
[Team LiB]

• Table of Contents
• Index
Sams Teach Yourself XML in 21 Days, Third Edition

By Steven Holzner

Publisher: Sams Publishing

Pub Date: October 14, 2003

ISBN: 0-672-32576-4

Pages: 888

Sams Teach Yourself XML in 21 Days, written by expert author Steve Holzner, offers hundreds of real-world examples
demonstrating the uses of XML and the newest tools developers need to make the most of it. In Week One, he starts
from basic syntax, and discusses XML document structure, document types, and the benefits of XML Schema. Week
Two covers formatting using either CSS or the Extensible Sytlesheet Language, and working with XHTML and other
tools for presenting XML data on the Web, or in multimedia applications. The final chapter of week two discusses
XForms, the newest way to process forms in XML applications. Week Three applies XML to programming with Java, .NET
or JavaScript, and building XML into database or Web Service applications with SOAP. Along the way, Steve shows
readers the results of every lesson and provides both the "how" and "why" of the inner working of XML technologies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
Sams Teach Yourself XML in 21 Days, Third Edition

By Steven Holzner

Publisher: Sams Publishing

Pub Date: October 14, 2003

ISBN: 0-672-32576-4

Pages: 888

 Copyright

 About the Author

 Acknowledgments

 We Want to Hear from You!

 Introduction

 What This Book Covers

 Who This Book Is For

 Conventions Used in This Book

 Where to Download the Book's Code

 Part I. At a Glance

 Day 1. Welcome to XML

 All About Markup Languages

 All About XML

 Looking at XML in a Browser

 Working with XML Data Yourself

 Structuring Your Data

 Creating Well-Formed XML Documents

 Creating Valid XML Documents

 How XML Is Used in the Real World

 Online XML Resources

 Summary

 Q&A

 Workshop

 Day 2. Creating XML Documents

 Choosing an XML Editor

 Using XML Browsers

 Using XML Validators

 Creating XML Documents Piece by Piece

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Creating Prologs

 Creating an XML Declaration

 Creating XML Comments

 Creating Processing Instructions

 Creating Tags and Elements

 Creating CDATA Sections

 Handling Entities

 Summary

 Q&A

 Workshop

 Day 3. Creating Well-Formed XML Documents

 What Makes an XML Document Well-Formed?

 Creating an Example XML Document

 Understanding the Well-Formedness Constraints

 Using XML Namespaces

 Understanding XML Infosets

 Understanding Canonical XML

 Summary

 Q&A

 Workshop

 Day 4. Creating Valid XML Documents: DTDs

 All About DTDs

 Validating a Document by Using a DTD

 Creating Element Content Models

 Commenting a DTD

 Supporting External DTDs

 Handling Namespaces in DTDs

 Summary

 Q&A

 Workshop

 Day 5. Handling Attributes and Entities in DTDs

 Declaring Attributes in DTDs

 Specifying Default Values

 Specifying Attribute Types

 Handling Entities

 Summary

 Q&A

 Workshop

 Day 6. Creating Valid XML Documents: XML Schemas

 Using XML Schema Tools

 Creating XML Schemas

 Dissecting an XML Schema

 The Built-in XML Schema Elements

 Creating Elements and Types

 Specifying a Number of Elements

 Specifying Element Default Values

 Creating Attributes

 Summary

 Q&A

 Workshop

 Day 7. Creating Types in XML Schemas

 Restricting Simple Types by Using XML Schema Facets

 Creating XML Schema Choices

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Creating XML Schema Choices

 Using Anonymous Type Definitions

 Declaring Empty Elements

 Declaring Mixed-Content Elements

 Grouping Elements Together

 Grouping Attributes Together

 Declaring all Groups

 Handling Namespaces in Schemas

 Annotating an XML Schema

 Summary

 Q&A

 Workshop

 Part I. In Review

 Well-Formed Documents

 Valid Documents

 Part II. At a Glance

 Day 8. Formatting XML by Using Cascading Style Sheets

 Our Sample XML Document

 Introducing CSS

 Connecting CSS Style Sheets and XML Documents

 Creating Style Sheet Selectors

 Using Inline Styles

 Creating Style Rule Specifications in Style Sheets

 Summary

 Q&A

 Workshop

 Day 9. Formatting XML by Using XSLT

 Introducing XSLT

 Transforming XML by Using XSLT

 Writing XSLT Style Sheets

 Using <xsl:apply-templates>

 Using <xsl:value-of> and <xsl:for-each>

 Matching Nodes by Using the match Attribute

 Working with the select Attribute and XPath

 Using <xsl:copy>

 Using <xsl:if>

 Using <xsl:choose>

 Specifying the Output Document Type

 Summary

 Q&A

 Workshop

 Day 10. Working with XSL Formatting Objects

 Introducing XSL-FO

 Using XSL-FO

 Using XSL Formatting Objects and Properties

 Building an XSL-FO Document

 Handling Inline Formatting

 Formatting Lists

 Formatting Tables

 Summary

 Q&A

 Workshop

 Part II. In Review

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Using CSS

 Using XSLT

 Using XSL-FO

 Part III. At a Glance

 Day 11. Extending HTML with XHTML

 Why XHTML?

 Writing XHTML Documents

 Validating XHTML Documents

 The Basic XHTML Elements

 Organizing Text

 Formatting Text

 Selecting Fonts:

 Comments: <!-->

 Summary

 Q&A

 Workshop

 Day 12. Putting XHTML to Work

 Creating Hyperlinks: <a>

 Linking to Other Documents: <link>

 Handling Images:

 Creating Frame Documents: <frameset>

 Creating Frames: <frame>

 Creating Embedded Style Sheets: <style>

 Formatting Tables: <table>

 Creating Table Rows: <tr>

 Formatting Table Headers: <th>

 Formatting Table Data: <td>

 Extending XHTML

 Summary

 Q&A

 Workshop

 Day 13. Creating Graphics and Multimedia: SVG and SMIL

 Introducing SVG

 Creating an SVG Document

 Creating Rectangles

 Adobe's SVG Viewer

 Using CSS Styles

 Creating Circles

 Creating Ellipses

 Creating Lines

 Creating Polylines

 Creating Polygons

 Creating Text

 Creating Gradients

 Creating Paths

 Creating Text Paths

 Creating Groups and Transformations

 Creating Animation

 Creating Links

 Creating Scripts

 Embedding SVG in HTML

 Introducing SMIL

 Summary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Summary

 Q&A

 Workshop

 Day 14. Handling XLinks, XPointers, and XForms

 Introducing XLinks

 Beyond Simple XLinks

 Introducing XPointers

 Introducing XBase

 Introducing XForms

 Summary

 Workshop

 Part III. In Review

 Part IV. At a Glance

 Day 15. Using JavaScript and XML

 Introducing the W3C DOM

 Introducing the DOM Objects

 Working with the XML DOM in JavaScript

 Searching for Elements by Name

 Reading Attribute Values

 Getting All XML Data from a Document

 Validating XML Documents by Using DTDs

 Summary

 Q&A

 Workshop

 Day 16. Using Java and .NET: DOM

 Using Java to Read XML Data

 Finding Elements by Name

 Creating an XML Browser by Using Java

 Navigating Through XML Documents

 Writing XML by Using Java

 Summary

 Q&A

 Workshop

 Day 17. Using Java and .NET: SAX

 An Overview of SAX

 Using SAX

 Using SAX to Find Elements by Name

 Creating an XML Browser by Using Java and SAX

 Navigating Through XML Documents by Using SAX

 Writing XML by Using Java and SAX

 Summary

 Q&A

 Workshop

 Day 18. Working with SOAP and RDF

 Introducing SOAP

 A SOAP Example in .NET

 A SOAP Example in Java

 Introducing RDF

 Summary

 Q&A

 Workshop

 Part IV. In Review

 Part V. At a Glance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Day 19. Handling XML Data Binding

 Introducing DSOs

 Binding HTML Elements to HTML Data

 Binding HTML Elements to XML Data

 Binding HTML Tables to XML Data

 Accessing Individual Data Fields

 Binding HTML Elements to XML Data by Using the XML DSO

 Binding HTML Tables to XML Data by Using the XML DSO

 Searching XML Data by Using a DSO and JavaScript

 Handling Hierarchical XML Data

 Summary

 Q&A

 Workshop

 Day 20. Working with XML and Databases

 XML, Databases, and ASP

 Storing Databases as XML

 Using XPath with a Database

 Introducing XQuery

 Summary

 Q&A

 Workshop

 Day 21. Handling XML in .NET

 Creating and Editing an XML Document in .NET

 From XML to Databases and Back

 Reading and Writing XML in .NET Code

 Using XML Controls to Display Formatted XML

 Creating XML Web Services

 Summary

 Q&A

 Workshop

 Part V. In Review

 Appendix A. Quiz Answers

 Quiz Answers for Day 1

 Quiz Answers for Day 2

 Quiz Answers for Day 3

 Quiz Answers for Day 4

 Quiz Answers for Day 5

 Quiz Answers for Day 6

 Quiz Answers for Day 7

 Quiz Answers for Day 8

 Quiz Answers for Day 9

 Quiz Answers for Day 10

 Quiz Answers for Day 11

 Quiz Answers for Day 12

 Quiz Answers for Day 13

 Quiz Answers for Day 14

 Quiz Answers for Day 15

 Quiz Answers for Day 16

 Quiz Answers for Day 17

 Quiz Answers for Day 18

 Quiz Answers for Day 19

 Quiz Answers for Day 20

 Quiz Answers for Day 21

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Quiz Answers for Day 21

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2004 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2003110401

Printed in the United States of America

First Printing: October 2003

06 05 04 03 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact

 U.S. Corporate and Government Sales
 1-800-382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

 International Sales
 1-317-428-3341
 international@pearsontechgroup.com

Credits
Associate Publisher

Michael Stephens

Acquisitions Editor

Todd Green

Development Editor

Songlin Qiu

Managing Editor

Charlotte Clapp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Charlotte Clapp

Project Editor

Matthew Purcell

Indexer

Mandie Frank

Proofreader

Paula Lowell

Technical Editor

Chris Kenyeres

Team Coordinator

Cindy Teeters

Interior Designer

Gary Adair

Cover Designer

Gary Adair

Page Layout

Michelle Mitchell

Dedication
To Nancy, as always and forever—for all the reasons she already knows!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the Author
Steven Holzner is an award-winning author who has written 80 computing books. He has been writing about XML
since it first appeared and is one of the foremost XML experts in the United States, having written several XML
bestsellers and being a much-requested speaker on the topic. He's also been a contributing editor at PC Magazine, has
been on the faculty of Cornell University and MIT, and teaches corporate programming classes around the United
States.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
A book like the one you're reading is the product of many people's hard work. I'd especially like to thank Todd Green,
the acquisitions editor; Songlin Qiu, the development editor; Matt Purcell, the project editor; and Christian Kenyeres,
the tech editor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you would like to see us publish in, and any other
words of wisdom you're willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or write me directly to let me
know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services
group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone
number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web site at
http://www.samspublishing.com. Type the ISBN (0672325764) or the title of a book in the Search field to find the page
you're looking for.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introduction
Welcome to Extensible Markup Language (XML), the most influential innovation the Internet has seen in years. XML is a
powerful, very dynamic topic, spanning dozens of fields, from the simple to the very complex. This book opens up that
world, going after XML with dozens of topics—and hundreds of examples.

Unlike other XML books, this book makes it a point to show how XML actually works, making sure that you see
everything demonstrated with examples. The biggest problem with most XML books is that they discuss XML and its
allied specifications in the abstract, which makes it very hard to understand what's going on. This book, however,
illustrates every XML discussion with examples. It shows all that's in the other books and more besides, emphasizing
seeing things at work to make it all clear.

Instead of abstract discussions, this book provides concrete working examples because that's the only way to really
learn XML. You're going to see where to get a lot of free software on the Internet to run the examples you create—
everything from XML browsers to XPath visualizers to XQuery processors to XForms handlers, which you don't find in
other books. You'll create XML-based documents that display multimedia shows you can play in RealPlayer, use browser
plug-ins to handle XML-based graphics in the popular Hypertext Markup Language (HTML) browsers, enable Web pages
to load and handle XML, and much more. XML can get complicated, and seeing it at work is the best way to understand
it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What This Book Covers
This book covers XML as thoroughly as any book you'll find: It goes from the most basic up through the advanced. XML
ranges over many disciplines, and this book tracks it down where it lives. Part I, "Creating XML Documents," shows how
to use XML in both current Web browsers as well as specialized XML-only browsers. Part I works through every part of
an XML document to show how to construct such documents. You'll see how to use online XML validators to check XML
and where to find software that lets you check an XML document's schema to make sure the document works as it
should. You'll see how to format XML by using cascading style sheets (CSS), Extensible Stylesheet Language
Transformations (XSLT), and XML-based formatting objects.

You don't need any programming skills to work with XML in Part I of this book. However, there's no way to ignore the
terrific amount of XML support in programming languages such as JavaScript, Java, and the .NET programming
languages. Later in the book, you'll see how to use those languages with XML, navigating through XML documents,
extracting data, formatting data, and even creating your own simple XML browsers.

Here's an overview of some of the topics covered in this book:

The basics of XML

Displaying XML in browsers

Writing XML

Creating well-formed and valid XML documents

Working with XML validators

Finding XML resources on the Internet

Creating Document Type Definitions (DTDs)

Creating XML schema

Using XML schema-generating tools

Using CSS with XML documents

Displaying images

Using XSLT to transform XML in the server, in the client, and with standalone programs

Creating XSLT stylesheets

Working with XPath

Using the XSL formatting language

Introducing Extensible HTML (XHTML)

Validating XHTML

Drawing basic shapes in Scalable Vector Graphics (SVG)

Using SVG hyperlinks, animation, scripting, and gradients

Creating SMIL documents

Using Synchronized Multimedia Integration Language (SMIL)

Creating XLinks, XPointers, and XForms

Separating data and presentations in XForms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Separating data and presentations in XForms

Handling XML with JavaScript

Using Java and the XML Document Object Model (DOM)

Using XML data islands

Parsing XML documents

Navigating through an XML document by using Java

Creating graphical XML browsers by using Java

Using Java and the Simple API for XML (SAX)

Using Simple Object Access Protocol (SOAP) to communicate between Web applications

Binding XML data to HTML controls

Navigating through XML data

Displaying XML data in tables

Managing XML databases

Working with XML database storage in .NET

Using XQuery to query an XML document

Editing XML documents and XML schemas in .NET

Writing and reading XML documents from code

Creating XML Web services

As you can see, this book covers many facets of XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who This Book Is For
This book is for anyone who wants to learn XML and how it is used today. This book assumes that you've had some
experience with HTML, but that's about all it assumes. In Part IV, "Programming and XML," knowledge of JavaScript and
Java helps, although the chapters in Part IV discuss where you can find free online tutorials on these subjects. The .NET
programming discussed on Day 21, "Handling XML in .NET," may be a little hard to follow unless you've worked with
Visual Basic .NET before.

Note that this book is as platform-independent as possible. XML is not the province of any one particular operating
system, so this book does not lean one way or another on that issue. This book aims to show you as much of XML as it
can, in the greatest depth possible. However, it's a fact of life that a great deal of XML software these days is targeted
at Windows. And among the standard browsers, Internet Explorer has many times more XML support than any other
browser does. This book doesn't have any special pro- or anti-Microsoft bias, but in order for this book to cover what's
available for XML these days, you're going to find yourself in Microsoft territory fairly often; there's no getting around it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
The following conventions are used in this book:

Code lines, commands, statements, and any other code-related terms appear in a monospace typeface.
Placeholders (which stand for what you should actually type) appear in italic monospace. Text that you should
type appears in bold.

When a line of code is too long to fit on one line of this book, it is broken at a convenient place and continued to
the next line. The continuation is preceded by a special code continuation character ().

New lines of XML or programming code that are added and are being discussed appear shaded, and when
there's more code to come, you see three vertical dots. Here's how these features look:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 .
 .
 .
</document>

Throughout the book are notes that are meant to give you something more. This is what a note looks like:

NOTE

A note presents interesting information related to the discussion—a little more insight or a pointer
to some new technique.

This book also contains tips. This is what a tip looks like:

TIP

A tip offers advice or shows you an easier way of doing something.

This book also contains cautions. This is what a caution looks like:

CAUTION

A caution alerts you to a possible problem and gives you advice on how to avoid it.

Each day's lesson ends with questions pertaining to that day's subject matter, with answers from the book's
author. Each day's discussion also includes a quiz that is designed to test your knowledge of the day's concepts.
The answers to these quiz questions are provided in Appendix A, "Answers to Quiz Questions." Many lessons
conclude with exercises that give you an opportunity to practice what you've learned in the lesson.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Where to Download the Book's Code
You can download all the code examples used throughout this book from http://www.samspublishing.com. Simply enter
this book's ISBN without the hyphens (0672325764) in the Search box and click Search. When the book's title is
displayed, click it to go to a page where you can download the code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: At a Glance
Creating XML Documents
Part I provides an overview of XML and many of the popular ways it's used. You'll take a look at the
various markup languages that have been created using XML and how they work.

You'll also begin creating your own XML documents in this part, and in the process you'll get all the
basics down. you're going to see how to create both well-formed and valid XML documents.

Well-formed documents obey a number of rules, and before an XML document can be considered
"official," it must be well-formed. To be valid, an XML document must specify a set of syntax rules, and
XML processors can use these rules to check whether that document adheres to those rules. You're
going to see the two ways of specifying the syntax of XML documents in this part—by using document
type declarations (DTDs) and XML schemas.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 1. Welcome to XML
Welcome to Extensible Markup Language, XML, the language for handling data in compact, easy-to-manage form—not
to mention the most powerful advance the Internet has seen for years. The XML world is a large and ever-expanding
one, full of complex and unpredictable innovations, and this book is your guided tour to that world. We're going to go
just about everywhere XML goes these days, and that's going to include some pretty amazing territory. Today, we'll get
our start with XML and see what it's good for. Here are today's topics in overview:

Markup languages

Introducing XML

Seeing XML in a browser

Well-formed and valid XML documents

Extracting data from XML documents

Working with XML validators

Seeing XML at work

Finding XML resources on the Internet

The name of the game in XML is data, because XML is all about storing your data—phone directories, business orders,
book lists, anything you like. Unlike HTML, XML is not about displaying your data—it's about packaging that data to
transport it easily. The main reason XML has experienced such popularity is that it stores its data as text, meaning that
XML documents can be transferred using the already-existing Web technology, which was built to transfer HTML
documents as text.

We'll start today's work by taking a look at the languages designed to let you store and handle text, called markup
languages, and there are plenty of them out there. As we're going to see, XML is both different and more powerful than
most other markup languages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

All About Markup Languages
The term markup refers to codes or tokens you put into a document to indicate how to interpret the (non-markup) data
in the document. In other words, markup describes the data in the document and how it should be interpreted. For
example, a markup language most people have heard of is HTML for creating Web pages, and you can see a sample
HTML Web page in Listing 1.1.

Listing 1.1 A Sample HTML Web Page (ch01_01.html)

<HTML>
 <HEAD>
 <TITLE>Hello From HTML</TITLE>
 </HEAD>
 <BODY>
 <CENTER>
 <H1>
 An HTML Document
 </H1>
 </CENTER>
 This is an HTML document!
 </BODY>
</HTML>

The markup in this HTML document is there to tell a browser how to interpret the document's data—which data is a
header, which is text for the body of the document, and so on. This HTML markup is made up of HTML tags such as
<HEAD>, <BODY>, and so on, and those tags give directions to the browser. You can see this HTML page in the
Netscape Navigator in Figure 1.1. Note in particular that because the HTML markup in this document is only there to
give directions to the browser, none of the markup itself appears directly in the browser's display of this document.

Figure 1.1. An HTML page in a browser.

When you think of it, there are already many markup languages around. For example, you might use a word processor
like Microsoft Word, or a text editor like Windows WordPad, which can store text in Rich Text Format (RTF) files. RTF
files are usually filled with markup indicating how to display text and holding directions to the word processor. For
example, here's the RTF markup for a file created with Microsoft Word holding the text "No worries!" in bold (hint: the
"No worries!" text is at the very end) :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{\rtf1\ansi\ansicpg1252\uc1 \deff0\deflang1033\deflangfe1033
{\fonttbl{\f0\froman\fcharset0\fprq2{*\panose 02020603050405020304}
Times New Roman;}{\f153\froman\fcharset238\fprq2 Times New Roman CE;}
{\f154\froman\fcharset204\fprq2 Times New Roman Cyr;}
{\f156\froman\fcharset161\fprq2 Times New Roman Greek;}
{\f157\froman\fcharset162\fprq2 Times New Roman Tur;}
{\f158\froman\fcharset177\fprq2 Times New Roman (Hebrew);}
{\f159\froman\fcharset178\fprq2 Times New Roman (Arabic);}
{\f160\froman\fcharset186\fprq2 Times New Roman Baltic;}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;
\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;
\red255\green255\blue0;\red255\green255\blue255;\red0\green0\blue128;
\red0\green128\blue128;\red0\green128\blue0;\red128\green0\blue128;
\red128\green0\blue0;\red128\green128\blue0;\red128\green128\blue128;\
red192\green192\blue192;}{\stylesheet{\ql \li0\ri0\widctlpar\aspalpha
\aspnum\faauto\adjustright\rin0\lin0\itap0 \fs24\lang1033\langfe1033
\cgrid\langnp1033\langfenp1033 \snext0 Normal;}{*\cs10 \additive
Default Paragraph Font;}}{\info{\title No worries}{\author Steven Holzner}
{\operator Steven Holzner}{\version1}{\edmins0}{\nofpages1}{\nofwords0}
{\nofchars0}{*\company Your Company Name}{\nofcharsws0}{\vern8269}}
\widowctrl\ftnbj\aenddoc\noxlattoyen\expshrtn\noultrlspc\dntblnsbdb
\nospaceforul\formshade\horzdoc\dgmargin\dghspace180\dgvspace180
\dghorigin1701\dgvorigin1984\dghshow1\dgvshow1
{*\pnseclvl1\pnucrm\pnstart1\pnindent720\pnhang{\pntxta .}}
{*\pnseclvl2\pnucltr\pnstart1\pnindent720\pnhang{\pntxta .}}
{*\pnseclvl3\pndec\pnstart1\pnindent720\pnhang{\pntxta .}}
{*\pnseclvl4\pnlcltr\pnstart1\pnindent720\pnhang{\pntxta)}}{*\pnseclvl5
\pndec\pnstart1\pnindent720\pnhang{\pntxtb (}{\pntxta)}}
{*\pnseclvl6\pnlcltr\pnstart1\pnindent720\pnhang{\pntxtb (}{\pntxta)}}{*\pnseclvl7

\pnlcrm\pnstart1\pnindent720\pnhang{\pntxtb (}{\pntxta)}}{*\pnseclvl8\pnlcltr\pnstart1
\pnindent720\pnhang

{\pntxtb (}{\pntxta)}}{*\pnseclvl9\pnlcrm\pnstart1\pnindent720\pnhang
{\pntxtb (}{\pntxta)}}\pard\plain \ql \li0\ri0\widctlpar\aspalpha\aspnum
\faauto\adjustright\rin0\lin0\itap0 \fs24\lang1033\langfe1033\cgrid
\langnp1033\langfenp1033 {\b No worries!\par }}

All the codes you see here are markup. As you can see, markup is just the general name for directives indicating how
you want your data treated.

You might think of HTML (which, of course, stands for Hypertext Markup Language) first when someone mentions
markup languages, but the fact is that HTML is a very limited language. It's OK for creating standard Web pages, but it
can't go much farther than that.

For example, HTML is great for creating Web pages that display standard text and some images, and the HTML tags like
, <table>, and others are fine for that. But as things got more complex, HTML couldn't keep up—in the original
HTML version, 1.0, there were only about a dozen tags. In the current version, HTML 4.01, there are nearly 100 tags—
and still many more are needed (if you add the nonstandard ones that various browsers support to fill in some holes,
there are over 120 HTML tags in current use).

Even so, to really fill the needs of Web developers, HTML could use hundreds of additional tags. But there's no way
those additional tags could handle all kinds of situations—for example, what if you wanted to store information about
your close friends instead? There are no HTML tags like <firstname>, <lastname>, <phone>, or <age>. What if you are a
bank that offers loans and you want tags like <amount>, <term>, <rate>, and <accountID>? There's no way HTML could
fit in all these kinds of tags. In other words, there are as many reasons to create markup as there are ways of handling
data—and that's infinite. That's where XML comes in, because the whole idea behind XML is to let you create your own
markup.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

All About XML
Extensible Markup Language, XML, is really all about creating your own markup (technically, XML is a meta-language,
which means it's a language that lets you create your own markup languages). Unlike HTML, XML is meant for storing
data, not displaying it. XML provides you with a way of structuring your data in documents, and as mentioned at the
beginning of today's discussion, the reason it's taken off so quickly is it's perfect for the Internet—because XML
documents are text, you can send them using the existing Internet technology that was built for HTML.

You can package your great books collection as XML, or list all the books in a library, or all the types of fish in the sea;
that's what XML is all about, and it's popular largely because restricted markup languages like HTML can't do that. Once
you've packaged your data, you can send it over the Internet, and either other people or dedicated software you or
others have created can understand it. There's an immense need to communicate data these days, from real estate
listings to bank holdings, and XML is proving to be the way to do it.

XML was actually derived from Standard Generalized Markup Language, SGML, in 1998. SGML is a complex language,
and was around for a long time without gaining widespread acceptance—but XML hasn't suffered from that problem.
XML just turned five years old shortly before this book was written, and Jon Bosak, one of the people instrumental in
XML's creation, wished XML happy birthday by saying, "The five years since XML was released have seen XML become
the lingua franca of the Web." And it's true—using the markup you develop with XML, you can package your data so
that data can be read by others. HTML is limited by having a limited amount of available markup; XML is limitless,
because the markup you can create with it is also limitless.

XML is a creation of the World Wide Web Consortium (W3C) http://www.w3.org, which is the same group responsible
for HTML and many other such specifications. W3C publishes its specifications (they're not called standards, technically,
because W3C is not a government-sponsored body) using four types of documents, and if you want to work with XML
and all its allied specifications, you have to be familiar with them:

Notes— Specifications that were submitted to the W3C by an organization that is a member of the World Wide
Web Consortium. W3C makes these specifications public, although doesn't necessarily endorse them, by
publishing them as a note.

Working drafts— A working draft is a specification that is under consideration, and open to comment. This is the
first stage that W3C specifications must go through on their way to becoming recommendations.

Candidate recommendations— Working drafts that the W3C has accepted become candidate recommendations,
which means they're still open for comment. This is the second stage that W3C specifications must go through
on their way to becoming recommendations.

Recommendations— Candidate recommendations that the W3C has accepted become recommendations, which
is the term the W3C uses when it publishes its specifications it considers ready for general use.

XML version 1.0 is in recommendation form, and has been since October 6, 2000, which means it's an established
standard. You can find the formal XML 1.0 recommendation at http://www.w3.org/TR/REC-xml. There's a new version
of XML now in candidate recommendation form, XML 1.1 (the latest version is October 15, 2002). You can find the XML
1.1 candidate recommendation at http://www.w3.org/TR/xml11/. As we'll discuss tomorrow, XML 1.1 improves on XML
1.0 by fixing a few errors, and by making the support for Unicode stronger.

NOTE

The formal specifications themselves are not easy to read—our guided tour of the subject in this book is
designed to unravel them and make them accessible.

What does an XML document actually look like? Let's take a look at one to get an idea of what's going on and how XML
works. You can see a sample XML document, ch01_02.xml, in Listing 1.2.

Listing 1.2 A Sample XML Document (ch01_02.xml)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

We're going to dissect the kind of XML document you see in Listing 1.2 in detail tomorrow, but we'll get familiar with its
structure today.

Like all XML documents, this one starts with an XML declaration, <?xml version="1.0" encoding="UTF-8"?>. This XML
declaration indicates that we're using XML version 1.0, and using the UTF-8 character encoding, which means that we're
using an 8-bit condensed version of Unicode (more on this tomorrow):

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

This XML declaration, <?xml?>, uses two attributes, version and encoding, to set the version of XML and the character set
we're using (XML declarations also have other attributes, as you'll see tomorrow). XML attributes are much like HTML
attributes—they hold additional information, and you create them by assigning a quoted value to the attribute as here:
version = "1.0". (Unlike HTML attributes, you must always assign a value to an XML attribute if you use that attribute—
there are no standalone attributes as in HTML.)

NOTE

Most of the examples in this book will use version 1.0 of XML, because XML 1.1 is still in candidate
recommendation form, which means that it hasn't been granted full status yet, and most software (like
Microsoft's Internet Explorer) won't recognize or even open XML 1.1 documents yet. In practical terms, the
differences between XML 1.0 and 1.1 are small, and we'll see them tomorrow.

Next in ch01_02.xml, we create a new XML element named <document>. As in HTML, an element is the fundamental unit
that you use to hold your data—all data in an XML document must be inside an element. Elements always start with an
opening tag, which is the actual text <document> in this case, and end with a closing tag, which will be </document>
here. (Note that this is similar to, but different from, HTML, where you don't always need a closing tag.) XML tags
themselves always start with < and end with >. You create an XML element by pairing an opening tag with a closing
tag, as we've done here to create the <document> element:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 .
 .
 .
</document>

Now you're free to store other elements in our <document> element, or text data, as we wish.

You're free to make up your own element names in XML, and that's XML's whole power—the capability to create your
own markup. You don't have to call this new element <document>; you could have named it <data>, or <record>, or
<people>, or <movies>, or <planets>, or many other things. As you'll see tomorrow, in XML 1.0, an element's name can
start with a letter or underscore, and the characters following the first one are made up of letters, digits, underscores,
dots (.), or hyphens (-)—but no spaces. XML 1.1 is more flexible about names, as you'll also see. Unlike HTML, the case
of a tag is important—<DOCUMENT> is not the same tag as <document>, for example.

In between an element's opening tag and its closing tag, you can place the element's content, if there is any. An
element's content can be made up of simple text or other elements. Like XML declarations, XML elements can support
attributes.

When you create an XML document, you must enclose all elements inside one overall element, called the root element,
also called the document element. The root element contains all the other elements in your XML document, and in this
case, we've named the root element <document>. XML documents always need a root element, even if they don't have
any other elements or text (that is, even if the root element doesn't have any other content).

Inside the root element, we'll add a new element, <heading>, to our XML document, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 .
 .
 .
 </heading>
 .
 .
 .
</document>

This new element will contain data in the form of text—"Hello from XML":

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello from XML
 </heading>
 .
 .
 .
</document>

We will also add another element, which we'll name <message>, to the root element (there is no limit to the number of
subelements an element can hold), holding the text data "This is an XML document!":

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

And that completes our first XML document. In this case, the root element, <document>, contains two elements,
<heading> and <message>, both of which contain text (although they could contain other elements).

As you can see, this XML document looks like the HTML document we created earlier—the elements we've created here
are surrounded by tags, just as in the HTML document. However, we just created the elements in the XML document
out of thin air; we didn't have to stick to a predefined set. Being able to create your own elements from scratch like this
has advantages and disadvantages—you're not restricted to a predefined and limited set of tags, but on the other hand,
a standard Web browser can understand HTML tags but will have no idea what to do with a <message> tag.

We've stored our data in an XML document; to start interpreting that data, we'll begin by simply opening it in a
browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Looking at XML in a Browser
Some browsers, such as Microsoft Internet Explorer version 5 or later, let you display XML documents directly. For
example, if you download the code for this book, you can browse to ch01_02.xml in Internet Explorer, as you see in
Figure 1.2. As you see in the figure, the whole XML document we've created is displayed. You can even click the – sign
in front of the <document> element to collapse all the contents of that element into a single line (which will have a +
sign in front of it, indicating that that line may be expanded). In this way, you can display a raw XML document in
Internet Explorer.

Figure 1.2. Viewing an XML document in Internet Explorer.

Note, however, that Internet Explorer hasn't done anything more than display our raw XML here—it hasn't interpreted
that XML in any way, because browsers are specialists at displaying data, not interpreting XML tags.

In fact, if you're only interested in displaying your data, you can use your XML tags to tell the browser how to do that
by using style sheets. For example, you might want to create an element named <red> that specifies to the browser
that all enclosed text should be displayed in red. Using style sheets, you can let a browser interpret your XML if you just
want to use that XML to tell a browser how to display your data visually.

NOTE

One of the most popular reasons for using style sheets with XML is that you store your data in an XML
document, and specify how to display that data using a separate document, the style sheet. This separates
your data from the presentation details, unlike HTML, where the tags that specify how to display your data
are mixed in with that data. By separating the presentation details from the data, you can change the
entire presentation with a few changes in the style sheet, instead of making multiple changes in your data
itself.

There's plenty of support for working with XML documents and style sheets in both Internet Explorer and Netscape
Navigator. There are two kinds of style sheets you can use with XML documents—cascading style sheets (CSS), which
you can also use with HTML documents, and Extensible Stylesheet Language style sheets (XSL), designed to be used
only with XML documents.

We'll cover both CSS and XSL in this book (see Days 8–10), but you'll also get an idea of what you can do using style
sheets today. As an example, we'll use CSS to format our XML sample document. To do that, we'll use an XML
processing instruction, <?xml-stylesheet?>, supported by both Internet Explorer and Netscape Navigator, to associate a
CSS style sheet with an XML document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSS style sheet with an XML document.

As you can guess from their name, processing instructions are instructions to the software processing the XML; all XML
processing instructions like this one start with <? and end with ?>. Processing instructions might appear throughout an
XML document, and like XML elements themselves, they may have attributes. As with XML elements, you're free to
make up your own processing instructions—the <?xml-stylesheet?> processing instruction is not built into XML, it just
happens to be one supported by both Netscape Navigator and Internet Explorer. More on processing instructions
tomorrow.

In this case, this processing instruction will have its type attribute set to "text/css" to indicate that we're using a CSS
style sheet, and its href attribute set to the location of the CSS style sheet (much like the way the href attribute of an
HTML <a> element specifies the target of a hyperlink), as you see in ch01_03.xml in Listing 1.3.

Listing 1.3 An XML Document Using a Style Sheet (ch01_03.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

In this case, we've named the CSS style sheet ch01_04.css, and you can see the entire contents of this file in Listing 1.4.
In ch01_04.css, we're telling the browser how to display our XML elements' content. In particular, we're saying that we
want the text content of <heading> elements to appear centered in the browser, 24 points high (a point is 1/72 of an
inch), and colored red (you specify colors as you would in an HTML page—#ff0000 is bright red, for example; more on
setting colors like these when we discuss CSS in detail in Day 8, "Formatting XML with Cascading Style Sheets"), and
the text content of <message> elements in centered 18 point blue text.

Listing 1.4 A CSS Style Sheet (ch01_04.css)

heading {display: block; font-size: 24pt; color: #ff0000; text-align: center}
message {display: block; font-size: 18pt; color: #0000ff; text-align: center}

You can see the results in Netscape Navigator in Figure 1.3, and in Internet Explorer in Figure 1.4. In this way, we've
been able to tell a browser how we want our data formatted, using XML elements to format that data, and a style sheet
to tell the browser how to interpret those XML elements.

Figure 1.3. Viewing an XML document in Netscape Navigator.

Figure 1.4. Viewing an XML document in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.4. Viewing an XML document in Internet Explorer.

That's about as far as a browser can go with XML unless you do more yourself. However, using XML to indicate how
your data should be displayed is only the beginning. You can extract data from an XML document yourself, and we'll see
how to do that in detail toward the end of this book. For example, you might use a scripting language like JavaScript to
tell a browser how to extract data from the elements in an XML document, and we'll take a look at how that might work
next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with XML Data Yourself
Say that you want to extract the data from an XML document yourself, and to work with that data, rather than simply
telling a browser how to display it. For example, suppose you want to extract the text from our <heading> element:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

One way of gaining access to that data in a browser is to use JavaScript, which browsers like Internet Explorer and
Netscape Navigator support. We'll work through that process step by step in Day 15, "Using JavaScript and XML," but
you can see a sample HTML page with embedded JavaScript that will do the trick in Listing 1.5.

Listing 1.5 Extracting Data from an XML Document Using JavaScript (ch01_05.html)

<HTML>
 <HEAD>
 <TITLE>
 Retrieving data from an XML document
 </TITLE>

 <XML ID="firstXML" SRC="ch01_02.xml"></XML>

 <SCRIPT LANGUAGE="JavaScript">
 function getData()
 {
 xmldoc= document.all("firstXML").XMLDocument;

 nodeDoc = xmldoc.documentElement;
 nodeHeading = nodeDoc.firstChild;

 outputMessage = "Heading: " +
 nodeHeading.firstChild.nodeValue;
 message.innerHTML=outputMessage;
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <CENTER>
 <H1>
 Retrieving data from an XML document
 </H1>

 <DIV ID="message"></DIV>
 <P>
 <INPUT TYPE="BUTTON" VALUE="Read the heading"
 ONCLICK="getData()">
 </CENTER>
 </BODY>
</HTML>

When you open this example in Internet Explorer, it displays a button with the caption "Read the heading", as you see in
Figure 1.5. When you click that button, the JavaScript reads the text in the <heading> element in our sample XML
document, ch01_02.xml, and displays that text, as you see in the figure. In this way, we've been able to extract data
from an XML document—and when you've extracted your data from an XML document, you're free to work on it as you
like.

Figure 1.5. Extracting data from an XML document in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.5. Extracting data from an XML document in Internet Explorer.

We'll also take a look at using the Java programming language to handle XML in Day 16, "Using Java and .NET: DOM,"
and Day 17, "Using Java and .NET: SAX." Java has all kinds of built-in support for working with XML, and you can see a
sample Java program in Listing 1.6. Like our JavaScript example, this example reads the text content of the <heading>
element in our sample XML document, ch01_02.xml, and displays that text.

Listing 1.6 Extracting Data from an XML Document Using Java (ch01_06.java)

import javax.xml.parsers.*;
import org.w3c.dom.*;
import java.io.*;

public class ch01_06
{
 static public void main(String[] argv)
 {
 try {

 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder db = null;
 try {
 db = dbf.newDocumentBuilder();
 }
 catch (ParserConfigurationException pce) {}

 Document doc = null;
 doc = db.parse("ch01_02.xml");

 for (Node node = doc.getDocumentElement().getFirstChild();
 node != null; node = node.getNextSibling()) {

 if (node instanceof Element) {
 if (node.getNodeName().equals("heading")) {

 StringBuffer buffer = new StringBuffer();

 for (Node subnode = node.getFirstChild();
 subnode != null; subnode = subnode. getNextSibling()){
 if (subnode instanceof Text) {
 buffer.append(subnode.getNodeValue());
 }
 }
 System.out.println(buffer.toString());
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

When you run this program (see Day 16 for the details), the output looks like this:

%java ch01_06
 Hello From XML

NOTE

In this book, we'll use % to stand for the command-line prompt. For example, if you're using Unix, this
prompt might look familiar, or your prompt might look something like \home\xml21:, or \user\steve, or
something similar. If you're using Windows, you get a command-line prompt by opening an MS DOS
window, and your prompt might look something like C:\XML21>.

As you can see, it's possible to extract data from an XML document, so someone else can write such a document using
tags you both agree on, send you that document over the Internet, and you can extract the data you need from the
document by searching for elements with specific names. There are thousands of Web-based applications these days,
and they've sent and interpreted thousands of XML documents in the time it took you to read this sentence.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Structuring Your Data
An XML document actually can do more than just hold your data; it can let you specify the structure of that data as
well, and that's our next topic. This structuring is very important when you're dealing with complex data. For example,
you could store a long account statement in HTML, but after the first ten pages or so, that data would be prone to
errors. But in XML, you can actually build in the syntax rules that specify the structure of the document so that the
document can be checked to make sure it's set up correctly.

This emphasis on the correctness of your data's structure is strong in XML, and it makes it easy to detect problems. In
HTML, a Web author could (and frequently did) write sloppy HTML, knowing that the Web browser would take care of
any syntax problems. In fact, some people estimate that 50% or more of the code in modern browsers is there to take
care of sloppy HTML in Web pages. But things are different in XML. The software that reads your XML—called an XML
processor—is supposed to check your document; if there's a problem, the processor is supposed to quit. It should let
you know about the problem, but that's as far as it's supposed to go, according to W3C.

So how does an XML processor check your document? There are two main checks that XML processors make: checking
that your document is well-formed and checking that it's valid. You'll see what these terms mean in more detail over
the next few days, but you'll also take a look at them in overview here.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Well-Formed XML Documents
What does it mean for an XML document to be well-formed? Formally, it means that the document must follow the
syntax rules specified for XML by the W3C in the XML 1.0 recommendation or the XML 1.1 candidate recommendation.
Although there are a fair number of requirements for a document to be well-formed, informally, the main requirements
are that the document must contain one or more elements, and one element, the root element, must contain all the
other elements. In addition, each element must nest inside any enclosing elements properly.

Here's an example of a nesting error—this document is not well-formed because the </heading> closing tag comes after
the <message> opening tag, mixing up the <heading> and <message> elements:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<document>
 <heading>
 Hello From XML
 <message>
 </heading>
 This is an XML document!
 </message>
</document>

Creating well-formed documents is what Day 3, "Creating Well-Formed XML Documents," is all about.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Valid XML Documents
An XML processor will usually check whether your XML document is well-formed, but only some are also capable of
checking whether it's valid. An XML document is valid if it adheres to the syntax you've specified for it, and you can
specify that syntax in either a Document Type Definition (DTD) or an XML schema. We'll see DTDs in Days 4 and 5, and
XML schemas in Days 6 and 7.

As an example, you can see how you add a DTD to our XML document in Listing 1.7. DTDs can be separate documents,
or they can be built into an XML document as we've done here using a special element named <!DOCTYPE>.

Listing 1.7 An XML Document with a DTD (ch01_07.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<!DOCTYPE DOCUMENT [
 <!ELEMENT document (heading, message)>
 <!ELEMENT heading (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
]>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

We'll create DTDs like this one in Day 4, "Creating Valid XML Documents: Document Type Definitions"; briefly, the DTD
in Listing 1.7 is the <!DOCTYPE> element, which specifies that the root element, <document>, should contain a <heading>
element and a <message> element. We're also specifying that the <heading> and <message> elements may contain text
data. Using a DTD like this, you're able to specify the syntax your XML document should obey—what elements should
be inside what other elements, what attributes an element can have, and so on—and if an XML processor can perform
validation, it can check your document and head off problems (we'll validate this document tomorrow).

Today's discussion has introduced us to the basic XML concepts that we'll need for the coming days. Now it's time to
start taking an in-depth look at how XML is used in the real world and what it's good for.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How XML Is Used in the Real World
As you already know, XML is designed to help store, structure, and transfer data; because it's written using plain text, it
can be sent on the Internet and handled by software on many different platforms. XML was designed to let people
circulate data. In its five years, hundreds of XML sublanguages—that is, sets of predefined XML elements—have
appeared.

For example, suppose you want to perform genealogical research. To search through many genealogical records
rapidly, you would need to have those records in a predetermined form, not just in any order in a simple text file. To do
that, you could use a specialized XML sublanguage, Genealogical Data Communication (GEDCOM), which defines its own
tags for storing names, dates, marriages, and so on. Using GEDCOM, people from all over the world can search
genealogical databases rapidly.

XML sublanguages like GEDCOM are called XML applications (the term is a little unfortunate, because software packages
are also called applications, but the idea is that these sublanguages are applications of XML). There are hundreds of
XML applications, allowing various groups of people to communicate and exchange data. Here's a list of a few of these
applications:

Application Vulnerability Description Language (AVDL)

Bank Internet Payment System (BIPS)

Banking Industry Technology Secretariat (BITS)

Common Business Library (xCBL)

Connexions Markup Language (CNXML) for Modular Instructional Materials

Electronic Business XML Initiative (ebXML)

Extensible Access Control Markup Language (XACML)

Financial Exchange (IFX)

Financial Information eXchange protocol (FIX)

Financial Products Markup Language (FpML)

Genealogical Data Communication (GEDCOM)

Geography Markup Language (GML)

Global Justice's Justice XML Data Dictionary (JXDD)

Human Resources Background Checks and Payroll Deductions Language (HR-XML)

Product Data Markup Language (PDML)

Schools Interoperability Framework (SIF)

Telecommunications Interchange Markup (TIM)

The Text Encoding Initiative (TEI)

Windows Rights Management Services (RMS) by Microsoft

XML Common Biometric Format (XCBF)

XML Process Definition Language (XPDL) for workflow management

You can find information about XML applications like these by watching the XML news releases from W3C. The Web site
http://www.xml.org/xml/marketplace_company.jsp also lists many XML applications. To get an idea of what's going on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.xml.org/xml/marketplace_company.jsp also lists many XML applications. To get an idea of what's going on
in XML these days, we'll take a look at a few of these applications next—and we're going to see more throughout this
book.

Using XML: Mathematical Markup Language

Mathematical Markup Language, MathML, was designed to let people embed mathematical and scientific equations in
Web pages (in fact, Tim Berners-Lee first developed the World Wide Web so that physicists could exchange papers and
documents).

MathML is itself a W3C specification, and you can find it at http://www.w3.org/TR/MathML2/. Using MathML, you can
display all kinds of equations, but there's only one commonly used Web browser that supports MathML—the Amaya
browser, which is W3C's own testbed browser for testing new HTML elements. You can download Amaya for free from
http://www.w3.org/Amaya/.

You can see a MathML document, ch01_08.ml, in Listing 1.8. This document just displays the equation 4x2 – 5x + 6 = 0.

Listing 1.8 A MathML Document (ch01_08.ml)

<?xml version="1.0"?>
<math xmlns="http://www.w3.org/1998/Math/MathML">
 <mrow>
 <mrow>
 <mn>4</mn>
 <mo>⁢</mo>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>-</mo>
 <mrow>
 <mn>5</mn>
 <mo>⁢</mo>
 <mi>x</mi>
 </mrow>
 <mo>+</mo>
 <mn>6</mn>
 </mrow>
 <mo>=</mo>
 <mn>0</mn>
 </mrow>
</math>

You can see how this document looks in the Amaya browser in Figure 1.6.

Figure 1.6. A MathML document displayed by the Amaya browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using XML: Chemical Markup Language

Chemical Markup Language (CML) was developed by Peter Murray-Rust and lets you view three-dimensional
representations of molecules in a Jumbo browser. Using CML, one chemist can publish a visual model of a molecule and
exchange that model with others.

For example, this CML document, from the CML Web site at http://www.xml-cml.org, displays the formamide molecule:

<molecule xmlns="http://www.xml-cml.org" id="formamide">
<atomArray>
 <stringArray builtin="atomId">H1 C1 O1 N1 Me1 Me2</stringArray>
 <stringArray builtin="elementType">H C O N C C</stringArray>
 <integerArray builtin="hydrogenCount">0 1 0 1 3 3</integerArray>
 </atomArray>
 <bondArray>
 <stringArray builtin="atomRef">C1 C1 C1 N1 N1</stringArray>
 <stringArray builtin="atomRef">H1 O1 N1 Me1 Me2</stringArray>
 <stringArray builtin="order">1 2 1 1 1</stringArray>
 </bondArray>
 <h:html xmlns:h="http://www.w3.org/TR/html20">
 <p>Formamide is the simplest amide ...</p>
 <p>
 This represents a
 <emph>connection table</emph>
 for formamide. The structure corresponds to the diagram:
 </p>
 <pre>H3 H1 \ / N1-C1=O1 / H2</pre>
 </h:html>
 <float title="molecularWeight" units="g">45.03</float>
 <list title="local information">
 <!--
 <link title="safety" href="/safety/chemicals.xml#formamide">
 </link>
 -->
 <string title="location">Storeroom 12.3</string>
 </list>
</molecule>

We'll see CML at work tomorrow when we take a look at the Jumbo CML browser.

Using XML: Synchronized Multimedia Integration Language

Synchronized Multimedia Integration Language (SMIL, pronounced "smile") lets you customize multimedia
presentations, and we'll take a look at SMIL in depth in this book. We'll even be able to create SMIL files that can be
run in RealNetwork's RealPlayer (now called RealOne). SMIL is a W3C standard, and you can find more about at
http://www.w3.org/AudioVideo/#SMIL.

For example, here's the beginning of a SMIL document that plays background music and displays a slide show of
images and text:

<?xml version="1.0"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
 "http://www.w3.org/TR/REC-smil/SMIL10.dtd">
<smil>
 <body>
 <par id="show">
 <audio src="river.wav" region="background_audio"
 type="audio/x-wav" dur="20s"/>
 <seq id="slides">
 <par id="slide01">

 <text src="welcome.txt" type="text/plain" dur="5s"/>
 </par>
 .
 .
 .

Using XML: XHTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Despite its popularity, W3C thinks there are a lot of problems with HTML—and, having created it, they should know. For
example, some HTML elements don't need closing tags, but may be used with them, while others require closing tags.
Many Web pages have all kinds of HTML errors, like overlapping elements, that Web browsers struggle to fix. To make
HTML more rigorous, and in an attempt to let you extend it with your own tags, W3C introduced Extensible Hypertext
Markup Language, or XHTML. XHTML is HTML 4.01 (the current version of HTML) in XML form. We'll be seeing XHTML in
depth in Day 11, "Extending HTML with XHTML," and Day 12, "Putting XHTML to Work."

In other words, XHTML is simply an XML application that mimics HTML 4.0 in such a way that you can display the
results—true XML documents—in today's Web browsers, as well as extending it with your own new elements. Here are
some XHTML resources online:

http://www.w3.org/MarkUp/Activity.html— The W3C Hypertext Markup activity page, which has an
overview of XHTML

http://www.w3.org/TR/xhtml1/— The XHTML 1.0 specification (in more common use than XHTML 1.1
today)

http://www.w3.org/TR/xhtml11/— The XHTML 1.1 working draft of the XHTML 1.1 module-based
specification

XHTML 1.0 comes in three different versions: transitional, frameset, and strict. The transitional version is the most
popular version of XHTML because it supports HTML as it's used today. The frameset version supports XHTML
documents that display frames. The strict version omits all the HTML elements considered obsolete in HTML 4.0 (of
which there were quite a few).

XHTML 1.1 is a form of the XHTML 1.0 strict version made a little more strict by omitting support for some elements
and adding support for a few more (such as <ruby> for annotated text). You can find a list of the differences between
XHTML 1.0 and XHTML 1.1 at http://www.w3.org/TR/xhtml11/changes.html#a_changes.

As an example, you can see an XHTML 1.0 transitional document in Listing 1.9 called ch01_09.html (XHTML documents
use the extension .html so they can appear in standard Web browsers—note that all the element names are in
lowercase). We're going to take XHTML documents like this apart piece by piece in Days 11 and 12.

Listing 1.9 An XHTML Document (ch01_09.html)

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>
 An XHTML Page
 </title>
 </head>

 <body>
 <h1>
 Welcome to XHTML!
 </h1>
 <center>
 <p>
 This is an XHTML document.
 </p>
 <p>
 Pretty cool, eh?
 </p>
 </center>
 </body>
</html>

You can see the results of this XHTML in Figure 1.7. Writing XHTML is a lot like HTML, except that you have to adhere to
XML syntax (which means, for example, that every element has a closing tag).

Figure 1.7. Displaying an XHTML page in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.7. Displaying an XHTML page in Internet Explorer.

Using XML: HTML+TIME

Here's another XML application—HTML+TIME. This one was created by Microsoft, Macromedia, and Compaq as an
alternative to SMIL for multimedia alternative. You can find out about HTML+TIME at
http://msdn.microsoft.com/workshop/Author/behaviors/time.asp.

You can see a sample HTML+TIME document that displays the words Welcome, to, HTML+TIME, in Listing 1.10. If you
open this document in Internet Explorer, you'll see that the words appear one at a time, separated by two seconds, and
then the whole process repeats.

Listing 1.10 An HTML+TIME Document (ch01_10.html)

<HTML>
 <HEAD>
 <TITLE>
 Using HTML+TIME
 </TITLE>
 <STYLE>
 .time {behavior: url(#default#time);}
 </STYLE>
 </HEAD>

 <BODY>
 <DIV CLASS="time" t:REPEAT="5" t:DUR="10" t:TIMELINE="par">
 <DIV CLASS="time" t:BEGIN="0" t:DUR="10">Welcome</DIV>
 <DIV CLASS="time" t:BEGIN="2" t:DUR="10">to</DIV>
 <DIV CLASS="time" t:BEGIN="6" t:DUR="10">HTML+TIME.</DIV>
 </DIV>
 </BODY>
</HTML>

You can see the results of this HTML+TIME document in Figure 1.8.

Figure 1.8. Viewing an HTML+TIME document in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using XML: Microsoft's .NET

Microsoft's .NET initiative took what had been local Windows functionality to the Internet. Components in .NET use XML
to communicate, often even when they're on the same machine. You don't usually see the XML in .NET, but each time
you communicate between components, it's there.

For example, ADO.NET (ActiveX Data Objects) is the .NET protocol for working with databases, and all communication
between your code and the data provider that hosts the database uses XML. You can see an example demonstrating
how ADO.NET works using in Visual Basic .NET, one of the programming languages in Visual Studio .NET, in Figure 1.9.

Figure 1.9. Writing data in XML in Visual Basic .NET.

When the user clicks the Write Data to XML Document button, the code connects to the SQL Server data provider,
opens the sample database named pubs that comes with SQL Server, and reads the data in the employee table from
that database using XML. It'll then write that data out to an XML document, data.xml. When the user clicks the Get Data
from XML Document button, the code reads in that XML and displays the data in it in the grid you see in Figure 1.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from XML Document button, the code reads in that XML and displays the data in it in the grid you see in Figure 1.9.

Here is the Visual Basic .NET code that handles the button clicks and that does the actual work:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)
 DataSet11.WriteXml("data.xml")
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim dataset As New DataSet()
 ds.ReadXml("data.xml")
 DataGrid1.SetDataBinding(dataset, "employee")
End Sub

And here is the XML that was written out to disk in data.xml—note that it matches the data you see in Figure 1.9:

<?xml version="1.0" standalone="yes"?>
<DataSet1 xmlns="http://www.tempuri.org/DataSet1.xsd">
 <employee>
 <emp_id>PMA42628M</emp_id>
 <fname>Paolo</fname>
 <minit>M</minit>
 <lname>Accorti</lname>
 <job_id>13</job_id>
 <job_lvl>35</job_lvl>
 <pub_id>0877</pub_id>
 <hire_date>1992-08-27T00:00:00.0000000-04:00</hire_date>
 </employee>
 <employee>
 <emp_id>PSA89086M</emp_id>
 <fname>Pedro</fname>
 <minit>S</minit>
 <lname>Afonso</lname>
 <job_id>14</job_id>
 <job_lvl>89</job_lvl>
 <pub_id>1389</pub_id>
 <hire_date>1990-12-24T00:00:00.0000000-05:00</hire_date>
 </employee>
 .
 .
 .

That's what the XML that's used to move data between components in XML looks like behind the scenes.

Using XML: Scalable Vector Graphics

A number of popular XML applications revolve around graphics, and one of these applications is Scalable Vector
Graphics (SVG), a W3C-based XML application. Until recently, SVG found only limited support, notably because
Microsoft had its own XML-style graphics language for Internet Explorer, Vector Markup Language (VML), followed by its
DirectAnimation tools. Now, however, Adobe has created an SVG viewer as a browser plug-in, and we'll take a look at
SVG and that plug-in in Day 13, "Creating Graphics and Multimedia: SVG and SMIL." You can find the SVG specification
itself at http://www.w3.org/TR/SVG11/, and an SVG overview at http://www.w3.org/Graphics/SVG/Overview.htm8.

Millions of SVG viewers from Adobe have already been downloaded (Adobe calls SVG "the future of Web graphics") and
you can get the SVG viewer at http://www.adobe.com/svg/. You can see a sample SVG document in Listing 1.11, which
draws a blue ellipse filled in with light blue color.

Listing 1.11 An SVG Document (ch01_11.svg)

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg">
 <title>SVG Example</title>
 <ellipse cx="200" cy="100" rx="100" ry="60"
 style="fill:lightblue; stroke:blue; stroke-width:6"/>
</svg>

You can see ch01_11.svg at work in Figure 1.10, where we're using the Adobe SVG plug-in in Internet Explorer.

Figure 1.10. Viewing an SVG example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.10. Viewing an SVG example.

Using XML: SOAP

These days, more and more Web applications are appearing every day. Based on the Internet, these programs can
communicate with each other, transferring data back and forth as needed. For example, a Web application might
provide real estate agents in the field with today's real estate listings, which they can download into their laptops.

One problem with Web applications is that they can end up using their own XML element sets only, making it difficult for
a Web application written in Java to communicate with one written in a .NET language like Visual Basic .NET or C#
.NET. To make communication between Web applications easier, the XML-based Simple Object Access Protocol (SOAP,
which you can read about at http://www.w3.org/TR/SOAP/) was created. SOAP defines a widely accepted lightweight
XML protocol that lets you send messages between Web applications, no matter what language such Web applications
might have been written in.

You'll see more about SOAP in Day 18, "Working with SOAP and RDF," when you take a look at some examples. SOAP
messages contain a SOAP envelope that acts like the root element of the message, a SOAP header that tells the
recipient what kind of message this is, and a SOAP body that holds the message. For example, if you wanted to tell a
Web application that there are currently 200 desks in stock in your warehouse, you might send a SOAP message like
this:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Header>
 SOAP Example
 </soap:Header>
 <soap:Body>
 <desks:NumberInStock>
 200
 </desks:NumberInStock>
 </soap:Body>
</soap:Envelope>

NOTE

If you're a programmer familiar with object-oriented programming (OOP), you might be interested to know
that another place SOAP is used when two different .NET applications—which might be written in different
languages—want to send objects back and forth across application boundaries (a process called remoting).
In that case, one application sends a SOAP message to the other describing the object that will be
transferred.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That gives us a taste of how XML is put to use these days. Before finishing up today, we'll take a quick look at some of
the rich XML resources available online—there's a great deal of free stuff out there for you.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Online XML Resources
There are plenty of XML resources available free on the Internet. For example, the XML specifications themselves are
online, and although they are hard to read, they're the place to check if you want the ultimate answer on an XML
question. Here's a list of official W3C Web sites on various XML topics (note that we won't see some of these topics until
later in the book):

http://www.w3c.org/xml— W3C's main XML site. A good place to start.

http://www.w3.org/XML/Activity— The W3C activity page listing what's going on with XML these days.

http://www.w3.org/XML/1999/XML-in-10-points— Features a mini-tutorial called "XML in 10 Points"
(really only seven). Provides an XML overview.

http://www.w3.org/TR/REC-xml— The official W3C recommendation for XML 1.0. Not easy to read. We're
going to cover nearly all of this specification in this book.

http://www.w3.org/TR/xml11/— The official W3C XML 1.1 candidate recommendation, which turns out to
be still evolving (more than most W3C candidate recommendations at this stage have done in the past).

http://www.w3.org/Style/CSS/— The W3C outline and overview of CSS programming.

http://www.w3.org/TR/REC-CSS1/— The W3C CSS1 specification.

http://www.w3.org/TR/REC-CSS2/— The W3C CSS2 specification.

http://www.w3.org/Style/XSL/— The W3C XSL page.

http://www.w3.org/TR/xml-stylesheet/— A resource on style sheets and XML.

http://www.w3.org/TR/REC-xml-names/— An XML namespaces resource.

http://www.w3.org/Style/XSL/— The details on Extensible Stylesheet Language.

http://www.w3.org/TR/xslt— The details on XSL Transformations (XSLT).

http://www.w3.org/XML/Schema— XML schema activity page.

http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/, and
http://www.w3.org/TR/xmlschema-2/— All about XML schemas.

http://www.w3.org/TR/xhtml1/— The XHTML 1.0 specification.

http://www.w3.org/TR/xhtml11/— The XHTML 1.1 specification.

http://www.w3.org/XML/Linking— All about XML Pointer, XML Base, and XML Linking.

http://www.w3.org/TR/xlink/— The XLinks specification.

http://www.w3.org/TR/xptr— The XPointers specification.

http://www.w3.org/DOM/— The W3C Document Object Model (DOM).

http://www.w3.org/MarkUp/Forms/— XForms, a new version of Web forms of the kind that currently
appear in HTML documents.

http://www.w3.org/TR/xmlbase/— All about the XML Base specification.

http://www.w3.org/Encryption/2001/— Discussion on XML encryption.

http://www.w3.org/2001/XKMS/— The XML Key Management Working Group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.w3.org/2001/XKMS/— The XML Key Management Working Group.

http://www.w3.org/XML/Query— The XML Query specification.

http://www.w3.org/Signature/— Deals with XML signature, an XML-compliant syntax used for
representing the signature of Web resources.

http://www.w3.org/TR/xpath— The XPath 1.0 recommendation.

http://www.w3.org/TR/xpath20/— The XPath 2.0 working draft.

There are many, many non-W3C XML resources available as well, of course—just searching for "XML" on the Internet
gives you about 18,300,000 matches, and more appear every day. Here's a list of some of the best of the non-W3C
resources:

http://www.xml.com— Packed with XML resources, discussions, and schedules of public events.

http://www.xml.org— Carries information about XML in industrial and commercial settings. A reference site
for XML vocabularies, DTDs, schemas, and namespaces.

http://www.oasis-open.org— The Organization for the Advancement of Structured Information Standards,
OASIS, hosting many XML application specifications.

http://msdn.microsoft.com/xml/default.asp— Microsoft's own page on XML (note that Microsoft URLs are
very volatile, and this URL might have changed by the time you look for it).

XML tutorials are also easy to find—a search for "XML Tutorial" turns up about 14,000 matches. Here's a starter list:

http://www.w3schools.com/xml/default.asp— A free XML tutorial.

http://msdn.microsoft.com/xml/tutorial/default.asp— Microsoft's XML tutorial in ten lessons (again,
watch out—this URL might have changed by the time you read this).

http://xmlfiles.com/xml/— An XML tutorial from XMLFiles.com.

http://www.webdeveloper.com/html/html_xml_1.html— Webdeveloper.com's XML tutorial.

http://www.ucc.ie/xml/— A comprehensive Frequently Asked Questions (FAQ) list about XML, maintained
by some of the members of the W3C's XML Working Group.

http://www.xfront.com— An XML schema tutorial by Roger L. Costello.

You might also find some Usenet newsgroups on XML to be helpful; here are a few (note that not all news servers will
carry all these groups):

comp.text.xml— A good, free-floating XML newsgroup. If you want answers, try posting your questions here.

microsoft.public.dotnet.xml— Discussion on using XML in Microsoft's .NET initiative.

microsoft.public.xml— The general XML newsgroup hosted by Microsoft.

That completes your introduction to XML today. Tomorrow, we'll start taking a look at creating XML documents in
depth.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you've gotten your introduction to XML and built the foundation you'll need in the coming days. We've covered a
lot of ground, starting with a discussion of markup languages in general, seeing how "markup" refers to the codes that
structure the data in a document.

XML was created in 1998 from an earlier markup language, SGML. XML is a specification of the World Wide Web
Consortium, W3C, and the current form is XML 1.0, which became a W3C recommendation on October 6, 2000. XML
1.1 is now in candidate recommendation form.

The main reason XML has taken off is that it's great for storing data, in particular, for transferring data on the Internet.
It's written in text form, which means it can be sent using existing Internet protocols. Unlike HTML, XML is meant for
storing data, not displaying it.

XML documents begin with an XML declaration and can contain XML elements and text data. (Even so, you just got an
introduction to the structure and components of an XML document today—that's what tomorrow's discussion is all
about.) You also took a look at XML in browsers, and used Cascading Style Sheets to format XML for display in those
browsers.

Besides using style sheets to format XML data, you also saw that XML processors can read and work with the data in
XML documents. You got a quick look at working with XML using both JavaScript and Java today, and you'll get more
details near the end of this book.

To be useful, XML documents must be well-formed so they can be read; being well-formed means obeying some basic
rules of syntax, such as not overlapping elements. XML documents can also specify their own syntax with a Document
Type Definition, DTD, or an XML schema. A document that adheres to its specified syntax is called valid.

You also spent much of today taking a look at XML applications—languages created using XML for specific purposes,
such as MathML, Chemical Markup Language, SMIL, SVG, XHTML, and others, providing a real-world snapshot of how
XML is used today, and how powerful it can be.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can I mix HTML and XML in the same Web page?

A1: Only one browser really supports mixed HTML/XML documents: Internet Explorer. You can embed XML in
HTML pages using XML islands when you use Internet Explorer. We'll take a look at this in detail in Day
15.

Q2: Must a valid XML document also be well-formed?

A2: Yes. For an XML document to be well-formed, it has to satisfy the syntax you specify for it, and the first
step in satisfying that syntax is to make sure that it satisfies the basic syntax rules for an XML document,
which means it must be well-formed. However, a well-formed XML document isn't necessarily valid.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts you saw today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work.

Quiz

1: What's the main reason XML has become so popular in the last five years?

2: What are the four different types of specifications that W3C publishes?

3: What's an XML element? What's an XML attribute?

4: What are some of the requirements for an XML document to be well-formed?

5: What are two XML constructs that let you specify an XML document's syntax so it can be checked for
validity?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 2. Creating XML Documents
Yesterday you got an introduction to XML; today, you're going to get down to work by creating XML documents piece by
piece. Here's an overview of today's topics:

Writing XML

The parts of an XML document

XML prologs

XML declarations

Comments

Processing instructions

Elements

CDATA sections

Entities

XML tools

XML validators

You'll start creating XML documents at the logical beginning point—by choosing the correct software for this task.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Choosing an XML Editor
To create XML documents, you'll need a text editor of some kind, such as vi, emacs, pico, Macintosh's BBEdit or
SimpleText, Windows Notepad, or WordPad. If you're using a fancy word processor like Microsoft Word, make sure that
you save your XML documents in plain text format, not in some other format like .doc (for example, in Microsoft Word,
you would select the "Text Only" option from the Save As Type drop-down list box in the Save As dialog). By default,
XML files are given the extension .xml.

NOTE

Windows WordPad has the annoying habit of appending the extension .txt to a filename if it doesn't
understand the extension you've given the file. That's not a problem with .xml files, because WordPad
understands the extension .xml. However, if you try to save, for example, an XML-based Math Markup
Language (MathML) document with the extension .ml, WordPad will give it the extension .ml.txt. To avoid
that, surround the name of the file with quotation marks when you save it, as in "equation5.ml". Also note
that by default, WordPad saves files in rich text format (.rtf files) or as Microsoft Word .doc files, depending
on your version of Windows. To make sure you save your XML documents in plain text format, select the
Text Document option in the Save As Type drop-down list box in the Save As dialog.

As you advance in XML, however, you might find it easier to use a dedicated XML editor to create your XML documents.
XML editors can check the syntax of your document as you create it, for example, or help you create DTDs and XML
schemas. Here's a starter list of XML editors:

Adobe FrameMaker (http://www.adobe.com)— Adobe includes good XML support in FrameMaker (but it's
expensive).

XML Pro (http://www.vervet.com/)— A powerful but fairly expensive XML editor.

XML Writer (http://xmlwriter.net/)— An XML editor with a good interface.

XML Notepad— Microsoft's free XML editor, no longer available from Microsoft, but still available from some
other sites, such as http://www.webattack.com/get/xmlnotepad.shtml.

Microsoft's Visual Studio .NET (the development environment for .NET languages like C# .NET and Visual Basic
.NET) includes a powerful XML editor.

XML Spy (http://www.xmlspy.com/)— One of the premier XML editors, with a good user interface, but also not
free.

XMLmind (http://www.xmlmind.com/xmleditor/)— Includes DTD- and XML Schema-aware editing commands,
and a word processor-like view.

What do these XML editors look like in action? You can see XML Spy in Figure 2.1, XML Writer in Figure 2.2, XML
Notepad in Figure 2.3, and an XML designer in Visual Studio .NET in Figure 2.4 (we're going to take a look at editing
XML documents and creating XML schema in Visual Studio .NET in more detail in Day 21). If you're interested in
XMLmind, you can find a screenshot at http://www.xmlmind.com/xmleditor/. Using one of these editors can help you a
great deal in the long run, but to start, you only need a simple text editor that can store plain text files.

Figure 2.1. Using the XML Spy application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.2. Using the XML Writer application.

Figure 2.3. Using the XML Notepad application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.4. Using a Visual Studio XML designer.

After you've created your XML, you can take a look at it in XML-enabled browsers, as we'll do next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XML Browsers
Calling a browser an XML browser means one of two things. As we've seen, a browser like Internet Explorer can display
XML documents, and you can even use CSS or XSL to format those documents for display. However, displaying an XML
document's data is one thing—making use of that data is another, and you do that in the second type of XML browser.

For example, with JavaScript you can access the data in an XML document in a browser like Internet Explorer, and you
can also rewrite the HTML the browser will display. There are also dedicated XML browsers for some XML applications,
and they can go far beyond HTML. We'll see one such example of a dedicated XML browser today—Jumbo, which
displays XML documents using Chemical Markup Language (CML) to represent chemical molecules (and we'll build our
own visual XML browser later in this book). We'll take a look at a few XML browsers now.

Using XML in Internet Explorer

Whether you love it or hate it, Microsoft's Internet Explorer is by far the most powerful general-purpose XML browser
available today. You can get it at http://www.microsoft.com/windows/ie/default.asp.

The current version of Internet Explorer, version 6, is strongly XML-enabled, so we're going to see it frequently in this
book. This doesn't imply a bias for or against Microsoft; it just means that there's no way to ignore this browser in a
book on XML that aims to be as complete as possible. Internet Explorer can display XML documents directly, as we've
already seen. It can use scripting languages like JavaScript (technically JScript, Microsoft's version of JavaScript) to
access the data in an XML document and let you handle that data in code (including rewriting the HTML the browser
displays, creating your own XML browser that displays your numeric data using bar graphs, and so on). It can also
handle XML with both CSS and XSL style sheets, allowing you to format and display XML data as you like. It can
validate XML documents using both DTDs and XML schemas (it's the only widely available browser that can use
schemas). It can bind XML data to HTML controls like text boxes and buttons. There's even a special element, <XML>,
that can load in XML documents automatically. We're going to see all this and more in this book.

Internet Explorer is not the only program that Microsoft has enabled for XML—XML is also used throughout the Microsoft
Office suite of applications, and it's fundamental to the .NET initiative, as we're going to see towards the end of this
book.

Using XML in Netscape Navigator

There's also some support for XML in the Netscape Navigator browser, which you can get at
http://channels.netscape.com/ns/browsers/default.jsp. The current version is 7.0, and although this browser doesn't
display raw XML documents in the same way that Internet Explorer does, you can use CSS style sheets to display XML
documents in the Netscape Navigator, just as you can in Internet Explorer.

Using CML in Jumbo

Jumbo is a dedicated XML browser designed to display CML documents. You can get Jumbo free at http://www.xml-
cml.org/. Jumbo can display XML (but not with style sheets), as well as using CML to draw molecules. There's an online
version of Jumbo at http://www.xml-cml.org/jumbo3/jumbo3-JS/jumbo.html, and you can see it at work in Figure 2.5,
drawing a picture of the ethanol molecule from CML.

Figure 2.5. Using the XML browser Jumbo to display the ethanol molecule.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides XML browsers like these, other tools called validators let you check your XML after you've written it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XML Validators
An XML validator checks your XML to make sure it's well formed and valid, giving you feedback if there's a problem.
Here's a starter list of some validators on the Internet—note that your XML document must be online to use any of
these validators, except for the Scholarly Technology Group validator, which can upload your XML document from your
hard disk:

http://validator.w3.org/— This is the official W3C HTML validator. It's designed for HTML, but also includes
some XML support.

http://tidy.sourceforge.net/— Tidy is a popular utility for cleaning up and repairing Web pages. It also
includes some support for XML.

http://www.xml.com/pub/a/tools/ruwf/check.html— This is XML.com's XML validator, based on the
Lark XML processor.

http://www.ltg.ed.ac.uk/~richard/xml-check.html— The Language Technology Group at the University
of Edinburgh's validator, based on the RXP XML parser.

http://www.stg.brown.edu/service/xmlvalid/— The home of the very useful XML validator from the
Scholarly Technology Group at Brown University. This is one of only a few online XML validators that allows you
to check XML documents that are not online—you can browse to your document on your hard disk and this
validator will upload it.

You can see the Scholarly Technology Group's validator at work in Figure 2.6. To give it something to chew on, we'll
send it the XML document from yesterday's work, where we've exchanged the <message> and </heading> tags like this:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<!DOCTYPE document [
 <!ELEMENT document (heading, message)>
 <!ELEMENT heading (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
]>
<document>
 <heading>
 Hello From XML
 <message>
 </heading>
 This is an XML document!
 </message>
</document>

Figure 2.6. Using an XML validator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note also that to let the validator actually validate the document, you have to let it know what the document's syntax
is. To do that, we've included a DTD in this document specifying that syntax (DTDs are coming up in Day 4, "Creating
Valid XML Documents: Document Type Definitions," and Day 5, "Handling Attributes and Entities in DTDs."

When you click the Validate button in the validator, you get the results that appear in Figure 2.7. As you see in the
figure, the validator indicates that these two tags are indeed swapped, causing a validation error.

Figure 2.7. The results from an XML validator.

There's a built-in validator for documents with XML schema in Microsoft's Visual Studio .NET, and Internet Explorer can
also validate documents with XML schemas. (As you'll see in more depth in Day 6, "Creating Valid XML Documents: XML
Schemas," Visual Studio lets you generate an XML schema for an XML document with the XML, Create Schema menu
item.) You can use the XML, Validate XML Data menu item to validate an XML document that uses a schema, as you see
in Figure 2.8. Note the text No validation errors were found at the lower left, which is Visual Studio .NET's subtle way of
telling you that the document is OK.

Figure 2.8. XML validation in Visual Studio .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.8. XML validation in Visual Studio .NET.

That gives you a good overview of the kinds of tools available to help you develop your XML these days—editors,
browsers, and validators. Now it's time to get down to brass tacks and understand what makes an XML document tick,
piece by piece.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating XML Documents Piece by Piece
Yesterday, you created this example XML document:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

That's a fully-functional XML document, but it's only an example. Today, we're going to be more systematic about what
goes into an XML document, discussing all the possible parts of such documents. You'll take a look at these parts of an
XML document in the coming sections:

Prologs

XML declarations

Processing instructions

Elements and attributes

Comments

CDATA sections

Entities

W3C defines everything that can go into XML documents in the XML 1.0 and 1.1 specifications, right down to our
starting point—the character set you use.

Character Encodings: ASCII, Unicode, and UCS

The characters in an XML document are stored using numeric codes. That can be an issue, because different character
sets use different codes, which means an XML processor might have problems trying to read an XML document that
uses a character set—called a character encoding—other than what it's used to.

For example, a common character encoding used by text editors is the American Standard Code for Information
Interchange (ASCII). ASCII is the default for plain text files created with Windows WordPad. ASCII codes extend from 0
to 255—for example, the ASCII code for A is 65, for B is 66, and so on. So, if you stored the word cat in an XML
document written in ASCII, the numbers 67, 65, and 84 are what would actually be stored. On the other hand, the
World Wide Web is just that—worldwide. Plenty of character sets can't fit into the 256 characters of ASCII, such as
Cyrillic, Armenian, Hebrew, Thai, Tibetan, and so on.

For that reason, W3C turned to Unicode (http://www.unicode.org), which holds 65,536 characters, not just 256
(although only about 40,000 Unicode codes are reserved at this point). To make things easier, the first 256 Unicode
characters correspond to the ASCII character set.

There's another character encoding available that has even more space than Unicode—the Universal Character System
(UCS, also called ISO 10646) uses 32 bits—two bytes—per character. This gives it a range of two billion symbols—and a
good thing, too, since there are more Chinese characters alone than there is space in Unicode. UCS also encompasses
the smaller Unicode character set—each Unicode character is represented by the same code in UCS, in much the same
way that Unicode encompasses the smaller ASCII character set.

So which character sets are supported in XML? ASCII? Unicode? UCS? Unicode uses two bytes for each character, so a
Unicode file would be twice as long as an ASCII file. For that and other reasons, it's difficult to convert much of the
available software to Unicode. XML actually supports a compressed version of Unicode created by the UCS group called
UCS Transformation Format-8 (UTF-8). UTF-8 includes all the ASCII codes unchanged, and uses a single byte for the
most common Unicode characters. Any other Unicode characters need more than one byte (and can use up to six)—for

example, the Unicode for is 03C0 in hexadecimal (960 in decimal), which you need to store in two bytes.

To make it easier to handle, UCS itself has also been compressed in the same way into a character set named UTF-16,
which uses two bytes (instead of the normal four that UCS uses) for the most common characters, and more bytes for
the less common characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the less common characters.

W3C requires all XML processors to support both UTF-8 (compressed Unicode, including the full ASCII set), and UTF-16
(compressed UCS, including the full ASCII set), and those are the only two W3C requires. The UTF-8 encoding is the
most popular one today in XML documents, because you can store documents in ASCII using a text editor and they can
be treated, without any changes, as UTF-8 by an XML processor (ASCII uses one byte for characters, and UTF-8 uses
one byte for the most common characters, including all the characters in the ASCII set). In fact, we've been using UTF-
8 since our first XML example, as you can see where we've specified the character encoding for a document with the
encoding attribute in the XML declaration:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

UTF-8 is so widespread that an XML processor will assume you're using it if you omit the encoding attribute. Although
W3C requires all XML processors to support UTF-16 and UTF-8 (so you can assign these values to the encoding
attribute), most don't support UTF-16 yet.

NOTE

If you expressly save your documents in Unicode format (which a text editor like Windows WordPad will let
you do), your text will use two bytes per character. This means you should specify UTF-16 encoding so that
XML processors will be prepared to use two bytes for each character.

Although only UTF-8 and UTF-16 are required, there are many character encodings that an XML processor can support,
such as the following:

US-ASCII— U.S. ASCII

UTF-8— Compressed Unicode

UTF-16— Compressed UCS

ISO-10646-UCS-2— Unicode

ISO-10646-UCS-4— UCS

ISO-2022-JP— Japanese

ISO-2022-CN— Chinese

ISO-8859-5— ASCII and Cyrillic

NOTE

There are many more character sets available than mentioned here. For a more complete list, visit the
Internet Assigned Numbers Authority (IANA) at http://www.iana.org/assignments/character-sets.

The increasing adoption of Unicode is the main driving force behind XML 1.1. There are three main areas in which XML
1.1 differs from XML 1.0, all having to do with characters:

XML 1.1 accepts more Unicode characters than were available when XML 1.0 was created. (XML 1.0 was
created when Unicode version 2.0 was current; now version 4.0 is being tested.)

XML 1.1 relaxes some rules of creating names (as used for elements and attributes) to allow more Unicode
characters, and to permit for Unicode expansion in the future.

XML 1.1 permits more legal characters you can use to end a line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML 1.1 permits more legal characters you can use to end a line.

You'll see these various points in more depth today. However, note that most of these differences are technical, and
won't concern you a great deal. For example, XML 1.0 and 1.1 differ slightly in what character references you can use.
As in HTML, character reference stands for a Unicode character and begins with &, followed by a numeric code
specifying a character, and ends with ;. You can either enter a Unicode character in an XML document as the character
itself or as a character reference, which the XML processor will convert into the corresponding character.

For example, the Unicode for is 960 in decimal, so you can embed in your XML document by entering (if
your text editor supports Unicode), or as the character reference π (if your text editor doesn't support Unicode).

The XML processor will replace the character reference with . (You can also give the Unicode in hexadecimal if you
preface it with an x, which would be π in this case.)

The difference between XML 1.0 and XML 1.1 as far as character references go is that XML 1.1 allows the use of
character references through , most of which are forbidden in XML 1.0. Conversely, the character
references through Ÿ, which were allowed as characters or character references in XML 1.0 documents,
might only appear as character references in XML 1.1. These kinds of relatively small differences aren't going to
concern us a great deal. For all these details, check the XML 1.1 candidate recommendation itself.

That's given us a handle on the character encodings you can use to create XML documents. The next step is to see just
how you put those characters to work in XML as you create markup and text data.

Understanding XML Markup and XML Data

At their most basic level, XML documents are combinations of markup and text data. They might also include binary
data one day, but there's no way to include binary data in an XML document at the moment. (If you want to associate
binary data with an XML document, you keep that data external to the document and use an entity reference, as you'll
see later today and in Day 5 in detail.)

The markup in a document gives it its structure. Markup includes start tags, end tags, empty element tags, entity
references, character references, comments, CDATA section delimiters (more about CDATA sections in a few pages),
document type declarations, and processing instructions. What about the data in an XML document? All the text in an
XML document that is not markup is data.

Although the markup we've seen has mostly consisted of tags up to this point, there's another type of markup that
doesn't use tags—general entity references and parameter entity references. Whereas tags begin with < and end with
>, general entity references start with & and end with ; (as with the character references we've already seen, which are

general entity references—for example, if you're using the UTF-16 encoding, π is a character reference for).
General entity references are replaced by the entity they refer to when the document is parsed. Parameter entity
references, which start with % and end with ;, are used in DTDs, as we'll see in Days 4 and 5.

For example, the markup < is a general entity reference that is turned into a < (less than) symbol when parsed by an
XML processor, and the general entity reference > is turned into a > (greater than) symbol when parsed by an XML
processor. You can see an example using these general entity references in Listing 2.1.

Listing 2.1 Using an Entity Reference (ch02_01.xml)

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This text is inside a <message> element.
 </message>
</document>

You can see ch02_01.xml in Internet Explorer in Figure 2.9. As you can see in the figure, the markup < was turned into
a <, and the markup > was turned into a > by the XML processor.

Figure 2.9. Using markup in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides character entity references, where a character code is replaced by the character it stands for, there are five
predefined general entity references in XML, which are used when browsers might otherwise assume that they're part
of markup to be interpreted:

<— Replaced with <

>— Replaced with >

&— Replaced with &

"— Replaced with "

'— Replaced with '

You can also create your own general entity references, which we'll do in Day 5.

When an XML processor parses your XML, it replaces general entity references like > with the entity those references
stand for, which is > in this case. Before it's parsed, text data is called character data; after it's been parsed and
general entity references have been replaced with the entities they refer to, the text data is called parsed character
data.

Using Whitespace and Ends of Lines

Spaces, carriage returns, line feeds, and tabs are all treated as whitespace in XML. That means that to an XML
processor, this XML document:

<?xml version="1.0" encoding="UTF-8"?>
<document>
<heading>
Hello From XML
</heading>
<message>
This is an XML document!
</message>
</document>

is the same as this one, in terms of content:

<?xml version="1.0" encoding="UTF-8"?>
<document>heading>Hello From XML</heading>
<message>This is an XML document!</message></document>

You can use a special attribute named xml:space in an element to indicate that you want whitespace to be preserved by
XML processors (not all XML processors will support this attribute). You can set this attribute to "default" to indicate that
the default handling of whitespace is OK for the current element and all contained elements, or "preserve" to indicate
that you want all applications to preserve whitespace as it is in the document. This is useful if the XML processor is
going to display the XML document visually:

<?xml version="1.0" encoding="UTF-8"?>
<document xml:space="preserve">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<document xml:space="preserve">
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

NOTE

When you start using JavaScript or Java code that supports the W3C Document Object Model (DOM, which
you can read about at http://www.w3.org/DOM/) to navigate through an XML document, you'll see that the
whitespace between the elements in a document also counts (it's considered a whitespace node, and to get
to a following element node, you have to navigate past whitespace nodes).

In XML 1.0, lines officially end with a linefeed character (ASCII and UTF-8 code 10—the Unix way of ending lines). In
MS DOS and some Windows programs, lines can end with a carriage return (ASCII and UTF-8 code 13) linefeed pair,
but when parsed by an XML processor, that pair (codes 13 and 10) is converted into a single linefeed (ASCII and UTF-8
code 10). In XML 1.1, which is mostly about expanding the character sets you can use, XML 1.0 was considered to
discriminate against the conventions used on IBM and IBM-compatible mainframes. That means that in XML 1.1, the
acceptable line endings that XML processors are supposed to convert to
 are expanded to include the following:

The two-character sequence 

The two-character sequence  … (… is the New Line (NEL) character in many mainframes.)

The single character …

The single character   (This is the Unicode line separator character.)

Any  character not immediately followed by
 or ….

That brings us up through the basic structure of an XML document—markup and data. Now it's time to actually start
putting markup and data to work as you start creating XML documents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Prologs
Prologs appear at the beginning of XML documents, and contain information about the rest of the document. A prolog
can contain XML declarations, XML comments (which describe the document), processing instructions, whitespace, and
doctype declarations (doctype declarations are DTDs, which we'll see in Days 4 and 5). You don't need a prolog in an
XML document for the document to be well formed. However, W3C says you should include at least an XML declaration
in all XML documents.

There's a sample prolog at the beginning of this XML document containing an XML declaration, a processing instruction,
and a DTD (which is stored in a <!DOCTYPE> element):

<?xml version = "1.0"?>
<?xml-stylesheet type="text/css" href="ch_02.css"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 .
 .
 .

The first item in a prolog should always be an XML declaration, and you'll take a look at this item next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating an XML Declaration
XML declarations tell XML processors what version of XML you're using, what character encoding the document is
written in, and so on. According to W3C, all XML documents should start with an XML declaration, which should be the
first line in an XML document. You can also have XML document fragments in some cases, which don't start with an XML
declaration, although such fragments are losing support. Here's a sample XML declaration:

<?xml version = "1.0" standalone="yes" encoding="UTF-8"?>

The XML declaration uses the <?xml?> element. In earlier drafts of XML, it was <?XML?>, but was made lowercase in the
final recommendation—it's an error to use uppercase. There are three possible attributes you can use in the XML
declaration:

version— The XML version; currently, only 1.0 or 1.1 is possible here, and most XML processors do not support
1.1 yet. This attribute is required if you use an XML declaration.

encoding— The language encoding for the document. As discussed earlier today, the default here is UTF-8. You
can also use Unicode, UCS, and many other character sets, such as ISO character sets. This attribute is
optional.

standalone— Set to "yes" if the document does not refer to any external documents or entities, "no" otherwise.
This attribute is optional.

NOTE

Theoretically, the encoding attribute in an XML declaration lets the XML processor know what character
encoding you're using, but that raises an obvious problem—to determine the character encoding, you must
be able to read the document, at least as far as the encoding attribute in the XML declaration. In practice,
XML processors sometimes scan XML documents that they can't figure out, searching for typical character
sequences when an unusual character encoding is used. W3C respects that, and is sometimes careful about
what character sequences it allows in XML to avoid confusing XML processors scanning documents to
determine character encoding.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating XML Comments
You can use comments to include explanatory and descriptive notes in a document. Comments are ignored by XML
parsers and may appear anywhere in a document outside other XML markup. XML comments look very much like HTML
comments. As in HTML, you start a comment with <!-- and end it with -->. Here's an example:

<?xml version="1.0" encoding="UTF-8"?>
 <!--Here comes the document element...-->
<document>
 <!--The next element contains a heading.-->
 <heading>
 Hello From XML
 </heading>
 <!--The next element contains the actual message.-->
 <message>
 This is an XML document!
 </message>
</document>

The text inside a comment is ignored by XML processors (unless, with some XML processors, that text includes markup,
which is sometimes mistakenly treated as markup).

You're only supposed to use comments outside markup—for example, this is not legal:

<?xml version="1.0" encoding="UTF-8"?>
<document >
 <heading <!--This is the heading element-->>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

You should not use the character sequence -- in the text of a comment, because when some XML processors see that
sequence, they assume the comment is ended. For example, don't do this:

<?xml version="1.0" encoding="UTF-8"?>
<document >
 <heading>
 Hello From XML
 </heading>
 <!--This is our--friendly--message element-->
 <message>
 This is an XML document!
 </message>
</document>

In particular, the XML 1.0 specification says that comments cannot end with the sequence --->. Also, comments cannot
come before an XML declaration (nothing can). So this usage is not legal:

<!--This document contains a message.-->
<?xml version="1.0" encoding="UTF-8"?>
<document >
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

It's also worth knowing that in most XML processors, you can use comments to exclude sections of a document from
being treated as markup. For example, here's how you might remove the <heading> element as far as an XML processor
is concerned:

<?xml version="1.0" encoding="UTF-8"?>
<document >
<!--
 <heading>
 Hello From XML
 </heading>
-->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-->
 <message>
 This is an XML document!
 </message>
</document>

As far as most XML processors are concerned, here's what the content of this XML document looks like:

<?xml version="1.0" encoding="UTF-8"?>
<document >
 <message>
 This is an XML document!
 </message>
</document>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Processing Instructions
As you can gather from their names, processing instructions are instructions to the XML processor, not general data-
handling items like elements. XML doesn't come with any processing instructions built-in; it's up to your XML processor
to support the ones it uses. For example, a common processing instruction is <?xml-stylesheet?> (supported by browsers
like Netscape Navigator and Internet Explorer), but that's not an official W3C processing instruction built into XML. In
other words, processing instructions must be understood by the XML processor, so they're processor-dependent.

Processing instructions start with <? and end with ?>. The only restriction here is that you can't use <?xml?> (or <?XML?
>, which is also reserved). We saw an example processing instruction yesterday in ch01_03.xml, where we used <?xml-
stylesheet?> to connect a CSS style sheet to that XML document:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

Keep in mind that processing instructions like this one are not built into XML, but have been agreed upon by various
browser manufacturers.

Now we've seen all that an XML prolog can contain, except for DTDs: XML declarations, comments, processing
instructions, and whitespace. Next up is the actual meat of XML documents—storing your data using tags and elements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Tags and Elements
You give structure to the data in an XML document using elements. An XML element consists of a start tag and an end
tag—except in the case of elements that are defined to be empty, which consist only of one tag—and might include
character data and/or other elements. We've already seen both tags and elements in action.

Creating Tag Names

In XML 1.0, the names you give to a tag, like "message" in the tag <message>, are tightly controlled. You can start a tag
name with a letter, an underscore, or a colon. The next characters might be letters, digits, underscores, hyphens,
periods, and colons (but no whitespace).

In XML 1.1, things have changed. Instead of saying that everything not permitted is forbidden, XML 1.1 names are
designed so that everything that is not forbidden is permitted. The idea is that because Unicode will continue to grow,
further changes to XML can be avoided by allowing almost any character, including those not yet assigned, in names.

Formally speaking, in XML 1.1 you can start a name with :, A to Z, _, a to z, or the Unicode characters À to
˿, Ͱ to #x37D;, Ϳ to ῿, ‌ to #x200D;, ⁰ to ↏, Ⰰ to ⿯,
、 to ퟿, and 豈 to . This excludes -, ., and digits. The next characters in a name may
include all the characters you can start a name with, as well as -, ., 0 to 9, ·, ̀ to ͯ, and ‿
to ⁀.

TIP

Although the XML 1.0 recommendation doesn't say so, it's best to avoid using colons in tag names,
because you use a colon when specifying namespaces in XML, as you'll see tomorrow.

For example, here are some allowable XML tags:

<DOCUMENT>
<document>
<Chapter15>
<Section-19>
<_text>

Bear in mind that tag names are case sensitive, so <PUMPKIN> is not the same as <pumpkin>, which is not the same as
<PuMpKiN>. Actually, your document can have <PUMPKIN>, <pumpkin>, and <PuMpKiN> tags at the same time, and they
would all be considered different. Here are some tags that are not legal in XML:

<2005>
<Loan Number>
<.text>
<*yay*>
<EMPLOYEE(ID)>

So far, the elements you've seen have all contained data or other elements, but elements don't need to contain any
content at all if they're empty.

Creating Empty Elements

In XML, empty elements only have one tag, not a start and end tag. You might be familiar with empty elements from
HTML; for example, the HTML , , <hr>, and
 elements are empty, which is to say that they do not enclose
any content (either character data or markup). Empty elements are represented with only one tag (in HTML, there is no
closing , , </hr>, and </br> tags).

In XML, you close an empty element with />, not just >. For example, if the <heading> element were an empty element,
it might appear like this in an XML document:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading/>
 <message>
 This is an XML document!
 </message>
</document>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</document>

Empty elements can have attributes, as in this case, where we're using an attribute named text to hold the text content
of this element:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <heading text = "Hello From XML"/>
 <message>
 This is an XML document!
 </message>
</document>

The <…/> syntax is XML's way of making sure that an XML processor isn't left searching for a nonexistent closing tag. In
fact, in XHTML, which is the derivation of HTML in XML, the , , <hr>, and
 elements are used as ,
, <hr />, and
, and HTML browsers don't have a problem with that.

Creating a Root Element

If you want your document to be well formed, it must have one element that contains all the other elements and text
data in the document—the root element, also called the document element. In our sample XML file, the document
element happens to be named <document>, although you can use any legal name.

Each well-formed XML document must contain one element that contains all the other elements, and the containing
element is called the root element. The root element is a very important part of XML documents, especially when you
look at them from an XML processor's point of view, because you parse XML documents starting with the root element.
In ch02_01.xml, developed at the start of this chapter, the root element is the <document> element (although you can
give the root element any name):

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch01_04.css"?>
<document>
 <heading>
 Hello From XML
 </heading>
 <message>
 This is an XML document!
 </message>
</document>

Creating Attributes

XML attributes, which can appear in elements, processing instructions, and XML declarations, work much like attributes
in HTML. In XML, you use them in pairs like this: attributename = "value" in opening tags. Unlike HTML, note that the
values you assign to attributes must be quoted (even if they're numbers), and that if you use an attribute, it must be
assigned a value. (Some HTML attributes, like BORDER, don't need to be assigned a value.) Using DTDs or XML
schemas, you can make an attribute required or optional—if required, you must use the attribute when you use the
corresponding element, and you must assign the attribute a value. You can also specify what values an attribute may
be assigned, if you want to.

You can see an example in Listing 2.2, where we've given each <employee> element an attribute named status, and are
assigning the text "retired", "active", and "leave" to that attribute in various places in the document.

Listing 2.2 Using Attributes in an XML Document (ch02_02.xml)

<?xml version = "1.0" standalone="yes"?>
<document>
 <employee status="retired">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </projects>
 </employee>
 <employee status="active">
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
 <employee status="leave">
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>

You can see this XML document in Internet Explorer, including the attributes and their values, in Figure 2.10.

Figure 2.10. Viewing element attributes in Internet Explorer.

Just like the data in an element, an XML processor can retrieve the values you've assigned to an element's attributes.
We'll see how to do that in both JavaScript and Java later in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'll see how to do that in both JavaScript and Java later in this book.

Attributes hold data, and elements hold data—so when should you use which? It's up to you, but practically speaking,
there are two things to take into account. The first is that you can't specify document structure using attributes. For
example, this <employee> element makes it clear what data you're storing about an employee:

<employee status="retired">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

A good rule to follow, therefore, is to use elements to structure your document, and to use attributes when you have
more information to include about a specific element, as when you want to indicate the language the enclosed text is in.
Here's an example where we're storing the standard abbreviation for U.S. English, "en-US", in an attribute:

<text language="en-US">
It was a dark and stormy night. A shot rang out!
.
.
.
</text>

Also, it's worth noting that using too many attributes can make a document hard to read, something you'll readily see if
you start converting the earlier <employee> element to use attributes rather than subelements to hold its data:

<employee status="retired">
 <name lastname="Kelly" firstname="Grace"/>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project product="Printer" id="111" price="$111.00"/>
 .
 .
 .

Naming Attributes

In XML, attribute names must follow the same rules as those for element names. That means in XML 1.0 you can start
an attribute name with a letter, an underscore, or a colon, and the next characters may be letters, digits, underscores,
hyphens, periods, and colons (but no whitespace). In XML 1.1, you follow the rules for XML 1.1 names, as discussed
earlier today.

Here are some legal attribute name examples:

<brush width="10" height="5" color="cyan"/>
<point x="10" y="100"/>
<book title="My Sweet Summer" review="Yuck!"/>
<vegetable name="broccoli" color="green"/>

Here are some attribute names that are not legal:

<fish measured length="500"/>
<friend 1stPhone="555.2222" 2ndPhone="555.3333"/>
<application .NET="yes"/>
<person name(or nick name)="sammy"/>

Assigning Values to Attributes

As noted, all data in XML documents is text, including the data you assign to attributes. Even when you assign a
number to an attribute, you treat that number as if it were text:

<constant name="pi" value="3.1415926"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<constant name="pi" value="3.1415926"/>

You can use single or double quotation marks when quoting an attribute's value. By convention, double quotation marks
are usually used, but if the value you're quoting contains double quotation marks—for example, He said, "No worries."—
you can't just surround that value with double quotation marks, because the XML processor won't understand where the
quotation begins and ends. Instead, you can use single quotation marks to begin and end the attribute's value like this:

<citation text='He said, "No worries."' />

What if the attribute value contains both single and double quotes, as when you want to say The tree was 16' 3" tall? In
this case, you can use the XML-defined general entity references for a single quotation mark, ' and for a double
quotation mark, ", like this:

<citation text="The tree was 16' 3" tall" />

The XML processor will turn this back into The tree was 16' 3" tall when it parses this text.

Specifying Language with the xml:lang Attribute

Besides xml:space, there's one more attribute that comes built into XML—xml:lang, which lets you specify the language of
a document, such as English, German, and so on. Although xml:space and xml:lang are "built into" XML, and so should be
usable with any element, some XML processors will not support these attributes.

You can set the xml:lang attribute to these values:

A two-letter language code as defined by the International Organization for Standardization (ISO) document
639:1988, "Code for the Representation of Names of Languages."

A language identifier registered with the Internet Assigned Numbers Authority (IANA) in the document "Registry
of Language Tags." See http://www.isi.edu/in-notes/iana/assignments/languages/. Such identifiers begin with
the prefix "i-" (or "I-").

A language identifier assigned by you, or for private use. Such identifiers should begin with "x-" or "X-".

Here is an example; in this case, we're specifying that the language of an element should be English, using the xml:lang
attribute and the ISO language code "en":

<p xml:lang="en">The quick brown fox jumped over the lazy dog.</p>

Besides specifying the language, you can also specify a language subcode to indicate a regional variation or dialect,
such as U.S. English. These subcodes are two characters each, and they're also defined by the International
Organization for Standardization in the document ISO 3166-1:1997, "Codes for the Representation of Names of
Countries and Their Subdivisions—Part 1: Country Codes." For example, here's how you might specify that one element
holds British English content, and one American English:

<p xml:lang="en-GB">What colour is the sky?</p>
<p xml:lang="en-US">What color is the sky?</p>

Note that xml:lang specifies the language used in both the element's content (including all text data, if you use xml:lang
in the document element), as well as an element's attribute values, as here, where we're using German in an element's
attributes:

<p farbe="weiss" xml:lang="de">
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating CDATA Sections
When an XML processor parses an XML document, it interprets the markup in that document and replaces entity
references (like the built-in general entity reference ") with whatever those entity references refer to (which is a
double quotation mark, ", for the general entity reference "). On the other hand, sometimes you might not want
text data parsed—for example, what if your text contains many < and & characters? When parsed, those characters will
be interpreted as part of the markup unless you convert them to < and &, which is called escaping them. To avoid
that, you can specify that you don't want the XML processor to parse part of your text data by placing it in a CDATA
section. CDATA stands for character data, as opposed to parsed character data, which is PCDATA.

You use the CDATA section to tell the XML processor to leave the enclosed text alone, and pass it on unchanged. You
start a CDATA section with the markup <![CDATA[and end it with]]>.

NOTE

Note that CDATA sections are read by the XML processor, but only because it searches for the ending text
]]>. Among other things, this means that you cannot include the text "]]>" inside a CDATA section—and it
also means that you cannot nest CDATA sections.

For example, suppose you are documenting how your XML application works, and want to say this:

Here's how the element starts:

 <employee status="retired">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 .
 .
 .

This partial <employee> element without a closing </employee> tag would drive an XML processor crazy, so you should
enclose this text in a CDATA section to tell the XML processor not to parse it, as you see in Listing 2.3. When an XML
processor parses this document, it is supposed to place the text in the CDATA section directly into the output it
produces, without trying to interpret that text (as well as removing the <![CDATA[and]]> markup).

Listing 2.3 Using a CDATA Section in an XML Document (ch02_03.xml)

<?xml version = "1.0" standalone="yes"?>
<document>
 <text>
 Here's how the element starts:
 <![CDATA[
 <employee status="retired">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 .
 .
 .
]]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

]]>
 </text>
</document>

You can see that Internet Explorer treats this CDATA section as unparsed text in Figure 2.11. (If it had parsed the text,
you would see an error instead of the display you see in the figure.)

Figure 2.11. Viewing a CDATA section in Internet Explorer.

Here's another example using XHTML, the version of HTML that is written in XML. XHTML pages can be parsed like other
XML documents, but that can cause problems if you've included certain characters that a scripting language like
JavaScript uses, such as the less than (<) JavaScript operator. To avoid confusing an XML processor reading an XHTML
page with this embedded JavaScript operator, you can enclose that JavaScript in a CDATA section:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>
 Checking the temperature
 </title>
 </head>

 <body>
 <script language="javascript">
 <![CDATA[
 var temperature
 temperature = 234.77
 if (temperature < 32) {
 document.writeln("Below freezing!")
 }
]]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

]]>
 </script>

 <center>
 <h1>
 Checking the temperature
 </h1>
 </center>
 </body>
</html>

Unfortunately, there's a problem here—the markup <![CDATA[and]]>, confuses HTML browsers, which means you can't
use syntax like this until those browsers are fully equipped to handle XHTML. You can, however, include JavaScript in
XHTML pages like this one if they're intended only for HTML browsers, not XML processors, by omitting the markup <!
[CDATA[and]]>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Entities
There's another type of item you can work with in XML documents—entities, which can be parsed or unparsed. An
entity simply means a data item, such as a section of text or binary data. There are various ways to use entities, or to
associate them with an XML document, as we'll be covering in the coming days, and it's appropriate to mention that
now that we're discussing the parts of an XML document.

A parsed entity is one that you refer to with an entity reference. Entity references are replaced with the entities they
refer to by the XML processor. There are two types of entity references: general entity references (starting with & and
ending with ;) and parameter entity references (used in DTDs and starting with % and ending with ;). These references,
such as one of the five predefined general entity references like ", will be replaced by the item the reference refers
to. You can also specify characters with a general entity reference using the character's Unicode code—you saw that

π is replaced by by an XML processor, for example.

You can define your own general entity references, as you're going to see in Day 5. For example, you could assign the
general entity reference ©right; the text "(c)2005 Don't copy without permission.", and from then on, whenever you use
©right; in your XML document, the XML processor will replace it with (c)2005 Don't copy without permission.

Unparsed entities can be binary data that you don't want parsed, or even non-XML text, and they're usually external to
your XML document. You don't refer to an unparsed entity with an entity reference (which the XML processor will
replace with the entity itself), but by a name. When you refer to an entity by name instead of with an explicit entity
reference, that entity will not be parsed or placed into your XML document directly. We'll see how this works in Day 5.

More on all this is coming up—for the purposes of our present discussion on the structure of XML documents, however,
what's important to note is that you can come across entity references in an XML document, and that it is possible to
associate named external data, including binary data, with an XML document.

That's it—we've covered the items that can go into an XML document now, completing today's discussion. We're ready
to start creating real XML documents now, which are well-formed documents (for an XML processor to read your
documents, they must be well-formed). We're going to turn to that tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you took a look at how to create XML documents in general. You saw various ways of writing XML to files, and
worked with a few XML editors.

You also took a look at the parts of an XML document—XML prologs, XML declarations, comments, processing
instructions, comments, processing instructions, elements, CDATA sections, and entities. You're going to get more
familiar with all these items in the days to come.

You can use XML validators to check your XML documents, and there are a number of free ones online. However, you
need a way of specifying how that document's syntax is supposed to work, such as a Document Type Definition (DTD)
or XML schema.

Most of today's work centered around the creation of XML documents and what's legal to put in them and what's not.
You'll see more details in the Days to come, but we've gotten a good foundation here.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: What's the difference between character data and parsed character data?

A1: Character data is simply verbatim text data from an XML document. Parsed character data is text data
where the XML processor has replaced any entity references with the entities themselves. Character data
is referred to as CDATA (as in CDATA sections), and parsed character data is referred to as PCDATA (as
we'll see when we create DTDs in Day 4).

Q2: My text editor says it can save documents in plain text format, but says nothing about Unicode
or UCS. Will that be OK when I write my XML documents?

A2: Yes, your text editor is most likely writing documents in ASCII, which is a subset of Unicode, which itself is
a subset of UCS. ASCII characters use the same codes in compressed Unicode, UTF-8, so you should
specify the UTF-8 encoding and an XML processor should have no trouble reading your document if you
save it as plain text.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts you saw today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work.

Quiz

1: What two character encodings are all XML processors supposed to implement?

2: If you wanted to include the text data "This is a <message> element" in an element named <message>, how
could you do it without confusing an XML processor?

3: What items can be contained in an XML prolog?

4: What three attributes can appear in an XML declaration?

5: What processing instructions are built into XML already?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 3. Creating Well-Formed XML Documents
Yesterday, you took a look at the various parts of XML documents—prologs, elements and attributes, processing
instructions, and so forth. Today, you're going to start putting those items to work as you create well-formed
documents.

Why is it so important to make an XML document well-formed? For one thing, W3C doesn't consider an XML document
to be XML unless it's well-formed. For another, XML processors won't read XML documents unless those documents are
well-formed. All of which is to say that making your XML well-formed is integral to creating XML documents—software
isn't even going to be able to read your documents unless they are. Here's an overview of today's topics:

Well-formed XML documents

The W3C Well-formedness constraints

Nesting constraints

Element and attribute constraints

Namespaces

Local and default namespaces

XML Infosets

Canonical XML

To some extent, the current loose state of HTML documents is responsible for the great emphasis W3C puts on making
sure XML documents are well-formed. HTML browsers have become more and more friendly to HTML pages as time has
gone on, which means a Web page can have dozens of errors and still be displayed by a browser. That's not such a
problem when it comes to simply displaying a Web page, but when it comes to handling what might be crucial data, it's
a different story.

So W3C changed the rules from HTML to XML—unlike an HTML browser, an XML processor is never supposed to guess
when it reads an XML document. If it finds an error (if the document is not well-formed, or if it uses a DTD or XML
schema and it's not valid), the XML processor is supposed to inform you of the error, but then it can quit immediately.
Ideally, according to W3C, a validating XML processor should list all the errors in an XML document and then quit; a
non-validating one doesn't even have to do that—it can quit the first time it sees an error.

This enforced precision has two sides to it—there's no doubt that your data is transferred more faithfully using XML, but
because XML processors make no guesses as to what you're trying to do, XML and XML processors can come across as
non-user friendly, and not as generous or as easy to work with as HTML. On the other hand, you don't end up with the
many possible errors that can creep into HTML, and that's important. XML authors have to be aware of the constraints
on what they write, which is why we spend time in this book on document well-formedness and validity. In fact, in the
XML 1.0 specification, W3C says that you can't even call a data object an XML document unless it's well-formed:

A data object is an XML document if it is well-formed, as defined in this specification. A well-formed XML
document may in addition be valid if it meets certain further constraints.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What Makes an XML Document Well-Formed?
The W3C, which is responsible for the term well-formedness, defines it this way in the XML 1.0 recommendation:

A textual object is a well-formed XML document if:

Taken as a whole, it matches the production labeled document.

It meets all the well-formedness constraints given in this specification (that is, the XML 1.0 specification,
http://www.w3.org/TR/REC-xml).

Each of the parsed entities, which is referenced directly or indirectly within the document, is well-formed.

Because the major differences between XML 1.0 and XML 1.1 have to do with what characters are legal, you probably
won't be surprised to learn that a well-formed XML 1.0 document is also a well-formed XML 1.1 document, as long as it
avoids certain characters. From the XML 1.1 specification:

If a document is well-formed or valid XML 1.0, and provided it does not contain any characters in the
range [#x7F-#x9F] other than as character escapes, it may be made well-formed or valid XML 1.1
respectively simply by changing the version number.

Let's get into three conditions that make an XML document well-formed, starting with the requirement that the
document must match the production named document.

Matching the Production Labeled document

W3C calls the individual specifications within a working draft or recommendation productions. In this case, to be well-
formed, a document must follow the document production, which means that the document itself must have three parts:

a prolog (which can be empty)

a root element (which can contain other elements)

a miscellaneous part (unlike the preceding two parts, this part is optional)

You've seen XML prologs yesterday; they can contain an XML declaration (such as <?xml version = "1.0"?>), as well as
comments, processing instructions, and doctype declarations (that is, DTDs).

You've also seen root elements; the root element is the XML element that contains all the other elements in your
document. Each well-formed XML document must have one, and only one, root element.

The optional miscellaneous part can be made up of XML comments, processing instructions, and whitespace, all items
you saw yesterday.

In other words, this first requirement says that an XML document must be made up of the parts you saw yesterday. So
far, so good.

Meeting the Well-Formedness Constraints

The next requirement is a little more difficult to track down, because it says that to be well-formed, XML documents
must also satisfy the well-formedness constraints in the XML 1.0 specification. This means that your XML documents
should adhere to the syntax rules specified in the XML 1.0 recommendation. You'll discuss those rules, which are
sprinkled throughout the XML 1.0 specification, in a few pages.

Making Parsed Entity Must Be Well-Formed

The final requirement is that each parsed entity in a well-formed document must itself be well-formed. When an XML
document is parsed by an XML processor, entity references (such as π) are replaced by the entities they stand

for (such as in this case). The requirement that all parsed entities must be well-formed simply means that when
you replace entity references with the entities they stand for, the result must be well-formed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's the W3C's definition of a well-formed document, but you still need more information. What are the well-
formedness constraints given throughout the XML specification? You're going to go over these constraints today; to
start, you'll create an XML document that you'll use as we discuss what it means for a document to be well-formed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating an Example XML Document
The sample document you'll use today, and which you'll also see tomorrow when working with DTDs, will store data
about a set of employees, such as their names, projects they're working on, and so on. This document will start, as all
XML documents should, with an XML declaration:

<?xml version = "1.0"?>

Because all the documents you'll see today are self-contained (they don't refer to or include any external entities),
you'll also add the standalone attribute, setting it to "yes", and specify that we're using UTF-8 encoding:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>

And you'll also add a root element, called <document> in this case, although you can use any legal name:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 .
 .
 .
</document>

The root element will contain all the other elements in the document. In this case, that will be three <employee>
elements:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 .
 .
 .
 </employee>
 <employee>
 .
 .
 .
 </employee>
 <employee>
 .
 .
 .
 </employee>
</document>

For each employee, we can store a name in a <name> element, which itself encloses a <lastname> and <firstname>
element:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 .
 .
 .
 </employee>
 .
 .
 .
</document>

We'll also store each employee's hire date, as well as the projects they're working on. For each project, we can store
the product name, ID, and price:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

That's what the data looks like for one employee; you can see the full document, ch03_01.xml, in Listing 3.1. Documents
like this one can grow very long, but that presents no problem to XML processors—as long as the document is well-
formed.

Listing 3.1 Sample Well-Formed XML Document (ch03_01.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>

Today's work gets us into the structure of XML documents, and there's some terminology we should get to know at this
point having to do with the relative position of elements in an XML document. As an example, take a look at an
employee element in ch03_01.xml.

Elements on the same level, such as <name>, <hiredate>, and <projects> in an <employee> element, are all called
siblings. Similarly, the two <project> elements in each <projects> element are siblings.

This family-type relationship is also continued with child and parent relationships. For example, the parent of the two
<project> elements is the <projects> element. And the two <project> elements are children of the <projects> element.

You can always count on every non-root element to have exactly one, and only one, parent element. And a parent
element can enclose an indefinite number of child elements (which can also mean zero child elements). You can
continue the analogy to multiple generations as well; for example, the two <project> elements in this case are also
grandchildren of the <employee> element.

That gives us the example document and terminology we'll need; now let's take a look at the well-formedness
constraints you'll find in XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Understanding the Well-Formedness Constraints
The well-formedness constraints in the XML 1.0 specification are sprinkled throughout the document, and some of them
are hard to dig out because they're not clearly marked. You'll get a look at the well-formedness constraints here,
although note that some of them have to do with DTDs and entity references, and those will appear in Day 4, "Creating
Valid XML Documents: Document Type Definitions," and Day 5, "Handling Attributes and Entities in DTDs."

Beginning the Document with an XML Declaration

The first well-formedness structure constraint is to start the document with an XML declaration. Even though some XML
processors won't insist on it, W3C says you should always include this declaration first thing:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 .
 .
 .

TIP

Although the XML 1.0 specification says that only the version attribute is required here, some software—
notably including W3C's own Amaya testbed browser—will consider XML documents as not well-formed if
you don't also include the encoding attribute.

Using Only Legal Character References

Another well-formedness constraint is that character references, which are character codes enclosed in & and ;, and
which are replaced by the characters that code stands for, must only refer to characters supported by the XML
specification.

This constraint is more or less obvious—it simply means that you have to stick to the established character set for the
version of XML you're using. Note that, as you saw yesterday, the characters that are legal in XML 1.0 differ somewhat
from what's legal in XML 1.1.

Including at Least One Element

To be a well-formed document, a document must include one or more elements. The first element, of course, is the
root element, so to be well-formed, a document must contain at least a root element. In other words, an XML document
must contain more than just a prolog. Of course, your documents will usually contain many elements, as in our example
document:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 .
 .
 .
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</document>

Structuring Elements Correctly

HTML browsers are pretty easygoing about how you structure HTML elements in a Web page as long as they can
understand what you're doing. For example, you can often omit closing tags in elements—you might use a <p> tag and
then follow it with another <p> tag—without using a </p> tag—and the browser will have no problem.

That's not the way things work in XML. In XML, every non-empty element must have both a start tag and an end tag,
as in our example document:

<employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
</employee>

Besides making sure that every non-empty element has an opening tag and a closing tag, another well-formedness
constraint says that end tags must match start tags, and both must use the same name.

Some elements—empty elements—don't have closing tags. These tags have no content of any kind (although they can
have attributes), which means that they do not enclose any character data or markup. Instead, these elements are
made up entirely of one tag like this:

<?xml version = "1.0" standalone="yes"?>
<document>
 <heading text = "Hello From XML"/>
</document>

In XML, empty elements must always end with />.

TIP

HTML elements can also be ended with />, such as
, and HTML browsers will not have a problem with
them. That's good, because the alternative is to write
</BR>, which some browsers, such as Netscape
Navigator, interpret as two
 elements.

Using the Root Element to Contain All Other Elements

Another well-formedness constraint is that the root element must contain all the other elements in the document, as in
our sample XML document, where we have three <employee> elements, which themselves contain other elements, in
the document element:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<document>
 <employee>
 .
 .
 .
 </employee>
 <employee>
 .
 .
 .
 </employee>
 <employee>
 .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .
 .
 .
 </employee>
</document>

That's how a well-formed XML document works—you start with a prolog, followed by the root element, which contains
all the other the elements, if there are any. Among other things, containing all elements in a root element makes it
easier for an XML processor to understand the structure of an XML document—starting at the single root element, it can
navigate the entire document.

Nesting Elements Properly

Nesting elements correctly is a big part of well-formedness; the requirement here is that if an element contains a start
tag for a non-empty tag, it must also contain that element's end tag. In other words, you cannot spread an element
over other elements at the same level. For example, this XML is nested properly:

<employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

But as you can see, there's a nesting problem in this next element, because an XML processor will encounter a new
<project> tag before finding the closing </project> tag it's looking for at the end of the current <project> element:

<employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 <project>
 </project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

In fact, this nesting requirement is where the whole term well-formed comes from—the original idea was that a
document where the elements were not garbled and mixed up with each other was well-formed.

There are other well-formedness constraints that have nothing to do with elements, however—for example, the next
two concern attributes.

Making Attribute Names Unique

Another well-formedness constraint is that you can't use the same attribute more than once in one start-tag or empty-
element tag. This is another well-formedness constraint that seems more or less obvious, and it's hard to see how you
might violate this one except by mistake, as in this case:

<message text="Hi there!" text="Hello!">

XML is case sensitive, so you could theoretically do something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML is case sensitive, so you could theoretically do something like this:

<message Text="Hi there!" text="Hello!">

Obviously, that's not a very good idea, however; attribute names that differ only in capitalization are bound to be
confusing.

Enclose Attribute Values in Quotation Marks

One well-formedness constraint that trips up most XML novices sooner or later is that you must quote every value you
assign to an attribute, using either single quotation marks or double quotation marks. This trips many people up
because you don't have to quote attribute values in HTML, as in this HTML example (which also doesn't have a closing
tag):

An XML processor would have problems with this element, however. Here's what it would look like properly
constructed:

If you prefer, you could use single quotation marks:

As you've seen, using single quotation marks helps when an attribute's value contains quoted text:

<message text='I said, "No, no, no!"' />

And as you've also seen, in worst-case scenarios, where an attribute value contains both single and double quotation
marks, you can escape " as " and ' as '—as here, where you're reporting the height of a tree as 50' 6" :

<tree type="Maple" height="50'6"" />

Avoiding Entity References and < in Attribute Values

Also, W3C makes it an explicit well-formedness constraint that you should avoid references to external entities (this
means XML-style references—general entity references or parameter entity references, not just, for example, using an
image file's name) in attribute values. This means that an XML processor doesn't have to replace an attribute value with
the contents of an external entity.

In addition, another constraint says that you are not supposed to use < in attribute values, because an XML processor
might mistake it for markup. If you really have to use the text <, use < instead, which will be turned into < when
parsed. For example, this XML:

<project note="This is a <project> element.">

should be written as this, where you're escaping both < and >:

<project note="This is a <project> element.">

In fact, < is a particularly sensitive character to use anywhere in an XML document, except as markup, and that's
another well-formedness constraint concerning <, coming up next.

Avoiding Overuse of < and &

XML processors assume that < starts a tag and & starts an entity reference, so you should avoid using those characters
for anything else. Sometimes, this is a problem, as in the JavaScript example you saw yesterday, which uses the
JavaScript < operator that enclosed in a CDATA section:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>
 Checking the temperature
 </title>
 </head>

 <body>
 <script language="javascript">
 <![CDATA[
 var temperature
 temperature = 234.77
 if (temperature < 32) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (temperature < 32) {
 document.writeln("Below freezing!")
 }
]]>
 </script>

 <center>
 <h1>
 Checking the temperature
 </h1>
 </center>
 </body>
</html>

However, because modern Web browsers don't understand CDATA sections, this solution (which was suggested by
W3C) doesn't really work. And if you escape the > operator as <, very few browsers will understand what you're
doing.

There are two main ways of handling the < JavaScript operator in XML with today's browsers. You can reverse the
logical sense of the test—for example, in this case, instead of checking whether the temperature is below 32, you would
check to make sure it isn't above or equal to 32, which lets you use > instead of < (note that the JavaScript ! operator,
the Not operator, reverses the logical sense of an expression) :

<script language="javascript">
 var temperature
 temperature = 234.77
 if (!(temperature >= 32)) {
 document.writeln("Below freezing!")
 }
</script>

Practically speaking, the best way is usually to remove the whole problem by placing the script code in an external file,
which you'll name script.js here, so the browser won't parse it as XML in the first place. You can do that like this in
JavaScript (more on JavaScript and how to use it in XML is coming up in Day 15, "Using JavaScript and XML"):

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>
 Checking the temperature
 </title>
 </head>

 <body>
 <script language="javascript" src="script.js">
 </script>
 <center>
 <h1>
 Checking the temperature
 </h1>
 </center>
 </body>
</html>

That completes today's discussion of well-formedness, although you'll see more in the next two days as we discuss the
well-formedness constraints that have to do with DTDs.

As your XML documents evolve and become more complex, it's also going to be increasingly important to understand
namespaces, which are the second major topic for today.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XML Namespaces
There's a lot of freedom in XML, because you get to create your own markup. As time went on, however, XML authors
started noticing a problem that the original creators of XML hadn't really anticipated—conflicting tag names.

For example, you've already seen that two popular XML applications are XHTML, which is the derivation of HTML in XML,
and MathML, which lets you format and display math equations. Suppose that you want to display an equation in an
XHTML Web page. That could be a problem, because because the tag set in XHTML and MathML overlap—in particular,
each XML application defines a <var> and <select> element.

The way to solve this problem is to use namespaces. Namespaces give you a way to make sure that one set of tags will
not conflict with another. You prefix a name to tag and attribute names. Changing the resulting names won't conflict
with others that have a different prefix.

XML namespaces are one of those XML companion recommendations that keep being added to the XML specification.
You can find the specification for namespaces at http://www.w3.org/TR/REC-xml-names/. There's still a lot of debate
about this one (mostly because namespaces can make writing DTDs difficult), but it's an official W3C recommendation
now.

Creating Namespaces

An example will make namespaces and why they're important clearer. For example, suppose you're the boss of one of
the employees in our sample document, ch03_01.xml:

<employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

Now suppose that you want to add your own comments to this employee's data in a <comment> element. The problem
with that is that the XML data on this employee comes from the Human Resources department, and they haven't
created an element named <comment>. You can indeed create your own <comment> element, but first you should
confine the human resource's department's XML data to its own namespace to indicate that your comments are not part
of the Human Resource Department's set of XML tags.

To define a new namespace, use the xmlns:prefix attribute, where prefix is the prefix you want to use for the namespace.
In this case, you'll define a new namespace called hr for the Human Resources department:

<employee>
 xmlns:hr="http://www.superduperbigco.com/human_resources">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</employee>

To define a namespace, you assign the xmlns:prefix attribute to a unique identifier, which in XML is usually a URI that
might direct the XML processor to a DTD for the namespace (but doesn't have to). So what's a URI?

Defining Namespaces with URIs

The XML specification expands the idea of standard URLs (Uniform Resource Locators) into URIs (Uniform Resource
Identifiers). In HTML and on the Web, you use URLs; in XML, you use URIs. URIs are supposed to be more general than
URLs, as we'll see when we discuss XLinks and XPointers in Day 14, "Handling XLinks, XPointers, and XForms."

For example, in theory, a URI can point not just to a single resource, but to a cluster of resources, or to arcs of
resources along a path. The truth is that the whole idea of URIs as the next step after URLs is still being developed, and
in practice, URLs are almost invariably used in XML—but you still call them URIs. Some software accepts more general
forms of URIs, letting you, for example, access only a specific section of an XML document, but such usage and the
associated syntax is far from standardized yet.

TIP

You might want to look up the current formal definition of URIs, which you can find in its entirety at
http://www.ics.uci.edu/pub/ietf/uri/rfc2396.txt.

When you define a namespace with the xmlns:prefix attribute, you usually assign a URI to that attribute (in practice, this
URI is always a URL today). The document that URI points to can describe more about the namespace you're creating;
an example of this is the XHTML namespace, which uses the namespace http://www.w3.org/1999/xhtml:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:xhtml="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 .
 .
 .

A namespace's URI can also hold a DTD or XML schema that defines the syntax for the XML elements you can use in
that namespace (then it's up to the XML processor to use that DTD or XML schema, if it's been written to be smart
enough to interpret namespaces in this way—most aren't). All that's really necessary, however, is that you assign a
unique identifier, which can be any text, to the xmlns:prefix attribute.

After defining the hr namespace in our example, you can preface every tag and attribute name in this namespace with
hr: like this:

<hr:employee
 xmlns:hr="http://www.superduperbigco.com/human_resources">
 <hr:name>
 <hr:lastname>Kelly</hr:lastname>
 <hr:firstname>Grace</hr:firstname>
 </hr:name>
 <hr:hiredate>October 15, 2005</hr:hiredate>
 <hr:projects>
 <hr:project>
 <hr:product>Printer</hr:product>
 <hr:id>111</hr:id>
 <hr:price>$111.00</hr:price>
 </hr:project>
 <hr:project>
 <hr:product>Laptop</hr:product>
 <hr:id>222</hr:id>
 <hr:price>$989.00</hr:price>
 </hr:project>
 </hr:projects>
</hr:employee>

Now you've made it clear that all these tags come from the Human Resources department. Note how this works—the
actual tag names themselves have been changed, because a colon is a legal character to use in tag names. (Now you
know why you shouldn't use colons in tag names, although they're legal—they can make it look like you're using
namespaces when you're not.) For example, the <product> tag has now become the <hr:product> tag. In other words,
using namespaces keeps elements separate by actually changing tag and attribute names. This was a clever solution to
the problem of tag and attribute name conflicts, because this way, even XML processors that have never heard of
namespaces can still "support" them.

