used.

key_len— The length of the key used, if any.

ref— Any columns used with the key to retrieve a result.

rows— The number of rows MySQL must examine to execute the query.

extra— Additional information regarding how MySQL will execute the query. There are several options, such as
Using index (an index was used) and Where (a WHERE clause was used).

The following EXPLAIN command output shows a nonoptimized query:

mysql> explain select * from grocery_inventory;
+-------------------+------+---------------+-----+--------+-----+-----+------+
| table | type | possible_keys | key | key_len| ref | rows| Extra|
+-------------------+------+---------------+-----+--------+-----+-----+------+
| grocery_inventory | ALL | NULL | NULL| NULL | NULL| 6 | |
+-------------------+------+---------------+-----+--------+-----+-----+------+
1 row in set (0.00 sec)

However, there's not much optimizing you can do with a "select all" query except add a WHERE clause with the
primary key. The possible_keys column would then show PRIMARY, and the Extra column would show Where
used.

When using EXPLAIN on statements involving JOIN, a quick way to gauge the optimization of the query is to look at
the values in the rows column. In the previous example, you have 2 and 1. Multiply these numbers together and you
have 2 as your answer. This is the number of rows that MySQL must look at to produce the results of the query. You
want to get this number as low as possible, and 2 is as low as it can go!

For a great deal more information on the EXPLAIN command, please visit the MySQL manual at
http://www.mysql.com/doc/E/X/EXPLAIN.html.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the FLUSH Command

Users with reload privileges for a specific database can use the FLUSH command to clean up the internal caches used
by MySQL. Often, only the root-level user has the appropriate permissions to issue administrative commands such as
FLUSH.

The FLUSH syntax is

FLUSH flush_option

The common options for the FLUSH command are

PRIVILEGES

TABLES

HOSTS

LOGS

You've used the FLUSH PRIVILEGES command before, after adding new users. This command simply reloads the
grant tables in your MySQL database, enabling the changes to take effect without stopping and restarting MySQL. When
you issue a FLUSH PRIVILEGES command, the Query OK response will assure you that the cleaning process
occurred without a hitch.

mysql> flush privileges;
Query OK, 0 rows affected (0.10 sec)

The FLUSH TABLES command will close all tables currently open or in use and essentially give your MySQL server a
millisecond of breathing room before starting back to work. When your caches are empty, MySQL can better utilize
available memory. Again, you're looking for the Query OK response:

mysql> flush tables;
Query OK, 0 rows affected (0.21 sec)

The FLUSH HOSTS command works specifically with the host cache tables. If you are unable to connect to your
MySQL server, a common reason is that the maximum number of connections has been reached for a particular host,
and it's throwing errors. When MySQL sees numerous errors on connection, it will assume something is amiss and
simply block any additional connection attempts to that host. The FLUSH HOSTS command will reset this process and
again allow connections to be made:

mysql> flush hosts;
Query OK, 0 rows affected (0.00 sec)

The FLUSH LOGS command closes and reopens all log files. If your log file is getting to be a burden, and you want to
start a new one, this command will create a new, empty log file. Weeding through a year's worth of log entries in one
file looking for errors can be a chore, so try to flush your logs at least monthly.

mysql> flush logs;
Query OK, 0 rows affected (0.04 sec)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using the SHOW Command

There are several different uses of the SHOW command, which will produce output displaying a great deal of useful
information about your MySQL database, users, and tables. Depending on your access level, some of the SHOW
commands will not be available to you or will provide only minimal information. The root-level user has the capability to
use all the SHOW commands, with the most comprehensive results.

The common uses of SHOW include the following, which you'll soon learn about in more detail:

SHOW GRANTS FOR user
SHOW DATABASES [LIKE something]
SHOW [OPEN] TABLES [FROM database_name] [LIKE something]
SHOW CREATE TABLE table_name
SHOW [FULL] COLUMNS FROM table_name [FROM database_name] [LIKE something]
SHOW INDEX FROM table_name [FROM database_name]
SHOW TABLE STATUS [FROM db_name] [LIKE something]
SHOW STATUS [LIKE something]
SHOW VARIABLES [LIKE something]

The SHOW GRANTS command will display the privileges for a given user at a given host. This is any easy way to
check on the current status of a user, especially if you have a request to modify a user's privileges. With SHOW
GRANTS, you can check first to see that the user doesn't already have the requested privileges. For example, see the
privileges available to the joeuser user:

mysql> show grants for joe@localhost;
+---+
| Grants for joeuser@localhost |
+---+
| GRANT USAGE ON *.* TO 'joeuser'@'localhost' \
IDENTIFIED BY PASSWORD '34f3a6996d856efd' |
| GRANT ALL PRIVILEGES ON testDB.* TO 'joeuser'@'localhost' |
+---+

If you're not the root-level user or the joeuser user, you'll get an error. Unless you're the root-level user, you can only
see the information relevant to your user. For example, the joeuser user isn't allowed to view information about the
root-level user:

mysql> show grants for root@localhost;
ERROR 1044: Access denied for user:'joeuser@localhost' to database 'mysql'

Be aware of your privilege level throughout the remainder of this hour. If you are not the root-level user, some of these
commands will not be available to you or will display only limited information.

Retrieving Information About Databases and Tables

You've used a few of the basic SHOW commands earlier in this book to view the list of databases and tables on your
MySQL server. As a refresher, the SHOW DATABASES command does just that—it lists all the databases on the
MySQL server:

mysql> show databases;
+-------------------+
| Database |
+-------------------+
| testDB |
| mysql |
+-------------------+
2 rows in set (0.00 sec)

After you've selected a database to work with, you can also use SHOW to list the tables in the database. In this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After you've selected a database to work with, you can also use SHOW to list the tables in the database. In this
example, we're using testDB (your table listing may vary):

mysql> show tables;
+----------------------+
| Tables_in_testDB |
+----------------------+
| grocery_inventory |
| email |
| master_name |
| myTest |
| testable |
+----------------------+
5 rows in set (0.01 sec)

If you add OPEN to your SHOW TABLES command, you will get a list of all the tables in the table cache, showing how
many times they're cached and in use:

mysql> SHOW OPEN TABLES;
+-----------------------+--------------------+
| Open_tables_in_testDB | Comment |
+-----------------------+--------------------+
| grocery_inventory | cached=1, in_use=0 |
| email | cached=1, in_use=0 |
| testTable | cached=1, in_use=0 |
| master_name | cached=1, in_use=0 |
| myTest | cached=1, in_use=0 |
+-----------------------+--------------------+
5 rows in set (0.00 sec)

Using this information in conjunction with the FLUSH TABLES command you learned earlier in this hour will help keep
your database running smoothly. If SHOW OPEN TABLES shows that tables are cached numerous times, but aren't
currently in use, go ahead and use FLUSH TABLES to free up that memory.

Retrieving Table Structure Information

A very helpful command is SHOW CREATE TABLE, which does what it sounds like—it shows you the SQL statement
used to create a specified table:

mysql> show create table grocery_inventory;
+-------------------+---+
| Table | Create Table
+-------------------+---+
| grocery_inventory | CREATE TABLE 'grocery_inventory' (
 'id' int(11) NOT NULL auto_increment,
 'item_name' varchar(50) NOT NULL default '',
 'item_desc' text,
 'item_price' float NOT NULL default '0',
 'curr_qty' int(11) NOT NULL default '0',
 PRIMARY KEY ('id')
) TYPE=MyISAM
+-------------------+--+
1 row in set (0.00 sec)

This is essentially the same information you'd get if you dumped the table schema, but the SHOW CREATE TABLE
command can be used quickly if you're just looking for a reminder or a simple reference to a particular table-creation
statement.

If you need to know the structure of the table, but don't necessarily need the SQL command to create it, you can use
the SHOW COLUMNS command:

mysql> show columns from grocery_inventory;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> show columns from grocery_inventory;
+------------+------------+------+------+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+------------+------+------+---------+----------------+
| id | int(11) | | PRI | NULL | auto_increment |
| item_name | varchar(50)| | | | |
| item_desc | text | YES | | NULL | |
| item_price | float | | | 0 | |
| curr_qty | int(11) | | | 0 | |
+------------+------------+------+------+---------+----------------+
5 rows in set (0.00 sec)

The SHOW COLUMNS and DESCRIBE commands are aliases for one another
and, therefore, do the same thing.

The SHOW INDEX command will display information about all the indexes present in a particular table. The syntax is

SHOW INDEX FROM table_name [FROM database_name]

This command produces a table full of information, ranging from the column name to cardinality of the index. The
columns returned from this command are described in Table 24.1.

Table 24.1. Columns in the SHOW INDEX Result
Column Name Description

Table The name of the table.

Non_unique 1 or 0.

1 = index can contain duplicates.

0 = index can't contain duplicates.

Key_name The name of the index.

Seq_in_index The column sequence number for the

Index; starts at 1.

Column_name The name of the column.

Collation The sort order of the column, either A (ascending) or NULL (not sorted).

Cardinality Number of unique values in the index.

Sub_part On a partially-indexed column, this shows the number of indexed characters, or NULL if the entire
key is indexed.

Packed The size of numeric columns.

Comment Any additional comments.

Another command that produces a wide table full of results is the SHOW TABLE STATUS command. The syntax of
this command is

SHOW TABLE STATUS [FROM database_name] LIKE 'something'

This command produces a table full of information, ranging from the size and number of rows to the next value to be
used in an auto_increment field. The columns returned from this command are described in Table 24.2.

Table 24.2. Columns in the SHOW TABLE STATUS Result
Column Name Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name The name of the table.

Type The table type: MyISAM, BDB, InnoDB, or Gemini.

Row_format The row storage format: fixed, dynamic, or compressed.

Rows The number of rows.

Avg_row_length The average row length.

Data_length The length of the data file.

Max_data_length The maximum length of the data file.

Index_length The length of the index file.

Data_free The number of bytes allocated but not used.

Auto_increment The next value to be used in an auto_increment field.

Create_time The date and time when the table was created (in datetime format).

Update_time The date and time of when the data file was last updated (in datetime format).

Check_time The date and time of when the table was last checked (in datetime format).

Create_options Any extra options used in the CREATE TABLE statement.

Comment Any comments added when the table was created. Additionally, InnoDB tables will use this
column to report the free space in the tablespace.

Retrieving System Status

The SHOW STATUS and SHOW VARIABLES commands will quickly provide important information about your
database server. The syntax for these commands is simply SHOW STATUS or SHOW VARIABLES, nothing fancy.

There are no less than 54 status variables as the output of SHOW STATUS, but the most useful are

Aborted_connects— The number of failed attempts to connect to the MySQL server. Anytime you see an
aborted connection, you should investigate the problem. It could be related to a bad username and password in
a script, or your number of simultaneous connections could be set too low.

Connections— The aggregate number of connection attempts to the MySQL server during the current period of
uptime.

Max_used_connections— The maximum number of connections that have been in use simultaneously during
the current period of uptime.

Slow_queries— The number of queries that have taken more than long_query_time, which defaults to 10
seconds. If you have more than one, it's time to investigate your SQL syntax!

Uptime— Total number of seconds the server has been up during the current period of uptime.

You can find a comprehensive list of SHOW STATUS variables and an explanation of their values in the MySQL
manual, located at http://www.mysql.com/doc/S/H/SHOW_STATUS.html.

The SHOW VARIABLES command produces even more results than SHOW STATUS—approximately 82! The
variables reported from SHOW VARIABLES control the general operation of MySQL and include the following useful
tidbits:

connect_timeout— Shows the number of seconds the MySQL server will wait during a connection attempt
before it gives up.

have_innodb— Will show YES if MySQL supports InnoDB tables.

have_bdb— Will show YES if MySQL supports Berkeley DB tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have_bdb— Will show YES if MySQL supports Berkeley DB tables.

max_connections— The allowable number of simultaneous connections to MySQL before a connection is
refused.

port— The port on which MySQL is running.

table_type— The default table type for MySQL, usually MyISAM.

version— The MySQL version number.

You can find a comprehensive list of the variables returned by the SHOW VARIABLES results and an explanation of
their values in the MySQL manual at http://www.mysql.com/doc/S/H/SHOW_VARIABLES.html. After you know the
values you have, you can change them in your MySQL configuration file or startup command.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Running an optimized MySQL server starts with the hardware and operating system in use. Your system's CPU should
be sufficiently fast, and you should have enough RAM in use to pick up the slack when your CPU struggles. This is
especially true if MySQL shares resources with other processes, such as a Web server. Additionally, the hard drive in
use is important because a small hard drive will limit the amount of information you can store in your database. The
seek time of your hard drive is important—a slow seek time will cause the overall performance of the server to be
slower. Your operating system should not overwhelm your machine and should share resources with MySQL rather than
using all the resources itself.

Some key startup parameters for MySQL are the values of key_buffer_size and table_cache, among others. Baseline
values can be found in sample MySQL configuration files, or you can modify the values of these variables and watch the
server performance to see whether you hit on the right result for your environment.

Beyond hardware and software optimization is the optimization of tables, as well as SELECT queries. Table
optimization, using the OPTIMIZE command, enables you to reclaim unused space. You can see how well (or not)
optimized your queries are by using the EXPLAIN command. The resulting output will show if and when indexes are
used, and whether you can use any indexes to speed up the given query.

Paying attention to your MySQL server will ensure that it continues to run smoothly. Basic administration commands,
such as FLUSH and SHOW, will help you to recognize and quickly fix potential problems. All these commands are
designed to give MySQL a millisecond of rest time and breathing room if it's under a heavy load. Numerous SHOW
commands will display structural information about databases, tables, and indexes, as well as how the system is
performing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can MySQL take advantage of multiple CPUs in a single server?

