
 < Day Day Up >

• Table of Contents
• Index
Sams Teach Yourself SQL in 10 Minutes, Third Edition

By Ben Forta

Publisher: Sams Publishing

Pub Date: March 31, 2004

ISBN: 0-672-32567-5

Pages: 256

Slots: 0.5

Sams Teach Yourself SQL in 10 Minutes has established itself as the gold standard for introductory SQL books, offering
a fast-paced accessible tutorial to the major themes and techniques involved in applying the SQL language. Forta's
examples are clear and his writing style is crisp and concise. As with earlier editions, this revision includes coverage of
current versions of all major commercial SQL platforms. New this time around is coverage of MySQL, and PostgreSQL.
All examples have been tested against each SQL platform, with incompatibilities or platform distinctives called out and
explained.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Sams Teach Yourself SQL in 10 Minutes, Third Edition

By Ben Forta

Publisher: Sams Publishing

Pub Date: March 31, 2004

ISBN: 0-672-32567-5

Pages: 256

Slots: 0.5

 Copyright

 About the Author

 Acknowledgments

 We Want to Hear from You!

 Introduction

 Who is the Teach Yourself SQL Book For?

 DBMSs Covered in This Book

 Conventions Used in This Book

 Chapter 1. Understanding SQL

 Database Basics

 What Is SQL ?

 Try It Yourself

 Summary

 Chapter 2. Retrieving Data

 The SELECT Statement

 Retrieving Individual Columns

 Retrieving Multiple Columns

 Retrieving All Columns

 Summary

 Chapter 3. Sorting Retrieved Data

 Sorting Data

 Sorting by Multiple Columns

 Sorting by Column Position

 Specifying Sort Direction

 Summary

 Chapter 4. Filtering Data

 Using the WHERE Clause

 The WHERE Clause Operators

 Summary

 Chapter 5. Advanced Data Filtering

 Combining WHERE Clauses

 Using the IN Operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Using the IN Operator

 Using the NOT Operator

 Summary

 Chapter 6. Using Wildcard Filtering

 Using the LIKE Operator

 Tips for Using Wildcards

 Summary

 Chapter 7. Creating Calculated Fields

 Understanding Calculated Fields

 Concatenating Fields

 Performing Mathematical Calculations

 Summary

 Chapter 8. Using Data Manipulation Functions

 Understanding Functions

 Using Functions

 Summary

 Chapter 9. Summarizing Data

 Using Aggregate Functions

 Aggregates on Distinct Values

 Combining Aggregate Functions

 Summary

 Chapter 10. Grouping Data

 Understanding Data Grouping

 Creating Groups

 Filtering Groups

 Grouping and Sorting

 SELECT Clause Ordering

 Summary

 Chapter 11. Working with Subqueries

 Understanding Subqueries

 Filtering by Subquery

 Using Subqueries As Calculated Fields

 Summary

 Chapter 12. Joining Tables

 Understanding Joins

 Creating a Join

 Summary

 Chapter 13. Creating Advanced Joins

 Using Table Aliases

 Using Different Join Types

 Using Joins with Aggregate Functions

 Using Joins and Join Conditions

 Summary

 Chapter 14. Combining Queries

 Understanding Combined Queries

 Creating Combined Queries

 Summary

 Chapter 15. Inserting Data

 Understanding Data Insertion

 Copying from One Table to Another

 Summary

 Chapter 16. Updating and Deleting Data

 Updating Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Deleting Data

 Guidelines for Updating and Deleting Data

 Summary

 Chapter 17. Creating and Manipulating Tables

 Creating Tables

 Updating Tables

 Deleting Tables

 Renaming Tables

 Summary

 Chapter 18. Using Views

 Understanding Views

 Creating Views

 Summary

 Chapter 19. Working with Stored Procedures

 Understanding Stored Procedures

 Why to Use Stored Procedures

 Executing Stored Procedures

 Creating Stored Procedures

 Summary

 Chapter 20. Managing Transaction Processing

 Understanding Transaction Processing

 Controlling Transactions

 Summary

 Chapter 21. Using Cursors

 Understanding Cursors

 Working with Cursors

 Summary

 Chapter 22. Understanding Advanced SQL Features

 Understanding Constraints

 Understanding Indexes

 Understanding Triggers

 Database Security

 Summary

 Appendix A. Sample Table Scripts

 Understanding the Sample Tables

 Obtaining the Sample Tables

 Appendix B. Working in Popular Applications

 Using Aqua Data Studio

 Using DB2

 Using Macromedia ColdFusion

 Using Microsoft Access

 Using Microsoft ASP

 Using Microsoft ASP.NET

 Using Microsoft Query

 Using Microsoft SQL Server

 Using MySQL

 Using Oracle

 Using PHP

 Using PostgreSQL

 Using Query Tool

 Using Sybase

 Configuring ODBC Data Sources

 Appendix C. SQL Statement Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Appendix C. SQL Statement Syntax

 ALTER TABLE

 COMMIT

 CREATE INDEX

 CREATE PROCEDURE

 CREATE TABLE

 CREATE VIEW

 DELETE

 DROP

 INSERT

 INSERT SELECT

 ROLLBACK

 SELECT

 UPDATE

 Appendix D. Using SQL Datatypes

 String Datatypes

 Numeric Datatypes

 Date and Time Datatypes

 Binary Datatypes

 Appendix E. SQL Reserved Words

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
Copyright © 2004 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2003093137

Printed in the United States of America

First Printing: April 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact

U.S. Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales 1-317-428-3341 international@pearsontechgroup.com

Credits
Associate Publisher

Michael Stephens

Development Editor

Mark Renfrow

Managing Editor

Charlotte Clapp

Project Editor

Dan Knott

Indexer

Tom Dinse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proofreader

Leslie Joseph

Technical Editor

Christopher McGee

Publishing Coordinator

Cindy Teeters

Interior Designer

Gary Adair

Cover Designer

Gary Adair

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Author
Ben Forta is Macromedia's Senior Technical Evangelist and has almost 20 years of experience in the computer industry
in product development, support, training, and product marketing. Ben is the author of the best-selling ColdFusion Web
Application Construction Kit and Advanced ColdFusion Development (both published by Que), Sams Teach Yourself
Regular Expressions in 10 Minutes (in this same series), and also books on Flash, Java, WAP, Windows 2000, and other
subjects. He has extensive experience in database design and development, has implemented databases for several
highly successful commercial software programs, and is a frequent lecturer and columnist on Internet and database
technologies. Born in London, England, and educated in London, New York, and Los Angeles, Ben now lives in Oak Park,
Michigan, with his wife Marcy and their seven children. Ben welcomes your email at ben@forta.com, and invites you to
visit his Web site at http://www.forta.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Thanks to the team at Sams for all these years of support, dedication, and encouragement. A special thank you to Mike
Stephens and Mark Renfrow for shepherding this new edition from concept to reality (a process that required them to
occasionally shepherd me, too).

Thanks to the many hundreds of you who provided feedback on the first two editions of this book. Fortunately, most of
it was positive, and all of it was appreciated. The enhancements and changes in this edition are a direct response to
your feedback.

And finally, thanks to the many thousands of you who bought the previous editions of this book (in English, and in any
of the many translations), making it not just my best-selling title, but also one of the best-selling books on the subject.
Your continued support is the highest compliment an author can ever be paid.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or write me directly to let me
know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services
group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone
number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site at www.samspublishing.com.
Type the ISBN (0672325675) or the title of this book in the Search field to find the page you're looking for.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Introduction
SQL is the most widely used database language. Whether you are an application developer, database administrator,
Web application designer, or Microsoft Office user, a good working knowledge of SQL is an important part of interacting
with databases.

This book was born out of necessity. I had been teaching Web application development for several years, and students
were constantly asking for SQL book recommendations. There are lots of SQL books out there. Some are actually very
good. But they all have one thing in common: for most users they teach just too much information. Instead of teaching
SQL itself most books teach everything from database design and normalization to relational database theory and
administrative concerns. And while those are all important topics, they are not of interest to most of us who just need
to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I turned that classroom experience into the
book you are holding. Sams Teach Yourself SQL in 10 Minutes will teach you SQL you need to know, starting with
simple data retrieval and working on to more complex topics including the use of joins, subqueries, stored procedures,
cursors, triggers, and table constraints. You'll learn methodically, systematically, and simply—in lessons that will each
take 10 minutes or less to complete.

Now in its third edition, this book has taught SQL to hundreds of thousands of users, and now it is your turn. So turn to
Lesson 1, and get to work. You'll be writing world class SQL in no time at all.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who is the Teach Yourself SQL Book For?
This book is for you if

You are new to SQL.

You want to quickly learn how to get the most out of SQL.

You want to learn how to use SQL in your own application development.

You want to be productive quickly and easily in SQL without having to call someone for help.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DBMSs Covered in This Book
For the most part, the SQL taught in this book will apply to any Database Management System (DBMS). However, as all
SQL implementations are not created equal, the following DBMSs are explicitly covered (and specific instructions or
notes are included where needed):

IBM DB2

Microsoft Access

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

Sybase Adaptive Server

Example databases and SQL scripts are also available for all of these DBMSs.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English, and also to help you identify
important concepts.

Text that you type and text that should appear on your screen is presented in monospace type.

It will look like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You should replace the placeholder with the
specific value it represents.

This arrow () at the beginning of a line of code means that a single line of code is too long to fit on the printed page.
Continue typing all the characters after the as though they were part of the preceding line.

A Note presents interesting pieces of information related to the surrounding
discussion.

A Tip offers advice or teaches an easier way to do something.

A Caution advises you about potential problems and helps you steer clear of
disaster.

New Term icons provide clear definitions of new, essential terms.

The Input icon identifies code that you can type in yourself.

The Output icon highlights the output produced by running a program.

The Analysis icon alerts you to the author's line-by-line analysis of a program.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 1. Understanding SQL
In this lesson, you'll learn exactly what SQL is and what it will do for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Database Basics
The fact that you are reading a book on SQL indicates that you, somehow, need to interact with databases. SQL is a
language used to do just this, so before looking at SQL itself, it is important that you understand some basic concepts
about databases and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you select a name from your email
address book, you are using a database. If you conduct a search on an Internet search site, you are using a database.
When you log into your network at work, you are validating your name and password against a database. Even when
you use your ATM card at a cash machine, you are using databases for PIN number verification and balance checking.

But even though we all use databases all the time, there remains much confusion over what exactly a database is. This
is especially true because different people use the same database terms to mean different things. Therefore, a good
place to start our study is with a list and explanation of the most important database terms.

Reviewing Basic Concepts What follows is a very brief overview of some basic
database concepts. It is intended to either jolt your memory if you already have
some database experience, or to provide you with the absolute basics, if you are
new to databases. Understanding databases is an important part of mastering SQL,
and you might want to find a good book on database fundamentals to brush up on
the subject if needed.

What Is a Database?

The term database is used in many different ways, but for our purposes (and indeed, from SQL's perspective) a
database is a collection of data stored in some organized fashion. The simplest way to think of it is to imagine a
database as a filing cabinet. The filing cabinet is simply a physical location to store data, regardless of what that data is
or how it is organized.

Database A container (usually a file or set of files) to store organized data.

Misuse Causes Confusion People often use the term database to refer to the
database software they are running. This is incorrect, and it is a source of much
confusion. Database software is actually called the Database Management System
(or DBMS). The database is the container created and manipulated via the DBMS. A
database might be a file stored on a hard drive, but it might not. And for the most
part this is not even significant as you never access a database directly anyway;
you always use the DBMS and it accesses the database for you.

Tables

When you store information in your filing cabinet you don't just toss it in a drawer. Rather, you create files within the
filing cabinet, and then you file related data in specific files.

In the database world, that file is called a table. A table is a structured file that can store data of a specific type. A table
might contain a list of customers, a product catalog, or any other list of information.

Table A structured list of data of a specific type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key here is that the data stored in the table is one type of data or one list. You would never store a list of
customers and a list of orders in the same database table. Doing so would make subsequent retrieval and access
difficult. Rather, you'd create two tables, one for each list.

Every table in a database has a name that identifies it. That name is always unique—meaning no other table in that
database can have the same name.

Table Names What makes a table name unique is actually a combination of
several things including the database name and table name. Some databases also
use the name of the database owner as part of the unique name. This means that
while you cannot use the same table name twice in the same database, you
definitely can reuse table names in different databases.

Tables have characteristics and properties that define how data is stored in them. These include information about what
data may be stored, how it is broken up, how individual pieces of information are named, and much more. This set of
information that describes a table is known as a schema, and schema are used to describe specific tables within a
database, as well as entire databases (and the relationship between tables in them, if any).

Schema Information about database and table layout and properties.

Columns and Datatypes

Tables are made up of columns. A column contains a particular piece of information within a table.

Column A single field in a table. All tables are made up of one or more columns.

The best way to understand this is to envision database tables as grids, somewhat like spreadsheets. Each column in
the grid contains a particular piece of information. In a customer table, for example, one column contains the customer
number, another contains the customer name, and the address, city, state, and zip are all stored in their own columns.

Breaking Up Data It is extremely important to break data into multiple columns
correctly. For example, city, state, and zip should always be separate columns. By
breaking these out, it becomes possible to sort or filter data by specific columns
(for example, to find all customers in a particular state or in a particular city). If city
and state are combined into one column, it would be extremely difficult to sort or
filter by state.

Each column in a database has an associated datatype. A datatype defines what type of data the column can contain.
For example, if the column is to contain a number (perhaps the number of items in an order), the datatype would be a
numeric datatype. If the column were to contain dates, text, notes, currency amounts, and so on, the appropriate
datatype would be used to specify this.

Datatype A type of allowed data. Every table column has an associated datatype
that restricts (or allows) specific data in that column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Datatypes restrict the type of data that can be stored in a column (for example, preventing the entry of alphabetical
characters into a numeric field). Datatypes also help sort data correctly, and play an important role in optimizing disk
usage. As such, special attention must be given to picking the right datatype when tables are created.

Datatype Compatibility Datatypes and their names are one of the primary
sources of SQL incompatibility. While most basic datatypes are supported
consistently, many more advanced datatypes are not. And worse, occasionally you'll
find that the same datatype is referred to by different names in different DBMSs.
There is not much you can do about this, but it is important to keep in mind when
you create table schemas.

Rows

Data in a table is stored in rows; each record saved is stored in its own row. Again, envisioning a table as a spreadsheet
style grid, the vertical columns in the grid are the table columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The number of rows in the table is the number of
records in it.

Row A record in a table.

Records or Rows? You may hear users refer to database records when referring
to rows. For the most part, the two terms are used interchangeably, but row is
technically the correct term.

Primary Keys

Every row in a table should have some column (or set of columns) that uniquely identifies it. A table containing
customers might use a customer number column for this purpose, whereas a table containing orders might use the
order ID. An employee list table might use an employee ID or the employee social security number column.

Primary Key A column (or set of columns) whose values uniquely identify every
row in a table.

This column (or set of columns) that uniquely identifies each row in a table is called a primary key. The primary key is
used to refer to a specific row. Without a primary key, updating or deleting specific rows in a table becomes extremely
difficult as there is no guaranteed safe way to refer to just the rows to be affected.

Always Define Primary Keys Although primary keys are not actually required,
most database designers ensure that every table they create has a primary key so
that future data manipulation is possible and manageable.

Any column in a table can be established as the primary key, as long as it meets the following conditions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No two rows can have the same primary key value.

Every row must have a primary key value (primary key columns may not allow NULL values).

Values in primary key columns can never be modified or updated.

Primary key values can never be reused. (If a row is deleted from the table, its primary key may not be
assigned to any new rows in the future.)

Primary keys are usually defined on a single column within a table. But this is not required, and multiple columns may
be used together as a primary key. When multiple columns are used, the rules listed above must apply to all columns
that make up the primary key, and the values of all columns together must be unique (individual columns need not
have unique values).

There is another very important type of key called a foreign key, but I'll get to that later on in Lesson 12, "Joining
Tables."

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What Is SQL?
SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for Structured Query Language. SQL is a
language designed specifically for communicating with databases.

Unlike other languages (spoken languages like English, or programming languages like Java or Visual Basic), SQL is
made up of very few words. This is deliberate. SQL is designed to do one thing and do it well—provide you with a
simple and efficient way to read and write data from a database.

What are the advantages of SQL?

SQL is not a proprietary language used by specific database vendors. Almost every major DBMS supports SQL,
so learning this one language will enable you to interact with just about every database you'll run into.

SQL is easy to learn. The statements are all made up of descriptive English words, and there aren't that many
of them.

Despite its apparent simplicity, SQL is actually a very powerful language, and by cleverly using its language
elements you can perform very complex and sophisticated database operations.

And with that, let's learn SQL.

SQL Extensions Many DBMS vendors have extended their support for SQL by
adding statements or instructions to the language. The purpose of these extensions
is to provide additional functionality or simplified ways to perform specific
operations. And while often extremely useful, these extensions tend to be very
DBMS specific, and they are rarely supported by more than a single vendor.

Standard SQL is governed by the ANSI standards committee, and is thus called
ANSI SQL. All major DBMSs, even those with their own extensions, support ANSI
SQL. Individual implementations have their own names (PL-SQL, Transact-SQL, and
so forth).

For the most part, the SQL taught in this book is ANSI SQL. On the odd occasion
where DBMS specific SQL is used it is so noted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Try It Yourself
Like any language, the best way to learn SQL is to try it for yourself. To do this you'll need a database and an
application with which to test your SQL statements.

All of the lessons in this book use real SQL statements and real database tables. Appendix A, "Sample Table Scripts,"
explains what the example tables are, and provides details on how to obtain (or create) them so that you may follow
along with the instructions in each lesson. Appendix B, "Working in Popular Applications," describes the steps needed to
execute your SQL in a variety of applications. Before proceeding to the next lesson, I'd strongly suggest that you turn
to these two appendixes so that you'll be ready to follow along.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this first lesson, you learned what SQL is and why it is useful. Because SQL is used to interact with databases, you
also reviewed some basic database terminology.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 2. Retrieving Data
In this lesson, you'll learn how to use the SELECT statement to retrieve one or more columns of data from a table.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The SELECT Statement
As explained in Lesson 1, "Understanding SQL," SQL statements are made up of plain English terms. These terms are
called keywords, and every SQL statement is made up of one or more keywords. The SQL statement that you'll
probably use most frequently is the SELECT statement. Its purpose is to retrieve information from one or more tables.

Keyword A reserved word that is part of the SQL language. Never name a table or
column using a keyword. Appendix E, "SQL Reserved Words," lists some of the
more common reserved words.

To use SELECT to retrieve table data you must, at a minimum, specify two pieces of information—what you want to
select, and from where you want to select it.

Following Along with the Examples The sample SQL statements (and sample output) throughout the
lessons in this book use a set of data files that are described in Appendix A, "Sample Table Scripts." If
you'd like to follow along and try the examples yourself (I strongly recommend that you do so), refer to
Appendix A which contains instructions on how to download or create these data files.

It is important to understand that SQL is a language, not an application. The way that you specify SQL
statements and display statement output varies from one application to the next. To assist you in adapting
the examples to your own environment, Appendix B, "Working in Popular Applications," explains how to
issue the statements taught throughout this book using many popular applications and development
environments. And if you need an application with which to follow along, Appendix B has recommendations
for you too.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving Individual Columns
We'll start with a simple SQL SELECT statement, as follows:

SELECT prod_name

FROM Products;

The statement above uses the SELECT statement to retrieve a single column called prod_name
from the Products table. The desired column name is specified right after the SELECT keyword,
and the FROM keyword specifies the name of the table from which to retrieve the data. The
output from this statement is shown in the following:

prod_name

Fish bean bag toy

Bird bean bag toy

Rabbit bean bag toy

8 inch teddy bear

12 inch teddy bear

18 inch teddy bear

Raggedy Ann

King doll

Queen doll

Unsorted Data If you tried this query yourself you might have discovered that the
data was displayed in a different order than shown here. If this is the case, don't
worry—it is working exactly as it is supposed to. If query results are not explicitly
sorted (we'll get to that in the next lesson) then data will be returned in no order of
any significance. It may be the order in which the data was added to the table, but
it may not. As long as your query returned the same number of rows then it is
working.

A simple SELECT statement like the one used above returns all the rows in a table. Data is not filtered (so as to retrieve
a subset of the results), nor is it sorted. We'll discuss these topics in the next few lessons.

Use of White Space All extra white space within a SQL statement is ignored when
that statement is processed. SQL statements can be specified on one long line or
broken up over many lines. Most SQL developers find that breaking up statements
over multiple lines makes them easier to read and debug.

Terminating Statements Multiple SQL statements must be separated by
semicolons (the ; character). Most DBMSs do not require that a semicolon be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

semicolons (the ; character). Most DBMSs do not require that a semicolon be
specified after single statements. But if your particular DBMS complains, you might
have to add it there. Of course, you can always add a semicolon if you wish. It'll do
no harm, even if it is, in fact, not needed. The exception to this rule is Sybase
Adaptive Server which does not like SQL statements ending with ;.

SQL Statement and Case It is important to note that SQL statements are case-
insensitive, so SELECT is the same as select, which is the same as Select. Many SQL
developers find that using uppercase for all SQL keywords and lowercase for
column and table names makes code easier to read and debug. However, be aware
that while the SQL language is case-insensitive, the names of tables, columns, and
values may not be (that depends on your DBMS and how it is configured).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving Multiple Columns
To retrieve multiple columns from a table, the same SELECT statement is used. The only difference is that multiple
column names must be specified after the SELECT keyword, and each column must be separated by a comma.

Take Care with Commas When selecting multiple columns be sure to specify a
comma between each column name, but not after the last column name. Doing so
will generate an error.

The following SELECT statement retrieves three columns from the products table:

SELECT prod_id, prod_name, prod_price

FROM Products;

Just as in the prior example, this statement uses the SELECT statement to retrieve data from
the Products table. In this example, three column names are specified, each separated by a
comma. The output from this statement is shown below:

prod_id prod_name prod_price

--------- -------------------- ----------

BNBG01 Fish bean bag toy 3.4900

BNBG02 Bird bean bag toy 3.4900

BNBG03 Rabbit bean bag toy 3.4900

BR01 8 inch teddy bear 5.9900

BR02 12 inch teddy bear 8.9900

BR03 18 inch teddy bear 11.9900

RGAN01 Raggedy Ann 4.9900

RYL01 King doll 9.4900

RYL02 Queen dool 9.4900

Presentation of Data As you will notice in the above output, SQL statements
typically return raw, unformatted data. Data formatting is a presentation issue, not
a retrieval issue. Therefore, presentation (for example, displaying the above price
values as currency amounts with the correct number of decimal places) is typically
specified in the application that displays the data. Actual retrieved data (without
application-provided formatting) is rarely used.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving All Columns
In addition to being able to specify desired columns (one or more, as seen above), SELECT statements can also request
all columns without having to list them individually. This is done using the asterisk (*) wildcard character in lieu of
actual column names, as follows:

SELECT *

FROM Products;

When a wildcard (*) is specified, all the columns in the table are returned. The column order
will typically, but not always, be the physical order in which the columns appear in the table
definition. However, SQL data is seldom displayed as is. (Usually, it is returned to an
application that formats or presents the data as needed.) As such, this should not pose a
problem.

Using Wildcards As a rule, you are better off not using the * wildcard unless you
really do need every column in the table. Even though use of wildcards may save
you the time and effort needed to list the desired columns explicitly, retrieving
unnecessary columns usually slows down the performance of your retrieval and
your application.

Retrieving Unknown Columns There is one big advantage to using wildcards. As
you do not explicitly specify column names (because the asterisk retrieves every
column), it is possible to retrieve columns whose names are unknown.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use the SQL SELECT statement to retrieve a single table column, multiple table
columns, and all table columns. Next you'll learn how to sort the retrieved data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 3. Sorting Retrieved Data
In this lesson, you will learn how to use the SELECT statement's ORDER BY clause to sort retrieved data as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting Data
As you learned in the last lesson, the following SQL statement returns a single column from a database table. But look
at the output. The data appears to be displayed in no particular order at all.

SELECT prod_name

FROM Products;

prod_name

Fish bean bag toy

Bird bean bag toy

Rabbit bean bag toy

8 inch teddy bear

12 inch teddy bear

18 inch teddy bear

Raggedy Ann

King doll

Queen doll

Actually, the retrieved data is not displayed in a mere random order. If unsorted, data will typically be displayed in the
order in which it appears in the underlying tables. This could be the order in which the data was added to the tables
initially. However, if data was subsequently updated or deleted, the order will be affected by how the DBMS reuses
reclaimed storage space. The end result is that you cannot (and should not) rely on the sort order if you do not
explicitly control it. Relational database design theory states that the sequence of retrieved data cannot be assumed to
have significance if ordering was not explicitly specified.

Clause SQL statements are made up of clauses, some required and some optional.
A clause usually consists of a keyword and supplied data. An example of this is the
SELECT statement's FROM clause, which you saw in the last lesson.

To explicitly sort data retrieved using a SELECT statement, the ORDER BY clause is used. ORDER BY takes the name of one
or more columns by which to sort the output. Look at the following example:

SELECT prod_name

FROM Products

ORDER BY prod_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement is identical to the earlier statement, except it also specifies an ORDER BY clause
instructing the Database Management System software to sort the data alphabetically by the
prod_name column. The results are as follows:

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

Bird bean bag toy

Fish bean bag toy

King doll

Queen doll

Rabbit bean bag toy

Raggedy Ann

Position of ORDER BY Clause When specifying an ORDER BY clause, be sure that it
is the last clause in your SELECT statement. Using clauses out of order will generate
an error message.

Sorting by Nonselected Columns More often than not, the columns used in an
ORDER BY clause will be ones that were selected for display. However, this is
actually not required, and it is perfectly legal to sort data by a column that is not
retrieved.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting by Multiple Columns
It is often necessary to sort data by more than one column. For example, if you are displaying an employee list, you
might want to display it sorted by last name and first name (first by last name, and then within each last name sort by
first name). This would be useful if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas (just as you do when you are
selecting multiple columns).

The following code retrieves three columns and sorts the results by two of them—first by price and then by name.

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price, prod_name;

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

RGAN01 4.9900 Raggedy Ann

BR01 5.9900 8 inch teddy bear

BR02 8.9900 12 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR03 11.9900 18 inch teddy bear

It is important to understand that when you are sorting by multiple columns, the sort sequence is exactly as specified.
In other words, using the output in the example above, the products are sorted by the prod_name column only when
multiple rows have the same prod_price value. If all the values in the prod_price column had been unique, no data would
have been sorted by prod_name.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting by Column Position
In addition to being able to specify sort order using column names, ORDER BY also supports ordering specified by
relative column position. The best way to understand this is to look at an example:

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY 2, 3;

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

RGAN01 4.9900 Raggedy Ann

BR01 5.9900 8 inch teddy bear

BR02 8.9900 12 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR03 11.9900 18 inch teddy bear

As you can see, the output is identical to that of the query above. The difference here is in the
ORDER BY clause. Instead of specifying column names, the relative positions of selected
columns in the SELECT list are specified. ORDER BY 2 means sort by the second column in the
SELECT list, the prod_price column. ORDER BY 2, 3 means sort by prod_price and then by
prod_name.

The primary advantage of this technique is that it saves retyping the column names. But there are some downsides too.
First, not explicitly listing column names increases the likelihood of you mistakenly specifying the wrong column.
Second, it is all too easy to mistakenly reorder data when making changes to the SELECT list (forgetting to make the
corresponding changes to the ORDER BY clause). And finally, obviously you cannot use this technique when sorting by
columns that are not in the SELECT list.

Sorting by Nonselected Columns Obviously, this technique cannot be used when
sorting by columns that do not appear in the SELECT list. However, you can mix and
match actual column names and relative column positions in a single statement if
needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (from A to Z). Although this is the default sort order, the ORDER BY
clause can also be used to sort in descending order (from Z to A). To sort by descending order, the keyword DESC must
be specified.

The following example sorts the products by price in descending order (most expensive first):

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price DESC;

prod_id prod_price prod_name

------- ---------- --------------------

BR03 11.9900 18 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR02 8.9900 12 inch teddy bear

BR01 5.9900 8 inch teddy bear

RGAN01 4.9900 Raggedy Ann

BNBG01 3.4900 Fish bean bag toy

BNBG02 3.4900 Bird bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

But what if you were to sort by multiple columns? The following example sorts the products in descending order (most
expensive first), plus product name:

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price DESC, prod_name;

prod_id prod_price prod_name

------- ---------- --------------------

BR03 11.9900 18 inch teddy bear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BR03 11.9900 18 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR02 8.9900 12 inch teddy bear

BR01 5.9900 8 inch teddy bear

RGAN01 4.9900 Raggedy Ann

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

The DESC keyword only applies to the column name that directly precedes it. In the example
above, DESC was specified for the prod_price column, but not for the prod_name column.
Therefore, the prod_price column is sorted in descending order, but the prod_name column
(within each price) is still sorted in standard ascending order.

Sorting Descending on Multiple Columns If you want to sort descending on
multiple columns, be sure each column has its own DESC keyword.

It is worth noting that DESC is short for DESCENDING, and both keywords may be used. The opposite of DESC is ASC (or
ASCENDING), which may be specified to sort in ascending order. In practice, however, ASC is not usually used because
ascending order is the default sequence (and is assumed if neither ASC nor DESC are specified).

Case Sensitivity and Sort Orders When you are sorting textual data, is A the
same as a? And does a come before B or after Z? These are not theoretical
questions, and the answers depend on how the database is set up.

In dictionary sort order, A is treated the same as a, and that is the default behavior
for most Database Management Systems. However, most good DBMSs enable
database administrators to change this behavior if needed. (If your database
contains lots of foreign language characters, this might become necessary.)

The key here is that if you do need an alternate sort order, you cannot accomplish
it with a simple ORDER BY clause. You must contact your database administrator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to sort retrieved data using the SELECT statement's ORDER BY clause. This clause, which
must be the last in the SELECT statement, can be used to sort data on one or more columns as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 4. Filtering Data
In this lesson, you will learn how to use the SELECT statement's WHERE clause to specify search conditions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the WHERE Clause
Database tables usually contain large amounts of data, and you seldom need to retrieve all the rows in a table. More
often than not you'll want to extract a subset of the table's data as needed for specific operations or reports. Retrieving
just the data you want involves specifying search criteria, also known as a filter condition.

Within a SELECT statement, data is filtered by specifying search criteria in the WHERE clause. The WHERE clause is
specified right after the table name (the FROM clause) as follows:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price = 3.49;

This statement retrieves two columns from the products table, but instead of returning all
rows, only rows with a prod_price value of 3.49 are returned, as follows:

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

This example uses a simple equality test: It checks to see if a column has a specified value, and it filters the data
accordingly. But SQL lets you do more than just test for equality.

Picky PostgreSQL PostgreSQL has very strict rules governing the values passed to
SQL statements, especially pertaining to numbers used with decimal columns. As
such, the previous example may not work as is on PostgreSQL. To get this example
to work you may need to explicitly tell PostgreSQL that 3.49 is a valid number by
including the type in the WHERE clause. To do this, replace = 3.49 with = decimal
'3.49'.

SQL Versus Application Filtering Data can also be filtered at the application
level. To do this, the SQL SELECT statement retrieves more data than is actually
required for the client application, and the client code loops through the returned
data to extract just the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized to perform
filtering quickly and efficiently. Making the client application (or development
language) do the databases job will dramatically impact application performance
and will create applications that cannot scale properly. In addition, if data is filtered
at the client, the server has to send unneeded data across the network connections,
resulting in a waste of network bandwidth usage.

WHERE Clause Position When using both ORDER BY and WHERE clauses, make sure
that ORDER BY comes after the WHERE, otherwise an error will be generated. (See
Lesson 3, "Sorting Retrieved Data," for more information on using ORDER BY.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lesson 3, "Sorting Retrieved Data," for more information on using ORDER BY.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The WHERE Clause Operators
The first WHERE clause we looked at tests for equality—determining if a column contains a specific value. SQL supports
a whole range of conditional operators as listed in Table 4.1.

Table 4.1. WHERE Clause Operators
Operator Description

= Equality

<> Nonequality

!= Nonequality

< Less than

<= Less than or equal to

!< Not less than

> Greater than

>= Greater than or equal to

!> Not greater than

BETWEEN Between two specified values

IS NULL Is a NULL value

Operator Compatibility Some of the operators listed in Table 4.1 are redundant
(for example, <> is the same as !=. !< (not less than) accomplishes the same effect
as >= (greater than or equal to). Not all of these operators are supported by all
DBMSs. Refer to your DBMS documentation to determine exactly what it supports.

Checking against a Single Value

We have already seen an example of testing for equality. Let's take a look at a few examples to demonstrate the use of
other operators.

This first example lists all products that cost less than $10:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price < 10;

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

Raggedy Ann 4.9900

King doll 9.4900

Queen doll 9.4900

This next statement retrieves all products costing $10 or less (although the result will be the same as in the previous
example because there are no items with a price of exactly $10):

SELECT prod_name, prod_price

FROM Products

WHERE prod_price <= 10;

Checking for Nonmatches

This next example lists all products not made by vendor DLL01:

SELECT vend_id, prod_name

FROM Products

WHERE vend_id <> 'DLL01';

vend_id prod_name

---------- ------------------

BRS01 8 inch teddy bear

BRS01 12 inch teddy bear

BRS01 18 inch teddy bear

FNG01 King doll

FNG01 Queen doll

When to Use Quotes If you look closely at the conditions used in the above
WHERE clauses, you will notice that some values are enclosed within single quotes,
and others are not. The single quotes are used to delimit a string. If you are
comparing a value against a column that is a string datatype, the delimiting quotes
are required. Quotes are not used to delimit values used with numeric columns.

The following is the same example, except this one uses the != operator instead of <>:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following is the same example, except this one uses the != operator instead of <>:

SELECT vend_id, prod_name

FROM Products

WHERE vend_id != 'DLL01';

!= Or <>? != and <> can usually be used interchangeably. However, not all DBMSs
support both forms of the nonequality operator. Microsoft Access, for example,
supports <> but does not support !=. If in doubt, consult your DBMSs
documentation.

Checking for a Range of Values

To check for a range of values, you can use the BETWEEN operator. Its syntax is a little different from other WHERE
clause operators because it requires two values: the beginning and end of the range. The BETWEEN operator can be
used, for example, to check for all products that cost between $5 and $10 or for all dates that fall between specified
start and end dates.

The following example demonstrates the use of the BETWEEN operator by retrieving all products with a price between $5
and $10:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price BETWEEN 5 AND 10;

prod_name prod_price

------------------- ----------

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

King doll 9.4900

Queen doll 9.4900

As seen in this example, when BETWEEN is used, two values must be specified—the low end
and high end of the desired range. The two values must also be separated by the AND
keyword. BETWEEN matches all the values in the range, including the specified start and end
values.

Checking for No Value

When a table is created, the table designer can specify whether or not individual columns can contain no value. When a
column contains no value, it is said to contain a NULL value.

NULL No value, as opposed to a field containing 0, or an empty string, or just
spaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spaces.

The SELECT statement has a special WHERE clause that can be used to check for columns with NULL values—the IS NULL
clause. The syntax looks like this:

SELECT prod_name

FROM Products

WHERE prod_price IS NULL;

This statement returns a list of all products that have no price (an empty prod_price field, not a price of 0), and because
there are none, no data is returned. The Vendors table, however, does contain columns with NULL values—the vend_state
column will contain NULL if there is no state (as would be the case with non-U.S. addresses):

SELECT vend_id

FROM Vendors

WHERE vend_state IS NULL;

vend_id

FNG01

JTS01

DBMS Specific Operators Many DBMSs extend the standard set of operators,
providing advanced filtering options. Refer to your DBMS documentation for more
information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to filter returned data using the SELECT statement's WHERE clause. You learned how to
test for equality, nonequality, greater than and less than, value ranges, as well as for NULL values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 5. Advanced Data Filtering
In this lesson, you'll learn how to combine WHERE clauses to create powerful and sophisticated search conditions. You'll
also learn how to use the NOT and IN operators.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Combining WHERE Clauses
All the WHERE clauses introduced in Lesson 4, "Filtering Data," filter data using a single criteria. For a greater degree of
filter control, SQL lets you specify multiple WHERE clauses. These clauses may be used in two ways: as AND clauses or
as OR clauses.

Operator A special keyword used to join or change clauses within a WHERE clause.
Also known as logical operators.

Using the AND Operator

To filter by more than one column, you use the AND operator to append conditions to your WHERE clause. The following
code demonstrates this:

SELECT prod_id, prod_price, prod_name

FROM Products

WHERE vend_id = 'DLL01' AND prod_price <= 4;

The above SQL statement retrieves the product name and price for all products made by
vendor DLL01 as long as the price is $4 or less. The WHERE clause in this SELECT statement is
made up of two conditions, and the keyword AND is used to join them. AND instructs the
database management system software to return only rows that meet all the conditions
specified. If a product is made by vendor DLL01, but it costs more than $4, it is not retrieved.
Similarly, products that cost less than $4 that are made by a vendor other than the one
specified are not to be retrieved. The output generated by this SQL statement is as follows:

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

AND A keyword used in a WHERE clause to specify that only rows matching all the
specified conditions should be retrieved.

Using the OR Operator

The OR operator is exactly the opposite of AND. The OR operator instructs the database management system software
to retrieve rows that match either condition. In fact, most of the better DBMSs will not even evaluate the second
condition in an OR WHERE clause if the first condition has already been met. (If the first condition was met, the row
would be retrieved regardless of the second condition.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Look at the following SELECT statement:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01';

The above SQL statement retrieves the product name and price for any products made by
either of the two specified vendors. The OR operator tells the DBMS to match either condition,
not both. If an AND operator is used here, no data is returned. The output generated by this
SQL statement is as follows:

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

Raggedy Ann 4.9900

OR A keyword used in a WHERE clause to specify that any rows matching either of
the specified conditions should be retrieved.

Understanding Order of Evaluation

WHERE clauses can contain any number of AND and OR operators. Combining the two enables you to perform
sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. To demonstrate this, look at an example. You
need a list of all products costing $10 or more made by vendors DLL01 and BRS01. The following SELECT statement uses
a combination of AND and OR operators to build a WHERE clause:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01'

 AND prod_price >= 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

18 inch teddy bear 11.9900

Raggedy Ann 4.9900

Look at the results above. Four of the rows returned have prices less than $10—so, obviously,
the rows were not filtered as intended. Why did this happen? The answer is the order of
evaluation. SQL (like most languages) processes AND operators before OR operators. When
SQL sees the above WHERE clause, it reads any products costing $10 or more made by vendor
BRS01, and any products made by vendor DLL01 regardless of price. In other words, because
AND ranks higher in the order of evaluation, the wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related operators. Take a look at the following
SELECT statement and output:

SELECT prod_name, prod_price

FROM Products

WHERE (vend_id = 'DLL01' OR vend_id = 'BRS01')

 AND prod_price >= 10;

prod_name prod_price

------------------- ----------

18 inch teddy bear 11.9900

The only difference between this SELECT statement and the earlier one is that, in this
statement, the first two WHERE clause conditions are enclosed within parentheses. As
parentheses have a higher order of evaluation than either AND or OR operators, the DBMS
first filters the OR condition within those parentheses. The SQL statement then becomes any
products made by either vendor DLL01 or vendor BRS01 costing $10 or greater, which is
exactly what we want.

Using Parentheses in WHERE Clauses Whenever you write WHERE clauses that
use both AND and OR operators, use parentheses to explicitly group operators.
Don't ever rely on the default evaluation order, even if it is exactly what you want.
There is no downside to using parentheses, and you are always better off
eliminating any ambiguity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the IN Operator
The IN operator is used to specify a range of conditions, any of which can be matched. IN takes a comma-delimited list
of valid values, all enclosed within parentheses. The following example demonstrates this:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id IN ('DLL01','BRS01')

ORDER BY prod_name;

prod_name prod_price

------------------- ----------

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900

Fish bean bag toy 3.4900

Rabbit bean bag toy 3.4900

Raggedy Ann 4.9900

The SELECT statement retrieves all products made by vendor DLL01 and vendor BRS01. The IN
operator is followed by a comma-delimited list of valid values, and the entire list must be
enclosed within parentheses.

If you are thinking that the IN operator accomplishes the same goal as OR, you are right. The following SQL statement
accomplishes the exact same thing as the example above:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01'

ORDER BY prod_name;

prod_name prod_price

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name prod_price

------------------- ----------

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900

Fish bean bag toy 3.4900

Rabbit bean bag toy 3.4900

Raggedy Ann 4.9900

Why use the IN operator? The advantages are

When you are working with long lists of valid options, the IN operator syntax is far cleaner and easier to read.

The order of evaluation is easier to manage when IN is used (as there will be fewer operators used).

IN operators almost always execute more quickly than lists of OR operators.

The biggest advantage of IN is that the IN operator can contain another SELECT statement, enabling you to build
highly dynamic WHERE clauses. You'll look at this in detail in Lesson 11, "Working with Subqueries."

IN A keyword used in a WHERE clause to specify a list of values to be matched using
an OR comparison.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the NOT Operator
The WHERE clause's NOT operator has one function and one function only—NOT negates whatever condition comes next.
Because NOT is never used by itself (it is always used in conjunction with some other operator), its syntax is a little
different from all other operators. Unlike other operators, NOT can be used before the column to filter on, not just after
it.

NOT A keyword used in a WHERE clause to negate a condition.

The following example demonstrates the use of NOT. To list the products made by all vendors except vendor DLL01, you
can write the following:

SELECT prod_name

FROM Products

WHERE NOT vend_id = 'DLL01'

ORDER BY prod_name;

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

King doll

Queen doll

The NOT here negates the condition that follows it; so instead of matching vend_id to DLL01,
the DBMS matches vend_id to anything that is not DLL01.

The preceding example could have also been accomplished using the <> operator, as follows:

SELECT prod_name

FROM Products

WHERE vend_id <> 'DLL01'

ORDER BY prod_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

King doll

Queen doll

Why use NOT? Well, for simple WHERE clauses such as the ones shown here, there really is no
advantage to using NOT. NOT is useful in more complex clauses. For example, using NOT in
conjunction with an IN operator makes it simple to find all rows that do not match a list of
criteria.

NOT in MySQL The form of NOT described here is not supported by MySQL. In
MySQL NOT is only used to negate EXISTS (as in NOT EXISTS).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
This lesson picked up where the last lesson left off and taught you how to combine WHERE clauses with the AND and OR
operators. You also learned how to explicitly manage the order of evaluation and how to use the IN and NOT operators.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 6. Using Wildcard Filtering
In this lesson, you'll learn what wildcards are, how they are used, and how to perform wildcard searches using the LIKE
operator for sophisticated filtering of retrieved data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the LIKE Operator
All the previous operators we studied filter against known values. Be it matching one or more values, testing for
greater-than or less-than known values, or checking a range of values, the common denominator is that the values
used in the filtering are known. But filtering data that way does not always work. For example, how could you search
for all products that contained the text bean bag within the product name? That cannot be done with simple comparison
operators; that's a job for wildcard searching. Using wildcards, you can create search patterns that can be compared
against your data. In this example, if you want to find all products that contain the words bean bag, you can construct a
wildcard search pattern enabling you to find that bean bag text anywhere within a product name.

Wildcards Special characters used to match parts of a value.

Search pattern A search condition made up of literal text, wildcard characters, or
any combination of the two.

The wildcards themselves are actually characters that have special meanings within SQL WHERE clauses, and SQL
supports several wildcard types.

To use wildcards in search clauses, the LIKE operator must be used. LIKE instructs the DBMS that the following search
pattern is to be compared using a wildcard match rather than a straight equality match.

Predicates When is an operator not an operator? When it is a predicate.
Technically, LIKE is a predicate, not an operator. The end result is the same; just be
aware of this term in case you run across it in SQL documentation or manuals.

Wildcard searching can be used only with text fields (strings); you can't use wildcards to search fields of nontext
datatypes.

The Percent Sign (%) Wildcard

The most frequently used wildcard is the percent sign (%). Within a search string, % means match any number of
occurrences of any character. For example, to find all products that start with the word Fish, you can issue the following
SELECT statement:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE 'Fish%';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_id prod_name

------- ------------------

BNBG01 Fish bean bag toy

This example uses a search pattern of 'Fish%'. When this clause is evaluated, any value that
starts with Fish is retrieved. The % tells the DBMS to accept any characters after the word
Fish, regardless of how many characters there are.

Microsoft Access Wildcards If you are using Microsoft Access, you might need to
use * instead of %.

Case-Sensitivity Depending on your DBMS and how it is configured, searches
might be case-sensitive, in which case 'fish%' would not match Fish bean bag toy.

Wildcards can be used anywhere within the search pattern, and multiple wildcards can be used as well. The following
example uses two wildcards, one at either end of the pattern:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '%bean bag%';

prod_id prod_name

-------- --------------------

BNBG01 Fish bean bag toy

BNBG02 Bird bean bag toy

BNBG03 Rabbit bean bag toy

The search pattern '%bean bag%' means match any value that contains the text bean bag
anywhere within it, regardless of any characters before or after that text.

Wildcards can also be used in the middle of a search pattern, although that is rarely useful. The following example finds
all products that begin with an F and end with a y:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT prod_name

FROM Products

WHERE prod_name LIKE 'F%y';

It is important to note that, in addition to matching one or more characters, % also matches zero characters. %
represents zero, one, or more characters at the specified location in the search pattern.

Watch for Trailing Spaces Many DBMSs, including Microsoft Access, pad field
contents with spaces. For example, if a column expects 50 characters and the text
stored is Fish bean bag toy (17 characters), 33 spaces might be appended to the text
to fully fill the column. This usually has no real impact on data and how it is used,
but it could negatively affect the previous SQL statement. The clause WHERE
prod_name LIKE 'F%y' matches only prod_name if it starts with F and ends with y. If
the value is padded with spaces, it does not end with y, so Fish bean bag toy is not
retrieved. One simple solution to this problem is to append a second % to the
search pattern: 'F%y%' also matches characters (or spaces) after the y. A better
solution is to trim the spaces using functions, as is discussed in Lesson 8, "Using
Data Manipulation Functions."

The Underscore (_) Wildcard

Another useful wildcard is the underscore (_). The underscore is used just like %, but instead of matching multiple
characters, the underscore matches just a single character.

Microsoft Access Wildcards If you are using Microsoft Access, you might need to
use ? instead of _.

Take a look at this example:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '__ inch teddy bear';

Watch for Trailing Spaces As in the previous example, you might have to append
a wildcard to the pattern for this example to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_id prod_name

-------- --------------------

BNBG02 12 inch teddy bear

BNBG03 18 inch teddy bear

The search pattern used in this WHERE clause specifies two wildcards followed by literal text.
The results shown are the only rows that match the search pattern: The underscore matches
12 in the first row and 18 in the second row. The 8 inch teddy bear product did not match
because the search pattern requires two wildcard matches, not one. By contrast, the following
SELECT statement uses the % wildcard and returns three matching products:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '% inch teddy bear';

prod_id prod_name

-------- --------------------

BNBG01 8 inch teddy bear

BNBG02 12 inch teddy bear

BNBG03 18 inch teddy bear

Unlike %, which can match zero characters, _ always matches one character—no more and no less.

The Brackets ([]) Wildcard

The brackets ([]) wildcard is used to specify a set of characters, any one of which must match a character in the
specified position (the location of the wildcard).

Sets Are Not Always Supported Unlike the wildcards described thus far, the use
of [] to create sets is not supported by all DBMSs. Sets are supported by Microsoft
Access, Microsoft SQL Server, and Sybase Adaptive Server. Consult your DBMS
documentation to determine whether sets are supported.

For example, to find all contacts whose names begin with the letter J or the letter M, you can do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE '[JM]%'

ORDER BY cust_contact;

cust_contact

Jim Jones

John Smith

Michelle Green

The WHERE clause in this statement is '[JM]%'. This search pattern uses two different
wildcards. The [JM] matches any contact name that begins with either of the letters within the
brackets, and it also matches only a single character. Therefore, any names longer than one
character do not match. The % wildcard after the [JM] matches any number of characters
after the first character, returning the desired results.

This wildcard can be negated by prefixing the characters with ^ (the carat character). For example, the following
matches any contact name that does not begin with the letter J or the letter M (the opposite of the previous example):

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE '[^JM]%'

ORDER BY cust_contact;

Negating Sets in Microsoft Access If you are using Microsoft Access, you might
need to use ! instead of ^ to negate a set—so use [!JM] instead of [^JM].

Of course, you can accomplish the same result using the NOT operator. The only advantage of ^ is that it can simplify
the syntax if you are using multiple WHERE clauses:

SELECT cust_contact

FROM Customers

WHERE NOT cust_contact LIKE '[JM]%'

ORDER BY cust_contact;

Caution The brackets ([]) wildcard is not supported by all DBMSs. Consult your
DBMS documentation to find out whether this particular wildcard is supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBMS documentation to find out whether this particular wildcard is supported.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Tips for Using Wildcards
As you can see, SQL's wildcards are extremely powerful. But that power comes with a price: Wildcard searches typically
take far longer to process than any other search types discussed previously. Here are some tips to keep in mind when
using wildcards:

Don't overuse wildcards. If another search operator will do, use it instead.

When you do use wildcards, try to not use them at the beginning of the search pattern unless absolutely
necessary. Search patterns that begin with wildcards are the slowest to process.

Pay careful attention to the placement of the wildcard symbols. If they are misplaced, you might not return the
data you intended.

Having said that, wildcards are an important and useful search tool, and one that you will use frequently.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what wildcards are and how to use SQL wildcards within your WHERE clauses. You also
learned that wildcards should be used carefully and never overused.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 7. Creating Calculated Fields
In this lesson, you will learn what calculated fields are, how to create them, and how to use aliases to refer to them
from within your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Calculated Fields
Data stored within a database's tables is often not available in the exact format needed by your applications. Here are
some examples:

You need to display a field containing the name of a company along with the company's location, but that
information is stored in separated table columns.

City, state, and ZIP Code are stored in separate columns (as they should be), but your mailing label printing
program needs them retrieved as one correctly formatted field.

Column data is in mixed upper- and lowercase, and your report needs all data presented in uppercase.

An Order Items table stores item price and quantity but not the expanded price (price multiplied by quantity) of
each item. To print invoices, you need that expanded price.

You need total, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your application needs. Rather than retrieve
the data as it is and then reformat it within your client application or report, what you really want is to retrieve
converted, calculated, or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns we retrieved in the lessons thus far, calculated fields
don't actually exist in database tables. Rather, a calculated field is created on-the-fly within a SQL SELECT statement.

Field Essentially means the same thing as column and often is used
interchangeably, although database columns are typically called columns and the
term fields is normally used in conjunction with calculated fields.

It is important to note that only the database knows which columns in a SELECT statement are actual table columns and
which are calculated fields. From the perspective of a client (for example, your application), a calculated field's data is
returned in the same way as data from any other column.

Client Versus Server Formatting Many of the conversions and reformatting that
can be performed within SQL statements can also be performed directly in your
client application. However, as a rule, it is far quicker to perform these operations
on the database server than it is to perform them within the client because DBMSs
are built to perform this type of processing quickly and efficiently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Concatenating Fields
To demonstrate working with calculated fields, let's start with a simple example—creating a title made up of two
columns.

The Vendors table contains vendor name and address information. Imagine that you are generating a vendor report and
need to list the vendor location as part of the vendor name in the format name (location).

The report wants a single value, and the data in the table is stored in two columns: vend_name and vend_country. In
addition, you need to surround vend_country with parenthesis, and those are definitely not stored in the database table.
The SELECT statement that returns the vendor names and locations is simple enough, but how would you create this
combined value?

Concatenate Joining values together (by appending them to each other) to form a
single long value.

The solution is to concatenate the two columns. In SQL SELECT statements, you can concatenate columns using a
special operator. Depending on which DBMS you are using, this can be a plus sign (+) or two pipes (||).

+ or ||? Access, SQL Server, and Sybase support + for concatenation. DB2,
Oracle, PostgreSQL, and Sybase support ||. Refer to your DBMS documentation for
more details.

|| is actually the preferred syntax, so more and more DBMSs are implementing
support for it.

Here's an example using the plus sign (the syntax used by most DBMSs):

SELECT vend_name + ' (' + vend_country + ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT vend_name || ' (' || vend_country || ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The previous SELECT statements concatenate the following elements:

The name stored in the vend_name column

A string containing a space and an open parenthesis

The state stored in the vend_country column

A string containing the close parenthesis

As you can see in the output shown previously, the SELECT statement returns a single column (a calculated field)
containing all four of these elements as one unit.

Concatenation in MySQL MySQL does not support concatenation using + or ||.
Rather, it requires the use of a CONCAT() function that takes a list of items to be
concatenated. Using CONCAT(), the first line of the example would be as follows:

SELECT CONCAT(vend_name, ' (', vend_country, ')'

MySQL does support the use of ||, but not for concatenation. In MySQL || is
equivalent to the operator OR, and && is equivalent to the operator AND.

Look again at the output returned by the SELECT statement. The two columns incorporated into the calculated field are
padded with spaces. Many databases (although not all) save text values padded to the column width. To return the data
formatted properly, you must trim those padded spaces. This can be done using the SQL RTRIM() function, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The RTRIM() function trims all space from the right of a value. By using RTRIM(), the individual
columns are all trimmed properly. A comma and space separate the city and state, and a
space separates the state and ZIP Code.

The TRIM Functions Most DBMSs support RTRIM() (which, as just seen, trims the
right side of a string), as well as LTRIM() (which trims the left side of a string), and
TRIM() (which trims both the right and left).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Aliases

The SELECT statement used to concatenate the address field works well, as seen in the previous output. But what is the
name of this new calculated column? Well, the truth is, it has no name; it is simply a value. Although this can be fine if
you are just looking at the results in a SQL query tool, an unnamed column cannot be used within a client application
because the client has no way to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an alternative name for a field or value.
Aliases are assigned with the AS keyword. Take a look at the following SELECT statement:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Jouets et ours (France)

The SELECT statement itself is the same as the one used in the previous code snippet, except
that here the calculated field is followed by the text AS vend_title. This instructs SQL to create
a calculated field named vend_title containing the calculation specified. As you can see in the
output, the results are the same as before, but the column is now named vend_title and any
client application can refer to this column by name, just as it would to any actual table
column.

Other Uses for Aliases Aliases have other uses, too. Some common uses include
renaming a column if the real table column name contains illegal characters (for
example, spaces) and expanding column names if the original names are either
ambiguous or easily misread.

Alias Names Aliases can be single words or complete strings. If the latter is used,
the string should be enclosed within quotes. This practice is legal but is strongly
discouraged. Although multiword names are indeed highly readable, they create all
sorts of problems for many client applications. So much so that one of the most
common uses of aliases is to rename multiword column names to single-word
names (as explained previously).

Derived Columns Aliases are also sometimes referred to as derived columns, so
regardless of the term you run across, they mean the same thing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Performing Mathematical Calculations
Another frequent use for calculated fields is performing mathematical calculations on retrieved data. Let's take a look at
an example. The Orders table contains all orders received, and the OrderItems table contains the individual items within
each order. The following SQL statement retrieves all the items in order number 20008:

SELECT prod_id, quantity, item_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price

---------- ----------- ---------------------

RGAN01 5 4.9900

BR03 5 11.9900

BNBG01 10 3.4900

BNBG02 10 3.4900

BNBG03 10 3.4900

The item_price column contains the per unit price for each item in an order. To expand the item price (item price
multiplied by quantity ordered), you simply do the following:

SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price expanded_price

------- -------- ---------- --------------

RGAN01 5 4.9900 24.9500

BR03 5 11.9900 59.9500

BNBG01 10 3.4900 34.9000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BNBG01 10 3.4900 34.9000

BNBG02 10 3.4900 34.9000

BNBG03 10 3.4900 34.9000

The expanded_price column shown in the previous output is a calculated field; the calculation is
simply quantity*item_price. The client application can now use this new calculated column just
as it would any other column.

SQL supports the basic mathematical operators listed in Table 7.1. In addition, parentheses can be used to establish
order of precedence. Refer to Lesson 5, "Advanced Data Filtering," for an explanation of precedence.

Table 7.1. SQL Mathematical Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what calculated fields are and how to create them. We used examples demonstrating the use
of calculated fields for both string concatenation and mathematical operations. In addition, you learned how to create
and use aliases so your application can refer to calculated fields.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 8. Using Data Manipulation Functions
In this lesson, you'll learn what functions are, what types of functions DBMSs support, and how to use these functions.
You'll also learn why SQL function use can be very problematic.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Functions
Like almost any other computer language, SQL supports the use of functions to manipulate data. Functions are
operations that are usually performed on data, usually to facilitate conversion and manipulation.

An example of a function is the RTRIM() that we used in the last lesson to trim any spaces from the end of a string.

The Problem with Functions

Before you work through this lesson and try the examples, you should be aware that using SQL functions can be highly
problematic.

Unlike SQL statements (for example, SELECT), which for the most part are supported by all DBMSs equally, functions
tend to be very DBMS specific. In fact, very few functions are supported identically by all major DBMSs. Although all
types of functionality are usually available in each DBMS, the implementation of that functionality can differ greatly. To
demonstrate just how problematic this can be, Table 8.1 lists three commonly needed functions and their syntax as
employed by various DBMSs:

Table 8.1. DBMS Function Differences
Function Syntax

Extract part of
a string

Access uses MID(). DB2, Oracle, and PostgreSQL use SUBSTR(). MySQL, SQL Server, and Sybase use
SUBSTRING().

Datatype
conversion

Access and Oracle use multiple functions, one for each conversion type. DB2 and PostgreSQL use
CAST(). MySQL, SQL Server, and Sybase use CONVERT().

Get current
date

Access uses NOW(). DB2 and PostgreSQL use CURRENT_DATE. MySQL uses CURDATE(). Oracle uses
SYSDATE. SQL Server and Sybase use GETDATE().

As you can see, unlike SQL statements, SQL functions are not portable. This means that code you write for a specific
SQL implementation might not work on another implementation.

Portable Code that is written so that it will run on multiple systems.

With code portability in mind, many SQL programmers opt not to use any implementation-specific features. Although
this is a somewhat noble and idealistic view, it is not always in the best interests of application performance. If you opt
not to use these functions, you make your application code work harder. It must use other methods to do what the
DBMS could have done more efficiently.

Should You Use Functions? So now you are trying to decide whether you should
or shouldn't use functions. Well, that decision is yours, and there is no right or
wrong choice. If you do decide to use functions, make sure you comment your code
well, so that at a later date you (or another developer) will know exactly what SQL
implementation you were writing to.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Functions
Most SQL implementations support the following types of functions:

Text functions are used to manipulate strings of text (for example, trimming or padding values and converting
values to upper and lowercase).

Numeric functions are used to perform mathematical operations on numeric data (for example, returning
absolute numbers and performing algebraic calculations).

Date and time functions are used to manipulate date and time values and to extract specific components from
these values (for example, returning differences between dates, and checking date validity).

System functions return information specific to the DBMS being used (for example, returning user login
information).

In the last lesson, you saw a function used as part of a column list in a SELECT statement, but that's not all functions
can do. You can use functions in other parts of the SELECT statement (for instance in the WHERE clause), as well as in
other SQL statements (more on that in later lessons).

Text Manipulation Functions

You've already seen an example of text-manipulation functions in the last lesson—the RTRIM() function was used to trim
white space from the end of a column value. Here is another example, this time using the UPPER() function:

SELECT vend_name, UPPER(vend_name)

AS vend_name_upcase

FROM Vendors

ORDER BY vend_name;

vend_name vend_name_upcase

----------------------------- -------------------

Bear Emporium BEAR EMPORIUM

Bears R Us BEARS R US

Doll House Inc. DOLL HOUSE INC.

Fun and Games FUN AND GAMES

Furball Inc. FURBALL INC.

Jouets et ours JOUETS ET OURS

As you can see, UPPER() converts text to upper-case and so in this example each vendor is
listed twice, first exactly as stored in the Vendors table, and then converted to upper case as
column vend_name_upcase.

Table 8.2 lists some commonly used text-manipulation functions.

Table 8.2. Commonly Used Text-Manipulation Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8.2. Commonly Used Text-Manipulation Functions
Function Description

LEFT() (or use substring function) Returns characters from left of string

LENGTH() (also DATALENGTH() or LEN()) Returns the length of a string

LOWER() Converts string to lowercase

LTRIM() (LCASE() if using Access) Trims white space from left of string

RIGHT() (or use substring function) Returns characters from right of string

RTRIM() Trims white space from right of string

SOUNDEX() Returns a string's SOUNDEX value

UPPER() (UCASE() if using Access) Converts string to uppercase

One item in Table 8.2 requires further explanation. SOUNDEX is an algorithm that converts any string of text into an
alphanumeric pattern describing the phonetic representation of that text. SOUNDEX takes into account similar sounding
characters and syllables, enabling strings to be compared by how they sound rather than how they have been typed.
Although SOUNDEX is not a SQL concept, most DBMSs do offer SOUNDEX support.

SOUNDEX Support SOUNDEX() is not supported by Microsoft Access or PostgreSQL,
and so the following example will not work on those DBMSs.

Here's an example using the SOUNDEX() function. Customer Kids Place is in the Customers table and has a contact named
Michelle Green. But what if that were a typo, and the contact actually was supposed to have been Michael Green?
Obviously, searching by the correct contact name would return no data, as shown here:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_contact = 'Michael Green';

cust_name cust_contact

-------------------------- ---------------------

Now try the same search using the SOUNDEX() function to match all contact names that sound similar to Michael Green:

SELECT cust_name, cust_contact

FROM Customers

WHERE SOUNDEX(cust_contact) = SOUNDEX('Michael Green');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_name cust_contact

-------------------------- ---------------------

Kids Place Michelle Green

In this example, the WHERE clause uses the SOUNDEX() function to convert both the
cust_contact column value and the search string to their SOUNDEX values. Because Michael Green
and Michelle Green sound alike, their SOUNDEX values match, and so the WHERE clause correctly
filtered the desired data.

Date and Time Manipulation Functions

Date and times are stored in tables using datatypes, and each DBMS uses its own special varieties. Date and time
values are stored in special formats so that they may be sorted or filtered quickly and efficiently, as well as to save
physical storage space.

The format used to store dates and times is usually of no use to your applications, and so date and time functions are
almost always used to read, expand, and manipulate these values. Because of this, date and time manipulation
functions are some of the most important functions in the SQL language. Unfortunately, they also tend to be the least
consistent and least portable.

To demonstrate the use of date manipulation function, here is a simple example. The Orders table contains all orders
along with an order date. To retrieve a list of all orders made in 2004 in SQL Server and Sybase, do the following:

SELECT order_num

FROM Orders

WHERE DATEPART(yy, order_date) = 2004;

order_num

20005

20006

20007

20008

20009

In Access use this version:

SELECT order_num

FROM Orders

WHERE DATEPART('yyyy', order_date) = 2004;

This example (both the SQL Server and Sybase version, and the Access version) uses the
DATEPART() function which, as its name suggests, returns a part of a date. DATEPART() takes
two parameters, the part to return, and the date to return it from. In our example DATEPART()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

two parameters, the part to return, and the date to return it from. In our example DATEPART()
returns just the year from the order_date column. By comparing that to 2004, the WHERE clause
can filter just the orders for that year.

Here is the PostgreSQL version that uses a similar function named DATE_PART():

SELECT order_num

FROM Orders

WHERE DATE_PART('year', order_date) = 2004;

MySQL has all sorts of date manipulation functions, but not DATEPART(). MySQL users can use a function named YEAR()
to extract the year from a date:

SELECT order_num

FROM Orders

WHERE YEAR(order_date) = 2004;

Oracle has no DATEPART() function either, but there are several other date manipulation functions that can be used to
accomplish the same retrieval. Here is an example:

SELECT order_num

FROM Orders

WHERE to_number(to_char(order_date, 'YY')) = 2004;

In this example, the to_char() function is used to extract part of the date, and to_number() is
used to convert it to a numeric value so that it can be compared to 2004.

Another way to accomplish this same task is to use the BETWEEN operator:

SELECT order_num

FROM Orders

WHERE order_date BETWEEN to_date('01-JAN-2004')

AND to_date('31-DEC-2004');

In this example, Oracle's to_date() function is used to convert two strings to dates. One
contains the date January 1, 2004, and the other contains the date December 31, 2004. A
standard BETWEEN operator is used to find all orders between those two dates. It is worth
noting that this same code would not work with SQL Server because it does not support the
to_date() function. However, if you replaced to_date() with DATEPART(), you could indeed use
this type of statement.

Oracle Dates Dates in the format of DD-MMM-YYYY (as in the example shown
above) are usually processed by Oracle correctly even if not explicitly cast as dates
using to_date(); however, to be safe, that function should always be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example shown here extracted and used part of a date (the year). To filter by a specific month, the same process
could be used, specifying an AND operator and both year and month comparisons.

DBMSs typically offer far more than simple date part extraction. Most have functions for comparing dates, performing
date based arithmetic, options for formatting dates, and more. But, as you have seen, date-time manipulation functions
are particularly DBMS specific. Refer to your DBMS documentation for the list of the date-time manipulation functions it
supports.

Numeric Manipulation Functions

Numeric manipulation functions do just that—manipulate numeric data. These functions tend to be used primarily for
algebraic, trigonometric, or geometric calculations and, therefore, are not as frequently used as string or date and time
manipulation functions.