At this point, all tag and attribute names from the hr namespace are in their own namespace, so you can add your own

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, all tag and attribute names from the hr namespace are in their own namespace, so you can add your own
namespace to the document, allowing you to use your own elements without fear of conflict. Since you're the boss, you
might start by defining a new namespace named boss:

<hr:employee
 xmlns:hr="http://www.superduperbigco.com/human_resources"
 xmlns:boss="http://www.superduperbigco.com/big_boss">
 <hr:name>
 <hr:lastname>Kelly</hr:lastname>
 <hr:firstname>Grace</hr:firstname>
 </hr:name>
 <hr:hiredate>October 15, 2005</hr:hiredate>
 <hr:projects>
 <hr:project>
 <hr:product>Printer</hr:product>
 <hr:id>111</hr:id>
 <hr:price>$111.00</hr:price>
 </hr:project>
 <hr:project>
 <hr:product>Laptop</hr:product>
 <hr:id>222</hr:id>
 <hr:price>$989.00</hr:price>
 </hr:project>
 </hr:projects>
</hr:employee>

Now you can use the new boss namespace to add your own markup to the document, as you see in Listing 3.2.

Listing 3.2 XML Document with Namespaces (ch03_02.xml)

<hr:employee
 xmlns:hr="http://www.superduperbigco.com/human_resources"
 xmlns:boss="http://www.superduperbigco.com/big_boss">
 <hr:name>
 <hr:lastname>Kelly</hr:lastname>
 <hr:firstname>Grace</hr:firstname>
 </hr:name>
 <hr:hiredate>October 15, 2005</hr:hiredate>
 <boss:comment>Needs much supervision.</boss:comment>
 <hr:projects>
 <hr:project>
 <hr:product>Printer</hr:product>
 <hr:id>111</hr:id>
 <hr:price>$111.00</hr:price>
 </hr:project>
 <hr:project>
 <hr:product>Laptop</hr:product>
 <hr:id>222</hr:id>
 <hr:price>$989.00</hr:price>
 </hr:project>
 </hr:projects>
</hr:employee>

You can also add your own attributes in the boss namespace as long as you prefix them with boss: this way:

<hr:employee>
 xmlns:hr="http://www.superduperbigco.com/human_resources"
 xmlns:boss="http://www.superduperbigco.com/big_boss">
 <hr:name>
 <hr:lastname>Kelly</hr:lastname>
 <hr:firstname>Grace</hr:firstname>
 </hr:name>
 <hr:hiredate>October 15, 2005</hr:hiredate>
 <boss:comment boss:date="10/15/2006">
 Needs much supervision.
 </boss:comment>
 <hr:projects>
 <hr:project>
 <hr:product>Printer</hr:product>
 <hr:id>111</hr:id>
 <hr:price>$111.00</hr:price>
 </hr:project>
 <hr:project>
 <hr:product>Laptop</hr:product>
 <hr:id>222</hr:id>
 <hr:price>$989.00</hr:price>
 </hr:project>
 </hr:projects>
</hr:employee>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</hr:employee>

And that's how namespaces work—you can use them to separate tags, even tags with the same name, so there's no
conflict. As you can see, using multiple namespaces in the same document is no problem at all—just use the xmlns:prefix
attribute in the enclosing element to define the appropriate namespace. In fact, you can use this attribute attribute in
child elements to redefine an enclosing namespace, if you want to.

Namespace prefixes are really just text prefixed to (prepended is the offical term) tag and attribute names. They follow
the same rules for naming tags and attributes. For example, in XML 1.0, a namespace name can start with a letter or
an underscore. The following characters can include underscores, letters, digits, hyphens, and periods. Note also that
although colons are legal in tag names, you can't use a colon in a namespace name, for obvious reasons. Also, there
are two namespace names that are reserved: xml and xmlns.

Creating Local Namespaces

The xmlns:prefix attribute can be used in any element, not just the document element. Just bear in mind that this
attribute defines a namespace for the current element and any enclosed element, which means you shouldn't use the
namespace prefix until you've defined the namespace with an attribute like xmlns:prefix.

For example, you can create the boss: namespace prefix and use it in the same element, as you see in Listing 3.3.

Listing 3.3 XML Document with a Local Namespaces (ch03_03.xml)

<hr:employee
 xmlns:hr="http://www.superduperbigco.com/human_resources">
 <hr:name>
 <hr:lastname>Kelly</hr:lastname>
 <hr:firstname>Grace</hr:firstname>
 </hr:name>
 <hr:hiredate>October 15, 2005</hr:hiredate>
 <boss:comment
 xmlns:boss="http://www.superduperbigco.com/big_boss"
 boss:date="10/15/2006">
 Needs much supervision.
 </boss:comment>
 <hr:projects>
 <hr:project>
 <hr:product>Printer</hr:product>
 <hr:id>111</hr:id>
 <hr:price>$111.00</hr:price>
 </hr:project>
 <hr:project>
 <hr:product>Laptop</hr:product>
 <hr:id>222</hr:id>
 <hr:price>$989.00</hr:price>
 </hr:project>
 </hr:projects>
</hr:employee>

You can see ch03_03.xml in the Internet Explorer, complete with namespaces, in Figure 3.1.

Figure 3.1. Viewing an XML document with local namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Default Namespaces

You can use the xmlns:prefix attribute to define a namespace, or you can use the xmlns attribute by itself to define a
default namespace. When you define a default namespace, elements and attributes without a namespace prefix are in
that default namespace.

To see how this works, we'll come full circle and put to work the example that introduced our discussion of namespaces
in the first place—mixing XHTML with MathML. We'll start with some XHTML (all the details on XHTML are coming up in
Day 11, "Extending HTML with XHTML," and Day 12, "Putting XHTML to Work"), like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>
 Using XHTML and MathML Together
 </title>
 </head>

 <body>
 <center>
 <h1>
 Using XHTML and MathML Together
 </h1>
 </center>

 Consider the equation
 .
 .
 .
 </body>
</html>

You'll see what you need to create XHTML documents like this, such as the <!DOCTYPE> element, in Day 11. Note in
particular here that in the <html> element, the xmlns attribute defines a default namespace for the <html> and all
enclosed elements. (This namespace is the XHTML namespace, which W3C defines as "http://www.w3.org/1999/xhtml".)
When you use the xmlns attribute alone this way, without specifying any prefix, you are defining a default namespace.
The current element and all child elements are assumed to belong to that namespace. Making use of a default
namespace in this way, you can use the standard XHTML tag names without any prefix, as you see here.

However, we also want to use MathML markup in this document, and to do that, we add a new namespace, named m to
this document, using the namespace W3C has specified for MathML, "http://www.w3.org/1998/Math/MathML":

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
 xmlns:m="http://www.w3.org/1998/Math/MathML">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
 <title>
 Using XHTML and MathML Together
 </title>
 </head>

 <body>
 <center>
 <h1>
 Using XHTML and MathML Together
 </h1>
 </center>

 Consider the equation
 .
 .
 .
 </body>
</html>

Now you can use MathML as you like, as long as you prefix it with the m namespace. You can see this at work in
ch03_04.html (XHTML documents use the extension .html), shown in Listing 3.4, where we're using the MathML we
developed in Day 1 to display an equation.

Listing 3.4 An XML Document Combining XHTML and MathML (ch03_04.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"
 xmlns:m="http://www.w3.org/1998/Math/MathML">
 <head>
 <title>
 Using XHTML and MathML Together
 </title>
 </head>

 <body>
 <center>
 <h1>
 Using XHTML and MathML Together
 </h1>
 </center>

 Consider the equation
 <m:math>
 <m:mrow>
 <m:mrow>
 <m:mn>4</m:mn>
 <m:mo>⁢</m:mo>
 <m:msup>
 <m:mi>x</m:mi>
 <m:mn>2</m:mn>
 </m:msup>
 <m:mo>-</m:mo>
 <m:mrow>
 <m:mn>5</m:mn>
 <m:mo>⁢</m:mo>
 <m:mi>x</m:mi>
 </m:mrow>
 <m:mo>+</m:mo>
 <m:mn>6</m:mn>
 </m:mrow>
 <m:mo>=</m:mo>
 <m:mn>0.</m:mn>
 </m:mrow>
 </m:math>

 What, you may ask, are this equation's roots?
 </body>
</html>

Thanks to namespaces, this XHTML/MathML document works just as it should, as you can see in the W3C Amaya
browser in Figure 3.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.2. Viewing an XML document with local namespaces.

You'll be seeing XML namespaces throughout this book, especially when we use the popular XML applications available,
such as XHTML.

That finishes the main topics for today's discussion—well-formed documents and namespaces. Before getting into
validation in tomorrow's work, however, we'll round off our discussion of XML documents by taking a look at XML
infosets and canonical XML. These two topics are worth discussing before we start talking about validation, because
they're terms you'll run across as you work with XML, but we're going to consider them optional topics—if you want to
skip them and get directly to DTDs, just turn to Day 4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Understanding XML Infosets
The inspiration behind both XML infosets (formally named XML information sets) and canonical XML is to make handling
the data in XML documents easier. Reducing an XML document down to its infoset is intended to make comparisons
between all kinds of XML documents easier by presenting the data in those documents in a standard way. You can find
the official XML Information Set specification at http://www.w3.org/TR/xml-infoset.

To understand what infosets are and what they're used for, imagine searching for data on the World Wide Web. You
might want to search for a particular topic, such as XML, and you would turn up millions of matches. How could you
possibly write software to compare those documents? The data in those documents isn't stored in any way that's
directly comparable.

That's where infosets come in, because the idea is to regularize how data is stored in an XML document that, ultimately,
is designed to let you work with thousands of such documents. The idea behind infosets is to set up an abstract way of
looking at an XML document that allows it to be compared to others. (Note that documents need to be well-formed to
have an infoset.)

An XML infoset can contain fifteen different types of information items:

A document information item

Element information items

Attribute information items

Processing instruction information items

Reference to skipped entity information items

Character information items

Comment information items

A document type declaration information item

Entity information items

Notation information items

Entity start marker information items

Entity end marker information items

CDATA start marker information items

CDATA end marker information items

Namespace declaration information items

So what software works with infosets? None, really—infosets are primarily theoretical constructs, and the infoset
specification is mostly designed to provide a set of definitions that other XML specifications can use when they need to
refer to the information in an XML document. Although the term infoset has entered common usage as a way to refer to
the information in an XML document, it's not a specific enough specification to allow any real implementation. The
closest you can come these days to truly regularizing the data in XML documents to make it easy to compare them is to
use canonical XML, coming up next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Understanding Canonical XML
Infosets are only abstract formulations of the information in an XML document. So without reducing an XML document
to its infoset, how can you actually approach the goal of being able to actually compare XML documents character by
character? You can write your documents in canonical XML.

TIP

You can find a canonical XML tutorial at www.xfront.com/canonical/CanonicalXML.html.

Canonical XML is a companion specification to XML, and you can read all about it at http://www.w3.org/TR/xml-c14n.
Canonical XML is a very strict XML syntax, which lets documents in canonical XML be compared directly.

Using this strict syntax makes it easier to see whether two XML documents are the same. For example, a section of text
in one document might read Black & White, whereas the same section of text might read Black & White in another
document, and even <![CDATA[Black & White]]> in another. If you compare those three documents byte by byte, they'll
be different. But if you write them all in canonical XML, which specifies every aspect of the syntax you can use, these
three documents would all have the same version of this text (which would be Black & White) and could be compared
without problem.

As you might imagine, the canonical XML syntax is very strict; for example, canonical XML uses UTF-8 character
encoding only, carriage-return linefeed pairs are replaced with linefeeds (that is,
), tabs in CDATA sections are
replaced by spaces, all entity references must be expanded, and much more, as specified in
http://www.w3.org/TR/xml-c14n.

TIP

In their canonical form, documents can be compared directly, and any differences will be readily apparent.
Because canonical XML is intended to be byte-by-byte correct, it's often a good idea to use software to
convert your XML documents to that form. One such package that will convert valid XML documents to
canonical form comes with the XML for Java software that you can get free from IBM's AlphaWorks
(http://www.alphaworks.ibm.com/tech/xml4j). The actual program is named DOMWriter, and it's part of
the XML for Java package.

That completes today's discussion on constructing XML documents. We've covered everything we need to know before
we start discussing how to create valid XML documents—and we're going to start doing that tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you took a look at how to create well-formed XML documents. W3C doesn't even consider an XML document to
be XML unless it's well-formed. W3C considers an XML document well-formed if it meets three criteria:

Taken as a whole, it matches the production labeled document.

It meets all the well-formedness constraints given in this specification (that is, the XML 1.0 specification,
http://www.w3.org/TR/REC-xml).

Each of the parsed entities, which is referenced directly or indirectly within the document, is well-formed.

The most general of these items says that an XML document must meet the well-formedness constraints in the XML
specification, and you took a look today at what that meant.

Those constraints include beginning a document with an XML declaration, using only legal character references, the
document must include at least one element, elements must be structured and nested correctly, the root element must
contain all other elements, attribute names must be unique, attribute values must be quoted, and so on.

You also took a look at creating namespaces, and how namespaces help you avoid conflicts in XML. To define a
namespace, you can assign the xmlns:prefix attribute to a unique identifier (usually a URI), or you can use the xmlns
attribute to define a default namespace.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can I use an XML validator to test an XML document's well-formedness?

A1: Yes, if you have a DTD or XML schema for the document—an XML validator will also report whether the
document is well-formed or not. However, you do need a DTD or XML schema if you want to use a
validator—very few will check a document without one. One program that will check an XML document's
well-formedness without a DTD or XML schema is Internet Explorer. If the document is not well-formed,
you'll see the message "The XML page cannot be displayed", and Internet Explorer will tell you the exact
problem with the document.

Q2: Do I need to use namespaces if there's no chance of tag name conflicts with other XML
applications?

A2: Often, yes. Namespaces aren't used solely to avoid tag (and attribute) name conflicts—using a namespace
also indicates to an XML processor what XML application you're using. For example, if you're using
MathML, you must use the current MathML namespace or most MathML-enabled XML processors will
complain.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts you saw today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work.

Quiz

1: To be well-formed, what's the least number of elements an XML document can contain?

2: Why is the following XML document not well-formed?

<?xml version = "1.0" standalone="yes"?>
<employee>
 <name>Frank</name>
 <position>Chef</position>
</employee>
<employee>
 <name>Ronnie</name>
 <position>Chef</position>
</employee>

3: Why is the following XML document not well-formed?

<?xml version = "1.0" standalone="yes"?>
<employee>
 <kitchen_staff/>
 <name language=en>Frank</name>
 <new_hire />
 <position language=en>Chef</position>
</employee>

4: How can you create a namespace named service whose URI is http://www.superduperbigco.com/customer_service?

5: How could you set the default namespace in a set of XML elements to the URI
http://www.superduperbigco.com/customer_returns?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 4. Creating Valid XML Documents: DTDs
The past couple days have prepared you for what's coming up now—the creation of valid XML documents. Unlike with
HTML, where a browser can check HTML because it knows all about legal HTML, you create your own markup in XML,
which means that an XML processor can't check your markup unless you let it know how to. In XML, you define what's
legal and what's not by specifying the syntax you're going to allow for an XML document. There are two ways to
validate XML documents—with document type definitions (DTDs) and with XML schemas. Today and tomorrow cover
DTDs, and Days 6, "Creating Valid XML Documents: XML Schemas," and 7, "Creating Your Own Types in XML
Schemas," cover XML schemas.

Here's an overview of today's topics:

Creating DTDs

Using validators

Declaring elements

Using ANY to allow any content

Declaring child elements

Declaring parsed character data

Creating child sequences

Using DTD choices

Using internal and external DTDs

Using DTDs and namespaces

DTDs provided the original way to validate XML documents, and the syntax for DTDs is built right in to the XML 1.0
specification. Tons of XML processors out there use DTDs in XML documents, and DTDs are the first step in any
discussion on validation. But it's also true that DTDs are limited compared to XML schemas, and with the vast support
Microsoft is pouring into XML schemas, schemas are really taking off these days. The details on schemas are provided
on Days 6 and 7.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

All About DTDs
Yesterday we discussed creating well-formed XML documents, and while an XML document needs to be well-formed to
be considered a true XML document, that's only part of the story. In real life, we also need to give an XML processor
some way of checking the syntax (also called the grammar) of an XML document to make sure the data remains intact.
For example, take a look at the XML document you created yesterday that contains data about employees:

<?xml version = "1.0" standalone="yes"?>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

Say we've expanded to 5,000 employees, and that we have a team of typists typing in all that employee data. The
likelihood is high that there are going to be errors in all that data entry. But how will an XML processor know that a
<project> element must contain at least one <product> element unless we tell it so? How do we tell an XML processor
that each <employee> element must contain one <name> element? To do this and more, we can use a DTD. DTDs are all
about specifying the structure of an XML document, not the data in that document. The formal rules for DTDs are
available in the XML 1.0 recommendation, http://www.w3.org/TR/REC-xml. (Note that the XML 1.1 candidate
recommendation has nothing to add about DTDs as of this writing.)

We define the syntax of an XML document by using a DTD, and we declare that definition in a document by using a
document type declaration. We can use a <!DOCTYPE> element to create a DTD, and the DTD appears in that element.
The element can take many different forms, including the following (where URI is the URI of a DTD outside the current
XML document and rootname is the name of the root element) :

<!DOCTYPE rootname [DTD]>

<!DOCTYPE rootname SYSTEM URI>

<!DOCTYPE rootname SYSTEM URI [DTD]>

<!DOCTYPE rootname PUBLIC identifier URI>

<!DOCTYPE rootname PUBLIC identifier URI [DTD]>

To use a DTD, we need a DTD, which means we need a <!DOCTYPE> element. The <!DOCTYPE> element is part of a
document's prolog. For example, here's how we would add a <!DOCTYPE> element to the employees example:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
 .
 .
 <!-- DTD goes here! -->
 .
 .
]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

So what does a DTD look like? The actual XML syntax for DTDs is pretty terse, so today's discussion is dedicated to
unraveling that terseness. To get started, Listing 4.1 shows a full <!DOCTYPE> element that contains a DTD for the
employee document. We're going to dissect that DTD today.

Listing 4.1 A Sample XML Document with a DTD (ch04_01.xml)

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
] >
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Validating a Document by Using a DTD
Before you create DTDs of the kind shown in ch04_01.xml (refer to Listing 4.1), let's take a look at how to use DTDs to
check an XML document's validity by using an XML validator. We discussed and used XML validators on Day 1,
"Welcome to XML," and that discussion provides a list of online XML validators that make use of DTDs. One of the
easiest to use is the Scholarly Technology Group's XML validator at Brown University,
http://www.stg.brown.edu/service/xmlvalid; although it's online, it lets you browse to XML documents on your hard
drive to check them. Figure 4.1 shows the results of validating today's first DTD example, ch04_01.xml; as we can see,
the document validates correctly.

Figure 4.1. Validating an XML document by using a DTD.

On the other hand, say that our data-entry team made a mistake and someone typed <nane> instead of <name> in an
element:

<document>
 <employee>
 <nane>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .

This error would not be easy to catch if you were trying to check all 5,000 employee records by eye, but it's no problem
at all for an XML validator. Figure 4.2 shows how the Scholarly Technology Group's XML validator catches this error and
others.

Figure 4.2. Catching an error in an XML document by using a DTD.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.2. Catching an error in an XML document by using a DTD.

TIP

Can a browser such as Internet Explorer use DTDs to validate XML documents? Yes, but not by default. By
default, Internet Explorer can use XML schemas and displays the results when loading a document. But if
we want to validate by using DTDs in Internet Explorer, we can only check whether the validation went well
by using a scripting language such as JavaScript. Day 15, "Using JavaScript and XML," describes how to
handle DTDs in Internet Explorer.

Let's start creating DTDs like the one shown in ch04_01.xml. You've seen that a DTD goes in a <!DOCTYPE> element, but
what does the actual DTD itself look like? The first step in creating that DTD is to declare the elements that appear in
the XML document, as described in the following section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Element Content Models
To declare the syntax of an element in a DTD, we use the <!ELEMENT> element like this: <!ELEMENT name
content_model>. In this syntax, name is the name of the element we're declaring and content_model is the content model
of the element. A content model indicates what content the element is allowed to have—for example, you can allow
child elements or text data, or you can make the element empty by using the EMPTY keyword, or you can allow any
content by using the ANY keyword, as you'll soon see. Here's how to declare the <document> element in ch04_01.xml:

<!DOCTYPE document [
<!ELEMENT document (employee)*>
 .
 .
 .
]>

This <!ELEMENT> element not only declares the <document> element, but it also says that the <document> element may
contain <employee> elements. When you declare an element in this way, you also specify what contents that element
can legally contain; the syntax for doing that is a little involved. The following sections dissect that syntax, taking a look
at how to specify the content model of elements, starting with the least restrictive content model of all—ANY, which
allows any content at all.

Handling Any Content

If you give an element the content model ANY, that element can contain any content, which means any elements and/or
any character data. What this really means is that you're turning off validation for this element because the contents of
elements with the content model ANY are not even checked. Here's how to specify the content model ANY for an
element named <document>:

<!DOCTYPE document [
<!ELEMENT document ANY>
 .
 .
 .
]>

As far as the XML validator is concerned, this just turns off validation for the <document> element. It's usually not a
good idea to turn off validation, but you might want to turn off validation for specific elements, for example, if you want
to debug a DTD that's not working. It's usually far preferable to actually list the contents you want to allow in an
element, such as any possible child elements the element can contain.

Specifying Child Elements

You can specify what child elements an element can contain in that element's content model. For example, you can
specify that an element can contain another element by explicitly listing the name of the contained element in
parentheses, like this:

<!DOCTYPE document [
<!ELEMENT document (employee)*>
 .
 .
 .
]>

This specifies that a <document> element can contain <employee> elements. The * here means that a <document>
element can contain any number (including zero) <employee> elements. (We'll talk about what other possibilities
besides * are available in a few pages.) With this line in a DTD, you can now start placing an <employee> element or
elements inside a <document> element, this way:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
]>
<document>
 <employee>
 .
 .
 .
 </employee>
</document>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</document>

Note, however, that this is no longer a valid XML document because you haven't specified the syntax for individual
<employee> elements. Because <employee> elements can contain <name>, <hiredate>, and <projects> elements, in that
order, you can specify a content model for <employee> elements this way:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

Listing multiple elements in a content model this way is called creating a sequence. You use commas to separate the
elements you want to have appear, and then the elements have to appear in that sequence in our XML document. For
example, if you declare this sequence in the DTD:

<!ELEMENT employee (name, hiredate, projects)>

then inside an <employee> element, the <name> element must come first, followed by the <hiredate> element, followed
by the <projects> element, like this:

<employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
</employee>

This example introduces a whole new set of elements—<name>, <hiredate>, <lastname>, and so on—that don't contain
other elements at all—they contain text. So how can you specify that an element contains text? Read on.

Handling Text Content

In the preceding section's example, the <name>, <hiredate>, and <lastname> elements contain text data. In DTDs, non-
markup text is considered parsed character data (in other words, text that has already been parsed, which means the
XML processor shouldn't touch that text because it doesn't contain markup). In a DTD, we refer to parsed character
data as #PCDATA. Note that this is the only way to refer to text data in a DTD—you can't say anything about the actual
format of the text, although that might be important if you're dealing with numbers. In fact, this lack of precision is one
of the reasons that XML schemas were introduced.

Here's how to give the text-containing elements in the PCDATA content model example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's how to give the text-containing elements in the PCDATA content model example:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

NOTE

Can you mix elements and PCDATA in the same content model? Yes, you can. This is called a mixed content
model, and you'll see how to work with such models in a few pages.

You're almost done with the sample DTD—except for the * symbol. The following section takes a look at * and the other
possible symbols to use.

Specifying Multiple Child Elements

There are a number of options for declaring an element that can contain child elements. You can declare the element to
contain a single child element:

<!ELEMENT document (employee)>

You can declare the element to contain a list of child elements, in order:

<!ELEMENT document (employee, contractor, partner)>

You can also use symbols with special meanings in DTDs, such as *, which means "zero or more of," as in this example,
where you're allowing zero or more <employee> elements in a <document> element:

<!ELEMENT document (employee)*>

There are a number of other ways of specifying multiple children by using symbols. (This syntax is actually borrowed
from regular expression handling in the Perl language, so if you know that language, you have a leg up here.) Here are
the possibilities:

x+— Means x can appear one or more times.

x*— Means x can appear zero or more times.

x?— Means x can appear once or not at all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x?— Means x can appear once or not at all.

x, y— Means x followed by y.

x | y— Means x or y—but not both.

The following sections take a look at these options.

Allowing One or More Children

You might want to specify that a <document> element can contain between 200 and 250 <employee> elements, and if
you do, you're out of luck with DTDs because DTD syntax doesn't give us that kind of precision. On the other hand, you
still do have some control here; for example, you can specify that a <document> element must contain one or more
<employee> elements if you use a + symbol, like this:

<!ELEMENT document (employee)+>

Here, the XML processor is being told that a <document> element has to contain at least one <employee> element.

Allowing Zero or More Children

By using a DTD, you can use the * symbol to specify that you want an element to contain any number of child elements
—that is, zero or more child elements. You saw this in action earlier today, when you specified that the <document>
element may contain <employee> elements in the ch04_01.xml example:

<!ELEMENT document (employee)*>

Allowing Zero or One Child

When using a DTD, you can use ? to specify zero or one child elements. Using ? indicates that a particular child element
may be present once in the element you're declaring, but it need not be. For example, here's how to indicate that a
<document> element may contain zero or one <employee> elements:

<!ELEMENT document (employee)?>

Using +, *, and ? in Sequences

You can use the +, *, and ? symbols in content model sequences. For example, here's how you might specify that there
can be one or more <name> elements for an employee, an optional <hiredate> element, and any number of <project>
elements:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name+, hiredate?, projects*)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

Using +, *, and ? inside sequences provides a lot of flexibility because it means you can specify how many times an
element can appear in a sequence—and even whether the element can be absent altogether.

In fact, you can get even more powerful results by using the +, *, and ? operators inside sequences. By using
parentheses, we can create subsequences—that is, sequences inside sequences. For example, say that we wanted to
allow each employee to list multiple names (including nicknames and so on), possibly list his or her age, and give
multiple phone numbers. You can do that by using the subsequence shown in Listing 4.2.

Listing 4.2 A Sample XML Document That Uses Subsequences in a DTD (ch04_02.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee ((name, age?, phone*)+, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <phone>
 555.2345
 </phone>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <age>
 32
 </age>
 <phone>
 555.2346
 </phone>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </phone>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <age>
 46
 </age>
 <phone>
 555.2347
 </phone>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>

Getting creative when defining subsequences and using the +, *, and ? operators allows us to be extremely flexible in
DTDs.

Allowing Choices

DTDs can support choices. By using a choice, we can specify one of a group of items. For example, if you want to
specify that one (and only one) of either <x>, <y>, or <z> will appear, use a choice like this:

(x | y | z)

Listing 4.3 shows an example of using choices in the document ch04_03.xml. In that example, each product is allowed to
contain either a <price> element or a <discountprice> element. To indicate that that's what you want, you only need to
make this change to the DTD (as well as declare the new <discountprice> element):

<!ELEMENT project (product, id, (price | discountprice))>

Listing 4.3 A Sample XML Document That Uses Choices in a DTD (ch04_03.xml)

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, (price | discountprice))>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA) >
<!ELEMENT discountprice (#PCDATA)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT discountprice (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <discountprice>$111.00</discountprice>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <discountprice>$25.00</discountprice>
 </project>
 </projects>
 </employee>
</document>

You can also use the +, *, and ? operators with choices. For example, to allow multiple discount prices and to insist that
at least one element from the choice appear in the XML document, you can do something like this:

<!ELEMENT project (product, id, (price | discountprice*)+)>

As you can see, there are plenty of options available when it comes to specifying elements or text content in DTDs
(although XML schemas allow us to be even more precise, specifying numeric formats for numbers and so on). But what
if we want a content model to let an element contain both elements and text? That's coming up next.

Allowing Mixed Content

When using a DTD, you can allow an element to contain text or child elements, giving it a mixed content model. Note
that even with a mixed content model, an element can't contain child elements and text data at the same level at the
same time (unless you use the content model ANY). For example, this doesn't work:

<product>
 Keyboard
 <stocknumber>1113</stocknumber>
<product>

However, you can set up a DTD so that an element can contain either child elements or text data. To do that, we treat
#PCDATA as we would any element name in a DTD choice. Listing 4.4 shows an example of this; in this example, the
<product> element is declared so that it can have text content or it can contain a <stocknumber> element.

Listing 4.4 A Sample XML Document That Uses a Mixed Content Model (ch04_04.xml)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA | stocknumber)*>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT stocknumber (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>
 <stocknumber>1111</stocknumber>
 </product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>
 Laptop
 </product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
 <employee>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>
 <stocknumber>1113</stocknumber>
 </product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>

There are plenty of restrictions when we use a mixed content model like this in a DTD. We cannot specify the order of
the child elements, and we cannot use the +, *, or ? operators. In fact, there's usually very little reason to use mixed
content models at all in XML. We're almost always better off being consistent and declaring a new element that can
contain our text data than using a mixed content model.

Allowing Empty Elements

Elements don't need to have any content at all, of course; they can be empty. As you would expect, you can support
empty elements by using DTDs. In particular, you can create an empty content model with the keyword EMPTY, like
this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT intern EMPTY>

This declares an empty element named <intern/> that you can use to indicate that an employee is an intern. Listing 4.5
shows this new empty element at work in ch04_05.xml. As you can see, this example allows each <employee> element to
contain an <intern/> element—and makes that element optional.

Listing 4.5 A Sample XML Document That Uses an Empty Element (ch04_05.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (intern?, name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT intern EMPTY>
]>
<document>
 <employee>
 <intern/>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
 <employee>
 <intern/>
 <name>
 <lastname>Gable</lastname>
 <firstname>Clark</firstname>
 </name>
 <hiredate>October 25, 2005</hiredate>
 <projects>
 <project>
 <product>Keyboard</product>
 <id>555</id>
 <price>$129.00</price>
 </project>
 <project>
 <product>Mouse</product>
 <id>666</id>
 <price>$25.00</price>
 </project>
 </projects>
 </employee>
</document>

Empty elements can't contain any content, but they can contain attributes, and tomorrow we'll talk about how to
support attributes in DTDs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Commenting a DTD
DTDs can get long and involved in complex XML documents. You can use standard XML comments in DTDs, just as you
can throughout the body of an XML document, to clarify what you're doing. Here's an example of comments in a DTD:

<!DOCTYPE document [
<!--Create the document element first -->
<!ELEMENT document (employee)*>
<!--Each employee needs a name, hire date, and projects -->
<!ELEMENT employee (name, hiredate, projects)>
<!-- Should we reverse the order of these two? -->
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!--Use standard date format for the hiredate element -->
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!--Product name should match catalog 8547382 -->
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>

As in any standard XML document, comments in a DTD are stripped out of the DTD by the XML processor. Some XML
processors pass those comments on to us, but some don't.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Supporting External DTDs
So far, we've stored DTDs internally in XML documents, using <!DOCTYPE> elements. But we can also store DTDs
externally, in entirely separate files (which usually use the extension .dtd). It's often a good idea to use an external DTD
with an XML application that is shared by many people. That way, if you want to make changes in the XML application,
you only need to change the DTD once, not in dozens of separate files. (In fact, that's the way many XML applications,
such as XHTML, are implemented.)

Private and Public DTDs

There are two ways to support external DTDs—as private DTDs for personal or limited use and as public DTDs for public
use. We'll start with private DTDs.

Creating Private DTDs

You specify that we're using an external private DTD by using the SYSTEM keyword in the <!DOCTYPE> element, like
this:

<!DOCTYPE document SYSTEM "ch04_07.dtd">

This example specifies the name of the document element (which is just <document> in this example), the SYSTEM
keyword to indicate that the example is using a private external DTD, and the name of the external DTD file. Note that
because the XML document now depends on an external file, the external DTD file, we must also change the standalone
attribute from "yes" to "no", as shown in ch04_06.xml in Listing 4.6. The external DTD here is in ch04_07.dtd, which is
shown in Listing 4.7. Note that the external DTD simply holds the part of the document that was originally between the
[and] in the earlier versions of the <!DOCTYPE> element.

Listing 4.6 A Sample XML Document That Uses a Private External DTD (ch04_06.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document SYSTEM "ch04_07.dtd">
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

Listing 4.7 An External DTD (ch04_07.dtd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 4.7 An External DTD (ch04_07.dtd)

<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA) >

The example shown in Listing 4.7 assumes that the external DTD is in the same directory as the XML document itself,
so you just need to give the name of the external DTD file in the <!DOCTYPE> element:

<?xml version = "1.0" standalone="no"?>
<!DOCTYPE document SYSTEM "ch04_07.dtd">

On the other hand, you can place the external DTD anywhere, as long as you give its full URI (in this case, that's just
the full URL, as far as most XML processors are concerned) in the <!DOCTYPE> element, as in this example:

<?xml version = "1.0" standalone="no"?>
<!DOCTYPE document SYSTEM "http://www.xmlpowercorp.com/dtds/ch04_07.dtd">

You need to supply a URL like this for an external DTD if you want to use an online XML validator.

Creating Public DTDs

As discussed so far today, it's easy to create and use a private external DTD. Creating and using a public external DTD
can take a little more work. In this case, you use the PUBLIC keyword instead of SYSTEM in the <!DOCTYPE> DTD. To use
the PUBLIC keyword, you must also create a formal public identifier (FPI), which is a quoted string of text, made up of
four fields separated by //. For example, the official FPI for transitional XHTML 1.0 is -//W3C//DTD XHTML 1.0
Transitional//EN. Here are the rules for creating the fields in FPIs:

The first field indicates whether the DTD is for a formal standard. For DTDs you create on your own, this field
should be -. If a non-official standards body has created the DTD, you use +. For formal standards bodies, this
field is a reference to the standard itself (such as ISO/IEC 19775:2003).

The second field holds the name of the group or person responsible for the DTD. You should use a name that is
unique (for example, W3C just uses W3C).

The third field specifies the type of the document the DTD is for and should be followed by a unique version
number of some kind (such as Version 1.0).

The fourth field specifies the language in which the DTD is written (for example, EN for English).

When you use a public external DTD, we can use the <!DOCTYPE> element like this: <!DOCTYPE rootname PUBLIC FPI
URI>. Listing 4.8 shows an example, ch04_08.xml, which uses the made-up FPI -//DTDS4ALL//Custom DTD Version 1.0//EN.
This document uses ch04_07.dtd as the external DTD, as in the previous example, but as we can see, it treats that DTD
as a public external DTD, complete with its own FPI.

Listing 4.8 A Sample XML Document That Uses a Public External DTD (ch04_08.xml)

<?xml version = "1.0" standalone="no"?>
<!DOCTYPE document PUBLIC "-//DTDS4ALL//Custom DTD Version 1.0//EN"
"http://www.xmlpowercorp.com/dtds/ch04_07.dtd">
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

Using Internal and External DTDs at the Same Time

So far, you've seen these versions of the <!DOCTYPE> element:

<!DOCTYPE rootname [DTD]>

<!DOCTYPE rootname SYSTEM URI>

<!DOCTYPE rootname PUBLIC identifier URI>

However, you can also use both internal and external DTDs if you use these forms of the <!DOCTYPE> element:

<!DOCTYPE rootname SYSTEM URI [DTD]>

<!DOCTYPE rootname PUBLIC identifier URI [DTD]>

In this case, the external DTD is specified by URL and the internal one by DTD. Listing 4.9 shows an example in
ch04_09.xml, where the external DTD—ch04_10.xml in Listing 4.10—specifies the syntax of all elements in ch04_09.xml
except the <price> element, which is specified in the <!DOCTYPE> element in the XML document ch04_09.xml.

Listing 4.9 A Sample XML Document That Uses an Internal DTD and an External
DTD (ch04_09.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document SYSTEM "http://www.lightlink.com/steve/ch04_10.dtd" [
<!ELEMENT price (#PCDATA)>
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 .
 .
 .
</document>

Listing 4.10 The External DTD for ch04_09.xml (ch04_10.xml)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product,id,price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA) >

Combining internal and external DTDs like this is a good idea if you have a standard DTD that we share with other XML
documents but also want to do some customization in certain XML documents. Theoretically, if you specify the syntax
for an element or attribute in both an internal and external DTD, the internal DTD is supposed to take precedence.
Unfortunately, however, most XML processors these days just treat conflicts in an internal and external DTD as errors.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Namespaces in DTDs
Another important topic when it comes to working with DTDs is how to handle namespaces. As we already know, a
namespace name is really just a name prepended to an element or attribute name with a colon. That means that as far
as a DTD is concerned, those new names have to be declared.

For example, if we want to put our employees document into a namespace named emp, our elements would change
from <name> to <emp:name>, from <hiredate> to <emp:hiredate>, and so on. And to make the document valid, we would
have to declare those new names in the DTD.

To see how this works, you can start by declaring the namespace emp, using the attribute xmlns:emp in the document
element, and then using that namespace throughout the document:

<emp:document xmlns:emp="http://www.xmlpowercorp.com/dtds/">
 <emp:employee>
 <emp:name>
 <emp:lastname>Kelly</emp:lastname>
 <emp:firstname>Grace</emp:firstname>
 </emp:name>
 <emp:hiredate>October 15, 2005</emp:hiredate>
 <emp:projects>
 <emp:project>
 .
 .
 .

Now construct the DTD to match. Start with the xmlns:emp attribute itself. As you'll see tomorrow, if you use attributes
in an XML document with a DTD, you have to declare them in that DTD. Here's how to do that:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ATTLIST document
 xmlns:emp CDATA #FIXED "http://www.xmlpowercorp.com/dtds/">
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>

Now you're free to use the emp namespace when you declare each element in the DTD:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE emp:document [
<!ELEMENT emp:document (emp:employee)*>
<!ATTLIST emp:document
 xmlns:emp CDATA #FIXED "http://www.xmlpowercorp.com/dtds/">
<!ELEMENT emp:employee (emp:name, emp:hiredate, emp:projects)>
<!ELEMENT emp:name (emp:lastname, emp:firstname)>
<!ELEMENT emp:lastname (#PCDATA)>
<!ELEMENT emp:firstname (#PCDATA)>
<!ELEMENT emp:hiredate (#PCDATA)>
<!ELEMENT emp:projects (emp:project)*>
<!ELEMENT emp:project (emp:product, emp:id, emp:price)>
<!ELEMENT emp:product (#PCDATA)>
<!ELEMENT emp:id (#PCDATA)>
<!ELEMENT emp:price (#PCDATA)>
]>

That's all there is to it. Now you can use the emp namespace throughout the document, as shown in ch04_11.xml in
Listing 4.11.

Listing 4.11 Using a Namespace in an XML Document with a DTD (ch04_11.xml)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE emp:document [
<!ELEMENT emp:document (emp:employee)*>
<!ATTLIST emp:document
 xmlns:emp CDATA #FIXED "http://www.xmlpowercorp.com/dtds/">
<!ELEMENT emp:employee (emp:name, emp:hiredate, emp:projects)>
<!ELEMENT emp:name (emp:lastname, emp:firstname)>
<!ELEMENT emp:lastname (#PCDATA)>
<!ELEMENT emp:firstname (#PCDATA)>
<!ELEMENT emp:hiredate (#PCDATA)>
<!ELEMENT emp:projects (emp:project)*>
<!ELEMENT emp:project (emp:product, emp:id, emp:price)>
<!ELEMENT emp:product (#PCDATA)>
<!ELEMENT emp:id (#PCDATA)>
<!ELEMENT emp:price (#PCDATA)>
]>
<emp:document xmlns:emp="http://www.xmlpowercorp.com/dtds/">
 <emp:employee>
 <emp:name>
 <emp:lastname>Kelly</emp:lastname>
 <emp:firstname>Grace</emp:firstname>
 </emp:name>
 <emp:hiredate>October 15, 2005</emp:hiredate>
 <emp:projects>
 <emp:project>
 <emp:product>Printer</emp:product>
 <emp:id>111</emp:id>
 <emp:price>$111.00</emp:price>
 </emp:project>
 <emp:project>
 <emp:product>Laptop</emp:product>
 <emp:id>222</emp:id>
 <emp:price>$989.00</emp:price>
 </emp:project>
 </emp:projects>
 </emp:employee>
 .
 .
 .
 <emp:employee>
 <emp:name>
 <emp:lastname>Gable</emp:lastname>
 <emp:firstname>Clark</emp:firstname>
 </emp:name>
 <emp:hiredate>October 25, 2005</emp:hiredate>
 <emp:projects>
 <emp:project>
 <emp:product>Keyboard</emp:product>
 <emp:id>555</emp:id>
 <emp:price>$129.00</emp:price>
 </emp:project>
 <emp:project>
 <emp:product>Mouse</emp:product>
 <emp:id>666</emp:id>
 <emp:price>$25.00</emp:price>
 </emp:project>
 </emp:projects>
 </emp:employee>
</emp:document>

As today's discussion shows, supporting namespaces in DTDs is not difficult; you just treat the namespace and colon as
part of the name of an element. In fact, as shown here, you also treat attributes the same way. Tomorrow we'll talk
about the idea of declaring attributes in DTDs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you practiced validating XML documents with DTDs and specified the syntax of XML documents for XML
processors to check. In a perfect world, there would be no data-entry errors in XML documents, but real life is a
different story. If you specify the syntax of an XML document, you can let an XML processor check that document
automatically.

There are two ways to specify the syntax of XML documents—by using DTDs and XML schemas, both of which have
syntaxes of their own. You saw today that you use the <!DOCTYPE> element to enclose a DTD and that DTD can either
be internal to the XML document (in which case you set the XML declaration's standalone attribute to "yes"), external to
the XML document (in which case you provide the DTD's URI and set the XML declaration's standalone attribute to "no"),
or a combination of the two. You saw that XML validators can work with either type of DTD.

Today's discussion focuses on writing DTDs and using <!ELEMENT> to declare XML elements. You can use <!ELEMENT>,
to use the following syntax for elements: <!ELEMENT name content_model>. Today you saw that there are various content
models possible. You can use the content model ANY to allow any content and to turn off syntax checking, or use EMPTY
to declare an empty element. You can list possible child elements by using <!ELEMENT document (employee)>, which
allows a <document> element to contain an <employee> element.

You can also list the child elements an element can contain, in order, like this: <!ELEMENT employee (name, hiredate,
projects)>. Such a list is called a sequence. You can also specify that an element contains text content—parsed character
data—by using the term #PCDATA.

You saw today that you can use the symbols + (one or more), * (zero or more), ? (one or none), and | (choices) in
DTDs so that you can work with multiple child elements. You can also use these symbols in sequences to specify exactly
what child elements or combinations of child elements an element can contain.

Finally, you took a look at working with namespaces in DTDs. Because using a namespace changes the names of
elements and attributes, you have to take the new names into account when we're writing a DTD with namespaces. You
even have to declare the xmlns attribute that creates the namespace in the first place—and that's a topic we'll hear
more about tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: We've been using elements such as <!DOCTYPE> and <!ELEMENT> today. Is it okay to use
lowercase for these element names?

A1: No. You need to call them <!DOCTYPE> and <!ELEMENT>, not <!doctype> and <!element>. The capitalization
is specified in the XML 1.0 specification, and XML processors accept only the versions in the XML 1.0
specification.

Q2: Is there any way to create a mixed content model by using a DTD where you can mix both text
data and elements on the same level (that is, as siblings), like this: <document>Here is an
element:<element>Hello!</element></document>?

A2: Yes, you can use the ANY keyword. Beyond that, there's no way to do this. The XML 1.0 specification only
allows you to create mixed content models by using choices, which means that in mixed content models,
you can have either text data or elements, but not both at the same time (the elements themselves can
contain text, of course).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What's wrong with this XML document?

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (hiredate, name)>
]>
<document>
 <employee>
 <hiredate>October 15, 2005</hiredate>
 <name>
 Grace Kelly
 </name>
 </employee>
</document>

2: Where do you see a problem with this XML document?

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
]>
<document>
 <employee>
 <hiredate>October 15, 2005</hiredate>
 <name>
 Grace Kelly
 </name>
 </employee>
</document>

3: What error is in this XML document?

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (hiredate+ | name+)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT name (#PCDATA)>
]>
<document>
 <employee>
 <hiredate>October 15, 2005</hiredate>
 <name>
 Grace Kelly
 </name>
 </employee>
</document>

4: There's a problem in this XML document, too. What is it?

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)?>
<!ELEMENT employee (hiredate+, name*, phone+)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT employee (hiredate+, name*, phone+)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
]>
<document>
 <employee>
 <hiredate>October 15, 2005</hiredate>
 <name>
 Grace Kelly
 </name>
 <phone>
 555.8888
 </phone>
 </employee>
 <employee>
 <hiredate>October 16, 2005</hiredate>
 <name>
 Myrna Loy
 </name>
 <name>
 Muriel Blandings
 </name>
 <phone>
 555.9999
 </phone>
 </employee>
</document>

5: What's wrong with this XML document?

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document SYSTEM "employee.dtd">
<document>
 <employee>
 <name>
 Grace Kelly
 </name>
 <hiredate>October 15, 2005</hiredate>
 </employee>
</document>

Exercises

1: Create a new XML document that holds the names of your relatives by using elements such as <brother>,
<sister>, <mother>, and <father>, as well as <name>, <age>, and <address> elements. Next, add a DTD to
the document and use an XML validator such as the Scholarly Technology Group's XML validator, at
http://www.stg.brown.edu/service/xmlvalid, to check whether your document is valid. Alternatively, add to
the well-formed XML document you created in Exercise 1 at the end of yesterday's discussion a DTD that
holds the available menu items and their prices at a favorite restaurant of yours.

2: Convert the XML document you created in Exercise 1 to make the DTD external. If you can upload the
external DTD file to a Web server and include its URI in the <!DOCTYPE> element (for example, <!DOCTYPE
document SYSTEM "http://www.server.com/username/relatives.dtd">), use an online XML validator such as the
Scholarly Technology Group's XML validator to check the new document's validity.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 5. Handling Attributes and Entities in DTDs
Yesterday you got your start with DTDs by seeing how to declare and handle elements. But that's only part of the story.
Today's discussion continues with DTDs, explaining how to handle the other items you can declare in DTDs—attributes
and entities. Both attributes and entities are essential parts of XML, and today's discussion will explain how to support
them in valid XML documents. Here's an overview of the topics covered in today's discussion:

Declaring attributes

Understanding legal attribute types

Using default values for attributes

Making attributes required

Giving attributes fixed values

Working with entities

Using general and parameter entities

Working with internal and external entities

Handling binary data

The term entity might seem worrisome, but it's actually very simple: In an XML document, an entity is simply a data
item. In other words, entity is simply XML's way of referring to a piece of data. And you already know about the other
big topic for today—attributes, which we'll start discussing now.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Declaring Attributes in DTDs
As in HTML, an attribute is a name-value pair that you can use in a start tag or an empty tag to provide additional
information for an element. For example, say you want to add an attribute to an <employee> element named supervisor,
which indicates whether an employee is a supervisor and which may be set to "yes" or "no". Here's what that would look
like in an XML document:

<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 .
 .
 .

It's easy enough to add attributes to XML documents, but if you don't declare them in a DTD or an XML schema, your
document won't be valid. You can declare a list of attributes for an element by using the <!ATTLIST> element in the
DTD. Here's the general syntax of an <!ATTLIST> element:

<!ATTLIST element_name
 attribute_name type default_value
 attribute_name type default_value
 .
 .
 .
 attribute_name type default_value>

Here, element_name is the name of the element for which you're declaring attributes, attribute_name is the name of an
attribute you want to declare, type is the attribute's type, and default_value specifies the default value of the attribute.
Today's discussion describes what types and kinds of default values are possible in DTDs.

What does an attribute declaration look like? Listing 5.1 shows an example, in ch05_01.xml. In this example, the type of
the supervisor attribute is CDATA, which stands for character data, and the default value is #IMPLIED, which means that
you can use this attribute or not in <employee> elements.

Listing 5.1 A Sample XML Document with an Attribute Declared in a DTD
(ch05_01.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA) >
<!ATTLIST employee supervisor CDATA #IMPLIED>
]>
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee supervisor="yes">
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
</document>

As its name implies, you can use <!ATTLIST> to declare an entire list of attributes for an element. For example, you
might want an <employee> element to have multiple attributes—say, supervisor, division (indicating the division of the
company that the employee works in), and fullTime (set to "yes" if the employee is full time, "no" if part time). Listing 5.2
shows how such an example would look, in the valid document ch05_02.xml.

Listing 5.2 A Sample XML Document with Multiple Attributes Declared in a DTD
(ch05_02.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects) >
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee
 supervisor CDATA #IMPLIED
 division CDATA #IMPLIED
 fullTime CDATA #IMPLIED
>
]>
<document>
 <employee supervisor="no" division="plastics" fullTime="yes">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </projects>
 </employee>
 <employee supervisor="yes" division="metals" fullTime="yes">
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
</document>

These examples provide an introduction to declaring attributes in DTDs. As you can see, all you have to do is use an
<!ATTLIST> element to declare the attributes for an element. It's a little more involved to use this element than to use
<!ELEMENT>, however, because you're restricted to certain types and default values for attributes in DTDs, as described
in the following section.

Using the Legal Default Values and Attribute Types

When you're declaring attributes in DTDs, these are the possible default_value settings you can use in <!ATTLIST>
elements:

value— Specifies a text value and must be enclosed in quotes.

#IMPLIED— Makes an attribute optional.

#FIXED value— Sets the attribute's value to value.

#REQUIRED— Means that this attribute is required and must be given a value.

These are the possible type values you can use:

CDATA— Specifies character data, which is just text without markup.

ENTITY— Specifies an entity name.

ENTITIES— Specifies multiple entity names, which are separated by whitespace in the attribute value, like this:
entity1 entity2 entity3.

Enumerated— Specifies one value from a list of values (that is, an enumeration).

ID— Specifies an ID attribute, which holds a proper XML name (which must not be shared by any other
attribute of the ID type).

IDREF— Holds the ID value of some other element.

IDREFS— Holds multiple ID values of elements, separated by whitespace.

NMTOKEN— Specifies text made up of XML name characters, or tokens. This text may be made up of one or
more letters, digits, hyphens, underscores, colons, and periods.

NMTOKENS— Specifies multiple NMTOKEN items, separated by whitespace.

NOTATION— Specifies a notation name that holds a format description (such as a MIME type).

You'll see these various values at work today.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Specifying Default Values
The most common attribute type, as you've seen in the examples so far in this book, is CDATA, which is just character
data. Before working through all the types of attributes you can use, you'll use CDATA attributes for a few more pages
as you take a look at what kinds of default values you can specify for attributes. The first, and most common, type of
default values are immediate values, and you'll begin with them.

Immediate Values

You can specify a default value for an attribute simply by listing that value, in quotes, in the attribute's declaration in
the <!ATTLIST> element, making it an immediate value. If you give an attribute a default value and then don't use that
attribute in an element, the attribute is automatically given the default value. The following example specifies a default
value of "no" for the supervisor attribute, "plastics" for the division attribute, and "yes" for the fullTime attribute:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee
 supervisor CDATA "no"
 division CDATA "plastics"
 fullTime CDATA "yes"
>
 .
 .
 .

Now each of these three attributes has a default value that will be assigned to it if you don't specifically assign another
value.

The #REQUIRED Default Value

You can specify a default value of #REQUIRED to indicate that an attribute is required. For example, if you want to
specify that all <employee> elements needed to have supervisor attributes, you can do so like this:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor CDATA #REQUIRED>
]>
<document>
 <employee supervisor="no">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 .
 .
 .
 </employee>
</document>

#REQUIRED is useful, for example, when you have an attribute whose data is essential, such as when an XML author
needs to supply the URI of an image in an attribute named uri.

The #IMPLIED Default Value

Attributes declared with #IMPLIED are optional. For example, you can use the #IMPLIED default value if you want to
allow the document author to include an attribute, but you don't want to require it. Here's an example that declares the
supervisor attribute with #IMPLIED:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>
]>
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 .
 .
 .
 </employee>
 <employee>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 .
 .
 .
 </employee>
</DOCUMENT>

Using #IMPLIED this way means that an attribute can appear in elements or not, as the document author prefers.

The #FIXED Default Value

The final default value is #FIXED, which you use when you want to assign a fixed value to an attribute—a value that the
attribute will always have. For instance, the following example ensures that an attribute named language will always
have the value "en", to specify that a document is in English:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee language CDATA #FIXED "en">
]>
<document>
 <employee>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

When you make an attribute fixed, you don't even have to give it a value, as in this example. In this case, even though
you haven't used the language attribute in the <employee> element, an XML processor will report a language attribute
with the value "en" for the <employee> element.

TIP

You can set the value of a fixed attribute in an element like this: <employee language="en">. But there's little
point in doing this because if you don't set the value to the fixed value (that is, the value it already has),
an XML processor will consider that an error.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Specifying Attribute Types
Although CDATA is the most common attribute type, DTDs support other types as well. These types are not specific
enough to let you declare, say, the format of numbers (such as integer, floating point, and so on—which you would be
able to declare in XML schemas), but they do let you check the syntax of XML documents to some extent. The following
sections describe some of the attribute type possibilities.

The CDATA Attribute Type

As you've already seen, the CDATA data type stands for character data. Unlike parsed character data (PCDATA), which is
assumed to have already been parsed, the character data in attribute values is read and parsed by the XML processor.
Among other things, that means that you should avoid using the characters <, ", and & in CDATA attribute values
because those characters look like markup. If you want to use those characters, you should use their predefined entity
references (<, ", and &) instead because these entity references will be parsed and replaced with the
corresponding characters.

You've already been using CDATA attributes, the most basic type of attributes, in examples, such as this one:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>
]>
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 .
 .
 .
</document>

The CDATA type is the most general type of attribute. From this point on, however, you'll get into increasingly more
specific types.

Enumerated Types

An attribute enumeration is just a list of possible values that an attribute can take. Each possible value must be a valid
XML name. In the following example, the supervisor attribute has two possible values—"yes" and "no"—and a default
value of "no":

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor (yes | no) "no">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ATTLIST employee supervisor (yes | no) "no">
]>
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 </employee>
 .
 .
 .
</document>

Using an enumeration is a good choice if you want to restrict an attribute to a set of allowed values. For example, if you
have an attribute named month, you might want to allow only values such as "January", "February", "March", "April", and so
on.

The NMTOKEN Attribute Type

The attribute type NMTOKEN stands for name token, and it lets you assign to an attribute any value made up of legal
XML name characters. Attributes of this type can only take values that are made up of characters that can be used in
legal XML names (this excludes the restrictions that beginning characters in names must obey, such as no numbers,
periods, and so on). For example, in XML 1.0, NMTOKEN characters are letters, digits, hyphens, underscores, colons, and
periods. (Note that NMTOKEN characters cannot include whitespace.) In XML 1.1, the characters are the same as in XML
1.0, except for the differences in the characters that are considered legal, as discussed on Day 2, "Creating XML
Documents."

In other words, the idea behind the NMTOKEN type is to let you use any standard nonwhitespace character in attributes.
The following example adds a state attribute of the NMTOKEN type to hold a two-letter state abbreviation:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee
 state NMTOKEN #REQUIRED>
]>
<document>
 <employee state="NY">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 .
 .
 .
 </employee>
</document>

The NMTOKENS Attribute Type

The preceding section describes the NMTOKEN attribute type—so what's NMTOKENS? You can use the NMTOKENS attribute
type when you want to list multiple values made up of NMTOKEN values, separated by whitespace. The following
example allows whitespace in attribute values because you want to store the first and last names of supervisors,
making supervisors a required NMTOKENS attribute:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor NMTOKENS #REQUIRED>
]>
<document>
 <employee supervisor="Tom Brown">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 .
 .
 .
 </employee>
</document>

The ID Attribute Type

An important attribute type is the ID type. There's a special meaning to an element's ID value because sometimes XML
processors use an ID attribute to identify an element. (They don't have to, but some XML processors pass on ID values
of XML elements to underlying software.) Therefore, XML processors are supposed to make sure that no two elements
have the same value for the attribute that is of the type ID in a document; in addition, you can give an element only
one attribute of this type.

The value you assign to an attribute of the ID type must be a proper XML name. The following example adds an ID
attribute to a DTD:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee id ID #REQUIRED>
]>
<document>
 <employee id="A1112">
 .
 .
 .
 </employee>
 <employee id="A1114">
 .
 .
 .
 </employee>
 <employee id="A1115">
 .
 .
 </employee>
</document>

You can give ID attributes default values of #REQUIRED or #IMPLIED, but note that you wouldn't usually use explicit
default values or a #FIXED value because each ID attribute must have a unique value.

TIP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIP

Because ID values must be proper XML names, and because XML names can't start with numbers, ID
values in XML can't start with numbers (as, for example, Social Security numbers do).

The IDREF Attribute Type

DTDs let you do more than specify ID values by using attributes. We can also use IDREF (which stands for ID reference)
attributes to tie an element to another element, using the other element's ID value as a reference. For example, if we
wanted to store genealogical data in an XML document, we could store a child's data by using an IDREF attribute to hold
the ID value of a parent's data.

The following example gives each employee an id attribute and also creates an optional supervisor attribute of type
IDREF, which will store the ID value of an employee's supervisor:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee
 id ID #REQUIRED
 supervisor IDREF #IMPLIED>
]>
<document>
 <employee id="A1112" supervisor="A1114">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 .
 .
 .
 </employee>
 <employee id="A1114">
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 .
 .
 .
 </employee>
</document>

Note that attributes of ID and IDREF are allowed in XML, but they don't have any more special meaning than is
discussed here. If you want to do more with these attributes, it's up to you to create or use an XML processor that can
handle ID and IDREF data as you want it handled.

The ENTITY Attribute Type

The ENTITY type lets you assign to an attribute the name of an entity you've declared. Later on today we'll talk about
how to handle entities; the idea is that we can handle data, such as an external image file, in an XML document by
using the <!ENTITY> element. The following example gives the entity name PHOTO1221 to the image file 1221.gif and the
entity name PHOTO1222 to the image file 1222.gif:

<!ENTITY PHOTO1221 SYSTEM "1221.gif">
<!ENTITY PHOTO1222 SYSTEM "1222.gif">

Now you can use these entity names, PHOTO1221 and PHOTO1222, as attribute values in attributes of type ENTITY. For
example, if 1221.gif and 1222.gif held the photos of various employees, you could indicate that this is the case by using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, if 1221.gif and 1222.gif held the photos of various employees, you could indicate that this is the case by using
an ENTITY attribute named photo, like this (note that you don't have to use ENTITY attributes to do this—you could just
set a CDATA attribute to 1221.gif, for example):

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ENTITY PHOTO1221 SYSTEM "1221.gif">
<!ENTITY PHOTO1222 SYSTEM "1222.gif">
<!ATTLIST employee
 photo ENTITY #IMPLIED>
]>
<document>
 <employee photo="PHOTO1221">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 .
 .
 .
 </employee>
 <employee photo="PHOTO1222">
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 .
 .
 .
 </employee>
</document>

Using ENTITY attributes is a good way of working with entities, and we'll talk about how that works later today. As part
of that discussion, we'll talk about how to indicate to an XML processor what the format of the external data is; for
instance, we'll elaborate on this example to indicate that the external entity uses the GIF image format.

The ENTITIES Attribute Type

Like the NMTOKEN attribute type, which has a plural type, NMTOKENS, the ENTITY attribute type also has a plural type,
ENTITIES. Attributes of this type can hold lists of entity names, separated by whitespace. For example, to associate not
just one photo but multiple photos with an employee, you could change the ENTITY attribute photo created in the
previous example to an ENTITIES attribute named photos, like this:

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ENTITY PHOTO1221 SYSTEM "1221.gif">
<!ENTITY PHOTO1222 SYSTEM "1222.gif">
<!ATTLIST employee
 photos ENTITIES #IMPLIED>
]>
<document>
 <employee photos="PHOTO1221 PHOTO1222">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <employee photos="PHOTO1221 PHOTO1222">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 .
 .
 .
 </employee>
</document>

The NOTATION Attribute Type

The last legal attribute type is NOTATION. You can assign to NOTATION attribute values that you have declared to be
notations. Notations specify the format of non-XML data, and they're typically used to describe the storage format of
external entities such as image files. For example, one popular type of notations is Multipurpose Internet Mail Extension
(MIME) types, such as application/xml, text/html, image/jpeg, and so forth, which are often used to specify data storage
formats.

TIP

There's a list of all the available MIME types at ftp://ftp.isi.edu/in-notes/iana/assignments/media-
types/media-types.

When you want to declare a notation, you use the <!NOTATION> element in a DTD like this:

<!NOTATION name SYSTEM "external_id">

Here, name is the name of the notation and external_id is the identification you want to use for the notation, such as a
MIME type.

You can also use the PUBLIC keyword for public notations if you supply a formal public identifier (FPI; see Day 4,
"Creating Valid XML Documents: DTDs," for the rules on constructing FPIs), like this:

<!NOTATION name PUBLIC FPI "external_id">

The following example declares three standard notations—jpg, gif, and text, which stand for the MIME types image/jpeg,
image/gif, and text/plain:

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!NOTATION jpg SYSTEM "image/jpeg">
<!NOTATION gif SYSTEM "image/gif">
<!NOTATION text SYSTEM "text/plain">
 .
 .
 .

Now you can create an attribute named, say, imagetype, of type NOTATION. You can then assign either the gif or jpg
notations to imagetype:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!NOTATION jpg SYSTEM "image/jpeg">
<!NOTATION gif SYSTEM "image/gif">
<!NOTATION text SYSTEM "text/plain">
<!ATTLIST employee
 photo NMTOKEN #IMPLIED
 imagetype NOTATION (jpg | gif) #IMPLIED>
]>
 .
 .
 .

Now that you have declared a new attribute, imagetype, of the NOTATION type, you can put this attribute to work, like
this:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!NOTATION jpg SYSTEM "image/jpeg">
<!NOTATION gif SYSTEM "image/gif">
<!NOTATION text SYSTEM "text/plain">
<!ATTLIST employee
 photo NMTOKEN #IMPLIED
 imagetype NOTATION (jpg | gif) #IMPLIED>
]>
<document>
 <employee photo="1221.gif" imagetype ="gif">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Entities
An entity in XML is simply a data item. Entities are usually text in common usage, but they can also be binary data. If
you want an XML document that uses entities to be valid, you can declare an entity in a DTD and refer to it in the
document (for text entities, the entity reference is replaced by the entity itself when parsed by an XML processor).

There are many different ways of dealing with data, so you probably won't be surprised to learn that there are different
ways of working with entities. DTDs know about two types of entities: general entities and parameter entities. General
entities are for use in the body of XML documents, and parameter entities are for use in a document's DTD. You'll see
both today. General entity references start with & and end with ;, and parameter entity references start with % and end
with ;.

NOTE

Because entity is simply XML's term for a data item, you might wonder where entities leave off and the
rest of the document starts. Can the text in an element be considered an entity? Yes, it can, and so can
fragments of XML documents. In fact, technically speaking, an entire XML document may be called an
entity. All this is to reiterate that entity is XML's general term for any data item.

Entities can also be internal or external. An internal entity is defined completely inside the XML document that uses it.
An external entity, on the other hand, is stored externally, such as in a file; to refer to an external entity in XML, you
can use a URI.

Here's how it works: You declare an entity in a DTD, and then you can refer to it with an entity reference in the rest of
the XML document. In fact, you've already seen that there are five general entity references that are predefined in XML
—<, >, &, ", and ', which stand for the characters <, >, &, ", and ', respectively. Because these
entities are predefined in XML, you don't need to define them in a DTD; you can just use the entity references; for
example, you can see all five predefined entity references at work in Listing 5.3.

Listing 5.3 A Sample XML Document That Uses Predefined General Entity
References (ch05_03.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE data [
<!ELEMENT data (#PCDATA)>
]>
<data>
 Welcome to Marge & Maggie's XML document!
 Marge says, "Do you like your <data> element"?
</data>

An XML processor will replace each of the entity references in ch05_03.xml with the corresponding character. Figure 5.1
shows the results of Listing 5.3 in Internet Explorer.

Figure 5.1. Using the predefined entity references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the five predefined general entity references are useful when you want to make sure text isn't interpreted as
markup, they're very limited. When it is time to create your own entities, it's time to use the <!ENTITY> element, as
described in the following section.

Creating Internal General Entity References

In much the same way that you use the <!ELEMENT> element to declare an element in a DTD, you use the <!ENTITY>
element to declare an entity. You declare a general entity like this:

<!ENTITY name definition>

In this case, name is the entity's name and definition is its definition. The name of the entity is just the name you want to
use to refer to the entity, but an entity's definition can take several different forms. The simplest way of defining an
entity is just to use the text that you want XML processors to replace entity references with. For example, here's how
you might create a new entity named copyright that will be replaced with the text "(c) XML Power Corp. 2005":

<!ENTITY copyright "(c) XML Power Corp. 2005">

Now when you declare this entity in a DTD and refer to it in your document as ©right;, that entity reference will be
replaced with the text "(c) XML Power Corp. 2005". Listing 5.4 shows an example, ch05_04.xml, which declares this
entity in the DTD and uses it in the body of the XML document in an element named <copy>. (Note that you also have
to declare <copy> in the DTD.)

Listing 5.4 Defining a General Entity (ch05_04.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (copy, name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA) >
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT copy (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>
<!ENTITY copyright "(c) XML Power Corp. 2005">
]>
<document>
 <employee supervisor="no">
 <copy>©right;</copy>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee supervisor="yes">
 <copy>©right;</copy>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <copy>©right;</copy>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
</document>

Figure 5.2 shows the document ch05_04.xml in Internet Explorer. Note that ©right; has indeed been replaced by the
text "(c) XML Power Corp. 2005".

Figure 5.2. Creating and using a user-defined entity.

The replacement text for internal general entity references doesn't have to be quoted text; you can use UTF-8 (or
other) character codes directly. For example, here's how to modify the example that uses the predefined general
entities quot, amp, lt, and so on by defining your own internal general entities quot2, amp2, lt2, and so on, using UTF-8
character codes:

<?xml version = "1.0" standalone="yes"?>
<!DOCTYPE TEXT [
<!ENTITY amp2 "&#38;">
<!ENTITY apos2 "'">
<!ENTITY gt2 ">">
<!ENTITY lt2 "&#60;">
<!ENTITY quot2 """>
<!ELEMENT data (#PCDATA)>
]>
<data>
 Welcome to Marge &2; Maggie&apos2;s XML document!
 Marge says, "2;Do you like our <2;data>2; element"2;?
</data>

This XML gives the same results as the previous example, which simply uses the predefined general entities quot, amp,
lt, and so on.

What's happening here is that when you use an entity reference such as >2;, it's replaced with the entity reference
> which the XML processor then replaces with ">". Among other things, this indicates that you can nest entity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> which the XML processor then replaces with ">". Among other things, this indicates that you can nest entity
references.

The following is another example, in which the entity reference &me; in the second entity declaration will be replaced
with "Ferdinand Magellan" from the first entity declaration:

<!ENTITY me "Ferdinand Magellan">
<!ENTITY copyright "(c) &me; 1519">

Note that although you can nest entity references, they can't be circular, or the XML processor will go nuts. For
example, this isn't legal:

<!ENTITY me "©right; Ferdinand Magellan">
<!ENTITY copyright "(c) &me; 1519">

Circular entity references like this one are illegal in valid documents.

General entity references, such as ©right;, are valid only in the body of the XML document, not in the DTD itself. For
example, this is not legal:

<!ENTITY employeeContent "(copy, name, hiredate, projects)">
<!ELEMENT employee &employeeContent;>

The way you should handle a situation like this, where an entity reference is used in the DTD itself, is by using
parameter entities, which you'll take a look at later today.

Creating External General Entity References

In addition to the internal general entities just described, you can also work with external general entities. In this case,
you use a URI to direct the XML processor to the external entity. As you're going to see, you can also indicate that such
an entity should not be parsed, which is how to associate binary data with an XML document; it's something like
associating images with an HTML document. (Note that even though you don't want the XML processor to parse the
external entity, most processors will still check to make sure the external entity exists and is at the URI you've given.)

Just as you can with external DTDs, you can use the SYSTEM keyword or the PUBLIC keyword when declaring external
general entities. As with external DTDs, you use SYSTEM when working with an external entity that's private to you or
your organization, and you use PUBLIC when you're using an external entity that's public. As with external DTDs, when
you use a public external entity, you need to use an FPI when you refer to it. Here's the syntax for declaring an external
general entity:

<!ENTITY name SYSTEM URI>
<!ENTITY name PUBLIC FPI URI>

For example, you can place the text "(c) XML Power Corp. 2005" for the copyright general entity in the file ch05_05.xml,
which appears in Listing 5.5.

Listing 5.5 Storing Text as an External General Entity (ch05_05.xml)

<?xml version = "1.0" encoding="UTF-8"?>
"(c) XML Power Corp. 2005"

You use the following to create an external general entity reference named copyright that refers to the external
document ch05_05.xml:

<!ENTITY copyright SYSTEM "ch05_05.xml">

Now you can use the ©right; external entity reference just as you did before, when it was an internal entity
reference. You can see this at work in ch05_06.xml, which is shown in Listing 5.6. (Note that you also have to change the
value of the standalone attribute in the XML declaration from "yes" to "no".)

Listing 5.6 Using an External General Entity (ch05_06.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (copy, name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT copy (#PCDATA)>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!ELEMENT copy (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>
<!ENTITY copyright SYSTEM "ch05_05.xml">
]>
<document>
 <employee supervisor="no">
 <copy>©right;</copy>
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
 <employee supervisor="yes">
 <copy>©right;</copy>
 <name>
 <lastname>Grant</lastname>
 <firstname>Cary</firstname>
 </name>
 <hiredate>October 20, 2005</hiredate>
 <projects>
 <project>
 <product>Desktop</product>
 <id>333</id>
 <price>$2995.00</price>
 </project>
 <project>
 <product>Scanner</product>
 <id>444</id>
 <price>$200.00</price>
 </project>
 </projects>
 </employee>
</document>

If you open this new XML document, ch05_06.xml, in Internet Explorer, you'll see the same results shown in Figure 5.2.
The external entity (that is, the text in ch05_05.xml) is picked up, and its text appears in the resulting display.

By using external general entities in this way, you can assemble XML documents together from various pieces stored in
their own files. That can be very useful if, for example, you have standard headers or footers or copyright notices that
you want to use. Note that if you need to change those items (such as the date in a copyright notice), you need to
make your changes only in one file.

TIP

It's not uncommon for nonvalidating XML processors to scan DTDs to pick up external general entity
references. So even if an XML processor you're working with doesn't perform validation, it still might read
your DTD to let you include external general entities in the document.

Associating Non-XML Data with an XML Document

Earlier in today's discussion, you saw that you can associate non-XML data—an image file, in fact—by using an external
entity. You created an entity named PHOTO1221 that referred to an external file named 1221.gif and an attribute of the
ENTITY type to which you could assign PHOTO1221:

<!ENTITY PHOTO1221 SYSTEM "1221.gif">
<!ATTLIST employee
 photo ENTITY #IMPLIED>
 .
 .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .
 .
<employee photo="PHOTO1221">

This associates the image file 1221.gif with the current XML document, but you can make things even clearer to the XML
processor. In particular, you can indicate that 1221.gif is an external entity that should not be parsed. That's the way
you normally associate binary data with an XML document—by treating it as an unparsed external entity.

To declare an external unparsed entity, you use an <!ENTITY> element with either the SYSTEM keyword or the PUBLIC
keyword, like this (note the keyword NDATA, which indicates that you're referring to an unparsed entity):

<!ENTITY name SYSTEM value NDATA type>
<!ENTITY name PUBLIC FPI value NDATA type>

Here, name is the name of the external unparsed entity, value is the value of the entity, such as the name of an external
file (for example, 1221.gif), and type is a declared notation (which you create by using a <!NOTATION> element). For
example, to explicitly indicate that 1221.gif is an external entity that should not be parsed, you can create a notation
named gif for GIF files:

<!NOTATION gif SYSTEM "image/gif">

Next, you can declare 1221.gif as an unparsed entity that uses the gif notation:

<!NOTATION gif SYSTEM "image/gif">
<!ENTITY PHOTO1221 SYSTEM "1221.gif" NDATA gif>

And you can create an ENTITY attribute named photo for the <employee> element:

<!NOTATION gif SYSTEM "image/gif">
<!ENTITY PHOTO1221 SYSTEM "1221.gif" NDATA gif>
<!ATTLIST employee
 photo ENTITY #IMPLIED>

Finally, you can assign the photo attribute the value PHOTO1221:

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!NOTATION gif SYSTEM "image/gif">
<!ENTITY PHOTO1221 SYSTEM "1221.gif" NDATA gif>
<!ATTLIST employee
 photo ENTITY #IMPLIED>
]>
<document>
 <employee photo="PHOTO1221">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

Note that in this example, you do not use an entity reference (that is, &PHOTO1221;) because you do not want the XML
processor to parse 1221.gif. Note also that when you use external unparsed entities like this, validating XML processors
won't try to read and parse them, but they will usually check to make sure that the entities exist at the URI you specify
to ensure that the whole XML document is considered complete.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to ensure that the whole XML document is considered complete.

You can also associate multiple unparsed external entities with an XML document if you create an attribute of the
ENTITIES type, like this:

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document [
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA) >
<!ELEMENT projects (project)*>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!NOTATION gif SYSTEM "image/gif">
<!ENTITY PHOTO1221 SYSTEM "1221.jpg" NDATA gif>
<!ENTITY PHOTO1222 SYSTEM "1222.jpg" NDATA gif>
<!ATTLIST employee
 photos ENTITIES #IMPLIED>
]>
<document>
 <employee photo="PHOTO1221 PHOTO1222">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

Now that you've discussed general entities, let's take a look at entities that are specially designed to be used in DTDs
only: parameter entities.

Creating Internal Parameter Entities

General entities are limited when it comes to working with DTDs. You can declare general entities in DTDs, but you
can't use general entity references that the XML processor will expand in a DTD. However, it turns out that it can be
useful to use parameters in DTDs, and you use parameter entities and parameter entity references (which can only be
used in DTDs) for that. In fact, there's one more restriction on DTDs: Parameter entity references that you use inside
an already existing DTD declaration can appear only in the DTD's external subset, which means the part of the DTD that
is external. You'll discuss what this means in a few pages.

Unlike entity references, parameter references don't start with &; they start with % instead. Like general entities, you
can declare a parameter entity by using the <!ENTITY> element, but you include a % to show that you're declaring a
parameter reference. Here's the syntax for declaring an internal parameter entity:

<!ENTITY % name definition>

As you might expect, when you declare an external parameter entity, you can use the SYSTEM and PUBLIC keywords,
like this:

<!ENTITY % NAME SYSTEM URI>
<!ENTITY % NAME PUBLIC FPI URI>

The following is an example that shows how to use an internal parameter entity. In this case, you just declare the
parameter entity project to refer to the standard declaration of the <project> element in the sample XML document:

<!ENTITY % project "<!ELEMENT project (product, id, price)>">

Now when you use the parameter entity reference %project; in the DTD, it will be replaced with the text "<!ELEMENT
project (product, id, price)>". Listing 5.7 shows this at work in ch05_07.xml.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 5.7 Using an Internal Parameter Entity (ch05_07.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ENTITY % project "<!ELEMENT project (product, id, price)>">
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
%project;
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>
]>
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>
</document>

This turns out to be about as far as you can go with internal parameter entities because you can't use them inside other
declarations. To see how parameter entities can really be useful, you have to turn to external parameter entities, which
are described in the following section.

Creating External Parameter Entities

When you use a parameter entity in a DTD's external subset, you can refer to that entity anywhere in the DTD,
including inside other element declarations. To see an example, you need an XML document that uses an external DTD,
like ch05_08.xml, which uses an external DTD named ch05_09.dtd (see Listing 5.8).

Listing 5.8 Using External Parameter Entities (ch05_08.xml)

<?xml version = "1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE document SYSTEM "ch05_09.dtd">
<document>
 <employee supervisor="no">
 <name>
 <lastname>Kelly</lastname>
 <firstname>Grace</firstname>
 </name>
 <hiredate>October 15, 2005</hiredate>
 <projects>
 <project>
 <product>Printer</product>
 <id>111</id>
 <price>$111.00</price>
 </project>
 <project>
 <product>Laptop</product>
 <id>222</id>
 <price>$989.00</price>
 </project>
 </projects>
 </employee>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </employee>
</document>

Let's say that in an external DTD, you want to create three elements that might appear in <employee> elements to
record comments about the employee: <supervisorComment>, <customerComment>, and <employeeComment>. All three of
these elements have the same content model. Say that each of these elements has the content model (date, text), where
<date> contains the date of the comment and <text> contains the text of the comment. You can create a new parameter
entity named record for this content model:

<!ENTITY % record "(date, text)">

Now in the external DTD, you can use a reference to this entity when you want to use the content model for the
<supervisorComment>, <customerComment>, and <employeeComment> elements:

<!ELEMENT supervisorComment %record;>
<!ELEMENT customerComment %record;>
<!ELEMENT employeeComment %record;>

That's all it takes; Listing 5.9 shows the entire external DTD, which uses the record parameter entity.

Listing 5.9 An External DTD That Uses Parameter Entities (ch05_09.dtd)

<?xml version = "1.0" encoding="UTF-8"?>
<!ENTITY % record "(date, text)">
<!ELEMENT document (employee)*>
<!ELEMENT employee (name, hiredate, projects,
supervisorComment*, customerComment*,
employeeComment*)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT hiredate (#PCDATA)>
<!ELEMENT projects (project)*>
<!ELEMENT supervisorComment %record;>
<!ELEMENT customerComment %record;>
<!ELEMENT employeeComment %record;>
<!ELEMENT project (product, id, price)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ATTLIST employee supervisor CDATA #IMPLIED>

Using parameter entities as in this example can be very useful because it means you can store all the content models
you use in one location and change them in that one place as needed rather than having to hunt through an entire
document. You can also use parameter DTDs to centralize your attribute declarations in the same way. You can even
collect attribute declarations into groups and use them in element declarations as needed. For example, you might
decide that a new element named <imager> should support both hyperlink attributes (such as a targetURI attribute) and
image attributes (such as an imageURI attribute), and if you've grouped your attributes by functionality, here's how you
could add those attributes to this element:

<!ATTLIST imager %hyperlink_attributes; %image_attributes;>

Using INCLUDE and IGNORE to Parameterize DTDs

There are two important directives that you need to know about when it comes to working with DTDs: INCLUDE and
IGNORE. Directives are special commands to the XML processor, and INCLUDE and IGNORE are specially designed to
customize a DTD by including or omitting sections of that DTD. The following is the syntax of INCLUDE and IGNORE:

<![INCLUDE [DTD Section]]> and <![IGNORE [DTD Section]]>

Here are two examples of what these directives might look like in action:

<![INCLUDE [
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
]]>

<![IGNORE [
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
]]>

In the first of these examples, the contained DTD fragment will be included by the XML processor, and in the second
example, the contained DTD fragment will be ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, the contained DTD fragment will be ignored.

So why are INCLUDE and IGNORE useful? Can't you just include or ignore sections of DTDs ourselves, by adding or
deleting them as needed? Can't you just use standard XML comments to hide sections of DTDs if you need to? Yes, you
can. The reason you see INCLUDE and IGNORE in DTDs is that by using these directives, you can create parameterized
DTDs. DTDs can be dozens of pages long (like the ones for XHTML), and you might miss some sections you want to
exclude if you just rely on XML comments. But when you parameterize a DTD, you can just set a parameter entity to
"INCLUDE" or "IGNORE" to include or ignore many DTDs sections at once.

Let's use the DTD for XHTML 1.1, which is a parameterized DTD, as an example. The main DTD for XHTML 1.1 is set up
to include or ignore other sections of the DTD (a DTD that works like this is sometimes called a DTD driver), depending
on how you want to customize the DTD. For example, some devices that can support some XHTML can't support
everything. Cell phones might be fine with bold text and hyperlinks but might have trouble displaying tables, for
instance. For that reason, you can customize the XHTML 1.1 DTD to include or ignore the DTD section that has to do
with tables. In particular, the XHTML 1.1 DTD declares a parameter entity named xhtml-table.module that is set to
"INCLUDE" by default and includes the table DTD module with an INCLUDE section, like this:

<!ENTITY % xhtml-table.module "INCLUDE" >
 .
 .
 .
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML 1.1 Tables 1.0//EN"
 "xhtml11-table-1.mod" >
%xhtml-table.mod;]]>
]]>

If you wanted to, you could exclude all reference to XHTML tables in your own version of the XHTML 1.1 DTD just by
setting xhtml-table.module to "IGNORE" to exclude support for tables. In this way, you can centralize control over a
parameterized DTD, which might be dozens of pages long, simply by changing the values of a few parameter entities in
one location. The XHTML 1.1 DTD is written in modules that can be expressly included or ignored if you want, making
the entire XHTML 1.1 DTD fully parameterized.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today's discussion describes how to use attributes and entities with DTDs. You saw that you declare attributes in a DTD
by using an <!ATTLIST> element.

You can assign various default values to attributes when you declare them. You can assign an explicit default value
—#IMPLIED to make the attribute optional, #FIXED to give it a fixed value, and #REQUIRED to make an attribute required
—enclosed in quotation marks,.

You can also declare the type of an attribute in an <!ATTLIST> element. The various attribute types are CDATA, which
means character data; ENTITY, which means you can assign an entity name to an attribute; ENTITIES, which you can use
to assign a list of entity names to an attribute; an enumeration, which specifies a list of possible values for an attribute;
an ID value; an IDREF value, which holds the ID of another element; IDREFS, which holds multiple ID values; NMTOKEN,
which can hold text made up of XML name characters; NMTOKENS, which can hold multiple NMTOKEN items; and
NOTATION, which holds the name of a notation (that is, a format description).

In this discussion you also saw how to work with entities. You saw that you can declare entities by using the <!ENTITY>
element. And you saw that entity is XML's term for a data item, and when you declare entities in a DTD, you can refer
to them in the rest of the XML document.

In general, entity references in an XML document will be replaced by the entity they stand for when the entity is text.
However, you can also create unparsed entities that will not be parsed by the XML processor; for example, external
image files in binary format are usually unparsed external entities.

DTDs were introduced when XML was, and they haven't really grown since that time. They're still the technique of
choice for validating XML documents with much of the software out there, but the real growth these days is in XML
schemas. XML schemas give you the ability to pinpoint the format of your data in a way that DTDs can't, and you'll be
hearing more about XML schemas over the next two days.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: These days, DTDs and XML schemas are both popular. Which should I use?

A1: The answer depends on several factors. Which does your target XML processor support? Which are you
more comfortable with? Can DTDs give you the precision you want, or do you need to turn to schemas?
DTDs have been around longer than schemas. A casual Web search turns up 1.9 million matches to "DTD"
but only 385,000 to "XML schema." And many beginning XML authors find DTDs easier to work with than
schemas. Nonetheless, XML schemas are where the growth is these days. Microsoft has thrown its weight
behind schemas, so the industry as a whole is shifting toward them.

Q2: The DTD syntax is just too complex. Isn't there some way to make writing a DTD easier?

A2: Take a look at the automatic DTD generators available online. You just navigate to a DTD generator on the
Web, click a button to browse to the XML document on your disk for which you want a DTD, and click a
button to upload the document; the DTD generator does the rest. For example, take a look at the DTD
generators at (as of this writing) http://www.pault.com/pault/dtdgenerator and
http://www.hitsw.com/xml_utilites.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What keyword do you use in an <!ATTLIST> element to make an attribute optional?

2: What keyword do you use in an <!ATTLIST> element to make sure an attribute always has the same value?

3: How can you declare a required name attribute, an optional address attribute, and an optional phone attribute
for an element named <friend>? Each of these attributes should hold simple character data.

4: How can you restrict an attribute named married in an element named <relative> to values of "yes" or "no",
making the default "no"?

5: How can you declare an external unparsed entity named mountains that corresponds to the image file
mountains.jpg?

Exercises

1: Create a new XML document that uses a DTD to declare an optional CDATA attribute named date that holds
dates in the form 4/1/05, an attribute called sex that can take the values "male" and "female" only, and a
required CDATA name attribute. Test your work by using an online XML validator.

2: Parameterize the DTD you created in Exercise 1 so that you can include all the attributes created in that
exercise by setting a parameter named includer to INCLUDE or exclude them by setting that parameter to
IGNORE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 6. Creating Valid XML Documents: XML
Schemas
Yesterday and on Day 4, "Creating Valid XML Documents: DTDs," you took a look at working with DTDs to validate XML
documents. Today and tomorrow you'll get a look at the other way of validating XML documents: using XML schemas.
XML schemas allow you considerably more precision than DTDs do, as you're about to see. Here's an overview of
today's topics:

Validating XML documents by using XML schemas

Creating XML schemas

Using XML schema-generating tools

Declaring elements

Declaring simple and complex types

Creating sequences of elements

Setting the number of times elements may occur

Giving elements default values

Specifying attributes

Specifying default values for attributes

As of this writing, this quote is available on the W3C XML Activity Page (http://www.w3.org/XML/Activity.html):

While XML 1.0 supplies a mechanism, the document type definition (DTD) for declaring constraints on
the use of markup, automated processing of XML documents, requires more rigorous and
comprehensive facilities in this area.

For the past two days, you've been working with DTDs, but DTDs are actually pretty basic. As XML developed, XML
authors asked the W3C for a more comprehensive and detailed way of specifying the syntax of XML documents, and the
W3C responded with XML schemas. The W3C XML schema working group was originally created to tackle a number of
issues that DTDs didn't handle well—handling namespaces when validating documents, allowing data typing, allowing
and restricting inheritance for validation methods, creating our own data types, and other issues. As you're going to
see, XML schemas let you spell out the syntax of XML documents far more precisely than DTDs ever could. Originally,
there was very little software that could handle XML schemas, but today you'll find more and more XML schema-aware
software available.

XML schemas are a W3C recommendation, and that recommendation is available in these three documents:

http://www.w3.org/TR/xmlschema-0— This XML schema primer is a tutorial introduction to schemas.

http://www.w3.org/TR/xmlschema-1— This document covers XML schema structures, including the
formal details on creating schemas.

http://www.w3.org/TR/xmlschema-2— This document discusses the data types you can use in schemas.

TIP

Another good resource on XML schemas is the W3C XML Schema Activity Page,
http://www.w3.org/XML/Schema, which lists everything that's going on with schemas these days.

Right now, the XML schema recommendation is in version 1.0, but the W3C is starting to think about version 1.1.
Nothing's been firmed up at this point, however. Here's what W3C says about version 1.1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nothing's been firmed up at this point, however. Here's what W3C says about version 1.1:

The XML Schema WG is currently working to develop a set of requirements for XML Schema 1.1, which
is intended to be mostly compatible with XML Schema 1.0 and to have approximately the same scope,
but also to fix bugs and make whatever improvements you can, consistent with the constraints on scope
and compatibility.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XML Schema Tools
Today and tomorrow you're going to see how to write XML schemas, but before you dig into the details (and there are
plenty of them), it's worth noting that more and more software tools are appearing that can generate XML schemas for
you. Although XML authors should know how to write XML schemas, tools that do the work for you can be very handy,
so you'll start by introducing them.

Creating Schemas by Using XML Schema-Creation Tools

A growing number of XML schema-creation tools are becoming available; here's a sampling of the ones that are out
there as of this writing:

HiT Software(http://www.hitsw.com/xml_utilites/)— This is an online automatic XML schema generator and
DTD to XML schema converter. You just let it upload a document, and it creates an XML schema for free.

xmlArchitect (http://www.sysonyx.com/products/xmlArchitect)— This is an XML editor for creating schemas.

XMLspy (http://www.xmlspy.com)— XMLspy is a product family of tools that aid in the creation of XML
schemas.

XRay (http://architag.com/xray)— This tool provides support for XML schemas and has an integrated online
XML tutorial system.

Microsoft Visual Studio .NET (http://www.microsoft.com)— Visual Studio .NET can also generate XML
schemas for you automatically.

As an example of the schema-creation process, let's take a look at the XML schema generator in the Microsoft Visual
Studio .NET development tool. Take a look at this XML document:

<?xml version="1.0"?>
<document xmlns="http://xmlpowercorp">
 <text>
 Welcome to XML Schemas!
 </text>
</document>

What if you want to automatically generate an XML schema for this document? You start by opening the XML document
in Visual Studio .NET (that is, in Visual Studio .NET, you create a new project and then select Project, Add Existing Item
to open the Add Existing Item dialog box, where you can browse to the XML document for which you want to create a
schema). Figure 6.1 shows the short sample XML document opened in Visual Studio .NET.

Figure 6.1. An XML document in Visual Studio .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, you select XML, Create Schema to create an XML schema for the document. The XML that is generated is shown
in Figure 6.2.

Figure 6.2. Creating an XML schema in Visual Studio .NET.

Here's what the generated XML schema looks like (note that it's about four times as long as the original XML document)
:

<?xml version="1.0"?>
<xs:schema id="NewDataSet"
targetNamespace="http://xmlpowercorp"
xmlns:mstns="http://xmlpowercorp" xmlns="http://xmlpowercorp"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="document" msdata:Prefix="ch06">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="text" msdata:Prefix="ch06"
 type="xs:string" minOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="NewDataSet" msdata:IsDataSet="true"
 msdata:Prefix="ch06" msdata:EnforceConstraints="False">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="document" />
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

This is a valid XML schema, although it uses a namespace for Microsoft-specific data types that you're not going to use,
and it adds more elements than you'll need.

As mentioned earlier today, you can also use free online XML schema generators such as the one at
http://www.hitsw.com/xml_utilities/ to upload XML documents and create XML schemas. Figure 6.3 shows the XML
schema that this generator creates for the sample XML document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.3. Using an online XML schema generator.

Validating XML Documents by Using XML Schemas

When you want to validate an XML document by using an XML schema, you can choose from the many XML validators
that are available. Here's a starter list:

Visual Studio .NET (http://www.microsoft.com)— You just select XML, Validate XML Data to begin validating
an XML document.

Topologi Schematron Validator (http://www.topologi.com)— This is a free Windows-based tool that
validates XML schemas.

XML Schema Quality Checker (http://www.alphaworks.ibm.com/tech/xmlsqc)— This is the IBM AlphaWorks
XML schema validator.

Xerces (http://xml.apache.org/xerces2-j/index.html)— The Apache Project's Xerces 2 XML processor includes
XML schema validation.

XSD Schema Validator (http://apps.gotdotnet.com/xmltools/xsdvalidator)— This tool is a .NET-based XML
schema validator.

XSV (http://www.w3.org/2001/03/webdata/xsv)— This is the online W3C XML schema validator.

Xerces J (http://tools.decisionsoft.com/schemaValidate.html)— This is a DecisionSoft XML validator.

Internet Explorer (http://www.microsoft.com/windows/ie/default.asp)— You can use Microsoft Internet
Explorer to validate schemas.

The most widely used of these XML schema validation tools is Internet Explorer. The XML support in Internet Explorer is
built into the MSXML package (which was called the Microsoft XML Parser until MSXML version 4.0, when it was named
the Microsoft XML Core Services). MSXML version 4.0 is the version that supports XML Schema Definition Language
(XSD) schemas. (Note that before version 4.0, MSXML only supported a smaller and different version of XML schemas,
which Microsoft called XML-Data Reduced [XDR] schemas.) Table 6.1 lists support for XML schemas, by MSXML version.

Table 6.1. XML Schema Support by MSXML Version
Version Support

MSXML No support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MSXML 2.0 Support only for XDR schemas.

MSXML 2.6 Support only for XDR schemas.

MSXML 3.0 Support only for XDR schemas.

MSXML 4.0 Support for XSD and XDR schemas. Note that XSD support is not yet complete.

TIP

If you have Internet Explorer and you're running Windows, you can determine what version of MSXML you
have by looking in the directory where Windows stores dynamic link library (DLL) files, which is either
system or system32 under the main Windows directory, depending on your version of Windows. For example,
if you see msxml3.dll and you don't see any later version, you have MSXML 3.0. If you see msxml4.dll and no
later version, you have version 4.0. To work with full XML schemas, you need MSXML version 4.0 or later.
(Microsoft's XDR version of schemas is very different from the W3C XSD type of schemas.) If you don't
already have it installed, you can download MSXML 4.0 from Microsoft for free from the Microsoft XML site,
currently at http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000438.

The direct download site for MSXML 4.0 is http://msdn.microsoft.com/library/default.asp?
url=/downloads/list/xmlgeneral.asp as of this writing (note that it can change at any time, however).

Let's put MSXML 4.0 and Internet Explorer 6 to work now. If you want Internet Explorer to validate an XML document
by using an XML schema, you have to do a little extra work by using JScript, Internet Explorer's version of JavaScript.
You'll take a more detailed look at JavaScript on Day 15, "Using JavaScript and XML," and you don't have to write any
JavaScript until then—all the work is already done for you in the HTML document ch06_01.html, which is shown in Listing
6.1. You can load this HTML document in an XML document, as stored in a file named ch06_02.xml, and validate it.

Listing 6.1 An HTML Document That Can Validate an XML Document (ch06_01.xml)

<HTML>
 <HEAD>
 <TITLE>
 Validating With XML Schemas
 </TITLE>
 <SCRIPT LANGUAGE="JavaScript">
 document.write("<H1>Validating With XML Schemas</H1>");
 var parser = new ActiveXObject("MSXML2.DOMDocument.4.0");
 parser.validateOnParse = true;

 if (parser.load("ch06_02.xml")) {
 document.write("The document is valid!");
 } else {
 if (parser.parseError.errorCode != 0) {
 document.write(parser.parseError.reason);
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY></BODY>
</HTML>

As an example, you can validate the following sample XML document, which you have already seen today:

<?xml version="1.0"?>
<document xmlns="http://xmlpowercorp">
 <text>
 Welcome to XML Schemas!
 </text>
</document>

How do you connect an XML schema to an XML document? Different XML processors do it in different ways, but, slowly,
a standard is emerging. If you define a namespace, usually named xsi, for the URI www.w3.org/2001/XMLSchema-instance,
you can then use an attribute named xsi:schemaLocation in the document element to specify the URI of the document's
XML schema.

Not many XML processors support this attribute yet, but Internet Explorer does. To use this attribute so that Internet
Explorer will understand it, you assign it a text string, giving the namespace you're using in our XML document, which is
http://xmlpowercorp here, and the URI of the XML schema, which is ch0603.xsd in this case (assuming that ch0603.xsd is in
the same directory as the XML document), like this: xsi:schemaLocation="http://xmlpowercorp ch06_03.xsd". (If you're not
using a namespace in our XML document, you can use the xsi:noNamespaceSchemaLocation attribute.) Listing 6.2 shows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using a namespace in our XML document, you can use the xsi:noNamespaceSchemaLocation attribute.) Listing 6.2 shows
how this works in the XML document ch06_02.xml.

Listing 6.2 A Sample XML Document to Verify (ch06_02.xml)

<?xml version="1.0"?>
<document xmlns="http://xmlpowercorp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlpowercorp ch06_03.xsd">
 <text>
 Welcome to XML Schemas!
 </text>
</document>

Listing 6.3 shows an XML schema (ch06_03.xsd) you can use for this example.

Listing 6.3 The XML Schema for the First Example (ch06_03.xsd)

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://xmlpowercorp"
xmlns="http://xmlpowercorp"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xsd:element name="document">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="text" type="xsd:string" minOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Just by looking at the XML schema in Listing 6.3, you can get an idea of what's going on: You declare an element
named <document> and another one named <text> to match what's in the XML document. Then when you open
ch06_01.html, Internet Explorer loads in the XML document, ch06_02.xml, and then the XML schema, ch06_03.xsd, and it
validates the XML document, as shown in Figure 6.4. (Note that to run this example, ch06_01.html, ch06_02.xml, and
ch06_03.xsd should all be in the same directory.)

Figure 6.4. Validating with an XML schema in Internet Explorer.

On the other hand, what if the XML processor you're using objects to the xsi:schemaLocation attribute, which you use to
connect the XML schema to an XML document, as nonstandard? It turns out that it's actually not necessary to embed an
xsi:schemaLocation attribute in an XML document to validate it by using Internet Explorer—you can use JavaScript to tell
Internet Explorer where to find the XML schema. Listing 6.4 shows an HTML document (ch06_04.html) that does that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 6.4 An HTML Document That Verifies an XML Document (ch06_04.html)

<HTML>
 <HEAD>
 <TITLE>
 Validating With XML Schemas
 </TITLE>
 <SCRIPT LANGUAGE="JScript">
 document.write("<H1>Validating With XML Schemas</H1>");
 var schemaHandler = new ActiveXObject("MSXML2.XMLSchemaCache.4.0");
 schemaHandler.add("http://xmlpowercorp", "ch06_03.xsd");

 var parser = new ActiveXObject("MSXML2.DOMDocument.4.0");
 parser.schemas = schemaHandler;
 parser.validateOnParse = true;

 if (parser.load("ch06_05.xml")) {
 document.write("The document is valid!");
 } else {
 if (parser.parseError.errorCode != 0) {
 document.write(parser.parseError.reason);
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY></BODY>
</HTML>

By using ch06_04.html, you don't have to use the xsi:schemaLocation attribute, as you can see in the new version of the
sample XML document, ch06_05.xml, which is shown in Listing 6.5.

Listing 6.5 The XML Document to Be Verified (ch06_05.xml)

<?xml version="1.0"?>
<document xmlns="http://xmlpowercorp">
 <text>
 Welcome to XML Schemas!
 </text>
</document>

When you open this HTML document, ch06_04.html, in Internet Explorer, you get the same results shown in Figure 6.4
as it validates the new version of the XML document. (Note that to run this example, ch06_04.html, ch06_05.xml, and
ch06_03.xsd should all be in the same directory.)

Now that you have some experience using software both in generating XML schemas and using them to validate XML,
it's time to get into the meat of today's discussion: creating our own XML schemas.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating XML Schemas
To create XML schemas ourselves, you're going to need an XML document to practice on—one that will give you some
idea of what's possible. For example, say that you're a bank president, and you want to keep track of the mortgage
loans you have outstanding. This example involves an XML document that contains the current mortgages held by a
real estate investor and records not only data about this investor but also about the bank, and it lists the current
mortgages the investor has with our bank, including the mortgage amount, the term of each (in years), and the location
of the various properties. This document, ch06_06.xml, is shown in Listing 6.6; as shown in the listing, there is a
document element named <document>, a <bank> element that stores data about the bank, a <mortgagee> element that
stores data about the borrower, and a <mortgages> element that lists the mortgages the borrower has with the bank.

Listing 6.6 An XML Document That Contains Mortgage Information (ch06_06.xml)

<?xml version="1.0" encoding="UTF-8"?>
<document documentDate="2005-03-02">
 <comment>Good risk</comment>
 <mortgagee phone="888.555.1234">
 <name>James Blandings</name>
 <location>1234 299th St</location>
 <city>New York</city>
 <state>NY</state>
 </mortgagee>
 <mortgages>
 <mortgage loanNumber="66 7777 88">
 <property>The Hackett Place</property>
 <date>2005-03-01</date>
 <loanAmount>80000</loanAmount>
 <term>15</term>
 </mortgage>
 <mortgage loanNumber="11 8888 22">
 <property>123 Acorn Drive</property>
 <date>2005-03-01</date>
 <loanAmount>90000</loanAmount>
 <term>15</term>
 </mortgage>
 <mortgage loanNumber="33 4444 11">
 <property>99 West Pocusset St</property>
 <date>2005-03-02</date>
 <loanAmount>100000</loanAmount>
 <term>30</term>
 </mortgage>
 <mortgage loanNumber="55 3333 88">
 <property>19 Johnson Place</property>
 <date>2005-03-02</date>
 <loanAmount>110000</loanAmount>
 <term>30</term>
 </mortgage>
 <mortgage loanNumber="22 6666 99">
 <property>345 Notingham Court</property>
 <date>2005-03-02</date>
 <loanAmount>120000</loanAmount>
 <term>30</term>
 </mortgage>
 </mortgages>
 <bank phone="888.555.8888">
 <name>XML Bank</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
 </bank>
</document>

You're naturally anxious to make sure that the data on our mortgage loans is stored correctly, so you also have a first-
class XML schema for this XML document; it is shown in Listing 6.7.

Listing 6.7 An XML Schema to Validate ch06_06.xml (ch06_07.xsd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
 </xsd:complexType>
 <xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="phone" type="xsd:string"
 use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="mortgagesType">
 <xsd:sequence>
 <xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date"
 minOccurs="0"/>

 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="loanNumberType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2} \d{4} \d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="comment" type="xsd:string"/>
</xsd:schema>

Now that you have a sample XML schema, let's dissect it to see what makes XML schemas tick.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Dissecting an XML Schema
The first thing to note about the XML schema in Listing 6.7 is that it's a well-formed XML document. That is, it uses
proper XML elements to declare the syntax of the XML document ch06_06.xml. To start, it uses an XML declaration to
declare the namespace prefix xsd (the usual name for this namespace prefix in XML schemas), and it assigns the URI
www.w3.org/2001/XMLSchema to that prefix, which is how the W3C says you must do things in XML schemas, in a
special element named <xsd:schema>:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 .
 .
 .
</xsd:schema>

The items in the schema appear in special elements that are legal to use in XML schemas, like the following, which
declares an annotation for the XML schema explaining what it's for:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 .
 .
 .
</xsd:schema>

Here you're putting the <xsd:documentation> element with the text "Mortgage record XML schema." inside the
<xsd:annotation> element, creating a comment in the schema. (You'll hear more about XML schema annotations
tomorrow.) Annotations like this one are ignored by XML processors.

Although much of this schema is still unfamiliar to you, you can already see some of what's going on. In particular, note
that you use <xsd:element> to declare elements and <xsd:attribute> to declare attributes:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
 </xsd:complexType>
 .
 .
 .
</xsd:schema>

As you can see, there are specific elements that are legal in schemas. The following section explains what they are.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Built-in XML Schema Elements
Table 6.2 lists the elements you can use in XML schemas. These elements are usually used with the namespace
www.w3.org/2001/XMLSchema and namespace prefix xsd, so, for example, the <all> element would usually be <xsd:all>,
and so on.

Table 6.2. Legal XML Schema Elements
XML Schema

Element
Description

all Allows elements in a group to be in any order.

annotation Creates an annotation that lets you add comments to an XML schema.

any Allows any element to appear in a sequence or choice element.

anyAttribute Allows any attribute to appear in the containing complex type or in the containing attribute
group.

appinfo Contains information within an annotation element.

attribute Declares an attribute.

attributeGroup Creates an attribute group, which allows attribute declarations to be used as a group for
complex type definitions.

choice Allows one, and only one, of the given elements to appear in the containing element.

complexContent Specifies restrictions on a complex type that contains mixed content or elements.

complexType Declares a complex type.

documentation Contains text that can be placed in an annotation element.

element Declares an element.

extension Extends a simple or complex type that has simple content.

field Contains an XML Path Language (XPath) expression that specifies the value for a constraint.

group Groups element declarations together so that they can be used as a group in complex type
definitions.

import Imports a namespace whose schema components can be used by a schema.

include Includes the given schema document in the current schema.

key Specifies that an attribute value or element value must be a key.

keyref Specifies that an attribute value or element value must match the value of the given key.

list Declares a simple type element as a list of values of a given data type.

notation Holds a notation to describe the format of non-XML data inside an XML document.

redefine Allows simple and complex types and groups to be redefined in the current schema.

restriction Declares constraints, such as restricting the type of data.

schema Contains a schema definition.

selector Gives an XPath expression that can select elements for an identity constraint.

sequence Constrains the given elements to appear in the given sequence in the XML document.

simpleContent Contains extensions or restrictions on a type.

simpleType Declares a simple type for use with the type attribute when you declare elements or attributes.

union Declares a simple type as a collection of values of simple data types.

unique Specifies that an attribute or element value must be unique.

You'll begin putting the elements in Table 6.2 to work next, as you take a look at how to declare elements in XML
schemas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Elements and Types
To declare elements, you use the <xsd:element> element in XML schemas. When you declare an element, you can
specify its type. For example, the element named <comment> in the sample XML document you've been working with
just contains text:

<comment>Good risk</comment>

You can declare the <comment> element by using <xsd:element> and giving it the name "comment" and the type
xsd:string, like this:

<xsd:element name="comment" type="xsd:string"/>

That was easy enough. In this case, you could use a type that is built into XML schemas, xsd:string. However, you can
also define our own types. In fact, there are two types that you can create—simple and complex types.

To create simple types, you use the <xsd:simpleType> element, and to create complex types, you use the
<xsd:complexType> element. After you create our own types, you can declare elements by using those types.

Elements that enclose child elements or have attributes are complex types. Elements that enclose only simple data,
such as numbers, strings, or dates, but do not have any child elements are simple types. In other words, complex types
can have internal structure, such as child elements and attributes, but simple types cannot. For example, attributes are
always simple types because attribute values cannot have any internal structure (such as child elements).

The distinction between simple and complex types is an important one because you declare simple and complex types
differently. You declare complex types ourselves, and the XML schema specification comes with many simple types
already declared, as you'll see. You can also declare our own simple types, and you'll see how to do that as well.

Using Simple Types

You've already seen that you can use built-in XML schema types when declaring elements, like this:

<xsd:element name="comment" type="xsd:string"/>

Table 6.3 lists the built-in simple types for XML schemas. Note that if you use the xsd namespace prefix in an XML
schema, as is usual, you reference the simple types in the schema as xsd:anyURI, xsd:base64Binary, and so on. Probably
the most-used built-in simple type is xsd:string, which is simply a string of text. Other common types are xsd:int for
integers, and xsd:date for dates. Note also how detailed these types are compared to DTDs; remember that with DTDs,
you can't define data types.

Table 6.3. Simple Types Built into XML Schema
Simple Type Examples

anyURI http://www.xmlpowercorp.com

base64Binary GpM6

boolean true, false, 1, 0

byte -1, 200

date 2005-03-02

dateTime 2005-03-02T10:14:00.000-05:00

decimal 1.23456, -1.23456, 200000.00

double 12345, 12.345E-6, 3.1415926

duration P2Y1M3DT10H40M21.7S

ENTITIES (XML entities)

ENTITY (An XML entity)

float 12345, 12.345E-6, 3.1415926

gDay ---31

gMonth --02--

gMonthDay --04-31

gYear 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gYearMonth 2005-07

hexBinary 0EE6

ID (XML ID)

IDREF (XML ID REF)

IDREFS (XML ID REFS)

int 1, 2, -3, 7654321

integer -12345, -100, 1000

language en-US, de, fr, jp

long -1234, 12345678901234

Name Edward

NCName Thomas

negativeInteger -1, -12, -12345

NMTOKEN CA

NMTOKENS CA NJ, PA NY MA

nonNegativeInteger 0, 1, 2, 12345

nonPositiveInteger -12, -33, 0

normalizedString Welcome to XML Schemas

NOTATION (XML NOTATION)

positiveInteger 1, 2, 3, 123456

QName xml21:Name

short -1, 2, 245

string Welcome to XML Schemas

time 10:22:00.000

token Hello

unsignedByte 0, 88, 127

unsignedInt 0, 1234

unsignedLong 0, 126789675

unsignedShort 0, 123

Usually, when you want to use a simple data type, you use one of the ones listed in Table 6.3. However, you can also
use the <xsd:simpleType> element to declare our own simple types, as you're going to see tomorrow. If you can't give
simple types child elements or attributes and you have a whole selection of predefined simple types to choose from, as
shown in Table 6.3, what's the point of declaring our own simple types? Among other things, declaring our own simple
types lets you restrict the values those types can take.

For example, take a look at the <term> element in the mortgage XML document. This element gives the term (that is,
the length) of the mortgage in years, and you want that number to be 30 or less, so you can use a <xsd:simpleType>
element, enclosing a <xsd:restriction> element, to restrict the possible values that can be used in the <term> element.
Inside the <xsd:restriction> element, you can use the <xsd:maxInclusive> element to restrict possible values in the <term>
element to 30 years or less, like this:

<xsd:element name="term">
<xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
</xsd:simpleType>

You'll hear more about this kind of restriction, as well as create our own simple types, tomorrow. at the following
section explores how to create our own complex types, which is a far more common thing to do than creating our own
simple types.

Using Complex Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You create new complex types by using the <xsd:complexType> element in schemas. A complex type definition can
contain element declarations, references to other elements, and attribute declarations. You declare elements by using
the <xsd:element> element and attributes by using the <xsd:attribute> element. Like DTDs, element declarations specify
the syntax of an element; however, in XML schemas, element and attribute declarations can also specify the element or
attribute type.

Here's an example. In the XML document, the document element, which is called <document>, contains <comment>,
<mortgagee>, <mortgages>, and <bank> elements, in that order:

<document>
 <comment>
 .
 .
 .
 </comment>
 <mortgagee>
 .
 .
 .
 </mortgagee>
 <mortgages>
 .
 .
 .
 </mortgages>
 <bank>
 .
 .
 .
 </bank>
</document>

The <document> element can contain other elements, so you need to declare it by using a complex type, which you can
call documentType in our XML schema. In the XML schema, you can declare the <document> element to be of the
documentType type:

<xsd:element name="document" type="documentType"/>

You create the documentType type by using an <xsd:complexType> element. In this case, you want to indicate that the
subelements in <document> will be <comment>, <mortgagee>, <mortgages>, and <bank> elements, in that order, so you
use the <xsd:sequence> element (tomorrow you'll see how you can use <xsd:all>, which enables elements to appear in
any order and in any sequence):

<xsd:element name="document" type="documentType"/>
<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
</xsd:complexType>

The other types you see in this declaration—such as recordType, which is the type of the <mortgagee> and <bank>
elements—are also complex types. Here's how recordType is declared:

<xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Note that the elements in this declaration, such as <name>, <location>, and others, are all of the simple type, xsd:string,
which is built in to the XML schema specification, so this is all you need to do to declare them.

Using the new type recordType, you can create <bank> elements, like this:

<bank phone="888.555.8888">
 <name>XML Bank</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
</bank>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</bank>

That's how it works: You create a type in an XML schema and then you can declare elements of that type. If you want
to use a complex type, you have to create it, and you do that by using the <xsd:complexType> element.

One way of declaring elements, as you've seen today, is to specify the element's name and type, as in the following
example, which declares the <comment> element:

<xsd:element name="comment" type="xsd:string"/>

Now that you've declared <comment>, what if you want to use this element in several places in an XML document? Say,
for example, that you want to use <comment> elements in various places throughout a document, like this:

<customer>

 <comment>No more credit on this one.</comment>
</customer>
<supplier>
 <comment>Always delivers late.</comment>
</supplier>

In this case, you can use the ref attribute of the <xsd:element> element to indicate that the element you want to use at a
particular location has already been declared. You can see an example in the following XML schema for the <comment>
element:

<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>
 .
 .
 .
<xsd:element name="comment" type="xsd:string"/>

Using the ref attribute lets you make use of an element that has already been declared. Note, however, that you can't
just include any element by reference—the element you refer to must have been declared globally, which means that it
is itself not part of any other complex type. (The other option is to declare elements inside other declarations, which is
declaring them locally.) A global element or attribute declaration appears as an immediate child element of the
<xsd:schema> element, and when you declare an element or attribute globally, it can be used in any complex type.
Using the ref attribute in this way is a powerful technique.

Note also the other attribute here besides ref—minOccurs. This attribute lets you specify how many of a certain element
you'll allow at a specific location. The following section takes a look at that.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Specifying a Number of Elements
The <document> element is declared to be of the documentType type, and in that type, you use the minOccurs attribute to
indicate that the <comment> element must occur at least once:

<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>

To make an element optional, you set minOccurs to 0. You can specify the minimum number of times an element
appears by using the minOccurs attribute and the maximum number of times it can appear by using the maxOccurs
attribute. (Keep in mind that you can use minOccurs and maxOccurs only with local declarations, not global ones.) Here's
how you could specify that the <comment> element can appear from 0 to 10 times in the documentType type:

<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="0" maxOccurs="10"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>

There are built-in default values for minOccurs and maxOccurs that take effect if you don't specify values. The default
value for minOccurs is 1, and the default for maxOccurs is the value of minOccurs. To specify that there is no upper bound
to the maxOccurs attribute, you set it to the value "unbounded".
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Specifying Element Default Values
The <xsd:element> element has two attributes, fixed and default, that let you specify an element's default values.

The fixed attribute sets the value of an element; for example, setting the <term> element's fixed attribute to an integer
value of 800 means that the element will always have that value:

<xsd:element name="term" type="xsd:integer" fixed="800"/>

The default attribute lets you set the default value of an element—that is, the value that the element has if you don't
specify any other value. For example, here's how you can specify a value of 800 as a default value instead of fixing this
element's value at 800:

<xsd:element name="term" type="xsd:integer" default="800"/>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Attributes
As with elements, with XML schemas you can specify the types of attributes. In XML documents, attribute values have
to be quoted strings, and if you have, say, a number such as "100", the XML schema is able to indicate that such a
number should be interpreted as an integer. To declare an attribute, you use the <xsd:attribute> element as in the
following example, which declares an attribute named phone for the recordType type, which means that all elements of
this type, such as <bank> in the XML document, will support this attribute:

<xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="phone" type="xsd:string"/>
</xsd:complexType>

Like <xsd:element>, <xsd:attribute> has a type attribute, and its attributes must always be of a simple type. You can also
indicate whether an attribute is required or optional, or whether it has a default value. To do that, you use the
<xsd:attribute> element's use and value attributes.

The use attribute specifies whether the attribute is required or optional—and if it is optional, whether the attribute's
value is fixed or whether there is a default. For example, you can make the phone attribute optional like this:

<xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="phone" type="xsd:string"
 use="optional"/>
</xsd:complexType>

Here are the values you can give to the use attribute:

default— If you don't use the use attribute, its value is the default value set with the value attribute. If you do
use it, its value is the value you assign it.

fixed— This value makes the attribute fixed. You can set its value by using the value attribute.

optional— This value makes the attribute optional, which means the attribute may have any value.

prohibited— This value means the attribute cannot be used.

required— This value makes the attribute required. The attribute can have any value.

The value attribute contains a value if you need to specify one. For example, the following attribute declaration creates
an attribute named year with the integer fixed value "2005":

<xsd:attribute name="year" type="xsd:int" use="fixed" value="2005">

Here's another example of an attribute declaration. This example gives the integer attribute year the default value
"2005":

<xsd:attribute name="year" type="xsd:int" use="default" value="2005">
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today's discussion provided an introduction to creating XML schemas. You saw that XML schemas are designed to go
past DTDs and allow you a great deal more precision—at the cost of some added complexity.

You saw that there are a number of tools available to make working with XML schemas easier. As XML schemas become
more complex, XML authors often use XML schema creation tools, and you saw that some of them are available online.
You can also check the validity of an XML schema by using a variety of other tools.

You saw that you start an XML schema by using an XML declaration and the <xsd:schema> element. In that element,
you usually declare a namespace prefix, xsd, which is assigned the URI www.w3.org/2001/XMLSchema, the official W3C
namespace for XML schema. All elements and attributes in the schema then use this prefix.

To declare elements and attributes in an XML document by using an XML schema, you can use the XML schema
elements <xsd:element> and <xsd:attribute>. A number of XML schema elements like these two are available, and today
you took a brief look at them.

Both <xsd:element> and <xsd:attribute> support an attribute named type, which lets you specify an element's or
attribute's type. There are two main types—simple types and complex types. Simple types cannot enclose any child
elements or have any attributes, but complex types can. Elements can be declared by using simple or complex types,
but attributes can only be declared by using simple types.

A number of simple types are built in to the XML schema specification, and you heard a little about them today.
(Microsoft has a set of its own types that extends this built-in set.) Some examples are xsd:string for strings of text,
xsd:int for integers, and xsd:date for dates. You can also create your own simple types by using <xsd:simpleType>, and
you're going to get more experience with <xsd:simpleType> tomorrow. You can create complex types by using
<xsd:complexType>, which may enclose the declarations of child elements. You saw today that enclosing those child
elements in an <xsd:sequence> element creates an element sequence and that the elements declared in sequence must
appear in that sequence in the XML document.

Today you also saw that the <xsd:element> element has a minOccurs attribute to indicate the minimum number of times
an element may appear at the location where it has been declared and a maxOccurs attribute to set the maximum
number of times it may occur. In addition, you can use the fixed and default attributes to specify whether an element has
a fixed or default value.

Today you've gotten a start with XML schemas today, and you've seen how to declare elements and attributes, as well
as how to use the built-in simple types and how to create your own complex types. But there's far more to XML
schemas, as you're going to see tomorrow, when you'll take a look at declaring empty elements, mixed content,
element groups, and more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Does an XML schema really need an XML declaration (such as <?xml version="1.0"
encoding="UTF-8"?>)? I don't see XML declarations in the examples in the W3C XML schema
primer at http://www.w3.org/TR/xmlschema-0.

A1: Oddly, the XML schema examples in the W3C XML schema primer don't have XML declarations. However,
it is standard to include an XML declaration at the beginning of each XML schema.

Q2: I don't want to declare a sequence of XML child elements; I want to declare a list of XML child
elements and allow only one to actually be chosen. Can I create choices in XML schema as I can
in DTDs?

A2: Yes. To do this, you use the XML schema <xsd:choice> element. You'll hear all the details tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What namespace is used by XML schemas? (Hint: It is the URI that the xsd prefix corresponds to.)

2: What XML schema element do you use to declare an XML element in an XML schema? What XML schema
element do you use to declare an attribute?

3: How can you use an XML schema to declare an element called <name> that holds text content?

4: How can you declare an optional attribute called language that holds text?

5: What would the complete declaration of a <friend> element that contains <name> and <address> elements
(both of which contain text), in that order, and an attribute named date (in the xsd:date format) look like?

Exercises

1: Create an XML schema for an XML document that uses the namespace http://xml21, with the document
element <document> and containing both a <movieTitle> (content type: xsd:string) and <movieLength>
(content type: xsd:int) element. Then, if you have access to Internet Explorer, modify ch06_04.html so you
can check your work.

2: Modify the XML document you created in Exercise 1 so that the <movieTitle> and <movieLength> elements
can support date attributes of the xsd:date type. Then, if you have Internet Explorer, validate the new
version of the document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 7. Creating Types in XML Schemas
Yesterday you got started with XML schemas and heard about some of the basics. Today, you're going to continue with
XML schemas, getting a true working knowledge of the subject. Here's an overview of the topics covered today:

Creating restrictions

Creating simple types by using facets

Using anonymous types

Declaring empty elements

Declaring mixed-content elements

Declaring choices

Grouping elements

Grouping attributes

Declaring all groups

Using namespaces in schemas

Annotating schemas

As you're going to see today, XML schemas give you many options that DTDs don't. Some of what you're going to see
was designed for convenience, such as declaring element and attribute groups so you can use such groups throughout a
schema; some of the things we'll talk about, such as empty elements and choices, have analogs in DTDs; and things
we'll talk about today, such as anonymous types and facets, give you functionality you don't find in DTDs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Restricting Simple Types by Using XML Schema Facets
One of the most important ways that XML schemas differ from DTDs is that they let you specify data types, such as
strings and integers. As you saw yesterday, to do that, XML schemas let you use the data types that are built in to the
XML schema specification, such as xsd:string, xsd:integer, and xsd:date. But you can do even more with data types—you
can also restrict the values that are acceptable.

For example, take a look at the attribute named loanNumber, which is declared to be of type loanNumberType:

<xsd:complexType name="mortgagesType">
 <xsd:sequence>
 <xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>

 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The attribute loanNumber is not of a predefined type; it's of the loanNumberType type, which we've defined ourselves. In
particular, we've defined it with the <simpleType> element, like this:

<xsd:simpleType name="loanNumberType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2} \d{4} \d{2}"/>
 </xsd:restriction>
</xsd:simpleType>

As you saw yesterday, you must base your own simple types on the simple types that are built into XML schemas. In
this example, you use the xsd:string type. What's interesting here is that you can restrict the possible values of a simple
type by using the <xsd:restriction> element. Here's what's happening: You're using the <xsd:restriction> element's base
attribute to indicate that you are basing this type on the xsd:string type. Then you're using an XML schema facet to
restrict the actual text that can be stored in attributes of the type you're creating.

XML schema facets let you restrict the data that a simple type can hold. In this example, the text in the loanNumberType
type must match the regular expression pattern "\d{2} \d{4} \d{2}", which matches text strings made up of two digits, a
space, four digits, another space, and two more digits (for example, "22 6666 99"). You don't have to know how to use
regular expressions in this book, but this example shows how powerful facets can be. In this case, you're using the
pattern facet to specify a regular expression pattern that text used for the loanNumber attribute must match: <xsd:pattern
value="\d{2} \d{4} \d{2}"/>. At this point you've gone far beyond DTDs, which can't even specify data types.

TIP

Regular expressions used with the XML schema pattern facet are the same as those used in the Perl
programming language. As of this writing, the complete documentation for Perl regular expressions is at
http://www.perldoc.com/perl5.8.0/pod/perlre.html.

There are simpler facets than the pattern facet. Two popular facets are the minInclusive and maxInclusive facets, which let
you put lower and upper bounds on numeric values. For example, say that you want to create an attribute named
dayNumber that holds the day of the year and can range from 1 to 366 (to allow for leap years). You might restrict the
possible values that dayNumber can hold by making it of the type dayNumberType, which you can create by using
<xsd:simpleType> and the minInclusive and maxInclusive facets, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsd:simpleType name="dayNumber">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="366"/>
 </xsd:restriction>
</xsd:simpleType>

After you declare this new simple type, you can declare elements and attributes of this type.

The following are the available facets and how they constrain data values:

totalDigits— Specifies the maximum number of digits.

fractionDigits— Specifies the maximum number of decimal digits.

pattern— Specifies a regular expression that text must match.

whiteSpace— Can be set to preserve (to preserve white space), replace (to replace all white space with), or
collapse (to collapse multiple contiguous whitespace to one).

enumeration— Constrains possible values to a specified set.

maxInclusive— Specifies the maximum possible value, inclusive.

maxExclusive— Specifies the maximum possible value, exclusive.

minInclusive— Specifies the minimum possible value, inclusive.

minExclusive— Specifies the minimum possible value, exclusive.

length— Specifies the data's length, such as number of characters.

minLength— Specifies the minimum possible length.

maxLength— Specifies the maximum possible length.

Which facets apply to which predefined simple types? Can you use a pattern facet with an xsd:int value, for example?
Table 7.1 lists what facets you can use with the various simple data types. The numeric simple types and simple types
that can be ordered also have some additional facets, as listed in Table 7.2.