A1: Absolutely, if your operating system supports multiple CPUs, MySQL will take advantage of them.
However, the performance and tuning of MySQL using multiple processors varies, depending on the
operating system. For more information, please see the MySQL manual section for your specific operating
system:

http://www.mysql.com/doc/O/p/Operating_System_Specific_Notes.html

Q2: What permission level must I have to use the OPTIMIZE command?

A2: Any user with INSERT privileges for a table can perform OPTIMIZE commands. If a user has only
SELECT permissions, the OPTIMIZE command will not execute.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
The Workshop is designed to help you anticipate possible questions, review what you've learned, and begin learning
how to put your knowledge into practice.

Quiz

1: Which MySQL function will enable you to run an expression many times over to find the speed of the
iterations?

A1: The benchmark() function.

2: Which SQL command will clean up the structure of your tables?

A2: OPTIMIZE

3: Which FLUSH command resets the MySQL log files?

A3: FLUSH LOGS

4: To quickly determine if MySQL has support for InnoDB tables, would you use SHOW STATUS or SHOW
VARIABLES?

A4: SHOW VARIABLES

5: Write a SQL statement that will enable you to see the SQL statement used to create a table called
myTable.

A5: SHOW CREATE TABLE myTable

Activities

1. If you have root-level access to your server, change the values of key_buffer_size and table_cache, and run
benchmark() functions after each change to see how the execution times differ.

2. Use OPTIMIZE on all the tables you have created in your database, to clean up any structural issues.

3. Use the SHOW STATUS command to retrieve information about your MySQL server, and then issue FLUSH
commands to clean up the server. After each command, use SHOW STATUS again to see which commands
affect which results in the SHOW STATUS results display.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (not operator)
!= (nonequivalence) operator
(hash sign)
(pound sign)
(pound signs)
$ (dollar sign)
$ COOKIE superglobal
$ dollar sign
$ ENV superglobal
$ FILES superglobal
$ GET superglobal
$ POST superglobal
$ POST value 2nd
$ REQUEST superglobal
$ SESSION
$blue variable
$cat id value
$check result value 2nd 3rd
$count variable 2nd
$dayArray variable
$delims variable
$display block value 2nd 3rd
$display value
$file array variable
$file dir variable
$file name variable
$FILES superglobal
$firstDayArray variable
$function holder variable
$green variable
$membership variable 2nd
$name variable 2nd
$newnum variable
$red variable
$SESSION superglobal 2nd 3rd
$start variable 2nd
$txt variable
$word variable
% (modulus) operator
% (percent signs)
% (percent symbol)
 conversion specification
% (wildcard)
%a format string option (DATE FORMAT() function)
%a formatting directive
%A formatting directive
%b format string option (DATE FORMAT() function)
%b formatting directive
%B formatting directive
%c format string option (DATE FORMAT() function)
%C formatting directive
%D format string option (DATE FORMAT() function)
%d format string option (DATE FORMAT() function)
%D formatting directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%e format string option (DATE FORMAT() function)
%e formatting directive
%f formatting directive
%H format string option (DATE FORMAT() function)
%h format string option (DATE FORMAT() function)
%h formatting directive
%H formatting directive
%i format string option (DATE FORMAT() function)
%i formatting directive
%j format string option (DATE FORMAT() function)
%k format string option (DATE FORMAT() function)
%l format string option (DATE FORMAT() function)
%l formatting directive
%M format string option (DATE FORMAT() function)
%m format string option (DATE FORMAT() function)
%m formatting directive
%o formatting directive
%p format string option (DATE FORMAT() function)
%q formatting directive
%r format string option (DATE FORMAT() function)
%r formatting directive
%S format string option (DATE FORMAT() function)
%s format string option (DATE FORMAT() function)
%T format string option (DATE FORMAT() function)
%t formatting directive
%T formatting directive
%t formatting directive
%U format string option (DATE FORMAT() function)
%u format string option (DATE FORMAT() function)
%u formatting directive
%U formatting directive
%V format string option (DATE FORMAT() function)
%v format string option (DATE FORMAT() function)
%v formatting directive
%V formatting directive
%W format string option (DATE FORMAT() function)
%w format string option (DATE FORMAT() function)
%X format string option (DATE FORMAT() function)
%x format string option (DATE FORMAT() function)
%X formatting directive
%Y format string option (DATE FORMAT() function)
%y format string option (DATE FORMAT() function)
%y formatting directive
' (single quotation marks)
& (ampersand character)
& (ampersand)
 and operator (&&)
&& (and operator)
&& (and) operator
<Directory>
 directive container
<Files>
 directive container
<IfDefine SSL> block
 SSL directives
<Limit> container
 HTTP methods
 access (limiting)
<LimitExcept> container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTTP methods
 access (limiting)
<Location>
 directive container
() (semi-colons)
 do, while statements
(\) backslash
(double quotation marks)
(fopen) function
* (multiplication) operator
* (wildcard)
** (greater than) operator
*.dll file
*.ini file
*/ (asterisk, followed by forward slash)
+ (addition) operator 2nd
- (minus symbol)
 field width specifiers
- (subtraction) operator
-c command-line option
-D
 httpd option
 server binary
-DMyModule switch
-f
 httpd option
 server binary
-l
 httpd option
 server binary
-v
 httpd option
 server binary
. (concatenation) operator 2nd 3rd
. (dot) 2nd
. (period)
.htaccess
 per-directory configuration files
.html extension
.php extension
.phps extension
.phtml extension
/ (backslash)
/ (division) operator
/* (forward slash, followed by asterisk)
// (forward slashes)
/tmp directory
/usr/local/apache2 directory
/usr/local/php/lib directory
/usr/local/src/ directory
/usr/src/ directory
; (semicolon)
; (semicolons)
= (assignment) operator 2nd 3rd
== (equivalence) operator
=== (identical) operator
? (ternary operator) 2nd 3rd
\ (backslash)
\n (newline character) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\n (newline) character
\t (tab character)
_ underscore
|| (or) operator 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

a (append) mode
a format code (date() function)
A format code (date() function)
ab
 ApacheBench (performance tool)
aborted connects status variable
AbriaSoft Web site
abs() function 2nd 3rd
abuse
 preventing
 robots
 Web crawlers
 Web spiders
 preventing (performance)
Accept mechanism
 network setting (scalability)
access
 control access
 rules (IP addresses)
 rules (network/mask pair)
 rules (partial IP addresses)
 denied
 troubleshooting
 file system access
 settings (scalability)
 granting
 limiting
 HTTP methods 2nd
 methods
 combining
 restricing
 access control 2nd 3rd 4th
 restricting
 authentication 2nd
 authentication modules 2nd 3rd 4th 5th
 based on cookie values 2nd 3rd 4th 5th 6th 7th 8th
 client authentication
access control
 access
 restricting 2nd 3rd 4th
 rules 2nd
 all clients
 domain names
 environment variables
 evaluating 2nd
Access denied message
access log
 log file
AccessFileName directive
 per-directory configuration files
accessing
 Apache
 browsers
 files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 last date accessed information
 MySQL 2nd
 MySQL functions
 variables 2nd 3rd 4th 5th 6th
ACTION argument
adding
 files
 documents
 users
 database file-based access control authentication 2nd
addition (+) operator
addition operator (+)
addNums() function
address book database table example
 date added field
 date modified field
 menus, creating 2nd
 record addition script 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 records, adding subentries to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 records, deleting 2nd 3rd 4th 5th
 records, selecting and viewing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 table name fields 2nd 3rd 4th 5th 6th 7th 8th
addresses
 IP
 IP addresses
 control access rules
 reverse DNS lookups
 IP addresses (partial)
 control access rules
 listening addresses (Listen directive)
alert
 LogLevel directive option
algorithms
 digest
 integrity (SSL protocols)
 digest algorithms
 public key cryptography
 symmetric cryptography
all clients
 access control rules
ALL command
Allow directives
 access control rules
Allow, Deny argument
 Order directive
AllowOverride directive
 per-directory configuration files
ALTER command
ampersand (&)
 and operator (&&)
analying
 logs
analyzing
 digital certificates
and (&&) operator
and operator (&&)
Apache
 configuration file structyure
 installing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 binary method
 from source
 methods for, selecting
 on Linux/Unix 2nd
 on Windows 2nd 3rd 4th 5th 6th 7th
 installing PHP on Linux/Unix with 2nd 3rd 4th 5th 6th
 integrating PHP with, on windows 2nd 3rd
 Web site
apache.exe
 commands
 controlling Apache (Windows)
 shortcuts
 server binary command (Windows)
ApacheBench
 performance tool (Web site) 2nd
apachectl script
apachectl tool
 control script command (UNIX)
append (a) mode
appending
 files
applications
 setup.exe
 winmysqladmin
 winmysqladmin.exe
applications. [See also discussion forums]
applying
 directives
 directories
 files
 URLs
arguments
 ACTION
 Allow, Deny argument
 Order directive
 AllowOverride directive
 CustomLog directive
 default values 2nd 3rd 4th
 Deny, Allow argument
 Order directive 2nd
 directives
 ENCRYPT
 flock() function
 format control strings and 2nd 3rd 4th
 function requiring two example 2nd
 HostNameLookups directive
 LogFormat directive
 logs
 rotating
 Mutual-Failure argument
 Order directive
 optional example 2nd 3rd
 reference passing
 ServerRoot directive
 TYPE
 value passing example 2nd 3rd 4th 5th
arithmetic operators 2nd
array data type
arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $GLOBALS
 looping through 2nd 3rd
 getdate() function
 mysql fetch array() function
 strings, breaking into 2nd
aruments
 syslog daemon
 errors;logging (Unix)
ASCII() function 2nd 3rd
ASP tags 2nd
asp tags setting
assignment operator (=) 2nd 3rd
assignment operator (=). [See also combined assignment operators]2nd [See also combined assignment
operators]3rd [See also combined assignment operators]4th [See also combined assignment operators]
asterisk (*)
 multiplication operator (*)
asymmetric cryptography. [See public key cryptography]
attacks
 abuse
 preventing (performance)
attributes
 size
auth cookie
auth cookies 2nd
auth users table 2nd 3rd
AuthAuthoritative directives
 file-based authentication
AuthConfig
 directive value
AuthDBMGroupFile directive
 database file-based access control authentication
AuthDBMUserFile directive
 database file-based access control authentication
authentication
 access
 resticting 2nd
 basic 2nd
 browsers
 AuthType directive
 client authentication
 access;restricting
 communications
 security
 database file-based access control
 mod auth dbm module 2nd 3rd
 digest 2nd
 file-based
 mod auth module 2nd 3rd
 modules
 access (restricting) 2nd 3rd 4th 5th
 directives
 functions
 realm
 AuthName directive
 SSL protocols 2nd 3rd 4th
 connections 2nd
authentication process
 errors in 2nd 3rd 4th
authenticaton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 database file-based access control
 backend storage
 user managment 2nd
 file-based
 AuthAuthoritative directive
 backend storage
 user management
AuthGroupFile directive
 users file
 backend storage
AuthName directive
 authentication modules
authoritative information
 functions
 authentication modules
AuthType directive
 authentication modules
AuthUserFile directive
 users file
 backend storage
awstats
 log analysis

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

b type specifier
backend storage
 database file-based access control authentication
 file-based authentication
 functions
 authentication modules
backslash (\) 2nd 3rd
backwards compatibility
basic authentication 2nd
benchmark() function 2nd 3rd
BIGINT data type
BIN() function 2nd
binaries
 installing
 installation methods (selecting)
 server binary
 commands
binary distribution
 installing MySQL from
binary installer
 Apache
 installing (Windows)
 downloading
bind to port
 troubleshooting
BLOB data type
blocks
 <IfDefine SSL>
 SSL directives
boolean data type
boolean values
 test expressions
brackets
 code block (control statements)
break statements
 code ends
 loops 2nd 3rd 4th 5th
breaking out of loops 2nd 3rd 4th 5th
browser authentication
 AuthType directive
browser output 2nd
browsers
 access
 environment variables
 Apache
 accessing
 cookies
 anatomy 2nd
 deleting
 setting 2nd 3rd
 digest authentication
browsing
 directives
building