The ironic thing is that of all the functions found in the major DBMSs, the numeric functions are the ones that are most
uniform and consistent. Table 8.3 lists some of the more commonly used numeric manipulation functions.

Table 8.3. Commonly Used Numeric Manipulation Functions
Function Description

ABS() Returns a number's absolute value

COS() Returns the trigonometric cosine of a specified angle

EXP() Returns the exponential value of a specific number

PI() Returns the value of PI

SIN() Returns the trigonometric sine of a specified angle

SQRT() Returns the square root of a specified number

TAN() Returns the trigonometric tangent of a specified angle

Refer to your DBMS documentation for a list of the supported mathematical manipulation functions.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use SQL's data manipulation functions. You also learned that although these
functions can be extremely useful in formatting, manipulating, and filtering data, the function details are very
inconsistent from one SQL implementation to the next.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 9. Summarizing Data
In this lesson, you will learn what the SQL aggregate functions are and how to use them to summarize table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Aggregate Functions
It is often necessary to summarize data without actually retrieving it all, and SQL provides special functions for this
purpose. Using these functions, SQL queries are often used to retrieve data for analysis and reporting purposes.
Examples of this type of retrieval are

Determining the number of rows in a table (or the number of rows that meet some condition or contain a
specific value).

Obtaining the sum of a set of rows in a table.

Finding the highest, lowest, and average values in a table column (either for all rows or for specific rows).

In each of these examples, you want a summary of the data in a table, not the actual data itself. Therefore, returning
the actual table data would be a waste of time and processing resources (not to mention bandwidth). To repeat, all you
really want is the summary information.

To facilitate this type of retrieval, SQL features a set of five aggregate functions, which are listed in Table 9.1. These
functions enable you to perform all the types of retrieval just enumerated. You'll be relieved to know that unlike the
data manipulation functions in the last lesson, SQL's aggregate functions are supported pretty consistently by the major
SQL implementations.

Aggregate Functions Functions that operate on a set of rows to calculate and
return a single value.

Table 9.1. SQL Aggregate Functions
Function Description

AVG() Returns a column's average value

COUNT() Returns the number of rows in a column

MAX() Returns a column's highest value

MIN() Returns a column's lowest value

SUM() Returns the sum of a column's values

The use of each of these functions is explained in the following sections.

The AVG() Function

AVG() is used to return the average value of a specific column by counting both the number of rows in the table and the
sum of their values. AVG() can be used to return the average value of all columns or of specific columns or rows.

This first example uses AVG() to return the average price of all the products in the Products table:

SELECT AVG(prod_price) AS avg_price

FROM Products;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

avg_price

6.823333

The SELECT statement above returns a single value, avg_price that contains the average price
of all products in the Products table. avg_price is an alias as explained in Lesson 7, "Creating
Calculated Fields."

AVG() can also be used to determine the average value of specific columns or rows. The following example returns the
average price of products offered by a specific vendor:

SELECT AVG(prod_price) AS avg_price

FROM Products

WHERE vend_id = 'DLL01';

avg_price

3.8650

This SELECT statement differs from the previous one only in that this one contains a WHERE
clause. The WHERE clause filters only products with a vendor_id of DLL01, and, therefore, the
value returned in avg_price is the average of just that vendor's products.

Individual Columns Only AVG() may only be used to determine the average of a
specific numeric column, and that column name must be specified as the function
parameter. To obtain the average value of multiple columns, multiple AVG()
functions must be used.

NULL Values Column rows containing NULL values are ignored by the AVG()
function.

The COUNT() Function

COUNT() does just that: It counts. Using COUNT(), you can determine the number of rows in a table or the number of
rows that match a specific criterion.

COUNT() can be used two ways:

Use COUNT(*) to count the number of rows in a table, whether columns contain values or NULL values.

Use COUNT(column) to count the number of rows that have values in a specific column, ignoring NULL values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use COUNT(column) to count the number of rows that have values in a specific column, ignoring NULL values.

This first example returns the total number of customers in the Customers table:

SELECT COUNT(*) AS num_cust

FROM Customers;

num_cust

5

In this example, COUNT(*) is used to count all rows, regardless of values. The count is
returned in num_cust.

The following example counts just the customers with an email address:

SELECT COUNT(cust_email) AS num_cust

FROM Customers;

num_cust

3

This SELECT statement uses COUNT(cust_email) to count only rows with a value in the cust_email
column. In this example, cust_email is 3 (meaning that only 3 of the 5 customers have email
addresses).

NULL Values Column rows with NULL values in them are ignored by the COUNT()
function if a column name is specified, but not if the asterisk (*) is used.

The MAX() Function

MAX() returns the highest value in a specified column. MAX() requires that the column name be specified, as seen here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT MAX(prod_price) AS max_price

FROM Products;

max_price

11.9900

Here MAX() returns the price of the most expensive item in Products table.

Using MAX() with Non-Numeric Data Although MAX() is usually used to find the
highest numeric or date values, many (but not all) DBMSs allow it to be used to
return the highest value in any columns including textual columns. When used with
textual data, MAX() returns the row that would be the last if the data were sorted
by that column.

NULL Values Column rows with NULL values in them are ignored by the MAX()
function.

The MIN() Function

MIN() does the exact opposite of MAX(); it returns the lowest value in a specified column. Like MAX(), MIN() requires that
the column name be specified, as seen here:

SELECT MIN(prod_price) AS min_price

FROM Products;

min_price

3.4900

Here MIN() returns the price of the least expensive item in Products table.

Using MIN() with Non-Numeric Data Although MIN() is usually used to find the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using MIN() with Non-Numeric Data Although MIN() is usually used to find the
lowest numeric or date values, many (but not all) DBMSs allow it to be used to
return the lowest value in any columns including textual columns. When used with
textual data, MIN() will return the row that would be first if the data were sorted by
that column.

NULL Values Column rows with NULL values in them are ignored by the MIN()
function.

The SUM() Function

SUM() is used to return the sum (total) of the values in a specific column.

Here is an example to demonstrate this. The OrderItems table contains the actual items in an order, and each item has
an associated quantity. The total number of items ordered (the sum of all the quantity values) can be retrieved as follows:

SELECT SUM(quantity) AS items_ordered

FROM OrderItems

WHERE order_num = 20005;

items_ordered

200

The function SUM(quantity) returns the sum of all the item quantities in an order, and the
WHERE clause ensures that just the right order items are included.

SUM() can also be used to total calculated values. In this next example the total order amount is retrieved by totaling
item_price*quantity for each item:

SELECT SUM(item_price*quantity) AS total_price

FROM OrderItems

WHERE order_num = 20005;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

total_price

1648.0000

The function SUM(item_price*quantity) returns the sum of all the expanded prices in an order, and again the WHERE clause
ensures that just the right order items are included.

Performing Calculations on Multiple Columns All the aggregate functions can
be used to perform calculations on multiple columns using the standard
mathematical operators, as shown in the example.

NULL Values Column rows with NULL values in them are ignored by the SUM()
function.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Aggregates on Distinct Values
The five aggregate functions can all be used in two ways:

To perform calculations on all rows, specify the ALL argument or specify no argument at all (because ALL is the
default behavior).

To only include unique values, specify the DISTINCT argument.

ALL Is Default The ALL argument need not be specified because it is the default
behavior. If DISTINCT is not specified, ALL is assumed.

Not in Access Microsoft Access does not support the use of DISTINCT within
aggregate functions, and so the following example will not work with Access.

The following example uses the AVG() function to return the average product price offered by a specific vendor. It is the
same SELECT statement used above, but here the DISTINCT argument is used so that the average only takes into
account unique prices:

SELECT AVG(DISTINCT prod_price) AS avg_price

FROM Products

WHERE vend_id = 'DLL01';

avg_price

4.2400

As you can see, in this example avg_price is higher when DISTINCT is used because there are
multiple items with the same lower price. Excluding them raises the average price.

Caution DISTINCT may only be used with COUNT() if a column name is specified.
DISTINCT may not be used with COUNT(*). Similarly, DISTINCT must be used with
a column name and not with a calculation or expression.

Using DISTINCT with MIN() and MAX() Although DISTINCT can technically be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using DISTINCT with MIN() and MAX() Although DISTINCT can technically be
used with MIN() and MAX(), there is actually no value in doing so. The minimum
and maximum values in a column will be the same whether or not only distinct
values are included.

Additional Aggregate Arguments In addition to the DISTINCT and ALL
arguments shown here, some DBMSs support additional arguments such as TOP
and TOP PERCENT that let you perform calculations on subsets of query results.
Refer to your DBMS documentation to determine exactly what arguments are
available to you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Combining Aggregate Functions
All the examples of aggregate function used thus far have involved a single function. But actually, SELECT statements
may contain as few or as many aggregate functions as needed. Look at this example:

SELECT COUNT(*) AS num_items,

 MIN(prod_price) AS price_min,

 MAX(prod_price) AS price_max,

 AVG(prod_price) AS price_avg

FROM Products;

num_items price_min price_max price_avg

--------- --------- --------- ---------

9 3.4900 11.9900 6.823333

Here a single SELECT statement performs four aggregate calculations in one step and returns
four values (the number of items in the Products table, and the highest, lowest, and average
product prices).

Naming Aliases When specifying alias names to contain the results of an
aggregate function, try to not use the name of an actual column in the table.
Although there is nothing actually illegal about doing so, many SQL
implementations do not support this and will generate obscure error messages if
you do so.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Aggregate functions are used to summarize data. SQL supports five aggregate functions, all of which can be used in
multiple ways to return just the results you need. These functions are designed to be highly efficient, and they usually
return results far more quickly than you could calculate them yourself within your own client application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 10. Grouping Data
In this lesson, you'll learn how to group data so that you can summarize subsets of table contents. This involves two
new SELECT statement clauses: the GROUP BY clause and the HAVING clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Data Grouping
In the last lesson, you learned that the SQL aggregate functions can be used to summarize data. This enables you to
count rows, calculate sums and averages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far were performed on all the data in a table or on data that matched a specific WHERE clause.
As a reminder, the following example returns the number of products offered by vendor DLL01:

SELECT COUNT(*) AS num_prods

FROM Products

WHERE vend_id = 'DLL01';

num_prods

4

But what if you wanted to return the number of products offered by each vendor? Or products offered by vendors who
offer a single product, or only those who offer more than ten products?

This is where groups come into play. Grouping lets you divide data into logical sets so that you can perform aggregate
calculations on each group.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Groups
Groups are created using the GROUP BY clause in your SELECT statement. The best way to understand this is to look at
an example:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

GROUP BY vend_id;

vend_id num_prods

--------- ---------

BRS01 3

DLL01 4

FNG01 2

The above SELECT statement specifies two columns, vend_id, which contains the ID of a
product's vendor, and num_prods, which is a calculated field (created using the COUNT(*)
function). The GROUP BY clause instructs the DBMS to sort the data and group it by vend_id.
This causes num_prods to be calculated once per vend_id rather than once for the entire table.
As you can see in the output, vendor BRS01 has 3 products listed, vendor DLL01 has 4 products
listed, and vendor FNG01 has 2 products listed.

Because you used GROUP BY, you did not have to specify each group to be evaluated and calculated. That was done
automatically. The GROUP BY clause instructs the DBMS to group the data and then perform the aggregate on each
group rather than on the entire result set.

Before you use GROUP BY, here are some important rules about its use that you need to know:

GROUP BY clauses can contain as many columns as you want. This enables you to nest groups, providing you
with more granular control over how data is grouped.

If you have nested groups in your GROUP BY clause, data is summarized at the last specified group. In other
words, all the columns specified are evaluated together when grouping is established (so you won't get data
back for each individual column level).

Every column listed in GROUP BY must be a retrieved column or a valid expression (but not an aggregate
function). If an expression is used in the SELECT, that same expression must be specified in GROUP BY. Aliases
cannot be used.

Most SQL implementations do not allow GROUP BY columns with variable length datatypes (such as text or
memo fields).

Aside from the aggregate calculations statements, every column in your SELECT statement must be present in
the GROUP BY clause.

If the grouping column contains a row with a NULL value, NULL will be returned as a group. If there are multiple
rows with NULL values, they'll all be grouped together.

The GROUP BY clause must come after any WHERE clause and before any ORDER BY clause.

The ALL Clause Some SQL implementations (such as Microsoft SQL Server)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ALL Clause Some SQL implementations (such as Microsoft SQL Server)
support an optional ALL clause within GROUP BY. This clause can be used to return
all groups, even those that have no matching rows (in which case the aggregate
would return NULL). Refer to your DBMS documentation to see if it supports ALL.

Specifying Columns by Relative Position Some SQL implementations allow you
to specify GROUP BY columns by the position in the SELECT list. For example, GROUP
BY 2,1 can mean group by the second column selected and then by the first.
Although this shorthand syntax is convenient, it is not supported by all SQL
implementations. It's use is also risky in that it is highly susceptible to the
introduction of errors when editing SQL statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Filtering Groups
In addition to being able to group data using GROUP BY, SQL also allows you to filter which groups to include and which
to exclude. For example, you might want a list of all customers who have made at least two orders. To obtain this data
you must filter based on the complete group, not on individual rows.

You've already seen the WHERE clause in action (that was introduced back in Lesson 4, "Filtering Data." But WHERE does
not work here because WHERE filters specific rows, not groups. As a matter of fact, WHERE has no idea what a group is.

So what do you use instead of WHERE? SQL provides yet another clause for this purpose: the HAVING clause. HAVING is
very similar to WHERE. In fact, all types of WHERE clauses you learned about thus far can also be used with HAVING. The
only difference is that WHERE filters rows and HAVING filters groups.

HAVING Supports All of WHERE's Operators In Lesson 4 and Lesson 5,
"Advanced Data Filtering," you learned about WHERE clause conditions (including
wildcard conditions and clauses with multiple operators). All the techniques and
options that you learned about WHERE can be applied to HAVING. The syntax is
identical; just the keyword is different.

So how do you filter rows? Look at the following example:

SELECT cust_id, COUNT(*) AS orders

FROM Orders

GROUP BY cust_id

HAVING COUNT(*) >= 2;

cust_id orders

---------- -----------

1000000001 2

The first three lines of this SELECT statement are similar to the statements seen above. The
final line adds a HAVING clause that filters on those groups with a COUNT(*) >= 2—two or more
orders.

As you can see, a WHERE clause does not work here because the filtering is based on the group aggregate value, not on
the values of specific rows.

The difference between HAVING and WHERE Here's another way to look it:
WHERE filters before data is grouped, and HAVING filters after data is grouped. This
is an important distinction; rows that are eliminated by a WHERE clause will not be
included in the group. This could change the calculated values which in turn could
affect which groups are filtered based on the use of those values in the HAVING
clause.

So is there ever a need to use both WHERE and HAVING clauses in one statement? Actually, yes, there is. Suppose you
want to further filter the above statement so that it returns any customers who placed two or more orders in the past
12 months. To do that, you can add a WHERE clause that filters out just the orders placed in the past 12 months. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12 months. To do that, you can add a WHERE clause that filters out just the orders placed in the past 12 months. You
then add a HAVING clause to filter just the groups with two or more rows in them.

To better demonstrate this, look at the following example that lists all vendors who have two or more products priced at
4 or more:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

WHERE prod_price >= 4

GROUP BY vend_id

HAVING COUNT(*) >= 2;

vend_id num_prods

---------- -----------

BRS01 3

FNG01 2

This statement warrants an explanation. The first line is a basic SELECT using an aggregate
function—much like the examples thus far. The WHERE clause filters all rows with a prod_price
of at least 4. Data is then grouped by vend_id, and then a HAVING clause filters just those
groups with a count of 2 or more. Without the WHERE clause an extra row would have been
retrieved (vendor DLL01 who sells four products all priced under 4) as seen here:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

GROUP BY vend_id

HAVING COUNT(*) >= 2;

vend_id num_prods

---------- -----------

BRS01 3

DLL01 4

FNG01 2

Using HAVING and WHERE HAVING is so similar to WHERE that most DBMSs treat
them as the same thing if no GROUP BY is specified. Nevertheless, you should make
that distinction yourself. Use HAVING only in conjunction with GROUP BY clauses. Use
WHERE for standard row-level filtering.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Grouping and Sorting
It is important to understand that GROUP BY and ORDER BY are very different, even though they often accomplish the
same thing. Table 10.1 summarizes the differences between them.

Table 10.1. ORDER BY Versus GROUP BY
ORDER BY GROUP BY

Sorts generated output. Groups rows. The output might not be in group order, however.

Any columns (even columns not
selected) may be used.

Only selected columns or expressions columns may be used, and every
selected column expression must be used.

Never required. Required if using columns (or expressions) with aggregate functions.

The first difference listed in Table 10.1 is extremely important. More often than not, you will find that data grouped
using GROUP BY will indeed be output in group order. But that is not always the case, and it is not actually required by
the SQL specifications. Furthermore, even if your particular DBMS does, in fact, always sort the data by the specified
GROUP BY clause, you might actually want it sorted differently. Just because you group data one way (to obtain group
specific aggregate values) does not mean that you want the output sorted that same way. You should always provide
an explicit ORDER BY clause as well, even if it is identical to the GROUP BY clause.

Don't Forget ORDER BY As a rule, anytime you use a GROUP BY clause, you should
also specify an ORDER BY clause. That is the only way to ensure that data will be
sorted properly. Never rely on GROUP BY to sort your data.

To demonstrate the use of both GROUP BY and ORDER BY, let's look at an example. The following SELECT statement is
similar to the ones seen previously. It retrieves the order number and number of items ordered for all orders containing
three or more items:

SELECT order_num, COUNT(*) AS items

FROM OrderItems

GROUP BY order_num

HAVING COUNT(*) >= 3;

order_num items

---------- -----

20006 3

20007 5

20008 5

20009 3

To sort the output by number of items ordered, all you need to do is add an ORDER BY clause, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT order_num, COUNT(*) AS items

FROM OrderItems

GROUP BY order_num

HAVING COUNT(*) >= 3

ORDER BY items, order_num;

Access Incompatibility Microsoft Access does not allow sorting by alias, and so
this example will fail. The solution is to replace items (in the ORDER BY clause) with
the actual calculation or with the field position. As such, ORDER BY COUNT(*),
order_num or ORDER BY 1, order_num will both work.

order_num items

---------- -----

20006 3

20009 3

20007 5

20008 5

In this example, the GROUP BY clause is used to group the data by order number (the
order_num column) so that the COUNT(*) function can return the number of items in each
order. The HAVING clause filters the data so that only orders with three or more items are
returned. Finally, the output is sorted using the ORDER BY clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SELECT Clause Ordering
This is probably a good time to review the order in which SELECT statement clauses are to be specified. Table 10.2 lists
all the clauses we have learned thus far, in the order they must be used.

Table 10.2. SELECT Clauses and Their Sequence
Clause Description Required

SELECT Columns or expressions to be returned Yes

FROM Table to retrieve data from Only if selecting data from a table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggregates by group

HAVING Group-level filtering No

ORDER BY Output sort order No

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In Lesson 9, "Summarizing Data," you learned how to use the SQL aggregate functions to perform summary
calculations on your data. In this lesson, you learned how to use the GROUP BY clause to perform these calculations on
groups of data, returning results for each group. You saw how to use the HAVING clause to filter specific groups. You
also learned the difference between ORDER BY and GROUP BY and between WHERE and HAVING.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 11. Working with Subqueries
In this lesson, you'll learn what subqueries are and how to use them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Subqueries
SELECT statements are SQL queries. All the SELECT statements we have seen thus far are simple queries: single
statements retrieving data from individual database tables.

Query Any SQL statement. However, the term is usually used to refer to SELECT
statements.

SQL also enables you to create subqueries: queries that are embedded into other queries. Why would you want to do
this? The best way to understand this concept is to look at a couple of examples.

MySQL Support If you are using MySQL, be aware that support for subqueries was
introduced in version 4.1. Earlier versions of MySQL do not support subqueries.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Filtering by Subquery
The database tables used in all the lessons in this book are relational tables. (See Appendix A, "Sample Data Scripts,"
for a description of each of the tables and their relationships.) Orders are stored in two tables. The Orders table stores a
single row for each order containing order number, customer ID, and order date. The individual order items are stored
in the related OrderItems table. The Orders table does not store customer information. It only stores a customer ID. The
actual customer information is stored in the Customers table.

Now suppose you wanted a list of all the customers who ordered item RGAN01. What would you have to do to retrieve
this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item RGAN01.

2. Retrieve the customer ID of all the customers who have orders listed in the order numbers returned in the
previous step.

3. Retrieve the customer information for all the customer IDs returned in the previous step.

Each of these steps can be executed as a separate query. By doing so, you use the results returned by one SELECT
statement to populate the WHERE clause of the next SELECT statement.

You can also use subqueries to combine all three queries into one single statement.

The first SELECT statement should be self-explanatory by now. It retrieves the order_num column for all order items with
a prod_id of RGAN01. The output lists the two orders containing this item:

SELECT order_num

FROM OrderItems

WHERE prod_id = 'RGAN01';

order_num

20007

20008

The next step is to retrieve the customer IDs associated with orders 20007 and 20008. Using the IN clause described in
Lesson 5, "Advanced Data Filtering," you can create a SELECT statement as follows:

SELECT cust_id

FROM Orders

WHERE order_num IN (20007,20008);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id

1000000004

1000000005

Now, combine the two queries by turning the first (the one that returned the order numbers) into a subquery. Look at
the following SELECT statement:

SELECT cust_id

FROM Orders

WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01');

cust_id

1000000004

1000000005

Subqueries are always processed starting with the innermost SELECT statement and working
outward. When the preceding SELECT statement is processed, the DBMS actually performs two
operations.

First it runs the subquery:

SELECT order_num FROM orderitems WHERE prod_id='RGAN01'

That query returns the two order numbers 20007 and 20008. Those two values are then passed to the WHERE clause of
the outer query in the comma-delimited format required by the IN operator. The outer query now becomes

SELECT cust_id FROM orders WHERE order_num IN (20007,20008)

As you can see, the output is correct and exactly the same as the output returned by the hard-coded WHERE clause
above.

Formatting Your SQL SELECT statements containing subqueries can be difficult to
read and debug, especially as they grow in complexity. Breaking up the queries
over multiple lines and indenting the lines appropriately as shown here can greatly
simplify working with subqueries.

You now have the IDs of all the customers who ordered item RGAN01. The next step is to retrieve the customer
information for each of those customer IDs. The SQL statement to retrieve the two columns is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN ('1000000004','1000000005');

Instead of hard-coding those customer IDs, you can turn this WHERE clause into a subquery:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN (SELECT cust_id

 FROM Orders

 WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01'));

cust_name cust_contact

----------------------------- ------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

To execute the above SELECT statement, the DBMS had to actually perform three SELECT
statements. The innermost subquery returned a list of order numbers that were then used as
the WHERE clause for the subquery above it. That subquery returned a list of customer IDs
that were used as the WHERE clause for the top-level query. The top-level query actually
returned the desired data.

As you can see, using subqueries in a WHERE clause enables you to write extremely powerful and flexible SQL
statements. There is no limit imposed on the number of subqueries that can be nested, although in practice you will find
that performance will tell you when you are nesting too deeply.

Single Column Only Subquery SELECT statements can only retrieve a single
column. Attempting to retrieve multiple columns will return an error.

Subqueries and Performance The code shown here works, and it achieves the
desired result. However, using subqueries is not always the most efficient way to
perform this type of data retrieval. More on this in Lesson 12, "Joining Tables,"
where you will revisit this same example.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Subqueries As Calculated Fields
Another way to use subqueries is in creating calculated fields. Suppose you want to display the total number of orders
placed by every customer in your Customers table. Orders are stored in the Orders table along with the appropriate
customer ID.

To perform this operation, follow these steps:

1. Retrieve the list of customers from the Customers table.

2. For each customer retrieved, count the number of associated orders in the Orders table.

As you learned in the previous two lessons, you can use SELECT COUNT(*) to count rows in a table, and by providing a
WHERE clause to filter a specific customer ID, you can count just that customer's orders. For example, the following
code counts the number of orders placed by customer 1000000001:

SELECT COUNT(*) AS orders

FROM Orders

WHERE cust_id = '1000000001';

To perform that COUNT(*) calculation for each customer, use COUNT* as a subquery. Look at the following code:

SELECT cust_name,

cust_state,

(SELECT COUNT(*)

 FROM Orders

 WHERE Orders.cust_id = Customers.cust_id) AS

orders

FROM Customers

ORDER BY cust_name;

cust_name cust_state orders

------------------------- ---------- ------

Fun4All IN 1

Fun4All AZ 1

Kids Place OH 0

The Toy Store IL 1

Village Toys MI 2

This SELECT statement returns three columns for every customer in the Customers table:
cust_name, cust_state, and orders. Orders is a calculated field that is set by a subquery that is
provided in parentheses. That subquery is executed once for every customer retrieved. In the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provided in parentheses. That subquery is executed once for every customer retrieved. In the
example above, the subquery is executed five times because five customers were retrieved.

The WHERE clause in the subquery is a little different from the WHERE clauses used previously because it uses fully
qualified column names. The following clause tells SQL to compare the cust_id in the Orders table to the one currently
being retrieved from the Customers table:

WHERE Orders.cust_id = Customers.cust_id

This syntax—the table name and the column name separated by a period—must be used whenever there is possible
ambiguity about column names. In this example, there are two cust_id columns, one in Customers and one in Orders.
Without fully qualifying the column names, the DBMS assumes you are comparing the cust_id in the Orders table to itself.
Because

SELECT COUNT(*) FROM Orders WHERE cust_id = cust_id

will always return the total number of orders in the Orders table, the results will not be what you expected:

SELECT cust_name,

cust_state,

(SELECT COUNT(*)

 FROM Orders

 WHERE cust_id = cust_id) AS orders

FROM Customers

ORDER BY cust_name;

cust_name cust_state orders

------------------------- ---------- ------

Fun4All IN 5

Fun4All AZ 5

Kids Place OH 5

The Toy Store IL 5

Village Toys MI 5

Although subqueries are extremely useful in constructing this type of SELECT statement, care must be taken to properly
qualify ambiguous column names.

Always More Than One Solution As explained earlier in this lesson, although the
sample code shown here works, it is often not the most efficient way to perform
this type of data retrieval. You will revisit this example in a later lesson.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what subqueries are and how to use them. The most common uses for subqueries are in
WHERE clause IN operators and for populating calculated columns. You saw examples of both of these types of
operations.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 12. Joining Tables
In this lesson, you'll learn what joins are, why they are used, and how to create SELECT statements using them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Joins
One of SQL's most powerful features is the capability to join tables on-the-fly within data retrieval queries. Joins are
one of the most important operations that you can perform using SQL SELECT, and a good understanding of joins and
join syntax is an extremely important part of learning SQL.

Before you can effectively use joins, you must understand relational tables and the basics of relational database design.
What follows is by no means complete coverage of the subject, but it should be enough to get you up and running.

Understanding Relational Tables

The best way to understand relational tables is to look at a real-world example.

Suppose you had a database table containing a product catalog, with each catalog item in its own row. The kind of
information you would store with each item would include a product description and price, along with vendor
information about the company that creates the product.

Now suppose that you had multiple catalog items created by the same vendor. Where would you store the vendor
information (things like vendor name, address, and contact information)? You wouldn't want to store that data along
with the products for several reasons:

Because the vendor information is the same for each product that vendor produces, repeating the information
for each product is a waste of time and storage space.

If vendor information changes (for example, if the vendor moves or his area code changes), you would need to
update every occurrence of the vendor information.

When data is repeated (that is, the vendor information is used with each product), there is a high likelihood that
the data will not be entered exactly the same way each time. Inconsistent data is extremely difficult to use in
reporting.

The key here is that having multiple occurrences of the same data is never a good thing, and that principle is the basis
for relational database design. Relational tables are designed so that information is split into multiple tables, one for
each data type. The tables are related to each other through common values (and thus the relational in relational
design).

In our example, you can create two tables, one for vendor information and one for product information. The Vendors
table contains all the vendor information, one table row per vendor, along with a unique identifier for each vendor. This
value, called a primary key, can be a vendor ID, or any other unique value.

The Products table stores only product information, and no vendor specific information other than the vendor ID (the
Vendors table's primary key). This key relates the Vendors table to the Products table, and using this vendor ID enables
you to use the Vendors table to find the details about the appropriate vendor.

What does this do for you? Well, consider the following:

Vendor information is never repeated, and so time and space are not wasted.

If vendor information changes, you can update a single record, the one in the Vendors table. Data in related
tables does not change.

As no data is repeated, the data used is obviously consistent, making data reporting and manipulation much
simpler.

The bottom line is that relational data can be stored efficiently and manipulated easily. Because of this, relational
databases scale far better than nonrelational databases.

Scale Able to handle an increasing load without failing. A well-designed database or
application is said to scale well.

Why Use Joins?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As just explained, breaking data into multiple tables enables more efficient storage, easier manipulation, and greater
scalability. But these benefits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a single SELECT statement?

The answer is to use a join. Simply put, a join is a mechanism used to associate tables within a SELECT statement (and
thus the name join). Using a special syntax, multiple tables can be joined so that a single set of output is returned, and
the join associates the correct rows in each table on-the-fly.

Using Interactive DBMS Tools It is important to understand that a join is not a
physical entity—in other words, it does not exist in the actual database tables. A
join is created by the DBMS as needed, and it persists for the duration of the query
execution.

Many DBMSs provide graphical interfaces that can be used to define table
relationships interactively. These tools can be invaluable in helping to maintain
referential integrity. When using relational tables, it is important that only valid
data is inserted into relational columns. Going back to the example, if an invalid
vendor ID is stored in the Products table, those products would be inaccessible
because they would not be related to any vendor. To prevent this from occurring,
the database can be instructed to only allow valid values (ones present in the
Vendors table) in the vendor ID column in the Products table. Referential integrity
means that the DBMS enforces data integrity rules. And these rules are often
managed through DBMS provided interfaces.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating a Join
Creating a join is very simple. You must specify all the tables to be included and how they are related to each other.
Look at the following example:

SELECT vend_name, prod_name, prod_price

FROM Vendors, Products

WHERE Vendors.vend_id = Products.vend_id;

vend_name prod_name prod_price

--------- ---------- ----------

Doll House Inc. Fish bean bag toy 3.4900

Doll House Inc. Bird bean bag toy 3.4900

Doll House Inc. Rabbit bean bag toy 3.4900

Bears R Us 8 inch teddy bear 5.9900

Bears R Us 12 inch teddy bear 8.9900

Bears R Us 18 inch teddy bear 11.9900

Doll House Inc. Raggedy Ann 4.9900

Fun and Games King doll 9.4900

Fun and Games Queen doll 9.4900

Let's take a look at the preceding code. The SELECT statement starts in the same way as all
the statements you've looked at thus far, by specifying the columns to be retrieved. The big
difference here is that two of the specified columns (prod_name and prod_price) are in one
table, whereas the other (vend_name) is in another table.

Now look at the FROM clause. Unlike all the prior SELECT statements, this one has two tables listed in the FROM clause,
Vendors and Products. These are the names of the two tables that are being joined in this SELECT statement. The tables
are correctly joined with a WHERE clause that instructs the DBMS to match vend_id in the Vendors table with vend_id in
the Products table.

You'll notice that the columns are specified as Vendors.vend_id and Products.vend_id. This fully qualified column name is
required here because if you just specified vend_id, the DBMS cannot tell which vend_id columns you are referring to.
(There are two of them, one in each table.) As you can see in the preceding output, a single SELECT statement returns
data from two different tables.

Fully Qualifying Column Names You must use the fully qualified column name
(table and column separated by a period) whenever there is a possible ambiguity
about which column you are referring to. Most DBMSs will return an error message
if you refer to an ambiguous column name without fully qualifying it with a table
name.

The Importance of the WHERE Clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It might seem strange to use a WHERE clause to set the join relationship, but actually, there is a very good reason for
this. Remember, when tables are joined in a SELECT statement, that relationship is constructed on-the-fly. There is
nothing in the database table definitions that can instruct the DBMS how to join the tables. You have to do that
yourself. When you join two tables, what you are actually doing is pairing every row in the first table with every row in
the second table. The WHERE clause acts as a filter to only include rows that match the specified filter condition—the
join condition, in this case. Without the WHERE clause, every row in the first table will be paired with every row in the
second table, regardless of if they logically go together or not.

Cartesian Product The results returned by a table relationship without a join
condition. The number of rows retrieved will be the number of rows in the first table
multiplied by the number of rows in the second table.

To understand this, look at the following SELECT statement and output:

SELECT vend_name, prod_name, prod_price

FROM Vendors, Products;

vend_name prod_name prod_price

----------- --------- ----------

Bears R Us 8 inch teddy bear 5.99

Bears R Us 12 inch teddy bear 8.99

Bears R Us 18 inch teddy bear 11.99

Bears R Us Fish bean bag toy 3.49

Bears R Us Bird bean bag toy 3.49

Bears R Us Rabbit bean bag toy 3.49

Bears R Us Raggedy Ann 4.99

Bears R Us King doll 9.49

Bears R Us Queen doll 9.49

Bear Emporium 8 inch teddy bear 5.99

Bear Emporium 12 inch teddy bear 8.99

Bear Emporium 18 inch teddy bear 11.99

Bear Emporium Fish bean bag toy 3.49

Bear Emporium Bird bean bag toy 3.49

Bear Emporium Rabbit bean bag toy 3.49

Bear Emporium Raggedy Ann 4.99

Bear Emporium King doll 9.49

Bear Emporium Queen doll 9.49

Doll House Inc. 8 inch teddy bear 5.99

Doll House Inc. 12 inch teddy bear 8.99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Doll House Inc. 12 inch teddy bear 8.99

Doll House Inc. 18 inch teddy bear 11.99

Doll House Inc. Fish bean bag toy 3.49

Doll House Inc. Bird bean bag toy 3.49

Doll House Inc. Rabbit bean bag toy 3.49

Doll House Inc. Raggedy Ann 4.99

Doll House Inc. King doll 9.49

Doll House Inc. Queen doll 9.49

Furball Inc. 8 inch teddy bear 5.99

Furball Inc. 12 inch teddy bear 8.99

Furball Inc. 18 inch teddy bear 11.99

Furball Inc. Fish bean bag toy 3.49

Furball Inc. Bird bean bag toy 3.49

Furball Inc. Rabbit bean bag toy 3.49

Furball Inc. Raggedy Ann 4.99

Furball Inc. King doll 9.49

Furball Inc. Queen doll 9.49

Fun and Games 8 inch teddy bear 5.99

Fun and Games 12 inch teddy bear 8.99

Fun and Games 18 inch teddy bear 11.99

Fun and Games Fish bean bag toy 3.49

Fun and Games Bird bean bag toy 3.49

Fun and Games Rabbit bean bag toy 3.49

Fun and Games Raggedy Ann 4.99

Fun and Games King doll 9.49

Fun and Games Queen doll 9.49

Jouets et ours 8 inch teddy bear 5.99

Jouets et ours 12 inch teddy bear 8.99

Jouets et ours 18 inch teddy bear 11.99

Jouets et ours Fish bean bag toy 3.49

Jouets et ours Bird bean bag toy 3.49

Jouets et ours Rabbit bean bag toy 3.49

Jouets et ours Raggedy Ann 4.99

Jouets et ours King doll 9.49

Jouets et ours Queen doll 9.49

As you can see in the preceding output, the Cartesian product is seldom what you want. The
data returned here has matched every product with every vendor, including products with the
incorrect vendor (and even vendors with no products at all).

Don't Forget the WHERE Clause Make sure all your joins have WHERE clauses, or
the DBMS will return far more data than you want. Similarly, make sure your
WHERE clauses are correct. An incorrect filter condition will cause the DBMS to
return incorrect data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return incorrect data.

Cross Joins Sometimes you'll hear the type of join that returns a Cartesian Product
referred to as a cross join.

Inner Joins

The join you have been using so far is called an equijoin—a join based on the testing of equality between two tables.
This kind of join is also called an inner join. In fact, you may use a slightly different syntax for these joins, specifying
the type of join explicitly. The following SELECT statement returns the exact same data as the preceding example:

SELECT vend_name, prod_name, prod_price

FROM Vendors INNER JOIN Products

 ON Vendors.vend_id = Products.vend_id;

The SELECT in the statement is the same as the preceding SELECT statement, but the FROM
clause is different. Here the relationship between the two tables is part of the FROM clause
specified as INNER JOIN. When using this syntax the join condition is specified using the
special ON clause instead of a WHERE clause. The actual condition passed to ON is the same as
would be passed to WHERE.

Refer to your DBMS documentation to see which syntax is preferred.

The "Right" Syntax Per the ANSI SQL specification, use of the INNER JOIN syntax
is preferable.

Joining Multiple Tables

SQL imposes no limit to the number of tables that may be joined in a SELECT statement. The basic rules for creating the
join remain the same. First list all the tables, and then define the relationship between each. Here is an example:

SELECT prod_name, vend_name, prod_price, quantity

FROM OrderItems, Products, Vendors

WHERE Products.vend_id = Vendors.vend_id

 AND OrderItems.prod_id = Products.prod_id

 AND order_num = 20007;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name vend_name prod_price quantity

--------- --------- ---------- --------

18 inch teddy bear Bears R Us 11.9900 50

Fish bean bag toy Doll House Inc. 3.4900 100

Bird bean bag toy Doll House Inc. 3.4900 100

Rabbit bean bag toy Doll House Inc. 3.4900 100

Raggedy Ann Doll House Inc. 4.9900 50

This example displays the items in order number 20007. Order items are stored in the
OrderItems table. Each product is stored by its product ID, which refers to a product in the
Products table. The products are linked to the appropriate vendor in the Vendors table by the
vendor ID, which is stored with each product record. The FROM clause here lists the three
tables, and the WHERE clause defines both of those join conditions. An additional WHERE
condition is then used to filter just the items for order 20007.

Performance Considerations DBMSs process joins at run-time relating each table
as specified. This process can become very resource intensive so be careful not to
join tables unnecessarily. The more tables you join the more performance will
degrade.

Maximum Number of Tables in a Join While it is true that SQL itself has no
maximum number of tables per join restriction, many DBMSs do indeed have
restrictions. Refer to your DBMS documentation to determine what restrictions
there are, if any.

Now would be a good time to revisit the following example from Lesson 11, "Working with Subqueries." As you will
recall, this SELECT statement returns a list of customers who ordered product RGAN01:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN (SELECT cust_id

 FROM Orders

 WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01'));

As I mentioned in Lesson 11, subqueries are not always the most efficient way to perform complex SELECT operations,
and so as promised, here is the same query using joins:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num

 AND prod_id = 'RGAN01';

cust_name cust_contact

----------------------------- -------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

As explained in Lesson 11, returning the data needed in this query requires the use of three
tables. But instead of using them within nested subqueries, here two joins are used to
connect the tables. There are three WHERE clause conditions here. The first two connect the
tables in the join, and the last one filters the data for product RGAN01.

It Pays to Experiment As you can see, there is often more than one way to
perform any given SQL operation. And there is rarely a definitive right or wrong
way. Performance can be affected by the type of operation, the DBMS being used,
the amount of data in the tables, whether or not indexes and keys are present, and
a whole slew of other criteria. Therefore, it is often worth experimenting with
different selection mechanisms to find the one that works best for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Joins are one of the most important and powerful features in SQL, and using them effectively requires a basic
understanding of relational database design. In this lesson, you learned some of the basics of relational database design
as an introduction to learning about joins. You also learned how to create an equijoin (also known as an inner join),
which is the most commonly used form of join. In the next, lesson, you'll learn how to create other types of joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 13. Creating Advanced Joins
In this lesson, you'll learn all about additional join types—what they are, and how to use them. You'll also learn how to
use table aliases and how to use aggregate functions with joined tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Table Aliases
Back in Lesson 7, "Creating Calculated Fields," you learned how to use aliases to refer to retrieved table columns. The
syntax to alias a column looks like this:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL also enables you to alias table names. There
are two primary reasons to do this:

To shorten the SQL syntax

To enable multiple uses of the same table within a single SELECT statement

Take a look at the following SELECT statement. It is basically the same statement as an example used in the previous
lesson, but it has been modified to use aliases:

SELECT cust_name, cust_contact

FROM Customers AS C, Orders AS O, OrderItems AS OI

WHERE C.cust_id = O.cust_id

 AND OI.order_num = O.order_num

 AND prod_id = 'RGAN01';

You'll notice that the three tables in the FROM clauses all have aliases. Customers AS C
establishes C as an alias for Customers, and so on. This enables you to use the abbreviated C
instead of the full text Customers. In this example, the table aliases were used only in the
WHERE clause, but aliases are not limited to just WHERE. You can use aliases in the SELECT list,
the ORDER BY clause, and in any other part of the statement as well.

No AS in Oracle Oracle does not support the AS keyword. To use aliases in Oracle,
simply specify the alias without AS (so Customers C instead of Customers AS C).

It is also worth noting that table aliases are only used during query execution. Unlike column aliases, table aliases are
never returned to the client.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Different Join Types
So far, you have used only simple joins known as inner joins or equijoins. You'll now take a look at three additional join
types: the self join, the natural join, and the outer join.

Self Joins

As I mentioned earlier, one of the primary reasons to use table aliases is to be able to refer to the same table more
than once in a single SELECT statement. An example will demonstrate this.

Suppose you wanted to send a mailing to all the customer contacts who work for the same company for which Jim
Jones works. This query requires that you first find out which company Jim Jones works for, and next which customers
work for that company. The following is one way to approach this problem:

SELECT cust_id, cust_name, cust_contact

FROM Customers

WHERE cust_name = (SELECT cust_name

 FROM Customers

 WHERE cust_contact = 'Jim Jones');

cust_id cust_name cust_contact

-------- -------------- --------------

1000000003 Fun4All Jim Jones

1000000004 Fun4All Denise L. Stephens

This first solution uses subqueries. The inner SELECT statement does a simple retrieval to
return the cust_name of the company that Jim Jones works for. That name is the one used in
the WHERE clause of the outer query so that all employees who work for that company are
retrieved. (You learned all about subqueries in Lesson 11, "Working with Subqeries." Refer to
that lesson for more information.)

Now look at the same query using a join:

SELECT c1.cust_id, c1.cust_name, c1.cust_contact

FROM Customers AS c1, Customers AS c2

WHERE c1.cust_name = c2.cust_name

 AND c2.cust_contact = 'Jim Jones';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id cust_name cust_contact

------- ----------- --------------

1000000003 Fun4All Jim Jones

1000000004 Fun4All Denise L. Stephens

No AS in Oracle Oracle users, remember to drop the AS.

The two tables needed in this query are actually the same table, and so the Customers table
appears in the FROM clause twice. Although this is perfectly legal, any references to table
Customers would be ambiguous because the DBMS does not know which Customers table you
are referring to.

To resolve this problem table aliases are used. The first occurrence of Customers has an alias of C1, and the second has
an alias of C2. Now those aliases can be used as table names. The SELECT statement, for example, uses the C1 prefix to
explicitly state the full name of the desired columns. If it did not, the DBMS would return an error because there are
two columns named cust_id, cust_name, and cust_contact. It cannot know which one you want (even though, in truth, they
are one and the same). The WHERE clause first joins the tables, and then it filters the data by cust_contact in the second
table to return only the desired data.

Self Joins Instead of Subqueries Self joins are often used to replace statements
using subqueries that retrieve data from the same table as the outer statement.
Although the end result is the same, many DBMSs process joins far more quickly
than they do subqueries. It is usually worth experimenting with both to determine
which performs better.

Natural Joins

Whenever tables are joined, at least one column will appear in more than one table (the columns being joined).
Standard joins (the inner joins that you learned about in the last lesson) return all data, even multiple occurrences of
the same column. A natural join simply eliminates those multiple occurrences so that only one of each column is
returned.

How does it do this? The answer is it doesn't—you do it. A natural join is a join in which you select only columns that
are unique. This is typically done using a wildcard (SELECT *) for one table and explicit subsets of the columns for all
other tables. The following is an example:

SELECT C.*, O.order_num, O.order_date, OI.prod_id, OI.quantity, OI.item_price

FROM Customers AS C, Orders AS O, OrderItems AS OI

WHERE C.cust_id = O.cust_id

 AND OI.order_num = O.order_num

 AND prod_id = 'RGAN01';

No AS in Oracle Oracle users, remember to drop the AS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, a wildcard is used for the first table only. All other columns are explicitly
listed so that no duplicate columns are retrieved.

The truth is, every inner join you have created thus far is actually a natural join, and you will probably never even need
an inner join that is not a natural join.

Outer Joins

Most joins relate rows in one table with rows in another. But occasionally, you will want to include rows that have no
related rows. For example, you might use joins to accomplish the following tasks:

Count how many orders each customer, including customers who have yet to place an order, placed

List all products with order quantities, including products not ordered by anyone

Calculate average sale sizes, taking into account customers who have not yet placed an order

In each of these examples, the join includes table rows that have no associated rows in the related table. This type of
join is called an outer join.

Syntax Differences It is important to note that the syntax used to create an outer
join can vary slightly among different SQL implementations. The various forms of
syntax described in the following section cover most implementations, but refer to
your DBMS documentation to verify its syntax before proceeding.

The following SELECT statement is a simple inner join. It retrieves a list of all customers and their orders:

SELECT Customers.cust_id, Orders.order_num

FROM Customers INNER JOIN Orders

 ON Customers.cust_id = Orders.cust_id;

Outer join syntax is similar. To retrieve a list of all customers, including those who have placed no orders, you can do
the following:

SELECT Customers.cust_id, Orders.order_num

FROM Customers LEFT OUTER JOIN Orders

 ON Customers.cust_id = Orders.cust_id;

cust_id order_num

---------- ---------

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

---------- ---------

1000000001 20005

1000000001 20009

1000000002 NULL

1000000003 20006

1000000004 20007

1000000005 20008

Like the inner join seen in the last lesson, this SELECT statement uses the keywords OUTER
JOIN to specify the join type (instead of specifying it in the WHERE clause). But unlike inner
joins, which relate rows in both tables, outer joins also include rows with no related rows.
When using OUTER JOIN syntax you must use the RIGHT or LEFT keywords to specify the table
from which to include all rows (RIGHT for the one on the right of OUTER JOIN, and LEFT for the
one on the left). The previous example uses LEFT OUTER JOIN to select all the rows from the
table on the left in the FROM clause (the Customers table). To select all the rows from the table
on the right, you use a RIGHT OUTER JOIN as seen in this next example:

SELECT Customers.cust_id, Orders.order_num

FROM Customers RIGHT OUTER JOIN Orders

 ON Orders.cust_id = Customers.cust_id;

SQL Server supports an additional simplified outer join syntax. To retrieve a list of all customers, including those who
have placed no orders, you can do the following:

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Customers.cust_id *= Orders.cust_id;

cust_id order_num

---------- ---------

1000000001 20005

1000000001 20009

1000000002 NULL

1000000003 20006

1000000004 20007

1000000005 20008

Here the join condition is specified in the WHERE clause. Instead of testing for equality with a
=, the *= operator is used to specify that every row in the Customers table should be included.
*= is the left outer join operator. It retrieves all the rows from the left table.

The opposite of this left outer join is the right outer join specified by the =* operator. It can be used to return all rows
from the table listed to the right of the operator, as seen in this next example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Orders.cust_id =* Customers.cust_id;

Yet another form of the OUTER JOIN syntax (used only by Oracle) requires the use of (+) operator after the table name
as follows:

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Customers.cust_id (+) = Orders.cust_id

Outer Join Types Regardless of the form of outer join used, there are always two
basic forms of outer joins—the left outer join and the right outer join. The only
difference between them is the order of the tables that they are relating. In other
words, a left outer join can be turned into a right outer join simply by reversing the
order of the tables in the FROM or WHERE clause. As such, the two types of outer
join can be used interchangeably, and the decision about which one is used is based
purely on convenience.

There is one other variant of the outer join, and that is the full outer join that retrieves all rows from both tables and
relates those that can be related. Unlike a left outer join or right outer join, which includes unrelated rows from a single
table, the full outer join includes unrelated rows from both tables. The syntax for a full outer join is as follows:

SELECT Customers.cust_id, Orders.order_num

FROM Orders FULL OUTER JOIN Customers

 ON Orders.cust_id = Customers.cust_id;

FULL OUTER JOIN Support The FULL OUTER JOIN syntax is not supported by Access,
MySQL, SQL Server, or Sybase.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Joins with Aggregate Functions
As you learned in Lesson 9, "Summarizing Data," aggregate functions are used to summarize data. Although all the
examples of aggregate functions thus far only summarized data from a single table, these functions can also be used
with joins.

To demonstrate this, let's look at an example. You want to retrieve a list of all customers and the number of orders that
each has placed. The following code uses the COUNT() function to achieve this:

SELECT Customers.cust_id, COUNT(Orders.order_num) AS num_ord

FROM Customers INNER JOIN Orders

 ON Customers.cust_id = Orders.cust_id

GROUP BY Customers.cust_id;

cust_id num_ord

---------- --------

1000000001 2

1000000003 1

1000000004 1

1000000005 1

This SELECT statement uses INNER JOIN to relate the Customers and Orders tables to each other.
The GROUP BY clause groups the data by customer, and so the function call
COUNT(Orders.order_num) counts the number of orders for each customer and returns it as
num_ord.

Aggregate functions can be used just as easily with other join types. See the following example:

SELECT Customers.cust_id, COUNT(Orders.order_num) AS num_ord

FROM Customers LEFT OUTER JOIN Orders

 ON Customers.cust_id = Orders.cust_id

GROUP BY Customers.cust_id;

No AS in Oracle Again, Oracle users, remember to drop the AS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id num_ord

---------- -------

1000000001 2

1000000002 0

1000000003 1

1000000004 1

1000000005 1

This example uses a left outer join to include all customers, even those who have not placed
any orders. The results show that customer 1000000002 is also included, this time with 0
orders.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Joins and Join Conditions
Before I wrap up our two lesson discussion on joins, I think it is worthwhile to summarize some key points regarding
joins and their use:

Pay careful attention to the type of join being used. More often than not, you'll want an inner join, but there are
often valid uses for outer joins, too.

Check your DBMSs documentation for the exact join syntax it supports. (Most DBMSs use one of the forms of
syntax described in these two lessons.)

Make sure you use the correct join condition (regardless of the syntax being used), or you'll return incorrect
data.

Make sure you always provide a join condition, or you'll end up with the Cartesian product.

You may include multiple tables in a join and even have different join types for each. Although this is legal and
often useful, make sure you test each join separately before testing them together. This will make
troubleshooting far simpler.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
This lesson was a continuation of the last lesson on joins. This lesson started by teaching you how and why to use
aliases, and then continued with a discussion on different join types and various forms of syntax used with each. You
also learned how to use aggregate functions with joins, and some important do's and don'ts to keep in mind when
working with joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 14. Combining Queries
In this lesson, you'll learn how to use the UNION operator to combine multiple SELECT statements into one result set.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Combined Queries
Most SQL queries contain a single SELECT statement that returns data from one or more tables. SQL also enables you to
perform multiple queries (multiple SELECT statements) and return the results as a single query result set. These
combined queries are usually known as unions or compound queries.

There are basically two scenarios in which you'd use combined queries:

To return similarly structured data from different tables in a single query

To perform multiple queries against a single table returning the data as one query

Combining Queries and Multiple WHERE Conditions For the most part,
combining two queries to the same table accomplishes the same thing as a single
query with multiple WHERE clause conditions. In other words, any SELECT statement
with multiple WHERE clauses can also be specified as a combined query, as you'll
see in the section that follows.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Combined Queries
SQL queries are combined using the UNION operator. Using UNION, multiple SELECT statements can be specified, and
their results can be combined into a single result set.

Using UNION

Using UNION is simple enough. All you do is specify each SELECT statement and place the keyword UNION between each.

Let's look at an example. You need a report on all your customers in Illinois, Indiana, and Michigan. You also want to
include all Fun4All locations, regardless of state. Of course, you can create a WHERE clause that will do this, but this time
you'll use a UNION instead.

As I just explained, creating a UNION involves writing multiple SELECT statements. First look at the individual
statements:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI');

cust_name cust_contact cust_email

----------- ------------- ------------

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

--------- ------------ ----------

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first SELECT retrieves all rows in Illinois, Indiana, and Michigan by passing those state
abbreviations to the IN clause. The second SELECT uses a simple equality test to find all Fun4All
locations.

To combine these two statements, do the following:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

--------- ------------ ----------

Fun4All Denise L. Stephens dstephens@fun4all.com

Fun4All Jim Jones jjones@fun4all.com

Village Toys John Smith sales@villagetoys.com

The Toy Store Kim Howard NULL

The preceding statements are made up of both of the previous SELECT statements separated
by the UNION keyword. UNION instructs the DBMS to execute both SELECT statements and
combine the output into a single query result set.

As a point of reference, here is the same query using multiple WHERE clauses instead of a UNION:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

 OR cust_name = 'Fun4All';

In our simple example, the UNION might actually be more complicated than using a WHERE clause. But with more
complex filtering conditions, or if the data is being retrieved from multiple tables (and not just a single table), the UNION
could have made the process much simpler indeed.

UNION Limits There is no standard SQL limit to the number of SELECT statements
that can be combined with UNION statements. However, it is best to consult your
DBMS documentation to ensure that it does not enforce any maximum statement
restrictions of its own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Performance Issues Most good DBMSs use an internal query optimizer to
combine the SELECT statements before they are even processed. In theory, this
means that from a performance perspective, there should be no real difference
between using multiple WHERE clause conditions or a UNION. I say in theory,
because, in practice, most query optimizers don't always do as good a job as they
should. Your best bet is to test both methods to see which will work best for you.

UNION Rules

As you can see, unions are very easy to use. But there are a few rules governing exactly which can be combined:

A UNION must be comprised of two or more SELECT statements, each separated by the keyword UNION (so, if
combining four SELECT statements there would be three UNION keywords used).

Each query in a UNION must contain the same columns, expressions, or aggregate functions (although columns
need not be listed in the same order).

Column datatypes must be compatible: They need not be the exact same type, but they must be of a type that
the DBMS can implicitly convert (for example, different numeric types or different date types).

Aside from these basic rules and restrictions, unions can be used for any data retrieval tasks.

Including or Eliminating Duplicate Rows

Go back to the preceding section titled "Using UNION" and look at the sample SELECT statements used. You'll notice that
when executed individually, the first SELECT statement returns three rows, and the second SELECT statement returns
two rows. However, when the two SELECT statements are combined with a UNION, only four rows are returned, not five.

The UNION automatically removes any duplicate rows from the query result set (in other words, it behaves just as do
multiple WHERE clause conditions in a single SELECT would). Because there is a Fun4All location in Indiana, that row was
returned by both SELECT statements. When the UNION was used the duplicate row was eliminated.

This is the default behavior of UNION, but you can change this if you so desire. If you would, in fact, want all
occurrences of all matches returned, you can use UNION ALL instead of UNION.

Look at the following example:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION ALL

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

----------- ------------ ----------

Village Toys John Smith sales@villagetoys.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

Using UNION ALL, the DBMS does not eliminate duplicates. Therefore, the preceding example
returns five rows, one of them occurring twice.

UNION versus WHERE At the beginning of this lesson, I said that UNION almost
always accomplishes the same thing as multiple WHERE conditions. UNION ALL is the
form of UNION that accomplishes what cannot be done with WHERE clauses. If you
do, in fact, want all occurrences of matches for every condition (including
duplicates), you must use UNION ALL and not WHERE.

Sorting Combined Query Results

SELECT statement output is sorted using the ORDER BY clause. When combining queries with a UNION only one ORDER BY
clause may be used, and it must occur after the final SELECT statement. There is very little point in sorting part of a
result set one way and part another way, and so multiple ORDER BY clauses are not allowed.

The following example sorts the results returned by the previously used UNION:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All'

ORDER BY cust_name, cust_contact;

cust_name cust_contact cust_email

----------- ------------ ----------

Fun4All Denise L. Stephens dstephens@fun4all.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

Village Toys John Smith sales@villagetoys.com

This UNION takes a single ORDER BY clause after the final SELECT statement. Even though the
ORDER BY appears to only be a part of that last SELECT statement, the DBMS will in fact use it
to sort all the results returned by all the SELECT statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other UNION Types Some DBMSs support two additional types of UNION. EXCEPT
(sometimes called MINUS) can be used to only retrieve the rows that exist in the
first table but not in the second, and INTERSECT can be used to retrieve only the
rows that exist in both tables. In practice, however, these UNION types are rarely
used as the same results can be accomplished using joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to combine SELECT statements with the UNION operator. Using UNION, you can return
the results of multiple queries as one combined query, either including or excluding duplicates. The use of UNION can
greatly simplify complex WHERE clauses and retrieving data from multiple tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 15. Inserting Data
In this lesson, you will learn how to insert data into tables using the SQL INSERT statement.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Data Insertion
SELECT is undoubtedly the most frequently used SQL statement (which is why the last 14 lessons were dedicated to it).
But there are three other frequently used SQL statements that you should learn. The first one is INSERT. (You'll get to
the other two in the next lesson.)

As its name suggests, INSERT is used to insert (add) rows to a database table. Insert can be used in several ways:

To insert a single complete row

To insert a single partial row

To insert the results of a query

You'll now look at each of these.

INSERT and System Security Use of the INSERT statement might require special
security privileges in client-server DBMSs. Before you attempt to use INSERT, make
sure you have adequate security privileges to do so.

Inserting Complete Rows

The simplest way to insert data into a table is to use the basic INSERT syntax, which requires that you specify the table
name and the values to be inserted into the new row. Here is an example of this:

INSERT INTO Customers

VALUES('1000000006',

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA',

 NULL,

 NULL);

The above example inserts a new customer into the Customers table. The data to be stored in
each table column is specified in the VALUES clause, and a value must be provided for every
column. If a column has no value (for example, the cust_contact and cust_email columns
above), the NULL value should be used (assuming the table allows no value to be specified for
that column). The columns must be populated in the order in which they appear in the table
definition.

The INTO Keyword In some SQL implementations, the INTO keyword following
INSERT is optional. However, it is good practice to provide this keyword even if it is
not needed. Doing so will ensure that your SQL code is portable between DBMSs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although this syntax is indeed simple, it is not at all safe and should generally be avoided at all costs. The above SQL
statement is highly dependent on the order in which the columns are defined in the table. It also depends on
information about that order being readily available. Even if it is available, there is no guarantee that the columns will
be in the exact same order the next time the table is reconstructed. Therefore, writing SQL statements that depend on
specific column ordering is very unsafe. If you do so, something will inevitably break at some point.

The safer (and unfortunately more cumbersome) way to write the INSERT statement is as follows:

INSERT INTO Customers(cust_id,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country,

 cust_contact,

 cust_email)

VALUES('1000000006',

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA',

 NULL,

 NULL);

This example does the exact same thing as the previous INSERT statement, but this time the
column names are explicitly stated in parentheses after the table name. When the row is
inserted the DBMS will match each item in the columns list with the appropriate value in the
VALUES list. The first entry in VALUES corresponds to the first specified column name. The
second value corresponds to the second column name, and so on.

Because column names are provided, the VALUES must match the specified column names in the order in which they are
specified, and not necessarily in the order that the columns appear in the actual table. The advantage of this is that,
even if the table layout changes, the INSERT statement will still work correctly.

The following INSERT statement populates all the row columns (just as before), but it does so in a different order.
Because the column names are specified, the insertion will work correctly:

INSERT INTO Customers(cust_id,

 cust_contact,

 cust_email,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip)

VALUES('1000000006',

 NULL,

 NULL,

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111');

Always Use a Columns List As a rule, never use INSERT without explicitly
specifying the column list. This will greatly increase the probability that your SQL
will continue to function in the event that table changes occur.

Use VALUES Carefully Regardless of the INSERT syntax being used, the correct
number of VALUES must be specified. If no column names are provided, a value
must be present for every table column. If columns names are provided, a value
must be present for each listed column. If none is present, an error message will be
generated, and the row will not be inserted.

Inserting Partial Rows

As I just explained, the recommended way to use INSERT is to explicitly specify table column names. Using this syntax,
you can also omit columns. This means you only provide values for some columns, but not for others.

Look at the following example:

INSERT INTO Customers(cust_id,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

VALUES('1000000006',

 'Toy Land',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA');

In the examples given earlier in this lesson, values were not provided for two of the columns,
cust_contact and cust_email. This means there is no reason to include those columns in the
INSERT statement. This INSERT statement, therefore, omits the two columns and the two
corresponding values.

Omitting Columns You may omit columns from an INSERT operation if the table
definition so allows. One of the following conditions must exist:

The column is defined as allowing NULL values (no value at all).

A default value is specified in the table definition. This means the default
value will be used if no value is specified.

If you omit a value from a table that does not allow NULL values and does not have
a default, the DBMS will generate an error message, and the row will not be
inserted.

Inserting Retrieved Data

INSERT is usually used to add a row to a table using specified values. There is another form of INSERT that can be used
to insert the result of a SELECT statement into a table. This is known as INSERT SELECT, and, as its name suggests, it is
made up of an INSERT statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into your Customers table. Instead of reading one row
at a time and inserting it with INSERT, you can do the following:

Instructions Needed for the Next Example The following example imports data
from a table named CustNew into the Customers table. To try this example, create
and populate the CustNew table first. The format of the CustNew table should be the
same as the Customers table described in Appendix A. When populating CustNew, be
sure not to use cust_id values that were already used in Customers (the subsequent
INSERT operation will fail if primary key values are duplicated).

INSERT INTO Customers(cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_country)

SELECT cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country

FROM CustNew;

This example uses INSERT SELECT to import all the data from CustNew into Customers. Instead
of listing the VALUES to be inserted, the SELECT statement retrieves them from CustNew. Each
column in the SELECT corresponds to a column in the specified columns list. How many rows
will this statement insert? That depends on how many rows are in the CustNew table. If the
table is empty, no rows will be inserted (and no error will be generated because the operation
is still valid). If the table does, in fact, contain data, all that data is inserted into Customers.

Column Names in INSERT SELECT This example uses the same column names in
both the INSERT and SELECT statements for simplicity's sake. But there is no
requirement that the column names match. In fact, the DBMS does not even pay
attention to the column names returned by the SELECT. Rather, the column position
is used, so the first column in the SELECT (regardless of its name) will be used to
populate the first specified table column, and so on.

The SELECT statement used in an INSERT SELECT can include a WHERE clause to filter the data to be inserted.

Inserting Multiple Rows INSERT usually inserts only a single row. To insert
multiple rows you must execute multiple INSERT statements. The exception to this
rule is INSERT SELECT, which can be used to insert multiple rows with a single
statement—whatever the SELECT statement returns will be inserted by the INSERT.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copying from One Table to Another
There is another form of data insertion that does not use the INSERT statement at all. To copy the contents of a table
into a brand new table (one that is created on-the-fly) you can use the SELECT INTO statement.

Not Supported by DB2 DB2 does not support the use of SELECT INTO as described
here.

Unlike INSERT SELECT, which appends data to an existing table, SELECT INTO copies data into a new table (and depending
on the DBMS being used, can overwrite the table if it already exists).

INSERT SELECT versus SELECT INTO One way to explain the differences between
SELECT INTO and INSERT SELECT is that the former exports data while the later
imports data.

The following example demonstrates the use of SELECT INTO:

SELECT *

INTO CustCopy

FROM Customers;

This SELECT statement creates a new table named CustCopy and copies the entire contents of
the Customers table into it. Because SELECT * was used, every column in the Customers table
will be created (and populated) in the CustCopy table. To copy only a subset of the available
columns, explicit column names can be specified instead of the * wildcard character.

MySQL and Oracle use a slightly different syntax:

CREATE TABLE CustCopy AS

SELECT *

FROM Customers;

Here are some things to consider when using SELECT INTO:

Any SELECT options and clauses may be used including WHERE and GROUP BY.

Joins may be used to insert data from multiple tables.

Data may only be inserted into a single table regardless of how many tables the data was retrieved from.

Making Copies of Tables SELECT INTO is a great way to make copies of tables
before experimenting with new SQL statements. By making a copy first, you'll be
able to test your SQL on that copy instead of on live data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

More Examples Looking for more examples of INSERT usage? See the example
table population scripts described in Appendix A, "Sample Table Scripts."

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to INSERT rows into a database table. You learned several ways to use INSERT, and why
explicit column specification is preferred. You also learned how to use INSERT SELECT to import rows from another table,
and how to use SELECT INTO to export rows to a new table. In the next lesson, you'll learn how to use UPDATE and
DELETE to further manipulate table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 16. Updating and Deleting Data
In this lesson, you will learn how to use the UPDATE and DELETE statements to enable you to further manipulate your
table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Updating Data
To update (modify) data in a table the UPDATE statement is used. UPDATE can be used in two ways:

To update specific rows in a table

To update all rows in a table

Let's take a look at each of these uses.

Don't Omit the WHERE Clause Special care must be exercised when using
UPDATE, because it is all too easy to mistakenly update every row in your table.
Please read this entire section on UPDATE before using this statement.

UPDATE and Security Use of the UPDATE statement might require special security
privileges in client-server DBMSs. Before you attempt to use UPDATE, make sure
you have adequate security privileges to do so.