Table 7.1. The Facets Available for Simple Types
Type length minLength maxLength pattern enumeration whiteSpace

anyURI x x x x x x

base64Binary x x x x x x

boolean x x

byte x x x

date x x x

dateTime x x x

decimal x x x

double x x x

duration x x x

ENTITIES x x x x x

ENTITX x x x x x x

float x x x

gDay x x x

gMonth x x x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gMonthDay x x x

gYear x x x

gYearMonth x x x

hexBinary x x x x x x

ID x x x x x x

IDREF x x x x x x

IDREFS x x x x x

int x x x

integer x x x

language x x x x x x

long x x x

Name x x x x x x

NCName x x x x x x

negativeInteger x x x

NMTOKEN x x x x x x

NMTOKENS x x x x x

nonNegativeInteger x x x

nonPositiveInteger x x x

normalizedString x x x x x x

NOTATION x x x x x x

positiveInteger x x x

QName x x x x x x

short x x x

string x x x x x x

time x x x

token x x x x x x

unsignedByte x x x

unsignedInt x x x

unsignedLong x x x

unsignedShort x x x

Table 7.2. The Facets Available for Simple Ordered Types
Type max-Inclusive max-Exclusive min-Inclusive min-Exclusive total-Digits fraction-Digits

byte x x x x x x

unsignedByte x x x x x x

integer x x x x x x

positiveInteger x x x x x x

negativeInteger x x x x x x

nonNegativeInteger x x x x x x

nonPositiveInteger x x x x x x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int x x x x x x

unsignedInt x x x x x x

long x x x x x x

unsignedLong x x x x x x

short x x x x x x

unsignedShort x x x x x x

decimal x x x x x x

float x x x x

double x x x x

time x x x x

dateTime x x x x

duration x x x x

date x x x x

gMonth x x x x

gYear x x x x

gYearMonth x x x x

gDay x x x x

gMonthDay x x x x

One of the interesting facets in these tables is enumeration, which lets you specify a set of values that a data item can
select from. For example, to set up a simple type named dayOfTheWeek, whose values can be "Sunday", "Monday",
"Tuesday", "Wednesday", "Thursday", "Friday", and "Saturday", you would define the type like this:

<xsd:simpleType name="dayOfTheWeek">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Sunday"/>
 <xsd:enumeration value="Monday"/>
 <xsd:enumeration value="Tuesday"/>
 <xsd:enumeration value="Wednesday"/>
 <xsd:enumeration value="Thursday"/>
 <xsd:enumeration value="Friday"/>
 <xsd:enumeration value="Saturday"/>
 </xsd:restriction>
 </xsd:simpleType>

NOTE

The extended power of facets, which let you specify and limit the values your data can legally have, is good
for the XML author but not so good for programmers who want to support XML schemas. Supporting XML
schemas is one thing, but, for example, supporting full regular expressions so you can use facets such as
pattern is a very difficult thing to do for most programmers. And that's one of the reasons there aren't more
validators that use XML schemas and why the implementation of validators that use XML schemas is only
partial. Internet Explorer, for example, does not support the pattern facet. On the other hand, the Visual
Studio .NET programming languages, such as Visual Basic .NET and Visual C# .NET, do support regular
expressions, and so they support the pattern facet.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating XML Schema Choices
Similarly to choices in DTDs, XML schema choices let you specify a number of items, only one of which will be chosen.
To create a choice in XML schemas, you use the <xsd:choice> element. Here's an example in which the XML schema
currently allows only an element named <property> as the first child element in a <mortgage> element:

<xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
 </xsd:complexType>
</xsd:element>

Let's change this example so that the first child element inside a <mortgage> element can be either a
<residentialProperty> element or a <commercialProperty> element. Here's how:

<xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="residentialProperty" type="xsd:string"/>
 <xsd:element name="commercialProperty" type="xsd:string"/>
 </xsd:choice>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
 </xsd:complexType>
</xsd:element>

Using the <xsd:choice> element this way lets you create choices just as you can in DTDs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Anonymous Type Definitions
Up to this point, when you've created your own types, you've declared elements to be of a certain type and then
declared that type. To make use of a type, you give the new type a name and then use that name when declaring an
element, as with the documentType type and the <document> element declaration here:

<xsd:element name="document" type="documentType"/>
<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>

This is fine, and you can go on doing things this way, but there's another way as well: You can use anonymous types.
An anonymous type is useful if you want to use a type only once and don't want to create many different elements with
the same type. So far, the types you've created ourselves have all had names, but if you want to use a type in only one
location, it turns out that you can declare it at that location and you don't need to give it a name. This is called an
anonymous type.

To create an anonymous type definition, you simply enclose an <xsd:simpleType> or <xsd:complexType> element inside an
<xsd:element> element declaration. You don't need to name the type and you don't assign an explicit value to the type
attribute in the <xsd:element> element because the anonymous type you're using doesn't have a name.

Here's an example from the XML schema ch06_07.xsd—the <mortgage> element. This element is defined using an
anonymous type, which is a child element of the element declaration itself. Here's what it looks like (note that there is
no type attribute in the <xsd:element> element because you're using the child <xsd:complexType> element as an
anonymous type definition):

<xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 .
 .
 .
 </xsd:complexType>
</xsd:element>

Now you're free to structure this new anonymous type as you want it, and in doing so, you structure the <mortgage>
element declaration, with no named type needed:

<xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0""0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

You can also declare attributes in anonymous types, as is done in the <mortgage> element:

<xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0""0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
 </xsd:complexType>
</xsd:element>

That's all it takes. This example creates a complex anonymous type, but you can also create simple anonymous types.
In fact, you already have. Note the definition of the <term> element in the complex type you just created:

<xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

As you can see, this is an anonymous simple type. The idea here is that you want to restrict the possible values that the
<term> element can take. In particular, you want to limit those values to 30 years or below for mortgages. To do that,
you just use an anonymous simple type, as is done here.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Declaring Empty Elements
Is there a special way to declare empty elements in XML schemas? Not really. You just declare them by using a
complex type that has no child elements. In other words, you indicate that these are elements that do not contain any
other elements, which means they are empty. Empty elements can have attributes; if you declare them using complex
types, you can give them attributes.

For example, say you want to duplicate the HTML empty element , which you use to embed images in Web pages,
in XML. You can give this new element some of the same attributes it has in HTML: src, width, height, name, border, and
alt. You can start by declaring the element, like this:

<xsd:element name="img">
 .
 .
 .
</xsd:element>

Now you can use an anonymous complex type to declare the attributes used by this new element:

<xsd:element name="img">
 <xsd:complexType>
 .
 .
 .
 </xsd:complexType>
</xsd:element>

Then all you need to do is to add the attributes you want:

<xsd:element name="img">
 <xsd:complexType>
 <xsd:attribute name="src" type="xsd:string" />
 <xsd:attribute name="width" type="xsd:int" />
 <xsd:attribute name="height" type="xsd:int" />
 <xsd:attribute name="name" type="xsd:string" />
 <xsd:attribute name="alt" type="xsd:string" />
 <xsd:attribute name="border" type="xsd:int" />
 </xsd:complexType>
</xsd:element>

That's all you need to do. Now the empty element , along with the src, width, height, name, border, and alt
attributes, is ready to be used.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Declaring Mixed-Content Elements
XML schemas support true mixed-content elements, in which you can mix text and elements. In other words, character
data can appear at the same level as child elements. The following is an example of an XML document with mixed
content. It is an invoice from the bank that tells the borrower that the next payment on his or her mortgage is due:

<?xml version="1.0" encoding="UTF-8"?>
<invoice>
 To <name>James Blandings</name>:
 Your monthly payment of $2000.00 on
 <property>The Hackett Place</property>
 is due in three weeks. Thanks.
 From your friends at XML Bank.
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
</invoice>

As you can see, both text and elements are mixed inside the <invoice> element in this example. How can you declare an
element like this? You can start by using an anonymous type inside the declaration for the <invoice> element. Note that
to indicate that this element can handle mixed content, you set the <complexType> element's mixed attribute to "true":

<xsd:element name="invoice">
 <xsd:complexType mixed="true">
 .
 .
 .
 </xsd:complexType>
 </xsd:element>

All you have to do now is add the declarations for the elements that you can use inside the <invoice> element, like this:

<xsd:element name="invoice">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

When you were working with DTDs on Day 4, "Creating Valid XML Documents: DTDs," you were able to create mixed-
content elements of a sort, but you couldn't specify the order, or the number, of the child elements in an element by
using a mixed-content model. With XML schemas, you have more power. You can indeed specify the order and number
of child elements in a mixed-content element. That is to say, whereas DTDs provide only partial support for mixed-
content models, schemas provide a more complete syntax that allows you to specify the order and number of child
elements in mixed-content elements.

However, it is important to note that although you can declare mixed-content elements, you should avoid doing so if
possible. In the mixed-content document you just saw, the XML elements such as <name> and <property> are used
almost as you would use HTML elements to format a document for visual display. Ideally in XML documents, all data is
enclosed inside elements. Here's how you might restructure the mixed-content document into a standard XML
document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<invoice>
 <to>James Blandings</to>
 <for>The Hackett Place</for>
 <amount>$2000.00</amount>
 <text>Your monthly payment is due in three weeks. Thanks.</text>
 <name>XML Bank.</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
</invoice>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Grouping Elements Together
Say that as the bank president, you want to extend the credit you offer to borrowers to include not only mortgages but
also car loans. To do that, you might create a group named mortgagesAndCarLoansGroup. A group like this collects
elements together, and you can refer to a group by name. Here's how a group might look in an XML schema example
that involves replacing the mortgages element with a group named mortgagesAndCarLoansGroup:

<xsd:element name="document" type="documentType"/>
<xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:group ref="mortgagesAndCarLoansGroup"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>

To create the group named mortgagesAndCarLoansGroup, you can use the <xsd:group> element. In this example, that
group will contain both <mortgage> and <carLoan> elements, in that sequence. To be flexible, you can set the minOccurs
attribute of each element to 0 (in case, for example, the borrower has mortgages but no car loan) and the maxOccurs
attribute to 8:

<xsd:group name="mortgagesAndCarLoansGroup">
 <xsd:sequence>
 <xsd:element name="mortgage" ref="mortgageType"
 minOccurs="0" maxOccurs="8"/>

 <xsd:element name="carLoan" ref="carLoanType"
 minOccurs="0" maxOccurs="8"/>
 </xsd:sequence>
</xsd:group >

<xsd:complexType name="mortgageType">
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
</xsd:complexType>

<xsd:complexType name="carLoanType">
 <xsd:sequence>
 <xsd:element name="car" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="10"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="loanNumber" type="loanNumberType"/>
</xsd:complexType>

By using groups, you can collect elements together and refer to them by name, which means you can use those groups
throughout the XML schema as needed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Grouping Attributes Together
Besides grouping elements together, you can also group attributes together. You create attribute groups by using the
<xsd:attributeGroup> element. For example, say that you want to add a set of attributes to the <mortgage> element by
using a group—specifically, an xsd:int attribute named mortgageID, an xsd:date attribute named date, and an enumeration
attribute named secured that can take the values "yes" and "no". To do that, you can use an attribute group named
mortgageAttributeGroup, and you can refer to that group as follows in the declaration of the <mortgage> element:

<xsd:complexType name="mortgagesType">
 <xsd:sequence>
 <xsd:element name="mortgage" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="property" type="xsd:string"/>
 <xsd:element name="date" type="xsd:date" minOccurs="0"/>
 <xsd:element name="loanAmount" type="xsd:decimal"/>
 <xsd:element name="term">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="30"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attributeGroup ref="mortgageAttributeGroup"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

</xsd:element>

To create the attribute group mortgageAttributeGroup, you use the <xsd:attributeGroup> element, enclosing the
<xsd:attribute> elements you're going to use to declare the attributes in the group this way:

<xsd:attributeGroup name="mortgageAttributeGroup">
 <xsd:attribute name="mortgageID" type="xsd:int"/>
 <xsd:attribute name="date" type="xsd:date"/>
 <xsd:attribute name="secured">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="yes"/>
 <xsd:enumeration value="no"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:attributeGroup>

By using attribute groups like this, you can collect attributes together and use them in many different elements as
needed, simply by referring to the group.

NOTE

The inspiration behind element and attribute groups is parameter entities in DTDs. Parameter entities let
you collect declarations together and use them by referring to them simply by using a parameter entity
reference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Declaring all Groups
Besides element groups and attribute groups, you can also create all groups, by using the <xsd:all> element. When
you've declared elements so far, you've used the <xsd:sequence> element, which creates a set sequence of elements. In
an all group, elements may appear in any order, but there's a catch: All the elements in this kind of group may appear
only once or not at all (which means that the allowed values of minOccurs and maxOccurs are 0 and 1 only). This kind of
group must be used at the top level of the content model, and the group's children must be individual elements—in
other words, this group must itself contain no groups.

Let's take a look at an example in which you convert documentType (the type for the <document> element in this
example) from using an internal sequence to using an all group instead:

<xsd:complexType name="documentType">
 <xsd:all>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:all>
 <xsd:attribute name="documentDate" type="xsd:date"/>
</xsd:complexType>

Now that you're using an all group, the elements in the documentType type—<comment>, <mortgagee>, <mortgages>, and
<bank>—may appear in any order, which was not true when you used <xsd:sequence>. Although the elements may
appear in any order, each element may only appear once at most.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Namespaces in Schemas
DTDs weren't built specially to handle namespaces; as you've seen, they really treat namespace prefixes as part of an
element name. XML schemas, on the other hand, were supposed to improve on that situation, and to meet that goal,
they support a new attribute: targetNamespace.

The targetNamespace attribute can hold the namespace the XML schema is targeted toward—that is, the namespace that
the elements in the XML document uses. If you use multiple namespaces in the XML document, an XML validator will
know what XML schema to use, based on the schema's target namespace. In other words, a target namespace lets an
XML validator know what XML schema to use to check XML elements in that namespace.

You saw an example using the targetNamespace attribute yesterday in the Internet Explorer examples. In the sample
XML document, ch06_02.xml, you used the default namespace "http://xmlpowercorp" for all elements:

<?xml version="1.0"?>
<document xmlns="http://xmlpowercorp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlpowercorp ch06_03.xsd">
 <text>
 Welcome to XML Schemas!
 </text>
</document>

Then, in the XML schema, ch06_03.xsd, you used the targetNamespace attribute to indicate that this XML schema is for
elements in the "http://xmlpowercorp" namespace, which means Internet Explorer will use this schema only for elements
in that namespace:

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://xmlpowercorp"
xmlns="http://xmlpowercorp"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xsd:element name="document">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="text" type="xsd:string" minOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Working with namespaces in XML schema gets a little complex because you can use namespaces in different ways in
both an XML schema and the XML document you're validating. Also, XML schemas support a number of different options
that can be combined in various ways. It is important that you know that XML schemas treat global element
declarations differently than local element declarations when it comes to working with namespaces; this is because
global elements can be used as document elements, whereas local elements can't.

As you've seen, globally declared elements and attributes are declared at the top level in the XML schema, directly
under the <schema> element. All the other elements and attributes declared in an XML schema are locally declared.
When you start working with namespaces, XML schemas allow you to specify whether locals need to be qualified (that
is, whether they need a namespace prefix) when used in an XML document.

Declaring Locals Without Qualifying Them

How do you declare locals so that they don't need to be qualified? To specify whether elements need to be qualified,
you use the elementFormDefault attribute of the <schema> element, and to specify whether attributes need to be
qualified, you use the attributeFormDefault attribute of the same element. You can set the elementFormDefault and
attributeFormDefault attributes to "qualified" or "unqualified".

The following example makes both local elements and attributes unqualified:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">

Because you're dealing with namespaces now, let's also take a look at a shortcut way of handling the XML schema URI
"http://www.w3.org/2001/XMLSchema" in an XML schema. Up to this point, you've been associating the prefix xsd with that
namespace in the XML schema, as in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

namespace in the XML schema, as in this example:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 .
 .
 .

However, if you make "http://www.w3.org/2001/XMLSchema" the default namespace in an XML schema (by using an xmlns
attribute, not an xmlns:xsd attribute), you don't need to use a prefix for the XML schema elements:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <annotation>
 <documentation>
 Mortgage record XML schema.
 </documentation>
 </annotation>
 .
 .
 .

That can save some time, but you have to be a little careful because now the XML validator will assume that
everything's in the "http://www.w3.org/2001/XMLSchema" namespace. That's a problem because when you say, for
example, that the <document> element is of the documentType type, the XML validator needs to know where to find the
documentType type; it won't find that type defined in the default "http://www.w3.org/2001/XMLSchema" namespace. You can
indicate that local types are declared locally by using a new namespace prefix, such as xmp (for XML Power Corp.) in
this example:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 xmlns:xmp="http://xmlpowercorp"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <annotation>
 <documentation>
 Mortgage record XML schema.
 </documentation>
 </annotation>
 <element name="document" type="xmp:documentType"/>
 <complexType name="documentType">
 <sequence>
 <element ref="xmp:comment" minOccurs="1"/>
 <element name="mortgagee" type="xmp:recordType"/>
 <element name="mortgages" type="xmp:mortgagesType"/>
 <element name="bank" type="xmp:recordType"/>
 </sequence>
 .
 .
 .

Listing 7.1 shows the entire XML schema ch07_01.xsd.

Listing 7.1 An XML Schema That Has Unqualified Locals (ch07_01.xsd)

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 xmlns:xmp="http://xmlpowercorp"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <annotation>
 <documentation>
 Mortgage record XML schema.
 </documentation>
 </annotation>
 <element name="document" type="xmp:documentType"/>
 <complexType name="documentType">
 <sequence>
 <element ref="xmp:comment" minOccurs="1"/>
 <element name="mortgagee" type="xmp:recordType"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <element name="mortgagee" type="xmp:recordType"/>
 <element name="mortgages" type="xmp:mortgagesType"/>
 <element name="bank" type="xmp:recordType"/>
 </sequence>
 <attribute name="documentDate" type="xmp:date"/>
 </complexType>
 <complexType name="recordType">
 <sequence>
 <element name="name" type="xmp:string"/>
 <element name="location" type="xmp:string"/>
 <element name="city" type="xmp:string"/>
 <element name="state" type="xmp:string"/>
 </sequence>
 <attribute name="phone" type="xmp:string"
 use="optional"/>
 </complexType>
 <complexType name="mortgagesType">
 <sequence>
 <element name="mortgage" minOccurs="0" maxOccurs="8">
 <complexType>
 <sequence>
 <element name="property" type="xmp:string"/>
 <element name="date" type="xmp:date" minOccurs="0"/>
 <element name="loanAmount" type="xmp:decimal"/>
 <element name="term">
 <simpleType>
 <restriction base="integer">
 <maxInclusive value="30"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 <attribute name="loanNumber" type="xmp:loanNumberType"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="loanNumberType">
 <restriction base="string">
 <pattern value="\d{2} \d{4} \d{2}"/>
 </restriction>
 </simpleType>
 <element name="comment" type="xmp:string"/>
</schema>

The only two elements that are global in the new XML schema, ch07_01.xsd, are <document> and <comment>, so they're
the only ones that need to be qualified with a namespace prefix. Listing 7.2 shows an XML document (ch07_02.xml) that
ch07_01.xsd would validate.

Listing 7.2 An XML Document That Has Unqualified Locals (ch07_02.xml)

<?xml version="1.0" encoding="UTF-8"?>
<xmp:document
 xmlns:xmp="http://xmlpowercorp"
 documentDate="2005-03-02">
 <xmp:comment>Good risk</xmp:comment>
 <mortgagee phone="888.555.1234">
 <name>James Blandings</name>
 <location>1234 299th St</location>
 <city>New York</city>
 <state>NY</state>
 </mortgagee>
 <mortgages>
 <mortgage loanNumber="66 7777 88">
 <property>The Hackett Place</property>
 <date>2005-03-01</date>
 <loanAmount>80000</loanAmount>
 <term>15</term>
 </mortgage>
 <mortgage loanNumber="11 8888 22">
 <property>123 Acorn Drive</property>
 <date>2005-03-01</date>
 <loanAmount>90000</loanAmount>
 <term>15</term>
 </mortgage>
 <mortgage loanNumber="33 4444 11">
 <property>99 West Pocusset St</property>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <property>99 West Pocusset St</property>
 <date>2005-03-02</date>
 <loanAmount>100000</loanAmount>
 <term>30</term>
 </mortgage>
 <mortgage loanNumber="55 3333 88">
 <property>19 Johnson Place</property>
 <date>2005-03-02</date>
 <loanAmount>110000</loanAmount>
 <term>30</term>
 </mortgage>
 <mortgage loanNumber="22 6666 99">
 <property>345 Notingham Court</property>
 <date>2005-03-02</date>
 <loanAmount>120000</loanAmount>
 <term>30</term>
 </mortgage>
 </mortgages>
 <bank phone="888.555.8888">
 <name>XML Bank</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
 </bank>
</xmp:document>

Declaring and Qualifying Locals

Despite what we discussed in the preceding section, we can require that locals be qualified with a namespace prefix. For
example, we can assign the value "qualified" to the elementFormDefault attribute instead of using "unqualified", as in the
XML schema ch07_01.xsd. Here's how you do that:

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 xmlns:xmp="http://xmlpowercorp"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 .
 .
 .

Now you have to qualify both locals and globals in the XML document, as shown in ch07_03.xml in Listing 7.3.

Listing 7.3 An XML Document That Has Qualified Locals (ch07_03.xml)

<?xml version="1.0" encoding="UTF-8"?>
<xmp:document
 xmlns:xmp="http://xmlpowercorp"
 documentDate="2005-03-02">
 <xmp:comment>Good risk</xmp:comment>
 <xmp:mortgagee phone="888.555.1234">
 <xmp:name>James Blandings</xmp:name>

 <xmp:location>1234 299th St</xmp:location>
 <xmp:city>New York</xmp:city>
 <xmp:state>NY</xmp:state>
 </xmp:mortgagee>
 <xmp:mortgages>
 <xmp:mortgage loanNumber="66 7777 88">
 <xmp:property>The Hackett Place</xmp:property>
 <xmp:date>2005-03-01</xmp:date>
 <xmp:loanAmount>80000</xmp:loanAmount>
 <xmp:term>15</xmp:term>
 </xmp:mortgage>
 .
 .
 .
 <xmp:mortgage loanNumber="22 6666 99">
 <xmp:property>345 Notingham Court</xmp:property>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xmp:property>345 Notingham Court</xmp:property>
 <xmp:date>2005-03-02</xmp:date>
 <xmp:loanAmount>120000</xmp:loanAmount>
 <xmp:term>30</xmp:term>
 </xmp:mortgage>
 </xmp:mortgages>
 <xmp:bank phone="888.555.8888">
 <xmp:name>XML Bank</name>
 <xmp:location>12 Schema Place</location>
 <xmp:city>New York</xmp:city>
 <xmp:state>NY</xmp:state>
 </xmp:bank>
</xmp:document>

You can also require that attributes be qualified by setting attributeFormDefault to "qualified":

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlpowercorp"
 xmlns:xmp="http://xmlpowercorp"
 elementFormDefault="qualified"
 attributeFormDefault="qualified">
 .
 .
 .

Now all elements and attributes, both global and local, will have to be qualified. Rather than prefix every element and
attribute with xmp:, however, you can make things easier by just putting the entire XML document into the
"http://xmlpowercorp" namespace, as shown in Listing 7.4.

Listing 7.4 An XML Document That Has Qualified Elements and Attributes
(ch07_04.xml)

<?xml version="1.0" encoding="UTF-8"?>
<document
 xmlns="http://xmlpowercorp"
 documentDate="2005-03-02">
 <comment>Good risk</comment>
 <mortgagee phone="888.555.1234">
 <name>James Blandings</name>
 <location>1234 299th St</location>
 <city>New York</city>
 <state>NY</state>
 </mortgagee>
 <mortgages>
 <mortgage loanNumber="66 7777 88">
 <property>The Hackett Place</property>
 <date>2005-03-01</date>
 <loanAmount>80000</loanAmount>
 <term>15</term>
 </mortgage>
 .
 .
 .
 <mortgage loanNumber="22 6666 99">
 <property>345 Notingham Court</property>
 <date>2005-03-02</date>
 <loanAmount>120000</loanAmount>
 <term>30</term>
 </mortgage>
 </mortgages>
 <bank phone="888.555.8888">
 <name>XML Bank</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
 </bank>
</document>

Up to this point, you've specified that all locals must be either qualified or unqualified, but there's also a way of working
on locals individually: by using the form attribute. For example, in the XML schema ch07_05.xsd, you can leave all locals
unqualified except for a single attribute, phone, which must be qualified (see Listing 7.5).

Listing 7.5 An XML Schema That Has One Qualified Attribute (ch07_05.xsd)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 .
 .
 .
 </xsd:complexType>
 <xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="phone" type="xsd:string"
 use="optional" form="qualified"/>
 </xsd:complexType>
 <xsd:complexType name="mortgagesType">
 <xsd:sequence>
 <xsd:element name="mortgage" minOccurs="0" maxOccurs="8">
 <xsd:complexType>
 .
 .
 .
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="loanNumberType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{2} \d{4} \d{2}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="comment" type="xsd:string"/>
</xsd:schema>

Listing 7.6 shows an XML document (ch07_06.xml) that this schema would validate. Note that in this example, all locals
are unqualified—except the phone attribute, which is qualified.

Listing 7.6 An XML Document That Has One Qualified Attribute (ch07_06.xml)

<?xml version="1.0" encoding="UTF-8"?>
<xmp:document
 xmlns:xmp="http://xmlpowercorp"
 documentDate="2005-03-02">
 <xmp:comment>Good risk</xmp:comment>
 <mortgagee xmp:phone="888.555.1234">
 <name>James Blandings</name>
 <location>1234 299th St</location>
 <city>New York</city>
 <state>NY</state>
 </mortgagee>
 <mortgages>
 <mortgage loanNumber="66 7777 88">
 <property>The Hackett Place</property>
 <date>2005-03-01</date>
 <loanAmount>80000</loanAmount>
 <term>15</term>
 </mortgage>
 .
 .
 .
 <mortgage loanNumber="22 6666 99">
 <property>345 Notingham Court</property>
 <date>2005-03-02</date>
 <loanAmount>120000</loanAmount>
 <term>30</term>
 </mortgage>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </mortgage>
 </mortgages>
 <bank xmp:phone="888.555.8888">
 <name>XML Bank</name>
 <location>12 Schema Place</location>
 <city>New York</city>
 <state>NY</state>
 </bank>
</xmp:document>

That finishes our discussion on namespaces and XML schemas. The last topic you'll take a look at today is how to
annotate XML schemas.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Annotating an XML Schema
As with DTDs and XML documents, you can add comments to XML schemas. Can you use the XML comments in XML
schema? Yes, you can. Here's an example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!--Define the document element first -->
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
 </xsd:complexType>
 .
 .
 .

However, as you might expect from the way that you've been extending what you can do in DTDs, there's more to the
story. XML schemas also define three new elements that you use to add annotations to schemas: <xsd:annotation>,
<xsd:documentation>, and <xsd:appInfo>.

The <xsd:annotation> element is a container for the other two, <xsd:documentation> and <xsd:appInfo>. The
<xsd:documentation> element holds text intended for human readers, but it's a little more than standard XML comments
because the text in <xsd:documentation> elements can be stripped out by an XML processor and used to document an
XML schema. The <xsd:appInfo> element can be used to pass along instructions to the XML processor that is reading the
XML schema.

Here's an example from the XML schema you developed yesterday (ch06_07.xsd) that uses an <xsd:documentation>
element, which must be enclosed inside an <xsd:annotation> element:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation>
 Mortgage record XML schema.
 </xsd:documentation>
 </xsd:annotation>
 .
 .
 .

Although you typically add an <xsd:annotation> element at the beginning of an XML schema, you can use these elements
anywhere you like in an XML schema, as in this example, where you add an annotation to a complex type declaration:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 <xsd:annotation>
 <xsd:documentation>
 This type is used in the document element.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="1"/>
 <xsd:element name="mortgagee" type="recordType"/>
 <xsd:element name="mortgages" type="mortgagesType"/>
 <xsd:element name="bank" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
 </xsd:complexType>
 .
 .
 .

The <xsd:appInfo> element, which (like the <xsd:documentation> element) must be enclosed in an <xsd:annotation>
element, can pass on information to the XML processor if the XML processor is set up to read that information. For
example, if the XML processor expects a set of parameters such as checkSpelling, you can enclose those parameters and
their settings in an <xsd:appInfo> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

their settings in an <xsd:appInfo> element:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:appInfo>
 checkSpelling="true"
 </xsd:appInfo>
 </xsd:annotation>
 .
 .
 .

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
There's more about schemas that we haven't covered—for example, one XML schema can inherit declarations from
another XML schema, and we can specify just how that inheritance process will work. You can also handle keys, IDs,
and ID references—and even specify how the validity of the XML schema itself should be checked. (For more details,
see http://www.w3.org/TR/xmlschema-0, http://www.w3.org/TR/xmlschema-1, and
http://www.w3.org/TR/xmlschema-2.)

The specification for XML schemas is pretty extensive, and it's still under development. From our point of view, this
means that XML validators—even the ones from Microsoft—will often only be partial implementations of the full
specification. So be warned: If an XML validator doesn't implement the complete XML schema specification, it might
simply accept something without comment and without checking its validity—for example, Internet Explorer doesn't
implement the pattern facet, but if you use it, as you have done in this chapter, it won't complain or generate any errors
—it will simply ignore the facet.

Tomorrow, we're going to start handling the visual formatting of the data in XML documents as we use cascading style
sheets to work on the presentation of data.

For the second day in a row, today you worked with XML schemas, and you got a good look at what XML schemas can
do. You started by taking a look at how to restrict possible data values by using facets.

XML schemas not only let you specify data types for your data, as you saw yesterday, but they also let you impose
restrictions on that data. As you saw today, there are 12 facets: totalDigits, fractionDigits, pattern, whiteSpace, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive, length, minLength, and maxLength. You can use these facets to restrict
the possible values you want to allow data to have. The <xsd:restriction> element has a base attribute that you can use
to set the data type for the data you're restricting.

Today you also saw that you can use the <xsd:choice> element to create choices, which work just as choices work in
DTDs. Only one item from a choice can be selected and can appear in the XML document you're validating at the
location of the <xsd:choice> element in the XML schema.

XML schemas support anonymous type definitions, which are simply type definitions that aren't named; as a shortcut,
an anonymous type definition appears directly in the element declaration where it will be used. As you saw today,
anonymous type definitions are useful if you want to use a type only once and don't need to refer to it in other places in
an XML schema.

Today you also saw that empty elements can be declared by using a complex type that simply has no child elements
but that may have attributes. You also saw that you can declare mixed-content elements by setting the mixed attribute
of the <xsd:complexType> element to "true".

You can group together elements in the <xsd:group> element, and you can group attributes together by using the
<xsd:attributeGroup> element. These are convenience elements in XML schemas, allowing you to declare groups that you
can use throughout an XML schema as you want. You can also create all groups instead of just using the sequences you
saw yesterday. In an all group, elements can appear in any order, but all the elements in this kind of group can appear
only once or not at all.

XML schemas also have provisions for handling namespaces—by using the targetNamespace attribute, which is an
attribute of the <xsd:schema> element and can hold the namespace the XML schema is targeted toward. You have seen
that you can use the elementFormDefault and attributeFormDefault attributes to specify whether local elements and
attributes need to be qualified with namespace prefixes when used.

As you have seen, XML schemas support three elements that are used to add annotations to schemas: <xsd:annotation>,
<xsd:documentation>, and <xsd:appInfo>. The <xsd:annotation> element encloses the other two elements;
<xsd:documentation> holds documentation comments, and the <xsd:appInfo> element holds information you want to pass
on to the XML processor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Is there any way to refer to external XML schemas from the current XML schema, as a DTD can
refer to external DTDs?

A1: Yes. You can use the <xsd:include> and <xsd:import> elements. The <xsd:include> element can include a
specified XML schema document in the target namespace of the current schema. The <xsd:import> element
imports a namespace whose schema components are referenced by the current schema.

Q2: How can one XML schema inherit declarations from another XML schema?

A2: Inheritance is a complex topic in XML schema, based on object-oriented programming (OOP) languages
such as C++. XML schema inheritance implements many of the features of OOP, all the way up to letting
you create abstract types that cannot be instantiated directly but must be implemented locally before they
are used. (For the details, you can take a look at http://www.w3.org/TR/xmlschema-0.) Not many XML
validators or processors support XML schema inheritance yet.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What element do you use to restrict the possible values data can take? How do you specify the data type
you're restricting?

2: What facets do you use to cap allowed vales? What facets do you use to constrain values to be one of a set
you specify?

3: How would you declare a simple type named age whose integer values are restricted to be between 0 and
125, inclusive?

4: How can you allow either a <friend> element or a <foe> element to appear at a particular location by using
an XML choice element?

5: How can you declare an empty element named <movie> with a text attribute named title and an integer
attribute named length?

Exercises

1: Create an XML document that keeps track of the amount of money owed to you by various friends. In the
corresponding XML schema, use the appropriate facets to be sure the amount owed is greater than 0 and
less than 5,000 (or 500,000—if you really trust your friends).

2: Add another element—the <repayment> element—to the XML document you created in Exercise 1. Use the
enumeration facet to ensure that this element can only take the text values "Monday", "Tuesday", "Wednesday",
"Thursday", and "Friday".

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I. In Review
In Part I, which is all about creating XML documents, you got the basics, including how to write XML documents, how to
create well-formed documents, and how to make sure XML documents are valid. You saw that there can be various
parts in an XML document, not all of which must appear in all documents:

XML declarations

Processing instructions

Elements and attributes

Comments

CDATA sections

Entities

For example, this XML document, which holds the names of clients for whom you might be doing some programming,
begins with an XML declaration, and the document element is <document>:

<?xml version = "1.0" standalone="yes"?>
<document>
 <client>
 <name>
 <lastname>Kirk</lastname>
 <firstname>James</firstname>
 </name>
 <contractDate>September 5, 2092</contractDate>
 <contracts>
 <contract>
 <app>Comm</app>
 <id>111</id>
 <fee>$111.00</fee>
 </contract>
 <contract>
 <app>Accounting</app>
 <id>222</id>
 <fee>$989.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <name>
 <lastname>McCoy</lastname>
 <firstname>Leonard</firstname>
 </name>
 <contractDate>September 7, 2092</contractDate>
 <contracts>
 <contract>
 <app>Stocker</app>
 <id>333</id>
 <fee>$2995.00</fee>
 </contract>
 <contract>
 <app>Dialer</app>
 <id>444</id>
 <fee>$200.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <name>
 <lastname>Spock</lastname>
 <firstname>Mr.</firstname>
 </name>
 <contractDate>September 9, 2092</contractDate>
 <contracts>
 <contract>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <contract>
 <app>WinHook</app>
 <id>555</id>
 <fee>$129.00</fee>
 </contract>
 <contract>
 <app>MouseApp</app>
 <id>666</id>
 <fee>$25.00</fee>
 </contract>
 </contracts>
 </client>
</document>

Each element here has an opening and closing tag, and each element is nested properly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Well-Formed Documents
Well-formedness is the most basic requirement that a document must fulfill in order to be considered an XML
document. You saw on Day 3 that there are a number of requirements for well-formedness: the document must begin
with an XML declaration, the document must contain at least one element, one element must contain all the other
elements, elements must be nested properly, and so on. For example, this XML document is not well-formed because
there's a nesting error with the <lastName> and <firstName> elements:

<?xml version = "1.0" standalone="yes"?>
<document>
 <client>
 <name>
 <lastname>Kirk</firstname>
 <lastname>James</firstname>
 </name>
 <contractDate>September 5, 2092</contractDate>
 .
 .
 .
</document>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Valid Documents
Besides being well-formed, XML documents may also be valid. A valid document must conform to a number of syntax
rules. There are two ways to specify the syntax of XML documents[md]by using DTDs and XML schemas, each of which
has its own syntax.

To declare a DTD, you use the <!DOCTYPE> element. That DTD can either be internal to the XML document (in which
case you set the XML declaration's standalone attribute to "yes"), external to the XML document (in which case you give
the DTD's URI and set the XML declaration's standalone attribute to "no"), or a combination of the two.

You can use <!ELEMENT> elements to declare XML elements in a DTD. When we use <!ELEMENT>, the syntax for
elements is <!ELEMENT name content_model>. There are also various content models possible when declaring an element.
You can use the content model ANY to allow any content and to turn off syntax checking, and we can use EMPTY to
declare an empty element.

You can list possible child elements of an element this way:

<!ELEMENT document (client)>

This allows a <document> element to contain a <client> element. In addition, you can list the child elements that an
element can contain like this:

<!ELEMENT client (name, contractDate, contracts)>

And you can specify that an element contains parsed character data by using #PCDATA.

In the DTD syntax, you can use the symbols + (one or more), * (zero or more), ? (one or none), and | (choices) to
work with multiple child elements. And you can also use these symbols in sequences to specify exactly what child
elements, or combinations of child elements, an element can contain.

In Part I you also saw that you declare attributes in a DTD by using an <!ATTLIST> element and that you can assign
default values to attributes when you declare them. When you declare an attribute, you can assign an explicit default
value enclosed in quotation marks, use #IMPLIED to make the attribute optional, use #FIXED to give it a fixed value, or
use #REQUIRED to make an attribute required.

And you've also seen in Part I that you can declare the type of an attribute in an <!ATTLIST> element. The allowed types
are CDATA, ENTITY, ENTITIES, an enumeration, an ID value, an IDREF value, IDREFS, NMTOKEN, NMTOKENS, and NOTATION.
Here's what a DTD for your sample document might look like:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE document [
<!ELEMENT document (client)*>
<!ELEMENT client (name, contractDate, contracts)>
<!ELEMENT name (lastname, firstname)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT contractDate (#PCDATA)>
<!ELEMENT contracts (contract)*>
<!ELEMENT contract (app, id, fee)>
<!ELEMENT app (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT fee (#PCDATA)>
<!ATTLIST liaison CDATA #IMPLIED>
]>
<document>
 <liaison="no">
 <name>
 <lastname>Kirk</lastname>
 <firstname>James</firstname>
 </name>
 <contractDate>September 5, 2092</contractDate>
 <contracts>
 <contract>
 <app>Comm</app>
 <id>111</id>
 <fee>$111.00</fee>
 </contract>
 <contract>
 <app>Accounting</app>
 <id>222</id>
 <fee>$989.00</fee>
 </contract>
 </contracts>
 </client>
 <liaison="yes">
 <name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <name>
 <lastname>McCoy</lastname>
 <firstname>Leonard</firstname>
 </name>
 <contractDate>September 7, 2092</contractDate>
 <contracts>
 <contract>
 <app>Stocker</app>
 <id>333</id>
 <fee>$2995.00</fee>
 </contract>
 <contract>
 <app>Dialer</app>
 <id>444</id>
 <fee>$200.00</fee>
 </contract>
 </contracts>
 </client>
</document>

In Part I you also got an introduction to creating XML schemas. You saw that you start an XML schema with an XML
declaration and an <xsd:schema> element, and in this element, you declare a namespace prefix such as xsd, which is
assigned the URI setting "http://www.w3.org/2001/XMLSchema".

To declare elements and attributes in an XML document using an XML schema, you can use the XML schema elements
<xsd:element> and <xsd:attribute>. Both <xsd:element> and <xsd:attribute> support an attribute named type, which lets you
specify an element's or attribute's type.

There are two main types you can use: simple types and complex types. Simple types cannot enclose any child
elements or have any attributes, but complex types can. As you've seen, elements can be declared by using simple or
complex types, but attributes can only be declared by using simple types.

There are a number of simple types built into the XML schema specification, including xsd:string for strings, xsd:int for
integers, and xsd:date for dates. You can also create your own simple types by using <xsd:simpleType>.

You can create complex types by using <xsd:complexType>, which may enclose the declarations of child elements. You
saw on Day 6 that enclosing those child elements in an <xsd:sequence> element creates an element sequence and that
the elements declared in sequence must appear in that sequence in the XML document.

You also saw that the <xsd:element> element has a minOccurs attribute to indicate the minimum number of times an
element may appear at the location where it has been declared, and a maxOccurs attribute to set the maximum number
of times it may occur. In addition, you saw that you can use the fixed and default attributes to specify whether an
element has a fixed or default value.

To review how XML schemas work, let's take a look at an XML document that holds data about a property owner who
wants to sell his properties:

<?xml version="1.0" encoding="UTF-8"?>
<document documentDate="2005-12-02">
 <evaluation>Wants to sell soon.</evaluation>
 <prospect>
 <name>Ralph Kramden</name>
 <location>311 Chauncey Street</location>
 <city>New York</city>
 <state>NY</state>
 </prospect>
 <properties>
 <house listingNumber="111 111 111">
 <address>19 Oak Place</address>
 <sellingPrice>200000</sellingPrice>
 <listingPeriod>3</listingPeriod>
 </house>
 <house listingNumber="222 222 222">
 <address>23 Maple Street</address>
 <sellingPrice>180000</sellingPrice>
 <listingPeriod>3</listingPeriod>
 </house>
 <house listingNumber="333 333 333">
 <address>77 Chestnut Drive</address>
 <sellingPrice>160000</sellingPrice>
 <listingPeriod>6</listingPeriod>
 </house>
 <house listingNumber="444 4444 444">
 <address>677 Pine Place</address>
 <sellingPrice>220000</sellingPrice>
 <listingPeriod>6</listingPeriod>
 </house>
 </properties>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </properties>
 <broker>
 <name>XML Broker</name>
 <location>484 Ginko Street</location>
 <city>New York</city>
 <state>NY</state>
 </broker>
</document>

The XML schema specifies the syntax of every element in this example in a natural XML way, where elements that
enclose various child elements in the XML document also enclose those child elements in the XML schema. Here's what
the XML schema that will validate the XML document looks like:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="document" type="documentType"/>
 <xsd:complexType name="documentType">
 <xsd:sequence>
 <xsd:element ref="evaluation" minOccurs="1"/>
 <xsd:element name="prospect" type="recordType"/>
 <xsd:element name="properties" type="propertiesType"/>
 <xsd:element name="broker" type="recordType"/>
 </xsd:sequence>
 <xsd:attribute name="documentDate" type="xsd:date"/>
 </xsd:complexType>
 <xsd:complexType name="recordType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="location" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="propertiesType">
 <xsd:sequence>
 <xsd:element name="house" minOccurs="1" maxOccurs="8">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address" type="xsd:string"/>
 <xsd:element name="sellingPrice" type="xsd:decimal"/>
 <xsd:element name="listingPeriod">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:maxInclusive value="6"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="listingNumber"
 type="listingNumberType"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="listingNumberType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3} \d{3} \d{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="evaluation" type="xsd:string"/>
</xsd:schema>

XML schemas like this aren't necessarily easy to create. However, there are a number of tools out there that can create
XML schema for you.

And that's it. Part I helped get you started creating XML documents and making sure they're well-formed and valid. In
Part II, you're going to start working on formatting the data in XML documents for presentation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: At a Glance
Formatting XML Documents
In Part II, you're going to start working with the actual data inside XML documents, but without using
programming. You're going to see three ways of formatting XML data in the coming three days.

You'll start by using cascading style sheets (CSS), which are specified by the W3C for formatting both
XML and HTML. You can do a lot to format the appearance of XML documents by using CSS. However,
CSS aren't native XML.

You'll also take a look at formatting XML by using Extensible Stylesheet Language Transformations
(XSLT); XSLT is native XML. By using XSLT you can extract data from XML documents, process it, and
create new HTML, RTF, text, and files, as well as files of other formats, including new XML documents—
all without programming. However, you can't really format the appearance of XML data directly by using
XSLT.

The general version of Extensible Stylesheet Language (XSL) that uses special formatting objects is
called XSL-FO, and it can format data down to the smallest spaces and font choices. You'll see XSL-FO
in Day 10; although XSL-FO gives you a handle on just about all aspects of displaying XML data, it's
pretty complex to work with.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 8. Formatting XML by Using Cascading Style
Sheets
Say that you want to take a look at the data in an XML document by using a browser. You might be out of luck unless
you're using a specialized XML browser that can handle the particular XML markup you're using, such as the W3C
Amaya browser that handles MathML. However, there are very few specialized XML browsers out there, and there's a
great deal of XML. Don't you have any other options? You do. For one, you can use Cascading Style Sheets (CSS). Many
browsers, such as Netscape Navigator and Internet Explorer, let you use CSS to format the data in XML documents for
display, and today you're going to see how that works. It's getting more and more common to see CSS-formatted XML
on the Web, and it often makes sense to display data by using CSS. You might want to create a table, for example,
which is a lot easier on the eyes than a 40-page XML document.

Here's an overview of today's topics:

Creating CSS style sheets and CSS rules

Using CSS style sheets with XML documents

Selecting elements in style sheets

Grouping elements

Creating CSS classes

Selecting elements by ID

Using inline styles

Using block elements

Formatting text

Aligning text

Creating margins

Displaying images

Creating lists

Creating tables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Our Sample XML Document
You already know that XML provides a good way of storing data; for example, say that you want to store the text of
your favorite stoic philosopher in an XML document. Listing 8.1 shows an example of text from the philosopher
Epictetus, as ch08_01.xml.

Listing 8.1 An XML Document (ch08_01.xml)

<?xml version="1.0" standalone="yes"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 <paragraph>
 Who, then, chooses to live in error? No man. Who chooses
 to live deceived, liable to mistake, unjust, unrestrained,
 discontented, mean? No man.
 </paragraph>
 <paragraph>
 Not one then of the bad lives as he wishes; nor is he,
 then, free. And who chooses to live in sorrow, fear, envy,
 pity, desiring and failing in his desires, attempting to
 avoid something and falling into it? Not one.
 </paragraph>
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

The data of Epictetus' text is stored in ch08_01.xml, but it's not exactly presented optimally. Even for a browser that can
display XML directly, such as Internet Explorer, this text isn't easy to read because of the embedded markup. Figure 8.1
shows ch08_01.xml in Internet Explorer.

Figure 8.1. An XML document displayed in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It turns out that you can improve this visual display by telling browsers how to format the XML elements you use for
markup—for example, you can say that you want the <title> element to be displayed using a particular font, in a
particular size, and even in italics if you want. That's what today's work is all about—convincing standard Web browsers
to display XML by telling them how to format the data in various XML elements (and removing all the markup).

To do that, you're going to use CSS today. CSS was first introduced in December 1996. It's now widely in use for HTML
browsers, and although it was originally used only to format HTML, thanks to CSS, the major browsers now let you
format XML as well. In some ways, CSS works even better with XML than it does with HTML, because in XML you're not
limited to the predefined HTML elements and you can style sophisticated nestings of elements and more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing CSS
CSS has been standardized by the W3C, and as of this writing, there are three levels of CSS available: CSS1, CSS2,
and CSS3. You can find the W3C recommendations for CSS1 and CSS2 at http://www.w3.org/TR/REC-CSS1 and
http://www.w3.org/TR/REC-CSS2. CSS3 is still under development; it's broken up into many modules, and at this point
those modules are at various stages of acceptance, from working drafts to candidate recommendations. You can find
more about the many CSS3 modules at http://www.w3.org/Style/CSS/current-work. There are also many CSS
resources available at the W3C CSS page, http://www.w3.org/Style/CSS, including CSS tutorials and links to free tools.

Today you'll be dealing almost exclusively with CSS1 because it gives you all you need in order to present XML
documents. CSS2 includes some changes compared to CSS1, but its main thrust is in providing extra features, such as
aural stylesheets for sounds and so on; CSS3 is still under development. Support for CSS1 in both Netscape Navigator
and Internet Explorer is good—in fact, Internet Explorer supports all of CSS1 (and that was true as of March 27, 2000,
when Internet Explorer 5.0 shipped). One notable aspect of CSS2 that you're going to use today is its support for
formatting tables.

Formatting using CSS revolves around using style sheets. Style sheets are collections of style rules, each of which
shows how to format an XML element. For example, say that you want to specify how to format the text in the <title>
element in the ch08_01.xml sample XML document shown in Listing 8.1. How could you construct a style rule to do that?
A rule is made up of a selector, which is the element(s) you want to format, and the rule specification, which shows
what formatting you want to apply. Here's how a rule might look if you wanted to format the text in the <title> element
in bold, centered, underlined 36-point font (a point is 1/72 inch):

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}

Note that the rule specification is enclosed in curly braces, { and }. In this rule, title is the selector and {display: block;
font-size: 36pt; font-weight: bold; text-align: center; text-decoration: underline} is the rule specification. display, font-size, font-
weight, and so on are CSS properties, and you're going to see a great many of those properties today. In fact, getting to
know CSS largely means getting to know what properties, like these, are available. The second part of today's
discussion is devoted to the various CSS properties and what they do for you.

Rule specifications are made up of property/value pairs, such as display: block, separated with semicolons, as you'll see
when you write your own style sheets. The display: block property/value pair is a particularly important one because it
gives the element you're formatting its own line in the display, creating a block-level element, just as the <H1> element
in HTML is a block-level element. You'll talk more about this in a few pages.

Listing 8.2 shows a CSS style sheet that handles all four of the element types that are in the sample XML document
—<title>, <philosopher>, <book>, and <paragraph>. Note that CSS style sheet files use the extension .css.

Listing 8.2 A CSS Document (ch08_02.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}

You're going to be writing style sheets of the kind shown in Listing 8.2 throughout today's discussion. Style sheets don't
look much like XML documents, but, as with XML, there are a few CSS validators available on the Web to help you
check your CSS. Here are two of them:

The W3C CSS validator, at http://jigsaw.w3.org/css-validator, checks the CSS in your pages for you.

The W3C TIDY program can convert styles in HTML documents to CSS for you. TIDY is available at
http://tidy.sourceforge.net.

The next step is to connect the CSS style sheet, ch08_02.css, to the XML document, ch08_01.xml.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Connecting CSS Style Sheets and XML Documents
There are three ways to connect a CSS style sheet with HTML: You can use an internal style sheet, you can use an
external style sheet, or you can use the HTML STYLE attribute to associate a CSS style with a particular HTML element.
You don't have the luxury of these options in XML, at least not with the current crop of browsers. At this point, there's
really only one way of connecting a style sheet to an XML document: by using the <?xml-stylesheet?> processing
instruction.

Actually, <?xml-stylesheet?> isn't built in to the XML specification at all. (As with XML schema, W3C isn't particularly good
about indicating how you connect files such as style sheets with XML documents.) It has just become an agreed-upon
convention, supported in both Netscape Navigator and Internet Explorer. In HTML browsers, you set the type attribute
of processing instruction to "text/css" and the href attribute to the URI of the style sheet. You can see how this works in
ch08_03.xml, which is the same as ch08_01.xml except that it uses a <?xml-stylesheet?> processing instruction to connect
itself to ch08_02.css.

Listing 8.3 An XML Document That Has an Attached Style Sheet (ch08_03.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_02.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 <paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

When you place ch08_03.xml and ch08_03.css in the same directory and open ch08_03.xml in Internet Explorer, Internet
Explorer reads and applies the CSS style rules in ch08_02.css. Figure 8.2 shows the results of doing this.

Figure 8.2. The sample XML document ch08_03.xml formatted in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can see what's happened in Figure 8.2: You told Internet Explorer how to format the <title>, <philosopher>, <book>,
and <paragraph> elements, and it did as you wanted, removing all markup from the display. Note that different
browsers can give different results for the same CSS formatting. For example, Figure 8.3 shows the same document,
ch08_03.xml, in Netscape Navigator. Notice that the text looks different than in Internet Explorer. For one thing, there's
no vertical space between paragraphs (because Netscape Navigator doesn't support the margin-top CSS keyword, which
specifies how much vertical space to leave between elements).

Figure 8.3. The sample XML document ch08_03.xml formatted in Netscape Navigator.

TIP

Actually, there is another way to connect styles to XML elements with Internet Explorer. You can create
inline styles by using the style attribute, like this:

He is free who lives as he <i style="font-style: italic">
wishes to live...</i>

This is certainly nonstandard for XML documents in general, but Internet Explorer supports it, as you'll see
today.

Now that you've gotten some experience with CSS styles sheets and XML, the following section shows how to create
style sheets, starting with specifying what elements you want to style.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Style Sheet Selectors
To specify what XML elements you want to format, you use selectors in a XSS style sheet. You've already seen some
simple selectors in the style sheet ch08_02.css, where each selector is just the name of the element you want to format,
such as title and philosopher:

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}

In this case, you're applying the style rule specification {display: block; font-size: 36pt; font-weight: bold; text-align: center;
text-decoration: underline} to the <title> element, the style rule specification {display: block; font-size: 16pt; text-align: center}
to the <philosopher> element, and so on. This is the simplest kind of selector, where you just name the element you
want to format.

You can also group elements together just by separating them with commas. Listing 8.4 shows an example of this
method, in ch08_04.css, which formats the <title> and <book> elements in the same way.

Listing 8.4 Grouping Selectors (ch08_04.css)

title, book {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
paragraph {display: block; margin-top: 10}

Figure 8.4 shows this style sheet applied to the sample XML document. As you can see, the <title> and <book> elements
are formatted the same way.

Figure 8.4. Formatting by using a group selector.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Style Classes

You don't need to specify an element name or names in order to create a selector; you can instead use a style class as
a selector. You create a class by preceding its name with a dot (.) and using that as a selector. For example, say that
you want to create a class named standout that formats its text in cyan on a background of coral. You can do that by
creating the standout class, as shown in Listing 8.5. (This example relies on the fact that the browser you'll use, Internet
Explorer, has dozens of colors, including coral and cyan, already built in).

Listing 8.5 Creating a Style Class (ch08_05.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
.standout {color:cyan; background-color:coral}

You can apply the standout class to elements such as <title> and <philosopher> by using an attribute named class in
Internet Explorer (Netscape Navigator doesn't support this attribute). Note that the class attribute isn't built in to XML;
it's just used by convention in Internet Explorer for this purpose. Listing 8.6 shows an example of how to style these
elements by using the style class ch08_06.css.

Listing 8.6 Using a Style Class (ch08_06.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_05.css"?>
<document>
 <title class="standout">The Discourses</title>
 <philosopher class="standout">Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.5 shows what this formatted document, ch08_07.xml, looks like in Internet Explorer. Note that the new colors
were added to the display; they didn't simply replace the other formatting that was already present.

Figure 8.5. Using style classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIP

If you want to use the class attribute in a valid document, you have to declare it. In a DTD, that might look
like this:

<!ATTLIST title class CDATA #IMPLIED>

In an XML schema, it might look like this:

<xsd:attribute name="class" type="xsd:text"/>

You can target style classes to specific elements as well. For example, say that you want to format the first paragraph
in the text a particular way, indenting it by using the text-indent CSS keyword and separating it even more from the
previous text by using the margin-top keyword. You can do this by creating a new class named, say, paragraph.first, which
is shown in Listing 8.7. In this case, you're specifying that the new class, first, applies only to <paragraph> elements.

Listing 8.7 Creating a Class-Specific Selector (ch08_07.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
paragraph.first {text-indent: 40; margin-top: 30}

You can put the new style class to work with <paragraph> elements as shown in Listing 8.8.

Listing 8.8 Using a Class-Specific Selector (ch08_08.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_07.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph class="first">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <paragraph class="first">
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.6 shows how the text looks when you use the class-specific selector. Note in particular that the first paragraph
is indeed formatted as you want it—indented and with more vertical space preceding it than the other paragraphs have.
You have created a style class that is targeted at one element type alone.

Figure 8.6. Using a style targeted to only one element.

Selecting by ID

Besides creating style classes, there's another way to select XML elements to format: You can use the element's ID
value. You can create selectors that target XML elements that have a certain ID by using this syntax:

elementName#idValue

Listing 8.9 shows an example of this technique. This example, ch08_09.css, creates a style rule for <paragraph> elements
that have the ID "first".

Listing 8.9 Creating an ID-Based Selector (ch08_09.css)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
paragraph#first {text-indent: 40; margin-top: 30}

You can use this new ID-based selector in an XML document as shown in Listing 8.10.

Listing 8.10 Using an ID-Based Selector (ch08_10.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_09.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph id="first">
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

When you open ch08_10.xml in Internet Explorer (Netscape Navigator does not support the id attribute for XML
documents), you get the same results shown in Figure 8.6—the first paragraph is indented and given some more
vertical space.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Inline Styles
In HTML you can create an inline style to format just one particular element. To do this, you simply assign a style rule
specification to the style attribute of the element. Internet Explorer (but not Netscape Navigator) can do the same thing.
For example, to make just the word wishes italic in the text "He is free who lives as he wishes to live" in the sample
XML document, you can enclose that word in its own element, as shown in Listing 8.11. Figure 8.7 shows the result,
with the word wishes indeed italicized.

Listing 8.11 Using Inline Styles (ch08_11.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_02.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he
 <i style="font-style: italic">wishes</i>
 to live; who is neither subject to compulsion nor to
 hindrance, nor to force; whose movements to action
 are not impeded, whose desires attain their purpose,
 and who does not fall into that which he would avoid.
 </paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.7. Using inline styles in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that in this case, you're not using display: block in the style specification because you want to italicize the word
wishes in place—not give it its own line. Strictly speaking, this is not valid XML unless you also declare the style
attribute in a DTD or an XML schema, of course.

Note that some people recommend not using inline styles in this way because such styles are then spread throughout
the document instead of being collected into a single style sheet. On the other hand, Internet Explorer supports inline
styles for XML documents, so the choice is up to you.

You now have a good idea of how to create selectors in style sheet rules at this point. Now let's take a look at how to
create the other part of style sheet rules: the rule specification itself.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Style Rule Specifications in Style Sheets
As discussed earlier today, a style sheet rule is made up of a selector followed by a style rule specification in curly
braces, like this:

title {display: block; font-size: 36pt; font-weight: bold;
text-align: center; text-decoration: underline}

As mentioned earlier today, the style rule specification is a list of property/value pairs that are separated by semicolons.
For example, you can assign the display property the value block, the font-size property the value 36pt (for 36 points), and
so on.

Note that when you assign values to CSS properties, you can specify a size or a length by using points, indicated with
the pt suffix (for example, 36pt) or pixels (for example, 20px). Theoretically, browsers are also supposed to be able to
handle measurements in inches (suffix in), centimeters (suffix cm), millimeters (suffix mm), and picas (1/6 inch; suffix
pc). If you omit the suffix for a length, pixels are assumed. Also, note that when you specify positions, the origin is at
the upper left of the display window (not at the lower right, as many people expect). That is, positive x increases to the
right, and positive y increases downward.

To understand how to create style rule specifications, you need to know what CSS properties are available. The CSS
specifications list many of them, and only by knowing what properties are available can you know how to create style
rule specifications. You'll take a look at some of the possibilities in the rest of today's discussion.

Creating Block Elements

Today you have already used the display property, which you can see in action in the following example:

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}

As mentioned earlier today, when you assign the display property the value block, the corresponding element will be
formatted in a block, which means that the data from the element will start on a new line, and the data from the next
element will start on its own line as well. In HTML, this creates what's called a block-level element.

Specifying Text Styles

As you might expect, there are plenty of style properties that you can use with text. Here's a sampling:

font-family— Specifies the font face. You can list a number of options, separated by commas. The first face
supported by the browser will be used.

font-size— Specifies the size of the font. You can set this property to a size; for example, 36pt is 36 points.

font-style— Specifies whether to use normal, italic, or oblique face.

font-weight— Specifies the boldness of text relative to other fonts in the same font family. You can set it to bold
for bold text.

line-height— Specifies the height of each line of text. You can set it to an absolute size or to a percentage, such
as 150% (which creates 11/2 spacing).

text-align— Specifies the alignment of text. You can assign this property values such as left, right, center, and
justify.

text-decoration— Specifies underlining and overlining. You can set it to underline, overline, line-through, or blink; to
get rid of text inherited decorations, you can set it to none.

text-indent— Specifies the indentation of the first line of block-level elements. You can set it to a size.

text-transform— Specifies whether to display text in all uppercase, in all lowercase, or with initial letters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text-transform— Specifies whether to display text in all uppercase, in all lowercase, or with initial letters
capitalized. The possible values for this property are capitalize, uppercase, lowercase, and none.

vertical-align— Specifies the vertical alignment of text. You can set this property to baseline, sub, super, top, text-
top, middle, bottom, or text-bottom.

You've already used a number of these properties in style sheets, and now you know what they stand for. You haven't
specified the font face yet, however, so take a look at ch08_12.css (shown in Listing 8.12), which indicates to use
centered 12-point Arial font (or Times New Roman, if the system doesn't have Arial installed).

Listing 8.12 Using Font Styles (ch08_12.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; font-size: 12pt; font-family:
Arial, Times New Roman; text-align: center; margin-top: 10}

Figure 8.8 shows what this new style sheet, ch08_12.css, looks like applied to an XML document.

Figure 8.8. Using font properties with CSS.

Styling Colors and Backgrounds

There are a number of properties that you can use to set color and work with backgrounds; here's a sampling:

background-attachment— Specifies whether the background scrolls with the rest of the document.

background-color— Specifies the background color. You can set this property to a color.

background-image— Specifies the background image. You can set this property to a URL.

background-repeat— Specifies whether the background image should be tiled. You can set this property to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

background-repeat— Specifies whether the background image should be tiled. You can set this property to
repeat, repeat-x, repeat-y, or no-repeat.

color— Specifies the foreground color (that is, the color of text).

Listing 8.13 shows an example, ch08_13.css, in which the style sheet sets the background color of the document to light
green. Because all the other elements in the document are child elements of the <document> element, they also inherit
the same coloring, as shown in Figure 8.9 (in glorious black and white). In fact, that's where the name cascading style
sheets come from—the cascading part means that enclosed elements inherit styles from enclosing elements. This
example also sets the color of <paragraph> text to red. You can see the style sheet that does all this in Listing 8.13.

Listing 8.13 Using Color Styles (ch08_13.css)

document {background-color: lightgreen}
title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; color: red}

Figure 8.9. Using font properties.

Today you have been using color names such as cyan, coral, and lightgreen because Internet Explorer understands those
names. Dozens of these types of color names are built in to browsers such as Internet Explorer and Netscape
Navigator, but there are actually only 16 color names built into the CSS standard. Here they are:

aqua

black

blue

fuchsia

gray

green

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

green

lime

maroon

navy

olive

purple

red

silver

teal

white

yellow

When you work with HTML browsers, you can define your own colors as standard HTML color triplets, using this syntax:

#rrggbb

where rr, gg, and bb are two-digit hexadecimal values that you use to specify the red, green, and blue components of a
color. For example, black is #000000, white is #ffffff, pure red is #ff0000, and orange is #ffcc00. Using colors like these,
here's how you might format the background of the <document> element and its child elements green:

document {background-color: #00ff00}

Styling Borders

You can format the borders of block elements by using a number of styles. Here is a sampling of the border properties
that are available for block elements:

border-bottom-width— Specifies the width of the bottom of the border. You can set this property to a size such
as 12px for 12 pixels, 6pt for 6 points, or thin, medium, or thick.

border-color— Specifies the color to use for the border (using a predefined color or a color triplet). Setting this
property sets the color of the whole border.

border-left-width— Specifies the width of the left edge of the border. You can set this property to a size such as
12px for 12 pixels, 6pt for 6 points, or thin, medium, or thick.

border-right-width— Specifies the width of the right edge of the border. You can set this property to a size such
as 12px for 12 pixels, 6pt for 6 points, or thin, medium, or thick.

border-style— Specifies the border style. You can set this property to dotted, dashed, solid, double, groove, ridge,
inset, or outset. Most browsers support only solid.

border-top-width— Specifies the width of the top of the border. You can set this property to a size such as 12px
for 12 pixels, 6pt for 6 points, or thin, medium, or thick.

border-width— Specifies the width of the border. You can set this property to a size such as 12px for 12 pixels,
6pt for 6 points, or thin, medium, or thick.

Listing 8.14 shows an example in which you add a solid border to the <title> element.

Listing 8.14 Using Border Styles (ch08_14.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline;
 border-style: solid}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 border-style: solid}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}

Figure 8.10 shows what Listing 8.14 looks like in Internet Explorer. As the figure shows, the border appears around the
title as it should.

Figure 8.10. Giving a block element a border.

It's also worth noting that the border style lets you set an element's width, style, and color. For example, here's how you
can use it to create a solid 6-point-thick red border:

P {border 6pt solid red}

Styling Alignments

You can customize alignments and margins. Here's a sampling of applicable properties:

line-height— Specifies the height of each line. You can set this property to an absolute size or to a percentage,
such as 150% (which creates 11/2 spacing).

margin-bottom— Specifies the bottom margin of a block element. You can set this property to a size.

margin-left— Specifies the left margin of a block element. You can set this property to a size.

margin-right— Specifies the right margin of a block element. You can set this property to a size.

margin-top— Specifies the top margin of a block element. You can set this property to a size.

text-align— Specifies the alignment of text. You can set this property to left, right, center, or justify.

text-indent— Specifies the indentation of the first line of block-level elements. You can set this property to an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text-indent— Specifies the indentation of the first line of block-level elements. You can set this property to an
absolute value such as 12px (12 pixels) or 6pt (6 points).

vertical-align— Specifies the vertical alignment of text. You can set this property to baseline, sub, super, top, text-
top, middle, bottom, or text-bottom.

Listing 8.15 shows an example that indents the text in <paragraph> elements and moves it all to the right by setting a
left margin of 20 pixels.

Listing 8.15 Using Margin Styles (ch08_15.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; text-indent: 30px; margin-left: 20;
 margin-top: 10}

Figure 8.11 shows what Listing 8.15 looks like in Internet Explorer. The figure shows that the text is indeed formatted
as it should be—each paragraph is indented, and the whole paragraph of text has been moved to the right.

Figure 8.11. Indenting text and setting margins.

Note that, as with other styles, support for border and margin styles varies by browser. For example, Netscape
Navigator doesn't support many margin styles.

Styling Images

You can even display images in some browsers while formatting XML documents. Here's a sampling of the applicable
properties:

background-image— Specifies a background image for the element. You can set this property to a URL.

background-repeat— Specifies whether the background image should be tiled in a repeating fashion. You can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

background-repeat— Specifies whether the background image should be tiled in a repeating fashion. You can
set this property to repeat, repeat-x, repeat-y, or no-repeat.

background-attachment— Specifies whether the background scrolls when the rest of the document is scrolled.

background-position— Specifies the initial position of the background image. You can set this property to an x,y
coordinate, keeping in mind that the origin is at the upper left (for example, background-position: 10px 20px).

For example, you could add a background image when you style the XML document by using the background-image
property. In this case, you need to supply the URL at which the browser can find the image, and you can do that when
you style the <paragraph> element, as shown in Listing 8.16.

Listing 8.16 Using Image Styles (ch08_16.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10px;
 background-image: url(image.jpg);
 background-repeat: repeat}

For example, you'll use an image file, image.jpg, that displays a star in light gray. (This image file is included in the
downloadable code for this book.) Because this image will appear behind paragraph text, you can condense all the
<paragraph> text into one element for this example (see Listing 8.17) so that you can see the background image clearly.

Listing 8.17 Using One <paragraph> Element (ch08_17.css)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_16.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 Who, then, chooses to live in error? No man. Who chooses
 to live deceived, liable to mistake, unjust, unrestrained,
 discontented, mean? No man.
 Not one then of the bad lives as he wishes; nor is he,
 then, free. And who chooses to live in sorrow, fear, envy,
 pity, desiring and failing in his desires, attempting to
 avoid something and falling into it? Not one.
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.12 shows what Listing 8.17 looks like in Internet Explorer. As the figure shows, the background star appears
behind the text.

Figure 8.12. Displaying a background image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to using an image as a background image, you can also display an image as a foreground image, as you
would in any Web page. To do that, you create a custom element whose express purpose is to display the image.

For example, you'll create an image element named <image> and make it display the image by using the CSS property
background-image. You can also specify the height and width to use when displaying an element by using the CSS
properties height and width (you can use 60x100 pixels, which is the size of image.jpg). Finally, you can indicate whether
the image will float to the right or left of text by using the float property, which is shown to the left in Listing 8.18.

Listing 8.18 Styling a Foreground Image (ch08_18.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
image {background-image: url(image.jpg);
 height: 60px;
 width: 100px;
 float: left}

You can see the new <image> element in the new version of the XML document, ch08_19.xml, in Listing 8.19.

Listing 8.19 Displaying a Foreground Image (ch08_19.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_18.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <image/>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 Who, then, chooses to live in error? No man. Who chooses
 to live deceived, liable to mistake, unjust, unrestrained,
 discontented, mean? No man.
 Not one then of the bad lives as he wishes; nor is he,
 then, free. And who chooses to live in sorrow, fear, envy,
 pity, desiring and failing in his desires, attempting to
 avoid something and falling into it? Not one.
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.13 shows Listing 8.19 in Internet Explorer. As shown in the figure, the image is now positioned so that it
appears in the foreground, and it floats to the left of the text.

Figure 8.13. Styling and showing an image.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.13. Styling and showing an image.

All this is fine if you want to let the browser position an image as it likes when it determines the text flow in its display,
but you can also specify exactly where you want images and other elements to appear by expressly positioning
elements, as discussed in the following section.

Positioning Elements

By using CSS, you can set the positions of elements—and this was a big advance in HTML. Before CSS let you position
items in a Web page, HTML authors used HTML tables to make sure that elements were at the correct locations rather
than floating as the Web browser determined. Now, however, you can use CSS to specify positions in HTML and XML.

To specify position, you use the CSS positioning properties. Here's a sampling of the positioning properties that are
available:

position— Specifies an element's position. You can set this property to either absolute or relative.

top— Specifies the location of the top of the element.

bottom— Specifies the location the bottom of the element.

left— Specifies the location of the left edge of the element.

right— Specifies the location of the right edge of the element.

For example, say that you want to place the star image right on top of the middle of your text. To do that, you can set
the position property of the <image> element to absolute and assign values to the top and left properties, as shown in
Listing 8.20.

Listing 8.20 Positioning a Foreground Image (ch08_20.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
image {background-image: url(image.jpg);
 height: 60px; width: 100px; position:absolute;
 left:250; top:180}

Figure 8.14 shows Listing 8.20 in Internet Explorer. In the figure, the image appears right on top of the text. In fact,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.14 shows Listing 8.20 in Internet Explorer. In the figure, the image appears right on top of the text. In fact,
you can even position text on top of other text. As shown in the figure, absolute positioning lets you specify the exact
location of data items from an XML document in the final display.

Figure 8.14. Positioning an item in absolute terms.

Besides absolute positioning, there's another option—relative positioning. In relative positioning, you position items
relative to the locations they would have in the usual flow of elements as the browser would display them. In this case,
you set the position property to relative.

To see how this works, take a look at Listing 8.21, which formats two new elements, <superscript> and <subscript>, to
raise and lower text from its normal flow.

Listing 8.21 Displaying a Foreground Image (ch08_21.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}
superscript {position:relative; top:-5}
subscript {position:relative; top:5}

Now you can put the <superscript> and <subscript> elements to work in an XML document, as shown in Listing 8.22,
which includes a few changes to Epictetus' original text. Note that because you haven't made <superscript> and
<subscript> block elements, you can use them inline (that is, you don't have to give each of these elements its own line
of text, as you do for block elements), as in this example.

Listing 8.22 Using Relative Positioning (ch08_22.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_21.css"?>
<document>
 <title>The Discourses</title>
 <philosopher>Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </paragraph>
 <paragraph>
 Who, then, chooses to live on <subscript>roller</subscript>
 <superscript>coasters</superscript>? No man. Who chooses
 to live deceived, liable to mistake, unjust, unrestrained,
 discontented, mean? No man.
 </paragraph>
 <paragraph>
 Not one then of the bad lives as he wishes; nor is he,
 then, free. And who chooses to live in sorrow, fear, envy,
 pity, desiring and failing in his desires, attempting to
 avoid something and falling into it? Not one.
 </paragraph>
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</document>

Figure 8.15 shows Listing 8.22 in Internet Explorer, with the <superscript> and <subscript> elements used in the first line
of the second paragraph.

Figure 8.15. Positioning elements in relative terms.

Styling Lists

You can show HTML-style lists in some browsers when you format an XML document. Here's a sampling of the
applicable properties:

list-item— Creates a list when assigned to the display property.

list-style-image— Specifies the image that should appear in front of each item in the list. This property is not
supported by many browsers.

list-style-type— Specifies the list item marker, which appears before each list item. You can set this property to
various values, such as disc, circle, square, decimal, lowercase Roman, and uppercase Roman. Not all values are
supported by all browsers.

For example, you can turn the paragraphs in the earlier example into a list and display a circle before each paragraph.
You can see how this works in Listing 8.23.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can see how this works in Listing 8.23.

Listing 8.23 Using Relative Positioning (ch08_23.css)

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
philosopher {display: block; font-size: 16pt;
 text-align: center}
book {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display:list-item; margin-left: 10px;
 margin-top:10; list-style-type: circle}

Figure 8.16 shows Listing 8.23 in Internet Explorer. As you can see, a small circle does indeed appear before each
paragraph's text.

Figure 8.16. Displaying a list.

Styling Tables

When it comes to displaying the data in an XML document, using tables is a very popular option. Visually, it's easier to
see all your data arrayed horizontally and vertically in tabular format than in an XML document, where you have to look
past the markup. Here are the table-styling properties you can assign to the display property:

table— Indicates that an element encloses a table. Translates to the HTML <table> element.

table-caption— Gives a caption for the table.

table-cell— Creates a table cell. This property translates to the HTML <td> element.

table-column— Indicates that an element describes a column of cells.

table-column-group— Indicates that an element groups one or more columns.

table-footer-group— Indicates a table footer group.

table-header-group— Indicates a table header group.

table-row— Creates an element that contains a row of cells. This property translates to the HTML <tr> element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table-row— Creates an element that contains a row of cells. This property translates to the HTML <tr> element.

table-row-group— Indicates that an element groups one or more rows.

To see how this works in an example, you need some data that can be displayed as a table. For example, you can use
the mortgage data shown in Table 8.1, which lists various borrowers and the amounts they have borrowed. Listing 8.24
shows this data in XML format. As you can see, the XML document doesn't present its data nearly as effectively as the
table does. Listing 8.25 converts the XML document into an HTML table.

Table 8.1. Mortgage Data
First Name Last Name Loan Amount

Fred Turner $100,000

Bill Saunders $120,000

Ed Johnson $130,000

Sam Watson $140,000

James White $150,000

Listing 8.24 An XML Document That Holds Tabular Data (ch08_24.xml)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_25.css"?>
<document>
 <headers>
 <header>First Name</header>
 <header>Last Name</header>
 <header>Loan Amount</header>
 </headers>
 <mortgages>
 <mortgage>
 <firstName>Fred</firstName>
 <lastName>Turner</lastName>
 <amount>$100,000</amount>
 </mortgage>
 <mortgage>
 <firstName>Bill</firstName>
 <lastName>Saunders</lastName>
 <amount>$120,000</amount>
 </mortgage>
 <mortgage>
 <firstName>Ed</firstName>
 <lastName>Johnson</lastName>
 <amount>$130,000</amount>
 </mortgage>
 <mortgage>
 <firstName>Sam</firstName>
 <lastName>Watson</lastName>
 <amount>$140,000</amount>
 </mortgage>
 <mortgage>
 <firstName>James</firstName>
 <lastName>White</lastName>
 <amount>$150,000</amount>
 </mortgage>
 </mortgages>
</document>

Listing 8.25 Styling XML Data into a Table (ch08_25.css)

document {display:table; border-style:solid}
headers {display:table-header-group;}
header {display:table-cell; padding:6px;
 background-color:lightblue; font-weight:bold;
 border-style:solid}
mortgages {display:table-row-group}
mortgage {display:table-row;}
firstName {display:table-cell; padding:6px;
 border-bottom:solid 1px}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 border-bottom:solid 1px}
lastName {display:table-cell;
 padding:6px; border-bottom:solid 1px}
amount {display:table-cell;
 border-bottom:solid 1px}

As you can see in Listing 8.25, you set the display property to table for the document element <document>, which will be
converted to an HTML <table> element. Setting the CSS property display to table-row allows you to convert the
<mortgage> elements to HTML <tr> elements, and so on. Figure 8.17 shows Listing 8.25 in Netscape Navigator. (Note
that Internet Explorer doesn't handle this formatting well.) As the figure shows, the data appears in the browser as it
should, in tabular form.

Figure 8.17. Displaying a table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
CSS is a W3C specification, and you can find the W3C recommendations for CSS1 and CSS2 at
http://www.w3.org/TR/REC-CSS1 and http://www.w3.org/TR/REC-CSS2; CSS3 is still under development.

Style sheets are collections of style rules, each of which shows how to format an XML element. A rule is made up of a
selector, which is the element or elements you want to format, and the rule specification itself, which shows the format.

Today you've seen various ways of creating selectors. You can specify which XML element you want to format directly
by name. You can create style classes and use the class attribute in browsers such as Internet Explorer. You can also
select elements by ID value.

Rule specifications are made up of CSS property/value pairs in a semicolon-separated list, surrounded by curly braces.
There are hundreds of available properties, such as font-weight, text-align, and text-decoration. You can assign values by
listing those values after a property name in a rule specification, like this:

{font-weight: bold; text-align: center; text-decoration: underline}

Knowing which CSS properties are available is essential for effective use of CSS formatting. Today's discussion focuses
on the CSS properties you can use and what values you can assign to them.

A style sheet rule includes both a selector and a rule specification, like this:

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}

One important CSS property is display, which, among other things, lets you create block elements when you assign the
value block to it. Block elements are displayed on their own lines. If you don't make an element a block element, it will
be an inline element by default; inline elements are arranged by the browser, and they follow the normal flow of items
the browser displays. If you want to format elements whose data follows that flow, you should use inline elements. If
you want a data item to appear on its own line, you should use a block element.

Today you took a look at text properties, including how to set font face, font size, font weight (such as bold), text
alignment, indentation, and decoration (such as underlining and overlining of text). You also saw how to specify colors
and backgrounds, as well as how to style borders. And you saw that you can even display images along with your XML
data by using CSS properties such background-image and background-repeat.

You can use CSS to position elements, both in absolute and relative terms. This ability to position what you want where
you want in a Web page is responsible for much of CSS's popularity among Web page authors. As you've seen, you can
position both text and images as you like by using CSS positioning.

Today you also discussed formatting lists and tables by using CSS. This is particularly useful because it helps you
format and display data effectively.

After you've created a CSS style sheet, one way of connecting that style sheet to an XML document is by using the <?
xml-stylesheet?> processing instruction. Although not an official part of XML, this processing instruction has become an
accepted convention. It's important to bear in mind, however, as you use CSS, that different browsers have different
levels of support, and the results you get often differ from browser to browser.

As you've seen today, the major HTML browsers are set up to handle and display XML by using CSS, which is a good
idea because CSS is in widespread use with HTML. On the other hand, CSS is not an ideal solution for displaying XML
data visually because CSS has its own, very non-XML, syntax. There is an XML solution—Extensible Stylesheet
Language Transformations (XSLT)—as you'll see tomorrow. XSLT is written in XML, and it lets you target the data in
XML documents better than CSS. All the details are coming up tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Is it possible to embed text when using CSS style sheets? For example, what if I want to
enclose element names I display in angle brackets, such as <Jim Thompson>?

A1: You can indeed embed text when formatting XML by using CSS. For example, to add < before the data in
the <philosopher> element, you could use this style rule on its own line in your style sheet:

philosopher:before {content:"\003C"}

To add > after the data in the <philosopher> element, you could use this:

philosopher:after {content:"\003E"}

Q2: What are CSS "shortcut" properties?

A2: Shortcut properties let you specify a number of properties at the same time. For example, by using the
border shortcut property that you've already seen, you can set border:inset 1px red;. You don't need to use a
shortcut property for this, of course; the same task can be handled by other properties, such as border-
width and border-color. You have a choice of using the standard properties or using the shortcut properties.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: How can you set font size to 32 points by using CSS?

2: How can you make an element a block element?

3: How can you center text by using CSS?

4: How can you underline text by using CSS?

5: How can you add 10 pixels of vertical space before an element by using CSS?

Exercises

1: Using ch08_01.xml (the original Epictetus example from today's discussion), create a style sheet that displays
all paragraphs as block elements and the text in those paragraphs in 12-point, underlined text.

2: Elaborate the style sheet you created in Exercise 1 so that the paragraph text is colored red and appears in
italic, with 15 pixels of vertical space before each paragraph. Also create <footnote> and <footnoteText>
elements that let you add superscript footnote numbering to the text and 10-point explanatory text for each
footnote.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 9. Formatting XML by Using XSLT
Yesterday you saw that you can use CSS to format XML documents in the major browsers (Internet Explorer and
Netscape Navigator). However, there's a native XML way to format XML documents for display—using Extensible
Stylesheet Language Transformations (XSLT), which is what you'll discuss today. Here's an overview of today's topics:

Transforming XML in the server, in the client, and with standalone programs

Creating an XSLT style sheet

Creating and applying templates

Getting node values

Handling multiple selections

Using the match and select attributes

Matching element, processing instructions, and other nodes

Working with XPath

Creating XPath node tests

Copying nodes to the output document

Making decisions in XSLT based on input data

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XSLT
Today you're going to see how to use XSLT to manipulate, extract, and format data in XML documents without having
to resort to programming your own XML processors. XSLT is actually part of the larger specification Extensible
Stylesheet Language (XSL). XSLT has become the most popular part of XSL because it's relatively easy to use and it
lets you transform XML documents into other formats, such as HTML or plain text. XSL, which you'll see more about
tomorrow, is a more general language that lets you format XML in great detail.

XSLT is a specification of the W3C, and in fact it's been a recommendation since November 16, 1999. The W3C
recommendation for XSLT 1.0, the current version, is at http://www.w3.org/TR/xslt. XSLT 2.0 is in the works, but it's
only a working draft at this point. (There actually was an XSLT 1.1, but it was not continued after the working draft
stage.) The current version of the XSLT 2.0 Working Draft is at http://www.w3.org/TR/xslt20.

TIP

There is some support for XSLT 2.0 in the Saxon XSLT processor, which you can download for free from
http://saxon.sourceforge.net. Most XSLT processors only support XSLT 1.0 these days, however.

You use XSLT to transform XML documents, and you can reformat the documents' data as you want. You can use XSLT
to transform XML into any text-based format, such as HTML, plain text, rich text format (RTF), and Microsoft Word. The
most common transformation is from XML documents to HTML documents, and that's the kind of transformation you'll
mainly work with today. XSLT is popular partly because by using it, you can manipulate the data in XML documents
without having to write any software.

To transform XML by using XSLT, you need two documents—an XML document you want to transform and an XSLT
style sheet. (Note that XSLT style sheets are also XML documents.) Let's start with an example to see how things work.
Say that, as a part of a federal watchdog committee, you're in charge of maintaining data about U.S. states, such as
what the state's flower is, what their population is, and so on. Listing 9.1 shows an XML document (ch09_01.xml) that
does this. ch09_01.xml will be your XML document for today; as you can see, it lists several states, their population,
state bird, area, and so on. Today you'll see how to use XSLT to pick data out of this document selectively.

Listing 9.1 A Sample XML Document (ch09_01.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population units="people">6349097</population><!--2000 census-->
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>
 <name>New York</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

To extract some data from ch09_01.xml, you need an XSLT style sheet, like the one shown in Listing 9.2, which is called
ch09_02.xsl. (XSLT style sheets usually use the extension .xsl.) This example just strips out the names of the states and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ch09_02.xsl. (XSLT style sheets usually use the extension .xsl.) This example just strips out the names of the states and
places them into a basic HTML document.

Listing 9.2 An XSLT Style Sheet (ch09_02.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:value-of select="name"/>
 </P>
 </xsl:template>

</xsl:stylesheet>

At this point, then, you have an XML document to work with and a style sheet to transform it. How do you put the two
together to actually make the transformation occur?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Transforming XML by Using XSLT
There are three different places where XSLT transformations can happen:

In the server— A server program, such as a .NET or JavaServer Pages (JSP) program, can use XSLT to
transform an XML document and send it to the client program (such as a browser).

In the client— A client program, such as an HTML browser, can perform XSLT transformations. For example,
Internet Explorer fully supports XSLT 1.0 support.

With a separate program— You can use one of the many standalone programs available to perform XSLT
transformations.

The following sections look briefly at these possibilities.

Server-Side XSLT

There are various ways to handle XSLT on Web servers. One of the most popular is to use JSP because Java versions
1.4 and later include complete XSLT 1.0 support. To see how this works, you don't have to write any JSP—it's already
been done for you in an example written to work with the Tomcat JSP server in ch09_03.jsp, which is shown in Listing
9.3. (Note that you don't have to know any JSP in this book.) Figure 9.1 shows this transformation —which uses the
style sheet ch09_02.xsl to strip the names of the states out of ch09_01.xml—using ch09_03.jsp and the Tomcat Web server.
If you use this method, people who want to look at the results of your XSLT transformations don't have to do anything
special—it's all been done for them on the server.

Listing 9.3 A JSP Page (ch09_03.jsp)

<%@ page import="javax.xml.transform.*, javax.xml.transform.stream.*,
 java.io.*" %>

<%
 try
 {
 TransformerFactory transformerfactory =
 TransformerFactory.newInstance();
 Transformer transformer = transformerfactory.newTransformer
 (new StreamSource(new File
 (application.getRealPath("/") + "ch09_02.xsl")));

 transformer.transform(new StreamSource(new File(application.getRealPath
 ("/") + "ch09_01.xml")),
 new StreamResult(new File(application.getRealPath("/") +
 "result.html")));

 }
 catch(Exception e) {}

 FileReader filereader = new FileReader(application.getRealPath("/") +
 "result.html");
 BufferedReader bufferedreader = new BufferedReader(filereader);
 String textString;

 while((textString = bufferedreader.readLine()) != null) {
%>
 <%= textString %>
<%
 }
 filereader.close();
%>

Figure 9.1. Using XSLT and JSP in the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.1. Using XSLT and JSP in the server.

What's actually happened here is that the names of the states were stripped out and placed into an HTML document,
which looks like this (the indentation, which doesn't matter to Web browsers, has been cleaned up here):

<HTML>
 <BODY>
 <P>California</P>
 <P>Massachusetts</P>
 <P>New York</P>
 </BODY>
</HTML>

However, server-side programming is not something most XML authors are conversant in. There are other options as
well—including using Web browsers such as Internet Explorer, as described in the following section.

Client-Side XSLT

Internet Explorer (but not, unfortunately, Netscape Navigator), lets you perform XSLT 1.0 transformations. All you have
to do is connect the XSLT style sheet to the XML document by using an <?xml-stylesheet?> processing instruction, like
this:

<?xml-stylesheet type="text/xsl" href="ch09_02.xsl"?>

Note that some other XSLT processors require type="text/xml" rather than type="text/xsl". Listing 9.4 shows the Internet
Explorer–enabled version of the XML document in ch09_04.xml, where you can see the <?xml-stylesheet?> processing
instruction at work.

Listing 9.4 An XML Document (ch09_04.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="ch09_02.xsl"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>
 .
 .
 .
 <state>
 <name>New York</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

Figure 9.2 shows Listing 9.4 in Internet Explorer. Note that these results are just like the results shown in Figure 9.1,
when using JSP on the server (except for the URL in the title bar, of course). In this case, however, you're using
Internet Explorer itself to perform client-side transformations. This is probably the most accessible way to perform XSLT
transformations for most people.

Figure 9.2. Using XSLT in the client.

Besides using server-side and client-side XSLT transformations, you can also transform XML by using XSLT with
standalone programs.

Standalone Programs and XSLT

Some programs perform XSLT transformations for you. There's a great deal of XSLT support built in to the Java
programming language, versions 1.4 and later, so many of the transformation programs use Java. Because I don't
expect you to work with Java at this point, I've provided an already written Java example in ch09_05.java, which is
shown in Listing 9.5, in the downloadable code for this book, along with the compiled Java class file, ch09_05.class. If you
have Java installed (it's available for free at http://java.sun.com/j2se/1.4.1/download.html, as you'll discuss on Day 16,
"Using Java and .NET: DOM"), you can transform ch09_01.xml by using ch09_02.xsl and place the result into a file named
formatted.html, like this:

%java ch09_05 ch09_01.xml ch09_02.xsl formatted.html

Listing 9.5 A Java Program (ch09_05.java)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class ch09_05
{
 public static void main(String args[])
 {

 try
 {
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer tr = tf.newTransformer(new StreamSource
 (new File(args[1])));

 tr.transform(new StreamSource(new File(args[0])),
 new StreamResult(new File(args[2])));
 }
 catch(Exception ex) {}
 }
}

formatted.html looks just like the document Internet Explorer created for you in the preceding section:

<HTML>
 <BODY>
 <P>California</P>
 <P>Massachusetts</P>
 <P>New York</P>
 </BODY>
</HTML>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Writing XSLT Style Sheets
Now that you've seen three different places to create XSLT transformations—on a Web server, in a client browser, and
using a standalone program—it's time to see how to create your own XSLT style sheets.

To work with XSLT, you have to know how XSLT views XML documents. In XSLT terms, an XML document is a tree of
nodes. The tree starts with the root node, and it branches out from that point. The root node corresponds to the very
beginning of the document; it's not the same as the document element. The root node corresponds to the very
beginning of the document, so you have access to the document's prolog, which comes before the document element.

Each distinct item in an XML document is considered a node—comments, processing instructions, elements, even the
text inside elements. From XSLT's point of view, there are seven types of nodes, and you're going to see how to build
style sheets that use all of them:

Attribute— An attribute.

Comment— The text of a comment (excluding the <!-- and --> parts).

Element— An element.

Namespace— The namespace's URI.

Processing instruction— The text of the processing instruction (excluding <? and ?>).

Root node— The very start of the document, before even the document element. XSLT gives you access to the
root node, which comes before the document element, in order to give you access to the prolog, such as the
XML declaration.

Text— The text of the node.

To handle and search the various nodes in XML documents, the XSLT specification defines a number of elements, just
as you saw for XML schemas in Day 6, "Creating Valid XML Documents: XML Schemas." It also uses an XML-specific
language, XML Path Language (XPath), to let you specify exactly what nodes you're looking for.

You'll see how this works by dissecting the style sheet ch09_02.xsl. You started that document with an XML declaration
and by using the <xsl:stylesheet> element. (Note that this is not the <?xsl:stylesheet?> processing instruction you can use
in XML documents to connect style sheets to XML documents.) In this element, you associate the xsl namespace with
the URI "http://www.w3.org/1999/XSL/Transform", which is the official namespace for XSLT:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 .
 .
 .

To indicate what elements you want to locate and work with, you use the <xsl:template> element to create an XSLT
template. A template lets you match a node or nodes in the XML document and specify what you want to do with the
contained data. For example, to match the document element <states> in the sample XML document, you can use this
<xsl:template> element:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 .
 .
 .
 </xsl:template>
 .
 .
 .
</xsl:stylesheet>

Now the XSLT processor will look through your XML document and match the <states> element to the template.
Technically speaking, what's happening here is that when the XSLT processor opens the document, it starts at the root
node and searches for templates that match the children of the root node, which means that <xsl:template
match="states"> will match because <states> is a child of the root node; <xsl:template match="state"> would not match,
however, because <state> is a grandchild of the root node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

however, because <state> is a grandchild of the root node.

In the sample template, you specify what you want the matched element to be replaced with in the formatted output
document. For example, if you wanted to replace the document element, including all its child nodes, with the HTML
<HTML><BODY><H1>Hello!</H1></BODY></HTML>, you could use this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML><BODY><H1>Hello!</H1></BODY></HTML>
 </xsl:template>
 .
 .
 .
</xsl:stylesheet>

Now the resulting output document will only hold <HTML><BODY><H1>Hello!</H1></BODY></HTML>. Although this
shows how templates work, it's not too useful in itself. In the ch09_02.xsl example, you actually want to produce this
kind of output:

<HTML>
 <BODY>
 <P>California</P>
 <P>Massachusetts</P>
 <P>New York</P>
 </BODY>
</HTML>

To do this, you need to strip data out of the <state> elements in the XML document, and to do that, you can use some
additional templates. Now that you've matched the <states> element, you can indicate that you want to match child
nodes inside the <states> element by using additional templates. You indicate this by using the <xsl:apply-templates>
element:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>
 .
 .
 .
</xsl:stylesheet>

This example says is that the XSLT processor should place <HTML><BODY> into the output document, followed by the
results of applying any other templates in the style sheet that match the child nodes of the <states> node, followed by
</BODY></HTML>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using <xsl:apply-templates>

You use the <xsl:apply-templates> element to indicate that you have other templates to use on the child nodes of the
current node. For example, say that you just wanted to replace each <state> element with the placeholder text "State
data will appear here!" in the output document. How could you do that?

You've already used a template to match the document element <states>. And you've used the <xsl:apply-templates/>
element to indicate that you also want the XSLT processor to process the child nodes of the <states> node by searching
for additional templates that match those nodes. To match all <state> nodes, you could just use this new template:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <xsl:apply-templates/>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 .
 .
 .
 </xsl:template>

</xsl:stylesheet>

Note that because <state> nodes are not direct child nodes of the root node, this new template would never match
anything unless you specifically used a <xsl:apply-templates/> element in the <states> template to invoke it on the child
nodes of the <states> node. (The <states> template, on the other hand, is automatically invoked because it matches a
direct child of the root node.) Now you can replace each <state> element with the HTML <P>State data will appear here!
</P>, as shown in Listing 9.6.

Listing 9.6 A Sample XSL Style Sheet (ch09_06.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <xsl:apply-templates/>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 State data will appear here!
 </P>
 </xsl:template>

</xsl:stylesheet>

When an XSLT processor uses the new XSLT style sheet, this is the result:

<HTML>
 <BODY>
 <P>
 State data will appear here!
 </P>

 <P>
 State data will appear here!
 </P>

 <P>
 State data will appear here!
 </P>
 </BODY>
</HTML>

Figure 9.3 shows this transformation in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.3 shows this transformation in Internet Explorer.

Figure 9.3. An elementary XSLT transformation.

This example is fine as far as it goes, but it's not very far. You actually want to pull the name of each state out of the
<state> element:

<?xml version="1.0" encoding ="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="ch09_02.xsl"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>
 .
 .
 .

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using <xsl:value-of> and <xsl:for-each>

To extract the name of each state, you can use the <xsl:value-of> element in the template to match every <state>
element. In particular, you can extract the data in the <name> child node inside each <state> element by using the select
attribute, like this:

<xsl:value-of select="name"/>

Listing 9.7 shows what this looks like, in ch09_07.xsl, which encloses each state's name in an HTML <P> element.

Listing 9.7 A Sample XSL Style Sheet That Extracts Data (ch09_07.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:value-of select="name"/>
 </P>
 </xsl:template>

</xsl:stylesheet>

Using this new style sheet, ch09_07.xsl, gives you the results you want:

<HTML>
 <BODY>
 <P>California</P>
 <P>Massachusetts</P>
 <P>New York</P>
 </BODY>
</HTML>

Note that the select attribute only selects the first node that matches. So what if you have multiple nodes that could
match? For example, say you can have multiple <name> elements for each state, as shown in Listing 9.8.

Listing 9.8 An XML Document That Has Multiple <name> Elements (ch09_08.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <name>Golden State</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <name>Bay State</name>
 <population units="people">6349097</population><!--2000 census-->
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <state>
 <name>New York</name>
 <name>Empire State</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

To catch all possible matches, you can use the <xsl:for-each> element, as shown in Listing 9.9.

Listing 9.9 A Sample XSL Style Sheet That Has Multiple Matches (ch09_09.xsl)

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <xsl:apply-templates/>
 </HTML>
 </xsl:template>

<xsl:template match="state">
 <xsl:for-each select="name">
 <P>
 <xsl:value-of select="."/>
 </P>
 </xsl:for-each>
</xsl:template>

</xsl:stylesheet>

This style sheet will catch all <name> elements, place their values in a <P> element, and add them to the output
document, like this:

<HTML>
 <BODY>
 <P>California</P>
 <P>Golden State</P>
 <P>Massachusetts</P>
 <P>Bay State</P>
 <P>New York</P>
 <P>Empire State</P>
 </BODY>
</HTML>

At this point, you've seen some of the basics of formatting XML by using XSLT. Two of the most important aspects are
the match attribute in the <xsl:template> element and the select attribute in the <xsl:value-of> element. Working with XSLT
involves knowing what values you can assign to these attributes. You can assign XPath expressions to both of these
attributes, but there are restrictions on what XPath expressions you can use with the match attribute. In the following
sections, you'll take a look at the match attribute first, followed by the select attribute.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Matching Nodes by Using the match Attribute
When you create an XSLT template, you need to specify what you want the template to match, and you do that with
the match attribute. Knowing how to match a node or nodes by using this attribute becomes very important, and there's
a whole new syntax here. You'll get the details on what values you can assign to the match attribute first because when
you know that, you know how to create XSLT templates. Let's start by looking at how to match the root node.

Handling the Root Node

As you've seen today, you can match the root node, which corresponds to the very beginning of the document, by
assigning a forward slash (/) to the match attribute in an <xsl:template> element:

<xsl:template match="/">
 <xsl:apply-templates/>
</xsl:template>

Note that XSLT processors start off at the root node level automatically and start searching from that point, so this
template is unnecessary. (In fact, you could say that this template is invoked by default in all XSLT processors.)

Handling Elements

As you've seen today, you can match elements simply by using their names:

<xsl:template match="states">
 <HTML>
 <xsl:apply-templates/>
 </HTML>
</xsl:template>

You can use the / operator to separate element names when you want to refer to a child of a particular node. For
example, say you want to create a rule that applies only to <name> elements that are children of <state> elements. In
that case, you can match to the expression "state/name". For example, the following rule will surround the text of such
elements in a <P> element:

<xsl:template match="state/name">
 <P><xsl:value-of select="."/></P>
</xsl:template>

Note the expression "." here. You use "." with the select attribute to specify the current node, as you'll see later today, in
the section "Working with the select Attribute and XPath."

You can also use * character as a wildcard; it can stand for any element (* can match only elements). For example, you
could use the following to match any child element of the node from which you start searching:

<xsl:template match="*">

The following rule applies to all <name> elements that are grandchildren of <state> elements:

<xsl:template match="state/*/name">
 <P><xsl:value-of select="."/></P>
</xsl:template>

Now you've used "state/name" to match all <name> elements that are direct children of <state> elements, and you've
used "state/*/name" to match all <name> elements that are grandchildren of <state> elements. You could also perform
both of these matches in an easier way—by simply using the expression "state//name", which matches all <name>
elements that are inside <state> elements, no matter how many levels deep (these elements are called descendants of
the <state> element). Here's how you do it:

<xsl:template match="states//name">
 <P><xsl:value-of select="."/></P>
</xsl:template>

Handling Attributes

You can handle attributes very much like you handle elements. All that's different is that you have to preface the
attribute name with @. For example, say that you want to recover the value of the units attributes in the <population>
and <area> elements of the XML example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>
 .
 .
 .

To get the values of the units attribute, you simply need to refer to it as @units. For example, here's how you might get
the population value (using <xsl:value-of select="."/>), insert a space (with the <xsl:text> element, like this: <xsl:text>
</xsl:text>), and then add the units for this element (using <xsl:value-of select="@units"/>):

<xsl:template match="population">
 <xsl:value-of select="."/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@units"/>
</xsl:template>

You can see this at work in Listing 9.10, which reads the data in the XML document and displays it in an HTML table—
including the units for various values, as applicable.

Listing 9.10 A Sample XSL Style Sheet That Has Multiple Matches (ch09_10.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/states">
 <HTML>
 <HEAD>
 <TITLE>
 State Data
 </TITLE>
 </HEAD>
 <BODY>
 <H1>
 State Data
 </H1>
 <TABLE BORDER="1">
 <TR>
 <TD>Name</TD>
 <TD>Population</TD>
 <TD>Capital</TD>
 <TD>Bird</TD>
 <TD>Flower</TD>
 <TD>Area</TD>
 </TR>
 <xsl:apply-templates/>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <TR>
 <TD><xsl:value-of select="name"/></TD>
 <TD><xsl:apply-templates select="population"/></TD>
 <TD><xsl:apply-templates select="capital"/></TD>
 <TD><xsl:apply-templates select="bird"/></TD>
 <TD><xsl:apply-templates select="flower"/></TD>
 <TD><xsl:apply-templates select="area"/></TD>
 </TR>
 </xsl:template>

 <xsl:template match="population">
 <xsl:value-of select="."/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@units"/>
 </xsl:template>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:template match="capital">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="bird">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="flower">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="area">
 <xsl:value-of select="."/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@units"/>
 </xsl:template>

</xsl:stylesheet>

Here's the HTML you get, including the HTML table:

<HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <TITLE>
 State Data
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 State Data
 </H1>
 <TABLE BORDER="1">
 <TR>
 <TD>Name</TD>
 <TD>Population</TD>
 <TD>Capital</TD>
 <TD>Bird</TD>
 <TD>Flower</TD>
 <TD>Area</TD>
 </TR>

 <TR>
 <TD>California</TD>
 <TD>33871648 people</TD>
 <TD>Sacramento</TD>
 <TD>Quail</TD>
 <TD>Golden Poppy</TD>
 <TD>155959 square miles</TD>
 </TR>

 <TR>
 <TD>Massachusetts</TD>
 <TD>6349097 people</TD>
 <TD>Boston</TD>
 <TD>Chickadee</TD>
 <TD>Mayflower</TD>
 <TD>7840 square miles</TD>
 </TR>

 <TR>
 <TD>New York</TD>
 <TD>18976457 people</TD>
 <TD>Albany</TD>
 <TD>Bluebird</TD>
 <TD>Rose</TD>
 <TD>47214 square miles</TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

Figure 9.4 shows this result in Internet Explorer.

Figure 9.4. Reading attribute values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.4. Reading attribute values.

There's another thing you need to know about attributes: You can use the @* wildcard to select all attributes of an
element. For example, "state/@*" would select any attributes of a <state> element.

Handling ID Attributes

If you have given elements an ID attribute and have declared that attribute in a DTD or XML schema, you can match
those elements by using the id() expression. For example, here's how you might match elements with the ID value
Steven:

<xsl:template match="id('Steven')">
 <xsl:value-of select="."/>
</xsl:template>

Handling Processing Instructions

You can match processing instructions by using the XPath expression processing-instruction(). Here's an example:

<xsl:template match="/processing-instruction()">
 <P>
 Matched a processing instruction.
 </P>
</xsl:template>

You can specify what processing instruction you want to match if you list its name in the parentheses here. The
following example matches the processing instruction <?xml-stylesheet?>:

<xsl:template match="/processing-instruction(xml-stylesheet)">
 <P>
 Matched an xml-stylesheet processing instruction.
 </P>
</xsl:template>

Handling Multiple Matches

You can catch more than one match by using one match attribute if you use the Or operator, |. For example, say that
you want to display the values of the <bird> and <flower> elements in bold, using the HTML tag. To do that, you
can use a single template to match both elements, as shown in Listing 9.11.

Listing 9.11 An XSL Style Sheet That Uses Multiple Matches (ch09_11.xsl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:apply-templates/>
 </P>
 </xsl:template>

 <xsl:template match="bird | flower">

 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

Here are the results:

<HTML>
 <BODY>
 <P>
 California
 33871648
 Sacramento
 Quail
 Golden Poppy
 155959
 </P>

 <P>
 Massachusetts
 6349097
 Boston
 Chickadee
 Mayflower
 7840
 </P>

 <P>
 New York
 18976457
 Albany
 Bluebird
 Rose
 47214
 </P>
 </BODY>
</HTML>

Note that the <bird> and <flower> values are enclosed in HTML elements to make them bold. Also note that the
text from elements that didn't even have a template is inserted into the result document as well. The reason for this is
that there is a default template built in to XSLT for elements, and it just inserts their values into the resulting
document. When you used <xsl:apply-templates> on the child elements of the <states> element, the default template was
automatically used for elements, without any explicit template. You'll see the default rules for XSLT later today.

Matching Using XPath Expressions

So far today you've been matching expressions such as states and @units by assigning those values to match attributes.
The expressions you've seen have been a subset of the complete XPath syntax (we'll talk more about XPath later
today). But oddly enough, you can actually use the full XPath syntax in a value you assign to a match attribute if you
use it in a node test. To create a node test, you use the [] operator to test whether a certain condition is true. For
example, you can test the value of an element, whether an element has a particular child or attribute, and even the
position of a node in the document.

For example, here's how you could match <state> elements that have child <flower> elements:

<xsl:template match = "state[flower]">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<xsl:template match = "state[flower]">

Here's how you could match any element that has a <flower> or <bird> child element:

<xsl:template match = "*[flower | bird]">

Here's how you could match any element that has a units attribute:

<xsl:template match="*[@units]">

These expressions inside the [and] are full XPath expressions, so it's time to start taking a look at XPath. Up to this
point, you've taken a look at the kinds of expressions you can use with the <xsl:template> element's match attribute. The
select attribute, which can be used in the <xsl:apply-templates>, <xsl:value-of>, <xsl:for-each>, <xsl:copy-of>, and <xsl:sort>
XSLT elements, however, may be assigned a full XPath expression.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with the select Attribute and XPath
You can assign the select attribute XPath expressions, which are used to indicate exactly what node or nodes you want
to use in an XML document. XPath has been a W3C recommendation since November 16, 1999. You can find the XPath
recommendation—for the current version, 1.0—at http://www.w3.org/TR/xpath. Version 2.0 of XPath is on the way,
and it's currently in working draft form at this point; see http://www.w3.org/TR/xpath20. (Very little software supports
XPath 2.0 yet; the Saxon XSLT processor—at http://saxon.sourceforge.net—provides some support for it.)

XPath expressions are more powerful than the match expressions you've already seen; for one thing, they're not
restricted to working with the current node or direct child nodes; you can use them to work with parent nodes, ancestor
nodes, and more.

To specify a node or set of nodes in XPath, you use a location path. A location path consists of one or more location
steps, separated by / (to refer to a child node) or // (to refer to any descendant node). If you start the location path
with /, the location path is called an absolute location path because you're specifying the path from the root node;
otherwise, the location path is relative. And the node an XPath expression is working on is called the context node.

Location steps are made up of an axis, a node test, and zero or more predicates. For example, in the expression
child::state[position() = 2] (which picks out the second <state> child of the context node), child is the name of the axis,
state is the node test, and [position() = 2] is a predicate. You can create location paths with one or more location steps.
For example, /descendant::state/child::name selects all the <name> elements that have a <state> parent. You'll get the
details about what kind of axes, node tests, and predicates XPath supports in the following sections.

TIP

As you'll soon see, you can often omit the axis name if you use abbreviated XSLT syntax, which is why the
earlier examples could use elements like <xsl:value-of select="name"/>. Unabbreviated, that would actually
be <xsl:value-of select="child::name"/>, but the abbreviation rules say that child:: may be omitted.

Using Axes

In the location step child::bird, which refers to a <bird> element that is a child of the current node, child is called the axis.
XPath supports many different axes, and it's important to know what they are. Here's the list:

ancestor— This axis contains the ancestors of the context node. An ancestor node is the parent of the context
node, the parent of the parent, and so forth, back to (and including) the root node.

ancestor-or-self— This axis contains the context node and the ancestors of the context node.

attribute— This axis contains the attributes of the context node.

child— This axis contains the children of the context node.

descendant— This axis contains the descendants of the context node. A descendant is a child or a child of a
child and so on.

descendant-or-self— This axis contains the context node and the descendants of the context node.

following— This axis contains all nodes that come after the context node.

following-sibling— This axis contains all the following siblings of the context node.

namespace— This axis contains the namespace nodes of the context node.

parent— This axis contains the parent of the context node.

preceding— This axis contains all nodes that come before the context node.

preceding-sibling— This axis contains all the preceding siblings of the context node.

self— This axis contains the context node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

self— This axis contains the context node.

Note that although the match attribute can only use the child or attribute axes in location steps (that's the major
restriction on the match attribute compared to the select attribute), the select attribute can use any of the 13 axes. (The
term sibling in XML refers to an item on the same level as the current item.)

For example, this template extracts the value of the <name> element by using the location path child::name:

<xsl:template match="state">
 <HTML>
 <BODY>
 <xsl:value-of select="child::name"/>
 </BODY>
 </HTML>
</xsl:template>

This is really the same as the version you've already been using because, as mentioned, you can abbreviate it by
omitting the child:: part:

<xsl:template match="state">
 <HTML>
 <BODY>
 <xsl:value-of select="name"/>
 </BODY>
 </HTML>
</xsl:template>

In the location step child::name, child is the axis and name is the node test, which is described in the following section.

Using Node Tests

After you specify the axis you want to use in a location step, you specify the node test. A node test indicates what type
of node you want to match. You can use names of nodes as node tests, or you can use the wildcard * to select element
nodes. For example, the expression child::*/child::flower selects all <flower> elements that are grandchildren of the
current node. Besides nodes and the wildcard character, you can also use these node tests:

comment()— This node test selects comment nodes.

node()— This node test selects any type of node.

processing-instruction()— This node test selects a processing instruction node. You can specify, in the
parentheses, the name of the processing instruction to select.

text()— This node test selects a text node.

Using Predicates

The last part of a location step is the predicate. In a location step, the (optional) predicate narrows the search down
even more. For example, the location step child::state[position() = 1] uses the predicate [position() = 1] to select not just a
child <state> element but the first <state> child element.

Predicates can get pretty involved because there are all kinds of XPath expressions that you can work with in
predicates. And there are various types of legal XPath expressions; here are the possible types:

Booleans

Node sets

Numbers

Strings

NOTE

There's also another type of XPath expression—result tree fragments—that you can work with in
predicates. A result tree fragment is a part of an XML document that is not a complete node or complete
set of nodes. There are really only two things to do with result tree fragments: You can use the string()
function or the boolean() function to turn them into strings or Booleans (that is, true/false values). Because
they don't represent legal XML, they've fallen into disuse.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

they don't represent legal XML, they've fallen into disuse.

The following sections look at how expressions help you in XSLT.

Boolean Expressions

XPath Boolean values are true/false values, and you can use the built-in XPath logical operators to produce Boolean
results. These are the logical operators:

!=— This stands for "is not equal to."

<— This stands for "is less than." (You use < for this in XML documents.)

<=— This stands for "is less than or equal to."

=— This stands for "is equal to."

>— This stands for "is greater than."

>=— This stands for "is greater than or equal to."

For example, here's how to use a logical operator to match all <state> elements after the first three, using the position()
function (which you'll see in the next section):

<xsl:template match="state[position() > 3]">
 <xsl:value-of select="."/>
</xsl:template>

You can also use the keywords and and or to connect Boolean expressions. The following example selects all <state>
elements after the first three and before the tenth one:

<xsl:template match="state[position() > 3 and position() < 10]">
 <xsl:value-of select="."/>
</xsl:template>

In addition, you can use the not() function to reverse the logical sense of an expression. The following example selects
all <state> elements except the last one, using the last() function (which you'll see in the next section):

<xsl:template match="state[not(position() = last())]">
 <xsl:value-of select="."/>
</xsl:template>

Node Sets

Besides Boolean values, XPath can also work with node sets. A node set is just a set of nodes. By collecting nodes into
a set, XPath lets you work with multiple nodes at once. For example, the location step child::state/child::bird returns a
node list of all <bird> elements that are children of <state> elements.

You can use various XPath functions to work with node sets. For example, the last() function picks out the last node in
the node set. The following are the node set functions:

last()— Returns the number of nodes in the node set.

position()— Returns the position of the context node in the node set. (The first node is Node 1.)

count(node-set)— Returns the number of nodes in node-set.

id(ID)— Returns a node set that contains the element whose ID value matches ID.

local-name(node-set)— Returns the name of the first node in node-set.

namespace-uri(node-set)— Returns the URI of the namespace of the first node in node-set.

name(node-set)— Returns the qualified name of the first node in node-set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some of these functions can be very useful. For example, you can number the states in the XML sample from earlier
today by using the position() function, as shown in Listing 9.12.

Listing 9.12 An XSL Style Sheet That Uses position() (ch09_12.xsl)

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <HEAD>
 <TITLE>
 The States
 </TITLE>
 </HEAD>
 <BODY>
 <H1>
 The States
 </H1>
 <xsl:apply-templates select="state"/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:value-of select="position()"/>.
 <xsl:value-of select="name"/>
 </P>
 </xsl:template>

</xsl:stylesheet>

Here's what an XSLT processor produces when you use this style sheet on the sample XML document:

<HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <TITLE>
 The States
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 The States
 </H1>
 <P>1. California</P>
 <P>2. Massachusetts</P>
 <P>3. New York</P>
 </BODY>
</HTML>

Note that the states are indeed numbered. Also, as with today's other examples, the whitespace and indenting here
have been cleaned up. Figure 9.5 shows the result of this transformation.

Figure 9.5. Numbering items by using XSLT.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you're working on the nodes in a node set, you can use functions such as position() to target specific nodes. For
example, child::state[position() = 1] selects the first <state> child of the node, where you apply this location step, and
child::state[position() = last()] selects the last.

Numbers

XPath can use numbers in expressions (for example, the 1 in the expression child::state[position() = 1]). There are also
some operators that you can use to work with numbers:

+— Addition.

-— Subtraction.

*— Multiplication.

div— Division. Note that the / character that stands for division in other languages is used for other purposes in
XML and XPath.

mod— Modulus. This operation returns the remainder after one number is divided by another.

For example, if you use <xsl:value-of select="2 + 2"/>, you get the string "4" in the output document. The following
example selects all states that have at least 200 people per square mile:

<xsl:template match="states">
 <HTML>
 <BODY>
 <P>
 <xsl:apply-templates select="state[population div area > 200]"/>
 </P>
 </BODY>
 </HTML>
</xsl:template>

Besides the numeric operators, XPath also has these functions that work with numbers:

ceiling()— Returns the smallest integer larger than the number you pass in the parentheses. For example,
ceiling(4.6) returns 5.

floor()— Returns the largest integer smaller than the number you pass it. For example, floor(4.6) returns 4.

round()— Rounds the number you pass it to the nearest integer. For example, round(4.6) returns 6.

sum()— Returns the sum of the numbers you pass it.

For example, here's how to find the total population of the states in ch09_01.xml by using sum():

<xsl:template match="states">
 <HTML>
 <BODY>
 <P>
 The total population is:
 <xsl:value-of select="sum(child::population)"/>
 </P>
 </BODY>
 </HTML>
</xsl:template>

Strings

Strings in XPath are treated as Unicode characters. A number of XPath functions are specially designed to work on
strings. Here they are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strings. Here they are:

concat(string1, string2, ...)— Returns the strings joined together.

contains(string1, string2)— Returns true if the first string contains the second one.

format-number(number1, string2, string3)— Returns a string that holds the formatted string version of number1,
using string2 as a formatting string, and string3 as an optional locale string. (You create formatting strings as you
would for Java's java.text.DecimalFormat method.)

normalize-space(string1)— Returns string1 after stripping leading and trailing whitespace and replacing multiple
consecutive empty spaces with a single space.

starts-with(string1, string2)— Returns true if the first string starts with the second string.

string-length(string1)— Returns the number of characters in string1.

substring(string1, offset, length)— Returns length characters from the string, starting at offset.

substring-after(string1, string2)— Returns the part of string1 after the first occurrence of string2.

substring-before(string1, string2)— Returns the part of string1 up to the first occurrence of string2.

translate(string1, string2, string3)— Returns string1 with all occurrences of the characters in string2 replaced
with the matching characters in string3.

Now you know what items can go into location steps—axes, node tests, and predicates. XPath syntax is far from
intuitive, so let's see some more examples as you take a look at XPath abbreviations and default rules.

XPath Abbreviations and Default Rules

So far you have specifically indicated what axis you wanted to use when writing location steps, but there are ways to
abbreviate location steps to make things easier. For example, as mentioned earlier, the location step child::state points
to a <state> element that is a child element of the context node, but you can abbreviate that location step simply as
state. These are the legal abbreviations:

Location Step Abbreviation

self::node() .

parent::node() ..

child::childname childname

attribute::childname @childname

/descendant-or-self::node()/ //

You can also abbreviate predicate expressions. For example, you can abbreviate [position() = 8] as [8].

Here are some examples of location paths using abbreviated syntax:

*— Matches all element children of the context node.

//state— Matches all <state> great-grandchildren of the context node.

.— Matches the context node.

..— Matches the parent of the context node.

../@units— Matches the units attribute of the parent of the context node.

.//state— Matches all <state> element descendants of the context node.

//state— Matches all <state> descendants of the root node.

//state/name— Matches all <name> elements that have a <state> parent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//state/name— Matches all <name> elements that have a <state> parent.

/states/state[4]/name[3]— Matches the third <name> element of the fourth <state> element of the <states>
element.

@*— Matches all the attributes of the context node.

@units— Matches the units attribute of the context node.

state— Matches the <state> element children of the context node.

state[@nickname and @units]— Matches all the <state> children of the context node that have both a nickname
attribute and a units attribute.

state[@units = "people"]— Matches all <state> children of the context node that have a units attribute that has
the value "people".

state[7]— Matches the seventh <state> child of the context node.

state[7][@units = "people"]— Matches the seventh <state> child of the context node if that child has a units
attribute with the value "people".

state[last()]— Matches the last <state> child of the context node.

state[name]— Matches the <state> children of the context node that themselves have <name> children.

state[name="Massachusetts"]— Matches the <state> child nodes of the context node that have <name> children
whose text value is "Massachusetts".

states//state— Matches all <state> element descendants of the <states> element children of the context node.

text()— Matches all child text nodes of the context node.

Listing 9.13 shows an example that uses abbreviated syntax. This example picks out the state bird for each state and
lists it by using text such as "The Quail is the California state bird." When you're inside a <state> element's <bird>
template, you can reach the <name> element of the state by using ../name, as shown in this example.

Listing 9.13 An XSL Style Sheet That Uses Abbreviated Syntax (ch09_13.xsl)

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <BODY>
 <xsl:apply-templates select="state"/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <P>
 <xsl:apply-templates select="bird"/>
 </P>
 </xsl:template>

 <xsl:template match="bird">
 The <xsl:value-of select="."/>
 is the <xsl:value-of select="../name"/>
 state bird.
 </xsl:template>

</xsl:stylesheet>

Here are the results of applying this style sheet to the sample XML document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here are the results of applying this style sheet to the sample XML document:

<HTML>
 <BODY>
 <P>
 The Quail
 is the California
 state bird.
 </P>
 <P>
 The Chickadee
 is the Massachusetts
 state bird.
 </P>
 <P>
 The Bluebird
 is the New York
 state bird.
 </P>
 </BODY>
</HTML>

Figure 9.6 shows these results in Figure 9.6. This is a good example that shows how to extract and work with data from
XML documents by using XSLT.

Figure 9.6. Using abbreviated syntax.

While you're discussing built-in abbreviated syntax, it's also worth noting that XSLT also has some built-in default rules,
some of which you've already seen in action.

The most important default rule applies to elements, and here's how you might put it in XSLT syntax:

<xsl:template match="/ | *">
 <xsl:apply-templates/>
</xsl:template>

What this means is that if you don't supply a template for an element, that element is still processed with <xsl:apply-
templates/> to handle the element's child nodes.

Similarly, the default rule for attributes is to place the value of the attribute in the output document, as in this example:

<xsl:template match="@*">
 <xsl:value-of select="."/>
</xsl:template>

The default rule for text is to just insert the text into the output document. That rule can be expressed like this, where
the XPath text() function just returns the text in a text node:

<xsl:template match="text()">
 <xsl:value-of select="."/>
</xsl:template>

However, the content of processing instructions (which may be matched by using the XPath processing-instruction()
function) and comments (which may be matched by using the XPath comment() function) is not inserted into the output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function) and comments (which may be matched by using the XPath comment() function) is not inserted into the output
document by default. You might express their default rules like this:

<xsl:template match="processing-instruction()"/>
<xsl:template match="comment()"/>

In fact, you can create whole style sheets that rely entirely on default rules. Here's what that might look like:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
</xsl:stylesheet>

Here's what you get when you apply this default-rules-only style sheet to ch09_01.xml:

<?xml version="1.0" encoding="UTF-8"?>

 California
 33871648
 Sacramento
 Quail
 Golden Poppy
 155959

 Massachusetts
 6349097
 Boston
 Chickadee
 Mayflower
 7840

 New York
 18976457
 Albany
 Bluebird
 Rose
 47214

Note that just the raw data in the document is transferred to the output document, which is the way things work by
default in XSLT.

XPath Tools

There's no question that it can take some time to get used to XPath syntax. Fortunately, there are some good tools out
there to help, such as the XPath Visualiser by Dimitre Novatchev, which you can get for free at
http://www.vbxml.com/downloads/default.asp?id=visualiser. To use this tool, you just have to browse to the XML
document you want to work with and enter the XPath expression you want to check. The XPath Visualiser then
highlights in yellow nodes that match your expression. For example, Figure 9.7 shows this tool working on the sample
XML document with the XPath expression //*[@units]. This is a great way to test your XPath expressions until you get
them to do what you want; all you need in order to use this tool is a browser.

Figure 9.7. Using the XPath Visualiser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using <xsl:copy>

The <xsl:copy> element lets you copy nodes; it copies only the nodes that match the XPath expression you want. By
using <xsl:copy>, you can copy whatever child elements, text nodes, or attributes you need.

Listing 9.14 shows an example that copies elements and the text in those elements by using <xsl:copy> just in a
template that matches "* | text()" (that is, elements and text).

Listing 9.14 An XSL Style Sheet That Copies Data (ch09_14.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="* | text()">
 <xsl:copy>
 <xsl:apply-templates select="* | text()"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

Here are the results of applying this new style sheet to the sample XML document:

<?xml version="1.0" encoding="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population>33871648</population>
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area>155959</area>
 </state>
 .
 .
 .
 <state>
 <name>New York</name>
 <population>18976457</population>
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area>47214</area>
 </state>

</states>

Note that all but the elements and text have been stripped out—no attributes and no comments remain.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using <xsl:if>

You can use the <xsl:if> element to make choices that depend on the data in an XML document. All you have to do to
use this element is assign its test attribute a value that evaluates to a Boolean value of true or false.

Listing 9.15 shows an example that lists the states in an XML document, and to set off the list, it adds a horizontal rule
element, <HR>, before and after the list of states. The example checks whether you're at the beginning or end of the
states list by using <xsl:if test="position() = 1">, and if you're at the beginning or end, it creates a new <HR> element
with the <xsl:element> element, like this:

<xsl:element name="HR"/>

Listing 9.15 An XSL Style Sheet That Uses <xsl:if> (ch09_15.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <HEAD>
 <TITLE>
 The States
 </TITLE>
 </HEAD>
 <BODY>
 <H1>
 The States
 </H1>
 <xsl:apply-templates select="state"/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <xsl:if test="position() = 1"><xsl:element name="HR"/></xsl:if>
 <P>
 <xsl:value-of select="position()"/>. <xsl:value-of select="name"/>
 </P>
 <xsl:if test="position() = last()"><xsl:element name="HR"/></xsl:if>
 </xsl:template>

</xsl:stylesheet>

Here's what you get when you use this new style sheet:

<HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <TITLE>
 The States
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 The States
 </H1>
 <HR>
 <P>1. California</P>
 <P>2. Massachusetts</P>
 <P>3. New York</P>
 <HR>
 </BODY>
</HTML>

Note the <HR> elements before and after the list of states. Figure 9.8 shows what this looks like.

Figure 9.8. Making decisions by using <xsl:if>.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.8. Making decisions by using <xsl:if>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using <xsl:choose>

In addition to using <xsl:if> to make decisions, you can also use <xsl:choose>. This element lets you compare a test
value against several possibilities.

Listing 9.16 shows an example that displays the names of the states in the sample XML document in red, white, and
blue. This example uses <xsl:when> elements inside an <xsl:choose> element and sets the test attribute in those
elements to the Boolean expression you want to test. For example, California is first in the list, so you can display it in
red this way:

<xsl:template match="state">
 <xsl:choose>
 <xsl:when test="name = 'California'">
 <P>

 <xsl:value-of select="name"/>

 </P>
 </xsl:when>
 .
 .
 .

You can see the whole style sheet in Listing 9.16. Note that at the end of the group of <xsl:when> elements, there's an
(optional) <xsl:otherwise> element; if none of the <xsl:when> elements match their test conditions, the <xsl:otherwise>
element is chosen.

Listing 9.16 An XSL Style Sheet That Uses <xsl:choose> (ch09_16.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="states">
 <HTML>
 <HEAD>
 <TITLE>
 The States
 </TITLE>
 </HEAD>
 <BODY BGCOLOR="BLACK">
 <xsl:apply-templates select="state"/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <xsl:choose>
 <xsl:when test="name = 'California'">
 <P>

 <xsl:value-of select="name"/>

 </P>
 </xsl:when>
 <xsl:when test="name = 'Massachusetts'">
 <P>

 <xsl:value-of select="name"/>

 </P>
 </xsl:when>
 <xsl:when test="name = 'New York'">
 <P>

 <xsl:value-of select="name"/>

 </P>
 </xsl:when>
 <xsl:otherwise>
 <P>
 <xsl:value-of select="."/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="."/>
 </P>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

Here's what you get when you use this style sheet on the sample XML document:

<HTML>
 <HEAD>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <TITLE>
 The States
 </TITLE>
 </HEAD>

 <BODY BGCOLOR="BLACK">
 <P>
 California
 </P>
 <P>
 Massachusetts
 </P>
 <P>
 New York
 </P>
 </BODY>
</HTML>

Figure 9.9 shows what this looks like (in black and white, of course). Note that this style sheet makes the background
color of the whole page black so that the styling (in particular, the white text) will stand out.

Figure 9.9. Making decisions by using <xsl:choose>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Specifying the Output Document Type
Today you've been creating HTML documents from XML documents. You might wonder how the XSLT processor knows
not to add an XML declaration at the beginning of the output HTML document. There's actually a special rule about this:
If the document node of the output document is <HTML>, XSLT processors are supposed to treat the output document
as HTML.

In fact, you can specify the type of output document you want by using the XSLT <xsl:output> element. Here are the
built-in possibilities:

xml— This is the default. It makes the output documents start with an <?xml?> declaration.

html— This makes the output document standard HTML 4.0, without an XML declaration.

text— This makes the output document simple text.

To choose from these options, you set the <xsl:output> element's method attribute to xml, html, or text. For example, if
you want to create a plain-text document, you can use this <xsl:output> element:

<xsl:output method = "text"/>

Here are some additional useful <xsl:output> attributes:

encoding— Indicates the value of the XML declaration's encoding attribute.

indent— Indicates whether the XSLT processor should indent the output (many don't, even if you ask them to).
You can set this attribute to "yes" or "no".

omit-xml-declaration— Indicates whether the processor should omit the XML declaration. You can set this
attribute to "yes" or "no".

standalone— Indicates the value for the XML declaration's standalone attribute. You can set this attribute to "yes"
or "no".

version— Indicates the value for the XML declaration's version attribute.

doctype-system and doctype-public— Let you specify an external DTD for XML documents. For example,
<xsl:output doctype-system = "states.dtd"/> produces <!DOCTYPE states SYSTEM "states.dtd">.