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 source code
 installation methods (selecting)
built-in functions
bundled digital certificates
buttons
 add to cart, storefront database example 2nd 3rd 4th 5th 6th 7th 8th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

c type specifier
CA (certification authority)
 certificate signing requests
 digital certificates
CacheFile directive
 mapping files
 memory
caching
 performance
calendar example 2nd
 HTML form 2nd 3rd 4th 5th
 library, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 table, creating 2nd 3rd 4th 5th 6th 7th 8th 9th
 user input 2nd 3rd 4th 5th
calling
 functions 2nd
 dynamically 2nd 3rd
Can't connect to server message
case
 strings
 converting 2nd
case sensitivity
 constants
case-sensitivity
 constants
casting
 variables 2nd 3rd 4th 5th
certificate signning requests
 creating (managing certificates) 2nd
certificates
 digital
 analyzing
 bundled
 CA (certification authority)
 chaining
 information
 SSL
 digital certificates
 authentication;SSL protocols
 managing
 certificate signing requests;creating 2nd
 key pairs (creating)
 self-signed certificates
 managing (secure servers) 2nd 3rd 4th
 self-signed (managing certificates)
certification authority (CA)
 certificate signing requests
 digital certificates
CGI
 errors
 logging
chaining
 digital certificates
changing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 data types
 by casting 2nd 3rd 4th 5th
 setttype() function 2nd 3rd
CHAR data type
CHAR field
CHAR LENGTH() function
CHAR() function
checkdate() function 2nd 3rd 4th
checking
 digital certificates
ciphertext
 message
 encryption
clauses
 else
 with if statements 2nd 3rd
 elseif
 with if statements 2nd 3rd 4th
 ORDER BY 2nd 3rd
 WHERE 2nd 3rd 4th 5th 6th 7th 8th
 where
cleaning up
 strings 2nd 3rd
CLF (Common Log Format)
 log format
client authentication
 access
 resticting
 user management
client requests
 tracking
 access log
clients
 all clients
 access control rules
 tracking
 troubleshooting
closing
 files
code
 adding comments to 2nd
 source code
 building (installation methods)
 downloading (Apache instllations)
 uncompressing (Apache installations)
 status code
 conditional looping
 when to comment
code block (control statements)
 brackets
code blocks 2nd 3rd 4th
collision resistant
 message digests
 digest algorithms
columns priv table
combined assignment operators 2nd 3rd 4th
combining
 access methods
command-line arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command-line options
 -c
command-line tools
 openssl (certificates)
commands 2nd 3rd
 ALL
 ALTER
 certificates signing requests
 creating
 compress
 configure
 control script
 CREATE
 CREATE TABLE 2nd 3rd 4th
 CROSS JOIN
 DELETE 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 DROP
 EVOKE
 EXPLAIN 2nd 3rd
 FILE 2nd
 File menu
 Properties, Certificates
 FLUSH 2nd
 FLUSH HOSTS
 FLUSH LOGS
 FLUSH PRIVELEGES
 FLUSH PRIVILEGES 2nd
 FLUSH TABLES 2nd
 GRANT 2nd 3rd 4th
 gunzip 2nd
 gzip
 INNER JOIN
 INSERT 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 JOIN
 key pairs
 creating (certificates)
 kill
 signals (sending)
 LEFT JOIN 2nd
 LIMIT 2nd 3rd 4th
 ln commands
 symbolic links (symlink)
 make
 make install 2nd
 mod so
 NATURAL JOIN
 OPTIMIZE TABLE 2nd 3rd
 PROCESS
 ps
 REFERENCES
 RELOAD 2nd
 REPLACE 2nd 3rd 4th
 REVOKE 2nd 3rd
 RIGHT JOIN
 SELECT 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 server binary
 SHOW
 SHOW COLUMNS
 SHOW CREATE TABLE 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SHOW DATABASES
 SHOW GRANTS 2nd
 SHOW INDEX 2nd
 SHOW OPEN TABLES
 SHOW STATUS 2nd 3rd
 SHOW TABLE STATUS 2nd 3rd 4th
 SHOW TABLES
 SHOW VARIABLES 2nd 3rd
 SHUTDOWN
 Start menu
 Control Apache
 STRAIGHT JOIN
 tar 2nd
 ulimit command
 operating systems (scalability)
 UPDATE 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 USAGE
 Windows
 Apache (controlling)
commands. [See also functions]2nd [See also statements]
comments
 adding to code 2nd
 defined
 multiline
 single-line
 when to comment
Common Log Format (CLF)
 log format
Common Name field
 certificate signing requests
communications
 secure servers
 security
 authentication
 confidentiality
 integrity
Compact installation option
comparison operators 2nd
compatibility
 schemas
 directives
compiling
 Apache
 modules
 Apache installations
compress command
compress utility
compression
 reduced transmitted data (performance)
 uncompressing
 source code (Apache installations)
CONCAT WS() function 2nd
CONCAT() function 2nd
concatenation function 2nd 3rd 4th 5th
concatenation operator (.) 2nd 3rd
conditional containers
 configuration files 2nd
conditional logging
 CustomLog directives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HostNameLookups directive
 HTTP requests 2nd
 IdentityCheck directive
conditional looping
 environment variables
 status code
conditions
 ? (ternary operator) 2nd 3rd
 else clause with if statements 2nd 3rd
 elseif clause with if statements 2nd 3rd 4th
 if statements 2nd
 else clause with 2nd 3rd
 elseif clause with 2nd 3rd 4th
 example of 2nd
 switch, compared
 loops
 breaking out of 2nd 3rd 4th 5th
 do, while statement 2nd
 for statement 2nd 3rd 4th
 iterations, skipping 2nd 3rd
 nesting 2nd 3rd
 while statement 2nd 3rd 4th
 switch statements 2nd 3rd
 example
 if, compared
confidentiality
 communications
 security
 SSL protocols 2nd 3rd
 public key cryptography
confidnetiality
 symmetric cryptography (SSL protocols) 2nd
config script
 OpenSSL library
 installing
config.log file
config.status file
configuration files 2nd 3rd 4th 5th
 Apache
 starting
 conditional containers 2nd
 directive containers
 directives
 Listen directive
 modifying
 my-huge.cnf
 my-large.cnf
 my-medium.cnf
 my-small.cnf
 parameters
 per-directory 2nd
 per-directory configuration files
 file system access (scalability)
 processing
 MPMs
 ServerName directive
 ServerRoot directive
configure command
configure script 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configure scripts
 makefiles
 software
 configuring
 targets
configuring
 MySQL 2nd 3rd 4th
 PHP 2nd 3rd 4th 5th
 software (Apache installations)
 SSL
 servers;starting
 SSL (secure servers)
connection timeout variable
connections
 MySQL
 securing 2nd 3rd
 SSL protocols 2nd
 to MySQL with PHP
 error messages, retrieving 2nd
 queries, executing 2nd 3rd 4th 5th
 using mysql connection() functin 2nd 3rd 4th
connections status variable
constants
 case-independence 2nd
 defining 2nd 3rd
 predefined
constructors
 defined
containers
 <Limit>
 HTTP methods (limiting access)
 <LimitExcept>
 HTTP methods (limiting access)
 conditional containers
 configuration files 2nd
 defined
 VirtualHost container
 IP-based virtual hosting
containers (directives)
 configuration files
 syntax 2nd
content negotiation
 file system access (scalability)
context
 schemas
 directives
continue statements 2nd 3rd
control
 access control
 access (restricting) 2nd 3rd 4th
 rules 2nd
 rules (all clients)
 rules (domain names)
 rules (environment variables)
 rules (evaluating) 2nd
control access
 rules
 IP addresses
 IP addresses (partial)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 network/mask pair
Control Apache command (Start menu)
control script
 commands
control statements
 code block
 brackets
controlling
 Apache
 Windows (commands)
CONV() function
conversion specification 2nd 3rd 4th 5th 6th
cookies
 anatomy 2nd
 auth cookie
 auth cookies 2nd
 defined
 deleting
 setting 2nd 3rd
 values
 restricting access based on 2nd 3rd 4th 5th 6th 7th 8th
CPU
 MySQL optimizatips
CREATE command
create function() function 2nd 3rd 4th 5th
CREATE TABLE command 2nd 3rd 4th
creating
 certificate signing requests (managing certificates) 2nd
 key pairs (managing certificates)
 request logs
 tables
 CREATE TABLE command 2nd 3rd 4th
 CROSS JOIN command
 DELETE command 2nd 3rd 4th 5th 6th
 INNER JOIN command
 INSERT command 2nd 3rd 4th 5th 6th 7th 8th
 JOIN command
 LEFT JOIN command 2nd
 LIKE operator
 LIMIT command 2nd 3rd 4th
 NATURAL JOIN command
 REPLACE command 2nd 3rd 4th
 RIGHT JOIN command
 SELECT command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 STRAIGHT JOIN command
 UPDATE command 2nd 3rd 4th 5th 6th 7th 8th 9th
 WHERE clause 2nd 3rd
crit
 LogLevel directive option
CROSS JOIN command
cryptograhy
 public key cryptography
 confidentiality (SSL protocols)
cryptography
 symmetric
 limitations
 symmetric cryptography
 confidentiality (SSL protocols) 2nd
CURDATE() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURRENT DATE() function
current date/time
 retrieving 2nd
CURRENT TIME() function
CURRENT TIMESTAMP() function
CURTIME() function
custom installation
 Apache (Windows)
Custom installation option
custom logs
 database tables
 code snippet 2nd 3rd
 sample reports 2nd 3rd 4th 5th 6th
 database tables, creating 2nd
customizing
 file times
CustomLog directive 2nd
CustomLog directives
 conditional logging
Cygwin source download 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

d format code (date() function)
D format code (date() function)
d type specifier
data
 inserting 2nd 3rd 4th 5th 6th 7th
 with PHP 2nd 3rd 4th 5th 6th 7th
 retrieving 2nd 3rd 4th 5th
 with PHP 2nd 3rd 4th 5th
 transmitted data
 reducing (performance) 2nd
data types
 array
 boolean
 changing
 by casting 2nd 3rd 4th 5th
 settype() function 2nd 3rd
 data and time 2nd 3rd
 defined
 double
 integer 2nd
 NULL
 numeric 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 object
 resource
 signed
 special
 string 2nd
 strings 2nd 3rd
 testing 2nd 3rd
 unsigned
database file-based access control authentication
 backend storage
 mod auth dbm module 2nd 3rd
 user management 2nd
database tables
 discussion forums 2nd 3rd
databases
 selecting and connecting to
 SHOW DATABASE command
date
 calendar
 HTML form 2nd 3rd
 calendar example 2nd
 HTML form 2nd
 library, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 table, creating 2nd 3rd 4th 5th 6th 7th 8th 9th
 user input 2nd 3rd 4th
 user input, checking
 checkdate() function 2nd
 CURDATE() function
 CURRENT DATE() function
 current, retrieving 2nd
 DATE ADD() function 2nd 3rd 4th 5th
 DATE FORMAT() function 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DATE SUB() function 2nd 3rd 4th 5th
 DATEFORMAT() function
 DAYNAME() function 2nd
 DAYOFMONTH() function 2nd 3rd
 DAYOFWEEK() function 2nd 3rd
 DAYOFYEAR() function 2nd
 formatting 2nd 3rd
 FROM UNIXTIME() functin
 gmdate() function
 information, retrieving
 getdate()
 MONTH() function
 testing 2nd
 time stamps
 converting with date() 2nd 3rd
 converting with getdate()
 creating
 timestamps
 crating 2nd
 UNIX TIMESTAMP() function
 WEEKDAY() function 2nd 3rd 4th
 weeks 2nd 3rd
 YEAR() function
 YYYY-MM-YY format
DATE ADD() function 2nd 3rd 4th 5th
date added field
date and time data types 2nd 3rd
DATE data type
DATE FORMAT() function 2nd 3rd 4th 5th 6th
date format() function
date modified field
date pulldown library 2nd
date select() function
DATE SUB() function 2nd 3rd 4th 5th
date() function 2nd 3rd 4th
dateadded field
dates
 files
DATETIME data type
datetime field
DAYNAME() function 2nd
DAYOFMONTH() function 2nd 3rd
DAYOFWEEK() function 2nd 3rd
DAYOFYEAR() function 2nd
db table
dbmmange
 user mangement
 database file-based access control authentication
dbmmange.pl
 user mangement
 database file-based access control authentication
debug
 LogLevel directive option
DECIMAL data type
declaring
 functions 2nd
 functions with arguments 2nd
 variables
decrementing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 integer variables 2nd 3rd 4th
default
 schemas
 directives
define() function 2nd
defining
 constants 2nd 3rd
 file names (logging)
 functions 2nd
 log formats
DELETE command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
DELETE statement
deleting
 cookies
 directories
 files
 records 2nd 3rd 4th 5th
 users
 database file-based access control authentication
Denial of Service. [See DoS]
Deny directives
 access control rules
Deny, Allow argument
 Order directive 2nd
DES
 symmetric cryptography
destroying
 sessions 2nd 3rd
digest
 message digests
 digest algorithms
digest algorithm
digest algorithsm
 integrity
 SSL protocols
digest authentication 2nd
digital certificates
 anaylzing
 authentication
 SSL protocols
 bundled
 CA (certification authority)
 chaining
 checking
 information
 SSL
dirctives
 values
directive containers
 configuation files
 syntax 2nd
directive identifiers
 status codes
directives
 AccessFileName
 per-directory configuration files
 Allow directive
 access control rules
 AllowOverride