The UPDATE statement is very easy to use—some would say too easy. The basic format of an UPDATE statement is made
up of three parts:

The table to be updated

The column names and their new values

The filter condition that determines which rows should be updated

Let's take a look at a simple example. Customer 1000000005 now has an email address, and so his record needs
updating. The following statement performs this update:

UPDATE Customers

SET cust_email = 'kim@thetoystore.com'

WHERE cust_id = '1000000005';

The UPDATE statement always begins with the name of the table being updated. In this example, it is the Customers
table. The SET command is then used to assign the new value to a column. As used here, the SET clause sets the
cust_email column to the specified value:

SET cust_email = 'kim@thetoystore.com'

The UPDATE statement finishes with a WHERE clause that tells the DBMS which row to update. Without a WHERE clause,
the DBMS would update all the rows in the Customers table with this new email address—definitely not the desired
effect.

Updating multiple columns requires a slightly different syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE Customers

SET cust_contact = 'Sam Roberts',

 cust_email = 'sam@toyland.com'

WHERE cust_id = '1000000006';

When updating multiple columns, only a single SET command is used, and each column = value pair is separated by a
comma. (No comma is specified after the last column.) In this example, columns cust_contact and cust_email will both be
updated for customer 1000000006.

Using Subqueries in an UPDATE Statement Subqueries may be used in UPDATE
statements, enabling you to update columns with data retrieved with a SELECT
statement. Refer back to Lesson 11, "Working with Subqueries," for more
information on subqueries and their uses.

The FROM Keyword Some SQL implementations support a FROM clause in the
UPDATE statement that can be used to update the rows in one table with data from
another table. Refer to your DBMS documentation to see if it supports this feature.

To delete a column's value, you can set it to NULL (assuming the table is defined to allow NULL values). You can do this
as follows:

UPDATE Customers

SET cust_email = NULL

WHERE cust_id = '1000000005';

Here the NULL keyword is used to save no value to the cust_email column.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Deleting Data
To delete (remove) data from a table, the DELETE statement is used. DELETE can be used in two ways:

To delete specific rows from a table

To delete all rows from a table

You'll now take a look at each of these.

Don't Omit the WHERE Clause Special care must be exercised when using DELETE
because it is all too easy to mistakenly delete every row from your table. Please
read this entire section on DELETE before using this statement.

DELETE and Security Use of the DELETE statement might require special security
privileges in client-server DBMSs. Before you attempt to use DELETE, make sure you
have adequate security privileges to do so.

I already stated that UPDATE is very easy to use. The good (and bad) news is that DELETE is even easier to use.

The following statement deletes a single row from the Customers table:

DELETE FROM Customers

WHERE cust_id = '1000000006';

This statement should be self-explanatory. DELETE FROM requires that you specify the name of the table from which the
data is to be deleted. The WHERE clause filters which rows are to be deleted. In this example, only customer 1000000006
will be deleted. If the WHERE clause were omitted, this statement would have deleted every customer in the table.

The FROM Keyword In some SQL implementations, the FROM keyword following
DELETE is optional. However, it is good practice to always provide this keyword,
even if it is not needed. Doing this will ensure that your SQL code is portable
between DBMSs

DELETE takes no column names or wildcard characters. DELETE deletes entire rows, not columns. To delete specific
columns use an UPDATE statement.

Table Contents, Not Tables The DELETE statement deletes rows from tables, even
all rows from tables. But DELETE never deletes the table itself.

Faster Deletes If you really do want to delete all rows from a table, don't use
DELETE. Instead, use the TRUNCATE TABLE statement which accomplished the same
thing but does it much quicker (because data changes are not logged).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Guidelines for Updating and Deleting Data
The UPDATE and DELETE statements used in the previous section all have WHERE clauses, and there is a very good
reason for this. If you omit the WHERE clause, the UPDATE or DELETE will be applied to every row in the table. In other
words, if you execute an UPDATE without a WHERE clause, every row in the table will be updated with the new values.
Similarly if you execute DELETE without a WHERE clause, all the contents of the table will be deleted.

Here are some best practices that many SQL programmers follow:

Never execute an UPDATE or a DELETE without a WHERE clause unless you really do intend to update and delete
every row.

Make sure every table has a primary key (refer back to Lesson 12, "Joining Tables," if you have forgotten what
this is), and use it as the WHERE clause whenever possible. (You may specify individual primary keys, multiple
values, or value ranges.)

Before you use a WHERE clause with an UPDATE or a DELETE, first test it with a SELECT to make sure it is filtering
the right records—it is far too easy to write incorrect WHERE clauses.

Use database enforced referential integrity (refer back to Lesson 12 for this one, too) so that the DBMS will not
allow the deletion of rows that have data in other tables related to them.

Some DBMSs allow database administrators to impose restrictions that prevent the execution of UPDATE or
DELETE without a WHERE clause. If your DBMS supports this feature, consider using it.

Use With Caution The bottom line is that SQL has no Undo button. Be very careful
using UPDATE and DELETE, or you'll find yourself updating and deleting the wrong
data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use the UPDATE and DELETE statements to manipulate the data in your tables. You
learned the syntax for each of these statements, as well as the inherent dangers they expose. You also learned why
WHERE clauses are so important in UPDATE and DELETE statements, and you were given guidelines that should be
followed to help ensure that data does not get damaged inadvertently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 17. Creating and Manipulating Tables
In this lesson you'll learn the basics of table creation, alteration, and deletion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Tables
SQL is not used just for table data manipulation. Rather, SQL can be used to perform all database and table operations,
including the creation and manipulation of tables themselves.

There are generally two ways to create database tables:

Most DBMSs come with an administration tool that can be used to create and manage database tables
interactively.

Tables may also be manipulated directly with SQL statements.

To create tables programmatically, the CREATE TABLE SQL statement is used. It is worth noting that when you use
interactive tools, you are actually using SQL statements. Instead of your writing these statements, however, the
interface generates and executes the SQL seamlessly for you (the same is true for changes to existing tables).

Syntax Differences The exact syntax of the CREATE TABLE statement can vary
from one SQL implementation to another. Be sure to refer to your DBMS
documentation for more information on exactly what syntax and features it
supports.

Complete coverage of all the options available when creating tables is beyond the scope of this lesson, but here are the
basics. I'd recommend that you review your DBMS documentation for more information and specifics.

DBMS Specific Examples For examples of DBMS specific CREATE TABLE
statements, see the example table creation scripts described in Appendix A,
"Sample Table Scripts."

Basic Table Creation

To create a table using CREATE TABLE, you must specify the following information:

The name of the new table specified after the keywords CREATE TABLE.

The name and definition of the table columns separated by commas.

Some DBMSs require that you also specify the table location.

The following SQL statement creates the Products table used throughout this book:

CREATE TABLE Products

(

 prod_id CHAR(10) NOT NULL,

 vend_id CHAR(10) NOT NULL,

 prod_name CHAR(254) NOT NULL,

 prod_price DECIMAL(8,2) NOT NULL,

 prod_desc VARCHAR(1000) NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 prod_desc VARCHAR(1000) NULL

);

As you can see in the above statement, the table name is specified immediately following the
CREATE TABLE keywords. The actual table definition (all the columns) is enclosed within
parentheses. The columns themselves are separated by commas. This particular table is made
up of five columns. Each column definition starts with the column name (which must be
unique within the table), followed by the column's datatype. (Refer to Lesson 1,
"Understanding SQL," for an explanation of datatypes. In addition, Appendix D, "Using SQL
Datatypes," lists commonly used datatypes and their compatibility.) The entire statement is
terminated with a semicolon after the closing parenthesis.

I mentioned earlier that CREATE TABLE syntax varies greatly from one DBMS to another, and the simple script just seen
demonstrates this. While the statement will work as is on Oracle, PostgreSQL, SQL Server, and Sybase, for MySQL the
varchar must be replaced with text, and for DB2 the NULL must be removed from the final column. This is why I had to
create a different SQL table creation script for each DBMS (as explained in Appendix A).

Statement Formatting As you will recall, whitespace is ignored in SQL
statements. Statements can be typed on one long line or broken up over many
lines. It makes no difference at all. This enables you to format your SQL as best
suits you. The preceding CREATE TABLE statement is a good example of SQL
statement formatting—the code is specified over multiple lines, with the column
definitions indented for easier reading and editing. Formatting your SQL in this way
is entirely optional, but highly recommended.

Replacing Existing Tables When you create a new table, the table name specified
must not exist or you'll generate an error. To prevent accidental overwriting, SQL
requires that you first manually remove a table (see later sections for details) and
then recreate it, rather than just overwriting it.

Working with NULL Values

Back in Lesson 4, "Filtering Data," you learned that NULL values are no values or the lack of a value. A column that
allows NULL values also allows rows to be inserted with no value at all in that column. A column that does not allow NULL
values does not accept rows with no value—in other words, that column will always be required when rows are inserted
or updated.

Every table column is either a NULL column or a NOT NULL column, and that state is specified in the table definition at
creation time. Take a look at the following example:

CREATE TABLE Orders

(

 order_num INTEGER NOT NULL,

 order_date DATETIME NOT NULL,

 cust_id CHAR(10) NOT NULL

);

This statement creates the Orders table used throughout this book. Orders contains three
columns: order number, order date, and the customer ID. All three columns are required, and
so each contains the keyword NOT NULL. This will prevent the insertion of columns with no
value. If someone tries to insert no value, an error will be returned, and the insertion will fail.

This next example creates a table with a mixture of NULL and NOT NULL columns:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE Vendors

(

 vend_id CHAR(10) NOT NULL,

 vend_name CHAR(50) NOT NULL,

 vend_address CHAR(50) ,

 vend_city CHAR(50) ,

 vend_state CHAR(5) ,

 vend_zip CHAR(10) ,

 vend_country CHAR(50)

);

This statement creates the Vendors table used throughout this book. The vendor ID and
vendor name columns are both required, and are, therefore, specified as NOT NULL. The five
remaining columns all allow NULL values, and so NOT NULL is not specified. NULL is the default
setting, so if NOT NULL is not specified NULL is assumed.

Specifying NULL Most DBMSs treat the absence of NOT NULL to mean NULL.
However, not all do. DB2 requires the keyword NULL and will generate an error if it
is not specified. Refer to your DBMS documentation for complete syntax
information.

Primary Keys and NULL Values Back in Lesson 1, you learned that primary keys
are columns whose values uniquely identify every row in a table. Only columns that
do not allow NULL values can be used in primary keys. Columns that allow no value
at all cannot be used as unique identifiers.

Understanding NULL Don't confuse NULL values with empty strings. A NULL value
is the lack of a value; it is not an empty string. If you were to specify '' (two single
quotes with nothing in between them), that would be allowed in a NOT NULL column.
An empty string is a valid value; it is not no value. NULL values are specified with
the keyword NULL, not with an empty string.

Specifying Default Values

SQL enables you to specify default values to be used if no value is specified when a row is inserted. Default values are
specified using the DEFAULT keyword in the column definitions in the CREATE TABLE statement.

Look at the following example:

CREATE TABLE OrderItems

(

 order_num INTEGER NOT NULL,

 order_item INTEGER NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 order_item INTEGER NOT NULL,

 prod_id CHAR(10) NOT NULL,

 quantity INTEGER NOT NULL DEFAULT 1,

 item_price DECIMAL(8,2) NOT NULL

);

This statement creates the OrderItems table that contains the individual items that make up an
order. (The order itself is stored in the Orders table.) The quantity column contains the quantity
for each item in an order. In this example, adding the text DEFAULT 1 to the column
description instructs the DBMS to use a quantity of 1 if no quantity is specified.

Default values are often used to store values in date or time stamp columns. For example, the system date can be used
as a default date by specifying the function or variable used to refer to the system date. For example, MySQL users
might specify DEFAULT CURRENT_DATE(), while Oracle users might specify DEFAULT SYSDATE, and SQL Server users might
specify DEFAULT GETDATE(). Unfortunately, the command used to obtain the system date is different in just about every
DBMS. Table 17.1 lists the syntax for some DBMSs. If yours is not listed here consult your DBMSs documentation.

Table 17.1. Obtaining The System Date
DBMS Function/Variable

Access NOW()

DB2 CURRENT_DATE

MySQL CURRENT_DATE()

Oracle SYSDATE

PostgreSQL CURRENT_DATE

SQL Server GETDATE()

Sybase GETDATE()

Using DEFAULT Instead of NULL Values Many database developers use DEFAULT
values instead of NULL columns, especially in columns that will be used in
calculations or data groupings.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Updating Tables
To update table definitions, the ALTER TABLE statement is used. Although all DBMSs support ALTER TABLE, what they
allow you to alter varies dramatically from one to another. Here are some points to consider when using ALTER TABLE:

Ideally, tables should never be altered after they contain data. You should spend sufficient time anticipating
future needs during the table design process so that extensive changes are not required later on.

All DBMSs allow you to add columns to existing tables, although some restrict the datatypes that may be added
(as well as NULL and DEFAULT usage).

Many DBMSs do not allow you to remove or change columns in a table.

Most DBMSs allow you to rename columns.

Many DBMSs restrict the kinds of changes you can make on columns that are populated and enforce fewer
restrictions on unpopulated columns.

As you can see, making changes to existing tables is neither simple nor consistent. Be sure to refer to your own DBMS
documentation to determine exactly what you can alter.

To change a table using ALTER TABLE, you must specify the following information:

The name of the table to be altered after the keywords ALTER TABLE. (The table must exist or an error will be
generated.)

The list of changes to be made.

Because adding columns to an existing table is about the only operation supported by all DBMSs, I'll use that for an
example:

ALTER TABLE Vendors

ADD vend_phone CHAR(20);

This statement adds a column named vend_phone to the Vendors table. The datatype must be
specified.

Other alter operations, for example, changing or dropping columns, or adding constraints or keys, use a similar syntax.
(Note that the following example will not work with all DBMSs):

ALTER TABLE Vendors

DROP COLUMN vend_phone;

Complex table structure changes usually require a manual move process involving these steps:

Create a new table with the new column layout.

Use the INSERT SELECT statement (see Lesson 15, "Inserting Data," for details of this statement) to copy the
data from the old table to the new table. Use conversion functions and calculated fields, if needed.

Verify that the new table contains the desired data.

Rename the old table (or delete it, if you are really brave).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rename the old table (or delete it, if you are really brave).

Rename the new table with the name previously used by the old table.

Recreate any triggers, stored procedures, indexes, and foreign keys as needed.

Use ALTER TABLE Carefully Use ALTER TABLE with extreme caution, and be sure
you have a complete set of backups (both schema and data) before proceeding.
Database table changes cannot be undone—and if you add columns you don't need,
you might not be able to remove them. Similarly, if you drop a column that you do
need, you might lose all the data in that column.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Deleting Tables
Deleting tables (actually removing the entire table, not just the contents) is very easy—arguably too easy. Tables are
deleted using the DROP TABLE statement:

DROP TABLE CustCopy;

This statement deletes the CustCopy table. (You created that one in Lesson 15.) There is no
confirmation, nor is there an undo—executing the statement will permanently remove the
table.

Using Relational Rules to Prevent Accidental Deletion Many DBMSs allow you
to enforce rules that prevent the dropping of tables that are related to other tables.
When these rules are enforced, if you issue a DROP TABLE statement against a table
that is part of a relationship, the DBMS blocks the operation until the relationship
was removed. It is a good idea to enable these options, if available, to prevent the
accidental dropping of needed tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Renaming Tables
Table renaming is supported differently by each DBMS. There is no hard and fast standard for this operation. DB2,
MySQL, Oracle, and PostgreSQL users can use the RENAME statement. SQL Server and Sybase users can use the
supplied sp_rename stored procedure.

The basic syntax for all rename operations requires that you specify the old name and a new name. However, there are
DBMS implementation differences. Refer to your own DBMS documentation for details on supported syntax.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned several new SQL statements. CREATE TABLE is used to create new tables, ALTER TABLE is used
to change table columns (or other objects like constraints or indexes), and DROP TABLE is used to completely delete a
table. These statements should be used with extreme caution, and only after backups have been made. As the exact
syntax of each of these statements varies from one DBMS to another, you should consult your own DBMS
documentation for more information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 18. Using Views
In this lesson you'll learn exactly what views are, how they work, and when they should be used. You'll also see how
views can be used to simplify some of the SQL operations performed in earlier lessons.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Views
Views are virtual tables. Unlike tables that contain data, views simply contain queries that dynamically retrieve data
when used.

MySQL Support As this book goes to press, MySQL still does not support views
(support for views is planned for MySQL 5). As such, the examples in this lesson
will not work with MySQL at this time.

The best way to understand views is to look at an example. Back in Lesson 12, "Joining Tables," you used the following
SELECT statement to retrieve data from three tables:

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num

 AND prod_id = 'RGAN01';

That query was used to retrieve the customers who had ordered a specific product. Anyone needing this data would
have to understand the table structure, as well as how to create the query and join the tables. To retrieve the same
data for another product (or for multiple products), the last WHERE clause would have to be modified.

Now imagine that you could wrap that entire query in a virtual table called ProductCustomers. You could then simply do
the following to retrieve the same data:

SELECT cust_name, cust_contact

FROM ProductCustomers

WHERE prod_id = 'RGAN01';

This is where views come into play. ProductCustomers is a view, and as a view, it does not contain any columns or data.
Instead it contains a query—the same query used above to join the tables properly.

DBMS Consistency You'll be relieved to know that view creation syntax is
supported pretty consistently by all the major DBMSs.

Why Use Views

You've already seen one use for views. Here are some other common uses:

To reuse SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To reuse SQL statements.

To simplify complex SQL operations. After the query is written, it can be reused easily, without having to know
the details of the underlying query itself.

To expose parts of a table instead of complete tables.

To secure data. Users can be given access to specific subsets of tables instead of to entire tables.

To change data formatting and representation. Views can return data formatted and presented differently from
their underlying tables.

For the most part, after views are created, they can be used in the same way as tables. You can perform SELECT
operations, filter and sort data, join views to other views or tables, and possibly even add and update data. (There are
some restrictions on this last item. More on that in a moment.)

The important thing to remember is views are just that, views into data stored elsewhere. Views contain no data
themselves, so the data they return is retrieved from other tables. When data is added or changed in those tables, the
views will return that changed data.

Performance Issues Because views contain no data, any retrieval needed to
execute a query must be processed every time the view is used. If you create
complex views with multiple joins and filters, or if you nest views, you may find that
performance is dramatically degraded. Be sure you test execution before deploying
applications that use views extensively.

View Rules and Restrictions

Before you create views yourself, there are some restrictions of which you should be aware. Unfortunately, the
restrictions tend to be very DBMS specific, so check your own DBMS documentation before proceeding.

Here are some of the most common rules and restrictions governing view creation and usage:

Like tables, views must be uniquely named. (They cannot be named with the name of any other table or view).

There is no limit to the number of views that can be created.

To create views, you must have security access. This is usually granted by the database administrator.

Views can be nested; that is, a view may be built using a query that retrieves data from another view. The
exact number of nested levels allowed varies from DBMS to DBMS. (Nesting views might seriously degrade
query performance, so test this thoroughly before using it in production environments.)

Many DBMSs prohibit the use of the ORDER BY clause in view queries.

Some DBMSs require that every column returned be named—this will require the use of aliases if columns are
calculated fields. (See Lesson 7, "Creating Calculated Fields," for more information on column aliases.)

Views cannot be indexed, nor can they have triggers or default values associated with them.

Some DBMSs treat views as read-only queries—meaning you can retrieve data from views but not write data
back to the underlying tables. Refer to your DBMS documentation for details.

Some DBMSs allow you to create views that do not allow rows to be inserted or updated if that insertion or
update will cause that row to no longer be part of the view. For example, if you have a view that retrieves only
customers with email addresses, updating a customer to remove his email address would make that customer
fall out of the view. This is the default behavior and is allowed, but depending on your DBMS you might be able
to prevent this from occurring.

Refer to Your DBMS Documentation That's a long list of rules, and your own
DBMS documentation will likely contain additional rules, too. It is worth taking the
time to understand what restrictions you must adhere to before creating views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Views
So now that you know what views are (and the rules and restrictions that govern them), let's look at view creation.

Views are created using the CREATE VIEW statement. Like CREATE TABLE, CREATE VIEW can only be used to create a view
that does not exist.

To remove a view, the DROP statement is used. The syntax is simply DROP VIEW
viewname;.

To overwrite (or update) a view you must first DROP it and then recreate it.

Using Views to Simplify Complex Joins

One of the most common uses of views is to hide complex SQL, and this often involves joins. Look at the following
statement:

CREATE VIEW ProductCustomers AS

SELECT cust_name, cust_contact, prod_id

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num;

This statement creates a view named ProductCustomers, which joins three tables to return a list
of all customers who have ordered any product. If you were to SELECT * FROM
ProductCustomers, you'd list every customer who ordered anything.

CREATE VIEW and SQL Server Unlike most SQL statements, Microsoft SQL Server
does not support the use of a semicolon after a CREATE VIEW statement.

To retrieve a list of customers who ordered product RGAN01 you can do the following:

SELECT cust_name, cust_contact

FROM ProductCustomers

WHERE prod_id = 'RGAN01';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_name cust_contact

------------------- ------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

This statement retrieves specific data from the view by issuing a WHERE clause. When the
DBMS processes the request, it adds the specified WHERE clause to any existing WHERE
clauses in the view query so that the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements. Using views, you can write the
underlying SQL once and then reuse it as needed.

Creating Reusable Views It is a good idea to create views that are not tied to
specific data. For example, the view created above returns customers for all
products, not just product RGAN01 (for which the view was first created). Expanding
the scope of the view enables it to be reused, making it even more useful. It also
eliminates the need for you to create and maintain multiple similar views.

Using Views to Reformat Retrieved Data

As mentioned above, another common use of views is for reformatting retrieved data. The following SELECT statement
(from Lesson 7, "Creating Calculated Fields") returns vendor name and location in a single combined calculated column:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax (as explained back in Lesson 7):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

Now suppose that you regularly needed results in this format. Rather than perform the concatenation each time it was
needed, you could create a view and use that instead. To turn this statement into a view, you can do the following:

CREATE VIEW VendorLocations AS

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors;

Here's the same statement using || syntax:

CREATE VIEW VendorLocations AS

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors;

This statement creates a view using the exact same query as the previous SELECT statement.
To retrieve the data to create all mailing labels, simply do the following:

SELECT *

FROM VendorLocations;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

SELECT Restrictions All Apply Earlier in this lesson I stated that the syntax used
to create views was rather consistent between DBMSs. So why multiple versions of
statements? A view simply wraps a SELECT statement, and the syntax of that SELECT
must adhere to all the rules and restrictions of the DBMS being used.

Using Views to Filter Unwanted Data

Views are also useful for applying common WHERE clauses. For example, you might want to define a CustomerEMailList
view so that it filters out customers without email addresses. To do this, you can use the following statement

CREATE VIEW CustomerEMailList AS

SELECT cust_id, cust_name, cust_email

FROM Customers

WHERE cust_email IS NOT NULL;

Obviously, when sending email to a mailing list you'd want to ignore users who have no email
address. The WHERE clause here filters out those rows that have NULL values in the cust_email
columns so that they'll not be retrieved.

View CustomerEMailList can now be used like any table.

SELECT *

FROM CustomerEMailList;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id cust_name cust_email

---------- ------------ ---------------------

1000000001 Village Toys sales@villagetoys.com

1000000003 Fun4All jjones@fun4all.com

1000000004 Fun4All dstephens@fun4all.com

WHERE Clauses and WHERE Clauses If a WHERE clause is used when retrieving
data from the view, the two sets of clauses (the one in the view and the one passed
to it) will be combined automatically.

Using Views with Calculated Fields

Views are exceptionally useful for simplifying the use of calculated fields. The following is a SELECT statement introduced
in Lesson 7. It retrieves the order items for a specific order, calculating the expanded price for each item:

SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price expanded_price

------- -------- ---------- --------------

RGAN01 5 4.9900 24.9500

BR03 5 11.9900 59.9500

BNBG01 10 3.4900 34.9000

BNBG02 10 3.4900 34.9000

BNBG03 10 3.4900 34.9000

To turn this into a view, do the following:

CREATE VIEW OrderItemsExpanded AS

SELECT order_num,

 prod_id,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems;

To retrieve the details for order 20008 (the output above), do the following:

SELECT *

FROM OrderItemsExpanded

WHERE order_num = 20008;

order_num prod_id quantity item_price expanded_price

--------- ------- -------- ---------- --------------

20008 RGAN01 5 4.99 24.95

20008 BR03 5 11.99 59.95

20008 BNBG01 10 3.49 34.90

20008 BNBG02 10 3.49 34.90

20008 BNBG03 10 3.49 34.90

As you can see, views are easy to create and even easier to use. Used correctly, views can greatly simplify complex
data manipulation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Views are virtual tables. They do not contain data, but instead, they contain queries that retrieve data as needed. Views
provide a level of encapsulation around SQL SELECT statements and can be used to simplify data manipulation, as well
as to reformat or secure underlying data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 19. Working with Stored Procedures
In this lesson, you'll learn what stored procedures are, why they are used, and how. You'll also look at the basic syntax
for creating and using them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Stored Procedures
Most of the SQL statements that we've used thus far are simple in that they use a single statement against one or more
tables. Not all operations are that simple—often, multiple statements will be needed to perform a complete operation.
For example, consider the following scenario:

To process an order, checks must be made to ensure that items are in stock.

If items are in stock, they need to be reserved so that they are not sold to anyone else, and the available
quantity must be reduced to reflect the correct amount in stock.

Any items not in stock need to be ordered; this requires some interaction with the vendor.

The customer needs to be notified as to which items are in stock (and can be shipped immediately) and which
are back ordered.

This is obviously not a complete example, and it is even beyond the scope of the example tables that we have been
using in this book, but it will suffice to help make a point. Performing this process requires many SQL statements
against many tables. In addition, the exact SQL statements that need to be performed and their order are not fixed;
they can (and will) vary according to which items are in stock and which are not.

How would you write this code? You could write each of the SQL statements individually and execute other statements
conditionally, based on the result. You'd have to do this every time this processing was needed (and in every
application that needed it).

You could create a stored procedure. Stored procedures are simply collections of one or more SQL statements saved for
future use. You can think of them as batch files, although in truth they are more than that.

Access and MySQL Stored procedures are not supported in Access. In addition, as
this book goes to press, MySQL v4.x (the current version) does not support stored
procedures (support is planned for MySQL 5).

There's a Lot More to It Stored procedures are complex, and full coverage of the
subject requires more space than can be allocated here. This lesson will not teach
you all you need to know about stored procedures. Rather, it is intended simply to
introduce the subject so that you are familiar with what they are and what they can
do. As such, the examples presented here provide syntax for Oracle and SQL
Server only.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Why to Use Stored Procedures
Now that you know what stored procedures are, why use them? There are lots of reasons, but here are the primary
ones:

To simplify complex operations (as seen in the previous example) by encapsulating processes into a single
easy-to-use unit.

To ensure data consistency by not requiring that a series of steps be created over and over. If all developers
and applications use the same stored procedure, then the same code will be used by all.

An extension of this is to prevent errors. The more steps that need to be performed, the more likely it is that
errors will be introduced. Preventing errors ensures data consistency.

To simplify change management. If tables, column names, or business logic (or just about anything) changes,
then only the stored procedure code needs to be updated, and no one else will need even to be aware that
changes were made.

An extension of this is security. Restricting access to underlying data via stored procedures reduces the chance
of data corruption (unintentional or otherwise).

Because stored procedures are usually stored in a compiled form, the DBMS has to do less work to process the
command. This results in improved performance.

There are SQL language elements and features that are available only within single requests. Stored procedures
can use these to write code that is more powerful and flexible.

In other words, there are three primary benefits—simplicity, security, and performance. Obviously all are extremely
important. Before you run off to turn all your SQL code into stored procedures, here's the downside:

Stored procedure syntax varies dramatically from one DBMS to the next. In fact, it is close to impossible to
write truly portable stored procedures. Having said that, how the stored procedures call themselves (their
names and how data is passed to them) can be kept relatively portable so that if you need to change to another
DBMS at least your client application code may not need changing.

Stored procedures tend to be more complex to write than basic SQL statements, and writing them requires a
greater degree of skill and experience. As a result, many database administrators restrict stored procedure
creation rights as a security measure (primarily due to the previous bullet item).

Nonetheless, stored procedures are very useful and should be used. In fact, most DBMSs come with all sorts of stored
procedures that are used for database and table management. Refer to your DBMS documentation for more information
on these.

Can't Write Them? You Can Still Use Them Most DBMSs distinguish the security
and access needed to write stored procedures from the security and access needed
to execute them. This is a good thing; even if you can't (or don't want to) write
your own stored procedures, you can still execute them when appro priate.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Executing Stored Procedures
Stored procedures are executed far more often than they are written, so we'll start there. The SQL statement to
execute a stored procedure is simply EXECUTE. EXECUTE takes the name of the stored procedure and any parameters
that need to be passed to it. Take a look at this example:

EXECUTE AddNewProduct('JTS01',

 'Stuffed Eiffel Tower',

 6.49,

 'Plush stuffed toy with the text La Tour Eiffel in red white and blue')

Here a stored procedure named AddNewProduct is executed; it adds a new product to the
Products table. AddNewProduct takes four parameters—the vendor ID (the primary key from the
Vendors table), the product name, price, and description. These four parameters match four
expected variables within the stored procedure (defined as part of the stored procedure
itself). The stored procedure adds a new row to the Products table and assigns these passed
attributes to the appropriate columns.

In the Products table you'll notice that there is another column that needs a value: the prod_id column, which is the
table's primary key. Why was this value not passed as an attribute to the stored procedure? To ensure that IDs are
generated properly, it is safer to have that process automated (and not rely on end users). That is why a stored
procedure is used in this example. This is what this stored procedure does:

It validates the passed data, ensuring that all four parameters have values.

It generates a unique ID to be used as the primary key.

It inserts the new product into the Products table, storing the generated primary key and passed data in the
appropriate columns.

This is the basic form of stored procedure execution. Depending on the DBMS used, other execution options include the
following:

Optional parameters, with default values assumed if a parameter is not provided

Out-of-order parameters, specified in parameter=value pairs

Output parameters, allowing the stored procedure to update a parameter for use in the executing application

Data retrieved by a SELECT statement

Return codes, enabling the stored procedure to return a value to the executing application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you a taste for what is involved, let's look at a
simple example—a stored procedure that counts the number of customers in a mailing list who have email addresses.

Here is the Oracle version:

CREATE PROCEDURE MailingListCount

(ListCount OUT NUMBER)

IS

BEGIN

 SELECT * FROM Customers

 WHERE NOT cust_email IS NULL;

 ListCount := SQL%ROWCOUNT;

END;

This stored procedure takes a single parameter named ListCount. Instead of passing a value to
the stored procedure, this parameter passes a value back from it. The keyword OUT is used to
specify this behavior. Oracle supports parameters of types IN (those passed to stored
procedures), OUT (those passed from stored procedures, as we've used here), and INOUT
(those used to pass parameters to and from stored procedures). The stored procedure code
itself is enclosed within BEGIN and END statements, and here a simple SELECT is performed to
retrieve the customers with email addresses. Then ListCount (the output parameter passed) is
set with the number of rows that were retrieved.

Here's the Microsoft SQL Server version:

CREATE PROCEDURE MailingListCount

AS

DECLARE @cnt INTEGER

SELECT @cnt = COUNT(*)

FROM Customers

WHERE NOT cust_email IS NULL;

RETURN @cnt;

This stored procedure takes no parameters at all. The calling application retrieves the value
by using SQL Server's return code support. Here a local variable named @cnt is declared using
the DECLARE statement (all local variables in SQL Server are named starting with a @). This
variable is then used in the SELECT statement so that it contains the value returned by the
COUNT() function. Finally, the RETURN statement is used to return the count to the calling
application as RETURN @cnt.

Here's another example, this time to insert a new order in the Orders table. This is a SQL Server–only example, but it
demonstrates some useful stored procedure uses and techniques:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE PROCEDURE NewOrder @cust_id CHAR(10)

AS

-- Declare variable for order number

DECLARE @order_num INTEGER

-- Get current highest order number

SELECT @order_num=MAX(order_num)

FROM Orders

-- Determine next order number

SELECT @order_num=@order_num+1

-- Insert new order

INSERT INTO Orders(order_num, order_date, cust_id)

VALUES(@order_num, GETDATE(), @cust_id)

-- Return order number

RETURN @order_num;

This stored procedure creates a new order in the Orders table. It takes a single parameter, the
ID of the customer placing the order. The other two table columns, the order number and
order date, are generated automatically within the stored procedure itself. The code first
declares a local variable to store the order number. Next, the current highest order number is
retrieved (using a MAX() function) and incremented (using a SELECT statement). Then the
order is inserted with an INSERT statement using the newly generated order number, the
current system date (retrieved using the GETDATE() function), and the passed customer ID.
Finally, the order number (which is needed to process order items) is returned as RETURN
@order_num. Notice that the code is commented—this should always be done when writing
stored procedures.

Comment Your Code All code should be commented, and stored procedures are
no different. Adding comments will not affect performance at all, so there is no
downside here (other than the time it takes to write them). The benefits are
numerous and include making it easier for others (and yourself) to understand the
code and safer to make changes at a later date.

The standard way to comment code is to precede it by -- (two hyphens). Some
DBMSs support alternate comment syntax, but all support –- and so you are best
off using that.

Here's a quite different version of the same SQL Server code:

CREATE PROCEDURE NewOrder @cust_id CHAR(10)

AS

-- Insert new order

INSERT INTO Orders(cust_id)

VALUES(@cust_id)

-- Return order number

SELECT order_num = @@IDENTITY;

This stored procedure also creates a new order in the Orders table. This time the DBMS itself

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This stored procedure also creates a new order in the Orders table. This time the DBMS itself
generates the order number. Most DBMSs support this type of functionality; SQL Server refers
to these auto-incrementing columns as Identity fields (other DBMSs use names such as Auto
Number or Sequences). Again, a single parameter is passed: the customer ID of the customer
placing the order. The order number and order date are not specified at all—the DBMS uses a
default value for the date (the GETDATE() function), and the order number is generated
automatically. How can you find out what the generated ID is? SQL Server makes that
available in the global variable @@IDENTITY, which is returned to the calling application (this
time using a SELECT statement).

As you can see, with stored procedures there are often many different ways to accomplish the same task. The method
you choose will often be dictated by the features of the DBMS you are using.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what stored procedures are and why they are used. You also learned the basics of stored
procedure execution and creation syntax, and you saw some of the ways these can be used. Your own DBMS probably
offers some form of these functions, as well as others not mentioned here. Refer to your DBMS documentation for more
details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 20. Managing Transaction Processing
In this lesson, you'll learn what transactions are and how to use COMMIT and ROLLBACK statements to manage
transaction processing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Transaction Processing
Transaction processing is used to maintain database integrity by ensuring that batches of SQL operations execute
completely or not at all.

As explained back in Lesson 12, "Joining Tables," relational databases are designed so that data is stored in multiple
tables to facilitate easier data manipulation, management, and reuse. Without going in to the hows and whys of
relational database design, take it as a given that well-designed database schemas are relational to some degree.

The Orders tables that you've been using in the past 18 lessons are a good example of this. Orders are stored in two
tables: Orders stores actual orders, and OrderItems stores the individual items ordered. These two tables are related to
each other using unique IDs called primary keys (as discussed in Lesson 1, "Understanding SQL"). These tables, in turn,
are related to other tables containing customer and product information.

The process of adding an order to the system is as follows:

1. Check if the customer is already in the database. If not, add him or her.

2. Retrieve the customer's ID.

3. Add a row to the Orders table associating it with the customer ID.

4. Retrieve the new order ID assigned in the Orders table.

5. Add one row to the OrderItems table for each item ordered, associating it with the Orders table by the retrieved
ID (and with the Products table by product ID).

Now imagine that some database failure (for example, out of disk space, security restrictions, table locks) prevents this
entire sequence from completing. What would happen to your data?

Well, if the failure occurred after the customer was added and before the Orders table was added, there is no real
problem. It is perfectly valid to have customers without orders. When you run the sequence again, the inserted
customer record will be retrieved and used. You can effectively pick up where you left off.

But what if the failure occurred after the Orders row was added, but before the OrderItems rows were added? Now you'd
have an empty order sitting in your database.

Worse, what if the system failed during adding the OrderItems rows? Now you'd end up with a partial order in your
database, but you wouldn't know it.

How do you solve this problem? That's where Transaction Processing comes in. Transaction Processing is a mechanism
used to manage sets of SQL operations that must be executed in batches so as to ensure that databases never contain
the results of partial operations. With Transaction Processing, you can ensure that sets of operations are not aborted
mid-processing—they either execute in their entirety or not at all (unless explicitly instructed otherwise). If no error
occurs, the entire set of statements is committed (written) to the database tables. If an error does occur, then a
rollback (undo) can occur to restore the database to a known and safe state.

So, looking at the same example, this is how the process would work:

1. Check if the customer is already in the database; if not add him or her.

2. Commit the customer information.

3. Retrieve the customer's ID.

4. Add a row to the Orders table.

5. If a failure occurs while adding the row to Orders, roll back.

6. Retrieve the new order ID assigned in the Orders table.

7. Add one row to the OrderItems table for each item ordered.

8. If a failure occurs while adding rows to OrderItems, roll back all the OrderItems rows added and the Orders row.

When working with transactions and transaction processing, there are a few keywords that'll keep reappearing. Here
are the terms you need to know:

Transaction A block of SQL statements

Rollback The process of undoing specified SQL statements

Commit Writing unsaved SQL statements to the database tables

Savepoint A temporary placeholder in a transaction set to which you can issue a rollback (as opposed to rolling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Savepoint A temporary placeholder in a transaction set to which you can issue a rollback (as opposed to rolling
back an entire transaction)

Which Statements Can You Roll Back? Transaction processing is used to
manage INSERT, UPDATE, and DELETE statements. You cannot roll back SELECT
statements. (There would not be much point in doing so anyway.) You cannot roll
back CREATE or DROP operations. These statements may be used in a transaction
block, but if you perform a rollback they will not be undone.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Controlling Transactions
Now that you know what transactions processing is, let's look at what is involved in managing transactions.

Implementation Differences The exact syntax used to implement transaction
processing differs from one DBMS to another. Refer to your DBMS documentation
before proceeding.

The key to managing transactions involves breaking your SQL statements into logical chunks and explicitly stating when
data should be rolled back and when it should not.

Some DBMSs require that you explicitly mark the start and end of transaction blocks. In SQL Server, for example, you
can do the following:

BEGIN TRANSACTION

...

COMMIT TRANSACTION

In this example, any SQL between the BEGIN TRANSACTION and COMMIT TRANSACTION
statements must be executed entirely or not at all.

The equivalent code in MySQL is:

START TRANSACTION

...

PostgreSQL uses the ANSI SQL syntax:

BEGIN;

...

Other DBMSs use variations of the above.

Using ROLLBACK

The SQL ROLLBACK command is used to roll back (undo) SQL statements, as seen in this next statement:

DELETE FROM Orders;

ROLLBACK;

In this example, a DELETE operation is performed and then undone using a ROLLBACK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, a DELETE operation is performed and then undone using a ROLLBACK
statement. Although not the most useful example, it does demonstrate that, within a
transaction block, DELETE operations (like INSERT and UPDATE operations) are never final.

Using COMMIT

Usually SQL statements are executed and written directly to the database tables. This is known as an implicit commit—
the commit (write or save) operation happens automatically.

Within a transaction block, however, commits might not occur implicitly. This, too, is DBMS specific. Some DBMSs treat
a transaction end as an implicit commit; others do not.

To force an explicit commit, the COMMIT statement is used. The following is a SQL Server example:

BEGIN TRANSACTION

DELETE OrderItems WHERE order_num = 12345

DELETE Orders WHERE order_num = 12345

COMMIT TRANSACTION

In this SQL Server example, order number 12345 is deleted entirely from the system. Because
this involves updating two database tables, Orders and OrderItems, a transaction block is used
to ensure that the order is not partially deleted. The final COMMIT statement writes the change
only if no error occurred. If the first DELETE worked, but the second failed, the DELETE would
not be committed.

To accomplish the same thing in Oracle, you can do the following:

DELETE OrderItems WHERE order_num = 12345;

DELETE Orders WHERE order_num = 12345;

COMMIT;

Using Savepoints

Simple ROLLBACK and COMMIT statements enable you to write or undo an entire transaction. Although this works for
simple transactions, more complex transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a single transaction. If an error occurs, you only
want to roll back to the point before the Orders row was added. You do not want to roll back the addition to the
Customers table (if there was one).

To support the rollback of partial transactions, you must be able to put placeholders at strategic locations in the
transaction block. Then, if a rollback is required, you can roll back to one of the placeholders.

In SQL, these placeholders are called savepoints. To create one in MySQL and Oracle, the SAVEPOINT statement is used,
as follows:

SAVEPOINT delete1;

In SQL Server and Sybase, you do the following:

SAVE TRANSACTION delete1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each savepoint takes a unique name that identifies it so that, when you roll back, the DBMS knows where you are
rolling back to. To roll back to this savepoint, do the following in SQL Server:

ROLLBACK TRANSACTION delete1;

In MySQL and Oracle you can do the following:

ROLLBACK TO delete1;

The following is a complete SQL Server example:

BEGIN TRANSACTION

INSERT INTO Customers(cust_id, cust_name)

VALUES('1000000010', 'Toys Emporium');

SAVE TRANSACTION StartOrder;

INSERT INTO Orders(order_num, order_date, cust_id)

VALUES(20100,'2001/12/1','1000000010');

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price)

VALUES(20010, 1, 'BR01', 100, 5.49);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price)

VALUES(20010, 2, 'BR03', 100, 10.99);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

COMMIT TRANSACTION

Here are a set of four INSERT statements enclosed within a transaction block. A savepoint is
defined after the first INSERT so that, if any of the subsequent INSERT operations fail, the
transaction is only rolled back that far. In SQL Server, a variable named @@ERROR can be
inspected to see if an operation succeeded. (Other DBMSs use different functions or variables
to return this information.) If @@ERROR returns a value other than 0, an error occurred, and
the transaction rolls back to the savepoint. If the entire transaction is processed, a COMMIT is
issued to save the data.

The More Savepoints the Better You can have as many savepoints as you'd like
within your SQL code, and the more the better. Why? Because the more savepoints
you have the more flexibility you have in managing rollbacks exactly as you need
them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned that transactions are blocks of SQL statements that must be executed as a batch. You
learned how to use the COMMIT and ROLLBACK statements to explicitly manage when data is written and when it is
undone. You also learned how to use savepoints to provide a greater level of control over rollback operations.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 21. Using Cursors
In this lesson, you'll learn what cursors are and how to use them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Cursors
SQL retrieval operations work with sets of rows known as result sets. The rows returned are all the rows that match a
SQL statement—zero or more of them. Using simple SELECT statements, there is no way to get the first row, the next
row, or the previous 10 rows. This is an integral part of how a relational DBMS works.

Result Set The results retrieved by a SQL query.

Sometimes there is a need to step through rows forward or backward and one or more at a time. This is what cursors
are used for. A cursor is a database query stored on the DBMS server—not a SELECT statement, but the result set
retrieved by that statement. Once the cursor is stored, applications can scroll or browse up and down through the data
as needed.

MySQL Support As this book goes to press, MySQL still does not support cursors
(support for views is planned for MySQL 5).

Different DBMSs support different cursor options and features. Some of the more common ones are:

The capability to flag a cursor as read-only so that data can be read but not updated or deleted

The capability to control the directional operations that can be performed (forward, backward, first, last,
absolute position, relative position, and so on)

The capability to flag some columns as editable and others as not editable

Scope specification so as to be able to make the cursor accessible to a specific request that created it (a stored
procedure, for example) or to all requests

Instructing the DBMS to make a copy of the retrieved data (as opposed to pointing to the live data in the table)
so that data does not change between the time the cursor is opened and the time it is accessed

Making Relational DBMSs Behave Like Nonrelational DBMSs As a point of
reference, accessing and browsing rows in this fashion is actually the behavior of
ISAM (Indexed Sequential Access Method) databases (such as Btrieve and dBASE).
Cursors are an interesting part of the SQL specification in that they can make a
relational database behave like an ISAM database.

Cursors are used primarily by interactive applications in which users need to scroll up and down through screens of
data, browsing or making changes.

Cursors and Web-Based Applications Cursors are rather useless when it comes
to Web-based applications (ASP, ColdFusion, PHP, and JSP, for example). Cursors
are designed to persist for the duration of a session between a client application
and a server, but this client/server model does not fit in the Web application world
because the application server is the database client, not the end user. As such,
most Web application developers avoid the use of cursors and re-create the
functionality themselves if needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Working with Cursors
Using cursors involves several distinct steps:

Before a cursor can be used it must be declared (defined). This process does not actually retrieve any data, it
merely defines the SELECT statement to be used and any cursor options.

Once it is declared, the cursor must be opened for use. This process actually retrieves the data using the
previously defined SELECT statement.

With the cursor populated with data, individual rows can be fetched (retrieved) as needed.

When it is done, the cursor must be closed and possibly deallocated (depending on the DBMS).

Once a cursor is declared, it may be opened and closed as often as needed. Once it is open, fetch operations can be
performed as often as needed.

Creating Cursors

Cursors are created using the DECLARE statement, which differs from one DBMS to the next. DECLARE names the cursor
and takes a SELECT statement, complete with WHERE and other clauses if needed. To demonstrate this, we'll create a
cursor that retrieves all customers without email addresses, as part of an application enabling an operator to provide
missing email addresses.

Here is the DB2, SQL Server, and Sybase version:

DECLARE CustCursor CURSOR

FOR

SELECT * FROM Customers

WHERE cust_email IS NULL

Here is the Oracle and PostgreSQL version:

DECLARE CURSOR CustCursor

IS

SELECT * FROM Customers

WHERE cust_email IS NULL

In both versions, the DECLARE statement is used to define and name the cursor—in this case
CustCursor. The SELECT statement defines a cursor containing all customers with no email
address (a NULL value).

Now that the cursor is defined, it is ready to be opened.

Using Cursors

Cursors are opened using the OPEN CURSOR statement, which is so simple a statement that most DBMSs support exactly
the same syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPEN CURSOR CustCursor

When the OPEN CURSOR statement is processed, the query is executed, and the retrieved data
is stored for subsequent browsing and scrolling.

Now the cursor data can be accessed using the FETCH statement. FETCH specifies the rows to be retrieved, where they
are to be retrieved from, and where they are to be stored (variable names, for example). The first example uses Oracle
syntax to retrieve a single row from the cursor (the first row):

DECLARE TYPE CustCursor IS REF CURSOR RETURN Customers%ROWTYPE;

DECLARE CustRecord Customers%ROWTYPE

BEGIN

 OPEN CustCursor;

 FETCH CustCursor INTO CustRecord;

 CLOSE CustCursor;

END;

In this example, FETCH is used to retrieve the current row (it'll start at the first row
automatically) into a declared variable named CustRecord. Nothing is done with the retrieved
data.

In the next example (again, using Oracle syntax), the retrieved data is looped through from the first row to the last:

DECLARE TYPE CustCursor IS REF CURSOR RETURN Customers%ROWTYPE;

DECLARE CustRecord Customers%ROWTYPE

BEGIN

 OPEN CustCursor;

 LOOP

 FETCH CustCursor INTO CustRecord;

 EXIT WHEN CustCursor%NOTFOUND;

...

 END LOOP;

 CLOSE CustCursor;

END;

Like the previous example, this example uses FETCH to retrieve the current row into a
declared variable named CustRecord. Unlike the previous example, the FETCH here is within a
LOOP so that it is repeated over and over. The code EXIT WHEN CustCursor%NOTFOUND causes
processing to be terminated (exiting the loop) when there are no more rows to be fetched.
This example also does no actual processing; in real-world code you'd replace the ...
placeholder with your own code.

Here's another example, this time using Microsoft SQL Server syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE @cust_id CHAR(10),

 @cust_name CHAR(50),

 @cust_address CHAR(50),

 @cust_city CHAR(50),

 @cust_state CHAR(5),

 @cust_zip CHAR(10),

 @cust_country CHAR(50),

 @cust_contact CHAR(50),

 @cust_email CHAR(255),

OPEN CustCursor

FETCH NEXT FROM CustCursor

 INTO @cust_id, @cust_name, @cust_address,

 @cust_city, @cust_state, @cust_zip,

 @cust_country, @cust_contact, @cust_email

WHILE @@FETCH_STATUS = 0

BEGIN

...

FETCH NEXT FROM CustCursor

 INTO @cust_id, @cust_name, @cust_address,

 @cust_city, @cust_state, @cust_zip,

 @cust_country, @cust_contact, @cust_email

END

CLOSE CustCursor

In this example, variables are declared for each of the retrieved columns, and the FETCH
statements retrieve a row and save the values into those variables. A WHILE loop is used to
loop through the rows, and the condition WHILE @@FETCH_STATUS = 0 causes processing to be
terminated (exiting the loop) when there are no more rows to be fetched. Again, this example
does no actual processing; in real-world code you'd replace the ... placeholder with your own
code.

Closing Cursors

As already mentioned and seen in the previous examples, cursors need to be closed after they have been used. In
addition, some DBMSs (such as SQL Server) require that the resources used by the cursor be explicitly deallocated.
Here's the DB2, Oracle, and PostgreSQL syntax:

CLOSE CustCursor

Here's the Microsoft SQL Server version:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOSE CustCursor

DEALLOCATE CURSOR CustCursor

The CLOSE statement is used to close cursors; once a cursor is closed, it cannot be reused
without being opened again. However, a cursor does not need to be declared again to be
used; an OPEN is sufficient.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what cursors are and why they are used. Your own DBMS probably offers some form of this
function, as well as others not mentioned here. Refer to your DBMS documentation for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 22. Understanding Advanced SQL Features
In this lesson, you'll look at several of the advanced data-manipulation features that have evolved with SQL:
constraints, indexes, and triggers.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Constraints
SQL has evolved through many versions to become a very complete and powerful language. Many of the more powerful
features are sophisticated tools that provide you with data-manipulation techniques such as constraints.

Relational tables and referential integrity have both been discussed several times in prior lessons. As I explained in
those lessons, relational databases store data broken into multiple tables, each of which stores related data. Keys are
used to create references from one table to another (thus the term referential integrity).

For relational database designs to work properly, you need a way to ensure that only valid data is inserted into tables.
For example, if the Orders table stores order information and OrderItems stores order details, you want to ensure that
any order IDs referenced in OrderItems exist in Orders. Similarly, any customers referred to in Orders must be in the
Customers table.

Although you can perform checks before inserting new rows (do a SELECT on another table to make sure the values are
valid and present), it is best to avoid this practice for the following reasons:

If database integrity rules are enforced at the client level, every client is obliged to enforce those rules, and
inevitably some clients won't.

You must also enforce the rules on UPDATE and DELETE operations.

Performing client-side checks is a time-consuming process. Having the DBMS do the checks for you is far more
efficient.

Constraints Rules that govern how database data is inserted or manipulated.

DBMSs enforce referential integrity by imposing constraints on database tables. Most constraints are defined in table
definitions (using the CREATE TABLE or ALTER TABLE as discussed in Lesson 17, "Creating and Manipulating Tables").

Caution There are several different types of constraints, and each DBMS provides
its own level of support for them. Therefore, the examples shown here might not
work as you see them. Refer to your DBMS documentation before proceeding.

Primary Keys

I discussed primary keys briefly in Lesson 1, "Understanding SQL." A primary key is a special constraint that is used to
ensure that values in a column (or set of columns) are unique and never change, in other words, a column (or columns)
in a table whose values uniquely identify each row in the table. This facilitates the direct manipulation of and interaction
with individual rows. Without primary keys, it would be very difficult to safely UPDATE or DELETE specific rows without
affecting any others.

Any column in a table can be established as the primary key, as long as it meets the following conditions:

No two rows may have the same primary key value.

Every row must have a primary key value. (Columns must not allow NULL values.)

The column containing primary key values can never be modified or updated.

Primary key values can never be reused. If a row is deleted from the table, its primary key must not be
assigned to any new rows.

One way to define primary keys is to create them, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One way to define primary keys is to create them, as follows:

CREATE TABLE Vendors

(

 vend_id CHAR(10) NOT NULL PRIMARY KEY,

 vend_name CHAR(50) NOT NULL,

 vend_address CHAR(50) NULL,

 vend_city CHAR(50) NULL,

 vend_state CHAR(5) NULL,

 vend_zip CHAR(10) NULL

 vend_country CHAR(50) NULL

);

In the above example, the keyword PRIMARY KEY is added to the table definition so that
vend_id becomes the primary key.

ALTER TABLE Vendors

ADD CONSTRAINT PRIMARY KEY (vend_id);

Here the same column is defined as the primary key, but the CONSTRAINT syntax is used
instead. This syntax can be used in CREATE TABLE and ALTER TABLE statements.

Foreign Keys

A foreign key is a column in a table whose values must be listed in a primary key in another table. Foreign keys are an
extremely important part of ensuring referential integrity. To understand foreign keys, let's look at an example.

The Orders table contains a single row for each order entered into the system. Customer information is stored in the
Customers table. Orders in Orders are tied to specific rows in the Customers table by the customer ID. The customer ID is
the primary key in the Customers table; each customer has a unique ID. The order number is the primary key in the
Orders table; each order has a unique number.

The values in the customer ID column in the Orders table are not necessarily unique. If a customer has multiple orders,
there will be multiple rows with the same customer ID (although each will have a different order number). At the same
time, the only values that are valid within the customer ID column in Orders are the IDs of customers in the Customers
table.

That's what a foreign key does. In our example, a foreign key is defined on the customer ID column in Orders so that
the column can accept only values that are in the Customers table's primary key.

Here's one way to define this foreign key:

CREATE TABLE Orders

(

 order_num INTEGER NOT NULL PRIMARY KEY,

 order_date DATETIME NOT NULL,

 cust_id CHAR(10) NOT NULL REFERENCES Customers(cust_id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_id CHAR(10) NOT NULL REFERENCES Customers(cust_id)

);

Here the table definition uses the REFERENCES keyword to state that any values in cust_id must
be in cust_id in the Customers table.

The same thing could have been accomplished using CONSTRAINT syntax in an ALTER TABLE statement:

ALTER TABLE Customers

ADD CONSTRAINT

FOREIGN KEY (cust_id) REFERENCES Customers (cust_id)

Foreign Keys Can Help Prevent Accidental Deletion In addition to helping
enforce referential integrity, foreign keys serve another invaluable purpose. After a
foreign key is defined, your DBMS does not allow the deletion of rows that have
related rows in other tables. For example, you are not allowed to delete a customer
who has associated orders. The only way to delete that customer is to first delete
the related orders (which in turn means deleting the related order items). Because
they require such methodical deletion, foreign keys can help prevent the accidental
deletion of data.

However, some DBMSs support a feature called cascading delete. If enabled, this
feature deletes all related data when a row is deleted from a table. For example, if
cascading delete is enabled and a customer is deleted from the Customers table, any
related order rows are deleted automatically.

Unique Constraints

Unique constraints are used to ensure that all data in a column (or set of columns) is unique. They are similar to
primary keys, but there are some important distinctions:

A table can contain multiple unique constraints, but only one primary key is allowed per table.

Unique constraint columns can contain NULL values.

Unique constraint columns can be modified or updated.

Unique constraint column values can be reused.

Unlike primary keys, unique constraints cannot be used to define foreign keys.

An example of the use of constraints is an employees table. Every employee has a unique Social Security number, but
you would not want to use it for the primary key because it is too long (in addition to the fact that you might not want
that information easily available). Therefore, every employee also has a unique employee ID (a primary key) in addition
to his Social Security number.

Because the employee ID is a primary key, you can be sure that it is unique. You also might want the DBMS to ensure
that each Social Security number is unique, too (to make sure that a typo does not result in the use of someone else's
number). You can do this by defining a UNIQUE constraint on the Social Security number column.

The syntax for unique constraints is similar to that for other constraints. Either the UNIQUE keyword is defined in the
table definition or a separate CONSTRAINT is used.

Check Constraints

Check constraints are used to ensure that data in a column (or set of columns) meets a set of criteria that you specify.
Common uses of this are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checking minimum or maximum values— for example, preventing an order of 0 (zero) items (even though 0 is
a valid number)

Specifying ranges— for example, making sure that a ship date is greater than or equal to today's date and not
greater than a year from now

Allowing only specific values— for example, allowing only M or F in a gender field

In other words, datatypes (discussed in Lesson 1) restrict the type of data that can be stored in a column. Check
constraints place further restrictions within that datatype.

The following example applies a check constraint to the OrderItems table to ensure that all items have a quantity greater
than 0:

CREATE TABLE OrderItems

(

 order_num INTEGER NOT NULL,

 order_item INTEGER NOT NULL,

 prod_id CHAR(10) NOT NULL,

 quantity INTEGER NOT NULL CHECK (quantity > 0),

 item_price MONEY NOT NULL

);

With this constraint in place, any row inserted (or updated) will be checked to ensure that
quantity is greater than 0.

To check that a column named gender contains only M or F, you can do the following in an ALTER TABLE statement:

ADD CONSTRAINT CHECK (gender LIKE '[MF]')

User-Defined Datatypes Some DBMSs enable you to define your own datatypes.
These are essentially simple datatypes with check constraints (or other constraints)
defined. For example, you can define your own datatype called gender that is a
single-character text datatype with a check constraint that restricts its values to M
or F (and perhaps NULL for Unknown). You could then use this datatype in table
definitions. The advantage of custom datatypes is that the constraints need to be
applied only once (in the datatype definition), and they are automatically applied
each time the datatype is used. Check your DBMS documentation to determine if
user-defined datatypes are supported.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Indexes
Indexes are used to sort data logically to improve the speed of searching and sorting operations. The best way to
understand indexes is to envision the index at the back of a book (this book, for example).

Suppose you want to find all occurrences of the word datatype in this book. The simple way to do this would be to turn
to page 1 and scan every line of every page looking for matches. Although that works, it is obviously not a workable
solution. Scanning a few pages of text might be feasible, but scanning an entire book in that manner is not. As the
amount of text to be searched increases, so does the time it takes to pinpoint the desired data.

That is why books have indexes. An index is an alphabetical list of words with references to their locations in the book.
To search for datatype, you find that word in the index to determine what pages it appears on. Then, you turn to those
specific pages to find your matches.

What makes an index work? Simply, it is the fact that it is sorted correctly. The difficulty in finding words in a book is
not the amount of content that must be searched; rather, it is the fact that the content is not sorted by word. If the
content is sorted like a dictionary, an index is not needed (which is why dictionaries don't have indexes).

Database indexes work in much the same way. Primary key data is always sorted; that's just something the DBMS does
for you. Retrieving specific rows by primary key, therefore, is always a fast and efficient operation.

Searching for values in other columns is usually not as efficient, however. For example, what if you want to retrieve all
customers who live in a specific state? Because the table is not sorted by state, the DBMS must read every row in the
table (starting at the very first row) looking for matches, just as you would have to do if you were trying to find words
in a book without using an index.

The solution is to use an index. You may define an index on one or more columns so that the DBMS keeps a sorted list
of the contents for its own use. After an index is defined, the DBMS uses it in much the same way as you would use a
book index. It searches the sorted index to find the location of any matches and then retrieves those specific rows.

But before you rush off to create dozens of indexes, bear in mind the following:

Indexes improve the performance of retrieval operations, but they degrade the performance of data insertion,
modification, and deletion. When these operations are executed, the DBMS has to update the index
dynamically.

Index data can take up lots of storage space.

Not all data is suitable for indexing. Data that is not sufficiently unique (State, for example) will not benefit as
much from indexing as data that has more possible values (First Name or Last Name, for example).

Indexes are used for data filtering and for data sorting. If you frequently sort data in a specific order, that data
might be a candidate for indexing.

Multiple columns can be defined in an index (for example, State plus City). Such an index will be of use only
when data is sorted in State plus City order. (If you want to sort by City, this index would not be of any use.)

There is no hard-and-fast rule as to what should be indexed and when. Most DBMSs provide utilities you can use to
determine the effectiveness of indexes, and you should use these regularly.

Indexes are created with the CREATE INDEX statement (which varies dramatically from one DBMS to another). The
following statement creates a simple index on the Products table's product name column:

CREATE INDEX prod_name_ind

ON PRODUCTS (prod_name);

Every index must be uniquely named. Here the name prod_name_ind is defined after the
keywords CREATE INDEX. ON is used to specify the table being indexed, and the columns to
include in the index (just one in this example) are specified in parentheses after the table
name.

Revisiting Indexes Index effectiveness changes as table data is added or
changed. Many database administrators find that what once was an ideal set of
indexes might not be so ideal after several months of data manipulation. It is
always a good idea to revisit indexes on a regular basis to fine-tune them as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

always a good idea to revisit indexes on a regular basis to fine-tune them as
needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Triggers
Triggers are special stored procedures that are executed automatically when specific database activity occurs. Triggers
might be associated with INSERT, UPDATE, and DELETE operations (or any combination thereof) on specific tables.

MySQL Support As this book goes to press, MySQL still does not support views
(support for views is planned for MySQL 5.1).

Unlike stored procedures (which are simply stored SQL statements), triggers are tied to individual tables. A trigger
associated with INSERT operations on the Orders table will be executed only when a row is inserted into the Orders table.
Similarly, a trigger on INSERT and UPDATE operations on the Customers table will be executed only when those specific
operations occur on that table.

Within triggers, your code has access to the following:

All new data in INSERT operations

All new data and old data in UPDATE operations

Deleted data in DELETE operations

Depending on the DBMS being used, triggers can be executed before or after a specified operation is performed.

The following are some common uses for triggers:

Ensuring data consistency— for example, converting all state names to uppercase during an INSERT or UPDATE
operation

Performing actions on other tables based on changes to a table— for example, writing an audit trail record to a
log table each time a row is updated or deleted

Performing additional validation and rolling back data if needed— for example, making sure a customer's
available credit has not been exceeded and blocking the insertion if it has

Calculating computed column values or updating timestamps

As you probably expect by now, trigger creation syntax varies dramatically from one DBMS to another. Check your
documentation for more details.

The following example creates a trigger that converts the cust_state column in the Customers table to uppercase on all
INSERT and UPDATE operations.

This is the SQL Server version:

CREATE TRIGGER customer_state

ON Customers

FOR INSERT, UPDATE

AS

UPDATE Customers

SET cust_state = Upper(cust_state)

WHERE Customers.cust_id = inserted.cust_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the Oracle and PostgreSQL version:

CREATE TRIGGER customer_state

AFTER INSERT OR UPDATE

FOR EACH ROW

BEGIN

UPDATE Customers

SET cust_state = Upper(cust_state)

WHERE Customers.cust_id = :OLD.cust_id

END;

Constraints Are Faster Than Triggers As a rule, constraints are processed more
quickly than triggers, so whenever possible, use constraints instead.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Database Security
There is nothing more valuable to an organization than its data, and data should always be protected from would-be
thieves or casual browsers. Of course, at the same time data must be accessible to users who need access to it, and so
most DBMSs provide administrators with mechanisms by which to grant or restrict access to data.

The foundation of any security system is user authorization and authentication. This is the process by which a user is
validated to ensure he is who he says he is and that he is allowed to perform the operation he is trying to perform.
Some DBMSs integrate with operating system security for this, others maintain their own user and password lists, and
still others integrate with external directory services servers.

Some operations that are often secured

Access to database administration features (creating tables, altering or dropping existing tables, and so on)

Access to specific databases or tables

The type of access (read-only, access to specific columns, and so on)

Access to tables via views or stored procedures only

Creation of multiple levels of security, thus allowing varying degrees of access and control based on login

Restricting the ability to manage user accounts

Security is managed via the SQL GRANT and REVOKE statements, although most DBMSs provide interactive
administration utilities that use the GRANT and REVOKE statements internally.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use some advanced SQL features. Constraints are an important part of enforcing
referential integrity; indexes can improve data retrieval performance; triggers can be used to perform pre- or post-
execution processing; and security options can be used to manage data access. Your own DBMS probably offers some
form of these features. Refer to your DBMS documentation for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Sample Table Scripts
Writing SQL statements requires a good understanding of the underlying database design. Without knowing what
information is stored in what table, how tables are related to each other, and the actual breakup of data within a row, it
is impossible to write effective SQL.

You are strongly advised to actually try every example in every lesson in this book. All the lessons use a common set of
data files. To assist you in better understanding the examples, and to enable you to follow along with the lessons, this
appendix describes the tables used, their relationships, and how to build (or obtain) them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding the Sample Tables
The tables used throughout this book are part of an order entry system used by an imaginary distributor of toys. The
tables are used to perform several tasks:

Manage vendors

Manage product catalogs

Manage customer lists

Enter customer orders

Making this all work requires five tables (that are closely interconnected as part of a relational database design). A
description of each of the tables appears in the following sections.

Simplified Examples The tables used here are by no means complete. A real-
world order entry system would have to keep track of lots of other data that has
not been included here (for example, payment and accounting information,
shipment tracking, and more). However, these tables do demonstrate the kinds of
data organization and relationships that you will encounter in most real
installations. You can apply these techniques and technologies to your own
databases.

Table Descriptions

What follows is a description of each of the five tables, along with the name of the columns within each table and their
descriptions.

The Vendors Table

The Vendors table stores the vendors whose products are sold. Every vendor has a record in this table, and that vendor
ID (the vend_id) column is used to match products with vendors.