You're not restricted to creating XML, HTML, or text output files. You can use the media-type attribute of <xsl:output> to
specify the MIME type of the output document. Here's how that might look:

<xsl:output media-type="text/rtf"/>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
As you have seen today, XSLT gives you a lot of power in terms of handling the data in XML documents. There's a lot
more to XSLT than is covered today. Many entire books have been written on the subject. For more details, take a look
at both the XSLT specification, at http://www.w3.org/TR/xslt, and the XPath specification, at
http://www.w3.org/TR/xpath.

You use XSLT to manipulate, extract, and format data from XML documents. It's an attractive option because it means
you don't have to resort to creating your own XML processors. XSLT is a specification of the W3C. The W3C
recommendation for XSLT 1.0 is at http://www.w3.org/TR/xslt.

XSLT has its own syntax, and today you've examined it. You now know how to use that syntax in XSLT style sheets,
which start with the XML declaration and the element <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">.

XSLT style sheets are made up of templates that match the nodes you want to work with. As you saw today, you use
the match attribute in the <xsl:template> element to match nodes. You can also select the values of nodes by using the
<xsl:value-of> element and setting the select attribute to the XPath expression you want to use.

XSLT handles XML documents as trees of nodes, and you saw that the XPath language lets you target those nodes with
XPath expressions. By using XPath, you can locate exactly the node or nodes in an XML document that you want to
work with and specify exactly what you want to do with the node(s).

XPath location paths are made up of location steps, and each location step is made up of an axis, a node test, and an
optional predicate. There are 13 axes in XPath 1.0, and you took a look at all of them today. Node tests let you identify
specific nodes, and the predicate part of XPath expressions lets you use an extensive range of XPath data values,
operators, and functions to pin down the data you're interested in.

XSLT is actually a subpart of XSL. And you're going to take a look at XSL in depth tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Is it possible to sort nodes by using XSLT?

A1: Yes. You can use the <xsl:sort> element, which copies over nodes sorted according to the value that you
specify with the select attribute. For example, to sort by names as stored in <name> elements, you use
<xsl:sort select="name"/> inside an <xsl:apply-templates> element.

Q2: How can I create whole new elements in the output document by using data from the input
document?

A2: You briefly saw how you can do this today by using the <xsl:element> element. Here's a more in-depth
example. If you wanted to create new elements by using the names of the states <California>,
<Massachusetts>, and so on (although note that <New York> is not a legal XML element name!), where each
element contains a <population> element, you could use this XSLT in a template that matches "state":

<xsl:element name="{name}">
 <population><xsl:value-of select="population"/></population>
</xsl:element>

Note that you surround name with curly braces to indicate that it's an XPath expression that you want
evaluated—not simply the name you want to use in the new element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What element(s) does the XPath expression * pick out in the XML document ch09_01.xml?

2: What element(s) does the XPath expression //* pick out in the XML document ch09_01.xml?

3: Using ch09_01.xml, what would an XSLT template that inserts the value of <name> elements that are children
of <state> elements into the output document look like?

4: Using ch09_01.xml, what would an XSLT template that inserts the value of any element that has a units
attribute into the output document look like?

5: What would a template that matches both the <population> and <area> elements look like?

Exercises

1: Using ch09_01.xml and XSLT, create an HTML document that displays the names of all the states in an HTML
list, using HTML and tags.

2: Using XSLT, convert ch09_01.xml into an XML (not HTML) document that does not contain any <bird> or
<flower> elements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 10. Working with XSL Formatting Objects
Yesterday you began using XSLT to extract and format the data in XML documents into other forms. Today, you're
going to take a look at the rest of the XSL specification: XSL Formatting Objects (XSL-FO). XSL-FO, which is far more
involved than XSLT, lets you format data down to the last little detail, such as what font size to use and what margin
size.

Today you'll see how to use software to format the data in an XML document into an Adobe Portable Data Format (PDF)
file, and you'll be responsible for the complete visual formatting of data. However, note that although XSL deserves a
place in Part II, "Formatting XML Documents," of this book, XSL is not in as widespread use as XSLT, so you shouldn't
feel that you have to master today's discussion in order to master XML.

Here's an overview of today's topics:

Using the XSL formatting language

Formatting objects

Understanding the fo namespace

Formatting properties

Using Apache's Formatting Objects Processor (FOP)

Doing page layout

Using master pages

Understanding page sequences

Using block-level formatting

Using inline formatting objects

Using table-formatting objects

Using rules

Using graphics

Using links

Using lists

Using tables

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XSL-FO
XSL-FO was created to let you extract the data in an XML document and format it visually as you want it to appear. This
is different from yesterday's discussion, where the idea was to use the data in an XML document and simply create a
new document.

To let you format individual sections of an output document, the W3C has defined formatting objects such as root and
block that you use as elements (for example, <root> and <block>) that XSL-FO processors support. By using these
elements, you can specify what parts of the output document you want to format. So that you can actually do the
formatting, each object has built-in properties (for example, font-weight, line-height, border), which you use as attributes
in the corresponding element.

When you use these predefined XSL-FO objects to identify what part of the document you want to format and use their
properties to do the actual formatting, you can format your XML data visually. The formatted document can be a
Microsoft Word document, a PDF document, or anything that supports the visual formatting you've created. Today
you're going to create PDF documents and view them in the Adobe Acrobat PDF viewer.

Like XSLT and the other XML specifications from the W3C, XSL formatting objects have their own namespace,
http://www.w3.org/1999/XSL/Format. This namespace is usually given the prefix fo:, for formatting objects, not the xsl:
prefix you saw yesterday. The current version of XSL-FO is 1.0, and you can find the specification at
http://www.w3.org/TR/xsl. The specification for XSL-FO is at http://www.w3.org/TR/xsl/slice6.html, and the
specification of the properties you can use with the XSL-FO objects is at http://www.w3.org/TR/xsl/slice7.html. XSL-FO
1.1 is being discussed, as is XSL-FO 2.0, but nothing about them has appeared yet, not even a working draft.

Let's take a look at an example to see what you're working with here. In XSL-FO 1.0, there are 56 formatting objects
and 177 properties that apply to those objects. Each of the XSL-FO objects has its own XML tag, and the properties it
supports are attributes of that tag; in fact, many of these properties come from CSS2. You can specify how you want
the formatting to look by using these objects and properties. For example, here's how you might format the text "XSL-
FO Rocks!" in 18-point type in a block (recall that blocks are given their own line in the display):

<fo:block font-family="arial" line-height="24pt" font-size="18pt">
 XSL-FO Rocks!
</fo:block>

This example uses the <fo:block> element to create a block in the output document, where the font will be Arial, the
height of each line will be 24 points, and the font size will be 18 points. When you run this example through an XSL-FO
processor, the processor produces a PDF document or another type of document, using the formatting you've specified.
Interest in XSL-FO has picked up lately, and a growing number of software packages support it. Here's a sampling:

Adobe Document Server 5.0 from Adobe Systems (http://www.adobe.com)

E3 from Arbortext (http://www.arbortext.com)

FOP from Apache (http://xml.apache.org/fop)

PassiveTeX from TEI (http://www.tei-c.org.uk/Software/passivetex)

XEP from RenderX (http://www.renderx.com)

XSL Formatter from AntennaHouse (http://www.antennahouse.com), which is a commercial product

XSL-FO Renderer from Advent (http://www.3b2.com)

As with the rest of this book, the best way to see what's going on with XSL-FO objects is by working through an
example. The following section takes a look at an in-depth one.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XSL-FO
You've already seen a short XSL-FO example, but in fact, XML documents are only rarely formatted by directly using
formatting objects as in the example you've seen because the process becomes too complex. What usually happens is
that you take an XML document (with the extension .xml), run it through an XSLT processor to create a new XML
document that uses XSL-FO (with the extension .fo), and then use an XSL-FO processor to create the formatted display
document (with the extension .pdf in today's discussion). You do things this way because any document except a
nontrivial one has many paragraphs of text or data, and to format each one by hand would be a time-consuming
process.

In fact, XSLT was originally developed for formatting XML documents by using XSL-FO objects. Since then, being able to
access XML data without writing software using XSLT in itself has become so powerful that XSLT has outstripped XSL-
FO in popularity.

For example, say that you want to use XSL-FO to format the XML document with state data that you worked with
yesterday. Let's use that document today, renaming it ch10_01.xml, as shown in Listing 10.1.

Listing 10.1 An Example of an XML Document (ch10_01.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population units="people">6349097</population><!--2000 census-->
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>
 <name>New York</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

As you'll see later today, the XSL-FO document holding this data that you're going to feed into an XSL-FO processor is
about three times the length of ch10_01.xml, which is why it makes sense to use XSLT to convert ch10_01.xml into a
document that uses XSL-FO. Let's take a look at the XSLT style sheet that will do that.

Using XSLT to Create an XSL-FO Document

Although you could format ch10_01.xml by hand, it's easier to use an XSLT style sheet to do so. Listing 10.2 contains the
style sheet (ch10_02.xml) that you're going to use in this example. In this case, you're just going to extract the state
data from ch10_01.xml and present that data in a list form, using 18-point font.

Listing 10.2 An XSL Document That Adds XSL-FO Formatting (ch10_02.xsl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="state/name">
 <fo:block font-weight="bold" font-size="18pt"
 line-height="24pt" font-family="sans-serif"
 text-decoration="underline">
 Name:
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/population">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 Population (people):
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/capital">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Capital:
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/bird">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Bird:
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/flower">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Flower:
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/area">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Area (square miles):
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</xsl:stylesheet>

Today you'll see how ch10_02.xsl works and what it does. The first step, as described in the following section, is to put
this style sheet to work and create the XSL-FO document.

Creating an XSL-FO Document by Using an XSLT Style Sheet

You're ready to create an XSL-FO document, which you can call ch10_03.fo. This document is the one you'll feed into an
XSL-FO processor to create a formatted PDF document that will display the data from the XML document ch10_01.xml.
To create ch10_03.fo, you only need to apply the XSLT style sheet ch10_02.xsl to the XML document ch10_01.xml. For
example, if you have Java 1.4 or later installed, you can use the Java file ch09_05.class that is in the code download area
for this book that you used yesterday, like this:

%java ch09_05 ch10_01.xml ch10_02.xsl ch10_03.fo

This creates ch10_03.fo, which is ch10_01.xml formatted with XSL-FO. Listing 10.3 presents ch10_03.fo; note the length of
it compared to the original XML document, ch10_01.xml, and you can see why it's a good idea to use XSLT to create XSL-
FO documents if you're working with data of any significant length.

Listing 10.3 An XSL-FO Document (ch10_03.fo)

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="20mm"
 margin-left="20mm" margin-bottom="20mm" margin-top="20mm"
 page-width="200mm" page-height="300mm" master-name="mainPage">
 <fo:region-body margin-right="0mm" margin-left="0mm"
 margin-bottom="10mm" margin-top="0mm"/>
 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">

 <fo:block text-decoration="underline" font-family="sans-serif"
 line-height="24pt" font-size="18pt" font-weight="bold">
 Name:
 California
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Population (people):
 33871648
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Capital:
 Sacramento
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Bird:
 Quail
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Flower:
 Golden Poppy
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Area (square miles) :
 155959
 </fo:block>

 <fo:block text-decoration="underline" font-family="sans-serif"
 line-height="24pt" font-size="18pt" font-weight="bold">
 Name:
 Massachusetts
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Population (people):
 6349097

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 6349097
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Capital:
 Boston
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Bird:
 Chickadee
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Flower:
 Mayflower
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Area (square miles):
 7840
 </fo:block>

 <fo:block text-decoration="underline" font-family="sans-serif"
 line-height="24pt" font-size="18pt" font-weight="bold">
 Name:
 New York
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Population (people):
 18976457
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Capital:
 Albany
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Bird:
 Bluebird
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Flower:
 Rose
 </fo:block>
 <fo:block font-family="sans-serif" line-height="24pt"
 font-size="18pt">
 Area (square miles):
 47214
 </fo:block>

 </fo:flow>
 </fo:page-sequence>
</fo:root>

You now have ch10_03.fo, which is ready to feed into an XSL-FO processor.

Creating a PDF Document

To use ch10_03.fo and convert it into a PDF file, ch10_04.pdf, you can use what is probably the most popular XSL-FO
processor, the Apache XML Project's FOP. You can get FOP for free at http://xml.apache.org/fop; just click the
Download button. The current version as of this writing is 0.20.4 (0.20.5 is available in a release candidate version, but
it's not yet official), and it's written in Java, which means you have to have Java installed in order to use it. The
compressed file you download is fop-0.20.4-bin.tar.gz. (.tar.gz files are targeted to Unix, but Windows unzip utilities, such
as WinZip, from http://www.winzip.com, can unzip them as well.)

Here's how to use FOP to convert ch10_03.fo into ch10_04.pdf, assuming that ch10_03.fo is in the same directory where
you unzipped FOP (the -cp switch here sets the Java classpath variable, which you'll discuss further on Day 16, "Using
Java and .NET: DOM"):

%java -cp build\fop.jar;lib\batik.jar;lib\xalan-2.3.1.jar;
lib\xercesImpl-2.0.1.jar;lib\xml-apis.jar;
lib\avalon-framework-cvs-20020315.jar;lib\logkit-1.0.jar;
lib\jimi-1.0.jar org.apache.fop.apps.Fop ch10_03.fo ch10_04.pdf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lib\jimi-1.0.jar org.apache.fop.apps.Fop ch10_03.fo ch10_04.pdf

This is not very easy to type, so FOP also supplies shell scripts for most shells, including a .bat file for Windows, which
means that the following is usually all you have to type:

%fop ch10_03.fo ch10_04.pdf

This creates ch10_04.pdf, which is the goal you've been working toward. To view this PDF document, you can use the
Adobe Acrobat PDF viewer, which you can download for free from Adobe at http://www.adobe.com (currently, Adobe
Acrobat reader is available at http://www.adobe.com/products/acrobat/readermain.html). Figure 10.1 shows
ch10_04.pdf in Adobe Acrobat. As you can see in the figure, the data from the XML document has indeed been formatted
into a PDF document.

Figure 10.1. Formatting XML data in PDF format.

Now take a look at how to create your own XSL-FO formatting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XSL Formatting Objects and Properties
Each of the 56 XSL-FO formatting objects has a corresponding element that you use in XSL-FO documents. Here they
are:

<fo:bidi-override>— Lets you overrides the default Unicode bidirectionality algorithm.

<fo:block>— Creates a display block on its own line.

<fo:block-container>— Creates a block-level container.

<fo:character>— Accesses characters.

<fo:color-profile>— Creates a color profile.

<fo:conditional-page-master-reference>— Creates a page master that is used when the specified conditions
are met.

<fo:declarations>— Lets you group global declarations together.

<fo:external-graphic>— Embeds an inline image in a document.

<fo:float>— Lets content position float.

<fo:flow>— Creates content flow.

<fo:footnote>— Creates a footnote citation as well as the associated footnote.

<fo:footnote-body>— Holds the content of a footnote.

<fo:initial-property-set>— Formats the first line of a block.

<fo:inline>— Creates an inline formatting area.

<fo:inline-container>— Creates an inline container.

<fo:instream-foreign-object>— Inserts an image or another binary object into an output document.

<fo:layout-master-set>— Creates a set of masters.

<fo:leader>— Creates a rule, a row of repeating characters, or a repeating pattern of characters.

<fo:list-block>— Formats a list.

<fo:list-item>— Contains the label and the body of a list item.

<fo:list-item-body>— Contains the content of the body of a list item.

<fo:list-item-label>— Contains the content of the label of a list item.

<fo:marker>— Together with <fo:retrieve-marker>, creates headers and/or footers.

<fo:multi-case>— Is used in a <fo:multi-switch> element for objects that may be displayed or hidden.

<fo:multi-properties>— Lets you switch between property sets.

<fo:multi-property-set>— Creates a set of formatting properties.

<fo:multi-switch>— Lets you switch between formatting objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<fo:multi-switch>— Lets you switch between formatting objects.

<fo:multi-toggle>— Is used in an <fo:multi-case> element to switch to another <fo:multi-case> element.

<fo:page-number>— Inserts the current page number.

<fo:page-number-citation>— References the page number for a page that contains a citation.

<fo:page-sequence>— Creates a sequence of pages within a document.

<fo:page-sequence-master>— Contains sequences of page masters and is used to create sequences of pages.

<fo:region-after>— Creates a footer.

<fo:region-before>— Creates a header.

<fo:region-body>— Creates the body of a <fo:simple-page-master>.

<fo:region-end>— Creates a sidebar to the right of the page body.

<fo:region-start>— Creates a sidebar to the left of the page body.

<fo:repeatable-page-master-alternatives>— Creates a subsequence made up of repeated alternative page
masters.

<fo:repeatable-page-master-reference>— Creates a subsequence of single page masters.

<fo:retrieve-marker>— Is used with <fo:marker> to create headers or footers.

<fo:root>— Contains all the other XSL-FO document elements.

<fo:simple-link>— Contains the start position in a simple link.

<fo:simple-page-master>— Creates a page, which may be divided into up to five regions.

<fo:single-page-master-reference>— Creates a subsequence made up of one single-page master.

<fo:static-content>— Holds elements that must be presented as formatted, not in a flow.

<fo:table>— Creates a table.

<fo:table-and-caption>— Formats both the data and caption of a table.

<fo:table-body>— Contains the table body.

<fo:table-caption>— Contains a block-level caption for a table.

<fo:table-cell>— Creates a table cell.

<fo:table-column>— Formats a table column.

<fo:table-footer>— Creates a table footer.

<fo:table-header>— Creates a table header.

<fo:table-row>— Creates a table row.

<fo:title>— Creates a title for a document.

<fo:wrapper>— Contains inherited properties for a group of objects.

You use these formatting objects with the 177 formatting properties. Many of the formatting properties are the same
one you saw on Day 8, "Formatting XML by Using Cascading Style Sheets," such as background-color and background-
repeat. And as in CSS, you can use measurements such as px for pixels, pt for points, and mm for millimeters when you
need to specify a size. The following are a sampling of the XSL-FO formatting properties (for all the properties, see
http://www.w3.org/TR/xsl/slice7.html):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.w3.org/TR/xsl/slice7.html):

The XSL Formatting Properties

absolute-position background background-color

background-image background-position background-repeat

border border-bottom border-collapse

border-color border-left border-right

border-separation border-spacing border-style

border-top border-width bottom

color display-align font

font-family font-size font-size-adjust

font-stretch font-style font-variant

font-weight force-page-count height

last-line-end-indent left letter-spacing

linefeed-treatment line-height margin

margin-bottom margin-left margin-right

margin-top master-name max-height

maximum-repeats max-width min-height

min-width padding padding-after

padding-before padding-bottom padding-end

padding-left padding-right padding-start

padding-top page-break-after page-break-before

page-break-inside page-height page-position

page-width region-name right

rule-style rule-thickness size

source-document space-after space-before

space-end space-start space-treatment

span text-align text-align-last

text-decoration text-indent text-shadow

text-transform top vertical-align

visibility white-space white-space-collapse

width word-spacing wrap-option

To see how to use these objects and properties, the following sections dissect the example you've already worked with
today.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Building an XSL-FO Document
Now you've seen XSL-FO and gotten an overview of what objects and properties are available; the next step is to see
how XSL-FO works by understanding the XSL-FO example. The following sections describe the elements that are
involved in the example.

Using <fo:root>

The document element of XSL-FO documents has to be <fo:root> (although, of course, you can give the namespace any
name, not just fo:). In the sample XSLT style sheet, you converted the sample XML document's document element,
<states>, into <fo:root> this way:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>
 .
 .
 .

The <fo:root> element can contain both a master set layout and page sequences.

The master set layout, which uses the <fo:layout-master-set> element, describes the masters, or templates, that you
want to use in the document. You can specify the default page layout, such as margin sizes, here.

The page sequences, which use the <fo:page-sequence> element, specify the format for a sequence of pages. For
example, you might give a series of pages the same headers and footers.

The example uses both a master set layout and page sequences, so you can see what they both do.

Using <fo:layout-master-set>

In XSL-FO you can use a master as a template for a page, a sequence of pages, or a region on a page. After you create
a master, including specifying fonts and margin sizes, you can use it in a page sequence. For example, to create master
templates, you can use the <fo:layout-master-set> element:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 .
 .
 .

Now you list the masters you want to use in the document in the <fo:layout-master-set> element. For example, you can
create a master for each page by using the <fo:simple-page-master> element. You can also create page sequence masters
to format pages in a sequence (as when you alternate odd/even page formatting for the left and right sides of a book).
In this case, you can format the main page by using an <fo:simple-page-master> element, as described in the next
section.

Using <fo:simple-page-master>

You use the page master <fo:simple-page-master> to create a template for a page and outline what goes where. After you
create a page master, you can use it where you want in a document. Currently, the XSL specification supports only the
<fo:simple-page-master> page master. These are the properties you can use in this element to define the page master:

Block margin properties: margin-top, margin-bottom, margin-left, margin-right, space-before, space-after, start-indent,
and end-indent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and end-indent

master-name

page-height

page-width

reference-orientation

writing-mode

In today's example, the page master is named mainPage. You can set the page height, width, and margins like this:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">
 .
 .
 .

That lays out the overall geometry of the page, but there's more to the story: You can also lay out regions in a page,
such as the header, footer, and body. You can have up to five regions in a page master in the XSL-FO 1.0 specification:

Body— The body region is the body of the page. To create this region, you use <fo:region-body>.

Before— The before region is the header. To create this region, you use <fo:region-before>.

After— The after region is the footer. To create this region, you use <fo:region-after>.

Start— The start region appears to the left of the body. To create this region, you use <fo:region-start>.

End— The end region appears to the right of the body. To create this region, you use <fo:region-end>.

NOTE

Note that in languages that read right to left, the start and end regions are reversed.

Each of the region elements also has a number of properties that you can use, as listed here:

Border, padding, and background properties: background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-vertical, border-before-color, border-before-style,
border-before-width, border-after-color, border-after-style, border-after-width, border-start-color, border-start-style, border-
start-width, border-end-color, border-end-style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, and padding-right

Block margin properties: margin-top, margin-bottom, margin-left, margin-right, space-before, space-after, start-indent,
and end-indent

clip

column-count

column-gap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column-gap

display-align

extent

overflow

region-name

reference-orientation

writing-mode

Using <fo:region-body> and <fo:region-after>

In today's example, you set the margins of the body region by using the available margin properties. In addition, you
can set the width or height of the other four regions by using the extent property, as in the following markup, which sets
the footer region to 20mm height:

<xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>
 .
 .
 .

You have now completed the page master you'll use in this document. Besides a page master, you also need to define a
page sequence when you format documents in XSL-FO, and that's coming up next.

Using <fo:page-sequence>

A page sequence is a run of pages that are part of a group, such as a chapter in a book or a section in a report. You
create page sequences by using the <fo:page-sequence> element. You can use page sequences to alternate page number
for even/odd pages in a book, for example. Each such element refers to a page master such as the one you've already
created and uses that page master to format its pages.

These are the properties you can use with the <fo:page-sequence> element:

country

format

language

letter-value

grouping-separator

grouping-size

id

initial-page-number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initial-page-number

force-page-count

master-name

master-reference

You specify the name of the page master you want to use in a page sequence by using the master-reference attribute. In
today's example, the page master is named mainPage, so here's how the page sequence starts out:

<?xml version='1.0'? >
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 .
 .
 .

The next step is to specify the content of the page sequence, and you do that with the <fo:flow> element, as described
in the next section.

Using <fo:flow>

You use <fo:flow> to create a text flow, much like the flow in browsers, where the browser decides how to arrange
elements. To create a flow, you specify a region, and the document content flows into that region.

You don't need to let text flow as the XSL-FO processor chooses. Besides <fo:flow>, you can also use <fo:static-content>
in page sequences. The content in <fo:static-content> is static, which means it stays as you've arranged it. Static content
is often used for headers and footers, where you want to dictate the text content and position, such as page numbers
that you might always want centered or on the right.

The <fo:flow> element supports a property named flow-name, and you can use that property to indicate that you want
text content to flow into the body region of pages like this, finishing off the <fo:root> element:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>
 .
 .
 .
 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
 </xsl:template>
 .
 .
 .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .

Note that the <fo:flow> element, which handles the XML document's content, has an <xsl:apply-templates/> element in it.
This means that the XML elements in the XML document will be matched with templates in the XSLT style sheet. For
example, to match the <name> elements, you use this template:

<xsl:template match="state/name">
 .
 .
 .

Now you've matched a <name> element. You want to display its text in bold, underlined text, as shown in Figure 10.1.
How do you do that? You start by using <fo:block> to create a block element.

Using <fo:block>

In XSL-FO you can use the <fo:block> element to create block-level elements, much like the ones you created on Day 6,
when working with CSS. You use this element to create your own rectangular region that appears on its own line. You
can use it to give each data item from ch10_01.xml its own line in the output document.

You can use these properties with <fo:block> elements:

Accessibility properties: source-document and role

Aural properties: azimuth, cue-after, cue-before, elevation, pause-after, pause-before, pitch, pitch-range, play-during,
richness, speak, speak-header, speak-numeral, speak-punctuation, speech-rate, stress, voice-family, and volume

Border, padding, and background properties: background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-vertical, border-before-color, border-before-style,
border-before-width, border-after-color, border-after-style, border-after-width, border-start-color, border-start-style, border-
start-width, border-end-color, border-end-style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, and padding-right

Font properties: font-family, font-size, font-stretch, font-size-adjust, font-style, font-variant, and font-weight

Hyphenation properties: country, language, script, hyphenate, hyphenation-character, hyphenation-push-character-count,
and hyphenation-remain-character-count

Block margin properties: margin-top, margin-bottom, margin-left, margin-right, space-before, space-after, start-indent,
and end-indent

break-after

break-before

color

font-height-override-after

font-height-override-before

hyphenation-keep

hyphenation-ladder-count

id

keep-together

keep-with-next

keep-with-previous

last-line-end-indent

linefeed-treatment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

linefeed-treatment

line-height

line-height-shift-adjustment

line-stacking-strategy

orphans

relative-position

space-treatment

span

text-align

text-align-last

text-indent

visibility

white-space-collapse

widows

wrap-option

z-index

To handle the data in the <name>, <population>, <capital>, and other elements in the XML document, you can use the
following templates in ch10_02.xsl, which uses <fo:block> to create blocks displaying that data:

<xsl:template match="state/name">
 <fo:block font-weight="bold" font-size="18pt"
 line-height="24pt" font-family="sans-serif"
 text-decoration="underline">
 Name:
 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

<xsl:template match="state/population">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 Population (people):
 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

<xsl:template match="state/capital">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 Capital:
 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

<xsl:template match="state/bird">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 Bird:
 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

<xsl:template match="state/flower">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Flower:
 <xsl:value-of select="."/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

<xsl:template match="state/area">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Area (square miles):
 <xsl:value-of select="."/>
 </fo:block>
</xsl:template>

Now you have created the XSLT style sheet, ch10_02.xsl, which converts ch10_01.xml into the XSL-FO document
ch10_03.fo. Congratulations! You've created an XSLT style sheet that transforms an XML document into XSL-FO form,
which the FOP XSL-FO processor can now translate into a PDF file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Inline Formatting
So far today you have created only block elements, but you can also create inline formatting. With inline formatting,
you format items inline, without giving them their own display block.

A number of XSL-FO elements are designed to handle inline formatting:

<fo:bidi-override>

<fo:character>

<fo:initial-property-set>

<fo:external-graphic>

<fo:instream-foreign-object>

<fo:inline>

<fo:inline-container>

<fo:leader>

<fo:page-number>

<fo:page-number-citation>

The following sections cover some of the most useful of these elements.

Using <fo:inline>

The <fo:inline> element lets you perform inline formatting with text, as when you might want to underline a specific
word or even give a word a border. These are the properties you can use with <fo:inline>:

Accessibility properties: source-document and role

Aural properties: azimuth, cue-after, cue-before, elevation, pause-after, pause-before, pitch, pitch-range, play-during,
richness, speak, speak-header, speak-numeral, speak-punctuation, speech-rate, stress, voice-family, and volume

Border, padding, and background properties: background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-vertical, border-before-color, border-before-style,
border-before-width, border-after-color, border-after-style, border-after-width, border-start-color, border-start-style, border-
start-width, border-end-color, border-end-style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, and padding-right

Font properties: font-family, font-size, font-stretch, font-size-adjust, font-style, font-variant, and font-weight

Inline margin properties: space-end and space-start

alignment-adjust

baseline-identifier

baseline-shift

color

dominant-baseline

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dominant-baseline

id

keep-together

keep-with-next

keep-with-previous

line-height

line-height-shift-adjustment

relative-position

text-decoration

visibility

z-index

For example, Listing 10.4 shows how you can underline the title text Population (people), Capital, and so on by using
<fo:inline>.

Listing 10.4 An XSLT Document That Uses <fo:inline> (ch10_05.xsl)

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="states">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="state/name">
 <fo:block font-weight="bold" font-size="18pt"
 line-height="24pt" font-family="sans-serif">
 <fo:inline text-decoration="underline">
 Name:
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/population">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 <fo:inline text-decoration="underline">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fo:inline text-decoration="underline">
 Population (people):
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/capital">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 <fo:inline text-decoration="underline">
 Capital:
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/bird">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 <fo:inline text-decoration="underline">
 Bird:
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/flower">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 <fo:inline text-decoration="underline">
 Flower:
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="state/area">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 <fo:inline text-decoration="underline">
 Area (square miles):
 </fo:inline>
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

Figure 10.2 shows the result. In this figure, the title text is indeed underlined using inline formatting.

Figure 10.2. Using inline formatting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using <fo:external-graphic>

You can use the <fo:external-graphic> element to embed image files in output documents. You use the src property to
specify the URI of the image file, and you can set the size of the image in the document by using the content-height,
content-width, and scaling properties (note that if you don't set these properties, the image will be displayed in its original
size). Listing 10.5 shows an example, ch10_07.fo, that displays the image image.jpg, which is included in the download
for this book.

Listing 10.5 An XSLT Document That Uses an Image (ch10_07.fo)

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>
 <fo:simple-page-master margin-right="20mm" margin-left="20mm"
 margin-bottom="10mm" margin-top="10mm" page-width="300mm"
 page-height="400mm" master-name="mainPage">
 <fo:region-body margin-right="0mm" margin-left="0mm"
 margin-bottom="10mm" margin-top="0mm"/>
 <fo:region-after extent="10mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <fo:block>
 <fo:external-graphic src="file:image.jpg"/>
 </fo:block>

 <fo:block space-before="10pt" start-indent="10mm"
 end-indent="0mm" font-size="24pt">
 Images and XSL-FO
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

Figure 10.3 shows the results. In the figure the image image.jpg appears in the output PDF file. And that's all it takes.

Figure 10.3. Displaying images by using XSL-FO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These are the properties you can use with <fo:external-graphic>:

Accessibility properties: source-document and role

Aural properties: azimuth, cue-after, cue-before, elevation, pause-after, pause-before, pitch, pitch-range, play-during,
richness, speak, speak-header, speak-numeral, speak-punctuation, speech-rate, stress, voice-family, and volume

Border, padding, and background properties: background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-vertical, border-before-color, border-before-style,
border-before-width, border-after-color, border-after-style, border-after-width, border-start-color, border-start-style, border-
start-width, border-end-color, border-end-style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, and padding-right

Inline margin properties: space-end and space-start

alignment-adjust

baseline-identifier

baseline-shift

block-progression-dimension

content-height

content-type

content-width

dominant-baseline

height

id

inline-progression-dimension

keep-with-next

keep-with-previous

line-height

line-height-shift-adjustment

relative-position

overflow

scaling

scaling-method

src

width

Using <fo:page-number>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use the <fo:page-number> element to add page numbers to a document. For example, you might add page
numbers to the previous example, which displays an image. Listing 10.6 shows an example of this that aligns the page
number at the upper right in the page.

Listing 10.6 An FO Document That Uses Page Numbers (ch10_09.fo)

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>
 <fo:simple-page-master margin-right="20mm" margin-left="20mm"
 margin-bottom="10mm" margin-top="10mm" page-width="300mm"
 page-height="400mm" master-name="mainPage">
 <fo:region-body margin-right="0mm" margin-left="0mm"
 margin-bottom="10mm" margin-top="0mm"/>

 <fo:region-after extent="10mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <fo:block text-align="right" line-height="24pt" font-size="18pt">
 <fo:page-number/>
 </fo:block>
 <fo:block>
 <fo:external-graphic src="file:image.jpg"/>
 </fo:block>

 <fo:block space-before="10pt" start-indent="10mm"
 end-indent="0mm" font-size="24pt">
 Images and Page Numbers and XSL-FO
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

Figure 10.4 shows the results. As you can see, the page number appears at the upper right.

Figure 10.4. Displaying page numbers by using XSL-FO.

You can use these properties with the <fo:page-number> element:

Accessibility properties: source-document and role

Aural properties: azimuth, cue-after, cue-before, elevation, pause-after, pause-before, pitch, pitch-range, play-during,
richness, speak, speak-header, speak-numeral, speak-punctuation, speech-rate, stress, voice-family, and volume

Border, padding, and background properties: background-attachment, background-color, background-image,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Border, padding, and background properties: background-attachment, background-color, background-image,
background-repeat, background-position-horizontal, background-position-vertical, border-before-color, border-before-style,
border-before-width, border-after-color, border-after-style, border-after-width, border-start-color, border-start-style, border-
start-width, border-end-color, border-end-style, border-end-width, border-top-color, border-top-style, border-top-width,
border-bottom-color, border-bottom-style, border-bottom-width, border-left-color, border-left-style, border-left-width, border-
right-color, border-right-style, border-right-width, padding-before, padding-after, padding-start, padding-end, padding-top,
padding-bottom, padding-left, and padding-right

Font properties: font-family, font-size, font-stretch, font-size-adjust, font-style, font-variant, and font-weight

Inline margin properties: space-end and space-start

alignment-adjust

baseline-identifier

baseline-shift

dominant-baseline

id

keep-with-next

keep-with-previous

letter-spacing

line-height

line-height-shift-adjustment

relative-position

score-spaces

text-decoration

text-shadow

text-transform

word-spacing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Lists
XSL-FO lets you format data in lists, by using these four list elements:

<fo:list-block>

<fo:list-item>

<fo:list-item-label>

<fo:list-item-body>

To create a list, you use the <fo:list-block> element. You use an <fo:list-item> element to create an item in the list. To
create a label for each item, you can use the <fo:list-item-label> element, and to create the body of the list item, you can
use the <fo:list-item-body> element. It all sounds simple enough, but as with most things in XSL-FO, even simple things
can end up being pretty lengthy. For example, say you want to format and display this short list:

1. No
2. worries
3. at
4. all

Listing 10.7 shows the XSL-FO to do this. As you can see, you need a lot of XSL-FO to format this list.

Listing 10.7 Creating a List by Using XSL-FO (ch10_11.fo)

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <fo:block font-size="28pt" line-height="36pt">
 Creating XSL-FO Lists
 </fo:block>
 <fo:list-block
 provisional-distance-between-starts="10mm"
 provisional-label-separation="5mm" font-size="36pt">
 <fo:list-item line-height="24pt">
 <fo:list-item-label>
 <fo:block font-family="sans-serif"
 font-size="18pt">
 1.
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block font-family="sans-serif"
 font-size="18pt">
 No

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 No
 </fo:block>
 </fo:list-item-body>
 </fo:list-item>
 <fo:list-item line-height="24pt">
 <fo:list-item-label>
 <fo:block font-family="sans-serif"
 font-size="18pt">
 2.
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block font-family="sans-serif"
 font-size="18pt">
 worries
 </fo:block>
 </fo:list-item-body>
 </fo:list-item>
 <fo:list-item line-height="24pt">
 <fo:list-item-label>
 <fo:block font-family="sans-serif"
 font-size="18pt">
 3.
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block font-family="sans-serif"
 font-size="18pt">
 at
 </fo:block>
 </fo:list-item-body>
 </fo:list-item>
 <fo:list-item line-height="24pt">
 <fo:list-item-label>
 <fo:block font-family="sans-serif"
 font-size="18pt">
 4.
 </fo:block>
 </fo:list-item-label>
 <fo:list-item-body start-indent="body-start()">
 <fo:block font-family="sans-serif"
 font-size="18pt">
 all
 </fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

Figure 10.5 shows the result of formatting ch10_11.fo.

Figure 10.5. Creating a list by using XSL-FO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Tables
In addition to lists, you can also format tables by using XSL-FO. Tables in XSL-FO work something like tables in HTML.
These are the XSL-FO elements that you use to create tables:

<fo:table-and-caption>

<fo:table>

<fo:table-column>

<fo:table-caption>

<fo:table-header>

<fo:table-footer>

<fo:table-body>

<fo:table-row>

<fo:table-cell>

You create a table by using the <fo:table> element, and then you format each column by using <fo:table-column>
elements. Next, you create a table body by using the <table-body> element, and you add rows to the table body by
using <table-row> elements. Finally, you add cells to each row by using the <table-cell> element. Listing 10.8 shows an
example that displays the flowers and birds for the states example. (Note that you're simply using boldface on text to
make a table header in this example because FOP doesn't fully support the <table-header> element.)

Listing 10.8 Creating a Table by Using XSL-FO (ch10_13.fo)

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <fo:layout-master-set>
 <fo:simple-page-master margin-right="20mm"
 margin-left="20mm" margin-bottom="20mm" margin-top="20mm"
 page-width="200mm" page-height="300mm" master-name="mainPage">
 <fo:region-body margin-right="0mm" margin-left="0mm"
 margin-bottom="10mm" margin-top="0mm"/>
 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <fo:block font-size="28pt" line-height="36pt" padding-after="12pt">
 Creating XSL-FO Tables
 </fo:block>
 <fo:table width="16cm" table-layout="fixed">
 <fo:table-column column-number="1" column-width="30mm">
 </fo:table-column>
 <fo:table-column column-number="2" column-width="30mm">
 </fo:table-column>
 <fo:table-column column-number="3" column-width="30mm">
 </fo:table-column>
 <fo:table-body>
 <fo:table-row line-height="26pt">
 <fo:table-cell column-number="1" border-style="solid">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fo:table-cell column-number="1" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt" font-weight="bold">
 State
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt" font-weight="bold">
 Flower
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt" font-weight="bold">
 Bird
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 <fo:table-row line-height="26pt">
 <fo:table-cell column-number="1" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 California
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Quail
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Golden Poppy
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 <fo:table-row line-height="26pt">
 <fo:table-cell column-number="1" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Massachusetts
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Chickadee
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Mayflower
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 <fo:table-row line-height="26pt">
 <fo:table-cell column-number="1" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 New York
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="2" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">
 Bluebird
 </fo:block>
 </fo:table-cell>
 <fo:table-cell column-number="3" border-style="solid">
 <fo:block font-family="sans-serif"
 font-size="20pt">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 font-size="20pt">
 Rose
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

Figure 10.6 shows this table after ch10_13.fo is processed into ch10_14.pdf. As the figure shows, the table appears as
you've designed it to appear.

Figure 10.6. Creating a table by using XSL-FO.

This completes your look at formatting XML with XSL-FO, and your look at formatting XSL in general. Starting tomorrow
you'll see XML in action in the real world, beginning with Extensible Hypertext Markup Language (XHTML).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
You can use XSL-FO to format every visual detail of the data from an XML document. XSL-FO is more intricate than
XSLT because with it you are responsible for the complete visual formatting of your data. Today you saw that there are
some XSL-FO formatting processors available, and you put one of them, FOP, to work. Because XSL-FO–formatted
documents are often very long, XSLT style sheets are often used to convert XML documents into XSL-FO documents,
which can then be processed by XSL-FO processors into various visual formats, such as .PDF, .RTF, and .DOC.

The XSL-FO 1.0 specification has 56 predefined elements and 177 properties that are attributes of those elements. To
master XSL-FO you need to master these elements and attributes, which is no small task.

To start an XSL-FO document, you use an XSML declaration followed by the XSL-FO root element, <fo:root>, where the
fo namespace prefix is "http://www.w3.org/1999/XSL/Format", like this: <fo:root
xmlns:fo="http://www.w3.org/1999/XSL/Format">.

The <fo:root> element can contain both a master set layout and page sequences. The master set layout, which is
defined by the <fo:layout-master-set> element, describes the masters, or templates, that you want to use in the
document. You specify general page layout, such as the margins, in this master. In addition, a master has five regions:
the body, before, after, start, and end regions.

Page sequences, which specify the format for a sequence of pages, use the <fo:page-sequence> element. You can specify
the name of the page master you want to use in a page sequence by using the master-reference attribute.

There are two elements you can use to structure the content in a page sequence. The <fo:flow> element creates a flow
of text and other visual elements that is similar to the content flow in a browser. The <fo:static-content> element creates
static formatted content, such as headers and footers.

To create a block-level element in a content flow, you can use the <fo:block> element. You use attributes such as line-
height, font-size, font-family, and text-decoration to format the text in a block. You can also perform inline formatting, not
just block-level formatting. A number of XSL-FO elements are designed to handle inline formatting, including <fo:inline>,
which lets you apply formatting to text in place, without having to create a separate block. You can also use the inline
element <fo:external-graphic> to embed graphics in an XSL-FO document.

You can format data into lists in XSL-FO by using the <fo:list-block> element. You can use <fo:list-item> elements to
create items in the list. You can use the <fo:list-item-label> element to create labels for the items in the lists, and you can
use the <fo:list-item-body> element to specify the body of the list item.

Today you also saw how to format tables by using XSL-FO. You create a table by using the <fo:table> element, you
format the columns by using the <fo:table-column> element, and you create a table body by using the <table-body>
element. To structure the table body, you can add rows by using <table-row> elements, and you can add cells to each
row by using the <table-cell> element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Is there any way of formatting the first line in a block differently than the following lines—for
example, to format a paragraph's first line differently?

A1: Yes. To do this, you can use the <fo:initial-property-set>. For example, to use small uppercase letters in the
first line, you could use this element inside the <fo:block> element:

<fo:initial-property-set font-variant="small-caps" />

Q2: Is there any way to work character-by-character in XSL-FO?

A2: Yes. To do this, you can use the <fo:character> element. For example, if you want to replace all the
matched text data in an XSLT template with asterisks, * (as for passwords), you could use this:

<fo:character character="*"><xsl:value-of select="."/></fo:character>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What is the first XSL-FO element you must use in an XSL-FO document?

2: What two items can the <fo:root> element contain?

3: What element refers to the header in a page master?

4: What attribute do you use in the <fo:block> element to specify the vertical distance each line should get?

5: What attribute do you use in an <fo:page-sequence> element to indicate what master you want to use in the
sequence?

Exercises

1: Write an XSL-FO document that displays the text of ch08_01.xml from Day 8, which is from the stoic
philosopher Epictetus. Format this text in 18-point font, and underline the text in the <title>, <philosopher>,
and <book> elements. If you have installed FOP, use it to create a PDF file that displays the data in that
document.

2: Create an XSLT style sheet that converts the sample XML document ch10_01.xml to an XSL-FO table. If you
have installed FOP, use it to create a PDF file that displays the data in that document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II. In Review
In Part II we took a look at three ways of formatting and working with XML data without having to do any
programming: CSS, XSLT, and XSL-FO. All these techniques have their uses with XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using CSS
CSS lets you format the visual appearance of HTML and CSS by using style sheets. Style sheets are collections of style
rules, and each rule shows how to format an XML element. A rule is made up of a selector, which is the element or
elements you want to format, and the rule specification, which shows the format you want.

There are a number of ways of creating selectors. For example, you can list an XML element by name, you can create
style classes, you can select elements by ID value, and so on.

The second part of a rule, the rule specification, is made up of CSS property/value pairs in a semicolon-separated list,
surrounded by curly braces. Many CSS properties are available, such as text-align, text-decoration, and so forth. You can
assign values to those properties by listing those values after a property name, like this, in a rule specification:

{text-align: center; text-decoration: underline}

You saw in Part II that you can create block-level elements by using the CSS display property when you assign the value
block to it. Block elements are displayed on their own lines. If you don't make an element a block element, it will be an
inline element by default; inline elements are arranged by the browser following the normal flow of items that the
browser displays.

In Part II you took a look at various text properties, such as those for selecting fonts, font size, font weight, text
alignment, indentation, and decoration. And you also saw how to specify colors, backgrounds, and borders and even
how to display images. CSS is also good at positioning elements, in both absolute and relative terms.

There are various ways to connect a CSS to an XML document. The most usual in XML documents is by using the <?xml-
stylesheet?> processing instruction. This example ties an XML document to a CSS by using that processing instruction:

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="dickens.css"?>
<document>
 <title>Bleak House</title>
 <author>Charles Dickens</author>
 <chapter>1</chapter>
 <paragraph>
London. Michaelmas term lately over, and the Lord Chancellor sitting in
Lincoln's Inn Hall. Implacable November weather. As much mud in the streets
as if the waters had but newly retired from the face of the earth, and it
would not be wonderful to meet a Megalosaurus, forty feet long or so,
waddling like an elephantine lizard up Holborn Hill. Smoke lowering down
from chimney-pots, making a soft black drizzle, with flakes of soot in it
as big as full-grown snowflakes—gone into mourning, one might imagine, for
the death of the sun. Dogs, undistinguishable in mire. Horses, scarcely better;
splashed to their very blinkers. Foot passengers, jostling one another's
umbrellas in a general infection of ill temper, and losing their foot-hold
at street-corners, where tens of thousands of other foot passengers have been
slipping and sliding since the day broke (if this day ever broke), adding new
deposits to the crust upon crust of mud, sticking at those points tenaciously
to the pavement, and accumulating at compound interest.
 </paragraph>
 <paragraph>
Fog everywhere. Fog up the river, where it flows among green aits and meadows;
fog down the river, where it rolls deified among the tiers of shipping and the
waterside pollutions of a great (and dirty) city. Fog on the Essex marshes,
fog on the Kentish heights. Fog creeping into the cabooses of collier-brigs;
fog lying out on the yards and hovering in the rigging of great ships; fog
drooping on the gunwales of barges and small boats. Fog in the eyes and throats
of ancient Greenwich pensioners, wheezing by the firesides of their wards; fog
in the stem and bowl of the afternoon pipe of the wrathful skipper, down in his
close cabin; fog cruelly pinching the toes and fingers of his shivering little
'prentice boy on deck. Chance people on the bridges peeping over the parapets
into a nether sky of fog, with fog all round them, as if they were up in a
balloon and hanging in the misty clouds.
 </paragraph>
 <paragraph>
Gas looming through the fog in divers places in the streets, much as the sun
may, from the spongey fields, be seen to loom by husbandman and ploughboy.
Most of the shops lighted two hours before their time—as the gas seems to
know, for it has a haggard and unwilling look.
 </paragraph>
</document>

Here's an example of a style sheet, dickens.css, that specifies exactly how to format each of the various elements in the
XML document by using one style rule for each element type:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML document by using one style rule for each element type:

title {display: block; font-size: 36pt; font-weight: bold;
 text-align: center; text-decoration: underline}
author {display: block; font-size: 16pt;
 text-align: center}
chapter {display: block; font-size: 28pt; text-align: center;
 font-style: italic}
paragraph {display: block; margin-top: 10}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XSLT
Using XSLT is a powerful way of working with the data in an XML document without having to use any programming
code. By using XSLT, you can extract data from an XML document and manipulate it to create a new document in an
entirely different format if you choose.

Like CSS, XSLT style sheets are made up of templates. In XSLT, however, you work with nodes in an XML document,
not the elements you work with in CSS. XSLT handles XML documents as trees of nodes. In particular, you can use the
match attribute in the <xsl:template> element to match nodes.

By using XPath expressions, you can target nodes you want to work with when using XSLT. XPath location paths are
made up of location steps, and each location step is made up of an axis, a node test, and an optional predicate. There
are 13 axes in XPath 1.0. Node tests let you identify specific nodes, and the predicate part of an XPath expression lets
you use XPath data values, operators, and functions to pin down the data you're interested in.

For example, you can extract the data from this XML document by using XSLT:

<?xml version="1.0" encoding ="UTF-8"?>
<inventory>

 <item>
 <name>Widget 1</name>
 <number>10</number>
 <color>blue</color>
 </item>

 <item>
 <name>Widget 2</name>
 <number>15</number>
 <color>red</color>
 </item>

 <item>
 <name>Widget 3</name>
 <number>5</number>
 <color>green</color>
 </item>

</inventory>

Here's an XSLT style sheet that extracts just the names of the items in our inventory and formats them into an HTML
document:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="inventory">
 <HTML>
 <BODY>
 <xsl:apply-templates/>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="item">
 <P>
 <xsl:value-of select="name"/>
 </P>
 </xsl:template>

</xsl:stylesheet>

A more advanced XSLT style sheet might extract all the data from the XML document and format it by using HTML
tables, like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/inventory">
 <HTML>
 <HEAD>
 <TITLE>
 Item Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Item Data
 </TITLE>
 </HEAD>
 <BODY>
 <H1>
 Item Data
 </H1>
 <TABLE BORDER="1">
 <TR>
 <TD>Name</TD>
 <TD>Number</TD>
 <TD>Color</TD>
 </TR>
 <xsl:apply-templates/>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="item">
 <TR>
 <TD><xsl:value-of select="name"/></TD>
 <TD><xsl:apply-templates select="number"/></TD>
 <TD><xsl:apply-templates select="color"/></TD>
 </TR>
 </xsl:template>

 <xsl:template match="number">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="color">
 <xsl:value-of select="."/>
 </xsl:template>

</xsl:stylesheet>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XSL-FO
CSS lets you format XML data visually, and XSLT lets you transform the data in an XML document into other formats.
But the only native XML specification that lets you format every visual detail of your XML data is XSL-FO. XSL-FO can be
very complex, however; the XSL-FO 1.0 specification has 56 pre-defined elements and 177 properties that are
attributes of these elements. Mastering XSL-FO means mastering these elements and attributes.

The <fo:root> element can contain both a master set layout and page sequences. The master set layout is defined by
the <fo:layout-master-set> element and describes the "masters," or templates, that you want to use in the document.
Page sequences, on the other hand, use the <fo:page-sequence> element and specify the format for a sequence of
pages. You can create a flow of text in a page sequence by using the <fo:flow> element. Or you can use the <fo:static-
content> element, which creates static content, including headers and footers.

It's difficult to write XSL-FO documents from scratch. Instead, you typically use an XSLT style sheet to format XML into
an XSL-FO document, which is what XSLT was originally designed to do. Here's an example of an XSLT style sheet that
transforms the XML document containing item data into an XSL-FO document that is suitable for use with XSL-FO
processors:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version='1.0'>

 <xsl:template match="inventory">
 <fo:root>

 <fo:layout-master-set>
 <fo:simple-page-master master-name="mainPage"
 page-height="300mm" page-width="200mm"
 margin-top="20mm" margin-bottom="20mm"
 margin-left="20mm" margin-right="20mm">

 <fo:region-body
 margin-top="0mm" margin-bottom="10mm"
 margin-left="0mm" margin-right="0mm"/>

 <fo:region-after extent="20mm"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="mainPage">
 <fo:flow flow-name="xsl-region-body">
 <xsl:apply-templates/>
 </fo:flow>
 </fo:page-sequence>

 </fo:root>
 </xsl:template>

 <xsl:template match="item/name">
 <fo:block font-weight="bold" font-size="18pt"
 line-height="24pt" font-family="sans-serif"
 text-decoration="underline">
 Name:
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="item/number">
 <fo:block font-size="18pt" line-height="24pt"
 font-family="sans-serif">
 Number (people):
 <xsl:value-of select="."/>
 </fo:block>
 </xsl:template>

 <xsl:template match="item/color">
 <fo:block font-size="18pt" line-height="24pt" font-family="sans-serif">
 Color:
 <xsl:value-of select="."/>
 </fo:block>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </fo:block>
 </xsl:template>

</xsl:stylesheet>

An XSL-FO processor can convert the generated XSL-FO document and into various formats, the most common of which
these days is PDF.

In Part III you're going to see how XML is put to work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: At a Glance
XML at Work
In Part III, you'll see XML at work, as it's used every day around the world. You're going to start by
taking an in-depth look at one of the most popular uses of XML around—Extensible Hypertext Markup
Language (XHTML).

XHTML is W3C's XML-based version of HTML. As you're going to see, the idea behind making XHTML
XML-based is so that you can validate XHTML documents as you would HTML ones; this means you can
remove a lot of the sloppiness that's crept into HTML authorship. And you'll see how to extend XHTML
with your own elements (something you can't do with HTML).

You're going to take a look at Synchronized Multimedia Integration Language (SMIL), which lets you
create XML-based multimedia shows, and Scalable Vector Graphics (SVG), which lets you create
graphics images in browsers.

In this part you'll also take a look at XLinks and XPointers, which you use in XML to handle hyperlinks
and URIs. XLinks and XPointers can get quite involved; they let you pick out specific parts of documents
at will.

Finally, in this part you'll see how to work with the relatively new XForms specification, which lets you
display controls such as buttons, list boxes, and check boxes by using XML documents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 11. Extending HTML with XHTML
Over the next few days, you'll begin to see XML at work. You'll start with the XML application that has probably the
most authors today—Extensible Hypertext Markup Language (XHTML). XHTML is the W3C's version of HTML 4.0, written
entirely in XML (and the W3C is responsible for HTML in the first place, so it knows something about the subject). By
using XHTML, you can create Web pages that not only work in today's browsers but can also be checked to make sure
they're well-formed and valid. You'll put XHTML to work today and tomorrow.

Here's an overview of today's topics:

XHTML basics

How XHTML differs from HTML

The XHTML versions

XHTML validation

The <html> element

The <head> element

The <body> element

The <title> element

Headings

How to organize text

How to display text

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Why XHTML?
The main reason the W3C introduced XHTML was that HTML has gotten pretty sloppy. In an effort to serve everybody,
HTML browsers tolerate more and more mistakes in HTML; some people say that more than 50% of the code in modern
browsers is there to deal with buggy HTML. To fix that, the W3C created XHTML, which uses stricter rules. XHTML is
XML, after all, so XHTML documents must be at least well-formed to be considered XHTML (in fact, the W3C also says
they should be valid).

Another reason that XHTML was introduced was that, as its name indicates, it can be extended. HTML is limited by the
HTML specification (see http://www.w3.org/TR/html4) to a fixed set of tags. In XHTML, the idea is that you can define
and add your own tags, such as <author>, <data>, <phoneNumber>, and so on. (Note, however, that HTML browsers
won't know how to deal with those new XHTML tags yet.)

Let's take a look at an example to see what XHTML looks like. Let's start with the standard HTML document in Listing
11.1.

Listing 11.1 An Example of an HTML Document (ch11_01.html)

<HTML>
 <HEAD>
 <TITLE>
 An HTML Document
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Long Live HTML!
 </H1>
 This is an HTML document.

 Pretty good, eh?
 </BODY>
</HTML>

Figure 11.1 shows this HTML document in an HTML browser.

Figure 11.1. An HTML document in a Web browser.

Now take a look at ch11_02.html in Listing 11.2, which is the same HTML document as in Listing 11.1, rewritten in
XHTML. (You can give an XHTML document the extension .html when you want to view it in a browser, or you can give it
the extension .xml when you want to use it with an XML processor.) There are some differences here from Listing 11.1.

Listing 11.2 An Example of an XHTML Document (ch11_02.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 11.2 An Example of an XHTML Document (ch11_02.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?
 </body>
</html>

Figure 11.2 shows this new XHTML document in a browser. As the figure shows, despite the differences between the
two documents, the XHTML document works just as the HTML one does, and it looks very much like the HTML
document.

Figure 11.2. An XHTML document in a Web browser.

Let's take apart this XHTML example in the following sections to see what's going on here. The first step is to take a
look at XHTML itself.

Introducing XHTML 1.0

XHTML 1.0 is the current version of XHTML. XHTML is a rewritten version of HTML 4.0. (HTML is locked now; no future
versions will be created; the final recommendation is at http://www.w3.org/TR/html4.) The official recommendation for
XHTML 1.0 is at http://www.w3.org/TR/xhtml1.

The W3C anticipated that it would take some time for XHTML to be accepted, so there are really three versions of
XHTML 1.0: Strict (omits all elements and attributes deprecated [that is, made obsolete]in HTML 4.0), Transitional (a
looser version, more like HTML as it's used today), and Frameset (the same as transitional, but for use with frames
instead of the <body> element). Each of these versions has its own DTD, and that DTD can be used by XML processors
to validate XHTML document. Here's an overview of these DTDs:

The Strict XHTML 1.0 DTD— This DTD is based on HTML 4.0, and it omits support for elements and attributes
that the W3C deprecated in HTML 4.0. This DTD is at http://www.w3.org/TR/2000/REC-xhtml1-
20000126/DTD/xhtml1-strict.dtd.

The Transitional XHTML 1.0 DTD— This DTD, which is based on the Transitional HTML 4.0 DTD, supports
many elements and attributes that were deprecated in HTML 4.0, but are still popular, such as the <CENTER>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

many elements and attributes that were deprecated in HTML 4.0, but are still popular, such as the <CENTER>
element. Also called the "loose" DTD, this is the most popular version of XHTML. This DTD is at
http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd.

The Frameset XHTML 1.0 DTD— This DTD is the same as the Transitional DTD, but it uses the <frameset>
element for frames rather than the <body> element. This DTD is at http://www.w3.org/TR/2000/REC-xhtml1-
20000126/DTD/xhtml1-frameset.dtd.

Because the most popular version of XHTML today is the Transitional version, you'll use that version today.

Introducing XHTML 1.1

XHTML version 1.1 exists as a W3C recommendation, which is at http://www.w3.org/TR/xhtml11. XHTML 1.1 is a strict
version of XHTML, and has yet to be really accepted among Web page authors. XHTML 1.1 eliminates all the elements
and attributes that were deprecated in HTML 4.0—and a few more as well. The differences between XHTML 1.0 and
XHTML 1.1 are listed at http://www.w3.org/TR/xhtml11/changes.html#a_changes.

XHTML 1.1's major difference from XHTML 1.0 is that its DTD is designed to be modular. (The W3C refers to XHTML 1.1
as "modular XHTML.") This means that the XHTML 1.1 DTD is really very short; it's simply a DTD driver (refer to Day 5,
"Handling Attributes and Entities in DTDs") and just includes other DTDs as needed. It is available at
http://www.w3.org/TR/xhtml11/xhtml11_dtd.html#a_xhtml11_driver. The idea here is that you can tailor XHTML 1.1
as you like for specific devices, which might not support all XHTML. For example, a PDA or cell phone might not support
hyperlinks, and so you can omit those in a DTD driver, as discussed on Day 5. (However, several modules are marked
"required" in the XHTML 1.1 DTD, and they cannot be omitted.)

Introducing XHTML 2.0

The newest version of XHTML is XHTML 2.0, currently in working draft form. The XHTML 2.0 Working Draft is at
http://www.w3.org/TR/xhtml2.

Like XHTML 1.1, XHTML 2.0 is modular. However, it appears to be a radical rethinking of the HTML world; XHTML 2.0
strips out all display elements, for example. Here's what the current working draft says:

The original version of HTML was designed to represent the structure of a document, not its
presentation. Even though presentation-oriented elements were later added to the language by browser
manufacturers, HTML is at heart a document structuring language. XHTML2 takes HTML back to these
roots, by removing all presentation elements, and subordinating all presentation to stylesheets. This
gives greater flexibility, and more powerful presentation possibilities, since CSS can do more than the
presentational elements of HTML ever did.

The XHTML 2.0 DTD is not yet published fully; the closest you can come right now is a selection of modules, which are
available at http://www.w3.org/TR/xhtml2/xhtml2-doctype.html#s_doctype.

XHTML 2.0 is not designed to be backward compatible with HTML or earlier versions of XHTML. In addition, there are
new parts to XHTML 2.0 that don't appear in earlier versions, such as support for XForms and XML Events. However,
there's little support for these items as yet.

Introducing XHTML Basic

There's one more version XHTML, now a W3C recommendation—XHTML Basic. XHTML Basic is a very small subset of
XHTML, reduced to a very minimum so that it can be supported by devices considerably simpler than standard PCs,
such as PDAs and cell phones. The recommendation for XHTML Basic is at http://www.w3.org/TR/xhtml-basic. Its DTD
appears at http://www.w3.org/TR/xhtml-basic/#a_driver.

Now that you've been introduced to XHTML, let's start using it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Writing XHTML Documents
As an XML author, there are a few rules you need to know when it comes to writing XHTML documents. The following
are the requirements a document must meet to be an XHTML document, according to the W3C:

The document element must be <html>.

The XHTML document must validate against one of the W3C XHTML DTDs.

The document element, <html>, must use the http://www.w3.org/1999/xhtml namespace, using the xmlns attribute.

The document must have a <!DOCTYPE> element, and it must appear before the document element.

Here's a list of some of the main things you, as HTML authors, need to watch out for when creating XHTML documents:

Element and attribute names have to be in lowercase.

Attribute values must be in quotes.

Non-empty elements need end tags. While you can sometimes omit end tags for non-empty elements in HTML,
you can't in XHTML.

You cannot use standalone attributes (that is, attributes that are not assigned values) in XHTML. If you have to,
you can assign a dummy value to an attribute (for example, noborder = "noborder").

An empty element needs to be ended with />. The HTML browsers don't have a problem with this ending (as
opposed to just >).

The <a> element may not contain other <a> elements.

The <button> element may not contain the <input>, <select>, <textarea>, <label>, <button>, <form>, <fieldset>,
<iframe>, or <isindex> elements.

The <form> element may not contain other <form> elements.

The <label> element may not contain other <label> elements.

The <pre> element may not contain , <object>, <big>, <small>, <sub>, or <sup> elements.

You can use the id attribute, but you cannot use the name attribute. In XHTML 1.0, the name attribute of the
<a>, <applet>, <form>, <frame>, <iframe>, , and <map> elements has been deprecated. This can be a
problem because browsers such as Netscape Navigator support name but not id (in which case the best solution
is to use both attributes in the same element, even though it's not legal XHTML).

You must escape sensitive characters. For example, when an attribute value contains an ampersand (&), the
ampersand should be given as the entity reference &.

Tomorrow you'll talk about a few more requirements (for example, if you use < characters in <SCRIPT> elements, you
should either escape such characters as < or, if the browser can't handle that, place the script in an external file).

Dissecting the Example

Now let's start taking apart the XHTML document ch11_02.html to see what makes XHTML tick.

You start as you would in any XML document, with an XML declaration:

<?xml version="1.0" encoding="UTF-8"?>
 .
 .
 .

The next element is the <!DOCTYPE> element, to indicate which XHTML DTD you're using—in this case, XHTML 1.0
Transitional (which is the closest to the version of HTML in general use):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transitional (which is the closest to the version of HTML in general use):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 .
 .
 .

This is just a standard <!DOCTYPE> element, and it indicates that the document element in the XHTML document is
<html>. Remember that there is a different DTD for each version of XHTML, and they're all public DTDs, created by the
W3C. The formal public identifier (FPI) for this DTD is "-//W3C//DTD XHTML 1.0 Transitional//EN", which is the DTD for
XHTML 1.0 Transitional. You also list the URI for this DTD, for the benefit of XML processors:

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

These are the <!DOCTYPE> elements you should use in XHTML 1.0 for the Strict, Transitional, and Frameset DTDs,
respectively:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Note that if you're validating XHTML documents against these DTDs, you can download them and store them locally for
faster access. For example, if you store these DTDs in a directory named storage, it might look like this:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "storage/xhtml1-strict.dtd">

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "storage/xhtml1-transitional.dtd">

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "storage/xhtml1-frameset.dtd">

Here's the <!DOCTYPE> element for XHTML 1.1 (there's only one XHTML 1.1 DTD, not three, as in XHTML 1.0, because
XHTML uses Strict XHTML and doesn't have any Transitional forms):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Here's the <!DOCTYPE> element for XML Basic:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

And here's the <!DOCTYPE> element for XHTML 2.0 (note that the XHTML 2.0 DTD hasn't been posted yet, so the W3C
lists the URI as to-be-determined, "TBD"):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 2.0//EN" "TBD">

The DTDs at the URIs given by these <!DOCTYPE> elements are real DTDs and will work in XML processors. If possible,
you should download them and use them locally, however. Imagine the bottleneck that would result from a million
browsers all trying to download these DTDs at once.

Following the <!DOCTYPE> element is the <html> element, which is the document element for all XHTML documents.
Note the lowercase here—<html>, not <HTML>. All elements in XHTML (except the <!DOCTYPE> element) are lowercase.
That's the way XHTML works, and if you're used to using uppercase HTML tag names, XHTML tags will take a little
adjustment. Here's what the <html> element looks like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 .
 .
 .

In this case, you're putting the entire document into the http://www.w3.org/1999/xhtml namespace, which is the official
W3C namespace for XHTML documents. This element also has an xml:lang attribute, to set the language for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

W3C namespace for XHTML documents. This element also has an xml:lang attribute, to set the language for the
document when it's interpreted as XML, and the standard HTML attribute lang, to set the language when the document
is treated as HTML.

The rest of this XHTML example is very much like its HTML counterpart, with the exceptions that all element names are
in lowercase and the
 element has become the more proper
 XHTML element:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?
 </body>
</html>

That's your first XHTML document. So how about validating it?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Validating XHTML Documents
To validate XHTML documents, you can use the W3C's own XHTML validator, which is at http://validator.w3.org. You
just enter the URI of the document or browse to it locally and click the Validate button. The W3C validator checks the
document and lets you know how it validates. Figure 11.3 shows how the sample XHTML document does.

Figure 11.3. Validating an XHTML document.

In this case, as shown in Figure 11.4, the document validated properly, and the W3C validator says you can add the
official W3C XHTML 1.0 Transitional logo to the document.

Figure 11.4. The W3C Transitional XHTML logo.

NOTE

The W3C XHTML validator doesn't cover all the bases. It doesn't check to make sure that required
attributes are present or assigned values, for example. But it's a good place to start.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Basic XHTML Elements
To be able to use XHTML, you need to know what's available, so the following sections describe the basic XHTML
elements and their attributes, with examples. These elements might look like HTML, but they're XHTML, which means
they're really XML—and that means that there are rigid rules about which element can or must contain what other
elements, which attributes are required, and so on. An HTML author should know these rules when making the
transition to XHTML. The following sections list what versions of XHTML support each element and attribute (with the
exception of XHTML 2.0, whose list of supported elements isn't even available yet). Let's start with the XHTML
document element, <html>.

Using the Document Element: <html>

As you saw earlier today, the document element for all XHTML elements is <html>. This element must contain all other
elements in an XHTML document. The <html> element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1. Here are the attributes of the <html> element:

dir— Sets the direction of text that doesn't have an inherent direction, called directionally neutral text. This
attribute can be set to ltr, for left-to-right text, or rtl, for right-to-left text. (Supported in XHTML 1.0 Strict,
XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xmlns— Is a required attribute that should be set to "http://www.w3.org/1999/xhtml". (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

As you've already seen today, <html> is the document element for an XHTML document, and it looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 .
 .
 .
 </body>
</html>

In HTML, the <HTML> tag is optional because it's the default, and browsers have long come to accept nearly any form of
HTML markup. In XHTML, however, the <html> element is required as the document element.

The xmlns attribute is also required, and you use it to set the namespace for the document to
"http://www.w3.org/1999/xhtml", as in today's example. The other attributes are optional.

In the XHTML DTDs, the <html> element is declared in such a way that it can contain a <head> element and a <body>
element (or a <head> element and a <frameset> element in the XHTML 1.0 Frameset documents). The following section
describes the <head> element.

Creating a Document Head: <head>

In an XHTML document, the <head> element contains the document's head, which holds data about the document,
scripting elements, and other data not intended for direct display. In XHTML, every XHTML document should have a
<head> element, and every <head> element must contain at least a <title> element. The <head> element is supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are the attributes of this
element:

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

profile— Specifies the location of one or more profile URIs. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You've already seen a <head> element in the sample XHTML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>
 .
 .
 .
</html>

XHTML specifies that the following elements may appear in the <head> element:

<base>

<isindex>

<link>

<meta>

<noscript>

<object>

<script>

<style>

<title>

The only one of these elements that's required in the <head> element is the <title> element, which is described in the
following section.

Giving a Document a Title: <title>

The <title> element holds the title of the document. A browser displays the document's title in its title bar. The <title>
element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are its
attributes:

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

The W3C XHTML DTDs say that "exactly one title is required per document." You've already seen how to use this
element in the XHTML document ch11_02.html.

Giving a Document a Body: <body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The document's body holds the document's content—all the data that the document is meant to display. The <body>
element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, and XHTML 1.1. Here are this element's attributes:

alink— Sets the color of hyperlinks when they're being activated. This attribute was deprecated in HTML 4.0.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

background— Specifies the URI of an image to be used for the browser's background. This attribute was
deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

bgcolor— Specifies the color of the browser's background. This attribute was deprecated in HTML 4.0.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

link— Sets the color of hyperlinks that have not yet been visited. This attribute was deprecated in HTML 4.0.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

text— Specifies the color of text in the document. This attribute was deprecated in HTML 4.0. (Supported in
XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

title— Specifies the title of the body. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

vlink— Specifies the color of hyperlinks that have been visited. This attribute was deprecated in HTML 4.0.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You've seen the <body> element in the sample XHTML document already:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 .
 .
 .
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?
 </body>
</html>

A number of common attributes of the HTML <BODY> element were deprecated in HTML 4.0, so they are not part of
either XHTML 1.0 Strict or XHTML 1.1. These attributes include such favorites as alink, background, bgcolor, link, text, and
vlink. You're now supposed to use style sheets properties instead of these attributes. Listing 11.3 shows an example
that assigns values to some of these properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that assigns values to some of these properties.

Listing 11.3 An XHTML Document That Uses Styles (ch11_03.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 <style type="text/css">
 body {background: coral}
 a:link {color: black}
 a:active {color: green}
 a:visited {color: blue}
 </style>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an
 XHTML.
 document.

 Pretty good, eh?
 </body>
</html>

Figure 11.5 shows the results of Listing 11.3. The W3C's idea in turning toward style sheets to handle the display is that
it wants to separate the display details from the data details. That idea is reaching its zenith in XHTML 2.0, which
doesn't support even the usual HTML display elements. Theoretically, this transition makes sense, but it has also
delayed the acceptance of XHTML by HTML authors.

Figure 11.5. sing an embedded style sheet.

Note also that if a style sheet contains sensitive characters, such as < or &, you should use external style sheets, as you
did on Day 8, "Formatting XML by Using Cascading Style Sheets," because the entire contents of an XHTML document is
intended to be valid XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organizing Text
When you want to organize text in an XHTML document, things work very much as they do in HTML. As you've seen,
you can place simple text with other elements—in other words, you can use mixed-content models in XHTML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?
 </body>
</html>

The five XML predefined entities also work in XHTML:

& is the & character.

' is the ' character.

> is the > character.

< is the < character.

" is the " character.

In fact, there are a great many more character entities in HTML 4.0; they are available at
http://www.w3.org/TR/html4/sgml/entities.html, and they're supported in XHTML as well. Here's a sampling:

Á is a Latin capital letter A with an acute accent.

α is a Greek lowercase letter alpha.

¢ is a cents sign.

€ is a euro symbol.

∞ is an infinity symbol.

— is an em dash.

Π is a Greek uppercase letter pi.

π is a Greek lowercase letter pi.

® is a registered trademark sign.

Creating Paragraphs: <p>

The <p> element lets you create block-level paragraphs in XHTML. Note that because <p> is a block-level element, you
cannot display other block-level elements inside it. The main difference between <p> in HTML and <p> in XHTML is that
in XHTML, every <p> tag needs a closing </p> tag, whereas closing </p> tags are not usually used in HTML. After
you've created a paragraph using <p>, you can format it as you like by using style sheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you've created a paragraph using <p>, you can format it as you like by using style sheets.

The <p> element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here
are this element's attributes:

align— Sets the alignment of the text. Possible values include left (the default), right, center, and justify. This
attribute was deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Paragraphs are the most basic block elements for text. A browser usually adds some space before and after paragraphs
to separate them from other elements, but note that the actual handling varies by browser. Listing 11.4 shows an
example that uses both line breaks and paragraphs.

Listing 11.4 An XHTML Document That Uses Paragraphs and Line Breaks
(ch11_04.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 <p>
 This is an XHTML document.
 </p>
 Pretty good, eh?

 For more information, see
 XHTML.
 </body>
</html>

Figure 11.6 shows the XHTML document from Listing 11.4. This example points out the difference between <p> and

. The <p> element contains text and makes it into a block-level element; the browser normally uses vertical space
to offset it from other elements. The
 element is an empty element that just makes the browser skip to the next
line. You can style the text in a <p> element by styling that element, but you can't style text by using the

element.

Figure 11.6. sing paragraphs and line breaks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.6. sing paragraphs and line breaks.

Skipping a Line:

In XHTML, the
 element is an empty element that inserts a line break in text, and you use it like this in XHTML:

This element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are
the attributes of this element:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

clear— Is used to move past other content. You can set this attribute to none, left, right, or all. (Supported in
XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

Using this element as
 in XHTML doesn't cause any problems in the major browsers.

Centering Text: <center>

While HTML was growing up, the <center> element was a very popular one. You could use this element to center text
and other content in Web pages. Like many other elements and attributes, <center> was deprecated in HTML 4.0 in
favor of style sheets, which means that it's only supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset; you
won't find it in the XHTML 1.0 Strict, XHTML 1.1, or XHTML 2.0 DTDs. Here are the attributes of this element:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Although it has been deprecated, the <center> element is still a very popular one, and it's built into XHTML 1.0
Transitional and XHTML 1.0 Frameset. Listing 11.5 shows an example of using this element in the document
ch11_05.html.

Listing 11.5 An XHTML Document That Uses the <center> Element (ch11_05.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <center>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?

 For more information, see
 XHTML.
 </center>
 </body>
</html>

Figure 11.7 shows what this XHTML document looks like in a browser.

Figure 11.7. entering text by using the <center> element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even though the <center> element is still popular, it has been deprecated. So how are you supposed to center text now?
You can use the <div> element with style sheets, as described in the next section.

Styling Block Content: <div>

In XHTML you use the <div> element to enclose sections of text or other elements. This lets you style that content as
you like. This element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.
Here are its attributes:

align— Specifies the horizontal alignment of the element. This attribute can be set to left (the default), right,
center, or justify. This attribute was deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML
1.0 Frameset.)

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

The W3C says that you should use the align attribute of the <div> element to align text. Listing 11.6 shows an example
of this.

Listing 11.6 An XHTML Document That Uses the <div> Element (ch11_06.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <div align="center">
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?

 For more information, see
 XHTML.
 </div>
 </body>
</html>

This XHTML document gives the same results as shown in Figure 11.7. That's fine, but the W3C seems to have
forgotten that it deprecated the align attribute in HTML 4.0. To be consistent with the way the W3C has been changing
things, you should use a style sheet to style the <div> element. Listing 11.7 shows an example of this that gives the
same results as Listing 11.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same results as Listing 11.6.

Listing 11.7 An XHTML Document That Uses the <div> Element and Styles
(ch11_07.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 <style>
 div {text-align: center}
 </style>
 </head>

 <body>
 <div>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?

 For more information, see
 XHTML.
 </div>
 </body>
</html>

You can also position text and other content by using the positioning style properties and the <div> element that you
saw on Day 6, "Creating Valid XML Documents: XML Schemas." Besides <div>, there's another element you can use in
XHTML for styling—, which you can use for inline styling.

Styling Inline Content:

You can use the element to apply inline styles in XHTML. This element is supported in XHTML 1.0 Strict, XHTML
1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are the attributes of this element:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Listing 11.8 shows an example of using the element. This example formats the word XHTML in red italics (see
Figure 11.8).

Listing 11.8 An XHTML Document That Uses the Element (ch11_08.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 An XHTML Document
 </title>
 <style>
 span {color: red; font-style: italic}
 </style>
 </head>

 <body>
 <div>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.

 Pretty good, eh?

 For more information, see
 XHTML.
 </div>
 </body>
</html>

Figure 11.8. Using inline formatting.

The <div> and elements are more important in XHTML than they are in HTML because of the reliance on style
sheets to handle formatting in XHTML. By handling block styling, the <div> element replaces elements such as <center>
in XHTML 1.0 Strict and XHTML 1.1, and by handling inline styling, replaces elements such as .

Creating Headings: <h1> to <h6>

Headings are block elements that present text in bold font of various sizes, allowing you to organize that text into
sections. Using headings lets you break up the text flow in XHTML documents. As in HTML, the <h1> through <h6>
elements create headings; <h1> creates the largest text and <h6> the smallest. These elements are supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are the possible attributes of
these elements:

align— Specifies the horizontal alignment of the element. This attribute can be set to left (the default), right,
center, or justify. It was deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0
Frameset.)

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You can see the six heading elements <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> at work in Listing 11.9.

Listing 11.9 An XHTML Document That Uses Headings (ch11_09.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Using Headings
 </title>
 <style>
 div {text-align: center}
 </style>
 </head>

 <body>
 <div>
 <h1>Here is an <h1> heading</h1>
 <h2>Here is an <h2> heading</h2>
 <h3>Here is an <h3> heading</h3>
 <h4>Here is an <h4> heading</h4>
 <h5>Here is an <h5> heading</h5>
 <h6>Here is an <h6> heading</h6>
 </div>
 </body>
</html>

Figure 11.9 shows this XHTML document in a browser.

Figure 11.9. Using headings in XHTML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Text
Although the emphasis in XHTML is turning toward formatting text and other content by using style sheets, XHTML 1.0
and XHTML 1.1 both support the traditional popular HTML formatting elements, such as and <i>. The following
sections take a look at them. Bear in mind that although these elements are still available, they're being phased out of
XHTML and won't appear in XHTML 2.0.

Using Bold on Text:

The element applies boldface to its enclosed text. This element is supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are its attributes:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You use a element to bold text with inline styling. Listing 11.10 shows a sample XHTML document (ch11_10.html)
that bolds text by using , formats it in italics by using <i>, and underlines it by using <u>.

Listing 11.10 An XHTML Document That Displays Bold, Italic, and Underlined Text
(ch11_10.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Displaying Bold, Underlined, and Italic Text
 </title>
 </head>

 <body>
 <i>This text is in italics!</i>

 This text is bold!

 <u>This text is underlined!</u>
 </body>
</html>

Figure 11.10 shows this XHTML document in a browser; as you can see, the text the example formats appears in bold,
italic, and underlined, as intended.

Figure 11.10. Displaying italic, bold, and underlined text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.10. Displaying italic, bold, and underlined text.

Italicizing Text: <i>

The <i> element, which supports rudimentary inline text formatting, makes text italic. The <i> element is supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are its attributes:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

In the previous section you saw the <i> element at work, in Listing 11.10 and Figure 11.10.

Underlining Text: <u>

The <u> element performs some rudimentary inline formatting by underlining text. This element was deprecated in
HTML 4.0, so it is not supported in XHTML 1.0 Strict or XHTML 1.1. However, it is supported in XHTML 1.0 Transitional
and XHTML 1.0 Frameset. Here are the attributes of this element:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is interpreted as an XML document.
(Supported in XHTML 1.0 Transitional, and XHTML 1.0 Frameset.)

Like many other formatting elements, the <u> element was deprecated in HTML 4.0 in favor of style sheets ("text-
decoration=underline"), so it's not available in Strict XHTML 1.0, XHTML 1.1, or XHMTL 2.0. You saw the <u> element at
work, in Listing 11.10 and Figure 11.10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Selecting Fonts:

The element lets you select the font for text, as well as its size and color. This element was deprecated in HTML
4.0 in favor of style sheets, which means it's available in XHTML 1.0 Transitional and XHTML 1.0 Frameset, but not in
XHTML 1.1 or XHTML 1.0 Strict. Here are this element's attributes:

class— Sets the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

color— Sets the color of the text. This attribute was deprecated in XHTML 4.0. (Supported in XHTML 1.0
Transitional, and XHTML 1.0 Frameset.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

face— Specifies a single font name or a list of names, separated by commas. This attribute was deprecated in
HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

id— Specifies the ID with which to refer to the element. You should set this attribute to a unique identifier.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Sets the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

size— Specifies the size of the text, from 1 (the smallest) through 7 (the biggest). This attribute was
deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the body. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

This element was indeed deprecated in HTML 4.0 (you can use <div> or elements instead, together with the font
CSS properties), but it's still in widespread use and available in XHTML 1.0 Transitional and XHTML 1.0 Frameset, so
you'll take a quick look at it here. An example is shown in Listing 11.11 and Figure 11.11. This example uses the
element and its attributes to specify Times New Roman font in blue.

Listing 11.11 An XHTML Document That Uses the Element (ch11_11.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Setting Fonts
 </title>
 </head>

 <body>
 <h1>
 Using the element
 </h1>

 The element is popular,
 but don't forget that it's deprecated.

 </body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.11. Using the element in Internet Explorer.

The font size is set to 4 in ch11_11.html (size="4"). The element lets you set the font sizes from 1 to 7, with 7
being the largest. The example in Listing 11.12 shows all the possible font sizes.

Listing 11.12 An XHTML Document That Displays Font Sizes (ch11_12.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Font Sizes
 </title>
 <style>
 div {text-align: center}
 </style>
 </head>

 <body>
 <div>
 <h1>
 Font Sizes
 </h1>
 Here's size 7.

 Here's size 6.

 Here's size 5.

 Here's size 4.

 Here's size 3.

 Here's size 2.

 Here's size 1.
 </div>
 </body>
</html>

Figure 11.12 shows this XHTML document, which shows the various font sizes.

Figure 11.12. The available font sizes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.12. The available font sizes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments: <!-->

You can use the standard XML- and HTML-style comments in XHTML documents. XHTML comments are supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.

Comments annotate an XHTML document, letting you describe what's happening in the document. A browser strips out
comments so that the viewer does not see them. Listing 11.13 shows an XHTML document with embedded comments.

Listing 11.13 An XHTML Document That Uses Comments (ch11_13.html)

<?xml version="1.0" encoding="UTF-8"?>
<!--The necessary DOCTYPE element-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<!--XHTML element names are just like HTML element names.-->
<!--But note that XHTML element names are in lower case.-->
 <head>
 <title>
 An XHTML Document
 </title>
 </head>

 <body>
 <h1>
 Long Live XHTML!
 </h1>
 This is an XHTML document.
<!--Here's an empty element.-->

 Pretty good, eh?
 </body>
</html>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
XHTML is the reformulation of HTML 4.0 in XML form. XHTML was introduced by the W3C to make HTML documents less
sloppy and to enable them to be validated as true XML documents.

There are a number of versions of XHTML: XHTML 1.0 Transitional, the most widespread version, and the closest one to
HTML 4.0; XHTML 1.0 Frameset, the same as XHTML 1.0 Transitional, but targeted to documents that use frames, not a
<body> element; XHTML 1.1, the module-based version of XHTML; XHTML Basic, targeted to devices that support only
smaller implementations of XHTML; and XHTML 2.0, a radical new version that omits all display elements, relying
entirely on style sheets instead.

You can find the official recommendation for XHTML 1.0 at http://www.w3.org/TR/xhtml1, the recommendation for
XHTML 1.1 at http://www.w3.org/TR/xhtml11, the XHTML 2.0 Working Draft at http://www.w3.org/TR/xhtml2, and the
recommendation for XHTML Basic at http://www.w3.org/TR/xhtml-basic.

The XHTML document element is <html>. The names of XHTML elements and attributes match those in HTML 4.0, but
they must be in lowercase. Because an XHTML document is an XML document as well, several rules apply, as you've
seen today. For example, non-empty elements need closing tags, you must quote attribute values and not use
standalone attributes, and empty elements must end in />.

You also need to use a <!DOCTYPE> element, which must appear before the document element. (However, XHTML 2.0
may let you use XML schemas.) In the <html> document element, you must declare the XHTML namespace, like this:

<html xmlns="http://www.w3.org/1999/xhtml">

As you've seen today, the elements you use in XHTML match those in HTML 4.0, with restrictions—for example, the
elements and attributes that were deprecated in HTML 4.0 are not part of XHTML 1.0 Strict. You've worked through a
number of XHTML elements today and seen how they differ from their HTML counterparts. There's more XHTML coming
up tomorrow, when we'll talk about frames, images, hyperlinks, style sheets, tables, forms, and more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: The <applet> element is supported all the way through XHTML 1.1, but I don't see it in the
XHTML 2.0 Working Draft. What can I do to replace it?

A1: You can use the <object> element instead. You can find a discussion about how to replace <applet> with
<object> at http://www.w3.org/TR/xhtml2/mod-object.html#s_objectmodule.

Q2: XHTML 1.1 and XHTML 2.0 don't appear to support frames. Why don't they?

A2: Because frames are formatting elements, they're omitted. However, you can use <div> elements to format
text into visible areas as you like; you'll hear more about this tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What are the three versions of XHTML 1.0?

2: What is the namespace URI for XHTML 1.0?

3: What standalone XHTML attribute can you use in the <div> element to add a border?

4: What element must each <head> element contain?

5: What does every <p> element in XHTML need that it doesn't need in HTML?

Exercises

1: Write an HTML document that contains a little information about you—your name, educational background,
and birth date. Format the text using CSS, as you've done today. Then convert the document into an XHTML
1.0 Transitional document and test it in a browser.

2: Validate the document you created in Exercise 1 by using the W3C XHTML validator. Then convert the
document into XHTML 1.0 Strict and check the new results in the validator.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 12. Putting XHTML to Work
Yesterday, you got a start with XHTML, and you're going to keep going with XHTML today. You're going to really dig into
XHTML today.

Here are today's topics:

Using hyperlinks

Using images

Using style sheets

Using frames

Using tables

Extending XHTML by creating custom elements

Let's start today's discussion by working with hyperlinks.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Hyperlinks: <a>

In XHTML, as in HTML, you use the <a> element for hyperlinks with the href attribute or anchors, using the id attribute
(and/or the deprecated name attribute for browsers like the Netscape Navigator). This element is supported in XHTML
1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are this element's attributes:

accesskey— Lets you connect a keyboard access key to a hyperlink. (Supported in XHTML 1.0 Strict and XHTML
1.0 Transitional.)

charset— Specifies the character encoding of the hyperlink's target. The default value is ISO-8859-1. (Supported
in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

class— Specifies the style class for the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

coords— Is used with image maps. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

dir— Sets the direction of text that doesn't have an inherent direction, called directionally neutral text. This
attribute can be set to ltr, for left-to-right text, or rtl, for right-to-left text. (Supported in XHTML 1.0 Strict,
XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

href— Specifies the target URI of the hyperlink. You must assign a value to either this attribute or the id
attribute. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

hreflang— Specifies the base language of the target. You set this attribute to RFC 1766 values. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

name— Holds the name of the element. This attribute was deprecated in XHTML 1.0, although it is still
available. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, and XHTML 1.0 Frameset.)

rel— Specifies the relationship described by the hyperlink. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

rev— Acts the same as the rel attribute, but the syntax works in the reverse direction. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

shape— Specifies the type of region for mapping in an <area> element. This attribute is used with the coords
attribute. Possible values are rect (the default), circ, circle, POLY, and polygon. (Supported in XHTML 1.0 Strict,
XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

tabindex— Indexes the tab sequence of hyperlinks to facilitate keyboard navigation. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset.)

target— Specifies a named frame that is the target of a hyperlink. (Supported in XHTML 1.0 Transitional and
XHTML 1.0 Frameset.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

type— Specifies the Multipurpose Internet Mail Extensions (MIME) type of the target given in the href attribute.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

In XHTML, the <a> element works much as the <a> element does in HTML, except that you need to supply either a
value for the href attribute or the id attribute. Listing 12.1 shows an example that creates a hyperlink to the XHTML
Activity page.

Listing 12.1 An XHTML Document That Uses a Hyperlink (ch12_01.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Hyperlinks in XHTML
 </title>
 </head>

 <body>
 <h1>
 Hyperlinks in XHTML
 </h1>

 This is an
 XHTML
 document.
 </body>
</html>

Figure 12.1 shows what this XHTML document looks like in a browser.

Figure 12.1. An XHTML hyperlink.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Linking to Other Documents: <link>

As you saw when you discussed style sheets and XML schemas, the W3C provides no clear way to connect XML
documents to other XML documents yet, so nonstandard elements such as <?xml-stylesheet?> are used. However, HTML
actually does contain a <link> element to link a document to other documents, and there's some hope that it can be
used for that purpose in XHTML. This element is empty and appears in the <head> section of a document. The <link>
element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are the
attributes of <link>:

charset— Specifies the character encoding of the link's target. The default value is ISO-8859-1. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

class— Specifies the style class for the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

href— Specifies the target URI of the link. You must assign a value to either this attribute or the id attribute.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

hreflang— Specifies the base language of the target. You set this attribute to RFC 1766 values. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

media— Specifies the device the document will be displayed on. Possible values are screen (the default), print,
projection, braille, speech, and all. Style information should be used for all devices. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

rel— Specifies the relationship described by the link. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

rev— Is the same as the rel attribute, but the syntax works in the reverse direction. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

target— Specifies a named frame that is the target of a hyperlink. (Supported in XHTML 1.0 Transitional, XHTML
1.0 Frameset.)

title— Specifies the title of the element (which might be displayed in ToolTips). (Supported in XHTML 1.0 Strict,
XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

type— Specifies the MIME type of the target given in the href attribute. (Supported in XHTML 1.0 Strict, XHTML
1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You can specify a relationship between the current document and others by using the rel attribute, which can take these
values in XHTML:

rel=alternate— An alternate resource.

rel=appendix— An appendix.

rel=bookmark— A bookmark.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rel=bookmark— A bookmark.

rel=chapter— A chapter.

rel=contents— The contents section.

rel=copyright— A copyright document.

rel=glossary— A glossary.

rel=help— A help document.

rel=home— A home page.

rel=index— An index.

rel=next— The next document.

rel=previous— The previous document.

rel=section— A section.

rel=start— The start of a resource.

rel=stylesheet— An external style sheet.

rel=subsection— A subsection.

rel=toc— The table of contents.

rel=up— The parent of the current document.

The <link> element deserves a place in our discussion of XHTML because it lets you link documents together, which is
very handy in XML, especially because the W3C has so little to say about it. Listing 12.2 shows an example that sets rel
to "stylesheet" to use an external style sheet. The linked-to style sheet appears in ch12_03.css, in Listing 12.3.

Listing 12.2 An XHTML Document That Links to Another Document (ch12_02.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Linking to External Style Sheets
 </title>
 <link rel="stylesheet" href="ch12_03.css">
 </head>

 <body>
 <h1>
 Linking to External Style Sheets
 </h1>
 <p>
 No problems--now we're linking to external style sheets.
 </p>
 </body>
</html>

Listing 12.3 An External Style Sheet (ch12_03.css)

body {background-color: cyan; font-family: Arial}
p {font-size: 18pt; font-style: italic}

Figure 12.2 shows the results of Listing 12.3 in a browser.

Figure 12.2. Working with external style sheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.2. Working with external style sheets.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Images:

As you might expect, XHTML supports an element, just as XHTML does. The XHTML element works much
like its counterpart in HTML, except that the src and alt attributes are required, and you must close this empty element
with />, not just >. This element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and
XHTML 1.1. Here are its attributes:

align— Specifies the alignment of text relative to the image on the screen. Possible settings are left, right, top,
texttop, middle, absmiddle, baseline, bottom, and absbottom. (Supported in XHTML 1.0 Transitional and XHTML 1.0
Frameset.)

alt— Specifies the text that should be displayed instead of an image if the image cannot be displayed. This
attribute is required. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

border— Indicates whether the image has a border. You set this attribute to 0 for no border or to a positive
integer pixel value. (Supported in XHTML 1.0 Transitional, XHTML 1.0 Frameset.)

class— Specifies the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

height— Specifies the height of the image, in pixels. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

hspace— Specifies the horizontal spacing around the image. You set this attribute to pixel measurements.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

ismap— Indicates whether this image is to be used as an image map. (Supported in XHTML 1.0 Strict, XHTML
1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

longdesc— Holds a longer description of the image. This attribute should be set to a URI. (Supported in XHTML
1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

src— Specifies the URI of the image. This attribute is required. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

usemap— Specifies the URI of a client-side image map. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

vspace— Sets the vertical spacing around the image. You set this attribute to pixel measurements. (Supported
in XHTML 1.0 Transitional, XHTML 1.0 Frameset.)

width— Specifies the width of the image. You set this attribute to pixel measurements. (Supported in XHTML
1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

In XHTML, both the src attribute (which contains the image's URI) and the alt attribute (which contains alternate text) of
the element are required. Surprisingly, the align attribute was not deprecated in the element, as it was for
just about every other XHTML element that supported it. Listing 12.4 shows an example that uses the element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.4 Displaying an Image (ch12_04.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Displaying Images
 </title>
 </head>

 <body>
 <h1>
 Displaying Images
 </h1>

 </body>
</html>

Figure 12.3 shows what this document looks like in a browser.

Figure 12.3. Displaying an image in XHTML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Frame Documents: <frameset>

In XHTML, like HTML, you use <frameset> to display frames. The <frameset> element replaces the <body> element in
XHTML documents with frames, and in XHTML 1.0, that means you use the XHTML 1.0 Frameset DTD because the
<frameset> element is supported in XHTML 1.0 Frameset only. Note in particular that the <frame> and <frameset>
elements are not supported in XHTML 1.1 or XHTML 2.0. Instead, the W3C expects style sheets to handle the
presentation techniques you use frames for today (whether or not the Web community will actually do things that way
is still an unanswered question). Here are the attributes of the <frameset> element:

class— Specifies the style class for the element. (Supported in XHTML 1.0 Frameset.)

cols— Specifies the number of columns in the frameset. (Supported in XHTML 1.0 Frameset.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Frameset.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Frameset.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Frameset.)

rows— Specifies the number of rows in the frameset. (Supported in XHTML 1.0 Frameset.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Frameset.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Frameset.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Frameset.)

The <frameset> element replaces the <body> element in an XHTML document that displays frames. To create the
frames, you use the <frame> element. To format the display into frames, you use the rows attribute or the cols attribute
of the <frameset> element. You can specify the number of rows or columns you want to use by listing their heights or
widths.

To specify heights or widths, you can specify pixel measurements, or you can use a percentage measurement (such as
60%) to request part of the available display area. If you use an asterisk (*), you get the remaining display area; for
example, cols="72, *" creates one vertical frame of 72 pixels and a second vertical frame that fills the remainder of the
display area.

Here's how you might format an XHTML document into two columns using frames by using the XHTML 1.0 Frameset
DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Working With Frames
 </title>
 </head>

 <frameset cols = "50%, 50%">
 .
 .
 .
 </frameset>
</html>

How to create the frames that you want to have displayed is coming up next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Frames: <frame>

You use the <frame> element to create individual frames. This element is an empty element, and you use it inside the
<frameset> element. It is supported in XHTML 1.0 Frameset only. Here are its attributes:

class— Specifies the style class for the element. (Supported in XHTML 1.0 Frameset.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Frameset.)

frameborder— Specifies whether borders should enclose the frame. (Supported in XHTML 1.0 Frameset.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Frameset.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Frameset.)

longdesc— Holds a longer description of the image. This attribute should be set to a URI. (Supported in XHTML
1.0 Frameset.)

marginheight— Specifies the height of the top and bottom margins. (Supported in XHTML 1.0 Frameset.)

marginwidth— Specifies the width of the right and left margins. (Supported in XHTML 1.0 Frameset.)

name— Specifies the name of the frame. This attribute may be used as a target destination for <a>, <area>,
<base>, and <form> elements. (Supported in XHTML 1.0 Frameset.)

noresize— Specifies that the frame may not be resized. (Supported in XHTML 1.0 Frameset.)

scrolling— Specifies scrollbar action. Possible values are auto, yes, and no. (Supported in XHTML 1.0 Frameset.)

src— Specifies the URI of the frame document. This attribute is required. (Supported in XHTML 1.0 Frameset.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

The one required attribute in the <frame> element is the src attribute, which specifies the URI of the document you want
to display in the frame. Listing 12.5 is an example that uses the <frameset> element and two <frame> elements to
display frames. The documents that will appear in those frames are shown in Listing 12.6 and Listing 12.7.

Listing 12.5 Using Frames (ch12_05.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Working With Frames
 </title>
 </head>

 <frameset cols = "50%, 50%">
 <frame src="ch12_06.html" />
 <frame src="ch12_07.html" />
 </frameset>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.6 The XHTML for Frame 1 (ch12_06.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Working With Frames
 </title>
 </head>

 <body>
 <h1>
 <center>
 Frame 1 says, "I've been framed! "
 </center>
 </h1>
 </body>
</html>

Listing 12.7 The XHTML for Frame 2 (ch12_07.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Working With Frames
 </title>
 </head>

 <body>
 <h1>
 <center>
 Frame 2 says, "Me too!"
 </center>
 </h1>
 </body>
</html>

Figure 12.4 shows what this XHTML looks like in a browser. This example uses the XHTML 1.0 Frameset DTD to create a
document that displays documents in frames.

Figure 12.4. Handling frames in XHTML.

Before you start relying on frames too much, though, you should keep in mind that the W3C is trying to get rid of them.
Whether they'll go quietly, or go at all, is anyone's guess.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whether they'll go quietly, or go at all, is anyone's guess.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Embedded Style Sheets: <style>

As you've seen today, you can use the <link> element to connect an external style sheet to a document. You can also
treat XHTML documents as XML, in which case, you can use the XML processing instruction <?xml-stylesheet?> to connect
to an external style sheet, as you did in this example on Day 8, "Formatting XML by Using Cascading Style Sheets":

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="ch08_05.css"?>
<document>
 <title class="standout">The Discourses</title>
 <philosopher class="standout">Epictetus</philosopher>
 <book>Book Four</book>
 <paragraph>
 He is free who lives as he wishes to live; who is neither
 subject to compulsion nor to hindrance, nor to force;
 whose movements to action are not impeded, whose desires
 attain their purpose, and who does not fall into that which
 he would avoid.
 </paragraph>
 .
 .
 .
 <paragraph>
 Do we then find any of the bad free from sorrow, free from
 fear, who does not fall into that which he would avoid, and
 does not obtain that which he wishes? Not one; nor then do
 we find any bad man free.
 </paragraph>
</html>

In addition to using external style sheets in this way, you can also use the <style> element to create an internal, or
embedded, style sheet. The <style> element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1. Here are the attributes of this element:

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

media— Specifies the target media. Possible values are screen (the default), print, projection, braille, speech, and
all. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

type— Specifies the MIME type of the target given in the href attribute. This is a required attribute. (Supported
in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is interpreted as an XML document.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:space— Preserves the current spacing when assigned the value "preserve". (Supported in XHTML 1.0 Strict,
XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

You usually put the <style> element in an XHTML document's head. Listing 12.8 shows an example that uses the same
styles you used when you linked to an external style sheet, but in this case, you're using an internal style sheet. Note
that the type attribute is required in XHTML, but not in HTML.

Listing 12.8 Using an Internal Style Sheet (ch12_08.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Using Internal Style Sheets
 </title>
 <style type="text/css">
 body {background-color: cyan; font-family: Arial}
 p {font-size: 18pt; font-style: italic}
 </style>
 </head>

 <body>
 <h1>
 Using Internal Style Sheets
 </h1>
 <p>
 No problems--now we're using internal style sheets.
 </p>
 </body>
</html>

TIP

Note that if style sheets include sensitive characters, such as < or &, you should use external style sheets
in XHTML, not internal ones.

You can see this XHTML at work in Figure 12.5.

Figure 12.5. Using internal style sheets.

In XHTML you can also create inline styles, which means you apply styles to one XHTML element only. You create inline
styles by using the style attribute that most XHTML elements support. Listing 12.9 shows an example that uses the
same style formatting as in the previous example, ch12_08.html, but this time, you're doing it by using the style attribute,
not the <style> element.

Listing 12.9 Using the <style> Attribute (ch12_09.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Using the style Attribute
 </title>
 </head>

 <body style="background-color: cyan; font-family: Arial">
 <h1>
 Using the style Attribute
 </h1>
 <p style="font-size: 18pt; font-style: italic">
 No problems--now we're using the style attribute.
 </p>
 </body>
</html>

Style purists frown on the style element because, as you can see, using it means you end up mixing presentation details
with data. Instead, such purists recommend that you stick with style sheets, which centralize styling information.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Tables: <table>

You use the <table> element to create a table, just as in HTML. To format a table, you use various child elements in
<table>, such as <caption>, <tr>, <th>, <td>, <colspan>, <col>, <thead>, <tbody>, and <tfoot>. This element is supported
in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are its attributes:

align— Specifies the horizontal alignment of the table in the browser. This attribute can be set to left, center, or
right. This attribute was deprecated in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0
Frameset.)

bgcolor— Specifies the background color of table cells. This attribute was deprecated in HTML 4.0. (Supported
in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

border— Specifies the border width, as measured in pixels. You can set this attribute to 0 for no border or to a
positive integer pixel value. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

cellpadding— Specifies the spacing between cell walls and cell contents in pixels. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

cellspacing— Specifies the distance between cells. You set this attribute to a value in pixels. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

class— Specifies the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

frame— Creates a frame. Possible values are void (no borders), above (border on top side only), below (border
on bottom side only), hsides (horizontal borders only), vsides (vertical borders only), lhs (border on left side
only), rhs (border on right side only), box (border on all four sides), and border (the default; the same as box).
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

rules— Uses the Complex Table Model to indicate the interior struts in a table. Possible values are none (no
interior struts), groups (horizontal struts), rows (horizontal struts displayed between all table rows), cols (vertical
struts displayed between all table columns), and all (struts displayed between all table cells). (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

summary— Holds summary information. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

width— Specifies the width of the table. You can set this to a pixel value or to a percentage of the display area.
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

To start formatting a table, you need to use the <table> element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To start formatting a table, you need to use the <table> element:

<table>
 .
 .
 .
</table>

This XHTML alone doesn't display anything visual. To format the data in the table, you use other elements, such as
<tr>, which you'll see next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Table Rows: <tr>

As in HTML, the <tr> element is used in XHTML to create rows in a table. In XHTML this element can contain <th> (table
header) and <td> (table data) elements. The <tr> element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, XHTML 1.1. Here are this element's attributes:

align— Specifies the horizontal alignment of the text in a row. This attribute can be set to left, center, right,
justify, or char. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

bgcolor— Specifies the background color of the table cells. This attribute was deprecated in HTML 4.0.
(Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

char— Specifies a character to align text with respect to. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

charoff— Sets the alignment offset. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

class— Specifies the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

valign— Specifies the vertical alignment of the data in the row. Possible values are top, middle, bottom, and
baseline. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Here's how you might add a table row to the table you're constructing:

<table>
 <tr>
 .
 .
 .
 </tr>
 .
 .
 .
</table>

Remember that every row of data in a table needs a <tr> element. The <tr> element can contain <th> elements to
create table headers and <td> elements to hold the data in the cells in a table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Table Headers: <th>

The <th> element creates table headers, which are usually displayed centered and in bold text. These headers label the
columns in a table. The <th> element is supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset,
and XHTML 1.1. Here are its attributes:

abbr— Specifies an abbreviated name for a header. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

align— Specifies the horizontal alignment. Possible values are left, center, right, justify, and char. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

axis— Specifies a name for a cell. This attribute is normally used only with table heading cells. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

bgcolor— Specifies the background color of table cells. This attribute was deprecated in HTML 4.0. (Supported
in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

char— Specifies a character to align text with respect to. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

charoff— Sets the alignment offset. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

class— Specifies the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

colspan— Specifies the number of columns of the table that the header should span. (the default is 1).
(Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

headers— Specifies a list of header cells. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

height— Specifies the height of the header, in pixels. This attribute was deprecated in HTML 4.0. (Supported in
XHTML 1.0 Transitional, XHTML 1.0 Frameset.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

nowrap— Specifies that the browser should not wrap text by adding line breaks. This attribute was deprecated
in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

rowspan— Specifies the number of rows of the table that the header should span. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

scope— Specifies a set of data cells for which the header cell gives header information. Possible values are row,
col, rowgroup, and colgroup. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and
XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

valign— Specifies the vertical alignment of the data in the cell. Possible values are top, middle, bottom, and
baseline. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

baseline. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

width— Specifies the width of the header. This attribute was deprecated in HTML 4.0. (Supported in XHTML 1.0
Transitional, XHTML 1.0 Frameset.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Here's how you might create headers if you wanted to display data from the states example from Day 9, "Formatting
XML by Using XSLT":

<table>
 <tr>
 <th>State</th>
 <th>Bird</th>
 <th>Flower</th>
 </tr>
 .
 .
 .
</table>

This example creates three table headers on top of three columns: State, Bird, and Flower.

TIP

XHTML headers can span several columns if you use the colspan attribute.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Formatting Table Data: <td>

Data in the cells of a table goes into the <td> element, which appears inside the <tr> element. The <td> element is
supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1. Here are this element's
attributes:

abbr— Specifies an abbreviated name for a cell. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

align— Specifies the horizontal alignment of content in the table cell. Possible values are left, center, right, justify,
and char. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

axis— Specifies a name for a cell—normally a table heading cell. This attribute allows the table to be mapped to
a tree hierarchy. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

bgcolor— Specifies the background color of table cells. This attribute was deprecated in HTML 4.0. (Supported
in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

char— Specifies a character to align text with respect to. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

charoff— Sets the alignment offset. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

class— Specifies the style class of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML
1.0 Frameset, and XHTML 1.1.)

colspan— Specifies the number of columns this cell should span. (Supported in XHTML 1.0 Strict, XHTML 1.0
Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

dir— Sets the direction of directionally neutral text. This attribute can be set to ltr, for left-to-right text, or rtl,
for right-to-left text. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML
1.1.)

headers— Specifies a list of header cells that supply header information. (Supported in XHTML 1.0 Strict, XHTML
1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

height— Specifies the height of the cell, in pixels. This attribute was deprecated in HTML 4.0. (Supported in
XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

id— Specifies the ID of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

lang— Specifies the base language of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional,
XHTML 1.0 Frameset, and XHTML 1.1.)

nowrap— Specifies that the browser should not wrap text by adding line breaks. This attribute was deprecated
in HTML 4.0. (Supported in XHTML 1.0 Transitional and XHTML 1.0 Frameset.)

rowspan— Specifies the number of rows in the table that the header should span. (Supported in XHTML 1.0
Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

scope— Specifies a set of data cells for which the header cell gives header information. Possible values are row,
col, rowgroup, and colgroup. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and
XHTML 1.1.)

style— Indicates how a browser should display the element. You should set this to an inline style. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

title— Specifies the title of the element. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0
Frameset, and XHTML 1.1.)

valign— Specifies the vertical alignment of the data in the cell. Possible values are top, middle, bottom, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

valign— Specifies the vertical alignment of the data in the cell. Possible values are top, middle, bottom, and
baseline. (Supported in XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

width— Specifies the width of the header. This attribute was deprecated in HTML 4.0. (Supported in XHTML 1.0
Transitional and XHTML 1.0 Frameset.)

xml:lang— Specifies the base language for the element when the document is treated as XML. (Supported in
XHTML 1.0 Strict, XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.1.)

Listing 12.10 shows an example that uses <td> elements to create cells in XHTML. Note that this example gives the
table a border by setting the border attribute to "1".

Listing 12.10 Using Tables in XHTML (ch12_10.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Formatting Tables in XHTML
 </title>
 </head>

 <body>
 <h1>
 Formatting Tables in XHTML
 </h1>
 <table border="1">
 <tr>
 <th>State</th>
 <th>Bird</th>
 <th>Flower</th>
 </tr>
 <tr>
 <td>California</td>
 <td>Quail</td>
 <td>Golden Poppy</td>
 </tr>
 <tr>
 <td>Massachusetts</td>
 <td>Chickadee</td>
 <td>Mayflower</td>
 </tr>
 <tr>
 <td>New York</td>
 <td>Bluebird</td>
 <td>Rose</td>
 </tr>
 </table>
 </body>
</html>

Figure 12.6 shows what this table looks like; as you can see, the state data is in the table, arranged properly.

Figure 12.6. Creating a table in XHTML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Extending XHTML
The name Extensible Hypertext Markup Language might give you the impression that XHTML is designed to be
extended. That's true. However, although you can technically extend XHTML, HTML browsers won't understand what
you're doing. Let's take a look at an example.

In this example, you'll extend XHTML by adding to it a new element, <bold>, that will display its text in bold. Here's how
you might declare this element in a DTD:

<!ELEMENT bold (#PCDATA)>

You also need the rest of the XHTML 1.0 Transitional DTD, so you start by creating a new parameter entity, which you
can call XHTML1.0DTDEntity:

<!ELEMENT bold (#PCDATA)>
<!ENTITY % XHTML1.0DTDEntity PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Now to include the entire XHTML 1.0 Transitional DTD in the new DTD, you just use a reference to this parameter
entity. Listing 12.11 shows how this works.

Listing 12.11 Extending the XHTML 1.0 Transitional DTD (ch12_11.dtd)

<!ELEMENT bold (#PCDATA)>
<!ATTLIST bold boldattribute CDATA #IMPLIED >
<!ENTITY % XHTML1.0DTDEntity PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
%XHTML1.0DTDEntity;

Now you have a new DTD that supports not only the <bold> element, but also the rest of XHTML 1.0 Transitional. So
you've extended XHTML. You can see this new DTD at work in Listing 12.12.

Listing 12.12 Extending XHTML 1.0 Transitional as HTML (ch12_12.html)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html SYSTEM "ch12_11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Extending XHTML
 </title>
 <link rel="stylesheet" href="ch12_13.css" />
 </head>

 <body>
 <p>
 This version of XHTML can make text <bold>bold</bold>.
 </p>
 </body>
</html>

To style the new <bold> element, you can use a CSS, such as the one in Listing 12.13.

Listing 12.13 A Style Sheet for Extending XHTML 1.0 Transitional (ch12_13.css)

bold {font-weight: bold}

However, neither Internet Explorer nor Netscape Navigator will understand what to do with your extended XHTML. The
reason for this is that you've given the XHTML document, ch12_12.html, the extension .html, which means that browsers
will assume the fixed HTML element set and not even try to read in the DTD.

You can do a better job in this case if you treat ch12_12.html as XML instead of HTML. Listing 12.14 shows how that
might work. In this version of the document, you're using an internal DTD (so as not to confuse Internet Explorer,
which can't handle the DTD here as an external one) and the <?xml-stylesheet?> XML processing instruction to include a
new version of the style sheet, ch12_15.css (to make sure the text in the <title> element will also be formatted for
display), which is shown in Listing 12.15.

Listing 12.14 Extending XHTML 1.0 Transitional as XML (ch12_14.xml)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 12.14 Extending XHTML 1.0 Transitional as XML (ch12_14.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch12_15.css"?>
<!DOCTYPE html [
<!ELEMENT bold (#PCDATA)>
<!ENTITY % XHTML1.0DTDEntity PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
%XHTML1.0DTDEntity;
]>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Extending XHTML
 </title>
 </head>

 <body>
 <p>
 This version of XHTML can make text <bold>bold</bold>.
 </p>
 </body>
</html>

Listing 12.15 A Style Sheet Used to Extend XHTML 1.0 Transitional as XML
(ch12_15.css)

bold {font-weight: bold}
title {display:block; font-size: 24pt}

Figure 12.7 shows the results of Listings 12.14 and 12.15. in Internet Explorer. Internet Explorer indeed downloads the
XHTML 1.0 Transitional DTD, extends it with the new <bold> element, and produces the results shown in Figure 12.7.

Figure 12.7. Extending XHTML.

By treating the markup as XML, you are able to extend XHTML. That's not too bad because the XHTML DTDs still
contain all the XHTML rules, such as which elements can contain which other elements and which attributes are
required. The drawback is that you need to define from scratch all the formatting you want to use; you do this by
defining your own style sheets or using someone else's.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
In your two-day look at XHTML, you've gotten a good introduction to the subject, and you've seen the major differences
between XHTML and HTML. However, there are more than 100 elements in XHTML, and this book doesn't have the
space to cover them all. You can get all the details in the W3C XHTML specifications themselves.

Today, you took a look at a number of XHTML elements and their attributes. You've seen that hyperlinks are supported
by the <a> element. You must supply a value for either the href or id attribute. Using the id attribute can be problematic
in browsers that don't support it (such as Netscape Navigator), in which case you use both the id and name attributes,
assigned the same value.

The <link> element lets you link to other documents, which is very useful in XML because the W3C doesn't usually
specify how other documents, such as style sheets or XML schemas, may be associated with the current XML document.
The <link> element goes in the <head> element of an XHTML document, and you can use the rel and rev attributes to
specify relationships with other documents. Some browsers support the <link> element for connecting style sheets to an
XHTML (or HMTL) document.

The element displays images in XHTML, just as in HTML. In XHTML, the src and alt attributes are both required.
 is an empty element, so unlike in HTML, you need to end this element with /> in XHTML.

You can create frames in XHTML by using the <frameset> and <frame> elements, which are supported only in the XHTML
1.0 Frameset DTD. In the <frame> element, the src attribute is required.

Today you saw that there are three ways to associate styles with XHTML. You can use an external style sheet with the
<link> element (or the XML processing instruction <?xml-stylesheet?>, if you're treating the XHTML document as XML),
you can create an internal style sheet by using the <style> element, or you can style individual elements by using the
style attribute.

XHTML also supports the HTML way of formatting tables—using the <table>, <caption>, <tr>, <th>, <td>, <colspan>,
<col>, <thead>, <tbody>, and <tfoot> elements.

Today you saw how to extend XHTML. You extended XHTML by creating a DTD that defined a new element and that
also included the XHTML 1.0 Transitional DTD. You then used that new DTD in an XHTML document, but HTML browsers
couldn't handle the new element when you gave it the extension .html because they treated the document as HTML and
didn't understand the new element. You had better luck treating the extended version of XHTML as XML, but doing so
meant that you had to style each element individually.

Tomorrow you're going to take a look at two more popular uses for XML as you start to create graphics and handle
multimedia: SVG and SMIL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: I notice that the W3C recommendation for XHTML suggests that I enclose the text content of
XHTML <script> elements in CDATA sections, but my browser freaks out when I do. Any ideas?

A1: The goal of the CDATA suggestion is to let you avoid having the browser interpret sensitive characters such
as < that are valid in JavaScript but problematic in XML. This solution is not supported in any HTML
browser yet, however; a better solution is to make your scripts external, like this:

<script type = "text/javascript" language="javascript" src="script.js">

Note that in XHTML, the type attribute, which you set to "text/javascript" in JavaScript, is required.

Q2: When you extended XHTML today, you used the SYSTEM keyword, which essentially created a
private DTD. Can I also extend XHTML in public DTDs?

A2: Yes, absolutely. But you need to create your own FPI to do that. Review the rules from Day 4, "Creating
Valid XML Documents: DTDs," about FPI creation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What attributes are required in the XHTML <a> element?

2: What attributes are required in the XHTML element?

3: What versions of XHTML support the <frame> and <frameset> elements?

4: How are you supposed to replace the <frame> and <frameset> elements in versions of XHTML that don't
support them?

5: Is the <table> element supported in XHTML 1.0 Strict? How about in XHTML 1.1?

Exercises

1: Combine the and <a> elements we talked about today in an XHTML 1.0 Transitional document that
displays an image you can click to be taken to the W3C XHTML 1.0 specification
(http://www.w3.org/TR/xhtml1).

2: Extend the XHTML 1.0 Transitional DTD to include a new element named <red> that styles its text in red.
Treating an XHTML document as XML, test your new element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 13. Creating Graphics and Multimedia: SVG and
SMIL
Today you're going to take a look at two XML applications—Scalable Vector Graphics (SVG) and Synchronized
Multimedia Integration Language (SMIL)—both of whose specifications are published by the W3C. SVG lets you create
two-dimensional graphics, and SMIL lets you create multimedia presentations, including images, text, and music.

Here's an overview of today's topics:

Basic shapes in SVG

SVG hyperlinks

SVG animation

SVG text

SVG gradients

SVG scripting

SMIL documents

SMIL images

SMIL text

You'll start today's discussion with SVG.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing SVG
There have been a number of XML-based 2D graphics languages over the years. One of them—Vector Markup Language
(VML)—is supported only in Internet Explorer. It's more correct to call VML a semi-XML language, actually. Listing 13.1
shows an example of VML that is embedded in HTML. VML has a major drawback: It is supported only in Internet
Explorer.

Listing 13.1 Using VML (ch13_01.html)

<HTML xmlns:v="urn:schemas-microsoft-com:vml">

 <HEAD>
 <TITLE>
 Vector Markup Language Example
 </TITLE>

 <STYLE>
 v\:* {behavior: url(#default#VML);}
 </STYLE>
 </HEAD>

 <BODY>
 <CENTER>
 <H1>
 Vector Markup Language Example
 </H1>
 </CENTER>
 <v:rect style='width:80pt; height:60pt' fillcolor="green"
 strokecolor="red" strokeweight="4pt"/>
 <v:oval style='width:80pt; height:60pt' fillcolor="red"/>
 </BODY>
</HTML>

Figure 13.1 shows what this example looks like in Internet Explorer.

Figure 13.1. A VML example.

Whereas VML is a proprietary semi-XML application that works only in Internet Explorer, SVG is more broadly based,
and by using the SVG Viewer plug-in from Adobe, you can use SVG in browsers such as Netscape Navigator as well as
Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet Explorer.

NOTE

The W3C recommendation for SVG 1.0 is at http://www.w3.org/TR/SVG and the W3C recommendation for
SVG 1.1 (which is the current version as of January 14, 2003) at http://www.w3.org/TR/SVG11. The
Adobe plug-in you'll work with today (SVG Viewer) supports only SVG 1.0. In fact, work has started on
SVG 1.2, and it includes SVG for mobile devices and printing. An overview of SVG is at
http://www.w3.org/Graphics/SVG/Overview.htm8.

SVG is a general-purpose 2D graphics language that supports all kinds of powerful tools. It lets you draw basic shapes
such as ellipses, rectangles, lines, and polygons, as well as display text, gradients, and so on. You can also create
hyperlinks, script SVG by using languages such as JavaScript, and create animation. Here's how W3C describes SVG:

SVG is a language for describing two-dimensional graphics in XML. SVG allows for three types of graphic
objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and text.
Graphical objects can be grouped, styled, transformed and composited into previously rendered objects.
Text can be in any XML namespace suitable to the application, which enhances searchability and
accessibility of the SVG graphics. The feature set includes nested transformations, clipping paths, alpha
masks, filter effects, template objects and extensibility.

SVG drawings can be dynamic and interactive. The Document Object Model (DOM) for SVG, which
includes the full XML DOM, allows for straightforward and efficient vector graphics animation via
scripting. A rich set of event handlers such as onmouseover and onclick can be assigned to any SVG
graphical object. Because of its compatibility and leveraging of other Web standards, features like
scripting can be done on SVG elements and other XML elements from different namespaces
simultaneously within the same Web page.

SVG includes the following built-in elements:

a altGlyph altGlyphDef

altGlyphItem animate animateColor

animateMotion animateTransform circle

clipPath color-profile cursor

definition-src defs desc

ellipse feBlend feColorMatrix

feComponentTransfer feComposite feConvolveMatrix

feDiffuseLighting feDisplacementMap feDistantLight

feFlood feFuncA feFuncB

feFuncG feFuncR feGaussianBlur

feImage feMerge feMergeNode

feMorphology feOffset fePointLight

feSpecularLighting feSpotLight feTile

feTurbulence filter font

font-face font-face-format font-face-name

font-face-src font-face-uri foreignObject

g glyph glyphRef

hkern image line

linearGradient marker mask

metadata missing-glyph mpath

path pattern polygon

polyline radialGradient rect

script set stop

style svg switch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

style svg switch

symbol text textPath

title tref tspan

use view vkern

SVG is actually a language of considerable depth; it includes all kinds of advanced features, such as spotlighting of
elements and abstract shape modeling. Although today's discussion doesn't have the space to cover everything about
SVG, you'll get a good SVG foundation.

Besides all the built-in elements, SVG also has the following colors predefined and ready for use:

aliceblue antiquewhite aqua

aquamarine azure beige

bisque black blanchedalmond

blue blueviolet brown

burlywood cadetblue chartreuse

chocolate coral cornflowerblue

cornsilk crimson cyan

darkblue darkcyan darkgoldenrod

darkgray darkgreen darkgrey

darkkhaki darkmagenta darkolivegreen

darkorange darkorchid darkred

darksalmon darkseagreen darkslateblue

darkslategray darkslategrey darkturquoise

darkviolet deeppink deepskyblue

dimgray dimgrey dodgerblue

firebrick floralwhite forestgreen

fuchsia gainsboro ghostwhite

gold goldenrod gray

grey green greenyellow

honeydew hotpink indianred

indigo ivory khaki

lavender lavenderblush lawngreen

lemonchiffon lightblue lightcoral

lightcyan lightgoldenrodyellow lightgray

lightgreen lightgrey lightpink

lightsalmon lightseagreen lightskyblue

lightslategray lightslategrey lightsteelblue

lightyellow lime limegreen

linen magenta maroon

mediumaquamarine mediumblue mediumorchid

mediumpurple mediumseagreen mediumslateblue

mediumspringgreen mediumturquoise mediumvioletred

midnightblue mintcream mistyrose

moccasin navajowhite navy

oldlace olive olivedrab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

orange orangered orchid

palegoldenrod palegreen paleturquoise

palevioletred papayawhip peachpuff

peru pink plum

powderblue purple red

rosybrown royalblue saddlebrown

salmon sandybrown seagreen

seashell sienna silve

skyblue slateblue slategray

slategrey snow springgreen

steelblue tan teal

thistle tomato turquoise

violet wheat white

whitesmoke yellow yellowgreen

In addition, you can specify colors by using hexadecimal numbers as in HTML. For example, #000000 is black, #0000FF is
blue, and #FFFFFF is white.

Now that you've gotten an overview of SVG, you can start putting it to work by creating and testing your own SVG
documents. You can use the free-to-download Adobe SVG Viewer to see what your documents look like in a browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating an SVG Document
Unlike VML, SVG really is XML. You use an XML declaration at the beginning of an SVG document. Each SVG document
should be in the official namespace http://www.w3.org/2000/svg. The public identifier for SVG 1.0 is "PUBLIC "-//W3C//DTD
SVG 1.0//EN". The DTD for SVG is at http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd. The MIME type
for SVG (which is important if you want to create SVG documents on a Web server and send them to a browser) is
image/svg+xml. And you give SVG documents the extension .svg.

Start by using the <rect> element to create and display a simple rectangle. Begin with an XML declaration:

<?xml version="1.0" encoding="UTF-8"?>
 .
 .
 .

Next comes the SVG document element, <svg>. Along with this element, you also indicate that the namespace is
"http://www.w3.org/2000/svg":

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 .
 .
 .
</svg>

TIP

You can use the <svg> element's height and width attributes to limit an SVG display to a specific box.

If you want to check your SVG documents for validity, you can also use a <!DOCTYPE> element, listing the SVG DTD like
this:

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <!DOCTYPE svg "PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
 .
 .
 .
</svg>

All the SVG will go inside the <svg> document element, beginning with the <title> element, which gives the document a
title that a browser can display, just as in HTML:

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a rectangle</title>
 .
 .
 .
</svg>

Now it's time to create the rectangle itself, by using the <rect> element, as described in the following section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Rectangles
To create rectangles, you can use the <rect> element. Here are the required attributes of this element in SVG 1.0:

height— Specifies the height of the rectangle.

width— Specifies the width of the rectangle.

As in CSS, dimensions in SVG can be specified with px, pt, in, or cm; the default measurement is pixels. In addition, you
can use abstract units in SVG. To create the rectangle for this example, you can use the height and width attributes, as
well as the x and y attributes to specify the location of the upper-left corner of the rectangle. (Note that, as in CSS, the
coordinate system's origin is at the upper left; positive y goes downward, and positive x goes to the right.) Listing 13.2
shows how to use the <rect> element to draw the rectangle.

Listing 13.2 Using SVG (ch13_02.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a rectangle</title>
 <rect x="100" y="100" width="300" height="100"/>
</svg>

Now that you have your first SVG document, how do you display it? Read on.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Adobe's SVG Viewer
To get a look at your SVG document, you can use Adobe's free SVG viewer, SVG Viewer, which you can download from
www.adobe.com/svg/viewer/install for many platforms (Macintosh, Windows, Linux, and so on) and operating system
versions. The SVG viewer comes complete with instructions on how to install it, which usually just means running the
installer program.