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 per-directory configuration files
 applying
 directories
 files
 URLs
 arguments
 AuthAuthoritative directive
 file-based authentication
 AuthConfig value
 AuthDBMGroupFile directive
 database file-based access control authentication
 AuthDBMUserFile directive
 database file-based access control authentication
 authentication modules
 AuthGroupFile directive
 users file (backend storage)
 AuthName directive
 authentication modules
 AuthType directive
 authentication modules
 AuthUserFile directive
 users file (backend storage)
 browsing
 CacheFile directive
 mapping files (memory)
 configuration files
 CustomLog
 CustomLog directive
 conditional logging
 defined
 Deny directive
 access control rules
 ErrorLog directive
 errors;logging
 external processes
 operating systems (scalability)
 FileInfo value
 flag
 formatting directives
 logging (HTTP requests) 2nd 3rd 4th
 HostNameLookups
 HostNameLookups directive
 conditional logging
 IdentityCheck directive
 conditional logging
 include path 2nd
 Indexes value
 KeepAliveTimeout directive
 network settings (performance)
 Limit value
 LimitRequestBody directive
 preventing abuse (performance)
 LimitRequestFields directive
 preventing abuse (performance)
 LimitRequestFieldSize directive
 preventing abuse (performance)
 LimitRequestLine directive
 preventing abuse (performance)
 LimitXMLRequestBody directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 preventing abuse (performance)
 Listen
 configuration files
 LoadModule
 SSL configurations
 log directives
 status codes
 LogFormat directive
 arguments
 LogLevel
 errors;logging 2nd
 options 2nd
 MMapFile directive
 mapping files (memory)
 mod vhost alias directive (mass virtual hosting)
 NameVirtualHost directive
 Options
 parameters
 Options directive (mass virtual hosting)
 Options value
 Order directive
 Allow, Deny argument
 control access rules (evaluating)
 Deny, Allow argument
 Mutual-Failure argument
 processing
 Require directive
 authentication modules
 Satisfy all directive
 access methods (combining)
 Satisfy any directive
 access methods (combining)
 Satisfy directive
 access methods (combining)
 schemas
 ScoreBoardFile directive
 ScriptAlias directive (mass virtual hosting)
 ServerAlias directive (syntax)
 ServerName
 configuration files
 documentation
 ServerRoot
 configuration files
 SSLCertificateFile
 SSL configurations (certificates and keys)
 SSLCertificateKeyfile
 SSL configurations (certificates and keys)
 TimeOut directive
 preventing abuse (performance)
 TransferLog
 TransferLog directive
 value
 VirtualDocumentRoot directive (mass virtual hosting)
 VirtualDocumentRootIP directive (mass virtual hosting)
 VirtualScriptAlias directive (mass virtual hosting)
 VirtualScriptAliasIP directive (mass virtual hosting)
directories
 /tmp
 /usr/local/apach2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /usr/local/php/lib
 /usr/local/src
 /usr/src/
 confirming
 contents, reading 2nd 3rd
 creating 2nd
 deleting
 directives
 appplying
 htdocs subdirectory
 lib
 lib subdirectory
 opening
disabling
 per-directory configuration files
discussion forums
 creating
 database tables 2nd 3rd
 input forms and scripts 2nd 3rd 4th 5th 6th 7th 8th
 topic list, displaying 2nd 3rd 4th 5th 6th 7th 8th 9th
 topics, adding posts to 2nd 3rd 4th 5th 6th 7th 8th 9th
 topics, displaying posts in 2nd 3rd 4th 5th 6th 7th 8th 9th
 design process 2nd 3rd 4th
 normal forms
 first normal forms 2nd
 second normal forms 2nd 3rd
 third normal forms 2nd
 table relationships
 many-to-many 2nd 3rd 4th 5th
 one-to-many 2nd
 one-to-one 2nd
disks
 RAM disks
 scoreboard files (file system access)
DISTINCT variable
distributing
 loads (performance)
dividing
 numbers by zero
division operator (/)
DNS
 (domain name server)
 name-based virtual hosting
 virtual hosting
do, while statements 2nd
documentations
 ServerName directives
DocumentRoot
 virual hosting
documents
 files
 adding
 HTML
 spaces, viewing
doDB() function 2nd 3rd
dollar sign ($) 2nd
domain name server. [See DNS]
domain names
 access control rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DoS
 (Denial of Service)
 abuse
 preventing (performance)
dot (.) 2nd
double data type
DOUBLE data type
downloading
 binary installer
 MySQL 2nd
 PHP distribution files
 source code (Apache installations)
DROP commmand
dynamic function calls 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

editors
 accessing
 avoiding for PHP code
 HTML
Edmunds Keith
elements
 PRE
 TITLE
else clause
 with if statements 2nd 3rd
elseif clause
 with if statements 2nd 3rd 4th
email field
emailChecker() function 2nd 3rd
emerg
 LogLevel directive option
enabling
 per-directory configuration files
ENCRYPT argument
encrypting
 passwords
 user management (file-based authentication)
encryption
 keys
 SSL protocols
end tags 2nd 3rd 4th 5th
ending
 block of statements 2nd
ENUM data type
environment variables
 access control rules
 conditional logging
 CustomLog directive
equal sign (=)
 assignment operator 2nd 3rd
 equivalence operator (==)
 identical operator (===)
equivalence operator (==)
error
 LogLevel directive option
error log
 log file
error messages
 mysql error() function 2nd
ErrorLog directive
 errors
 logging
errors
 authentication process 2nd 3rd
 logging 2nd 3rd
 files
 LogLevel directive 2nd
 programs
 syslog daemon (Unix)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 logs
 monitoring
evaluating
 control access rules 2nd
events
 recording
 error log
exclamation mark (!)
 not operator (!)
existence (files)
 checking
exit statement
EXPLAIN command 2nd 3rd
explode() function
 breaking strings into arrays 2nd
expressions
 defined 2nd
 subexpressions
 test
 boolean values
expressions. [See also operators]
external processes
 operating systems
 scalability

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F format code (date() function)
f type specifier
Fastresolve
 hostname resolving utility
fclose() function
feof() function 2nd 3rd
Fetch
fgetc() function 2nd 3rd
fgets() function 2nd 3rd
field widths (strings) 2nd
fields
 CHAR
 Common Name
 certificate signing requests
 dateadded
 datetime
 MAX FILE SIZE
 TEXT
 VARCHAR
FILE command
file descriptors
 operating systems
 scalability
File menu commands
 Properties, Certificates
file system access
 settings
 scalability
file upload forms
 creating 2nd 3rd 4th
 global variables
 overview
 scripts, creating 2nd 3rd 4th 5th 6th
file upload global variables
file-based authentication
 AuthAuthoritative directive
 backend storage
 mod auth module 2nd 3rd
 user management
file_exists() function
fileatime() function
filectime() function
FileInfo
 directive value
filemtime() function
files
 *.dll
 *.ini
 adding
 documents
 appending
 closing
 config.log
 config.status

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 configuation files
 modifying
 configuraion files
 ServerRoot directive
 configuration
 Apache;starting
 configuration files 2nd 3rd 4th 5th
 conditional containers 2nd
 directive containers 2nd
 directives
 Listen directive
 parameters
 processing (MPMs)
 ServerName directive
 confirming
 creating
 date information
 deleting
 directives
 appplying
 errors
 logging
 exe.file
 executabilitys
 existence, checking
 fontwrap.php
 groups file
 backend storage (file-based authentication)
 HTTP requests
 logging 2nd
 httpd
 httpd configuration
 httpd.conf file
 modifying
 included
 containing PHP code
 returns values
 INSTALL
 last accessed date
 local_format.php
 locking
 log files 2nd
 access log
 error log
 paths (logname)
 pid file
 scoreboard file
 mapping
 memory (performance)
 modification date
 multiple test function 2nd 3rd 4th
 names
 defining (logging)
 navigating 2nd
 opening 2nd 3rd
 password files
 storing (file-based authentication)
 per-directory configuration files 2nd
 file system access (scalability)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 php.ini 2nd 3rd 4th
 php.ini-dist
 phpinfo.php
 pid files
 log files
 readability
 reading
 arbitrary data amounts 2nd 3rd
 characters 2nd 3rd
 lines 2nd 3rd
 README
 robots.txt
 Web spiders (preventing abuse)
 scoreboard files
 file system access;scalability
 log files
 size
 status
 checking 2nd
 time, customizing
 users file
 backend storage (file-based authentication)
 writability
 writing to 2nd
 zip files
filesize() function
finding
 string lengths 2nd
 substrings 2nd
 substrings position 2nd
first normal forms
 defined
 rules for 2nd
flag directives
flat tables 2nd
FLOAT data type
flock() function 2nd
FLUSH command 2nd
FLUSH HOSTS command
FLUSH LOGS command
FLUSH PRIVILEGES command 2nd 3rd
FLUSH TABLES command 2nd
fnctions
 LPAD()
FollowSymLinks parameter
 Options directive
fontWrap() function
fontwrap.php file
fopen() function 2nd 3rd
for statements 2nd 3rd 4th
foreach statement 2nd
format control strings
formats
 log formats
 Common Log Format (CLF)
 defining
formatted strings
 storing 2nd
formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dates 2nd 3rd
 strings
 argument swapping 2nd 3rd 4th
 example 2nd
 field width specifications 2nd
 padding specifiers 2nd 3rd 4th
 precision specifications 2nd
 printf() function 2nd 3rd
 specifiers 2nd
 type specifiers 2nd 3rd 4th 5th
formatting directives
 logging (HTTP requests) 2nd 3rd 4th
forms
 file uploads
 creating 2nd 3rd 4th
 global variables
 overview
 scripts, creating 2nd 3rd 4th 5th 6th
 HTML
 PHP combination
 HTML/PHP combination 2nd
 hidden fields 2nd 3rd
 HTML form, calling itself 2nd
 PHP number guessing script 2nd
 insert form
 raw headers 2nd
 server headers
 submission, sending mail on
 creating script to send 2nd 3rd 4th 5th
 form creation 2nd 3rd
 mail() function 2nd 3rd 4th
 users, redirecting 2nd
forms (HTML)
 user input
 accessing from multiple SELECT elements 2nd 3rd 4th 5th
 receiving 2nd 3rd 4th
forums. [See discussion forum]
forward slash (/)
 division operator (/)
forward slashes (//)
fputs() function 2nd
FQDN (fully qualified domain name)
fread() function 2nd 3rd
FreeBSD
Frequently Asked Questions
From header 2nd
FROM UNIXTIME() function
fseek() function 2nd
FTP client
fully qualified domain name (FQDN)
func table
function calls
function exists() function 2nd 3rd 4th 5th
function statement
function statements
functions
 abs() 2nd 3rd
 ACSII()
 addNums()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 anonymous, creating 2nd 3rd 4th 5th
 arguments
 ASCII() 2nd
 benchmark() 2nd 3rd
 BIN() 2nd
 built-in
 calling 2nd
 CHAR LENGTH()
 CHAR()
 CHARACTER LENGTH()
 checkdate
 checkdate() 2nd 3rd
 CONCAT WS() 2nd
 CONCAT() 2nd
 concatenation 2nd 3rd 4th 5th
 constructors and
 CONV()
 CURDATE()
 CURRENT DATE()
 CURRENT TIME()
 CURRENT TIMESTAMP()
 CURTIME() function
 DATE ADD() 2nd 3rd 4th 5th
 DATE FORMAT() 2nd 3rd 4th 5th 6th
 date format()
 date select()
 DATE SUB 2nd 3rd 4th 5th
 date() 2nd 3rd 4th
 DAYNAME() 2nd
 DAYOFMONTH() 2nd 3rd
 DAYOFWEEK() 2nd 3rd
 DAYOFYEAR 2nd
 declaring 2nd
 define() 2nd
 defined 2nd 3rd
 defining 2nd
 doDB
 doDB() 2nd
 dynamic calls 2nd 3rd
 emailChecker() 2nd 3rd
 existence of, testing 2nd 3rd 4th 5th
 explode()
 breaking strings into arrays 2nd
 fclose()
 feof() 2nd 3rd
 fgetc() 2nd 3rd
 fgets() 2nd 3rd
 file_exists()
 fileatime()
 filectime()
 filemtime()
 filesize()
 flock() 2nd
 fontWrap
 fopen() 2nd 3rd 4th
 fputs() 2nd
 fread() 2nd 3rd
 FROM UNIXTIME()
 fseek() 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function exists() 2nd 3rd 4th 5th
 fwrite()
 getdate() 2nd 3rd 4th 5th 6th 7th
 gettype() 2nd
 getYearEnd()
 getYearStart()
 gmdate()
 header()
 cookies, setting
 forms
 raw headers 2nd
 HEX() 2nd 3rd
 HOUR() 2nd 3rd 4th 5th 6th 7th 8th
 include once() 2nd
 include()
 example listing 2nd
 executing PHP in another file
 executing PHP/assign return values
 files
 loops
 within control structures 2nd
 is uploaded file() 2nd
 is_dir()
 is_executable()
 is_file() 2nd
 is_readable()
 is_writable()
 isset()
 LCASE()
 LEFT()
 length 2nd 3rd 4th 5th
 LENGTH()
 LOCATE() 2nd
 location and position 2nd
 LTRIM() 2nd
 ltrim()
 strings, cleaning up 2nd 3rd
 mail() 2nd 3rd
 MINUTE() 2nd 3rd 4th
 mkdir() 2nd
 mktime() 2nd 3rd 4th 5th
 month select()
 MONTH()
 MONTHNAME() 2nd
 move uploaded file()
 multiple file tests output 2nd 3rd 4th
 mysql close()
 mysql connect() 2nd 3rd 4th
 mysql error() 2nd
 mysql fetch array()
 mysql insert id() 2nd
 mysql num rows()
 mysql query() 2nd 3rd 4th 5th 6th
 mysql result()
 mysql select db()
 MySQL, accessing list of
 naming rules
 nl2br() 2nd
 NOW() 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 now()
 numberedHeading() 2nd
 OCT() 2nd 3rd
 OCTET LENGTH()
 opendir()
 output()
 outupt()
 padding
 password()
 phpinfo
 phpinfo()
 print
 parentheses
 print() 2nd 3rd
 printBR()
 printf()
 strings 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 readdir() 2nd 3rd
 REPEAT()
 REPLACE()
 require once()
 require() 2nd
 RIGHT() 2nd
 rmdir()
 RPAD()
 rtrim() 2nd 3rd
 RTRIM() 2nd
 SECOND() 2nd 3rd 4th
 SECT TO TIME()
 serialize()
 session
 session_id()
 session_start() 2nd 3rd
 session start()
 session_destroy() 2nd 3rd
 session_id()
 session_save_path()
 session_start() 2nd 3rd
 sessions
 overview 2nd
 session set save handler()
 set time limit()
 setcookie() 2nd 3rd
 setDate array() 2nd 3rd
 setDate global() 2nd
 settype() 2nd 3rd 4th
 setYearEnd()
 setYearStart()
 sprintf() 2nd 3rd 4th
 state, saving between calls 2nd 3rd
 str_replace()
 substrings, replacing 2nd 3rd
 string modification 2nd 3rd
 strip tags()
 stripslashes() 2nd 3rd 4th
 strlen() 2nd
 strpos() 2nd
 strstr() 2nd
 strtok() 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strtolower()
 strtoupper()
 substr() 2nd 3rd
 substr_replace()
 string portions, replacing 2nd
 SUBSTRING() 2nd
 tagWrap
 tagWrap()
 test()
 TIME FORMAT()
 TIME TO SEC()
 time() 2nd 3rd
 touch()
 file creation
 TRIM()
 trim()
 strings, cleaning up 2nd 3rd
 trimming 2nd 3rd 4th
 UCASE()
 ucwords()
 underline
 UNIX TIMESTAMP()
 unlink()
 file deletion
 user-created
 user-defined
 values, returning 2nd 3rd
 variables
 accessing 2nd 3rd 4th 5th 6th
 scope 2nd 3rd
 WEEKDAY() 2nd 3rd 4th
 with arguments, declaring 2nd
 wordwrap() 2nd
 year select() 2nd
 YEAR()
functions. [See also method]
functios
 create function() 2nd 3rd 4th 5th
fwrite() function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