Table A.1. Vendors Table Columns
Column Description

vend_id Unique vendor ID

vend_name Vendor name

vend_address Vendor address

vend_city Vendor city

vend_state Vendor state

vend_zip Vendor zip code

vend_country Vendor country

All tables should have primary keys defined. This table should use vend_id as its primary key.

The Products Table

The Products table contains the product catalog, one product per row. Each product has a unique ID (the prod_id column)
and is related to its vendor by vend_id (the vendor's unique ID).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table A.2. Products Table Columns
Column Description

prod_id Unique product ID

vend_id Product vendor ID (relates to vend_id in Vendors table)

prod_name Product name

prod_price Product price

prod_desc Product description

All tables should have primary keys defined. This table should use prod_id as its primary key.

To enforce referential integrity, a foreign key should be defined on vend_id relating it to vend_id in VENDORS.

The Customers Table

The Customers table stores all customer information. Each customer has a unique ID (the cust_id column).

Table A.3. Customers Table Columns
Column Description

cust_id Unique customer ID

cust_name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

cust_zip Customer zip code

cust_country Customer country

cust_contact Customer contact name

cust_email Customer contact email address

All tables should have primary keys defined. This table should use cust_id as its primary key.

The Orders Table

The Orders table stores customer orders (but not order details). Each order is uniquely numbered (the order_num
column). Orders are associated with the appropriate customers by the cust_id column (which relates to the customer's
unique ID in the Customers table).

Table A.4. Orders Table Columns
Column Description

order_num Unique order number

order_date Order date

cust_id Order customer ID (relates to cust_id in Customers table)

All tables should have primary keys defined. This table should use order_num as its primary key.

To enforce referential integrity, a foreign key should be defined on cust_id relating it to cust_id in CUSTOMERS.

The OrderItems Table

The OrderItems table stores the actual items in each order, one row per item per order. For every row in Orders there are
one or more rows in OrderItems. Each order item is uniquely identified by the order number plus the order item (first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one or more rows in OrderItems. Each order item is uniquely identified by the order number plus the order item (first
item in order, second item in order, and so on). Order items are associated with their appropriate order by the
order_num column (which relates to the order's unique ID in Orders). In addition, each order item contains the product ID
of the item orders (which relates the item back to the Products table).

Table A.5. OrderItems Table Columns
Column Description

order_num Order number (relates to order_num in Orders table)

order_item Order item number (sequential within an order)

prod_id Product ID (relates to prod_id in Products table)

quantity Item quantity

item_price Item price

All tables should have primary keys defined. This table should use order_num and order_item as its primary keys.

To enforce referential integrity, foreign keys should be defined on order_num relating it to order_num in Orders
and prod_id relating it to prod_id in Products.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Obtaining the Sample Tables
In order to follow along with the examples, you need a set of populated tables. Everything you need to get up and
running can be found on this book's Web page at http://www.forta.com/books/0672325675/.

Download a Ready-To-Use Microsoft Access MDB File

You may download a fully populated Microsoft Access MDB file from the above URL. If you use this file you will not need
to run any of the SQL creation and population scripts.

The Access MDB file may be used with any ODBC client utilities, as well as via scripting languages like ASP and
ColdFusion.

Download DBMS SQL Scripts

Most DBMSs store data in formats that do not lend themselves to complete file distribution (as Access does). For these
DBMSs you may download SQL scripts from http://www.forta.com/books/0672325675/. There are two files for each
DBMS:

create.txt contains the SQL statements to create the five database tables (including defining all primary keys and
foreign key constraints).

populate.txt contains the SQL INSERT statements used to populate these tables.

The SQL statements in these files are very DBMS specific, so be sure to execute the one for your own DBMS. These
scripts are provided as a convenience to readers, and no liability is assumed for problems that might arise from their
use.

At the time that this book went to press, scripts were available for:

IBM DB2

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

Sybase Adaptive Server

Other DBMSs may be added as needed or requested.

Appendix B, "Working in Popular Applications," provides instructions on running the scripts in several popular
environment.

Create, Then Populate You must run the table creation scripts before the table
population scripts. Be sure to check for any error messages returned by these
scripts. If the creation scripts fail you will need to remedy whatever problem might
exist before continuing with table population.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. Working in Popular Applications
As explained in Lesson 1, "Understanding SQL," SQL is not an application, it is a language. To follow along with the
examples in this book, you need an application that supports the execution of SQL statements.

This appendix describes the steps for executing SQL statements in some of the more commonly used applications.

You can use any application listed below, and many others, to test and experiment with SQL code. So which should you
use?

Many DBMSs come with their own client utilities, so those are a good place to start. However, these tend to not
have the most intuitive user interfaces.

Windows users likely have a utility named Microsoft Query on their computers. This is a simple utility that is
very effective for testing simple statements.

A wonderful Windows only option is George Poulose's Query Tool. There is a link to this on the book Web page
at http://www.forta.com/books/0672325667/.

Aqua Data Studio is an incredibly useful free Java based utility that will run on Windows, Linux, Unix, Mac OSX,
and other computers. There is a link to this utility on the book Web page at
http://www.forta.com/books/0672325667/.

Any of these are good options, and there are others too. For additional recommendations visit the book Web page.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Aqua Data Studio
Aqua Data Studio is a free Java based SQL client. It runs on all major platforms, and supports all major DBMSs (as well
as ODBC). To execute a SQL statement in Aqua Data Studio, do the following:

1. Launch Aqua Data Studio.

2. DBMSs must be registered before they can be used. Select Register Server from the Server menu.

3. Select the DBMS you are using from the displayed list (select Generic ODBC to use Microsoft Access or any
ODBC data base, this requires that an ODBC data source be defined as explained at the end of this appendix).
Based on the DBMS selected, you will be prompted for path or login information. Fill in the form and click OK.
Once registered, the server will appear in the list on the left.

4. Select a server from the list of registered servers.

5. Launch the Query Analyzer by selecting Query Analyzer from the Server menu, or by pressing Ctrl-Q.

6. Type your SQL in the query window (the top window).

7. To execute your SQL, select Execute from the Query menu, or press Ctrl-E, or click the Execute button (the one
with the green arrow).

8. Results will be displayed in the lower window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using DB2
IBM's DB2 is a powerful high-end, multiplatform DBMS. It comes with a whole suite of client tools that may be used to
execute SQL statements. The instructions that follow use the Java based Command Center utility because it is one of
the simplest and most versatile of the bundled applications:

1. Launch the Command Center.

2. Select the Script tab.

3. Enter the SQL statement in the Script box.

4. Select Execute from the Script menu, or click the Execute button, to execute the script.

5. Raw data results will be displayed in the lower window. Switch to the Results tab to display results in a grid
format.

6. Command Center features an interactive SQL statement builder called SQL Assist. This can be executed from
the Interactive tab.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Macromedia ColdFusion
Macromedia ColdFusion is a Web-application development platform. ColdFusion uses a tag-based language to create
scripts. To test your SQL, create a simple page that you can execute by calling it from your Web browser. Perform the
following steps:

1. Before using any databases from within ColdFusion code, a Data Source must be defined. The ColdFusion
Administrator program provides a Web-based interface to define Data Sources (refer to the ColdFusion
documentation for help if needed).

2. Create a new ColdFusion page (with a CFM extension).

3. Use the CFML <CFQUERY> and </CFQUERY> tags to create a query block. Name it using the NAME attribute and
define the Data Source in the DATASOURCE attribute.

4. Type your SQL statement between the <CFQUERY> and </CFQUERY> tags.

5. Use <CFDUMP> or a <CFOUTPUT> loop to display the query results.

6. Save the page in any executable directory beneath the Web server root.

7. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft Access
Microsoft Access is usually used interactively to create and manage databases and to interact and manipulate data, and
Access features a Query Designer that can be used to build a SQL statement interactively. A frequently overlooked
feature of this Query Designer is that it also lets you specify SQL for direct execution. This enables you to use Access to
send SQL statements to any ODBC Data Source, although it is best suited for executing SQL against an open database.
To use this feature, do the following:

1. Launch Microsoft Access. You will be prompted to open (or create) a database. Open the database that you
want to use.

2. Select Queries in the Database window. Then click on the New button and select Design View.

3. You'll be prompted with a Show Table dialog. Close that window without selecting any tables.

4. From the View menu, select SQL View to display the Query window.

5. Type your SQL statement in the Query window.

6. To execute the SQL statement click on the Run button (the one with the red exclamation mark). This will switch
the view to Datasheet View (which displays the results in a grid).

7. Toggle between SQL View and Datasheet View as needed (you'll need to go back to SQL View to change your
SQL). You can also use Design View to interactively build SQL statements.

Microsoft Access also supports a Pass-Through mode that enables you to use Access to send SQL statements to any
ODBC Data Source. This feature should be used to interact with external databases, and never with Access databases
directly. To use this feature, do the following:

1. Microsoft Access uses ODBC to interact with databases, so an ODBC Data Source must be present before
proceeding (see the earlier instructions).

2. Launch Microsoft Access. You will be prompted to open (or create) a database. Open any database.

3. Select Queries in the Database window. Then click on the New button and select Design View.

4. You'll be prompted with a Show Table dialog. Close that window without selecting any tables.

5. From the Query menu, select SQL Specific and then select Pass-Through (older versions of Access called this
option SQL Pass-Through).

6. From the View menu, select Properties to display the Query Properties dialog.

7. Click in the ODBC Connect Str field and then click the … button to display the Select Data Source dialog, which
you can use to select the ODBC Data Source.

8. Select your Data Source and click OK to return to the Query Properties dialog.

9. Click on the Returns Records field. If you are executing a SELECT statement (or any statement that returns
results), set Returns Records to Yes. If you are executing a SQL statement that does not return data (for
example, INSERT, UPDATE, or DELETE) set Return Records to No.

10. Type your SQL statement in the SQL Pass-Through Query window.

11. To execute the SQL statement click on the Run button (the one with the red exclamation mark).

Using Access Pass-Through Mode Access pass-through mode works best when
connecting to DBMSs other than Access. When connecting to an Access MDB file
you are best off using any of the other client options discussed here.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft ASP
Microsoft ASP is a scripting platform for creating Web-based applications. To test your SQL statements within an ASP
page, you must create a page that you can execute by calling it from your Web browser. Here are the steps needed to
execute a SQL statement within an ASP page:

1. ASP uses ODBC to interact with databases, so an ODBC Data Source must be present before proceeding (refer
to the end of this appendix).

2. Create a new ASP page (with an ASP extension) using any text editor.

3. Use Server.CreateObject to create an instance of the ADODB.Connection object.

4. Use the Open method to open the desired ODBC Data Source.

5. Pass your SQL statement to a call to the Execute method. The Execute method returns a result set. Use a Set
command to save the result returned into a result set.

6. To display the results, you must loop through the retrieved data using a <% Do While NOT EOF %> loop.

7. Save the page in any executable directory beneath the Web server root.

8. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft ASP.NET
Microsoft ASP.NET is a scripting platform for creating Web-based applications using the .NET framework. To test SQL
statements within an ASP.NET page, you must create a page that you can execute by calling it from your browser.
There are multiple ways to accomplish this, but here is one option:

1. Create a new file with a .aspx extensions.

2. Create a database connection using SqlConnection() or OleDbConnection().

3. Use either SqlCommand() or OleDbCommand() to pass the statement to the DBMS.

4. Create a DataReader using ExecuteReader.

5. Loop through the returned reader to obtain the returned values.

6. Save the page in any executable directory beneath the Web server root.

7. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft Query
Microsoft Query is a standalone SQL query tool and is an ideal utility for testing SQL statements against ODBC Data
Sources. Microsoft Query is optionally installed with other Microsoft products, as well as with other third-party products.

Obtaining MS-Query MS-Query is often installed with other Microsoft products
(for example, Office) although it may only be installed if a complete installation was
performed. If it is not present under the Start button, use Start Find to locate it on
your system. (It is often present without your knowing it.) The files to look for are
MSQRY32.EXE or MSQUERY.EXE.

To use Microsoft Query, do the following:

1. Microsoft Query uses ODBC to interact with databases, so an ODBC Data Source must be present before you
can proceed (see the instructions at the end of this appendix).

2. Before you can use Microsoft Query, it must be installed on your computer. Browse your program groups
beneath the Start button to locate it.

3. From the File menu, select Execute SQL to display the Execute SQL window.

4. Click the Data Sources button to select the desired ODBC Data Source. If the Data Source you need is not
listed, click Other to locate it. After you have selected the correct Data Source, click the Use button.

5. Type your SQL statement in the SQL Statement box.

6. Click Execute to execute the SQL statement and to display any returned data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft SQL Server
Microsoft SQL Server features a Windows-based query analysis tool called SQL Query Analyzer. Although this tool is
primarily designed to analyze SQL statement execution and optimization, it does present an ideal environment for
testing and experimenting with SQL statements. Here's how to use the SQL Query Analyzer:

1. Launch the SQL Query Analyzer application (from the Microsoft SQL Server program group).

2. You'll be prompted for server and login information. Log in to your SQL Server (starting the server if
appropriate).

3. When the query screen is displayed, select the database from the drop-down DB list box on the toolbar.

4. Type your SQL in the large text window, and then click the Execute Query button (the one with the green
arrow) to execute it. (You can also click F5 or select Execute from the Query menu.)

5. The results will be displayed in a separate pane beneath the SQL window.

6. Click the tabs at the bottom of the query screen to toggle between seeing data and seeing returned messages
and information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using MySQL
MySQL comes with a command line utility named mysql. This is a text only tool that can be used to execute any SQL
statements. To use mysql, do the following:

1. Type mysql to launch the utility. Depending on how security is defined, you may need to use the –u and –p
parameters to specify login information.

2. At the mysql> prompt type USE database (specifying the name of the database to be used) to open your
database.

3. Type your SQL at the mysql> prompt, making sure to terminate every statement with a semicolon (;). Results
will be displayed on the screen.

4. Type \h for a list of commands that you may use, \s for status information (including MySQL version
information).

5. Type \q to quit the mysql utility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Oracle
Oracle comes with a Java based management tool called Enterprise Manager. This is actually a suite of tools, one of
which is named SQL*Plus Worksheet. Here's how to use this tool:

1. Launch SQL*Plus Worksheet (either directly, or from within the Oracle Enterprise Manager).

2. You'll be prompted for login information. Provide a user name and password and connect to the database
server.

3. The SQL Worksheet screen is divided into two panes. Type your SQL in the upper pane.

4. To execute the SQL statement, click the Execute button (the one with the picture of the lightning bolt). Results
will be displayed in the lower pane.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using PHP
PHP is a popular Web scripting language. PHP provides functions and libraries used to connect to a variety of databases,
and so the code used to execute a SQL statement can vary based on the DBMS used (and how it is being accessed). As
such, it is impossible to provide steps that can be used in each and every situation. Refer to PHP documentation for
instructions on how to connect to your specific DBMS.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using PostgreSQL
PostgreSQL comes with a command line utility named psql. This is a text only tool that can be used to execute any SQL
statements. To use psql, do the following:

1. Type psql to launch the utility. To load a specific database specify it on the command line as psql database
(PostgreSQL does not support the USE command).

2. Type your SQL at the => prompt, making sure to terminate every statement with a semicolon (;). Results will
be displayed on the screen.

3. Type \? for a list of commands that you may use.

4. Type \h for SQL help, \h statement for help on specific SQL statement (for example, \h SELECT).

5. Type \q to quit the psql utility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Query Tool
Query Tool is a standalone SQL query tool created by George Poulose, and is an ideal utility for testing SQL statements
against ODBC Data Sources. (There's an ADO version too).

Obtaining Query Tool Query Tool can be downloaded from the Web. To obtain a
copy follow the link at the book's Web site:
http://www.forta.com/books/0672321289/.

To use Query Tool, do the following:

1. Query Tool uses ODBC to interact with databases, so an ODBC Data Source must be present before you can
proceed (see the earlier instructions).

2. Before you can use Query Tool, it must be installed on your computer. Browse your program groups beneath
the Start button to locate it.

3. A popup dialog will prompt you for the ODBC Data Source to be used. If the Data Source you need is not listed,
click New to create it. After you have selected the correct Data Source, click the OK button.

4. Type your SQL statement in the upper right window.

5. Click the Execute button (the one with the blue arrow) to execute the SQL statement and to display any
returned data in the lower pane. (You can also click F5 or select Execute from the Query menu.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Sybase
Sybase Adaptive Server comes with a Java based utility named SQL Advantage. This utility is very similar to Microsoft
SQL Server's Query Analyzer (the products share a common origin). To use SQL Advantage, do the following:

1. Execute the SQL Advantage application.

2. You will be prompted for login information, provide your login name and password.

3. When the query screen is displayed, select the database from the drop-down list box on the toolbar.

4. Type your SQL in the window displayed.

5. To execute your query click the Execute button, select Execute Query from the Query menu, or press Ctrl-E.

6. The results (if there are any) will be displayed in a new window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Configuring ODBC Data Sources
Several of the applications described above use ODBC for database integration, and so we'll start with a brief overview
of ODBC and instructions for configuring ODBC Data Sources.

ODBC is a standard that is used to enable clients' applications to interact with different backend databases or underlying
database engines. Using ODBC, it is possible to write code in one client and have those tools interact with almost any
database or DBMS.

ODBC itself is not a database. Rather, ODBC is a wrapper around databases that makes all databases behave in a
consistent and clearly defined fashion. It accomplishes this by using software drivers that have two primary functions.
First, they encapsulate any native database features or peculiarities and hide these from the client. Second, they
provide a common language for interacting with these databases (performing translations when needed). The language
used by ODBC is SQL.

ODBC client applications do not interact with databases directly. Instead, they interact with ODBC Data Sources. A Data
Source is a logical database that includes the driver (each database type has its own driver) and information on how to
connect to the database (file paths, server names, and so forth).

After ODBC Data Sources are defined, any ODBC-compliant application can use them. ODBC Data Sources are not
application specific; they are system specific.

ODBC Differences There are many different versions of the ODBC applet, making
it impossible to provide exact instructions that would apply to all versions. Pay close
attention to the prompts when setting up your own Data Sources.

ODBC Data Sources are defined using the Windows Control Panel's ODBC applet. To set up an ODBC Data Source, do
the following:

1. Open the Windows Control Panel's ODBC applet.

2. Most ODBC Data Sources should be set up to be system-wide Data Sources (as opposed to user-specific Data
Sources), so select System DSN, if that option is available to you.

3. Click the Add button to add a new Data Source.

4. Select the driver to use. There is usually a default set of drivers that provides support for major Microsoft
products. Other drivers might be installed on your system. You must select a driver that matches the type of
database to which you'll be connecting.

5. Depending on the type of database or DBMS, you are prompted for server name or file path information and
possibly login information. Provide this information as requested and then follow the rest of the prompts to
create the Data Source.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix C. SQL Statement Syntax
To help you find the syntax you need when you need it, this appendix lists the syntax for the most frequently used SQL
operations. Each statement starts with a brief description and then displays the appropriate syntax. For added
convenience, you'll also find cross references to the lessons where specific statements are taught.

When reading statement syntax, remember the following:

The | symbol is used to indicate one of several options, so NULL|NOT NULL means specify either NULL or NOT
NULL.

Keywords or clauses contained within square parentheses [like this] are optional.

The syntax listed below will work with almost all DBMSs. You are advised to consult your own DBMS
documentation for details of implementing specific syntactical changes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

ALTER TABLE

ALTER TABLE is used to update the schema of an existing table. To create a new table, use CREATE TABLE. See Lesson 17,
"Creating and Manipulating Tables," for more information.

ALTER TABLE tablename

(

 ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ...

);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

COMMIT

COMMIT is used to write a transaction to the database. See Lesson 20, "Managing Transaction Processing," for more
information.

COMMIT [TRANSACTION];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE INDEX

CREATE INDEX is used to create an index on one or more columns. See Lesson 22, "Understanding Advanced SQL
Features," for more information.

CREATE INDEX indexname

ON tablename (column, ...);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE PROCEDURE

CREATE PROCEDURE is used to create a stored procedure. See Lesson 19, "Working with Stored Procedures," for more
information. Oracle uses a different syntax as described in that lesson.

CREATE PROCEDURE procedurename [parameters] [options]

AS

SQL statement;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE TABLE

CREATE TABLE is used to create new database tables. To update the schema of an existing table, use ALTER TABLE. See
Lesson 17 for more information.

CREATE TABLE tablename

(

 column datatype [NULL|NOT NULL] [CONSTRAINTS],

 column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ...

);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE VIEW

CREATE VIEW is used to create a new view of one or more tables. See Lesson 18, "Using Views," for more information.

CREATE VIEW viewname AS

SELECT columns, ...

FROM tables, ...

[WHERE ...]

[GROUP BY ...]

[HAVING ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DELETE

DELETE deletes one or more rows from a table. See Lesson 16, "Updating and Deleting Data," for more information.

DELETE FROM tablename

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DROP

DROP permanently removes database objects (tables, views, indexes, and so forth). See Lessons 17 and 18 for more
information.

DROP INDEX|PROCEDURE|TABLE|VIEW indexname|procedurename|tablename|viewname;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

INSERT

INSERT adds a single row to a table. See Lesson 15, "Inserting Data," for more information.

INSERT INTO tablename [(columns, ...)]

VALUES(values, ...);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

INSERT SELECT

INSERT SELECT inserts the results of a SELECT into a table. See Lesson 15 for more information.

INSERT INTO tablename [(columns, ...)]

SELECT columns, ... FROM tablename, ...

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

ROLLBACK

ROLLBACK is used to undo a transaction block. See Lesson 20 for more information.

ROLLBACK [TO savepointname];

or

ROLLBACK TRANSACTION;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SELECT

SELECT is used to retrieve data from one or more tables (or views). See Lesson 2, "Retrieving Data"; Lesson 3, "Sorting
Retrieved Data"; and Lesson 4, "Filtering Data," for more basic information. (Lessons 2–14 all cover aspects of SELECT.)

SELECT columnname, ...

FROM tablename, ...

[WHERE ...]

[UNION ...]

[GROUP BY ...]

[HAVING ...]

[ORDER BY ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

UPDATE

UPDATE updates one or more rows in a table. See Lesson 16 for more information.

UPDATE tablename

SET columname = value, ...

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix D. Using SQL Datatypes
As explained in Lesson 1, "Understanding SQL," datatypes are basically rules that define what data may be stored in a
column and how that data is actually stored.

Datatypes are used for several reasons:

Datatypes enable you to restrict the type of data that can be stored in a column. For example, a numeric
datatype column will only accept numeric values.

Datatypes allow for more efficient storage, internally. Numbers and date time values can be stored in a more
condensed format than text strings.

Datatypes allow for alternate sorting orders. If everything is treated as strings, 1 comes before 10, which comes
before 2. (Strings are sorted in dictionary sequence, one character at a time starting from the left.) As numeric
datatypes, the numbers would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used. Using the wrong datatype can seriously
impact your application. Changing the datatypes of existing populated columns is not a trivial task. (In addition, doing
so can result in data loss.)

Although this lesson is by no means a complete tutorial on datatypes and how they are to be used, it explains the major
datatype types, what they are used for, and compatibility issues that you should be aware of.

No Two DBMSs Are Exactly Alike It's been said before, but it needs to be said
again. Unfortunately, datatypes can vary dramatically from one DBMS to the next.
Even the same datatype name can mean different things to different DBMSs. Be
sure you consult your DBMS documentation for details on exactly what it supports
and how.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

String Datatypes
The most commonly used datatypes are string datatypes. These store strings: for example, names, addresses, phone
numbers, and zip codes. There are basically two types of string datatype that you can use—fixed-length strings and
variable-length strings (see Table D.1).

Fixed length strings are datatypes that are defined to accept a fixed number of characters, and that number is specified
when the table is created. For example, you might allow 30 characters in a first-name column or 11 characters in a
social-security-number column (the exact number needed allowing for the two dashes). Fixed-length columns do not
allow more than the specified number of characters. They also allocate storage space for as many characters as
specified. So, if the string Ben is stored in a 30-character first-name field, a full 30 characters are stored (and the text
may be padded with spaces or nulls as needed).

Variable-length strings store text of any length (the maximum varies by datatype and DBMS). Some variable-length
datatypes have a fixed-length minimum. Others are entirely variable. Either way, only the data specified is saved (and
no extra data is stored).

If variable-length datatypes are so flexible, why would you ever want to used fixed-length datatypes? The answer is
performance. DBMSs can sort and manipulate fixed-length columns far more quickly than they can sort variable-length
columns. In addition, many DBMSs will not allow you to index variable-length columns (or the variable portion of a
column). This also dramatically impacts performance. (See Lesson 22, "Understanding Advanced SQL Features," for
more information on indexes.)

Table D.1. String Datatypes
Datatype Description

CHAR Fixed length string from 1 to 255 chars long. Its size must be specified at create time.

NCHAR Special form of CHAR designed to support multibyte or Unicode characters. (The exact
specifications vary dramatically from one implementation to the next.)

NVARCHAR Special form of TEXT designed to support multibyte or Unicode characters. (Exact
specifications vary dramatically from one implementation to the next.)

TEXT (also called LONG or
MEMO or VARCHAR)

Variable-length text.

Using Quotes Regardless of the form of string datatype being used, string values
must always be surrounded by single quotes.

When Numeric Values Are Not Numeric Values You might think that phone
numbers and zip codes should be stored in numeric fields (after all, they only store
numeric data), but doing so would not be advisable. If you store the zip code 01234
in a numeric field, the number 1234 would be saved. You'd actually lose a digit.

The basic rule to follow is: If the number is a number used in calculations (sums,
averages, and so on), it belongs in a numeric datatype column. If it is used as a
literal string (that happens to contain only digits), it belongs in a string datatype
column.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Numeric Datatypes
Numeric datatypes store numbers. Most DBMSs support multiple numeric datatypes, each with a different range of
numbers that can be stored in it. Obviously, the larger the supported range, the more storage space needed. In
addition, some numeric datatypes support the use of decimal points (and fractional numbers) whereas others support
only whole numbers. Table D.2 lists common uses for various datatypes. Not all DBMSs follow the exact naming
conventions and descriptions listed here.

Table D.2. Numeric Datatypes
Datatype Description

BIT Single bit value, either 0 or 1, used primarily for on/off flags

DECIMAL (also called NUMERIC) Fixed or floating point values with varying levels of precision

FLOAT (also called NUMBER) Floating point values

INT (also called INTEGER) 4-byte integer value that supports numbers from –2147483648 to 2147483647

REAL 4-byte floating point values

SMALLINT 2-byte integer value that supports numbers from –32768 to 32767

TINYINT 1-byte integer value that supports numbers from 0 to 255

Not Using Quotes Unlike strings, numeric values should never be enclosed within
quotes.

Currency Datatypes Most DBMSs support a special numeric datatype for storing
monetary values. Usually called MONEY or CURRENCY, these datatypes are
essentially DECIMAL datatypes with specific ranges that make them well-suited for
storing currency values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Date and Time Datatypes
All DBMSs support datatypes designed for the storage of date and time values (see Table D.3). Like numeric values,
most DBMSs support multiple datatypes, each with different ranges and levels of precision.

Table D.3. Date and Time Datatypes
Datatype Description

DATE Date value

DATETIME (also known as TIMESTAMP) Date time values

SMALLDATETIME Date time values with accuracy to the minute (no seconds or milliseconds)

TIME Time value

Specifying Dates There is no standard way to define a date that will be
understood by every DBMS. Most implementations understand formats like 2004-12-
30 or Dec 30th, 2004, but even those can be problematic to some DBMSs. Make sure
to consult your DBMS documentation for a list of the date formats that it will
recognize.

ODBC Dates Because every DBMS has its own format for specifying dates, ODBC
created a format of its own that will work with every database when ODBC is being
used. The ODBC format looks like {d '2004-12-30'} for dates, {t '21:46:29'} for times,
and {ts '2004-12-30 21:46:29'} for date time values. If you are using SQL via ODBC,
be sure your dates and times are formatted in this fashion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Binary Datatypes
Binary datatypes are some of the least compatible (and, fortunately, also some of the least used) datatypes. Unlike all
the datatypes explained thus far, which have very specific uses, binary datatypes can contain any data, even binary
information, such as graphic images, multimedia, and word processor documents (see Table D.4).

Table D.4. Binary Datatypes
Datatype Description

BINARY Fixed-length binary data (maximum length may vary from 255 bytes to 8,000
bytes, depending on implementation)

LONG RAW Variable-length binary data up to 2GB

RAW (called BINARY by some
implementations)

Fixed-length binary data up to 255 bytes

VARBINARY Variable-length binary data (typically, maximum length varies from 255 bytes to
8,000 bytes, depending on implementation)

Comparing Datatypes If you would like to see a real-world example of database
comparisons, look at the table creation scripts used to build the example tables in
this book (see Appendix A, "Sample Table Scripts"). By comparing the scripts used
for different DBMSs you'll see first hand just how complex a task datatype matching
is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix E. SQL Reserved Words
SQL is a language made up of keywords—special words that are used in performing SQL operations. Special care must
be taken to not use these keywords when naming databases, tables, columns, and any other database objects. Thus,
these keywords are considered reserved.

This appendix contains a list of the more common reserved words found in major DBMSs. Please note the following:

Keywords tend to be very DBMS-specific, and not all the keywords that follow are used by all DBMSs.

Many DBMSs have extended the list of SQL reserved words to include terms specific to their implementations.
Most DBMS-specific keywords are not listed in the following section.

To ensure future compatibility and portability, it is a good idea to avoid any and all reserved words, even those
not reserved by your own DBMS.

ABORT ABSOLUTE ACTION

ACTIVE ADD AFTER

ALL ALLOCATE ALTER

ANALYZE AND ANY

ARE AS ASC

ASCENDING ASSERTION AT

AUTHORIZATION AUTO AUTO-INCREMENT

AUTOINC AVG BACKUP

BEFORE BEGIN BETWEEN

BIGINT BINARY BIT

BLOB BOOLEAN BOTH

BREAK BROWSE BULK

BY BYTES CACHE

CALL CASCADE CASCADED

CASE CAST CATALOG

CHANGE CHAR CHARACTER

CHARACTER_LENGTH CHECK CHECKPOINT

CLOSE CLUSTER CLUSTERED

COALESCE COLLATE COLUMN

COLUMNS COMMENT COMMIT

COMMITTED COMPUTE COMPUTED

CONDITIONAL CONFIRM CONNECT

CONNECTION CONSTRAINT CONSTRAINTS

CONTAINING CONTAINS CONTAINSTABLE

CONTINUE CONTROLROW CONVERT

COPY COUNT CREATE

CROSS CSTRING CUBE

CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATABASE DATABASES DATE

DATETIME DAY DBCC

DEALLOCATE DEBUG DEC

DECIMAL DECLARE DEFAULT

DELETE DENY DESC

DESCENDING DESCRIBE DISCONNECT

DISK DISTINCT DISTRIBUTED

DIV DO DOMAIN

DOUBLE DROP DUMMY

DUMP ELSE ELSEIF

ENCLOSED END ERRLVL

ERROREXIT ESCAPE ESCAPED

EXCEPT EXCEPTION EXEC

EXECUTE EXISTS EXIT

EXPLAIN EXTEND EXTERNAL

EXTRACT FALSE FETCH

FIELD FIELDS FILE

FILLFACTOR FILTER FLOAT

FLOPPY FOR FORCE

FOREIGN FOUND FREETEXT

FREETEXTTABLE FROM FULL

FUNCTION GENERATOR GET

GLOBAL GO GOTO

GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY

IF IN INACTIVE

INDEX INDICATOR INFILE

INNER INOUT INPUT

INSENSITIVE INSERT INT

INTEGER INTERSECT INTERVAL

INTO IS ISOLATION

JOIN KEY KILL

LANGUAGE LAST LEADING

LEFT LENGTH LEVEL

LIKE LIMIT LINENO

LINES LISTEN LOAD

LOCAL LOCK LOGFILE

LONG LOWER MANUAL

MATCH MAX MERGE

MESSAGE MIN MINUTE

MIRROREXIT MODULE MONEY

MONTH MOVE NAMES

NATIONAL NATURAL NCHAR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NEXT NEW NO

NOCHECK NONCLUSTERED NONE

NOT NULL NULLIF

NUMERIC OF OFF

OFFSET OFFSETS ON

ONCE ONLY OPEN

OPTION OR ORDER

OUTER OUTPUT OVER

OVERFLOW OVERLAPS PAD

PAGE PAGES PARAMETER

PARTIAL PASSWORD PERCENT

PERM PERMANENT PIPE

PLAN POSITION PRECISION

PREPARE PRIMARY PRINT

PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROTECTED

PUBLIC PURGE RAISERROR

READ READTEXT REAL

REFERENCES REGEXP RELATIVE

RENAME REPEAT REPLACE

REPLICATION REQUIRE RESERV

RESERVING RESET RESTORE

RESTRICT RETAIN RETURN

RETURNS REVOKE RIGHT

ROLLBACK ROLLUP ROWCOUNT

RULE SAVE SAVEPOINT

SCHEMA SECOND SECTION

SEGMENT SELECT SENSITIVE

SEPARATOR SEQUENCE SESSION_USER

SET SETUSER SHADOW

SHARED SHOW SHUTDOWN

SINGULAR SIZE SMALLINT

SNAPSHOT SOME SORT

SPACE SQL SQLCODE

SQLERROR STABILITY STARTING

STARTS STATISTICS SUBSTRING

SUM SUSPEND TABLE

TABLES TAPE TEMP

TEMPORARY TEXT TEXTSIZE

THEN TIME TIMESTAMP

TO TOP TRAILING

TRAN TRANSACTION TRANSLATE

TRIGGER TRIM TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRIGGER TRIM TRUE

TRUNCATE UNCOMMITTED UNION

UNIQUE UNTIL UPDATE

UPDATETEXT UPPER USAGE

USE USER USING

VALUE VALUES VARCHAR

VARIABLE VARYING VERBOSE

VIEW VOLUME WAIT

WAITFOR WHEN WHERE

WHILE WITH WORK

WRITE WRITETEXT XOR

YEAR ZONE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

% (percent sign) wildcard 2nd 3rd 4th 5th
' (single quotation marks)
 WHERE clause operators and
* (wildcard character)
 queries 2nd
*= (equality) operator
+ (plus sign)
 concatenation operator 2nd
+ (plus sign) operator
 outer joins
, (commas)
 multiple coliumn separatio
@ character
@@ERROR variable
@@IDENTITY global variable
[] (square brackets) wildcard 2nd 3rd 4th
^ (caret) character
_ (underscore) wildcard 2nd 3rd
| (pipe) symbol
|| (double pipes)
 concatenation operator 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

ABS() function
Access (Microsoft)
 DISTINCT argument support
 example tables for
 pass-through mode
 running 2nd 3rd
 sorting by alias
 stored procedure support
adding
 rows to tables
aggregate functions
 ALL argument
 AVG() 2nd 3rd
 combining 2nd
 COUNT() 2nd 3rd
 defined
 DISTINCT argument 2nd
 joins and 2nd 3rd
 MAX() 2nd
 MIN() 2nd
 naming aliases
 overview 2nd
 SUM() 2nd 3rd
aliases
 alternative uses
 columns
 creating
 concatenating fields 2nd
 names
 naming
 aggregate functions and
 table names 2nd 3rd
 self joins 2nd 3rd 4th
ALL argument
 aggregate functions
ALL clause
 grouping data
alphabetical sort order 2nd 3rd 4th
ALTER TABLE statement 2nd 3rd
ALTER TABLE statements
 CHECK constraints
 CONSTRAINT syntax
 syntax
AND keyword
AND operator 2nd 3rd
ANSI SQL
applications
 filtering query results
 SQL compatibility
 Aqua Data Studio 2nd
 ColdFusion (Macromedia) 2nd
 DB2 (IBM) 2nd
 Microsoft Access 2nd 3rd
 Microsoft ASP 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Microsoft ASP.NET 2nd
 Microsoft Query 2nd
 Microsoft SQL Server 2nd
 MySQL
 ODBC configuration 2nd 3rd
 Oracle
 PHP scripting language
 PostgreSQL
 Query Tool 2nd
 selection criteria
 Sybase Adaptive Server 2nd
Aqua Data Studio
 running 2nd
 Web site
arguements
 DBMS support
arguments
 ALL
 aggregate functions
argumentsDISTINCT
 aggregate functions 2nd
AS keyword 2nd
 Oracle support
ASC keyword
 query results sort order
ASP (Microsoft)
 running 2nd
ASP.NET (Microsoft)
 running 2nd
authentication
authorization
AVG() function 2nd 3rd 4th
 DISTINCT argument
 NULL values

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

BETWEEN operator
BETWEEN operator (WHERE clause)
between specified values operator (WHERE clause)
BINARY datatype
binary datatypes
BIT datatype

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th
 column aliases 2nd
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 subqueries 2nd 3rd 4th
 views 2nd 3rd
calculated values
 totaling
Cartesian Product
 joins and 2nd 3rd 4th
cascading deletes
case sensitivity
 query result sort order
 SQL statements
CHAR string datatype
charactrers
 searching for
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
check constraints 2nd 3rd
clauses
 ALL
 grouping data
 GROUP BY 2nd 3rd
 HAVING
 grouping data
 IS NULL
 SELECT statements
 order of
 WHERE 2nd 3rd
 AND operator 2nd 3rd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 IN operator 2nd 3rd 4th
 joins and 2nd 3rd 4th
 multiple query criteria
 NOT operator 2nd 3rd
 operator support by DBMS
 operators 2nd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 positioning
 SOUNDEX function
client-based results fomatting
 compared to server-based
CLOSE statements
 closing cursors
cloumns
 insert STATEMENT AND
code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 commenting
 stored procedures
code (programming)
 commenting
 portability
ColdFusion (Macromedia)
 running 2nd
column aliases
 alternative uses
 concatening fields 2nd
columns
 aliases
 creating
 names
 AVG() function
 individual columns
 breaking data correctly
 concepts 2nd
 Customers example table
 derived
 fully qualified names
 GROUP BY clause
 grouping data
 specifying by relative position
 Identity fields
 INSERT SELECT statements
 INSERT statement
 omitting columns
 multiple
 sorting query results by 2nd
 nonselected
 sorting query results by
 NULL value
 checking for
 NULL value columns 2nd 3rd
 OrderItems example table
 Orders example table
 padded spaces
 RTRIM() funuction 2nd
 position
 sorting query results by 2nd 3rd
 primary keys 2nd
 Products example table
 retrieving
 all 2nd
 individual 2nd
 multiple 2nd
 unknown
 separating names in queries
 sorting data
 descending on multiple columns
 subquery result restrictions
 updating multiple
 values
 deleting
 Vendors example table
columns. [See also fields]
combined queries
 creating 2nd 3rd 4th 5th 6th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 duplicate rows and 2nd 3rd
 overview
 performance
 rules
 sorting results 2nd
Command Center utility
 running 2nd
commas (,)
 multiple column separation
commenting
 programming code
 importance of
 stored procedure code
COMMIT statement
 syntax
COMMIT statement (transaction processing) 2nd
commits (transaction processing)
 defined
compatibility
 datatype
 functions
 DBMS support considerations 2nd
 WHERE clause operators
compatibility (SQL code)
 applications
 selection criteria
concatenating
 fields 2nd 3rd 4th 5th 6th
 cloumn aliases 2nd
 mathematical calcualtions 2nd 3rd 4th
 MySQL
concatenation operators 2nd
configuring
 ODBC 2nd 3rd
CONSTRAINT syntax
 ALTER TABLE statements
constraints
 speed
constraints (referential integrity)
 check constraints 2nd 3rd
 foreign keys keys 2nd 3rd
 overview 2nd 3rd
 primary keys 2nd 3rd
 unique constraints 2nd
copying
 tables
COS() function
COUNT() function 2nd 3rd 4th
 DISTINCT argument
 joins and
 NULL values
COUNT* subquery
CREATE INDEX statement
 syntax 2nd
CREATE INDEX statements
CREATE TABLE statement 2nd 3rd 4th
 DEFAULT keyword 2nd 3rd
 syntax
CREATE VIEW statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 syntax
creating
 indexes 2nd
 stored procedures
 tables
 triggers
 views
 rules and restrictions
cross joins
currency datatypes
cursors
 accessing 2nd 3rd 4th
 closing 2nd
 creating 2nd
 implementing
 limitations
 opening
 options
 support for
 overview
 Web-based applications
Customers table

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

data
 breaking correctly (columns)
 deleting
 guidelines
 TRUNCATE TABLE statement
 filtering
 indexes
 manipulation functions
 date and time
 security
 updating
 guidelines
data and time datatypes
Database Management System. [See DBMS]
databases [See also tables]
 concepts 2nd
 defined
 droppig objects
 indexes
 cautions
 creating
 scalability
 schemas
 security
 tables
 creating
 triggers
DATALENGTH() function
datatypes
 binary
 compatibility
 currency
 data and time
 defining
 numeric
 string
 usefulness of
date (system)
 default value syntax
date and time functions 2nd 3rd 4th 5th 6th
DATE dataype 2nd
DATEPART() function
DATETIME datatype
DB2 (IBM)
 running 2nd
DBMS
 (Database Management System)
 accidental table deletion
 datatype differences
 functions
 support considerations 2nd
 indexes
 interactive tools
 ISAM databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LIKE operator
 search patterns and
 NULL value differences
 query sort order
 security mechanisms
 SQL extensions
 transaction processing
 implementation differences
 triggers
 TRIM functions
 UNION statements
 user-defined datatypes
 view creation
 views
 rules and restrictions
 WHERE claue
 allowed operators
DECIMAL datatype
DECLARE statements
 cursors
 creating 2nd
 stored procedures
default values
 tables 2nd 3rd
defining
 datatypes
DELETE FROM statements
DELETE statement 2nd 3rd
 FROM keyword
 guidelines
 security privileges
 syntax
 transaction processing
 TRUNCATE TABLE statement
DELETE statements
 rollbacks
 triggers
 WHERE clause
deleting
 column values
 data
 guidelines
 TRUNCATE TABLE statement
 rows
 tables 2nd
 preventing accidental deletion
deleting rows
 preventing accidential
derived columns. [See aliases]
DESC keyword
 query results sort order 2nd 3rd
dictionary sort order (query results)
DISTINCT argument
 AVG() function
 COUNT() function
double pipes (||)
 contenation operator 2nd
downloading
 example tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Microsoft Access MDB file
 SQL scripts
DROP statement
 syntax
DROP TABLE statement 2nd
dropping
 database objects

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

empty strings
 compared to NULL values
equality (*=) operator
equality operator (WHERE clause)
establishing
 primary keys
example tables
 Customers table
 downloading
 functions of
 Microsoft Access MDB file
 OrderItems table
 Orders table
 Products table
 SQL scripts
 Vendors table
EXCEPT statements
EXECUTE statement
 stored procedures 2nd 3rd 4th 5th 6th 7th 8th
EXP() function
explicit commits
extensions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

FETCH statement
 accessing cursors 2nd 3rd 4th
fields [See also calculated fields]
 . [See also columns]
 aliases
 names
 calculated
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 subqueries 2nd 3rd 4th
 views 2nd 3rd
filtering
 by subqueries 2nd 3rd 4th 5th
 data
 indexes
 data groups 2nd 3rd 4th
 query results 2nd 3rd
 application level
 WHERE clause operators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 query reults
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 multiple criteria
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 with views 2nd
filters
 LIKE operator 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
fixed length strings
FLOAT datatype
foreign keys 2nd 3rd
formatting
 query data
 retrieved data with views 2nd 3rd 4th
 server-based compared to client-based
 statements
 subqueries
FROM clause
 creating joins
FROM keyword
 DELETE statement
 UPDATE statement
full outer joins
fully qualified column names
functions
 ABS()
 advisability of using
 aggregate
 ALL argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AVG() 2nd 3rd
 combining 2nd
 COUNT() 2nd 3rd
 defined
 DISTINCT argument 2nd
 joins and 2nd 3rd
 MAX() 2nd
 MIN() 2nd
 naming aliases
 overview 2nd
 SUM() 2nd 3rd
 AVG() 2nd 3rd 4th
 DISTINCT argument
 NULL values
 COS()
 COUNT() 2nd 3rd 4th
 DISTINCT argument
 NULL values
 DATALENGTH()
 date and time 2nd 3rd 4th 5th 6th
 DATEPART()
 defined
 EXP()
 LCASE()
 LEFT()
 LEN()
 LENGTH()
 LOWER()
 LTRIM()
 MAX() 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
 MIN() 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
 numeric 2nd 3rd
 PI()
 RIGHT()
 RTRIM() 2nd 3rd
 SIN()
 SOUNDEX() 2nd
 support for
 SQRT()
 SUM() 2nd 3rd 4th
 multiple columns and
 NULL values
 support considerations 2nd
 system
 TAN()
 text 2nd 3rd
 list of common
 to_char
 to_number
 TRIM
 types of
 UCASE()
 UPPER() 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 YEAR()

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

global variables
 @@IDENTITY
GRANT statements
greater than operator (WHERE clause)
greater than or equal to operator (WHERE clause)
GROUP BY clause 2nd 3rd
 compared to ORDER BY clause 2nd 3rd 4th
grouping
 operators
grouping data
 columns
 specifying by position
 compared to sorting 2nd 3rd 4th
 filtering groups 2nd 3rd 4th
 GROUP BY clause 2nd 3rd
 nested groups

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

HAVING clause
 grouping data

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

IBM DB2
 running 2nd
Identity fields
IN operator 2nd 3rd 4th
indexes
 cautions
 creating 2nd
 overview 2nd 3rd 4th
 revisiting
inner joins 2nd
INSERT SELECT statement 2nd 3rd
 syntax
INSERT SELECT statements
 SELECT INTO statement comparison
INSERT statement
 completing rows 2nd 3rd 4th
 INTO keyword
 overview
 partial rows 2nd
 query data 2nd 3rd
 security privileges
 syntax
 transaction processing
INSERT statements
 columns lists
 omitting columns
 rollbacks
 triggers
 VALUES
INT datatype
integrity. [See referential integrity]
interactive DBMS tools
INTERSECT statements
INTO keyword
IS NULL clause
ISAM
 (Indexed Sequential Access Method) databases
ISTINCT argument
 aggregate functions 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

joins
 aggregate functions and 2nd 3rd
 Cartesian Product 2nd 3rd 4th
 creating 2nd
 cross joins
 inner joins 2nd
 multiple tables 2nd 3rd 4th
 natural joins 2nd 3rd
 outer
 left
 right
 sytax
 outer joins 2nd 3rd 4th 5th 6th
 full
 types
 overview 2nd
 performance considerations
 self joins 2nd 3rd 4th
 usefulness of
 views 2nd 3rd
 WHERE clause 2nd 3rd 4th
 WHERE clauses

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

keys
 primary 2nd 3rd
keywords
 AND 2nd
 AS 2nd
 Oracle support
 ASC
 query results sort order
 DEFAULT
 table values 2nd 3rd
 DESC
 query results sort order 2nd 3rd
 FROM 2nd
 IN
 INTO
 NOT
 OR
 REFERENCES
 UNIQUE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

languages
 SQL
LCASE() function
LEFT keyword (outer joins)
left outer joins
LEFT() function
LEN() function
LENGTH() function
less than operator (WHERE clause)
less than or equal to operator (WHERE clause)
LIKE operator 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
local varialbes
 @ character
logical operators
 defined
LONG RAW datatype
LOWER() function
LTRIM() function 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Macromedia ColdFusion
 running 2nd
manipulation functions
 date and time
mathematical calcualtions 2nd 3rd 4th
mathematical operators
MAX() function 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
Microsoft Access
 DISTINCT argument support
 example tables for
 pass-through mode
 running 2nd 3rd
 sorting by alias
 stored procedure support
Microsoft ASP
 running 2nd
Microsoft ASP.NET
 running 2nd
Microsoft Query
 running 2nd
Microsoft SQL Server
 running 2nd
MIN() function 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
MySQL
 concatenation
 cursor support
 NOT operator
 running
 stored procedure support
 subquery support
 views
 support for

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

names
 tables
 reserved words and
naming
 aliases
 aggregate functions and
 columns
 fully qualified names
 indexes
 tables
 aliases 2nd 3rd
natural joins 2nd 3rd
navigating tables
 cursors
NCHAR string datatype
nested data groups
non-equality operator (WHERE clause)
non-numeric data
 MAX() function
 MIN() function
not greater than operator (WHERE clause)
not less than operator (WHERE clause)
NOT operator 2nd 3rd
 character searching and
NULL keyword
 updating columns
NULL value operator (WHERE clause)
NULL values
 AVG() function
 checking for
 compared to empty strings
 COUNT() function
 MAX() function
 MIN() function
 primary keys
 SUM() function
 table columns 2nd 3rd
numeric datatypes
numeric functions 2nd 3rd
numeric values
 quotes
 storing
NVARCHAR string datatype

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

ODBC
 configuration 2nd 3rd
ODBC dates
OPEN CURSOR statements
OPEN statements
 opening cursors
operators
 *= (equality)
 + (plus sign)
 outer joins
 AND 2nd 3rd
 BETWEEN
 concatenation 2nd
 defined
 grouping related
 HAVING clause
 IN 2nd 3rd 4th
 LIKE 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
 mathematical
 NOT 2nd 3rd
 OR 2nd 3rd
 order of evaluation 2nd 3rd
 predicates
 WHERE clause 2nd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 compatibility
OR operator 2nd 3rd
Oracle
 commits
 cursors
 closing
 creating
 retrieving data
 date and time manipulation functions
 date formatting
 running
 savepoints
 stored procedures
 triggers
ORDER BY clause
 (SELECT statement)
 ascending/desccending sort order 2nd 3rd 4th
 compared to GROUP BY clause 2nd 3rd 4th
 positioning
 sorting by column position 2nd 3rd
 sorting by multiple columns 2nd
 sorting by nonselected columns
OrderItems table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Orders table
ourter joins
 right
outer joins 2nd 3rd 4th 5th 6th
 full
 left
 syntax 2nd
 types
overwriting tables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

parentheses
 multiple query criteria order of evaluation
pass-through mode (Microsoft Access)
patterns (searching)
 wildcards 2nd 3rd
 % (percent sign) 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 _ (underscore) 2nd 3rd
percent sign (%) wildcard 2nd 3rd 4th 5th
performance
 combining queries
 deleting data
 indexes
 joins and
 subqueries
 views
PHP scripting language
 running
PI() function
pipe (|) symbol
placeholders. [See savepoints]
plus sign (+)
 concatenation operator 2nd
plus sign (+) operator
 outer joins
portability
 defined
 INSERT statements and
PostgreSQL
 filter query data
 running
predicates (operators)
primary keys 2nd 3rd
 concepts 2nd 3rd
 Customer example table
 importance
 NULL values
 OrderItems example table
 Orders example table
 Products example table
 Vendors example table
processing
 subqueries
 transactions. [See transaction processing]
Products table
programming code
 commenting
 portability

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

queries
 calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 combined
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 performance
 rules
 sorting results 2nd
 WHERE clauses
 combining
 data formatting
 defined
 filtering results 2nd 3rd
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 multiple criteria
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 WHERE clause operators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 INSERT statement and 2nd 3rd
 multiple WHERE clauses
 result sets
 sorting results 2nd 3rd
 ascending/desccending order 2nd 3rd 4th
 by column position 2nd 3rd
 by multiple columns 2nd
 by nonselected columns
 case sensitivity
 nonselected columns and
 subqueries
 as calculated fields 2nd 3rd 4th
 filtering by 2nd 3rd 4th 5th
 overview 2nd
 processing
 self joins and
 table aliases
 unsorted results
 views
 wild cards (*) 2nd
Query (Microsoft)
 running 2nd
Query Tool
 running 2nd
Query Tool Web site
quotation marks, single (')
quotes
 numeric values
 string values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

RAW datatype
REAL datatype
records
 compared to rows
REFERENCES keyword
referential integrity
 cascading deletes
 constrainte
 primary keys 2nd 3rd
 constraints
 check constraints 2nd 3rd
 foreign keys 2nd 3rd
 overview 2nd 3rd
 unique constraints 2nd
 natural joins 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th
 self joins 2nd 3rd 4th
reformatting
 retrieved data with views 2nd 3rd 4th
relational databases
 sort order and
relational DBMS
 nonrelational behavior, inducing
relational tables 2nd 3rd
relationships
 constrainte
 overview 2nd 3rd
 constraints
 check constraints 2nd 3rd
 foreign keys 2nd 3rd
 primary keys 2nd 3rd
 unique constraints 2nd
 natural joins 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th
 self joins 2nd 3rd 4th
RENAME statement
renaming
 tables
reserved words 2nd 3rd
 list of 2nd 3rd 4th 5th
restrictions
 views 2nd
result sets
reusable views
 creating
revisiting
 indexes
REVOKE statements
RIGHT keyword (outer joins)
right outer joins
RIGHT() function
ROLLBACK command (transaction processing) 2nd
ROLLBACK statement
 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rollbacks
 COMMIT statement 2nd
 ROLLBACK command 2nd
 savebacks and 2nd 3rd
 statements
rollbacks (transaction processing)
 defined
rows
 adding to tables
 compared to records
 concepts
 cursors
 deleting
 INSERT statement 2nd 3rd 4th
 partial rows 2nd
 preventing accidental deletion
 updating
RTRIM() function 2nd 3rd 4th
rules
 combining queries
 constraints
 views 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

savepoints
 transaction processing 2nd 3rd
savepoints (transaction processing)
 defined
scalablity
schemas
scripting
 PHP
scripts
 example tables
search patterns
 defined
 wildcards 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
 cautions
searching
 indexes
 overview 2nd 3rd 4th
 trailing spaces and
 wildcards
 % character 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 ^ (caret) character
 _ (underscore) 2nd 3rd
security
 data
 DELETE statement
 INSERT statements
 UPDATE statement
SELECT INTO statements
 INSERT SELECT statement comparison
SELECT statement
 aggregate functions
 combining 2nd
 AVG() function
 clauses
 ordering of
 columns
 retrieving all 2nd
 retrieving individual 2nd
 retrieving multiple 2nd
 retrieving unknown
 combining
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 rules
 sorting results 2nd
 COUNT() function
 syntax
SELECT statements
 AS keyword 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 concatenating fields 2nd
 FROM clause
 creating joins
 grouping data 2nd 3rd
 IS NULL clause
 ORDER BY clause
 positioning
 subqueries
 formatting
 WHERE clause 2nd 3rd
 WHERE clauses
 combined queries
 combining
 NOT operator
self joins 2nd 3rd 4th
 compared to subqueries
semicolonCharacter (semicolons)
 multiple statements
semicolons (semicolonCharacter)
 multiple statements
sequence (SELECT statement clauses)
server-based results fomatting
 compared to client-based
SET command
 updating tables
SIN() function
single quotation marks (')
 WHERE clause operators and
SMALLDATETIME datatype
SMALLINT datatype
sorting
 combined query results 2nd
 datatype functionality
 indexes
 overview 2nd 3rd 4th
 query results 2nd 3rd
 ascending/desccending order 2nd 3rd 4th
 by column position 2nd 3rd
 by multiple columns 2nd
 by nonselected columns
 case sensitivity
 nonselected columns and
sorting data
 compared to grouping 2nd 3rd 4th
SOUNDEX() function 2nd
 support for
spaces
 removing
 RTRIM function 2nd
 search results and
specifying
 dates
speed
 constraints versus triggers
SQL
 deleting/updating data
 extensions
 overview 2nd
SQL scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 example tables
SQL Server
 cursors
 closing
 Identity fields
 local variables
 @ character
 savepoints
 stored procedures
 triggers
SQL Server (Microsoft)
 running 2nd
SQRT() function
square brackets ([]) wildcard 2nd 3rd 4th
statement
 CREATE VIEW
statements
 ALTER TABLE 2nd 3rd
 syntax
 case sensitivity
 clauses
 COMMIT 2nd
 syntax
 CREATE INDEX
 syntax 2nd
 CREATE TABLE 2nd 3rd 4th
 syntax
 CREATE VIEW
 syntax
 DELETE 2nd 3rd 4th
 FROM keyword
 syntax
 transaction processing
 DROP
 syntax
 DROP TABLE 2nd
 formatting
 GRANT
 grouping related operators
 INSERT
 completing rows 2nd 3rd 4th
 omitting columns
 overview
 partial rows 2nd
 query data 2nd 3rd
 security privileges
 syntax
 transaction processing
 VALUES
 INSERT SELECT
 syntax
 multiple
 separating
 OPEN CURSOR
 RENAME
 REVOKE
 ROLLBACK
 syntax
 rollbacks 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 defined
 SELECT
 AVG() function
 combining 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 combining aggregate functions 2nd
 contenating fields 2nd
 COUNT() function
 grouping data 2nd 3rd
 retrieving all columns 2nd
 retrieving individual columns 2nd
 retrieving multiple columns 2nd
 retrieving unknown columns
 syntax
 stored procedures
 creating 2nd 3rd 4th 5th
 disadvantages of 2nd
 executing 2nd 3rd
 overview 2nd
 usefulness of 2nd
 syntax 2nd 3rd 4th 5th 6th 7th
 UPDATE 2nd 3rd 4th 5th
 syntax
 transaction processing
 white space
stored procedures
 commenting code
 creating 2nd 3rd 4th 5th 6th
 disadvantages of 2nd
 executing 2nd 3rd
 Identity fields
 Oracle
 overview 2nd
 triggers
 usefulness of 2nd
storing
 date and time values
 numeric values
 cautions
 strings
string datatypes
strings [See also text functions]
 empty
 compared to NULL values
 fixed length
 quotes
 TRIM functions
 variable-length
 wildcard searching and
subqueries
 as calculated fields 2nd 3rd 4th
 compared to self joins
 COUNT*
 filtering by 2nd 3rd 4th 5th
 formatting
 overview 2nd
 performance
 processing
 self joins and
 UPDATE statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE lauses
SUM() function 2nd 3rd 4th
 multiple columns
 NULL values
support
 DBMS function support 2nd
Sybase Adaptive Server
 running 2nd
 statements
 ending
syntax
 ALTER TABLE statements
 column aliases
 COMMIT statement
 CREATE INDEX statement 2nd
 CREATE TABLE statement 2nd
 CREATE VIEW statement
 DELETE statement
 DROP statement
 INERT statement
 INSERT statement
 outer joins
 ROLLBACK statement
 SELECT statement
 statements 2nd 3rd 4th 5th 6th 7th
 transaction processing
 triggers
 UPDATE statement
system date
 default value syntax
system functions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

tables
 calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 column aliases
 creating
 columns 2nd
 NULL value, checking for
 primary keys
 concepts 2nd
 copying
 copying data into tables 2nd 3rd
 creating
 CREATE TABLE statement 2nd 3rd
 overview 2nd
 datatypes
 default values 2nd 3rd
 deleting 2nd
 preventing accidental deletion
 examples
 Customers table
 downloading
 downloading;Microsoft Access MDB file
 downloading;SQL scripts
 functions of
 OrderItems table
 Orders table
 Products table
 Vendors table
 indexes
 cautions
 creating
 searching
 INSERT statement
 multiple rows
 inserting data 2nd 3rd 4th
 from queries 2nd 3rd
 partial rows 2nd
 joins
 Cartesian Product 2nd 3rd 4th
 creating 2nd
 cross joins
 inner joins 2nd
 multiple tables 2nd 3rd 4th
 overview 2nd
 performance considerations
 usefulness of
 WHERE clause 2nd 3rd 4th
 naming
 reserved words and
 natural joins 2nd 3rd
 NULL value columns 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 relational 2nd 3rd
 renaming
 replacing
 rows
 adding
 deleting
 updating
 schemas
 security
 table name aliases 2nd 3rd
 self joins 2nd 3rd 4th
 triggers
 creating
 functionality
 updating 2nd 3rd 4th 5th 6th 7th
 deleting data 2nd 3rd
 views
 creating
 virtual. [See views]
TAN() function
testing
 Query Tool and 2nd
text functions 2nd 3rd
 list of common
TEXT string datatype
time functions 2nd 3rd 4th 5th
TINYINT datatype
to_char() function
to_number() function
tools
 DBMS
 interactive
TOP argument
TOP PERCENT argument
totaling
 calculated values
totaling values
 SUM() function 2nd 3rd
transaction processing 2nd 3rd
 COMMIT command 2nd
 explicit commits
 managing 2nd 3rd
 overview 2nd 3rd 4th
 ROLLBACK command 2nd
 terminology
transactions
 blocks
 ROLLBACK statements
 defined
 writing to databases
triggers
 creating
 functionality
 overview 2nd 3rd 4th
 speed
 syntax examples
TRIM() function
trimming padded spaces 2nd
troubleshooting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 accidental table deletion
 Query Tool and 2nd
TRUNCATE TABLE statement

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

UCASE() function
underscore (_) wildcard 2nd 3rd
UNION operator
 combined queries 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 rules
 sorting results 2nd
 compared to WHERE clauses
 limits
UNION statements
 types
unions (queries)
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 rules
 sorting results 2nd
unique constraints 2nd
UNIQUE keyword
unsorted data
 query results
UPDATE statement 2nd 3rd 4th
 FROM keyword
 guidelines
 security privileges
 subqueries
 transaction processing
UPDATE statements
 syntax
 triggers
updating
 data
 guidelines
 table data 2nd 3rd 4th
 deleting data 2nd 3rd
 tables 2nd 3rd
UPPER() function 2nd 3rd
user-defined datatypes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

values
 concatenation
 searching for (indexes)
 trimming padded space
VARBINARY datatype
variable-length strings
Vendors table
views
 (tables)
 creating
 calculated fields 2nd 3rd
 creating
 overview
 DBMS consistency
 filtering data 2nd
 joins
 simplifying 2nd 3rd
 overview 2nd
 performance concerns
 reformatting retrieved data 2nd 3rd 4th
 reusable
 rules and restrictions 2nd
 usefulness of 2nd
virtual tables. [See views]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Web sites
 Aqua Data Studio
 example table download site
 Query Tool 2nd
Web-based applications
 cursors
WHERE clause 2nd 3rd 4th [See also HAVING clause]
 BETWEEN operator
 compared to UNION statement
 filtering groups
 joins
 joins and 2nd 3rd 4th
 multiple query criteria
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 operator support by DBMS
 operators 2nd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 quotes and
 parentheses and
 positioning
 SOUNDEX() function
 UPDATE statements
 wildcards
WHERE clauses
 combining in queries
 DELETE statements
 NOT operators
 subqueries
 UPDATE statements
white space
 SQL statements
wildcard character (*)
 queries 2nd
wildcards
 ^ (caret) character
 cautions
 defined
 LIKE operator and 2nd 3rd
 natural joins
writing
 stored procedures

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

YEAR() function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Sample Table Scripts
Writing SQL statements requires a good understanding of the underlying database design. Without knowing what
information is stored in what table, how tables are related to each other, and the actual breakup of data within a row, it
is impossible to write effective SQL.

You are strongly advised to actually try every example in every lesson in this book. All the lessons use a common set of
data files. To assist you in better understanding the examples, and to enable you to follow along with the lessons, this
appendix describes the tables used, their relationships, and how to build (or obtain) them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding the Sample Tables
The tables used throughout this book are part of an order entry system used by an imaginary distributor of toys. The
tables are used to perform several tasks:

Manage vendors

Manage product catalogs

Manage customer lists

Enter customer orders

Making this all work requires five tables (that are closely interconnected as part of a relational database design). A
description of each of the tables appears in the following sections.

Simplified Examples The tables used here are by no means complete. A real-
world order entry system would have to keep track of lots of other data that has
not been included here (for example, payment and accounting information,
shipment tracking, and more). However, these tables do demonstrate the kinds of
data organization and relationships that you will encounter in most real
installations. You can apply these techniques and technologies to your own
databases.

Table Descriptions

What follows is a description of each of the five tables, along with the name of the columns within each table and their
descriptions.

The Vendors Table

The Vendors table stores the vendors whose products are sold. Every vendor has a record in this table, and that vendor
ID (the vend_id) column is used to match products with vendors.

Table A.1. Vendors Table Columns
Column Description

vend_id Unique vendor ID

vend_name Vendor name

vend_address Vendor address

vend_city Vendor city

vend_state Vendor state

vend_zip Vendor zip code

vend_country Vendor country

All tables should have primary keys defined. This table should use vend_id as its primary key.

The Products Table

The Products table contains the product catalog, one product per row. Each product has a unique ID (the prod_id column)
and is related to its vendor by vend_id (the vendor's unique ID).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table A.2. Products Table Columns
Column Description

prod_id Unique product ID

vend_id Product vendor ID (relates to vend_id in Vendors table)

prod_name Product name

prod_price Product price

prod_desc Product description

All tables should have primary keys defined. This table should use prod_id as its primary key.

To enforce referential integrity, a foreign key should be defined on vend_id relating it to vend_id in VENDORS.

The Customers Table

The Customers table stores all customer information. Each customer has a unique ID (the cust_id column).

Table A.3. Customers Table Columns
Column Description

cust_id Unique customer ID

cust_name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

cust_zip Customer zip code

cust_country Customer country

cust_contact Customer contact name

cust_email Customer contact email address

All tables should have primary keys defined. This table should use cust_id as its primary key.

The Orders Table

The Orders table stores customer orders (but not order details). Each order is uniquely numbered (the order_num
column). Orders are associated with the appropriate customers by the cust_id column (which relates to the customer's
unique ID in the Customers table).