After you install SVG Viewer, you can view SVG documents in a browser; for example, Figure 13.2 shows what
ch13_02.svg looks like in Internet Explorer. As you can see, the rectangle appears in solid black (and the document's title
appears in the browser's title bar).

Figure 13.2. Viewing an SVG document.

What if you don't want the rectangle to be filled in? What if you would like to specify the colors used instead of using
black? As described in the following section, you can use CSS styles with your SVG figures.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using CSS Styles
It turns out that SVG elements have a style attribute that you can assign CSS styles to. For example, if you want to
create a rectangle that is not filled in, you can assign the CSS property fill the value "none". To set the color of the
rectangle, you can use the stroke property, setting it to one of the color names listed earlier today, in the section
"Introducing SVG." You could also set the stroke-width property to the width of the rectangle's border, like this:

<rect x="100" y="100" width="300" height="100"
 style="fill:none; stroke:royalblue; stroke-width:2"/>

Listing 13.3 shows a new version of the rectangle. This listing also adds some descriptive text by using the <text>
element, and it styles that text by using CSS styling to set the position and size.

Listing 13.3 Using SVG with CSS (ch13_03.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a rectangle with styles</title>
 <text y="40" style="font-size:24pt">
 Creating a rectangle with styles
 </text>
 <rect x="100" y="100" width="300" height="100"
 style="fill:none; stroke:royalblue; stroke-width:2"/>
</svg>

Figure 13.3 shows the new version of the rectangle.

Figure 13.3. An empty rectangle.

If you want to fill in the rectangle with color, you assign the appropriate color to the fill CSS property. Here's how you
might fill in the rectangle with mediumaquamarine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a rectangle with styles</title>
 <text y="40" style="font-size:24pt">
 Creating a rectangle with styles
 </text>
 <rect x="100" y="100" width="300" height="100"
 style="fill:mediumaquamarine; stroke:royalblue; stroke-width:2"/>
</svg>

You can also use many CSS properties directly as attributes of SVG elements, like this:

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a rectangle with styles</title>
 <text y="40" style="font-size:24pt">
 Creating a rectangle with styles
 </text>
 <rect x="100" y="100" width="300" height="100"
 fill="mediumaquamarine" stroke="royalblue" stroke-width="2"/>
</svg>

SVG shares the following CSS properties as attributes:

clip

color

cursor

direction

display

fill

font

font-family

font-size

font-size-adjust

font-stretch

font-style

font-variant

font-weight

letter-spacing

overflow

SVG also shares the following CSS text properties as attributes:

text-decoration

unicode-bidi

visibility

word-spacing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Circles
You use the <circle> SVG element to create circles. Here are the attributes for this element:

r— Specifies the radius of the circle. This attribute is required.

cx— Sets the horizontal location of the center of the circle.

cy— Sets the vertical location of the center of the circle.

Listing 13.4 shows an example that creates a circle centered at (150,150) with a radius of 100 pixels.

Listing 13.4 Creating a Circle (ch13_04.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating a circle</title>
 <text y="40" style="font-size:24pt">
 Creating a circle
 </text>
 <circle r="100" cx="150px" cy="150px"
 style="fill:deepskyblue; stroke:royalblue; stroke-width:2"/>
</svg>

Figure 13.4 shows the results of this SVG. As you can see, the circle appears with the fill color, size, and location
specified in Listing 13.4.

Figure 13.4. Creating a circle.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Ellipses
You can create an ellipse by using the SVG <ellipse> element. Here are the required attributes for this element:

rx— Specifies one-half the width of the ellipse. This attribute is required.

ry— Specifies one-half the height of the ellipse. This attribute is required.

cx— Sets the horizontal location of the center of the ellipse.

cy— Sets the vertical location of the center of the ellipse.

Listing 13.5 shows an example that takes advantage of the color possibilities in SVG to create an ellipse in blanched
almond, with a fill color of dark salmon.

Listing 13.5 Creating an Ellipse (ch13_05.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating an ellipse</title>
 <text y="40" style="font-size:24pt">
 Creating an ellipse
 </text>
 <ellipse cx="150" cy="150" rx="150" ry="80"
 style="fill:darksalmon; stroke:blanchedalmond; stroke-width:2"/>
</svg>

Figure 13.5 shows this SVG at work.

Figure 13.5. Creating an ellipse by using SVG.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Lines
The SVG <line> element lets you draw lines. This element doesn't have any required attributes, but you can use the x1,
y1, x2, and y2 attributes to draw a line from (x1,y1) to (x2,y2). An example is shown in Listing 13.6, which draws lines
in various colors.

Listing 13.6 Creating Lines (ch13_06.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating lines</title>
 <text y="40" style="font-size:24pt">
 Creating lines
 </text>
 <line x1="80" y1="80" x2="190" y2="50"
 style="stroke:goldenrod; stroke-width:2"/>
 <line x1="140" y1="60" x2="240" y2="180"
 style="stroke:forestgreen; stroke-width:2"/>
 <line x1="30" y1="50" x2="310" y2="200"
 style="stroke:moccasin; stroke-width:2"/>
 <line x1="30" y1="200" x2="310" y2="30"
 style="stroke:turquoise; stroke-width:2"/>
</svg>

You can see the results of this SVG in Figure 13.6.

Figure 13.6. Creating lines by using SVG.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Polylines
SVG has a <polyline> element that lets you draw multiple lines in connect-the-dots fashion. There's only one required
attribute here:

points— Specifies the list of points to be connected.

The points attribute is assigned a list of points like this: "x1,y1 x2,y2, x3,y3 x4,y4...". SVG will connect the dots. Listing 13.7
shows an example that connects the dots by using a line in the SVG color fire brick and fills the resulting figure in with
the SVG color lemon chiffon.

Listing 13.7 Creating Polylines by Using SVG (ch13_07.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating polylines</title>
 <text y="40" style="font-size:24pt">
 Creating polylines
 </text>
 <polyline points="80,80 80,100 200,250 250,150 350,200
 360,220 320,300 380,320 420,210 340,250 80,80"
 style="fill:lemonchiffon; stroke:firebrick; stroke-width:2"/>
</svg>

You can see the result of Listing 13.7 in Figure 13.7.

Figure 13.7. Creating polylines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Polygons
The <polygon> element is the last of the basic shape elements in SVG. Like the <polyline> element, this one requires a
points attribute that holds a list of points. The <polygon> element connects the dots and creates a closed figure; you can
see an example in Listing 13.8.

Listing 13.8 Creating Polygons by Using SVG (ch13_08.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating polygons</title>
 <text y="40" style="font-size:24pt">
 Creating polygons
 </text>
 <polygon points="30,120 70,80 110,120 90,180 50,180 30,120"
 style="fill:papayawhip; stroke:blue; stroke-width:4"/>
</svg>

Figure 13.8 shows this polygon.

Figure 13.8. Creating polygons.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Text
You use the <text> element, as you have already done today, to display text. Unlike the basic shape elements you've
seen so far, the <text> element isn't empty; you enclose the text you want to display in it. This element has no required
attributes, but to position text, you can use the x and y attributes to specify the location of the upper-left corner of the
text.

Listing 13.9 shows an example that shows how to format text in SVG by using CSS styles, covered on Day 8,
"Formatting XML by Using Cascading Style Sheets."

Listing 13.9 Creating Text by Using SVG (ch13_09.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating text</title>
 <text x="40" y="100" style="font-family:sans-serif; font-size:16pt">
 An example of
 </text>
 <text x="180" y="100" style="font-family:courier; font-weight: bold;
 font-size:16pt; font-style:italic; text-decoration:underline">
 formatted text.
 </text>
</svg>

You can see what this text looks like in Figure 13.9.

Figure 13.9. Handling text.

Note that although you use the style attribute in this example to specify CSS styles because you discussed it on Day 8,
you can also use CSS properties directly as attributes of SVG elements, like this (note that not all such attributes are
supported by Adobe's SVG Viewer):

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <title>Creating text</title>
 <text x="40" y="100" font-family="sans-serif" font-size="16pt">
 An example of
 </text>
 <text x="180" y="100" font-family="courier" font-weight="bold"
 font-size="16pt" font-style="italic" text-decoration="underline">
 formatted text.
 </text>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </text>
</svg>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Gradients
SVG supports many sophisticated graphics effects, such as color gradients. For example, you can create a linear color
gradient that goes from black to blue. You start out by defining a gradient in an element named <defs>, which holds
definitions:

<defs>
 .
 .
 .
</defs>

In this case, you're going to create a linear gradient and name it gradient1, and you can do this by using the
<linearGradient> element and its id attribute:

<defs>
 <linearGradient id="gradient1">
 .
 .
 .
 </linearGradient>
</defs>

This gradient starts with black at a location 5% of the way through the figure, which you can specify with a <stop>
element. Here's what that looks like:

<defs>
 <linearGradient id="gradient1">
 <stop offset="5%" stop-color="#000000" />
 .
 .
 .
 </linearGradient>
</defs>

The gradient becomes pure blue at 95% through the figure:

<defs>
 <linearGradient id="gradient1">
 <stop offset="5%" stop-color="#000000" />
 <stop offset="95%" stop-color="#0000FF" />
 .
 .
 .
 </linearGradient>
</defs>

Now that you've defined the gradient gradient1, all that remains is to put it to work, and you can do that by referencing
it in the fill attribute as "url(#gradient1)", as shown in Listing 13.10.

Listing 13.10 Creating Gradients by Using SVG (ch13_10.svg)

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Creating gradients
 </text>
 <defs>
 <linearGradient id="gradient1">
 <stop offset="5%" stop-color="#000000" />
 <stop offset="95%" stop-color="#0000FF" />
 </linearGradient>
 </defs>

 <rect fill="url(#gradient1)" stroke="blue" stroke-width="10"
 x="40" y="100" width="300" height="150"/>
</svg>

The result of Listing 13.10 is in Figure 13.10, where, as you can see, the gradient does indeed appear in the figure.

Figure 13.10. Creating a gradient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.10. Creating a gradient.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Paths
Another sophisticated aspect of SVG is that it enables you to create visual paths, which you do by using the <path>
element. This element has one required attribute, d, which defines the path. The syntax of this attribute is a little
involved; it consists of coordinates and single-letter commands. The list of commands is also a long one. Here are a few
favorites:

M— Indicates a "move to" operation.

L— Indicates a "line to" operation.

H— Draws a horizontal line.

V— Draws a vertical line.

S— Draws a cubic Bézier curve from the current point to (x,y). The first control point is assumed to be the
reflection of the second control point in the previous command.

C— Draws a cubic Bézier curve from the current point to (x,y), using (x1,y1) as the control point at the
beginning of the curve and (x2,y2) as the control point at the end of the curve.

For example, Listing 13.11 draws a curved figure by using the <path> element, assigning the path definition "M100,160
C100,60 250,60 250,140 S400,260 400,160" to the d attribute. To give this path a visual appearance, you set its stroke-width
and stroke CSS properties as shown in Listing 13.11.

Listing 13.11 Creating a Path by Using SVG (ch13_11.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Creating paths
 </text>
 <path style="fill:none; stroke-width:4; stroke:#000000"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
</svg>

You can see what this path looks like in Figure 13.11.

Figure 13.11. Drawing a path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's more you can do with paths. For example, you can create text paths, as described in the following section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Text Paths
You can create text paths to make text flow as you want it to by using the <textPath> and <path> elements. To show
how this works, you can make some text flow along the path you just created (refer to Figure 13.11).

First, you define the path, giving it the ID path1:

<path id="path1" style="fill:none"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
 .
 .
 .

Next, you add a <text> element to enclose the text:

<path id="path1" style="fill:none"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
<text x="40" y="100" font-family="sans-serif" font-size="16pt">
 .
 .
 .
</text>

Next, you use an enclosed <textPath> element to define the path you want the text to follow. To do that, reference the
path, path1, by using an XLink (which you'll see more about tomorrow) :

<path id="path1" style="fill:none"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
<text x="40" y="100" font-family="sans-serif" font-size="16pt">
 <textPath xlink:href="#path1"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 .
 .
 .
 </textPath>
</text>

Finally, enclose the text in the <textPath> element. Listing 13.12 shows how this works.

Listing 13.12 Creating a Text Path in SVG (ch13_12.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Creating paths
 </text>
 <path id="path1" style="fill:none"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
 <text x="40" y="100" font-family="sans-serif" font-size="16pt">
 <textPath xlink:href="#path1"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 Here's how to create an artful curved text path.
 </textPath>
 </text>
</svg>

Figure 13.12 shows what this text path looks like. As you can see, the text does indeed follow the path you defined.

Figure 13.12. Creating a text path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.12. Creating a text path.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Groups and Transformations
SVG allows you to group visual items together by using the <g> element and treat them as one item. To see how this
works, you can create a group of visual items and use the <g> element's transform attribute to translate (that is, move)
and rotate that group.

For this example, you can rotate and translate a group that consists of an ellipse and some text. Rotating and
translating are separate operations, and you start by translating the group by +20 pixels in the x direction and +10
pixels in the y direction:

<g transform="translate(20, 10)">
 .
 .
 .
</g>

Next, you rotate the group by 20 degrees:

<g transform="translate(20, 10)">
 <g transform="rotate(20)">
 .
 .
 .
 </g>
</g>

Finally, you're ready to put the items you want—an ellipse and some text—into the group, as shown in Listing 13.13.

Listing 13.13 Creating a Transformation (ch13_13.svg)

<?xml version="1.0" encoding="UTF-8"?>

<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Using groups
 </text>
 <g transform="translate(20, 10)">
 <g transform="rotate(20)">
 <ellipse cx="150" cy="100" rx="100" ry="50"
 fill="none" stroke="darkmagenta" stroke-width="4"/>
 <text x="100" y="100" font-size="20"
 font-family="sans-serif" fill="navy" >
 Rotations!
 </text>
 </g>
 </g>
</svg>

This SVG, including the transformation and rotation, appears in Figure 13.13.

Figure 13.13. Creating a transformation by using SVG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Animation
SVG not only draws static 2D images, but it allows you to animate them as well, and Adobe's SVG Viewer supports
animation. To animate graphics, you use the <animate> element, along with various attributes (none of which are
required). In the following, draw a blue rectangle and then animate it, making it appear to rise and stretch as the user
watches. The blue rectangle is originally 100 pixels high and 200 wide:

<rect x="200" y="100" width="200" height="100" fill="blue">
 .
 .
 .
</rect>

Now you use <animate> elements inside the <rect> element to animate the rectangle. When you animate an element
such as <rect>, you really animate its attributes, such as x, y, width, and height, over a period of time. In this case, you
can use four <animate> elements to animate those four attributes. For example, to animate the x attribute of the <rect>
element, making it change from a value of 200 to 100 over a period of 10 seconds, starting when the rectangle first
appears, you could use this <animate> element:

<rect x="200" y="100" width="200" height="100" fill="blue">
 <animate attributeName="x" attributeType="XML"
 begin="0s" dur="10s" fill="freeze" from="200" to="100" />
 .
 .
 .
</rect>

Set the attributeName attribute to the name of the attribute you want to work with, x, and then set the attributeType
attribute to "XML", meaning that this is an SVG attribute (the other option is "CSS", which means you want to work with
a CSS property). The freeze attribute lets you specify whether you want the results of the animation to stick around
after the animation process is over. Setting freeze to "fill" means that you don't want the graphics element you're
working with to return to its original appearance when the animation is done.

Listing 13.14 shows how to animate all four size attributes of the <rect> element—x, y, width, and height—by using
<animate> elements.

Listing 13.14 Creating Animation by Using SVG (ch13_14.svg)

<?xml version="1.0" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Using animation
 </text>

 <rect x="200" y="100" width="200" height="100" fill="blue">
 <animate attributeName="x" attributeType="XML"
 begin="0s" dur="10s" fill="freeze" from="200" to="100" />
 <animate attributeName="y" attributeType="XML"
 begin="0s" dur="10s" fill="freeze" from="100" to="50" />
 <animate attributeName="width" attributeType="XML"
 begin="0s" dur="10s" fill="freeze" from="200" to="400" />
 <animate attributeName="height" attributeType="XML"
 begin="0s" dur="10s" fill="freeze" from="100" to="50" />
 </rect>
</svg>

You can see this example at work in Figure 13.14. When the animation starts, the rectangle rises and stretches.

Figure 13.14. Animation with SVG.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides SVG attributes such as x, y, width, and height, you can also work with CSS properties. Here's an example using
CSS properties to make the sample rectangle fade away over 10 seconds:

<rect x="200" y="100" width="200" height="100" fill="blue">
 <animate attributeType="CSS" attributeName="opacity"
 from="1" to="0" dur="10s"/>
</rect>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Links
Just as in HTML, you can create hyperlinks by using the <a> element in SVG. However, SVG uses XLinks, which we'll
talk about tomorrow. The XLink namespace is "http://www.w3.org/1999/xlink", and you need to define a namespace prefix,
xlink, to go with that namespace:

<?xml version="1.0" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <text y="40" style="font-size:24pt">
 Using links
 </text>
 .
 .
 .

Then use the <a> element's required XLink href attribute to specify the URI to link to. In this case, you can link to the
SVG 1.0 page, http://www.w3.org/TR/SVG:

<?xml version="1.0" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <text y="40" style="font-size:24pt">
 Using links
 </text>

 <a xlink:href="http://www.w3.org/TR/SVG/">
 .
 .
 .

The graphical element you're using as a hyperlink doesn't need to be just underlined text; it can be anything. For
example, you might use an ellipse as a hyperlink and display some underlined text in it to make it clear that the ellipse
is, in fact, a hyperlink. Listing 13.15 shows how this might work.

Listing 13.15 Creating a Hyperlink by Using SVG (ch13_15.svg)

<?xml version="1.0" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <text y="40" style="font-size:24pt">
 Using links
 </text>

 <a xlink:href="http://www.w3.org/TR/SVG/">
 <g>
 <ellipse cx="200" cy="100" rx="100" ry="50"
 fill="cyan" />
 <text y="105" x="125" style="font-size:24pt"
 text-decoration="underline">
 Click here!
 </text>
 </g>

</svg>

You can see the results of Listing 13.15 in Figure 13.15. Note that when the mouse cursor is over the ellipse, it changes
to a pointing hand, as is usual for hyperlinks, and as you can see in the figure. All you have to do to jump to the
hyperlink target is click the hyperlink. (Unfortunately, right-clicking the hyperlink, as you might do when you want to
open the target in a new window, doesn't work.)

Figure 13.15. Creating a hyperlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.15. Creating a hyperlink.

So now not only are you creating animation, but you're also creating hyperlinks by using SVG. There's even more to
come—you can also support scripting, as described in the next section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating Scripts
You can use JavaScript to work with SVG. For example, you can add to a rectangle a script that causes the rectangle to
grow when it is clicked. You start by creating the rectangle itself:

<rect onclick="click_handler(evt)" x="100" y="100"
 width="100" height="50" fill="steelblue"/>

Note in particular the onclick attribute, which lets the rectangle handle mouse-click events. These are the event
attributes that elements such as <rect> let you handle:

onfocusin

onfocusout

onactivate

onclick

onmousedown

onmouseup

onmouseover

onmousemove

onmouseout

onload

To handle the mouse-click event in the rectangle, you connect a JavaScript event handler called click_handler to the click
event, using the <rect> element's onclick attribute. You're going to work with JavaScript in more detail on Day 15,
"Using JavaScript and XML," but here's a preview. You can set up an SVG <script> element and enclose the JavaScript
code in a CDATA section:

<script type="text/javascript"> <![CDATA[
 .
 .
 .
]]> </script>

To get a JavaScript object that corresponds to the rectangle, you can use the target property of the event object passed
to the JavaScript function:

<script type="text/javascript"> <![CDATA[
 function click_handler(evt)
 {
 var rect = evt.target;
 .
 .
 .
 }
]]> </script>

Now that you have a JavaScript object that corresponds to the rectangle, you can use its setAttribute method to set the
width of the rectangle to 200 pixels, as shown in Listing 13.16.

Listing 13.16 Creating a Script in SVG (ch13_16.svg)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg">

 <script type="text/javascript"> <![CDATA[
 function click_handler(evt)
 {
 var rect = evt.target;
 rect.setAttribute("width", 200);
 }
]]> </script>

 <text y="40" style="font-size:24pt">
 Using JavaScript
 </text>

 <rect onclick="click_handler(evt)" x="100" y="100"
 width="100" height="50" fill="steelblue"/>
</svg>

As shown in Figure 13.16, when you click the rectangle, it grows so its new width is 200 pixels.

Figure 13.16. Using JavaScript with SVG.

Besides using the setAttribute method to set the value of an SVG attribute in a script, you can also use the getAttribute
method to get the value of an attribute, like this:

var w = rect.getAttribute("width");

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Embedding SVG in HTML
So far today, the SVG documents have been dedicated SVG, but by using the HTML <EMBED> element, you can embed
SVG documents in HTML pages. Listing 13.17 provides an example that shows how to use this element to embed one of
the SVG examples, ch13_02.svg, in an HTML page. Note that the PLUGINSPAGE attribute lets the browser download the
plug-in (after asking the user), if needed.

Listing 13.17 Embedding SVG in HTML (ch13_17.html)

<HTML>
 <HEAD>
 <TITLE>
 Embedding SVG in HTML
 </TITLE>
 </HEAD>

 <BODY>
 <H1>Embedding SVG in HTML</H1>
 <EMBED WIDTH="500" HEIGHT="500" SRC="ch13_03.svg"
 PLUGINSPAGE="http://www.adobe.com/svg/viewer/install/">
 </BODY>
</HTML>

As shown in Figure 13.17, the SVG document has indeed been embedded in the HTML page.

Figure 13.17. Embedding SVG in HTML.

That's it for your coverage of SVG today. Next, the discussion turns to SMIL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing SMIL
SMIL is all about creating multimedia presentations in XML. Here's what the W3C says about it on its SMIL page,
http://www.w3.org/AudioVideo:

The Synchronized Multimedia Integration Language (SMIL, pronounced "smile") enables simple
authoring of interactive audiovisual presentations. SMIL is typically used for "rich media"/multimedia
presentations which integrate streaming audio and video with images, text or any other media type.
SMIL is an easy-to-learn HTML-like language, and many SMIL presentations are written using a simple
text-editor.

You can find the W3C recommendation for SMIL 1.0 at http://www.w3.org/TR/REC-smil and the W3C recommendation
for SMIL 2.0 at http://www.w3.org/TR/smil20.

You'll create a SMIL document to see how it works. For this example, you'll create a document, ch13_18.smil, that can be
opened in RealPlayer (now called RealOne; available from http://www.real.com for free). In this example, you will
display "SMIL" letter by letter—S, then SM, then SMI, and then SMIL, as the user watches.

SMIL is an HTML-like language, and you start by creating a layout in the <head> element of the document. This layout
will create two regions, slide and caption; the slide region will display the letters in SMIL, and the caption region will
display text:

<smil>
 <head>
 <layout>
 <root-layout width="400" height="250" background-color="white"/>
 <region id="slide" title="slide" left="0" top="0"
 width="400" height="200"/>
 <region id="caption" title="caption" left="0" top="201"
 width="400" height="50"/>
 </layout>
 </head>
 .
 .
 .

You use the <par> element to group presentations together, and use the <seq> element to create a multimedia
sequence. In this example, you can start by creating a sequence that shows a preliminary image (image0.jpg) that is just
a blue background and that you want to display in the slide region:

<smil>
 <head>
 <layout>
 <root-layout width="400" height="250" background-color="white"/>
 <region id="slide" title="slide" left="0" top="0"
 width="400" height="200"/>
 <region id="caption" title="caption" left="0" top="201"
 width="400" height="50"/>
 </layout>
 </head>

 <body>
 <par>
 <seq>
 <par>
 <img region="slide" src="image0.jpg"
 type="image/jpeg" dur="2s"/>
 </par>
 .
 .
 .
 </seq>
 </par>
 </body>
</smil>

Now you can continue creating the multimedia sequence, displaying additional images and some text as well. The
images appear in the region named slide, and the text in region named caption, as shown in Listing 13.18.

Listing 13.18 A SMIL Document (ch13_18.smil)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<smil>
 <head>
 <layout>
 <root-layout width="400" height="250" background-color="white"/>
 <region id="slide" title="slide" left="0" top="0"
 width="400" height="200"/>
 <region id="caption" title="caption" left="0" top="201"
 width="400" height="50"/>
 </layout>
 </head>

 <body>
 <par>
 <seq>
 <par>
 <img region="slide" src="image0.jpg"
 type="image/jpeg" dur="2s"/>
 </par>
 <par>
 <img region="slide" src="image1.jpg"
 type="image/jpeg" dur="2s"/>
 <text region="caption" src="image1.txt"
 type="text/plain" dur="2s"/>
 </par>
 <par>
 <img region="slide" src="image2.jpg"
 type="image/jpeg" dur="2s"/>
 <text region="caption" src="image2.txt"
 type="text/plain" dur="2s"/>
 </par>
 <par>
 <img region="slide" src="image3.jpg"
 type="image/jpeg" dur="2s"/>
 <text region="caption" src="image3.txt"
 type="text/plain" dur="2s"/>
 </par>
 <par>
 <img region="slide" src="image4.jpg"
 type="image/jpeg" dur="2s"/>
 <text region="caption" src="image4.txt"
 type="text/plain" dur="2s"/>
 </par>
 </seq>
 </par>
 </body>
</smil>

There are a variety of ways to display ch13_18.smil. For example, you could use RealPlayer/RealOne or you could use the
SOJA Player, which you can get at http://www.helio.org/products/smil (SOJA stands for SMIL Output in Java Applets).
You can see the SMIL example in RealPlayer/RealOne in Figure 13.18. When you open this document, the letters S, M,
I, and L appear one-by-one in the slide region, and the text appears in the caption region.

Figure 13.18. Using SMIL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you took a look at SVG and SMIL.

As you've seen, SVG is all about creating 2D graphics. Today you took a look at how to create SVG documents by using
the <svg> document element. To create basic shapes, you used the <rect> element to create rectangles, the <circle>
element to create circles, the <ellipse> element to create ellipses, the <line> element to create lines, the <polyline>
element to create polyline figures, and the <polygon> element to create polygons.

Besides these simple shapes, you saw that you can use the <text> SVG element to display text, and you can use the
<path> SVG element to create paths. And, you saw, you can even combine the two to make text follow a path.

The <group> SVG element lets you group visual elements together and treat them as a group, including moving and
rotating those elements at the same time. The <animate> SVG element lets you animate SVG elements by specifying
how to change the values of their attributes over time. By using this element, you were able to stretch a rectangle
before the user's eyes. The <a> SVG element creates links, and you saw how to use <a> to make the browser navigate
to new URIs. Finally, you talked about the <script> element, which lets you use scripting languages such as JavaScript
to make your SVG come alive.

As discussed today, SMIL lets you create multimedia presentations by using XML. SMIL is patterned after HTML, and
you took a look today at how to create SMIL documents. In particular, you took a look at how to create a SMIL
document that displays the letters S, M, I, and L to build up the display "SMIL." To do that, you created display regions
and used a SMIL sequence to display successive images in one region and text in another.

Tomorrow, you're going to start talking about two other XML applications: XLinks and XPointers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: I would like to repeat the same SVG image over and over in a certain area. Any ideas?

A1: You can use the SVG <pattern> element, which lets you create a pattern by using SVG elements and then
use that pattern to paint an area.

Q2: Can I use audio in SMIL documents?

A2: Absolutely. Here's an example:

<head>
 <layout>
 <region id="audio" title="audio"/>
 </layout>
</head>

<body>
 <par>
 <audio src="mountains.au" region="audio"
 type="audio/x-au" dur="60s"/>
 .
 .
 .

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What attributes are required in the SVG <rect> element?

2: What attributes are required in the SVG <circle> element?

3: What would a <polyline> element that drew a line from (0,0) to (100,100) and then to (200,0) look like?

4: How would you move to the location (200,300) in the d attribute of a <path> element?

5: How can you specify where an image in a SMIL document should appear?

Exercises

1: Create an SVG document that displays eight ellipses in different colors. Next, animate one or all of them to
move when the user clicks the display.

2: Create a SMIL document that makes a rectangle flash, alternating between red and blue. (Tip: To create the
images, use a paint program if you have one available.) Next, add some text that asks, "Did I get your
attention?"

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 14. Handling XLinks, XPointers, and XForms
Today you're going to take a look at three more XML applications: XLinks, XPointers, and XForms. In HTML, you can
use hyperlinks to link documents, but in XML, you have more options, which is what the XLink and XPointer
specifications are all about. XForms are designed to replace the standard forms you see in Web pages, which display
buttons, text fields, and so on; XForms is designed to bring that kind of functionality into the XML world.

Here's an overview of today's topics:

XLinks

XBase

XLink attributes

Using xlink:href

Extended links and arcs

XPointers

XPointer node tests

XPointer predicates

XForms

Separation of data and presentations in XForms

XForms types

XForms controls

Today's discussion focuses on concepts taken over from HTML into XML (and often XHTML) by the W3C. You use XLinks
to create hyperlinks in XML and XPointers to get even more specific than that: XPointers can build on XPath
expressions, allowing you to point at a specific node or node set. XForms brings the idea of Web controls—such as
buttons, text fields, and list boxes—to XML. Although XLink, XPointer, and XForms are all accepted W3c specifications,
the actual implementation of each is spotty. More software is coming, but it's not here yet. Today, you'll see what you
can do with the available software, with some good examples, such as the XSmiles XML browser, which supports
XForms.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XLinks
Where would the Web be without hyperlinks? You find them all over. Here's an example of an HTML hyperlink:

 Health Insurance
<A>

This hyperlink appears as the text "Health Insurance" in an HTML document, and when you click it, the browser
navigates to (the fictitious) http://www.XMLPowerCorp.com/reviews.html#insurance. XLinks work in much the same way as
this, except they're the XML version of the familiar HTML construct.

The XLink 1.0 specification is a W3C recommendation that was released June 27, 2001. (The most current version of
this recommendation is at http://www.w3.org/TR/xlink.) You use XLinks to link one document to another or to link one
location inside a document to another.

You saw one of the relatively few software implementations of XLinks in SMIL yesterday, when in the process of
creating a text path, you defined a path named path1 and used an XLink to refer to that path:

<path id="path1" style="fill:none"
 d="M100,160 C100,60 250,60 250,140 S400,260 400,160"/>
<text x="40" y="100" font-family="sans-serif" font-size="16pt">
 <textPath xlink:href="#path1"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 .
 .
 .
 </textPath>
</text>

This a very simple example of an XLink; it simply defines a namespace called xlink with the URI
http://www.w3.org/1999/xlink. Then it uses an xlink:href attribute to connect to the path1 path. This example works in the
Adobe SVG plug-in, as you saw yesterday, but it's a very simple version of an XLink. Here's a more standard example,
which converts the HTML <A> hyperlink from earlier today into an XLink:

<link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml">
 Health Insurance
</link>

This is a simple XLink, which is the closest you can get to a standard HTML hyperlink by using XLink. In this example
you set the xlink:type attribute to "simple" and the xlink:show attribute to "new"; this means the browser should open the
linked-to document in a new window and set the xlink:href attribute to the URI of the new document. (Bear in mind that
the form of XML URIs isn't settled yet either and may grow more complex and comprehensive in time.)

XLinks can go far beyond the simple. In fact, the XLink conception is very ambitious. You might want to link to not one
but multiple documents, for example. Or you might want to link to a set of documents and have the link know which
document comes next and which document was the previous document in the set. Or you might want a link to be able
to search for more recent resources or set up an abstract series of paths that a link could follow, depending on the
user's context. XLinks can do all that—theoretically.

Here are a few of the current implementations of XLinks:

X2X (http://www.empolis.co.uk/products/prod_X2X.asp), from empolis GmbH, is an XML XLink engine. It allows
linking between documents and information resources.

Fujitsu XLink Processor (http://www.labs.fujitsu.com/free/xlip/en/index.html), developed by Fujitsu
Laboratories, Ltd., is an implementation of XLink and XPointer.

xlinkit.com (http://www.xlinkit.com) is a lightweight application service that provides rule-based XLink
generation.

Mozilla (http://www.mozilla.org) is a browser that supports simple XLinks.

Amaya (http://www.w3c.org/Amaya), the W3C test browser, supports simple XLinks.

Listing 14.1 puts a health insurance example to work in an XML document. This example is written for XLink-aware
browsers such as the W3C's Amaya browser, and it also includes some JavaScript (for example, the onClick attribute in
this example), which is not XML but is honored by browsers such as Internet Explorer, enabling a simple XLink in that
browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

browser.

Listing 14.1 Emulating XLinks (ch14_01.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch14_02.css"?>

<insurance>
 <title>
 Supporting XLinks
 </title>
 Looking for
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.w3c.org"
 onClick="location.href='http://www.w3c.org/default.htm'">
 health insurance
 </link>?
</insurance>

You can also use a CSS, ch14_02.css, to make the XLink look like a standard HTML hyperlink—blue, underlined, and
when the mouse cursor moves across it, it turns to a hand. (However, note that in the Amaya browser, the cursor does
not change.)

Listing 14.2 An XLink Style Sheet (ch14_02.css)

link {color: #0000FF; text-decoration: underline; cursor: hand}
title {font-size: 24pt}

Figure 14.1 shows the results of Listing 14.2 in the Amaya browser. This is a true XLink in a true XLink-enabled
browser. When you double-click the XLink, the browser navigates to the target document, www.w3c.org.

Figure 14.1. A simple XLink in the Amaya browser.

This XLink example also works in Internet Explorer, thanks to Internet Explorer's support of the non-XML onClick
attribute (see Figure 14.2). When you click the XLink, the browser navigates to the target document.

Figure 14.2. A simple XLink in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.2. A simple XLink in Internet Explorer.

As this simple example shows, you don't need an <A> element to create an XLink. In fact, any XML element will do. You
create an XLink by using attributes, not by using a particular element. You use the xlink:type attribute to create an
XLink, and you set it to one of the allowable types of XLinks: "simple", "extended", "locator", "arc", "resource", "title", or
"none". Here are the available XLink attributes:

xlink:arcrole— Contains the link's role in an arc, which can support multiple resources and various traversal
paths. (We'll talk more about arcs later today.)

xlink:actuate— Specifies when the link should be traversed. You can set this attribute to "onLoad", "onRequest",
"other", "none", or other values supported by the software you're using.

xlink:from— Defines the starting resources in an arc.

xlink:href— Acts as the locator attribute. This attribute contains the data that allows an XLink to find a remote
resource.

xlink:label— Contains a human-readable label for the link.

xlink:role— Describes a remote resource in a machine-readable fashion.

xlink:show— Specifies how to display the linked-to resource. Possible values are "new" (open a new display
space), "replace" (replace the currently displayed data), "embed" (embed the new resource in the current one),
"other" (leave the show function up to the displaying software), and "none" (don't show the resource).

xlink:title— Describes a remote resource in a human-readable way.

xlink:to— Defines a target or ending resource in an arc.

xlink:type— Sets the type of the XLink. This is a required attribute, and the possible values are "simple",
"extended", "locator", "arc", "resource", "title", and "none".

You don't use all these XLink attributes in the same XLink. Which attributes you use depends on the type of link you're
creating, as given by the xlink:type attribute. Table 14.1 shows which attributes are required for each type of link.

Table 14.1. Required and Optional Attributes by xlink:type

 simple extended locator arc resource title

actuate Optional N/A N/A Optional N/A N/A

arcrole Optional N/A N/A Optional N/A N/A

from N/A N/A N/A Optional N/A N/A

href Optional N/A Required N/A N/A N/A

label N/A N/A Optional N/A optional N/A

role Optional Optional Optional Optional Optional N/A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

role Optional Optional Optional Optional Optional N/A

show Optional N/A N/A Optional N/A N/A

title Optional Optional Optional Optional Optional N/A

to N/A N/A N/A Optional N/A N/A

type Required Required Required Required Required Required

The XLink attributes specify what kind of XLink you're creating. Let's take a closer look at some of them now, starting
with xlink:type.

Using xlink:type

The xlink:type attribute is the most important XLink attribute because it sets the type of XLink you're creating. Here are
the possible values:

simple— Is used to create a simple link.

extended— Is used to create an extended link.

locator— Is used to create a locator link that points to a resource.

arc— Is used to create an arc with multiple resources and various traversal paths.

resource— Is used to create a resource link, which indicates a specific resource.

title— Is used to create a title link and can hold the location of element markup for further information on a title
(such as with international versions).

You've already seen how to create simple links, which are the most common type of XLinks:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch14_02.css"?>

<insurance>
 <title>
 Supporting XLinks
 </title>
 Looking for
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.w3c.org"
 onClick="location.href='http://www.w3c.org/default.htm'">
 health insurance
 </link>?
</insurance>

You'll also see other types of XLinks today.

Using xlink:href

The xlink:href attribute is called the locator attribute. You use it to give the URI of a remote resource. You've already put
this attribute to work today:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch14_02.css"?>

<insurance>
 <title>
 Supporting XLinks
 </title>
 Looking for
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.w3c.org"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xlink:href="http://www.w3c.org"
 onClick="location.href='http://www.w3c.org/default.htm'">
 health insurance
 </link>?
</insurance>

When you work with simple URLs, the values you can assign to this attribute are fairly simple. But when you work with
general URIs, which can include XPointers, things can get pretty complex, as you'll see later today.

Using xlink:show

The XLink xlink:show attribute specifies how to show the linked resource. The xlink:show attribute has five predefined
values:

embed— Embeds the linked-to resource in the current resource.

new— Opens a new display area, such as a new window, to display the new resource.

none— Does not show the resource.

other— Indicates a setting other than those that are predefined.

replace— Replaces the current resource, usually in the same window.

Besides these values, you can also specify your own values as well, as long as the software you're using supports those
values. You've put the xlink:show attribute to work already today, to indicate that a new window should be opened when
the link is activated:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch14_02.css"?>

<insurance>
 <title>
 Supporting XLinks
 </title>
 Looking for
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.w3c.org"
 onClick="location.href='http://www.w3c.org/default.htm'">
 health insurance
 </link>?
</insurance>

Using xlink:actuate

The xlink:actuate attribute specifies when a link should be traversed. The xlink:actuate attribute has these predefined
values:

onRequest— Means that the link should be traversed on the user's request.

onLoad— Means that the link should be traversed when the resource is loaded.

other— Specifies a custom preference.

none— Specifies that there should be no actuation.

You can also set your own values for xlink:actuate (as long as your XML application understands them).

Using xlink:role and xlink:title

You can use the xlink:role and xlink:title attributes to describe a remote resource. Here's what using these attributes
might look like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="ch14_02.css"?>

<insurance>
 <title>
 Supporting XLinks
 </title>
 Looking for
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:role = "insurance "
 xlink:title = "Health Insurance Data"
 xlink:href="http://www.w3c.org"
 onClick="location.href='http://www.w3c.org/default.htm'">
 health insurance
 </link>?
</insurance>

The xlink:title attribute is designed to be read by people, whereas the xlink:role attribute is designed to be read by
software. A link's role indicates the category of a link; in this example, that's "insurance ".

Using xlink:arcrole and xlink:label

The xlink:label attribute contains a human-readable label for an XLink. The xlink:arcrole attribute works with XLink arcs,
which are sets of links that can contain multiple resources and various traversal paths. Each XLink can be a member of
various arcs and can have different roles in each. For example, a person might be a supervisor in one arc but an
employee in another. We'll take a closer look at arcs a little later today.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Beyond Simple XLinks
So far, you've only taken a look at simple XLinks, where the xlink:type attribute is set to "simple". In fact, simple links are
in practice the only XLinks supported in widely available software. However, more extended links will be supported
sooner or later, so it's worth taking a look at them today.

Extended links can involve multiple resources, multiple paths between those resources, and multidirectional paths.
Consequently, actual implementations of extended links are a little vague compared to those of simple links because no
one has really determined how extended XLinks will really be supported. (In technical terms, an extended link is called
a directed labeled graph, and they are very general constructs.)

An extended link can really only be characterized as being made up of connections between resources. Those resources
may be local, which means they're actually part of the extended link element, or remote, which means they're not part
of the extended link element (but this does not mean they are necessarily in another document). If a link contains
resources, it's called an inline link; if it does not contain any resources at all, it's called an out-of-line link. Inline links
havetheir xlink:type value set to "resource". Out-of-line links have their xlink:type attribute value set to "locator".

Listing 14.3 is an example that shows an extended link. The extended link element, which contains two inline and three
out-of-line links, is the <link> element (although you could give it any name). This example links to the various <state>
elements in the ch10_01.xml example from Day 1, "Welcome to XML"—California, Massachusetts, and New York. (You
might note that to pick out the various states from ch10_01.xml, this example uses XPointers, and you'll see how those
XPointers work in a few pages.)

Listing 14.3 Extended XLinks (ch14_03.xml)

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <link xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="extended" xlink:title="State Data">
 <title xlink:type="resource" xlink:role="Title">
 State Data
 </title>
 <date xlink:type="resource" xlink:role="Date">
 March 1, 2005
 </date>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 1]">
 xlink:title="California"
 xlink:role="State Data"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 2]">
 xlink:title="Massachusetts"
 xlink:role="State Data"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 3]">
 xlink:title="New York"
 xlink:role="State Data"
 </state>
 </link>
</document>

This example is a start, but it still doesn't do much more than create an extended link with several inline and out-of-line
links in it. You can do more if you use the xlink:from and xlink:to attributes, which allow us to create directed links—that
is, arcs.

Creating Arcs

When you have a simple XLink, you don't need to worry about how it works; the xlink:href attribute tells us all you need

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you have a simple XLink, you don't need to worry about how it works; the xlink:href attribute tells us all you need
to know. On the other hand, what about the extended link you just created? What happens when you activate it? There
are many conceivable paths between the resources. To add more direction to what's going on, you can create an arc.

All the possible paths between resources are arcs. You represent those paths in XML elements by setting the xlink:type
attribute to "arc". Arcs use xlink:from and xlink:to elements to specify traversal paths. The xlink:from attribute indicates
what resource an arc comes from, and the xlink:to attribute indicates what resource it goes to. You set the values of
xlink:from and xlink:to to match the xlink:role attribute of the source and target resources.

Listing 14.4 shows an example that includes three arc elements, <arc1>, <arc2>, and <arc3>. The first arc takes us from
California to Massachusetts, the second arc takes us from Massachusetts to New York, and the third arc takes us from
New York back to California.

Listing 14.4 Creating Extended XLinks (ch14_04.xml)

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <link xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="extended" xlink:title="State Data">
 <title xlink:type="resource" xlink:role="Title">
 State Data
 </title>
 <date xlink:type="resource" xlink:role="Date">
 March 1, 2005
 </date>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 1]">
 xlink:title="California"
 xlink:role="California"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 2]">
 xlink:title="Massachusetts"
 xlink:role="Massachusetts"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 3]">
 xlink:title="New York"
 xlink:role="New York"
 </state>

 <arc1 xlink:type = "arc" xlink:from = "California"
 xlink:to = "Massachusetts" xlink:show="new"
 xlink:actuate="onRequest">
 </arc1>

 <arc2 xlink:type = "arc" xlink:from = "Massachusetts"
 xlink:to = "New York" xlink:show="new"
 xlink:actuate="onRequest">
 </arc2>

 <arc3 xlink:type = "arc" xlink:from = "New York"
 xlink:to = "California" xlink:show="new"
 xlink:actuate="onRequest">
 </arc3>
 </link>
</document>

The way these arcs are actually used or activated depends on the software you're working with or that you've created.

Creating Linkbases

When you place out-of-line links in their own documents, those documents are called linkbases. The set of out-of-line
links in a linkbase is called a linkset. You typically have three types of links in a linkbase: extended links, locator links,
and arcs. You cannot have any links that are of the resource type.

Here's an example that converts the extended link example into a linkbase:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's an example that converts the extended link example into a linkbase:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <link xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:type="extended" xlink:title="State Data">
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 1]">
 xlink:title="California"
 xlink:role="California"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 2]">
 xlink:title="Massachusetts"
 xlink:role="Massachusetts"
 </state>
 <state xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "locator"
 xlink:show = "embed"
 xlink:href="http://www.XMLPowerCorp.com/ch10_01.xml#xpointer
 (/descendant::state[position() = 3]">
 xlink:title="New York"
 xlink:role="New York"
 </state>

 <arc1 xlink:type = "arc" xlink:from = "California"
 xlink:to = "Massachusetts" xlink:show="new"
 xlink:actuate="onRequest">
 </arc1>

 <arc2 xlink:type = "arc" xlink:from = "Massachusetts"
 xlink:to = "New York" xlink:show="new"
 xlink:actuate="onRequest">
 </arc2>

 <arc3 xlink:type = "arc" xlink:from = "New York"
 xlink:to = "California" xlink:show="new"
 xlink:actuate="onRequest">
 </arc3>
 </link>
</document>

Up to this point, you haven't heard very much about the xlink:href attribute. You just know that it points at resources.
But there's a great deal more to it. You can use this attribute to point to specific locations or sections of a document.
And to do that, you use XPointers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XPointers
When you use XLinks, you can link to a particular document, but many times, you want to be more precise than that.
XPointers let us point to specific locations inside a document, and they are coming into more common use; for example,
SMIL 2.0 allows, but does not require, XPointers, and SVG also supports some aspects of XPointers.

There isn't much software that supports XPointers in depth today, although yesterday, when you used XPointers to
point to path definitions, you saw that Adobe's SVG Viewer 3 does. Here are two other packages that support XPointers:

Amaya (http://www.w3c.org/Amaya) supports XPointers but does not support the full XPath specification that
you can use with general XPointers.

Fujitsu's XLip (http://www.labs.fujitsu.com/free/xlip/en/index.html) has a full implementation.

The XPointer specification has had a contentious past, and it seems to have been one of the W3C specifications that got
too complex for itself. It was abandoned at one point and split into parts to make it easier to implement. (You can find
the story at http://www.w3.org/XML/2002/10/LinkingImplementations.html.) The XPointer specification is now divided
into three recommendations and a working draft:

http://www.w3.org/TR/xptr-framework/— The XPointer framework, which gives general background and
points to the other three schemes.

http://www.w3.org/TR/xptr-element/— The element scheme.

http://www.w3.org/TR/xptr-xmlns/— The namespace scheme.

http://www.w3.org/TR/xptr-xpointer/— The general XPointer scheme.

The XPointer framework specification introduces the idea of XPointers and indicates how to use barenames (that is,
element names) as XPointers. And it points to the other three parts of the specification that you can use in XPointers:
the element scheme, the namespace scheme, and the general XPointer scheme. We'll take a look at these ways of
creating XPointers today, starting with barenames.

Using Barenames

The XPointer Framework specification (http://www.w3.org/TR/xptr-framework) says that you can use barenames—that
is, just the names of elements—as XPointers. You can append an XPointer to the end of a URI by preceding it with a #,
as in the following fictitious example, which points at the <data> element in www.XMLPowerCorp.com/insurance.xml:

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml#data">
 Health Insurance
</insurance>

Besides using barenames like this, you can also use the element, namespace, and general XPointer schemes. They're
coming up next.

Using the Element Scheme

The element scheme (http://www.w3.org/TR/xptr-element) was broken out of the general XPointer scheme to make
XPointer easier to implement. In the element scheme, you use element() to identify elements by ID, not by name. For
example, to find the element with the ID "data", you could use this expression (technically, you can do this only if the
element's ID is declared in an XML schema or a DTD):

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml#element(data)">
 Health Insurance
</insurance>

You can also specify child sequences by number; for example, to pick out the <data> element's third child element and
then identify that element's first child element, you can use this XPath-like expression:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

then identify that element's first child element, you can use this XPath-like expression:

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml#element(data/3/1)">
 Health Insurance
</insurance>

As you can see, the element scheme lets you specify an element by ID, and you can also add location steps, by using
numbers, to pick out child elements.

Using the Namespace Scheme

The namespace scheme (http://www.w3.org/TR/xptr-xmlns) indicates how to use namespaces when pointing to data.
For example, if the <data> element you want to pick out is part of the xpc (for XML Power Corp.) namespace, you could
specify that element this way:

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml#xmlns(xpc=
 "http:/XMLPowerCorp)xpc:data">
 Health Insurance
</insurance>

This XPointer picks out <xpc:data> in the document www.XMLPowerCorp.com/insurance.xml.

Using the XPointer Scheme

Because XPointer wasn't gaining much acceptance in its original very general and somewhat complex form, the W3C
split the usage for barenames, the element scheme, and the namespace scheme away from the general XPointers to
make XPointer easier to implement. However, the original form of XPointers is still part of the XPointer specification,
although it's still in working draft form (http://www.w3.org/TR/xptr-xpointer). This is where the real meat of XPointer
lies because you can use XPath expressions to point to exactly what you want; in fact, the XPointer scheme extends
XPath. Here's what a full XPointer might look like—note that you use xpointer() here:

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.XMLPowerCorp.com/insurance.xml#xpointer(
 /child::*[position()=119]/child::*[position()=last()])">
 Health Insurance
</insurance>

This picks out the last child of the 119th element in www.XMLPowerCorp.com/insurance.xml. As you can see, you can use
full XPath expressions with general XPointers.

You can also use the /n/m type of child identification, as in the element scheme. For example, this long expression:

http://www.XMLPowerCorp.com/ch10_01.xml#xpointer(
/child::*[position()=1]/child::*[position()=2]/child::*[position()=3])

can be abbreviated as this:

http://www.XMLPowerCorp.com/ch10_01.xml#1/2/3

In addition, the general XPointer scheme extends XPath by letting us select points and ranges besides normal XPath
nodes. A point is a specific location in a document, and a range is made up of everything between two points. To
support points and ranges, the general XPointer scheme extends the concept of nodes to locations. A location is an
XPath node, a point, or a range. Node sets become location sets in the XPointer specification.

Although XPointers use the same axes as XPaths, there are some new node tests. These are the node tests you can use
with XPointers:

*— Matches any element.

node()— Matches any node.

text()— Matches a text node.

comment()— Matches a comment node.

processing-instruction()— Matches a processing instruction node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

processing-instruction()— Matches a processing instruction node.

point()— Matches a point in a resource.

range()— Matches a range in a resource.

Note in particular the last two—point() and range(). These correspond to the two new constructs added in XPointers,
points and ranges, and you'll see more on them today.

General XPointers also make some additions to the functions that return location sets (that is, node sets in XPath). You
can use the here() function to refer to the current element. This can be useful when you're working among the nodes of
an element and want to refer to the current element or another node in the current element. For example, you might
want to refer to the fifth previous <name> element of the current element, and you could do that this way:

here()/preceding-sibling::name[position() = 5]

In addition to here(), you can also use the origin() function, which is much like the here() function but is used with out-of-
line links. This function refers to the original element from which the link was activated, even if that element is in
another document.

Creating XPointer Points

To define an XPointer point, you use two items—a node and an index that can hold a positive integer or zero. The node
specifies an origin for the point, and the index indicates how far the point you want is from that origin.

There are two different ways of measuring the index: in terms of characters in the document and in terms of a number
of nodes, and you'll take a look at them here, as well as how to use the functions that work with points.

Measuring in Characters

If the starting node can contain only text, but not any child nodes, then the index is measured in characters. Points like
these are called character-points. The index of a character-point must be a positive integer or zero and less than or
equal to the length of the text string in the node. If the index is zero, the point is immediately before the first
character; an index of 5 locates the point immediately after the fifth character. Character-points do not have preceding
or following siblings or children.

Here's an example that treats <DOCUMENT> as a container node in the document:

<data>
Hello!
</data>

In this example, there are six character-points, one before each character. The character-point at Index 0 is right
before the first character, H, the character-point at Index 1 is just before the e, and so forth. Note also that the general
XPointer specification collapses all consecutive whitespace into a single space for counting purposes.

Measuring in Nodes

When the start node, also called the container node, has child nodes (in other words, it's an element node or the root
node), the index of a point is measured in child nodes.

For an index of zero, the point is just before any child node. An index of 7 specifies a point immediately after the
seventh child node.

Using Point Functions

When it comes to creating points, you can use the point() function with a predicate, like this:

point()[position()=5]

For example, say that you want to locate a point right before the l in California in the states example from Day 10,
"Working with XSL Formatting Objects," ch10_01.xml. You could do that like this:

xpointer(/states/state[1]/name/text()/point()[position() = 2])

Creating XPointer Ranges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When it comes to creating ranges, all you need are two points: a start point and an end point. This is true as long as
they are in the same document and the start point is before or the same as the end point; if the start point and the end
point are the same point, the range you create is called a collapsed range.

The general XPointer specification adds to the functions in XPath a number of functions to handle ranges:

range(location-set)— Takes the locations you passed to it and returns a range that completely covers the
locations.

range-inside(location-set)— Returns a range or ranges covering each location inside the location set; if you
pass an element, the result is a range that encloses all that is inside the element.

range-to(location-set)— Returns a range for each location in the location set.

Besides these functions, the XPointer specification includes a function for string matching, string-range(). You can use this
function to return a range for every match to a search string. Here's how to use string-range():

string-range(location-set, string, [index, [length]])

For example, the following expression returns a location set of ranges for all matches to the word Massachusetts:

string-range(/*, "Massachusetts")

You can use the [] operator to extract a specific match from the location set returned by this function. For example, the
following expression returns a range covering the second match to Massachusetts:

string-range(/*, "Massachusetts")[2]

As you've seen so far today, there's a lot more power with XLinks and XPointers than you'll find with simple HTML
hyperlinks. The software implementations of XLink and XPointer have been slow in arriving, but more and more are
appearing now. XPointer in particular has been slow to be picked up because of the complexity of the general XPointer
scheme, which you've just seen, but with the new division into element and namespace schemes, use of XPointer
should accelerate.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XBase
Before you leave our discussion of linking entirely, there's one more W3C specification that you need to know about:
XBase. This specification lets us specify a base URI for XML documents, just like the <BASE> element in HTML
documents. You can use the xml:base attribute in an XML document to set the document's base URI. The other URIs in
the document are then considered relative URIs, and the URI specified as the base is used to resolve them.

The XBase specification has been W3C recommendation since June 27, 2001, and you can find it at
http://www.w3.org/TR/xmlbase. The following example uses XBase—note that xml:base uses the xml namespace, not
the xlink namespace (the xml namespace is predefined in XML as "http://www.w3.org/XML/1998/namespace"):

<insurance xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xml:base="http://www.XMLPowerCorp.com"
 xlink:href="data.xml">
 Health Insurance
</insurance>

This example sets the base URI of the document to the fictitious www.XMLPowerCorp.com, and the URIs in it, such as the
xlink:href value of data.xml, are resolved with respect to that base.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XForms
Like the other elements in today's discussion, XForms come from a parallel construct in HTML—Web forms. A Web form
lets us display controls such as buttons or list boxes in an HTML page, and XForms are intended to do the same thing in
XML. XForms 1.0 is in candidate recommendation form, and you can find the specification at
http://www.w3.org/TR/xforms/. XForms were originally designed to work with XHTML, but they've been extended to
any XML document.

XForms not only bring forms to XML, but they're also designed to improve them. As with style sheets, the emphasis is
on separating presentation from data. Here's what W3C says about XForms:

The current design of Web forms doesn't separate the purpose from the presentation of a form.
XForms, in contrast, are comprised of separate sections that describe what the form does, and how the
form looks. This allows for flexible presentation options, including classic XHTML forms, to be attached
to an XML form definition.

Listing 14.5 shows an example to help you see how XForms work.

Listing 14.5 Using XForms (ch14_05.xml)

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 <xforms:model>
 <xforms:submission localfile="data.xml"/>
 <xforms:instance>
 <data xmlns="">
 <input>Hello!</input>
 <select>1</select>
 <selectboolean>true</selectboolean>
 <message>Hello!</message>
 </data>
 </xforms:instance>
 </xforms:model>
 </head>

 <body>
 <h1>Using XForms</h1>
 <p>Input Control</p>
 <xforms:input ref="/data/input"></xforms:input>

 <p>Select Control</p>
 <xforms:select appearance="full" ref="/data/select">
 <xforms:item>
 <xforms:value>1</xforms:value>
 <xforms:label>Item 1</xforms:label>
 </xforms:item>
 <xforms:item>
 <xforms:value>2</xforms:value>
 <xforms:label>Item 2</xforms:label>
 </xforms:item>
 <xforms:item>
 <xforms:value>3</xforms:value>
 <xforms:label>Item 3</xforms:label>
 </xforms:item>
 </xforms:select>

 <p>Button</p>
 <xforms:trigger>
 <xforms:label>Click Me</xforms:label>
 <xforms:message ev:event="click" level="ephemeral"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xforms:message ev:event="click" level="ephemeral"
 ref="/data/message"/>
 </xforms:trigger>

 <p>Select Boolean</p>
 <xforms:selectboolean ref="/data/selectboolean">
 <xforms:label>Click Me</xforms:label>
 </xforms:selectboolean>

 <p>Submit and Reset Buttons</p>
 <xforms:submit>
 <xforms:label>Submit</xforms:label>
 </xforms:submit>

 <xforms:trigger>
 <xforms:label>Reset</xforms:label>
 <xforms:reset ev:event="DOMActivate"/>
 </xforms:trigger>
 </body>
</html>

A number of software packages support XForms to some extent; here's a sampling:

X-Smiles (http://www.x-smiles.org)— X-Smiles is a Java-based XML browser from Helsinki University of
Technology. X-Smiles has good support for the XForms Candidate Recommendation version, and it uses XForms
together with XHTML, SMIL, SVG, and XSL-FO.

Mozquito XForms (http://www.mozquito.com)— Mozquito XForms is an XForms implementation written in
ActionScript for Flash 6.

FormsPlayer (http://www.FormsPlayer.com)— FormsPlayer is an XForms processor plug-in for Internet
Explorer 6, Service Pack 1.

Novell XForms (http://www.novell.com/xforms)— Novell XForms is a Java application that is designed to
provide developers with a hands-on introduction to XForms.

LiquidOffice (http://www.cardiff.com/LiquidOffice)— LiquidOffice provides support for XForms.

Chiba project (http://sourceforge.net/projects/chiba)— Chiba is an implementation of the W3C XForms
standard that supports generic, XML-based form processing for the Web.

NMatrix (http://sourceforge.net/projects/dotnetopensrc)— NMatrix provides some support for XForms.

XMLForm (http://xml.apache.org/cocoon/userdocs/concepts/xmlform.html)— XMLForm is an open-
source, server-side implementation of a subset of XForms that is integrated into Apache Cocoon.

TrustForm System (http://trustform.comsquare.co.kr)— TrustForm System is a client-side
implementation that is based on the XForms Working Draft.

AchieveForms (http://www.achieveforms.com)— AchieveForms is a server-based XForms designer with a
Web browser interface that can output forms as XForms and can process completed forms from an XForms
browser to email recipients and databases and can forward XML files of completed form data.

jXForms (http://jxforms.cybernd.at)— jXForms supports working with XForms inside Java-based
applications.

XServerForms (http://sourceforge.net/projects/xserverforms)— XServerForms is an open-source
framework for building Web applications that includes support for XForms.

Xero (http://typeasoft.com/product/xero)— Xero is a client-side XForms processor that works in Internet
Explorer 6.0 and later.

XML Forms Package (http://www.alphaworks.ibm.com/tech/xmlforms)— The IBM XML Forms
Package consists of two main components: the data model component and the client component. The data
model component supports creating, accessing, and modifying XForms data models. The client component
supports an XForms processor control and a Java XForms compiler.

FormFaces (http://www.formfaces.com)— FormFaces is a server-side translator to HTML and JavaScript.

Today you'll use the XSmiles XML browser, which you can get for free from http://www.x-smiles.org. Figure 14.3 shows
ch14_05.xml in the XSmiles browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ch14_05.xml in the XSmiles browser.

Figure 14.3. An XForms example in the XSmiles browser.

Figure 14.3 shows the various controls you'll work with in this example—an input control (like an HTML text field), a
select control (like the HTML select controls), a button, and a select Boolean control (like an HTML check box). When
the user makes selections in this XForm and clicks the Submit button at the bottom, a new XML document with the data
from those controls is generated, as you can see in Figure 14.4.

Figure 14.4. Data from the XForms example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's what that XML data from the XForm looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<data xmlns="" xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 <input>Hello!</input>
 <select>2</select>
 <selectboolean>true</selectboolean>
 <message>Hello!</message>
</data>

Note that the <input> element contains the text data from the input control, the <select> element contains the number
of the selection the user made in the select control, and the <selectboolean> element contains the setting of the select
Boolean control, which is true because it displays a check mark.

An XForm displays controls that you can use, and when you click a Submit button, that data is made accessible to you.
Here are the controls you can use in XForms:

input control— Acts like an HTML text field.

secret control— Acts like an HTML hidden field.

textarea control— Acts like an HTML text area control.

output control— Displays output.

upload control— Acts like an HTML upload control.

range control— Allows selection from a sequential range of values.

trigger control— Acts like an HTML <button> element.

submit control— Acts like an HTML submit button.

select control— Acts like an HTML select control.

select1 control— Acts like an HTML single-selection HTML control.

To see what's going on here, let's take apart the XForms example ch14_05.xml in the following sections.

Writing XForms

XForms are used in XML documents, typically in XHTML, so each one needs to start off with an XML declaration, like
this:

<?xml version="1.0" encoding="UTF-8"?>

If the document is written in XHTML, as this example is, you can include an XHTML <!DOCTYPE> element:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 .
 .
 .

In this example, however, you're going to omit the XHTML <!DOCTYPE> element for the sake of brevity (so XSmiles
won't have to download the entire XHTML 1.0 DTD and check it against the document each time the document is
loaded). The next element, the document element, is the <html> element, and you use it to put everything into the
XHTML namespace and define two other namespaces—ev for XForms events (such as button clicks) and xforms for
XForms elements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XForms elements:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">
 .
 .
 .
</html>

Separating Data from a Presentation

A major feature of XForms is the separation of data from presentation; this means that the data for the controls in an
XForm is stored separately from the presentation part. You use the <xforms:model> element to specify what data an
XForm should hold. For example, you can create an XForms model in the document's <head> element:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 <xforms:model>
 .
 .
 .
 </xforms:model>
 </head>

</html>

Inside the model, you specify the submission mechanism for the data in an <xforms:submission> element. Although you
could have the data from the XForm sent to a general URI, in this case you should have it stored in a local data file,
data.xml:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 <xforms:model>
 <xforms:submission localfile="data.xml"/>
 .
 .
 .
 </xforms:model>
 </head>

</html>

You store the actual data in an <xforms:instance> element. In this example you'll have an input control whose data will
be stored in an <input> element, a select control whose data will be stored in a <select> element, and so on. Here's
what that looks like, with the default data for the controls stored:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 <xforms:model>
 <xforms:submission localfile="data.xml"/>
 <xforms:instance>
 <data xmlns="">
 <input>Hello!</input>
 <select>1</select>
 <selectboolean>true</selectboolean>
 <message>Hello!</message>
 </data>
 </xforms:instance>
 </xforms:model>
 </head>
 .
 .
 .
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

You have now completed the <head> section of the example, where the data is stored. In the <body> section, you'll
start creating the controls you'll use, starting with the input control.

Creating Input Controls

You create an input control, much as you do an HTML text field, by using the <input> element. You tie this control to the
data you've stored in the <input> element in the <head> element by using the ref attribute, which you'll set to
"/data/input" in this example:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 .
 .
 .
 </head>

 <body>
 <h1>Using XForms</h1>
 <p>Input Control</p>
 <xforms:input ref="/data/input"></xforms:input>
 .
 .
 .
 </body>
</html>

Now when the input control first appears, it will display the initial text in the <data> element, "Hello!", as shown in
Figure 14.3. If the user changes that text and clicks the Submit button, the new text will be stored in that <data>
element in the resulting XML file that the XForm creates, data.xml.

Creating Select Controls

Besides input controls, you can also display select controls, which look much like HTML select controls. A select control
can display either a list of items to choose from or a drop-down list, and you create these controls by using the <select>
element or the <select1> element (which creates single-selection select controls). In the case of our example, you need
to store the current selection number in the select control in the <data> element's <select> element by assigning the
select control's ref attribute to "/data/select", and you should display a list of all items in the control by setting the
appearance attribute to "full".

To create the items in the select control, you use the <item> element; to label the item, you use the <label> element;
and to assign a value to each item, you use the <value> element. When the user selects an item, that item's value is
stored in the <select> element in the head's <data> element. Here's what the select control looks like (refer to Figure
14.3):

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 .
 .
 .
 </head>

 <body>
 <h1>Using XForms</h1>
 .
 .
 .
 <p>Select Control</p>
 <xforms:select appearance="full" ref="/data/select">
 <xforms:item>
 <xforms:value>1</xforms:value>
 <xforms:label>Item 1</xforms:label>
 </xforms:item>
 <xforms:item>
 <xforms:value>2</xforms:value>
 <xforms:label>Item 2</xforms:label>
 </xforms:item>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xforms:item>
 <xforms:item>
 <xforms:value>3</xforms:value>
 <xforms:label>Item 3</xforms:label>
 </xforms:item>
 </xforms:select>
 .
 .
 .
 </body>
</html>

Creating Buttons

XForms also support buttons; in our example, clicking the Click Me button displays a message box that shows the text
stored in the <message> element in the document head's <data> element:

<xforms:instance>
 <data xmlns="">
 <input>Hello!</input>
 <select>1</select>
 <selectboolean>true</selectboolean>
 <message>Hello!</message>
 </data>
</xforms:instance>

To display the text "Hello!" in a message box, you can use the XForms <message> element. To display the Click Me
button, you use a <trigger> element and give it a caption by using the <label> element. To display a message box when
the button is clicked, you set the <message> element's event attribute to "click"; to display the message, you set the
message box's ref attribute to "/data/message". To make the message box disappear automatically after a few seconds,
you can set its level attribute to "ephemeral":

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 .
 .
 .
 </head>

 <body>
 <h1>Using XForms</h1>
 .
 .
 .
 <p>Button</p>
 <xforms:trigger>
 <xforms:label>Click Me</xforms:label>
 <xforms:message ev:event="click" level="ephemeral"
 ref="/data/message"/>
 </xforms:trigger>
 .
 .
 .
 </body>
</html>

You can see the results in Figure 14.5. When the user clicks the button, the message box shown in the figure displays
the message for a few seconds and then disappears.

Figure 14.5. Creating XForms buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Select Booleans

XForms select Booleans are much like HTML check boxes. They are easy to use: You just use the <selectboolean>
element to create one and a <label> element to give it a label. You can connect the select Boolean to the data in the
<data> element's <selectboolean> element by using the ref attribute, like this:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 .
 .
 .
 </head>

 <body>
 <h1>Using XForms</h1>
 .
 .
 .
 <p>Select Boolean</p>
 <xforms:selectboolean ref="/data/selectboolean">
 <xforms:label>Click Me</xforms:label>
 </xforms:selectboolean>
 .
 .
 .
 </body>
</html>

You can see the results in Figure 14.3, where the select Boolean displays a check box. The setting of this control, true or
false, is stored in the <selectboolean> element of the resulting XML document, data.xml.

Creating Submit and Reset Buttons

The final controls for the XForms example are Submit and Reset buttons; the Submit button submits the XForm and
stores its data in data.xml, and the Reset button resets the data in the XForm back to its original value. These controls
are supported by their own elements: <submit> and <reset>. Here's how to use them:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 .
 .
 .
 </head>

 <body>
 <h1>Using XForms</h1>
 .
 .
 .
 <p>Submit and Reset Buttons</p>
 <xforms:submit>
 <xforms:label>Submit</xforms:label>
 </xforms:submit>

 <xforms:trigger>
 <xforms:label>Reset</xforms:label>
 <xforms:reset ev:event="DOMActivate"/>
 </xforms:trigger>
 </body>
</html>

Figure 14.3 shows the Submit and Reset buttons, at the bottom. Clicking the Submit button stores the controls' data in
the local file data.xml, as you've seen.

That completes your look at XForms and our discussion for today. Tomorrow, you're going to start working with XML
and JavaScript.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you took a look at three XML specifications: XLink, XPointer, and XForms. All three of these XML applications
were taken over from HTML into XML by the W3C.

You use XLinks to create hyperlinks in XML. You've seen that any XML element can be an XLink; all you have to do is
use the correct attributes. The one required attribute, xlink:type, sets the type of XLink; possible values are "simple",
"extended", "locator", "arc", "resource", "title", and "none".

Simple XLinks are very much like HTML hyperlinks. To create them, you just set the xlink:href and xlink:type attributes.
Extended XLinks can get quite complex, however, as you've seen today. Today you talked about inline and out-of-line
XLinks in extended links, and you created extended links that included arcs, or directional links, by using the xlink:from
and xlink:to attributes.

XPointers let us narrow down searches—down to specific elements or even specific characters in text. The XPointer
specification is now divided into three recommendations—the XPointer framework, the element scheme, and the
namespace scheme—along with the working draft for the general XPointer scheme. The W3C created this division to
make XPointers easier to implement.

Today we talked about how to use the XPointer framework to use element names—barenames—as XPointers; the
element scheme to identify elements by ID; and the namespace scheme to use namespaces in XPointers.

The general XPointer scheme is where the full power of XPointers lies, even though there are very few implementations
of this scheme yet. General XPointers are powerful because they support full XPath expressions, as well as two more
data types—points and ranges.

XForms are the XML analog of HTML Web forms, and you use them to display controls such as buttons and select
controls. Today you saw that one of the major ideas behind XForms is to separate data from presentation, and,
accordingly, XForms store their data in an XForms model, typically in an XHTML document's <head> section. The
presentation of the actual controls the XForm displays is done with specialized elements such as <input> and <select>.

Tomorrow you'll start working with XML and JavaScript.

Q&A

Q1: How can I declare XLink elements and attributes to make my documents valid?

A1: Here's an example, which declares a simple XLink element, <link>, in a DTD:

<!ELEMENT link>
<!ATTLIST link
 xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink"
 xlink:type CDATA #FIXED "simple"
 xlink:href CDATA #REQUIRED
 xlink:show (new | replace | embed | none | other) #IMPLIED "replace">

Q2: An XForm input control handles only a single line of text. What can I use if I want to display
multiple lines of text?

A2: You can use the XForms <textarea> element to display multiple lines of text. Here's an example:

<xforms:textarea ref="/data/textarea">
 <xforms:label>Textarea</xforms:label>
</xforms:textarea>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What types of XLinks can you create?

2: What attribute is required in every XLink?

3: How would you specify that you want the target document to appear where the current document is now
when an XLink is activated?

4: What element do you use in an XHTML document's <head> element to specify how an XForm's data should
be structured?

5: How can you store data for an input control in an XForm?

Exercises

1: Create an XLink that includes a general XPointer to point to the area of Massachusetts in the ch10_01.xml
XML document from Day 10.

2: Create an XForms example that uses three input controls to read a user's name, address, and telephone
number. Have the XForm store that data in a local file, userdata.xml. If you have downloaded the XSmiles
XML browser, test your work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III. In Review
In Part III we took a look at some in-depth uses of XML, including XHTML—the reformulation of HTML 4.0 in XML form—
SMIL and SVG, XLinks, XPointers, and XForms.

The W3C introduced XHTML with the goal of allowing HTML documents to be validated as true XML documents. There
are a number of forms of XHTML:

XHTML 1.0 Transitional is most like HTML 4.0.

XHTML 1.0 Frameset is the same as XHTML 1.0 Transitional but is used with documents that use frames.

XHTML 1.1 is a module-based version of XHTML. XHTML Basic is formulated for devices that will only support
smaller implementations of XHTML.

XHTML 2.0 is a new version that omits all display elements, using style sheets instead.

XHTML 1.0 is built to match HTML closely; for example, the XHTML document element is <html>. But because XHTML
documents are also XML documents, XML rules apply. For example, elements that are not empty need closing tags,
attribute values must be quoted, and empty elements must end in />.

You also need a <!DOCTYPE> element in XHTML, and this element must appear before the document element. In the
<html> document element, you must declare the namespace as <html xmlns="http://www.w3.org/1999/xhtml">. Here's an
example of an XHTML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Using XHTML
 </title>
 </head>

 <body>
 <h1>
 Welcome to my XHTML-compliant page!
 </h1>
 This is an XHTML document.

 Do you like it?
 </body>
</html>

It's apparent how much this document resembles HTML, but it's also apparent that it's XML.

In Part III you saw that XHTML elements mirror HTML elements so well that you can easily convert HTML documents
into XHTML if you know the XHTML rules. For example, you can easily convert this HTML document:

<HTML>
 <HEAD>
 <TITLE>
 Want to read about HTML?
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Want to read about HTML?
 </H1>

 Read all about
 HTML.
 </BODY>
</HTML>

into this XHTML document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

into this XHTML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <title>
 Want to read about XHTML?
 </title>
 </head>

 <body>
 <h1>
 Want to read about XHTML?
 </h1>

 Read all about
 HTML.
</html>

The following is an XHTML example that creates a table by using the HTML analogs <TABLE>, <TR>, and <TD>—that is,
<table>, <tr>, and <td>—to hold a tic-tac-toe game:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>
 Formatting Tables in XHTML
 </title>
 </head>

 <body>
 <h1>
 Formatting Tables in XHTML
 </h1>
 <table border="1">
 <tr>
 <th>X</th>
 <th>O</th>
 <th>X</th>
 </tr>
 <tr>
 <td>O</td>
 <td>X</td>
 <td>O</td>
 </tr>
 <tr>
 <td>X</td>
 <td>O</td>
 <td>X</td>
 </tr>
 </table>
 </body>
</html>

SVG is all about creating graphics, and you can use a browser plug-in to support SVG, as you did in Part III. SVG
documents use the <svg> document element; you were able to create basic shapes by using the <circle> element to
create circles, the <line> element to create lines, the <rect> element to create rectangles, the <polyline> element to
create polyline figures, the <ellipse> element to create ellipses, and the <polygon> element to create polygons.

Many elements are already built in to SVG. For example, the <group> element lets you group elements together so you
can move or rotate them all at once. You can script elements by using the <script> element. The <animate> SVG
element lets you animate SVG elements by setting how to change the values of their attributes over time. You can also
create all kinds of graphic effects. Here's an SVG example that creates a linear gradient by using the <linearGradient>
element:

<?xml version="1.0" encoding="UTF-8"?>
<svg xmlns="http://www.w3.org/2000/svg">
 <text y="40" style="font-size:24pt">
 Handling gradients
 </text>
 <defs>
 <linearGradient id="gradient1">
 <stop offset="0%" stop-color="#000000" />
 <stop offset="100%" stop-color="#00FF00" />
 </linearGradient>
 </defs>

 <rect fill="url(#gradient1)" stroke="green" stroke-width="5"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <rect fill="url(#gradient1)" stroke="green" stroke-width="5"
 x="100" y="200" width="200" height="400"/>
</svg>

SMIL is designed to create multimedia presentations by using XML. For example, here's how a SMIL presentation might
present slides, play music, and display text:

<smil>
 <head>
 <layout>
 <root-layout width="400" height="300" background-color="white"/>
 <region id="topRegion" title="topRegion" left="0" top="0"
 width="400" height="200"/>
 <region id="caption" title="caption" left="0" top="201"
 width="400" height="100"/>
 </layout>
 </head>

 <body>
 <par>
 <seq>
 <par>
 <img region="topRegion" src="slide1.jpg"
 type="image/jpeg" dur="20s"/>
 <text region="caption" src="image1.txt"
 type="text/plain" dur="20s"/>
 <audio src="xml1.au" region="audio"
 type="audio/x-au" dur="20s"/>
 </par>
 <par>
 <img region="topRegion" src="slide2.jpg"
 type="image/jpeg" dur="20s"/>
 <text region="caption" src="image2.txt"
 type="text/plain" dur="20s"/>
 <audio src="xml2.au" region="audio"
 type="audio/x-au" dur="20s"/>
 </par>
 <par>
 <img region="topRegion" src="slide3.jpg"
 type="image/jpeg" dur="20s"/>
 <text region="caption" src="image3.txt"
 type="text/plain" dur="20s"/>
 <audio src="xml3.au" region="audio"
 type="audio/x-au" dur="20s"/>
 </par>
 </seq>
 </par>
 </body>
</smil>

XLinks are used to create hyperlinks in XML. Any XML element can be an XLink if you use the correct attributes. In
particular, you need to use one attribute, xlink:type, to set the type of XLink to one of these values: "simple", "extended",
"locator", "arc", "resource", "title", or "none".

Simple XLinks predominate today because they're much like HTML hyperlinks. To create a simple XLink, you set the
xlink:href and xlink:type attributes. The following example, which treats a simple XLink very much like an HTML hyperlink,
will work in both XML browsers and HTML browsers that support JavaScript:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="style.css"?>

<insurance>
 <title>
 Markup Information
 </title>
 You can find more about markup languages
 <link xmlns:xlink = "http://www.w3.org/1999/xlink"
 xlink:type = "simple"
 xlink:show = "new"
 xlink:href="http://www.w3.org/MarkUp/Activity.html"
 onClick="location.href='../www.w3.org/MarkUp/Activity.html'">
 here.
 </link>
</insurance>

XPointers let you get even more specific than XLinks, but there's currently even less implementation of XPointers than
of XLinks. The XPointer specification is now divided into three recommendations—the XPointer framework, the element
scheme, and the namespace scheme—along with the working draft for the general XPointer scheme.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scheme, and the namespace scheme—along with the working draft for the general XPointer scheme.

XForms show a great deal of promise. XForms are the XML counterpart of HTML Web forms, and you can use them to
support controls such as buttons, check boxes, and radio buttons.

A major idea behind XForms is to separate data from presentation, so XForms store their data in an XForms model,
typically stored in an XHTML's <head> section. The presentation of the actual controls that an XForm displays is done
with specialized elements such as <button> and <select>.

For example, the following example is an XForm that stores its data in the <head> section and displays two check boxes
as well as Submit and Cancel buttons. Here's what the <head> section, which holds the data for the two check boxes,
looks like:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ev="http://www.w3.org/2001/xml-events"
 xmlns:xforms="http://www.w3.org/2002/xforms/cr">

 <head>
 <xforms:model>
 <xforms:submission localfile="data.xml"/>
 <xforms:instance>
 <data xmlns="">
 <selectboolean1>true</selectboolean1>
 <selectboolean2>true</selectboolean2>
 </data>
 </xforms:instance>
 </xforms:model>
 </head>
 .
 .
 .

In the presentation of these controls in the <body> section, you just refer to the location of their data storage in the
<head> section:

 <body>
 <h1>Using XForms</h1>

 <xforms:selectboolean ref="/data/selectboolean1">
 <xforms:label>Click me</xforms:label>
 </xforms:selectboolean>

 <xforms:selectboolean ref="/data/selectboolean2">
 <xforms:label>Click me too!</xforms:label>
 </xforms:selectboolean>

 <p>Submit and Reset Buttons</p>
 <xforms:submit>
 <xforms:label>Submit</xforms:label>
 </xforms:submit>

 <xforms:trigger>
 <xforms:label>Reset</xforms:label>
 <xforms:reset ev:event="DOMActivate"/>
 </xforms:trigger>
 </body>
</html>

And that's it for Part III. In Part IV you're going to start working with programming and XML to take advantage of the
full power of XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part IV: At a Glance
Programming and XML
Part IV looks at how to use programming to get the most out of XML. Programming has a great deal to
offer the XML author, and you'll start this part by taking a look at working with JavaScript in Web pages.

By using JavaScript, you can load XML documents and parse them, searching through their data for an
item. You're going to see how to do that, as well as how to validate XML documents that use either
DTDs or XML schemas by using JavaScript.

You'll also take a look at how to use XML with Java in this part. Versions 1.4 and later of Java have a
great deal of support for XML built in. You're going to take advantage of that support in both the XML
Document Object Model (DOM) and the Simple API for XML (SAX).

In this part you're also going to take a look at how to work with the Simple Object Access Protocol
(SOAP). SOAP is an XML-based protocol that lets applications communicate on the Internet, and you'll
take a look at working with SOAP both with Java and .NET programming. (If you're a .NET programmer,
you should take a look at Day 21, which is dedicated to .NET XML programming.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 15. Using JavaScript and XML
Starting today, we're going to begin working with programming and XML. Today's discussion focuses on JavaScript and
XML, and here's a list of today's topics:

Using the W3C XML DOM

Using DOM objects

Using XML data islands

Accessing data in XML documents

Parsing XML documents

Validating XML documents by using a DTD

NOTE

Today you'll use JavaScript because it's one of the languages commonly used with XML. If you don't know
JavaScript but have programmed before, you should be able to easily pick up JavaScript from what you do
today. You can also find plenty of JavaScript resources online; a casual search for "JavaScript tutorial"
turns up more than 17,000 matches.

The official documentation for JavaScript 1.3 is at
http://developer.netscape.com/docs/manuals/index.html, and the official documentation for JavaScript 2.0
is at http://developer.netscape.com/docs/manuals/index.html. The official documentation for JScript 5.6,
the version used in Internet Explorer, is currently at http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/script56/html/js56jsoriJScript.asp (note, however, that this is a Microsoft URL, and
Microsoft reorganizes its sites continuously, which means that by the time you read this book, the URL may
be obsolete).

The W3C created the Document Object Model (DOM) to let you work with XML documents. Using the DOM is a way of
looking at XML documents in programming terms, as you'll see today. Before the DOM standardized things, each XML
processor had its own way of handling XML—and all the processors kept changing. Now, things have quieted down and
stabilized because of the W3C DOM, and we'll start discussing it today.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing the W3C DOM
When you're dealing with programming, you need some way of working with the data in XML documents, and the W3C
DOM gives you that. The DOM lets you consider an XML document as a tree of nodes. In the DOM, every data item is a
node, and a child element or enclosed text becomes a subnode. When everything in a document—text, attributes,
elements, and so on—becomes a node, you can use some well-defined functions to access and work with those nodes in
a standard way. These are the node types in the DOM:

Element

Attribute

Text

CDATA section

Entity reference

Entity

Processing instruction

Comment

Document

Document type

Document fragment

Notation

Let's take a look at a sample XML document for today's work:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <title>
 The Report
 </title>
 <text>
 All clear on the Western front.
 </text>
</document>

This document has an element node, <document>, that has two child nodes, <title> and <text>, and these two nodes are
siblings of each other. Each of the <title> and <text> element nodes contains text, which is treated as a child node.
Here's what this document looks like as a tree of nodes:

 <document>
 |

 | |
 <title> <text>
 | |
The Report All clear on the Western front.

When you use the methods defined in the W3C DOM, you can navigate along the various branches of a document's tree
by using methods such as nextChild to move to the next child node. Using methods in this way in the W3C DOM and
becoming familiar with how they work are a good part of today's work.

The DOM Levels

There are four different levels of the DOM specification:

Level 0— There actually is no DOM Level 0, but that's how W3C refers to the DOM in early versions of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Level 0— There actually is no DOM Level 0, but that's how W3C refers to the DOM in early versions of the
popular browsers—Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0.

Level 1— This level is a W3C recommendation. You can find the documentation for this level at
http://www.w3.org/TR/REC-DOM-Level-1.

Level 2— Now a recommendation, this level of the DOM is more advanced than Level 1 and includes a style
sheet object model. It also lets you traverse a document, has a built-in event model, and supports XML
namespaces. You can find the documentation for this level at http://www.w3.org/TR/DOM-Level-2.

Level 3— This level is still in the working draft stage and will address document loading and saving. It will also
address document views and formatting, event groups, and more. You can find the core working draft at
http://www.w3.org/TR/DOM-Level-3-Core.

From a JavaScript perspective, the only complete DOM implementation is in Internet Explorer 6 and later, which
supports DOM Level 1. You can read all about Internet Explorer's support for the DOM at
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dom/domoverview.asp. (Note, however, that
Microsoft has the habit of changing its URLs very often, so by the time you read this book, this URL may be out-of-
date.)

Today you'll be working with DOM Level 1—the only level of the DOM in widespread use today. You'll also be working
with objects in JavaScript today. For example, there's an object that corresponds to the document itself, an object that
corresponds to elements, one that corresponds to attributes, and so forth. When you've have an object corresponding
to an element, for example, you can use the object's methods and properties to learn all about that element—what its
name is, how many children it has, and so on. To dig into the programming, then, you need to understand the objects
in the DOM.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing the DOM Objects
Here's an overview of the W3C DOM Level 1 objects:

Document— The document object

DocumentFragment— A reference to a fragment of a document

DocumentType— A reference to the <!DOCTYPE> element

EntityReference— A reference to an entity

Element— An element

Attr— An attribute

ProcessingInstruction— A processing instruction

Comment— The content of an XML comment

Text— The text content of an element or attribute

CDATASection— A CDATA section.

Entity— A parsed or unparsed entity in the XML document

Notation— A notation

Node— A single node in the document tree

NodeList— A list of node objects; allows iteration and indexed access operations

NamedNodeMap— A collection that allows iteration and access by name to the collection of attributes

That's the official list of objects. However, Microsoft, going its own way as usual, supports the W3C DOM but uses its
own names for the programming objects:

DOMDocument— The first node of the XML DOM tree

XMLDOMNode— A single node in the document tree

XMLDOMNodeList— A list of node objects

XMLDOMNamedNodeMap— A map of named nodes; supports access by name to a collection of attributes

XMLDOMParseError— Data about an error; includes error number, line number, character position, and a text
description

XMLHttpRequest— An object that supports communication with HTTP servers

XTLRuntime— An object that supports methods that you can call from XSL style sheets

XMLDOMAttribute— An attribute object

XMLDOMCDATASection— A CDATA section object

XMLDOMCharacterData— An object that supports methods used for text manipulation

XMLDOMComment— A comment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLDOMDocumentFragment— A document fragment object

XMLDOMDocumentType— Data for the document type declaration

XMLDOMElement— An element object

XMLDOMEntity— A parsed or unparsed entity in the XML document

XMLDOMEntityReference— An entity reference node

XMLDOMImplementation— An object that supports general DOM methods

XMLDOMNotation— A notation

XMLDOMProcessingInstruction— A processing instruction

XMLDOMText— The text value of an element or attribute

The list of DOM objects is substantial, so the following sections go through some of the highlights you'll need in code,
starting with the main object, the DOMDocument object.

Using the DOMDocument Object

In the Microsoft version of the DOM, the DOMDocument object is the main object, and it represents the top node in every
document tree. When we're working with the DOM, this is the only object we create directly. Here's how you might
create the DOMDocument object in JavaScript:

function readXMLData()
{
 var xmlDocumentObject
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")
 .
 .
 .

The Microsoft.XMLDOM class used here is an early version of Microsoft's XML support, but it's still supported in recent
versions of Internet Explorer, which means we can use it as a common denominator in our code. The current version,
and the one to use if you can (because it supports the full DOM 1.0 as well as XML schemas), is Microsoft's MSXML
version 4.0, which comes with recent versions of Internet Explorer 6. Here's how to use this version:

function readXMLData()
{
 var xmlDocumentObject
 xmlDocumentObject = new ActiveXObject("MSXML2.DOMDocument.4.0")
 xmlDocumentObject.load("ch15_01.xml")
 .
 .
 .

You can also specify earlier versions of the Microsoft.XMLDOM class by using "MSXML2.DOMDocument.2.0" or
"MSXML2.DOMDocument.3.0".

Here's an overview of the most significant properties of the DOMDocument object:

NOTE

Items that are Microsoft only, not official in the W3C DOM, are marked throughout today's discussion with
an asterisk (*).

attributes— Contains the list of attributes for the node. Read-only.

childNodes— Contains a node list of the child nodes of nodes that may have children. Read-only.

dataType*— Contains the data type for the node. Read/write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataType*— Contains the data type for the node. Read/write.

definition*— Contains the definition of the node in the DTD or schema. Read-only.

doctype— Contains the document type node, which is what specifies the DTD for the document. Read-only.

documentElement— Contains the root element of the document. Read/write.

firstChild— Contains the first child of the current node. Read-only.

lastChild— Contains the last child node of the current node. Read-only.

namespaceURI*— Contains the URI of a namespace. Read-only.

nextSibling— Contains the next sibling node of the current node. Read-only.

nodeName— Contains the qualified name of the element, attribute, or entity reference. Read-only.

nodeType— Contains the node type. Read-only.

nodeTypedValue*— Contains the node's value. Read/write.

nodeTypeString*— Contains the node type, expressed as a string. Read-only.

nodeValue— Contains the text of the node. Read/write.

ondataavailable*— Sets the event handler for the ondataavailable event. Read/write.

onreadystatechange*— Sets the event handler that handles readyState property changes. Read/write.

ontransformnode*— Sets the event handler for the ontransformnode event. Read/write.

ownerDocument— Contains the root of the document that contains this node. Read-only.

parentNode— Contains the parent node of the current node. Read-only.

parsed*— Is set to true if this node has been parsed; false otherwise. Read-only.

parseError*— Contains information about the most recent parsing error. Read-only.

prefix*— Contains the namespace prefix. Read-only.

preserveWhiteSpace*— Is set to true if processing should preserve whitespace; false otherwise. Read/write.

previousSibling— Contains the previous sibling of this node. Read-only.

readyState*— Contains the current browser state of the XML document. Read-only.

text*— Contains the text content of the node and its subtrees. Read/write.

url*— Contains the URL for the most recently loaded XML document. Read-only.

validateOnParse*— Is set to true (the default) if the parser should validate this document on parsing it; false if
not. Read/write.

xml*— Contains the XML text representation of the node and all of its children. Read-only.

Here is an overview of the significant methods for this object:

abort*— Aborts a download.

appendChild— Appends a new child as the last child of the current node.

cloneNode— Returns a node that is a copy of this node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cloneNode— Returns a node that is a copy of this node.

createAttribute— Returns a new attribute, using the given name.

createCDATASection— Returns a CDATA section node that contains the given data.

createComment— Returns a comment node.

createDocumentFragment— Returns an empty DocumentFragment object.

createElement— Returns an element node, using the given name.

createEntityReference— Returns a new EntityReference object.

createNode*— Returns a node, using the given type, name, and namespace.

createProcessingInstruction— Returns a processing instruction node.

createTextNode— Returns a text node that contains the given data.

getElementsByTagName— Yields a collection of elements that have the given name.

hasChildNodes— Returns true if this node has children; false if not.

insertBefore— Inserts a child node before the given node.

load*— Loads an XML document from the given location.

loadXML*— Loads an XML document, using the given string.

nodeFromID*— Yields the node whose ID attribute matches the given value.

removeChild— Removes the given child node from the list of children.

replaceChild— Replaces the given child node with the given new child node.

save*— Saves an XML document to the given location.

transformNode*— Transforms the node and its children by using the given XSL style sheet.

Using the XMLDOMNode Object

The Microsoft XMLDOMNode object extends the core XML DOM Node object by adding support for data types,
namespaces, DTDs, and schemas, as implemented in Internet Explorer. It's the generic object used to handle nodes.
Here is an overview of the significant properties of this object:

attributes— List of attributes for the node. Read-only.

childNodes— List containing the child nodes of the current node. Read-only.

dataType*— Contains the data type for this node. Read/write.

firstChild— Contains the first child of the current node. Read-only.

lastChild— Contains the last child of the current node. Read-only.

namespaceURI*— Contains the URI for the namespace. Read-only.

nextSibling— Contains the next sibling of this node. Read-only.

nodeName— Contains the qualified name for an element, attribute, or entity reference, or a string for other
node types. Read-only.

nodeType— Contains the node type. Read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nodeType— Contains the node type. Read-only.

nodeTypedValue*— Contains the node's value. Read/write.

nodeTypeString*— Contains the node type, in string form. Read-only.

nodeValue— Contains the text associated with the node. Read/write.

ownerDocument— Contains the root of the document. Read-only.

parentNode— Contains the parent node. Read-only.

parsed*— Returns true if this node has been parsed; false otherwise. Read-only.

prefix*— Contains the namespace prefix. Read-only.

previousSibling— Contains the previous sibling of this node. Read-only.

text*— Contains the text content of the node and its subtrees. Read/write.

xml*— Contains the XML representation of the node and its children. Read-only.

Here is an overview of the significant methods for this object:

appendChild— Appends a new child as the last child of this node.

cloneNode— Creates a new node that is a copy of this node.

hasChildNodes— Returns true if this node has children; false otherwise.

insertBefore— Inserts a child node before the given node.

removeChild— Removes the given child node.

replaceChild— Replaces the given child node with the given new child node.

transformNode*— Transforms the node and its children by using the given XSL style sheet.

Using the XMLDOMElement Object

The type of node you'll probably work with most often is the element node, which is supported in the Microsoft
programming model by the XMLDOMElement object. Here are the significant properties of the XMLDOMElement object:

attributes— List of attributes for the node. Read-only.

childNodes— Contains a list of the node's children. Read-only.

dataType*— Contains the data type for this node. Read/write.

firstChild— Contains the first child node of this node. Read-only.

lastChild— Contains the last child node of this node. Read-only.

namespaceURI*— Contains the URI for the namespace. Read-only.

nextSibling— Contains the next sibling of this node. Read-only.

nodeName— Contains the qualified name of an element, attribute, or entity reference, or a string for other node
types. Read-only.

nodeType— Contains the node type. Read-only.

nodeTypeString*— Contains the node type, in string form. Read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nodeTypeString*— Contains the node type, in string form. Read-only.

nodeValue— Contains the text associated with the node. Read/write.

ownerDocument— Contains the root of the document. Read-only.

parentNode— Contains the parent node of the current node. Read-only.

parsed*— Returns true if this node has been parsed; false otherwise. Read-only.

prefix*— Contains the namespace prefix. Read-only.

previousSibling— Contains the previous sibling of this node. Read-only.

tagName— Contains the element name. Read-only.

text*— Contains the text content of the node and its subtrees. Read/write.

xml*— Contains the XML text representation of the node and all of its children. Read-only.

Here are the significant methods of this object:

appendChild— Appends a new child as the last child of the current node.

cloneNode— Returns a new node that is a copy of this node.

getAttribute— Gets the value of the named attribute.

getAttributeNode— Gets the named attribute node.

getElementsByTagName— Returns a list of all descendant elements that match the given name.

hasChildNodes— Returns true if this node has children; false otherwise.

insertBefore— Inserts a child node before the given node.

normalize— Normalizes all descendent elements by combining two or more text nodes next to each other into
one text node.

removeAttribute— Removes or replaces the named attribute.

removeAttributeNode— Removes the given attribute from the element.

removeChild— Removes the given child node.

replaceChild— Replaces the given child node with the given new child node.

setAttribute— Sets the value of a named attribute.

setAttributeNode— Adds or changes the given attribute node on the element.

transformNode*— Transforms the node and its children by using the given XSL style sheet.

Using the XMLDOMAttribute Object

Attributes are considered nodes in the W3C DOM, but an attribute is not considered a child node of an element. As
you'll see today, you use special methods to get the attributes of an element (for example, the getAttribute method).
Here are the significant properties of the XMLDOMAttribute object:

attributes— List of attributes for this node. Read-only.

childNodes— Contains the list of the child nodes. Read-only.

dataType*— Contains the data type of this node. Read/write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataType*— Contains the data type of this node. Read/write.

firstChild— Contains the first child of the current node. Read-only.

lastChild— Contains the last child of the current node. Read-only.

name— Contains the attribute name. Read-only.

namespaceURI*— Contains the URI for the namespace. Read-only.

nextSibling— Contains the next sibling of the node. Read-only.

nodeName— Contains the qualified name for an element, attribute, or entity reference, or a string for other
node types. Read-only.

nodeType— Contains the node type. Read-only.

nodeTypedValue*— Contains the node's value. Read/write.

nodeTypeString*— Contains the node type, in string form. Read-only.

nodeValue— Contains the text associated with the node. Read/write.

ownerDocument— Contains the root of the document. Read-only.

parentNode— Holds the parent node (for nodes that can have parents). Read-only.

parsed*— Returns true if this node has been parsed; false otherwise. Read-only.

prefix*— Contains the namespace prefix. Read-only.

previousSibling— Contains the previous sibling of this node. Read-only.

specified— Indicates whether the node (usually an attribute) is explicitly specified or derived from a default
value. Read-only.

text— Contains the text content of the node and its subtrees. Read/write.

value— Contains the attribute's value. Read/write.

xml— Contains the XML text representation of the node and all its descendants. Read-only.

Here are the significant methods of this object:

appendChild— Appends a new child as the last child of this node.

cloneNode— Returns a new node that is a copy of this node.

hasChildNodes— Is set to true if this node has children.

insertBefore— Inserts a child node before the given node.

removeChild— Removes the given child node from the list.

replaceChild— Replaces the given child node with the new child node.

transformNode— Transforms this node and its children by using the given XSL style sheet.

Using the XMLDOMText Object

When it comes time to access the data in an XML document, you'll usually want to work with the text content of an
element or an attribute, and you can use the Microsoft XMLDOMText object for text nodes. Here are the significant
properties of the XMLDOMText object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attributes— Holds the list of attributes for the node. Read-only.

childNodes— Contains the list of the child nodes. Read-only.

data— Contains the node's data. What is actually stored depends on the node type. Read/write.

dataType*— Contains the data type for the node. Read/write.

firstChild— Contains the first child of the current node. Read-only.

lastChild— Contains the last child of the current node. Read-only.

length— Contains the length, in characters, of the data. Read-only.

namespaceURI*— Contains the URI for the namespace. Read-only.

nextSibling— Contains the next sibling of this node. Read-only.

nodeName— Contains the qualified name of an element, attribute, or entity reference, or a string for other node
types. Read-only.

nodeType— Indicates the node type. Read-only.

nodeTypedValue*— Contains the node's value. Read/write.

nodeTypeString*— Contains the node type, in string form. Read-only.

nodeValue— Contains the text associated with the node. Read/write.

ownerDocument— Contains the root of the document. Read-only.

parentNode— Contains the parent node. Read-only.

parsed*— Returns true if this node has been parsed; false otherwise. Read-only.

prefix*— Contains the namespace prefix. Read-only.

previousSibling— Contains the previous sibling of this node. Read-only.

specified— Indicates whether the node is explicitly specified or derived from a default value. Read-only.

text*— Holds the text content of the node. Read/write.

xml*— Holds the XML representation of the node and all of its descendants. Read-only.

Here are the significant methods of this object:

appendChild— Appends a new child as the last child of the node.

appendData— Appends the given string to the existing string data.

cloneNode— Returns a new node that is a copy of this node.

deleteData— Removes the given substring within the string data.

hasChildNodes— Returns true if this node has children; false otherwise.

insertBefore— Inserts a child node before the specified node.

insertData— Inserts the supplied string at the specified offset.

removeChild— Removes the specified child node from the list of children.

replaceChild— Replaces the specified child node with the given new child node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaceChild— Replaces the specified child node with the given new child node.

splitText— Breaks the text node into two text nodes.

substringData— Returns a substring of the full string.

transformNode*— Transforms the node and its children by using the given XSL style sheet.

This overview of the JavaScript objects you'll be using today might seem somewhat mysterious, so in the following
sections you'll put it to work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Working with the XML DOM in JavaScript
To put the XML DOM to work with JavaScript, let's start by reading the value of an element in an XML document. Listing
15.1 shows the XML document ch15_01.xml, which details the attendance of a senate committee on doughnut
consumption. Today you'll extract the name of the third senator, Jay Jones, from it, by using JavaScript.

Listing 15.1 A Sample XML Document (ch15_01.xml)

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>Finance</title>
 <number>17</number>
 <subject>Donut Costs</subject>
 <date>7/15/2005</date>
 <attendees>
 <senator status="present">
 <firstName>Thomas</firstName>
 <lastName>Smith</lastName>
 </senator>
 <senator status="absent">
 <firstName>Frank</firstName>
 <lastName>McCoy</lastName>
 </senator>
 <senator status="present">
 <firstName>Jay</firstName>
 <lastName>Jones</lastName>
 </senator>
 </attendees>
 </committee>
</session>

Now you need to build the JavaScript to read the name of the third senator in the example. To start, create a
DOMDocument object and load in the XML document ch15_01.xml, like this:

<HTML>
 <HEAD>
 <TITLE>
 Extracting XML Data
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")
 .
 .
 .

Now ch15_01.xml is loaded into the DOMDocument object. You can use this object's documentElement property to get a new
node that corresponds to the document element (that is, <session>):

sessionNode = xmlDocumentObject.documentElement

Now you have the <session> element's node, and you want to navigate to the third senator's name. Start by getting an
XMLDOMElement node for the <committee> element by using the <session> element object's firstChild property:

committeeNode = sessionNode.firstChild

Next, you can get a node object for the <attendees> element:

attendeesNode = committeeNode.lastChild

And then you get a node object for the last <senator> element by using the <attendees> node's lastChild property:

senatorNode = attendeesNode.lastChild

To get the senator's first name (stored in the <firstName> element), you use the <senator> element node's firstChild
property, and to get the senator's last name (stored in the <lastName> element), you can get the next sibling element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property, and to get the senator's last name (stored in the <lastName> element), you can get the next sibling element:

firstNameNode = senatorNode.firstChild
lastNameNode = firstNameNode.nextSibling

Now that you have node objects corresponding to the <firstName> and <lastName> elements, you can access the text
nodes in those elements by using the firstChild property, and you can get the actual text by using those nodes' nodeValue
properties. You can display those values by using Dynamic HTML in an HTML <DIV> element, like this:

displayText = "Last senator's name: " +
 firstNameNode.firstChild.nodeValue + ' '
 + lastNameNode.firstChild.nodeValue
 displayDIV.innerHTML = displayText

Listing 15.2 shows how this all works in ch15_02.html, which gives all the HTML and JavaScript you'll need today.

Listing 15.2 Using JavaScript and XML (ch15_02.html)

<HTML>
 <HEAD>
 <TITLE>
 Extracting XML Data
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, sessionNode, committeeNode,
 attendeesNode
 var firstNameNode, lastNameNode, displayText
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 sessionNode = xmlDocumentObject.documentElement
 committeeNode = sessionNode.firstChild
 attendeesNode = committeeNode.lastChild
 senatorNode = attendeesNode.lastChild
 firstNameNode = senatorNode.firstChild
 lastNameNode = firstNameNode.nextSibling

 displayText = "Last senator's name: " +
 firstNameNode.firstChild.nodeValue + ' '
 + lastNameNode.firstChild.nodeValue
 displayDIV.innerHTML = displayText
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Extracting XML Data
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get the last senator's name"
 ONCLICK="readXMLData()">

 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

Figure 15.1 shows this page at work in Internet Explorer. When the user clicks the button, the XML document
ch15_01.xml is read and parsed, and you retrieve and display the third person's name. You've made substantial
progress.

Figure 15.1. Reading an XML element in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's another way to do this in Internet Explorer—by using XML data islands. XML data islands let us embed XML in
an HTML document, and this is how to use them:

<HTML>
 <HEAD>
 <TITLE>XML Islands</TITLE>
 </HEAD>

 <BODY>
 <P>This example uses an XML Island.</P>
 <XML>
 <document>
 <title>
 The Report
 </title>
 <text>
 All clear on the Western front.
 </text>
 </document>
 </XML>
 </BODY>
</HTML>

Here are the attributes you use with the <XML> element:

ID— Contains the ID with which you can refer to the <XML> element in code. This attribute should be set to an
alphanumeric string.

NS— Contains the URI of the XML namespace used by the XML content. This attribute should be set to a URI.

PREFIX— Contains the namespace prefix of the XML contents. This attribute should be set to an alphanumeric
string.

SRC— Contains the source for the XML document, if the document is external. This attribute should be set to a
URI.

You can use the <XML> element, along with the SRC and ID attributes, to read in XML documents and make them
accessible. Listing 15.3 shows how this works. This example uses an XML island to get access to the XML document
ch15_01.xml.

Listing 15.3 Using JavaScript and XML Islands (ch15_03.html)

<HTML>
 <HEAD>
 <TITLE>
 Extracting XML Data
 </TITLE>

 <XML ID="committeeXML" SRC="ch15_01.xml"></XML>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, sessionNode, committeeNode,
 attendeesNode
 var firstNameNode, lastNameNode, displayText
 xmlDocumentObject= document.all("committeeXML").XMLDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xmlDocumentObject= document.all("committeeXML").XMLDocument

 sessionNode = xmlDocumentObject.documentElement
 committeeNode = sessionNode.firstChild
 attendeesNode = committeeNode.lastChild
 senatorNode = attendeesNode.lastChild
 firstNameNode = senatorNode.firstChild
 lastNameNode = firstNameNode.nextSibling

 displayText = "Last senator's name: " +
 firstNameNode.firstChild.nodeValue + ' '
 + lastNameNode.firstChild.nodeValue
 displayDIV.innerHTML = displayText
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Extracting XML Data
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get the last senator's name"
 ONCLICK="readXMLData()">
 <P>
 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

This example works just like Listing 15.2. In fact, if you want to, you can enclose the entire text of the XML document,
ch15_01.xml, in the XML island.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Searching for Elements by Name
Up to this point, you've used JavaScript to navigate through an XML document by brute force, moving from one
element to the next by using properties such as nextSibling and nextChild. However, you can also access individual
elements by searching for them by name.

Here's how that works; in this case, you're looking for the third <firstName> and <lastName> elements in the sample XML
document, so you can get a list of them all:

<HTML>
 <HEAD>
 <TITLE>
 Searching for Elements
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, firstNameNodes, listNodesLastName

 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 firstNameNodes = xmlDocumentObject.getElementsByTagName(
 "firstName")
 lastNameNodes = xmlDocumentObject.getElementsByTagName(
 "lastName")
 .
 .
 .

Node lists like the ones here (firstNameNodes and lastNameNodes) are indexed by number, starting at 0. This means that
the third senator's <firstName> element can be accessed with firstNameNodes(2). To get the actual name in the element,
you access the text node in the element and then get that text node's value, as shown in Listing 15.4.

Listing 15.4 Searching for Elements (ch15_04.html)

<HTML>
 <HEAD>
 <TITLE>
 Searching for Elements
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, firstNameNodes, listNodesLastName

 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 firstNameNodes = xmlDocumentObject.getElementsByTagName(
 "firstName")
 lastNameNodes = xmlDocumentObject.getElementsByTagName(
 "lastName")

 outputText = "Last senator's name: " +
 firstNameNodes(2).firstChild.nodeValue + ' '
 + lastNameNodes(2).firstChild.nodeValue
 displayDIV.innerHTML=outputText
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Searching for Elements
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get the last senator's name"
 ONCLICK="readXMLData()">
 <P>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <P>
 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

You can see the successful results in Figure 15.2.

Figure 15.2. Accessing data in XML by using Internet Explorer.

Now that you have a handle on elements, let's turn to attributes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Reading Attribute Values
Next we need to talk about attributes. For example, how can you read the value of the status attribute of the third
senator in the sample XML document? Here's how:

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>Finance</title>
 <number>17</number>
 <subject>Donut Costs</subject>
 <date>7/15/2005</date>
 <attendees>
 <senator status="present">
 <firstName>Thomas</firstName>
 <lastName>Smith</lastName>
 </senator>
 <senator status="absent">
 <firstName>Frank</firstName>
 <lastName>McCoy</lastName>
 </senator>
 <senator status="present">
 <firstName>Jay</firstName>
 <lastName>Jones</lastName>
 </senator>
 </attendees>
 </committee>
</session>

We start by getting a named node map of the attributes of the current element, by using that element's attributes
property. A map is much like a list, except that you can reference items in a map by name, as you'll soon see. In this
case, you want the attributes of the third <senator> element, so you get the named node map, which you can call
attributes, like this:

<HTML>
 <HEAD>
 <TITLE>
 Getting attribute values
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, sessionNode, committeeNode,
 attendeesNode
 var firstNameNode, lastNameNode, displayText
 var attributes, statusSenator

 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 sessionNode = xmlDocumentObject.documentElement
 committeeNode = sessionNode.firstChild
 attendeesNode = committeeNode.lastChild
 senatorNode = attendeesNode.lastChild
 firstNameNode = senatorNode.firstChild
 lastNameNode = firstNameNode.nextSibling

 attributes = senatorNode.attributes
 .
 .
 .

Now use the named node map's getNamedItem method to search for the value of the status attribute (which you can
access as getNamedItem("status")) and display it, as shown in Listing 15.5.

Listing 15.5 Reading Attribute Values (ch15_05.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<HTML>
 <HEAD>
 <TITLE>
 Getting attribute values
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function readXMLData()
 {
 var xmlDocumentObject, sessionNode, committeeNode,
 attendeesNode
 var firstNameNode, lastNameNode, displayText
 var attributes, statusSenator

 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 sessionNode = xmlDocumentObject.documentElement
 committeeNode = sessionNode.firstChild
 attendeesNode = committeeNode.lastChild
 senatorNode = attendeesNode.lastChild
 firstNameNode = senatorNode.firstChild
 lastNameNode = firstNameNode.nextSibling

 attributes = senatorNode. attributes
 statusSenator = attributes.getNamedItem("status")
 outputText = firstNameNode.firstChild.nodeValue
 + ' ' + lastNameNode.firstChild.nodeValue
 + "'s status is: " + statusSenator.value
 displayDIV.innerHTML=outputText
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Getting attribute values
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get the status of the third senator"
 ONCLICK="readXMLData()">
 <P>
 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

Figure 15.3 shows the results, and you can see that the status of the third senator is present.

Figure 15.3. Reading attribute values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Getting All XML Data from a Document
So that you can see how to work with all the XML data in an XML document at once, you'll take a look at an example
that extracts and displays all the data in the XML sample document by using JavaScript. So far, you've only gone after
one element or one attribute, but this example will extract and display all the data in the document. Among other
things, this will let you handle general XML documents instead of targeting specific elements. This means you will not
have to know the document structure before proceeding, and it will also let you determine node types on-the-fly.

In this example you'll use recursion, the technique that allows a method to call itself, to work through an entire
document without knowing that document's structure. You'll write a JavaScript method named childLoop to do this; when
you're at a node, all you will have to do is loop over all of its child nodes by calling childLoop on them. All you have to do
is pass this method a node and an indentation string, and it will display the current node and all of its children,
incrementing the indentation by four spaces for each successive generation to make the display onscreen look good.
This means you can start by passing the root node to childLoop like this (this method, readXMLData, is called when the
user clicks a button labeled Get All the Data in this example):

<HTML>
 <HEAD>
 <TITLE>
 Getting all XML data
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">

 function readXMLData()
 {
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 displayDIV.innerHTML = childLoop(xmlDocumentObject, "")
 }
 .
 .
 .

Now you need to write the recursive method, childLoop. This method has a node and the current indentation (a string of
spaces) passed to it, and the first order of business is to discover what kind of node you're dealing with. You can do
that by using the node's nodeType property, like this:

function childLoop(currentNode, indentation)
{
 var typeName

 switch (currentNode.nodeType) {
 case 1:
 typeName = "Element"
 break
 case 2:
 typeName = "Attribute"
 break
 case 3:
 typeName = "Text"
 break
 case 4:
 typeName = "CDATA section"
 break
 case 5:
 typeName = "Entity reference"
 break
 case 6:
 typeName = "Entity"
 break
 case 7:
 typeName = "Processing instruction"
 break
 case 8:
 typeName = "Comment"
 break
 case 9:
 typeName = "Document"
 break
 case 10:
 typeName = "Document type"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 typeName = "Document type"
 break
 case 11:
 typeName = "Document fragment"
 break
 case 12:
 typeName = "Notation"
 }
 .
 .
 .

Now you know the type of node and have stored the name of the type, such as "Attribute" or "Text", in the variable called
typeName. You can display the type of the current node and its value, if it has a value, like this:

var text

if (currentNode.nodeValue != null) {
 text = indentation + "" + typeName +
 ": " + currentNode.nodeValue
} else {
 text = indentation + "" + typeName +
 ": " + currentNode.nodeName
}

That takes care of the node and its value, if it has any. If the node is an element, it can also have attributes, so you
loop over them like this:

if (currentNode.attributes != null) {
 if (currentNode.attributes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.attributes.length; loopIndex++) {
 .
 .
 .
 }
 }
}

You can display each attribute and its value like this:

if (currentNode.attributes != null) {
 if (currentNode.attributes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.attributes.length; loopIndex++) {
 text += " Attribute: " +
 currentNode.attributes(loopIndex).nodeName +
 " = \"" +
 currentNode.attributes(loopIndex).nodeValue
 + "\""
 }
 }
}

You have completed the display of the current node. Now add a line break and check whether the current node has any
children:

 text += "
"

 if (currentNode.childNodes.length > 0) {
 .
 .
 .
 }
 return text
}

If the current node has any child nodes, you can loop over those child nodes by calling the childLoop method recursively,
like this:

 text += "
"

 if (currentNode.childNodes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.childNodes.length; loopIndex++) {
 text += childLoop(currentNode.childNodes(loopIndex),
 indentation + " ")
 }
 }
 return text
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Note that here you're increasing the indentation by four spaces by using the HTML nonbreaking space entity, .
Otherwise, the browser would normalize multiple indentation spaces into a single space.

At the end of the childLoop method, the code returns the full HTML text to be displayed. The JavaScript in the
readXMLData method, which is called when the button in this example is clicked, displays that text in the Web page by
using a <DIV> element:

function readXMLData()
{
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 displayDIV.innerHTML = childLoop(xmlDocumentObject, "")
}

Listing 15.6 shows all the code for this example, as ch15_06.html. Note that you've added the code to display the button
that the user can click, which calls the readXMLData method.

Listing 15.6 Getting All XML Data from a Document (ch15_06.html)

<HTML>
 <HEAD>
 <TITLE>
 Getting all XML data
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">

 function readXMLData()
 {
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("ch15_01.xml")

 displayDIV.innerHTML = childLoop(xmlDocumentObject, "")
 }

 function childLoop(currentNode, indentation)
 {
 var typeName

 switch (currentNode.nodeType) {
 case 1:
 typeName = "Element"
 break
 case 2:
 typeName = "Attribute"
 break
 case 3:
 typeName = "Text"
 break
 case 4:
 typeName = "CDATA section"
 break
 case 5:
 typeName = "Entity reference"
 break
 case 6:
 typeName = "Entity"
 break
 case 7:
 typeName = "Processing instruction"
 break
 case 8:
 typeName = "Comment"
 break
 case 9:
 typeName = "Document"
 break
 case 10:
 typeName = "Document type"
 break
 case 11:
 typeName = "Document fragment"
 break
 case 12:
 typeName = "Notation"
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 var text

 if (currentNode.nodeValue != null) {
 text = indentation + "" + typeName +
 ": " + currentNode.nodeValue
 } else {
 text = indentation + "" + typeName +
 ": " + currentNode.nodeName
 }

 if (currentNode.attributes != null) {
 if (currentNode.attributes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.attributes.length; loopIndex++) {
 text += " Attribute: " +
 currentNode.attributes(loopIndex).nodeName +
 " = \"" +
 currentNode.attributes(loopIndex).nodeValue
 + "\""
 }
 }
 }

 text += "
"

 if (currentNode.childNodes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.childNodes.length; loopIndex++) {
 text += childLoop(currentNode.childNodes(loopIndex),
 indentation + " ")
 }
 }
 return text
 }

 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Getting all XML data
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get all the data"
 onClick = "readXMLData()">
 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

You can see the results of this JavaScript in Figure 15.4. As you can see, by using JavaScript and the W3C DOM, you've
been able to parse an entire XML document and list all of its data independently of the document's structure. Not bad!

Figure 15.4. Parsing an entire XML document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Validating XML Documents by Using DTDs
On Day 6, "Creating Valid XML Documents: XML Schemas," you saw how to use JavaScript to validate XML documents
with XML schemas. Today, you'll see how to validate XML documents with DTDs by using JavaScript. By default,
Internet Explorer validates documents by using DTDs. (You can turn validation off if you set the validateOnParse property
of a document to false; it's set to true by default). However, you won't know how the validation went unless you check
the parseError object.

Let's take a look at an example. In this case, you start by giving today's sample XML document, ch15_01.xml, a DTD, as
shown in Listing 15.7.

Listing 15.7 Adding a DTD to the XML Sample (ch15_07.xml)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE session [
<!ELEMENT session (committee)*>
<!ELEMENT committee (title, number, subject, date, attendees)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT attendees (senator)*>
<!ELEMENT senator (firstName, lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>
<!ATTLIST committee
 type CDATA #REQUIRED>
<!ATTLIST senator
 status CDATA #REQUIRED>
]>
<session>
 <committee type="monetary">
 <title>Finance</title>
 <number>17</number>
 <subject>Donut Costs</subject>
 <date>7/15/2005</date>
 <attendees>
 <senator status="present">
 <firstName>Thomas</firstName>
 <lastName>Smith</lastName>
 </senator>
 <senator status="absent">
 <firstName>Frank</firstName>
 <lastName>McCoy</lastName>
 </senator>
 <senator status="present">
 <firstName>Jay</firstName>
 <lastName>Jones</lastName>
 </senator>
 </attendees>
 </committee>
</session>

Now you need to write the code that checks the parseError object to see whether there were any validation errors. You
can do that by using the parseError object's errorCode, url, line, linepos, errorString, and reason properties and displaying the
error if there was an error.

First, to be informed of the document's status as validation occurs, you can assign the name of a new method,
changeHandler, to the document's onreadystatechange event:

xmlDocumentObject.onreadystatechange = changeHandler

Now you need to write the changeHandler method. When the document is loaded, you check the parseError object's
errorCode property. If it is nonzero, you know there has been an error, and you can display it this way in the
changeHandler method:

function changeHandler()
{
 if(xmlDocumentObject.readyState == 4){
 var errorText = xmlDocumentObject.parseError.srcText
 errorText = xmlDocumentObject.parseError.srcText.replace(/\</g, "<")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 errorText = xmlDocumentObject.parseError.srcText.replace(/\</g, "<")
 errorText = errorText.replace(/\>/g, ">")
 if (xmlDocumentObject.parseError.errorCode != 0) {
 displayDIV.innerHTML = "Error in " +
 xmlDocumentObject.parseError.url +
 " line " + xmlDocumentObject.parseError.line +
 " position " + xmlDocumentObject.parseError.linepos +
 ":
Source: " + errorText +
 "
" + xmlDocumentObject.parseError.reason +
 "
" + "Error: " +
 xmlDocumentObject.parseError.errorCode
 }
 else {
 displayDIV.innerHTML = "Document validated OK.
"
 }
 }
}

Listing 15.8 shows the full code.

Listing 15.8 Validating an XML Document by Using a DTD (ch15_08.html)

<HTML>
 <HEAD>
 <TITLE>
 Validation With DTDs
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 var xmlDocumentObject

 function validateDocument()
 {
 xmlDocumentObject = new ActiveXObject("microsoft.XMLDOM")

 xmlDocumentObject.onreadystatechange = changeHandler

 xmlDocumentObject.load('ch15_07.xml')
 }

 function changeHandler()
 {
 if(xmlDocumentObject.readyState == 4){
 var errorText = xmlDocumentObject.parseError.srcText
 errorText =
 xmlDocumentObject.parseError.srcText.replace(/\</g, "<")
 errorText = errorText.replace(/\>/g, ">")
 if (xmlDocumentObject.parseError.errorCode != 0) {
 displayDIV.innerHTML = "Error in " +
 xmlDocumentObject.parseError.url +
 " line " + xmlDocumentObject.parseError.line +
 " position " + xmlDocumentObject.parseError.linepos +
 ":
Source: " + errorText +
 "
" + xmlDocumentObject.parseError.reason +
 "
" + "Error: " +
 xmlDocumentObject.parseError.errorCode
 }
 else {
 displayDIV.innerHTML = "Document validated OK.
"
 }
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Validation With DTDs
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Validate document"
 ONCLICK="validateDocument()">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

The document with the DTD, ch15_07.xml, validates, as shown in Figure 15.5.

Figure 15.5. Validating an XML document by using a DTD.

What if there were an error in the DTD? Say that we had omitted the <attendees> element from the declaration of the
<committee> element, like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE session [
<!ELEMENT session (committee)*>
<!ELEMENT committee (title, number, subject, date)>
 .
 .
 .

Figure 15.6 shows how this error is reported when the document is validated.

Figure 15.6. Catching a validation error by using a DTD.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you took at how to use JavaScript with XML. You saw that we can use JavaScript with the W3C DOM, and you
saw that various levels of the DOM are available.

The DOM provides a way of treating XML documents as trees of nodes. There are various DOM objects that correspond
to the different types of nodes, as well as collections of nodes in lists and named node maps.

After you've loaded an XML document, you can use properties such as nextChild and previousSibling to navigate through
the document's structure. You've seen that you can use these kinds of properties to navigate to a particular node and
use the nodeValue property to get the value of that node. You can also navigate through a document recursively, as
you've done today, which means you don't have to know the document's structure before navigating through it.

Today you also saw how to use JavaScript to find the results of validating an XML document by using a DTD. You saw
that you just have to use the various properties of the parseError object to learn how a DTD validation went.

Tomorrow we'll talk about how to work with XML and Java.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Is there a way to monitor the process of loading an XML document in a browser?

A1: Yes, but only in Internet Explorer. You can use the document object's ondataavailable event to watch as
data is loaded. In that event's handler, you can use the document object's readyState property to check
how the loading process is going:

xmlDocumentObject = new ActiveXObject("microsoft.XMLDOM")

xmlDocumentObject.ondataavailable = loadingHandler

function loadingHandler()
{
 switch (xmlDocumentObject.readyState)
 case 1:
 displayDIV.innerHTML += "The data is uninitialized.
"
 case 2:
 displayDIV.innerHTML += "The data is loading.
"
 case 3:
 displayDIV.innerHTML += "The data is loaded.
"
 case 4:
 displayDIV.innerHTML += "The data loading process is complete.

"
 }
}

Q2: Can I use JavaScript to actually modify the structure of an XML document?

A2: Yes—in Internet Explorer. The document object supports methods such as createTextNode and createElement
that let you modify an XML document. The new version of the document, however, exists only in the
document object. If you want to display the new XML, you can get access to the XML text itself by using a
document object's xml property, like this:

XMLdocumentObject.documentElement.xml

What if you want to save the modified XML as a new document? The document object supports a save
method, but you have to change the security settings of the browser in order to use it. Your best bet is to
place the new XML in a hidden HTML field and send it to a server-side script (written in ASP, JSP, Perl, or
another language) that reads the text and sends it back as a new XML document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What are two ways that you can create a document object from an XML file by using JavaScript in Internet
Explorer?

2: What DOM method can you use to move to the next child node?

3: How do you get a node's value by using JavaScript?

4: How can you get a list of all the <senator> elements in a document?

5: How can you get a named node map of an element's attributes?

Exercises

1: Create an XML document that lists the names of five of your friends. Use JavaScript to read and display the
fourth friend's name.

2: Add a DTD to the XML document you created in Exercise 1 and use Internet Explorer, if you have it, to
validate the XML document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 16. Using Java and .NET: DOM
Today, you're going to use Java to work with XML. Yesterday you saw how to work with XML and JavaScript, and today
you're going to take the next step and create standalone programs using Java. Today you'll use the built-in Java
support for the W3C DOM methods described yesterday. Here's an overview of today's topics:

Loading XML documents into a Java application

Parsing XML documents by using Java

Searching a document for a particular element

Navigating through an XML document by using Java

Creating graphical XML browsers by using Java

Modifying the XML in a document by using Java

Note that we must use Java version 1.4 or later if you want to take advantage of Java's integrated XML support for the
W3C DOM, and you'll be using Java 1.4 today. There's all kinds of XML support built into Java 1.4 (with earlier versions,
you have to use third-party packages), and you're going to jump right in by seeing how to read in an XML document
and extract all the data from it.

TIP

You'll be using Java 1.4 (or later) today, and I assume that we know how to use Java. To download the
latest version of Java, go to http://java.sun.com/j2se/. You can find online documentation for Java at
http://developer.java.sun.com/developer/infodocs/. And you can find more about Java's support for XML at
http://java.sun.com/xml/docs.html. You can find Java tutorials at
http://developer.java.sun.com/developer/onlineTraining/.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Java to Read XML Data
You're going to create a Java application to read in and extract all the data from the XML document you worked with
yesterday, which you can see in Listing 16.1.

Listing 16.1 A Sample XML Document for Today's Work (ch16_01.xml)

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>Finance</title>
 <number>17</number>
 <subject>Donut Costs</subject>
 <date>7/15/2005</date>
 <attendees>
 <senator status="present">
 <firstName>Thomas</firstName>
 <lastName>Smith</lastName>
 </senator>
 <senator status="absent">
 <firstName>Frank</firstName>
 <lastName>McCoy</lastName>
 </senator>
 <senator status="present">
 <firstName>Jay</firstName>
 <lastName>Jones</lastName>
 </senator>
 </attendees>
 </committee>
</session>

The Java application you'll create will show how to read in the entire XML document and display it, much as we did in
JavaScript yesterday. You start by creating a DocumentBuilderFactory object, which you'll use to create a DocumentBuilder
object, and that object will actually read in the XML document. Here's how to use DocumentBuilderFactory in the new
application's main method, which is called when the application starts:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_02
{
 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 .
 .
 .
 }

Table 16.1 lists the methods for the DocumentBuilderFactory class.