g format code (date() function)
G format code (date() function)
Gemini table type
getdate() function 2nd 3rd 4th 5th 6th 7th
gettype() function 2nd 3rd
getYearEnd() function
getYearStart() function
GIF
 images
 logging
global statement
 remembering function variable values between calls 2nd 3rd
 variable access 2nd 3rd 4th 5th 6th
global variables
 $GLOBALS array 2nd 3rd
 defined
 file upload
 superglobals 2nd
 $ FILES
globals
 superglobals
 $SESSION 2nd 3rd
GLOBALS ($) array
 looping through 2nd 3rd
gmdate() function
GRANT command 2nd 3rd 4th
granting
 access
 privileges 2nd 3rd 4th 5th 6th 7th
 privleges
graphical user interface
greater than operator ()
greater than or equal to operator ()
group settings
 troubleshooting
groups file
 backend storage
 file-based authentication
gunzip command 2nd
gzip command
gzip utility
 Apache source code
 uncompressing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

h format code (date() function)
H format code (date() function)
hard drives
 MySQL optimization tips
hardware load balancer (performance)
hash
 defined
hash sign (#)
have dbd variable
have innodb variable
header() function
 cookies, setting
 forms
 raw headers 2nd
headers
 From 2nd
 Host header
 name-based virtual hosting
 Host[colon] (name-based virual hosting)
 HTTP headers
 caching (performance)
 raw
 forms 2nd
 Reply-to
 request headers
 name-based virtual hosting (syntax) 2nd
 server
 forms
 Set-Cookie
 User-Agent
help
 for PHP installation 2nd 3rd 4th 5th
HEX() function 2nd 3rd
HH-MM-SS time format
hidden fields
 forms 2nd 3rd
Host header
 name-based virtual hosting
host table
Host[colon] header (name-based virtual hosting)
hosting. [See virutal hosting]
HostnameLookups
 network setting (scalability)
HostNameLookups directive
 conditional logging
hostnames
 resolving (managing logs) 2nd
HOUR() function 2nd 3rd 4th 5th 6th 7th 8th
htaccess [period before]
 per-directory configuration files
htdocs subdirectory
HTML
 calendar example 2nd 3rd 4th 5th
 PHP combination 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML documents
 spaces, viewing
HTML editors
HTML forms
 PHP combination
 user input
 accessing from multiple SELECT elements 2nd 3rd 4th 5th
 receiving 2nd 3rd 4th
HTML/PHP combination forms 2nd
 hidden fields 2nd 3rd
 HTML form, calling itself 2nd
 PHP number guessing script 2nd
 raw headers 2nd
 server headers
 users, redirecting 2nd
htpasswd utility
 user password files
 managing
htpasswd.exe utility
 user password files
 managing
HTTP
 headers
 caching (performance)
 methods
 access (limiting) 2nd
 secure HTTP
HTTP requests
 conditional logging 2nd
 logging
 files 2nd
 programs 2nd
HTTP requets
 logging 2nd 3rd 4th 5th 6th 7th
httpd
 server binary command (Unix)
httpd.conf
 configuration file
httpd.conf configuration file 2nd
httpd.conf files
 modifying
HUP
 signals
 sending
hyphen (-)
 subtraction operator (-)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

i format code (date() function)
icons
 padlock
 Service
identical operator (===)
identifiers
 directive identifiers
 status codes
IdentityCheck directive
 conditional logging
IDs (session)
 passing in query strings 2nd
if statement
if statements 2nd 3rd
 else clause with 2nd 3rd
 elseif clause with 2nd 3rd 4th
 example of 2nd
 switch, compared
images
 logging
 reduced transmitted data (performance)
in field
include once() function 2nd
include path directive 2nd
include() function
 example listing 2nd
 executing PHP in another file
 executing PHP/assign return values
 files
 loops
 within control structures 2nd
included files
 containing PHP code
 returns values 2nd
incrementing integer variables 2nd 3rd 4th
INDEX command
index strings 2nd
Indexes
 directive value
info
 LogLevel directive option
information
 digital certificates
INNER JOIN command
INSERT command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
insert forms
Insert Record button
INSERT statement 2nd
INSTALL file
installation
 selecting methods
 binaries (installing)
 source code(building)
installations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 custom installation
 Apache (Windows)
 typical installation
 Apache (Windows)
installer
 binary installer
 Apache installations (Windows)
installers
 binary installers
 downloading
installing
 Apache
 installations
 on Windows 2nd 3rd 4th 5th 6th 7th
 source (UNIX)
 Apache (UNIX) 2nd
 Apache (Windows)
 binaries
 installation methods (selecting)
 MySQL
 on Linux/Unix 2nd 3rd 4th
 on Windows 2nd 3rd 4th 5th 6th
 troubleshooting 2nd 3rd
 Open SSL library (SSL installations) 2nd
 OpenSSL library
 UNIX
 Windows
 PHP
 help for 2nd 3rd 4th 5th
 on Linux/Unix with Apache 2nd 3rd 4th 5th 6th
 on Windows 2nd 3rd
 testing
 SSL
 mod ssl module 2nd
 mod ssl module (Windows) 2nd
 OpenSSL library 2nd
 SSL (Secure Sockets Layer) 2nd 3rd
instruction terminator
INT data type
integer data type 2nd
integer variables
 incrementing/decrementing 2nd 3rd 4th
integrating
 PHP
 with Apache on Linux/Unix 2nd 3rd
 PHP with Apache, on Windows 2nd 3rd
integrity
 communications
 security
IP addresses
 control access rules
 reverse DNS lookups
IP addresses (partial)
 control access rules
IP-based virutal hosting
irreversible
 message digests
 digest algorithms
is uploaded file() function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is_dir() function
is_executable() function
is_file() function 2nd
is_readable() function
is_writable() function
isset() function
iterations
 loops
 skipping 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

j format code (date() function)
JOIN command
JPEG
 images
 logging

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

KeepAliveTimeout directive
 network settings (performance)
key buffer size parameter 2nd 3rd
key pairs
 creating (managing certificates)
key read requests parameter 2nd
key reads parameter 2nd
key writes parameter 2nd 3rd 4th
keys
 CA (certification authority)
 digital certificates
 authentication (SSL protocols)
 encryption
kill command
 signals (sending)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

l format code (date() function)
L format code (date() function)
LCASE() function
LDAP (Lightweight Directory Access Protocol)
 user management
 client authentication
LEFT JOIN command 2nd
LEFT() function
length
 strings
 finding 2nd
length functions 2nd 3rd 4th 5th
LENGTH() function
less than operator ()
less than or equal to operator ()
levels
 errors
 logging (LogLevel directive)
lib directory
lib subdirectory
libraries
 OpenSSL
 installing (SSL installations) 2nd
 installing;UNIX
 installing;Windows
 SSLeay
library
 calendar example 2nd 3rd 4th
licenses
 Apache
Lightweight Directory Access Protocol (LDAP)
LIKE operator 2nd 3rd
Limit
 directive value
LIMIT command 2nd 3rd 4th
limitations
 symmetric cryptography
limiting
 access
 HTTP methods 2nd
LimitRequestBody directive
 abuse
 preventing (performance)
LimitRequestFields directive
 abuse
 preventing (performance)
LimitRequestFieldSize directive
 abuse
 preventing (performance)
LimitRequestLine directive
 abuse
 preventing (performance)
LimitXMLRequestBody directive
 abuse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 preventing (performance)
links
 Start Apache
Linux
 distribution CDs
 file descriptors
 operating systems (scalability)
 installing Apache on 2nd
 installing MySQL on 2nd 3rd 4th
 installing PHP on, with Apache 2nd 3rd 4th 5th 6th
 integrating PHP with Apache on 2nd 3rd
 server processes
 operating systems (scalability)
Listen directive
 configuration files
listening addresses (Listen directive)
listings
 ? (ternary operator)
 abs() function 2nd 3rd
 access
 restricting 2nd
 Allow, Deny argument
 arguments
 passing by value 2nd 3rd 4th 5th
 authentication
 access control rules and 2nd
 file-based
 break statement
 calendar
 HTML form 2nd 3rd 4th
 library, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 table, creating 2nd 3rd 4th 5th
 user input, checking 2nd 3rd
 code blocks 2nd 3rd 4th
 connection script 2nd
 constants
 defining
 continue statement
 cookies
 auth cookies 2nd
 setting/printing 2nd
 data
 retrieving 2nd 3rd 4th
 databases
 selecting and connecting to
 date formatting 2nd
 Deny, Allow argument
 directories
 contents, listing
 do, while statement
 file upload forms 2nd
 file upload scripts 2nd
 files
 navigating 2nd
 opening/reading line by line
 reading by characters
 reading in chunks
 writing to
 for loop dividing 4000 by 10 incremental numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for statement
 forms
 insert form
 functions
 creating anonymous 2nd 3rd 4th
 declaring 2nd
 dynamic calls 2nd
 existence of, testing 2nd
 multiple file tests output 2nd 3rd 4th
 optional arguments 2nd 3rd
 requiring two arguments 2nd
 return values
 returns values
 with arguments, declaring
 functios
 with arguments, declaring
 getdate() function 2nd
 GLOBALS ($) array, looping through 2nd 3rd
 HTML form 2nd 3rd 4th
 accessing from multiple SELECT statement 2nd
 reading input from 2nd
 user input, receiving
 HTML forms
 receiving 2nd
 HTML/PHP combination form
 hidden fields, saving state with 2nd
 HTM form calling itself
 HTML form calling itself 2nd
 PHP number guessing script 2nd
 if else statement 2nd 3rd
 if elseif else statement
 if statement 2nd
 include() function 2nd 3rd
 executing PHP in another file
 within loops
 include() function to execture PHP/assign return values
 include() function to execute PHP/assign return values
 included file with PHP code
 login form 2nd
 menus
 address book example 2nd
 nesting loops
 PHP script with HTML 2nd
 PHP scripts, simple
 raw headers (forms) 2nd
 records
 adding subentries to 2nd 3rd 4th 5th 6th 7th 8th
 deleting 2nd 3rd
 inserting 2nd 3rd 4th
 selecting and viewing 2nd 3rd 4th 5th 6th 7th 8th
 request headers
 server headers (forms)
 ServerAlias directive
 session
 variables, accessing 2nd
 session variables
 multiple, registering 2nd
 sessions
 starting and resuming 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 storing variables in 2nd
 variables, accessing stored 2nd
 variables, adding array variables to 2nd 3rd
 strings
 dividing into tokens 2nd 3rd
 formatting 2nd
 subscription project
 mail, sending 2nd 3rd 4th
 subscribe and unsubscribe requests 2nd 3rd 4th 5th 6th
 switch statement
 tabels
 storefront database table example 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 tables
 creating 2nd 3rd
 record addition script 2nd 3rd 4th 5th 6th 7th
 time stamps, creating
 timestamps
 creating 2nd
 topics
 adding 2nd 3rd
 adding posts to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 adding, script for 2nd 3rd 4th
 displaying posts in 2nd 3rd 4th 5th 6th
 topic list, displaying 2nd 3rd 4th 5th 6th 7th
 type specifiers 2nd 3rd
 user login script 2nd 3rd
 variables
 access 2nd
 casting
 changing type with settype() function 2nd
 defined outside functions 2nd
 scope 2nd
 testing type of 2nd 3rd
 values, remembering between function calls 2nd 3rd 4th 5th
 varialbes
 casting
 virtual hosts, name-based
 while statement
lists
 user lists
 Require directive
ln command
 symbolic links (symlink)
LoadModule directive
 SSL configuations
loads
 distributing (performance)
local_format.php file
local7
 syslog daemon
 logging errors
LOCATE() function 2nd
locating
 error log files
location function 2nd
lock screen mechanism
locking
 files
log directives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 status codes
log files 2nd
 access log
 error log
 paths
 logname
 pid file
 scoreboard file
log formats
 Common Log Format (CLF)
 defining
LogFormat directive
 arguments
logging
 conditional logging
 CustomLog directive
 HostNameLookups directive
 HTTP requests 2nd
 IdentityCheck directive
 errors 2nd 3rd
 files
 LogLevel directive 2nd
 programs
 syslog daemon (Unix)
 formatting directives (HTTP requests) 2nd 3rd 4th
 HTTP requests 2nd 3rd 4th 5th 6th 7th
 files 2nd
 programs 2nd
 images
logical operators 2nd 3rd
login form 2nd 3rd 4th
LogLevel directive
 errors
 logging 2nd
 options 2nd
logname
 paths
 log files
logresolve utility
 hostnames
 resolving
logresolve.exe utility
 hostnames
 resolving
logs
 analyzing
 custom
 database tables, creatting 2nd
 database tables;code snippet 2nd 3rd
 database tables;sample reports 2nd 3rd 4th 5th 6th
 error logs
 monitoring
 managing 2nd 3rd
 analysis
 error logs (monitoring)
 hostname resolution 2nd
 log rotation 2nd
 managing (merging)
 merging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 request logs
 creating
 rotating 2nd
 splitting
 splitting (merging)
Logscan
 programs
 monitoring error logs
Logtools
 log manipulation tools
LONGBLOB data type
LONGTEXT data type
looping
 conditional looping
 environment variables
 status code
loops
 breaking out of 2nd 3rd 4th 5th
 do, while statement 2nd
 for statement 2nd 3rd 4th
 iterations, skipping 2nd 3rd
 nesting 2nd 3rd
 while statement 2nd 3rd 4th
LPAD() function
LTRIM() function 2nd
ltrim() function
 strings, cleaning up 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m format code (date() function)
M format code (date() function)
machine names
MACs (message authentication codes)
 SSL protocols
mail
 From header
 Reply-to header
 sending 2nd 3rd 4th 5th 6th 7th 8th
 sending on form submission
 creating script to send 2nd 3rd 4th 5th
 form creation 2nd 3rd
 mail() function 2nd 3rd 4th
mail() function 2nd 3rd
mailing list (MySQL)
mailing lists
 PHP
make command
make install command
 Apache
 installing
make utility
 Apache
 building
makefiles
 configure script
management
 user management
 database file-based access control authentication 2nd
 user managment
 file-based authentication
managing
 certificates
 certificate signing requests;creating 2nd
 key pairs (creating)
 self-signed certificates
 certificates (secure servers) 2nd 3rd 4th
 logs 2nd 3rd
 analysis
 error logs (monitoring)
 hostnames (resolving) 2nd
 log rotation 2nd
 logs (merging)
Many to one mapping
 DNS (domain name server)
 virtual hosting
many-to-many relationships 2nd 3rd 4th 5th
mapping
 files
 memory (performance)
mappings
 DNS (domain name server)
 virtual hosting
mass virtual hosting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