Table A.4. Orders Table Columns
Column Description

order_num Unique order number

order_date Order date

cust_id Order customer ID (relates to cust_id in Customers table)

All tables should have primary keys defined. This table should use order_num as its primary key.

To enforce referential integrity, a foreign key should be defined on cust_id relating it to cust_id in CUSTOMERS.

The OrderItems Table

The OrderItems table stores the actual items in each order, one row per item per order. For every row in Orders there are
one or more rows in OrderItems. Each order item is uniquely identified by the order number plus the order item (first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one or more rows in OrderItems. Each order item is uniquely identified by the order number plus the order item (first
item in order, second item in order, and so on). Order items are associated with their appropriate order by the
order_num column (which relates to the order's unique ID in Orders). In addition, each order item contains the product ID
of the item orders (which relates the item back to the Products table).

Table A.5. OrderItems Table Columns
Column Description

order_num Order number (relates to order_num in Orders table)

order_item Order item number (sequential within an order)

prod_id Product ID (relates to prod_id in Products table)

quantity Item quantity

item_price Item price

All tables should have primary keys defined. This table should use order_num and order_item as its primary keys.

To enforce referential integrity, foreign keys should be defined on order_num relating it to order_num in Orders
and prod_id relating it to prod_id in Products.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Obtaining the Sample Tables
In order to follow along with the examples, you need a set of populated tables. Everything you need to get up and
running can be found on this book's Web page at http://www.forta.com/books/0672325675/.

Download a Ready-To-Use Microsoft Access MDB File

You may download a fully populated Microsoft Access MDB file from the above URL. If you use this file you will not need
to run any of the SQL creation and population scripts.

The Access MDB file may be used with any ODBC client utilities, as well as via scripting languages like ASP and
ColdFusion.

Download DBMS SQL Scripts

Most DBMSs store data in formats that do not lend themselves to complete file distribution (as Access does). For these
DBMSs you may download SQL scripts from http://www.forta.com/books/0672325675/. There are two files for each
DBMS:

create.txt contains the SQL statements to create the five database tables (including defining all primary keys and
foreign key constraints).

populate.txt contains the SQL INSERT statements used to populate these tables.

The SQL statements in these files are very DBMS specific, so be sure to execute the one for your own DBMS. These
scripts are provided as a convenience to readers, and no liability is assumed for problems that might arise from their
use.

At the time that this book went to press, scripts were available for:

IBM DB2

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

Sybase Adaptive Server

Other DBMSs may be added as needed or requested.

Appendix B, "Working in Popular Applications," provides instructions on running the scripts in several popular
environment.

Create, Then Populate You must run the table creation scripts before the table
population scripts. Be sure to check for any error messages returned by these
scripts. If the creation scripts fail you will need to remedy whatever problem might
exist before continuing with table population.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. Working in Popular Applications
As explained in Lesson 1, "Understanding SQL," SQL is not an application, it is a language. To follow along with the
examples in this book, you need an application that supports the execution of SQL statements.

This appendix describes the steps for executing SQL statements in some of the more commonly used applications.

You can use any application listed below, and many others, to test and experiment with SQL code. So which should you
use?

Many DBMSs come with their own client utilities, so those are a good place to start. However, these tend to not
have the most intuitive user interfaces.

Windows users likely have a utility named Microsoft Query on their computers. This is a simple utility that is
very effective for testing simple statements.

A wonderful Windows only option is George Poulose's Query Tool. There is a link to this on the book Web page
at http://www.forta.com/books/0672325667/.

Aqua Data Studio is an incredibly useful free Java based utility that will run on Windows, Linux, Unix, Mac OSX,
and other computers. There is a link to this utility on the book Web page at
http://www.forta.com/books/0672325667/.

Any of these are good options, and there are others too. For additional recommendations visit the book Web page.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Aqua Data Studio
Aqua Data Studio is a free Java based SQL client. It runs on all major platforms, and supports all major DBMSs (as well
as ODBC). To execute a SQL statement in Aqua Data Studio, do the following:

1. Launch Aqua Data Studio.

2. DBMSs must be registered before they can be used. Select Register Server from the Server menu.

3. Select the DBMS you are using from the displayed list (select Generic ODBC to use Microsoft Access or any
ODBC data base, this requires that an ODBC data source be defined as explained at the end of this appendix).
Based on the DBMS selected, you will be prompted for path or login information. Fill in the form and click OK.
Once registered, the server will appear in the list on the left.

4. Select a server from the list of registered servers.

5. Launch the Query Analyzer by selecting Query Analyzer from the Server menu, or by pressing Ctrl-Q.

6. Type your SQL in the query window (the top window).

7. To execute your SQL, select Execute from the Query menu, or press Ctrl-E, or click the Execute button (the one
with the green arrow).

8. Results will be displayed in the lower window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Oracle
Oracle comes with a Java based management tool called Enterprise Manager. This is actually a suite of tools, one of
which is named SQL*Plus Worksheet. Here's how to use this tool:

1. Launch SQL*Plus Worksheet (either directly, or from within the Oracle Enterprise Manager).

2. You'll be prompted for login information. Provide a user name and password and connect to the database
server.

3. The SQL Worksheet screen is divided into two panes. Type your SQL in the upper pane.

4. To execute the SQL statement, click the Execute button (the one with the picture of the lightning bolt). Results
will be displayed in the lower pane.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using PHP
PHP is a popular Web scripting language. PHP provides functions and libraries used to connect to a variety of databases,
and so the code used to execute a SQL statement can vary based on the DBMS used (and how it is being accessed). As
such, it is impossible to provide steps that can be used in each and every situation. Refer to PHP documentation for
instructions on how to connect to your specific DBMS.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using PostgreSQL
PostgreSQL comes with a command line utility named psql. This is a text only tool that can be used to execute any SQL
statements. To use psql, do the following:

1. Type psql to launch the utility. To load a specific database specify it on the command line as psql database
(PostgreSQL does not support the USE command).

2. Type your SQL at the => prompt, making sure to terminate every statement with a semicolon (;). Results will
be displayed on the screen.

3. Type \? for a list of commands that you may use.

4. Type \h for SQL help, \h statement for help on specific SQL statement (for example, \h SELECT).

5. Type \q to quit the psql utility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Query Tool
Query Tool is a standalone SQL query tool created by George Poulose, and is an ideal utility for testing SQL statements
against ODBC Data Sources. (There's an ADO version too).

Obtaining Query Tool Query Tool can be downloaded from the Web. To obtain a
copy follow the link at the book's Web site:
http://www.forta.com/books/0672321289/.

To use Query Tool, do the following:

1. Query Tool uses ODBC to interact with databases, so an ODBC Data Source must be present before you can
proceed (see the earlier instructions).

2. Before you can use Query Tool, it must be installed on your computer. Browse your program groups beneath
the Start button to locate it.

3. A popup dialog will prompt you for the ODBC Data Source to be used. If the Data Source you need is not listed,
click New to create it. After you have selected the correct Data Source, click the OK button.

4. Type your SQL statement in the upper right window.

5. Click the Execute button (the one with the blue arrow) to execute the SQL statement and to display any
returned data in the lower pane. (You can also click F5 or select Execute from the Query menu.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Sybase
Sybase Adaptive Server comes with a Java based utility named SQL Advantage. This utility is very similar to Microsoft
SQL Server's Query Analyzer (the products share a common origin). To use SQL Advantage, do the following:

1. Execute the SQL Advantage application.

2. You will be prompted for login information, provide your login name and password.

3. When the query screen is displayed, select the database from the drop-down list box on the toolbar.

4. Type your SQL in the window displayed.

5. To execute your query click the Execute button, select Execute Query from the Query menu, or press Ctrl-E.

6. The results (if there are any) will be displayed in a new window.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Configuring ODBC Data Sources
Several of the applications described above use ODBC for database integration, and so we'll start with a brief overview
of ODBC and instructions for configuring ODBC Data Sources.

ODBC is a standard that is used to enable clients' applications to interact with different backend databases or underlying
database engines. Using ODBC, it is possible to write code in one client and have those tools interact with almost any
database or DBMS.

ODBC itself is not a database. Rather, ODBC is a wrapper around databases that makes all databases behave in a
consistent and clearly defined fashion. It accomplishes this by using software drivers that have two primary functions.
First, they encapsulate any native database features or peculiarities and hide these from the client. Second, they
provide a common language for interacting with these databases (performing translations when needed). The language
used by ODBC is SQL.

ODBC client applications do not interact with databases directly. Instead, they interact with ODBC Data Sources. A Data
Source is a logical database that includes the driver (each database type has its own driver) and information on how to
connect to the database (file paths, server names, and so forth).

After ODBC Data Sources are defined, any ODBC-compliant application can use them. ODBC Data Sources are not
application specific; they are system specific.

ODBC Differences There are many different versions of the ODBC applet, making
it impossible to provide exact instructions that would apply to all versions. Pay close
attention to the prompts when setting up your own Data Sources.

ODBC Data Sources are defined using the Windows Control Panel's ODBC applet. To set up an ODBC Data Source, do
the following:

1. Open the Windows Control Panel's ODBC applet.

2. Most ODBC Data Sources should be set up to be system-wide Data Sources (as opposed to user-specific Data
Sources), so select System DSN, if that option is available to you.

3. Click the Add button to add a new Data Source.

4. Select the driver to use. There is usually a default set of drivers that provides support for major Microsoft
products. Other drivers might be installed on your system. You must select a driver that matches the type of
database to which you'll be connecting.

5. Depending on the type of database or DBMS, you are prompted for server name or file path information and
possibly login information. Provide this information as requested and then follow the rest of the prompts to
create the Data Source.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using DB2
IBM's DB2 is a powerful high-end, multiplatform DBMS. It comes with a whole suite of client tools that may be used to
execute SQL statements. The instructions that follow use the Java based Command Center utility because it is one of
the simplest and most versatile of the bundled applications:

1. Launch the Command Center.

2. Select the Script tab.

3. Enter the SQL statement in the Script box.

4. Select Execute from the Script menu, or click the Execute button, to execute the script.

5. Raw data results will be displayed in the lower window. Switch to the Results tab to display results in a grid
format.

6. Command Center features an interactive SQL statement builder called SQL Assist. This can be executed from
the Interactive tab.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Macromedia ColdFusion
Macromedia ColdFusion is a Web-application development platform. ColdFusion uses a tag-based language to create
scripts. To test your SQL, create a simple page that you can execute by calling it from your Web browser. Perform the
following steps:

1. Before using any databases from within ColdFusion code, a Data Source must be defined. The ColdFusion
Administrator program provides a Web-based interface to define Data Sources (refer to the ColdFusion
documentation for help if needed).

2. Create a new ColdFusion page (with a CFM extension).

3. Use the CFML <CFQUERY> and </CFQUERY> tags to create a query block. Name it using the NAME attribute and
define the Data Source in the DATASOURCE attribute.

4. Type your SQL statement between the <CFQUERY> and </CFQUERY> tags.

5. Use <CFDUMP> or a <CFOUTPUT> loop to display the query results.

6. Save the page in any executable directory beneath the Web server root.

7. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft Access
Microsoft Access is usually used interactively to create and manage databases and to interact and manipulate data, and
Access features a Query Designer that can be used to build a SQL statement interactively. A frequently overlooked
feature of this Query Designer is that it also lets you specify SQL for direct execution. This enables you to use Access to
send SQL statements to any ODBC Data Source, although it is best suited for executing SQL against an open database.
To use this feature, do the following:

1. Launch Microsoft Access. You will be prompted to open (or create) a database. Open the database that you
want to use.

2. Select Queries in the Database window. Then click on the New button and select Design View.

3. You'll be prompted with a Show Table dialog. Close that window without selecting any tables.

4. From the View menu, select SQL View to display the Query window.

5. Type your SQL statement in the Query window.

6. To execute the SQL statement click on the Run button (the one with the red exclamation mark). This will switch
the view to Datasheet View (which displays the results in a grid).

7. Toggle between SQL View and Datasheet View as needed (you'll need to go back to SQL View to change your
SQL). You can also use Design View to interactively build SQL statements.

Microsoft Access also supports a Pass-Through mode that enables you to use Access to send SQL statements to any
ODBC Data Source. This feature should be used to interact with external databases, and never with Access databases
directly. To use this feature, do the following:

1. Microsoft Access uses ODBC to interact with databases, so an ODBC Data Source must be present before
proceeding (see the earlier instructions).

2. Launch Microsoft Access. You will be prompted to open (or create) a database. Open any database.

3. Select Queries in the Database window. Then click on the New button and select Design View.

4. You'll be prompted with a Show Table dialog. Close that window without selecting any tables.

5. From the Query menu, select SQL Specific and then select Pass-Through (older versions of Access called this
option SQL Pass-Through).

6. From the View menu, select Properties to display the Query Properties dialog.

7. Click in the ODBC Connect Str field and then click the … button to display the Select Data Source dialog, which
you can use to select the ODBC Data Source.

8. Select your Data Source and click OK to return to the Query Properties dialog.

9. Click on the Returns Records field. If you are executing a SELECT statement (or any statement that returns
results), set Returns Records to Yes. If you are executing a SQL statement that does not return data (for
example, INSERT, UPDATE, or DELETE) set Return Records to No.

10. Type your SQL statement in the SQL Pass-Through Query window.

11. To execute the SQL statement click on the Run button (the one with the red exclamation mark).

Using Access Pass-Through Mode Access pass-through mode works best when
connecting to DBMSs other than Access. When connecting to an Access MDB file
you are best off using any of the other client options discussed here.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft ASP
Microsoft ASP is a scripting platform for creating Web-based applications. To test your SQL statements within an ASP
page, you must create a page that you can execute by calling it from your Web browser. Here are the steps needed to
execute a SQL statement within an ASP page:

1. ASP uses ODBC to interact with databases, so an ODBC Data Source must be present before proceeding (refer
to the end of this appendix).

2. Create a new ASP page (with an ASP extension) using any text editor.

3. Use Server.CreateObject to create an instance of the ADODB.Connection object.

4. Use the Open method to open the desired ODBC Data Source.

5. Pass your SQL statement to a call to the Execute method. The Execute method returns a result set. Use a Set
command to save the result returned into a result set.

6. To display the results, you must loop through the retrieved data using a <% Do While NOT EOF %> loop.

7. Save the page in any executable directory beneath the Web server root.

8. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft ASP.NET
Microsoft ASP.NET is a scripting platform for creating Web-based applications using the .NET framework. To test SQL
statements within an ASP.NET page, you must create a page that you can execute by calling it from your browser.
There are multiple ways to accomplish this, but here is one option:

1. Create a new file with a .aspx extensions.

2. Create a database connection using SqlConnection() or OleDbConnection().

3. Use either SqlCommand() or OleDbCommand() to pass the statement to the DBMS.

4. Create a DataReader using ExecuteReader.

5. Loop through the returned reader to obtain the returned values.

6. Save the page in any executable directory beneath the Web server root.

7. Execute the page by calling it from a Web browser.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft Query
Microsoft Query is a standalone SQL query tool and is an ideal utility for testing SQL statements against ODBC Data
Sources. Microsoft Query is optionally installed with other Microsoft products, as well as with other third-party products.

Obtaining MS-Query MS-Query is often installed with other Microsoft products
(for example, Office) although it may only be installed if a complete installation was
performed. If it is not present under the Start button, use Start Find to locate it on
your system. (It is often present without your knowing it.) The files to look for are
MSQRY32.EXE or MSQUERY.EXE.

To use Microsoft Query, do the following:

1. Microsoft Query uses ODBC to interact with databases, so an ODBC Data Source must be present before you
can proceed (see the instructions at the end of this appendix).

2. Before you can use Microsoft Query, it must be installed on your computer. Browse your program groups
beneath the Start button to locate it.

3. From the File menu, select Execute SQL to display the Execute SQL window.

4. Click the Data Sources button to select the desired ODBC Data Source. If the Data Source you need is not
listed, click Other to locate it. After you have selected the correct Data Source, click the Use button.

5. Type your SQL statement in the SQL Statement box.

6. Click Execute to execute the SQL statement and to display any returned data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Microsoft SQL Server
Microsoft SQL Server features a Windows-based query analysis tool called SQL Query Analyzer. Although this tool is
primarily designed to analyze SQL statement execution and optimization, it does present an ideal environment for
testing and experimenting with SQL statements. Here's how to use the SQL Query Analyzer:

1. Launch the SQL Query Analyzer application (from the Microsoft SQL Server program group).

2. You'll be prompted for server and login information. Log in to your SQL Server (starting the server if
appropriate).

3. When the query screen is displayed, select the database from the drop-down DB list box on the toolbar.

4. Type your SQL in the large text window, and then click the Execute Query button (the one with the green
arrow) to execute it. (You can also click F5 or select Execute from the Query menu.)

5. The results will be displayed in a separate pane beneath the SQL window.

6. Click the tabs at the bottom of the query screen to toggle between seeing data and seeing returned messages
and information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using MySQL
MySQL comes with a command line utility named mysql. This is a text only tool that can be used to execute any SQL
statements. To use mysql, do the following:

1. Type mysql to launch the utility. Depending on how security is defined, you may need to use the –u and –p
parameters to specify login information.

2. At the mysql> prompt type USE database (specifying the name of the database to be used) to open your
database.

3. Type your SQL at the mysql> prompt, making sure to terminate every statement with a semicolon (;). Results
will be displayed on the screen.

4. Type \h for a list of commands that you may use, \s for status information (including MySQL version
information).

5. Type \q to quit the mysql utility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix C. SQL Statement Syntax
To help you find the syntax you need when you need it, this appendix lists the syntax for the most frequently used SQL
operations. Each statement starts with a brief description and then displays the appropriate syntax. For added
convenience, you'll also find cross references to the lessons where specific statements are taught.

When reading statement syntax, remember the following:

The | symbol is used to indicate one of several options, so NULL|NOT NULL means specify either NULL or NOT
NULL.

Keywords or clauses contained within square parentheses [like this] are optional.

The syntax listed below will work with almost all DBMSs. You are advised to consult your own DBMS
documentation for details of implementing specific syntactical changes.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

ALTER TABLE

ALTER TABLE is used to update the schema of an existing table. To create a new table, use CREATE TABLE. See Lesson 17,
"Creating and Manipulating Tables," for more information.

ALTER TABLE tablename

(

 ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ADD|DROP column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ...

);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

INSERT SELECT

INSERT SELECT inserts the results of a SELECT into a table. See Lesson 15 for more information.

INSERT INTO tablename [(columns, ...)]

SELECT columns, ... FROM tablename, ...

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

ROLLBACK

ROLLBACK is used to undo a transaction block. See Lesson 20 for more information.

ROLLBACK [TO savepointname];

or

ROLLBACK TRANSACTION;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SELECT

SELECT is used to retrieve data from one or more tables (or views). See Lesson 2, "Retrieving Data"; Lesson 3, "Sorting
Retrieved Data"; and Lesson 4, "Filtering Data," for more basic information. (Lessons 2–14 all cover aspects of SELECT.)

SELECT columnname, ...

FROM tablename, ...

[WHERE ...]

[UNION ...]

[GROUP BY ...]

[HAVING ...]

[ORDER BY ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

UPDATE

UPDATE updates one or more rows in a table. See Lesson 16 for more information.

UPDATE tablename

SET columname = value, ...

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

COMMIT

COMMIT is used to write a transaction to the database. See Lesson 20, "Managing Transaction Processing," for more
information.

COMMIT [TRANSACTION];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE INDEX

CREATE INDEX is used to create an index on one or more columns. See Lesson 22, "Understanding Advanced SQL
Features," for more information.

CREATE INDEX indexname

ON tablename (column, ...);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE PROCEDURE

CREATE PROCEDURE is used to create a stored procedure. See Lesson 19, "Working with Stored Procedures," for more
information. Oracle uses a different syntax as described in that lesson.

CREATE PROCEDURE procedurename [parameters] [options]

AS

SQL statement;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE TABLE

CREATE TABLE is used to create new database tables. To update the schema of an existing table, use ALTER TABLE. See
Lesson 17 for more information.

CREATE TABLE tablename

(

 column datatype [NULL|NOT NULL] [CONSTRAINTS],

 column datatype [NULL|NOT NULL] [CONSTRAINTS],

 ...

);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

CREATE VIEW

CREATE VIEW is used to create a new view of one or more tables. See Lesson 18, "Using Views," for more information.

CREATE VIEW viewname AS

SELECT columns, ...

FROM tables, ...

[WHERE ...]

[GROUP BY ...]

[HAVING ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DELETE

DELETE deletes one or more rows from a table. See Lesson 16, "Updating and Deleting Data," for more information.

DELETE FROM tablename

[WHERE ...];

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DROP

DROP permanently removes database objects (tables, views, indexes, and so forth). See Lessons 17 and 18 for more
information.

DROP INDEX|PROCEDURE|TABLE|VIEW indexname|procedurename|tablename|viewname;

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

INSERT

INSERT adds a single row to a table. See Lesson 15, "Inserting Data," for more information.

INSERT INTO tablename [(columns, ...)]

VALUES(values, ...);

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix D. Using SQL Datatypes
As explained in Lesson 1, "Understanding SQL," datatypes are basically rules that define what data may be stored in a
column and how that data is actually stored.

Datatypes are used for several reasons:

Datatypes enable you to restrict the type of data that can be stored in a column. For example, a numeric
datatype column will only accept numeric values.

Datatypes allow for more efficient storage, internally. Numbers and date time values can be stored in a more
condensed format than text strings.

Datatypes allow for alternate sorting orders. If everything is treated as strings, 1 comes before 10, which comes
before 2. (Strings are sorted in dictionary sequence, one character at a time starting from the left.) As numeric
datatypes, the numbers would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used. Using the wrong datatype can seriously
impact your application. Changing the datatypes of existing populated columns is not a trivial task. (In addition, doing
so can result in data loss.)

Although this lesson is by no means a complete tutorial on datatypes and how they are to be used, it explains the major
datatype types, what they are used for, and compatibility issues that you should be aware of.

No Two DBMSs Are Exactly Alike It's been said before, but it needs to be said
again. Unfortunately, datatypes can vary dramatically from one DBMS to the next.
Even the same datatype name can mean different things to different DBMSs. Be
sure you consult your DBMS documentation for details on exactly what it supports
and how.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

String Datatypes
The most commonly used datatypes are string datatypes. These store strings: for example, names, addresses, phone
numbers, and zip codes. There are basically two types of string datatype that you can use—fixed-length strings and
variable-length strings (see Table D.1).

Fixed length strings are datatypes that are defined to accept a fixed number of characters, and that number is specified
when the table is created. For example, you might allow 30 characters in a first-name column or 11 characters in a
social-security-number column (the exact number needed allowing for the two dashes). Fixed-length columns do not
allow more than the specified number of characters. They also allocate storage space for as many characters as
specified. So, if the string Ben is stored in a 30-character first-name field, a full 30 characters are stored (and the text
may be padded with spaces or nulls as needed).

Variable-length strings store text of any length (the maximum varies by datatype and DBMS). Some variable-length
datatypes have a fixed-length minimum. Others are entirely variable. Either way, only the data specified is saved (and
no extra data is stored).

If variable-length datatypes are so flexible, why would you ever want to used fixed-length datatypes? The answer is
performance. DBMSs can sort and manipulate fixed-length columns far more quickly than they can sort variable-length
columns. In addition, many DBMSs will not allow you to index variable-length columns (or the variable portion of a
column). This also dramatically impacts performance. (See Lesson 22, "Understanding Advanced SQL Features," for
more information on indexes.)

Table D.1. String Datatypes
Datatype Description

CHAR Fixed length string from 1 to 255 chars long. Its size must be specified at create time.

NCHAR Special form of CHAR designed to support multibyte or Unicode characters. (The exact
specifications vary dramatically from one implementation to the next.)

NVARCHAR Special form of TEXT designed to support multibyte or Unicode characters. (Exact
specifications vary dramatically from one implementation to the next.)

TEXT (also called LONG or
MEMO or VARCHAR)

Variable-length text.

Using Quotes Regardless of the form of string datatype being used, string values
must always be surrounded by single quotes.

When Numeric Values Are Not Numeric Values You might think that phone
numbers and zip codes should be stored in numeric fields (after all, they only store
numeric data), but doing so would not be advisable. If you store the zip code 01234
in a numeric field, the number 1234 would be saved. You'd actually lose a digit.

The basic rule to follow is: If the number is a number used in calculations (sums,
averages, and so on), it belongs in a numeric datatype column. If it is used as a
literal string (that happens to contain only digits), it belongs in a string datatype
column.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Numeric Datatypes
Numeric datatypes store numbers. Most DBMSs support multiple numeric datatypes, each with a different range of
numbers that can be stored in it. Obviously, the larger the supported range, the more storage space needed. In
addition, some numeric datatypes support the use of decimal points (and fractional numbers) whereas others support
only whole numbers. Table D.2 lists common uses for various datatypes. Not all DBMSs follow the exact naming
conventions and descriptions listed here.

Table D.2. Numeric Datatypes
Datatype Description

BIT Single bit value, either 0 or 1, used primarily for on/off flags

DECIMAL (also called NUMERIC) Fixed or floating point values with varying levels of precision

FLOAT (also called NUMBER) Floating point values

INT (also called INTEGER) 4-byte integer value that supports numbers from –2147483648 to 2147483647

REAL 4-byte floating point values

SMALLINT 2-byte integer value that supports numbers from –32768 to 32767

TINYINT 1-byte integer value that supports numbers from 0 to 255

Not Using Quotes Unlike strings, numeric values should never be enclosed within
quotes.

Currency Datatypes Most DBMSs support a special numeric datatype for storing
monetary values. Usually called MONEY or CURRENCY, these datatypes are
essentially DECIMAL datatypes with specific ranges that make them well-suited for
storing currency values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Date and Time Datatypes
All DBMSs support datatypes designed for the storage of date and time values (see Table D.3). Like numeric values,
most DBMSs support multiple datatypes, each with different ranges and levels of precision.

Table D.3. Date and Time Datatypes
Datatype Description

DATE Date value

DATETIME (also known as TIMESTAMP) Date time values

SMALLDATETIME Date time values with accuracy to the minute (no seconds or milliseconds)

TIME Time value

Specifying Dates There is no standard way to define a date that will be
understood by every DBMS. Most implementations understand formats like 2004-12-
30 or Dec 30th, 2004, but even those can be problematic to some DBMSs. Make sure
to consult your DBMS documentation for a list of the date formats that it will
recognize.

ODBC Dates Because every DBMS has its own format for specifying dates, ODBC
created a format of its own that will work with every database when ODBC is being
used. The ODBC format looks like {d '2004-12-30'} for dates, {t '21:46:29'} for times,
and {ts '2004-12-30 21:46:29'} for date time values. If you are using SQL via ODBC,
be sure your dates and times are formatted in this fashion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Binary Datatypes
Binary datatypes are some of the least compatible (and, fortunately, also some of the least used) datatypes. Unlike all
the datatypes explained thus far, which have very specific uses, binary datatypes can contain any data, even binary
information, such as graphic images, multimedia, and word processor documents (see Table D.4).

Table D.4. Binary Datatypes
Datatype Description

BINARY Fixed-length binary data (maximum length may vary from 255 bytes to 8,000
bytes, depending on implementation)

LONG RAW Variable-length binary data up to 2GB

RAW (called BINARY by some
implementations)

Fixed-length binary data up to 255 bytes

VARBINARY Variable-length binary data (typically, maximum length varies from 255 bytes to
8,000 bytes, depending on implementation)

Comparing Datatypes If you would like to see a real-world example of database
comparisons, look at the table creation scripts used to build the example tables in
this book (see Appendix A, "Sample Table Scripts"). By comparing the scripts used
for different DBMSs you'll see first hand just how complex a task datatype matching
is.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix E. SQL Reserved Words
SQL is a language made up of keywords—special words that are used in performing SQL operations. Special care must
be taken to not use these keywords when naming databases, tables, columns, and any other database objects. Thus,
these keywords are considered reserved.

This appendix contains a list of the more common reserved words found in major DBMSs. Please note the following:

Keywords tend to be very DBMS-specific, and not all the keywords that follow are used by all DBMSs.

Many DBMSs have extended the list of SQL reserved words to include terms specific to their implementations.
Most DBMS-specific keywords are not listed in the following section.

To ensure future compatibility and portability, it is a good idea to avoid any and all reserved words, even those
not reserved by your own DBMS.

ABORT ABSOLUTE ACTION

ACTIVE ADD AFTER

ALL ALLOCATE ALTER

ANALYZE AND ANY

ARE AS ASC

ASCENDING ASSERTION AT

AUTHORIZATION AUTO AUTO-INCREMENT

AUTOINC AVG BACKUP

BEFORE BEGIN BETWEEN

BIGINT BINARY BIT

BLOB BOOLEAN BOTH

BREAK BROWSE BULK

BY BYTES CACHE

CALL CASCADE CASCADED

CASE CAST CATALOG

CHANGE CHAR CHARACTER

CHARACTER_LENGTH CHECK CHECKPOINT

CLOSE CLUSTER CLUSTERED

COALESCE COLLATE COLUMN

COLUMNS COMMENT COMMIT

COMMITTED COMPUTE COMPUTED

CONDITIONAL CONFIRM CONNECT

CONNECTION CONSTRAINT CONSTRAINTS

CONTAINING CONTAINS CONTAINSTABLE

CONTINUE CONTROLROW CONVERT

COPY COUNT CREATE

CROSS CSTRING CUBE

CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATABASE DATABASES DATE

DATETIME DAY DBCC

DEALLOCATE DEBUG DEC

DECIMAL DECLARE DEFAULT

DELETE DENY DESC

DESCENDING DESCRIBE DISCONNECT

DISK DISTINCT DISTRIBUTED

DIV DO DOMAIN

DOUBLE DROP DUMMY

DUMP ELSE ELSEIF

ENCLOSED END ERRLVL

ERROREXIT ESCAPE ESCAPED

EXCEPT EXCEPTION EXEC

EXECUTE EXISTS EXIT

EXPLAIN EXTEND EXTERNAL

EXTRACT FALSE FETCH

FIELD FIELDS FILE

FILLFACTOR FILTER FLOAT

FLOPPY FOR FORCE

FOREIGN FOUND FREETEXT

FREETEXTTABLE FROM FULL

FUNCTION GENERATOR GET

GLOBAL GO GOTO

GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY

IF IN INACTIVE

INDEX INDICATOR INFILE

INNER INOUT INPUT

INSENSITIVE INSERT INT

INTEGER INTERSECT INTERVAL

INTO IS ISOLATION

JOIN KEY KILL

LANGUAGE LAST LEADING

LEFT LENGTH LEVEL

LIKE LIMIT LINENO

LINES LISTEN LOAD

LOCAL LOCK LOGFILE

LONG LOWER MANUAL

MATCH MAX MERGE

MESSAGE MIN MINUTE

MIRROREXIT MODULE MONEY

MONTH MOVE NAMES

NATIONAL NATURAL NCHAR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NEXT NEW NO

NOCHECK NONCLUSTERED NONE

NOT NULL NULLIF

NUMERIC OF OFF

OFFSET OFFSETS ON

ONCE ONLY OPEN

OPTION OR ORDER

OUTER OUTPUT OVER

OVERFLOW OVERLAPS PAD

PAGE PAGES PARAMETER

PARTIAL PASSWORD PERCENT

PERM PERMANENT PIPE

PLAN POSITION PRECISION

PREPARE PRIMARY PRINT

PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROTECTED

PUBLIC PURGE RAISERROR

READ READTEXT REAL

REFERENCES REGEXP RELATIVE

RENAME REPEAT REPLACE

REPLICATION REQUIRE RESERV

RESERVING RESET RESTORE

RESTRICT RETAIN RETURN

RETURNS REVOKE RIGHT

ROLLBACK ROLLUP ROWCOUNT

RULE SAVE SAVEPOINT

SCHEMA SECOND SECTION

SEGMENT SELECT SENSITIVE

SEPARATOR SEQUENCE SESSION_USER

SET SETUSER SHADOW

SHARED SHOW SHUTDOWN

SINGULAR SIZE SMALLINT

SNAPSHOT SOME SORT

SPACE SQL SQLCODE

SQLERROR STABILITY STARTING

STARTS STATISTICS SUBSTRING

SUM SUSPEND TABLE

TABLES TAPE TEMP

TEMPORARY TEXT TEXTSIZE

THEN TIME TIMESTAMP

TO TOP TRAILING

TRAN TRANSACTION TRANSLATE

TRIGGER TRIM TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRIGGER TRIM TRUE

TRUNCATE UNCOMMITTED UNION

UNIQUE UNTIL UPDATE

UPDATETEXT UPPER USAGE

USE USER USING

VALUE VALUES VARCHAR

VARIABLE VARYING VERBOSE

VIEW VOLUME WAIT

WAITFOR WHEN WHERE

WHILE WITH WORK

WRITE WRITETEXT XOR

YEAR ZONE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 1. Understanding SQL
In this lesson, you'll learn exactly what SQL is and what it will do for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Database Basics
The fact that you are reading a book on SQL indicates that you, somehow, need to interact with databases. SQL is a
language used to do just this, so before looking at SQL itself, it is important that you understand some basic concepts
about databases and database technologies.

Whether you are aware of it or not, you use databases all the time. Each time you select a name from your email
address book, you are using a database. If you conduct a search on an Internet search site, you are using a database.
When you log into your network at work, you are validating your name and password against a database. Even when
you use your ATM card at a cash machine, you are using databases for PIN number verification and balance checking.

But even though we all use databases all the time, there remains much confusion over what exactly a database is. This
is especially true because different people use the same database terms to mean different things. Therefore, a good
place to start our study is with a list and explanation of the most important database terms.

Reviewing Basic Concepts What follows is a very brief overview of some basic
database concepts. It is intended to either jolt your memory if you already have
some database experience, or to provide you with the absolute basics, if you are
new to databases. Understanding databases is an important part of mastering SQL,
and you might want to find a good book on database fundamentals to brush up on
the subject if needed.

What Is a Database?

The term database is used in many different ways, but for our purposes (and indeed, from SQL's perspective) a
database is a collection of data stored in some organized fashion. The simplest way to think of it is to imagine a
database as a filing cabinet. The filing cabinet is simply a physical location to store data, regardless of what that data is
or how it is organized.

Database A container (usually a file or set of files) to store organized data.

Misuse Causes Confusion People often use the term database to refer to the
database software they are running. This is incorrect, and it is a source of much
confusion. Database software is actually called the Database Management System
(or DBMS). The database is the container created and manipulated via the DBMS. A
database might be a file stored on a hard drive, but it might not. And for the most
part this is not even significant as you never access a database directly anyway;
you always use the DBMS and it accesses the database for you.

Tables

When you store information in your filing cabinet you don't just toss it in a drawer. Rather, you create files within the
filing cabinet, and then you file related data in specific files.

In the database world, that file is called a table. A table is a structured file that can store data of a specific type. A table
might contain a list of customers, a product catalog, or any other list of information.

Table A structured list of data of a specific type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The key here is that the data stored in the table is one type of data or one list. You would never store a list of
customers and a list of orders in the same database table. Doing so would make subsequent retrieval and access
difficult. Rather, you'd create two tables, one for each list.

Every table in a database has a name that identifies it. That name is always unique—meaning no other table in that
database can have the same name.

Table Names What makes a table name unique is actually a combination of
several things including the database name and table name. Some databases also
use the name of the database owner as part of the unique name. This means that
while you cannot use the same table name twice in the same database, you
definitely can reuse table names in different databases.

Tables have characteristics and properties that define how data is stored in them. These include information about what
data may be stored, how it is broken up, how individual pieces of information are named, and much more. This set of
information that describes a table is known as a schema, and schema are used to describe specific tables within a
database, as well as entire databases (and the relationship between tables in them, if any).

Schema Information about database and table layout and properties.

Columns and Datatypes

Tables are made up of columns. A column contains a particular piece of information within a table.

Column A single field in a table. All tables are made up of one or more columns.

The best way to understand this is to envision database tables as grids, somewhat like spreadsheets. Each column in
the grid contains a particular piece of information. In a customer table, for example, one column contains the customer
number, another contains the customer name, and the address, city, state, and zip are all stored in their own columns.

Breaking Up Data It is extremely important to break data into multiple columns
correctly. For example, city, state, and zip should always be separate columns. By
breaking these out, it becomes possible to sort or filter data by specific columns
(for example, to find all customers in a particular state or in a particular city). If city
and state are combined into one column, it would be extremely difficult to sort or
filter by state.

Each column in a database has an associated datatype. A datatype defines what type of data the column can contain.
For example, if the column is to contain a number (perhaps the number of items in an order), the datatype would be a
numeric datatype. If the column were to contain dates, text, notes, currency amounts, and so on, the appropriate
datatype would be used to specify this.

Datatype A type of allowed data. Every table column has an associated datatype
that restricts (or allows) specific data in that column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Datatypes restrict the type of data that can be stored in a column (for example, preventing the entry of alphabetical
characters into a numeric field). Datatypes also help sort data correctly, and play an important role in optimizing disk
usage. As such, special attention must be given to picking the right datatype when tables are created.

Datatype Compatibility Datatypes and their names are one of the primary
sources of SQL incompatibility. While most basic datatypes are supported
consistently, many more advanced datatypes are not. And worse, occasionally you'll
find that the same datatype is referred to by different names in different DBMSs.
There is not much you can do about this, but it is important to keep in mind when
you create table schemas.

Rows

Data in a table is stored in rows; each record saved is stored in its own row. Again, envisioning a table as a spreadsheet
style grid, the vertical columns in the grid are the table columns, and the horizontal rows are the table rows.

For example, a customers table might store one customer per row. The number of rows in the table is the number of
records in it.

Row A record in a table.

Records or Rows? You may hear users refer to database records when referring
to rows. For the most part, the two terms are used interchangeably, but row is
technically the correct term.

Primary Keys

Every row in a table should have some column (or set of columns) that uniquely identifies it. A table containing
customers might use a customer number column for this purpose, whereas a table containing orders might use the
order ID. An employee list table might use an employee ID or the employee social security number column.

Primary Key A column (or set of columns) whose values uniquely identify every
row in a table.

This column (or set of columns) that uniquely identifies each row in a table is called a primary key. The primary key is
used to refer to a specific row. Without a primary key, updating or deleting specific rows in a table becomes extremely
difficult as there is no guaranteed safe way to refer to just the rows to be affected.

Always Define Primary Keys Although primary keys are not actually required,
most database designers ensure that every table they create has a primary key so
that future data manipulation is possible and manageable.

Any column in a table can be established as the primary key, as long as it meets the following conditions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No two rows can have the same primary key value.

Every row must have a primary key value (primary key columns may not allow NULL values).

Values in primary key columns can never be modified or updated.

Primary key values can never be reused. (If a row is deleted from the table, its primary key may not be
assigned to any new rows in the future.)

Primary keys are usually defined on a single column within a table. But this is not required, and multiple columns may
be used together as a primary key. When multiple columns are used, the rules listed above must apply to all columns
that make up the primary key, and the values of all columns together must be unique (individual columns need not
have unique values).

There is another very important type of key called a foreign key, but I'll get to that later on in Lesson 12, "Joining
Tables."

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What Is SQL?
SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for Structured Query Language. SQL is a
language designed specifically for communicating with databases.

Unlike other languages (spoken languages like English, or programming languages like Java or Visual Basic), SQL is
made up of very few words. This is deliberate. SQL is designed to do one thing and do it well—provide you with a
simple and efficient way to read and write data from a database.

What are the advantages of SQL?

SQL is not a proprietary language used by specific database vendors. Almost every major DBMS supports SQL,
so learning this one language will enable you to interact with just about every database you'll run into.

SQL is easy to learn. The statements are all made up of descriptive English words, and there aren't that many
of them.

Despite its apparent simplicity, SQL is actually a very powerful language, and by cleverly using its language
elements you can perform very complex and sophisticated database operations.

And with that, let's learn SQL.

SQL Extensions Many DBMS vendors have extended their support for SQL by
adding statements or instructions to the language. The purpose of these extensions
is to provide additional functionality or simplified ways to perform specific
operations. And while often extremely useful, these extensions tend to be very
DBMS specific, and they are rarely supported by more than a single vendor.

Standard SQL is governed by the ANSI standards committee, and is thus called
ANSI SQL. All major DBMSs, even those with their own extensions, support ANSI
SQL. Individual implementations have their own names (PL-SQL, Transact-SQL, and
so forth).

For the most part, the SQL taught in this book is ANSI SQL. On the odd occasion
where DBMS specific SQL is used it is so noted.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Try It Yourself
Like any language, the best way to learn SQL is to try it for yourself. To do this you'll need a database and an
application with which to test your SQL statements.

All of the lessons in this book use real SQL statements and real database tables. Appendix A, "Sample Table Scripts,"
explains what the example tables are, and provides details on how to obtain (or create) them so that you may follow
along with the instructions in each lesson. Appendix B, "Working in Popular Applications," describes the steps needed to
execute your SQL in a variety of applications. Before proceeding to the next lesson, I'd strongly suggest that you turn
to these two appendixes so that you'll be ready to follow along.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this first lesson, you learned what SQL is and why it is useful. Because SQL is used to interact with databases, you
also reviewed some basic database terminology.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 2. Retrieving Data
In this lesson, you'll learn how to use the SELECT statement to retrieve one or more columns of data from a table.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The SELECT Statement
As explained in Lesson 1, "Understanding SQL," SQL statements are made up of plain English terms. These terms are
called keywords, and every SQL statement is made up of one or more keywords. The SQL statement that you'll
probably use most frequently is the SELECT statement. Its purpose is to retrieve information from one or more tables.

Keyword A reserved word that is part of the SQL language. Never name a table or
column using a keyword. Appendix E, "SQL Reserved Words," lists some of the
more common reserved words.

To use SELECT to retrieve table data you must, at a minimum, specify two pieces of information—what you want to
select, and from where you want to select it.

Following Along with the Examples The sample SQL statements (and sample output) throughout the
lessons in this book use a set of data files that are described in Appendix A, "Sample Table Scripts." If
you'd like to follow along and try the examples yourself (I strongly recommend that you do so), refer to
Appendix A which contains instructions on how to download or create these data files.

It is important to understand that SQL is a language, not an application. The way that you specify SQL
statements and display statement output varies from one application to the next. To assist you in adapting
the examples to your own environment, Appendix B, "Working in Popular Applications," explains how to
issue the statements taught throughout this book using many popular applications and development
environments. And if you need an application with which to follow along, Appendix B has recommendations
for you too.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving Individual Columns
We'll start with a simple SQL SELECT statement, as follows:

SELECT prod_name

FROM Products;

The statement above uses the SELECT statement to retrieve a single column called prod_name
from the Products table. The desired column name is specified right after the SELECT keyword,
and the FROM keyword specifies the name of the table from which to retrieve the data. The
output from this statement is shown in the following:

prod_name

Fish bean bag toy

Bird bean bag toy

Rabbit bean bag toy

8 inch teddy bear

12 inch teddy bear

18 inch teddy bear

Raggedy Ann

King doll

Queen doll

Unsorted Data If you tried this query yourself you might have discovered that the
data was displayed in a different order than shown here. If this is the case, don't
worry—it is working exactly as it is supposed to. If query results are not explicitly
sorted (we'll get to that in the next lesson) then data will be returned in no order of
any significance. It may be the order in which the data was added to the table, but
it may not. As long as your query returned the same number of rows then it is
working.

A simple SELECT statement like the one used above returns all the rows in a table. Data is not filtered (so as to retrieve
a subset of the results), nor is it sorted. We'll discuss these topics in the next few lessons.

Use of White Space All extra white space within a SQL statement is ignored when
that statement is processed. SQL statements can be specified on one long line or
broken up over many lines. Most SQL developers find that breaking up statements
over multiple lines makes them easier to read and debug.

Terminating Statements Multiple SQL statements must be separated by
semicolons (the ; character). Most DBMSs do not require that a semicolon be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

semicolons (the ; character). Most DBMSs do not require that a semicolon be
specified after single statements. But if your particular DBMS complains, you might
have to add it there. Of course, you can always add a semicolon if you wish. It'll do
no harm, even if it is, in fact, not needed. The exception to this rule is Sybase
Adaptive Server which does not like SQL statements ending with ;.

SQL Statement and Case It is important to note that SQL statements are case-
insensitive, so SELECT is the same as select, which is the same as Select. Many SQL
developers find that using uppercase for all SQL keywords and lowercase for
column and table names makes code easier to read and debug. However, be aware
that while the SQL language is case-insensitive, the names of tables, columns, and
values may not be (that depends on your DBMS and how it is configured).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving Multiple Columns
To retrieve multiple columns from a table, the same SELECT statement is used. The only difference is that multiple
column names must be specified after the SELECT keyword, and each column must be separated by a comma.

Take Care with Commas When selecting multiple columns be sure to specify a
comma between each column name, but not after the last column name. Doing so
will generate an error.

The following SELECT statement retrieves three columns from the products table:

SELECT prod_id, prod_name, prod_price

FROM Products;

Just as in the prior example, this statement uses the SELECT statement to retrieve data from
the Products table. In this example, three column names are specified, each separated by a
comma. The output from this statement is shown below:

prod_id prod_name prod_price

--------- -------------------- ----------

BNBG01 Fish bean bag toy 3.4900

BNBG02 Bird bean bag toy 3.4900

BNBG03 Rabbit bean bag toy 3.4900

BR01 8 inch teddy bear 5.9900

BR02 12 inch teddy bear 8.9900

BR03 18 inch teddy bear 11.9900

RGAN01 Raggedy Ann 4.9900

RYL01 King doll 9.4900

RYL02 Queen dool 9.4900

Presentation of Data As you will notice in the above output, SQL statements
typically return raw, unformatted data. Data formatting is a presentation issue, not
a retrieval issue. Therefore, presentation (for example, displaying the above price
values as currency amounts with the correct number of decimal places) is typically
specified in the application that displays the data. Actual retrieved data (without
application-provided formatting) is rarely used.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Retrieving All Columns
In addition to being able to specify desired columns (one or more, as seen above), SELECT statements can also request
all columns without having to list them individually. This is done using the asterisk (*) wildcard character in lieu of
actual column names, as follows:

SELECT *

FROM Products;

When a wildcard (*) is specified, all the columns in the table are returned. The column order
will typically, but not always, be the physical order in which the columns appear in the table
definition. However, SQL data is seldom displayed as is. (Usually, it is returned to an
application that formats or presents the data as needed.) As such, this should not pose a
problem.

Using Wildcards As a rule, you are better off not using the * wildcard unless you
really do need every column in the table. Even though use of wildcards may save
you the time and effort needed to list the desired columns explicitly, retrieving
unnecessary columns usually slows down the performance of your retrieval and
your application.

Retrieving Unknown Columns There is one big advantage to using wildcards. As
you do not explicitly specify column names (because the asterisk retrieves every
column), it is possible to retrieve columns whose names are unknown.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use the SQL SELECT statement to retrieve a single table column, multiple table
columns, and all table columns. Next you'll learn how to sort the retrieved data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 3. Sorting Retrieved Data
In this lesson, you will learn how to use the SELECT statement's ORDER BY clause to sort retrieved data as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting Data
As you learned in the last lesson, the following SQL statement returns a single column from a database table. But look
at the output. The data appears to be displayed in no particular order at all.

SELECT prod_name

FROM Products;

prod_name

Fish bean bag toy

Bird bean bag toy

Rabbit bean bag toy

8 inch teddy bear

12 inch teddy bear

18 inch teddy bear

Raggedy Ann

King doll

Queen doll

Actually, the retrieved data is not displayed in a mere random order. If unsorted, data will typically be displayed in the
order in which it appears in the underlying tables. This could be the order in which the data was added to the tables
initially. However, if data was subsequently updated or deleted, the order will be affected by how the DBMS reuses
reclaimed storage space. The end result is that you cannot (and should not) rely on the sort order if you do not
explicitly control it. Relational database design theory states that the sequence of retrieved data cannot be assumed to
have significance if ordering was not explicitly specified.

Clause SQL statements are made up of clauses, some required and some optional.
A clause usually consists of a keyword and supplied data. An example of this is the
SELECT statement's FROM clause, which you saw in the last lesson.

To explicitly sort data retrieved using a SELECT statement, the ORDER BY clause is used. ORDER BY takes the name of one
or more columns by which to sort the output. Look at the following example:

SELECT prod_name

FROM Products

ORDER BY prod_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement is identical to the earlier statement, except it also specifies an ORDER BY clause
instructing the Database Management System software to sort the data alphabetically by the
prod_name column. The results are as follows:

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

Bird bean bag toy

Fish bean bag toy

King doll

Queen doll

Rabbit bean bag toy

Raggedy Ann

Position of ORDER BY Clause When specifying an ORDER BY clause, be sure that it
is the last clause in your SELECT statement. Using clauses out of order will generate
an error message.

Sorting by Nonselected Columns More often than not, the columns used in an
ORDER BY clause will be ones that were selected for display. However, this is
actually not required, and it is perfectly legal to sort data by a column that is not
retrieved.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting by Multiple Columns
It is often necessary to sort data by more than one column. For example, if you are displaying an employee list, you
might want to display it sorted by last name and first name (first by last name, and then within each last name sort by
first name). This would be useful if there are multiple employees with the same last name.

To sort by multiple columns, simply specify the column names separated by commas (just as you do when you are
selecting multiple columns).

The following code retrieves three columns and sorts the results by two of them—first by price and then by name.

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price, prod_name;

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

RGAN01 4.9900 Raggedy Ann

BR01 5.9900 8 inch teddy bear

BR02 8.9900 12 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR03 11.9900 18 inch teddy bear

It is important to understand that when you are sorting by multiple columns, the sort sequence is exactly as specified.
In other words, using the output in the example above, the products are sorted by the prod_name column only when
multiple rows have the same prod_price value. If all the values in the prod_price column had been unique, no data would
have been sorted by prod_name.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Sorting by Column Position
In addition to being able to specify sort order using column names, ORDER BY also supports ordering specified by
relative column position. The best way to understand this is to look at an example:

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY 2, 3;

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

RGAN01 4.9900 Raggedy Ann

BR01 5.9900 8 inch teddy bear

BR02 8.9900 12 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR03 11.9900 18 inch teddy bear

As you can see, the output is identical to that of the query above. The difference here is in the
ORDER BY clause. Instead of specifying column names, the relative positions of selected
columns in the SELECT list are specified. ORDER BY 2 means sort by the second column in the
SELECT list, the prod_price column. ORDER BY 2, 3 means sort by prod_price and then by
prod_name.

The primary advantage of this technique is that it saves retyping the column names. But there are some downsides too.
First, not explicitly listing column names increases the likelihood of you mistakenly specifying the wrong column.
Second, it is all too easy to mistakenly reorder data when making changes to the SELECT list (forgetting to make the
corresponding changes to the ORDER BY clause). And finally, obviously you cannot use this technique when sorting by
columns that are not in the SELECT list.

Sorting by Nonselected Columns Obviously, this technique cannot be used when
sorting by columns that do not appear in the SELECT list. However, you can mix and
match actual column names and relative column positions in a single statement if
needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (from A to Z). Although this is the default sort order, the ORDER BY
clause can also be used to sort in descending order (from Z to A). To sort by descending order, the keyword DESC must
be specified.

The following example sorts the products by price in descending order (most expensive first):

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price DESC;

prod_id prod_price prod_name

------- ---------- --------------------

BR03 11.9900 18 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR02 8.9900 12 inch teddy bear

BR01 5.9900 8 inch teddy bear

RGAN01 4.9900 Raggedy Ann

BNBG01 3.4900 Fish bean bag toy

BNBG02 3.4900 Bird bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

But what if you were to sort by multiple columns? The following example sorts the products in descending order (most
expensive first), plus product name:

SELECT prod_id, prod_price, prod_name

FROM Products

ORDER BY prod_price DESC, prod_name;

prod_id prod_price prod_name

------- ---------- --------------------

BR03 11.9900 18 inch teddy bear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BR03 11.9900 18 inch teddy bear

RYL01 9.4900 King doll

RYL02 9.4900 Queen doll

BR02 8.9900 12 inch teddy bear

BR01 5.9900 8 inch teddy bear

RGAN01 4.9900 Raggedy Ann

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

The DESC keyword only applies to the column name that directly precedes it. In the example
above, DESC was specified for the prod_price column, but not for the prod_name column.
Therefore, the prod_price column is sorted in descending order, but the prod_name column
(within each price) is still sorted in standard ascending order.

Sorting Descending on Multiple Columns If you want to sort descending on
multiple columns, be sure each column has its own DESC keyword.

It is worth noting that DESC is short for DESCENDING, and both keywords may be used. The opposite of DESC is ASC (or
ASCENDING), which may be specified to sort in ascending order. In practice, however, ASC is not usually used because
ascending order is the default sequence (and is assumed if neither ASC nor DESC are specified).

Case Sensitivity and Sort Orders When you are sorting textual data, is A the
same as a? And does a come before B or after Z? These are not theoretical
questions, and the answers depend on how the database is set up.

In dictionary sort order, A is treated the same as a, and that is the default behavior
for most Database Management Systems. However, most good DBMSs enable
database administrators to change this behavior if needed. (If your database
contains lots of foreign language characters, this might become necessary.)

The key here is that if you do need an alternate sort order, you cannot accomplish
it with a simple ORDER BY clause. You must contact your database administrator.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to sort retrieved data using the SELECT statement's ORDER BY clause. This clause, which
must be the last in the SELECT statement, can be used to sort data on one or more columns as needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 4. Filtering Data
In this lesson, you will learn how to use the SELECT statement's WHERE clause to specify search conditions.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the WHERE Clause
Database tables usually contain large amounts of data, and you seldom need to retrieve all the rows in a table. More
often than not you'll want to extract a subset of the table's data as needed for specific operations or reports. Retrieving
just the data you want involves specifying search criteria, also known as a filter condition.

Within a SELECT statement, data is filtered by specifying search criteria in the WHERE clause. The WHERE clause is
specified right after the table name (the FROM clause) as follows:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price = 3.49;

This statement retrieves two columns from the products table, but instead of returning all
rows, only rows with a prod_price value of 3.49 are returned, as follows:

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

This example uses a simple equality test: It checks to see if a column has a specified value, and it filters the data
accordingly. But SQL lets you do more than just test for equality.

Picky PostgreSQL PostgreSQL has very strict rules governing the values passed to
SQL statements, especially pertaining to numbers used with decimal columns. As
such, the previous example may not work as is on PostgreSQL. To get this example
to work you may need to explicitly tell PostgreSQL that 3.49 is a valid number by
including the type in the WHERE clause. To do this, replace = 3.49 with = decimal
'3.49'.

SQL Versus Application Filtering Data can also be filtered at the application
level. To do this, the SQL SELECT statement retrieves more data than is actually
required for the client application, and the client code loops through the returned
data to extract just the needed rows.

As a rule, this practice is strongly discouraged. Databases are optimized to perform
filtering quickly and efficiently. Making the client application (or development
language) do the databases job will dramatically impact application performance
and will create applications that cannot scale properly. In addition, if data is filtered
at the client, the server has to send unneeded data across the network connections,
resulting in a waste of network bandwidth usage.

WHERE Clause Position When using both ORDER BY and WHERE clauses, make sure
that ORDER BY comes after the WHERE, otherwise an error will be generated. (See
Lesson 3, "Sorting Retrieved Data," for more information on using ORDER BY.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lesson 3, "Sorting Retrieved Data," for more information on using ORDER BY.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

The WHERE Clause Operators
The first WHERE clause we looked at tests for equality—determining if a column contains a specific value. SQL supports
a whole range of conditional operators as listed in Table 4.1.

Table 4.1. WHERE Clause Operators
Operator Description

= Equality

<> Nonequality

!= Nonequality

< Less than

<= Less than or equal to

!< Not less than

> Greater than

>= Greater than or equal to

!> Not greater than

BETWEEN Between two specified values

IS NULL Is a NULL value

Operator Compatibility Some of the operators listed in Table 4.1 are redundant
(for example, <> is the same as !=. !< (not less than) accomplishes the same effect
as >= (greater than or equal to). Not all of these operators are supported by all
DBMSs. Refer to your DBMS documentation to determine exactly what it supports.

Checking against a Single Value

We have already seen an example of testing for equality. Let's take a look at a few examples to demonstrate the use of
other operators.

This first example lists all products that cost less than $10:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price < 10;

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

Raggedy Ann 4.9900

King doll 9.4900

Queen doll 9.4900

This next statement retrieves all products costing $10 or less (although the result will be the same as in the previous
example because there are no items with a price of exactly $10):

SELECT prod_name, prod_price

FROM Products

WHERE prod_price <= 10;

Checking for Nonmatches

This next example lists all products not made by vendor DLL01:

SELECT vend_id, prod_name

FROM Products

WHERE vend_id <> 'DLL01';

vend_id prod_name

---------- ------------------

BRS01 8 inch teddy bear

BRS01 12 inch teddy bear

BRS01 18 inch teddy bear

FNG01 King doll

FNG01 Queen doll

When to Use Quotes If you look closely at the conditions used in the above
WHERE clauses, you will notice that some values are enclosed within single quotes,
and others are not. The single quotes are used to delimit a string. If you are
comparing a value against a column that is a string datatype, the delimiting quotes
are required. Quotes are not used to delimit values used with numeric columns.

The following is the same example, except this one uses the != operator instead of <>:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following is the same example, except this one uses the != operator instead of <>:

SELECT vend_id, prod_name

FROM Products

WHERE vend_id != 'DLL01';

!= Or <>? != and <> can usually be used interchangeably. However, not all DBMSs
support both forms of the nonequality operator. Microsoft Access, for example,
supports <> but does not support !=. If in doubt, consult your DBMSs
documentation.

Checking for a Range of Values

To check for a range of values, you can use the BETWEEN operator. Its syntax is a little different from other WHERE
clause operators because it requires two values: the beginning and end of the range. The BETWEEN operator can be
used, for example, to check for all products that cost between $5 and $10 or for all dates that fall between specified
start and end dates.

The following example demonstrates the use of the BETWEEN operator by retrieving all products with a price between $5
and $10:

SELECT prod_name, prod_price

FROM Products

WHERE prod_price BETWEEN 5 AND 10;

prod_name prod_price

------------------- ----------

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

King doll 9.4900

Queen doll 9.4900

As seen in this example, when BETWEEN is used, two values must be specified—the low end
and high end of the desired range. The two values must also be separated by the AND
keyword. BETWEEN matches all the values in the range, including the specified start and end
values.

Checking for No Value

When a table is created, the table designer can specify whether or not individual columns can contain no value. When a
column contains no value, it is said to contain a NULL value.

NULL No value, as opposed to a field containing 0, or an empty string, or just
spaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spaces.

The SELECT statement has a special WHERE clause that can be used to check for columns with NULL values—the IS NULL
clause. The syntax looks like this:

SELECT prod_name

FROM Products

WHERE prod_price IS NULL;

This statement returns a list of all products that have no price (an empty prod_price field, not a price of 0), and because
there are none, no data is returned. The Vendors table, however, does contain columns with NULL values—the vend_state
column will contain NULL if there is no state (as would be the case with non-U.S. addresses):

SELECT vend_id

FROM Vendors

WHERE vend_state IS NULL;

vend_id

FNG01

JTS01

DBMS Specific Operators Many DBMSs extend the standard set of operators,
providing advanced filtering options. Refer to your DBMS documentation for more
information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to filter returned data using the SELECT statement's WHERE clause. You learned how to
test for equality, nonequality, greater than and less than, value ranges, as well as for NULL values.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 5. Advanced Data Filtering
In this lesson, you'll learn how to combine WHERE clauses to create powerful and sophisticated search conditions. You'll
also learn how to use the NOT and IN operators.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Combining WHERE Clauses
All the WHERE clauses introduced in Lesson 4, "Filtering Data," filter data using a single criteria. For a greater degree of
filter control, SQL lets you specify multiple WHERE clauses. These clauses may be used in two ways: as AND clauses or
as OR clauses.

Operator A special keyword used to join or change clauses within a WHERE clause.
Also known as logical operators.

Using the AND Operator

To filter by more than one column, you use the AND operator to append conditions to your WHERE clause. The following
code demonstrates this:

SELECT prod_id, prod_price, prod_name

FROM Products

WHERE vend_id = 'DLL01' AND prod_price <= 4;

The above SQL statement retrieves the product name and price for all products made by
vendor DLL01 as long as the price is $4 or less. The WHERE clause in this SELECT statement is
made up of two conditions, and the keyword AND is used to join them. AND instructs the
database management system software to return only rows that meet all the conditions
specified. If a product is made by vendor DLL01, but it costs more than $4, it is not retrieved.
Similarly, products that cost less than $4 that are made by a vendor other than the one
specified are not to be retrieved. The output generated by this SQL statement is as follows:

prod_id prod_price prod_name

------- ---------- --------------------

BNBG02 3.4900 Bird bean bag toy

BNBG01 3.4900 Fish bean bag toy

BNBG03 3.4900 Rabbit bean bag toy

AND A keyword used in a WHERE clause to specify that only rows matching all the
specified conditions should be retrieved.

Using the OR Operator

The OR operator is exactly the opposite of AND. The OR operator instructs the database management system software
to retrieve rows that match either condition. In fact, most of the better DBMSs will not even evaluate the second
condition in an OR WHERE clause if the first condition has already been met. (If the first condition was met, the row
would be retrieved regardless of the second condition.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Look at the following SELECT statement:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01';

The above SQL statement retrieves the product name and price for any products made by
either of the two specified vendors. The OR operator tells the DBMS to match either condition,
not both. If an AND operator is used here, no data is returned. The output generated by this
SQL statement is as follows:

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

8 inch teddy bear 5.9900

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

Raggedy Ann 4.9900

OR A keyword used in a WHERE clause to specify that any rows matching either of
the specified conditions should be retrieved.

Understanding Order of Evaluation

WHERE clauses can contain any number of AND and OR operators. Combining the two enables you to perform
sophisticated and complex filtering.

But combining AND and OR operators presents an interesting problem. To demonstrate this, look at an example. You
need a list of all products costing $10 or more made by vendors DLL01 and BRS01. The following SELECT statement uses
a combination of AND and OR operators to build a WHERE clause:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01'

 AND prod_price >= 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name prod_price

------------------- ----------

Fish bean bag toy 3.4900

Bird bean bag toy 3.4900

Rabbit bean bag toy 3.4900

18 inch teddy bear 11.9900

Raggedy Ann 4.9900

Look at the results above. Four of the rows returned have prices less than $10—so, obviously,
the rows were not filtered as intended. Why did this happen? The answer is the order of
evaluation. SQL (like most languages) processes AND operators before OR operators. When
SQL sees the above WHERE clause, it reads any products costing $10 or more made by vendor
BRS01, and any products made by vendor DLL01 regardless of price. In other words, because
AND ranks higher in the order of evaluation, the wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group related operators. Take a look at the following
SELECT statement and output:

SELECT prod_name, prod_price

FROM Products

WHERE (vend_id = 'DLL01' OR vend_id = 'BRS01')

 AND prod_price >= 10;

prod_name prod_price

------------------- ----------

18 inch teddy bear 11.9900

The only difference between this SELECT statement and the earlier one is that, in this
statement, the first two WHERE clause conditions are enclosed within parentheses. As
parentheses have a higher order of evaluation than either AND or OR operators, the DBMS
first filters the OR condition within those parentheses. The SQL statement then becomes any
products made by either vendor DLL01 or vendor BRS01 costing $10 or greater, which is
exactly what we want.

Using Parentheses in WHERE Clauses Whenever you write WHERE clauses that
use both AND and OR operators, use parentheses to explicitly group operators.
Don't ever rely on the default evaluation order, even if it is exactly what you want.
There is no downside to using parentheses, and you are always better off
eliminating any ambiguity.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the IN Operator
The IN operator is used to specify a range of conditions, any of which can be matched. IN takes a comma-delimited list
of valid values, all enclosed within parentheses. The following example demonstrates this:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id IN ('DLL01','BRS01')

ORDER BY prod_name;

prod_name prod_price

------------------- ----------

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900

Fish bean bag toy 3.4900

Rabbit bean bag toy 3.4900

Raggedy Ann 4.9900

The SELECT statement retrieves all products made by vendor DLL01 and vendor BRS01. The IN
operator is followed by a comma-delimited list of valid values, and the entire list must be
enclosed within parentheses.

If you are thinking that the IN operator accomplishes the same goal as OR, you are right. The following SQL statement
accomplishes the exact same thing as the example above:

SELECT prod_name, prod_price

FROM Products

WHERE vend_id = 'DLL01' OR vend_id = 'BRS01'

ORDER BY prod_name;

prod_name prod_price

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name prod_price

------------------- ----------

12 inch teddy bear 8.9900

18 inch teddy bear 11.9900

8 inch teddy bear 5.9900

Bird bean bag toy 3.4900

Fish bean bag toy 3.4900

Rabbit bean bag toy 3.4900

Raggedy Ann 4.9900

Why use the IN operator? The advantages are

When you are working with long lists of valid options, the IN operator syntax is far cleaner and easier to read.

The order of evaluation is easier to manage when IN is used (as there will be fewer operators used).

IN operators almost always execute more quickly than lists of OR operators.

The biggest advantage of IN is that the IN operator can contain another SELECT statement, enabling you to build
highly dynamic WHERE clauses. You'll look at this in detail in Lesson 11, "Working with Subqueries."