Table 16.1. Methods of the javax.xml.parsers.DocumentBuilderFactory Class
Method What It Does

protected DocumentBuilderFactory() Acts as the default DocumentBuilderFactory constructor.

abstract Object getAttribute(String
name)

Returns attribute values.

boolean isCoalescing() Returns True if the factory is configured to produce parsers that convert CDATA
nodes to text nodes.

boolean isExpandEntityReferences() Returns True if the factory is configured to produce parsers that expand XML
entity reference nodes.

boolean isIgnoringComments() Returns True if the factory is configured to produce parsers that ignore
comments.

boolean Returns True if the factory is configured to produce parsers that ignore ignorable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boolean
isIgnoringElementContentWhitespace()

Returns True if the factory is configured to produce parsers that ignore ignorable
whitespace (such as that used to indent elements) in element content.

boolean isNamespaceAware() Returns True if the factory is configured to produce parsers that can use XML
namespaces.

boolean isValidating() Returns True if the factory is configured to produce parsers that validate the XML
content during parsing operations.

abstract DocumentBuilder
newDocumentBuilder()

Returns a new DocumentBuilder object.

static DocumentBuilderFactory
newInstance()

Returns a new DocumentBuilderFactory object.

abstract void setAttribute-(String name,
Object value)

Sets attribute values.

void setCoalescing(boolean coalescing) Specifies that the parser produced will convert CDATA nodes to text nodes.

void setExpandEntityReferences-
(boolean expandEntityRef)

Specifies that the parser produced will expand XML entity reference nodes.

void setIgnoringComments-(boolean
ignoreComments)

Specifies that the parser produced will ignore comments.

void
setIgnoringElementContentWhitespace-
(boolean whitespace)

Specifies that the parser produced must eliminate ignorable whitespace.

void setNamespaceAware(boolean
awareness)

Specifies that the parser produced will provide support for XML namespaces.

void setValidating(boolean validating) Specifies that the parser produced will validate documents as they are parsed.

To actually parse the XML document and extract data from it, we need a DocumentBuilder object, which is created by the
DocumentBuilderFactory object. Here's what that looks like in code:

public class ch16_02
{
 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}
 .
 .
 .
 }

Table 16.2 lists the methods of the DocumentBuilder class.

Table 16.2. Methods of the javax.xml.parsers.DocumentBuilder Class
Method What It Does

protected DocumentBuilder() Acts as the default DocumentBuilder constructor.

abstract boolean
isNamespaceAware()

Returns True if this parser is configured to understand namespaces.

abstract boolean isValidating() Returns True if this parser is configured to validate XML documents.

abstract Document
newDocument()

Returns a new instance of a DOM Document object to build a DOM tree with.

Document parse(File f) Indicates to parse the content of the file as an XML document and return a new DOM
Document object.

Document parse(InputStream is) Indicates to parse the content of a given InputStream object as an XML document and
return a new DOM Document object.

Document parse(InputStream is,
String systemId)

Indicates to parse the content of an InputStream object as an XML document and
return a new DOM Document object.

Document parse(String uri) Indicates to parse the content of a URI as an XML document and return a new DOM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document parse(String uri) Indicates to parse the content of a URI as an XML document and return a new DOM
Document object.

abstract void
setErrorHandler(ErrorHandler eh)

Sets the ErrorHandler object to be used to report errors.

When the user starts the Java application ch16_02.class, he or she will type the name of the XML document to read, as
we do in the following example, where we want to read and display the data in ch16_01.xml:

%java ch16_02 ch16_01.xml

You can access the name of the XML document the user wants to read as args[0]. Here's how to create a Java Document
object that corresponds to the XML document, using the DocumentBuilder object:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_02
{
 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);
 .
 .
 .
 }

At this point, then, we have a Java Document object (actually an org.w3c.dom.Document object) that corresponds to the
XML document, and we can use the various methods of that object to work with the XML document. Table 16.3 lists the
methods of Document objects.

Table 16.3. Methods of the org.w3c.dom.Document Interface
Method What It Does

Attr createAttribute(String name) Returns a new attribute object.

Attr createAttributeNS-(String namespaceURI, String
qualifiedName)

Returns a new attribute that has the given name and
namespace.

CDATASection createCDATASection(String data) Returns a new CDATASection node whose value is the given
string.

Comment createComment(String data) Returns a new Comment node created using the given
string.

DocumentFragment createDocumentFragment() Returns a new empty DocumentFragment object.

Element createElement(String tagName) Returns a new element of the type given.

Element createElementNS-(String namespaceURI, String
qualifiedName)

Returns a new element of the given qualified name and
namespace URI.

ProcessingInstruction createProcessingInstruction-(String target,
String data)

Returns a new ProcessingInstruction node.

Text createTextNode(String data) Returns a new text node, given the specified string.

DocumentType getDoctype() Returns the DTD for this document.

Element getDocumentElement() Gives direct access to document element.

Element getElementById(String elementId) Returns an element whose ID is given.

NodeList getElementsByTagName(String tagname) Returns all elements with a given tag name.

NodeList getElementsByTagNameNS-(String namespaceURI,
String localName)

Returns all elements with a given name and namespace.

Node importNode(Node importedNode, boolean deep) Imports a node from another document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next step is to work through the XML document recursively, as you did with JavaScript yesterday. You'll do that in a
method named childLoop that you can call recursively. Just as you did with JavaScript, you'll also pass an indentation
string to this method, which will be increased for each successive generation of a node's children. This method will fill
an array of strings, displayText, with the XML data from the document and store the total number of strings in the array
in a variable named numberLines. When childLoop is done filling the array of strings, you'll display them, like this:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_02
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;

 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 childLoop(document, "");

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]);
 }
 }

The next order of business is to write childLoop, the method that will loop over all nodes in the XML document and store
their data in the displayText array.

Looping Over Nodes

As in JavaScript, you're using the W3C DOM in Java today, so you're treating our XML document as a tree of nodes.
Table 16.4 lists the fields of Java org.w3c.dom.Node objects, and Table 16.5 lists the methods of Java org.w3c.dom.Node
objects.

Table 16.4. The Fields of the org.w3c.dom.Node Object
Field Summary Stands For

static short ATTRIBUTE_NODE An attribute

static short CDATA_SECTION_NODE A CDATA section

static short COMMENT_NODE A comment

static short DOCUMENT_FRAGMENT_NODE A document fragment

static short DOCUMENT_NODE A document

static short DOCUMENT_TYPE_NODE A DTD

static short ELEMENT_NODE An element

static short ENTITY_NODE An entity

static short ENTITY_REFERENCE_NODE An entity reference

static short NOTATION_NODE A notation

static short PROCESSING_INSTRUCTION_NODE A processing instruction

static short TEXT_NODE A text node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 16.5. Methods of the org.w3c.dom.Node Interface
Method What It Does

Node appendChild(Node newChild) Appends the given node to the end of the children of the current node.

NamedNodeMap getAttributes() Returns the attributes of an element node.

NodeList getChildNodes() Gets the children of this node.

Node getFirstChild() Gets the first child of this node.

Node getLastChild() Gets the last child of this node.

String getLocalName() Gets the local part of the full name of this node.

String getNamespaceURI() Gets the namespace URI of this node.

Node getNextSibling() Gets the node following this node.

String getNodeName() Gets the name of this node.

short getNodeType() Gets the type of this node.

String getNodeValue() Gets the value of this node.

Document getOwnerDocument() Gets the Document object for this node.

Node getParentNode() Gets the parent of this node.

String getPrefix() Gets the namespace prefix of this node.

Node getPreviousSibling() Gets the node preceding the current node.

boolean hasAttributes() Returns True if this node has any attributes.

boolean hasChildNodes() Returns True if this node has any children.

Node insertBefore(Node newChild, Node refChild) Inserts the new node before a reference child node.

void normalize() Transforms all text nodes into XML normalized form.

Node removeChild(Node oldChild) Removes a child node and returns it.

Node replaceChild(Node newChild, Node oldChild) Replaces the child node.

void setNodeValue(String nodeValue) Sets the node's value.

void setPrefix(String prefix) Sets the namespace prefix of the node.

The childLoop method has a node and an indentation string passed to it. To handle the current node and store its data in
the displayText array, first check whether the current node is valid, and if it is, get its type by using the getNodeType
method:

public static void childLoop(Node node, String indentation)
{
 if (node == null) {
 return;
 }

 int type = node.getNodeType();
 .
 .
 .
}

Now that you know the type of the node you've been passed, how do you handle it and store its data in the array of
strings that will be printed out? You have to handle different types of nodes in different ways, and in this case, you'll
use a Java switch statement to work with different node types, starting with the document node itself.

Handling Document Nodes

You can compare the type of the current node to the fields listed in Table 16.4 to determine what kind of node you're
dealing with. For example, if the current node is a document node, you'll just put a generic XML declaration into the
display string's array, storing that text in the displayText array and incrementing the array's index value, numberLines, like
this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public static void childLoop(Node node, String indentation)
{
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {
 case Node.DOCUMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 childLoop(((Document)node).getDocumentElement(), "");
 break;
 }
 .
 .
 .

Now you've displayed a generic XML declaration for the start of the XML document. Next, you'll handle elements.

Handling Elements

Elements have the type Node.ELEMENT_NODE, and you can get the name of the element by using the W3C DOM method
getNodeName. Here's what it looks like in the childLoop method's switch statement, which lets you handle the various node
types:

case Node.ELEMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<";
 displayText[numberLines] += node.getNodeName();
 .
 .
 .

This gives us the name of the current element, but what if it has attributes? You'll check that next.

Handling Attributes

To see whether the element you're working on has any attributes, you can use the getAttributes method, which returns
NamedNodeMap object, which contains the element's attributes. If there are any attributes, you'll store them in an array
and then use the getNodeName method to get the attribute's name, and you'll use the getNodeValue method to get the
attribute's value:

int length = (node.getAttributes() != null) ?
 node.getAttributes().getLength() : 0;
Attr attributes[] = new Attr[length];
for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 attributes[loopIndex] = (Attr)node.getAttributes().item(loopIndex);
}

for (int loopIndex = 0; loopIndex < attributes.length; loopIndex++) {
 Attr attribute = attributes[loopIndex];
 displayText[numberLines] += " ";
 displayText[numberLines] += attribute.getNodeName();
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attribute.getNodeValue();
 displayText[numberLines] += "\"";
}
displayText[numberLines] += ">";

numberLines++;

Table 16.6 lists the methods of NamedNodeMap.

Table 16.6. NamedNodeMap Methods
Method What It Does

int getLength() Returns the number of nodes.

Node getNamedItem(java.lang.String name) Gets a node specified by the name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node getNamedItemNS(java.lang.String namespaceURI, java.lang.String
localName)

Gets a node specified by the local name and
namespace URI.

Node item(int index) Gets an item in the map by index.

Node removeNamedItem(java.lang.String name) Removes a node.

Node removeNamedItemNS(java.lang.String namespaceURI,
java.lang.String localName)

Removes the given node with a local name and
namespace URI.

Table 16.7 lists the methods of Attr objects, which hold attributes.

Table 16.7. Attr Interface Methods
Method What It Does

java.lang.String getName() Gets the name of this attribute.

Element getOwnerElement() Gets this attribute's element node.

boolean getGiven() Returns True if this attribute was given a value in the original document.

java.lang.String getValue() Gets the value of the attribute.

void setValue(String value) Sets the value of the attribute.

Now you've handled the current element's name and attributes. But what if the element has child nodes, such as text
nodes or child elements? That's coming up next.

Handling Child Nodes

Elements can have child nodes, so before you finish up with elements, you'll also loop over those child nodes by calling
the childLoop again recursively. You can use the following to get a NodeList interface of child nodes by using the
getChildNodes method, increase the indentation level by four spaces, and call childLoop for each child node:

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 length = childNodes.getLength();
 indentation += " ";
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 childLoop(childNodes.item(loopIndex), indentation);
 }
 }
 break;
}

The NodeList interface supports an ordered collection of nodes. Table 26.8 lists the methods of the NodeList interface.

Table 16.8. NodeList Methods
Method What It Does

int getLength() Returns the number of nodes.

Node item(int index) Gets the item at a specified index.

Now that you have handled elements, attributes, and child nodes, you'll take a look at how to work with text nodes.

Handling Text Nodes

Text nodes are of type Node.TEXT_NODE, and after you check to make sure a node is a valid text node, you can trim
extra spaces (such as indentation text) from the text node's value and add it to the displayText array, like this:

case Node.TEXT_NODE: {
 displayText[numberLines] = indentation;
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length() > 0) {
 displayText[numberLines] += trimmedText;
 numberLines++;
 }
 break;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Handling Processing Instructions

Handling processing instructions is not difficult; you just use getNodeName to get the processing instruction and the
getNodeValue method to get the processing instruction's data. Here's how that works in the childLoop method's switch
statement:

case Node.PROCESSING_INSTRUCTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += node.getNodeName();
 String text = node.getNodeValue();
 if (text != null && text.length() > 0) {
 displayText[numberLines] += text;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 break;
}

Handling CDATA Sections

Handling CDATA sections is just as easy as handling other nodes: You just use the getNodeValue method to get the CDATA
section's data. Here's what that looks like in the childLoop method's switch statement:

case Node.CDATA_SECTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<![CDATA[";
 displayText[numberLines] += node.getNodeValue();
 displayText[numberLines] += "]]>";
 numberLines++;
 break;
 }
 }

Ending Elements

Our last task is to add a closing tag for element nodes. Up to this point, you've only displayed an opening tag for each
element and its attributes, but no closing tag. Here's how to add the closing tag with some code at the end of the
childLoop method:

 if (type == Node.ELEMENT_NODE) {
 displayText[numberLines] = indentation.substring(0,
 indentation.length() - 4);
 displayText[numberLines] += "</";
 displayText[numberLines] += node.getNodeName();
 displayText[numberLines] += ">";
 numberLines++;
 indentation += " ";
 }
}

That's it; Listing 16.2 shows all the code in ch16_02.java.

Listing 16.2 Parsing XML Documents by Using Java (ch16_02.java)

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_02
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;

 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 childLoop(document, "");

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]) ;
 }
 }

 public static void childLoop(Node node, String indentation)
 {
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {
 case Node.DOCUMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] +=
 "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 childLoop(((Document)node).getDocumentElement(), "");
 break;
 }

 case Node.ELEMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<";
 displayText[numberLines] += node.getNodeName();

 int length = (node.getAttributes() != null) ?
 node.getAttributes().getLength() : 0;
 Attr attributes[] = new Attr[length];
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 attributes[loopIndex] =
 (Attr)node.getAttributes().item(loopIndex);
 }

 for (int loopIndex = 0; loopIndex < attributes.length;
 loopIndex++) {
 Attr attribute = attributes[loopIndex];
 displayText[numberLines] += " ";
 displayText[numberLines] += attribute.getNodeName();
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attribute.getNodeValue();
 displayText[numberLines] += "\"";
 }
 displayText[numberLines] += ">";

 numberLines++;

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 length = childNodes.getLength();
 indentation += " ";
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 childLoop(childNodes.item(loopIndex), indentation);
 }
 }
 break;
 }

 case Node.TEXT_NODE: {
 displayText[numberLines] = indentation;
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length() > 0){
 displayText[numberLines] += trimmedText;
 numberLines++;
 }
 break;
 }

 case Node.PROCESSING_INSTRUCTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += node.getNodeName();
 String text = node.getNodeValue();
 if (text != null && text.length() > 0) {
 displayText[numberLines] += text;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 break;
 }

 case Node.CDATA_SECTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<![CDATA[";
 displayText[numberLines] += node.getNodeValue();
 displayText[numberLines] += "]]>";
 numberLines++;
 break;
 }
 }

 if (type == Node.ELEMENT_NODE) {
 displayText[numberLines] = indentation.substring(0,
 indentation.length() - 4);
 displayText[numberLines] += "</";
 displayText[numberLines] += node.getNodeName();
 displayText[numberLines] += ">";
 numberLines++;
 indentation += " ";
 }
 }
}

Now compile ch16_02.java by using javac, the Java compiler:

%javac ch16_02.java

This creates ch16_02.class, which is ready to be run. Use the following to run this .class file to extract all the data from
ch16_01.xml:

%java ch16_02 ch16_01.xml

TIP

Depending on how you've set your Java classpath environment variable, you might have to include the
current directory, which holds ch16_02.class, in order to run it. You can do that by using this at the
command prompt:

set classpath=.

Figure 16.1 shows the results of this example in a Windows MS-DOS window. So far today, you've been able to extract
all the data in an XML document, format it, and display it.

Figure 16.1. Parsing an XML document by using Java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.1. Parsing an XML document by using Java.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Finding Elements by Name
As you saw yesterday, we can search for specific elements by using the getElementsByTagName method. For example,
what if you only want to search for <senator> elements in the ch16_01.xml document? You can let the user search for
<senator> elements like this in a new example, ch16_03.java:

%java ch16_03 ch16_01.xml senator

To create this new example, you can build on the one you just created, ch16_02.java. All you have to do is get a node list
of matches to the element the user is searching for by using getElementsByTagName, and you can access that element's
name as args[1]:

public class ch16_03
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;

 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 NodeList nodeList = document.getElementsByTagName(args[1]);
 .
 .
 .

Now loop over the matches in the node list. How can you display the elements you've found and all their children and
attributes? You can leverage the work you've already done by simply looping over the matches and just calling your
childLoop method for each one, as shown in Listing 16.3.

Listing 16.3 Finding Elements in an XML Document (ch16_03.java)

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_03
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;

 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 NodeList nodeList = document.getElementsByTagName(args[1]);

 if (nodeList != null) {
 for (int loopIndex = 0; loopIndex < nodeList.getLength();
 loopIndex++) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 loopIndex++) {
 childLoop(nodeList.item(loopIndex), "");
 }
 }

 } catch (Exception e) {
 e.printStackTrace(System.err) ;
 }

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]);
 }
 }

 public static void childLoop(Node node, String indentation)
 {
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {
 case Node.DOCUMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] +=
 "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 childLoop(((Document)node).getDocumentElement(), "");
 break;
 }

 case Node.ELEMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<";
 displayText[numberLines] += node.getNodeName();

 int length = (node.getAttributes() != null) ?
 node.getAttributes().getLength() : 0;
 Attr attributes[] = new Attr[length];
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 attributes[loopIndex] =
 (Attr)node.getAttributes().item(loopIndex);
 }

 for (int loopIndex = 0; loopIndex < attributes.length;
 loopIndex++) {
 Attr attribute = attributes[loopIndex];
 displayText[numberLines] += " ";
 displayText[numberLines] += attribute.getNodeName();
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attribute.getNodeValue();
 displayText[numberLines] += "\"";
 }
 displayText[numberLines] += ">";

 numberLines++;

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 length = childNodes.getLength();
 indentation += " ";
 for (int loopIndex = 0; loopIndex < length; loopIndex++){
 childLoop(childNodes.item(loopIndex), indentation);
 }
 }
 break;
 }

 case Node.TEXT_NODE: {
 displayText[numberLines] = indentation;
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length() > 0){
 displayText[numberLines] += trimmedText;
 numberLines++;
 }
 break;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case Node.PROCESSING_INSTRUCTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += node.getNodeName();
 String text = node.getNodeValue();
 if (text != null && text.length() > 0) {
 displayText[numberLines] += text;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 break;
 }

 case Node.CDATA_SECTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<![CDATA[";
 displayText[numberLines] += node.getNodeValue();
 displayText[numberLines] += "]]>";
 numberLines++;
 break;
 }
 }

 if (type == Node.ELEMENT_NODE) {
 displayText[numberLines] = indentation.substring(0,
 indentation.length() - 4);
 displayText[numberLines] += "</";
 displayText[numberLines] += node.getNodeName();
 displayText[numberLines] += ">";
 numberLines++;
 indentation += " ";
 }
 }
}

You can see the results—all the senator elements, including their children and attributes—in Figure 16.2.

Figure 16.2. Searching for elements in an XML document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating an XML Browser by Using Java
Besides letting us work with text, Java also lets us work with graphics. You'll take advantage of that to create a
complete XML browser in Java now, using the relatively simple Java Abstract Windowing Toolkit (AWT).

In this example, you're going to read in the XML document shown in Listing 16.4. This document uses a <square>
element to draw squares in an XML browser. The upper left of each square is set by the <square> element's x and y
attributes as the point (x,y), and the width of each square is set by the width attribute.

Listing 16.4 An XML Document for an XML Browser (ch16_04.xml)

<?xml version = "1.0" encoding="UTF-8"?>
<!DOCTYPE document [
<!ELEMENT document (square)*>
<!ELEMENT square EMPTY>
<!ATTLIST square
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED>
]>
<document>
 <square x='220' y='130' width='50' />
 <square x='140' y='180' width='15' />
 <square x='60' y='100' width='45' />
 <square x='210' y='190' width='35' />
 <square x='20' y='200' width='25' />
 <square x='260' y='280' width='45' />
 <square x='220' y='220' width='25' />
 <square x='90' y='180' width='35' />
 <square x='140' y='290' width='55' />
</document>

In your Java code, you need to read in the new XML document, ch16_04.xml, and interpret it. You'll store the total
number of squares to draw in a variable named totalFigures, the x values of the squares in an array named x, the y
values of the squares in an array named y, and the widths of the squares in an array named width:

import java.awt.*;
import java.awt.event.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_05
{
 static int totalFigures = 0;
 static int x[] = new int[100];
 static int y[] = new int[100];
 static int width[] = new int[100];
 .
 .
 .

In the main method, you'll read in the document and call the childLoop method to decode the data in the XML document:

import java.awt.*;
import java.awt.event.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_05
{
 static int totalFigures = 0;
 static int x[] = new int[100];
 static int y[] = new int[100];
 static int width[] = new int[100];

 public static void main(String args[])
 {
 try {

 DocumentBuilderFactory factory =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 childLoop(document);

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }
 .
 .
 .

After the childLoop method fills the totalFigures variable and the x, y, and width arrays, you can use code in the main
method to pass those items to a new Java class, AppFrame, based on the Java Frame class, to create the window and
display the data:

 AppFrame frame = new AppFrame(totalFigures, x, y, width);

 frame.setSize(400, 400);

 frame.addWindowListener(new WindowAdapter() {public void
 windowClosing(WindowEvent e) {System.exit(0);}});

 frame.show();
}

Here's what the AppFrame class, which just uses the Java drawRect method to draw the squares in your new window,
looks like:

class AppFrame extends Frame
{
 int totalFigures;
 int[] xValues;
 int[] yValues;
 int[] widthValues;

 public AppFrame(int number, int[] x, int[] y, int[] width)
 {
 totalFigures = number;
 xValues = x;
 yValues = y;
 widthValues = width;
 }

 public void paint(Graphics g)
 {
 for(int loopIndex = 0; loopIndex < totalFigures; loopIndex++){
 g.drawRect(xValues[loopIndex], yValues[loopIndex],
 widthValues[loopIndex], widthValues[loopIndex]);
 }
 }
}

All that's left is to write the childLoop method that does that actual decoding of the data and fills the totalFigures variable
and the x, y, and width arrays. In this method, you'll look for <square> element nodes and decipher their x, y, and width
attributes. To do that, you use the getAttributes method to get a named node map of each <square> element's attributes
and then use the getNamedItem method to recover the attributes you want. Here's what the childLoop method looks like:

public static void childLoop(Node node)
{
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 if (node.getNodeType() == Node.DOCUMENT_NODE) {
 childLoop(((Document)node).getDocumentElement());
 }

 if (node.getNodeType() == Node.ELEMENT_NODE) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (node.getNodeName().equals("square")) {

 NamedNodeMap attrs = node.getAttributes();

 x[totalFigures] =
 Integer.parseInt((String)attrs.getNamedItem("x").
 getNodeValue());

 y[totalFigures] =
 Integer.parseInt((String)attrs.getNamedItem("y").
 getNodeValue());

 width[totalFigures] =
 Integer.parseInt((String)attrs.getNamedItem("width").
 getNodeValue());

 totalFigures++;
 }

 NodeList childNodes = node.getChildNodes();

 if (childNodes != null) {
 int length = childNodes.getLength();
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 childLoop(childNodes.item(loopIndex)) ;
 }
 }
 }
}

Figure 16.3 shows the results. As the figure shows, the code has indeed read in the XML document ch16_04.xml,
interpreted it, and displayed the results. Now you've created an XML browser from scratch, using Java. Listing 16.5
shows all the code for it.

Listing 16.5 An XML Browser (ch16_05.java)

import java.awt.*;
import java.awt.event.*;

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_05
{
 static int totalFigures = 0;
 static int x[] = new int[100];
 static int y[] = new int[100];
 static int width[] = new int[100];

 public static void main(String args[])
 {
 try {

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 childLoop(document) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 childLoop(document) ;

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }

 AppFrame frame = new AppFrame(totalFigures, x, y, width);

 frame.setSize(400, 400);

 frame.addWindowListener(new WindowAdapter() {public void
 windowClosing(WindowEvent e) {System.exit(0);}});

 frame.show();
 }

 public static void childLoop(Node node)
 {
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 if (node.getNodeType() == Node.DOCUMENT_NODE) {
 childLoop(((Document)node).getDocumentElement());
 }

 if (node.getNodeType() == Node.ELEMENT_NODE) {

 if (node.getNodeName().equals("square")) {

 NamedNodeMap attrs = node.getAttributes();

 x[totalFigures] =
 Integer.parseInt((String)
 attrs.getNamedItem("x").getNodeValue());

 y[totalFigures] =
 Integer.parseInt((String)
 attrs.getNamedItem("y").getNodeValue());

 width[totalFigures] =
 Integer.parseInt((String)
 attrs.getNamedItem("width").getNodeValue());

 totalFigures++;
 }

 NodeList childNodes = node.getChildNodes();

 if (childNodes != null) {
 int length = childNodes.getLength();
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 childLoop(childNodes.item(loopIndex));
 }
 }
 }
 }
}

class AppFrame extends Frame
{
 int totalFigures;
 int[] xValues;
 int[] yValues;
 int[] widthValues;

 public AppFrame(int number, int[] x, int[] y, int[] width)
 {
 totalFigures = number;
 xValues = x;
 yValues = y;
 widthValues = width;
 }

 public void paint(Graphics g)
 {
 for(int loopIndex = 0; loopIndex < totalFigures; loopIndex++){
 g.drawRect(xValues[loopIndex], yValues[loopIndex],

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g.drawRect(xValues[loopIndex], yValues[loopIndex],
 widthValues[loopIndex], widthValues[loopIndex]);
 }
 }
}

Figure 16.3. Creating an XML browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Navigating Through XML Documents
Node objects contain standard W3C DOM methods for navigating in a document, such as getNextSibling, getPreviousSibling,
getFirstChild, getLastChild, and getParent. In this section we'll put these methods to work in the XML document ch16_01.xml.

You'll navigate through this document by using navigation methods similar to the ones you used yesterday. You can use
the same DOM techniques that you used in JavaScript yesterday, but there is a difference: In Java, even whitespace
text is treated as text nodes, and you have to take those nodes into account as you navigate. This means that although
you can use almost the same code as in JavaScript, you have to step over the text nodes used for indentation in
ch16_01.xml. You can see the new navigation code in ch16_06.java, shown in Listing 16.6.

Listing 16.6 Navigating Through an XML Document (ch16_06.java)

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class ch16_06
{
 public static void main(String args[])
 {
 try {

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse("ch16_01.xml");

 childLoop(document);

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }

 }

 public static void childLoop(Node node)
 {
 Node textNode;
 Node sessionNode = ((Document)node).getDocumentElement();
 textNode = sessionNode.getFirstChild();
 Node committeeNode = textNode.getNextSibling();
 textNode = committeeNode.getLastChild();
 Node attendeesNode = textNode.getPreviousSibling();
 textNode = attendeesNode.getLastChild();
 Node senatorNode = textNode.getPreviousSibling();
 textNode = senatorNode.getFirstChild();
 Node firstNameNode = textNode.getNextSibling();
 textNode = firstNameNode.getNextSibling();
 Node lastNameNode = textNode.getNextSibling();

 System.out.println("Last senator: " +
 firstNameNode.getFirstChild().getNodeValue() + ' '
 + lastNameNode.getFirstChild().getNodeValue());
 }
}

Here's what you see when you run this code:

%java ch16_06
Last senator: Jay Jones
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Writing XML by Using Java
The Node interface contains a number of methods for editing the XML in XML documents by adding or removing nodes,
including methods such as appendChild, insertBefore, removeChild, and replaceChild. By using these methods, we can modify
our sample XML document, ch16_01.xml, on-the-fly. You'll write the new version of our XML document out to a document
named new.xml.

To make this work, modify your Java XML parsing code to catch the <senator> element and add a new child element to
it—the <elected> element, which indicates when a senator was elected. For example, you're going to change an element
like this one:

<senator status="present">
 <firstName>
 Jay
 </firstName>
 <lastName>
 Jones
 </lastName>
</senator>

to this, where you use 2004 for all senators:

<senator status="present">
 <firstName>
 Jay
 </firstName>
 <lastName>
 Jones
 </lastName>
 <elected>
 2004
 </elected>
</senator>

Start this example as you have other examples today, by reading in the document to work on in the main method and
passing it to the childLoop method:

public static void main(String args[])
{
 try {

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 document = builder.parse(args[0]);

 childLoop(document, "");
 .
 .
 .

In the childLoop method, catch the <senator> element and create a new element, <elected>:

switch (type) {
 .
 .
 .
 case Node.ELEMENT_NODE: {
 if(node.getNodeName().equals("senator")) {
 Element newElement = document.createElement("elected");
 .
 .
 .
 }

Then create a new text node that holds the text you want in the <elected> element, "2004":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then create a new text node that holds the text you want in the <elected> element, "2004":

switch (type) {
 .
 .
 .
 case Node.ELEMENT_NODE: {
 if(node.getNodeName().equals("senator")) {
 Element newElement = document.createElement("elected");
 Text textNode = document.createTextNode("2004");
 .
 .
 .
 }

Now append the new text node to your new <elected> element by using the appendChild method, and append the new
<elected> element to the <senator> element, like this:

 .
 .
 .
 case Node.ELEMENT_NODE: {
 if(node.getNodeName().equals("senator")) {
 Element newElement = document.createElement("elected");
 Text textNode = document.createTextNode("2004");
 newElement.appendChild(textNode);
 node.appendChild(newElement) ;
 }

You have finished the modifications needed in the childLoop method. Next, back in the main method, write the data we've
stored out to a new XML document, which you'll call new.xml here (there is no correspondingly easy way to write out a
new XML document in JavaScript, which doesn't allow easy access to the user's disk):

 .
 .
 .
 FileWriter filewriter = new FileWriter("new.xml");

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 filewriter.write(displayText[loopIndex].toCharArray());
 filewriter.write('\n');
 }

 filewriter.close();
 }
 catch (Exception e) {
 e.printStackTrace(System.err) ;
 }
}

That's all there is to it; after you run this code, you get this result, new.xml, complete with the new <elected> elements:

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>
 Finance
 </title>
 <number>
 17
 </number>
 <subject>
 Donut Costs
 </subject>
 <date>
 7/15/2005
 </date>
 <attendees>
 <senator status="present">
 <firstName>
 Thomas
 </firstName>
 <lastName>
 Smith
 </lastName>
 <elected>
 2004
 </elected>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </elected>
 </senator>
 <senator status="absent">
 <firstName>
 Frank
 </firstName>
 <lastName>
 McCoy
 </lastName>
 <elected>
 2004
 </elected>
 </senator>
 <senator status="present">
 <firstName>
 Jay
 </firstName>
 <lastName>
 Jones
 </lastName>
 <elected>
 2004
 </elected>
 </senator>
 </attendees>
 </committee>
</session>

Listing 16.7 shows the code for this example, Ch16_07.java.

Listing 16.7 Editing an XML Document (ch16_07.java)

import java.io.*;
import org.w3c.dom.*;
import javax.xml.parsers.*;

public class ch16_07
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;
 static Document document;

 public static void main(String args[])
 {
 try {

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 document = builder.parse(args[0]);

 childLoop(document, "");

 FileWriter filewriter = new FileWriter("new.xml");

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 filewriter.write(displayText[loopIndex].toCharArray());
 filewriter.write('\n');
 }

 filewriter.close();
 }
 catch (Exception e) {
 e.printStackTrace(System.err);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }

 public static void childLoop(Node node, String indentation)
 {
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {
 case Node.DOCUMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] +=
 "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 childLoop(((Document)node).getDocumentElement(), "");
 break;
 }

 case Node.ELEMENT_NODE: {

 if(node.getNodeName().equals("senator")) {
 Element newElement = document.createElement("elected");
 Text textNode = document.createTextNode("2004");
 newElement.appendChild(textNode);
 node.appendChild(newElement);
 }

 displayText[numberLines] = indentation;
 displayText[numberLines] += "<";
 displayText[numberLines] += node.getNodeName();

 int length = (node.getAttributes() != null) ?
 node.getAttributes().getLength() : 0;
 Attr attributes[] = new Attr[length];
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 attributes[loopIndex] = (Attr)node.getAttributes().
 item(loopIndex);
 }

 for (int loopIndex = 0; loopIndex < attributes.length;
 loopIndex++) {
 Attr attribute = attributes[loopIndex];
 displayText[numberLines] += " ";
 displayText[numberLines] += attribute.getNodeName();
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attribute.getNodeValue();
 displayText[numberLines] += "\"";
 }
 displayText[numberLines]+=">";

 numberLines++;

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 length = childNodes.getLength();
 indentation += " ";
 for (int loopIndex = 0; loopIndex < length;
 loopIndex++) {
 childLoop(childNodes.item(loopIndex), indentation);
 }
 }
 break;
 }

 case Node.TEXT_NODE: {
 displayText[numberLines] = indentation;
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length()
 > 0) {
 displayText[numberLines] += trimmedText;
 numberLines++;
 }
 break;
 }

 case Node.PROCESSING_INSTRUCTION_NODE: {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case Node.PROCESSING_INSTRUCTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += node.getNodeName();
 String text = node.getNodeValue();
 if (text != null && text.length() > 0) {
 displayText[numberLines] += text;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 break;
 }

 case Node.CDATA_SECTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<![CDATA[";
 displayText[numberLines] += node.getNodeValue();
 displayText[numberLines] += "]]>";
 numberLines++;
 break;
 }
 }

 if (type == Node.ELEMENT_NODE) {
 displayText[numberLines] =
 indentation.substring(0, indentation.length() - 4) ;
 displayText[numberLines] += "</";
 displayText[numberLines] += node.getNodeName();
 displayText[numberLines] += ">";
 numberLines++;
 indentation += " ";
 }
 }
}

You have completed your Java work with the XML DOM. As you can see, there's plenty of depth here. It turns out that
there's another approach to working with XML and Java besides the DOM. The other way is named the Simple API for
XML (SAX), and you'll take a look at it tomorrow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you looked at how to use Java with the XML DOM. You saw that there's good support for XML DOM handling in
Java 1.4 or later. You began today by using a Java DocumentBuilderFactory object to create a DocumentBuilder object. And
you were able to use the DocumentBuilder object's parse method to parse an XML document and create a Java Document
object.

The Document object corresponds to an entire XML document; it is the top node of the document tree. Today you were
able to work with the Document node and other nodes in a recursive Java method named childLoop that first checked the
type of node by using the getNodeType method and then handled the different types of nodes by using a Java switch
statement.

After determining the type of node, you were able to get the node's name by using the getNodeName method and get
the node's value, if applicable, by using the getNodeValue method. And you were able to get an element's attribute nodes
by using the getAttributes method.

By using the getChildNodes method, you were able to loop over the child nodes of each element node as well, moving
through an entire XML document and extracting all the data from it. In this way, you were able to parse whole XML
documents by using the DOM and Java.

You were also able to search for specific elements by using the getElementsByTagName method, and navigated through an
XML document by using navigation methods such as getNextSibling, getPreviousSibling, getFirstChild, getLastChild, and
getParent.

Finally, you saw how to use methods including appendChild, insertBefore, removeChild, and replaceChild, to modify the XML
in an XML document, using Java. You were able to modify our sample XML document into a new version by inserting an
<elected> element into every <senator> element by using these methods, and were able to write the new version of the
document out to disk.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: I don't have version 1.4 (or later) of Java, and I have to stick to my current version for a
variety of reasons. Is there no way for me to use the built-in support for XML in Java?

A1: If you're using a version of Java prior to 1.4, you can download and install the Java XML pack. As of this
writing, the download page for that is http://java.sun.com/xml/downloads/javaxmlpack.html. After
downloading and unzipping, you have to include the files jaxp-api.jar and xalan.jar in your classpath
environment variable. After you do this, you should be able to run today's Java examples.

Q2: I understand that by default, Java XML parsers treat whitespace nodes, such as the node used
for indentation, as text nodes. Isn't there a way to get such parsers to ignore whitespace text
nodes so I don't have to worry about them?

A2: Yes, theoretically, you can use a DocumentBuilderFactory object's setIgnoringElementContentWhitespace method
to ignore whitespace nodes:

factory.setIgnoringElementContentWhitespace(true)

In practice, however, this technique seems to produce inconsistent results.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: How do you read in an XML document and create a Java Document object in Java?

2: What DOM method can you use to determine a node's type?

3: How can you determine the name of a node and access its data?

4: How can you get a node list of all the <senator> elements in a document?

5: How can you create a new element named <child> and make it a child element of an element named
<element> by using Java?

Exercises

1: Using Java XML DOM navigation methods, determine the last name of the second senator in ch16_01.xml.

2: Building on your solution to Exercise 1, use Java to read the value of the second senator's status attribute to
determine whether he was present or absent for the meeting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 17. Using Java and .NET: SAX
Yesterday, you used Java and the DOM model to work your way through XML documents. Some programmers find the
DOM way of doing things pretty complex, however, because it requires us to search out our data in the XML document.
Instead of having to go get our data, those programmers say, wouldn't it be easier if that data came to us? That's how
the Simple API for XML (SAX) works, as you're going to see today. Today's topics are purposely the same as
yesterday's, except today, you're going to do things the SAX way:

Loading XML documents into a Java application

Parsing XML documents by using Java

Searching a document for a particular element

Navigating through an XML document by using Java

Creating graphical XML browsers by using Java

Modifying the XML in a document by using Java

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

An Overview of SAX
The SAX processor works through a document, and when it finds a node, it calls a method in the code that handles that
kind of node. In fact, your DOM code yesterday was set up to do much the same thing. In the childLoop method's switch
statement, set up case statements to handle the type of node you were dealing with:

public static void childLoop(Node node, String indentation)
{
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {
 case Node.DOCUMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 childLoop(((Document)node).getDocumentElement(), "");
 break;
 }

 case Node.ELEMENT_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<";
 displayText[numberLines] += node.getNodeName();

 int length = (node.getAttributes() != null) ?
 node.getAttributes().getLength() : 0;
 Attr attributes[] = new Attr[length];
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 attributes[loopIndex] =
 (Attr)node.getAttributes().item(loopIndex);
 }

 for (int loopIndex = 0; loopIndex < attributes.length;
 loopIndex++) {
 Attr attribute = attributes[loopIndex];
 displayText[numberLines] += " ";
 displayText[numberLines] += attribute.getNodeName();
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attribute.getNodeValue();
 displayText[numberLines] += "\"";
 }
 displayText[numberLines] += ">";

 numberLines++;

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 length = childNodes.getLength();
 indentation += " ";
 for (int loopIndex = 0; loopIndex < length; loopIndex++) {
 childLoop(childNodes.item(loopIndex), indentation);
 }
 }
 break;
 }

 case Node.TEXT_NODE: {
 displayText[numberLines] = indentation;
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length() > 0) {
 displayText[numberLines] += trimmedText;
 numberLines++;
 }
 break;
 }

 case Node.PROCESSING_INSTRUCTION_NODE: {
 displayText[numberLines] = indentation;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += node.getNodeName();
 String text = node.getNodeValue();
 if (text != null && text.length() > 0) {
 displayText[numberLines] += text;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 break;
 }

 case Node.CDATA_SECTION_NODE: {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<![CDATA[";
 displayText[numberLines] += node.getNodeValue();
 displayText[numberLines] += "]]>";
 numberLines++;
 break;
 }
 }

 if (type == Node.ELEMENT_NODE) {
 displayText[numberLines] = indentation.substring(0,
 indentation.length() - 4);
 displayText[numberLines] += "</";
 displayText[numberLines] += node.getNodeName();
 displayText[numberLines] += ">";
 numberLines++;
 indentation += " ";
 }
}

This code handles XML nodes in much the same way that SAX does; the idea is that nodes are fed to the code, and all
we have to do is write code for the various different node types that we want to handle. SAX is event based, which
means that we write code for the various possible events. For example, we can write our code so that when the SAX
parser sees the beginning of an element, it will call the startElement method in the code.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using SAX
Today's first example shows how to work with SAX. You'll start with the same example you used yesterday, except
today, you'll use SAX. In particular, you're going to extract all the data from ch17_01.xml, which is shown in Listing 17.1.

Listing 17.1 A Sample XML Document for Use with SAX Methods (ch17_01.xml)

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>Finance</title>
 <number>17</number>
 <subject>Donut Costs</subject>
 <date>7/15/2005</date>
 <attendees>
 <senator status="present">
 <firstName>Thomas</firstName>
 <lastName>Smith</lastName>
 </senator>
 <senator status="absent">
 <firstName>Frank</firstName>
 <lastName>McCoy</lastName>
 </senator>
 <senator status="present">
 <firstName>Jay</firstName>
 <lastName>Jones</lastName>
 </senator>
 </attendees>
 </committee>
</session>

How do you handle this XML document by using SAX? You start in the main method by calling a new version of the
childLoop method created yesterday. This method will fill the same array of strings, displayText, and you'll store the
number of strings in a variable named numberLines. When the childLoop method is done, all you have to do is display all
the text in the displayText array:

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_02 extends DefaultHandler
{
 static int numberLines = 0;
 static String indentation = "";
 static String displayText[] = new String[1000];

 public static void main(String args[])
 {
 ch17_02 parser = new ch17_02();
 parser.childLoop(args[0]);

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]);
 }
 }

In the childLoop method, start by creating a SAXParserFactory object, using a DefaultHandler object. The DefaultHandler
object tells SAX which object to call when it encounters various nodes, and you'll use the present application object,
which you've based on the DefaultHandler class:

public class ch17_02 extends DefaultHandler
{
 .
 .
 .

To refer to the current object, use the Java this keyword. Here's how to create the SAXParserFactory object:

public void childLoop(String uri)
{
 DefaultHandler saxHandler = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DefaultHandler saxHandler = this;
 SAXParserFactory saxFactory = SAXParserFactory.newInstance();
 .
 .
 .
}

Now create a new SAX parser by using this SAXParserFactory object, and this SAX parser will parse the XML document
ch17_01.xml:

public void childLoop(String uri)
{
 DefaultHandler saxHandler = this;
 SAXParserFactory saxFactory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = saxFactory.newSAXParser();
 saxParser.parse(new File(uri), saxHandler);
 } catch (Throwable t) {}
}

Table 17.1 lists the significant methods of the SAXParserFactory class, and Table 17.2 lists the significant methods of the
SAXParser class.

Table 17.1. Methods of the javax.xml.parsers.SAXParserFactory Interface
Method What It Does

protected SAXParserFactory() Acts as the default constructor for the class.

boolean isNamespaceAware() Returns True if the factory is configured to produce parsers that use XML
namespaces.

boolean isValidating() Returns True if the factory is configured to produce parsers that validate the
XML content.

static SAXParserFactory newInstance() Returns a new SAXParserFactory object.

abstract SAXParser newSAXParser() Returns a new SAXParser object.

void setNamespaceAware(boolean
awareness)

Requires that the created parser support XML namespaces.

void setValidating(boolean validating) Requires that the parser produced validate XML documents.

Table 17.2. Methods of the SAXParser Class
Method What It Does

protected SAXParser() Acts as the default class constructor.

abstract Parser getParser() Returns the SAX parser.

abstract boolean isNamespaceAware() Returns True if this parser can understand namespaces.

abstract boolean isValidating() Returns True if this parser is configured to validate XML documents.

void parse(File f, DefaultHandler dh) Parses the file specified.

void parse(InputSource is, DefaultHandler dh) Parses the content specified InputSource object.

void parse(InputStream is, DefaultHandler dh) Parses the content of the specified InputStream object.

void parse(String uri, DefaultHandler dh) Parses the content at the given URI, using the specified DefaultHandler
object.

abstract void setProperty(String name, Object
value)

Sets a property in the parser.

Now you've connected our SAX parser to our program and launched it, which means it will be calling various methods in
your code to handle various types of nodes. It does this because you've based the program's main class on the SAX
DefaultHandler class:

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_02 extends DefaultHandler
 .
 .
 .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .

The DefaultHandler class has a number of predefined methods, called callback methods, that the SAX parser will call:

characters— Called by the SAX parser for text nodes.

endDocument— Called by the SAX parser when the end of the document is seen.

endElement— Called by the SAX parser when the closing tag of an element is seen.

startDocument— Called by the SAX parser when the start of the document is seen.

startElement— Called by the SAX parser when the opening tag of an element is seen.

All the required callback methods are already implemented in the DefaultHandler class, but they don't do anything. That
means we only have to implement the methods we want to use, such as startDocument to catch the beginning of the
document or endDocument to catch the end of the document, as described later today. Table 7.3 lists the significant
methods of the DefaultHandler class.

Table 17.3. Methods of the DefaultHandler Class
Method What It Does

DefaultHandler() Acts as the default class constructor.

void characters(char[] ch, int start, int length) Handles text nodes.

void endDocument() Handles the end of the document.

void endElement(String uri, String localName, String qName) Handles the end of an element.

void error(SAXParseException e) Handles a recoverable parser error.

void fatalError(SAXParseException e) Reports a fatal parsing error.

void ignorableWhitespace(char[] ch, int start, int length) Handles ignorable whitespace (such as that used to indent a
document) in element content.

void notationDecl(String name, String publicId, String
systemId)

Handles a notation declaration.

void processingInstruction(String target, String data) Handles an XML processing instruction (such as a JSP
directive).

InputSource resolveEntity(String publicId, String systemId) Resolves an external entity.

void setDocumentLocator(Locator locator) Sets a Locator object for document events.

void skippedEntity(String name) Handles a skipped XML entity.

void startDocument() Handles the beginning of the document.

void startElement(String uri, String localName, String qName,
Attributes attributes)

Handles the start of an element.

void startPrefixMapping(String prefix, String uri) Handles the start of a namespace mapping.

void unparsedEntityDecl(String name, String publicId, String
systemId, String notationName)

Handles an unparsed entity declaration.

void warning(SAXParseException e) Handles a parser warning.

Let's start by handling the start of the document.

Handling the Start of a Document

To handle the start of a document, you can implement the DefaultHandler startDocument method:

public void startDocument()
{
 .
 .
 .
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

When this method is called, the SAX processor has already seen the beginning of the document, so just put a generic
XML declaration into the displayText array:

public void startDocument()
{
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
}

Handling Processing Instructions

We can handle processing instructions by using the DefaultHandler processingInstruction method, which is called
automatically when the SAX parser finds a processing instruction. The target of the processing instruction is passed to
us, as is the data for the processing instruction, which means you can handle processing instructions like this:

public void processingInstruction(String target, String data)
{
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += target;
 if (data != null && data.length() > 0) {
 displayText[numberLines] += ' ';
 displayText[numberLines] += data;
 }
 displayText[numberLines] += "?>";
 numberLines++;
}

Handling the Start of an Element

To handle the start of an element, use the startElement SAX method. This method is passed the namespace URI of the
element, the local (unqualified) name of the element, the qualified name of the element, and the element's attributes
(as an Attributes object):

public void startElement(String uri, String localName, String qualifiedName,
 Attributes attributes)
{
 .
 .
 .
}

Store the element's name in our displayText array, like this:

public void startElement(String uri, String localName, String qualifiedName,
 Attributes attributes)
{
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 .
 .
 .
 displayText[numberLines] += '>';
 numberLines++;
}

So far, so good. But what if the element has attributes?

Handling Attributes

If the element has attributes, loop over them. And the way you determine whether the element has attributes is by
checking whether the Attributes object passed to you in the startElement method is null:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void startElement(String uri, String localName, String qualifiedName,
 Attributes attributes)
{
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 .
 .
 .
 }
 displayText[numberLines] += '>';
 numberLines++;
}

Table 17.4 lists the methods of Attributes objects. We can reach the attributes in an object that implements this interface
based on index, name, or namespace-qualified name.

Table 17.4. Attributes Interface Methods
Method What It Does

int getIndex(java.lang.String uri, java.lang.String localPart) Returns the index of an attribute, by namespace and local
name.

int getIndex(java.lang.String qualifiedName) Returns the index of an attribute, given its qualified name.

int getLength() Returns the number of attributes in the list.

java.lang.String getLocalName(int index) Returns an attribute's local name, by index.

java.lang.String getQName(int index) Returns an attribute's qualified name, by index.

java.lang.String getType(int index) Returns an attribute's type, by index.

java.lang.String getType-(java.lang.String qualifiedName) Returns an attribute's type, by qualified name.

java.lang.String getType(java.lang.String uri, java.lang.String
localName)

Returns an attribute's type, by namespace and local name.

java.lang.String getURI(int index) Returns an attribute's namespace URI, by index.

java.lang.String getValue(int index) Returns an attribute's value, by index.

java.lang.String getValue-(java.lang.String qualifiedName) Returns an attribute's value, by qualified name.

java.lang.String getValue(java.lang.String uri, java.lang.String
localName)

Returns an attribute's value, by namespace name and
local name.

Now loop over the attributes and use the getQName (get qualified name) and getValue methods to store the name and
value of each attribute:

public void startElement(String uri, String localName, String qualifiedName,
 Attributes attributes)
{
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 int numberAttributes = attributes.getLength();
 for (int loopIndex = 0; loopIndex < numberAttributes; loopIndex++) {
 displayText[numberLines] += ' ';
 displayText[numberLines] += attributes.getQName(loopIndex);
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attributes.getValue(loopIndex);
 displayText[numberLines] += '"';
 }
 }
 displayText[numberLines] += '>';
 numberLines++;
}

Next, you'll take a look at handling text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, you'll take a look at handling text.

Handling Text

In SAX, you handle text by using the characters method. This method is passed an array of characters, the location in
that array where the text for the current text node starts, and the length of the text in the text node:

public void characters(char characters[], int start, int length)
{
 .
 .
 .
}

Here's how to handle the text of a text node, adding it to the displayText array:

public void characters(char characters[], int start, int length)
{
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 displayText[numberLines] = indentation;
 displayText[numberLines] += characterData;
 numberLines++;
 }
}

By default, the SAX parser will also call a method named ignorableWhitespace when it finds whitespace text nodes, such
as whitespace used for indentation. If we want to handle that text like any other text, we can simply pass it on to the
characters method we just implemented (note that we've commented this line out here because we're supplying our own
indentation in this example):

public void ignorableWhitespace(char characters[], int start, int length)
{
 //characters(characters, start, length);
}

Handling the End of Elements

Besides the startElement method, which is called when the SAX parser sees the beginning of an element, we can also
implement the endElement method to handle an element's closing tag. Here's how that looks in this example:

public void endElement(String uri, String localName, String qualifiedName)
{
 indentation = indentation.substring(0, indentation.length() - 4);
 displayText[numberLines] = indentation;
 displayText[numberLines] += "</";
 displayText[numberLines] += qualifiedName;
 displayText[numberLines] += '>';
 numberLines++;
}

Handling Errors and Warnings

SAX makes it easy to handle warnings and errors. We can implement the warning method to handle warnings, the error
method to handle errors, and the fatalError method to handle errors that the SAX parser considers fatal enough to make
it stop processing. Here's what the error handling looks like in this example:

public void warning(SAXParseException exception)
{
 System.err.println("Warning: " +
 exception.getMessage());
}

public void error(SAXParseException exception)
{
 System.err.println("Error: " +
 exception.getMessage());
}

public void fatalError(SAXParseException exception)
{
 System.err.println("Fatal error: " +
 exception.getMessage());
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

And that's it—now run your new SAX code and parse ch17_01.xml like this:

%java ch17_02 ch17_01.xml

TIP

As in yesterday's discussion, depending on how you've set your Java classpath environment variable, you
might have to include the current directory, which holds ch16_02.class, in order to run it. You can do that by
using this at the command prompt:

set classpath=.

As shown in Figure 17.1, we've been able to read and extract all the data in the XML document by using SAX methods.

Figure 17.1. Parsing an XML document by using a SAX parser.

The complete Java code is in Listing 17.2.

Listing 17.2 Parsing an XML Document by Using Java SAX (ch17_02.java)

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_02 extends DefaultHandler
{
 static int numberLines = 0;
 static String indentation = "";
 static String displayText[] = new String[1000];

 public static void main(String args[])
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 ch17_02 parser = new ch17_02();
 parser.childLoop(args[0]);

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]);
 }
 }

 public void childLoop(String uri)
 {
 DefaultHandler saxHandler = this;
 SAXParserFactory saxFactory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = saxFactory.newSAXParser();
 saxParser.parse(new File(uri), saxHandler);
 } catch (Throwable t) {}
 }

 public void startDocument()
 {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 }

 public void processingInstruction(String target, String data)
 {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += target;
 if (data != null && data.length() > 0) {
 displayText[numberLines] += ' ';
 displayText[numberLines] += data;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 }

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
 {
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 int numberAttributes = attributes.getLength();
 for (int loopIndex = 0; loopIndex < numberAttributes; loopIndex++){
 displayText[numberLines] += ' ';
 displayText[numberLines] += attributes.getQName(loopIndex);
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attributes.getValue(loopIndex);
 displayText[numberLines] += '"';
 }
 }
 displayText[numberLines] += '>';
 numberLines++;
 }

 public void characters(char characters[], int start, int length)
 {
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 displayText[numberLines] = indentation;
 displayText[numberLines] += characterData;
 numberLines++;
 }
 }

 public void ignorableWhitespace(char characters[], int start, int length)
 {
 //characters(characters, start, length);
 }

 public void endElement(String uri, String localName, String qualifiedName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void endElement(String uri, String localName, String qualifiedName)
 {
 indentation = indentation.substring(0, indentation.length() - 4);
 displayText[numberLines] = indentation;
 displayText[numberLines] += "</";
 displayText[numberLines] += qualifiedName;
 displayText[numberLines] += '>';
 numberLines++;
 }

 public void warning(SAXParseException exception)
 {
 System.err.println("Warning: " +
 exception.getMessage());
 }

 public void error(SAXParseException exception)
 {
 System.err.println("Error: " +
 exception.getMessage());
 }

 public void fatalError(SAXParseException exception)
 {
 System.err.println("Fatal error: " +
 exception.getMessage());
 }
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using SAX to Find Elements by Name
Yesterday you were able to use the getElementsByTagName method to search an XML document for a particular element,
but using that method isn't an option in SAX. Nonetheless, you can search for particular elements when you use SAX—
you just have to wait until they come to you when the parser finds them.

You can build on the SAX parsing program you've already written in a new example, ch17_03.java. You can let the user
enter the name of the XML document to search and the name of the element to search for, like this:

%java ch17_03 ch17_01.xml senator

In the main method, store the name of the element the user wants to search for in a variable called findNode:

public static void main(String args[])
{
 ch17_03 obj = new ch17_03();
 findNode = args[1];
 obj.childLoop(args[0]);

 for(int index = 0; index < numberLines; index++){
 System.out.println(displayText[index]);
 }
}

In the startElement method, you'll search for that element, and when you find it, set a Boolean named displayBoolean to
true. When this Boolean is true, you know that you're inside the element you're looking for and so should be storing data
in the displayText array, like this:

public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
{
 if(qualifiedName.equals(findNode)){
 displayBoolean=true;
 }
 if (displayBoolean){
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 int numberAttributes = attributes.getLength();
 for (int loopIndex = 0; loopIndex < numberAttributes; loopIndex++){
 displayText[numberLines] += ' ';
 displayText[numberLines] += attributes.getQName(loopIndex);
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attributes.getValue(loopIndex);
 displayText[numberLines] += '"';
 }
 }
 displayText[numberLines] += '>';
 numberLines++;
 }
}

You'll use the displayBoolean variable in all the methods that the SAX parser calls in your code to see whether you're in
the element the user is searching for and so should be storing text in the displayText array. For example, this is how to
do that in the characters method, which handles text nodes:

public void characters(char characters[], int start, int length) {
 if(displayBoolean){
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 displayText[numberLines] = indentation;
 displayText[numberLines] += characterData;
 numberLines++;
 }
 }
}

When you reach the end of the element you've been searching for, you can set the displayBoolean variable to false:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you reach the end of the element you've been searching for, you can set the displayBoolean variable to false:

public void endElement(String uri, String localName, String qualifiedName)
{
 if(displayBoolean){
 indentation = indentation.substring(0, indentation.length() - 4);
 displayText[numberLines] = indentation;
 displayText[numberLines] += "</";
 displayText[numberLines] += qualifiedName;
 displayText[numberLines] += '>';
 numberLines++;
 }
 if(qualifiedName.equals(findNode)){
 displayBoolean=false;
 }
}

Figure 17.2 shows that we are indeed displaying all the <senator> elements and their contents.

Figure 17.2. Searching an XML document for elements by using SAX.

The complete code is shown in Listing 17.3.

Listing 17.3 Finding XML Elements by Using Java SAX (ch17_03.java)

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_03 extends DefaultHandler
{
 static int numberLines = 0;
 static String indentation = "";
 static String displayText[] = new String[1000];

 static boolean displayBoolean;
 static String findNode;

 public static void main(String args[])
 {
 ch17_03 obj = new ch17_03();
 findNode = args[1];
 obj.childLoop(args[0]);

 for(int index = 0; index < numberLines; index++){
 System.out.println(displayText[index]);
 }
 }

 public void childLoop(String uri)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void childLoop(String uri)
 {
 DefaultHandler saxHandler = this;
 SAXParserFactory saxFactory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = saxFactory.newSAXParser();
 saxParser.parse(new File(uri), saxHandler);
 } catch (Throwable t) {}
 }

 public void startDocument()
 {
 if(displayBoolean){
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 }
 }

 public void processingInstruction(String target, String data)
 {
 if(displayBoolean){
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += target;
 if (data != null && data.length() > 0) {
 displayText[numberLines] += ' ';
 displayText[numberLines] += data;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 }
 }

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
 {
 if(qualifiedName.equals(findNode)) {
 displayBoolean=true;
 }

 if (displayBoolean){
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 int numberAttributes = attributes.getLength();
 for (int loopIndex = 0; loopIndex < numberAttributes;
 loopIndex++) {
 displayText[numberLines] += ' ';
 displayText[numberLines] += attributes.getQName(loopIndex);
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attributes.getValue(loopIndex);
 displayText[numberLines] += '"';
 }
 }
 displayText[numberLines] += '>';
 numberLines++;
 }
 }

 public void characters(char characters[], int start, int length) {
 if(displayBoolean){
 String characterData =
 (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 displayText[numberLines] = indentation;
 displayText[numberLines] += characterData;
 numberLines++;
 }
 }
 }

 public void ignorableWhitespace(char characters[], int start, int length)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if(displayBoolean){
 //characters(ch, start, length);
 }
 }

 public void endElement(String uri, String localName, String qualifiedName)
 {
 if(displayBoolean){
 indentation = indentation.substring(0, indentation.length() - 4) ;
 displayText[numberLines] = indentation;
 displayText[numberLines] += "</";
 displayText[numberLines] += qualifiedName;
 displayText[numberLines] += '>';
 numberLines++;
 }
 if(qualifiedName.equals(findNode)){
 displayBoolean=false;
 }
 }

 public void warning(SAXParseException exception)
 {
 System.err.println("Warning: " +
 exception.getMessage());
 }

 public void error(SAXParseException exception)
 {
 System.err.println("Error: " +
 exception.getMessage());
 }

 public void fatalError(SAXParseException exception)
 {
 System.err.println("Fatal error: " +
 exception.getMessage());
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating an XML Browser by Using Java and SAX
Yesterday, you were able to create a graphical browser by using DOM methods. You can do the same thing with SAX,
but the coding is different. You'll use the same XML document as you did yesterday, ch17_04.xml (shown in Listing 17.4),
which lets you display a series of squares.

Listing 17.4 An XML Document with a DTD (ch17_04.xml)

<?xml version = "1.0" encoding="UTF-8"?>
<!DOCTYPE document [
<!ELEMENT document (square)*>
<!ELEMENT square EMPTY>
<!ATTLIST square
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED>
]>
<document>
 <square x='220' y='130' width='50' />
 <square x='140' y='180' width='15' />
 <square x='60' y='100' width='45' />
 <square x='210' y='190' width='35' />
 <square x='20' y='200' width='25' />
 <square x='260' y='280' width='45' />
 <square x='220' y='220' width='25' />
 <square x='90' y='180' width='35' />
 <square x='140' y='290' width='55' />
</document>

Yesterday you created the visual interface. The trick today will be to extract the x, y, and width data for each square.
As you did yesterday, you need to put aside storage space for these items in arrays named x, y, and width:

public class ch17_05 extends DefaultHandler
{
 static int totalFigures = 0;
 static int x[] = new int[100];
 static int y[] = new int[100];
 static int width[] = new int[100];
 .
 .
 .

Now when you catch a <square> element in the startElement SAX method, you can get the values we need for each
square by using the Attributes object's getValue method:

public void startElement(String uri, String localName,
 String qualifiedName, Attributes attrs)
{
 if (qualifiedName.equals("square")) {
 x[totalFigures] = Integer.parseInt(attrs.getValue("x"));
 y[totalFigures] = Integer.parseInt(attrs.getValue("y"));
 width[totalFigures] = Integer.parseInt(attrs.getValue("width"));
 totalFigures++;
 }
}

Then you can draw your squares as you did yesterday, by passing your data to the AppFrame object after the childLoop
method has extracted the needed data:

public static void main(String args[])
{
 ch17_05 obj = new ch17_05();
 obj.childLoop(args[0]);

 AppFrame frame = new AppFrame(totalFigures, x, y, width);

 frame.setSize(400, 400);

 frame.addWindowListener(new WindowAdapter() {public void
 windowClosing(WindowEvent e) {System.exit(0);}});

 frame.show();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 frame.show();
}

Here's how to do the actual drawing in the AppFrame object:

class AppFrame extends Frame
{
 int totalFigures;
 int[] xValues;
 int[] yValues;
 int[] widthValues;

 public AppFrame(int number, int[] x, int[] y, int[] width)
 {
 totalFigures = number;
 xValues = x;
 yValues = y;
 widthValues = width;
 }

 public void paint(Graphics g)
 {
 for(int loopIndex = 0; loopIndex < totalFigures; loopIndex++){
 g.drawRect(xValues[loopIndex], yValues[loopIndex],
 widthValues[loopIndex], widthValues[loopIndex]);
 }
 }
}

Figure 17.3 shows the results. As the figure shows, the SAX graphical browser is indeed displaying the squares as the
DOM graphical browser did yesterday.

Figure 17.3. A graphical XML browser that uses SAX.

Listing 17.5 shows the code for this example.

Listing 17.5 An XML Browser That Uses SAX (ch17_05.java)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import java.io.*;
import java.awt.*;
import org.xml.sax.*;
import java.awt.event.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_05 extends DefaultHandler
{
 static int totalFigures = 0;
 static int x[] = new int[100];
 static int y[] = new int[100];
 static int width[] = new int[100];

 public static void main(String args[])
 {
 ch17_05 obj = new ch17_05();
 obj.childLoop(args[0]);

 AppFrame frame = new AppFrame(totalFigures, x, y, width);

 frame.setSize(400, 400);

 frame.addWindowListener(new WindowAdapter() {public void
 windowClosing(WindowEvent e) {System.exit(0);}});

 frame.show();
 }

 public void childLoop(String uri)
 {
 DefaultHandler defaultHandler = this;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(uri), defaultHandler);
 } catch (Throwable t) {}
 }

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attrs)
 {
 if (qualifiedName.equals("square")) {
 x[totalFigures] = Integer.parseInt(attrs.getValue("x"));
 y[totalFigures] = Integer.parseInt(attrs.getValue("y"));
 width[totalFigures] = Integer.parseInt(attrs.getValue("width"));
 totalFigures++;
 }
 }

 public void warning(SAXParseException exception)
 {
 System.err.println("Warning: " +
 exception.getMessage());
 }

 public void error(SAXParseException exception)
 {
 System.err.println("Error: " +
 exception.getMessage());
 }

 public void fatalError(SAXParseException exception)
 {
 System.err.println("Fatal error: " +
 exception.getMessage());
 }
}

class AppFrame extends Frame
{
 int totalFigures;
 int[] xValues;
 int[] yValues;
 int[] widthValues;

 public AppFrame(int number, int[] x, int[] y, int[] width)
 {
 totalFigures = number;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 totalFigures = number;
 xValues = x;
 yValues = y;
 widthValues = width;
 }

 public void paint(Graphics g)
 {
 for(int loopIndex = 0; loopIndex < totalFigures; loopIndex++){
 g.drawRect(xValues[loopIndex], yValues[loopIndex],
 widthValues[loopIndex], widthValues[loopIndex]);
 }
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Navigating Through XML Documents by Using SAX
Yesterday you used some W3C DOM methods (for example, getNextSibling, getPreviousSibling, getFirstChild, getLastChild,
getParent) to navigate through an XML document. But you can't do that in SAX because a SAX parser does not create a
tree of nodes to support these methods. Instead, you have to wait until what you are searching for comes to you.
Yesterday you navigated through an XML document, looking for the last senator in an XML document. You can do the
same in SAX; in this case, you just have to wait for the last senator to come to us.

Here's how it looks in code; in the startElement method, we count the number of senators we've seen, and if we're on
the third and last senator, we set a Boolean variable, lastSenatorBoolean, to true:

public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
{
 if(qualifiedName.equals("senator")) {
 senatorNumber++;
 }

 if(senatorNumber == 3) {
 lastSenatorBoolean = true;
 }
 .
 .
 .

If you're inside the last <senator> element, you can catch the <firstName> and <lastName> elements by setting the
Booleans firstNameBoolean and lastNameBoolean to true:

public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
{
 if(qualifiedName.equals("senator")) {
 senatorNumber++;
 }

 if(senatorNumber == 3) {
 lastSenatorBoolean = true;
 }

 if(qualifiedName.equals("firstName") && lastSenatorBoolean) {
 firstNameBoolean = true;
 }

 if(qualifiedName.equals("lastName") && lastSenatorBoolean) {
 firstNameBoolean = false;
 lastNameBoolean = true;
 }
}

By using the firstNameBoolean and lastNameBoolean variables, you can catch the name of the last senator when you handle
text nodes:

public void characters(char characters[], int start, int length)
{
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 if(firstNameBoolean) {
 firstName = characterData;
 }
 if(lastNameBoolean) {
 lastName = characterData;
 }
 }
}

Now that you've stored the last senator's first and last names in the variables firstName and lastName, you can display
them when in the endElement method:

public void endElement(String uri, String localName,
 String qualifiedName)
{
 if(lastSenatorBoolean && lastNameBoolean){
 System.out.println("Last senator: " + firstName +
 " " + lastName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 " " + lastName);
 lastSenatorBoolean = false;
 firstNameBoolean = false;
 lastNameBoolean = false;
 }
}

And that's it—when you run this application, you see this result:

%java ch17_06 ch17_01.xml
Last senator: Jay Jones

This code gives you the same results as when you used DOM methods yesterday, but instead of going to find the
senator as you did yesterday, this time you used SAX methods and let the senator come to you. Listing 17.6 shows the
full code for this application, ch17_06.java.

Listing 17.6 Navigating XML by Using SAX (ch17_06.java)

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_06 extends DefaultHandler
{
 int senatorNumber;
 boolean lastSenatorBoolean = false, firstNameBoolean = false,
 lastNameBoolean = false;
 String firstName, lastName;

 public static void main(String args[])
 {
 ch17_06 obj = new ch17_06();
 obj.childLoop(args[0]);
 }

 public void childLoop(String uri)
 {
 DefaultHandler defaultHandler = this;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(uri), defaultHandler);
 } catch (Throwable t) {}
 }

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
 {
 if(qualifiedName.equals("senator")) {
 senatorNumber++;
 }

 if(senatorNumber == 3) {
 lastSenatorBoolean = true;
 }

 if(qualifiedName.equals("firstName") && lastSenatorBoolean) {
 firstNameBoolean = true;
 }

 if(qualifiedName.equals("lastName") && lastSenatorBoolean) {
 firstNameBoolean = false;
 lastNameBoolean = true;
 }

 }

 public void characters(char characters[], int start, int length)
 {
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 if(firstNameBoolean) {
 firstName = characterData;
 }
 if(lastNameBoolean) {
 lastName = characterData;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 }

 public void endElement(String uri, String localName,
 String qualifiedName)
 {
 if(lastSenatorBoolean && lastNameBoolean){
 System.out.println("Last senator: " + firstName +
 " " + lastName);
 lastSenatorBoolean = false;
 firstNameBoolean = false;
 lastNameBoolean = false;
 }
 }

 public void warning(SAXParseException exception)
 {
 System.err.println("Warning: " +
 exception.getMessage());
 }

 public void error(SAXParseException exception)
 {
 System.err.println("Error: " +
 exception.getMessage());
 }

 public void fatalError(SAXParseException exception)
 {
 System.err.println("Fatal error: " +
 exception.getMessage());
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Writing XML by Using Java and SAX
When we're working with DOM, we can use methods such as createElement, insertBefore, and addChild to edit an XML
document in memory. On the other hand, in SAX we're not dealing with a tree of nodes, so there are no similar
methods.

However, if we want to, we can simulate element creation by calling the startElement, characters, and endElement methods.
Listing 17.7 is an example that does the same thing as yesterday's XML-writing example did—inserts an
<elected>2004</elected> element at the end of each <senator> element. The new version of the XML document will be
written out as new.xml, and Listing 17.7 shows the complete code.

Listing 17.7 Navigating XML by Using SAX (ch17_07.java)

import java.io.*;
import org.xml.sax.*;
import javax.xml.parsers.*;
import org.xml.sax.helpers.DefaultHandler;

public class ch17_07 extends DefaultHandler
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;
 static String indentation = "";

 public static void main(String args[])
 {
 ch17_07 obj = new ch17_07();
 obj.childLoop(args[0]);

 try {
 FileWriter filewriter = new FileWriter("new.xml");

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 filewriter.write(displayText[loopIndex].toCharArray());
 filewriter.write('\n');
 }

 filewriter.close();
 }
 catch (Exception e) {
 e.printStackTrace(System.err);
 }
 }

 public void childLoop(String uri)
 {
 DefaultHandler handler = this;
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(uri), handler);
 } catch (Throwable t) {}
 }

 public void startDocument()
 {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?xml version=\"1.0\" encoding=\""+
 "UTF-8" + "\"?>";
 numberLines++;
 }

 public void processingInstruction(String target, String data)
 {
 displayText[numberLines] = indentation;
 displayText[numberLines] += "<?";
 displayText[numberLines] += target;
 if (data != null && data.length() > 0) {
 displayText[numberLines] += ' ';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 displayText[numberLines] += ' ';
 displayText[numberLines] += data;
 }
 displayText[numberLines] += "?>";
 numberLines++;
 }

 public void startElement(String uri, String localName,
 String qualifiedName, Attributes attributes)
 {
 displayText[numberLines] = indentation;

 indentation += " ";

 displayText[numberLines] += '<';
 displayText[numberLines] += qualifiedName;
 if (attributes != null) {
 int numberAttributes = attributes.getLength();
 for (int loopIndex = 0; loopIndex < numberAttributes; loopIndex++){
 displayText[numberLines] += ' ';
 displayText[numberLines] += attributes.getQName(loopIndex);
 displayText[numberLines] += "=\"";
 displayText[numberLines] += attributes.getValue(loopIndex);
 displayText[numberLines] += '"';
 }
 }
 displayText[numberLines] += '>';
 numberLines++;
 }

 public void characters(char characters[], int start, int length)
 {
 String characterData = (new String(characters, start, length)).trim();
 if(characterData.indexOf("\n") < 0 && characterData.length() > 0) {
 displayText[numberLines] = indentation;
 displayText[numberLines] += characterData;
 numberLines++;
 }
 }

 public void ignorableWhitespace(char characters[], int start, int length)
 {
 //characters(characters, start, length);
 }

 public void endElement(String uri, String localName, String qualifiedName)
 {
 indentation = indentation.substring(0, indentation.length() - 4) ;
 displayText[numberLines] = indentation;
 displayText[numberLines] += "</";
 displayText[numberLines] += qualifiedName;
 displayText[numberLines] += '>';
 numberLines++;

 if (qualifiedName.equals("lastName")) {
 startElement("", "elected", "elected", null);
 characters("2004".toCharArray(), 0, "2004".length());
 endElement("", "elected", "elected");
 }
 }

 public void warning(SAXParseException exception)
 {
 System.err.println("Warning: " +
 exception.getMessage());
 }

 public void error(SAXParseException exception)
 {
 System.err.println("Error: " +
 exception.getMessage());
 }

 public void fatalError(SAXParseException exception)
 {
 System.err.println("Fatal error: " +
 exception.getMessage());
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Here's what the resulting document, new.xml, looks like:

<?xml version="1.0" encoding="UTF-8"?>
<session>
 <committee type="monetary">
 <title>
 Finance
 </title>
 <number>
 17
 </number>
 <subject>
 Donut Costs
 </subject>
 <date>
 7/15/2005
 </date>
 <attendees>
 <senator status="present">
 <firstName>
 Thomas
 </firstName>
 <lastName>
 Smith
 </lastName>
 <elected>
 2004
 </elected>
 </senator>
 <senator status="absent">
 <firstName>
 Frank
 </firstName>
 <lastName>
 McCoy
 </lastName>
 <elected>
 2004
 </elected>
 </senator>
 <senator status="present">
 <firstName>
 Jay
 </firstName>
 <lastName>
 Jones
 </lastName>
 <elected>
 2004
 </elected>
 </senator>
 </attendees>
 </committee>
</session>

That's it for today's discussion on using XML with Java and SAX. As you can see, SAX provides an alternate way of
dealing with XML that is often easier than using the DOM. Tomorrow, you're going to take a look at working with two
more popular XML applications: Simple Object Access Protocol (SOAP) and the Resource Description Framework (RDF).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today, you took a look at working with SAX and XML in Java. Unlike the DOM techniques discussed yesterday, a SAX
parser parses an XML document by itself and calls you when it finds the beginning of a document, the start of an
element, and so on. You saw today that you can do all that you did yesterday with DOM techniques by using SAX,
although the programming is different.

Today you saw that after you register your code with a SAX handler and parse a document, you get called back as our
XML document is parsed. The startElement method is called when the beginning of an element is encountered, the
characters method is called when a text node is encountered, the processingInstrucion method is called when a processing
method is encountered, the endElement method is called when the end of an element is encountered, and so on.

All these SAX methods are called with the data needed from the document you're parsing. For example, the characters
method is called with the text of a text node, the endElement method is called with the local and qualified name of the
element, and so on. Note also that attributes are treated as nodes, but SAX doesn't call a separate method for them;
instead, use the Attributes object passed to the startElement method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Although the parse method returns automatically after parsing a document, isn't there some
way to explicitly catch the end of the parsing process, before the parse method returns?

A1: Yes, you can implement the endDocument method, called when the end of the document is encountered.

Q2: Which is better, SAX or DOM?

A2: As you can guess, that depends. Some people find one easier to use than the other. However, if you want
to work directly with document structure, you should consider DOM, which stores the whole document in a
reusable tree of nodes. If you just want to pick a few nodes out of an element and don't want to navigate
around, you should consider SAX.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: How do you read in an XML document and create a Java Document object in Java by using SAX?

2: What SAX method(s) do you implement to handle elements?

3: How can you determine the text in a text node by using SAX?

4: How can you get the attributes of an element by using SAX?

5: What methods can you use with SAX to handle warnings, errors, and fatal errors?

Exercises

1: Using Java XML SAX navigation methods, determine the last name of the second senator in ch17_01.xml.

2: Building on your solution to Exercise 1, use Java and SAX to read the value of the second senator's status
attribute to determine whether he was present or absent for the meeting.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 18. Working with SOAP and RDF
Today you're going to take a look at two important XML applications—Simple Object Access Protocol (SOAP) and the
Resource Description Framework (RDF). SOAP is an XML-based protocol that allows applications to communicate on the
Web. RDF lets us describe resources in a standard way that is machine readable, and it's often used to describe Web
documents (although we can use it to describe any type of resource). Here's an overview of the topics covered today:

Using SOAP

Using SOAP envelopes, headers, and bodies

Using SOAP to communicate between Web applications

Using SOAP in .NET

Using SOAP with Java

Creating RDF documents

Using the Dublin Core

Using abbreviated RDF syntax

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing SOAP
SOAP lets Web applications send data back and forth in messages in a platform-independent, language-independent
way. SOAP was designed so that distributed applications could communicate through corporate firewalls, allowing
applications to work with objects across all kinds of boundaries. In SOAP we send XML-based messages by using HTTP;
because it uses widely available HTTP, SOAP has become very popular. SOAP messages can provide a backbone for
distributed applications, using existing technologies to connect the parts of those distributed applications. We can also
send attachments by using SOAP messages, as you'll see today.

SOAP is a general-purpose XML application that is helping to standardize the way people handle data on the Internet.
There are plenty of SOAP resources on the Internet; here's a starter list, including the W3C's documentation on it:

http://www.w3.org/TR/SOAP— The W3C SOAP 1.1 documentation

http://www.w3.org/TR/SOAP-attachments— The W3C "SOAP Messages with Attachments"
documentation

http://www.javaworld.com/javaworld/jw-03-2001/jw-0330-soap.html— Part 1 of a SOAP tutorial

http://www.javaworld.com/javaworld/jw-04-2001/jw-0427-soap.html— Part 2 of a SOAP tutorial

http://www.javaworld.com/javaworld/jw-06-2001/jw-0601-soap.html— Part 3 of a SOAP tutorial

http://www.javaworld.com/javaworld/jw-07-2001/jw-0706-soap.html— Part 4 of a SOAP tutorial

http://www.w3schools.com/SOAP/default.asp— A SOAP tutorial

http://www.xml.com/pub/a/2000/02/09/feature/index.html— An article on SOAP from XML.com

http://xml.apache.org/soap/faq/index.html— The Apache project's SOAP FAQ

We'll start digging into SOAP now, beginning with the syntax that makes SOAP work.

Understanding SOAP Syntax

A SOAP message is simply an XML document that uses the SOAP syntax rules. There are three parts of a valid SOAP
message:

Envelope— The envelope contains the message itself.

Header— This optional part contains information about and descriptions of the message.

Body— The body contains the actual SOAP message.

As a simple example, here's a SOAP message, complete with an envelope and a body. This message indicates the
number of laptops in stock at a warehouse (note that soap-env is the usual envelope namespace prefix):

<soap-env:Envelope
 xmlns:soap-env="http://www.w3.org/2001/12/soap-envelope"
 soap:soap-enc="http://www.w3.org/2001/12/soap-encoding">
 <soap-env:Header>
 <m:Name xmlns:m="http://www.XMLPowerCorp.com">
 XMLPowerCorp
 </m:Name>
 </soap-env:Header>
 <soap-env:Body>
 <m:numberAvailable xmlns:m="http://www.XMLPowerCorp.com">
 <m:laptops>216</m:laptops>
 </m:numberAvailable>
 </soap-env:Body>
</soap-env:Envelope>

The default namespace setting for a SOAP envelope is "http://schemas.xmlsoap.org/soap/envelope/". The default namespace
setting for the document encoding and data types is "http://schemas.xmlsoap.org/soap/encoding/".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setting for the document encoding and data types is "http://schemas.xmlsoap.org/soap/encoding/".

So what elements are already defined in SOAP?

Introducing the SOAP Elements

The root element in a SOAP message is the <Envelope> element. There are three possible child elements—<Header>,
<Body>, and <Fault>. These elements have to use the names Header, Body, and Fault, respectively, although they can
have child elements with any names. For example, here's what a SOAP envelope might look like:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 .
 .
 .
</soap-env:Envelope>

The next element, the <Header> element, is optional. It holds information about the SOAP message, as in the following
example, where we're setting the language to U.S. English (<m:locale> and <m:language> are elements we've defined):

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Header>
 <m:locale xmlns:m="http://www.XMLPowerCorp.com">
 <m:language>en-us</m:language>
 </m:locale>
 </soap-env:Header>
 .
 .
 .
</soap-env:Envelope>

Next, the <Body> element holds the actual SOAP message:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Header>
 <m:locale xmlns:m="http://www.XMLPowerCorp.com">
 <m:language>en-us</m:language>
 </m:locale>
 </soap-env:Header>

 <soap-env:Body>
 <m:numberAvailable xmlns:m="http://www.XMLPowerCorp.com">
 <m:laptops>216</m:laptops>
 </m:numberAvailable>
 </soap-env:Body>
</soap-env:Envelope>

Note that the <Body> element may also contain a <Fault> element, which can hold any errors that occurred:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap-env:Header>
 <m:locale xmlns:m="http://www.XMLPowerCorp.com">
 <m:language>en-us</m:language>
 </m:locale>
 </soap-env:Header>

 <soap-env:Body>
 <m:numberAvailable xmlns:m="http://www.XMLPowerCorp.com">
 <m:laptops>216</m:laptops>
 </m:numberAvailable>

 <soap-env:Fault>
 <faultcode>1166</faultcode>
 <faultstring>Batteries are low</faultstring>
 </soap-env:Fault>
 </soap-env:Body>
</soap-env:Envelope>

<Fault> elements can have these subelements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<faultcode>— Contains an error code.

<faultstring>— Contains an error string.

<faultactor>— Specifies the error's source.

<detail>— Contains the details of the error.

A number of fault codes are already defined for use in the <faultcode> element:

VersionMismatch— Means that the namespace for the SOAP <Envelope> element was not correct.

MustUnderstand— Means that an element's content must be understood if this attribute is set to "1".

Client— Means there was a problem with the message as sent from the client.

Server— Means that there was a problem with the server.

In addition, SOAP elements can support various attributes, which we'll look at now.

Introducing the SOAP Attributes

The possible attributes we can use in SOAP elements are actor, encodingStyle, and mustUnderstand. For example, the actor
attribute lists a URI corresponding to the group that is using the SOAP message, like this:

<soap-env:Header>
 <m:data xmlns:m="http://www.XMLPowerCorp.com"
 soap-env:actor="http://www.XMLPowerCorp.com/philosophy" />
 <m:language>en-us</m:language>
 </m:data>
</soap-env:Header>

The encodingStyle attribute indicates the data types used in the message. The W3C provides a default schema for SOAP
types, which you can find at http://schemas.xmlsoap.org/soap/encoding/:

<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 .
 .
 .
</soap-env:Envelope>

The mustUnderstand attribute is used in the <Header> element, and it indicates whether the software interpreting a
message must understand a header element or cause a fatal error if it does not. You can set it to a Boolean value, "1"
for true or "0" for false:

<soap-env:Header>
 <m:data xmlns:m="http://www.XMLPowerCorp.com"
 soap-env:mustUnderstand="0" />
 <m:language>en-us</m:language>
 </m:data>
</soap-env:Header>

Now it's time to see SOAP at work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A SOAP Example in .NET
You'll start our look at SOAP examples with Microsoft's .NET. In particular, you'll use Microsoft's C# language in
Windows. It's a little-known fact that you can get C# for free—to use the C# command-line compiler, csc, all you need
to do is install the .NET Framework's Software Development Kit (SDK), which you can get for free at
http://msdn.microsoft.com/downloads.

After you install this download, you can find the csc command-line compiler in the system's root directory; for example,
in Windows 2000, that is C:\WINNT\Microsoft.NET\Framework\vxxxxxxxx\csc, where xxxxxxxx is the version of the .NET
framework that you downloaded. You can either add csc to your computer's path so that you can type it directly at the
command line or enter its full path (that is, C:\WINNT\Microsoft.NET\Framework\vxxxxxxxx\csc) each time you run it.

You need to know how to use C# for this example. Here, you'll create a SOAP server that will send a message to a
client. In this case, you'll use SOAP to send information from the server to the client so that the client will know how to
call a method named upper in the server, which the client will use to capitalize some text. To describe upper, you'll
create a C# interface named IUpper, which is shown in Listing 18.1.

Listing 18.1 A SOAP Server (ch18_01.cs)

public interface IUpper
{
 string upper(string text);
}

You can compile ch18_01.cs into its own DLL, ch18_01.dll, like this:

%csc /t:library ch18_01. cs

This creates ch18_01.dll, which gives you a consistent way of describing the upper method to both the client and the
server.

Creating a SOAP Server

In the server, you'll implement the upper method so it can read the text the client sends you in a class named Capitalizer,
capitalize that text by using the Java String class's ToUpper method, and send it back to the client. You do that like this:

using System;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Serialization.Formatters.Soap;

public class Capitalizer : MarshalByRefObject, IUpper
{
 public string upper(string inText)
 {
 System.Console.WriteLine("Read this: \"{0}\"", inText);
 string outText = inText.ToUpper();
 System.Console.WriteLine("Sending this: \"{0}\"", outText);
 return outText;
 }
}

To actually send SOAP messages to the client, you'll use an object of the SoapFormatter class. In particular, you're going
to let the client know how to access an object of your new Capitalizer class. Here's what that looks like in the server's
main class:

public class ch18_02
{
 public static void Main()
 {
 HttpChannel channel = new HttpChannel(65111);
 ChannelServices.RegisterChannel(channel);

 Capitalizer capitalizer = new Capitalizer();

 ObjRef objref = RemotingServices.Marshal(capitalizer);

 FileStream filestream = new FileStream("soap.txt", FileMode.Create);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FileStream filestream = new FileStream("soap.txt", FileMode.Create);

 SoapFormatter soapformatter = new SoapFormatter();

 soapformatter.Serialize(filestream, objref);
 filestream.Close();

 System.Console.WriteLine("soap.txt created. Press Enter to quit.");
 System.Console.ReadLine();
 }
}

In this case, you're writing a SOAP message that describes the upper method in a file, soap.txt, which the client will read
and use. Listing 18.2 shows the full code for the server.

Listing 18.2 A SOAP Server (ch18_02.cs)

using System;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Serialization.Formatters.Soap;

public class Capitalizer : MarshalByRefObject, IUpper
{
 public string upper(string inText)
 {
 System.Console.WriteLine("Read this: \"{0}\"", inText);
 string outText = inText.ToUpper();
 System.Console.WriteLine("Sending this: \"{0}\"", outText);
 return outText;
 }
}

public class ch18_02
{
 public static void Main()
 {
 HttpChannel channel = new HttpChannel(65111);
 ChannelServices.RegisterChannel(channel);

 Capitalizer capitalizer = new Capitalizer();

 ObjRef objref = RemotingServices.Marshal(capitalizer);

 FileStream filestream = new FileStream("soap.txt", FileMode.Create);

 SoapFormatter soapformatter = new SoapFormatter();

 soapformatter.Serialize(filestream, objref);
 filestream.Close();

 System.Console.WriteLine("soap.txt created. Press Enter to quit.");
 System.Console.ReadLine();
 }
}

You can create the server, ch18_02.exe, by linking in the DLL file like this:

%csc /t:exe /r:ch18_01.dll ch18_02. cs

Creating a SOAP Client

In the client, you can read the SOAP message in soap.txt and use it to connect to the server. To do that, we'll need a
SoapFormatter object, which we create and use to read in soap.txt like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using System;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Serialization.Formatters.Soap;

public class ch18_03
{
 public static void Main()
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 FileStream filestream = new FileStream ("soap.txt", FileMode.Open);
 SoapFormatter soapformatter = new SoapFormatter();
 .
 .
 .

Now use the SoapFormatter object to create an IUpper object named capper, and call the upper method of this object—
which will call the upper method in the server remotely—to capitalize the text "Hello there.". Here's what it looks like in
code:

using System;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Serialization.Formatters.Soap;

public class ch18_03
{
 public static void Main()
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 FileStream filestream = new FileStream ("soap.txt", FileMode.Open) ;
 SoapFormatter soapformatter = new SoapFormatter();

 try
 {
 IUpper capper = (IUpper)soapformatter.Deserialize(filestream);

 string outText = "Hello there.";
 System.Console.WriteLine("Sending this: \"{0}\"", outText);
 string inText = capper.upper(outText);
 .
 .
 .
 }
}

Now all you need to do is display what you got back from the upper method, as seen in the client application, ch18_03.cs,
shown in Listing 18.3.

Listing 18.3 A SOAP Client (ch18_03.cs)

using System;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Serialization.Formatters.Soap;

public class ch18_03
{
 public static void Main()
 {
 HttpChannel channel = new HttpChannel();
 ChannelServices.RegisterChannel(channel);

 FileStream filestream = new FileStream ("soap.txt", FileMode.Open);
 SoapFormatter soapformatter = new SoapFormatter();

 try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try
 {
 IUpper capper = (IUpper)soapformatter.Deserialize(filestream);

 string outText = "Hello there.";
 System.Console.WriteLine("Sending this: \"{0}\"", outText) ;
 string inText = capper.upper(outText);
 System.Console.WriteLine("Read this: \"{0}\"", inText);
 }
 catch(System.Exception e)
 {
 System.Console.WriteLine(e.Message);
 }
 }
}

You can create the client, ch18_03.exe, like this:

%csc /t:exe /r:ch18_01.dll ch18_03. cs

Using the Server and Client

You're ready to use your two applications and let them communicate with a SOAP message. Start the server,
ch18_02.exe, in one MS-DOS window, and it displays this text:

%ch18_02
soap.txt created. Press Enter to quit.

The SOAP message, which tells the client how to connect to the server and use the upper method, has now been written
to the soap.txt file. To read that SOAP message, start the client application in another MS-DOS window. The client then
sends the text "Hello there." to the server and gets that string back, capitalized:

%ch18_03
Sending this text: "Hello there."
Got this text back: "HELLO THERE."

The server also indicates what text it got and what text it sent back to the client:

%ch18_02
soap.txt created. Press Enter to quit.
Read this: "Hello there."
Sending this: "HELLO THERE."

Here's the actual SOAP message that lets the server remotely connect to the upper method in the server:

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:clr="http://schemas

.microsoft.com/soap/encoding/clr/1.0" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org
/soap/encoding/">

<SOAP-ENV:Body>
<a1:ObjRef id="ref-1"
xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting">
<uri id="ref-2">/23186ad8_d9e2_4018_bcf1_
82cb2b4084c2/UgL21NCXPtdS5ON7digxzBfC_1.rem</uri>
<objrefFlags>0</objrefFlags>
<typeInfo href="#ref-3"/>
<envoyInfo xsi:null="1"/>
<channelInfo href="#ref-4"/>
</a1:ObjRef>
<a1:TypeInfo id="ref-3"
xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting">
<serverType id="ref-5">Capitalizer, ch18_02,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null</serverType>
<serverHierarchy xsi:null="1"/>
<interfacesImplemented href="#ref-6"/>
</a1:TypeInfo>
<a1:ChannelInfo id="ref-4"
xmlns:a1="http://schemas.microsoft.com/clr/ns/System.Runtime.Remoting">
<channelData href="#ref-7"/>
</a1:ChannelInfo>
<SOAP-ENC:Array id="ref-6" SOAP-ENC:arrayType="xsd:string[1]">
<item id="ref-8">IUpper, ch18_01, Version=0.0.0.0,
Culture=neutral, PublicKeyToken=null</item>
</SOAP-ENC:Array>
<SOAP-ENC:Array id="ref-7" SOAP-ENC:arrayType="xsd:anyType[2]">
<item href="#ref-9"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<item href="#ref-9"/>
<item href="#ref-10"/>
</SOAP-ENC:Array>
<a3:CrossAppDomainData id="ref-9"
xmlns:a3="http://schemas.microsoft.com/clr/ns/System.Runtime.
Remoting.Channels">
<_ContextID>1345320</_ContextID>
<_DomainID>1</_DomainID>
<_processGuid id="ref-11">f0a6d250_b75d_47be_8df4_5ed8e461af6b</_processGuid>
</a3:CrossAppDomainData>
<a3:ChannelDataStore id="ref-10"
xmlns:a3="http://schemas.microsoft.com/clr/ns/System.Runtime.
Remoting.Channels">
<_channelURIs href="#ref-12"/>
<_extraData xsi:null="1"/>
</a3:ChannelDataStore>
<SOAP-ENC:Array id="ref-12" SOAP-ENC:arrayType="xsd:string[1]">
<item id="ref-13">http://209.177.24.57:65432</item>
</SOAP-ENC:Array>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This example shows how C# and .NET use SOAP messages behind-the-scenes. Now let's take a look at a SOAP example
in Java.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A SOAP Example in Java
You can use SOAP with Java by using Web services, but doing so is more advanced than the Java work you've already
seen in this book. In this example, you're going to use Java servlets on a Web server. For this example you'll use two
servlets—one that sends the SOAP message and one that receives that message. The receiving servlet will decode the
data in the SOAP message and return a new SOAP message indicating that it has understood.

You need a Web server that can run Java servlets for this example. The Tomcat server is the premier Web server for
JavaServer Pages and servlets; you can download it from http://jakarta.apache.org/tomcat/. Downloading and installing
Tomcat is not difficult; just use the installation directions that come with Tomcat. After you have Tomcat installed and
running, navigate to http://localhost:8080/index.html, and you should see Tomcat running, as in Figure 18.1.

Figure 18.1. Getting the Tomcat server running.

To support Web services, you also need some additional Java packages. There are two options when you're using SOAP
with Java—you can download the Java XML pack, which is at (as of this writing)
http://java.sun.com/xml/downloads/javaxmlpack.html, or you can download the Java Web Services Developer's Pack,
which is at (as of this writing) http://java.sun.com/webservices/webservicespack.html. It's easiest to download the Java
XML pack, which is a simple zipped file that holds the JAR files you'll need: jaxm-api.jar, saaj-api.jar, andactivation.jar. You
also need servlet.jar to create servlets, and this file comes with Tomcat, in the lib directory.

There's another step you need to take at this point: You need to set up Tomcat to work with Java XML Messaging
(JAXM). You should stop Tomcat if it's running and copy jaxm-docs.war, which comes with the Java XML Pack or the Java
Web Services Developer's Pack, to the Tomcat webapps directory, and then you can restart Tomcat and navigate to
http://localhost:8080/jaxm-docs/tomcat.html for directions. Setting up Tomcat for JAXM simply involves copying some JAR
(Java archive) and WAR (Web archive) files.

With Tomcat set up, you're ready to write the two SOAP servlets you're going to use today: the server, ch18_04, and the
client, ch18_05. For this example, you'll start by opening a new Web page, ch18_06.html, that has a link in it to the server
servlet, ch18_04. When that link is clicked, the server will send a SOAP message to the client servlet, indicating how
many laptops you have in stock, and the client servlet will then send back an acknowledging SOAP message. The actual
SOAP messages will also be written to file so you can see what the two servlets sent each other. You'll start by creating
the server servlet, ch18_04.

Creating the Server

The first servlet will create and send a SOAP message indicating that you have 216 laptops available. You start by
creating a SOAP connection object named connection:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package soapExample;

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.xml.soap.*;
import javax.activation.*;
import javax.servlet.http.*;

public class ch18_04 extends HttpServlet
{
 private SOAPConnection connection;

 public void init(ServletConfig servletConfig) throws ServletException
 {
 super.init(servletConfig);

 try {
 SOAPConnectionFactory connectionFactory =
 SOAPConnectionFactory.newInstance();
 connection = connectionFactory.createConnection();
 } catch(Exception e) {}
 }

When the servlet is called, its doGet method will be executed, and that's the method where most of your code will go.
Here, you create a MessageFactory object and a SOAP message:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException
{
 String outString ="<HTML><H1>Sending and reading the SOAP Message</H1><P>";

 try {
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage outgoingMessage = messageFactory.createMessage();
 .
 .
 .

Create the parts of the message, including the envelope, header, and body, like this:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException
{
 String outString ="<HTML><H1>Sending and reading the SOAP Message</H1><P>";

 try {
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage outgoingMessage = messageFactory.createMessage();

 SOAPPart soappart = outgoingMessage.getSOAPPart();
 SOAPEnvelope envelope = soappart.getEnvelope();
 SOAPHeader header = envelope.getHeader();
 SOAPBody body = envelope.getBody();
 .
 .
 .

Now you add an element named <laptops:numberAvailable> to the SOAP message's body and indicate that there are 216
laptops available, like this:

body.addBodyElement(envelope.createName("numberAvailable", "laptops",
"http://www.XMLPowerCorp.com")).addTextNode("216");

You can also add attachments to SOAP messages, which you'll do next. In this case, you'll send a text attachment. A
handy text file is the ch18_06.html document that you browse to in order to run this example, and here's how to attach it
to the SOAP message:

StringBuffer serverUrl = new StringBuffer();
serverUrl.append(request.getScheme()).append("://")
 .append(request.getServerName());
serverUrl.append(":").append(request.getServerPort())
 .append(request.getContextPath());
String baseUrl = serverUrl.toString();
URL url = new URL(baseUrl + "/ch18_06.html");

AttachmentPart attachmentpart =
 outgoingMessage.createAttachmentPart(new DataHandler(url)) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 outgoingMessage.createAttachmentPart(new DataHandler(url)) ;
attachmentpart.setContentType("text/html");
outgoingMessage.addAttachmentPart(attachmentpart) ;

Now you will write our SOAP message to a file, out.msg, so you can look at it later and send that message to the client:

URL client = new URL(baseUrl + "/ch18_05");

FileOutputStream outgoingFile = new FileOutputStream("out.msg");
outgoingMessage.writeTo(outgoingFile);
outgoingFile.close();

outString += "SOAP outgoingMessage sent (see out.msg).
";

SOAPMessage incomingMessage = connection.call(outgoingMessage, client);

The SOAP message you get back from the client, which should acknowledge that there are 216 laptops available, is in
the incomingMessage object, which you write to the file in.msg so you can take a look at it later:

if (incomingMessage != null) {
 FileOutputStream incomingFile = new FileOutputStream("in.msg");
 incomingMessage.writeTo(incomingFile);
 incomingFile.close();
 outString += "SOAP outgoingMessage received (see in.msg).</HTML>";
}
 .
 .
 .

That completes the server, which is your ch18_04 servlet. The server's code, ch18_04.java, is shown in Listing 18.4.

Listing 18.4 SOAP Server (ch18_04.java)

package soapExample;

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.xml.soap.*;
import javax.activation.*;
import javax.servlet.http.*;

public class ch18_04 extends HttpServlet
{
 private SOAPConnection connection;

 public void init(ServletConfig servletConfig) throws ServletException
 {
 super.init(servletConfig);

 try {
 SOAPConnectionFactory connectionFactory =
 SOAPConnectionFactory.newInstance();
 connection = connectionFactory.createConnection();
 } catch(Exception e) {}
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException
 {
 String outString =
 "<HTML><H1>Sending and reading the SOAP Message</H1><P>";

 try {
 MessageFactory messageFactory = MessageFactory.newInstance();
 SOAPMessage outgoingMessage = messageFactory.createMessage();

 SOAPPart soappart = outgoingMessage.getSOAPPart();
 SOAPEnvelope envelope = soappart.getEnvelope();
 SOAPHeader header = envelope.getHeader();
 SOAPBody body = envelope.getBody();

 body.addBodyElement(envelope.createName("numberAvailable",
 "laptops",
 "http://www.XMLPowerCorp.com")).addTextNode("216");

 StringBuffer serverUrl = new StringBuffer();
 serverUrl.append(request.getScheme()).append("://").
 append(request.getServerName());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 append(request.getServerName());
 serverUrl.append(":").append(request.getServerPort()).
 append(request.getContextPath());
 String baseUrl = serverUrl.toString();
 URL url = new URL(baseUrl + "/ch18_06.html");

 AttachmentPart attachmentpart = outgoingMessage.
 createAttachmentPart(new DataHandler(url));
 attachmentpart.setContentType("text/html");
 outgoingMessage.addAttachmentPart(attachmentpart);

 URL client = new URL(baseUrl + "/ch18_05");

 FileOutputStream outgoingFile = new FileOutputStream("out.msg");
 outgoingMessage.writeTo(outgoingFile);
 outgoingFile.close();

 outString += "SOAP outgoingMessage sent (see out.msg).
";

 SOAPMessage incomingMessage = connection.
 call(outgoingMessage, client);

 if (incomingMessage != null) {
 FileOutputStream incomingFile = new FileOutputStream("in.msg");
 incomingMessage.writeTo(incomingFile);
 incomingFile.close();
 outString +=
 "SOAP outgoingMessage received (see in.msg).</HTML>";
 }

 } catch(Throwable e) {}

 try {
 OutputStream outputStream = response.getOutputStream();
 outputStream.write(outString.getBytes());
 outputStream.flush();
 outputStream.close();
 } catch (IOException e) {}
 }
}

Creating the Client

The next step is to create the client, the ch18_05 servlet, which gets the server's SOAP message, interprets it, and sends
a message back, indicating that it has understood the incoming message. Start by basing this servlet on the JAXMServlet
class so that it can handle SOAP messages and creating a MessageFactory object so you can send SOAP messages:

package soapExample;

import java.util.*;
import javax.servlet.*;
import javax.xml.soap.*;
import javax.servlet.http.*;
import javax.xml.messaging.*;

public class ch18_05 extends JAXMServlet implements ReqRespListener
{
 static MessageFactory messageFactory = null;

 public void init(ServletConfig servletConfig) throws ServletException
 {
 super.init(servletConfig);
 try {
 messageFactory = MessageFactory.newInstance();
 } catch (Exception ex) {}
 }
 .
 .
 .

Now you can decipher the incoming SOAP message by getting the value of the <laptops:numberAvailable> element and
storing it in a variable named element, like this:

public SOAPMessage onMessage(SOAPMessage msg)
{
 try {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try {
 SOAPPart soappart = msg.getSOAPPart();
 SOAPEnvelope incomingEnvelope = soappart.getEnvelope();
 SOAPBody body = incomingEnvelope.getBody();

 Iterator iterator = body.getChildElements(
 incomingEnvelope.createName("numberAvailable", "laptops",
 "http://www.XMLPowerCorp.com"));

 SOAPElement element;
 element = (SOAPElement) iterator.next();
 .
 .
 .

The number of laptops left in stock can now be accessed with element.getValue(), and here's how to create a SOAP
message to send back to the server, indicating that you've gotten that data:

 SOAPMessage message = messageFactory.createMessage();
 SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();

 envelope.getBody().addChildElement(envelope.
 createName("Response")).addTextNode(
 "Got the SOAP message indicating there are " +
 element.getValue() +
 " laptops available."
);
 .
 .
 .
}

Finally, send the new SOAP message that acknowledges the number of laptops back to the client by returning the new
message, which automatically sends it back to the server servlet, ch18_04, as you can see in ch18_05.java, the SOAP
client, in Listing 18.5.

Listing 18.5 A SOAP Client (ch18_05.java)

package soapExample;

import java.util.*;
import javax.servlet.*;
import javax.xml.soap.*;
import javax.servlet.http.*;
import javax.xml.messaging.*;

public class ch18_05 extends JAXMServlet implements ReqRespListener
{
 static MessageFactory messageFactory = null;

 public void init(ServletConfig servletConfig) throws ServletException
 {
 super.init(servletConfig);
 try {
 messageFactory = MessageFactory.newInstance();
 } catch (Exception ex) {}
 }

 public SOAPMessage onMessage(SOAPMessage msg)
 {
 try {
 SOAPPart soappart = msg.getSOAPPart();
 SOAPEnvelope incomingEnvelope = soappart.getEnvelope();
 SOAPBody body = incomingEnvelope.getBody();

 Iterator iterator = body.getChildElements(
 incomingEnvelope.createName("numberAvailable", "laptops",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 incomingEnvelope.createName("numberAvailable", "laptops",
 "http://www.XMLPowerCorp.com"));

 SOAPElement element;
 element = (SOAPElement) iterator.next();

 SOAPMessage message = messageFactory.createMessage();
 SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();

 envelope.getBody().addChildElement(envelope
 .createName("Response")).addTextNode(
 "Got the SOAP message indicating there are " +
 element.getValue() +
 " laptops available."
);

 return message;
 } catch(Exception e) {return null;}
 }
}

To compile these new servlets, ch18_04.java and ch18_05.java, you need to have servlet.jar, jaxm-api.jar, saaj-api.jar, and
activation.jar in the Java classpath environment variable. For example, if those JAR files are in the same directory as
ch18_04.java and ch18_05.java, here's what this looks like:

%set classpath=servlet.jar;jaxm-api.jar;saaj-api.jar;activation.jar
%javac ch18_04.java
%javac ch18_05.java

If the JAR files are in the same directory as ch18_04.java and ch18_05.java, you need to make sure to preface every JAR
file filename with its correct path.

This gives you the compiled files you need, ch18_04.class and ch18_05.class. How can you run the server, ch18_04.class?
Here, you'll use an HTML document, ch18_06.html, to call the ch18_04.class servlet by using a hyperlink. Listing 18.6
shows how this HTML document works. When the user clicks the hyperlink, the server servlet is called, the server
servlet sends a SOAP message to the client servlet, and the client servlet returns a SOAP message to the server.

Listing 18.6 The SOAP Example Introduction Page (ch18_06.html)

<HTML>
 <HEAD>
 <TITLE>SOAP and Java</TITLE>
 </HEAD>

 <BODY>
 <H1>SOAP and Java</H1>
 Click here to send the SOAP message.
 </BODY>
</HTML>

Now you need to install all that you've done in the Tomcat server. To do that, begin by creating a file named web.xml
that will tell Tomcat about the ch18_04.class and ch18_05.class files so that you can use those files with Tomcat. Here's
what web.xml looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <servlet>
 <servlet-name>
 ch18_04
 </servlet-name>
 <servlet-class>
 soapExample.ch18_04
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <servlet-name>
 ch18_05
 </servlet-name>
 <servlet-class>
 soapExample.ch18_05
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>
 ch18_04
 </servlet-name>
 <url-pattern>
 /ch18_04
 </url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>
 ch18_05
 </servlet-name>
 <url-pattern>
 /ch18_05
 </url-pattern>
 </servlet-mapping>
</web-app>

Now that you have all the files you'll need, you can install them in the Tomcat webapps directory in order to make them
available through the Tomcat server. You'll install these files in a directory named JavaSoap and place your actual servlet
code in a directory named soapExample (which is the Java package for those servlets). Here's what the completed
directory structure looks like:

webapps [This is a directory]
|____JavaSoap [This is a directory]
 |____ch18_06.html [Our starting Web page]
 |____WEB-INF [This is a directory]
 |____web.xml [Configures Tomcat]
 |____classes [This is a directory]
 |____soapExample [This is a directory]
 |____ch18_04.class [The server servlet]
 |____ch18_05.class [The client servlet]

After you copy these files as shown here, start Tomcat (or if it was already started, stop it and start it again). Now all
you need to do is navigate a browser to http://localhost:8080/soap/ch18_06.html, as shown in Figure 18.2.

Figure 18.2. The Java SOAP example's opening page.

Now click the hyperlink shown in Figure 18.2 in order to call the server servlet, which sends the first SOAP message,
stating the number of laptops available in stock, to the client servlet, which sends back an acknowledgement. Figure
18.3 shows the results of calling the server servlet.

Figure 18.3. The results of the Java SOAP example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18.3. The results of the Java SOAP example.

What does the SOAP message sent from the server to the client look like? You can see it in the file out.msg, which is
written to the Tomcat bin directory. Note that out.msg contains not only your SOAP message, but also the attached text,
ch18_06.html:

------=_Part_4_6912871.1056396066449
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header/>
 <soap-env:Body>
 <laptops:numberAvailable
 xmlns:laptops="http://www.XMLPowerCorp.com">
 216
 </laptops:numberAvailable>
 </soap-env:Body>
</soap-env:Envelope>
------=_Part_4_6912871.1056396066449
Content-Type: text/html

<HTML>
 <HEAD>
 <TITLE>SOAP and Java</TITLE>
 </HEAD>

 <BODY>
 <H1>SOAP and Java</H1>
 Click here to send the SOAP message.
 </BODY>
</html>

------=_Part_4_6912871.1056396066449--

Here's what the SOAP message the client sent back to the server, as the code stored in in.msg, looks like (note that the
client is acknowledging the data the server sent):

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope
 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
 <soap-env:Header/>
 <soap-env:Body>
 <Response>
 Got the SOAP message indicating there are 216 laptops available.
 </Response>
 </soap-env:Body>
</soap-env:Envelope>

In this example you've been able to send, interpret, and reply to a SOAP message in Java. You've taken a look at
programming examples in both .NET and Java now, and as you can see, both packages give SOAP support. You've just
scratched the surface so far—covering the uses of SOAP can take whole books—but you have an idea what SOAP is
good for from what you've seen. We'll turn now to RDF.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing RDF
RDF is an XML-based language that we use to describe various resources in a standard way. We can use it to describe
any resource, but it's most often used to describe documents on the Web. This is how the W3C describes RDF:

Resource Description Framework (RDF) is a foundation for processing metadata; it provides
interoperability between applications that exchange machine-understandable information on the Web.
RDF emphasizes facilities to enable automated processing of Web resources. RDF can be used in a
variety of application areas; for example: in resource discovery to provide better search engine
capabilities, in cataloging for describing the content and content relationships available at a particular
Web site, page, or digital library, by intelligent software agents to facilitate knowledge sharing and
exchange, in content rating, in describing collections of pages that represent a single logical
"document", for describing intellectual property rights of Web pages, and for expressing the privacy
preferences of a user as well as the privacy policies of a Web site. RDF with digital signatures will be key
to building the "Web of Trust" for electronic commerce, collaboration, and other applications.

As expected, RDF is a W3C recommendation. You can find an overview page at http://www.w3.org/RDF. The RDF
model and syntax specification are at http://www.w3.org/TR/REC-rdf-syntax and the RDF schema specification is at
http://www.w3.org/TR/rdf-schema. And you can find an RDF primer at http://www.w3.org/TR/rdf-primer. Here's an
overview of some RDF resources that are available:

http://athena.ics.forth.gr:9090/RDF/— A validating RDF parser by ICS-FORTH that is based on Java.

http://lists.w3.org/Archives/Public/www-rdf-interest/2000May/0009.html— An RDF parser by Dan
Connolly that uses XSLT.

http://nestroy.wi-inf.uni-essen.de/xwmf— The Extensible Web Modeling Framework (XWMF), which
includes an RDF parser.

http://www.w3.org/RDF/Validator— A simple RDF validator on the W3C site.

http://www.w3.org/Library/src/HTRDF— John Punin's RDF parser, which is written in C.

http://www710.univ-lyon1.fr/~champin/rdf-tutorial— An RDF tutorial online. (It's in English, even
though the Web page is French.)

No major browser has a lot of built-in RDF support right now. Mozilla, Netscape Navigator's open-source test version,
has some RDF support built into it. If you want to learn more, take a look at these documents:

http://www.mozilla.org/rdf/50-words.html— An overview of RDF and how it fits with Mozilla.

http://www.mozilla.org/rdf/doc/faq.html— The RDF Mozilla FAQ, which also includes a little sample code.

http://www.mozilla.org/rdf/doc/datasource-howto.html— A cookbook that shows how to create RDF
data sources.

http://www.mozilla.org/rdf/rdf-nglayout.html— A document that describes how to use RDF in Mozilla.

http://www.mozilla.org/rdf/doc/api.html— A technical overview of the Mozilla RDF implementation.

http://www.mozilla.org/rdf/doc/SmartBrowsing.html— A page that describes Mozilla's SmartBrowsing
system, which allows third-party metadata servers to provide RDF related-link annotations. SmartBrowsing is
one of the first true uses of RDF for indexing Web resources on a large scale.

Internet Explorer lags behind Mozilla, although Microsoft does have an RDF viewer available for free. You can find it at
(as of this writing) http://msdn.microsoft.com/downloads/samples/Internet/xml/xml_rdf_viewer/sample.asp. This
viewer can read RDF documents and display the data in them—but note that to run the viewer, you need Internet
Explorer 5.0 or later, Visual Basic 6.0, and Windows 98, Windows NT 4.0, or Windows 2000.

What do RDF documents look like? Here's an example of an RDF document that describes the stoic philosopher
Epictetus as the creator of a certain resource, which, let's say, is to be found at the (fictitious) URI
http://www.XMLPowerCorp.com/philosophy.html:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.XMLPowerCorp.com/philosophy.html:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <Creator>Epictetus</Creator>
 </rdf:Description>
</rdf:RDF>

RDF is a very general language. In fact, the <Creator> element does not exist in standard RDF. However, there are
many sublanguages built on RDF, such as one called the Dublin Core. The <Creator> element is part of the Dublin Core,
which means that Web search engines that support the Dublin Core know enough to search for <Creator> elements
when they want to find a particular Web resource's author.

We'll start working with RDF by seeing what the rules are.

Understanding How RDF Documents Work

In general, RDF documents are made of RDF statements, each of which has three parts, making each statement a
triple. Here are the three parts of an RDF statement:

A resource— A resource is typically a Web document that we point to with a URI.

A named property— A named property is a characteristic or an attribute of the resource, such as the
resource's creator.

A property value— The property value is the property's content. For example, the value of the <Creator>
property is often the name of the resource's creator.

In RDF the resource is called the subject of the statement, the named property is called the predicate of the statement,
and the property value is called the object of the statement. In the following simple RDF document:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <Creator>Epictetus</Creator>
 </rdf:Description>
</rdf:RDF>

the subject is the document http://www.XMLPowerCorp.com/philosophy.html, the predicate is the named property Creator,
and the object is the name of the document's creator, Epictetus. We'll take this document apart in detail now.

Creating RDF Root Elements

RDF documents are XML documents, of course, so start each one with an XML declaration. The root element is <RDF>:

<?xml version="1.0" encoding="UTF-8"?>
<RDF
 .
 .
 .
</RDF>

RDF documents must use the RDF namespace setting, which is "http://www.w3.org/1999/02/22-rdf-syntax-ns#". (The # on
the end, which might look odd, is not an error; the idea is that it can help applications create XPointers.) The usual
prefix for this namespace is rdf, and you'll use that here:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 .
 .
 .
</rdf:RDF>

Creating Description Elements

When you describe a resource, it gets its own <rdf:Description> element. Here are the attributes you can use with this
element:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

about— Specifies what resource the element describes.

aboutEach— Specifies statements about each of the element's children.

aboutEachPrefix— Specifies RDF container items, by prefix.

bagID— Specifies the ID of an associated bag container.

ID— Gives the element an ID value.

type— Specifies the description's type.

In this example, the resource you are describing is http://www.XMLPowerCorp.com/philosophy.html, so assign that URI to the
about attribute of the <rdf:Description> element:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 .
 .
 .
 </rdf:Description>
</rdf:RDF>

To store the actual description of the resource, we use property elements, which are described next.

Creating Property Elements

The <rdf:Description> element contains the elements that contain the actual description. For example, for the document
you're describing, you can use a <Creator> element:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <Creator>Epictetus</Creator>
 </rdf:Description>
</rdf:RDF>

There are no properties, like Creator, built into RDF, per se. We can create whatever properties we like. There are a
number of RDF applications already available, however, and the most popular and well supported of these is the Dublin
Core. You'll take a look at it next—and it does have a <Creator> element built into it.

Using the Dublin Core

All the details about the Dublin Core are available at http://dublincore.org/. The Dublin Core provides a set of elements
for use in RDF, and it is being used in many places—government agencies, libraries, corporations, on the Web. The
Dublin Core calls itself a "metadata initiative," and it's a strongly supported concern; you'll find frequent updates to
what's going on at its Web site.

The Dublin Core namespace setting is "http://purl.org/DC/" (note that this namespace is usually associated with the prefix
dc). You should use this namespace setting if you're going to use the Dublin Core. Here's how that looks in our RDF
example:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/DC/">
 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <dc:Creator>Epictetus</dc:Creator>
 </rdf:Description>
</rdf:RDF>

Besides <Creator>, there are plenty of other elements in the Dublin Core, as listed in Table 18.1.

Table 18.1. The Dublin Core Elements
Element What It Means

Contributor A person or an organization that has contributed to this resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Coverage The extent or scope of the resource.

Creator Usually refers to the resource's author.

Date A date connected to the resource, such as its last update or its creation date. It uses the YYYY-MM-DD
format.

Description A description of the resource.

Format The format used for the resource. It is usually a MIME type.

Identifier An ID value for the resource in its context.

Language The language of the resource. It uses values defined by RFC 1766 and includes a two-letter language
code with an optional two-letter country code (from the ISO 3166 standard), such as "en-us".

Publisher The entity responsible for the resource.

Relation A reference to a related resource or relationship type.

Rights Rights information for the resource.

Source The source from which the current resource is derived.

Subject The topic of the content of the resource.

Title A name given to the resource.

Type The content type of the resource.

Also, each of the Dublin Core elements has 10 attributes:

Comment— Provides a comment about the use of the data in the element.

Datatype— Specifies the type of data in the element.

Definition— Defines the concept behind the data in the element.

Identifier— Specifies a unique identifier assigned to the element that identifies it.

Language— Specifies the language of the data in the element.

Maximum Occurrence— Puts a limit on how many times the element may occur.

Name— Specifies the name assigned to the data element.

Obligation— Specifies whether the element is required.

Registration Authority— Refers to the agency or group authorized to register the element.

Version— Specifies the version of the element.

Six of these attributes have fixed values:

Version— 1.1

Registration Authority— Dublin Core Metadata Initiative

Language— en (that is, English)

Obligation— Optional

Datatype— Character String

Maximum Occurrence— Unlimited

In addition, the Dublin Core also lists a set of default resource types that we can use with the <Type> element:

collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collection

dataset

event

image

interactive resource

model

party

physical object

place

service

software

sound

text

Up to this point, you've only used one property, Creator, to describe the resource, but you can use multiple resources at
the same time. For example, Listing 18.7 shows an example of an RDF document that uses multiple properties to
describe a single resource.

Listing 18.7 An RDF Example (ch18_07.rdf)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Description>The stoic philosopher's teachings</dc:Description>
 <dc:Title>The Discourses</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

</rdf:RDF>

Working with Multiple Resources

Besides using multiple properties for each description, you can also use one single RDF document to describe multiple
resources; in this case, each description has its own <rdf:Description> element. Listing 18.8 shows an example that
describes various chapters from Book III of Epictetus' Discourses.

Listing 18.8 An RDF Example That Describes Multiple Resources (ch18_08.rdf)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter1.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>Of personal adornment</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter2.html">
 <dc:Creator>Epictetus</dc:Creator>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>The fields of study</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter3.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>What is the subject-matter?</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

</rdf:RDF>

We can also nest RDF descriptions. For example, if we want to describe three chapters of Epitectus' Book III by using
nested RDF, we just have to nest <rdf:Resource> elements appropriately. Listing 18.9 shows how this works.

Listing 18.9 A Nested RDF Example (ch18_09.rdf)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://www.purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/bookIII.html">
 <dc:Title>Book III</dc:Title>
 <dc:Creator>Epictetus</dc:Creator>
 <rdf:Description about="http://www.XMLPowerCorp.com/chapter1.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>Of personal adornment</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter2.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>The fields of study</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter3.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>What is the subject-matter?</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>
 </rdf:Description>
</rdf:RDF>

Using Resource Attributes

In RDF, there's another valid way of referring to a resource that a property describes: using the rdf:resource attribute.
Listing 18.10 shows an example that uses this attribute to tie various RDF elements to the resources they describe.

Listing 18.10 An RDF Resource Attribute Example (ch18_10.rdf)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://www.purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter1.html">
 <dc:Title>Chapter 1</dc:Title>
 <dc:Creator rdf:resource="http://www.XMLPowerCorp.com/epictetus.html"/>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter2.html">
 <dc:Title>Chapter 2</dc:Title>
 <dc:Creator rdf:resource="http://www.XMLPowerCorp.com/epictetus.html"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <dc:Creator rdf:resource="http://www.XMLPowerCorp.com/epictetus.html"/>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter3.html">
 <dc:Title>Chapter 3</dc:Title>
 <dc:Creator rdf:resource="http://www.XMLPowerCorp.com/epictetus.html"/>
 </rdf:Description>

</rdf:RDF>

Using the rdf:resource attribute is a shortcut way to connect a resource to an RDF that makes such a connection easy to
implement.

Using XML in RDF Elements

It's not uncommon to use XML inside RDF elements to store data. Unfortunately, although we can set the Type property
to "text", there is no official "xml" setting for this property. Instead, we can set up our software to treat the XML data as
XML. As far as RDF is concerned, we can set the parseType attribute of the property to "Literal", as shown in Listing
18.11.

Listing 18.11 A Nested RDF Example (ch18_11.rdf)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://www.purl.org/DC/"
 xmlns:nsp="http://www.XMLPowerCorp.com/namespace/">

 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <dc:Creator parseType="Literal">
 <nsp:name>Epictetus</nsp:name>
 <nsp:occupation>Philosopher</nmp:occupation>
 <nsp:type>Stoic</nsp:type>
 <nsp:locale>Italy</nsp:locale>
 </dc:Creator>
 </rdf:Description>

</rdf:RDF>

Another way of doing this is to use the Dublin Core <Format> element and use an XML MIME type, like this:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://www.purl.org/DC/"
 xmlns:nsp="http://www.XMLPowerCorp.com/namespace/">

 <rdf:Description about="http://www.XMLPowerCorp.com/philosophy.html">
 <dc:Format>application/xml</dc:Format>
 <dc:Creator parseType="Literal">
 <nsp:name>Epictetus</nsp:name>
 <nsp:occupation>Philosopher</nmp:occupation>
 <nsp:type>Stoic</nsp:type>
 <nsp:locale>Italy</nsp:locale>
 </dc:Creator>
 </rdf:Description>

</rdf:RDF>

Using Abbreviated RDF

There's also an abbreviated RDF syntax that can make writing RDF documents easier. When we abbreviate RDF, we just
change property elements into attributes of the <rdf:Description> element. Say, for example, that you have this RDF
document:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter1.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <dc:Language>en</dc:Language>
 <dc:Title>Chapter 1</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter2.html">
 <dc:Creator>Epictetus</dc:Creator>
 <dc:Language>en</dc:Language>
 <dc:Title>Chapter 2</dc:Title>
 <dc:Type>text</dc:Type>
 </rdf:Description>
 .
 .
 .

You could abbreviate the RDF this way:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/DC/">

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter1.html">
 dc:Creator = "Epictetus"
 dc:Language = "en"
 dc:Title = "Chapter 1"
 dc:Type = "text">
 </rdf:Description>

 <rdf:Description about="http://www.XMLPowerCorp.com/chapter2.html">
 dc:Creator = "Epictetus">
 dc:Language = "en"
 dc:Title = "Chapter 2"
 dc:Type = "text">
 </rdf:Description>
 .
 .
 .

This type of abbreviating can be especially useful with RDF that is embedded in an HTML document because HTML
browsers convert elements they don't understand into simple text. If we want to hide RDF data, we can put that data
into attributes, not RDF elements, because the data in the attributes won't be shown.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you took a look at two important XML applications: SOAP and RDF. SOAP lets applications work with objects
across programming boundaries, and RDF lets us describe resources in a flexible way, allowing software to read and
handle those descriptions.

SOAP messages are made up of three parts: an envelope (with the namespace http://schemas.xmlsoap.org/soap/envelope/),
which contains the whole message, an optional header, which holds information about the message itself, and a body,
which is where the message goes. SOAP messages can also have attachments.

The root element in a SOAP message is the <Envelope> element. And there are three possible child elements—<Header>,
<Body>, and <Fault>—each of which may have various child elements, as described today.

Today you put SOAP to work in both Java and .NET. The .NET example used C# to give one application access to an
object in another application. The Java example let you explicitly construct a SOAP message, including the envelope,
header, and body, and send data to and from another servlet by using the Tomcat server.

RDF is all about describing resources, and today you saw that it provides a framework for handling general descriptions.
RDF can be used to describe any resource that can be described in words, but it's used most often to describe resources
on the Web. By using RDF, search engines can access and store information on Web resources.

RDF statements typically have three parts: the resource itself, located with a URI; a named property that indicates what
aspect of the resource we're describing; and a property value, which is the description itself.