math operators 2nd
max connections variable
MAX FILE SIZE field
max used connections status variable
MD5
 digest algorithms
MEDIUMBLOB data type
MEDIUMINT data type
MEDIUMTEXT data type
memory
 files
 mapping (performance)
 MySQL optimization tips
menus
 creating 2nd
merging
 logs
Merlin Server
message authentication codes (MACs)
 integrity
 SSL protocols
message digests
 digest algorithms
messages
 Access denied
 Can't connect to server
methods
 access
 combining
 HTTP
 access (limiting) 2nd
 POST
methods. [See also functions]
minus sign (-)
 subtraction operator (-)
minus symbol (-)
 field width specifiers
MINUTE() function 2nd 3rd 4th
mirror sites
mkdir() function 2nd
mktime() function 2nd 3rd 4th 5th
MMapFile directive
 mapping files
 memory
mod access module
 access control 2nd 3rd
mod auth dbm module
 database file-based access control authentication 2nd 3rd
mod auth module
 file-based authentication 2nd 3rd
 sample configuration
mod bwshare module
 preventing abuse (performance)
mod cache module
 caching (performance)
mod deflate module
 reduced transmitted data (performance)
mod file cache module
 files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mapping
mod so command
mod ssl module
 SSL
 installing 2nd
 installing (UNIX)
 installing (Windows)
 SSL configurations
 SSL installations
mod status module
 network setting (scalability)
mod vhost alias directive (mass virtual hosting)
modification string functions 2nd 3rd
modifying
 configuration files
 httpd.conf file
module
 schemas
 directives
modules
 Apache compiles
 authentication
 access (restricting) 2nd 3rd 4th 5th
 directives
 functions
 mod access module
 access control 2nd 3rd
 mod auth
 file-based authentication 2nd 3rd
 mod auth dbm
 database file-based access control authentication 2nd 3rd
 mod auth module
 sample configuration
 mod bwshare module
 preventing abuse (performance)
 mod cache
 caching (performance)
 mod deflate
 reduced transmitted data (performance)
 mod file cache
 files (mapping)
 mod ssl
 SSL configurations
 SSL installations
 SSL;installing 2nd
 SSL;installing (UNIX)
 SSL;installing (Windows)
 mod status
 network setting (scalability)
modulus operator (%)
monitoring
 error logs
month select() function
MONTH() function
MONTHNAME() functions 2nd
months
 DAYOFMONTH() function 2nd 3rd
 MONTH() function
 MONTHNAME() function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

move uploaded file() function
MPM
 server processes
 operating systems (scalability)
MPMs
 configuration files
 processing
multiline comments
multiplication operator (*)
Mutual-Failure argument
 Order directive
my-huge.cnf configuration file
my-large.cnf configuration file
my-medium.cnf configuration file
my-small.cnf configuration file
MySQL
 accessing 2nd
 account, creating 2nd
 configuration options 2nd 3rd 4th
 connecting with PHP
 error messages, retrieving 2nd
 queries, executing 2nd 3rd 4th 5th
 using mysql connect() function 2nd 3rd 4th
 connections, securing 2nd 3rd
 data
 inserting with PHP 2nd 3rd 4th 5th 6th 7th
 retrieving with PHP 2nd 3rd 4th 5th
 functions, accessing list of
 GUI administration tool
 installing
 on Linux/Unix 2nd 3rd 4th
 on Windows 2nd 3rd 4th 5th 6th
 troubleshooting 2nd 3rd
 mailing list
 manual
 Problems and Common Errors
 optimization, improving
 benchmark() function 2nd 3rd
 FLUSH command
 FLUSH HOSTS PRIVILEGES command
 FLUSH LOGS PRIVILEGES command
 FLUSH PRIVILEGES command
 FLUSH TABLES command
 FLUSH TABLES PRIVILEGES command
 OPTIMIZE TABLE command 2nd 3rd
 queries 2nd 3rd
 SHOW COLUMNS command
 SHOW command
 SHOW CREATE TABLE command 2nd
 SHOW DATABASES command
 SHOW GRANTS command 2nd
 SHOW INDEX command 2nd
 SHOW OPEN TABLES command
 SHOW STATUS command
 SHOW TABLE STATUS command 2nd 3rd 4th
 SHOW TABLES command
 SHOW VARIABLES command 2nd
 tips for 2nd
 privilege systems

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 authentication process 2nd 3rd 4th 5th
 columns priv table
 db table
 func table
 granting 2nd 3rd 4th 5th 6th 7th 8th 9th
 host table
 overview 2nd
 revoking 2nd
 tables priv table
 user table
 running as root
 stopping
 running as root user
 server, shutting down
 starting 2nd 3rd 4th
 startup options
 key buffer size parameter 2nd 3rd
 table cache parameter 2nd 3rd
 support contracts
MySQL AB
mysql close() function
mysql connect() function 2nd 3rd 4th
mysql error() function 2nd
mysql fetch array() function
mysql insert id() function
MySQL installation wizard 2nd 3rd 4th
mysql num rows() function
mysql query() function 2nd 3rd 4th 5th 6th
mysql result() function
mysql select db() function
MySQL Web site
MySQL-client-VERSION.i386.rpm
MySQL-Pro 4.0 download pag
MySQL-VERSION.i386 rpm
mysql_insert_id() function

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

n format code (date() function)
name-based virutal hosting 2nd 3rd
names
 defining
 files (logging)
 domain names
 access control rules
 of variables
 selection considerations
 of varialbes
 selection considerations
NameVirtualHost directive
naming
 error log files
 functions
NATURAL JOIN command
navigating
 files 2nd
negative terms
nesting
 loops 2nd 3rd
network/mask pair
 control access rules
networks
 settings
 performance
 scalability
newline character (\n) 2nd 3rd 4th
NIS (Network Information Services)
 user mangement
 client authentication
nl2br() function 2nd
non-root users
nonequivalence operator (!=)
normal forms
 defined
 first normal forms
 rules for 2nd
 second normal forms
 rules for 2nd 3rd
 third normal forms
 rules for 2nd
normalization
 defined
 normal forms
 defined
 first normal forms 2nd
 second normal forms 2nd 3rd
 third normal forms 2nd
not operator (!)
notice
 LogLevel directive option
NOW() function 2nd 3rd
now() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULL data type
numberedHeading() function 2nd
numbers
 dividing by zero
numeric data types 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
NuSphere Corporation Web site

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

o type specifier
object data type
OCT() function 2nd 3rd
OCTET LENGTH() function
One to many mapping
 DNS (domain name server)
 virtual hosting
One to one mapping
 DNS (domain name server)
 virtual hosting
one-to-many relationships 2nd
one-to-one relationships 2nd
opendir() function
opening
 directories
 files 2nd 3rd
OpenSSL
 Web site
openssl command-line tool (certificates)
OpenSSL library
 installing
 UNIX
 Windows
 installing (SSL installations) 2nd
openssl.exe utility
 OpenSSL library
operands
 combined with operators
 defined
operating systems
 MySQL optimization tips
operating systems (OS)
 scalability 2nd
operators
 addition (+)
 arithmetic operators 2nd
 assignment (=) 2nd 3rd
 combined assignment operators 2nd 3rd 4th
 comparison operators 2nd
 concatentation (.) 2nd 3rd
 defined 2nd
 logical 2nd 3rd
 operands combined with
 post-decrement 2nd 3rd 4th
 post-increment 2nd 3rd 4th
 precedence 2nd 3rd 4th
operators. [See also expressions]
OPTIMIZE TABLE command 2nd 3rd
optional arguments
 example 2nd 3rd
options
 apache.exe
 server binary (Windows)
Options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 directive value
options
 httpd
 server binary (Unix)
Options directive
 parameters
Options directive (mass virtual hosting)
or operator (||) 2nd 3rd 4th 5th 6th
ORDER BY clause 2nd 3rd
Order directive
 control access rules
 evaluating
Order directives
 Allow, Deny argument
 Deny, Allow argument
 Mutual-Failure argument
OS (operating systems)
 scalability 2nd
output() function 2nd
override
 schemas
 directives
ownership
 verifying

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

padding functions
padding specifiers
 strings 2nd 3rd 4th
padlock icon
parameters
 configuration files
 Options directive
pass phrases
 key pairs
 creating (certificates)
password files
 storing (file-based authentication)
password() function
passwords
 basic authentication
 digest authentication
 encrypting
 user management (file-based authentication)
 storing
 user management;client authentication
paths
 log files
 logname
per-directory configuration files 2nd
 file system access (scalability)
percent sign (%)
 modulus operator (%)
percent signs (%)
percent symbol (%)
 conversion specification
performance
 abuse
 preventing
 caching
 files
 mapping;memory
 loads
 distributing
 network settings
 reduced transmitted data 2nd
 Web sites
 tools
period (.)
 concatenation operator (.) 2nd 3rd
permissions
 incorrect
permissions. [See also privileges]
PHP
 combining HTML with 2nd 3rd
 configuring 2nd 3rd
 connecting to MySQL with
 error messages, retrieving 2nd
 queries, executing 2nd 3rd 4th 5th
 using mysql connect() function 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delimiter tags
 inserting MySQL data with 2nd 3rd 4th 5th 6th 7th
 installing
 help for 2nd 3rd 4th 5th
 on Linux/Unix with Apache 2nd 3rd 4th 5th 6th
 on Windows 2nd 3rd
 testing
 integrating with Apache on Linux/Unix 2nd 3rd
 integrating with Apache on Windows 2nd 3rd
 retrieving MySQL data with 2nd 3rd 4th 5th
 scripts 2nd 3rd
PHP mailing lists
PHP Manual Web site 2nd 3rd
PHP Web site 2nd 3rd
php.ini file 2nd 3rd 4th
php.ini-dist file
phpinfo() function 2nd
phpinfo.php file
phyMyAdmin interface
pid file
 log files
plaintext
 message
 encryption
plus sign (+)
 addition operator (+)
port connections variable
port values (Listen directive)
ports
 bind to port
 troubleshooting
position functions 2nd
positive terms
POST method
post-decrement operators 2nd 3rd 4th
post-increment operators 2nd 3rd 4th
posts
 adding to topics 2nd 3rd 4th 5th 6th 7th 8th 9th
 defined
 diplaying in topics 2nd 3rd 4th 5th 6th 7th 8th 9th
pound sign (#)
pound signs (#)
PRE element
precedence (operators) 2nd 3rd 4th
precision specifications (strings) 2nd
predefined
 constants
preventing
 abuse
 robots
 Web crawlers
 Web spiders
 abuse (performance)
print() function 2nd 3rd
 parentheses
printBR() function
printf() function
 strings 2nd 3rd
 padding specifiers 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 type specifiers 2nd 3rd 4th 5th
printing
 cookies
privileges
 authentication process
 errors in 2nd 3rd 4th
 columns priv table
 db table
 func table
 granting 2nd 3rd 4th 5th 6th 7th 8th 9th
 host table
 overview 2nd
 revoking 2nd
 tables priv table
 user table
problems
 MySQL installation 2nd 3rd
Problems and Common Errors (MySQL manual)
PROCESS command
processes
 external processes
 operating systems (scalability)
 server processes
 operating systems (scalability)
processing
 configuration files
 MPMs
 directives
 per-directory configuration files
programs
 errors
 logging
 HTTP requests
 logging 2nd
 rotatelogs
 logs;rotating (Unix)
 rotatelogs.exe
 logs;rotating (Unix)
Properties, Certificates command (File menu)
protocols
 SSL
 authentication 2nd 3rd 4th
 confidentiality 2nd 3rd
 confidentiality (public key cryptography)
 confidentiality (symmetric cryptography) 2nd
 encryption
 SSL (secure servers 2nd 3rd 4th 5th 6th 7th
ps command
public key cryptography
 confidentiality
 SSL protocols