IN A keyword used in a WHERE clause to specify a list of values to be matched using
an OR comparison.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the NOT Operator
The WHERE clause's NOT operator has one function and one function only—NOT negates whatever condition comes next.
Because NOT is never used by itself (it is always used in conjunction with some other operator), its syntax is a little
different from all other operators. Unlike other operators, NOT can be used before the column to filter on, not just after
it.

NOT A keyword used in a WHERE clause to negate a condition.

The following example demonstrates the use of NOT. To list the products made by all vendors except vendor DLL01, you
can write the following:

SELECT prod_name

FROM Products

WHERE NOT vend_id = 'DLL01'

ORDER BY prod_name;

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

King doll

Queen doll

The NOT here negates the condition that follows it; so instead of matching vend_id to DLL01,
the DBMS matches vend_id to anything that is not DLL01.

The preceding example could have also been accomplished using the <> operator, as follows:

SELECT prod_name

FROM Products

WHERE vend_id <> 'DLL01'

ORDER BY prod_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name

12 inch teddy bear

18 inch teddy bear

8 inch teddy bear

King doll

Queen doll

Why use NOT? Well, for simple WHERE clauses such as the ones shown here, there really is no
advantage to using NOT. NOT is useful in more complex clauses. For example, using NOT in
conjunction with an IN operator makes it simple to find all rows that do not match a list of
criteria.

NOT in MySQL The form of NOT described here is not supported by MySQL. In
MySQL NOT is only used to negate EXISTS (as in NOT EXISTS).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
This lesson picked up where the last lesson left off and taught you how to combine WHERE clauses with the AND and OR
operators. You also learned how to explicitly manage the order of evaluation and how to use the IN and NOT operators.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 6. Using Wildcard Filtering
In this lesson, you'll learn what wildcards are, how they are used, and how to perform wildcard searches using the LIKE
operator for sophisticated filtering of retrieved data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using the LIKE Operator
All the previous operators we studied filter against known values. Be it matching one or more values, testing for
greater-than or less-than known values, or checking a range of values, the common denominator is that the values
used in the filtering are known. But filtering data that way does not always work. For example, how could you search
for all products that contained the text bean bag within the product name? That cannot be done with simple comparison
operators; that's a job for wildcard searching. Using wildcards, you can create search patterns that can be compared
against your data. In this example, if you want to find all products that contain the words bean bag, you can construct a
wildcard search pattern enabling you to find that bean bag text anywhere within a product name.

Wildcards Special characters used to match parts of a value.

Search pattern A search condition made up of literal text, wildcard characters, or
any combination of the two.

The wildcards themselves are actually characters that have special meanings within SQL WHERE clauses, and SQL
supports several wildcard types.

To use wildcards in search clauses, the LIKE operator must be used. LIKE instructs the DBMS that the following search
pattern is to be compared using a wildcard match rather than a straight equality match.

Predicates When is an operator not an operator? When it is a predicate.
Technically, LIKE is a predicate, not an operator. The end result is the same; just be
aware of this term in case you run across it in SQL documentation or manuals.

Wildcard searching can be used only with text fields (strings); you can't use wildcards to search fields of nontext
datatypes.

The Percent Sign (%) Wildcard

The most frequently used wildcard is the percent sign (%). Within a search string, % means match any number of
occurrences of any character. For example, to find all products that start with the word Fish, you can issue the following
SELECT statement:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE 'Fish%';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_id prod_name

------- ------------------

BNBG01 Fish bean bag toy

This example uses a search pattern of 'Fish%'. When this clause is evaluated, any value that
starts with Fish is retrieved. The % tells the DBMS to accept any characters after the word
Fish, regardless of how many characters there are.

Microsoft Access Wildcards If you are using Microsoft Access, you might need to
use * instead of %.

Case-Sensitivity Depending on your DBMS and how it is configured, searches
might be case-sensitive, in which case 'fish%' would not match Fish bean bag toy.

Wildcards can be used anywhere within the search pattern, and multiple wildcards can be used as well. The following
example uses two wildcards, one at either end of the pattern:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '%bean bag%';

prod_id prod_name

-------- --------------------

BNBG01 Fish bean bag toy

BNBG02 Bird bean bag toy

BNBG03 Rabbit bean bag toy

The search pattern '%bean bag%' means match any value that contains the text bean bag
anywhere within it, regardless of any characters before or after that text.

Wildcards can also be used in the middle of a search pattern, although that is rarely useful. The following example finds
all products that begin with an F and end with a y:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT prod_name

FROM Products

WHERE prod_name LIKE 'F%y';

It is important to note that, in addition to matching one or more characters, % also matches zero characters. %
represents zero, one, or more characters at the specified location in the search pattern.

Watch for Trailing Spaces Many DBMSs, including Microsoft Access, pad field
contents with spaces. For example, if a column expects 50 characters and the text
stored is Fish bean bag toy (17 characters), 33 spaces might be appended to the text
to fully fill the column. This usually has no real impact on data and how it is used,
but it could negatively affect the previous SQL statement. The clause WHERE
prod_name LIKE 'F%y' matches only prod_name if it starts with F and ends with y. If
the value is padded with spaces, it does not end with y, so Fish bean bag toy is not
retrieved. One simple solution to this problem is to append a second % to the
search pattern: 'F%y%' also matches characters (or spaces) after the y. A better
solution is to trim the spaces using functions, as is discussed in Lesson 8, "Using
Data Manipulation Functions."

The Underscore (_) Wildcard

Another useful wildcard is the underscore (_). The underscore is used just like %, but instead of matching multiple
characters, the underscore matches just a single character.

Microsoft Access Wildcards If you are using Microsoft Access, you might need to
use ? instead of _.

Take a look at this example:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '__ inch teddy bear';

Watch for Trailing Spaces As in the previous example, you might have to append
a wildcard to the pattern for this example to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_id prod_name

-------- --------------------

BNBG02 12 inch teddy bear

BNBG03 18 inch teddy bear

The search pattern used in this WHERE clause specifies two wildcards followed by literal text.
The results shown are the only rows that match the search pattern: The underscore matches
12 in the first row and 18 in the second row. The 8 inch teddy bear product did not match
because the search pattern requires two wildcard matches, not one. By contrast, the following
SELECT statement uses the % wildcard and returns three matching products:

SELECT prod_id, prod_name

FROM Products

WHERE prod_name LIKE '% inch teddy bear';

prod_id prod_name

-------- --------------------

BNBG01 8 inch teddy bear

BNBG02 12 inch teddy bear

BNBG03 18 inch teddy bear

Unlike %, which can match zero characters, _ always matches one character—no more and no less.

The Brackets ([]) Wildcard

The brackets ([]) wildcard is used to specify a set of characters, any one of which must match a character in the
specified position (the location of the wildcard).

Sets Are Not Always Supported Unlike the wildcards described thus far, the use
of [] to create sets is not supported by all DBMSs. Sets are supported by Microsoft
Access, Microsoft SQL Server, and Sybase Adaptive Server. Consult your DBMS
documentation to determine whether sets are supported.

For example, to find all contacts whose names begin with the letter J or the letter M, you can do the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE '[JM]%'

ORDER BY cust_contact;

cust_contact

Jim Jones

John Smith

Michelle Green

The WHERE clause in this statement is '[JM]%'. This search pattern uses two different
wildcards. The [JM] matches any contact name that begins with either of the letters within the
brackets, and it also matches only a single character. Therefore, any names longer than one
character do not match. The % wildcard after the [JM] matches any number of characters
after the first character, returning the desired results.

This wildcard can be negated by prefixing the characters with ^ (the carat character). For example, the following
matches any contact name that does not begin with the letter J or the letter M (the opposite of the previous example):

SELECT cust_contact

FROM Customers

WHERE cust_contact LIKE '[^JM]%'

ORDER BY cust_contact;

Negating Sets in Microsoft Access If you are using Microsoft Access, you might
need to use ! instead of ^ to negate a set—so use [!JM] instead of [^JM].

Of course, you can accomplish the same result using the NOT operator. The only advantage of ^ is that it can simplify
the syntax if you are using multiple WHERE clauses:

SELECT cust_contact

FROM Customers

WHERE NOT cust_contact LIKE '[JM]%'

ORDER BY cust_contact;

Caution The brackets ([]) wildcard is not supported by all DBMSs. Consult your
DBMS documentation to find out whether this particular wildcard is supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBMS documentation to find out whether this particular wildcard is supported.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Tips for Using Wildcards
As you can see, SQL's wildcards are extremely powerful. But that power comes with a price: Wildcard searches typically
take far longer to process than any other search types discussed previously. Here are some tips to keep in mind when
using wildcards:

Don't overuse wildcards. If another search operator will do, use it instead.

When you do use wildcards, try to not use them at the beginning of the search pattern unless absolutely
necessary. Search patterns that begin with wildcards are the slowest to process.

Pay careful attention to the placement of the wildcard symbols. If they are misplaced, you might not return the
data you intended.

Having said that, wildcards are an important and useful search tool, and one that you will use frequently.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what wildcards are and how to use SQL wildcards within your WHERE clauses. You also
learned that wildcards should be used carefully and never overused.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 7. Creating Calculated Fields
In this lesson, you will learn what calculated fields are, how to create them, and how to use aliases to refer to them
from within your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Calculated Fields
Data stored within a database's tables is often not available in the exact format needed by your applications. Here are
some examples:

You need to display a field containing the name of a company along with the company's location, but that
information is stored in separated table columns.

City, state, and ZIP Code are stored in separate columns (as they should be), but your mailing label printing
program needs them retrieved as one correctly formatted field.

Column data is in mixed upper- and lowercase, and your report needs all data presented in uppercase.

An Order Items table stores item price and quantity but not the expanded price (price multiplied by quantity) of
each item. To print invoices, you need that expanded price.

You need total, averages, or other calculations based on table data.

In each of these examples, the data stored in the table is not exactly what your application needs. Rather than retrieve
the data as it is and then reformat it within your client application or report, what you really want is to retrieve
converted, calculated, or reformatted data directly from the database.

This is where calculated fields come in. Unlike all the columns we retrieved in the lessons thus far, calculated fields
don't actually exist in database tables. Rather, a calculated field is created on-the-fly within a SQL SELECT statement.

Field Essentially means the same thing as column and often is used
interchangeably, although database columns are typically called columns and the
term fields is normally used in conjunction with calculated fields.

It is important to note that only the database knows which columns in a SELECT statement are actual table columns and
which are calculated fields. From the perspective of a client (for example, your application), a calculated field's data is
returned in the same way as data from any other column.

Client Versus Server Formatting Many of the conversions and reformatting that
can be performed within SQL statements can also be performed directly in your
client application. However, as a rule, it is far quicker to perform these operations
on the database server than it is to perform them within the client because DBMSs
are built to perform this type of processing quickly and efficiently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Concatenating Fields
To demonstrate working with calculated fields, let's start with a simple example—creating a title made up of two
columns.

The Vendors table contains vendor name and address information. Imagine that you are generating a vendor report and
need to list the vendor location as part of the vendor name in the format name (location).

The report wants a single value, and the data in the table is stored in two columns: vend_name and vend_country. In
addition, you need to surround vend_country with parenthesis, and those are definitely not stored in the database table.
The SELECT statement that returns the vendor names and locations is simple enough, but how would you create this
combined value?

Concatenate Joining values together (by appending them to each other) to form a
single long value.

The solution is to concatenate the two columns. In SQL SELECT statements, you can concatenate columns using a
special operator. Depending on which DBMS you are using, this can be a plus sign (+) or two pipes (||).

+ or ||? Access, SQL Server, and Sybase support + for concatenation. DB2,
Oracle, PostgreSQL, and Sybase support ||. Refer to your DBMS documentation for
more details.

|| is actually the preferred syntax, so more and more DBMSs are implementing
support for it.

Here's an example using the plus sign (the syntax used by most DBMSs):

SELECT vend_name + ' (' + vend_country + ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT vend_name || ' (' || vend_country || ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The previous SELECT statements concatenate the following elements:

The name stored in the vend_name column

A string containing a space and an open parenthesis

The state stored in the vend_country column

A string containing the close parenthesis

As you can see in the output shown previously, the SELECT statement returns a single column (a calculated field)
containing all four of these elements as one unit.

Concatenation in MySQL MySQL does not support concatenation using + or ||.
Rather, it requires the use of a CONCAT() function that takes a list of items to be
concatenated. Using CONCAT(), the first line of the example would be as follows:

SELECT CONCAT(vend_name, ' (', vend_country, ')'

MySQL does support the use of ||, but not for concatenation. In MySQL || is
equivalent to the operator OR, and && is equivalent to the operator AND.

Look again at the output returned by the SELECT statement. The two columns incorporated into the calculated field are
padded with spaces. Many databases (although not all) save text values padded to the column width. To return the data
formatted properly, you must trim those padded spaces. This can be done using the SQL RTRIM() function, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')'

FROM Vendors

ORDER BY vend_name;

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The RTRIM() function trims all space from the right of a value. By using RTRIM(), the individual
columns are all trimmed properly. A comma and space separate the city and state, and a
space separates the state and ZIP Code.

The TRIM Functions Most DBMSs support RTRIM() (which, as just seen, trims the
right side of a string), as well as LTRIM() (which trims the left side of a string), and
TRIM() (which trims both the right and left).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Aliases

The SELECT statement used to concatenate the address field works well, as seen in the previous output. But what is the
name of this new calculated column? Well, the truth is, it has no name; it is simply a value. Although this can be fine if
you are just looking at the results in a SQL query tool, an unnamed column cannot be used within a client application
because the client has no way to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that, an alternative name for a field or value.
Aliases are assigned with the AS keyword. Take a look at the following SELECT statement:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax:

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Jouets et ours (France)

The SELECT statement itself is the same as the one used in the previous code snippet, except
that here the calculated field is followed by the text AS vend_title. This instructs SQL to create
a calculated field named vend_title containing the calculation specified. As you can see in the
output, the results are the same as before, but the column is now named vend_title and any
client application can refer to this column by name, just as it would to any actual table
column.

Other Uses for Aliases Aliases have other uses, too. Some common uses include
renaming a column if the real table column name contains illegal characters (for
example, spaces) and expanding column names if the original names are either
ambiguous or easily misread.

Alias Names Aliases can be single words or complete strings. If the latter is used,
the string should be enclosed within quotes. This practice is legal but is strongly
discouraged. Although multiword names are indeed highly readable, they create all
sorts of problems for many client applications. So much so that one of the most
common uses of aliases is to rename multiword column names to single-word
names (as explained previously).

Derived Columns Aliases are also sometimes referred to as derived columns, so
regardless of the term you run across, they mean the same thing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Performing Mathematical Calculations
Another frequent use for calculated fields is performing mathematical calculations on retrieved data. Let's take a look at
an example. The Orders table contains all orders received, and the OrderItems table contains the individual items within
each order. The following SQL statement retrieves all the items in order number 20008:

SELECT prod_id, quantity, item_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price

---------- ----------- ---------------------

RGAN01 5 4.9900

BR03 5 11.9900

BNBG01 10 3.4900

BNBG02 10 3.4900

BNBG03 10 3.4900

The item_price column contains the per unit price for each item in an order. To expand the item price (item price
multiplied by quantity ordered), you simply do the following:

SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price expanded_price

------- -------- ---------- --------------

RGAN01 5 4.9900 24.9500

BR03 5 11.9900 59.9500

BNBG01 10 3.4900 34.9000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BNBG01 10 3.4900 34.9000

BNBG02 10 3.4900 34.9000

BNBG03 10 3.4900 34.9000

The expanded_price column shown in the previous output is a calculated field; the calculation is
simply quantity*item_price. The client application can now use this new calculated column just
as it would any other column.

SQL supports the basic mathematical operators listed in Table 7.1. In addition, parentheses can be used to establish
order of precedence. Refer to Lesson 5, "Advanced Data Filtering," for an explanation of precedence.

Table 7.1. SQL Mathematical Operators
Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what calculated fields are and how to create them. We used examples demonstrating the use
of calculated fields for both string concatenation and mathematical operations. In addition, you learned how to create
and use aliases so your application can refer to calculated fields.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 8. Using Data Manipulation Functions
In this lesson, you'll learn what functions are, what types of functions DBMSs support, and how to use these functions.
You'll also learn why SQL function use can be very problematic.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Functions
Like almost any other computer language, SQL supports the use of functions to manipulate data. Functions are
operations that are usually performed on data, usually to facilitate conversion and manipulation.

An example of a function is the RTRIM() that we used in the last lesson to trim any spaces from the end of a string.

The Problem with Functions

Before you work through this lesson and try the examples, you should be aware that using SQL functions can be highly
problematic.

Unlike SQL statements (for example, SELECT), which for the most part are supported by all DBMSs equally, functions
tend to be very DBMS specific. In fact, very few functions are supported identically by all major DBMSs. Although all
types of functionality are usually available in each DBMS, the implementation of that functionality can differ greatly. To
demonstrate just how problematic this can be, Table 8.1 lists three commonly needed functions and their syntax as
employed by various DBMSs:

Table 8.1. DBMS Function Differences
Function Syntax

Extract part of
a string

Access uses MID(). DB2, Oracle, and PostgreSQL use SUBSTR(). MySQL, SQL Server, and Sybase use
SUBSTRING().

Datatype
conversion

Access and Oracle use multiple functions, one for each conversion type. DB2 and PostgreSQL use
CAST(). MySQL, SQL Server, and Sybase use CONVERT().

Get current
date

Access uses NOW(). DB2 and PostgreSQL use CURRENT_DATE. MySQL uses CURDATE(). Oracle uses
SYSDATE. SQL Server and Sybase use GETDATE().

As you can see, unlike SQL statements, SQL functions are not portable. This means that code you write for a specific
SQL implementation might not work on another implementation.

Portable Code that is written so that it will run on multiple systems.

With code portability in mind, many SQL programmers opt not to use any implementation-specific features. Although
this is a somewhat noble and idealistic view, it is not always in the best interests of application performance. If you opt
not to use these functions, you make your application code work harder. It must use other methods to do what the
DBMS could have done more efficiently.

Should You Use Functions? So now you are trying to decide whether you should
or shouldn't use functions. Well, that decision is yours, and there is no right or
wrong choice. If you do decide to use functions, make sure you comment your code
well, so that at a later date you (or another developer) will know exactly what SQL
implementation you were writing to.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Functions
Most SQL implementations support the following types of functions:

Text functions are used to manipulate strings of text (for example, trimming or padding values and converting
values to upper and lowercase).

Numeric functions are used to perform mathematical operations on numeric data (for example, returning
absolute numbers and performing algebraic calculations).

Date and time functions are used to manipulate date and time values and to extract specific components from
these values (for example, returning differences between dates, and checking date validity).

System functions return information specific to the DBMS being used (for example, returning user login
information).

In the last lesson, you saw a function used as part of a column list in a SELECT statement, but that's not all functions
can do. You can use functions in other parts of the SELECT statement (for instance in the WHERE clause), as well as in
other SQL statements (more on that in later lessons).

Text Manipulation Functions

You've already seen an example of text-manipulation functions in the last lesson—the RTRIM() function was used to trim
white space from the end of a column value. Here is another example, this time using the UPPER() function:

SELECT vend_name, UPPER(vend_name)

AS vend_name_upcase

FROM Vendors

ORDER BY vend_name;

vend_name vend_name_upcase

----------------------------- -------------------

Bear Emporium BEAR EMPORIUM

Bears R Us BEARS R US

Doll House Inc. DOLL HOUSE INC.

Fun and Games FUN AND GAMES

Furball Inc. FURBALL INC.

Jouets et ours JOUETS ET OURS

As you can see, UPPER() converts text to upper-case and so in this example each vendor is
listed twice, first exactly as stored in the Vendors table, and then converted to upper case as
column vend_name_upcase.

Table 8.2 lists some commonly used text-manipulation functions.

Table 8.2. Commonly Used Text-Manipulation Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8.2. Commonly Used Text-Manipulation Functions
Function Description

LEFT() (or use substring function) Returns characters from left of string

LENGTH() (also DATALENGTH() or LEN()) Returns the length of a string

LOWER() Converts string to lowercase

LTRIM() (LCASE() if using Access) Trims white space from left of string

RIGHT() (or use substring function) Returns characters from right of string

RTRIM() Trims white space from right of string

SOUNDEX() Returns a string's SOUNDEX value

UPPER() (UCASE() if using Access) Converts string to uppercase

One item in Table 8.2 requires further explanation. SOUNDEX is an algorithm that converts any string of text into an
alphanumeric pattern describing the phonetic representation of that text. SOUNDEX takes into account similar sounding
characters and syllables, enabling strings to be compared by how they sound rather than how they have been typed.
Although SOUNDEX is not a SQL concept, most DBMSs do offer SOUNDEX support.

SOUNDEX Support SOUNDEX() is not supported by Microsoft Access or PostgreSQL,
and so the following example will not work on those DBMSs.

Here's an example using the SOUNDEX() function. Customer Kids Place is in the Customers table and has a contact named
Michelle Green. But what if that were a typo, and the contact actually was supposed to have been Michael Green?
Obviously, searching by the correct contact name would return no data, as shown here:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_contact = 'Michael Green';

cust_name cust_contact

-------------------------- ---------------------

Now try the same search using the SOUNDEX() function to match all contact names that sound similar to Michael Green:

SELECT cust_name, cust_contact

FROM Customers

WHERE SOUNDEX(cust_contact) = SOUNDEX('Michael Green');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_name cust_contact

-------------------------- ---------------------

Kids Place Michelle Green

In this example, the WHERE clause uses the SOUNDEX() function to convert both the
cust_contact column value and the search string to their SOUNDEX values. Because Michael Green
and Michelle Green sound alike, their SOUNDEX values match, and so the WHERE clause correctly
filtered the desired data.

Date and Time Manipulation Functions

Date and times are stored in tables using datatypes, and each DBMS uses its own special varieties. Date and time
values are stored in special formats so that they may be sorted or filtered quickly and efficiently, as well as to save
physical storage space.

The format used to store dates and times is usually of no use to your applications, and so date and time functions are
almost always used to read, expand, and manipulate these values. Because of this, date and time manipulation
functions are some of the most important functions in the SQL language. Unfortunately, they also tend to be the least
consistent and least portable.

To demonstrate the use of date manipulation function, here is a simple example. The Orders table contains all orders
along with an order date. To retrieve a list of all orders made in 2004 in SQL Server and Sybase, do the following:

SELECT order_num

FROM Orders

WHERE DATEPART(yy, order_date) = 2004;

order_num

20005

20006

20007

20008

20009

In Access use this version:

SELECT order_num

FROM Orders

WHERE DATEPART('yyyy', order_date) = 2004;

This example (both the SQL Server and Sybase version, and the Access version) uses the
DATEPART() function which, as its name suggests, returns a part of a date. DATEPART() takes
two parameters, the part to return, and the date to return it from. In our example DATEPART()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

two parameters, the part to return, and the date to return it from. In our example DATEPART()
returns just the year from the order_date column. By comparing that to 2004, the WHERE clause
can filter just the orders for that year.

Here is the PostgreSQL version that uses a similar function named DATE_PART():

SELECT order_num

FROM Orders

WHERE DATE_PART('year', order_date) = 2004;

MySQL has all sorts of date manipulation functions, but not DATEPART(). MySQL users can use a function named YEAR()
to extract the year from a date:

SELECT order_num

FROM Orders

WHERE YEAR(order_date) = 2004;

Oracle has no DATEPART() function either, but there are several other date manipulation functions that can be used to
accomplish the same retrieval. Here is an example:

SELECT order_num

FROM Orders

WHERE to_number(to_char(order_date, 'YY')) = 2004;

In this example, the to_char() function is used to extract part of the date, and to_number() is
used to convert it to a numeric value so that it can be compared to 2004.

Another way to accomplish this same task is to use the BETWEEN operator:

SELECT order_num

FROM Orders

WHERE order_date BETWEEN to_date('01-JAN-2004')

AND to_date('31-DEC-2004');

In this example, Oracle's to_date() function is used to convert two strings to dates. One
contains the date January 1, 2004, and the other contains the date December 31, 2004. A
standard BETWEEN operator is used to find all orders between those two dates. It is worth
noting that this same code would not work with SQL Server because it does not support the
to_date() function. However, if you replaced to_date() with DATEPART(), you could indeed use
this type of statement.

Oracle Dates Dates in the format of DD-MMM-YYYY (as in the example shown
above) are usually processed by Oracle correctly even if not explicitly cast as dates
using to_date(); however, to be safe, that function should always be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example shown here extracted and used part of a date (the year). To filter by a specific month, the same process
could be used, specifying an AND operator and both year and month comparisons.

DBMSs typically offer far more than simple date part extraction. Most have functions for comparing dates, performing
date based arithmetic, options for formatting dates, and more. But, as you have seen, date-time manipulation functions
are particularly DBMS specific. Refer to your DBMS documentation for the list of the date-time manipulation functions it
supports.

Numeric Manipulation Functions

Numeric manipulation functions do just that—manipulate numeric data. These functions tend to be used primarily for
algebraic, trigonometric, or geometric calculations and, therefore, are not as frequently used as string or date and time
manipulation functions.

The ironic thing is that of all the functions found in the major DBMSs, the numeric functions are the ones that are most
uniform and consistent. Table 8.3 lists some of the more commonly used numeric manipulation functions.

Table 8.3. Commonly Used Numeric Manipulation Functions
Function Description

ABS() Returns a number's absolute value

COS() Returns the trigonometric cosine of a specified angle

EXP() Returns the exponential value of a specific number

PI() Returns the value of PI

SIN() Returns the trigonometric sine of a specified angle

SQRT() Returns the square root of a specified number

TAN() Returns the trigonometric tangent of a specified angle

Refer to your DBMS documentation for a list of the supported mathematical manipulation functions.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use SQL's data manipulation functions. You also learned that although these
functions can be extremely useful in formatting, manipulating, and filtering data, the function details are very
inconsistent from one SQL implementation to the next.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 9. Summarizing Data
In this lesson, you will learn what the SQL aggregate functions are and how to use them to summarize table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Aggregate Functions
It is often necessary to summarize data without actually retrieving it all, and SQL provides special functions for this
purpose. Using these functions, SQL queries are often used to retrieve data for analysis and reporting purposes.
Examples of this type of retrieval are

Determining the number of rows in a table (or the number of rows that meet some condition or contain a
specific value).

Obtaining the sum of a set of rows in a table.

Finding the highest, lowest, and average values in a table column (either for all rows or for specific rows).

In each of these examples, you want a summary of the data in a table, not the actual data itself. Therefore, returning
the actual table data would be a waste of time and processing resources (not to mention bandwidth). To repeat, all you
really want is the summary information.

To facilitate this type of retrieval, SQL features a set of five aggregate functions, which are listed in Table 9.1. These
functions enable you to perform all the types of retrieval just enumerated. You'll be relieved to know that unlike the
data manipulation functions in the last lesson, SQL's aggregate functions are supported pretty consistently by the major
SQL implementations.

Aggregate Functions Functions that operate on a set of rows to calculate and
return a single value.

Table 9.1. SQL Aggregate Functions
Function Description

AVG() Returns a column's average value

COUNT() Returns the number of rows in a column

MAX() Returns a column's highest value

MIN() Returns a column's lowest value

SUM() Returns the sum of a column's values

The use of each of these functions is explained in the following sections.

The AVG() Function

AVG() is used to return the average value of a specific column by counting both the number of rows in the table and the
sum of their values. AVG() can be used to return the average value of all columns or of specific columns or rows.

This first example uses AVG() to return the average price of all the products in the Products table:

SELECT AVG(prod_price) AS avg_price

FROM Products;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

avg_price

6.823333

The SELECT statement above returns a single value, avg_price that contains the average price
of all products in the Products table. avg_price is an alias as explained in Lesson 7, "Creating
Calculated Fields."

AVG() can also be used to determine the average value of specific columns or rows. The following example returns the
average price of products offered by a specific vendor:

SELECT AVG(prod_price) AS avg_price

FROM Products

WHERE vend_id = 'DLL01';

avg_price

3.8650

This SELECT statement differs from the previous one only in that this one contains a WHERE
clause. The WHERE clause filters only products with a vendor_id of DLL01, and, therefore, the
value returned in avg_price is the average of just that vendor's products.

Individual Columns Only AVG() may only be used to determine the average of a
specific numeric column, and that column name must be specified as the function
parameter. To obtain the average value of multiple columns, multiple AVG()
functions must be used.

NULL Values Column rows containing NULL values are ignored by the AVG()
function.

The COUNT() Function

COUNT() does just that: It counts. Using COUNT(), you can determine the number of rows in a table or the number of
rows that match a specific criterion.

COUNT() can be used two ways:

Use COUNT(*) to count the number of rows in a table, whether columns contain values or NULL values.

Use COUNT(column) to count the number of rows that have values in a specific column, ignoring NULL values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use COUNT(column) to count the number of rows that have values in a specific column, ignoring NULL values.

This first example returns the total number of customers in the Customers table:

SELECT COUNT(*) AS num_cust

FROM Customers;

num_cust

5

In this example, COUNT(*) is used to count all rows, regardless of values. The count is
returned in num_cust.

The following example counts just the customers with an email address:

SELECT COUNT(cust_email) AS num_cust

FROM Customers;

num_cust

3

This SELECT statement uses COUNT(cust_email) to count only rows with a value in the cust_email
column. In this example, cust_email is 3 (meaning that only 3 of the 5 customers have email
addresses).

NULL Values Column rows with NULL values in them are ignored by the COUNT()
function if a column name is specified, but not if the asterisk (*) is used.

The MAX() Function

MAX() returns the highest value in a specified column. MAX() requires that the column name be specified, as seen here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT MAX(prod_price) AS max_price

FROM Products;

max_price

11.9900

Here MAX() returns the price of the most expensive item in Products table.

Using MAX() with Non-Numeric Data Although MAX() is usually used to find the
highest numeric or date values, many (but not all) DBMSs allow it to be used to
return the highest value in any columns including textual columns. When used with
textual data, MAX() returns the row that would be the last if the data were sorted
by that column.

NULL Values Column rows with NULL values in them are ignored by the MAX()
function.

The MIN() Function

MIN() does the exact opposite of MAX(); it returns the lowest value in a specified column. Like MAX(), MIN() requires that
the column name be specified, as seen here:

SELECT MIN(prod_price) AS min_price

FROM Products;

min_price

3.4900

Here MIN() returns the price of the least expensive item in Products table.

Using MIN() with Non-Numeric Data Although MIN() is usually used to find the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using MIN() with Non-Numeric Data Although MIN() is usually used to find the
lowest numeric or date values, many (but not all) DBMSs allow it to be used to
return the lowest value in any columns including textual columns. When used with
textual data, MIN() will return the row that would be first if the data were sorted by
that column.

NULL Values Column rows with NULL values in them are ignored by the MIN()
function.

The SUM() Function

SUM() is used to return the sum (total) of the values in a specific column.

Here is an example to demonstrate this. The OrderItems table contains the actual items in an order, and each item has
an associated quantity. The total number of items ordered (the sum of all the quantity values) can be retrieved as follows:

SELECT SUM(quantity) AS items_ordered

FROM OrderItems

WHERE order_num = 20005;

items_ordered

200

The function SUM(quantity) returns the sum of all the item quantities in an order, and the
WHERE clause ensures that just the right order items are included.

SUM() can also be used to total calculated values. In this next example the total order amount is retrieved by totaling
item_price*quantity for each item:

SELECT SUM(item_price*quantity) AS total_price

FROM OrderItems

WHERE order_num = 20005;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

total_price

1648.0000

The function SUM(item_price*quantity) returns the sum of all the expanded prices in an order, and again the WHERE clause
ensures that just the right order items are included.

Performing Calculations on Multiple Columns All the aggregate functions can
be used to perform calculations on multiple columns using the standard
mathematical operators, as shown in the example.

NULL Values Column rows with NULL values in them are ignored by the SUM()
function.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Aggregates on Distinct Values
The five aggregate functions can all be used in two ways:

To perform calculations on all rows, specify the ALL argument or specify no argument at all (because ALL is the
default behavior).

To only include unique values, specify the DISTINCT argument.

ALL Is Default The ALL argument need not be specified because it is the default
behavior. If DISTINCT is not specified, ALL is assumed.

Not in Access Microsoft Access does not support the use of DISTINCT within
aggregate functions, and so the following example will not work with Access.

The following example uses the AVG() function to return the average product price offered by a specific vendor. It is the
same SELECT statement used above, but here the DISTINCT argument is used so that the average only takes into
account unique prices:

SELECT AVG(DISTINCT prod_price) AS avg_price

FROM Products

WHERE vend_id = 'DLL01';

avg_price

4.2400

As you can see, in this example avg_price is higher when DISTINCT is used because there are
multiple items with the same lower price. Excluding them raises the average price.

Caution DISTINCT may only be used with COUNT() if a column name is specified.
DISTINCT may not be used with COUNT(*). Similarly, DISTINCT must be used with
a column name and not with a calculation or expression.

Using DISTINCT with MIN() and MAX() Although DISTINCT can technically be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using DISTINCT with MIN() and MAX() Although DISTINCT can technically be
used with MIN() and MAX(), there is actually no value in doing so. The minimum
and maximum values in a column will be the same whether or not only distinct
values are included.

Additional Aggregate Arguments In addition to the DISTINCT and ALL
arguments shown here, some DBMSs support additional arguments such as TOP
and TOP PERCENT that let you perform calculations on subsets of query results.
Refer to your DBMS documentation to determine exactly what arguments are
available to you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Combining Aggregate Functions
All the examples of aggregate function used thus far have involved a single function. But actually, SELECT statements
may contain as few or as many aggregate functions as needed. Look at this example:

SELECT COUNT(*) AS num_items,

 MIN(prod_price) AS price_min,

 MAX(prod_price) AS price_max,

 AVG(prod_price) AS price_avg

FROM Products;

num_items price_min price_max price_avg

--------- --------- --------- ---------

9 3.4900 11.9900 6.823333

Here a single SELECT statement performs four aggregate calculations in one step and returns
four values (the number of items in the Products table, and the highest, lowest, and average
product prices).

Naming Aliases When specifying alias names to contain the results of an
aggregate function, try to not use the name of an actual column in the table.
Although there is nothing actually illegal about doing so, many SQL
implementations do not support this and will generate obscure error messages if
you do so.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Aggregate functions are used to summarize data. SQL supports five aggregate functions, all of which can be used in
multiple ways to return just the results you need. These functions are designed to be highly efficient, and they usually
return results far more quickly than you could calculate them yourself within your own client application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 10. Grouping Data
In this lesson, you'll learn how to group data so that you can summarize subsets of table contents. This involves two
new SELECT statement clauses: the GROUP BY clause and the HAVING clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Data Grouping
In the last lesson, you learned that the SQL aggregate functions can be used to summarize data. This enables you to
count rows, calculate sums and averages, and obtain high and low values without having to retrieve all the data.

All the calculations thus far were performed on all the data in a table or on data that matched a specific WHERE clause.
As a reminder, the following example returns the number of products offered by vendor DLL01:

SELECT COUNT(*) AS num_prods

FROM Products

WHERE vend_id = 'DLL01';

num_prods

4

But what if you wanted to return the number of products offered by each vendor? Or products offered by vendors who
offer a single product, or only those who offer more than ten products?

This is where groups come into play. Grouping lets you divide data into logical sets so that you can perform aggregate
calculations on each group.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Groups
Groups are created using the GROUP BY clause in your SELECT statement. The best way to understand this is to look at
an example:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

GROUP BY vend_id;

vend_id num_prods

--------- ---------

BRS01 3

DLL01 4

FNG01 2

The above SELECT statement specifies two columns, vend_id, which contains the ID of a
product's vendor, and num_prods, which is a calculated field (created using the COUNT(*)
function). The GROUP BY clause instructs the DBMS to sort the data and group it by vend_id.
This causes num_prods to be calculated once per vend_id rather than once for the entire table.
As you can see in the output, vendor BRS01 has 3 products listed, vendor DLL01 has 4 products
listed, and vendor FNG01 has 2 products listed.

Because you used GROUP BY, you did not have to specify each group to be evaluated and calculated. That was done
automatically. The GROUP BY clause instructs the DBMS to group the data and then perform the aggregate on each
group rather than on the entire result set.

Before you use GROUP BY, here are some important rules about its use that you need to know:

GROUP BY clauses can contain as many columns as you want. This enables you to nest groups, providing you
with more granular control over how data is grouped.

If you have nested groups in your GROUP BY clause, data is summarized at the last specified group. In other
words, all the columns specified are evaluated together when grouping is established (so you won't get data
back for each individual column level).

Every column listed in GROUP BY must be a retrieved column or a valid expression (but not an aggregate
function). If an expression is used in the SELECT, that same expression must be specified in GROUP BY. Aliases
cannot be used.

Most SQL implementations do not allow GROUP BY columns with variable length datatypes (such as text or
memo fields).

Aside from the aggregate calculations statements, every column in your SELECT statement must be present in
the GROUP BY clause.

If the grouping column contains a row with a NULL value, NULL will be returned as a group. If there are multiple
rows with NULL values, they'll all be grouped together.

The GROUP BY clause must come after any WHERE clause and before any ORDER BY clause.

The ALL Clause Some SQL implementations (such as Microsoft SQL Server)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ALL Clause Some SQL implementations (such as Microsoft SQL Server)
support an optional ALL clause within GROUP BY. This clause can be used to return
all groups, even those that have no matching rows (in which case the aggregate
would return NULL). Refer to your DBMS documentation to see if it supports ALL.

Specifying Columns by Relative Position Some SQL implementations allow you
to specify GROUP BY columns by the position in the SELECT list. For example, GROUP
BY 2,1 can mean group by the second column selected and then by the first.
Although this shorthand syntax is convenient, it is not supported by all SQL
implementations. It's use is also risky in that it is highly susceptible to the
introduction of errors when editing SQL statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Filtering Groups
In addition to being able to group data using GROUP BY, SQL also allows you to filter which groups to include and which
to exclude. For example, you might want a list of all customers who have made at least two orders. To obtain this data
you must filter based on the complete group, not on individual rows.

You've already seen the WHERE clause in action (that was introduced back in Lesson 4, "Filtering Data." But WHERE does
not work here because WHERE filters specific rows, not groups. As a matter of fact, WHERE has no idea what a group is.

So what do you use instead of WHERE? SQL provides yet another clause for this purpose: the HAVING clause. HAVING is
very similar to WHERE. In fact, all types of WHERE clauses you learned about thus far can also be used with HAVING. The
only difference is that WHERE filters rows and HAVING filters groups.

HAVING Supports All of WHERE's Operators In Lesson 4 and Lesson 5,
"Advanced Data Filtering," you learned about WHERE clause conditions (including
wildcard conditions and clauses with multiple operators). All the techniques and
options that you learned about WHERE can be applied to HAVING. The syntax is
identical; just the keyword is different.

So how do you filter rows? Look at the following example:

SELECT cust_id, COUNT(*) AS orders

FROM Orders

GROUP BY cust_id

HAVING COUNT(*) >= 2;

cust_id orders

---------- -----------

1000000001 2

The first three lines of this SELECT statement are similar to the statements seen above. The
final line adds a HAVING clause that filters on those groups with a COUNT(*) >= 2—two or more
orders.

As you can see, a WHERE clause does not work here because the filtering is based on the group aggregate value, not on
the values of specific rows.

The difference between HAVING and WHERE Here's another way to look it:
WHERE filters before data is grouped, and HAVING filters after data is grouped. This
is an important distinction; rows that are eliminated by a WHERE clause will not be
included in the group. This could change the calculated values which in turn could
affect which groups are filtered based on the use of those values in the HAVING
clause.

So is there ever a need to use both WHERE and HAVING clauses in one statement? Actually, yes, there is. Suppose you
want to further filter the above statement so that it returns any customers who placed two or more orders in the past
12 months. To do that, you can add a WHERE clause that filters out just the orders placed in the past 12 months. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12 months. To do that, you can add a WHERE clause that filters out just the orders placed in the past 12 months. You
then add a HAVING clause to filter just the groups with two or more rows in them.

To better demonstrate this, look at the following example that lists all vendors who have two or more products priced at
4 or more:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

WHERE prod_price >= 4

GROUP BY vend_id

HAVING COUNT(*) >= 2;

vend_id num_prods

---------- -----------

BRS01 3

FNG01 2

This statement warrants an explanation. The first line is a basic SELECT using an aggregate
function—much like the examples thus far. The WHERE clause filters all rows with a prod_price
of at least 4. Data is then grouped by vend_id, and then a HAVING clause filters just those
groups with a count of 2 or more. Without the WHERE clause an extra row would have been
retrieved (vendor DLL01 who sells four products all priced under 4) as seen here:

SELECT vend_id, COUNT(*) AS num_prods

FROM Products

GROUP BY vend_id

HAVING COUNT(*) >= 2;

vend_id num_prods

---------- -----------

BRS01 3

DLL01 4

FNG01 2

Using HAVING and WHERE HAVING is so similar to WHERE that most DBMSs treat
them as the same thing if no GROUP BY is specified. Nevertheless, you should make
that distinction yourself. Use HAVING only in conjunction with GROUP BY clauses. Use
WHERE for standard row-level filtering.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Grouping and Sorting
It is important to understand that GROUP BY and ORDER BY are very different, even though they often accomplish the
same thing. Table 10.1 summarizes the differences between them.

Table 10.1. ORDER BY Versus GROUP BY
ORDER BY GROUP BY

Sorts generated output. Groups rows. The output might not be in group order, however.

Any columns (even columns not
selected) may be used.

Only selected columns or expressions columns may be used, and every
selected column expression must be used.

Never required. Required if using columns (or expressions) with aggregate functions.

The first difference listed in Table 10.1 is extremely important. More often than not, you will find that data grouped
using GROUP BY will indeed be output in group order. But that is not always the case, and it is not actually required by
the SQL specifications. Furthermore, even if your particular DBMS does, in fact, always sort the data by the specified
GROUP BY clause, you might actually want it sorted differently. Just because you group data one way (to obtain group
specific aggregate values) does not mean that you want the output sorted that same way. You should always provide
an explicit ORDER BY clause as well, even if it is identical to the GROUP BY clause.

Don't Forget ORDER BY As a rule, anytime you use a GROUP BY clause, you should
also specify an ORDER BY clause. That is the only way to ensure that data will be
sorted properly. Never rely on GROUP BY to sort your data.

To demonstrate the use of both GROUP BY and ORDER BY, let's look at an example. The following SELECT statement is
similar to the ones seen previously. It retrieves the order number and number of items ordered for all orders containing
three or more items:

SELECT order_num, COUNT(*) AS items

FROM OrderItems

GROUP BY order_num

HAVING COUNT(*) >= 3;

order_num items

---------- -----

20006 3

20007 5

20008 5

20009 3

To sort the output by number of items ordered, all you need to do is add an ORDER BY clause, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT order_num, COUNT(*) AS items

FROM OrderItems

GROUP BY order_num

HAVING COUNT(*) >= 3

ORDER BY items, order_num;

Access Incompatibility Microsoft Access does not allow sorting by alias, and so
this example will fail. The solution is to replace items (in the ORDER BY clause) with
the actual calculation or with the field position. As such, ORDER BY COUNT(*),
order_num or ORDER BY 1, order_num will both work.

order_num items

---------- -----

20006 3

20009 3

20007 5

20008 5

In this example, the GROUP BY clause is used to group the data by order number (the
order_num column) so that the COUNT(*) function can return the number of items in each
order. The HAVING clause filters the data so that only orders with three or more items are
returned. Finally, the output is sorted using the ORDER BY clause.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

SELECT Clause Ordering
This is probably a good time to review the order in which SELECT statement clauses are to be specified. Table 10.2 lists
all the clauses we have learned thus far, in the order they must be used.

Table 10.2. SELECT Clauses and Their Sequence
Clause Description Required

SELECT Columns or expressions to be returned Yes

FROM Table to retrieve data from Only if selecting data from a table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggregates by group

HAVING Group-level filtering No

ORDER BY Output sort order No

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In Lesson 9, "Summarizing Data," you learned how to use the SQL aggregate functions to perform summary
calculations on your data. In this lesson, you learned how to use the GROUP BY clause to perform these calculations on
groups of data, returning results for each group. You saw how to use the HAVING clause to filter specific groups. You
also learned the difference between ORDER BY and GROUP BY and between WHERE and HAVING.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 11. Working with Subqueries
In this lesson, you'll learn what subqueries are and how to use them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Subqueries
SELECT statements are SQL queries. All the SELECT statements we have seen thus far are simple queries: single
statements retrieving data from individual database tables.

Query Any SQL statement. However, the term is usually used to refer to SELECT
statements.

SQL also enables you to create subqueries: queries that are embedded into other queries. Why would you want to do
this? The best way to understand this concept is to look at a couple of examples.

MySQL Support If you are using MySQL, be aware that support for subqueries was
introduced in version 4.1. Earlier versions of MySQL do not support subqueries.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Filtering by Subquery
The database tables used in all the lessons in this book are relational tables. (See Appendix A, "Sample Data Scripts,"
for a description of each of the tables and their relationships.) Orders are stored in two tables. The Orders table stores a
single row for each order containing order number, customer ID, and order date. The individual order items are stored
in the related OrderItems table. The Orders table does not store customer information. It only stores a customer ID. The
actual customer information is stored in the Customers table.

Now suppose you wanted a list of all the customers who ordered item RGAN01. What would you have to do to retrieve
this information? Here are the steps:

1. Retrieve the order numbers of all orders containing item RGAN01.

2. Retrieve the customer ID of all the customers who have orders listed in the order numbers returned in the
previous step.

3. Retrieve the customer information for all the customer IDs returned in the previous step.

Each of these steps can be executed as a separate query. By doing so, you use the results returned by one SELECT
statement to populate the WHERE clause of the next SELECT statement.

You can also use subqueries to combine all three queries into one single statement.

The first SELECT statement should be self-explanatory by now. It retrieves the order_num column for all order items with
a prod_id of RGAN01. The output lists the two orders containing this item:

SELECT order_num

FROM OrderItems

WHERE prod_id = 'RGAN01';

order_num

20007

20008

The next step is to retrieve the customer IDs associated with orders 20007 and 20008. Using the IN clause described in
Lesson 5, "Advanced Data Filtering," you can create a SELECT statement as follows:

SELECT cust_id

FROM Orders

WHERE order_num IN (20007,20008);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id

1000000004

1000000005

Now, combine the two queries by turning the first (the one that returned the order numbers) into a subquery. Look at
the following SELECT statement:

SELECT cust_id

FROM Orders

WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01');

cust_id

1000000004

1000000005

Subqueries are always processed starting with the innermost SELECT statement and working
outward. When the preceding SELECT statement is processed, the DBMS actually performs two
operations.

First it runs the subquery:

SELECT order_num FROM orderitems WHERE prod_id='RGAN01'

That query returns the two order numbers 20007 and 20008. Those two values are then passed to the WHERE clause of
the outer query in the comma-delimited format required by the IN operator. The outer query now becomes

SELECT cust_id FROM orders WHERE order_num IN (20007,20008)

As you can see, the output is correct and exactly the same as the output returned by the hard-coded WHERE clause
above.

Formatting Your SQL SELECT statements containing subqueries can be difficult to
read and debug, especially as they grow in complexity. Breaking up the queries
over multiple lines and indenting the lines appropriately as shown here can greatly
simplify working with subqueries.

You now have the IDs of all the customers who ordered item RGAN01. The next step is to retrieve the customer
information for each of those customer IDs. The SQL statement to retrieve the two columns is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN ('1000000004','1000000005');

Instead of hard-coding those customer IDs, you can turn this WHERE clause into a subquery:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN (SELECT cust_id

 FROM Orders

 WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01'));

cust_name cust_contact

----------------------------- ------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

To execute the above SELECT statement, the DBMS had to actually perform three SELECT
statements. The innermost subquery returned a list of order numbers that were then used as
the WHERE clause for the subquery above it. That subquery returned a list of customer IDs
that were used as the WHERE clause for the top-level query. The top-level query actually
returned the desired data.

As you can see, using subqueries in a WHERE clause enables you to write extremely powerful and flexible SQL
statements. There is no limit imposed on the number of subqueries that can be nested, although in practice you will find
that performance will tell you when you are nesting too deeply.

Single Column Only Subquery SELECT statements can only retrieve a single
column. Attempting to retrieve multiple columns will return an error.

Subqueries and Performance The code shown here works, and it achieves the
desired result. However, using subqueries is not always the most efficient way to
perform this type of data retrieval. More on this in Lesson 12, "Joining Tables,"
where you will revisit this same example.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Subqueries As Calculated Fields
Another way to use subqueries is in creating calculated fields. Suppose you want to display the total number of orders
placed by every customer in your Customers table. Orders are stored in the Orders table along with the appropriate
customer ID.

To perform this operation, follow these steps:

1. Retrieve the list of customers from the Customers table.

2. For each customer retrieved, count the number of associated orders in the Orders table.

As you learned in the previous two lessons, you can use SELECT COUNT(*) to count rows in a table, and by providing a
WHERE clause to filter a specific customer ID, you can count just that customer's orders. For example, the following
code counts the number of orders placed by customer 1000000001:

SELECT COUNT(*) AS orders

FROM Orders

WHERE cust_id = '1000000001';

To perform that COUNT(*) calculation for each customer, use COUNT* as a subquery. Look at the following code:

SELECT cust_name,

cust_state,

(SELECT COUNT(*)

 FROM Orders

 WHERE Orders.cust_id = Customers.cust_id) AS

orders

FROM Customers

ORDER BY cust_name;

cust_name cust_state orders

------------------------- ---------- ------

Fun4All IN 1

Fun4All AZ 1

Kids Place OH 0

The Toy Store IL 1

Village Toys MI 2

This SELECT statement returns three columns for every customer in the Customers table:
cust_name, cust_state, and orders. Orders is a calculated field that is set by a subquery that is
provided in parentheses. That subquery is executed once for every customer retrieved. In the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provided in parentheses. That subquery is executed once for every customer retrieved. In the
example above, the subquery is executed five times because five customers were retrieved.

The WHERE clause in the subquery is a little different from the WHERE clauses used previously because it uses fully
qualified column names. The following clause tells SQL to compare the cust_id in the Orders table to the one currently
being retrieved from the Customers table:

WHERE Orders.cust_id = Customers.cust_id

This syntax—the table name and the column name separated by a period—must be used whenever there is possible
ambiguity about column names. In this example, there are two cust_id columns, one in Customers and one in Orders.
Without fully qualifying the column names, the DBMS assumes you are comparing the cust_id in the Orders table to itself.
Because

SELECT COUNT(*) FROM Orders WHERE cust_id = cust_id

will always return the total number of orders in the Orders table, the results will not be what you expected:

SELECT cust_name,

cust_state,

(SELECT COUNT(*)

 FROM Orders

 WHERE cust_id = cust_id) AS orders

FROM Customers

ORDER BY cust_name;

cust_name cust_state orders

------------------------- ---------- ------

Fun4All IN 5

Fun4All AZ 5

Kids Place OH 5

The Toy Store IL 5

Village Toys MI 5

Although subqueries are extremely useful in constructing this type of SELECT statement, care must be taken to properly
qualify ambiguous column names.

Always More Than One Solution As explained earlier in this lesson, although the
sample code shown here works, it is often not the most efficient way to perform
this type of data retrieval. You will revisit this example in a later lesson.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what subqueries are and how to use them. The most common uses for subqueries are in
WHERE clause IN operators and for populating calculated columns. You saw examples of both of these types of
operations.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 12. Joining Tables
In this lesson, you'll learn what joins are, why they are used, and how to create SELECT statements using them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Joins
One of SQL's most powerful features is the capability to join tables on-the-fly within data retrieval queries. Joins are
one of the most important operations that you can perform using SQL SELECT, and a good understanding of joins and
join syntax is an extremely important part of learning SQL.

Before you can effectively use joins, you must understand relational tables and the basics of relational database design.
What follows is by no means complete coverage of the subject, but it should be enough to get you up and running.

Understanding Relational Tables

The best way to understand relational tables is to look at a real-world example.

Suppose you had a database table containing a product catalog, with each catalog item in its own row. The kind of
information you would store with each item would include a product description and price, along with vendor
information about the company that creates the product.

Now suppose that you had multiple catalog items created by the same vendor. Where would you store the vendor
information (things like vendor name, address, and contact information)? You wouldn't want to store that data along
with the products for several reasons:

Because the vendor information is the same for each product that vendor produces, repeating the information
for each product is a waste of time and storage space.

If vendor information changes (for example, if the vendor moves or his area code changes), you would need to
update every occurrence of the vendor information.

When data is repeated (that is, the vendor information is used with each product), there is a high likelihood that
the data will not be entered exactly the same way each time. Inconsistent data is extremely difficult to use in
reporting.

The key here is that having multiple occurrences of the same data is never a good thing, and that principle is the basis
for relational database design. Relational tables are designed so that information is split into multiple tables, one for
each data type. The tables are related to each other through common values (and thus the relational in relational
design).

In our example, you can create two tables, one for vendor information and one for product information. The Vendors
table contains all the vendor information, one table row per vendor, along with a unique identifier for each vendor. This
value, called a primary key, can be a vendor ID, or any other unique value.

The Products table stores only product information, and no vendor specific information other than the vendor ID (the
Vendors table's primary key). This key relates the Vendors table to the Products table, and using this vendor ID enables
you to use the Vendors table to find the details about the appropriate vendor.

What does this do for you? Well, consider the following:

Vendor information is never repeated, and so time and space are not wasted.

If vendor information changes, you can update a single record, the one in the Vendors table. Data in related
tables does not change.

As no data is repeated, the data used is obviously consistent, making data reporting and manipulation much
simpler.

The bottom line is that relational data can be stored efficiently and manipulated easily. Because of this, relational
databases scale far better than nonrelational databases.

Scale Able to handle an increasing load without failing. A well-designed database or
application is said to scale well.

Why Use Joins?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As just explained, breaking data into multiple tables enables more efficient storage, easier manipulation, and greater
scalability. But these benefits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a single SELECT statement?

The answer is to use a join. Simply put, a join is a mechanism used to associate tables within a SELECT statement (and
thus the name join). Using a special syntax, multiple tables can be joined so that a single set of output is returned, and
the join associates the correct rows in each table on-the-fly.

Using Interactive DBMS Tools It is important to understand that a join is not a
physical entity—in other words, it does not exist in the actual database tables. A
join is created by the DBMS as needed, and it persists for the duration of the query
execution.

Many DBMSs provide graphical interfaces that can be used to define table
relationships interactively. These tools can be invaluable in helping to maintain
referential integrity. When using relational tables, it is important that only valid
data is inserted into relational columns. Going back to the example, if an invalid
vendor ID is stored in the Products table, those products would be inaccessible
because they would not be related to any vendor. To prevent this from occurring,
the database can be instructed to only allow valid values (ones present in the
Vendors table) in the vendor ID column in the Products table. Referential integrity
means that the DBMS enforces data integrity rules. And these rules are often
managed through DBMS provided interfaces.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating a Join
Creating a join is very simple. You must specify all the tables to be included and how they are related to each other.
Look at the following example:

SELECT vend_name, prod_name, prod_price

FROM Vendors, Products

WHERE Vendors.vend_id = Products.vend_id;

vend_name prod_name prod_price

--------- ---------- ----------

Doll House Inc. Fish bean bag toy 3.4900

Doll House Inc. Bird bean bag toy 3.4900

Doll House Inc. Rabbit bean bag toy 3.4900

Bears R Us 8 inch teddy bear 5.9900

Bears R Us 12 inch teddy bear 8.9900

Bears R Us 18 inch teddy bear 11.9900

Doll House Inc. Raggedy Ann 4.9900

Fun and Games King doll 9.4900

Fun and Games Queen doll 9.4900

Let's take a look at the preceding code. The SELECT statement starts in the same way as all
the statements you've looked at thus far, by specifying the columns to be retrieved. The big
difference here is that two of the specified columns (prod_name and prod_price) are in one
table, whereas the other (vend_name) is in another table.

Now look at the FROM clause. Unlike all the prior SELECT statements, this one has two tables listed in the FROM clause,
Vendors and Products. These are the names of the two tables that are being joined in this SELECT statement. The tables
are correctly joined with a WHERE clause that instructs the DBMS to match vend_id in the Vendors table with vend_id in
the Products table.

You'll notice that the columns are specified as Vendors.vend_id and Products.vend_id. This fully qualified column name is
required here because if you just specified vend_id, the DBMS cannot tell which vend_id columns you are referring to.
(There are two of them, one in each table.) As you can see in the preceding output, a single SELECT statement returns
data from two different tables.

Fully Qualifying Column Names You must use the fully qualified column name
(table and column separated by a period) whenever there is a possible ambiguity
about which column you are referring to. Most DBMSs will return an error message
if you refer to an ambiguous column name without fully qualifying it with a table
name.

The Importance of the WHERE Clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It might seem strange to use a WHERE clause to set the join relationship, but actually, there is a very good reason for
this. Remember, when tables are joined in a SELECT statement, that relationship is constructed on-the-fly. There is
nothing in the database table definitions that can instruct the DBMS how to join the tables. You have to do that
yourself. When you join two tables, what you are actually doing is pairing every row in the first table with every row in
the second table. The WHERE clause acts as a filter to only include rows that match the specified filter condition—the
join condition, in this case. Without the WHERE clause, every row in the first table will be paired with every row in the
second table, regardless of if they logically go together or not.

Cartesian Product The results returned by a table relationship without a join
condition. The number of rows retrieved will be the number of rows in the first table
multiplied by the number of rows in the second table.

To understand this, look at the following SELECT statement and output:

SELECT vend_name, prod_name, prod_price

FROM Vendors, Products;

vend_name prod_name prod_price

----------- --------- ----------

Bears R Us 8 inch teddy bear 5.99

Bears R Us 12 inch teddy bear 8.99

Bears R Us 18 inch teddy bear 11.99

Bears R Us Fish bean bag toy 3.49

Bears R Us Bird bean bag toy 3.49

Bears R Us Rabbit bean bag toy 3.49

Bears R Us Raggedy Ann 4.99

Bears R Us King doll 9.49

Bears R Us Queen doll 9.49

Bear Emporium 8 inch teddy bear 5.99

Bear Emporium 12 inch teddy bear 8.99

Bear Emporium 18 inch teddy bear 11.99

Bear Emporium Fish bean bag toy 3.49

Bear Emporium Bird bean bag toy 3.49

Bear Emporium Rabbit bean bag toy 3.49

Bear Emporium Raggedy Ann 4.99

Bear Emporium King doll 9.49

Bear Emporium Queen doll 9.49

Doll House Inc. 8 inch teddy bear 5.99

Doll House Inc. 12 inch teddy bear 8.99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Doll House Inc. 12 inch teddy bear 8.99

Doll House Inc. 18 inch teddy bear 11.99

Doll House Inc. Fish bean bag toy 3.49

Doll House Inc. Bird bean bag toy 3.49

Doll House Inc. Rabbit bean bag toy 3.49

Doll House Inc. Raggedy Ann 4.99

Doll House Inc. King doll 9.49

Doll House Inc. Queen doll 9.49

Furball Inc. 8 inch teddy bear 5.99

Furball Inc. 12 inch teddy bear 8.99

Furball Inc. 18 inch teddy bear 11.99

Furball Inc. Fish bean bag toy 3.49

Furball Inc. Bird bean bag toy 3.49

Furball Inc. Rabbit bean bag toy 3.49

Furball Inc. Raggedy Ann 4.99

Furball Inc. King doll 9.49

Furball Inc. Queen doll 9.49

Fun and Games 8 inch teddy bear 5.99

Fun and Games 12 inch teddy bear 8.99

Fun and Games 18 inch teddy bear 11.99

Fun and Games Fish bean bag toy 3.49

Fun and Games Bird bean bag toy 3.49

Fun and Games Rabbit bean bag toy 3.49

Fun and Games Raggedy Ann 4.99

Fun and Games King doll 9.49

Fun and Games Queen doll 9.49

Jouets et ours 8 inch teddy bear 5.99

Jouets et ours 12 inch teddy bear 8.99

Jouets et ours 18 inch teddy bear 11.99

Jouets et ours Fish bean bag toy 3.49

Jouets et ours Bird bean bag toy 3.49

Jouets et ours Rabbit bean bag toy 3.49

Jouets et ours Raggedy Ann 4.99

Jouets et ours King doll 9.49

Jouets et ours Queen doll 9.49

As you can see in the preceding output, the Cartesian product is seldom what you want. The
data returned here has matched every product with every vendor, including products with the
incorrect vendor (and even vendors with no products at all).

Don't Forget the WHERE Clause Make sure all your joins have WHERE clauses, or
the DBMS will return far more data than you want. Similarly, make sure your
WHERE clauses are correct. An incorrect filter condition will cause the DBMS to
return incorrect data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return incorrect data.

Cross Joins Sometimes you'll hear the type of join that returns a Cartesian Product
referred to as a cross join.

Inner Joins

The join you have been using so far is called an equijoin—a join based on the testing of equality between two tables.
This kind of join is also called an inner join. In fact, you may use a slightly different syntax for these joins, specifying
the type of join explicitly. The following SELECT statement returns the exact same data as the preceding example:

SELECT vend_name, prod_name, prod_price

FROM Vendors INNER JOIN Products

 ON Vendors.vend_id = Products.vend_id;

The SELECT in the statement is the same as the preceding SELECT statement, but the FROM
clause is different. Here the relationship between the two tables is part of the FROM clause
specified as INNER JOIN. When using this syntax the join condition is specified using the
special ON clause instead of a WHERE clause. The actual condition passed to ON is the same as
would be passed to WHERE.

Refer to your DBMS documentation to see which syntax is preferred.

The "Right" Syntax Per the ANSI SQL specification, use of the INNER JOIN syntax
is preferable.

Joining Multiple Tables

SQL imposes no limit to the number of tables that may be joined in a SELECT statement. The basic rules for creating the
join remain the same. First list all the tables, and then define the relationship between each. Here is an example:

SELECT prod_name, vend_name, prod_price, quantity

FROM OrderItems, Products, Vendors

WHERE Products.vend_id = Vendors.vend_id

 AND OrderItems.prod_id = Products.prod_id

 AND order_num = 20007;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prod_name vend_name prod_price quantity

--------- --------- ---------- --------

18 inch teddy bear Bears R Us 11.9900 50

Fish bean bag toy Doll House Inc. 3.4900 100

Bird bean bag toy Doll House Inc. 3.4900 100

Rabbit bean bag toy Doll House Inc. 3.4900 100

Raggedy Ann Doll House Inc. 4.9900 50

This example displays the items in order number 20007. Order items are stored in the
OrderItems table. Each product is stored by its product ID, which refers to a product in the
Products table. The products are linked to the appropriate vendor in the Vendors table by the
vendor ID, which is stored with each product record. The FROM clause here lists the three
tables, and the WHERE clause defines both of those join conditions. An additional WHERE
condition is then used to filter just the items for order 20007.

Performance Considerations DBMSs process joins at run-time relating each table
as specified. This process can become very resource intensive so be careful not to
join tables unnecessarily. The more tables you join the more performance will
degrade.

Maximum Number of Tables in a Join While it is true that SQL itself has no
maximum number of tables per join restriction, many DBMSs do indeed have
restrictions. Refer to your DBMS documentation to determine what restrictions
there are, if any.

Now would be a good time to revisit the following example from Lesson 11, "Working with Subqueries." As you will
recall, this SELECT statement returns a list of customers who ordered product RGAN01:

SELECT cust_name, cust_contact

FROM Customers

WHERE cust_id IN (SELECT cust_id

 FROM Orders

 WHERE order_num IN (SELECT order_num

 FROM OrderItems

 WHERE prod_id = 'RGAN01'));

As I mentioned in Lesson 11, subqueries are not always the most efficient way to perform complex SELECT operations,
and so as promised, here is the same query using joins:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num

 AND prod_id = 'RGAN01';

cust_name cust_contact

----------------------------- -------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

As explained in Lesson 11, returning the data needed in this query requires the use of three
tables. But instead of using them within nested subqueries, here two joins are used to
connect the tables. There are three WHERE clause conditions here. The first two connect the
tables in the join, and the last one filters the data for product RGAN01.

It Pays to Experiment As you can see, there is often more than one way to
perform any given SQL operation. And there is rarely a definitive right or wrong
way. Performance can be affected by the type of operation, the DBMS being used,
the amount of data in the tables, whether or not indexes and keys are present, and
a whole slew of other criteria. Therefore, it is often worth experimenting with
different selection mechanisms to find the one that works best for you.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Joins are one of the most important and powerful features in SQL, and using them effectively requires a basic
understanding of relational database design. In this lesson, you learned some of the basics of relational database design
as an introduction to learning about joins. You also learned how to create an equijoin (also known as an inner join),
which is the most commonly used form of join. In the next, lesson, you'll learn how to create other types of joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 13. Creating Advanced Joins
In this lesson, you'll learn all about additional join types—what they are, and how to use them. You'll also learn how to
use table aliases and how to use aggregate functions with joined tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Table Aliases
Back in Lesson 7, "Creating Calculated Fields," you learned how to use aliases to refer to retrieved table columns. The
syntax to alias a column looks like this:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL also enables you to alias table names. There
are two primary reasons to do this:

To shorten the SQL syntax

To enable multiple uses of the same table within a single SELECT statement

Take a look at the following SELECT statement. It is basically the same statement as an example used in the previous
lesson, but it has been modified to use aliases:

SELECT cust_name, cust_contact

FROM Customers AS C, Orders AS O, OrderItems AS OI

WHERE C.cust_id = O.cust_id

 AND OI.order_num = O.order_num

 AND prod_id = 'RGAN01';

You'll notice that the three tables in the FROM clauses all have aliases. Customers AS C
establishes C as an alias for Customers, and so on. This enables you to use the abbreviated C
instead of the full text Customers. In this example, the table aliases were used only in the
WHERE clause, but aliases are not limited to just WHERE. You can use aliases in the SELECT list,
the ORDER BY clause, and in any other part of the statement as well.