Today you saw that the root element is <RDF>, and it must be in the RDF namespace, which is
"http://www.w3.org/1999/02/22-rdf-syntax-ns#". You usually use the RDF <Description> element to create a description of a
resource.

The Dublin Core provides a set of elements for use with RDF (for example, <Creator>, <Contributor>, <Format>,
<Subject>) to help describe a resource.

As you have seen today, SOAP and RDF are two powerful XML applications, and they are also two of the most popular.
Tomorrow, you're going to take a look at another powerful XML technique: data binding.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: I know that SOAP messages can have attachments, but how can I check what type an
attachment is—text, image, and so on—before I try to read it?

A1: In Java, you can use the javax.xml.soap.AttachmentPartgetContentType method, which returns the MIME type
of the SOAP message's attachment.

Q2: What if a resource I'm trying to describe in RDF can take multiple values?

A2: RDF allows you to handle that case by defining property containers. There are three containers:

Bag— A simple group of properties, in no particular order.

Seq— A sequence of properties in a particular order.

Alt— A list of properties that specify alternate choices, only one of which may be chosen.

These property containers are supported with the <rdf:Bag>, <rdf:Seq>, and <rdf:Alt> elements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What are the three parts of a SOAP message?

2: What three child elements can you use in a SOAP envelope?

3: What attribute and attribute value do you use in a SOAP element if you want to insist that the element be
interpreted correctly?

4: What element do you use in RDF to hold the description of a resource?

5: If someone is not a main author of a resource but has worked on it, which Dublin Core element would you
use to indicate that fact?

Exercises

1: If you have access to C#, modify today's SOAP example to convert it into a calculator. For this calculator,
various values should be sent to the remote server to be added, and the server should return the sum.

2: Create an RDF document that describes the SOAP example you created in Exercise 1. Make sure you include
a <Description> element and use various Dublin Core elements to contain the actual description.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part IV. In Review
In Part IV we took a look at programming with XML, beginning with JavaScript. We saw that you can use JavaScript
with the W3C DOM, and we saw that there are various levels of the DOM available.

When you load an XML document, you can use JavaScript properties such as nextChild and previousSibling to move
through the document. It's also common to loop over nodes and search for the data you want. Let's look at an example
that illustrates looping over nodes. Say you have the following XML document, which contains data about some of your
clients and the programming applications you're writing for them:

<?xml version = "1.0" standalone="yes"?>
<document>
 <client>
 <name>
 <lastname>Kirk</lastname>
 <firstname>James</firstname>
 </name>
 <contractDate>September 5, 2092</contractDate>
 <contracts>
 <contract>
 <app>Comm</app>
 <id>111</id>
 <fee>$111.00</fee>
 </contract>
 <contract>
 <app>Accounting</app>
 <id>222</id>
 <fee>$989.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <name>
 <lastname>McCoy</lastname>
 <firstname>Leonard</firstname>
 </name>
 <contractDate>September 7, 2092</contractDate>
 <contracts>
 <contract>
 <app>Stocker</app>
 <id>333</id>
 <fee>$2995.00</fee>
 </contract>
 <contract>
 <app>Dialer</app>
 <id>444</id>
 <fee>$200.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <name>
 <lastname>Spock</lastname>
 <firstname>Mr.</firstname>
 </name>
 <contractDate>September 9, 2092</contractDate>
 <contracts>
 <contract>
 <app>WinHook</app>
 <id>555</id>
 <fee>$129.00</fee>
 </contract>
 <contract>
 <app>MouseApp</app>
 <id>666</id>
 <fee>$25.00</fee>
 </contract>
 </contracts>
 </client>
</document>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</document>

You can use JavaScript to strip out the data you want from documents like this. For example, if you're interested in the
last names of your clients, you might want to catch all <lastname> elements. When you catch each element, you could
set a Boolean flag to true to indicate that you want to catch the following text node, which holds the last name:

if(currentNode.nodeName == "lastname") {
 catchNext = true
}

Then you would loop over all child nodes of the present node:

if (currentNode.childNodes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.childNodes.length; loopIndex++) {
 text += childLoop(currentNode.childNodes(loopIndex), catchNext)
 }
}

If catchNext was true when dealing with a child node, you would know that you were dealing with a text node whose text
you need, so you could save that text this way:

if(catchNext) {
 text = currentNode.nodeValue + "
"
 catchNext = false
}

Here's what the whole HTML page, including the needed JavaScript, looks like (in this case, we've named the XML
document we're working with projects.xml):

<HTML>
 <HEAD>
 <TITLE>
 Getting the last names
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">

 function readXMLData()
 {
 xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
 xmlDocumentObject.load("projects.xml")

 displayDIV.innerHTML = childLoop(xmlDocumentObject, false)
 }

 function childLoop(currentNode, catchNext)
 {
 var text = ""

 if(catchNext) {
 text = currentNode.nodeValue + "
"
 catchNext = false
 }

 if(currentNode.nodeName == "lastname") {
 catchNext = true
 }

 if (currentNode.childNodes.length > 0) {
 for (var loopIndex = 0; loopIndex <
 currentNode.childNodes.length; loopIndex++) {
 text += childLoop(currentNode.childNodes(loopIndex),
 catchNext)
 }
 }
 return text
 }

 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Getting the last names
 </H1>

 <INPUT TYPE="BUTTON" VALUE="Get last names"
 onClick = "readXMLData()">
 <DIV ID="displayDIV"></DIV>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <DIV ID="displayDIV"></DIV>
 </BODY>
</HTML>

This example displays the last names of your clients in a Web page, like this:

Kirk
McCoy
Spock

In Part IV we also looked at how to use Java with the XML DOM. There's an immense amount of support for XML DOM
handling in Java 1.4 and later. You can use a Java DocumentBuilderFactory object to create a DocumentBuilder object, and
you can use the DocumentBuilder object's parse method to parse an XML document and create a Java Document object.

The Document object corresponds to the top node of the document tree. You can move from node to node by using
methods such as getChildNodes. You can check the type of a node by using the getNodeType method, a node's name by
using the getNodeName method, and a node's value by using the getNodeValue method. And you can get an element's
attribute nodes by using the getAttributes method.

For instance, here's what the JavaScript example we just saw looks like converted into Java—the logic is the same, but
this time, the implementation is in Java:

import javax.xml.parsers.*;
import org.w3c.dom.*;

public class t
{
 static String displayText[] = new String[1000];
 static int numberLines = 0;

 public static void main(String args[])
 {
 try {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = null;
 try {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException e) {}

 Document document = null;
 document = builder.parse(args[0]);

 childLoop(document, false);

 } catch (Exception e) {
 e.printStackTrace(System.err);
 }

 for(int loopIndex = 0; loopIndex < numberLines; loopIndex++){
 System.out.println(displayText[loopIndex]);
 }
 }

 public static void childLoop(Node node, boolean catchNext)
 {
 if (node == null) {
 return;
 }

 int type = node.getNodeType();

 switch (type) {

 case Node.DOCUMENT_NODE: {
 childLoop(((Document)node).getDocumentElement(), false);
 break;
 }

 case Node.ELEMENT_NODE: {
 if(node.getNodeName().equals("lastname")) {
 catchNext = true;
 }

 NodeList childNodes = node.getChildNodes();
 if (childNodes != null) {
 int length = childNodes.getLength();
 for (int loopIndex = 0; loopIndex < length;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (int loopIndex = 0; loopIndex < length;
 loopIndex++) {
 childLoop(childNodes.item(loopIndex), catchNext);
 }
 }
 break;
 }

 case Node.TEXT_NODE: {
 if(catchNext){
 String trimmedText = node.getNodeValue().trim();
 if(trimmedText.indexOf("\n") < 0 && trimmedText.length()
 > 0) {
 displayText[numberLines] = trimmedText;
 numberLines++;
 }
 catchNext = false;
 }
 break;
 }
 }
 }
}

This application gives you the same result as the previous example:

Kirk
McCoy
Spock

By using the DOM and Java, you can also search for specific elements by using the getElementsByTagName method or
move through an XML document by using methods such as getNextSibling, getPreviousSibling, getFirstChild, getLastChild, and
getParent. You can even edit the contents of an XML document by using methods such as appendChild, insertBefore,
removeChild, and replaceChild.

Besides using the DOM in Java, you can also work with SAX to parse XML documents. A SAX parser is event driven—
that is, it parses an XML document and calls code when it find the beginning of a document, the start of an element, a
text node, and so on.

When you register your code with a SAX handler and parse a document, the startElement method is called when the
beginning of an element is encountered, the characters method is called when a text node is encountered, the
processingInstruction method is called when a processing method is encountered, the endElement method is called when
the end of an element is encountered, and so forth. These SAX methods are called with the data you need from the
document you're parsing.

We ended Part IV with a look at two important XML applications: SOAP and RDF. SOAP enables applications to
communicate by working with objects across programming boundaries. A SOAP message is made up of three parts: an
envelope that contains the message, an optional header that holds data about the message, and a body that holds the
actual message. SOAP messages can also have attachments, and we took a look at an example of a SOAP message that
did.

RDF lets you describe resources. In theory, RDF can be used to describe any resource that you can describe in words.
However, it's used mostly to describe Web resources. RDF gives search engines easy and uniform access to information
on Web resources. RDF is not widely implemented today yet, but it's gaining ground.

There are usually three parts to an RDF statement: the resource itself, which you point to with a URI, a name that
shows what property of the resource you want to describe, and the description itself.

That's it for Part IV. You have a great deal of power when you write programming code to work with XML. Although
working with XSLT and CSS to handle XML is fine up to a point, to really get into your data, extract what you want, and
process it, you need to write your own code. And now that you have the fundamentals down and have seen examples,
it's not all that difficult. In Part V you're going to work with another popular XML topic—using XML and databases.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part V: At a Glance
Data Handling and XML
Part V examines how to work with XML and databases. You'll start by taking a look at the extensive
data-binding techniques available in Internet Explorer. These techniques let you treat XML documents
like databases by treating elements as database records and connecting the data in the child elements
of each record in HTML controls.

You're also going to see how various true database systems use XML behind-the-scenes by writing
database tables out in XML and reading them back in as well. And you'll see that some database
systems let you address the data in XML documents by using XPath expressions.

Treating XML documents like databases with standard database software is okay, but it doesn't go too
far. We're going to go farther. In particular, you'll see how a relatively new XML specification, XQuery,
provides a native-XML way of working with XML documents as if they were databases.

In addition, you're going to take a look at working with XML in .NET. There's a great deal of built-in
support for XML in the .NET programming languages, and you'll see what they have to offer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 19. Handling XML Data Binding
Today's and tomorrow's discussions focus on database handling with XML, and, of course, data is what XML is all about.
Today, you're going to see the various ways of binding XML data to controls in Internet Explorer, and tomorrow, you'll
deal with working with XML and true databases. Today, you're going to use Internet Explorer to bind XML data to HTML
text fields, select controls, and more, making that data appear in those controls automatically. Here's an overview of
today's topics:

Binding HTML data to HTML controls

Binding XML data to HTML controls

Navigating through XML data

Displaying XML data in tables

Using the XML data source object (DSO)

Searching XML data

Displaying hierarchical XML data

We'll start with the basis of data binding—DSOs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing DSOs
We can use Internet Explorer for all kinds of data binding, as you're going to see today, and that's great if data is
stored in XML format and we want to display it to the user on the Internet. Internet Explorer connects to XML and HTML
documents that store data using the ActiveX Data Objects (ADO) protocol (not the ADO.NET protocol of the .NET
Framework).

We'll start by taking a look at general data binding in Internet Explorer, and then we'll examine more specialized data
binding in XML. To bind the data in an XML or HTML document to HTML controls in a Web page, we use one of the four
DSOs available in Internet Explorer—the Microsoft HTML (MSHTML) control, XML data islands, the tabular data control
(TDC), or the XML DSO applet. Two of these DSOs, the XML DSO and XML data islands, support XML documents.

DSOs don't appear visually themselves—they just connect to a document and make the data in that document available
to the controls in a Web page. For example, let's take a look at the HTML document in Listing 19.1 (ch19_01.html). This
HTML document holds the states data you saw on Day 10, "Working with XSL Formatting Objects" (compare
ch19_01.html to ch10_01.xml, for example)—the names of various states, their populations, capitals, state birds, and so
on. In HTML we use or <DIV> elements to mimic XML elements, naming the "element" by assigning a value to
the ID attribute. For example, the <name> element in ch10_01.xml becomes the element here.

Listing 19.1 An HTML Document That Holds Data (ch19_01.html)

<HTML>
 <HEAD>
 <TITLE>
 State Data
 </TITLE>
 </HEAD>

 <BODY>
 Name:

 California

 Population:

 33871648

 Capital:

 Sacramento

 Bird:
 Quail

 Flower:

 Golden Poppy

 Name:

 Massachusetts

 Population:

 6349097

 Capital:

 Boston

 Bird:
 Chickadee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chickadee

 Flower:

 Mayflower

 Name:

 New York

 Population:

 18976457

 Capital:

 Albany

 Bird: Bluebird

 Flower:

 Rose

 </BODY>
</HTML>

We'll use the MSHTML DSO, the simplest of the DSOs, to read in the data from ch19_01.html and bind that data to HTML
controls so we can display that data in those controls. When we bind the data in a document such as ch19_01.html with a
DSO, that DSO handles the data in records and creates a record set that is accessible from the HTML control in the Web
page. For example, here's what the record for New York looks like:

Name:

 New York

Population:

 18976457

Capital:

 Albany

Bird: Bluebird

Flower:

 Rose

This record has five fields—name, population, capital, bird, and flower—each of which store data. By using Internet Explorer
<OBJECT> element, create an MSHTML DSO and bind it to employee.htm; here, you'll name this DSO states:

<OBJECT ID="states" DATA="ch19_01.html" HEIGHT="0" WIDTH="0">
</OBJECT>

The DSO will read and interpret ch19_01.html and convert that document into an ADO record set, making that record set
available to the rest of the HTML page. (The record set that is created is read-only, and it is called an ADOR record set.)
The DSO holds data from only one record at a time, and that record is called the current record. We can use the built-in
methods of a record set to navigate through data by making other records the current record; some common methods
are moveFirst, moveLast, moveNext, and movePrevious, which let us navigate from record to record, and you're going to see
these methods today. To actually display the data from this DSO, we can bind it to HTML elements.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding HTML Elements to HTML Data
Many of the HTML elements supported in Internet Explorer can be bound to DSOs. We use the DATASRC and DATAFLD
attributes to bind an element to a DSO; to do so, we assign the DATASRC attribute to the name of a DSO and the
DATAFLD attribute to the name of the data field we want to bind the element to. After it's been bound, the element will
display the data in the current record in the DSO. In code, we can use the moveFirst, moveLast, moveNext, and
movePrevious methods to make other records the current record, and the data in the bound elements is updated
automatically.

Say, for instance, that we've bound an HTML text field to the states DSO and to the name field in the DSO's records.
When the page first loads, that control will display the name "California". Executing the moveNext method will make the
next record in the record set the current record, and the text field will display the name "Massachusetts".

Here's a list of HTML elements in Internet Explorer, indicating what elements may be bound and what property is bound
when we use the DATASRC and DATAFLD attributes:

A— Data is bound to the href property; changes are not automatically updated.

APPLET— Data is bound to the param property; changes are automatically updated.

BUTTON— Data is bound to the value property; changes are not automatically updated.

DIV— Data is bound to the innerText and innerHTML properties; changes are not automatically updated.

FRAME— Data is bound to the src property; changes are not automatically updated.

IFRAME— Data is bound to the src property; changes are not automatically updated.

IMG— Data is bound to the src property; changes are not automatically updated.

INPUT TYPE=BUTTON— Data is bound to the value property; changes are not automatically updated.

INPUT TYPE=CHECKBOX— Data is bound to the checked property; changes are automatically updated.

INPUT TYPE=HIDDEN— Data is bound to the value property; changes are automatically updated.

INPUT TYPE=PASSWORD— Data is bound to the value property; changes are automatically updated.

INPUT TYPE=RADIO— Data is bound to the checked property; changes are automatically updated.

INPUT TYPE=TEXT— Data is bound to the value property; changes are automatically updated.

LABEL— Data is bound to the value property; changes are not automatically updated.

MARQUEE— Data is bound to the innerText and innerHTML properties; changes are not automatically updated.

OBJECT— Data is bound to the objects property; changes are automatically updated.

PARAM— Data is bound to the param property; changes are automatically updated.

SELECT— Data is bound to the text property of an option; changes are automatically updated.

SPAN— Data is bound to the innerText and innerHTML properties; changes are not automatically updated.

TABLE— This element constructs an entire table; changes are not automatically updated.

TEXTAREA— Data is bound to the value property; changes are automatically updated.

Let's put all this to work. You'll start by creating a DSO and using it to read the data from ch19_01.html. You'll navigate
through that data by using buttons. Begin by creating the DSO by using the <OBJECT> element, naming it states, and
connecting it to your data file, ch19_01.html:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connecting it to your data file, ch19_01.html:

<HTML>
 <HEAD>
 <TITLE>
 Using the MSHTML Data Source Object
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Using the MSHTML Data Source Object
 </H1>

 <OBJECT ID="states" DATA="ch19_01.html"
 HEIGHT="0" WIDTH="0"></OBJECT>
 .
 .
 .

Now connect the various data fields in the states DSO to HTML text fields by using the DATASRC and DATAFLD attributes—
here's how that works for the name and population fields:

Name: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="name" SIZE="10">

Population: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="population" SIZE="10">

You can also bind data to other elements. Here's how to bind the data in the capital and flower fields to the text in
 elements:

Capital: <SPAN DATASRC="#states"
 DATAFLD="capital">

Flower:

In fact, you can even bind the data in the bird fields to a <SELECT> control, which will display the state's bird by using a
drop-down list:

Bird: <SELECT DATASRC="#states"
 DATAFLD="bird" SIZE="1">
 <OPTION VALUE="Quail">Quail
 <OPTION VALUE="Chickadee">Chickadee
 <OPTION VALUE="Bluebird">Bluebird
</SELECT>

When this page first appears, the data from the first record will appear in the bound controls. To let the user navigate
to other records, you can use buttons and some JavaScript. These buttons will display a caption of << to move to the
first record, > to move to the next record, and so on. For example, to let the user navigate to the first record, you'll use
the states DSO's record set's moveFirst method, like this:

<BUTTON ONCLICK=
 "states.recordset.moveFirst()"> <<
</BUTTON>

To navigate to the previous record, first check whether you're at the beginning of the record set by checking whether
the states.recordset.BOF property is true. If it is not, navigate to the previous record like this:

<BUTTON ONCLICK="if (!states.recordset.BOF)
 states.recordset.movePrevious()"> <
</BUTTON>

Similarly, you can navigate to the next record if you're not already at the end of the record set, which you check by
seeing whether the states.recordset.EOF property is true. If it is not, move to the next record with the moveNext method:

<BUTTON ONCLICK="if (!states.recordset.EOF)
 states.recordset.moveNext()"> >
</BUTTON>

To move to the last record in the record set, use the moveLast method:

<BUTTON ONCLICK=
 "states.recordset.moveLast()"> >>
</BUTTON>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</BUTTON>

Listing 19.2 shows the full code for your HTML DSO document (ch19_02.html).

Listing 19.2 An HTML DSO Document (ch19_02.html)

<HTML>
 <HEAD>
 <TITLE>
 Using the MSHTML Data Source Object
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Using the MSHTML Data Source Object
 </H1>

 <OBJECT ID="states" DATA="ch19_01.html"
 HEIGHT="0" WIDTH="0"></OBJECT>

 Name: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="name" SIZE="10">

 Population: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="population" SIZE="10">

 Capital: <SPAN DATASRC="#states"
 DATAFLD="capital">

 Bird: <SELECT DATASRC="#states"
 DATAFLD="bird" SIZE="1">
 <OPTION VALUE="Quail">Quail
 <OPTION VALUE="Chickadee">Chickadee
 <OPTION VALUE="Bluebird">Bluebird
 </SELECT>

 Flower:

 <BUTTON ONCLICK=
 "states.recordset.moveFirst()"> <<
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.BOF)
 states.recordset.movePrevious()"> <
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.EOF)
 states.recordset.moveNext()"> >
 </BUTTON>
 <BUTTON ONCLICK=
 "states.recordset.moveLast()"> >>
 </BUTTON>
 </BODY>
</HTML>

Figure 19.1 shows ch19_02.html at work. As shown in the figure, the data from ch19_01.html is indeed bound to your
controls. The user can move from record to record easily by using the buttons at the bottom of the page.

Figure 19.1. Data binding with the MSHTML control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The record set object in a DSO has these properties:

absolutePosition— Specifies the position of the current record in a record set.

BOF— Is set to true if the current record position in a record set is the first record.

cacheSize— Specifies the number of records from a record set that are cached locally.

cursorLocation— Specifies the location of the record set cursor for the record set.

editMode— Indicates whether editing is in progress.

EOF— Is set to true if the current record is the last record in the record set.

lockType— Specifies the type of database locking used.

maxRecords— Specifies the maximum number of records a record set can contain.

pageCount— Specifies the number of pages of data a record set contains.

pageSize— Specifies the number of records that make up one page of data.

recordCount— Specifies the number of records in the current record set.

state— Indicates whether a record set is open or closed.

status— Indicates the status of the current record.

stayInSync— Indicates whether a hierarchical record set should stay in sync with the data source.

Here are the methods of the record set objects inside DSOs:

addNew— You use this method to add a new record to the record set.

cancel— You use this method to cancel execution of a pending Execute or Open request.

cancelUpdate— You use this method to cancel an update operation.

clone— You use this method to create a copy of the record set.

close— You use this method to close a record set.

delete— You use this method to delete the current record (or group of records).

find— You use this method to search the record set. (Note that you use SQL to perform the search, which is not
supported in Internet Explorer.)

getRows— You use this method to read records and store them in an array.

getString— You use this method to get the record set as a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getString— You use this method to get the record set as a string.

move— You use this method to move the position of the current record.

moveFirst, moveLast, moveNext, and movePrevious— You use this method to navigate to various positions in
the record set.

nextRecordSet— You use this method to clear the current record set object and return the next record set when
working with hierarchical record sets.

open— You use this method to open a database.

requery— You use this method to re-execute the command that created a record set.

save— You use this method to save a record set in a file.

supports— You use this method to determine the features the record set supports.

In addition, DSOs support a number of events we can handle in scripting code. Here they are:

onDataAvailable— Occurs when data is downloaded.

onDatasetChanged— Occurs when the record set is changed.

onDatasetComplete— Occurs when the data is downloaded and ready to be used.

onReadyStateChange— Occurs when the ReadyState property changes.

onRowEnter— Occurs when a new record becomes the current one.

onRowExit— Occurs just before exiting the current record.

onRowsDelete— Occurs when a row is deleted.

onRowsInserted— Occurs when a row is inserted.

onCellChange— Occurs when the data in a bound control changes and the focus leaves that cell.

Now that we've explored how to do data binding in HTML, let's do this kind of data binding directly with XML.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding HTML Elements to XML Data
To bind XML data to controls in Internet Explorer, use your standard XML document that contains the state data, which
is shown in Listing 19.3. (Note that we've removed the units attribute from the <population> element because Internet
Explorer can't convert that element's data into readable form when XML elements use attributes.)

Listing 19.3 An XML Data Document (ch19_03.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population>33871648</population>
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population>6349097</population>
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>
 <name>New York</name>
 <population>18976457</population>
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>
</states>

You'll start by using XML data islands to bind to the data in ch19_03.xml. All you need to do is change the DSO you're
using to an XML island by using the <XML> element, as shown in Listing 19.4.

Listing 19.4 Reading XML Data with XML Islands (ch19_04.html)

<HTML>
 <HEAD>
 <TITLE>
 Binding with XML data islands
 </TITLE>
 </HEAD>

 <XML SRC="ch19_03.xml" ID="states"></XML>

 <BODY>
 <H1>
 Binding with XML data islands
 </H1>

 Name: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="name" SIZE="10">

 Population: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="population" SIZE="10">

 Capital: <SPAN DATASRC="#states"
 DATAFLD="capital">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Bird: <SELECT DATASRC="#states"
 DATAFLD="bird" SIZE="1">
 <OPTION VALUE="Quail">Quail
 <OPTION VALUE="Chickadee">Chickadee
 <OPTION VALUE="Bluebird">Bluebird
 </SELECT>

 Flower:

 <BUTTON ONCLICK=
 "states.recordset.moveFirst()"> <<
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.BOF)
 states.recordset.movePrevious()"> <
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.EOF)
 states.recordset.moveNext()"> >
 </BUTTON>
 <BUTTON ONCLICK=
 "states.recordset.moveLast()"> >>
 </BUTTON>
 </BODY>
</HTML>

The results are the same as when you used the MSHTML DSO and HTML data, as shown in Figure 19.2.

Figure 19.2. Data binding with XML data islands.

Now you have a way to display XML data in HTML controls in Internet Explorer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding HTML Tables to XML Data
Besides simple HTML controls, you can also bind data to more advanced HTML controls, such as tables. The following
example shows how to bind your state data to an HTML table, using an XML data island:

<HTML>
 <HEAD>
 <TITLE>
 Displaying XML data using XML data islands
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Displaying XML data using XML data islands
 </H1>

 <XML SRC="ch19_03.xml" ID="states"></XML>
 .
 .
 .

To connect the states DSO to the table, you'll use the <TABLE> element's DATASRC attribute, like this:

<TABLE DATASRC="#states" BORDER="1">
 <THEAD>
 <TR>
 <TH>Name</TH>
 <TH>Population</TH>
 <TH>Capital</TH>
 <TH>Bird</TH>
 <TH>Flower</TH>
 </TR>
 </THEAD>
 .
 .
 .

Now, in the body of the table, tie each table cell to a data field by using the DATAFLD attribute of a element in
each <TD> element:

<TABLE DATASRC="#states" BORDER="1">
 <THEAD>
 <TR>
 <TH>Name</TH>
 <TH>Population</TH>
 <TH>Capital</TH>
 <TH>Bird</TH>
 <TH>Flower</TH>
 </TR>
 </THEAD>

 <TBODY>
 <TR>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </TD>
 </TR>
 </TBODY>
</TABLE>

And that's all there is to it. The whole example is shown in Listing 19.5.

Listing 19.5 Displaying XML Data in a Table (ch19_05.html)

<HTML>
 <HEAD>
 <TITLE>
 Displaying XML data using XML data islands
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Displaying XML data using XML data islands
 </H1>

 <XML SRC="ch19_03.xml" ID="states"></XML>

 <TABLE DATASRC="#states" BORDER="1">
 <THEAD>
 <TR>
 <TH>Name</TH>
 <TH>Population</TH>
 <TH>Capital</TH>
 <TH>Bird</TH>
 <TH>Flower</TH>
 </TR>
 </THEAD>

 <TBODY>
 <TR>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </BODY>
</HTML>

The results of Listing 19.5 appear in Figure 19.3. As the figure shows, the data from your sample XML document,
ch19_03.xml, is displayed in an HTML table.

Figure 19.3. Binding data to a table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Accessing Individual Data Fields
Besides displaying data by binding it to HTML controls, we can also access the data in the fields of a DSO by using
JavaScript. For example, you can access the value of the current record's name field in the states DSO as
states.recordset("name") in JavaScript.

In the following example, you'll use JavaScript to display data from the various states in a text sentence, not in HTML
controls. Start by looping over the records in the DSO:

<SCRIPT LANGUAGE="JavaScript">
 function displayData()
 {
 while (!states.recordset.EOF) {
 .
 .
 .
 states.recordset.moveNext()
 }
 }
</SCRIPT>

Now all you have to do is grab your data from the DSO by using JavaScript:

<SCRIPT LANGUAGE="JavaScript">
 function displayData()
 {
 while (!states.recordset.EOF) {
 displayDIV.innerHTML +=
 states.recordset("name") +
 "'s population is " +
 states.recordset("population") +
 ", its bird is the " +
 states.recordset("bird") +
 ", and its flower is the " +
 states.recordset("flower") +
 ".

"
 states.recordset.moveNext()
 }
 }
</SCRIPT>

And that's all you need to do to complete this example of accessing XML data from a DSO using JavaScript directly. The
results appear in Figure 19.4.

Figure 19.4. Accessing data by using JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Listing 19.6 shows the complete code for this example.

Listing 19.6 Accessing Individual XML Data Fields (ch19_06.html)

<HTML>
 <HEAD>
 <TITLE>
 Accessing data fields
 </TITLE>

 <XML ID="states" SRC="ch19_03.xml"></XML>

 <SCRIPT LANGUAGE="JavaScript">
 function displayData()
 {
 while (!states.recordset.EOF) {
 displayDIV.innerHTML +=
 states.recordset("name") +
 "'s population is " +
 states.recordset("population") +
 ", its bird is the " +
 states.recordset("bird") +
 ", and its flower is the " +
 states.recordset("flower") +
 ".

"
 states.recordset.moveNext()
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Accessing data fields
 </H1>

 <DIV ID="displayDIV"></DIV>
 <FORM>
 <INPUT TYPE="BUTTON" VALUE="Access Data"
 ONCLICK="displayData()">
 </FORM>
 </BODY>
</HTML>

You've been using XML islands up to this point, but now you'll take a look at another DSO: the XML DSO.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding HTML Elements to XML Data by Using the XML DSO
Beginning in version 4, Internet Explorer has included an XML DSO designed to be used only with XML. This DSO is
unique because it's not internal to Internet Explorer and it's not an ActiveX control—it's a Java applet. Embed this
applet in a page and create an XML DSO by using the HTML <APPLET> element, like this:

<APPLET
 CODE="com.ms.xml.dso.XMLDSO.class"
 ID="IDNAME"
 WIDTH="0"
 HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="XMLPageURL">
</APPLET>

The URI of the XML document is passed as a parameter to the XML DSO applet, using the <PARAM> element. Let's take
a look at the XML DSO at work in an example. Here's how to connect this DSO to your XML document ch19_03.xml:

<HTML>
 <HEAD>
 <TITLE>
 Using the XML Data Source Object
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Using the XML Data Source Object
 </H1>

 <APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="states"
 WIDTH="0" HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="ch19_03.xml">
 </APPLET>
 .
 .
 .

You can now use this DSO to bind to various controls, similarly to how you have before:

Name: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="name" SIZE="10">

Population: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="population" SIZE="10">

Capital: <SPAN DATASRC="#states"
 DATAFLD="capital">

Bird: <SELECT DATASRC="#states"
 DATAFLD="bird" SIZE="1">
 <OPTION VALUE="Quail">Quail
 <OPTION VALUE="Chickadee">Chickadee
 <OPTION VALUE="Bluebird">Bluebird
</SELECT>

Flower:

Finally, use the methods of the record set object contained in the XML DSO (such as moveNext, moveFirst, and so on) to
navigate through the record set with buttons, as shown in Listing 19.7.

Listing 19.7 Using the XML DSO (ch19_07.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<HTML>
 <HEAD>
 <TITLE>
 Using the XML Data Source Object
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Using the XML Data Source Object
 </H1>

 <APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="states"
 WIDTH="0" HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="ch19_03.xml">
 </APPLET>

 Name: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="name" SIZE="10">

 Population: <INPUT TYPE="TEXT" DATASRC="#states"
 DATAFLD="population" SIZE="10">

 Capital: <SPAN DATASRC="#states"
 DATAFLD="capital">

 Bird: <SELECT DATASRC="#states"
 DATAFLD="bird" SIZE="1">
 <OPTION VALUE="Quail">Quail
 <OPTION VALUE="Chickadee">Chickadee
 <OPTION VALUE="Bluebird">Bluebird
 </SELECT>

 Flower:

 <BUTTON ONCLICK=
 "states.recordset.moveFirst()"> <<
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.BOF)
 states.recordset.movePrevious()"> <
 </BUTTON>
 <BUTTON ONCLICK="if (!states.recordset.EOF)
 states.recordset.moveNext()"> >
 </BUTTON>
 <BUTTON ONCLICK=
 "states.recordset.moveLast()"> >>
 </BUTTON>
 </BODY>
</HTML>

Figure 19.5 shows this example at work. This example looks just the same as if you had used XML islands.

Figure 19.5. Data binding with the XML DSO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And you can also bind the XML DSO to HTML tables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Binding HTML Tables to XML Data by Using the XML DSO
It's as easy to bind the XML DSO to tables as it is to bind XML data islands to tables. The following example shows how
this works. In Listing 19.8, you're binding ch19_03.xml to a table by using the XML DSO, and you're displaying all the
fields in the various records of ch19_03.xml all at once.

Listing 19.8 Binding Tables by Using the XML DSO (ch19_08.html)

<HTML>
 <HEAD>
 <TITLE>
 The XML Data Source Object and Tables
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 The XML Data Source Object and Tables
 </H1>

 <APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="states"
 WIDTH="0" HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="ch19_03.xml">
 </APPLET>

 <TABLE DATASRC="#states" BORDER="1">
 <THEAD>
 <TR>
 <TH>Name</TH>
 <TH>Population</TH>
 <TH>Capital</TH>
 <TH>Bird</TH>
 <TH>Flower</TH>
 </TR>
 </THEAD>

 <TBODY>
 <TR>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 <TD>

 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </BODY>
</HTML>

That's all it takes. Figure 19.6 shows this page in action.

Figure 19.6. Tabular data binding with the XML DSO in Internet Explorer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19.6. Tabular data binding with the XML DSO in Internet Explorer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Searching XML Data by Using a DSO and JavaScript
As you've already seen, you don't have to bind the data from a DSO to HTML controls at all; you can work with that
data from a scripting language such as JavaScript. That makes it easy to handle data in various ways, such as searching
for a particular data item behind-the-scenes and displaying the results of the search in a Web page.

For example, say that a user wants to search for all the data about a particular state rather than having to navigate
through all the states to find the one she wants. We can let her simply enter the name of the state in a text field,
search for the matching state, and display the data if a match occurs. In this example, you'll use the XML DSO to point
out another feature of that DSO: If you give it a size (not just zero width and height), it will display status and error
messages. Here's how that might look:

<APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="states"
 WIDTH="400" HEIGHT="20"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="ch19_03.xml">
</APPLET>

To make your search case-insensitive, you'll read the state name the user has entered, convert it to lowercase, and
store it in the JavaScript variable findMe:

function search()
{
 var findMe = form1.text1.value.toLowerCase()
 .
 .
 .

Then you can loop over the states in code (converting their names to lowercase for the comparison), and check whether
you find the matching state:

function search()
{
 var findMe = form1.text1.value.toLowerCase()

 while (!states.recordset.EOF) {
 .
 .
 .
 }
 states.recordset.moveNext()
 }
}

If you find a match, display the matching state's data:

function search()
{
 var findMe = form1.text1.value.toLowerCase()

 while (!states.recordset.EOF) {
 var stateName = new String(states.recordset("name"))
 stateName = stateName.toLowerCase()
 if (stateName.indexOf(findMe) >= 0) {
 displayDIV.innerHTML +=
 states.recordset("name") +
 "'s population is " +
 states.recordset("population") +
 ", its bird is the " +
 states.recordset("bird") +
 ", and its flower is the " +
 states.recordset("flower") +
 ".

"
 }
 states.recordset.moveNext()
 }
}

All that's left to do is display the text field for the user to enter the state's name and a button to click to start the
search. That looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<DIV ID="displayDIV"></DIV>
<FORM ID="form1">
 State to find: <INPUT TYPE="TEXT" NAME="text1">

 <INPUT TYPE="BUTTON" VALUE="Find state"
 ONCLICK="search()">
</FORM>

Figure 19.7 shows how this works; in this figure, you have gotten the goods on New York State. Also note in this figure
that the XML DSO is displaying a status message indicating that it successfully loaded the XML document ch19_03.xml. If
you give it space in your Web pages, this DSO will let you know what's going on, and if a parsing error occurs, it will
give you all the details.

Figure 19.7. Searching an XML database.

Listing 19.9 shows the full code for this example.

Listing 19.9 Searching XML Data (ch19_09.html)

<HTML>
 <HEAD>
 <TITLE>
 Searching an XML Database
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function search()
 {
 var findMe = form1.text1.value.toLowerCase()

 while (!states.recordset.EOF) {
 var stateName = new String(states.recordset("name"))
 stateName = stateName.toLowerCase()
 if (stateName.indexOf(findMe) >= 0) {
 displayDIV.innerHTML +=
 states.recordset("name") +
 "'s population is " +
 states.recordset("population") +
 ", its bird is the " +
 states.recordset("bird") +
 ", and its flower is the " +
 states.recordset("flower") +
 ".

"
 }
 states.recordset.moveNext()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 states.recordset.moveNext()
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Searching an XML Database
 </H1>

 <APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="states"
 WIDTH="400" HEIGHT="20"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="ch19_03.xml">
 </APPLET>

 <DIV ID="displayDIV"></DIV>
 <FORM ID="form1">
 State to find: <INPUT TYPE="TEXT" NAME="text1">

 <INPUT TYPE="BUTTON" VALUE="Find state"
 ONCLICK="search()">
 </FORM>
 </BODY>
</HTML>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Handling Hierarchical XML Data
The last topic today concerns hierarchical record sets, where one field can contain an entire child record set. As data
evolves, it becomes very useful; it means we can organize our data into project records, for example, and each project
record can have a field that contains a record set listing personnel, parts needed, or code files.

XML documents let us store hierarchical data, and all we have to do to make it happen is nest elements. For example,
say that you want to keep track of your friends in the various states in your states XML document. To do that, add a
new element, <friends>, which contains various <friend> elements, like this:

<state>
 <name>California</name>
 <population>33871648</population>
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 <friends>
 <friend>
 <firstName>Tom</firstName>
 <lastName>Marshall</lastName>
 </friend>
 <friend>
 <firstName>Ed</firstName>
 <lastName>Norton</lastName>
 </friend>
 </friends>
</state>

The friends field, which contains multiple friend records, now contains a record set and is arranged hierarchically. You can
add a friends record to every state in your sample XML document, as shown in Listing 19.10.

Listing 19.10 XML with Hierarchical Data (ch19_10.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population>33871648</population>
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 <friends>
 <friend>
 <firstName>Tom</firstName>
 <lastName>Marshall</lastName>
 </friend>
 <friend>
 <firstName>Ed</firstName>
 <lastName>Norton</lastName>
 </friend>
 </friends>
 </state>

 <state>
 <name>Massachusetts</name>
 <population>6349097</population>
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 <friends>
 <friend>
 <firstName>Frank</firstName>
 <lastName>Stein</lastName>
 </friend>
 <friend>
 <firstName>Britta</firstName>
 <lastName>Regensburg</lastName>
 </friend>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </friend>
 <friend>
 <firstName>Ralph</firstName>
 <lastName>Kramden</lastName>
 </friend>
 </friends>
 </state>

 <state>
 <name>New York</name>
 <population>18976457</population>
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 <friends>
 <friend>
 <firstName>Trixie</firstName>
 <lastName>Norton</lastName>
 </friend>
 </friends>
 </state>
</states>

Now each friends field contains a record set. The best way to see how this works is by using an HTML table that displays
your data in a hierarchical fashion. You'll start with an XML island connected to your new XML document, ch19_10.xml,
and a table connected to that XML island that is set up to display the names of the states:

<XML SRC="ch19_10.xml" ID=states></XML>

<TABLE DATASRC="#states" BORDER="1">
 <TR>
 <TH><DIV DATAFLD="name"></DIV></TH>
 .
 .
 .

Now you'll display the data in the friends field, which you can handle as a record set itself. You can refer to that record
set as friends.friend, which makes sense in a hierarchy. In this case, you'll display the contents of each friends.friend
record set in its own nested table:

<XML SRC="ch19_10.xml" ID=states></XML>

<TABLE DATASRC="#states" BORDER="1">
 <TR>
 <TH><DIV DATAFLD="name"></DIV></TH>
 <TD>
 <TABLE DATASRC="#states"
 DATAFLD="friends">
 <TR>
 <TD>
 <TABLE BORDER="1">
 <TR ALIGN = "LEFT">
 <TH WIDTH="128">First Name</TH>
 <TH WIDTH="128">Last Name</TH>
 </TR>
 </TABLE>
 <TABLE DATASRC="#states"
 CELLPADDING = "5"
 DATAFLD="friends.friend"
 .
 .
 .

Now that you've tied this new table to the friends.friend records set, display the data from the fields in that record set,
like this:

<XML SRC="ch19_10.xml" ID=states></XML>

<TABLE DATASRC="#states" BORDER="1">
 <TR>
 <TH><DIV DATAFLD="name"></DIV></TH>
 <TD>
 <TABLE DATASRC="#states"
 DATAFLD="friends">
 <TR>
 <TD>
 <TABLE BORDER="1">
 <TR ALIGN = "LEFT">
 <TH WIDTH="128">First Name</TH>
 <TH WIDTH="128">Last Name</TH>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <TH WIDTH="128">Last Name</TH>
 </TR>
 </TABLE>
 <TABLE DATASRC="#states"
 CELLPADDING = "5"
 DATAFLD="friends.friend"
 BORDER="1">
 <TR ALIGN = "LEFT">
 <TD WIDTH="120"><DIV
 DATAFLD="firstName">
 </DIV></TD>
 <TD WIDTH="120"><DIV
 DATAFLD="lastName">
 </DIV></TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
</TABLE>

Figure 19.8 shows the results; as the figure shows, you've been able to display all the child record sets for each state,
treating your record sets as hierarchical.

Figure 19.8. Handling hierarchical record sets.

Listing 19.11 shows the complete code for this example.

Listing 19.11 Displaying Hierarchical XML Data (ch19_11.html)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<HTML>
 <HEAD>
 <TITLE>
 Hierarchical records in XML
 </TITLE>
 </HEAD>

 <BODY>
 <H1>
 Hierarchical records in XML
 </H1>

 <XML SRC="ch19_10.xml" ID=states></XML>

 <TABLE DATASRC="#states" BORDER="1">
 <TR>
 <TH><DIV DATAFLD="name"></DIV></TH>
 <TD>
 <TABLE DATASRC="#states"
 DATAFLD="friends">
 <TR>
 <TD>
 <TABLE BORDER="1">
 <TR ALIGN = "LEFT">
 <TH WIDTH="128">First Name</TH>
 <TH WIDTH="128">Last Name</TH>
 </TR>
 </TABLE>
 <TABLE DATASRC="#states"
 CELLPADDING = "5"
 DATAFLD="friends.friend"
 BORDER="1">
 <TR ALIGN = "LEFT">
 <TD WIDTH="120"><DIV DATAFLD="firstName">
 </DIV></TD>
 <TD WIDTH="120"><DIV
 DATAFLD="lastName">
 </DIV></TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </BODY>
</HTML>

That's it for today's discussion on data binding. There's a lot going on here, but for now, we're limited to the support in
Internet Explorer. Tomorrow, we'll talk about more ways of handling XML data as we start discussing XML and
databases.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you took a look at binding XML data in Internet Explorer. You saw that there are various DSOs that you can use
to connect to data sources and make XML data accessible to HTML controls and scripting code.

We started by taking a look at the MSHTML DSO, which lets us handle data formatted in HTML by using or
<DIV> elements. You saw that you can create an MSHTML DSO by using the <OBJECT> element and the DATA attribute.

Then we discussed two XML DSOs: XML data islands and the XML DSO applet. You can connect an XML data island to
an XML document by using the <XML> element and the SRC attribute. And you can connect an XML DSO to an XML
document by using a <PARAM> element inside the <APPLET> element.

To bind an HTML element such as a text field or table to a DSO, use the element's DATASRC and DATAFLD attributes; the
DATASRC attribute contains the name of the DSO, and the DATAFLD attribute gives the name of the field in the DSO's
current record to connect to. The data in the bound field or fields is automatically displayed in the bound controls. And
when you change the current record by using DSO methods such as moveNext or moveLast, the data in all controls bound
to that DSO is also updated.

Today you also saw that you can access the data in a DSO by using JavaScript, without having to bind that data to
controls, and that you can also work with hierarchical record sets in Internet Explorer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: The XML DSO is based on an applet. Can I count on it being released with future versions of
Internet Explorer?

A1: The answer is probably no. Indications are that the XML DSO is still being released with Internet Explorer
only for the sake of backward compatibility. But it's not even an ActiveX control, and Microsoft might stop
supporting it at any time.

Q2: How can I be notified of errors when a DSO tries to load an XML document?

A2: You can use code to handle the DSO's onerrorupdate event.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: How would you create an XML island that makes the XML data in a document named data.xml available as a
DSO named data?

2: What two HTML attributes do you normally use to bind an HTML control to a DSO?

3: How can you bind an HTML table to a DSO?

4: How can you determine when you're at the beginning or end of a record set?

5: How would you access the address field in the current record in a DSO in JavaScript?

Exercises

1: Use JavaScript and a DSO to extract the data in ch19_01.xml and display it in an HTML table—without binding
the table directly to the DSO.

2: Create an XML document that holds phone numbers of relatives or acquaintances, using hierarchical data,
and bind it to an HTML table, making sure the hierarchical data is displayed correctly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 20. Working with XML and Databases
The connection between XML and databases is a natural one, and we're going to take a look at this field today. We'll
also take a look at the XQuery language that is now being developed as a W3C recommendation and that is designed to
work with XML and databases. In fact, today you'll use one of the few XQuery software implementations available to get
all the details. Here's an overview of today's topics:

Handling XML databases

Using XML for database storage with Visual Basic .NET 2003

Using XPath in Visual Basic .NET 2003 databases

Working with XQuery

Using XQuery to query an XML document

The way XML is implemented by database providers varies widely, which means the coverage today will be in many
different areas. First, we're going to take a look at a brute-force method of working with XML and databases, and then
we'll examine some integrated XML support in a database provider, and finally we'll talk about W3C's XQuery, which
provides a query language (much like SQL for database applications) to work with databases from XML's point of view.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XML, Databases, and ASP
The brute-force way of extracting data from a database by using XML is to use intermediate code to access the data in
the database and return the results in XML format. Let's look at an example that uses Active Server Pages (ASP) and
Microsoft Internet Information Server (IIS). In this case, you'll use an ASP page ch20_01.asp to read the data in the
Microsoft Access database ch20_02.mdb. The sample database in this example, ch20_02.mdb, which is shown in Access in
Figure 20.1, contains the grades of a number of students.

Figure 20.1. A sample Access database.

The ch20_01.asp page will act as the intermediary between the database provide, Access, and the XML results, which
you'll see in a Web page. The internal workings of ASP are beyond the scope of this book, but we'll take a look at this in
overview. The plan here will be to extract the names in the database and display them in an XML document you send to
a client browser.

You start the ASP page by indicating that you're creating an XML document so the browser will know how to handle it:

<% Response.ContentType = "application/xml" %>
 .
 .
 .

Now embed the beginning of the XML document you want to send back:

<% Response.ContentType = "application/xml" %>

<?xml version="1.0" encoding="UTF-8"?>
<document>
 .
 .
 .

Now connect to the database and read it in to an ActiveX Data Objects (ADO) record set, like this:

<% Response.ContentType = "application/xml" %>

<?xml version="1.0" encoding="UTF-8"?>
<document>

DIM adoConnect
DIM adoRecordset

Set adoConnect = Server.CreateObject("ADODB.Connection")

adoConnect.open "Provider=Microsoft.Jet.OLEDB.4.0;" _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adoConnect.open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=C:\xml21\ch20\ch20_02.mdb"

Set adoRecordset = adoConnect.Execute("SELECT * FROM Students")
 .
 .
 .

You can access the name of each student and add those names to your XML document by looping over the record set,
as shown in Listing 20.1.

Listing 20.1 Using ASP to Access Data (ch20_01.asp)

<% Response.ContentType = "application/xml" %>

<?xml version="1.0" encoding="UTF-8"?>
<document>

<%

DIM adoConnect
DIM adoRecordset

Set adoConnect = Server.CreateObject("ADODB.Connection")

adoConnect.open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=C:\xml21\ch20\ch20_02.mdb"

Set adoRecordset = adoConnect.Execute("SELECT * FROM Students")

Do While Not adoRecordset.EOF
 Response.Write "<student>" + adoRecordset("Name") + "</student>"
 adoRecordset.MoveNext
Loop

adoRecordset.Close

set adoRecordset = Nothing

%>

</document>

Use an ASP-aware Web server, such as Microsoft's IIS, to display the resulting XML document. Figure 20.2 shows what
this looks like.

Figure 20.2. Brute-force XML database handling with ASP.

Here's the XML document this example generates and sends back to the browser:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="UTF-8" ?>
<document>
 <student>Ann</student>
 <student>Mark</student>
 <student>Ed</student>
 <student>Frank</student>
 <student>Ted</student>
 <student>Mabel</student>
 <student>Ralph</student>
 <student>Tom</student>
</document>

You've just used a brute-force way of working with databases and XML. All we did here was to use some intermediary
code to gather the data we wanted from the database, package it as XML, and send that XML back to the client. We
don't always have to use this brute-force method because some database packages come with a great deal of XML
support built in, as we'll discuss next.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Storing Databases as XML
Microsoft has added a great deal of XML support to its database products—far more than any other provider out there,
so like it or not, we're in Microsoft territory here. In particular, Microsoft's ADO.NET database protocol uses XML to send
data back and forth between databases and applications.

For example, let's examine how to use a Visual Basic .NET application to interact with a database by using SQL Server
and see how the data is actually transferred with XML. Figure 20.3 shows a step in the process of creating a new Visual
Basic .NET Windows application named ch20_03.

Figure 20.3. Creating a Visual Basic .NET Windows application.

Figure 20.4 shows the new Windows application that we create, complete with the two buttons Store XML Data and
Read XML Data. Because ADO.NET datasets are sent back and forth by using XML, we can create a dataset when the
user clicks the Store XML Data button and store it in XML; then we can create a new dataset by using that XML data
when the user clicks the Read XML Data button. After we create the second dataset, we'll bind that data to a data grid
control, so let's add a data grid to the Windows form now, as shown in Figure 20.4.

Figure 20.4. Creating the ch20_03 application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'll need a connection to a data source, and in this case we can use Microsoft SQL Server, which is often used in .NET
data work. In this case, we'll use a data connection to the pubs SQL Server sample database and extract the data from
the employee table in that database. To create that data connection, right-click the Data Connections icon in the Visual
Basic .NET Server Explorer (the tab for this tool appears at the left in the Visual Basic .NET development environment,
as shown in Figure 20.4), and select the Add Connection item; or select Tools, Connect to Database. In either case, the
Data Link Properties dialog box appears.

In the Data Link Properties dialog box, enter the name of the server you want to work with, as well as the login name
and password, if applicable—or select the Windows NT integrated security option if your application and SQL Server are
on the same machine. Next, choose a database to work with by using either the Select the Database on the Server
option or the Attach a Database File as a Database Name option. In this case, we'll use the pubs sample database that
comes with SQL Server, so let's select the first option and choose the pubs database. Then you need to click OK to close
this dialog box.

This new data connection appears in the Visual Basic .NET Server Explorer. Now that we've created a data connection
to the pubs database, we can drag an OleDbDataAdapter control from the Visual Basic .NET toolbox to the Visual Basic
.NET form we're creating; this opens the Data Adapter Configuration Wizard. You need to click Next to move to the
second pane of this wizard, as shown in Figure 20.5. Then select the data connection to the pubs database (it is named
STEVE.pubs.dbo on the machine this example is being developed on, as shown in the figure), and then click Next twice,
to open the Data Adapter Configuration Wizard's fourth pane.

Figure 20.5. Connecting to the pubs database.

To indicate that you want to connect to the employee table, you need to click the Query Builder button in the fourth pane
of the wizard, select the employee item in the Add Table dialog box that appears, click the Add button and then the
Close button. The Query Builder appears, as shown in Figure 20.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.6. The Query Builder.

The Query Builder lets us generate the SQL needed to extract the employee table from the pubs database. To generate
that SQL, click the All Columns check box in the employee table's window, as shown in Figure 20.6, and then click OK. As
you can see in the Data Adapter Configuration Wizard in Figure 20.7, this generates the following SQL statement:

SELECT
 employee.*
FROM
 employee"

Figure 20.7. A new SQL statement in the Query Builder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now you need to click Next and then Finish to complete the creation of the data adapter you'll need to connect to the
employee table. This creates both an OleDbDataAdapter object and an OleDbConnection object.

The connection object will maintain the connection to SQL Server, and the adapter object will be responsible for
activating the connection and retrieving data. Both connection and adapter objects are important in ADO.NET work.
Table 20.1 lists the significant properties of the OleDbDataAdapter objects, and Table 20.2 lists the significant methods of
these objects. Table 20.3 lists the significant properties of the OleDbConnection objects, and Table 20.4 lists the
significant methods of these objects.

Table 20.1. Significant Public Properties of OleDbDataAdapter Objects
Property Description

DeleteCommand Returns or sets the SQL for deleting records.

InsertCommand Returns or sets the SQL for inserting new records.

SelectCommand Returns or sets the SQL for selecting records.

UpdateCommand Returns or sets the SQL for updating records.

Table 20.2. Significant Public Methods of OleDbDataAdapter Objects
Method Description

Fill Adds rows to or refreshes rows in a dataset to make them match the rows in a data store.

Table 20.3. Significant Public Properties of OleDbConnection Objects
Property Description

ConnectionString Returns or sets the connection string to open a database.

ConnectionTimeout Returns the time to wait while trying to make a connection (in seconds).

Database Returns the name of the database to open.

DataSource Returns the data source (usually the location and filename of the file to open).

Provider Returns the OLE DB provider's name.

ServerVersion Returns the version of the server.

State Returns the connection's current state.

Table 20.4. Significant Public Methods of OleDbConnection Objects
Method Description

BeginTransaction Starts a database transaction.

ChangeDatabase Changes the current database.

Close Closes the connection to the data provider.

CreateCommand Creates an OleDbCommand object for this connection.

GetOleDbSchemaTable Returns the current schema table.

Open Opens a database connection.

We're going to connect the employee table to a dataset object so we can access that table's data. To create a dataset
based on the data supplied by our OleDeDataAdapter object, you need to select Data, Generate Dataset in Visual Basic
.NET. This opens the Generate Dataset dialog box, and you need to click OK to create a new dataset object, DataSet11
(that is, the first object of the automatically generated DataSet1 class). Datasets act as repositories of data in .NET, and
they give us direct local access to the data from a data provider. Table 20.5 lists the significant properties of the DataSet
class, and Table 20.6 lists the significant methods of the DataSet class.

Table 20.5. Significant Public Properties of the DataSet Class
Property Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Description

DataSetName Returns or sets the name of the dataset.

EnforceConstraints Returns or sets whether constraint rules are enforced.

HasErrors Indicates whether there are errors in any row in the table.

Relations Gets relation objects that link tables.

Tables Returns tables in the dataset.

Table 20.6. Significant Public Methods of the DataSet Class
Method Description

AcceptChanges Accepts (commits) the changes made to the dataset.

Clear Clears the dataset by removing all rows in all tables.

Copy Copies the dataset.

GetChanges Returns a dataset that contains all changes made to the current dataset.

GetXml Returns the data in the dataset in XML.

GetXmlSchema Returns the XSD schema for the dataset.

HasChanges Indicates whether the dataset has changes that have not yet been accepted.

Merge Merges this dataset with another dataset.

ReadXml Reads data into a dataset from XML.

ReadXmlSchema Reads an XML schema into a dataset.

RejectChanges Rolls back the changes made to the dataset since it was created or since the AcceptChanges method
was last called.

Reset Resets the dataset to the original state.

WriteXml Writes the dataset's schema and data to XML.

WriteXmlSchema Writes the dataset schema to XML.

Now double-click the Store XML Data button to open the handler function that holds the code that will be executed
when the button is clicked:

Private Sub Button1_Click(ByVal sender As System.Object,
 .
 .
 .
End Sub

Begin this code by using the data adapter object to fill the dataset object with data from the employee table:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)
 .
 .
 .
End Sub

Next store the employee table from the dataset as an XML document, data.xml, by using the dataset's WriteXml method:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)
 DataSet11.WriteXml("data.xml")
 .
 .
 .
End Sub

In fact, ADO.NET uses XML and XML schemas to transfer data in .NET, so write the current schema out to a file,
dataSchema.xml, as well, by using the WriteXmlSchema method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)
 DataSet11.WriteXml("data.xml")
 DataSet11.WriteXmlSchema("dataSchema.xml")
End Sub

Now you'll read this XML back in and use it to create a new dataset object. First, create that dataset object by adding
this code to the handler method that is called when the Read XML Data button is clicked:

Private Sub Button2_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button2. Click
 Dim ds As New DataSet()
 .
 .
 .
End Sub

Now use this dataset object's ReadXML method to read the XML document that holds the entire employee table:

Private Sub Button2_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim ds As New DataSet()
 ds.ReadXml("data.xml")
 .
 .
 .
End Sub

Because you've read the XML holding the employee table back in, bind it to your DataGrid control:

Private Sub Button2_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim ds As New DataSet()
 ds.ReadXml("data.xml")
 DataGrid1.SetDataBinding(ds, "employee")
End Sub

The DataGrid class lets us display entire database tables in .NET applications, and it's designed to be used in data-aware
applications. Table 20.7 lists the significant properties of the DataGrid class, and Table 20.8 lists the significant methods
of this class.

Table 20.7. Significant Public Properties of the DataGrid Class
Property Description

AllowNavigation Returns or sets whether navigation is allowed in the data grid.

AllowSorting Returns or sets whether the grid can be sorted when the user clicks a column header.

AlternatingBackColor Returns or sets the background color used in alternating rows.

BackColor Returns or sets the background color of the data grid.

BackgroundColor Returns or sets the color of the nondata sections of the data grid.

BorderStyle Returns or sets the data grid's border style.

CaptionBackColor Returns or sets the caption's background color.

CaptionFont Returns or sets the caption's font.

CaptionForeColor Returns or sets the caption's foreground color.

CaptionText Returns or sets the caption's text.

CaptionVisible Returns or sets whether the caption is visible.

ColumnHeadersVisible Returns or sets whether the parent rows of a table are visible.

CurrentCell Returns or sets which cell has the focus.

CurrentRowIndex Returns or sets the index of the selected row.

DataMember Returns or sets the table or list of data the data grid should display.

DataSource Returns or sets the data grid's data source, such as a dataset.

FirstVisibleColumn Returns the index of the first column visible in the grid.

FlatMode Returns or sets whether the data grid should be shown flat.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ForeColor Returns or sets the foreground color used in the data grid.

GridLineColor Returns or sets the color of grid lines.

GridLineStyle Returns or sets the grid line style.

HeaderBackColor Returns or sets the background color of headers.

HeaderFont Returns or sets the font used for headers.

HeaderForeColor Returns or sets the foreground color of headers.

Item Returns or sets the value in a particular cell.

LinkColor Returns or sets the color of links to child tables.

LinkHoverColor Returns or sets the color of links to child tables when the mouse moves over it.

ParentRowsBackColor Returns or sets the background color of parent rows.

ParentRowsForeColor Returns or sets the foreground color of parent rows.

ParentRowsLabelStyle Returns or sets the style for parent row labels.

ParentRowsVisible Returns or sets whether parent rows are visible.

PreferredColumnWidth Returns or sets the width of the grid columns (in pixels).

PreferredRowHeight Returns or sets the preferred row height.

ReadOnly Returns or sets whether the grid is read-only.

RowHeadersVisible Returns or sets whether row headers are visible.

RowHeaderWidth Returns or sets the width of row headers.

SelectionBackColor Returns or sets the selected cell's background color.

SelectionForeColor Returns or sets the selected cell's foreground color.

TableStyles Returns the table styles in the data grid.

VisibleColumnCount Returns the number of visible columns.

VisibleRowCount Returns the number of visible rows.

Table 20.8. Significant Public Methods of the DataGrid Class
Method Description

BeginEdit Makes the data grid allow editing.

Collapse Collapses child table relations.

EndEdit Ends editing operations.

Expand Displays child relations.

HitTest Coordinates the mouse position with points in the data grid.

IsExpanded Returns whether a row is expanded or collapsed.

IsSelected Returns whether a row is selected.

NavigateBack Navigates to the previous table that was shown in the grid.

NavigateTo Navigates to a specific table.

Select Makes a selection.

SetDataBinding Sets both the DataSource and DataMember properties. This method is used at runtime.

UnSelect Deselects a row.

Now run this application by selecting Debug, Start. Then, when you click the Store XML Data button, the employee table
is stored in an XML document on disk; when you click the Read XML Data button, that XML document is read back into
a new dataset object, which is bound to the DataGrid control in this application. Figure 20.8 shows the results, with the
employees table, fresh from your XML document, appearing in the data grid.

Figure 20.8. Writing a database table to XML and reading it back in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20.8. Writing a database table to XML and reading it back in.

Here's what the employee table looks like as stored in XML in your XML document (note that each employee's data is
stored in an element named <employee>):

<?xml version="1.0" standalone="yes"?>
<DataSet1 xmlns="http://www.tempuri.org/DataSet1.xsd">
 <employee>
 <emp_id>PMA42628M</emp_id>
 <fname>Paolo</fname>
 <minit>M</minit>
 <lname>Accorti</lname>
 <job_id>13</job_id>
 <job_lvl>35</job_lvl>
 <pub_id>0877</pub_id>
 <hire_date>1992-08-27T00:00:00.0000000-04:00</hire_date>
 </employee>
 <employee>
 <emp_id>PSA89086M</emp_id>
 <fname>Pedro</fname>
 <minit>S</minit>
 <lname>Afonso</lname>
 <job_id>14</job_id>
 <job_lvl>89</job_lvl>
 <pub_id>1389</pub_id>
 <hire_date>1990-12-24T00:00:00.0000000-05:00</hire_date>
 </employee>
 <employee>
 <emp_id>VPA30890F</emp_id>
 <fname>Victoria</fname>
 <minit>P</minit>
 <lname>Ashworth</lname>
 <job_id>6</job_id>
 <job_lvl>140</job_lvl>
 <pub_id>0877</pub_id>
 <hire_date>1990-09-13T00:00:00.0000000-04:00</hire_date>
 </employee>
 <employee>
 <emp_id>H-B39728F</emp_id>
 <fname>Helen</fname>
 <minit> </minit>
 <lname>Bennett</lname>
 <job_id>12</job_id>
 <job_lvl>35</job_lvl>
 <pub_id>0877</pub_id>
 <hire_date>1989-09-21T00:00:00.0000000-04:00</hire_date>
 </employee>
 .
 .
 .

Here's what the XML schema for this table looks like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" standalone="yes"?>
<xs:schema id="DataSet1" targetNamespace="http://www.tempuri.org/DataSet1.xsd"
xmlns="http://www.tempuri.org/DataSet1.xsd"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="DataSet1" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="authors">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="au_id" type="xs:string" />
 <xs:element name="au_lname" type="xs:string" />
 <xs:element name="au_fname" type="xs:string" />
 <xs:element name="phone" type="xs:string" />
 <xs:element name="address" type="xs:string" minOccurs="0" />
 <xs:element name="city" type="xs:string" minOccurs="0" />
 <xs:element name="state" type="xs:string" minOccurs="0" />
 <xs:element name="zip" type="xs:string" minOccurs="0" />
 <xs:element name="contract" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="emp_id" type="xs:string" minOccurs="0" />
 <xs:element name="fname" type="xs:string" minOccurs="0" />
 <xs:element name="minit" type="xs:string" minOccurs="0" />
 <xs:element name="lname" type="xs:string" minOccurs="0" />
 <xs:element name="job_id" type="xs:short" minOccurs="0" />
 <xs:element name="job_lvl" type="xs:unsignedByte"
 minOccurs="0" />
 <xs:element name="pub_id" type="xs:string" minOccurs="0" />
 <xs:element name="hire_date" type="xs:dateTime" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 <xs:unique name="Constraint1" msdata:PrimaryKey="true">
 <xs:selector xpath=".//mstns:authors" />
 <xs:field xpath="mstns:au_id" />
 </xs:unique>
 </xs:element>
</xs:schema>

This XML document and XML schema show the actual way that data is transmitted from database to .NET application
and back again by using ADO.NET. Listing 20.2 shows the code we've written for this example.

Listing 20.2 Button-Handling Code in the ch20_03 Project (from Form1.vb in the ch20_03
Project)

Public Class Form1
 Inherits System.Windows.Forms.Form
 .
 .
 .
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)
 DataSet11.WriteXml("data.xml")
 DataSet11.WriteXmlSchema("dataSchema.xml")
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim ds As New DataSet
 ds.ReadXml("data.xml")
 DataGrid1.SetDataBinding(ds, "employee")
 End Sub
End Class
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XPath with a Database
In addition to storing data by using XML, we can also treat databases as XML in .NET in other ways. For example, we
can address the data in a dataset by using XPath expressions, and we'll take a look at how this works here in a new
Visual Basic .NET project, ch20_04.

Start by creating a new Windows project named ch20_04. In this example, you'll use the XPath expression * to get a
node list of all the child elements of the <employee> element. This expression will return all the fields of the various
employees in the employee table you worked with in the previous example. To create this example, start by adding to
the main form in your project a button with the caption Get Names and two text boxes to display the names, as shown
in Figure 20.9. You need to make the text boxes multiline text boxes by setting their Multiline property to true in the
properties window at the lower right in the Visual Basic .NET development environment; you need to stretch these
boxes as shown in Figure 20.9.

Figure 20.9. Creating the ch20_04 project.

In addition, create a dataset object, DataSet11, that is connected to the employee table in the pubs database, as you did
in the previous example. That is, drag an OleDbDataAdapter object to the main form in the project, use the Data Adapter
Configuration Wizard to connect this data adapter to the employee table, select Data, Generate Dataset to open the
Generate Dataset dialog box, and click OK to create DataSet11.

Now double-click the Get Names button to open the handler method in code that will be called when the button is
clicked:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 .
 .
 .
End Sub

When the Get Names button is clicked, you'll read the data in the dataset—the employee table—into an XmlDataDocument
object, which will allow you to address that data by using XPath:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)
 .
 .
 .
End Sub

Now you have a new XmlDataDocument object, xmlDoc, that holds the employee table, set up explicitly as XML. Table 20.9
lists the significant properties of XmlDataDocument objects, and Table 20.10 lists the significant methods of
XmlDataDocument objects.

Table 20.9. Significant Public Properties of XmlDataDocument Objects
Property Description

Attributes Returns the attributes of this node.

BaseURI Returns the base URI of the current node.

ChildNodes Returns all the child nodes of the node.

DataSet Returns a dataset that contains the data in the XmlDataDocument object.

DocumentElement Returns the root XmlElement object for the document.

DocumentType Returns the node that contains the DOCTYPE declaration.

FirstChild Returns the first child of the node.

HasChildNodes Returns true if this node has any child nodes.

InnerText Returns or sets the concatenated values of the node and all its child nodes.

InnerXml Returns or sets the markup representing the children of the current node.

IsReadOnly Returns true if the current node is read-only.

Item Returns the given child element.

LastChild Returns the last child of the node.

LocalName Returns the local name of the node.

Name Returns the qualified name of the node.

NamespaceURI Returns the namespace URI of this node.

NextSibling Returns the node immediately following this node.

NodeType Returns the type of the current node.

OuterXml Returns the markup representing this node and all its child nodes.

OwnerDocument Returns the XmlDocument object to which the current node belongs.

ParentNode Returns the parent of this node (for nodes that can have parents).

Prefix Returns or sets the namespace prefix of this node.

PreserveWhitespace Returns or sets a value indicating whether to preserve whitespace.

PreviousSibling Returns the node immediately preceding this node.

Value Returns or sets the value of the node.

Table 20.10. Significant Public Methods of XmlDataDocument Objects
Method Description

AppendChild Adds the given node to the end of the list of child nodes of the current node.

CreateAttribute Creates an XmlAttribute object with the given name.

CreateCDataSection Creates an XmlCDataSection object that contains the given data.

CreateComment Creates an XmlComment object that contains the given data.

CreateDocumentFragment Creates an XmlDocumentFragment object.

CreateDocumentType Returns a new XmlDocumentType object.

CreateElement Creates an XmlElement object.

CreateNode Creates an XmlNode object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CreateProcessingInstruction Creates an XmlProcessingInstruction object with the given name and data.

CreateSignificantWhitespace Creates an XmlSignificantWhitespace node.

CreateTextNode Creates an XmlText object with the given text.

CreateWhitespace Creates an XmlWhitespace node.

CreateXmlDeclaration Creates an XmlDeclaration node with the given values.

Equals Determines whether two object instances are equal.

GetElementById Returns the XmlElement object that has the given ID.

GetElementFromRow Retrieves the XmlElement object associated with the given DataRow object.

GetElementsByTagName Returns an XmlNodeList object that contains a list of all descendant elements that match the
given name.

GetRowFromElement Retrieves the DataRow object associated with the given XmlElement object.

GetType Returns the type of the current instance.

ImportNode Imports a node from another document to the current document.

InsertAfter Inserts the given node immediately after the given reference node.

InsertBefore Inserts the given node immediately before the given reference node.

Load Loads the XmlDataDocument object by using the given data source.

LoadXml Loads the XML document from the given string.

PrependChild Adds the given node to the beginning of the list of child nodes for this node.

RemoveAll Removes all the child nodes and/or attributes of the current node.

RemoveChild Removes the given child node.

ReplaceChild Replaces the child node oldChild with the newChild node.

Save Saves the XML document to the given location.

SelectNodes Selects a list of nodes that match the XPath expression.

SelectSingleNode Selects the first XmlNode object that matches the XPath expression.

WriteTo Saves the XmlDocument object.

A XmlDataDocument object has a DocumentElement property that returns the document object of its XML documents as an
XmlElement object. This XmlElement object supports a method called SelectNodes that lets us select XML nodes by using
XPath expressions. To select all the employee elements in the employee table, all you have to do is pass the SelectNodes
method the XPath expression *, and you get back a NodeList object back that holds the matching nodes:

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)

 Dim nodeList As System.Xml.XmlNodeList =
 xmlDoc.DocumentElement.SelectNodes("*")
 .
 .
 .
End Sub

Now you have a node list of the <employee> elements, extracted from your XmlDataDocument using XPath. How can you
access the data in the corresponding employee records in the dataset? You can do that with the XmlDataDocument object's
GetRowFromElement method—all you have to do is to pass an XML element to this method, and it'll return the dataset
row containing the employee's record. When you have the employee's data record, you can extract the employee's first
and last names (Fields 1 and 3 in each record) this way:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub Button1_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)

 Dim nodeList As System.Xml.XmlNodeList =
 xmlDoc.DocumentElement.SelectNodes("*")
 Dim tempRow As DataRow
 Dim tempNode As System.Xml.XmlNode

 For Each tempNode In nodeList
 tempRow = xmlDoc.GetRowFromElement(CType(tempNode,
 System.Xml.XmlElement))

 If Not tempRow Is Nothing Then TextBox1.Text +=
 tempRow(1).ToString() + ControlChars.CrLf
 If Not tempRow Is Nothing Then TextBox2.Text +=
 tempRow(3).ToString() + ControlChars.CrLf
 Next

End Sub

When you run this example and click the Get Names button, you get all the employees records by using XPath, and
then look up all the employees' first and last names and display them as shown in Figure 20.10.

Figure 20.10. Running the ch20_04 project.

Today you've used XPath to access records in a dataset, thanks to the XmlDataDocument object. Listing 20.3 shows the
code that we've written for this example. Although in this example we used only the simple XPath expression * to
access all the employees in the employee table, we can use full XPath expressions as well.

Listing 20.3 Button-Handling Code in the ch20_04 Project (from Form1.vb in the ch20_04
Project)

Public Class Form1
 Inherits System.Windows.Forms.Form
 .
 .
 .
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 DataSet11.Clear()
 OleDbDataAdapter1.Fill(DataSet11)

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim xmlDoc As New System.Xml.XmlDataDocument(DataSet11)

 Dim nodeList As System.Xml.XmlNodeList = _
 xmlDoc.DocumentElement.SelectNodes("*")
 Dim tempRow As DataRow
 Dim tempNode As System.Xml.XmlNode

 For Each tempNode In nodeList
 tempRow = xmlDoc.GetRowFromElement(CType(tempNode, _
 System.Xml.XmlElement))

 If Not tempRow Is Nothing Then TextBox1.Text += _
 tempRow(1).ToString() + ControlChars.CrLf
 If Not tempRow Is Nothing Then TextBox2.Text += _
 tempRow(3).ToString() + ControlChars.CrLf
 Next
 End Sub
End Class

Using XPath is one way to address data in databases. However, XPath isn't powerful enough to handle databases, which
is why the W3C is introducing XQuery—which is described in the next section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Introducing XQuery
Because XPath isn't really strong enough to let us handle databases, the W3C is creating XQuery. (In fact, the data
model at the core of XQuery is going to be the basis of the next version of XPath, version 2.0.) Here's what the W3C
says about XQuery:

XML is a versatile markup language, capable of labeling the information content of diverse data sources
including structured and semi-structured documents, relational databases, and object repositories. A
query language that uses the structure of XML intelligently can express queries across all these kinds of
data, whether physically stored in XML or viewed as XML via middleware. This specification describes a
query language called XQuery, which is designed to be broadly applicable across many types of XML
data sources.

The idea is for XQuery to be a query language something like SQL (which is used in database applications) that we can
use with XML documents. XQuery is designed to let us access data much as if we were working with a database, even
though we're working with XML. The creation of such a query language was inevitable—after all, XML's whole reason for
existence is to provide a way to work with data. XQuery gives us not only a data model to let us interpret XML
documents, but also a set of operators and functions to let us extract data from those documents.

Unfortunately, the W3C XQuery specification is very much up in the air at this time. It's been around a long time, but
progress has been slow. This specification is divided into several working drafts; the main XQuery 1.0 working draft is
at http://www.w3.org/TR/xquery, but there are also working drafts for XQuery semantics, the data model, and
serialization. Here's a short list of what's available online as of this writing:

The XQuery Activity Page (http://www.w3.org/XML/Query), which provides an overview of XQuery

The XQuery version 1.0 Working Draft (http://www.w3.org/TR/xquery)

The XQuery 1.0 and XPath 2.0 Data Model (http://www.w3.org/TR/xpath-datamodel)

The XQuery 1.0 and XPath 2.0 Formal Semantics (http://www.w3.org/TR/xquery-semantics)

The XML Syntax for XQuery 1.0 (XQueryX; http://www.w3.org/TR/xquery/xqueryx)

The XQuery 1.0 and XPath 2.0 Functions and Operators (http://www.w3.org/TR/xquery/xpath-functions)

The XML Query Requirements (http://www.w3.org/TR/xquery-requirements), which provides an overview of
what's going to go into XQuery, in working draft form

Despite its slow progress, XQuery is very popular, and there are a number of implementations of XQuery 1.0 out there.
Here's a starter list:

The XQuery 1.0 Grammar Test Page (http://www.w3.org/2003/05/applets/xqueryApplet.html)

The XPath 2.0 Grammar Test Page (http://www.w3.org/2003/05/applets/xpathApplet.html)

BEA's Liquid Data (http://edocs.bea.com/liquiddata/docs10/prodover/concepts.html)

Bluestream Database Software Corp.'s XStreamDB (http://www.bluestream.com/dr/?
page=Home/Products/XStreamDB)

Cerisent's XQE (http://cerisent.com/cerisent-xqe.html)

Cognetic Systems's XQuantum (http://www.cogneticsystems.com/xquery/xquery.html)

Enosys Software's XQuery Demo (http://xquerydemo.enosyssoftware.com)

eXcelon's eXtensible Information Server (XIS 3.1 SP2) (http://www.exln.com/products/xis)

Stylus Studio 4.5, with XQuery and XML Schema support (http://www.exln.com/products/stylusstudio)

E-XMLMedia's XMLizer (http://www.e-xmlmedia.com/prod/xmlizer.htm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E-XMLMedia's XMLizer (http://www.e-xmlmedia.com/prod/xmlizer.htm)

Fatdog's XQEngine (http://www.fatdog.com)

GAEL's Derby (http://www.gael.fr/derby)

GNU's Qexo (Kawa-Query; http://www.qexo.org), which compiles XQuery on-the-fly to Java bytecodes

Ipedo's XML Database v3.0 (http://www.ipedo.com)

IPSI's IPSI-XQ (http://ipsi.fhg.de/oasys/projects/ipsi-xq/index_e.html)

Lucent's Galax (http://db.bell-labs.com/galax/), which is open source

Microsoft's XML Query Language Demo (http://xqueryservices.com)

Neocore's XML management system (XMS; http://www.neocore.com/products/products.htm)

Nimble Technology's Nimble Integration Suite (http://www.nimble.com)

OpenLink Software's Virtuoso Universal Server (http://demo.openlinksw.com:8890/xqdemo)

Oracle's XML DB (http://otn.oracle.com/tech/xml/xmldb/htdocs/querying_xml.html)

Politecnico di Milano's XQBE (http://dbgroup.elet.polimi.it/xquery/xqbedownload.html)

QuiLogic's SQL/XML-IMDB (http://www.quilogic.cc/xml.htm)

Software AG's Tamino XML Server (http://www.softwareag.com/tamino/News/tamino_41.htm)

Tamino XML Query Demo (http://tamino.demozone.softwareag.com/demoXQuery/index.html)

Sourceforge's Saxon (http://saxon.sourceforge.net/)

SourceForge's XQuench (http://xquench.sourceforge.net/), which is open source

SourceForge's XQuery Lite (http://sourceforge.net/projects/phpxmlclasses/)

X-Hive's XQuery demo (http://www.x-hive.com/xquery)

XML Global's GoXML DB (http://www.xmlglobal.com/prod/xmlworkbench)

Today, you're going to take a look at using XQuery with Lucent's Galax XQuery processor, one of the foremost XQuery
implementations. You can download Galax for free at http://db.bell-labs.com/galax/, and you can see an online demo at
http://db.bell-labs.com/galax/demo/galax_demo.html.

To use XQuery, we'll need an XML document, and we'll use the one shown in Listing 20.4, ch20_05.xml. This document
contains data about some friends and a number of meetings arranged for their reunion, stored in <meeting> elements.
We're going to use XQuery to extract information about the meetings and meeting locations.

Listing 20.4 A Sample XML Document (ch20_05.xml)

<?xml version="1.0" encoding="UTF-8"?>
<friends>
 <title>List of Friends</title>
 <friend>Ed Banachek</friend>
 <friend>Mark Up</friend>
 <friend>Wendy Thurston</friend>
 <friend>Becki Franks</friend>
 <meeting ID="introduction" time="evening" >
 <title>Introduction</title>
 <p>Getting to know everyone</p>
 <meeting>
 <title>Men</title>
 <p>Men's gathering</p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p>Men's gathering</p>
 </meeting>
 <meeting>
 <title>Women</title>
 <p>Women's gathering</p>
 <location address="campus">
 <title>Student Center</title>
 <phone number="555-1111"/>
 </location>
 <p>Just for fun</p>
 </meeting>
 </meeting>
 <meeting ID="breakfast" time="morning" >
 <title>Breakfast</title>
 <p>Breakfast meeting</p>
 <location address="cafeteria">
 <title>Student Cafeteria</title>
 <phone number="555-1112"/>
 </location>
 <p>Just for fun</p>
 <meeting>
 <title>Men</title>
 <p>Men's gathering</p>
 </meeting>
 <meeting>
 <title>Women</title>
 <p>Women's gathering</p>
 <location address="campus">
 <title>Student Dorm</title>
 <phone number="555-1113"/>
 </location>
 </meeting>
 <meeting>
 <title>Good Bye</title>
 <p>So long!</p>
 </meeting>
 </meeting>
</friends>

To use Galax, you'll create two XQuery files. The first file will hold XQuery context code, where you'll declare the XML
elements in ch20_05.xml and the XQuery functions you'll use. The other XQuery file will hold the template you'll use to
query your XML document.

Start the XQuery context file, ch20_06.xq, by defining all the XML elements in your sample XML document so Galax can
check the validity of that document. You can define the elements and attributes in your sample XML document easily,
using this DTD-like syntax:

define element friends
{
 element title,
 element friend+,
 element meeting+
}

define element title {xsd:string}
define element friend {xsd:string}

define element meeting
{
 attribute ID {xsd:string}?,
 attribute time {xsd:string}?,
 element title,
 (element p | element location | element meeting) *
}

define element p {xsd:string}

define element location
{
 attribute address { xsd:string },
 element title,
 element phone
}

define element phone
{
 attribute number {xsd:string}
}

define element meetingSummary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

define element meetingSummary
{
 attribute ID {xsd:string}?,
 attribute time {xsd:string}?,
 element title,
 element locationCount {xsd:int},
 element meetingSummary*
}

This file sets the context for your XQuery work, so you'll connect your XML document ch20_05.xml to an XQuery variable,
$friendlist, making the data in that document available to your XQuery code. XQuery variables are used to store data,
and the name of an XQuery variable begins with a $ sign. In this case, you'll define a global variable (accessible in your
XQuery template file) named $friendsList to hold the data from your XML document:

define global $friendsList {treat as document friends
(glx:document-validate("ch20_05.xml", "friends"))}

We can also define functions in XQuery. We pass data to a function, and the code in the function can work on that data
with XQuery statements and operators, and it returns the processed results. In this case you'll define a function named
summary, which will return a summary of an element and display selected data from that element. You'll pass an
element to this function, and start by getting the name of the element by using the built-in local-name function:

define function summary($elem as element) as element*
{
 let $name := local-name($elem)
 .
 .
 .
}

If you're dealing with a <meeting> element, you'll report this element in the results returned from this function,
including its attributes, which you can refer to as $elem/@*. In the XML example, meetings themselves can have
submeetings, so you'll loop over all the child elements of the current element and call summary recursively for them
(items in curly braces, { and }, are evaluated by the XQuery engine and embedded in the output):

define function summary($elem as element) as element*
{
 let $name := local-name($elem)
 return
 if ($name = "meeting")
 then
 <meeting>
 {$elem/@*}
 {for $item in $elem/* return summary($item)}
 </meeting>
 .
 .
 .
}

This displays all the <meeting> elements and their <meeting> children. You'll also handle <title> elements in this function
by returning the <title> element itself so that the title of any <meeting> elements will appear in the output:

define function summary($elem as element) as element*
{
 let $name := local-name($elem)
 return
 if ($name = "meeting")
 then
 <meeting>
 {$elem/@*}
 {for $item in $elem/* return summary($item)}
 </meeting>
 else if ($name = "title")
 then $elem
 else ()
}

That's it for your XQuery context file, ch20_06.xq, which defines the syntax for your XML document, stores the data in
that XML document as a global variable named $friendsList, and defines the summary function. Listing 20.5 shows the file
ch20_06.xq.

Listing 20.5 The XQuery Context Document (ch20_06.xq)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

define element friends
{
 element title,
 element friend+,
 element meeting+
}

define element title {xsd:string}
define element friend {xsd:string}

define element meeting
{
 attribute ID {xsd:string}?,
 attribute time {xsd:string}?,
 element title,
 (element p | element location | element meeting)*
}

define element p {xsd:string}

define element location
{
 attribute address { xsd:string },
 element title,
 element phone
}

define element phone
{
 attribute number {xsd:string}
}

define element meetingSummary
{
 attribute ID {xsd:string}?,
 attribute time {xsd:string}?,
 element title,
 element locationCount {xsd:int},
 element meetingSummary*
}

define global $friendsList {treat as document friends
(glx:document-validate("ch20_05.xml", "friends"))}

define function summary($elem as element) as element*
{
 let $name := local-name($elem)
 return
 if ($name = "meeting")
 then
 <meeting>
 {$elem/@*}
 {for $item in $elem/* return summary($item)}
 </meeting>
 else if ($name = "title")
 then $elem
 else ()
}

Now you'll create an XQuery template file, ch20_07.xq, which will extract data from your XML document (stored in the
$friendsList variable) and present those results as XML. For example, to get a summary of the <meeting> elements in
your XML document, you'll create an element named <meetings> and display a summary of the <meeting> child
elements of the <friends> document element in it. Note in particular the XPath-like syntax to specify the <meeting> child
elements of the <friends> document element—$friendsList/friends/meeting:

<meetings>
 {
 for $meeting in $friendsList/friends/meeting return summary($meeting)
 }
</meetings>
;

This code will strip out and display a summary of each <meeting> element—including all child <meeting> elements—while
also preserving the <title> elements. Here's what the results look like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

also preserving the <title> elements. Here's what the results look like:

<meetings>
 <meeting time="evening"
 ID="introduction">
 <title>Introduction</title>
 <meeting><title>Men</title></meeting>
 <meeting><title>Women</title></meeting>
 </meeting>
 <meeting time="morning"
 ID="breakfast">
 <title>Breakfast</title>
 <meeting><title>Men</title></meeting>
 <meeting><title>Women</title></meeting>
 <meeting><title>Good Bye</title></meeting>
 </meeting>
</meetings>

You'll also display the locations of the various meetings by picking out the <location> elements in the XML document,
preserving their attributes and titles, and displaying the results in a <locations> element, like this:

<locations>
 {
 for $location in $friendsList//location
 return
 <location>
 {$location/@*}
 {$location/title}
 </location>
 }
</locations>
;

This code gives you the following results in the output, where you're displaying the <location> elements and their
attributes, as well as any contained <title> elements:

<locations>
 <location address="campus"><title>Student Center</title></location>
 <location address="cafeteria"><title>Student Cafeteria</title></location>
 <location address="campus"><title>Student Dorm</title></location>
</locations>

Use the XQuery count function to count the number of <meeting> elements. To count all <meeting> elements, no matter
where they are in the input XML document, use the expression $friendsList//meeting (using the XPath-like // syntax to
indicate any descendent), like this:

<meetingCount>{count($friendsList//meeting)}</meetingCount>
;

This gives you these results:

<meetingCount>7</meetingCount>

You can count the total number of <location> elements this way:

<locationCount>{count($friendsList//location)}</locationCount>
;

Here are the results:

<locationCount>3</locationCount>

You can also count the number of top-level meetings (remember that the <meeting> elements that themselves contain
submeetings), like this:

<mainMeetingCount>
 {
 count($friendsList/friends/meeting)
 }
</mainMeetingCount>
;

And this is what you'll see in the output:

<mainMeetingCount>2</mainMeetingCount>

Listing 20.6 shows the complete XQuery template file, ch20_07.xq.

Listing 20.6 An XQuery Document (ch20_07.xq)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<meetings>
 {
 for $meeting in $friendsList/friends/meeting return summary($meeting)
 }
</meetings>
;

<locations>
 {
 for $location in $friendsList//location
 return
 <location>
 {$location/@*}
 {$location/title}
 </location>
 }
</locations>
;

<meetingCount>{count($friendsList//meeting)}</meetingCount>
;

<locationCount>{count($friendsList//location)}</locationCount>
;

<mainMeetingCount>
 {
 count($friendsList/friends/meeting)
 }
</mainMeetingCount>
;

Now you'll pull it all together by using Galax on your context and template XQuery files. Here's how you do this:

%galax -context ch20_06.xq ch20_07.xq

And here are the results you get, showing how you've been able to extract and handle the data in ch20_05.xml and then
format the results as XML:

%galax -context ch20_06.xq ch20_07.xq
<meetings>
 <meeting time="evening"
 ID="introduction">
 <title>Introduction</title>
 <meeting><title>Men</title></meeting>
 <meeting><title>Women</title></meeting>
 </meeting>
 <meeting time="morning"
 ID="breakfast">
 <title>Breakfast</title>
 <meeting><title>Men</title></meeting>
 <meeting><title>Women</title></meeting>
 <meeting><title>Good Bye</title></meeting>
 </meeting>
</meetings>
<locations>
 <location address="campus"><title>Student Center</title></location>
 <location address="cafeteria"><title>Student Cafeteria</title></location>
 <location address="campus"><title>Student Dorm</title></location>
</locations>
<meetingList>
 <meeting title="Introduction" outsideLocations="0"/>
 <meeting title="Men" outsideLocations="0"/>
 <meeting title="Women" outsideLocations="1"/>
 <meeting title="Breakfast" outsideLocations="1"/>
 <meeting title="Men" outsideLocations="0"/>
 <meeting title="Women" outsideLocations="1"/>
 <meeting title="Good Bye" outsideLocations="0"/>
</meetingList>
<meetingCount>7</meetingCount>
<locationCount>3</locationCount>
<mainMeetingCount>2</mainMeetingCount>

You can also write these results to an XML document like this, which creates the document results.xml:

%galax -context ch20_06.xq ch20_07.xq -output-xml results. xml

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE

Unfortunately, it's impossible to get Galax to put an XML declaration at the beginning of its output
documents, so although we can create XML element output, as described in this section, the results can't
be considered a completely well-formed XML document.

In this section you've used Galax and XQuery to execute queries and extract data from your XML document. Not bad!
Bear in mind, however, that XQuery is only at the working draft stage, and the kind of support you see here, and
XQuery itself, will probably be changing rapidly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you took a look at working with XML and databases. This is a widespread field, so you were only able to look at a
few examples today. You started with the brute-force method, using software as an intermediary between the user and
the data provider. In this case, you used ASP to work with an Access database, extract data from that database, and
send it as XML to the user.

Microsoft has integrated a large amount of support for XML in its .NET programming platform, and you took a look at
some of that support today. Because the ADO.NET protocol uses XML to transfer data between applications and data
sources, you used the WriteXml method to write out the XML version of the employee table in the SQL Server sample pubs
database. You also used the WriteXmlSchema method to write out the XML schema used for this table. And you used the
ReadXml method to read the XML for the table back in, creating a dataset from that XML.

Today you also took a look at working with .NET XmlDataDocument objects. These objects let you address the data in a
database by using XPath expressions. Although the process worked, it was a little awkward because you had to refer to
the original database table to extract the data you were looking for. You were able to use XPath expressions to track
down your data, but the XPath support felt more like an afterthought, not an integrated technique.

The third technique you looked at today—using XQuery—is really native XML. Although it's still just in the W3C Working
Draft stage, there's a lot of excitement about XQuery, and you got a good introduction to it today. By using the Galax
XQuery processor, you were able to create XQuery variables, functions, and templates, and used them to successfully
query the data in an XML document and extract what you wanted.

XQuery is designed to be to XML much like SQL is to databases—a query language that you can use to extract the data
you want and work with it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Can I sort items in XQuery?

A1: Yes. Currently, you use the order by statement to do this. For example, to order items in the $name
variable by <lastName> elements, you could use this code:

order by $name/lastName

To order by first and last name, you could use

order by $name/lastName, $name/firstName

Q2: Can I use XPath-like predicates in XQuery?

A2: Yes. Here's an example that also uses the exists function to test whether you actually matched any
elements:

let $result := $friends//friend[state = $state and city = $city]
if (exists($result)) then...

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: What method do you use with an OleDbDataAdapter method to retrieve data from the data store and place it
into a dataset object?

2: What methods do you use to write and read XML data from a .NET dataset object?

3: How would you create an XQuery variable named $name that holds the name of an element stored in $elem?

4: How can you include an element's attributes in XQuery output for an element stored in a variable named
$elem?

5: How would you load an XML document named data.xml with a document element named <document> into an
XQuery variable named $data by using the Galax XQuery engine?

Exercises

1: Use the Galax XQuery engine to alter the XQuery example to display the number of <p> elements in
ch20_05.xml.

2: Give each child <meeting> element in the XQuery example a <refreshment> element that indicates what
refreshment was served at the meeting, and add that data to the meeting's data in the summary function.
Check your work by using Galax.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Day 21. Handling XML in .NET
Today we're going to take a look at working with XML in Microsoft's .NET programming. Some people aren't fond of
Microsoft applications, but Microsoft provides so much XML support that this book would be seriously remiss if it didn't
discuss that support. If you have Visual Studio .NET, you can follow along with today's discussion by creating and
implementing the examples we'll develop.

Here's an overview of today's topics:

Editing XML documents and XML schemas in .NET

Writing and reading XML documents from code

Using the XML ASP.NET control to display formatted XML

Creating XML Web services

Today we're going to look at various ways of working with XML with Visual Studio .NET programming. Some use XML
explicitly, as when we create a new XML document with code. Others use XML implicitly, such as XML Web services,
which send and receive data from code on the Internet by using XML behind-the-scenes. You're going to get a good
introduction to using XML and .NET today, starting by creating and editing an XML document.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating and Editing an XML Document in .NET
The .NET Framework has a great deal of XML support built in, including support for creating XML documents, and that's
where you're going to start today. You'll use the tools in Microsoft Visual Studio .NET to create an XML document by
using an XML schema.

To create a new project, select Visual Basic Projects in the Project Types box and Windows Application in the Templates
box and then give the new project the name ch21_01, as shown in Figure 21.1.

Figure 21.1. Creating a .NET project.

Creating a New XML Document in .NET

You can create a new XML document by selecting Project, Add Item to open the Add New Item dialog box, shown in
Figure 21.2. Then select the XML File template in the Templates box and name this new file ch21_01.xml, as shown in
Figure 21.2.

Figure 21.2. Creating an XML file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click Open, the new XML file is created and opened for editing in a Visual Studio designer (that is, an editor
window), as shown in Figure 21.3.

Figure 21.3. Editing an XML file.

You'll also create an XML schema for your XML document, and to do so, again select Project, Add Item, but this time
select the XML Schema item in the Templates box and name the new XML schema ch21_01Schema.xsd, as shown in
Figure 21.4.

Figure 21.4. Creating an XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click Open, the new XML schema is created and opened for editing, as shown in Figure 21.5.

Figure 21.5. Editing an XML schema.

Creating a Simple Type in an XML Schema in .NET

How do you add types to an XML schema in Visual Studio .NET? You can simply drag types from the toolbox to the left
of the XML schema onto that XML schema. For example, to create a type that will hold five-digit zip codes, you can drag
simpleType from the toolbox to the XML schema. This creates a new simple type entry in the XML schema with the
default name simpleType1 highlighted. You can change that name to zipcode now and press Tab to move to the next field
in the entry.

In the next field, select positiveInteger as the new type from the drop-down list box. To make sure your zipcode type can
take only five-digit values, press Tab to move to the next row in this new entry and select pattern from the drop-down
list box. This lets you enter a regular expression of the kind you saw on Day 7, "Creating Your Own Types in XML
Schemas," that you can use with XML schemas to enforce data typing. In this case, your pattern will be \d{5}, ensuring
that zip code values have five digits. Press Tab one more time and enter this pattern to complete the entry, as shown in
Figure 21.6.

Figure 21.6. Creating a simple type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see what this new simple type looks like in XML, click the XML button at the bottom of the XML schema designer,
and you see the results shown in Figure 21.7.

Figure 21.7. The XML view of a simple type.

Here's what your XML schema looks like so far:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="ch21_01Schema"
 targetNamespace="http://tempuri.org/ch21_01Schema.xsd"
 elementFormDefault="qualified" xmlns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:mstns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="zipcode">
 <xs:restriction base="xs:positiveInteger">
 <xs:pattern value="\d{5}" />
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Creating a Complex Type in an XML Schema

Now you'll put together a complex type that uses the simple zipcode type you just created. To do so, click the Schema
button in the XML schema's designer to switch back to the Schema view, and drag complexType from the toolbox onto
the XML schema, which opens a new complex type's entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, replace the default name complexType1, which is highlighted, with a new name, person; you'll use this to hold data
about various people. Instead of selecting a data type for this new type, press Tab twice to move to the next row. Then
type name to create a name field and press Tab to select the data type for this new field. Next, select the string type
from the drop-down list box; as you can see in the drop-down list box, there are many different data types available
here. Then create a new field named address and give it the type string.

Press Tab once more to create a new field, zip—but this time, select your new simple type, zipcode, in the drop-down list
box, which produces the results shown in Figure 21.8.

Figure 21.8. Creating a complex type.

Now when you switch to the XML view, you'll see that your XML schema includes the complex type person:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="ch21_01Schema"
 targetNamespace="http://tempuri.org/ch21_01Schema.xsd"
 elementFormDefault="qualified"
 xmlns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:mstns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="zipcode">
 <xs:restriction base="xs:positiveInteger">
 <xs:pattern value="\d{5}" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="person">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="address" type="xs:string" />
 <xs:element name="zip" type="zipcode" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

To save your work so far, select File, Save All.

Creating an Element

At this point, we've created two types—a simple type named zipcode and a complex type named person. Next we'll create
an XML element, named <project>, which will hold data about a project we're interested in, including a contact person
and the title of the project. To create this element, drag element from the toolbox onto the XML schema and open the
new element for editing.

Next, give this new element the name project and click the middle box in the second row of this element's entry. Type
title in that box and press Tab to move to the third box, and then select the type string. Next, tab to the next line and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

title in that box and press Tab to move to the third box, and then select the type string. Next, tab to the next line and
type contact in that line's middle box and select the type person, as shown in Figure 21.9.

Figure 21.9. Creating an element.

Creating a Document Element

Next, we'll create a document element, <projects>, that can contain multiple <project> elements. To create the
<projects> element, drag element from the toolbox to the XML schema and give this new element the name "projects".

To install the <project> element as a child element of the <projects> element, just drag the small + sign at the bottom of
the <project> element (if it's a – sign, click it first to turn it into a + sign) inside the <projects> element. The results are
shown in Figure 21.10. That's the way you create a document element—by dragging other elements into it. You can
create the entire XML element hierarchy this way, simply by dragging elements.

Figure 21.10. Creating a document element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's what the new, and final, version of your XML schema looks like:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema id="ch21_01Schema"
 targetNamespace="http://tempuri.org/ch21_01Schema.xsd"
 elementFormDefault="qualified"
 xmlns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:mstns="http://tempuri.org/ch21_01Schema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="zipcode">
 <xs:restriction base="xs:positiveInteger">
 <xs:pattern value="\d{5}" />
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="person">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="address" type="xs:string" />
 <xs:element name="zip" type="zipcode" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="projects">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="project">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string" />
 <xs:element name="contact" type="person" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

You need to save the XML schema in order to make it accessible to the XML document, so select File, Save All.

Connecting an XML Schema to an XML Document

To connect your new XML schema with your XML document, ch21_01.xml, click the ch21_01.xml tab to open this XML
document. In the properties page at the lower right in Visual Studio, click the targetSchema property and select the
http://tempuri.org/ch21_01Schema.xsd item in the drop-down list box to associate your new XML schema with this XML
document. When you do, Visual Studio adds this XML, getting you started by creating a <projects> document element:

<?xml version="1.0" encoding="utf-8" ?>
<projects xmlns="http://tempuri.org/ch21_01Schema.xsd">
 .
 .
 .
</projects>

Now we're ready to add some data to our XML document.

Working With XML Data

To add some data to your XML document now that you've associated your XML schema with that document, click
between the <projects> and </projects> tags and type <, indicating that you want to start a new element. Doing so
displays the possible options, and in this case, the only option is the <project> element, as shown in Figure 21.11.

Figure 21.11. Creating XML data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.11. Creating XML data.

Select the <project> element now and type > to close the element. Visual Studio adds the closing tag, so your XML now
looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<projects xmlns="http://tempuri.org/ch21_01Schema.xsd">
<project></project>
</projects>

That's how the editing process works—you type < when you want to be prompted with the acceptable elements, you
select an element from the prompt that appears, and you type > to close the element. Using the XML editor and the
prompts based on your XML schema, you now enter this XML in your document:

<?xml version="1.0" encoding="utf-8" ?>
<projects xmlns="http://tempuri.org/ch21_01Schema.xsd">
 <project>
 <title>The XML Project</title>
 <contact>
 <name>Edward Zip</name>
 <address>0 Disk Drive</address>
 <zip>10001</zip>
 </contact>
 </project>
</projects>

To validate this XML document against your XML schema, select XML, Validate XML Data. This evaluates the data you've
entered, and if everything checks out against the XML schema, you'll get the message No validation errors were found. at
lower left in Visual Studio .NET, as shown in Figure 21.12. If you've made a mistake—such as not entering five digits
(and only five digits) for the zip code—Visual Studio .NET lets you know with error messages in the Task window.

Figure 21.12. Validating an XML document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have just created and validated a new XML document with an XML schema by using Visual Studio .NET.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

From XML to Databases and Back
Data from XML documents and data from databases are often treated in similar ways in .NET. For example, you can
handle the data in your new XML document as you might handle data in an application such as Microsoft Access. To see
how that works, click the Data button at the bottom of the XML document's designer to switch to Data view, which is
shown in Figure 21.13. This view presents XML data in very much the way that Microsoft Access might, and you can
edit it as you would in Access.

Figure 21.13. Examining an XML document's data.

There's another connection you can make between XML data and standard data handling in Visual Studio .NET: You can
create .NET dataset objects of the type you saw yesterday when using an XML schema.

For example, open the XML schema in this project again and select the Preview Dataset menu item, which opens the
Dataset Properties dialog box shown in Figure 21.14. This shows what fields would appear in the new dataset object
and what properties those fields would have.

Figure 21.14. Creating a dataset from an XML schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to create this dataset object for use in code, select Schema, Generate Dataset. After you've created this
object, you can use its ReadXml method, which you saw yesterday, to fill it with data by reading the XML document
you've created using the XML schema.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Reading and Writing XML in .NET Code
Let's look at another example that shows how to work with XML in .NET programming. This time we'll use the
XmlTextWriter and XmlTextReader classes. In this example, we'll use Visual Basic .NET code to write an XML document.
We'll write out our sample document from Day 9, "Formatting XML by Using XSLT," which contains data on several
states, and read it back in.

Begin by creating a new Windows project named ch21_02 and adding two buttons to it—Write XML Document and Read
XML Document, as shown in Figure 21.15. Also add a multiline text box where we'll display the data we've read in, as
shown in the figure.

Figure 21.15. Creating the ch21_02 project.

Next you need to use XmlTextWriter to write the XML.

Writing XML in .NET

To write your XML document with XmlTextWriter, you need to import System.Xml with an Imports statement to use this
class. You will create a new object of the XmlTextWriter class, xwriter, and connect it to the XML document you'll create,
data.xml:

Imports System.Xml
 .
 .
 .
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim xwriter As New XmlTextWriter("data.xml", System.Text.Encoding.UTF8)
 .
 .
 .

Now use the various methods of the xwriter object to write your new XML document from code. You'll start with the
WriteStartDocument method to start the new XML document. Then you'll use the WriteStartElement method to create the
<states> document element, which you'll put in the "www.XMLPowerCorp.com" namespace. You'll also create the first
<state> element by using WriteStartElement, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports System.Xml
 .
 .
 .
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim xwriter As New XmlTextWriter("data.xml", System.Text.Encoding.UTF8)

 xwriter.WriteStartDocument(True)

 xwriter.WriteStartElement("states", "www.XMLPowerCorp.com")

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")
 .
 .
 .

Now write the child elements that contain the document's data, such as <name>, <population>, and so on. All these
elements just contain text, so you can use the WriteElementString method to write them. Here's how to write the data for
California:

xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "California")
xwriter.WriteElementString("population", "www.XMLPowerCorp.com", "33871648")
xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Sacramento")
xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Quail")
xwriter.WriteElementString("flower", "www.XMLPowerCorp.com", "Golden Poppy")
xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "155959")

Now end this first <state> element with the WriteEndElement method:

xwriter.WriteEndElement()

Here's how to write the data for the Massachusetts and New York <state> elements, and then close those elements,
close the <states> element, and end the document:

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")

 xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "Massachusetts")
 xwriter.WriteElementString("population", "www.XMLPowerCorp.com", "6349097")
 xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Boston")
 xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Chickadee")
 xwriter.WriteElementString("flower", "www.XMLPowerCorp.com", "Mayflower")
 xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "7840")

 xwriter.WriteEndElement()

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")

 xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "New York")
 xwriter.WriteElementString("population", "www.XMLPowerCorp.com",
 "18976457")
 xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Albany")
 xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Bluebird")
 xwriter.WriteElementString("flower", "www.XMLPowerCorp.com", "Rose")
 xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "47214")

 xwriter.WriteEndElement()

 xwriter.WriteEndElement()
 xwriter.WriteEndDocument()

 xwriter.Close()
End Sub

That's all you need. When you run this example, you see our states data XML document stored in the project's bin
directory as data.xml—this time created by Visual Basic .NET. Listing 21.1 shows this document.

Listing 21.1 An XML Document (data.xml)

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<states xmlns="www.XMLPowerCorp.com">
 <state>
 <name>California</name>
 <population>33871648</population>
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <flower>Golden Poppy</flower>
 <area>155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population>6349097</population>
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area>7840</area>
 </state>

 <state>
 <name>New York</name>
 <population>18976457</population>
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area>47214</area>
 </state>
</states>

Now it's time to read this document back in.

Reading XML

You can read XML documents in with XmlTextReader objects, which work something like a SAX parser. You can create a
new XmlTextReader object, xreader, that is tied to the Read XML Document button in the XML document, data.xml, like
this:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim xreader As XmlTextReader = Nothing

 xreader = New XmlTextReader("data.xml")
 .
 .
 .

Now loop over all nodes in your document by using a While loop and the XmlTextReader class's Read method. Each time
through the loop, check the current node's type by using the XmlTextReader object's NodeType property; if that property
equals XmlNodeType.XmlDeclaration, the current node is an XML declaration, if it equals XmlNodeType.ProcessingInstruction,
it's a processing instruction, and so on. You can format the actual data in the node for display by using a procedure
named Format, which you'll call for every node type, like this:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim xreader As XmlTextReader = Nothing

 xreader = New XmlTextReader("data.xml")

 While xreader.Read()

 Select Case (xreader.NodeType)

 Case XmlNodeType.XmlDeclaration
 Format(xreader, "XmlDeclaration")

 Case XmlNodeType.ProcessingInstruction
 Format(xreader, "ProcessingInstruction")

 Case XmlNodeType.DocumentType
 Format(xreader, "DocumentType")

 Case XmlNodeType.Comment
 Format(xreader, "Comment")

 Case XmlNodeType.Element
 Format(xreader, "Element")

 Case XmlNodeType.Text
 Format(xreader, "Text")

 Case XmlNodeType.Whitespace
 End Select
 End While

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End While

End Sub

In this example, the Format procedure will format and display data from element and text nodes in your application's
text box. To get the name of an element, use the XmlTextReader object's Name property, and to get the value of an
element or text node, use the XmlTextReader object's Value property. Here's what this looks like in code:

Sub Format(ByRef reader As XmlTextReader, ByVal nodeType As String)
 If (nodeType = "Element") Then
 TextBox1.Text &= "<" & reader.Name & ">" & reader.Value & _
 ControlChars.CrLf
 End If

 If (nodeType = "Text") Then
 TextBox1.Text &= " " & reader.Value & ControlChars.CrLf
 End If
End Sub

Now when the user clicks the Write XML Document button, your application will write the states data to data.xml. When
the user clicks the Read XML Document button, the application will read that data back and display it, as shown in
Figure 21.16.

Figure 21.16. Reading XML in Visual Basic .NET code.

Listing 21.2 shows the code we've written for this example.

Listing 21.2 Writing and Reading XML in .NET (Form1.vb from the ch21_02 Project)

Imports System.Xml
 .
 .
 .
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim xwriter As New XmlTextWriter("data.xml", System.Text.Encoding.UTF8)

 xwriter.WriteStartDocument(True)

 xwriter.WriteStartElement("states", "www.XMLPowerCorp.com")

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")

 xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "California")
 xwriter.WriteElementString("population", "www.XMLPowerCorp.com",
 "33871648")
 xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Sacramento")
 xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Quail")
 xwriter.WriteElementString("flower", "www.XMLPowerCorp.com",
 "Golden Poppy")
 xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "155959")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xwriter.WriteEndElement()

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")

 xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "Massachusetts")
 xwriter.WriteElementString("population", "www.XMLPowerCorp.com", "6349097")
 xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Boston")
 xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Chickadee")
 xwriter.WriteElementString("flower", "www.XMLPowerCorp.com", "Mayflower")
 xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "7840")

 xwriter.WriteEndElement()

 xwriter.WriteStartElement("state", "www.XMLPowerCorp.com")

 xwriter.WriteElementString("name", "www.XMLPowerCorp.com", "New York")
 xwriter.WriteElementString("population", "www.XMLPowerCorp.com",
 "18976457")
 xwriter.WriteElementString("capital", "www.XMLPowerCorp.com", "Albany")
 xwriter.WriteElementString("bird", "www.XMLPowerCorp.com", "Bluebird")
 xwriter.WriteElementString("flower", "www.XMLPowerCorp.com", "Rose")
 xwriter.WriteElementString("area", "www.XMLPowerCorp.com", "47214")

 xwriter.WriteEndElement()

 xwriter.WriteEndElement()
 xwriter.WriteEndDocument()

 xwriter.Close()
End Sub

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 Dim xreader As XmlTextReader = Nothing

 xreader = New XmlTextReader("data.xml")

 While xreader.Read()

 Select Case (xreader.NodeType)

 Case XmlNodeType.XmlDeclaration
 Format(xreader, "XmlDeclaration")

 Case XmlNodeType.ProcessingInstruction
 Format(xreader, "ProcessingInstruction")

 Case XmlNodeType.DocumentType
 Format(xreader, "DocumentType")

 Case XmlNodeType.Comment
 Format(xreader, "Comment")

 Case XmlNodeType.Element
 Format(xreader, "Element")

 Case XmlNodeType.Text
 Format(xreader, "Text")

 Case XmlNodeType.Whitespace
 End Select
 End While

End Sub

Sub Format(ByRef reader As XmlTextReader, ByVal nodeType As String)
 If (nodeType = "Element") Then
 TextBox1.Text &= "<" & reader.Name & ">" & reader.Value &
 ControlChars.CrLf
 End If

 If (nodeType = "Text") Then
 TextBox1.Text &= " " & reader.Value & ControlChars.CrLf
 End If
End Sub
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using XML Controls to Display Formatted XML
The .NET platform supports an XML control that you can use to format and display XML. In this section you'll take a look
at how to use your full states data XML example, which appears in Listing 21.3, in this control.

Listing 21.3 A Sample XML Document (ch21_03.xml)

<?xml version="1.0" encoding ="UTF-8"?>
<states>

 <state>
 <name>California</name>
 <population units="people">33871648</population><!--2000 census-->
 <capital>Sacramento</capital>
 <bird>Quail</bird>
 <flower>Golden Poppy</flower>
 <area units="square miles">155959</area>
 </state>

 <state>
 <name>Massachusetts</name>
 <population units="people">6349097</population><!--2000 census-->
 <capital>Boston</capital>
 <bird>Chickadee</bird>
 <flower>Mayflower</flower>
 <area units="square miles">7840</area>
 </state>

 <state>
 <name>New York</name>
 <population units="people">18976457</population><!--2000 census-->
 <capital>Albany</capital>
 <bird>Bluebird</bird>
 <flower>Rose</flower>
 <area units="square miles">47214</area>
 </state>

</states>

You use the XML control in Web applications, not Windows applications; it lets you display XML documents such as
ch21_03.xml directly in a Web page. The XML control also lets you use XSLT to format the XML as you want it. Rather
than display XML directly, you usually use the XML control with an XSLT style sheet to transform an XML document into
HTML to be displayed in a Web page. Listing 21.4 shows the XSLT style sheet, ch21_04.xsl, that you'll use in this case.
This XSLT style sheet will extract the data in ch21_03.xml and format it into an HTML table that the XML control can
display.

Listing 21.4 A Sample XSLT Style Sheet (ch21_04.xsl)

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/states">
 <HTML>
 <HEAD>
 <TITLE>
 State Data
 </TITLE>
 </HEAD>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </HEAD>
 <BODY>

 <TABLE BORDER="1">
 <TR>
 <TD>Name</TD>
 <TD>Population</TD>
 <TD>Capital</TD>
 <TD>Bird</TD>
 <TD>Flower</TD>
 <TD>Area</TD>
 </TR>
 <xsl:apply-templates/>
 </TABLE>
 </BODY>
 </HTML>
 </xsl:template>

 <xsl:template match="state">
 <TR>
 <TD><xsl:value-of select="name"/></TD>
 <TD><xsl:apply-templates select="population"/></TD>
 <TD><xsl:apply-templates select="capital"/></TD>
 <TD><xsl:apply-templates select="bird"/></TD>
 <TD><xsl:apply-templates select="flower"/></TD>
 <TD><xsl:apply-templates select="area"/></TD>
 </TR>
 </xsl:template>

 <xsl:template match="population">
 <xsl:value-of select="."/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@units"/>
 </xsl:template>

 <xsl:template match="capital">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="bird">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="flower">
 <xsl:value-of select="."/>
 </xsl:template>

 <xsl:template match="area">
 <xsl:value-of select="."/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="@units"/>
 </xsl:template>

</xsl:stylesheet>

Table 21.1 lists the significant properties of XML controls.

Table 21.1. Significant Public Properties of XML Controls
Property Description

Document Returns or sets the System.Xml.XmlDocument object to display in the XML control.

DocumentContent Sets a string that contains the XML document to display in the XML control.

DocumentSource Returns or sets the path to an XML document to display in the XML control.

Transform Returns or sets the System.Xml.Xsl.XslTransform object that formats the XML document.

TransformSource Returns or sets the path to an XSLT style sheet that formats the XML document.

In our example, all we have to do is assign the name of our XML document to a new XML control's DocumentSource
property and assign to the TransformSource property the name of our XSLT style sheet.

To host the XML control, we'll need a .NET Web application. To create Web applications, you need to use Internet
Information Server (IIS) and configure it for use with .NET. The Visual Studio .NET installation documentation describes
how to do this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

how to do this.

You can create a new Web application by selecting File, New, Project to open the New Project dialog box. Then you
select Visual Basic Projects in the Project Types box and ASP.NET Web Application in the Templates box. Finally, give
this new project the name ch21_05. Figure 21.17 shows what this looks like.

Figure 21.17. Creating the ch21_05 example.

When you click the OK button in the New Project dialog box, the new Web application is created on the server you
selected, and you can work with this application locally, as shown in Figure 21.18. In this case, you've added a label
with the text "Using the XML Control" to your main Web form.

Figure 21.18. Editing the ch21_05 example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, drag an XML control from the Web Forms tab in the toolbox to the main Web form. Then select that control and
click the DocumentSource property in the properties window at the lower right in Visual Studio. Click the ellipsis (…)
button that appears in the properties window and browse to your XML document, ch21_03.xml. Next, click the
TransformSource property in the properties window, click the ellipsis button that appears, and browse to your XSLT style
sheet, ch21_04.xsl.

You're ready to run this example, so select Debug, Start. When you run this application, you'll see the data in
ch21_03.xml formatted using the XSLT style sheet in ch21_04.xsl into an HTML table, as shown in Figure 21.19.

Figure 21.19. Using XML controls.

Now you're transforming XML into HTML by using XSLT and an XML control.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Creating XML Web Services
The last .NET XML topic we'll take a look at today are XML Web services. These services let you provide accessible
services on the Web, and they can be used by other applications.

For example, say you were in the field and wanted to retrieve data from a database back at the central office. A Web
service can help you do that, as long as the Web server the service is on has access to that database. All you have to
do is connect to the Web service from a laptop, and you can get all the data you want. Even a Windows application can
call the methods you put into a Web service, allowing you to integrate Web access into Windows applications easily.
Web services are often used to implement multitiered, distributed data applications, and in the following sections we'll
create a Web service much like that. All the data in this example will be passed back and forth by using XML.

Creating a Web Service

Our sample XML Web service is called ch21_06, and we'll use it to gain access to the authors table in the SQL pubs sample
database. In particular, we'll implement two methods in this Web service—GetAuthors, to return a dataset that holds the
authors table, and UpdateAuthors, to update that table in the pubs database when needed. Our XML Web service will be on
the Web, so if a Windows application needs that data, it can just use our Windows service.

You can create a new Web service project by selecting File, New, Project, selecting the ASP.NET Web Service icon,
making the project a Visual Basic .NET project, and giving this project the name ch21_06. When you click the OK button
in the New Project dialog box, the new Web service project shown in Figure 21.20 is created.

Figure 21.20. Creating a new Web service project.

The Visual Basic .NET code file for your new Web service is Service1.asmx.vb, and the name of your new Web service is
Service1. When you open Service1.asmx.vb in Visual Studio .NET, you see that this new service is derived from the
WebService class:

Imports System.Web.Services

<System.Web.Services.WebService(Namespace :=
 "http://tempuri.org/ch21_06/Service1")> _
Public Class Service1
 Inherits System.Web.Services.WebService
 .
 .
 .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .

In this Web service, we'll set up our connection to the authors table in the pubs sample SQL Server database. To do that,
drag an OleDbDataAdapter data adapter to the Web service designer and use the Data Adapter Configuration Wizard to
connect the data adapter to the authors table, as you did earlier today for the employee table. Then select Data, Generate
Dataset to create a new dataset class, DataSet1. This is the dataset class you'll use to access the authors table in the Web
service.

To make the methods in a Web service accessible outside the service, you use the <WebMethod()> attribute when
declaring those methods. For example, here is how you do this for the GetAuthors method:

<WebMethod(Description:="Sends the authors table to the client")> _
Public Function GetAuthors() As DataSet1
 .
 .
 .
End Function

In the GetAuthors method, you want to return a dataset filled with the authors table, so add this code in Service1.asmx.vb:

<WebMethod(Description:="Sends the authors table to the client")> _
Public Function GetAuthors() As DataSet1
 Dim AuthorsDataTable As New DataSet1
 OleDbDataAdapter1.Fill(AuthorsDataTable)
 Return AuthorsDataTable
End Function

As you're going to see, the GetAuthors method will be available to code in other applications after you've added a Web
reference to the Web service in those applications.

You can also implement the UpdateAuthors method, which will update the authors table with changes the user has made.
We can pass this method to a dataset that holds changes to the authors table and update the authors table by using the
data adapter's Update method, like this:

<WebMethod(Description:="Updates the authors table from the client")> _
Public Function UpdateAuthors(ByVal _
 ChangedAuthorsRecords As DataSet1) As DataSet1
 If (ChangedAuthorsRecords Is Nothing) Then
 Return Nothing
 Else
 OleDbDataAdapter1.Update(ChangedAuthorsRecords)
 Return ChangedAuthorsRecords
 End If
End Function

We have now implemented the GetAuthors and UpdateAuthors methods. To make this Web service available to
applications, you should build the service now by selecting Build, Build ch21_06. Listing 21.5 shows the code we've
developed so far for this example.

Listing 21.5 An XML Web Service (from Service1.asmx.vb, ch21_06 Project)

Imports System.Web.Services
 .
 .
 .
 <WebMethod(Description:="Sends the authors table to the client")> _
 Public Function GetAuthors() As DataSet1
 Dim AuthorsDataTable As New DataSet1
 OleDbDataAdapter1.Fill(AuthorsDataTable)
 Return AuthorsDataTable
 End Function

 <WebMethod(Description:="Updates the authors table from the client")> _
Public Function UpdateAuthors(ByVal _
 ChangedAuthorsRecords As DataSet1) As DataSet1
 If (ChangedAuthorsRecords Is Nothing) Then
 Return Nothing
 Else
 OleDbDataAdapter1.Update(ChangedAuthorsRecords)
 Return ChangedAuthorsRecords
 End If
 End Function

End Class

Using a Web Service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we'll put our new Web service to work and call it from a Windows application. To make that work, add a new
Windows project that will connect to the Web service by selecting File, Add Project, New Project.

In the Add New Project dialog box, select the Windows Application icon, name this new Windows application ch21_07,
and click OK. The Windows application opens, as shown in Figure 21.21. Because the Web service has no visual
interface, you need to make this Windows application the startup project by selecting Project, Set as StartUp Project.
Now when you select Debug, Start, the Windows application will appear.

Figure 21.21. The ch21_07 Windows application.

We want to call the GetAuthors and UpdateAuthors methods in our Windows application. To do that, we need to add a Web
reference to our Web service. To do this, right-click the ch21_07 entry in the Solution Explorer at the right in Visual
Studio, and then select the Add Web Reference menu item. This opens the Add Web Reference dialog box, which lists
the available Web service locations.

To add a reference to a Web service, you can enter the URL for the service's .vsdisco (Visual Studio discovery) file in the
Address box in the Add Web Reference dialog box. Or you can browse to the service you want to use by clicking the link
in the Add Web Reference dialog box for a server and then click the name of the service you want to use (in this case,
Service1).

Either technique opens your Web service's entry in the Add Web Reference dialog box, as shown in Figure 21.22. To
add a reference to this Web service to your Windows application, click the Add Reference button.

Figure 21.22. The Add Web Reference dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Web reference is added to our Windows application, and this reference will give us access to the GetAuthors and
UpdateAuthors methods. To hold the data returned from the Web service, add a data grid to the Windows application and
place above the data grid two buttons with the captions Get the Data and Set the Data.

Next, drag a dataset object—not a data adapter this time—from the Data tab of the toolbox to the main form in the
Windows application. When you do, the Add Dataset dialog box opens, as shown in Figure 21.23. In that dialog box,
select the dataset object in your Web service, DataSet1, from the drop-down list (the fully qualified name of DataSet1 is
ch21_07.localhost.DataSet1, as shown in Figure 21.23).

Figure 21.23. Using the Add Dataset dialog box.

To create the new dataset we'll use in our Windows application, DataSet11, click the OK button in the Add Dataset dialog
box. We'll bind DataSet11 to the data grid in the Windows application, so set the data grid's DataSource property to
DataSet11 and its DataMember property to authors in the properties window.

You're almost done. When you click the Get the Data button, the dataset, DataSet11, should fill with data sent to us from
the Web service. To do that, you create an object, service, of your Web service class:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim service As New ch21_07.localhost.Service1
 .
 .
 .
End Sub

The service object will let us use the methods we've built into our Web service. We can fill the Windows application's
DataSet11 object with the dataset returned from the Web service's GetAuthors method by using the Merge method, like
this:

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim service As New ch21_07.localhost.Service1
 DataSet11.Merge(service.GetAuthors())

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DataSet11.Merge(service.GetAuthors())
End Sub

That's all it takes—you create an object corresponding to the Web service, and then you can use that object's methods
and access the Web service in your code.

We can update the authors table as needed. When the user edits the data in the data grid, those changes are also made
to the DataSet11 object. To extract the changed records from that dataset, we can use the dataset's GetChanges method,
like this:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 If DataSet11.HasChanges() Then
 Dim dsUpdates As New _
 Ch21_07.localhost.DataSet1
 dsUpdates.Merge(DataSet11.GetChanges())
 .
 .
 .
 End If
End Sub

Now we can use the Web service's UpdateAuthors method to update the authors table in the pubs database. That method
returns the changed records, and we can merge them into the Windows application's dataset so those records will no
longer be marked as changed:

Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 If DataSet11.HasChanges() Then
 Dim service As New Ch21_07.localhost.Service1
 Dim dsUpdates As New _
 Ch21_07.localhost.DataSet1
 dsUpdates.Merge(DataSet11.GetChanges())
 DataSet11.Merge(service.UpdateAuthors(dsUpdates))
 End If
End Sub

The complete code for this example is shown in Listing 21.6.

Listing 21.6 Using an XML Web Service (from Form1.vb, ch21_07 Project)

Public Class Form1
 Inherits System.Windows.Forms.Form
 .
 .
 .
 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim service As New ch21_07.localhost.Service1
 DataSet11.Merge(service.GetAuthors())
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Dim service As New ch21_07.localhost.Service1
 Dim dsUpdates As New _
 ch21_07.localhost.DataSet1
 dsUpdates.Merge(DataSet11.GetChanges())
 DataSet11.Merge(service.UpdateAuthors(dsUpdates))
 End Sub
End Class

When you run this example and click the Get the Data button, the data from the authors table should appear in the data
grid, as shown in Figure 21.24. If you edit the data in the data grid and click the Set the Data button, your edits will be
sent back to the authors table in the pubs database.

Figure 21.24. Connecting to and using a Web service.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21.24. Connecting to and using a Web service.

As far as the users are concerned, the connection to the Web is maintained entirely behind-the-scenes; all the users
have to do is click buttons. That's how XML Web services work. Behind-the-scenes in this example, all the data was
sent back and forth by using XML. All in all, this is a very impressive showing for .NET programming.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Summary
Today you took a look at working with XML in .NET programming. There's a great deal of support for XML in .NET, and
you got a good introduction to the topic today.

You began by seeing how to create and edit a simple XML document by using Visual Studio .NET. To create a new XML
document, you just select Project, Add Item in Visual Studio .NET to open the Add new Item dialog box, and you select
the XML File template in the Templates box. And you can also create a new XML schema by using the same technique,
except that you select the XML Schema item in the Templates box. You saw that you can create an XML schema simply
by dragging simple and complex types onto the schema designer and that you can connect a completed XML schema to
a new XML document.

Next, you took a look at the XmlTextWriter and XmlTextReader classes. You used these classes to write an XML document
to a file and read that file back in, displaying the data in that document. You saw that the XmlTextReader class works
much like a SAX parser, letting you loop over nodes, determine their types, and examine their data.