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queries
 executing 2nd 3rd 4th 5th
 optimizing 2nd 3rd
query strings
 session IDs, passing 2nd
quotation marks ()

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

r (read)mode
r format code (date() function)
RAM disks
 scoreboard files
 file system access (scalability)
rand switch
 key pairs
 creating (certificates)
raw headers
 froms 2nd
RC2
 symmetric cryptography
RC4
 symmetric cryptography
read mode
readdir() function 2nd 3rd
reading
 directory contents 2nd 3rd
 files
 arbitrary data amounts 2nd 3rd
 characters 2nd 3rd
 lines 2nd 3rd
README file
realms
 authentication
 AuthName directive
recording
 events
 error log
records
 address book database table example
 record addition script 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 records, adding subentries to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 records, deleting 2nd 3rd 4th 5th
 records, selecting and viewing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 records, selecting and viewingt
 inserting 2nd 3rd 4th
reducing
 transmitted data (performance) 2nd
reference passing (arguments)
REFERENCES command
registering
 multiple session variables 2nd
relationships
 many-to-many 2nd 3rd 4th 5th
 one-to-many 2nd
 one-to-one 2nd
RELOAD command
removing
 privileges 2nd
REPEAT() function
REPLACE command 2nd 3rd 4th
REPLACE() function
replacing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 string portions 2nd
 substrings 2nd 3rd
Reply-to header
request headers
 name-based virtual hosting (syntax) 2nd
request logs
 creating
requests
 client requests
 tracking (access log)
requests. [See also HTTP requests]
Require directive
 authentication modules
require once() function
require() function 2nd
resolving
 hostnames(managing logs) 2nd
resource data type
restricting
 access
 authentication 2nd
 authentication modules 2nd 3rd 4th 5th
 based on cookie values 2nd 3rd 4th 5th 6th 7th 8th
 client authentication
 access (access control) 2nd 3rd 4th
return statements
 function values 2nd 3rd
reverse DNS lookups
 IP addresses
REVOKE command 2nd 3rd 4th
RIGHT JOIN command
RIGHT() function 2nd
RLimitCPU directive
 external processes
 operating systems (scalability)
RLimitMem directive
 external processes
 operating systems (scalability)
RLimitNProc directive
 external processes
 operating systems (scalability)
rmdir() function
robots
 abuse
 preventing
robots.txt file
 Web spiders (preventing abuse)
root user
 non-root users
 running MySQL as
 stopping
root users
 MySQL running as
rotatelogs program
 logs
 rotating (Unix)
rotatelogs utility
 logging program
rotatelogs.exe program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 logs
 rotating (Unix)
rotating
 logs 2nd
rows
 mysql num rows() function
RPAD() function
RPMS
 installing MySQL on Linux.Unix using
RSA
 public key cryptography
rtrim() function 2nd 3rd
RTRIM() function 2nd 3rd 4th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s format code (date() function)
s type specifier
Satisy all directive
 access methods
 combining
Satisy any directive
 access methods
 combining
Satisy directive
 access methods
 combining
saving
 function state between calls 2nd 3rd
 state
 hidden fields 2nd 3rd
scalability 2nd 3rd 4th 5th
scalabiltiy
 operating systems 2nd
 settings 2nd 3rd
ScanErrLog
 programs
 monitoring error logs
schemas
 directives
scope
 function variables 2nd 3rd
scoreboard file
 log files
scoreboard files
 file system access
 scalability
ScoreBoardFile directive
screen savers
Script tags
ScriptAlias directive (mass virtual hosting)
scripts
 apachectl
 config
 OpenSSL library;installing
 configure 2nd 3rd
 configure script
 software (configuring)
 configure scripts
 makefiles
 targets
 control
 commands
 file upload 2nd 3rd 4th 5th 6th
 PHP 2nd 3rd
 split-file Perl
 logs;splitting
SEC TO TIME() function
second normal forms
 rules for 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SECOND() function 2nd 3rd 4th
sections. [See also containers]
secure HTTP
secure servers
 certificates
 managing 2nd 3rd 4th
 communications
 SSL
 configuring
 SSL protocols 2nd 3rd 4th 5th 6th 7th
Secure Sockets Layer. [See SSL]2nd [See SSL]
security
 access control
 basic authentication
 communciations
 authentication
 confidentiality
 integrity
 digest authentication
 lock screen mechanism
 MySQL
 connections, securing 2nd 3rd
 server startup procedures 2nd 3rd 4th
 reverse DNS lookups
 SSH
 symbolic links (symlinks)
SELECT command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
SELECT statement 2nd
selecting
 installation methods
 binaries (installing)
 source code(building)
 variable names 2nd
self-signed certificates (managing certificates)
semi-colons ()
 do, while statements
semicolon (
) 2nd 3rd
semicolons (
)
sending
 mail 2nd 3rd 4th 5th 6th 7th 8th
 signals
 kill command
sending mail
 on form submission
 creating script to send 2nd 3rd 4th 5th
 form creation 2nd 3rd
 mail() function 2nd 3rd 4th
serialize() function
server binary
 commands
server headers
 froms
server processes
 operating systems
 scalability
ServerAlias directive (syntax)
ServerName directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 configuration files
ServerName directives
 documentation
ServerRoot directive
 configuration files
servers
 loads
 distributing (performance)
 MySQL
 shutting down
 starting (SSL configurations)
 virtual servers
 specifying (<VirtualHost> directive container)
 Web servers
 Apache installations (Windows)
servers (existing)
 troubleshooting
servers. [See also secure servers]
Service icon
services
 Apache
 installing
session IDs
 passing in query strings 2nd
session set save handler() function
session start() function
session variables 2nd 3rd 4th 5th 6th 7th 8th
 multiple, registering 2nd
session_destroy() function 2nd 3rd
session_id() function
session_save_path() function
session_start() function 2nd 3rd
sessions
 destroying 2nd 3rd
 overview 2nd
 session set save handler() function
 starting 2nd 3rd 4th
set time limit() function
Set-Cookie header
setcookie() function 2nd 3rd
setDate array() function 2nd 3rd
setDate global() function 2nd
settings
 group settings
 troubleshooting
 network settings
 performance
 network settings (scalability)
 scalability 2nd 3rd
 status settings (scalability)
settype() function 2nd 3rd
setup.exe application
setup.exe file
setYearEnd() function
setYearStart() function
SHA
 digest algorithms
shopping cart database table example
 cart, adding items to 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cart, removing items from 2nd 3rd 4th
 cart, viewing 2nd 3rd 4th 5th 6th 7th
 checkout actions, performing 2nd 3rd 4th
 checkout form, creating 2nd 3rd
 field lengths
 field names 2nd 3rd 4th 5th 6th
 integrating with storefront 2nd 3rd 4th 5th 6th 7th 8th
 planning process
short open tag switch
short tags 2nd
shortcuts
 commands
 apache.exe
SHOW COLUMNS command
SHOW command
SHOW CREATE TABLE command 2nd
SHOW DATABASES command
SHOW GRANTS command 2nd
SHOW INDEX command 2nd
SHOW OPEN TABLES command
SHOW STATUS command 2nd 3rd
SHOW TABLE STATUS command 2nd 3rd 4th
SHOW TABLES command
SHOW VARIABLES command 2nd 3rd
shut down
 MySQL server
SHUTDOWN command
signals
 sending
 kill command
signed data types
single quotation marks (')
single-line comments
sites. [See Web sites]
size
 files
size attribute
skipping iterations (loops) 2nd 3rd
slash (/)
 division operator (/)
slow queries status variable
SMALLINT data type
software
 configuring (Apache installations)
software load balancer (performance)
Solaris
 file descriptors
 operating systems (scalability)
 server processes
 operating systems (scalability)
source
 Apache
 installing (UNIX)
source code
 building
 installation methods (selecting)
 downloading (Apache installations)
 uncompressing (Apache installations)
spaces (HTML documents)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 viewing
specifiers (strings) 2nd
specifying
 virtual servers (<VirtualHost> directive container)
split-file Perl script
 logs
 splitting
spliting
 logs
splitting
 logs (merging)
sprintf() function 2nd 3rd 4th
SSH
SSL
 configuring
 servers;starting
 configuring (secure servers)
 digital certificates
 installing 2nd 3rd
 mod ssl module 2nd
 mod ssl module (UNIX)
 mod ssl module (Windows)
 OpenSSL library 2nd
 protocols
 authentication 2nd 3rd 4th
 authentication (connections) 2nd
 confidentiality 2nd 3rd
 confidentiality (public key cryptography)
 protocols (secure servers) 2nd 3rd 4th 5th 6th 7th
 protocos
 encryption
SSL (Secure Sockets Layer) 2nd
SSL protocols
 confidentiality
 symmetric cryptography 2nd
SSLCertificateFile directive
 SSL configuations
 certificates and keys
SSLCertificateKeyfile directive
 SSL configuations
 certificates and keys
SSLeay library
standard tags
Start Apache link
Start menu commands
 Control Apache
start tags 2nd 3rd 4th 5th
starting
 Apache 2nd 3rd
 Apache (manually)
 block of statements 2nd
 MySQL 2nd 3rd 4th
 servers (SSL configurations)
 sessions 2nd 3rd 4th
startup
 MySQL
 key buffer size parameter 2nd 3rd
 table cache parameter 2nd 3rd
state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 functions
 saving between calls 2nd 3rd
 saving
 hidden fields 2nd 3rd
statement
 exit
statements
 block of, starting/ending 2nd
 break
 code ends
 loops 2nd 3rd 4th 5th
 continue 2nd 3rd
 control
 code block brackets
 defined
 DELETE
 do, while 2nd
 for 2nd 3rd 4th
 for each
 foreach
 function 2nd
 function state, saving 2nd 3rd
 global
 remembering function variable values between calls 2nd 3rd
 variable access 2nd 3rd 4th 5th 6th
 if 2nd 3rd 4th
 else clause with 2nd 3rd
 elseif clause with 2nd 3rd 4th
 example of 2nd
 switch, compared
 INSERT 2nd
 loops. [See loops]
 return
 function values 2nd 3rd
 SELECT 2nd
 static
 remembering function variable values between calls 2nd
 switch 2nd 3rd
 example
 if, compared
 UPDATE
 while 2nd 3rd 4th 5th
statements. [See commands]2nd [See also commands]
static statement
 function state, saving 2nd 3rd
 remembering function variable values between calls 2nd
status
 files
 checking 2nd
 schemas
 directives
status code
 conditional logging
status settings
 scalability
stopping
 Apache
 MySQL server
storage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 backend storage
 database file-based access control authentication
 file-based authentication
 functions (authentication modules)
store categories field, storefront database table example 2nd 3rd 4th 5th
store item color field, storefront database table example 2nd 3rd 4th
store item size field, storefront database table example 2nd 3rd
store items field, storefront database table example 2nd 3rd 4th 5th 6th
storefront database table example
 add to cart button 2nd 3rd 4th 5th 6th 7th 8th
 categories of items, displaying 2nd 3rd 4th 5th 6th 7th
 planning process 2nd
 store categories field 2nd 3rd 4th 5th
 store item color field 2nd 3rd 4th
 store item size field 2nd 3rd
 store items field 2nd 3rd 4th 5th 6th
storing
 certificate signing requests
 formatted strings 2nd
 password files (file-based authentication)
 passwords
 user management;client authentication
 usernames
 user mangement;client authentication
str_replace() function
 substrings, replacing 2nd 3rd
STRAIGHT JOIN command
string data type 2nd
string data types 2nd 3rd
strings
 breaking into arrays 2nd
 case, converting 2nd
 cleaning up 2nd 3rd
 defined
 formatted
 storing 2nd
 formatting
 argument swapping 2nd 3rd 4th
 example 2nd
 field width specifications 2nd
 padding specifiers 2nd 3rd 4th
 precision specifications 2nd
 printf() function 2nd 3rd
 specifiers 2nd
 type specifiers 2nd 3rd 4th 5th
 indexing 2nd
 length
 finding 2nd
 log formats
 modification functions 2nd 3rd
 portions, extracting 2nd 3rd
 portions, replacing 2nd
 query
 session IDs, passing 2nd
 substrings
 finding 2nd
 position, finding 2nd
 replacing 2nd 3rd
 text, wrapping 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tokenizing 2nd 3rd 4th 5th
strip tags() function
stripslashes() function 2nd 3rd 4th
strlen() function 2nd
strpos() function 2nd
strstr() function 2nd
strtok() function 2nd 3rd 4th 5th
strtolower() function
strtoupper() function
subdirectories
 support-files
subdirectories. [See directories]
subexpressions
subscription project
 mail, sending 2nd 3rd 4th 5th 6th 7th 8th
 subscribe and unsubscribe requests 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 subscribers table
 creating 2nd 3rd
substr() function 2nd 3rd
substr_replace() function
 string portions, replacing 2nd
SUBSTRING() function 2nd
substrings
 finding 2nd
 position, finding 2nd
 replacing 2nd 3rd
subtraction operator (-)
superglobals
 $ COOKIE
 $ ENV
 $ FILES 2nd
 $ GET
 $ POST
 $ REQUEST
 $ SESSION
 $SESSION 2nd 3rd
 defined
support contracts
 MySQL
support-files subdirectories
switch statements 2nd 3rd
 example
 if compared
switches
 -DMyModule
 rand
 key pairs;creating (certificates)
symbolic links (symlink)
 file system access (scalability)
symlink (system links)
 file system access (scalability)
SymLinksIfOwnerMatch parameter
 Options directive
symmetric cryptography
 confidentiality (SSL protocols) 2nd
 limitations
syntax
 <IfDefine> conditional container
 <IfModule> conditional container