No AS in Oracle Oracle does not support the AS keyword. To use aliases in Oracle,
simply specify the alias without AS (so Customers C instead of Customers AS C).

It is also worth noting that table aliases are only used during query execution. Unlike column aliases, table aliases are
never returned to the client.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Different Join Types
So far, you have used only simple joins known as inner joins or equijoins. You'll now take a look at three additional join
types: the self join, the natural join, and the outer join.

Self Joins

As I mentioned earlier, one of the primary reasons to use table aliases is to be able to refer to the same table more
than once in a single SELECT statement. An example will demonstrate this.

Suppose you wanted to send a mailing to all the customer contacts who work for the same company for which Jim
Jones works. This query requires that you first find out which company Jim Jones works for, and next which customers
work for that company. The following is one way to approach this problem:

SELECT cust_id, cust_name, cust_contact

FROM Customers

WHERE cust_name = (SELECT cust_name

 FROM Customers

 WHERE cust_contact = 'Jim Jones');

cust_id cust_name cust_contact

-------- -------------- --------------

1000000003 Fun4All Jim Jones

1000000004 Fun4All Denise L. Stephens

This first solution uses subqueries. The inner SELECT statement does a simple retrieval to
return the cust_name of the company that Jim Jones works for. That name is the one used in
the WHERE clause of the outer query so that all employees who work for that company are
retrieved. (You learned all about subqueries in Lesson 11, "Working with Subqeries." Refer to
that lesson for more information.)

Now look at the same query using a join:

SELECT c1.cust_id, c1.cust_name, c1.cust_contact

FROM Customers AS c1, Customers AS c2

WHERE c1.cust_name = c2.cust_name

 AND c2.cust_contact = 'Jim Jones';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id cust_name cust_contact

------- ----------- --------------

1000000003 Fun4All Jim Jones

1000000004 Fun4All Denise L. Stephens

No AS in Oracle Oracle users, remember to drop the AS.

The two tables needed in this query are actually the same table, and so the Customers table
appears in the FROM clause twice. Although this is perfectly legal, any references to table
Customers would be ambiguous because the DBMS does not know which Customers table you
are referring to.

To resolve this problem table aliases are used. The first occurrence of Customers has an alias of C1, and the second has
an alias of C2. Now those aliases can be used as table names. The SELECT statement, for example, uses the C1 prefix to
explicitly state the full name of the desired columns. If it did not, the DBMS would return an error because there are
two columns named cust_id, cust_name, and cust_contact. It cannot know which one you want (even though, in truth, they
are one and the same). The WHERE clause first joins the tables, and then it filters the data by cust_contact in the second
table to return only the desired data.

Self Joins Instead of Subqueries Self joins are often used to replace statements
using subqueries that retrieve data from the same table as the outer statement.
Although the end result is the same, many DBMSs process joins far more quickly
than they do subqueries. It is usually worth experimenting with both to determine
which performs better.

Natural Joins

Whenever tables are joined, at least one column will appear in more than one table (the columns being joined).
Standard joins (the inner joins that you learned about in the last lesson) return all data, even multiple occurrences of
the same column. A natural join simply eliminates those multiple occurrences so that only one of each column is
returned.

How does it do this? The answer is it doesn't—you do it. A natural join is a join in which you select only columns that
are unique. This is typically done using a wildcard (SELECT *) for one table and explicit subsets of the columns for all
other tables. The following is an example:

SELECT C.*, O.order_num, O.order_date, OI.prod_id, OI.quantity, OI.item_price

FROM Customers AS C, Orders AS O, OrderItems AS OI

WHERE C.cust_id = O.cust_id

 AND OI.order_num = O.order_num

 AND prod_id = 'RGAN01';

No AS in Oracle Oracle users, remember to drop the AS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, a wildcard is used for the first table only. All other columns are explicitly
listed so that no duplicate columns are retrieved.

The truth is, every inner join you have created thus far is actually a natural join, and you will probably never even need
an inner join that is not a natural join.

Outer Joins

Most joins relate rows in one table with rows in another. But occasionally, you will want to include rows that have no
related rows. For example, you might use joins to accomplish the following tasks:

Count how many orders each customer, including customers who have yet to place an order, placed

List all products with order quantities, including products not ordered by anyone

Calculate average sale sizes, taking into account customers who have not yet placed an order

In each of these examples, the join includes table rows that have no associated rows in the related table. This type of
join is called an outer join.

Syntax Differences It is important to note that the syntax used to create an outer
join can vary slightly among different SQL implementations. The various forms of
syntax described in the following section cover most implementations, but refer to
your DBMS documentation to verify its syntax before proceeding.

The following SELECT statement is a simple inner join. It retrieves a list of all customers and their orders:

SELECT Customers.cust_id, Orders.order_num

FROM Customers INNER JOIN Orders

 ON Customers.cust_id = Orders.cust_id;

Outer join syntax is similar. To retrieve a list of all customers, including those who have placed no orders, you can do
the following:

SELECT Customers.cust_id, Orders.order_num

FROM Customers LEFT OUTER JOIN Orders

 ON Customers.cust_id = Orders.cust_id;

cust_id order_num

---------- ---------

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

---------- ---------

1000000001 20005

1000000001 20009

1000000002 NULL

1000000003 20006

1000000004 20007

1000000005 20008

Like the inner join seen in the last lesson, this SELECT statement uses the keywords OUTER
JOIN to specify the join type (instead of specifying it in the WHERE clause). But unlike inner
joins, which relate rows in both tables, outer joins also include rows with no related rows.
When using OUTER JOIN syntax you must use the RIGHT or LEFT keywords to specify the table
from which to include all rows (RIGHT for the one on the right of OUTER JOIN, and LEFT for the
one on the left). The previous example uses LEFT OUTER JOIN to select all the rows from the
table on the left in the FROM clause (the Customers table). To select all the rows from the table
on the right, you use a RIGHT OUTER JOIN as seen in this next example:

SELECT Customers.cust_id, Orders.order_num

FROM Customers RIGHT OUTER JOIN Orders

 ON Orders.cust_id = Customers.cust_id;

SQL Server supports an additional simplified outer join syntax. To retrieve a list of all customers, including those who
have placed no orders, you can do the following:

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Customers.cust_id *= Orders.cust_id;

cust_id order_num

---------- ---------

1000000001 20005

1000000001 20009

1000000002 NULL

1000000003 20006

1000000004 20007

1000000005 20008

Here the join condition is specified in the WHERE clause. Instead of testing for equality with a
=, the *= operator is used to specify that every row in the Customers table should be included.
*= is the left outer join operator. It retrieves all the rows from the left table.

The opposite of this left outer join is the right outer join specified by the =* operator. It can be used to return all rows
from the table listed to the right of the operator, as seen in this next example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Orders.cust_id =* Customers.cust_id;

Yet another form of the OUTER JOIN syntax (used only by Oracle) requires the use of (+) operator after the table name
as follows:

SELECT Customers.cust_id, Orders.order_num

FROM Customers, Orders

WHERE Customers.cust_id (+) = Orders.cust_id

Outer Join Types Regardless of the form of outer join used, there are always two
basic forms of outer joins—the left outer join and the right outer join. The only
difference between them is the order of the tables that they are relating. In other
words, a left outer join can be turned into a right outer join simply by reversing the
order of the tables in the FROM or WHERE clause. As such, the two types of outer
join can be used interchangeably, and the decision about which one is used is based
purely on convenience.

There is one other variant of the outer join, and that is the full outer join that retrieves all rows from both tables and
relates those that can be related. Unlike a left outer join or right outer join, which includes unrelated rows from a single
table, the full outer join includes unrelated rows from both tables. The syntax for a full outer join is as follows:

SELECT Customers.cust_id, Orders.order_num

FROM Orders FULL OUTER JOIN Customers

 ON Orders.cust_id = Customers.cust_id;

FULL OUTER JOIN Support The FULL OUTER JOIN syntax is not supported by Access,
MySQL, SQL Server, or Sybase.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Joins with Aggregate Functions
As you learned in Lesson 9, "Summarizing Data," aggregate functions are used to summarize data. Although all the
examples of aggregate functions thus far only summarized data from a single table, these functions can also be used
with joins.

To demonstrate this, let's look at an example. You want to retrieve a list of all customers and the number of orders that
each has placed. The following code uses the COUNT() function to achieve this:

SELECT Customers.cust_id, COUNT(Orders.order_num) AS num_ord

FROM Customers INNER JOIN Orders

 ON Customers.cust_id = Orders.cust_id

GROUP BY Customers.cust_id;

cust_id num_ord

---------- --------

1000000001 2

1000000003 1

1000000004 1

1000000005 1

This SELECT statement uses INNER JOIN to relate the Customers and Orders tables to each other.
The GROUP BY clause groups the data by customer, and so the function call
COUNT(Orders.order_num) counts the number of orders for each customer and returns it as
num_ord.

Aggregate functions can be used just as easily with other join types. See the following example:

SELECT Customers.cust_id, COUNT(Orders.order_num) AS num_ord

FROM Customers LEFT OUTER JOIN Orders

 ON Customers.cust_id = Orders.cust_id

GROUP BY Customers.cust_id;

No AS in Oracle Again, Oracle users, remember to drop the AS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id num_ord

---------- -------

1000000001 2

1000000002 0

1000000003 1

1000000004 1

1000000005 1

This example uses a left outer join to include all customers, even those who have not placed
any orders. The results show that customer 1000000002 is also included, this time with 0
orders.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Joins and Join Conditions
Before I wrap up our two lesson discussion on joins, I think it is worthwhile to summarize some key points regarding
joins and their use:

Pay careful attention to the type of join being used. More often than not, you'll want an inner join, but there are
often valid uses for outer joins, too.

Check your DBMSs documentation for the exact join syntax it supports. (Most DBMSs use one of the forms of
syntax described in these two lessons.)

Make sure you use the correct join condition (regardless of the syntax being used), or you'll return incorrect
data.

Make sure you always provide a join condition, or you'll end up with the Cartesian product.

You may include multiple tables in a join and even have different join types for each. Although this is legal and
often useful, make sure you test each join separately before testing them together. This will make
troubleshooting far simpler.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
This lesson was a continuation of the last lesson on joins. This lesson started by teaching you how and why to use
aliases, and then continued with a discussion on different join types and various forms of syntax used with each. You
also learned how to use aggregate functions with joins, and some important do's and don'ts to keep in mind when
working with joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 14. Combining Queries
In this lesson, you'll learn how to use the UNION operator to combine multiple SELECT statements into one result set.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Combined Queries
Most SQL queries contain a single SELECT statement that returns data from one or more tables. SQL also enables you to
perform multiple queries (multiple SELECT statements) and return the results as a single query result set. These
combined queries are usually known as unions or compound queries.

There are basically two scenarios in which you'd use combined queries:

To return similarly structured data from different tables in a single query

To perform multiple queries against a single table returning the data as one query

Combining Queries and Multiple WHERE Conditions For the most part,
combining two queries to the same table accomplishes the same thing as a single
query with multiple WHERE clause conditions. In other words, any SELECT statement
with multiple WHERE clauses can also be specified as a combined query, as you'll
see in the section that follows.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Combined Queries
SQL queries are combined using the UNION operator. Using UNION, multiple SELECT statements can be specified, and
their results can be combined into a single result set.

Using UNION

Using UNION is simple enough. All you do is specify each SELECT statement and place the keyword UNION between each.

Let's look at an example. You need a report on all your customers in Illinois, Indiana, and Michigan. You also want to
include all Fun4All locations, regardless of state. Of course, you can create a WHERE clause that will do this, but this time
you'll use a UNION instead.

As I just explained, creating a UNION involves writing multiple SELECT statements. First look at the individual
statements:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI');

cust_name cust_contact cust_email

----------- ------------- ------------

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

--------- ------------ ----------

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first SELECT retrieves all rows in Illinois, Indiana, and Michigan by passing those state
abbreviations to the IN clause. The second SELECT uses a simple equality test to find all Fun4All
locations.

To combine these two statements, do the following:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

--------- ------------ ----------

Fun4All Denise L. Stephens dstephens@fun4all.com

Fun4All Jim Jones jjones@fun4all.com

Village Toys John Smith sales@villagetoys.com

The Toy Store Kim Howard NULL

The preceding statements are made up of both of the previous SELECT statements separated
by the UNION keyword. UNION instructs the DBMS to execute both SELECT statements and
combine the output into a single query result set.

As a point of reference, here is the same query using multiple WHERE clauses instead of a UNION:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

 OR cust_name = 'Fun4All';

In our simple example, the UNION might actually be more complicated than using a WHERE clause. But with more
complex filtering conditions, or if the data is being retrieved from multiple tables (and not just a single table), the UNION
could have made the process much simpler indeed.

UNION Limits There is no standard SQL limit to the number of SELECT statements
that can be combined with UNION statements. However, it is best to consult your
DBMS documentation to ensure that it does not enforce any maximum statement
restrictions of its own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Performance Issues Most good DBMSs use an internal query optimizer to
combine the SELECT statements before they are even processed. In theory, this
means that from a performance perspective, there should be no real difference
between using multiple WHERE clause conditions or a UNION. I say in theory,
because, in practice, most query optimizers don't always do as good a job as they
should. Your best bet is to test both methods to see which will work best for you.

UNION Rules

As you can see, unions are very easy to use. But there are a few rules governing exactly which can be combined:

A UNION must be comprised of two or more SELECT statements, each separated by the keyword UNION (so, if
combining four SELECT statements there would be three UNION keywords used).

Each query in a UNION must contain the same columns, expressions, or aggregate functions (although columns
need not be listed in the same order).

Column datatypes must be compatible: They need not be the exact same type, but they must be of a type that
the DBMS can implicitly convert (for example, different numeric types or different date types).

Aside from these basic rules and restrictions, unions can be used for any data retrieval tasks.

Including or Eliminating Duplicate Rows

Go back to the preceding section titled "Using UNION" and look at the sample SELECT statements used. You'll notice that
when executed individually, the first SELECT statement returns three rows, and the second SELECT statement returns
two rows. However, when the two SELECT statements are combined with a UNION, only four rows are returned, not five.

The UNION automatically removes any duplicate rows from the query result set (in other words, it behaves just as do
multiple WHERE clause conditions in a single SELECT would). Because there is a Fun4All location in Indiana, that row was
returned by both SELECT statements. When the UNION was used the duplicate row was eliminated.

This is the default behavior of UNION, but you can change this if you so desire. If you would, in fact, want all
occurrences of all matches returned, you can use UNION ALL instead of UNION.

Look at the following example:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION ALL

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All';

cust_name cust_contact cust_email

----------- ------------ ----------

Village Toys John Smith sales@villagetoys.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Village Toys John Smith sales@villagetoys.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

Fun4All Jim Jones jjones@fun4all.com

Fun4All Denise L. Stephens dstephens@fun4all.com

Using UNION ALL, the DBMS does not eliminate duplicates. Therefore, the preceding example
returns five rows, one of them occurring twice.

UNION versus WHERE At the beginning of this lesson, I said that UNION almost
always accomplishes the same thing as multiple WHERE conditions. UNION ALL is the
form of UNION that accomplishes what cannot be done with WHERE clauses. If you
do, in fact, want all occurrences of matches for every condition (including
duplicates), you must use UNION ALL and not WHERE.

Sorting Combined Query Results

SELECT statement output is sorted using the ORDER BY clause. When combining queries with a UNION only one ORDER BY
clause may be used, and it must occur after the final SELECT statement. There is very little point in sorting part of a
result set one way and part another way, and so multiple ORDER BY clauses are not allowed.

The following example sorts the results returned by the previously used UNION:

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_state IN ('IL','IN','MI')

UNION

SELECT cust_name, cust_contact, cust_email

FROM Customers

WHERE cust_name = 'Fun4All'

ORDER BY cust_name, cust_contact;

cust_name cust_contact cust_email

----------- ------------ ----------

Fun4All Denise L. Stephens dstephens@fun4all.com

Fun4All Jim Jones jjones@fun4all.com

The Toy Store Kim Howard NULL

Village Toys John Smith sales@villagetoys.com

This UNION takes a single ORDER BY clause after the final SELECT statement. Even though the
ORDER BY appears to only be a part of that last SELECT statement, the DBMS will in fact use it
to sort all the results returned by all the SELECT statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other UNION Types Some DBMSs support two additional types of UNION. EXCEPT
(sometimes called MINUS) can be used to only retrieve the rows that exist in the
first table but not in the second, and INTERSECT can be used to retrieve only the
rows that exist in both tables. In practice, however, these UNION types are rarely
used as the same results can be accomplished using joins.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to combine SELECT statements with the UNION operator. Using UNION, you can return
the results of multiple queries as one combined query, either including or excluding duplicates. The use of UNION can
greatly simplify complex WHERE clauses and retrieving data from multiple tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 15. Inserting Data
In this lesson, you will learn how to insert data into tables using the SQL INSERT statement.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Data Insertion
SELECT is undoubtedly the most frequently used SQL statement (which is why the last 14 lessons were dedicated to it).
But there are three other frequently used SQL statements that you should learn. The first one is INSERT. (You'll get to
the other two in the next lesson.)

As its name suggests, INSERT is used to insert (add) rows to a database table. Insert can be used in several ways:

To insert a single complete row

To insert a single partial row

To insert the results of a query

You'll now look at each of these.

INSERT and System Security Use of the INSERT statement might require special
security privileges in client-server DBMSs. Before you attempt to use INSERT, make
sure you have adequate security privileges to do so.

Inserting Complete Rows

The simplest way to insert data into a table is to use the basic INSERT syntax, which requires that you specify the table
name and the values to be inserted into the new row. Here is an example of this:

INSERT INTO Customers

VALUES('1000000006',

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA',

 NULL,

 NULL);

The above example inserts a new customer into the Customers table. The data to be stored in
each table column is specified in the VALUES clause, and a value must be provided for every
column. If a column has no value (for example, the cust_contact and cust_email columns
above), the NULL value should be used (assuming the table allows no value to be specified for
that column). The columns must be populated in the order in which they appear in the table
definition.

The INTO Keyword In some SQL implementations, the INTO keyword following
INSERT is optional. However, it is good practice to provide this keyword even if it is
not needed. Doing so will ensure that your SQL code is portable between DBMSs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although this syntax is indeed simple, it is not at all safe and should generally be avoided at all costs. The above SQL
statement is highly dependent on the order in which the columns are defined in the table. It also depends on
information about that order being readily available. Even if it is available, there is no guarantee that the columns will
be in the exact same order the next time the table is reconstructed. Therefore, writing SQL statements that depend on
specific column ordering is very unsafe. If you do so, something will inevitably break at some point.

The safer (and unfortunately more cumbersome) way to write the INSERT statement is as follows:

INSERT INTO Customers(cust_id,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country,

 cust_contact,

 cust_email)

VALUES('1000000006',

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA',

 NULL,

 NULL);

This example does the exact same thing as the previous INSERT statement, but this time the
column names are explicitly stated in parentheses after the table name. When the row is
inserted the DBMS will match each item in the columns list with the appropriate value in the
VALUES list. The first entry in VALUES corresponds to the first specified column name. The
second value corresponds to the second column name, and so on.

Because column names are provided, the VALUES must match the specified column names in the order in which they are
specified, and not necessarily in the order that the columns appear in the actual table. The advantage of this is that,
even if the table layout changes, the INSERT statement will still work correctly.

The following INSERT statement populates all the row columns (just as before), but it does so in a different order.
Because the column names are specified, the insertion will work correctly:

INSERT INTO Customers(cust_id,

 cust_contact,

 cust_email,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip)

VALUES('1000000006',

 NULL,

 NULL,

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111');

Always Use a Columns List As a rule, never use INSERT without explicitly
specifying the column list. This will greatly increase the probability that your SQL
will continue to function in the event that table changes occur.

Use VALUES Carefully Regardless of the INSERT syntax being used, the correct
number of VALUES must be specified. If no column names are provided, a value
must be present for every table column. If columns names are provided, a value
must be present for each listed column. If none is present, an error message will be
generated, and the row will not be inserted.

Inserting Partial Rows

As I just explained, the recommended way to use INSERT is to explicitly specify table column names. Using this syntax,
you can also omit columns. This means you only provide values for some columns, but not for others.

Look at the following example:

INSERT INTO Customers(cust_id,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country)

VALUES('1000000006',

 'Toy Land',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'Toy Land',

 '123 Any Street',

 'New York',

 'NY',

 '11111',

 'USA');

In the examples given earlier in this lesson, values were not provided for two of the columns,
cust_contact and cust_email. This means there is no reason to include those columns in the
INSERT statement. This INSERT statement, therefore, omits the two columns and the two
corresponding values.

Omitting Columns You may omit columns from an INSERT operation if the table
definition so allows. One of the following conditions must exist:

The column is defined as allowing NULL values (no value at all).

A default value is specified in the table definition. This means the default
value will be used if no value is specified.

If you omit a value from a table that does not allow NULL values and does not have
a default, the DBMS will generate an error message, and the row will not be
inserted.

Inserting Retrieved Data

INSERT is usually used to add a row to a table using specified values. There is another form of INSERT that can be used
to insert the result of a SELECT statement into a table. This is known as INSERT SELECT, and, as its name suggests, it is
made up of an INSERT statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into your Customers table. Instead of reading one row
at a time and inserting it with INSERT, you can do the following:

Instructions Needed for the Next Example The following example imports data
from a table named CustNew into the Customers table. To try this example, create
and populate the CustNew table first. The format of the CustNew table should be the
same as the Customers table described in Appendix A. When populating CustNew, be
sure not to use cust_id values that were already used in Customers (the subsequent
INSERT operation will fail if primary key values are duplicated).

INSERT INTO Customers(cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_country)

SELECT cust_id,

 cust_contact,

 cust_email,

 cust_name,

 cust_address,

 cust_city,

 cust_state,

 cust_zip,

 cust_country

FROM CustNew;

This example uses INSERT SELECT to import all the data from CustNew into Customers. Instead
of listing the VALUES to be inserted, the SELECT statement retrieves them from CustNew. Each
column in the SELECT corresponds to a column in the specified columns list. How many rows
will this statement insert? That depends on how many rows are in the CustNew table. If the
table is empty, no rows will be inserted (and no error will be generated because the operation
is still valid). If the table does, in fact, contain data, all that data is inserted into Customers.

Column Names in INSERT SELECT This example uses the same column names in
both the INSERT and SELECT statements for simplicity's sake. But there is no
requirement that the column names match. In fact, the DBMS does not even pay
attention to the column names returned by the SELECT. Rather, the column position
is used, so the first column in the SELECT (regardless of its name) will be used to
populate the first specified table column, and so on.

The SELECT statement used in an INSERT SELECT can include a WHERE clause to filter the data to be inserted.

Inserting Multiple Rows INSERT usually inserts only a single row. To insert
multiple rows you must execute multiple INSERT statements. The exception to this
rule is INSERT SELECT, which can be used to insert multiple rows with a single
statement—whatever the SELECT statement returns will be inserted by the INSERT.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copying from One Table to Another
There is another form of data insertion that does not use the INSERT statement at all. To copy the contents of a table
into a brand new table (one that is created on-the-fly) you can use the SELECT INTO statement.

Not Supported by DB2 DB2 does not support the use of SELECT INTO as described
here.

Unlike INSERT SELECT, which appends data to an existing table, SELECT INTO copies data into a new table (and depending
on the DBMS being used, can overwrite the table if it already exists).

INSERT SELECT versus SELECT INTO One way to explain the differences between
SELECT INTO and INSERT SELECT is that the former exports data while the later
imports data.

The following example demonstrates the use of SELECT INTO:

SELECT *

INTO CustCopy

FROM Customers;

This SELECT statement creates a new table named CustCopy and copies the entire contents of
the Customers table into it. Because SELECT * was used, every column in the Customers table
will be created (and populated) in the CustCopy table. To copy only a subset of the available
columns, explicit column names can be specified instead of the * wildcard character.

MySQL and Oracle use a slightly different syntax:

CREATE TABLE CustCopy AS

SELECT *

FROM Customers;

Here are some things to consider when using SELECT INTO:

Any SELECT options and clauses may be used including WHERE and GROUP BY.

Joins may be used to insert data from multiple tables.

Data may only be inserted into a single table regardless of how many tables the data was retrieved from.

Making Copies of Tables SELECT INTO is a great way to make copies of tables
before experimenting with new SQL statements. By making a copy first, you'll be
able to test your SQL on that copy instead of on live data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

More Examples Looking for more examples of INSERT usage? See the example
table population scripts described in Appendix A, "Sample Table Scripts."

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to INSERT rows into a database table. You learned several ways to use INSERT, and why
explicit column specification is preferred. You also learned how to use INSERT SELECT to import rows from another table,
and how to use SELECT INTO to export rows to a new table. In the next lesson, you'll learn how to use UPDATE and
DELETE to further manipulate table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 16. Updating and Deleting Data
In this lesson, you will learn how to use the UPDATE and DELETE statements to enable you to further manipulate your
table data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Updating Data
To update (modify) data in a table the UPDATE statement is used. UPDATE can be used in two ways:

To update specific rows in a table

To update all rows in a table

Let's take a look at each of these uses.

Don't Omit the WHERE Clause Special care must be exercised when using
UPDATE, because it is all too easy to mistakenly update every row in your table.
Please read this entire section on UPDATE before using this statement.

UPDATE and Security Use of the UPDATE statement might require special security
privileges in client-server DBMSs. Before you attempt to use UPDATE, make sure
you have adequate security privileges to do so.

The UPDATE statement is very easy to use—some would say too easy. The basic format of an UPDATE statement is made
up of three parts:

The table to be updated

The column names and their new values

The filter condition that determines which rows should be updated

Let's take a look at a simple example. Customer 1000000005 now has an email address, and so his record needs
updating. The following statement performs this update:

UPDATE Customers

SET cust_email = 'kim@thetoystore.com'

WHERE cust_id = '1000000005';

The UPDATE statement always begins with the name of the table being updated. In this example, it is the Customers
table. The SET command is then used to assign the new value to a column. As used here, the SET clause sets the
cust_email column to the specified value:

SET cust_email = 'kim@thetoystore.com'

The UPDATE statement finishes with a WHERE clause that tells the DBMS which row to update. Without a WHERE clause,
the DBMS would update all the rows in the Customers table with this new email address—definitely not the desired
effect.

Updating multiple columns requires a slightly different syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE Customers

SET cust_contact = 'Sam Roberts',

 cust_email = 'sam@toyland.com'

WHERE cust_id = '1000000006';

When updating multiple columns, only a single SET command is used, and each column = value pair is separated by a
comma. (No comma is specified after the last column.) In this example, columns cust_contact and cust_email will both be
updated for customer 1000000006.

Using Subqueries in an UPDATE Statement Subqueries may be used in UPDATE
statements, enabling you to update columns with data retrieved with a SELECT
statement. Refer back to Lesson 11, "Working with Subqueries," for more
information on subqueries and their uses.

The FROM Keyword Some SQL implementations support a FROM clause in the
UPDATE statement that can be used to update the rows in one table with data from
another table. Refer to your DBMS documentation to see if it supports this feature.

To delete a column's value, you can set it to NULL (assuming the table is defined to allow NULL values). You can do this
as follows:

UPDATE Customers

SET cust_email = NULL

WHERE cust_id = '1000000005';

Here the NULL keyword is used to save no value to the cust_email column.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Deleting Data
To delete (remove) data from a table, the DELETE statement is used. DELETE can be used in two ways:

To delete specific rows from a table

To delete all rows from a table

You'll now take a look at each of these.

Don't Omit the WHERE Clause Special care must be exercised when using DELETE
because it is all too easy to mistakenly delete every row from your table. Please
read this entire section on DELETE before using this statement.

DELETE and Security Use of the DELETE statement might require special security
privileges in client-server DBMSs. Before you attempt to use DELETE, make sure you
have adequate security privileges to do so.

I already stated that UPDATE is very easy to use. The good (and bad) news is that DELETE is even easier to use.

The following statement deletes a single row from the Customers table:

DELETE FROM Customers

WHERE cust_id = '1000000006';

This statement should be self-explanatory. DELETE FROM requires that you specify the name of the table from which the
data is to be deleted. The WHERE clause filters which rows are to be deleted. In this example, only customer 1000000006
will be deleted. If the WHERE clause were omitted, this statement would have deleted every customer in the table.

The FROM Keyword In some SQL implementations, the FROM keyword following
DELETE is optional. However, it is good practice to always provide this keyword,
even if it is not needed. Doing this will ensure that your SQL code is portable
between DBMSs

DELETE takes no column names or wildcard characters. DELETE deletes entire rows, not columns. To delete specific
columns use an UPDATE statement.

Table Contents, Not Tables The DELETE statement deletes rows from tables, even
all rows from tables. But DELETE never deletes the table itself.

Faster Deletes If you really do want to delete all rows from a table, don't use
DELETE. Instead, use the TRUNCATE TABLE statement which accomplished the same
thing but does it much quicker (because data changes are not logged).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Guidelines for Updating and Deleting Data
The UPDATE and DELETE statements used in the previous section all have WHERE clauses, and there is a very good
reason for this. If you omit the WHERE clause, the UPDATE or DELETE will be applied to every row in the table. In other
words, if you execute an UPDATE without a WHERE clause, every row in the table will be updated with the new values.
Similarly if you execute DELETE without a WHERE clause, all the contents of the table will be deleted.

Here are some best practices that many SQL programmers follow:

Never execute an UPDATE or a DELETE without a WHERE clause unless you really do intend to update and delete
every row.

Make sure every table has a primary key (refer back to Lesson 12, "Joining Tables," if you have forgotten what
this is), and use it as the WHERE clause whenever possible. (You may specify individual primary keys, multiple
values, or value ranges.)

Before you use a WHERE clause with an UPDATE or a DELETE, first test it with a SELECT to make sure it is filtering
the right records—it is far too easy to write incorrect WHERE clauses.

Use database enforced referential integrity (refer back to Lesson 12 for this one, too) so that the DBMS will not
allow the deletion of rows that have data in other tables related to them.

Some DBMSs allow database administrators to impose restrictions that prevent the execution of UPDATE or
DELETE without a WHERE clause. If your DBMS supports this feature, consider using it.

Use With Caution The bottom line is that SQL has no Undo button. Be very careful
using UPDATE and DELETE, or you'll find yourself updating and deleting the wrong
data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use the UPDATE and DELETE statements to manipulate the data in your tables. You
learned the syntax for each of these statements, as well as the inherent dangers they expose. You also learned why
WHERE clauses are so important in UPDATE and DELETE statements, and you were given guidelines that should be
followed to help ensure that data does not get damaged inadvertently.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 17. Creating and Manipulating Tables
In this lesson you'll learn the basics of table creation, alteration, and deletion.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Tables
SQL is not used just for table data manipulation. Rather, SQL can be used to perform all database and table operations,
including the creation and manipulation of tables themselves.

There are generally two ways to create database tables:

Most DBMSs come with an administration tool that can be used to create and manage database tables
interactively.

Tables may also be manipulated directly with SQL statements.

To create tables programmatically, the CREATE TABLE SQL statement is used. It is worth noting that when you use
interactive tools, you are actually using SQL statements. Instead of your writing these statements, however, the
interface generates and executes the SQL seamlessly for you (the same is true for changes to existing tables).

Syntax Differences The exact syntax of the CREATE TABLE statement can vary
from one SQL implementation to another. Be sure to refer to your DBMS
documentation for more information on exactly what syntax and features it
supports.

Complete coverage of all the options available when creating tables is beyond the scope of this lesson, but here are the
basics. I'd recommend that you review your DBMS documentation for more information and specifics.

DBMS Specific Examples For examples of DBMS specific CREATE TABLE
statements, see the example table creation scripts described in Appendix A,
"Sample Table Scripts."

Basic Table Creation

To create a table using CREATE TABLE, you must specify the following information:

The name of the new table specified after the keywords CREATE TABLE.

The name and definition of the table columns separated by commas.

Some DBMSs require that you also specify the table location.

The following SQL statement creates the Products table used throughout this book:

CREATE TABLE Products

(

 prod_id CHAR(10) NOT NULL,

 vend_id CHAR(10) NOT NULL,

 prod_name CHAR(254) NOT NULL,

 prod_price DECIMAL(8,2) NOT NULL,

 prod_desc VARCHAR(1000) NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 prod_desc VARCHAR(1000) NULL

);

As you can see in the above statement, the table name is specified immediately following the
CREATE TABLE keywords. The actual table definition (all the columns) is enclosed within
parentheses. The columns themselves are separated by commas. This particular table is made
up of five columns. Each column definition starts with the column name (which must be
unique within the table), followed by the column's datatype. (Refer to Lesson 1,
"Understanding SQL," for an explanation of datatypes. In addition, Appendix D, "Using SQL
Datatypes," lists commonly used datatypes and their compatibility.) The entire statement is
terminated with a semicolon after the closing parenthesis.

I mentioned earlier that CREATE TABLE syntax varies greatly from one DBMS to another, and the simple script just seen
demonstrates this. While the statement will work as is on Oracle, PostgreSQL, SQL Server, and Sybase, for MySQL the
varchar must be replaced with text, and for DB2 the NULL must be removed from the final column. This is why I had to
create a different SQL table creation script for each DBMS (as explained in Appendix A).

Statement Formatting As you will recall, whitespace is ignored in SQL
statements. Statements can be typed on one long line or broken up over many
lines. It makes no difference at all. This enables you to format your SQL as best
suits you. The preceding CREATE TABLE statement is a good example of SQL
statement formatting—the code is specified over multiple lines, with the column
definitions indented for easier reading and editing. Formatting your SQL in this way
is entirely optional, but highly recommended.

Replacing Existing Tables When you create a new table, the table name specified
must not exist or you'll generate an error. To prevent accidental overwriting, SQL
requires that you first manually remove a table (see later sections for details) and
then recreate it, rather than just overwriting it.

Working with NULL Values

Back in Lesson 4, "Filtering Data," you learned that NULL values are no values or the lack of a value. A column that
allows NULL values also allows rows to be inserted with no value at all in that column. A column that does not allow NULL
values does not accept rows with no value—in other words, that column will always be required when rows are inserted
or updated.

Every table column is either a NULL column or a NOT NULL column, and that state is specified in the table definition at
creation time. Take a look at the following example:

CREATE TABLE Orders

(

 order_num INTEGER NOT NULL,

 order_date DATETIME NOT NULL,

 cust_id CHAR(10) NOT NULL

);

This statement creates the Orders table used throughout this book. Orders contains three
columns: order number, order date, and the customer ID. All three columns are required, and
so each contains the keyword NOT NULL. This will prevent the insertion of columns with no
value. If someone tries to insert no value, an error will be returned, and the insertion will fail.

This next example creates a table with a mixture of NULL and NOT NULL columns:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE Vendors

(

 vend_id CHAR(10) NOT NULL,

 vend_name CHAR(50) NOT NULL,

 vend_address CHAR(50) ,

 vend_city CHAR(50) ,

 vend_state CHAR(5) ,

 vend_zip CHAR(10) ,

 vend_country CHAR(50)

);

This statement creates the Vendors table used throughout this book. The vendor ID and
vendor name columns are both required, and are, therefore, specified as NOT NULL. The five
remaining columns all allow NULL values, and so NOT NULL is not specified. NULL is the default
setting, so if NOT NULL is not specified NULL is assumed.

Specifying NULL Most DBMSs treat the absence of NOT NULL to mean NULL.
However, not all do. DB2 requires the keyword NULL and will generate an error if it
is not specified. Refer to your DBMS documentation for complete syntax
information.

Primary Keys and NULL Values Back in Lesson 1, you learned that primary keys
are columns whose values uniquely identify every row in a table. Only columns that
do not allow NULL values can be used in primary keys. Columns that allow no value
at all cannot be used as unique identifiers.

Understanding NULL Don't confuse NULL values with empty strings. A NULL value
is the lack of a value; it is not an empty string. If you were to specify '' (two single
quotes with nothing in between them), that would be allowed in a NOT NULL column.
An empty string is a valid value; it is not no value. NULL values are specified with
the keyword NULL, not with an empty string.

Specifying Default Values

SQL enables you to specify default values to be used if no value is specified when a row is inserted. Default values are
specified using the DEFAULT keyword in the column definitions in the CREATE TABLE statement.

Look at the following example:

CREATE TABLE OrderItems

(

 order_num INTEGER NOT NULL,

 order_item INTEGER NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 order_item INTEGER NOT NULL,

 prod_id CHAR(10) NOT NULL,

 quantity INTEGER NOT NULL DEFAULT 1,

 item_price DECIMAL(8,2) NOT NULL

);

This statement creates the OrderItems table that contains the individual items that make up an
order. (The order itself is stored in the Orders table.) The quantity column contains the quantity
for each item in an order. In this example, adding the text DEFAULT 1 to the column
description instructs the DBMS to use a quantity of 1 if no quantity is specified.

Default values are often used to store values in date or time stamp columns. For example, the system date can be used
as a default date by specifying the function or variable used to refer to the system date. For example, MySQL users
might specify DEFAULT CURRENT_DATE(), while Oracle users might specify DEFAULT SYSDATE, and SQL Server users might
specify DEFAULT GETDATE(). Unfortunately, the command used to obtain the system date is different in just about every
DBMS. Table 17.1 lists the syntax for some DBMSs. If yours is not listed here consult your DBMSs documentation.

Table 17.1. Obtaining The System Date
DBMS Function/Variable

Access NOW()

DB2 CURRENT_DATE

MySQL CURRENT_DATE()

Oracle SYSDATE

PostgreSQL CURRENT_DATE

SQL Server GETDATE()

Sybase GETDATE()

Using DEFAULT Instead of NULL Values Many database developers use DEFAULT
values instead of NULL columns, especially in columns that will be used in
calculations or data groupings.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Updating Tables
To update table definitions, the ALTER TABLE statement is used. Although all DBMSs support ALTER TABLE, what they
allow you to alter varies dramatically from one to another. Here are some points to consider when using ALTER TABLE:

Ideally, tables should never be altered after they contain data. You should spend sufficient time anticipating
future needs during the table design process so that extensive changes are not required later on.

All DBMSs allow you to add columns to existing tables, although some restrict the datatypes that may be added
(as well as NULL and DEFAULT usage).

Many DBMSs do not allow you to remove or change columns in a table.

Most DBMSs allow you to rename columns.

Many DBMSs restrict the kinds of changes you can make on columns that are populated and enforce fewer
restrictions on unpopulated columns.

As you can see, making changes to existing tables is neither simple nor consistent. Be sure to refer to your own DBMS
documentation to determine exactly what you can alter.

To change a table using ALTER TABLE, you must specify the following information:

The name of the table to be altered after the keywords ALTER TABLE. (The table must exist or an error will be
generated.)

The list of changes to be made.

Because adding columns to an existing table is about the only operation supported by all DBMSs, I'll use that for an
example:

ALTER TABLE Vendors

ADD vend_phone CHAR(20);

This statement adds a column named vend_phone to the Vendors table. The datatype must be
specified.

Other alter operations, for example, changing or dropping columns, or adding constraints or keys, use a similar syntax.
(Note that the following example will not work with all DBMSs):

ALTER TABLE Vendors

DROP COLUMN vend_phone;

Complex table structure changes usually require a manual move process involving these steps:

Create a new table with the new column layout.

Use the INSERT SELECT statement (see Lesson 15, "Inserting Data," for details of this statement) to copy the
data from the old table to the new table. Use conversion functions and calculated fields, if needed.

Verify that the new table contains the desired data.

Rename the old table (or delete it, if you are really brave).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rename the old table (or delete it, if you are really brave).

Rename the new table with the name previously used by the old table.

Recreate any triggers, stored procedures, indexes, and foreign keys as needed.

Use ALTER TABLE Carefully Use ALTER TABLE with extreme caution, and be sure
you have a complete set of backups (both schema and data) before proceeding.
Database table changes cannot be undone—and if you add columns you don't need,
you might not be able to remove them. Similarly, if you drop a column that you do
need, you might lose all the data in that column.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Deleting Tables
Deleting tables (actually removing the entire table, not just the contents) is very easy—arguably too easy. Tables are
deleted using the DROP TABLE statement:

DROP TABLE CustCopy;

This statement deletes the CustCopy table. (You created that one in Lesson 15.) There is no
confirmation, nor is there an undo—executing the statement will permanently remove the
table.

Using Relational Rules to Prevent Accidental Deletion Many DBMSs allow you
to enforce rules that prevent the dropping of tables that are related to other tables.
When these rules are enforced, if you issue a DROP TABLE statement against a table
that is part of a relationship, the DBMS blocks the operation until the relationship
was removed. It is a good idea to enable these options, if available, to prevent the
accidental dropping of needed tables.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Renaming Tables
Table renaming is supported differently by each DBMS. There is no hard and fast standard for this operation. DB2,
MySQL, Oracle, and PostgreSQL users can use the RENAME statement. SQL Server and Sybase users can use the
supplied sp_rename stored procedure.

The basic syntax for all rename operations requires that you specify the old name and a new name. However, there are
DBMS implementation differences. Refer to your own DBMS documentation for details on supported syntax.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned several new SQL statements. CREATE TABLE is used to create new tables, ALTER TABLE is used
to change table columns (or other objects like constraints or indexes), and DROP TABLE is used to completely delete a
table. These statements should be used with extreme caution, and only after backups have been made. As the exact
syntax of each of these statements varies from one DBMS to another, you should consult your own DBMS
documentation for more information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 18. Using Views
In this lesson you'll learn exactly what views are, how they work, and when they should be used. You'll also see how
views can be used to simplify some of the SQL operations performed in earlier lessons.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Views
Views are virtual tables. Unlike tables that contain data, views simply contain queries that dynamically retrieve data
when used.

MySQL Support As this book goes to press, MySQL still does not support views
(support for views is planned for MySQL 5). As such, the examples in this lesson
will not work with MySQL at this time.

The best way to understand views is to look at an example. Back in Lesson 12, "Joining Tables," you used the following
SELECT statement to retrieve data from three tables:

SELECT cust_name, cust_contact

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num

 AND prod_id = 'RGAN01';

That query was used to retrieve the customers who had ordered a specific product. Anyone needing this data would
have to understand the table structure, as well as how to create the query and join the tables. To retrieve the same
data for another product (or for multiple products), the last WHERE clause would have to be modified.

Now imagine that you could wrap that entire query in a virtual table called ProductCustomers. You could then simply do
the following to retrieve the same data:

SELECT cust_name, cust_contact

FROM ProductCustomers

WHERE prod_id = 'RGAN01';

This is where views come into play. ProductCustomers is a view, and as a view, it does not contain any columns or data.
Instead it contains a query—the same query used above to join the tables properly.

DBMS Consistency You'll be relieved to know that view creation syntax is
supported pretty consistently by all the major DBMSs.

Why Use Views

You've already seen one use for views. Here are some other common uses:

To reuse SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To reuse SQL statements.

To simplify complex SQL operations. After the query is written, it can be reused easily, without having to know
the details of the underlying query itself.

To expose parts of a table instead of complete tables.

To secure data. Users can be given access to specific subsets of tables instead of to entire tables.

To change data formatting and representation. Views can return data formatted and presented differently from
their underlying tables.

For the most part, after views are created, they can be used in the same way as tables. You can perform SELECT
operations, filter and sort data, join views to other views or tables, and possibly even add and update data. (There are
some restrictions on this last item. More on that in a moment.)

The important thing to remember is views are just that, views into data stored elsewhere. Views contain no data
themselves, so the data they return is retrieved from other tables. When data is added or changed in those tables, the
views will return that changed data.

Performance Issues Because views contain no data, any retrieval needed to
execute a query must be processed every time the view is used. If you create
complex views with multiple joins and filters, or if you nest views, you may find that
performance is dramatically degraded. Be sure you test execution before deploying
applications that use views extensively.

View Rules and Restrictions

Before you create views yourself, there are some restrictions of which you should be aware. Unfortunately, the
restrictions tend to be very DBMS specific, so check your own DBMS documentation before proceeding.

Here are some of the most common rules and restrictions governing view creation and usage:

Like tables, views must be uniquely named. (They cannot be named with the name of any other table or view).

There is no limit to the number of views that can be created.

To create views, you must have security access. This is usually granted by the database administrator.

Views can be nested; that is, a view may be built using a query that retrieves data from another view. The
exact number of nested levels allowed varies from DBMS to DBMS. (Nesting views might seriously degrade
query performance, so test this thoroughly before using it in production environments.)

Many DBMSs prohibit the use of the ORDER BY clause in view queries.

Some DBMSs require that every column returned be named—this will require the use of aliases if columns are
calculated fields. (See Lesson 7, "Creating Calculated Fields," for more information on column aliases.)

Views cannot be indexed, nor can they have triggers or default values associated with them.

Some DBMSs treat views as read-only queries—meaning you can retrieve data from views but not write data
back to the underlying tables. Refer to your DBMS documentation for details.

Some DBMSs allow you to create views that do not allow rows to be inserted or updated if that insertion or
update will cause that row to no longer be part of the view. For example, if you have a view that retrieves only
customers with email addresses, updating a customer to remove his email address would make that customer
fall out of the view. This is the default behavior and is allowed, but depending on your DBMS you might be able
to prevent this from occurring.

Refer to Your DBMS Documentation That's a long list of rules, and your own
DBMS documentation will likely contain additional rules, too. It is worth taking the
time to understand what restrictions you must adhere to before creating views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Views
So now that you know what views are (and the rules and restrictions that govern them), let's look at view creation.

Views are created using the CREATE VIEW statement. Like CREATE TABLE, CREATE VIEW can only be used to create a view
that does not exist.

To remove a view, the DROP statement is used. The syntax is simply DROP VIEW
viewname;.

To overwrite (or update) a view you must first DROP it and then recreate it.

Using Views to Simplify Complex Joins

One of the most common uses of views is to hide complex SQL, and this often involves joins. Look at the following
statement:

CREATE VIEW ProductCustomers AS

SELECT cust_name, cust_contact, prod_id

FROM Customers, Orders, OrderItems

WHERE Customers.cust_id = Orders.cust_id

 AND OrderItems.order_num = Orders.order_num;

This statement creates a view named ProductCustomers, which joins three tables to return a list
of all customers who have ordered any product. If you were to SELECT * FROM
ProductCustomers, you'd list every customer who ordered anything.

CREATE VIEW and SQL Server Unlike most SQL statements, Microsoft SQL Server
does not support the use of a semicolon after a CREATE VIEW statement.

To retrieve a list of customers who ordered product RGAN01 you can do the following:

SELECT cust_name, cust_contact

FROM ProductCustomers

WHERE prod_id = 'RGAN01';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_name cust_contact

------------------- ------------------

Fun4All Denise L. Stephens

The Toy Store Kim Howard

This statement retrieves specific data from the view by issuing a WHERE clause. When the
DBMS processes the request, it adds the specified WHERE clause to any existing WHERE
clauses in the view query so that the data is filtered correctly.

As you can see, views can greatly simplify the use of complex SQL statements. Using views, you can write the
underlying SQL once and then reuse it as needed.

Creating Reusable Views It is a good idea to create views that are not tied to
specific data. For example, the view created above returns customers for all
products, not just product RGAN01 (for which the view was first created). Expanding
the scope of the view enables it to be reused, making it even more useful. It also
eliminates the need for you to create and maintain multiple similar views.

Using Views to Reformat Retrieved Data

As mentioned above, another common use of views is for reformatting retrieved data. The following SELECT statement
(from Lesson 7, "Creating Calculated Fields") returns vendor name and location in a single combined calculated column:

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

The following is the same statement, but using the || syntax (as explained back in Lesson 7):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors

ORDER BY vend_name;

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

Now suppose that you regularly needed results in this format. Rather than perform the concatenation each time it was
needed, you could create a view and use that instead. To turn this statement into a view, you can do the following:

CREATE VIEW VendorLocations AS

SELECT RTRIM(vend_name) + ' (' + RTRIM(vend_country) + ')' AS vend_title

FROM Vendors;

Here's the same statement using || syntax:

CREATE VIEW VendorLocations AS

SELECT RTRIM(vend_name) || ' (' || RTRIM(vend_country) || ')' AS vend_title

FROM Vendors;

This statement creates a view using the exact same query as the previous SELECT statement.
To retrieve the data to create all mailing labels, simply do the following:

SELECT *

FROM VendorLocations;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

vend_title

--

Bear Emporium (USA)

Bears R Us (USA)

Doll House Inc. (USA)

Fun and Games (England)

Furball Inc. (USA)

Jouets et ours (France)

SELECT Restrictions All Apply Earlier in this lesson I stated that the syntax used
to create views was rather consistent between DBMSs. So why multiple versions of
statements? A view simply wraps a SELECT statement, and the syntax of that SELECT
must adhere to all the rules and restrictions of the DBMS being used.

Using Views to Filter Unwanted Data

Views are also useful for applying common WHERE clauses. For example, you might want to define a CustomerEMailList
view so that it filters out customers without email addresses. To do this, you can use the following statement

CREATE VIEW CustomerEMailList AS

SELECT cust_id, cust_name, cust_email

FROM Customers

WHERE cust_email IS NOT NULL;

Obviously, when sending email to a mailing list you'd want to ignore users who have no email
address. The WHERE clause here filters out those rows that have NULL values in the cust_email
columns so that they'll not be retrieved.

View CustomerEMailList can now be used like any table.

SELECT *

FROM CustomerEMailList;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cust_id cust_name cust_email

---------- ------------ ---------------------

1000000001 Village Toys sales@villagetoys.com

1000000003 Fun4All jjones@fun4all.com

1000000004 Fun4All dstephens@fun4all.com

WHERE Clauses and WHERE Clauses If a WHERE clause is used when retrieving
data from the view, the two sets of clauses (the one in the view and the one passed
to it) will be combined automatically.

Using Views with Calculated Fields

Views are exceptionally useful for simplifying the use of calculated fields. The following is a SELECT statement introduced
in Lesson 7. It retrieves the order items for a specific order, calculating the expanded price for each item:

SELECT prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems

WHERE order_num = 20008;

prod_id quantity item_price expanded_price

------- -------- ---------- --------------

RGAN01 5 4.9900 24.9500

BR03 5 11.9900 59.9500

BNBG01 10 3.4900 34.9000

BNBG02 10 3.4900 34.9000

BNBG03 10 3.4900 34.9000

To turn this into a view, do the following:

CREATE VIEW OrderItemsExpanded AS

SELECT order_num,

 prod_id,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 prod_id,

 quantity,

 item_price,

 quantity*item_price AS expanded_price

FROM OrderItems;

To retrieve the details for order 20008 (the output above), do the following:

SELECT *

FROM OrderItemsExpanded

WHERE order_num = 20008;

order_num prod_id quantity item_price expanded_price

--------- ------- -------- ---------- --------------

20008 RGAN01 5 4.99 24.95

20008 BR03 5 11.99 59.95

20008 BNBG01 10 3.49 34.90

20008 BNBG02 10 3.49 34.90

20008 BNBG03 10 3.49 34.90

As you can see, views are easy to create and even easier to use. Used correctly, views can greatly simplify complex
data manipulation.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
Views are virtual tables. They do not contain data, but instead, they contain queries that retrieve data as needed. Views
provide a level of encapsulation around SQL SELECT statements and can be used to simplify data manipulation, as well
as to reformat or secure underlying data.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 19. Working with Stored Procedures
In this lesson, you'll learn what stored procedures are, why they are used, and how. You'll also look at the basic syntax
for creating and using them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Stored Procedures
Most of the SQL statements that we've used thus far are simple in that they use a single statement against one or more
tables. Not all operations are that simple—often, multiple statements will be needed to perform a complete operation.
For example, consider the following scenario:

To process an order, checks must be made to ensure that items are in stock.

If items are in stock, they need to be reserved so that they are not sold to anyone else, and the available
quantity must be reduced to reflect the correct amount in stock.

Any items not in stock need to be ordered; this requires some interaction with the vendor.

The customer needs to be notified as to which items are in stock (and can be shipped immediately) and which
are back ordered.

This is obviously not a complete example, and it is even beyond the scope of the example tables that we have been
using in this book, but it will suffice to help make a point. Performing this process requires many SQL statements
against many tables. In addition, the exact SQL statements that need to be performed and their order are not fixed;
they can (and will) vary according to which items are in stock and which are not.

How would you write this code? You could write each of the SQL statements individually and execute other statements
conditionally, based on the result. You'd have to do this every time this processing was needed (and in every
application that needed it).

You could create a stored procedure. Stored procedures are simply collections of one or more SQL statements saved for
future use. You can think of them as batch files, although in truth they are more than that.

Access and MySQL Stored procedures are not supported in Access. In addition, as
this book goes to press, MySQL v4.x (the current version) does not support stored
procedures (support is planned for MySQL 5).

There's a Lot More to It Stored procedures are complex, and full coverage of the
subject requires more space than can be allocated here. This lesson will not teach
you all you need to know about stored procedures. Rather, it is intended simply to
introduce the subject so that you are familiar with what they are and what they can
do. As such, the examples presented here provide syntax for Oracle and SQL
Server only.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Why to Use Stored Procedures
Now that you know what stored procedures are, why use them? There are lots of reasons, but here are the primary
ones:

To simplify complex operations (as seen in the previous example) by encapsulating processes into a single
easy-to-use unit.

To ensure data consistency by not requiring that a series of steps be created over and over. If all developers
and applications use the same stored procedure, then the same code will be used by all.

An extension of this is to prevent errors. The more steps that need to be performed, the more likely it is that
errors will be introduced. Preventing errors ensures data consistency.

To simplify change management. If tables, column names, or business logic (or just about anything) changes,
then only the stored procedure code needs to be updated, and no one else will need even to be aware that
changes were made.

An extension of this is security. Restricting access to underlying data via stored procedures reduces the chance
of data corruption (unintentional or otherwise).

Because stored procedures are usually stored in a compiled form, the DBMS has to do less work to process the
command. This results in improved performance.

There are SQL language elements and features that are available only within single requests. Stored procedures
can use these to write code that is more powerful and flexible.

In other words, there are three primary benefits—simplicity, security, and performance. Obviously all are extremely
important. Before you run off to turn all your SQL code into stored procedures, here's the downside:

Stored procedure syntax varies dramatically from one DBMS to the next. In fact, it is close to impossible to
write truly portable stored procedures. Having said that, how the stored procedures call themselves (their
names and how data is passed to them) can be kept relatively portable so that if you need to change to another
DBMS at least your client application code may not need changing.

Stored procedures tend to be more complex to write than basic SQL statements, and writing them requires a
greater degree of skill and experience. As a result, many database administrators restrict stored procedure
creation rights as a security measure (primarily due to the previous bullet item).

Nonetheless, stored procedures are very useful and should be used. In fact, most DBMSs come with all sorts of stored
procedures that are used for database and table management. Refer to your DBMS documentation for more information
on these.

Can't Write Them? You Can Still Use Them Most DBMSs distinguish the security
and access needed to write stored procedures from the security and access needed
to execute them. This is a good thing; even if you can't (or don't want to) write
your own stored procedures, you can still execute them when appro priate.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Executing Stored Procedures
Stored procedures are executed far more often than they are written, so we'll start there. The SQL statement to
execute a stored procedure is simply EXECUTE. EXECUTE takes the name of the stored procedure and any parameters
that need to be passed to it. Take a look at this example:

EXECUTE AddNewProduct('JTS01',

 'Stuffed Eiffel Tower',

 6.49,

 'Plush stuffed toy with the text La Tour Eiffel in red white and blue')

Here a stored procedure named AddNewProduct is executed; it adds a new product to the
Products table. AddNewProduct takes four parameters—the vendor ID (the primary key from the
Vendors table), the product name, price, and description. These four parameters match four
expected variables within the stored procedure (defined as part of the stored procedure
itself). The stored procedure adds a new row to the Products table and assigns these passed
attributes to the appropriate columns.

In the Products table you'll notice that there is another column that needs a value: the prod_id column, which is the
table's primary key. Why was this value not passed as an attribute to the stored procedure? To ensure that IDs are
generated properly, it is safer to have that process automated (and not rely on end users). That is why a stored
procedure is used in this example. This is what this stored procedure does:

It validates the passed data, ensuring that all four parameters have values.

It generates a unique ID to be used as the primary key.

It inserts the new product into the Products table, storing the generated primary key and passed data in the
appropriate columns.

This is the basic form of stored procedure execution. Depending on the DBMS used, other execution options include the
following:

Optional parameters, with default values assumed if a parameter is not provided

Out-of-order parameters, specified in parameter=value pairs

Output parameters, allowing the stored procedure to update a parameter for use in the executing application

Data retrieved by a SELECT statement

Return codes, enabling the stored procedure to return a value to the executing application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Creating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you a taste for what is involved, let's look at a
simple example—a stored procedure that counts the number of customers in a mailing list who have email addresses.

Here is the Oracle version:

CREATE PROCEDURE MailingListCount

(ListCount OUT NUMBER)

IS

BEGIN

 SELECT * FROM Customers

 WHERE NOT cust_email IS NULL;

 ListCount := SQL%ROWCOUNT;

END;

This stored procedure takes a single parameter named ListCount. Instead of passing a value to
the stored procedure, this parameter passes a value back from it. The keyword OUT is used to
specify this behavior. Oracle supports parameters of types IN (those passed to stored
procedures), OUT (those passed from stored procedures, as we've used here), and INOUT
(those used to pass parameters to and from stored procedures). The stored procedure code
itself is enclosed within BEGIN and END statements, and here a simple SELECT is performed to
retrieve the customers with email addresses. Then ListCount (the output parameter passed) is
set with the number of rows that were retrieved.

Here's the Microsoft SQL Server version:

CREATE PROCEDURE MailingListCount

AS

DECLARE @cnt INTEGER

SELECT @cnt = COUNT(*)

FROM Customers

WHERE NOT cust_email IS NULL;

RETURN @cnt;

This stored procedure takes no parameters at all. The calling application retrieves the value
by using SQL Server's return code support. Here a local variable named @cnt is declared using
the DECLARE statement (all local variables in SQL Server are named starting with a @). This
variable is then used in the SELECT statement so that it contains the value returned by the
COUNT() function. Finally, the RETURN statement is used to return the count to the calling
application as RETURN @cnt.

Here's another example, this time to insert a new order in the Orders table. This is a SQL Server–only example, but it
demonstrates some useful stored procedure uses and techniques:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE PROCEDURE NewOrder @cust_id CHAR(10)

AS

-- Declare variable for order number

DECLARE @order_num INTEGER

-- Get current highest order number

SELECT @order_num=MAX(order_num)

FROM Orders

-- Determine next order number

SELECT @order_num=@order_num+1

-- Insert new order

INSERT INTO Orders(order_num, order_date, cust_id)

VALUES(@order_num, GETDATE(), @cust_id)

-- Return order number

RETURN @order_num;

This stored procedure creates a new order in the Orders table. It takes a single parameter, the
ID of the customer placing the order. The other two table columns, the order number and
order date, are generated automatically within the stored procedure itself. The code first
declares a local variable to store the order number. Next, the current highest order number is
retrieved (using a MAX() function) and incremented (using a SELECT statement). Then the
order is inserted with an INSERT statement using the newly generated order number, the
current system date (retrieved using the GETDATE() function), and the passed customer ID.
Finally, the order number (which is needed to process order items) is returned as RETURN
@order_num. Notice that the code is commented—this should always be done when writing
stored procedures.

Comment Your Code All code should be commented, and stored procedures are
no different. Adding comments will not affect performance at all, so there is no
downside here (other than the time it takes to write them). The benefits are
numerous and include making it easier for others (and yourself) to understand the
code and safer to make changes at a later date.

The standard way to comment code is to precede it by -- (two hyphens). Some
DBMSs support alternate comment syntax, but all support –- and so you are best
off using that.

Here's a quite different version of the same SQL Server code:

CREATE PROCEDURE NewOrder @cust_id CHAR(10)

AS

-- Insert new order

INSERT INTO Orders(cust_id)

VALUES(@cust_id)

-- Return order number

SELECT order_num = @@IDENTITY;

This stored procedure also creates a new order in the Orders table. This time the DBMS itself

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This stored procedure also creates a new order in the Orders table. This time the DBMS itself
generates the order number. Most DBMSs support this type of functionality; SQL Server refers
to these auto-incrementing columns as Identity fields (other DBMSs use names such as Auto
Number or Sequences). Again, a single parameter is passed: the customer ID of the customer
placing the order. The order number and order date are not specified at all—the DBMS uses a
default value for the date (the GETDATE() function), and the order number is generated
automatically. How can you find out what the generated ID is? SQL Server makes that
available in the global variable @@IDENTITY, which is returned to the calling application (this
time using a SELECT statement).

As you can see, with stored procedures there are often many different ways to accomplish the same task. The method
you choose will often be dictated by the features of the DBMS you are using.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what stored procedures are and why they are used. You also learned the basics of stored
procedure execution and creation syntax, and you saw some of the ways these can be used. Your own DBMS probably
offers some form of these functions, as well as others not mentioned here. Refer to your DBMS documentation for more
details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 20. Managing Transaction Processing
In this lesson, you'll learn what transactions are and how to use COMMIT and ROLLBACK statements to manage
transaction processing.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Transaction Processing
Transaction processing is used to maintain database integrity by ensuring that batches of SQL operations execute
completely or not at all.

As explained back in Lesson 12, "Joining Tables," relational databases are designed so that data is stored in multiple
tables to facilitate easier data manipulation, management, and reuse. Without going in to the hows and whys of
relational database design, take it as a given that well-designed database schemas are relational to some degree.

The Orders tables that you've been using in the past 18 lessons are a good example of this. Orders are stored in two
tables: Orders stores actual orders, and OrderItems stores the individual items ordered. These two tables are related to
each other using unique IDs called primary keys (as discussed in Lesson 1, "Understanding SQL"). These tables, in turn,
are related to other tables containing customer and product information.

The process of adding an order to the system is as follows:

1. Check if the customer is already in the database. If not, add him or her.

2. Retrieve the customer's ID.

3. Add a row to the Orders table associating it with the customer ID.

4. Retrieve the new order ID assigned in the Orders table.

5. Add one row to the OrderItems table for each item ordered, associating it with the Orders table by the retrieved
ID (and with the Products table by product ID).

Now imagine that some database failure (for example, out of disk space, security restrictions, table locks) prevents this
entire sequence from completing. What would happen to your data?

Well, if the failure occurred after the customer was added and before the Orders table was added, there is no real
problem. It is perfectly valid to have customers without orders. When you run the sequence again, the inserted
customer record will be retrieved and used. You can effectively pick up where you left off.

But what if the failure occurred after the Orders row was added, but before the OrderItems rows were added? Now you'd
have an empty order sitting in your database.

Worse, what if the system failed during adding the OrderItems rows? Now you'd end up with a partial order in your
database, but you wouldn't know it.

How do you solve this problem? That's where Transaction Processing comes in. Transaction Processing is a mechanism
used to manage sets of SQL operations that must be executed in batches so as to ensure that databases never contain
the results of partial operations. With Transaction Processing, you can ensure that sets of operations are not aborted
mid-processing—they either execute in their entirety or not at all (unless explicitly instructed otherwise). If no error
occurs, the entire set of statements is committed (written) to the database tables. If an error does occur, then a
rollback (undo) can occur to restore the database to a known and safe state.

So, looking at the same example, this is how the process would work:

1. Check if the customer is already in the database; if not add him or her.

2. Commit the customer information.

3. Retrieve the customer's ID.

4. Add a row to the Orders table.

5. If a failure occurs while adding the row to Orders, roll back.

6. Retrieve the new order ID assigned in the Orders table.

7. Add one row to the OrderItems table for each item ordered.

8. If a failure occurs while adding rows to OrderItems, roll back all the OrderItems rows added and the Orders row.

When working with transactions and transaction processing, there are a few keywords that'll keep reappearing. Here
are the terms you need to know:

Transaction A block of SQL statements

Rollback The process of undoing specified SQL statements

Commit Writing unsaved SQL statements to the database tables

Savepoint A temporary placeholder in a transaction set to which you can issue a rollback (as opposed to rolling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Savepoint A temporary placeholder in a transaction set to which you can issue a rollback (as opposed to rolling
back an entire transaction)

Which Statements Can You Roll Back? Transaction processing is used to
manage INSERT, UPDATE, and DELETE statements. You cannot roll back SELECT
statements. (There would not be much point in doing so anyway.) You cannot roll
back CREATE or DROP operations. These statements may be used in a transaction
block, but if you perform a rollback they will not be undone.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Controlling Transactions
Now that you know what transactions processing is, let's look at what is involved in managing transactions.

Implementation Differences The exact syntax used to implement transaction
processing differs from one DBMS to another. Refer to your DBMS documentation
before proceeding.

The key to managing transactions involves breaking your SQL statements into logical chunks and explicitly stating when
data should be rolled back and when it should not.

Some DBMSs require that you explicitly mark the start and end of transaction blocks. In SQL Server, for example, you
can do the following:

BEGIN TRANSACTION

...