You also took a look at XML Web controls in .NET programming. By using these controls, you can format XML data by
using an XSLT style sheet. You do this by assigning an XML control's DocumentSource property the name of an XML
document and assigning the TransformSource property the name of the XSLT style sheet.

You also took a look at working with XML Web services in Visual Basic .NET today. Web services expose methods that
may be called by other applications. The example you saw today let you call two methods, GetAuthors and UpdateAuthors,
to get and set the data in the authors table of the pubs SQL Server sample database.

To expose methods from a Web service and make them accessible outside the service, you use the <WebMethod()>
attribute. To access a Web method in a Web service from an application, you first have to add a Web reference to that
service. You can do that by right-clicking a project in the Visual Studio .NET Solution Explorer, selecting the Add Web
Reference menu item, and browsing to the Web service you want in the Add Web Reference dialog box. After you've
added the Web reference, you're free to create a new object of that service's class, as you've done today, and call the
Web methods of that object. In your code today, you saw how to call the GetAuthors and UpdateAuthors methods this
way.

You have now completed our survey of XML. You've come far in this book, from the very basic all the way up to the
advanced. All that remains now is for you to put all this XML power to work for yourself—happy programming!

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q&A

Q1: Do I have to create an XML schema before I can create and enter data into an XML document in
Visual Studio .NET?

A1: Not at all. Even if you want to use an XML schema, you can enter your XML document first and then select
XML, Create Schema to create an XML schema from it. (On the other hand, this technique is problematic
because Visual Studio .NET can only guess at the data types and data ranges you're using.)

Q2: I want to use the XMLTextWriter class's WriteElementString method, but my data is not in string
format. Is there any way to convert it properly?

A2: One handy way is to use the XmlConvert.ToString method, like this:

xwriter.WriteElementString("data", XmlConvert.ToString(data))

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Workshop
This workshop tests whether you understand the concepts discussed today. It's a good idea to make sure you can
answer these questions before pressing on to tomorrow's work. Answers to the quiz can be found in Appendix A, "Quiz
Answers."

Quiz

1: How can you create a new XML document in Visual Studio .NET?

2: What XmlTextWriter method can you use to create the opening tag of an XML element?

3: How do you determine the type of the current node being read by an XmlTextReader object?

4: What attribute do you use when you declare a Web method in a Web service to make that method
accessible outside the service?

5: What do you need to do in a Windows application before you work with the methods of a Web service?

Exercises

1: Following the steps outlined today, create a new XML document and XML schema in Visual Studio .NET and
store in it the names of five favorite books, their authors, and their publishers.

2: Here's an advanced one: Create a new Web service, and have the Web service implement a Web method
named GetTime that will return the current time on the Web server as a string. (In Visual Basic .NET, you
can use the TimeString property to return the current time in a string like this: "The time is " & TimeString.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part V. In Review
In Part V we took a look at working with databases and XML. This is a natural connection because XML is all about data.
We took two main approaches here: treating XML documents as standard databases and using XQuery for the native
XML way of handling XML documents as databases.

We started by examining the way you can bind data to Web pages in Internet Explorer. We talked about the various
DSOs that you can use to connect to data sources and make XML data accessible to HTML controls and scripting code.

There are two XML DSOs in Internet Explorer: XML data islands and the XML DSO applet. You create an XML data island
by using the <XML> element and the SRC attribute to connect it to an XML document. And you can connect a XML DSO
to an XML document by using a <PARAM> element in the <APPLET> element.

When you want to bind data from a DSO to HTML controls, you use element attributes such as DATASRC and DATAFLD.
You assign the DATASRC attribute the name of the DSO, and you assign the DATAFLD attribute the name of the field in
the current record you want to work with. You can also use methods such as moveNext and moveLast to change the
current record, and any such change is reflected in all the controls that are bound to that DSO.

Let's look at an example that shows some of the work we did in Day 19. In this case, we're going to search a bound
XML document for some data, and we'll bind the results to HTML controls, combining our searching and navigating
examples. Here's the XML document we'll use, projects.xml, which holds data about various programming projects you
are doing for a set of clients:

<?xml version = "1.0" standalone="yes"?>
<document>
 <client>
 <lastname>Kirk</lastname>
 <firstname>James</firstname>
 <contractDate>September 5, 2092</contractDate>
 <contracts>
 <contract>
 <app>Comm</app>
 <id>111</id>
 <fee>$111.00</fee>
 </contract>
 <contract>
 <app>Accounting</app>
 <id>222</id>
 <fee>$989.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <lastname>McCoy</lastname>
 <firstname>Leonard</firstname>
 <contractDate>September 7, 2092</contractDate>
 <contracts>
 <contract>
 <app>Stocker</app>
 <id>333</id>
 <fee>$2995.00</fee>
 </contract>
 <contract>
 <app>Dialer</app>
 <id>444</id>
 <fee>$200.00</fee>
 </contract>
 </contracts>
 </client>
 <client>
 <lastname>Spock</lastname>
 <firstname>Mr.</firstname>
 <contractDate>September 9, 2092</contractDate>
 <contracts>
 <contract>
 <app>WinHook</app>
 <id>555</id>
 <fee>$129.00</fee>
 </contract>
 <contract>
 <app>MouseApp</app>
 <id>666</id>
 <fee>$25.00</fee>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fee>$25.00</fee>
 </contract>
 </contracts>
 </client>
</document>

This example lets the user enter the last name of the client he or she wants to search for and click a button; the code
will then jump to that record, which means the fields of that client's record will appear in the Web page.

To find the record the user is searching for, we begin by creating a new function, search. This function will read the last
name the user has entered and find the matching record (in production code, you would add code here to handle
problems if there was no match to the last name the user entered):

function search()
{
 var findMe = form1.text1.value.toLowerCase()

 while (!clients.recordset.EOF) {
 var clientLastName = new String(clients.recordset("lastname"))
 clientLastName = clientLastName.toLowerCase()
 if (clientLastName.indexOf(findMe) >= 0) {
 return
 }
 else {
 clients.recordset.moveNext()
 }
 }
}

After the match is made, the current record will be the record the user was searching for. To display that record's data,
all we have to do is bind our DSO to various HTML controls. In this example, we'll just use two elements to
display the client's first and last names, like this:

<APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="clients"
 WIDTH="0" HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="projects.xml">
</APPLET>
 .
 .
 .
<FORM ID="form1">
 Last name to find: <INPUT TYPE="TEXT" NAME="text1">

 <INPUT TYPE="BUTTON" VALUE="Find client"
 ONCLICK="search()">

 First Name: <INPUT TYPE="TEXT" DATASRC="#clients"
 DATAFLD="firstname" SIZE="10">

 Last Name: <SPAN DATASRC="#clients"
 DATAFLD="lastname">

</FORM>

Now when the user enters the last name of a client and clicks the Find Client button, the code moves to the client's
record and display the client's first and last names automatically. Here's what the whole Web page looks like:

<HTML>
 <HEAD>
 <TITLE>
 Finding a client
 </TITLE>

 <SCRIPT LANGUAGE="JavaScript">
 function search()
 {
 var findMe = form1.text1.value.toLowerCase()

 while (!clients.recordset.EOF) {
 var clientLastName = new
 String(clients.recordset("lastname"))
 clientLastName = clientLastName.toLowerCase()
 if (clientLastName.indexOf(findMe) >= 0) {
 return
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 else {
 clients.recordset.moveNext()
 }
 }
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <H1>
 Finding a client
 </H1>

 <APPLET CODE="com.ms.xml.dso.XMLDSO.class"
 ID="clients"
 WIDTH="0" HEIGHT="0"
 MAYSCRIPT="true">
 <PARAM NAME="URL" VALUE="projects.xml">
 </APPLET>

 <FORM ID="form1">
 Last name to find: <INPUT TYPE="TEXT" NAME="text1">

 <INPUT TYPE="BUTTON" VALUE="Find client"
 ONCLICK="search()">

 First Name: <INPUT TYPE="TEXT" DATASRC="#clients"
 DATAFLD="firstname" SIZE="10">

 Last Name: <SPAN DATASRC="#clients"
 DATAFLD="lastname">

 </FORM>
 </BODY>
</HTML>

The results are shown in the following figure:

In Part V we also took a look at handling XML documents as true databases. To start, we were able to use an ASP page
as an intermediary, letting us connect to a table in a database and getting back an XML document in a Web browser.

There's also a large amount of XML-enabled database support in .NET programming, and we took a look at it in
overview in Day 20. For example, you were able to use the WriteXml method to write out a database table, the
WriteXmlSchema method to write out an XML schema for the table, and the ReadXml method to read the table back in.

You were also able to use the .NET XmlDataDocument class to target the data in a database by using XPath. That can be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You were also able to use the .NET XmlDataDocument class to target the data in a database by using XPath. That can be
useful, although XPath as currently supported often can't get the job done when you need database access. That's why
XQuery was introduced—to provide a native XML way of working with XML documents and handling them as if they
were databases. XQuery is still in the working draft stage, but we were able to use it along with the Galax XQuery
engine in Part V.

You can use XQuery to create variables, functions, and templates, and you can then use XQuery to query XML
documents to extract or manipulate the data you want. The idea is that XQuery will ultimately provide a true XML way
of querying XML documents, much like SQL does for databases.

In addition, there's a great deal of XML support in .NET programming languages, and we got a look at it in overview in
Part V. For example, you can create XML documents by using XML designers that are built into Visual Studio .NET, and
you can create XML schemas either automatically or by dragging items into other items in an XML schema designer.
You did both in Part V.

The .NET XmlTextWriter and XmlTextReader classes let you write XML documents and read them in. And XML Web controls
let you display formatted XML in Web applications. To use an XML control, you use an XSLT style sheet, assigning its
location to the control's TransformSource property, and you assign the XML document's location to the XML control's
DocumentSource property.

The final .NET programming topic in Part V involved how to create and work with XML Web services. XML Web services
let applications access code on the Web, and they use XML to communicate behind the scenes. Web services are
designed to expose methods that you can call from other applications, and they typically involve database access on a
Web server. You saw how that works in Part V, where you created an XML Web service that returned an entire database
table by using XML on the Web.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Quiz Answers
Quiz Answers for Day 1

Quiz Answers for Day 2

Quiz Answers for Day 3

Quiz Answers for Day 4

Quiz Answers for Day 5

Quiz Answers for Day 6

Quiz Answers for Day 7

Quiz Answers for Day 8

Quiz Answers for Day 9

Quiz Answers for Day 10

Quiz Answers for Day 11

Quiz Answers for Day 12

Quiz Answers for Day 13

Quiz Answers for Day 14

Quiz Answers for Day 15

Quiz Answers for Day 16

Quiz Answers for Day 17

Quiz Answers for Day 18

Quiz Answers for Day 19

Quiz Answers for Day 20

Quiz Answers for Day 21

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 1

A1: XML gives you a way of packaging your data, and it's taken off largely because XML documents are text,
which has meant that you can send them using the existing Internet framework, as built for HTML.

A2: Notes, working drafts, candidate recommendations, and recommendations.

A3: An XML element is the basic data-holding construct in an XML document. It starts with an opening tag, can
contain text or other elements, and ends with a closing tag, like this: <greeting>hello</greeting>. An
attribute gives you more information, and is always assigned a quoted value in XML. Here's how you might
add an attribute named language to this element: <greeting language = "en">hello</greeting>.

A4: The ones we discussed today are that an XML document must contain one or more elements. One
element, the root element, must contain all the other elements. Finally, each element must nest inside any
enclosing elements correctly.

A5: Document Type Definitions (DTDs—see Days 4 and 5) and XML schemas (see 6 and 7).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 2

A1: All XML processors are supposed to implement at least the UTF-8 (compressed Unicode) and UTF-16
(compressed UCS) character encodings. In practice, you can only count on UTF-8, however.

A2: You can escape < and > like this: <message>This is a <message> element.</message>.

A3: A prolog can contain XML declarations, XML comments (which describe the XML document), processing
instructions, whitespace, and doctype declaration(s).

A4: The attributes you can use in an XML document are: version (required; the XML version), encoding
(optional; the character encoding), and standalone (optional; "yes" if the document does not refer to any
external documents or entities, "no" otherwise).

A5: There are no processing instructions built into XML already, although some, like <?xml-stylesheet?>, have
been generally agreed upon by browser manufacturers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 3

A1: One. You need at least a root element for an XML document to be well-formed.

A2: In a well-formed XML document, there must be one root element that contains all the others.

A3: The attribute values are not enclosed in quotation marks.

A4: You could use this attribute xmlns:service="http://www.superduperbigco.com/customer_service" in an element.
After using this attribute, you can use the service prefix in the current element and any child elements.

A5: Use this attribute in the enclosing element: xmlns="http://www.superduperbigco.com/customer_returns".

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 4

A1: The <hiredate> and <name> elements are not declared in the DTD.

A2: The <hiredate> and <name> elements appear in the wrong order.

A3: This DTD uses a choice for the <employee> element, and the choice says that the document can contain
either <hiredate> elements or <name> elements—but not both.

A4: The DTD says there can be at most one <employee> element, but there are two.

A5: This XML document references an external DTD, so the XML declaration's standalone attribute should be set
to "no". There may also be errors in the external DTD, of course.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 5

A1: You can use the #IMPLIED keyword.

A2: You can use the #FIXED keyword.

A3: Here's one solution:

<!ATTLIST friend
 name CDATA #REQUIRED
 address CDATA #IMPLIED
 phone CDATA #IMPLIED
>

A4: Here's one way of doing it:

<!ATTLIST
relative married (yes | no) "no"
>

A5: This will work:

<!NOTATION jpg SYSTEM "image/jpeg">
<!ENTITY mountains SYSTEM "mountains.jpg" NDATA jpg>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 6

A1: The namespace that is used by XML schemas is www.w3.org/2001/XMLSchema.

A2: You can declare elements by using <xsd:element> and attributes by using <xsd:attribute>.

A3: You can declare the element like this:

<xsd:element name="name" type="xsd:string"/>

A4: You can do this in an XML schema:

<xsd:attribute name="language" type="xsd:string" use="optional"/>.

A5: Here's one solution:

<xsd:element name="friend" type="friendType"/>

<xsd:complexType name="friendType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="address" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="date" type="xsd:date"/>
</xsd:complexType>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 7

A1: You use the <xsd:restriction> element and the base attribute.

A2: To cap values, you can use the maxIncusive and maxExclusive facets. To constrain values to be one of a set,
you can use the enumeration facet.

A3: Here's one solution:

<xsd:simpleType name="age">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="125"/>
 </xsd:restriction>
</xsd:simpleType>

A4: Here's one solution:

<xsd:choice>
 <xsd:element name="friend" type="xsd:string"/>
 <xsd:element name="foe" type="xsd:string"/>
</xsd:choice>

A5: Here's one solution:

<xsd:element name="movie">
 <xsd:complexType>
 <xsd:attribute name="title" type="xsd:string" />
 <xsd:attribute name="length" type="xsd:int" />
 </xsd:complexType>
</xsd:element>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 8

A1: You can use this CSS property/value pair: font-size: 36pt.

A2: You can use this CSS property/value pair: display: block.

A3: You can use this CSS property/value pair: text-align: center.

A4: You can use this CSS property/value pair: text-decoration: underline.

A5: You can use this CSS property/value pair: margin-top: 10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 9

A1: * by itself applied to ch09_01.xml just picks out the <states> element. * selects all element children (not
grandchildren or any descendents) of the context node, and when you open ch09_01.xml, the root node is
the context node.

A2: The XPath expression //* selects all elements in ch09_01.xml.

A3: Here's one solution:

<xsl:template match="state">
 <xsl:value-of select="name"/>
</xsl:template>

A4: Here's one solution:

<xsl:template match="*[@units = "people"]">
 <xsl:value-of select="."/>
</xsl:template>

A5: Here's one solution:

<xsl:template match="population | area">
 .
 .
 .
</xsl:template>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 10

A1: The first XSL-FO element you must use in an XSL-FO document is the <fo:root> element.

A2: The <fo:root> element can contain both a master set layout and page sequences.

A3: The <fo:region-before> element.

A4: The line-height attribute.

A5: The master-reference attribute.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 11

A1: The three versions of XHTML 1.0 are XHTML 1.0 Transitional, XHTML 1.0 Frameset, and XHTML 1.0 Strict.

A2: The namespace is ">http://www.w3.org/1999/xhtml".

A3: This is a trick question. You can't use standalone attributes in XHTML. Every attribute must be assigned a
quoted value.

A4: In XHTML, every XHTML document must have a <head> element, and every <head> element must contain
at least a <title> element.

A5: Every <p> element needs a closing tag, </p>.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 12

A1: You need to use either the href or id attribute in the <a> element.

A2: The src and alt attributes are required.

A3: The <frameset> and <frame> elements are supported in XHTML 1.0 Frameset only.

A4: The W3C suggests that you use style sheets instead of the <frame> and <frameset> elements. To replace
frames, you can often use a <div> element and position it where you want it.

A5: The <table> element is supported in both XHTML 1.0 Strict and XHTML 1.1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 13

A1: The height and width attributes are required.

A2: The r attribute is required.

A3: Here's one example: <polyline points="0,0 100,100 200,0/>

A4: You can use this command: "M200,300".

A5: You can use the element's region attribute to specify a region that is defined in the <layout>
element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 14

A1: The possible values you can assign to the xlink:type attribute, which sets the type of the XLink, are "simple",
"extended", "locator", "arc", "resource", "title", and "none".

A2: The xlink:type attribute is required in every XLink.

A3: You can set the xlink:show attribute to "replace".

A4: You use the <xforms:model> element to specify how an XForm's data should be structured.

A5: You can use XML like this:

<xforms:instance>
 <data xmlns="">
 <input>Hello!</input>
 </data>
</xforms:instance>

You also need to set the ref attribute of the input control to "/data/input".

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 15

A1: There are two ways that you can create a document object from an XML file by using JavaScript in
Internet Explorer. You can do this:

var xmlDocumentObject
xmlDocumentObject = new ActiveXObject("Microsoft.XMLDOM")
xmlDocumentObject.load("ch15_01.xml")

or you can use an XML island, like this:

<XML ID="committeeXML" SRC="ch15_01.xml"></XML>
 .
 .
 .
var xmlDocumentObject
xmlDocumentObject= document.all("committeeXML").XMLDocument

A2: You can use the nextChild method to move to the next child node.

A3: You can use the nodeValue property to get a node's value.

A4: You can call xmlDocumentObject.getElementsByTagName("senator") to get a list of all the <senator> elements in
a document.

A5: To get a named node map of an element's attributes, you simply use the element's attributes property.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 16

A1: In Java 1.4 or later, you can use a Java DocumentBuilderFactory object to create a DocumentBuilder object.
Then you can use the DocumentBuilder object's parse method to parse an XML document and create a Java
Document object.

A2: You can use the node's getNodeType method and check the results it returns against fields such as
Node.ELEMENT_NODE, Node.TEXT_NODE, and so on.

A3: You can use the getNodeName method to get a node's name and its getNodeValue method to get its value.

A4: You can call a Document object's getElementsByTagName method like this:

document.getElementsByTagName("senator")

A5: You can create the <child> element by using a Document object's createElement method, create the text in it
by using the createTextNode method, append the text node to the <child> element by using the element's
appendChild method, and append the <child> element to the <element> element by using the <child>
element's appendChild method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 17

A1: In Java 1.4 or later, you can derive a class from a SAX handler class, such as DefaultHandler, and then use
a SAXParserFactory object to create a new SAX factory. You create a SAX parser by using the
SAXParserFactory object, call its parse method, and implement the SAX methods you want (for example, the
startElement method).

A2: You can implement the startElement and endElement methods to catch the starting and closing tags of
elements.

A3: You can implement the characters method and extract the text node's text from the character array passed
to you, using the starting position in the array. The length of the text is also passed to you.

A4: You can use the Attributes object passed to the startElement method to handle an element's attributes.

A5: You use methods such as the warning method to handle warnings, the error method to handle errors, and
the fatalError method to handle fatal errors.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 18

A1: The three parts of a SOAP message are the envelope, header, and body.

A2: The <Header>, <Body>, and <Fault> elements are the three child elements you can use in a SOAP
envelope.

A3: You set the element's mustUnderstand attribute to "1".

A4: You use the <Description> element.

A5: A good choice would be the <Contributor> element.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 19

A1: You can create an XML island that makes the XML data in a document named data.xml available as a DSO
named data by using this HTML element:

<XML SRC="data.xml" ID="data"></XML>

A2: DATASRC and DATAFLD are the two HTML attributes you normally use to bind an HTML control to a DSO.

A3: One way is to use the DATASRC attribute of the <TABLE> element to connect to a DSO and the DATAFLD
attribute of a element in each <TD> element.

A4: You can use the dso.recordset.BOF and dso.recordset.EOF properties, where dso is the name of the DSO.

A5: You can access it as dso.recordset("address"), where dso is the name of the DSO.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 20

A1: You use the Fill method.

A2: You can use the WriteXml and ReadXml methods.

A3: Here's one solution:

let $name := local-name($elem)

A4: You can use the expression $elem/@*.

A5: Here's one way to do it:

define global $data {treat as document data
(glx:document-validate("data.xml", "document"))}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Quiz Answers for Day 21

A1: You can select Project, Add Item in Visual Studio .NET to open the Add new Item dialog box. Then you
select the XML File template in the Templates box, give the new document a name, and click the Open
button.

A2: You use the WriteStartElement method.

A3: You can check the XMLTextReader object's NodeType property, which you can compare to fields such as
XmlNodeType.XmlDeclaration and XmlNodeType.ProcessingInstruction.

A4: To expose methods from a Web service and make them accessible outside the service, you use the
<WebMethod()> attribute.

A5: You need to add to the Windows application a Web reference to the Web service, and you need to create
an object corresponding to that service. Then you can call the Web service's members by using that
object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

#PCDATA (parsed character data)
 DTDs 2nd
% (percent sign) 2nd
& (ampersand)
& character (well-formed documents) 2nd 3rd
< character (well-formed documents) 2nd 3rd 4th
<!ATTLIST> element 2nd
<!DOCTYPE> element 2nd 3rd 4th 5th 6th 7th
<!ELEMENT> element
<!Ñ> element 2nd
<?xml-stylesheet?> processing instruction 2nd 3rd
<a> element 2nd 3rd 4th 5th 6th 7th
<animate> element 2nd
 element 2nd 3rd
<Body> element 2nd
<body> element (document body) 2nd 3rd 4th 5th 6th

 element 2nd
<center> element 2nd 3rd 4th
<circle> element
<div> element 2nd 3rd 4th
<document> element
 * (asterisk)
<ellipse> element
<EMBED> element
<Envelope> element
<Fault> element 2nd 3rd 4th
<fo:block> element 2nd 3rd 4th 5th 6th 7th 8th
<fo:external-graphic> element 2nd 3rd 4th
<fo:flow> element 2nd
<fo:inline> element 2nd 3rd 4th 5th 6th 7th 8th
<fo:layout-master-set> element
<fo:list-block> element
<fo:list-item> element
<fo:list-item-body> element
<fo:list-item-label> element
<fo:page-number> element 2nd 3rd 4th
<fo:page-sequence> element 2nd 3rd
<fo:region-after> element 2nd
<fo:region-body> element 2nd
<fo:root> element 2nd
<fo:simple-page-master> element 2nd 3rd 4th
<fo:static-content> element
<fo:table> element
<fo:table-body> element
<fo:table-cell> element
<fo:table-column> element
<fo:table-header> element
<fo:table-rows> element
 element 2nd 3rd 4th
<frame> element 2nd 3rd 4th 5th 6th 7th
<frameset> element 2nd 3rd
<friends> element 2nd
<g> element
<h1> to <h6> elements 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<head> element (document head) 2nd 3rd
<Header> element 2nd
<html> element (document element) 2nd
<i> element 2nd
 element 2nd 3rd 4th 5th
<item> element
<label> element 2nd
<line> element
<linearGradient> element
<link> element 2nd 3rd 4th 5th 6th
<message> element
<name> element
 syntax 2nd
<p> element 2nd
<par> element
<paragraph> element
 syntax 2nd
<path> element 2nd
<polygon> element
<polyline> element
<rdf:Description> element 2nd 3rd
<rect> element
<reset> element 2nd
<select> element
<select1> element
<selectboolean> element
<seq> element
 element 2nd 3rd 4th
<style> element 2nd 3rd 4th 5th 6th
<submit> element 2nd
<table> element 2nd 3rd 4th
<TABLE> element 2nd
<td> element 2nd 3rd 4th 5th
<text> element
<textpath> element 2nd 3rd
<th> element 2nd 3rd 4th 5th
<title> element (document title) 2nd
<tr> element 2nd 3rd
<trigger> element
<u> element 2nd
<XML> element 2nd
<xsd:annotation> element
<xsd:appInfo> element 2nd
<xsd:documentation> element 2nd
<xsd:element>
<xsl:apply-templates> element 2nd 3rd 4th
<xsl:choose> element 2nd 3rd 4th 5th 6th
<xsl:copy> element 2nd
<xsl:for-each> element 2nd 3rd 4th 5th
<xsl:if> element 2nd 3rd
<xsl:output> element
<xsl:value-of> element 2nd 3rd 4th 5th
(colons)
(commas)
(quotation marks)
 attributes 2nd
(semicolon)
(semicolons)
* (asterisk) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

* (wildcard character)
+ (plus sign) 2nd 3rd 4th 5th 6th 7th 8th
- (minus sign)
.NET
 SDK (Software Development Kit)
.NET applications
 Visual Basic
 databases, storing as XML 2nd
? (question mark) 2nd 3rd 4th 5th 6th 7th 8th
@* (wildcard character)
[] operator
{} curly braces

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

abbreviated syntax
 RDF 2nd 3rd
abbreviations
 XPath 2nd 3rd 4th 5th 6th 7th 8th
absolute location paths
 XPath
Abstract Windowing Toolkit (AWT) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
accessing
 data fields
 DSOs 2nd 3rd 4th 5th 6th
 document data
 Internet Explorer 2nd
 Jumbo
 Netscape Navigator
AchieveForms
Active Server Pages (ASP)
 databases 2nd 3rd 4th 5th 6th
 starting
ActiveX Data Object (ADO.NET)
actor attribute
Add Dataset dialog box
Add Existing Item command (Project menu)
Add Existing Item dialog box
Add Item command (Project menu)
Add New Item dialog box
Add Table dialog box
Add Web Reference dialog box
ADO.NET (ActiveX Data Object)
Adobe FrameMaker
Adobe Web site
alignment styles
 CSS 2nd
alink attribute
all groups
 declaring 2nd
all schema element
Amaya Web browser
 XLinks 2nd 3rd
American Standard Code for Information Interchange. [See ASCII]
ampersand (&)
ancestor axis
ancestor-or-self axis
animations (SVG)
 creating 2nd 3rd
annotation schema element
annotations
 schemas 2nd 3rd 4th 5th
anonymous types
 defintions
 schemas 2nd 3rd 4th 5th
any schema element
anyAttribute schema element
Apache XML Project's FOP
 downloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appinfo schema element
applets
 DSO (data source object)
 data binding, HTML elements to XML data 2nd 3rd 4th 5th 6th 7th
 data binding, HTML tables to XML data 2nd 3rd 4th
applications
 Visual Basic .NET
 databases;storing as XML 2nd
 Web
 creating
applications. [See also XML applications]
arcs (extended XLinks)
 creating 2nd 3rd
ASCII (American Standard Code for Information Interchange) 2nd
ASP (Active Server Pages)
 databases 2nd 3rd 4th 5th 6th
 starting
assigning
 values to attributes 2nd 3rd
asterisk (*) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
attachments
 adding (SOAP messages) 2nd
Attr interface methods 2nd
attribures
 transform
attribute
 <html> element 2nd
 <table> element 2nd 3rd
 attributeFormDefault
 mustUnderstand
 width
attribute axis
attribute schema element
attributeFormDefault attribute
attributeGroup schema element
attributes
 <a> element 2nd 3rd

 element 2nd
 <center> element 2nd
 <circle> attribute 2nd
 <div> element 2nd
 <ellipse> element 2nd
 element 2nd
 <frame> element 2nd 3rd
 <frameset> element 2nd
 <h1> to <h6> elements 2nd
 <head> element 2nd
 <i> element 2nd
 element 2nd 3rd
 <link> attribute 2nd 3rd
 <p> element 2nd
 <polyline> element
 <rdf:Description> element 2nd
 element 2nd
 <style> element 2nd
 <td> element 2nd 3rd 4th
 <th> element 2nd 3rd
 <title> element 2nd
 <tr** element 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <u> element 2nd
 actor
 alink
 anonymous type definitions
 schemas 2nd
 assigning values 2nd 3rd
 background
 bgcolor
 class
 declaring
 colspan
 d
 default
 defined
 dir
 doctype-public
 doctype-system
 documents, reading (JavaScript) 2nd 3rd 4th 5th 6th
 Dublin Core language 2nd 3rd
 element attributes
 viewing in Internet Explorer
 elementFormDefault
 elements
 SAX 2nd 3rd 4th 5th 6th 7th
 empty elements
 schemas 2nd
 encoding 2nd
 encoding attribute (declarations)
 encodingStyle
 event 2nd
 fill
 fixed
 form
 freeze
 handling (node matching) 2nd 3rd 4th 5th 6th
 handling (reading documents) 2nd 3rd
 height
 id 2nd
 ID
 handling (node matching)
 indent
 lang
 link
 looping 2nd
 looping (SAX) 2nd
 match (node matching)
 attribute handling 2nd 3rd 4th 5th 6th
 element handling 2nd
 multiple matching 2nd 3rd
 processing instructions handling 2nd
 root nodes
 maxOccurs
 minOccurs
 naming
 omit-xml-declaration
 rel 2nd 3rd
 resources
 RDF
 schemas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating 2nd
 declaring 2nd 3rd 4th 5th 6th
 select
 XPath
 XPath, abbreviations 2nd 3rd 4th 5th 6th 7th 8th
 XPath, axes 2nd 3rd
 XPath, default rules 2nd 3rd 4th 5th 6th 7th 8th
 XPath, node tests
 XPath, predicates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 XPath, tools
 SOAP (Simple Object Access Protocol) 2nd 3rd
 standalone 2nd
 XHTML
 standalone attribute (declarations)
 style 2nd 3rd 4th 5th
 SVG 2nd 3rd
 targetNamespace 2nd
 text
 title
 use 2nd
 value
 version 2nd
 version attribute (declarations)
 vlink
 well-formed documents 2nd 3rd
 & character 2nd 3rd
 < character 2nd 3rd 4th
 writing 2nd 3rd 4th
 XML declarations
 xml:lang 2nd 3rd 4th
 xml:space
 xmlns
 xmlns:prefix 2nd 3rd
attributes (DTD)
 nonwhitespace
 whitespace
attributes (DTDs)
 declaring 2nd 3rd 4th 5th 6th 7th 8th
 default values 2nd 3rd
 default values, #FIXED 2nd
 default values, #IMPLIED 2nd 3rd
 default values, #REQUIRED 2nd
 default values, immediate 2nd
 type values 2nd 3rd
 type values, CDATA 2nd
 type values, ENTITIES 2nd
 type values, ENTITY 2nd 3rd
 type values, enumerated 2nd
 type values, ID 2nd
 type values, IDREF 2nd
 type values, NMTOKEN 2nd
 type values, NMTOKENS 2nd
 type values, NOTATION 2nd 3rd 4th
attributes (schemas)
 grouping 2nd
Attributes object 2nd
 interface methods 2nd
atttributes
 <b** element 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AWT (Abstract Windowing Toolkit) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
axes 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background attribute
background styles
 CSS 2nd 3rd
background-attachment property 2nd
background-color property
background-image property 2nd
background-position property
background-repeat property 2nd
barenames (XPointers) 2nd
bgcolor attribute
binding. [See data binding]
block content
 text
 XHTML 2nd 3rd 4th
block-level element
block-level elements
 creating
body
 SOAP (Simple Object Access Protocol) messages
bold element
 text
 XHTML 2nd 3rd
boolean expressions (XPath) 2nd
Booleans
 select (XForms)
 creating 2nd
border styles
 CSS 2nd 3rd
border-bottom-width property
border-color property
border-left-width property
border-right-width property
border-style property
border-top-width property
border-width property
bottom property
boxes
 text
 multiline, creating
boxes. [See also dialog boxes]
browsers
 creating with Java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 creating with Java/SAX 2nd 3rd 4th 5th 6th 7th 8th 9th
 Internet Explorer
 viewing CDATA sections
 viewing element attributes
 support
 RDF (Resource Description Framework) 2nd
browsers. [See Web browsers]
building
 arcs (extended XLinks) 2nd 3rd
 linkbases (extended XLinks) 2nd
buttons
 Get Names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get the Data
 Query Builder
 Read XML Data
 Store XML Data
buttons (XForms)
 creating 2nd 3rd
 Reset 2nd
 Submit 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C#
 csc command-line compiler 2nd
callback methods
 SAX 2nd
candidate recommendations (W3C file)
canonical XML 2nd
Capitalizer class
carriage returns
Cascading Style Sheets. [See CSS]2nd [See CSS]
CDATA sections 2nd 3rd 4th 5th
 handling (reading documents)
 viewing in Internet Explorer
CDATA type value
 DTD attributes 2nd
ceiling() function
centering text
 XHTML 2nd 3rd 4th
changeHandler method 2nd
character data
character data. [See CDATA type value]
character encodings 2nd 3rd
 ASCII 2nd
 UCS
 Unicode 2nd 3rd
 UTF-16
 UTF-8
character entity references 2nd
character references
 legal
 well-formed documents
character-points (XPointer schemes)
characters
 & (well-formed documents) 2nd 3rd
 < (well-formed documents) 2nd 3rd 4th
 sensitive
 style sheets
 wildcard (*)
 wildcard (@*)
characters method
Chemical Markup Language (CML) 2nd
Chiba
child axis
child elements
 element content models
 DTDs 2nd 3rd 4th
 mixed content models (DTDs)
 mixed-content elements
 schemas
 multiple
 element content models (DTDs) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
child nodes 2nd
 points (XPointer schemes) 2nd
childLoop method 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

choces
 DTDs 2nd 3rd 4th
choice schema element
choices
 DTDs
 symbols
 schemas
 creating 2nd 3rd
 syntax (sample document) 2nd 3rd
circles (SVG)
 creating 2nd
class attribute
 declaring
classes
 Capitalizer
 DataGrid
 methods 2nd
 properties 2nd 3rd 4th 5th
 DataSet
 methods 2nd
 properties 2nd
 DocumentBuilder
 methods 2nd
 SAXParser
 methods 2nd
 SoapFormatter
 style
 creating 2nd 3rd 4th
 XmlTextWriter
client-side XSLT 2nd 3rd
clients
 SOAP 2nd 3rd 4th
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 installing in Tomcat servers 2nd 3rd
closing tags
 elements
 SAX
 elements (reading documents) 2nd 3rd 4th 5th
closing tags (elements)
CML (Chemical Markup Language) 2nd
collapsed ranges
colons ()
color property
color styles
 CSS 2nd 3rd
colors
 predefined
 SVG 2nd 3rd 4th
 SVG
 hexadecimal numbers
colspan attribute
columns
 XHTML documents 2nd
columns (headers)
 spanning
command-line compilers
 csc (C#) 2nd
command-line prompts
 % (percent sign)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commands
 d attribute 2nd
 Data menu
 Generate Dataset
 Generate Dataset in Visual Basic .NET
 File menu
 New, Project 2nd
 Project menu
 Add Existing Item
 Add Item
 Set as StartUp Project
 Tools menu
 Connect to Database
commas ()
comment() node test
comments
 DTDs 2nd
 text formatting
 XHTML 2nd
 writing 2nd 3rd
comments. [See annotations]
comparing documents. [See canonical XML]
compilers
 command-line
 csc (C#) 2nd
complex schema element type 2nd 3rd 4th 5th 6th 7th 8th
complex types
 schemas 2nd
complex types (schemas)
 creating 2nd
complexContent schema element
complexType schema element
concat(string1, string2,É) function
Connect to Database command (Tools menu)
connecting
 schemas to documents (Visual Basic .NET) 2nd
connection object 2nd
connections
 CSS 2nd 3rd
 data sources
constraints
 well-formedness 2nd
 attributes 2nd 3rd
 declarations
 element structure 2nd
 entity references 2nd 3rd 4th
 legal character references
 nesting elements 2nd
 root elements 2nd 3rd
contains(string1, string2) function
content handling
 element content models
 DTDs 2nd
 text
 element content models (DTDs) 2nd
content models
 mixed
 syntax (sample document) 2nd 3rd
 XHTML 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sequence
 sequences
 symbols 2nd 3rd 4th 5th 6th
 subsequences
 creating
content models (documents)
 child elements 2nd 3rd 4th
 multiple 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 content handling 2nd
 creating 2nd
 empty elements 2nd 3rd 4th
 mixed 2nd 3rd 4th
 text content handling 2nd
context code
 XQuery 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
controls
 input 2nd 3rd
 MSHTML (Microsoft HTML) 2nd
 output
 properties 2nd
 range
 secret
 select 2nd 3rd
 select1
 submit
 TDC (tabular data control)
 textarea
 trigger
 upload
 XForms 2nd 3rd
controls (Visual Studio .NET)
 formatted XML, displaying 2nd 3rd 4th 5th 6th 7th 8th
count function (XQuery) 2nd
count(node-set) function
creating
 arcs (extended XLinks) 2nd 3rd
 linkbases (extended XLinks) 2nd
csc command-line compiler (C#) 2nd
CSS 2nd 3rd 4th
 (Cascading Style Sheets) 2nd
 documents
 connecting 2nd 3rd
 inline styles 2nd 3rd
 properties
 style
 resources
 style rule specification 2nd
 alignment styles 2nd
 background styles 2nd 3rd
 block-level elements
 border styles 2nd 3rd
 color styles 2nd 3rd
 image styles 2nd 3rd 4th 5th 6th
 list styles 2nd
 margin styles 2nd
 positioning styles 2nd 3rd 4th 5th
 semicolons ()
 table styles 2nd 3rd
 text styles 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 style sheet selectors
 creating 2nd
 grouping
 ID values 2nd
 style classes 2nd 3rd 4th
 syntax
 validators
CSS styles
 SVG documents 2nd 3rd 4th 5th 6th
CSS1
CSS2
CSS3
curly braces {}
current records
 DSOs (data source objects)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

d attribute
data
 displaying via style sheets
 extracting from documents (JavaScript) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 extracting from files 2nd 3rd 4th
 extracting from files (Java) 2nd 3rd
 extracting from files (JavaScript) 2nd 3rd
 handling (Visual Basic .NET) 2nd
 non-XML associating with XML documents 2nd 3rd 4th 5th 6th 7th
 packaging
 parsed character
 DTDs
 separating from presentations (XForms) 2nd 3rd
 structure
 tables (XHTML) 2nd 3rd 4th 5th
 text
 mixed content models (DTDs)
 validating
 XML
 storing in RDF 2nd
Data Adapter Configuration Wizard 2nd 3rd
data binding
 DSOs (data source objects) 2nd 3rd 4th 5th 6th
 data field access 2nd 3rd 4th 5th 6th
 HTML elements to HTML data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 HTML elements to XML data 2nd 3rd 4th 5th 6th
 HTML elements to XML data (DSO applet) 2nd 3rd 4th 5th 6th 7th
 HTML tables to XML data 2nd 3rd 4th 5th 6th 7th 8th
 HTML tables to XML data (DSO applet) 2nd 3rd 4th
 Internet Explorer
 XML data
 hierarchical 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 XML data searches
 DSOs/JavaScript 2nd 3rd 4th 5th 6th 7th
Data Connections icon
data fields (DSOs)
 accessing 2nd 3rd 4th 5th 6th
data islands 2nd 3rd 4th 5th 6th
 data binding
 HTML elements to XML data 2nd 3rd
 HTML tables to XML data 2nd
Data Link Properties dialog box
Data menu commands
 Generate Dataset
 Generate Dataset in Visual Basic .NET
data objects
data source objects (DSOs)
 data binding 2nd 3rd 4th 5th 6th
 XML data searches 2nd 3rd 4th 5th 6th 7th
 data fields
 accessing 2nd 3rd 4th 5th 6th
 events 2nd
 HTML documents 2nd 3rd
 record sets 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 methods 2nd 3rd
 properties 2nd 3rd
 records 2nd
 navigating 2nd 3rd
data source objects (DSOs) applet
data source objects (DSOs) applet
 data binding
 HTML elements to XML data 2nd 3rd 4th 5th 6th 7th
 HTML tables to XML data 2nd 3rd 4th
data sources
 connections
data types (schemas)
 specifying
databases
 ASP (Active Server Pages) 2nd 3rd 4th 5th 6th
 storing as XML 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th
 Visual Basic .NET applications 2nd
 XPath 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 XmlDataDocument object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 XQuery 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st
22nd 23rd
 implementations 2nd 3rd
 Lucent Galax XQuery processor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
17th 18th
 online working drafts 2nd
 W3C 2nd 3rd
DataGrid class
 methods 2nd
 properties 2nd 3rd 4th 5th
DataSet class
 methods 2nd
 properties 2nd
Dataset Properties dialog box
datasets
 creating
declarations
 attributes
 assigning values 2nd 3rd
 encoding attribute
 naming
 standalone attribute
 version attribute
 writing 2nd 3rd 4th
 global
 schema elements
 local
 schema elements 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 schemas
 well-formed documents
 writing 2nd
 XForms
 XHTML documents
declaring
 all groups 2nd
 class attribute
 DTD attributes 2nd 3rd 4th 5th 6th 7th 8th
 default values 2nd 3rd
 default values, #FIXED 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 default values, #IMPLIED 2nd 3rd
 default values, #REQUIRED 2nd
 default values, immediate 2nd
 type values 2nd 3rd
 type values, CDATA 2nd
 type values, ENTITIES 2nd
 type values, ENTITY 2nd 3rd
 type values, enumerated 2nd
 type values, ID 2nd
 type values, IDREF 2nd
 type values, NMTOKEN 2nd
 type values, NMTOKENS 2nd
 type values, NOTATION 2nd 3rd 4th
 DTD entities 2nd 3rd 4th 5th 6th 7th
 empty elements
 schemas 2nd
 mixed-content elements
 schemas 2nd 3rd 4th
 schema attributes 2nd 3rd 4th 5th 6th
 schema elements 2nd 3rd 4th 5th 6th 7th
 simple scheme types
 unparsed external DTD entities
default attribute
default namespaces
 creating 2nd 3rd 4th 5th
default values
 #FIXED (DTD attributes) 2nd
 #IMPLIED (DTD attributes) 2nd 3rd
 #REQUIRED (DTD attributes) 2nd
 DTD attributes 2nd 3rd
 immediate (DTD attributes) 2nd
 schema elements 2nd
DefaultHandler object 2nd 3rd
 methods 2nd 3rd
definitions
 anonymous types
 schemas 2nd 3rd 4th 5th
descendant axis
descendant-or-self axis
descendants elements
description elements
 RDF (Resource Description Framework) 2nd
descriptions
 RDF
 nesting 2nd 3rd 4th
dialog boxes
 Add Dataset
 Add Existing Item
 Add New Item
 Add Table
 Add Web Reference
 Data Link Properties
 Dataset Properties
 Generate Dataset 2nd
 New Project 2nd
dir attribute
directed label graphs. [See extended XLinks]
directives
 defined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DTD entities 2nd
 IGNORE 2nd
 INCLUDE 2nd
display property
displaying
 formatted XML (Visual Basic .NET controls) 2nd 3rd 4th 5th 6th 7th 8th
doctype-public attribute
doctype-system attribute
document elements
 creating (Visual Basic .NET) 2nd 3rd
document nodes 2nd
Document object
 methods 2nd 3rd
Document Object Model (DOM)
Document Object Model. [See DOM]
document production
 well-formed documents
document type definitions. [See DTDs]
Document Type Defintion (DTD) 2nd
 syntax
documentation schema element
DocumentBuilder object
 methods 2nd
DocumentBuilderFactory object
 methods 2nd 3rd
documents
 accessing data
 Internet Explorer 2nd
 Jumbo
 Netscape Navigator
 attributes
 looping (JavaScript) 2nd
 comparing. [See canonical XML]
 connecting to schemas (Visual Basic .NET) 2nd
 creating (Visual Basic .NET) 2nd 3rd
 CSS
 connecting 2nd 3rd
 data
 adding (Visual Basic .NET) 2nd 3rd
 extracting (JavaScript) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 editing 2nd 3rd 4th 5th 6th 7th 8th
 element content models
 child elements 2nd 3rd 4th
 child elements, multiple 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 content handling 2nd
 creating 2nd
 empty elements 2nd 3rd 4th
 mixed 2nd 3rd 4th
 text content handling 2nd
 elements
 finding by name with Java 2nd 3rd 4th 5th 6th
 finding by names (SAX) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 embedding
 frame (XHTML)
 creating 2nd 3rd
 HTML
 data holding 2nd 3rd
 linking (XHTML) 2nd 3rd 4th 5th 6th
 navigating with Java 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 navigating with SAX 2nd 3rd 4th 5th 6th 7th 8th
 nodes
 looping
 looping (JavaScript) 2nd 3rd 4th 5th 6th 7th
 parsing
 PDF
 creating with XSL-FO 2nd
 viewing
 reading with Java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 attributes 2nd 3rd
 CDATA sections
 child nodes 2nd
 childLoop method 2nd 3rd 4th 5th 6th
 document nodes 2nd
 elements
 elements, closing tags 2nd 3rd 4th 5th
 processing instructions 2nd
 text nodes 2nd
 reading with JavaScript 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 attributes 2nd 3rd 4th 5th 6th
 data islands 2nd 3rd 4th 5th
 elements;finding by name 2nd 3rd 4th 5th 6th
 sample (ch08_01.xml) 2nd
 sample (ch09_01.xml)
 syntax 2nd
 sample (ch09_02.xml)
 syntax
 saving
 file extensions
 WordPad
 schemas
 creating (Visual Basic .NET)
 validators
 SMIL
 creating 2nd 3rd 4th 5th 6th 7th
 starting with SAX
 SVG
 animations, creating 2nd 3rd
 circles, creating 2nd
 creating 2nd 3rd 4th
 CSS styles 2nd 3rd 4th 5th 6th
 ellipses, creating 2nd
 gradients, creating 2nd 3rd 4th
 groups, creating 2nd 3rd
 hyperlinks, creating 2nd 3rd 4th
 JavaScript, creating 2nd 3rd 4th 5th
 lines, creating 2nd
 paths, creating 2nd
 polygons, creating 2nd
 polylines, creating 2nd
 rectangles, creating 2nd
 text paths, creating 2nd 3rd
 text, creating 2nd 3rd
 titles 2nd
 transformations, creating 2nd 3rd
 validating
 viewing (SVG Viewer) 2nd
 text editors
 Adobe FrameMaker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Visual Studio XML designer 2nd
 XML Notepad 2nd
 XML Pro
 XML Spy 2nd
 XML Writer 2nd
 XMLmind
 transformating
 XSLT 2nd
 XSLT, clients 2nd 3rd
 XSLT, Java 2nd
 XSLT, servers 2nd
 trees
 nodes 2nd
 valid. [See also DTDs (document type definitions)]2nd [See also schemas]
 validating with DTDs (JavaScript) 2nd 3rd 4th 5th 6th 7th 8th 9th
 validators 2nd
 well-formed 2nd
 defined
 productions, document
 writing
 attributes 2nd 3rd 4th 5th 6th 7th 8th
 CDATA sections 2nd 3rd 4th 5th
 character encodings 2nd 3rd 4th 5th
 comments 2nd 3rd
 declarations 2nd
 elements, naming tags 2nd
 empty elements 2nd
 entities 2nd 3rd 4th
 line endings
 markups 2nd 3rd
 processing instructions
 prologs 2nd
 root elements
 whitespace 2nd
 XForms 2nd 3rd 4th 5th 6th 7th 8th 9th
 buttons, creating 2nd 3rd
 buttons, Reset 2nd
 buttons, Submit 2nd
 controls 2nd 3rd
 controls, input 2nd
 controls, select 2nd
 declarations
 presentations, separating data from 2nd 3rd
 select Booleans, creating 2nd
 software 2nd 3rd
 writing 2nd
 XHTML
 <!DOCTYPE> element 2nd 3rd 4th
 columns 2nd
 declarations
 requirements 2nd
 standalone attributes
 validating 2nd
 writing 2nd 3rd 4th 5th 6th 7th
 XHTML/MathML 2nd
 XPointers
 barenames 2nd
 element schemes 2nd
 framework specifications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 namespace schemes 2nd
 software support
 XPointer ranges
 XPointer schemes 2nd 3rd 4th 5th 6th
 XPointer schemes, character-points
 XPointer schemes, child nodes 2nd
 XPointer schemes, functions
 XPointer schemes, points
 XPointer schemes, ranges 2nd
 XSL-FP
 creating with XSLT 2nd 3rd 4th
 creating with XSLT style sheets 2nd 3rd 4th 5th
documents. [See files]2nd [See also well-formed documents]3rd [See also XSLT, style sheets]
doGet method
DOM
 (Document Object Model)
 Java
 browsers, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 document elements, finding by name 2nd 3rd 4th 5th 6th
 documents, navigating 2nd 3rd 4th
 documents, writing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 reading documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 reading documents, attribute handling 2nd 3rd
 reading documents, CDATA sections
 reading documents, child nodes 2nd
 reading documents, childLoop method 2nd 3rd 4th 5th 6th
 reading documents, document nodes 2nd
 reading documents, element closing tags 2nd 3rd 4th 5th
 reading documents, element handling
 reading documents, processing instructions 2nd
 reading documents, text nodes 2nd
 JavaScript
 documents, extracting data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 documents, looping attributes 2nd
 documents, looping nodes 2nd 3rd 4th 5th 6th 7th
 documents, validating with DTDs 2nd 3rd 4th 5th 6th 7th 8th 9th
 reading documents 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 reading documents, attributes 2nd 3rd 4th 5th 6th
 reading documents, data islands 2nd 3rd 4th 5th
 reading documents, finding elements by name 2nd 3rd 4th 5th 6th
 levels 2nd
 nodes 2nd
 objects 2nd 3rd 4th 5th
 DOMDocument 2nd 3rd 4th 5th 6th 7th 8th
 DOMDocument, creating 2nd
 DOMDocument, methods 2nd 3rd
 DOMDocument, properties 2nd 3rd 4th 5th
 programming 2nd 3rd
 XMLDOMAttribute 2nd 3rd
 XMLDOMElement 2nd 3rd 4th 5th
 XMLDOMNode 2nd 3rd
 XMLDOMText 2nd 3rd 4th 5th
 overview 2nd 3rd
DOM (Document Object Model)
DOMDocumennt object 2nd 3rd 4th 5th 6th 7th 8th
 creating 2nd
 methods 2nd 3rd
 properties 2nd 3rd 4th 5th
downloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache XML Project's FOP
 Java
 Lucent Galax XQuery processor
 Saxon XSLT processor
drivers
 DTDs
DSOs (data source objects)
 data binding 2nd 3rd 4th 5th 6th
 XML data searches 2nd 3rd 4th 5th 6th 7th
 data fields
 accessing 2nd 3rd 4th 5th 6th
 events 2nd
 HTML documents 2nd 3rd
 record sets 2nd
 methods 2nd 3rd
 properties 2nd 3rd
 records 2nd
 navigating 2nd 3rd
DSOs (data source objects) applet
DSOs (data source objects) applet
 data binding
 HTML elements to XML data 2nd 3rd 4th 5th 6th 7th
 HTML tables to XML data 2nd 3rd 4th
DTD (Document Type Definition) 2nd
 syntax
DTD attributes
 declaring 2nd 3rd 4th 5th 6th 7th 8th
 default values 2nd 3rd
 default values, #FIXED 2nd
 default values, #IMPLIED 2nd 3rd
 default values, #REQUIRED 2nd
 default values, immediate 2nd
 type values 2nd 3rd
 type values, CDATA 2nd
 type values, ENTITIES 2nd
 type values, ENTITY 2nd 3rd
 type values, enumerated 2nd
 type values, ID 2nd
 type values, IDREF 2nd
 type values, NMTOKEN 2nd
 type values, NMTOKENS 2nd
 type values, NOTATION 2nd 3rd 4th
 nonwhitespace
 whitespace
DTD entities 2nd 3rd
 declaring 2nd 3rd 4th 5th 6th 7th
 directives 2nd
 directives, IGNORE 2nd
 directives, INCLUDE 2nd
 external
 unparsed, declaring
 general
 & (ampersand)
 (semicolon)
 internal
 non-XML data
 associating with XML documents 2nd 3rd 4th 5th 6th 7th
 parameter
 % (percent sign)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (semicolon)
 external 2nd 3rd 4th
 internal 2nd 3rd
 references
 general 2nd
 general, external 2nd 3rd 4th 5th 6th
 general, internal 2nd 3rd 4th 5th
 nesting
DTDs
 (document type definitions)
 * (asterisk) 2nd
 ? (question mark)
 choices 2nd 3rd 4th
 symbols
 comments 2nd
 documents
 validating 2nd 3rd
 validating (JavaScript) 2nd 3rd 4th 5th 6th 7th 8th 9th
 drivers
 element content models
 child elements 2nd 3rd 4th
 child elements, multiple 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 content handling 2nd
 creating 2nd
 empty elements 2nd 3rd 4th
 mixed 2nd 3rd 4th
 text content handling 2nd
DTDS
 external
DTDs
 external 2nd 3rd
DTDS
 external
 private, creating 2nd 3rd
 public, creating 2nd
 external subsets
DTDs
 internal 2nd 3rd
 namespaces 2nd 3rd 4th 5th
 namespaces URIs
 non-markup text (parsed character data)
 overview 2nd 3rd 4th 5th 6th
 parameter entities
 parameterized
 SVG (Scalable Vector Graphics)
 syntax (sample document) 2nd 3rd
 Web browsers
Dublin Core language
 RDF
 storing XML data 2nd
Dublin Core language (RDF) 2nd 3rd 4th 5th 6th 7th 8th
 attributes 2nd 3rd
 elements 2nd
 resource types 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

element content models
 mixed
 syntax (sample document) 2nd 3rd
 XHTML 2nd
 sequence
 sequences
 symbols 2nd 3rd 4th 5th 6th
 subsequences
 creating
element content models (documents)
 child elements 2nd 3rd 4th
 multiple 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 content handling 2nd
 creating 2nd
 empty elements 2nd 3rd 4th
 mixed 2nd 3rd 4th
 text content handling 2nd
element schema element
element schemes (XPointer) 2nd
elementFormDefault attribute
elements
 <!ATTLIST> 2nd
 <!DOCTYPE> 2nd 3rd 4th 5th 6th 7th
 <!ELEMENT>
 <a> 2nd 3rd 4th 5th 6th 7th
 <animate> 2nd

 <Body> 2nd
 <body> (document body) 2nd 3rd 4th 5th 6th

 2nd
 <center> 2nd 3rd 4th
 <circle>
 <div> 2nd 3rd 4th
 <document>
 * (asterisk)
 <ellipse>
 <EMBED>
 <Envelope>
 <Fault> 2nd 3rd 4th
 <fo:block> 2nd 3rd 4th 5th 6th 7th 8th
 <fo:external-graphic> 2nd 3rd 4th
 <fo:flow> 2nd
 <fo:inline> 2nd 3rd 4th 5th 6th 7th 8th
 <fo:layout-master-set>
 <fo:list-block>
 <fo:list-item>
 <fo:list-item-body>
 <fo:list-item-label>
 <fo:page-number> 2nd 3rd 4th
 <fo:page-sequence> 2nd 3rd
 <fo:region-after> 2nd
 <fo:region-body> 2nd
 <fo:root> 2nd
 <fo:simple-page-master> 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fo:static-content>
 <fo:table>
 <fo:table-body>
 <fo:table-cell>
 <fo:table-column>
 <fo:table-headers>
 <fo:table-rows>
 <frame> 2nd 3rd 4th 5th 6th 7th
 <frameset> 2nd 3rd
 <friends> 2nd
 <g>
 <h1> to <h6> 2nd 3rd
 <head> (document head) 2nd 3rd
 <Header> 2nd
 <html> (document element) 2nd
 2nd 3rd 4th 5th
 <item>
 <label> 2nd
 <line>
 <linearGradient>
 <link> 2nd 3rd 4th 5th 6th
 <message>
 <name>
 syntax 2nd
 <p> 2nd
 <par>
 <paragraph>
 syntax 2nd
 <path> 2nd
 <polygon>
 <rdf:Description> 2nd 3rd
 <rect>
 <reset> 2nd
 <select>
 <select1>
 <selectboolean>
 <seq>
 2nd 3rd 4th
 <style> 2nd 3rd 4th 5th 6th
 <submit> 2nd
 <table> 2nd 3rd 4th
 <TABLE> 2nd
 <td> 2nd 3rd 4th 5th
 <text>
 <textpath> 2nd 3rd
 <th> 2nd 3rd 4th 5th
 <title> (document title) 2nd
 <tr> 2nd 3rd
 <trigger>
 <XML> 2nd
 <xsd:annotation>
 <xsd:appInfo> 2nd
 <xsd:documentation> 2nd
 <xsd:element>
 <xsl:apply-templates> 2nd 3rd 4th
 <xsl:choose> 2nd 3rd 4th 5th 6th
 <xsl:copy> 2nd
 <xsl:for-each> 2nd 3rd 4th 5th
 <xsl:if> 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:output>
 <xsl:value-of> 2nd 3rd 4th 5th
 attributes
 assigning values 2nd 3rd
 naming
 SAX 2nd 3rd 4th 5th 6th 7th
 viewing in Internet Explorer
 writing 2nd 3rd 4th
 block-level
 creating
 child
 element content models (DTDs) 2nd 3rd 4th
 mixed content models (DTDs)
 mixed-content elements (schemas)
 multiple (element content models) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 closing tags
 SAX
 closing tags (reading documents) 2nd 3rd 4th 5th
 creating 2nd 3rd 4th 5th
 creating (Visual Basic .NET) 2nd 3rd
 descendants
 description
 RDF (Resource Description Framework) 2nd
 document
 Dublin Core language 2nd
 empty
 content models (DTDs) 2nd 3rd 4th
 syntax (DTDs) 2nd 3rd
 empty (schemas)
 declaring 2nd
 empty elements 2nd
 finding by name (SAX documents) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 finding by name with Java (documents) 2nd 3rd 4th 5th 6th
 global declarations
 schemas
 grandchildren
 handling (node matching) 2nd
 handling (reading documents)
 HTML
 binding to HTML data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 binding to XML data 2nd 3rd 4th 5th 6th
 binding to XML data (DSO applet) 2nd 3rd 4th 5th 6th 7th
 HTML (Internet Explorer) 2nd 3rd 4th
 local declarations
 schemas 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 mixed-content
 schemas 2nd 3rd
 naming
 nesting (well-formed documents) 2nd
 parents
 property
 RDF (Resource Description Framework) 2nd
 relationships
 root
 adding (well-formed documents) 2nd
 RDF (Resource Description Framework) 2nd
 well-formed documents 2nd 3rd 4th 5th
 root elements
 schemas 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 declaring 2nd 3rd 4th 5th 6th 7th
 default values 2nd
 number specification 2nd 3rd
 type 2nd
 type;complex 2nd 3rd 4th 5th 6th 7th 8th
 type;simple 2nd 3rd 4th
 siblings
 SOAP (Simple Object Access Protocol) 2nd 3rd 4th 5th
 starting with SAX 2nd
 structure (well-formed documents) 2nd
 SVG 2nd
 tags
 naming 2nd
 opening/closing
elements (documents)
 finding by name 2nd 3rd 4th 5th 6th
elements (schemas)
 grouping 2nd 3rd
elements<polyline>
ellipses (SVG)
 creating 2nd
embedded style sheets
 creating 2nd 3rd 4th 5th 6th
embedding
 documents
 SVG in HTML 2nd
empty elements 2nd 3rd
 content models (DTDs) 2nd 3rd 4th
 syntax (DTDs) 2nd 3rd
empty elements(schemas)
 declaring 2nd
emulating
 hyperlinks
 XLinks 2nd 3rd
encoding attribute 2nd 3rd
encoding attribute (declarations)
encodingStyle attribute
entities 2nd 3rd 4th
 defined 2nd
 parameter
 DTDs
 parsed
 well-formed
 parsing
 unparsed entities
entities (DTDs) 2nd 3rd
 declaring 2nd 3rd 4th 5th 6th 7th
 directives 2nd
 IGNORE 2nd
 INCLUDE 2nd
 external
 unparsed, declaring
 general
 & (ampersand)
 (semicolon)
 internal
 non-XML data
 associating with XML documents 2nd 3rd 4th 5th 6th 7th
 parameter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 % (percent sign)
 external 2nd 3rd 4th
 internal 2nd 3rd
 paremeter
 (semicolon)
 references
 general 2nd
 general, external 2nd 3rd 4th 5th 6th
 general, internal 2nd 3rd 4th 5th
 nesting
ENTITIES type value
 DTD attributes 2nd
entity references 2nd 3rd
 well-formed documents 2nd 3rd 4th
ENTITY type value
 DTD attributes 2nd 3rd
enumerated type value
 DTD attributes 2nd
enumeration schema facet
envelopes
 SOAP (Simple Object Access Protocol) messages
error method
errors
 nesting 2nd
 SAX
 handling 2nd 3rd 4th 5th 6th
event attributes 2nd
events
 DSOs (data source objects) 2nd
Explorer (Internet)
 data binding
 HTML elements 2nd 3rd 4th
expressions
 boolean (XPath) 2nd
 regular
 XPath 2nd
extended XLinks 2nd 3rd
 arcs
 creating 2nd 3rd
 inline links
 linkbases
 creating 2nd
 out-of-line links
 linkbases 2nd
 linksets
extending
 XHTML 2nd 3rd 4th 5th
Extensible Hypertext Markup Language (XHTML) 2nd 3rd
Extensible Hypertext Markup Language. [See XHTML]
Extensible Stylesheet Language Transformation. [See XSLT]
Extensible Stylesheet Language. [See XSL]
extension schema element
extensions. [See file extensions]
external DTD entities
 non-XML data
 associating with XML documents 2nd 3rd 4th 5th 6th 7th
 unparsed
 declaring
external DTDs 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private
 creating 2nd 3rd
 public
 creating 2nd
external general entity references (DTDs)
 creating 2nd 3rd 4th 5th 6th
external parameter DTD entities
 creating 2nd 3rd 4th
external style sheets
 syntax
external subsets
 DTDs

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

facets (schemas)
 simple ordered schema types 2nd
 simple schema types 2nd 3rd 4th 5th 6th 7th 8th 9th
fatalError method
field schema element
fields
 data (DSOs)
 accessing 2nd 3rd 4th 5th 6th
 org.w3c.dom.Node object 2nd
file extensions
 .svg
 saving documents
 WordPad issues
File menu commands
 New, Project 2nd
files
 data
 extracting 2nd 3rd 4th
 extracting (Java) 2nd 3rd
 extracting (JavaScript) 2nd 3rd
 data structure
 viewing in Web browsers 2nd 3rd 4th 5th
 viewing via style sheets 2nd 3rd 4th 5th 6th
files (valid)
 creating 2nd
files (well-formed)
 creating 2nd
files. [See documents]
fill attribute
FIXED [#before] default values
 DTD attributes 2nd
fixed attribute
floor() function
flow
 page sequences
 creating 2nd
following axis
follwing-sibling axis
font styles 2nd
font-family property
font-size property
font-style property
font-weight property
FOP (Apache XML Project)
 downloading
foreground images
 positioning 2nd 3rd 4th
 styles 2nd 3rd 4th
form attribute
formal public identifier (FPI) 2nd
format-number(number1, string2, string3) function
formatted XML
 displaying (Visual Basic .NET controls) 2nd 3rd 4th 5th 6th 7th 8th
formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inline (XSL-FO)
 <fo:external-graphic> element 2nd 3rd 4th
 <fo:inline> element 2nd 3rd 4th 5th 6th 7th 8th
 <fo:page-number> element 2nd 3rd 4th
 lists (XSL-FO) 2nd 3rd 4th 5th
 tables (XHTML) 2nd 3rd 4th
 tables (XSL-FO) 2nd 3rd 4th 5th 6th 7th
 text (XHTML)
 <!Ñ> element 2nd
 element 2nd 3rd
 element 2nd 3rd 4th
 <i> element 2nd
 <u> element 2nd
formatting. [See also CSS (Cascading Style Sheets)]2nd [See also XSLT (Extensible Stylesheet Language
Transformation)]3rd [See also XSL-FO (XSL Formatting Objects)]
FormFaces
forms
 XForms 2nd 3rd 4th 5th 6th 7th 8th 9th
 buttons, creating 2nd 3rd
 buttons, Reset 2nd
 buttons, Submit 2nd
 controls 2nd 3rd
 controls, input 2nd
 controls, select 2nd
 declarations
 presentations, separating data from 2nd 3rd
 select Booleans, creating 2nd
 software 2nd 3rd
 writing 2nd
FPI (formal public identifier) 2nd
fractionDigits schema facet
frame documents (XHTML)
 creating 2nd 3rd
FrameMaker
frames (XHTML)
 creating 2nd 3rd 4th 5th 6th 7th
frameset XHTML (Extensible Hypertext Markup Language)
Frameset XHTML 1.0 DTD
freeze attribute
FromsPlayer
functions
 node sets 2nd
 numbers (XPath) 2nd
 point()
 ranges (XPointer schemes) 2nd 3rd
 strings (XPath) 2nd
 XPath functions
 XPointer schemes
 XQuery 2nd
 count 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Galax XQuery processor (Lucent) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
18th
 downloading
GEDCOM (Genealogical Data Communication)
Genealogical Data Communication (GEDCOM)
general DTD entities
 & (ampersand)
 (semicolon)
general entity references 2nd 3rd
general entity references (DTDs) 2nd
 external 2nd 3rd 4th 5th 6th
 internal 2nd 3rd 4th 5th
Generate Dataset command (Data menu)
Generate Dataset dialog box 2nd
Generate Dataset in Visual Basic .NET command (Data menu)
Get Names button
Get the Data button
getAttributes method
getNodeName method
getNodeValue method
global element declarations
globally declaring schema elements
gradients (SVG)
 creating 2nd 3rd 4th
grammar. [See syntax]
grandchildren elements
graphic objects
 SVG
graphics
 animations (SVG)
 creating 2nd 3rd
 SVG (Scalable Vector Graphics)
 VML (Vector Markup Language) 2nd 3rd
graphics. [See also SVG (Scalable Vector Graphics)]
group schema element
grouping
 attributes
 schemas 2nd
 elements
 schemas 2nd 3rd
 style sheet selectors
 CSS
groups
 all
 declaring 2nd
groups (SVG)
 creating 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handling content
 element content models
 DTDs 2nd
handling text content
 element content models
 DTDs 2nd
headers
 columns
 spanning
 SOAP (Simple Object Access Protocol) messages
 tables (XHTML) 2nd 3rd 4th 5th
headings
 text
 XHTML 2nd 3rd
height attribute
hexadecimal numbers
 colors
 SVG
hierarchical XML data
 data binding 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
HiT Software Web site
HTML
 data binding
 elements to data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th
 elements to XML data 2nd 3rd 4th 5th 6th
 document verification 2nd 3rd 4th
 documents
 data holding 2nd 3rd
 DSO document 2nd 3rd
 elements
 binding to XML data (DSO applet) 2nd 3rd 4th 5th 6th 7th
 elements (Internet Explorer) 2nd 3rd 4th
 sample Web page 2nd
 SVG
 embedding in 2nd
 tables
 binding to XML data (DSO applet) 2nd 3rd 4th
 data binding to XML data 2nd 3rd 4th 5th 6th 7th 8th
 tags 2nd
HTML (Hypertext Markup Language)
 overview
HTML hyperlinks
 emulating
 XLinks 2nd 3rd
HTML hyperlinks. [See also XLinks]
HTML+TIME 2nd
hyperlinks
 emulating
 XLinks 2nd 3rd
hyperlinks (SVG)
 creating 2nd 3rd 4th
hyperlinks (XHTML)
 creating 2nd 3rd 4th 5th
hyperlinks. [See also XLinks]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hypertext Markup Language. [See HTML]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

icons
 Data Connections
 Windows Application
id attribute 2nd
ID attributes
 match (node matching)
 attribute handling
ID type value
 DTD attributes 2nd
ID values
 style sheet selectors
 creating 2nd
id(ID) function
identifiers
 FTP (formal public identifier) 2nd
IDREF type value
 DTD attributes 2nd
IGNORE DTD entity directive 2nd
IIS (Internet Information Server)
 Web applications
 creating
image styles
 CSS 2nd 3rd 4th 5th 6th
images
 foreground
 positioning 2nd 3rd 4th
 XHTML documents 2nd 3rd 4th 5th
images. [See graphics]
immediate default values
 DTD attributes 2nd
implementing
 XLinks 2nd
IMPLIED [#before] default values
 DTD attributes 2nd 3rd
import schema element
INCLUDE DTD entity directive 2nd
include schema element
incomingMessage object
indent attribute
information sets. [See infosets]
infosets (information sets) 2nd
inline content
 text
 XHTML 2nd 3rd 4th
inline formatting (XSL-FO)
 <fo:external-graphic> element 2nd 3rd 4th
 <fo:inline> element 2nd 3rd 4th 5th 6th 7th 8th
 <fo:page-number> element 2nd 3rd 4th
inline links (extended XLinks)
inline styles
 creating 2nd
inline styles (CSS) 2nd 3rd
input control
input controls 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

installations
 SVG Viewer
interface methods
 Attr 2nd
 Attribute object 2nd
interfaces
 org.w3c.dom.Node
 methods 2nd 3rd
internal DTD entities
internal DTDs 2nd 3rd
internal general entity references (DTDs)
 creating 2nd 3rd 4th 5th
internal parameter DTD entities
 creating 2nd 3rd
internal style sheets. [See embedded style sheets]
Internet Explorer 2nd 3rd
 data binding
 HTML elements 2nd 3rd 4th
 MSXML 2nd 3rd
 viewing CDATA sections
 viewing element attributes
 XLinks
Internet Information Server (IIS)
 Web applications
 creating
ISO 10646. [See UCS]
italic element
 text
 XHTML 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Java
 browsers
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 documents
 elements, finding by name 2nd 3rd 4th 5th 6th
 navigating 2nd 3rd
 reading 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 reading, attributes 2nd 3rd
 reading, CDATA sections
 reading, child nodes 2nd
 reading, childLoop method 2nd 3rd 4th 5th 6th
 reading, document nodes 2nd
 reading, element closing tags 2nd 3rd 4th 5th
 reading, elements
 reading, processing instructions 2nd
 reading, text nodes 2nd
 downloading
 files
 data, extracting 2nd 3rd
 SOAP example 2nd 3rd
 clients, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 clients, installing in Tomcat servers 2nd 3rd
 servers, creating 2nd 3rd 4th 5th 6th 7th 8th
 servlets
 whitespace
 XML
 writing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 XSLT 2nd
Java Web Services Developer's Pack
Java XML Messaging (JAXM)
Java XML Pack 2nd
Java/SAX
 browsers
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th
 XML
 writing 2nd 3rd 4th 5th 6th 7th
JavaScript
 documents
 attributes, looping 2nd
 data, extracting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 nodes, looping 2nd 3rd 4th 5th 6th 7th
 reading 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 reading, attributes 2nd 3rd 4th 5th 6th
 reading, data islands 2nd 3rd 4th 5th
 reading, finding elements by name 2nd 3rd 4th 5th 6th
 validating with DTDs 2nd 3rd 4th 5th 6th 7th 8th 9th
 DSOs
 data field access 2nd 3rd 4th 5th 6th
 files
 data, extracting 2nd 3rd
 XML data searches 2nd 3rd 4th 5th 6th 7th
JavaScript (SVG)
 creating 2nd 3rd 4th 5th
JavaScript. [See also JScript]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAXM (Java XML Messaging)
JScript
JSP
 server-side XSLT 2nd
Jumbo
Jumbo Web browser
jXForms

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key schema element
keyref schema element
keywords
 PUBLIC 2nd
 SYSTEM 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

lang attribute
languages
 Dublin Core
 RDF, storing XML data 2nd
 Dublin Core (RDF) 2nd 3rd 4th 5th 6th 7th 8th
 attributes 2nd 3rd
 elements 2nd
 resource types 2nd
 markup
 HTML (Hypertext Markup Language)
 overview 2nd 3rd
 SGML (Standard Generalized Markup Language)
 query. [See XQuery]
 SMIL (Synchronized Multimedia Integration Language) 2nd
languages. [See also markup languages]
last() function
left property
legal character references
 well-formed documents
length schema facet
levels
 DOM 2nd
line breaks
 text
 XHTML 2nd
line-height property 2nd
linefeed characters
lines
 polylines (SVG)
 creating 2nd
lines (SVG)
 creating 2nd
link attribute
linkbases (extended XLinks)
 creating 2nd
linking
 documents (XHTML) 2nd 3rd 4th 5th 6th
 XBase 2nd
links. [See also hyperlinks]
linksets (extended XLinks)
LiquidOffice
list formatting (XSL-FO) 2nd 3rd 4th 5th
list schema element
list styles
 CSS 2nd
list-item property
list-style-image property
list-style-type property
local element declarations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
local namespaces
 creating 2nd
local-name(node-set) function
locally declaring schema elements
location sets (XPath)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPointer schemes
location steps
 XPath
location steps (XPath)
 abbreviations 2nd 3rd 4th 5th 6th 7th 8th
locations (XPath)
 XPointer schemes
locator attribute. [See xlink[COLON]href attribute]
logcial operators 2nd
looping
 attributes 2nd
 attributes (SAX) 2nd
 nodes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
loops
 While
Lucent Galax XQuery processor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
18th
 downloading

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

margin styles
 CSS 2nd
margin-bottom property
margin-left property
margin-right property
margin-top property
markup languages
 CML (Chemical Markup Language) 2nd
 HTML
 MathML (Mathematical Markup Language) 2nd
 overview 2nd 3rd
 SGML (Standard Generalized Markup Language)
 XHTML (Extensible Hypertext Markup Language) 2nd 3rd
markups 2nd 3rd
 general entity references 2nd 3rd
 parameter entity references 2nd
master set layouts
 <fo:root> element
master templates
 creating
masters
 page masters
 properties
 regions 2nd 3rd 4th
match attribute (node matching)
 attributes
 handling 2nd 3rd 4th 5th 6th
 elements
 handling 2nd
 ID attributes
 handling
 multiple matching
 handling 2nd 3rd
 processing instructions
 handling 2nd
 root nodes
matching
 XSLT
 XPath expressions 2nd
matching nodes (XSLT)
 attributes
 handling 2nd 3rd 4th 5th 6th
 elements
 handling 2nd
 ID attributes
 handling
 mulitple matching
 handling 2nd 3rd
 processing instructions
 handling 2nd
 root nodes
matching strings
 ranges
 XPointer schemes)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mathematical Markup Language (MathML) 2nd
MathML (Mathematical Markup Language) 2nd
MathML/XHTML document 2nd
maxExclusive schema facet
maxInclusive schema facet 2nd
maxLength schema facet
maxOccurs attribute
MessageFactory object 2nd
methods
 callback
 SAX 2nd
 changeHandler 2nd
 characters
 childLoop 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd 23rd 24th
 DataGrid class 2nd
 DataSet class 2nd
 DefaultHandler object 2nd 3rd
 Document object 2nd 3rd
 DocumentBuilder object 2nd
 DocumentBuilderFactory objects 2nd 3rd
 doGet
 DOMDocument object 2nd 3rd
 DOMElement object 2nd 3rd
 error
 fatalError
 getAttributes
 getNodename
 getNodeValue
 interface
 Attr 2nd
 Attribute object 2nd
 NamedNodeMap 2nd
 NodeList
 OleDbDataAdapter object 2nd 3rd
 org.w3c.dom.Node interface 2nd 3rd
 record sets
 DSOs (data source objects) 2nd 3rd
 recursion
 SAXParser class 2nd
 SAXParserFactory object 2nd
 ToUpper
 upper 2nd 3rd
 warning
 WriteStartDocument
 WriteStartElement 2nd
 XmlDataDocument object 2nd 3rd 4th
 XMLDOMAttribute object 2nd
 XMLDOMNode 2nd
 XMLDOMText object 2nd 3rd
Microsoft .NET 2nd 3rd
Microsoft HTML (MSHTML) control 2nd
Microsoft Visual Studio .NET 2nd 3rd 4th
Microsoft Web site 2nd
MIME types
 SVG (Scalable Vector Graphics)
minExclusive schema facet
minInclusive schema facet 2nd
minLength schema facet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

minOccurs attribute
minus sign (-)
mixed content models
 syntax (sample document) 2nd 3rd
mixed content models (DTDs) 2nd 3rd 4th
mixed-content elements
 schemas 2nd 3rd
mixed-content models
 XHTML 2nd
Mosquito XForms
MSHTML (Microsoft HTML) control 2nd
MSXML
 Internet Explorer 2nd 3rd
multiline text boxes
 creating
multimedia sequences
 creating 2nd 3rd
multiple child elements
 element content models
 DTDs 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
multiple matches
 handling (node matching) 2nd 3rd
multiple resources
 RDF 2nd 3rd
mustUnderstand attribute

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name token. [See NMTOKEN type value]
name(node-set) function
NamedNodeMap methods 2nd
namespace
 colon ()
namespace axis
namespace schemes (XPointer) 2nd
namespace-uri(node-set) function
namespaces 2nd
 creating 2nd
 default
 creating 2nd 3rd 4th 5th
 defining with URIs 2nd 3rd 4th 5th 6th 7th
 DTDs 2nd 3rd 4th 5th
 Dublin Core language 2nd
 local
 creating 2nd
 schemas 2nd 3rd
 local element declarations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 XSL-FO
naming
 attributes 2nd
 elements
 tags 2nd
navigating
 DSO records 2nd 3rd
navigation
 documents
 Java 2nd 3rd
 documents (SAX) 2nd 3rd 4th 5th 6th 7th 8th
nesting
 DTD entity references
 elements
 well-formed documents 2nd
 RDF descriptions 2nd 3rd 4th
nesting errors 2nd
NET [period]
 SOAP example 2nd
 servers/clients 2nd 3rd 4th
 SOAP clients, creating 2nd 3rd 4th 5th
 SOAP servers, creating 2nd 3rd 4th 5th
NET [period](Microsoft) 2nd 3rd
Netscape Navigator
New Project dialog box 2nd
New, Project command (File menu) 2nd
newsgroups
 Usenet
NMatrix
NMTOKEN type value
 DTD attributes 2nd
NMTOKENS type value
 DTD attributes 2nd
node matching (XSLT)
 attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 handling 2nd 3rd 4th 5th 6th
 elements
 handling 2nd
 ID attributes
 handling
 multiple matches
 handling 2nd 3rd
 processing instructions
 handling 2nd
 root nodes
node sets (XPath) 2nd 3rd
node sets (XPath). [See also location sets (XPath)]
node tests
 creating
node() node test
NodeList methods
nodes
 child 2nd
 points (XPointer schemes) 2nd
 document 2nd
 DOM 2nd
 looping 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 text 2nd
 trees
nodes (XSLT)
 copying
non-markup text
 DTDs
non-XML data
 associating with XML documents 2nd 3rd 4th 5th 6th 7th
nonwhitespace
 DTD attributes
normalize-space(string1) function
notation schema element
NOTATION type value
 DTD attributes 2nd 3rd 4th
notes (W3C file)
Novell XForms
numbers (XPath) 2nd 3rd
numeric operators 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

objects
 Attributes 2nd
 interface methods 2nd
 connection 2nd
 data
 DefaultHandler 2nd 3rd
 methods 2nd 3rd
 Document
 methods 2nd 3rd
 DocumentBuilderFactory
 methods 2nd 3rd
 DOM 2nd 3rd 4th 5th
 programming 2nd 3rd
 DOMDocument 2nd 3rd 4th 5th 6th 7th 8th
 creating 2nd
 methods 2nd 3rd
 properties 2nd 3rd 4th 5th
 DSOs (data source objects)
 data binding 2nd 3rd 4th 5th 6th
 graphics
 SVG
 incomingMessage
 MessageFactory 2nd
 OleDbDataAdapter
 methods 2nd 3rd
 properties 2nd
 org.w3c.dom.Node
 fields 2nd
 SAXParserFactory 2nd
 methods 2nd
 SoapFormatter 2nd 3rd
 XmlDataDocument
 methods 2nd 3rd 4th
 properties 2nd 3rd
 XMLDOMAttribute 2nd 3rd
 XMLDOMElement 2nd 3rd 4th 5th
 XMLDOMNode 2nd 3rd
 XMLDOMText 2nd 3rd 4th 5th
 XmlTextReader
 XSL-FO 2nd 3rd 4th 5th
 <fo:block> element 2nd 3rd 4th 5th 6th 7th
 <fo:flow> element 2nd
 <fo:layout-master-set> element
 <fo:page-sequence> element 2nd 3rd
 <fo:region-after> element 2nd
 <fo:region-body> element 2nd
 <fo:root> element 2nd
 <fo:simple-page-master> element 2nd 3rd 4th
 <fo:static-content> element
OleDbDataAdapter object
 methods 2nd 3rd
 properties 2nd
omit-xml-declaration attribute
online resources. [See resources]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

opening tags (elements)
operators
 []
 logical 2nd
 numeric 2nd
org.w3c.dom.Node interface
 methods 2nd 3rd
org.w3c.dom.Node object
 fields 2nd
out-of-line links (extended XLinks)
 linkbases 2nd
 linksets
output control
output document type (XSLT) 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packaging
 data
page masters
 properties
 regions 2nd 3rd 4th
page sequences
 <fo:root> element
 creating 2nd 3rd
 flow
 creating 2nd
pages. [See also Web pages]
parameter DTD entities
 % (percent sign)
 (semicolon)
 external
 creating 2nd 3rd 4th
 internal
 creating 2nd 3rd
parameter entities
 DTDs
parameter entity references 2nd
parameterized DTDs
parent axis
parent elements
parsed character data
 DTDs
parsed entities
 well-formed
parsers
 SAX
 creating
 whitespace
parsing
 documents
 CDATA sections 2nd 3rd 4th 5th
 entities
paths
 text (SVG)
 creating 2nd 3rd
paths (SVG)
 creating 2nd
pattern schema facet 2nd
PDF documents
 creating with XSL-FO 2nd
 viewing
percent sign (%) 2nd
Perl
 regular expressions
players
 SOJA (SMIL Output in Java Applets)
plus sign (+) 2nd 3rd 4th 5th 6th 7th 8th
point() function
points (XPath)
 XPointer schemes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

points (XPointer schemes)
 character-points
 creating
 child nodes
 creating 2nd
 creating
polygons (SVG)
 creating 2nd
polylines (SVG)
 creating 2nd
position property
position() function
positioning
 relative 2nd 3rd 4th 5th
positioning styles
 CSS 2nd 3rd 4th 5th
preceding axis
preceding-sibling axis
predicates 2nd
 boolean expressions 2nd
 node sets 2nd 3rd
 numbers 2nd 3rd
 result tree fragments
 strings 2nd
presentations
 separating data from (XForms) 2nd 3rd
private external DTDS
 creating 2nd 3rd
processing instructions 2nd 3rd
 attributes
 assigning values 2nd 3rd
 naming
 writing 2nd 3rd 4th
 handling (node matching) 2nd
 handling (reading documents) 2nd
 SAX
 writing
processing-instruction() node test
processors
 CDATA sections 2nd 3rd 4th 5th
 instructions
 writing
 Saxon XSLT
 downloading
productions
 well-formed documents
 productions
programming
 Visual Studio .NET
 data;handling 2nd
 documents, adding data 2nd 3rd
 documents, creating 2nd
 elements, creating 2nd 3rd
 schemas, connecting to documents 2nd
 schemas, creating complex types 2nd
 schemas, creating simple types 2nd 3rd
programming objects
 DOM 2nd 3rd
Project menu commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Add Existing Item
 Add Item
 Set as StartUp Project
prologs
 well-formed documents 2nd
 writing 2nd
properties
 <fo:block> element 2nd 3rd 4th
 <fo:external-graphic> element 2nd 3rd
 <fo:inline> element 2nd 3rd
 <fo:page-number> element 2nd 3rd
 <fo:page-sequence> element 2nd
 background-attachment 2nd
 background-color
 background-image 2nd
 background-positions
 background-repeat 2nd
 border-bottom-width
 border-color
 border-left-width
 border-right-width
 border-style
 border-top-width
 border-width
 bottom
 color
 controls 2nd
 CSS
 DataGrid class 2nd 3rd 4th 5th
 DataSet class 2nd
 display
 DOMDocument object 2nd 3rd 4th 5th
 font-family
 font-size
 font-style
 font-weight
 left
 line-height 2nd
 list-item
 list-style-image
 list-style-type
 margin-bottom
 margin-left
 margin-right
 margin-top
 OleDbDataAdapter object 2nd
 page master regions 2nd
 page masters
 position
 record sets
 DSOs (data source objects) 2nd 3rd
 right
 style
 table
 table-caption
 table-cell
 table-column
 table-column-group
 table-footer-group

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 table-header-group
 table-row
 table-row-group
 text-align 2nd
 text-decoration
 text-indent
 text-indext
 text-transform
 top
 ValidateOnParse
 vertical-align 2nd
 XmlDataDocument object 2nd 3rd
 XMLDOMAttribute object 2nd 3rd
 XMLDOMElement object 2nd
 XMLDOMNode 2nd
 XMLDOMText object 2nd 3rd
 XSL-FO 2nd 3rd
property elements
 RDF (Resource Description Framework) 2nd
property/value pairs
 rule specifications
protocols
 .NET (Microsoft
 ADO.NET
 SOAP (Simple Object Access Protocol) 2nd
protocols. [See also SOAP (Simple Object Access Protocol)]
public external DTDS
 creating 2nd
PUBLIC keyword 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

qualifying
 local element declarations 2nd 3rd 4th 5th 6th 7th 8th
Query Builder
Query Builder button
query languages. [See XQuery]
question mark (?) 2nd 3rd 4th 5th 6th 7th 8th
quotation marks ()
 attributes 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

range control
ranges (XPath)
 XPointer schemes
ranges (XPointer schemes)
 creating 2nd
RDF 2nd 3rd 4th 5th
 (Resource Description Framework)
 abbreviated syntax 2nd 3rd
 browser support 2nd
 description elements 2nd
 descriptions
 nesting 2nd 3rd 4th
 Dublin Core language 2nd 3rd 4th 5th 6th 7th 8th
 attributes 2nd 3rd
 elements 2nd
 resource types 2nd
 property elements 2nd
 resources 2nd
 attributes
 multiple 2nd 3rd
 root elements 2nd
 statements 2nd
 XML
 storing data 2nd
RDF viewer
Read XML Data button
reading
 documents with Java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 attributes 2nd 3rd
 CDATA sections
 child nodes 2nd
 childLoop method 2nd 3rd 4th 5th 6th
 document nodes 2nd
 elements
 elements, closing tags 2nd 3rd 4th 5th
 processing instructions 2nd
 text nodes 2nd
 documents with JavaScript 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 attributes 2nd 3rd 4th 5th 6th
 data islands 2nd 3rd 4th 5th
 elements;finding by name 2nd 3rd 4th 5th 6th
 syntax (Visual Basic .NET) 2nd 3rd 4th 5th 6th 7th
recommendations (W3C file)
record sets
 DSOs (data source objects) 2nd
 methods 2nd 3rd
 properties 2nd 3rd
records
 DSOs (data source objects) 2nd
 navigating 2nd 3rd
rectangles (SVG)
 creating 2nd
recursion
 methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

redefine schema element
references
 DTD entities
 general 2nd
 general, external 2nd 3rd 4th 5th 6th
 general, internal 2nd 3rd 4th 5th
 nesting
regions
 page masters 2nd 3rd 4th
regular expressions
rel attribute 2nd 3rd
relationships
 elements
relative location paths
 XPath
relative positioning 2nd 3rd 4th 5th
remoting
REQUIRED [#before] default values
 DTD attributes 2nd
Reset buttons (XForms) 2nd
Resource Description Framework. [See RDF]
resource types
 Dublin Core language 2nd
resources 2nd 3rd 4th
 attributes
 RDF
 CSS
 multiple
 RDF 2nd 3rd
 RDF (Resource Description Framework) 2nd
 schemas 2nd
 SOAP (Simple Object Access Protocol) 2nd
 tutorials 2nd
 Usenet newsgroups
 W3C Web site 2nd 3rd
 XHTML (Extensible Hypertext Markup Language)
restriction schema element
result tree fragments (XPath)
Rich Text Format (RTF)
 files
 example 2nd
right property
root elements 2nd
 adding (well-formed documents) 2nd
 RDF (Resource Description Framework) 2nd
 well-formed documents 2nd 3rd 4th 5th
root nodes
 matching
 trees
round() function
rows
 tables (XHTML) 2nd 3rd
RTF (Rich Text Format)
 files
 example 2nd
rules
 selectors

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

saving
 documents
 file extensions
 WordPad
SAX 2nd 3rd 4th 5th 6th
 (Simple API for XML
 callback methods 2nd
 childLoop method 2nd
 DefaultHandler object 2nd 3rd
 DefaultHandler object XE "methods" 2nd 3rd
sAX
 documents
 elements, finding by name 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
SAX
 documents
 navigating 2nd 3rd 4th 5th 6th 7th 8th
 starting
 elements
 attributes 2nd 3rd 4th 5th 6th 7th
 closing tags
 starting 2nd
 errors/warnings
 handing 2nd 3rd 4th 5th 6th
 overview 2nd 3rd 4th 5th
 parsers
 creating
 whitespace
 processing instructions
 text
 handling 2nd
SAX/JAVA
 browsers
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th
SAX/Java
 XML
 writing 2nd 3rd 4th 5th 6th 7th
Saxon XSLT processor
 downloading
SAXParser class
 methods 2nd
SAXParserFactory object 2nd
 methods 2nd
Scalable Vector Graphics (SVG)
Scalable Vector Graphics. [See SVG]
schema
 namespaces URIs
schema schema element
schemas
 all groups
 declaring 2nd
 annotating 2nd 3rd
 annotations 2nd
 anonymous type definitions 2nd 3rd 4th 5th
 attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating 2nd
 declaring 2nd 3rd 4th 5th 6th
 grouping 2nd
 choices
 creating 2nd 3rd
 complex types 2nd
 creating (Visual Basic .NET) 2nd
 creating 2nd 3rd 4th
 creating (Visual Basic .NET)
 data types
 specifying
 declarations
 documents
 connecting to (Visual Basic .NET) 2nd
 elements 2nd 3rd
 declaring 2nd 3rd 4th 5th 6th 7th
 default values 2nd
 global declarations
 grouping 2nd 3rd
 local declarations
 number specification 2nd 3rd
 type 2nd
 type, complex 2nd 3rd 4th 5th 6th 7th 8th
 type, simple 2nd 3rd 4th
 empty elements
 declaring 2nd
 mixed-content elements 2nd 3rd
 namespaces 2nd 3rd
 local element declarations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 resources 2nd
 simple types
 creating (Visual Basic .NET) 2nd 3rd
 tools 2nd 3rd 4th
 HiT Software
 Microsoft Visual Studio .NET 2nd 3rd
 validators 2nd 3rd 4th 5th 6th 7th
 xmlArchitect
 XMLspy
 XRay
 types
 simple ordered, restricting 2nd
 simple, restricting 2nd 3rd 4th 5th 6th 7th 8th 9th
 URIs
 specifying
 validators
schemas facets
 simple ordered schema types 2nd
 simple schema types 2nd 3rd 4th 5th 6th 7th 8th 9th
schemes
 element schemes (XPointer 2nd
 namespace schemes (XPointer
 namespace schemes (XPointer)
 XPointer schemes
 points
 points, character-points
 points, child nodes 2nd
 points, functions
 ranges 2nd
 XPath functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPath location sets
 XPath locations
 XPath node tests
 XPath points
 XPath ranges
Scholarly Techonolgy Group's XML validator 2nd
SDK (Software Development Kit)
searches
 XML data
 DSOs/JavaScript 2nd 3rd 4th 5th 6th 7th
secret control
select attribute
 XPath
 abbreviations 2nd 3rd 4th 5th 6th 7th 8th
 axes 2nd 3rd
 default rules 2nd 3rd 4th 5th 6th 7th 8th
 node tests
 predicates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 tools
select Booleans (XForms)
 creating 2nd
select control
select controls 2nd
select1 control
selector schema element
selectors
 rules
 style sheets (CSS)
 creating 2nd
 grouping
 ID values 2nd
 style classes 2nd 3rd 4th
self axis
semicolon ()
semicolons ()
sensitive characters
 style sheets
sequence
 content models
sequence schema element
sequences
 content models
 symbols 2nd 3rd 4th 5th 6th
 multimedia
 creating 2nd 3rd
server-side XSLT 2nd
servers
 SOAP 2nd 3rd 4th 5th 6th
 creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 Tomcat 2nd
 SOAP clients, installing 2nd 3rd
servlets
 SOAP (Java example)
Set as StartUp Project command (Project menu)
SGML (Standard Generalized Markup Language)
sibling elements
simple anonymous types
 schemas
Simple API for XML. [See SAX]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Simple Object Access Protocol (SOAP) 2nd
Simple Object Access Protocol. [See SOAP]
simple ordered types (schemas)
 restricting 2nd
simple schema element type 2nd 3rd 4th
simple types (schemas)
 creating 2nd 3rd
 restricting 2nd 3rd 4th 5th 6th 7th 8th 9th
simple XLinks
 Amaya Web browser 2nd 3rd
 attributes 2nd 3rd
 emulating HTML hyperlinks 2nd 3rd
 implementing 2nd
 Internet Explorer
 xlink[COLON]actuate attribute 2nd
 xlink[COLON]arcrole attribute
 xlink[COLON]label attribute
 xlink[COLON]ref attribute
 xlink[COLON]role attribute 2nd
 xlink[COLON]show attribute
 xlink[COLON]title attribute 2nd
 xlink[COLON]type attribute 2nd
simpleContent schema element
simpleType schema element
sites. [See Web sites]2nd [See Web sites]
SMIL 2nd 3rd 4th 5th 6th
 (Synchronized Multimedia Integration Language)
 documents
 creating 2nd 3rd 4th 5th 6th 7th
 multimedia sequences
 creating 2nd 3rd
SMIL (Synchronized Multimedia Integration Language) 2nd
SMIL Output in Java Applets (SOJA) PLayer
SOAP 2nd
 (Simple Object Access Protocol)
 .NET example 2nd
 servers/clients 2nd 3rd 4th
 SOAP clients, creating 2nd 3rd 4th 5th
 SOAP servers, creating 2nd 3rd 4th 5th
 attachments
 adding 2nd
 attributes 2nd 3rd
 body
 clients
 creating 2nd 3rd 4th 5th
 elements 2nd 3rd 4th 5th
 envelopes
 headers
 Java example 2nd 3rd
 clients, creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 clients, installing in Tomcat servers 2nd 3rd
 servers, creating 2nd 3rd 4th 5th 6th 7th 8th
 servlets
 resources 2nd
 servers 2nd
 creating 2nd 3rd 4th 5th
 syntax 2nd
SOAP (Simple Object Access Protocol) 2nd
SoapFormatter class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SoapFormatter object 2nd 3rd
software
 AchieveForms
 Chiba
 FormFaces
 FormsPlayer
 HiT Software
 jXForms
 LiquidOffice
 Mosquito XForms
 NMatrix
 Novell XForms
 TrustForm System
 X-Smiles
 Xero
 XForms 2nd 3rd
 XML Forms Package
 XMLForm
 XServerForms
Software Development Kit (SDK)
SOJA (SMIL Output in Java Applets) Player
spanning
 columns
 headers
standalone attribute 2nd
standalone attribute (declarations)
standalone attributes
 XHTML
Standard Generalized Markup Language)
starting
 documents with SAX
 elements with SAX 2nd
starts-with(string1, string2) function
statements
 RDF (Resource Description Framework) 2nd
Store XML Data button
storing
 databases as XML 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th
 Visual Basic .NET applications 2nd
storing XML data
 RDF 2nd
strict XHTML (Extensible Hypertext Markup Language)
Strict XHTML 1.0 DTD
string matching
 ranges
 XPointer schemes)
string-length(string1)
strings (XPath) 2nd
style attribute 2nd 3rd 4th 5th
style classes
 creating 2nd 3rd 4th
style properties
style rule specification 2nd 3rd
 alignment styles 2nd
 background styles 2nd 3rd
 block-level elements
 border styles 2nd 3rd
 color styles 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 curly braces {}
 image styles 2nd 3rd 4th 5th 6th
 list styles 2nd
 margin styles 2nd
 positioning styles 2nd 3rd 4th 5th
 property/value pairs
 table styles 2nd 3rd
 text styles 2nd 3rd
style rule specificationL
 semicolons ()
style rules
style sheet selectors (CSS)
 creating 2nd
 grouping
 ID values 2nd
 style classes 2nd 3rd 4th
style sheets
 CSS (Cascading Style Sheets)
 data
 displaying
 embedded
 creating 2nd 3rd 4th 5th 6th
 external
 syntax
 files
 viewing 2nd 3rd 4th 5th 6th
 sensitive characters
 XSL
 data extraction 2nd
 mulitiple matches 2nd 3rd
 syntax 2nd
 XSL (Extensible Stylesheet Language)
 XSLT 2nd 3rd 4th
 writing 2nd 3rd 4th 5th
styles
 alignment
 CSS 2nd
 background
 CSS 2nd 3rd
 border
 CSS 2nd 3rd
 color
 CSS 2nd 3rd
 CSS
 SVG documents 2nd 3rd 4th 5th 6th
 font 2nd
 images
 CSS 2nd 3rd 4th 5th 6th
 inline
 creating 2nd
 inline (CSS) 2nd 3rd
 lists
 CSS 2nd
 margin
 CSS 2nd
 positioning
 CSS 2nd 3rd 4th 5th
 tables
 CSS 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text
 CSS 2nd 3rd
Submit buttons (XForms) 2nd
submit control
subsequences
 content models
 creating
 syntax (sample document) 2nd 3rd 4th
subsets
 external
 DTDs
substring(string1, offset, length)
substring-after(string1, string2)
substring-before(string1, string2)
sum() function
SVG 2nd 3rd 4th 5th 6th 7th 8th
 (Scalable Vector Graphics)
 animations
 creating 2nd 3rd
 attributes 2nd 3rd
 circles
 creating 2nd
 colors
 hexadecimal numbers
 documents
 creating 2nd 3rd 4th
 CSS styles 2nd 3rd 4th 5th 6th
 titles 2nd
 validating
 viewing (SVG Viewer) 2nd
 DOM (Document Object Model)
 DTDs
 elements 2nd
 ellipses
 creating 2nd
 embedding in HTML 2nd
 gradients
 creating 2nd 3rd 4th
 graphic objects
 groups
 creating 2nd 3rd
 hyperlinks
 creating 2nd 3rd 4th
 JavaScript
 creating 2nd 3rd 4th 5th
 lines
 creating 2nd
 MIME type
 paths
 creating 2nd
 text, creating 2nd 3rd
 polygons
 creating 2nd
 polylines
 creating 2nd
 predefined colors 2nd 3rd 4th
 rectangles
 creating 2nd
 text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating 2nd 3rd
 transformations
 creating 2nd 3rd
SVG (Scalable Vector Graphics)
svg [period] file extension
SVG Viewer 2nd
symbols
 content model sequences 2nd 3rd 4th 5th 6th
 DTD choices
 DTDs 2nd
Synchronized Multimedia Integration Language (SMIL) 2nd
Synchronized Multimedia Integration Language. [See SMIL]
syntax
 <!ATTLIST> element 2nd
 <name> element 2nd
 <paragraph> element 2nd
 <style> element 2nd
 abbreviated
 RDF 2nd 3rd
 animations
 creating 2nd
 border styles 2nd
 browsers
 creating 2nd 3rd 4th 5th 6th 7th
 circles
 creating 2nd
 class-specific selectors 2nd 3rd
 CML (Chemical Markup Language) 2nd
 color styles 2nd
 context code
 XQuery 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 CSS
 documents, connecting 2nd
 style sheet selectors, grouping
 CSS inline styles
 CSS sample document
 data islands
 data binding, HTML elements to XML data 2nd 3rd
 databases
 ASP (Active Server Pages) 2nd
 declared attributes
 DTDS (sample document) 2nd 3rd 4th
 document
 qualified attribute 2nd
 document verification 2nd
 document verification (sample document) 2nd
 documents
 DTDs, adding 2nd
 editing 2nd 3rd 4th 5th 6th 7th 8th
 qualified elements/attributes 2nd
 qualified locals 2nd
 sample (ch08_01.xml) 2nd
 sample (ch10_01.xml) 2nd
 unqualified locals 2nd
 DSO (data source object) applet 2nd 3rd 4th 5th
 data binding, HTML tables to XML data 2nd 3rd 4th
 DSOs (data source objects)
 data field access 2nd 3rd
 DTD choices (sample document) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DTD entities
 declaring 2nd 3rd
 DTD namespaces 2nd
 DTDs (Document Type Definition)
 DTDs (sample document) 2nd 3rd
 ellipses
 creating 2nd
 empty elements
 content models (DTDs) 2nd 3rd
 external DTDs 2nd
 external general entity references (DTDs) 2nd 3rd
 external parameter DTD entities 2nd 3rd 4th
 external style sheets
 files
 viewing via style sheets 2nd 3rd
 font styles 2nd
 foreground image style 2nd 3rd 4th
 foreground images
 positioning 2nd 3rd 4th
 gradients
 creating 2nd
 hierarchical XML data 2nd 3rd 4th
 displaying 2nd 3rd 4th
 HTML document (sample) 2nd
 HTML documents
 data holding 2nd 3rd
 document validation 2nd 3rd 4th
 HTML DSO document 2nd 3rd
 HTML sample Web page 2nd
 HTML+TIME
 hyperlinks
 creating 2nd
 ID-based selectors 2nd 3rd
 image styles 2nd
 internal parameter DTD entities 2nd
 internal/external DTDs (sample document) 2nd
 Java
 document elements, finding by name 2nd 3rd 4th 5th
 documents, navigating 2nd 3rd 4th
 files, data extraction 2nd
 parsing documents 2nd 3rd 4th 5th
 SOAP clients, creating 2nd 3rd
 SOAP introduction page (example) 2nd
 SOAP servers, creating 2nd 3rd
 Java programs 2nd
 Java/SAX
 browsers, creating 2nd 3rd 4th
 documents, navigating 2nd 3rd 4th 5th 6th
 JavaScript
 creating 2nd
 data islands 2nd 3rd
 documents, attributes 2nd 3rd
 documents, extracting data 2nd 3rd 4th 5th 6th
 documents, finding elements by name 2nd 3rd
 documents, validating with DTDs 2nd 3rd
 files, data extraction 2nd
 reading documents 2nd 3rd
 JSP
 server-side XSLT 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lines
 creating 2nd
 local namespaces 2nd
 margin styles
 MathML (Mathematical Markup Language) file
 mixed content models (sample document) 2nd 3rd
 multiple declared attributes
 DTDs (sample documents) 2nd
 namespaces 2nd
 nesting errors 2nd
 paths
 creating 2nd
 polygons
 creating 2nd
 polylines
 creating
 predefined general entity references
 DTDs (sample document)
 private external DTDs (sample document) 2nd
 public external DTDs (sample document) 2nd
 RDF
 multiple resources 2nd
 nested descriptions 2nd 3rd 4th
 resource attribute 2nd
 RDF example 2nd
 rectangles
 creating 2nd
 relative positioning 2nd 3rd 4th
 RTF files
 example 2nd
 sample document (ch09_01.xml) 2nd
 sample document (ch09_02.xml)
 sample document (ch09_04.xml) 2nd
 SAX
 browsers, creating 2nd 3rd 4th 5th
 document elements, finding by name 2nd 3rd 4th 5th 6th 7th
 documents, parsing 2nd 3rd 4th
 sample 2nd
 schema
 qualified attribute 2nd
 schema example 2nd
 schemas
 creating (sample document) 2nd
 unqualified locals 2nd
 validating (sample document) 2nd
 SMIL (Synchronized Multimedia Integration Language)
 SMIL documents
 creating 2nd 3rd
 SOAP (Simple Object Access Protocol) 2nd
 SOAP clients
 creating 2nd
 SOAP servers 2nd
 creating 2nd
 style classes 2nd 3rd
 subsequences (sample document) 2nd 3rd 4th
 SVG
 embedding in HTML 2nd
 SVG (Scalable Vector Graphics)
 SVG documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CSS styles 2nd
 table styles 2nd
 text
 creating 2nd
 textpaths
 creating 2nd
 transformations
 creating 2nd
 well-formed documents
 creating 2nd
 XForms 2nd 3rd
 XHTML
 element 2nd
 extending 2nd 3rd 4th 5th 6th 7th 8th
 XHTML (Extensible Hypertext Markup Languge) file 2nd
 XHTML and MathML 2nd
 XHTML document
 <center> element 2nd
 style sheets 2nd
 XHTML document (sample) 2nd
 XHTML documents
 <!Ñ> element 2nd
 <a> element 2nd
 <div> element 2nd 3rd 4th
 element 2nd 3rd 4th
 <frame> element 2nd 3rd 4th
 element 2nd
 <link> element 2nd
 element 2nd
 <style> element 2nd
 <td> element 2nd 3rd
 heading elements 2nd
 paragraphs/line breaks 2nd
 XML data
 displaying in HTML tables 2nd 3rd
 XML data document (data binding) 2nd
 XML data searches
 DSOs/JavaScript 2nd 3rd
 XML sample file
 XQuery document 2nd
 XSL style sheet (sample) 2nd
 XSL style sheets
 <xsl:choose> element 2nd 3rd
 <xsl:copy> element 2nd 3rd
 <xsl:if> element 2nd
 abbreviations 2nd
 data extraction 2nd
 multiple matches 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 position() function 2nd
 XSL-FO
 <fo:inline> element 2nd 3rd 4th 5th
 <fo:page-number> element 2nd
 lists, creating 2nd 3rd 4th
 tables, creating 2nd 3rd 4th
 XSL-FO documents
 creating with XSLT 2nd
 creating with XSLT style sheets 2nd 3rd 4th 5th
 XSLT documents
 images 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XSLT style sheet 2nd 3rd 4th
syntax (Visual Studio .NET) 2nd
 reading 2nd 3rd 4th 5th 6th 7th
 writing 2nd 3rd 4th 5th
SYSTEM keyword 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

table formatting (XSL-FO) 2nd 3rd 4th 5th 6th 7th
table property
table styles
 CSS 2nd 3rd
table-caption property
table-cell property
table-column property
table-column-group property
table-footer-group property
table-header-group property
table-row property
table-row-group property
tables
 data (XHTML) 2nd 3rd 4th 5th
 formatting (XHTML) 2nd 3rd 4th
 headers (XHTML) 2nd 3rd 4th 5th
 HTML
 binding to XML data (DSO applet) 2nd 3rd 4th
 data binding to XML data 2nd 3rd 4th 5th 6th 7th 8th
 rows (XHTML) 2nd 3rd
tabular data control (TDC)
tags
 closing
 elements (reading documents) 2nd 3rd 4th 5th
 elements (SAX)
 closing (elements)
 HTML 2nd
 naming 2nd
 opening (elements)
tags. [See also namespaces]
targetNamespace attribute 2nd
TDC (tabular data control)
template files
 XQuery
 creating 2nd
templates
 master
 creating
 XSLT 2nd 3rd
 <xsl:apply-template> element 2nd 3rd 4th
 <xsl:for-each> element 2nd 3rd 4th 5th
 <xsl:value-of> element 2nd 3rd 4th 5th
 node matching
 node matching, attribute handling 2nd 3rd 4th 5th 6th
 node matching, element handling 2nd
 node matching, ID attribute handling
 node matching, multiple matches 2nd 3rd
 node matching, processing instructions handling 2nd
 node matching, root nodes
text
 non-markup
 DTDs
 SAX
 handling 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

text (SVG)
 creating 2nd 3rd
text (XHTML) 2nd

 element 2nd
 <center> element 2nd 3rd 4th
 <div> element 2nd 3rd 4th
 <h1> to <h6> elements 2nd 3rd
 <p> element 2nd
 element 2nd 3rd 4th
text attribute
text boxes
 multiline
 creating
text content handling
 element content models
 DTDs 2nd
text data
 mixed content models (DTDs)
text editors
 Adobe FrameMaker
 Visual Studio XML designer 2nd
 XML Notepad 2nd
 XML Pro
 XML Spy 2nd
 XML Writer 2nd
 XMLmind
text formatting (XHTML)
 <!Ñ> element 2nd
 element 2nd 3rd
 element 2nd 3rd 4th
 <i> element 2nd
 <u> element 2nd
text nodes 2nd
text paths (SVG)
 creating 2nd 3rd
text styles
 CSS 2nd 3rd
text() node test
text-align property 2nd
text-decoration property
text-indent property
text-indext property
text-transform property
textarea control
title attribute
titles
 SVG documents 2nd
Tomcat server 2nd
Tomcat servers
 SOAP clients
 installing 2nd 3rd
tools
 schemas 2nd 3rd 4th
 HiT Software
 Microsoft Visual Studio .NET 2nd 3rd
 validators 2nd 3rd 4th 5th 6th 7th
 xmlArchitect
 XMLspy
 XRay

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPath
Tools menu commands
 Connect to Database
top property
Topologi Schematron Validator
totalDigits schema facet
ToUpper method
transactional XHTML (Extensible Hypertext Markup Language) 2nd
transform attribute
transformating
 documents
 XSLT 2nd
 XSLT, clients 2nd 3rd
 XSLT, Java 2nd
 XSLT, servers 2nd
transformations (SVG)
 creating 2nd 3rd
Transitional XHTML 1.0 DTD
translate(string1, string2, string3)
trees
 nodes
trigger control
TrustForm System
tutorials 2nd
type
 schema elements 2nd
 complex 2nd 3rd 4th 5th 6th 7th 8th
 simple 2nd 3rd 4th
type values
 DTD attributes 2nd 3rd
 CDATA 2nd
 ENTITIES 2nd
 ENTITY 2nd 3rd
 enumerated 2nd
 ID 2nd
 IDREF 2nd
 NMTOKEN 2nd
 NMTOKENS 2nd
 NOTATION 2nd 3rd 4th
types
 complex
 schemas 2nd
 data (schemas)
 specifying
 simple (schemas)
 restricting 2nd 3rd 4th 5th 6th 7th 8th 9th
 simple ordered (schemas)
 restricting 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UCS (Universal Character System)
UCS Transformation Format-16. [See UTF-16]
UCS Transformation Format-8. [See UTF-8]
underline element
 text
 XHTML 2nd
Unicode 2nd 3rd
Uniform Resource Identifiers (URIs)
 namespaces
 defining 2nd 3rd 4th 5th 6th 7th
union schema element
unique schema element
Universal Character System. [See UCS]
unparsed entities
unparsed external DTD entities
 declaring
upload control
upper method 2nd 3rd
URIs
 external general entity references (DTDs)
 private external DTDS
 schemas
 XBase 2nd
URIs (Uniform Resource Identifiers)
 namespaces
 defining 2nd 3rd 4th 5th 6th 7th
URLs
 private external DTDs
URLs. [See also URIs]
use attribute 2nd
Usenet newsgroups
UTF-16 (UCS Transformation Format-16)
UTF-8 (UCS Transformation Format-8)
UTF-8 character encoding

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

valid documents. [See also DTDs (document type definitions)]2nd [See also schemas]
valid files
 creating 2nd
validateOnParse property
validating
 data
 documents with DTDs (JavaScript) 2nd 3rd 4th 5th 6th 7th 8th 9th
 SVG documents
 XHTML documents 2nd
validators 2nd 3rd
 CSS
validators (schemas) 2nd 3rd 4th 5th 6th 7th
value attribute
values. [See also default values]
variables
 XQuery
Vector Markup Language (VML) 2nd 3rd
version attribute 2nd 3rd
version attribute (declarations)
vertical-align property 2nd
viewers
 RDF (Resource Description Framework)
viewing
 files
 via style sheets 2nd 3rd 4th 5th 6th
 files in Web browsers 2nd 3rd 4th 5th
 PDF documents
 SVG documents
 SVG Viewer 2nd
Visual Basic .NET applications
 databases
 storing as XML 2nd
Visual Studio .NET programming
 controls
 displaying formatted XML 2nd 3rd 4th 5th 6th 7th 8th
 data
 handling 2nd
 documents
 adding data 2nd 3rd
 creating 2nd
 elements
 creating 2nd 3rd
 schemas
 complex types, creating 2nd
 connecting to documents 2nd
 simple types, creating 2nd 3rd
 syntax 2nd
 reading 2nd 3rd 4th 5th 6th 7th
 writing 2nd 3rd 4th 5th
 Web services
 calling 2nd 3rd 4th 5th 6th 7th
 creating 2nd 3rd 4th 5th
Visual Studio XML designer 2nd
vlink attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VML (Vector Markup Language) 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

W3C
 XQuery 2nd 3rd
W3C (World Wide Web Consortium)
W3C DOM. [See DOM (Document Object Model)]
W3C Web site 2nd 3rd
warning method
warnings
 SAX
 handling 2nd 3rd 4th 5th 6th
Web applications
 creating
Web browser
 DTDs
Web browsers
 Amaya
 Amaya Web browser
 XLinks 2nd 3rd
 files
 viewing 2nd 3rd 4th 5th
 Internet Explorer 2nd
 viewing CDATA sections
 viewing element attributes
 XLinks
 Jumbo 2nd
 Netscape Navigator
Web pages
 HTML sample 2nd
Web services
 calling (Visual Studio .NET) 2nd 3rd 4th 5th 6th 7th
 creating (Visual Studio .NET) 2nd 3rd 4th 5th
Web site
 XMLspy
 XRay
Web sites
 AchieveForms
 Adobe
 Chiba
 FormFaces
 FormsPlayer
 HiT Sofware
 jXForms
 LiquidOffice
 Microsoft 2nd
 Mosquito XForms
 NMatrix
 Novell XForms
 TrustForm System
 W3C 2nd 3rd
 X-Smiles
 Xero
 XLinks 2nd 3rd 4th
 attributes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th
 creating arcs 2nd 3rd
 creating linkbases 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emulating HTML hyperlinks 2nd 3rd
 extended XLinks 2nd
 implementing 2nd
 XML Forms Package
 xmlArchitect
 XMLForm
 XServerForms
well-formed documents 2nd
 creating 2nd 3rd 4th 5th
 defined
 productions
 document
 prologs 2nd
 root elements 2nd
 adding 2nd
 standalone attribute
 adding
 well-formed parsed entities
 well-formedness constraints 2nd
 attributes 2nd 3rd
 declarations
 element structure 2nd
 entity references 2nd 3rd 4th
 legal character references
 nesting elements 2nd
 root elements 2nd 3rd
well-formed files
 creating 2nd
well-formed parsed entities
well-formedness constraints 2nd
 attributes 2nd 3rd
 declarations
 element structure 2nd
 entity references 2nd 3rd 4th
 legal character references
 nesting elements 2nd
 root elements 2nd 3rd
While loop
whitespace
 DTD attributes 2nd
 Java
 SAX parsers
whitespace (non)
 DTD attributes
whitespace (XML documents) 2nd
whiteSpace schema facet
width attribute
wildcard character (*)
wildcard characters (@*)
Windows Application icon
Windows WordPad
 file extensions
wizards
 Data Adapter Configuration Wizard 2nd 3rd
WordPad
 file extensions
 saving XML documents
working drafts (W3C file)
World Wide Web Consortium (W3C)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WriteStartDocument method
WriteStartElement method 2nd
writing
 attributes 2nd 3rd 4th
 comments 2nd 3rd
 declarations 2nd
 documents
 attributes 2nd 3rd 4th 5th 6th 7th 8th
 CDATA sections 2nd 3rd 4th 5th
 character encodings 2nd 3rd 4th 5th
 comments 2nd 3rd
 declarations 2nd
 elements, naming tags 2nd
 empty elements 2nd
 entities 2nd 3rd 4th
 line endings
 markups 2nd 3rd
 processing instructions
 prologs 2nd
 root elements
 whitespace 2nd
 processing instructions
 prologs 2nd
 syntax (Visual Basic .NET) 2nd 3rd 4th 5th
 XForms 2nd
 XML with Java 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
 XML with Java/SAX 2nd 3rd 4th 5th 6th 7th

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X-Smiles
XBase 2nd
Xerces
Xero
XForms 2nd 3rd 4th 5th 6th 7th 8th 9th
 buttons
 creating 2nd 3rd
 Reset 2nd
 Submit 2nd
 controls 2nd 3rd
 input 2nd
 select 2nd
 declarations
 presentations
 separating data from 2nd 3rd
 select Booleans
 creating 2nd
 software 2nd 3rd
 writing 2nd
XHTML 2nd 3rd 4th 5th
 <a> element 2nd 3rd 4th 5th
 <body> element (document body) 2nd 3rd 4th 5th 6th
 <frame> element 2nd 3rd 4th 5th 6th 7th
 <frameset> element 2nd 3rd
 <head> element (document head) 2nd 3rd
 <html> element (document element) 2nd
 element 2nd 3rd 4th 5th
 <link> element 2nd 3rd 4th 5th 6th
 <style> element 2nd 3rd 4th 5th 6th
 <table> element 2nd 3rd 4th
 <td> element 2nd 3rd 4th 5th
 <th> element 2nd 3rd 4th 5th
 <title> element (document title) 2nd
 <tr> element 2nd 3rd
 (Extensible Hypertext Markup Language)
 documents
 <!DOCTYPE> element 2nd 3rd 4th
 columns 2nd
 declarations
 requirements 2nd
 standalone attributes
 validating 2nd
 writing 2nd 3rd 4th 5th 6th 7th
 extending 2nd 3rd 4th 5th
 headers
 columns, spanning
 inline styles
 creating
 mixed-content models 2nd
 text 2nd

 element 2nd
 <center> element 2nd 3rd 4th
 <div> element 2nd 3rd 4th
 <h1> to <h6> elements 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <p> element 2nd
 element 2nd 3rd 4th
 text formatting
 <!Ñ> element 2nd
 element 2nd 3rd
 element 2nd 3rd 4th
 <i> element 2nd
 <u> element 2nd
XHTML (Extensible Hypertext Markup Language) 2nd 3rd
XHTML 1.0 2nd
 <!DOCTYPE> element
XHTML 1.1
 <!DOCTYPE> element
XHTML 2.0 2nd
 <!DOCTYPE> element
XHTML Basic
 <!DOCTYPE> element
XHTML validator
XHTML/MathML document 2nd
xlink[COLON]actuate attribute 2nd
xlink[COLON]arcrole attribute
xlink[COLON]label attribute
xlink[COLON]ref attribute
xlink[COLON]role attribute 2nd
xlink[COLON]show attribute
xlink[COLON]title attribute 2nd
xlink[COLON]type attribute 2nd
XLinks
 Amaya Web browser 2nd 3rd
Xlinks
 attributes 2nd 3rd
 xlink[COLON]actuate attribute 2nd
 xlink[COLON]arcrole attribute
 xlink[COLON]label attribute
 xlink[COLON]ref attribute
 xlink[COLON]role attribute 2nd
 xlink[COLON]show attribute
 xlink[COLON]title attribute 2nd
 xlink[COLON]type attribute 2nd
 extended XLinks 2nd 3rd
 creating arcs 2nd 3rd
 creating linkbases 2nd
 inline links
 out-of-line links 2nd 3rd 4th
XLinks
 HTML hyperlinks
 emulating 2nd 3rd
 implementing 2nd
 Internet Explorer
XML applications 2nd
XML declarations
 attributes
XML Forms Package
XML Notepad 2nd
XML Path Language (XPath)
XML Pro
XML processors
XML Schema Quality Checker
XML schemas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XML Spy 2nd
XML Writer 2nd
xml:lang attribute 2nd 3rd 4th
xml:space attribute
xmlArchitect Web sites
XmlDataDocument object
 methods 2nd 3rd 4th
 properties 2nd 3rd
XMLDOMAttribute object 2nd 3rd
XMLDOMElement object 2nd 3rd 4th 5th
XMLDOMNode object 2nd 3rd
XMLDOMText object 2nd 3rd 4th 5th
XMLForm
XMLmind
xmlns attribute
xmlns:prefix attribute 2nd 3rd
XMLspy Web site
XmlTextReader object
XmlTextWriter class
XPath
 abbreviations 2nd 3rd 4th 5th 6th 7th 8th
 axes 2nd 3rd
 databases 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 XmlDataDocument object 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 default rules 2nd 3rd 4th 5th 6th 7th 8th
 location steps
 node sets. [See also location sets]
 node tests
 predicates 2nd
 boolean expressions 2nd
 node sets 2nd 3rd
 numbers 2nd 3rd
 result tree fragments
 strings 2nd
 tools
 XPointer schemes 2nd 3rd 4th 5th 6th 7th
 points
 points, character-points
 points, child nodes 2nd
 points, functions
 ranges 2nd
XPath (XML Path Language)
XPath expressions 2nd
XPath Visualiser
XPointers
 barenames 2nd
 element schemes 2nd
 framework specifications
 namespace schemes 2nd
 software support
 XPointer schemes
 points
 points, character-points
 points, child nodes 2nd
 points, functions
 ranges 2nd
 XPath functions
 XPath location sets
 XPath locations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 XPath node tests
 XPath points
 XPath ranges
XQuery
 context code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Xquery
 databases 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th
21st 22nd 23rd
 implementations 2nd 3rd
 Lucent Galax XQuery processor 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
17th 18th
 online working drafts 2nd
 W3C 2nd 3rd
XQuery
 functions 2nd
 count 2nd
 template files
 creating 2nd
 variables
XRay Web site
XSD Schema Validator
XServerForms
XSL
 (Extensible StyleSheet Language)
 style sheets
 data extraction 2nd
 multiple matches 2nd 3rd
XSL Formatting Objects. [See XSL-FO]
XSL style sheet
 syntax 2nd
XSL-FO 2nd 3rd 4th
 <fo:block> element
 (XSL Formatting Objects)
 documents
 creating with XSLT 2nd 3rd 4th
 creating with XSLT style sheets 2nd 3rd 4th 5th
 inline formatting
 <fo:external-graphic> element 2nd 3rd 4th
 <fo:inline> element 2nd 3rd 4th 5th 6th 7th 8th
 <fo:page-number> element 2nd 3rd 4th
 list formatting 2nd 3rd 4th 5th
 namespaces
 objects 2nd 3rd 4th 5th
 <fo:block> element 2nd 3rd 4th 5th 6th 7th
 <fo:flow> element 2nd
 <fo:layout-master-set> element
 <fo:page-sequence> element 2nd 3rd
 <fo:region-after> element 2nd
 <fo:region-body> element 2nd
 <fo:root> element 2nd
 <fo:simple-page-master> element 2nd 3rd 4th
 <fo:static-content> element
 PDF documents
 creating 2nd
 properties 2nd 3rd
 table formatting 2nd 3rd 4th 5th 6th 7th
XSLT
 <xsl:choose> element 2nd 3rd 4th
 <xsl:copy> element 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:if> element 2nd 3rd
 (Extensible Stylesheet Language Transformation)
 documents
 transforming 2nd
 transforming, clients 2nd 3rd
 transforming, Java 2nd
 transforming, servers 2nd
 matching
 XPath expressions 2nd
 nodes
 copying
 output document type 2nd
 select attribute
 XPath
 XPath, abbreviations 2nd 3rd 4th 5th 6th 7th 8th
 XPath, axes 2nd 3rd
 XPath, default rules 2nd 3rd 4th 5th 6th 7th 8th
 XPath, node tests
 XPath, predicates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
 XPath, tools
 style sheets
 writing 2nd 3rd 4th 5th
 XSL-FO documents, creating 2nd 3rd 4th 5th
 templates 2nd 3rd
 <xsl:apply-templates> element 2nd 3rd 4th
 <xsl:for-each> element 2nd 3rd 4th 5th
 <xsl:value-of> element 2nd 3rd 4th 5th
 node matching
 node matching, attribute handling 2nd 3rd 4th 5th 6th
 node matching, element handling 2nd
 node matching, ID attribute handling
 node matching, multiple matches 2nd 3rd
 node matching, processing instructions handling 2nd
 node matching, root nodes
 XSL-FO documents
 creating 2nd 3rd 4th
XSLT style sheets 2nd 3rd 4th
XSV

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