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 container directives 2nd
 error log
 per-directory configuration files
 disabling
 request headers
 name-based virtual hosting 2nd
 schemas
 directives
 ServerAlias directive
syslog daemon
 errors
 logging (Unix)
syslog daemon argument
 errors
 logging (Unix)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tab character (\t)
table cache parameter 2nd 3rd
table relationships
 many-to-many 2nd 3rd 4th 5th
 one-to-many 2nd
 one-to-one 2nd
table type variable
tables
 address book database table example
 date added field
 date modified field
 menus, creating 2nd
 record addition script 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 records, adding subentries to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 records, deleting 2nd 3rd 4th 5th
 records, selecting and viewing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 table name fields 2nd 3rd 4th 5th 6th 7th 8th
 auth users 2nd 3rd
 calendar example 2nd 3rd 4th 5th 6th 7th 8th 9th
 columns priv
 creating 2nd 3rd
 CREATE TABLE command 2nd 3rd 4th
 CROSS JOIN command
 DELETE command 2nd 3rd 4th 5th 6th
 INNER JOIN command
 INSERT command 2nd 3rd 4th 5th 6th 7th 8th
 JOIN command
 LEFT JOIN command 2nd
 LIKE operator
 LIMIT command 2nd 3rd 4th
 NATURAL JOIN command
 REPLACE command 2nd 3rd 4th
 RIGHT JOIN command
 SELECT command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 STRAIGHT JOIN command
 UPDATE command 2nd 3rd 4th 5th 6th 7th 8th 9th
 WHERE clause 2nd 3rd
 custom logs 2nd
 code snippet 2nd 3rd
 sample reports 2nd 3rd 4th 5th 6th
 db
 discussion forums 2nd 3rd
 FLUSH TABLES command
 func
 host
 OPTIMIZE TABLE command 2nd 3rd
 shopping cart database table example
 cart, adding items to 2nd 3rd 4th 5th
 cart, removing items from 2nd 3rd 4th
 cart, viewing 2nd 3rd 4th 5th 6th 7th
 checkout actions, performing 2nd 3rd 4th
 checkout form, creating 2nd 3rd
 field lengths
 field names 2nd 3rd 4th 5th 6th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 integrating with storefront 2nd 3rd 4th 5th 6th 7th 8th
 planning process
 SHOW COLUMNS
 SHOW CREATE TABLE
 SHOW CREATE TABLE command
 SHOW INDEX 2nd
 SHOW OPEN TABLES command
 SHOW STATUS
 SHOW TABLE STATUS 2nd 3rd 4th
 SHOW TABLES command
 SHOW VARIABLES 2nd
 storefront database table example
 add to cart button 2nd 3rd 4th 5th 6th 7th 8th
 categories of items, displaying 2nd 3rd 4th 5th 6th 7th
 planning process 2nd
 store categories field 2nd 3rd 4th 5th
 store item color field 2nd 3rd 4th
 store item size field 2nd 3rd
 store items field 2nd 3rd 4th 5th 6th
 tables priv
 user
tables priv table
tags
 ASP 2nd
 end tags
 Script
 short 2nd
 short open tag switch
 standard
 start tags
 start/end 2nd
tagWrap() function 2nd
tail command-line utility
 error logs
 monitoring (Unix)
tar command 2nd
tarball
 Apache source code
 uncompressing
targets
 configure script
ternary operator (?) 2nd 3rd
test expressions
 boolean values
test() function
testing
 data type
 data types 2nd
 dates 2nd
 functions, existence 2nd 3rd 4th 5th
 PHP installation
text
 wrapping 2nd 3rd 4th
TEXT data type
text editors
 httpd.conf file
 modifying
TEXT field
Thawte

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CA (certifcation authority)
third normal forms
 defined
 rules for 2nd
time
 calendar 2nd
 HTML form 2nd 3rd 4th 5th
 library, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
 table, creating 2nd 3rd 4th 5th 6th 7th 8th 9th
 user input 2nd 3rd 4th
 calendar example
 user input
 CURRENT TIME() function
 CURRENT TIMESTAMP() function
 current, retrieving 2nd
 CURTIME() function
 formatting 2nd 3rd
 FROM UNIXTIME() function
 HH-MM-SS format
 HOUR() function 2nd 3rd 4th 5th 6th 7th 8th
 information, retrieving
 MINUTE() function 2nd 3rd 4th
 NOW() function
 SEC TO TIME() function
 SECOND() function 2nd 3rd 4th
 TIME FORMAT() function
 TIME TO SEC() function
 UNIX TIMESTAMP() function
TIME data type
time data types 2nd 3rd
TIME FORMAT() function
time stamps
 converting
 date() 2nd 3rd
 getdate()
 creating
TIME TO SEC() function
time() function 2nd 3rd
TimeOut directive
 abuse
 preventing (performance)
timestamp
 defined
TIMESTAMP data type
timestamps
 creating 2nd
TINYBLOB data type
TINYINT data type
TINYTEXT data type
TITLE element
TLS (Transport Layer Security). [See SSL]
tokenizing 2nd
 strings 2nd 3rd
tools
 apachectl
 control script command (UNIX)
 command-line
 openssl (certificates)
 performance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Web sites
topics
 adding 2nd 3rd
 script for 2nd 3rd 4th 5th
 adding posts to 2nd 3rd 4th 5th 6th 7th 8th 9th
 defined
 topic list, displaying 2nd 3rd 4th 5th 6th 7th 8th 9th
 topics
 displaying posts in 2nd 3rd 4th 5th 6th 7th 8th 9th
touch() function
 file creation
tracking
 client requests
 access log
 clients
 troubleshooting
TransferLog directive 2nd
transmitted data
 reducing (performance) 2nd
Transport Layer Security (TLS). [See SSL]
TRIM() function
trim() function
 strings, cleaning up 2nd 3rd
trimming functions 2nd 3rd 4th
Triple-Des
 symmetric cryptography
troubleshooting
 bind to port
 clients
 tracking
 denied access
 group settings
 MySQL installation 2nd 3rd
 servers
 starting (SSL configurations)
 Web servers (existing)
TYPE argument
type specifiers
 strings 2nd 3rd 4th 5th
types. [See data types]
typical installation
 Apache (Windows)
Typical installation option

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

U format code (date() function)
UCASE() function
ucwords() function
ulimit command
 operating systems
 scalability
uncompressing
 source code (Apache installations)
underline() function
underscore (_)
unitialized variables
UNIX
 Apache
 installing (source)
 starting
 apachectl tool
 installing Apache 2nd
Unix
 installing MySQL on 2nd 3rd 4th
 installing PHP on, with Apache 2nd 3rd 4th 5th 6th
 integrating PHP with Apache on 2nd 3rd
 logresolve utility
 hostnames;resolving
UNIX
 mod ssl module
 installing SSL
 OpenSSL library
 installing
Unix
 rotatelogs programs
 logs (rotating)
 syslog daemon
 errors;logging
 logging errors
 tail command-line utility
 error logs;monitoring
Unix epoch
UNIX TIMESTAMP() function
unlink() function
 file deletion
unsigned data types
unsubscribe requests 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
unzipper
UPDATE command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
UPDATE statement 2nd
uptime status variable
URLs
 directives
 appplying
USAGE command
user input
 calendar example 2nd 3rd 4th 5th
 HTML forms
 accessing from multiple SELECT elements 2nd 3rd 4th 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 receiving 2nd 3rd 4th
user login form 2nd 3rd 4th
user management
 database file-based access control authentication 2nd
 functions
 authentication modules
user mangement
 file-based authentication
user table
User-Agent header
user-created functions
user-defined functions
 values, returning 2nd 3rd
usernames
 basic authentication
 storing
 user management;client authentication
users
 adding 2nd 3rd 4th 5th 6th 7th
 database file-based access control authentication 2nd
 deleting
 database file-based access control authentication
 lists
 Require directive
 management
 client authentication
 ownership
 verifying
 redirecting (forms) 2nd
 root
 non root users
 running MySQL as, stopping
 root users
 MySQL running as
users file
 backend storage
 file-based authentication
utilities
 gzip
 Apache source code;uncompressing
 htpasswd
 user password files;managing
 htpasswd.exe
 user password files;managing
 logresolve utility
 hostnames;resolving
 logresolve.exe utility
 hostnames;resolving
 make
 Apache;building
 openssl.exe
 OpenSSL library
 rotatelogs utility
 logging program
 tail command-line
 error logs;monitoring (Unix)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

value directives
values
 directives
 functions
 returning 2nd 3rd
 port values (Listen directive)
VARCHAR data type
VARCHAR field
variables
 $blue
 $count 2nd
 $dayArray
 $delim
 $file array
 $file dir
 $file name
 $firstDayArray
 $function holder
 $green
 $membership 2nd
 $name
 $newnum
 $red
 $start 2nd
 $tst
 $word
 casting 2nd 3rd 4th 5th
 data types
 array
 boolean
 changing 2nd 3rd 4th 5th 6th 7th 8th
 double
 integer 2nd
 NULL
 object
 resource
 special
 string 2nd
 testing
 declaring
 defined 2nd
 environment variables
 access control rules
 conditional looping
 CustomLog directive
 functions
 accessing 2nd 3rd 4th 5th
 scope 2nd 3rd
 global
 $GLOBALS array, looping through 2nd 3rd
 defined
 superglobals 2nd
 global file upload
 integers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 incrementing/decrementing 2nd 3rd 4th
 names of
 selection considerations 2nd
 session 2nd 3rd 4th 5th 6th 7th 8th
 multiple, registering 2nd
 uninitialized
 values
 remembering between calls 2nd 3rd 4th 5th
 values given to, overview
 when to use
varialbes
 $name
 DISTINCT
varibles
 functions
 accessing
VeriSign
 CA (certifcation authority)
version type variable
viewing
 directory contents 2nd 3rd
 spaces
 HTML documents
virtual hosting
 DNS (domain name server)
 mass virtual hosting
virtual servers
 specifying (<VirtualHost> directive container)
VirtualDocumentRoot directive (mass virtual hosting)
VirtualDocumentRootIP directive (mass virtual hosting)
VirtualScriptAlias directive (mass virtual hosting)
VirtualScriptAliasIP directive (mass virtual hosting)
virutal hosting
 DocumentRoot
 IP-based
 name-based 2nd 3rd
VirutalHost containers
 IP-based virutal hosting

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w (write) mode
warn
 LogLevel directive option
Web crawlers
 abuse
 preventing
Web servers
 Apache
 installing (Windows)
Web servers (existing)
 troubleshooting
Web sites
 AbriaSoft
 Apache
 awstats
 hosting. [See virutal hosting]
 Logscan
 MySQL
 MySQL-Pro 4.o download page
 NuSphere Corporation
 OpenSSL
 performance tools
 PHP 2nd 3rd
 PHP Manual 2nd 3rd
 ScanErrLog
 Webalizer
Web spiders
 abuse
 preventing
Webalizer
 log analysis
WEEKDAY() function 2nd 3rd 4th
WHERE clause 2nd 3rd 4th 5th 6th 7th 8th
where clause
while statements 2nd 3rd 4th 5th
whitespace 2nd
width
 of fields
 specifying 2nd
wildcards
 %
 *
Windows
 Apache
 controlling (commands)
 starting
 errors
 logging
 installing Apache
 installing Apache on 2nd 3rd 4th 5th 6th 7th
 installing MySQL on 2nd 3rd 4th 5th 6th
 installing PHP on 2nd 3rd
 integrating PHP with Apache on 2nd 3rd
 logresolve.exe utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hostnames;resolving
 mod ssl module
 installing SSL
 OpenSSL library
 installing
 rotatelogs.exe programs
 logs (rotating)
winmysqladmin.exe application 2nd
wizards
 MySQL installation 2nd 3rd 4th
wordwrap() function 2nd
wrapping text 2nd 3rd 4th
write (w) mode
writing to
 files 2nd
WS-FTP for Windows

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x type specifier
X type specifier
X.509
 digital certificates
xor operator
XX (greater than or equal to) operator
XX (less than or equal to) operator
XX (less than) operator

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

y format code (date() function)
Y format code (date() function)
YEAR data type
year select() function 2nd
YEAR() function
years
 DAYOFYEAR() function 2nd
 YEAR() function
YYYY-MM-DD date format

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

z format code (date() function)
Z format code (date() function)
zip file

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