COMMIT TRANSACTION

In this example, any SQL between the BEGIN TRANSACTION and COMMIT TRANSACTION
statements must be executed entirely or not at all.

The equivalent code in MySQL is:

START TRANSACTION

...

PostgreSQL uses the ANSI SQL syntax:

BEGIN;

...

Other DBMSs use variations of the above.

Using ROLLBACK

The SQL ROLLBACK command is used to roll back (undo) SQL statements, as seen in this next statement:

DELETE FROM Orders;

ROLLBACK;

In this example, a DELETE operation is performed and then undone using a ROLLBACK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, a DELETE operation is performed and then undone using a ROLLBACK
statement. Although not the most useful example, it does demonstrate that, within a
transaction block, DELETE operations (like INSERT and UPDATE operations) are never final.

Using COMMIT

Usually SQL statements are executed and written directly to the database tables. This is known as an implicit commit—
the commit (write or save) operation happens automatically.

Within a transaction block, however, commits might not occur implicitly. This, too, is DBMS specific. Some DBMSs treat
a transaction end as an implicit commit; others do not.

To force an explicit commit, the COMMIT statement is used. The following is a SQL Server example:

BEGIN TRANSACTION

DELETE OrderItems WHERE order_num = 12345

DELETE Orders WHERE order_num = 12345

COMMIT TRANSACTION

In this SQL Server example, order number 12345 is deleted entirely from the system. Because
this involves updating two database tables, Orders and OrderItems, a transaction block is used
to ensure that the order is not partially deleted. The final COMMIT statement writes the change
only if no error occurred. If the first DELETE worked, but the second failed, the DELETE would
not be committed.

To accomplish the same thing in Oracle, you can do the following:

DELETE OrderItems WHERE order_num = 12345;

DELETE Orders WHERE order_num = 12345;

COMMIT;

Using Savepoints

Simple ROLLBACK and COMMIT statements enable you to write or undo an entire transaction. Although this works for
simple transactions, more complex transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a single transaction. If an error occurs, you only
want to roll back to the point before the Orders row was added. You do not want to roll back the addition to the
Customers table (if there was one).

To support the rollback of partial transactions, you must be able to put placeholders at strategic locations in the
transaction block. Then, if a rollback is required, you can roll back to one of the placeholders.

In SQL, these placeholders are called savepoints. To create one in MySQL and Oracle, the SAVEPOINT statement is used,
as follows:

SAVEPOINT delete1;

In SQL Server and Sybase, you do the following:

SAVE TRANSACTION delete1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each savepoint takes a unique name that identifies it so that, when you roll back, the DBMS knows where you are
rolling back to. To roll back to this savepoint, do the following in SQL Server:

ROLLBACK TRANSACTION delete1;

In MySQL and Oracle you can do the following:

ROLLBACK TO delete1;

The following is a complete SQL Server example:

BEGIN TRANSACTION

INSERT INTO Customers(cust_id, cust_name)

VALUES('1000000010', 'Toys Emporium');

SAVE TRANSACTION StartOrder;

INSERT INTO Orders(order_num, order_date, cust_id)

VALUES(20100,'2001/12/1','1000000010');

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price)

VALUES(20010, 1, 'BR01', 100, 5.49);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price)

VALUES(20010, 2, 'BR03', 100, 10.99);

IF @@ERROR <> 0 ROLLBACK TRANSACTION StartOrder;

COMMIT TRANSACTION

Here are a set of four INSERT statements enclosed within a transaction block. A savepoint is
defined after the first INSERT so that, if any of the subsequent INSERT operations fail, the
transaction is only rolled back that far. In SQL Server, a variable named @@ERROR can be
inspected to see if an operation succeeded. (Other DBMSs use different functions or variables
to return this information.) If @@ERROR returns a value other than 0, an error occurred, and
the transaction rolls back to the savepoint. If the entire transaction is processed, a COMMIT is
issued to save the data.

The More Savepoints the Better You can have as many savepoints as you'd like
within your SQL code, and the more the better. Why? Because the more savepoints
you have the more flexibility you have in managing rollbacks exactly as you need
them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned that transactions are blocks of SQL statements that must be executed as a batch. You
learned how to use the COMMIT and ROLLBACK statements to explicitly manage when data is written and when it is
undone. You also learned how to use savepoints to provide a greater level of control over rollback operations.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 21. Using Cursors
In this lesson, you'll learn what cursors are and how to use them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Cursors
SQL retrieval operations work with sets of rows known as result sets. The rows returned are all the rows that match a
SQL statement—zero or more of them. Using simple SELECT statements, there is no way to get the first row, the next
row, or the previous 10 rows. This is an integral part of how a relational DBMS works.

Result Set The results retrieved by a SQL query.

Sometimes there is a need to step through rows forward or backward and one or more at a time. This is what cursors
are used for. A cursor is a database query stored on the DBMS server—not a SELECT statement, but the result set
retrieved by that statement. Once the cursor is stored, applications can scroll or browse up and down through the data
as needed.

MySQL Support As this book goes to press, MySQL still does not support cursors
(support for views is planned for MySQL 5).

Different DBMSs support different cursor options and features. Some of the more common ones are:

The capability to flag a cursor as read-only so that data can be read but not updated or deleted

The capability to control the directional operations that can be performed (forward, backward, first, last,
absolute position, relative position, and so on)

The capability to flag some columns as editable and others as not editable

Scope specification so as to be able to make the cursor accessible to a specific request that created it (a stored
procedure, for example) or to all requests

Instructing the DBMS to make a copy of the retrieved data (as opposed to pointing to the live data in the table)
so that data does not change between the time the cursor is opened and the time it is accessed

Making Relational DBMSs Behave Like Nonrelational DBMSs As a point of
reference, accessing and browsing rows in this fashion is actually the behavior of
ISAM (Indexed Sequential Access Method) databases (such as Btrieve and dBASE).
Cursors are an interesting part of the SQL specification in that they can make a
relational database behave like an ISAM database.

Cursors are used primarily by interactive applications in which users need to scroll up and down through screens of
data, browsing or making changes.

Cursors and Web-Based Applications Cursors are rather useless when it comes
to Web-based applications (ASP, ColdFusion, PHP, and JSP, for example). Cursors
are designed to persist for the duration of a session between a client application
and a server, but this client/server model does not fit in the Web application world
because the application server is the database client, not the end user. As such,
most Web application developers avoid the use of cursors and re-create the
functionality themselves if needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Working with Cursors
Using cursors involves several distinct steps:

Before a cursor can be used it must be declared (defined). This process does not actually retrieve any data, it
merely defines the SELECT statement to be used and any cursor options.

Once it is declared, the cursor must be opened for use. This process actually retrieves the data using the
previously defined SELECT statement.

With the cursor populated with data, individual rows can be fetched (retrieved) as needed.

When it is done, the cursor must be closed and possibly deallocated (depending on the DBMS).

Once a cursor is declared, it may be opened and closed as often as needed. Once it is open, fetch operations can be
performed as often as needed.

Creating Cursors

Cursors are created using the DECLARE statement, which differs from one DBMS to the next. DECLARE names the cursor
and takes a SELECT statement, complete with WHERE and other clauses if needed. To demonstrate this, we'll create a
cursor that retrieves all customers without email addresses, as part of an application enabling an operator to provide
missing email addresses.

Here is the DB2, SQL Server, and Sybase version:

DECLARE CustCursor CURSOR

FOR

SELECT * FROM Customers

WHERE cust_email IS NULL

Here is the Oracle and PostgreSQL version:

DECLARE CURSOR CustCursor

IS

SELECT * FROM Customers

WHERE cust_email IS NULL

In both versions, the DECLARE statement is used to define and name the cursor—in this case
CustCursor. The SELECT statement defines a cursor containing all customers with no email
address (a NULL value).

Now that the cursor is defined, it is ready to be opened.

Using Cursors

Cursors are opened using the OPEN CURSOR statement, which is so simple a statement that most DBMSs support exactly
the same syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPEN CURSOR CustCursor

When the OPEN CURSOR statement is processed, the query is executed, and the retrieved data
is stored for subsequent browsing and scrolling.

Now the cursor data can be accessed using the FETCH statement. FETCH specifies the rows to be retrieved, where they
are to be retrieved from, and where they are to be stored (variable names, for example). The first example uses Oracle
syntax to retrieve a single row from the cursor (the first row):

DECLARE TYPE CustCursor IS REF CURSOR RETURN Customers%ROWTYPE;

DECLARE CustRecord Customers%ROWTYPE

BEGIN

 OPEN CustCursor;

 FETCH CustCursor INTO CustRecord;

 CLOSE CustCursor;

END;

In this example, FETCH is used to retrieve the current row (it'll start at the first row
automatically) into a declared variable named CustRecord. Nothing is done with the retrieved
data.

In the next example (again, using Oracle syntax), the retrieved data is looped through from the first row to the last:

DECLARE TYPE CustCursor IS REF CURSOR RETURN Customers%ROWTYPE;

DECLARE CustRecord Customers%ROWTYPE

BEGIN

 OPEN CustCursor;

 LOOP

 FETCH CustCursor INTO CustRecord;

 EXIT WHEN CustCursor%NOTFOUND;

...

 END LOOP;

 CLOSE CustCursor;

END;

Like the previous example, this example uses FETCH to retrieve the current row into a
declared variable named CustRecord. Unlike the previous example, the FETCH here is within a
LOOP so that it is repeated over and over. The code EXIT WHEN CustCursor%NOTFOUND causes
processing to be terminated (exiting the loop) when there are no more rows to be fetched.
This example also does no actual processing; in real-world code you'd replace the ...
placeholder with your own code.

Here's another example, this time using Microsoft SQL Server syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE @cust_id CHAR(10),

 @cust_name CHAR(50),

 @cust_address CHAR(50),

 @cust_city CHAR(50),

 @cust_state CHAR(5),

 @cust_zip CHAR(10),

 @cust_country CHAR(50),

 @cust_contact CHAR(50),

 @cust_email CHAR(255),

OPEN CustCursor

FETCH NEXT FROM CustCursor

 INTO @cust_id, @cust_name, @cust_address,

 @cust_city, @cust_state, @cust_zip,

 @cust_country, @cust_contact, @cust_email

WHILE @@FETCH_STATUS = 0

BEGIN

...

FETCH NEXT FROM CustCursor

 INTO @cust_id, @cust_name, @cust_address,

 @cust_city, @cust_state, @cust_zip,

 @cust_country, @cust_contact, @cust_email

END

CLOSE CustCursor

In this example, variables are declared for each of the retrieved columns, and the FETCH
statements retrieve a row and save the values into those variables. A WHILE loop is used to
loop through the rows, and the condition WHILE @@FETCH_STATUS = 0 causes processing to be
terminated (exiting the loop) when there are no more rows to be fetched. Again, this example
does no actual processing; in real-world code you'd replace the ... placeholder with your own
code.

Closing Cursors

As already mentioned and seen in the previous examples, cursors need to be closed after they have been used. In
addition, some DBMSs (such as SQL Server) require that the resources used by the cursor be explicitly deallocated.
Here's the DB2, Oracle, and PostgreSQL syntax:

CLOSE CustCursor

Here's the Microsoft SQL Server version:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOSE CustCursor

DEALLOCATE CURSOR CustCursor

The CLOSE statement is used to close cursors; once a cursor is closed, it cannot be reused
without being opened again. However, a cursor does not need to be declared again to be
used; an OPEN is sufficient.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned what cursors are and why they are used. Your own DBMS probably offers some form of this
function, as well as others not mentioned here. Refer to your DBMS documentation for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Lesson 22. Understanding Advanced SQL Features
In this lesson, you'll look at several of the advanced data-manipulation features that have evolved with SQL:
constraints, indexes, and triggers.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Constraints
SQL has evolved through many versions to become a very complete and powerful language. Many of the more powerful
features are sophisticated tools that provide you with data-manipulation techniques such as constraints.

Relational tables and referential integrity have both been discussed several times in prior lessons. As I explained in
those lessons, relational databases store data broken into multiple tables, each of which stores related data. Keys are
used to create references from one table to another (thus the term referential integrity).

For relational database designs to work properly, you need a way to ensure that only valid data is inserted into tables.
For example, if the Orders table stores order information and OrderItems stores order details, you want to ensure that
any order IDs referenced in OrderItems exist in Orders. Similarly, any customers referred to in Orders must be in the
Customers table.

Although you can perform checks before inserting new rows (do a SELECT on another table to make sure the values are
valid and present), it is best to avoid this practice for the following reasons:

If database integrity rules are enforced at the client level, every client is obliged to enforce those rules, and
inevitably some clients won't.

You must also enforce the rules on UPDATE and DELETE operations.

Performing client-side checks is a time-consuming process. Having the DBMS do the checks for you is far more
efficient.

Constraints Rules that govern how database data is inserted or manipulated.

DBMSs enforce referential integrity by imposing constraints on database tables. Most constraints are defined in table
definitions (using the CREATE TABLE or ALTER TABLE as discussed in Lesson 17, "Creating and Manipulating Tables").

Caution There are several different types of constraints, and each DBMS provides
its own level of support for them. Therefore, the examples shown here might not
work as you see them. Refer to your DBMS documentation before proceeding.

Primary Keys

I discussed primary keys briefly in Lesson 1, "Understanding SQL." A primary key is a special constraint that is used to
ensure that values in a column (or set of columns) are unique and never change, in other words, a column (or columns)
in a table whose values uniquely identify each row in the table. This facilitates the direct manipulation of and interaction
with individual rows. Without primary keys, it would be very difficult to safely UPDATE or DELETE specific rows without
affecting any others.

Any column in a table can be established as the primary key, as long as it meets the following conditions:

No two rows may have the same primary key value.

Every row must have a primary key value. (Columns must not allow NULL values.)

The column containing primary key values can never be modified or updated.

Primary key values can never be reused. If a row is deleted from the table, its primary key must not be
assigned to any new rows.

One way to define primary keys is to create them, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One way to define primary keys is to create them, as follows:

CREATE TABLE Vendors

(

 vend_id CHAR(10) NOT NULL PRIMARY KEY,

 vend_name CHAR(50) NOT NULL,

 vend_address CHAR(50) NULL,

 vend_city CHAR(50) NULL,

 vend_state CHAR(5) NULL,

 vend_zip CHAR(10) NULL

 vend_country CHAR(50) NULL

);

In the above example, the keyword PRIMARY KEY is added to the table definition so that
vend_id becomes the primary key.

ALTER TABLE Vendors

ADD CONSTRAINT PRIMARY KEY (vend_id);

Here the same column is defined as the primary key, but the CONSTRAINT syntax is used
instead. This syntax can be used in CREATE TABLE and ALTER TABLE statements.

Foreign Keys

A foreign key is a column in a table whose values must be listed in a primary key in another table. Foreign keys are an
extremely important part of ensuring referential integrity. To understand foreign keys, let's look at an example.

The Orders table contains a single row for each order entered into the system. Customer information is stored in the
Customers table. Orders in Orders are tied to specific rows in the Customers table by the customer ID. The customer ID is
the primary key in the Customers table; each customer has a unique ID. The order number is the primary key in the
Orders table; each order has a unique number.

The values in the customer ID column in the Orders table are not necessarily unique. If a customer has multiple orders,
there will be multiple rows with the same customer ID (although each will have a different order number). At the same
time, the only values that are valid within the customer ID column in Orders are the IDs of customers in the Customers
table.

That's what a foreign key does. In our example, a foreign key is defined on the customer ID column in Orders so that
the column can accept only values that are in the Customers table's primary key.

Here's one way to define this foreign key:

CREATE TABLE Orders

(

 order_num INTEGER NOT NULL PRIMARY KEY,

 order_date DATETIME NOT NULL,

 cust_id CHAR(10) NOT NULL REFERENCES Customers(cust_id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cust_id CHAR(10) NOT NULL REFERENCES Customers(cust_id)

);

Here the table definition uses the REFERENCES keyword to state that any values in cust_id must
be in cust_id in the Customers table.

The same thing could have been accomplished using CONSTRAINT syntax in an ALTER TABLE statement:

ALTER TABLE Customers

ADD CONSTRAINT

FOREIGN KEY (cust_id) REFERENCES Customers (cust_id)

Foreign Keys Can Help Prevent Accidental Deletion In addition to helping
enforce referential integrity, foreign keys serve another invaluable purpose. After a
foreign key is defined, your DBMS does not allow the deletion of rows that have
related rows in other tables. For example, you are not allowed to delete a customer
who has associated orders. The only way to delete that customer is to first delete
the related orders (which in turn means deleting the related order items). Because
they require such methodical deletion, foreign keys can help prevent the accidental
deletion of data.

However, some DBMSs support a feature called cascading delete. If enabled, this
feature deletes all related data when a row is deleted from a table. For example, if
cascading delete is enabled and a customer is deleted from the Customers table, any
related order rows are deleted automatically.

Unique Constraints

Unique constraints are used to ensure that all data in a column (or set of columns) is unique. They are similar to
primary keys, but there are some important distinctions:

A table can contain multiple unique constraints, but only one primary key is allowed per table.

Unique constraint columns can contain NULL values.

Unique constraint columns can be modified or updated.

Unique constraint column values can be reused.

Unlike primary keys, unique constraints cannot be used to define foreign keys.

An example of the use of constraints is an employees table. Every employee has a unique Social Security number, but
you would not want to use it for the primary key because it is too long (in addition to the fact that you might not want
that information easily available). Therefore, every employee also has a unique employee ID (a primary key) in addition
to his Social Security number.

Because the employee ID is a primary key, you can be sure that it is unique. You also might want the DBMS to ensure
that each Social Security number is unique, too (to make sure that a typo does not result in the use of someone else's
number). You can do this by defining a UNIQUE constraint on the Social Security number column.

The syntax for unique constraints is similar to that for other constraints. Either the UNIQUE keyword is defined in the
table definition or a separate CONSTRAINT is used.

Check Constraints

Check constraints are used to ensure that data in a column (or set of columns) meets a set of criteria that you specify.
Common uses of this are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checking minimum or maximum values— for example, preventing an order of 0 (zero) items (even though 0 is
a valid number)

Specifying ranges— for example, making sure that a ship date is greater than or equal to today's date and not
greater than a year from now

Allowing only specific values— for example, allowing only M or F in a gender field

In other words, datatypes (discussed in Lesson 1) restrict the type of data that can be stored in a column. Check
constraints place further restrictions within that datatype.

The following example applies a check constraint to the OrderItems table to ensure that all items have a quantity greater
than 0:

CREATE TABLE OrderItems

(

 order_num INTEGER NOT NULL,

 order_item INTEGER NOT NULL,

 prod_id CHAR(10) NOT NULL,

 quantity INTEGER NOT NULL CHECK (quantity > 0),

 item_price MONEY NOT NULL

);

With this constraint in place, any row inserted (or updated) will be checked to ensure that
quantity is greater than 0.

To check that a column named gender contains only M or F, you can do the following in an ALTER TABLE statement:

ADD CONSTRAINT CHECK (gender LIKE '[MF]')

User-Defined Datatypes Some DBMSs enable you to define your own datatypes.
These are essentially simple datatypes with check constraints (or other constraints)
defined. For example, you can define your own datatype called gender that is a
single-character text datatype with a check constraint that restricts its values to M
or F (and perhaps NULL for Unknown). You could then use this datatype in table
definitions. The advantage of custom datatypes is that the constraints need to be
applied only once (in the datatype definition), and they are automatically applied
each time the datatype is used. Check your DBMS documentation to determine if
user-defined datatypes are supported.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Indexes
Indexes are used to sort data logically to improve the speed of searching and sorting operations. The best way to
understand indexes is to envision the index at the back of a book (this book, for example).

Suppose you want to find all occurrences of the word datatype in this book. The simple way to do this would be to turn
to page 1 and scan every line of every page looking for matches. Although that works, it is obviously not a workable
solution. Scanning a few pages of text might be feasible, but scanning an entire book in that manner is not. As the
amount of text to be searched increases, so does the time it takes to pinpoint the desired data.

That is why books have indexes. An index is an alphabetical list of words with references to their locations in the book.
To search for datatype, you find that word in the index to determine what pages it appears on. Then, you turn to those
specific pages to find your matches.

What makes an index work? Simply, it is the fact that it is sorted correctly. The difficulty in finding words in a book is
not the amount of content that must be searched; rather, it is the fact that the content is not sorted by word. If the
content is sorted like a dictionary, an index is not needed (which is why dictionaries don't have indexes).

Database indexes work in much the same way. Primary key data is always sorted; that's just something the DBMS does
for you. Retrieving specific rows by primary key, therefore, is always a fast and efficient operation.

Searching for values in other columns is usually not as efficient, however. For example, what if you want to retrieve all
customers who live in a specific state? Because the table is not sorted by state, the DBMS must read every row in the
table (starting at the very first row) looking for matches, just as you would have to do if you were trying to find words
in a book without using an index.

The solution is to use an index. You may define an index on one or more columns so that the DBMS keeps a sorted list
of the contents for its own use. After an index is defined, the DBMS uses it in much the same way as you would use a
book index. It searches the sorted index to find the location of any matches and then retrieves those specific rows.

But before you rush off to create dozens of indexes, bear in mind the following:

Indexes improve the performance of retrieval operations, but they degrade the performance of data insertion,
modification, and deletion. When these operations are executed, the DBMS has to update the index
dynamically.

Index data can take up lots of storage space.

Not all data is suitable for indexing. Data that is not sufficiently unique (State, for example) will not benefit as
much from indexing as data that has more possible values (First Name or Last Name, for example).

Indexes are used for data filtering and for data sorting. If you frequently sort data in a specific order, that data
might be a candidate for indexing.

Multiple columns can be defined in an index (for example, State plus City). Such an index will be of use only
when data is sorted in State plus City order. (If you want to sort by City, this index would not be of any use.)

There is no hard-and-fast rule as to what should be indexed and when. Most DBMSs provide utilities you can use to
determine the effectiveness of indexes, and you should use these regularly.

Indexes are created with the CREATE INDEX statement (which varies dramatically from one DBMS to another). The
following statement creates a simple index on the Products table's product name column:

CREATE INDEX prod_name_ind

ON PRODUCTS (prod_name);

Every index must be uniquely named. Here the name prod_name_ind is defined after the
keywords CREATE INDEX. ON is used to specify the table being indexed, and the columns to
include in the index (just one in this example) are specified in parentheses after the table
name.

Revisiting Indexes Index effectiveness changes as table data is added or
changed. Many database administrators find that what once was an ideal set of
indexes might not be so ideal after several months of data manipulation. It is
always a good idea to revisit indexes on a regular basis to fine-tune them as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

always a good idea to revisit indexes on a regular basis to fine-tune them as
needed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Understanding Triggers
Triggers are special stored procedures that are executed automatically when specific database activity occurs. Triggers
might be associated with INSERT, UPDATE, and DELETE operations (or any combination thereof) on specific tables.

MySQL Support As this book goes to press, MySQL still does not support views
(support for views is planned for MySQL 5.1).

Unlike stored procedures (which are simply stored SQL statements), triggers are tied to individual tables. A trigger
associated with INSERT operations on the Orders table will be executed only when a row is inserted into the Orders table.
Similarly, a trigger on INSERT and UPDATE operations on the Customers table will be executed only when those specific
operations occur on that table.

Within triggers, your code has access to the following:

All new data in INSERT operations

All new data and old data in UPDATE operations

Deleted data in DELETE operations

Depending on the DBMS being used, triggers can be executed before or after a specified operation is performed.

The following are some common uses for triggers:

Ensuring data consistency— for example, converting all state names to uppercase during an INSERT or UPDATE
operation

Performing actions on other tables based on changes to a table— for example, writing an audit trail record to a
log table each time a row is updated or deleted

Performing additional validation and rolling back data if needed— for example, making sure a customer's
available credit has not been exceeded and blocking the insertion if it has

Calculating computed column values or updating timestamps

As you probably expect by now, trigger creation syntax varies dramatically from one DBMS to another. Check your
documentation for more details.

The following example creates a trigger that converts the cust_state column in the Customers table to uppercase on all
INSERT and UPDATE operations.

This is the SQL Server version:

CREATE TRIGGER customer_state

ON Customers

FOR INSERT, UPDATE

AS

UPDATE Customers

SET cust_state = Upper(cust_state)

WHERE Customers.cust_id = inserted.cust_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the Oracle and PostgreSQL version:

CREATE TRIGGER customer_state

AFTER INSERT OR UPDATE

FOR EACH ROW

BEGIN

UPDATE Customers

SET cust_state = Upper(cust_state)

WHERE Customers.cust_id = :OLD.cust_id

END;

Constraints Are Faster Than Triggers As a rule, constraints are processed more
quickly than triggers, so whenever possible, use constraints instead.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Database Security
There is nothing more valuable to an organization than its data, and data should always be protected from would-be
thieves or casual browsers. Of course, at the same time data must be accessible to users who need access to it, and so
most DBMSs provide administrators with mechanisms by which to grant or restrict access to data.

The foundation of any security system is user authorization and authentication. This is the process by which a user is
validated to ensure he is who he says he is and that he is allowed to perform the operation he is trying to perform.
Some DBMSs integrate with operating system security for this, others maintain their own user and password lists, and
still others integrate with external directory services servers.

Some operations that are often secured

Access to database administration features (creating tables, altering or dropping existing tables, and so on)

Access to specific databases or tables

The type of access (read-only, access to specific columns, and so on)

Access to tables via views or stored procedures only

Creation of multiple levels of security, thus allowing varying degrees of access and control based on login

Restricting the ability to manage user accounts

Security is managed via the SQL GRANT and REVOKE statements, although most DBMSs provide interactive
administration utilities that use the GRANT and REVOKE statements internally.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Summary
In this lesson, you learned how to use some advanced SQL features. Constraints are an important part of enforcing
referential integrity; indexes can improve data retrieval performance; triggers can be used to perform pre- or post-
execution processing; and security options can be used to manage data access. Your own DBMS probably offers some
form of these features. Refer to your DBMS documentation for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
Copyright © 2004 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2003093137

Printed in the United States of America

First Printing: April 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact

U.S. Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales 1-317-428-3341 international@pearsontechgroup.com

Credits
Associate Publisher

Michael Stephens

Development Editor

Mark Renfrow

Managing Editor

Charlotte Clapp

Project Editor

Dan Knott

Indexer

Tom Dinse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proofreader

Leslie Joseph

Technical Editor

Christopher McGee

Publishing Coordinator

Cindy Teeters

Interior Designer

Gary Adair

Cover Designer

Gary Adair

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who is the Teach Yourself SQL Book For?
This book is for you if

You are new to SQL.

You want to quickly learn how to get the most out of SQL.

You want to learn how to use SQL in your own application development.

You want to be productive quickly and easily in SQL without having to call someone for help.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

DBMSs Covered in This Book
For the most part, the SQL taught in this book will apply to any Database Management System (DBMS). However, as all
SQL implementations are not created equal, the following DBMSs are explicitly covered (and specific instructions or
notes are included where needed):

IBM DB2

Microsoft Access

Microsoft SQL Server

MySQL

Oracle

PostgreSQL

Sybase Adaptive Server

Example databases and SQL scripts are also available for all of these DBMSs.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regular English, and also to help you identify
important concepts.

Text that you type and text that should appear on your screen is presented in monospace type.

It will look like this to mimic the way text looks on your screen.

Placeholders for variables and expressions appear in monospace italic font. You should replace the placeholder with the
specific value it represents.

This arrow () at the beginning of a line of code means that a single line of code is too long to fit on the printed page.
Continue typing all the characters after the as though they were part of the preceding line.

A Note presents interesting pieces of information related to the surrounding
discussion.

A Tip offers advice or teaches an easier way to do something.

A Caution advises you about potential problems and helps you steer clear of
disaster.

New Term icons provide clear definitions of new, essential terms.

The Input icon identifies code that you can type in yourself.

The Output icon highlights the output produced by running a program.

The Analysis icon alerts you to the author's line-by-line analysis of a program.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

ABS() function
Access (Microsoft)
 DISTINCT argument support
 example tables for
 pass-through mode
 running 2nd 3rd
 sorting by alias
 stored procedure support
adding
 rows to tables
aggregate functions
 ALL argument
 AVG() 2nd 3rd
 combining 2nd
 COUNT() 2nd 3rd
 defined
 DISTINCT argument 2nd
 joins and 2nd 3rd
 MAX() 2nd
 MIN() 2nd
 naming aliases
 overview 2nd
 SUM() 2nd 3rd
aliases
 alternative uses
 columns
 creating
 concatenating fields 2nd
 names
 naming
 aggregate functions and
 table names 2nd 3rd
 self joins 2nd 3rd 4th
ALL argument
 aggregate functions
ALL clause
 grouping data
alphabetical sort order 2nd 3rd 4th
ALTER TABLE statement 2nd 3rd
ALTER TABLE statements
 CHECK constraints
 CONSTRAINT syntax
 syntax
AND keyword
AND operator 2nd 3rd
ANSI SQL
applications
 filtering query results
 SQL compatibility
 Aqua Data Studio 2nd
 ColdFusion (Macromedia) 2nd
 DB2 (IBM) 2nd
 Microsoft Access 2nd 3rd
 Microsoft ASP 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Microsoft ASP.NET 2nd
 Microsoft Query 2nd
 Microsoft SQL Server 2nd
 MySQL
 ODBC configuration 2nd 3rd
 Oracle
 PHP scripting language
 PostgreSQL
 Query Tool 2nd
 selection criteria
 Sybase Adaptive Server 2nd
Aqua Data Studio
 running 2nd
 Web site
arguements
 DBMS support
arguments
 ALL
 aggregate functions
argumentsDISTINCT
 aggregate functions 2nd
AS keyword 2nd
 Oracle support
ASC keyword
 query results sort order
ASP (Microsoft)
 running 2nd
ASP.NET (Microsoft)
 running 2nd
authentication
authorization
AVG() function 2nd 3rd 4th
 DISTINCT argument
 NULL values

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

BETWEEN operator
BETWEEN operator (WHERE clause)
between specified values operator (WHERE clause)
BINARY datatype
binary datatypes
BIT datatype

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th
 column aliases 2nd
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 subqueries 2nd 3rd 4th
 views 2nd 3rd
calculated values
 totaling
Cartesian Product
 joins and 2nd 3rd 4th
cascading deletes
case sensitivity
 query result sort order
 SQL statements
CHAR string datatype
charactrers
 searching for
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
check constraints 2nd 3rd
clauses
 ALL
 grouping data
 GROUP BY 2nd 3rd
 HAVING
 grouping data
 IS NULL
 SELECT statements
 order of
 WHERE 2nd 3rd
 AND operator 2nd 3rd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 IN operator 2nd 3rd 4th
 joins and 2nd 3rd 4th
 multiple query criteria
 NOT operator 2nd 3rd
 operator support by DBMS
 operators 2nd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 positioning
 SOUNDEX function
client-based results fomatting
 compared to server-based
CLOSE statements
 closing cursors
cloumns
 insert STATEMENT AND
code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 commenting
 stored procedures
code (programming)
 commenting
 portability
ColdFusion (Macromedia)
 running 2nd
column aliases
 alternative uses
 concatening fields 2nd
columns
 aliases
 creating
 names
 AVG() function
 individual columns
 breaking data correctly
 concepts 2nd
 Customers example table
 derived
 fully qualified names
 GROUP BY clause
 grouping data
 specifying by relative position
 Identity fields
 INSERT SELECT statements
 INSERT statement
 omitting columns
 multiple
 sorting query results by 2nd
 nonselected
 sorting query results by
 NULL value
 checking for
 NULL value columns 2nd 3rd
 OrderItems example table
 Orders example table
 padded spaces
 RTRIM() funuction 2nd
 position
 sorting query results by 2nd 3rd
 primary keys 2nd
 Products example table
 retrieving
 all 2nd
 individual 2nd
 multiple 2nd
 unknown
 separating names in queries
 sorting data
 descending on multiple columns
 subquery result restrictions
 updating multiple
 values
 deleting
 Vendors example table
columns. [See also fields]
combined queries
 creating 2nd 3rd 4th 5th 6th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 duplicate rows and 2nd 3rd
 overview
 performance
 rules
 sorting results 2nd
Command Center utility
 running 2nd
commas (,)
 multiple column separation
commenting
 programming code
 importance of
 stored procedure code
COMMIT statement
 syntax
COMMIT statement (transaction processing) 2nd
commits (transaction processing)
 defined
compatibility
 datatype
 functions
 DBMS support considerations 2nd
 WHERE clause operators
compatibility (SQL code)
 applications
 selection criteria
concatenating
 fields 2nd 3rd 4th 5th 6th
 cloumn aliases 2nd
 mathematical calcualtions 2nd 3rd 4th
 MySQL
concatenation operators 2nd
configuring
 ODBC 2nd 3rd
CONSTRAINT syntax
 ALTER TABLE statements
constraints
 speed
constraints (referential integrity)
 check constraints 2nd 3rd
 foreign keys keys 2nd 3rd
 overview 2nd 3rd
 primary keys 2nd 3rd
 unique constraints 2nd
copying
 tables
COS() function
COUNT() function 2nd 3rd 4th
 DISTINCT argument
 joins and
 NULL values
COUNT* subquery
CREATE INDEX statement
 syntax 2nd
CREATE INDEX statements
CREATE TABLE statement 2nd 3rd 4th
 DEFAULT keyword 2nd 3rd
 syntax
CREATE VIEW statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 syntax
creating
 indexes 2nd
 stored procedures
 tables
 triggers
 views
 rules and restrictions
cross joins
currency datatypes
cursors
 accessing 2nd 3rd 4th
 closing 2nd
 creating 2nd
 implementing
 limitations
 opening
 options
 support for
 overview
 Web-based applications
Customers table

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

data
 breaking correctly (columns)
 deleting
 guidelines
 TRUNCATE TABLE statement
 filtering
 indexes
 manipulation functions
 date and time
 security
 updating
 guidelines
data and time datatypes
Database Management System. [See DBMS]
databases [See also tables]
 concepts 2nd
 defined
 droppig objects
 indexes
 cautions
 creating
 scalability
 schemas
 security
 tables
 creating
 triggers
DATALENGTH() function
datatypes
 binary
 compatibility
 currency
 data and time
 defining
 numeric
 string
 usefulness of
date (system)
 default value syntax
date and time functions 2nd 3rd 4th 5th 6th
DATE dataype 2nd
DATEPART() function
DATETIME datatype
DB2 (IBM)
 running 2nd
DBMS
 (Database Management System)
 accidental table deletion
 datatype differences
 functions
 support considerations 2nd
 indexes
 interactive tools
 ISAM databases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LIKE operator
 search patterns and
 NULL value differences
 query sort order
 security mechanisms
 SQL extensions
 transaction processing
 implementation differences
 triggers
 TRIM functions
 UNION statements
 user-defined datatypes
 view creation
 views
 rules and restrictions
 WHERE claue
 allowed operators
DECIMAL datatype
DECLARE statements
 cursors
 creating 2nd
 stored procedures
default values
 tables 2nd 3rd
defining
 datatypes
DELETE FROM statements
DELETE statement 2nd 3rd
 FROM keyword
 guidelines
 security privileges
 syntax
 transaction processing
 TRUNCATE TABLE statement
DELETE statements
 rollbacks
 triggers
 WHERE clause
deleting
 column values
 data
 guidelines
 TRUNCATE TABLE statement
 rows
 tables 2nd
 preventing accidental deletion
deleting rows
 preventing accidential
derived columns. [See aliases]
DESC keyword
 query results sort order 2nd 3rd
dictionary sort order (query results)
DISTINCT argument
 AVG() function
 COUNT() function
double pipes (||)
 contenation operator 2nd
downloading
 example tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Microsoft Access MDB file
 SQL scripts
DROP statement
 syntax
DROP TABLE statement 2nd
dropping
 database objects

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

empty strings
 compared to NULL values
equality (*=) operator
equality operator (WHERE clause)
establishing
 primary keys
example tables
 Customers table
 downloading
 functions of
 Microsoft Access MDB file
 OrderItems table
 Orders table
 Products table
 SQL scripts
 Vendors table
EXCEPT statements
EXECUTE statement
 stored procedures 2nd 3rd 4th 5th 6th 7th 8th
EXP() function
explicit commits
extensions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

FETCH statement
 accessing cursors 2nd 3rd 4th
fields [See also calculated fields]
 . [See also columns]
 aliases
 names
 calculated
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 subqueries 2nd 3rd 4th
 views 2nd 3rd
filtering
 by subqueries 2nd 3rd 4th 5th
 data
 indexes
 data groups 2nd 3rd 4th
 query results 2nd 3rd
 application level
 WHERE clause operators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 query reults
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 multiple criteria
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 with views 2nd
filters
 LIKE operator 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
fixed length strings
FLOAT datatype
foreign keys 2nd 3rd
formatting
 query data
 retrieved data with views 2nd 3rd 4th
 server-based compared to client-based
 statements
 subqueries
FROM clause
 creating joins
FROM keyword
 DELETE statement
 UPDATE statement
full outer joins
fully qualified column names
functions
 ABS()
 advisability of using
 aggregate
 ALL argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AVG() 2nd 3rd
 combining 2nd
 COUNT() 2nd 3rd
 defined
 DISTINCT argument 2nd
 joins and 2nd 3rd
 MAX() 2nd
 MIN() 2nd
 naming aliases
 overview 2nd
 SUM() 2nd 3rd
 AVG() 2nd 3rd 4th
 DISTINCT argument
 NULL values
 COS()
 COUNT() 2nd 3rd 4th
 DISTINCT argument
 NULL values
 DATALENGTH()
 date and time 2nd 3rd 4th 5th 6th
 DATEPART()
 defined
 EXP()
 LCASE()
 LEFT()
 LEN()
 LENGTH()
 LOWER()
 LTRIM()
 MAX() 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
 MIN() 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
 numeric 2nd 3rd
 PI()
 RIGHT()
 RTRIM() 2nd 3rd
 SIN()
 SOUNDEX() 2nd
 support for
 SQRT()
 SUM() 2nd 3rd 4th
 multiple columns and
 NULL values
 support considerations 2nd
 system
 TAN()
 text 2nd 3rd
 list of common
 to_char
 to_number
 TRIM
 types of
 UCASE()
 UPPER() 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 YEAR()

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

global variables
 @@IDENTITY
GRANT statements
greater than operator (WHERE clause)
greater than or equal to operator (WHERE clause)
GROUP BY clause 2nd 3rd
 compared to ORDER BY clause 2nd 3rd 4th
grouping
 operators
grouping data
 columns
 specifying by position
 compared to sorting 2nd 3rd 4th
 filtering groups 2nd 3rd 4th
 GROUP BY clause 2nd 3rd
 nested groups

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

HAVING clause
 grouping data

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

IBM DB2
 running 2nd
Identity fields
IN operator 2nd 3rd 4th
indexes
 cautions
 creating 2nd
 overview 2nd 3rd 4th
 revisiting
inner joins 2nd
INSERT SELECT statement 2nd 3rd
 syntax
INSERT SELECT statements
 SELECT INTO statement comparison
INSERT statement
 completing rows 2nd 3rd 4th
 INTO keyword
 overview
 partial rows 2nd
 query data 2nd 3rd
 security privileges
 syntax
 transaction processing
INSERT statements
 columns lists
 omitting columns
 rollbacks
 triggers
 VALUES
INT datatype
integrity. [See referential integrity]
interactive DBMS tools
INTERSECT statements
INTO keyword
IS NULL clause
ISAM
 (Indexed Sequential Access Method) databases
ISTINCT argument
 aggregate functions 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

joins
 aggregate functions and 2nd 3rd
 Cartesian Product 2nd 3rd 4th
 creating 2nd
 cross joins
 inner joins 2nd
 multiple tables 2nd 3rd 4th
 natural joins 2nd 3rd
 outer
 left
 right
 sytax
 outer joins 2nd 3rd 4th 5th 6th
 full
 types
 overview 2nd
 performance considerations
 self joins 2nd 3rd 4th
 usefulness of
 views 2nd 3rd
 WHERE clause 2nd 3rd 4th
 WHERE clauses

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

keys
 primary 2nd 3rd
keywords
 AND 2nd
 AS 2nd
 Oracle support
 ASC
 query results sort order
 DEFAULT
 table values 2nd 3rd
 DESC
 query results sort order 2nd 3rd
 FROM 2nd
 IN
 INTO
 NOT
 OR
 REFERENCES
 UNIQUE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

languages
 SQL
LCASE() function
LEFT keyword (outer joins)
left outer joins
LEFT() function
LEN() function
LENGTH() function
less than operator (WHERE clause)
less than or equal to operator (WHERE clause)
LIKE operator 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
local varialbes
 @ character
logical operators
 defined
LONG RAW datatype
LOWER() function
LTRIM() function 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Macromedia ColdFusion
 running 2nd
manipulation functions
 date and time
mathematical calcualtions 2nd 3rd 4th
mathematical operators
MAX() function 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
Microsoft Access
 DISTINCT argument support
 example tables for
 pass-through mode
 running 2nd 3rd
 sorting by alias
 stored procedure support
Microsoft ASP
 running 2nd
Microsoft ASP.NET
 running 2nd
Microsoft Query
 running 2nd
Microsoft SQL Server
 running 2nd
MIN() function 2nd 3rd
 DISTINCT argument
 non-numeric data
 NULL values
MySQL
 concatenation
 cursor support
 NOT operator
 running
 stored procedure support
 subquery support
 views
 support for

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

names
 tables
 reserved words and
naming
 aliases
 aggregate functions and
 columns
 fully qualified names
 indexes
 tables
 aliases 2nd 3rd
natural joins 2nd 3rd
navigating tables
 cursors
NCHAR string datatype
nested data groups
non-equality operator (WHERE clause)
non-numeric data
 MAX() function
 MIN() function
not greater than operator (WHERE clause)
not less than operator (WHERE clause)
NOT operator 2nd 3rd
 character searching and
NULL keyword
 updating columns
NULL value operator (WHERE clause)
NULL values
 AVG() function
 checking for
 compared to empty strings
 COUNT() function
 MAX() function
 MIN() function
 primary keys
 SUM() function
 table columns 2nd 3rd
numeric datatypes
numeric functions 2nd 3rd
numeric values
 quotes
 storing
NVARCHAR string datatype

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

ODBC
 configuration 2nd 3rd
ODBC dates
OPEN CURSOR statements
OPEN statements
 opening cursors
operators
 *= (equality)
 + (plus sign)
 outer joins
 AND 2nd 3rd
 BETWEEN
 concatenation 2nd
 defined
 grouping related
 HAVING clause
 IN 2nd 3rd 4th
 LIKE 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
 mathematical
 NOT 2nd 3rd
 OR 2nd 3rd
 order of evaluation 2nd 3rd
 predicates
 WHERE clause 2nd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 compatibility
OR operator 2nd 3rd
Oracle
 commits
 cursors
 closing
 creating
 retrieving data
 date and time manipulation functions
 date formatting
 running
 savepoints
 stored procedures
 triggers
ORDER BY clause
 (SELECT statement)
 ascending/desccending sort order 2nd 3rd 4th
 compared to GROUP BY clause 2nd 3rd 4th
 positioning
 sorting by column position 2nd 3rd
 sorting by multiple columns 2nd
 sorting by nonselected columns
OrderItems table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Orders table
ourter joins
 right
outer joins 2nd 3rd 4th 5th 6th
 full
 left
 syntax 2nd
 types
overwriting tables

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

parentheses
 multiple query criteria order of evaluation
pass-through mode (Microsoft Access)
patterns (searching)
 wildcards 2nd 3rd
 % (percent sign) 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 _ (underscore) 2nd 3rd
percent sign (%) wildcard 2nd 3rd 4th 5th
performance
 combining queries
 deleting data
 indexes
 joins and
 subqueries
 views
PHP scripting language
 running
PI() function
pipe (|) symbol
placeholders. [See savepoints]
plus sign (+)
 concatenation operator 2nd
plus sign (+) operator
 outer joins
portability
 defined
 INSERT statements and
PostgreSQL
 filter query data
 running
predicates (operators)
primary keys 2nd 3rd
 concepts 2nd 3rd
 Customer example table
 importance
 NULL values
 OrderItems example table
 Orders example table
 Products example table
 Vendors example table
processing
 subqueries
 transactions. [See transaction processing]
Products table
programming code
 commenting
 portability

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

queries
 calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 combined
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 performance
 rules
 sorting results 2nd
 WHERE clauses
 combining
 data formatting
 defined
 filtering results 2nd 3rd
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 multiple criteria
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 WHERE clause operators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 INSERT statement and 2nd 3rd
 multiple WHERE clauses
 result sets
 sorting results 2nd 3rd
 ascending/desccending order 2nd 3rd 4th
 by column position 2nd 3rd
 by multiple columns 2nd
 by nonselected columns
 case sensitivity
 nonselected columns and
 subqueries
 as calculated fields 2nd 3rd 4th
 filtering by 2nd 3rd 4th 5th
 overview 2nd
 processing
 self joins and
 table aliases
 unsorted results
 views
 wild cards (*) 2nd
Query (Microsoft)
 running 2nd
Query Tool
 running 2nd
Query Tool Web site
quotation marks, single (')
quotes
 numeric values
 string values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

RAW datatype
REAL datatype
records
 compared to rows
REFERENCES keyword
referential integrity
 cascading deletes
 constrainte
 primary keys 2nd 3rd
 constraints
 check constraints 2nd 3rd
 foreign keys 2nd 3rd
 overview 2nd 3rd
 unique constraints 2nd
 natural joins 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th
 self joins 2nd 3rd 4th
reformatting
 retrieved data with views 2nd 3rd 4th
relational databases
 sort order and
relational DBMS
 nonrelational behavior, inducing
relational tables 2nd 3rd
relationships
 constrainte
 overview 2nd 3rd
 constraints
 check constraints 2nd 3rd
 foreign keys 2nd 3rd
 primary keys 2nd 3rd
 unique constraints 2nd
 natural joins 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th
 self joins 2nd 3rd 4th
RENAME statement
renaming
 tables
reserved words 2nd 3rd
 list of 2nd 3rd 4th 5th
restrictions
 views 2nd
result sets
reusable views
 creating
revisiting
 indexes
REVOKE statements
RIGHT keyword (outer joins)
right outer joins
RIGHT() function
ROLLBACK command (transaction processing) 2nd
ROLLBACK statement
 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rollbacks
 COMMIT statement 2nd
 ROLLBACK command 2nd
 savebacks and 2nd 3rd
 statements
rollbacks (transaction processing)
 defined
rows
 adding to tables
 compared to records
 concepts
 cursors
 deleting
 INSERT statement 2nd 3rd 4th
 partial rows 2nd
 preventing accidental deletion
 updating
RTRIM() function 2nd 3rd 4th
rules
 combining queries
 constraints
 views 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

savepoints
 transaction processing 2nd 3rd
savepoints (transaction processing)
 defined
scalablity
schemas
scripting
 PHP
scripts
 example tables
search patterns
 defined
 wildcards 2nd 3rd
 % (percent sign) wildcard 2nd 3rd 4th 5th
 [] (square brackets) wildcard 2nd 3rd 4th
 _ (underscore) wildcard 2nd 3rd
 cautions
searching
 indexes
 overview 2nd 3rd 4th
 trailing spaces and
 wildcards
 % character 2nd 3rd 4th 5th
 [] (square brackets) 2nd 3rd 4th
 ^ (caret) character
 _ (underscore) 2nd 3rd
security
 data
 DELETE statement
 INSERT statements
 UPDATE statement
SELECT INTO statements
 INSERT SELECT statement comparison
SELECT statement
 aggregate functions
 combining 2nd
 AVG() function
 clauses
 ordering of
 columns
 retrieving all 2nd
 retrieving individual 2nd
 retrieving multiple 2nd
 retrieving unknown
 combining
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 rules
 sorting results 2nd
 COUNT() function
 syntax
SELECT statements
 AS keyword 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 concatenating fields 2nd
 FROM clause
 creating joins
 grouping data 2nd 3rd
 IS NULL clause
 ORDER BY clause
 positioning
 subqueries
 formatting
 WHERE clause 2nd 3rd
 WHERE clauses
 combined queries
 combining
 NOT operator
self joins 2nd 3rd 4th
 compared to subqueries
semicolonCharacter (semicolons)
 multiple statements
semicolons (semicolonCharacter)
 multiple statements
sequence (SELECT statement clauses)
server-based results fomatting
 compared to client-based
SET command
 updating tables
SIN() function
single quotation marks (')
 WHERE clause operators and
SMALLDATETIME datatype
SMALLINT datatype
sorting
 combined query results 2nd
 datatype functionality
 indexes
 overview 2nd 3rd 4th
 query results 2nd 3rd
 ascending/desccending order 2nd 3rd 4th
 by column position 2nd 3rd
 by multiple columns 2nd
 by nonselected columns
 case sensitivity
 nonselected columns and
sorting data
 compared to grouping 2nd 3rd 4th
SOUNDEX() function 2nd
 support for
spaces
 removing
 RTRIM function 2nd
 search results and
specifying
 dates
speed
 constraints versus triggers
SQL
 deleting/updating data
 extensions
 overview 2nd
SQL scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 example tables
SQL Server
 cursors
 closing
 Identity fields
 local variables
 @ character
 savepoints
 stored procedures
 triggers
SQL Server (Microsoft)
 running 2nd
SQRT() function
square brackets ([]) wildcard 2nd 3rd 4th
statement
 CREATE VIEW
statements
 ALTER TABLE 2nd 3rd
 syntax
 case sensitivity
 clauses
 COMMIT 2nd
 syntax
 CREATE INDEX
 syntax 2nd
 CREATE TABLE 2nd 3rd 4th
 syntax
 CREATE VIEW
 syntax
 DELETE 2nd 3rd 4th
 FROM keyword
 syntax
 transaction processing
 DROP
 syntax
 DROP TABLE 2nd
 formatting
 GRANT
 grouping related operators
 INSERT
 completing rows 2nd 3rd 4th
 omitting columns
 overview
 partial rows 2nd
 query data 2nd 3rd
 security privileges
 syntax
 transaction processing
 VALUES
 INSERT SELECT
 syntax
 multiple
 separating
 OPEN CURSOR
 RENAME
 REVOKE
 ROLLBACK
 syntax
 rollbacks 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 defined
 SELECT
 AVG() function
 combining 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 combining aggregate functions 2nd
 contenating fields 2nd
 COUNT() function
 grouping data 2nd 3rd
 retrieving all columns 2nd
 retrieving individual columns 2nd
 retrieving multiple columns 2nd
 retrieving unknown columns
 syntax
 stored procedures
 creating 2nd 3rd 4th 5th
 disadvantages of 2nd
 executing 2nd 3rd
 overview 2nd
 usefulness of 2nd
 syntax 2nd 3rd 4th 5th 6th 7th
 UPDATE 2nd 3rd 4th 5th
 syntax
 transaction processing
 white space
stored procedures
 commenting code
 creating 2nd 3rd 4th 5th 6th
 disadvantages of 2nd
 executing 2nd 3rd
 Identity fields
 Oracle
 overview 2nd
 triggers
 usefulness of 2nd
storing
 date and time values
 numeric values
 cautions
 strings
string datatypes
strings [See also text functions]
 empty
 compared to NULL values
 fixed length
 quotes
 TRIM functions
 variable-length
 wildcard searching and
subqueries
 as calculated fields 2nd 3rd 4th
 compared to self joins
 COUNT*
 filtering by 2nd 3rd 4th 5th
 formatting
 overview 2nd
 performance
 processing
 self joins and
 UPDATE statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE lauses
SUM() function 2nd 3rd 4th
 multiple columns
 NULL values
support
 DBMS function support 2nd
Sybase Adaptive Server
 running 2nd
 statements
 ending
syntax
 ALTER TABLE statements
 column aliases
 COMMIT statement
 CREATE INDEX statement 2nd
 CREATE TABLE statement 2nd
 CREATE VIEW statement
 DELETE statement
 DROP statement
 INERT statement
 INSERT statement
 outer joins
 ROLLBACK statement
 SELECT statement
 statements 2nd 3rd 4th 5th 6th 7th
 transaction processing
 triggers
 UPDATE statement
system date
 default value syntax
system functions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

% (percent sign) wildcard 2nd 3rd 4th 5th
' (single quotation marks)
 WHERE clause operators and
* (wildcard character)
 queries 2nd
*= (equality) operator
+ (plus sign)
 concatenation operator 2nd
+ (plus sign) operator
 outer joins
, (commas)
 multiple coliumn separatio
@ character
@@ERROR variable
@@IDENTITY global variable
[] (square brackets) wildcard 2nd 3rd 4th
^ (caret) character
_ (underscore) wildcard 2nd 3rd
| (pipe) symbol
|| (double pipes)
 concatenation operator 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

tables
 calculated fields
 concatenating fields 2nd 3rd 4th 5th 6th 7th 8th
 mathematical calculations 2nd 3rd 4th
 overview 2nd 3rd
 column aliases
 creating
 columns 2nd
 NULL value, checking for
 primary keys
 concepts 2nd
 copying
 copying data into tables 2nd 3rd
 creating
 CREATE TABLE statement 2nd 3rd
 overview 2nd
 datatypes
 default values 2nd 3rd
 deleting 2nd
 preventing accidental deletion
 examples
 Customers table
 downloading
 downloading;Microsoft Access MDB file
 downloading;SQL scripts
 functions of
 OrderItems table
 Orders table
 Products table
 Vendors table
 indexes
 cautions
 creating
 searching
 INSERT statement
 multiple rows
 inserting data 2nd 3rd 4th
 from queries 2nd 3rd
 partial rows 2nd
 joins
 Cartesian Product 2nd 3rd 4th
 creating 2nd
 cross joins
 inner joins 2nd
 multiple tables 2nd 3rd 4th
 overview 2nd
 performance considerations
 usefulness of
 WHERE clause 2nd 3rd 4th
 naming
 reserved words and
 natural joins 2nd 3rd
 NULL value columns 2nd 3rd
 outer joins 2nd 3rd 4th 5th 6th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 relational 2nd 3rd
 renaming
 replacing
 rows
 adding
 deleting
 updating
 schemas
 security
 table name aliases 2nd 3rd
 self joins 2nd 3rd 4th
 triggers
 creating
 functionality
 updating 2nd 3rd 4th 5th 6th 7th
 deleting data 2nd 3rd
 views
 creating
 virtual. [See views]
TAN() function
testing
 Query Tool and 2nd
text functions 2nd 3rd
 list of common
TEXT string datatype
time functions 2nd 3rd 4th 5th
TINYINT datatype
to_char() function
to_number() function
tools
 DBMS
 interactive
TOP argument
TOP PERCENT argument
totaling
 calculated values
totaling values
 SUM() function 2nd 3rd
transaction processing 2nd 3rd
 COMMIT command 2nd
 explicit commits
 managing 2nd 3rd
 overview 2nd 3rd 4th
 ROLLBACK command 2nd
 terminology
transactions
 blocks
 ROLLBACK statements
 defined
 writing to databases
triggers
 creating
 functionality
 overview 2nd 3rd 4th
 speed
 syntax examples
TRIM() function
trimming padded spaces 2nd
troubleshooting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 accidental table deletion
 Query Tool and 2nd
TRUNCATE TABLE statement

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

UCASE() function
underscore (_) wildcard 2nd 3rd
UNION operator
 combined queries 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 rules
 sorting results 2nd
 compared to WHERE clauses
 limits
UNION statements
 types
unions (queries)
 creating 2nd 3rd 4th 5th 6th
 duplicate rows and 2nd 3rd
 overview
 rules
 sorting results 2nd
unique constraints 2nd
UNIQUE keyword
unsorted data
 query results
UPDATE statement 2nd 3rd 4th
 FROM keyword
 guidelines
 security privileges
 subqueries
 transaction processing
UPDATE statements
 syntax
 triggers
updating
 data
 guidelines
 table data 2nd 3rd 4th
 deleting data 2nd 3rd
 tables 2nd 3rd
UPPER() function 2nd 3rd
user-defined datatypes

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

values
 concatenation
 searching for (indexes)
 trimming padded space
VARBINARY datatype
variable-length strings
Vendors table
views
 (tables)
 creating
 calculated fields 2nd 3rd
 creating
 overview
 DBMS consistency
 filtering data 2nd
 joins
 simplifying 2nd 3rd
 overview 2nd
 performance concerns
 reformatting retrieved data 2nd 3rd 4th
 reusable
 rules and restrictions 2nd
 usefulness of 2nd
virtual tables. [See views]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

Web sites
 Aqua Data Studio
 example table download site
 Query Tool 2nd
Web-based applications
 cursors
WHERE clause 2nd 3rd 4th [See also HAVING clause]
 BETWEEN operator
 compared to UNION statement
 filtering groups
 joins
 joins and 2nd 3rd 4th
 multiple query criteria
 AND operator 2nd 3rd
 IN operator 2nd 3rd 4th
 NOT operator 2nd 3rd
 OR operator 2nd 3rd
 order of evaluation 2nd 3rd
 operator support by DBMS
 operators 2nd
 checking against single value 2nd
 checking for nonmatches 2nd
 checking for NULL value 2nd
 checking for range of values 2nd
 quotes and
 parentheses and
 positioning
 SOUNDEX() function
 UPDATE statements
 wildcards
WHERE clauses
 combining in queries
 DELETE statements
 NOT operators
 subqueries
 UPDATE statements
white space
 SQL statements
wildcard character (*)
 queries 2nd
wildcards
 ^ (caret) character
 cautions
 defined
 LIKE operator and 2nd 3rd
 natural joins
writing
 stored procedures

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Y]

YEAR() function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Sams Teach Yourself SQL in 10 Minutes, Third Edition

By Ben Forta

Publisher: Sams Publishing

Pub Date: March 31, 2004

ISBN: 0-672-32567-5

Pages: 256

Slots: 0.5

Sams Teach Yourself SQL in 10 Minutes has established itself as the gold standard for introductory SQL books, offering
a fast-paced accessible tutorial to the major themes and techniques involved in applying the SQL language. Forta's
examples are clear and his writing style is crisp and concise. As with earlier editions, this revision includes coverage of
current versions of all major commercial SQL platforms. New this time around is coverage of MySQL, and PostgreSQL.
All examples have been tested against each SQL platform, with incompatibilities or platform distinctives called out and
explained.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Author
Ben Forta is Macromedia's Senior Technical Evangelist and has almost 20 years of experience in the computer industry
in product development, support, training, and product marketing. Ben is the author of the best-selling ColdFusion Web
Application Construction Kit and Advanced ColdFusion Development (both published by Que), Sams Teach Yourself
Regular Expressions in 10 Minutes (in this same series), and also books on Flash, Java, WAP, Windows 2000, and other
subjects. He has extensive experience in database design and development, has implemented databases for several
highly successful commercial software programs, and is a frequent lecturer and columnist on Internet and database
technologies. Born in London, England, and educated in London, New York, and Los Angeles, Ben now lives in Oak Park,
Michigan, with his wife Marcy and their seven children. Ben welcomes your email at ben@forta.com, and invites you to
visit his Web site at http://www.forta.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
Thanks to the team at Sams for all these years of support, dedication, and encouragement. A special thank you to Mike
Stephens and Mark Renfrow for shepherding this new edition from concept to reality (a process that required them to
occasionally shepherd me, too).

Thanks to the many hundreds of you who provided feedback on the first two editions of this book. Fortunately, most of
it was positive, and all of it was appreciated. The enhancements and changes in this edition are a direct response to
your feedback.

And finally, thanks to the many thousands of you who bought the previous editions of this book (in English, and in any
of the many translations), making it not just my best-selling title, but also one of the best-selling books on the subject.
Your continued support is the highest compliment an author can ever be paid.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or write me directly to let me
know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services
group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone
number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site at www.samspublishing.com.
Type the ISBN (0672325675) or the title of this book in the Search field to find the page you're looking for.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Introduction
SQL is the most widely used database language. Whether you are an application developer, database administrator,
Web application designer, or Microsoft Office user, a good working knowledge of SQL is an important part of interacting
with databases.

This book was born out of necessity. I had been teaching Web application development for several years, and students
were constantly asking for SQL book recommendations. There are lots of SQL books out there. Some are actually very
good. But they all have one thing in common: for most users they teach just too much information. Instead of teaching
SQL itself most books teach everything from database design and normalization to relational database theory and
administrative concerns. And while those are all important topics, they are not of interest to most of us who just need
to learn SQL.

And so, not finding a single book that I felt comfortable recommending, I turned that classroom experience into the
book you are holding. Sams Teach Yourself SQL in 10 Minutes will teach you SQL you need to know, starting with
simple data retrieval and working on to more complex topics including the use of joins, subqueries, stored procedures,
cursors, triggers, and table constraints. You'll learn methodically, systematically, and simply—in lessons that will each
take 10 minutes or less to complete.

Now in its third edition, this book has taught SQL to hundreds of thousands of users, and now it is your turn. So turn to
Lesson 1, and get to work. You'll be writing world class SQL in no time at all.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
Sams Teach Yourself SQL in 10 Minutes, Third Edition

By Ben Forta

Publisher: Sams Publishing

Pub Date: March 31, 2004

ISBN: 0-672-32567-5

Pages: 256

Slots: 0.5

 Copyright

 About the Author

 Acknowledgments

 We Want to Hear from You!

 Introduction

 Who is the Teach Yourself SQL Book For?

 DBMSs Covered in This Book

 Conventions Used in This Book

 Chapter 1. Understanding SQL

 Database Basics

 What Is SQL ?

 Try It Yourself

 Summary

 Chapter 2. Retrieving Data

 The SELECT Statement

 Retrieving Individual Columns

 Retrieving Multiple Columns

 Retrieving All Columns

 Summary

 Chapter 3. Sorting Retrieved Data

 Sorting Data

 Sorting by Multiple Columns

 Sorting by Column Position

 Specifying Sort Direction

 Summary

 Chapter 4. Filtering Data

 Using the WHERE Clause

 The WHERE Clause Operators

 Summary

 Chapter 5. Advanced Data Filtering

 Combining WHERE Clauses

 Using the IN Operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Using the IN Operator

 Using the NOT Operator

 Summary

 Chapter 6. Using Wildcard Filtering

 Using the LIKE Operator

 Tips for Using Wildcards

 Summary

 Chapter 7. Creating Calculated Fields

 Understanding Calculated Fields

 Concatenating Fields

 Performing Mathematical Calculations

 Summary

 Chapter 8. Using Data Manipulation Functions

 Understanding Functions

 Using Functions

 Summary

 Chapter 9. Summarizing Data

 Using Aggregate Functions

 Aggregates on Distinct Values

 Combining Aggregate Functions

 Summary

 Chapter 10. Grouping Data

 Understanding Data Grouping

 Creating Groups

 Filtering Groups

 Grouping and Sorting

 SELECT Clause Ordering

 Summary

 Chapter 11. Working with Subqueries

 Understanding Subqueries

 Filtering by Subquery

 Using Subqueries As Calculated Fields

 Summary

 Chapter 12. Joining Tables

 Understanding Joins

 Creating a Join

 Summary

 Chapter 13. Creating Advanced Joins

 Using Table Aliases

 Using Different Join Types

 Using Joins with Aggregate Functions

 Using Joins and Join Conditions

 Summary

 Chapter 14. Combining Queries

 Understanding Combined Queries

 Creating Combined Queries

 Summary

 Chapter 15. Inserting Data

 Understanding Data Insertion

 Copying from One Table to Another

 Summary

 Chapter 16. Updating and Deleting Data

 Updating Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Deleting Data

 Guidelines for Updating and Deleting Data

 Summary

 Chapter 17. Creating and Manipulating Tables

 Creating Tables

 Updating Tables

 Deleting Tables

 Renaming Tables

 Summary

 Chapter 18. Using Views

 Understanding Views

 Creating Views

 Summary

 Chapter 19. Working with Stored Procedures

 Understanding Stored Procedures

 Why to Use Stored Procedures

 Executing Stored Procedures

 Creating Stored Procedures

 Summary

 Chapter 20. Managing Transaction Processing

 Understanding Transaction Processing

 Controlling Transactions

 Summary

 Chapter 21. Using Cursors

 Understanding Cursors

 Working with Cursors

 Summary

 Chapter 22. Understanding Advanced SQL Features

 Understanding Constraints

 Understanding Indexes

 Understanding Triggers

 Database Security

 Summary

 Appendix A. Sample Table Scripts

 Understanding the Sample Tables

 Obtaining the Sample Tables

 Appendix B. Working in Popular Applications

 Using Aqua Data Studio

 Using DB2

 Using Macromedia ColdFusion

 Using Microsoft Access

 Using Microsoft ASP

 Using Microsoft ASP.NET

 Using Microsoft Query

 Using Microsoft SQL Server

 Using MySQL

 Using Oracle

 Using PHP

 Using PostgreSQL

 Using Query Tool

 Using Sybase

 Configuring ODBC Data Sources

 Appendix C. SQL Statement Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Appendix C. SQL Statement Syntax

 ALTER TABLE

 COMMIT

 CREATE INDEX

 CREATE PROCEDURE

 CREATE TABLE

 CREATE VIEW

 DELETE

 DROP

 INSERT

 INSERT SELECT

 ROLLBACK

 SELECT

 UPDATE

 Appendix D. Using SQL Datatypes

 String Datatypes

 Numeric Datatypes

 Date and Time Datatypes

 Binary Datatypes

 Appendix E. SQL Reserved Words

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

